
C
ER

N
-T

H
ES

IS
-2

01
1-

08
3

09
/0

9/
20

11

硕士学位论文
Dissertation for Master’s Degree

(工程硕士)
(Master of Engineering)

基于 CastorFS 和 Xrootd 的用户空间文

件系统的进一步设计与实现

Further implementation of the

user space f i le system based on

CastorFS and Xrootd

Manjun JIAO

2011 年 9 月

国内图书分类号：TP311 学校代码：10213

国际图书分类号：681 密级：公开

工程硕士学位论文

Dissertation for the Master’s Degree in Engineering

(工程硕士)

(Master of Engineering)

基于CastorFS和 Xrootd的用户空间文件系统的进一步设计

与实现

Further implementation of the user space file system based

on CastorFS and Xrootd

硕 士 研 究 生 ： 焦满峻

导 师 ： Niko NEUFELD

副 导 师 ： 徐晓飞, Kun-Mean HOU

申 请 学 位 ： 工程硕士

学 科 ： 软件工程

所 在 单 位 ： 软件学院

答 辩 日 期 ： 2011 年 9 月

授 予 学 位 单 位 ： 哈尔滨工业大学

Classified Index: TP311

U.D.C: 620

Dissertation for the Master’s Degree in Engineering

Further implementation of the user space file

system based on CastorFS and Xrootd

Candidate： JIAO Manjun

Supervisor： Niko NEUFELD

Associate Supervisor: Prof. Xiaofei XU

Prof Kun-mean HOU

Academic Degree Applied for： Master of Engineering

Speciality： Software Engineering

Affiliation： School of Software

Date of Defence： September, 2011

Degree-Conferring-Institution： Harbin Institute of Technology

 Thesis for Master’s Degree at HIT and UBP

I

摘 要

 在欧洲核物理研究委员会（CERN），科学家们用大型强子对撞（LHC）实

验使用海量存储系统来对数以千 T 字节的实验数据进行存储和管理。这个系统

就是 CASTOR（CERN 高级存储管理系统）。它为进行科学实验提供了强大和

便捷的数据支撑。然而，用户在使用这个数据管理系统的时候只能用其提供的

具体命令行去访问和操作其中的数据。这样一个基于 FUSE（用户空间文件系

统）和两个 CASTOR 输入输出库（NS 库和 Rfio 库）的文件系统 CastorFS 被开

发出用于进一步简化 CASTOR 系统的使用。尽管此文件系统已经成功被部署在

LHCb 的节点上，然后它有很大的缺陷极大地限制了其应用范围。当用户想要

获取某个存储大量数据的文件夹时，它使用的两个库极大地增加了 CASTOR 服

务器端的负载，而且它们也不提供任何数据保护的机制。除此而外，缓慢的数

据传输速度也极大地限制了文件系统的应用。这样，我们需要开发一个缓存来

有效地对短时期要用的大量数据进行存储并使用新的数据传输协议 Xrootd 来

重新构建 CastorFS 以降低 CASTOR 服务器端的负载，提供更快的数据传输服

务，提供安全的数据访问机制。新的系统实现 LRU（Least recently used）算法

作为实现缓存管理的机制，运用 FUSE 提供的实现虚拟文件系统的接口以及

Xrootd 所提供的符合 POSIX 标准的功能函数来提供一个有效降低服务器端负

载，传输速度更加稳定可靠，带有安全认证功能的用户空间文件系统，当前系

统以及在 LHCb 的节点上经过测试并已经被成功部署以服务于科学计算。

关键词：CastorFS，用户空间文件系统，缓存，Xrootd

 Thesis for Master’s Degree at HIT and UBP

I

Abstract

The LHC (Large Hadron Collider) experiments use a mass storage system for

recording petabytes of experimental data. This system is called CASTOR
[1]

 (CERN

Advanced STORage manager) and it is powerful and convenient for many use cases.

However, it is impossible to use standard tools and scripts straight away for dealing

with the files in the system since the users can access the data just in the way of

using command-line utilities and parsing their output. Thus a complete POSIX

filesystem – CastorFS
[2]

 is developed based on the FUSE
[3]

 (File System in

Userspace) and two CASTOR I/O libraries-RFIO (Remote File I/O) library and NS

(Name Server) library. Although it is applied successfully, it has serious limitation

of wide application because the I/O protocols it relies on are very old. Each time the

CASTOR side receives the calling for accessing data files from the user side, the

load of the CASTOR side system will increase quickly even out of its upper bound

and the system would crash. Besides that, those two protocols provide very

primitive mechanism for authentication and the data transmitting rate is very low.

Furthermore, since the CastorFS is implemented in C language, it can hardly be

extended by using the other well functioned libraries. Hence, it needs to be

rewritten in C++ with the implementation of caching and the Xrootd
[4]

 (eXtended

Root Daemon) which is developed by SLAC/CERN to provide a high performance,

scalable fault tolerant access to data. The new system implemented the LRU (Least

Recently Used) algorithm as the mechanism to manage the cache. We use FUSE as

the tool to provide the interfaces for the virtual filesystem. By implementing the

actual filesystem function with Xrootd Posix APIs, we provided a filesystem which

can effectively ease the server load, provide a steady data transmitting service and

provide a good data protection mechanism.

Keywords: CastorFS, FUSE, Caching, Xrootd

 Thesis for Master’s Degree at HIT and UBP

1

Table of contents

摘 要 ... I

ABSTRACT ... I

CHAPTER 1 INTRODUCTION ... 3

1.1 BACKGROUD ... 3

1.2 CASTOR, FUSE, CASTORFS AND XROOTD ... 4

1.2.1 CASTOR ... 4

1.2.2 FUSE ... 7

1.2.3 CastorFS .. 13

1.2.4 Xrootd ... 13

1.3 THE PURPOSE OF PROJECT ... 15

1.4 THE STATUS OF RELATED APPLICATION .. 15

1.4.1 Application No.I ... 15

1.4.2 Application No. II ... 15

1.5 MAIN CONTENT AND ORGANIZATION OF THE THESIS 16

CHAPTER 2 SYSTEM REQUIREMENT ANALYSIS...................................... 17

2.1 THE GOAL OF THE SYSTEM .. 17

2.2 THE FUNCTIONAL REQUIREMENTS ... 17

2.2.1 The requirement of implementing caching ... 17

2.2.2 The requirement of applying Xrootd in the system 19

2.2.3 The requirement of porting the system to Mac and Windows 19

2.3 THE UN-FUNCTIONAL REQUIREMENTS ... 20

2.4 SUMMARY ... 20

CHAPTER 3 SYSTEM DESIGN .. 21

3.1 THE OVERALL DESIGN OF THE SYSTEM .. 21

3.2 THE DESIGN OF THE WRAPPER ... 23

3.3 THE DESIGN OF THE CACHING.. 24

3.4 THE DESIGN OF THE FILESYSTEM USING XROOTD .. 26

3.5 KEY TECHNIQUES .. 27

3.5.1 The application of FUSE .. 27

 Thesis for Master’s Degree at HIT and UBP

2

3.5.2 The application of Xrootd ... 32

3.5.3 The application of C++ standard library .. 33

3.5.3 The application of LRU algorithm for caching 34

3.5.3 The mechanism of authentication in CERN and Xrootd 35

3.5.5 The application of CMake and RPMBuild tools 38

3.6 BRIEF SUMMARY ... 39

CHAPTER 4 SYSTEM IMPLEMENTATION AND TESTING 40

4.1 THE ENVIRONMENT OF SYSTEM IMPLEMENTATION 40

4.1.1 Hardware environment ... 40

4.1.2 Software environment ... 41

4.1.3 The implementation of wrapper.. 42

4.1.4 The implementation of caching .. 44

4.1.5 The implementation of new CastorFS with Xrootd 47

4.3 KEY INTERFACES OF THE SOFTWARE SYSTEM .. 53

4.4 SYSTEM TESTING AND PERFORMANCE EVALUATION.................................... 54

4.4.1 System Testing .. 54

4.4.2 Performance evaluation .. 55

4.5 BRIEF SUMMARY ... 59

CONCLUSION .. 60

REFERENCES .. 61

STATEMENT OF COPYRIGHT .. 64

LETTER OF AUTHORIZATION ... 64

ACKNOWLEDGEMENT ... 65

RESUME ... 66

 Thesis for Master’s Degree at HIT and UBP

3

Chapter 1 Introduction

1.1 Background

The CERN Advanced STORage manager (CASTOR) is a hierarchical storage

management system developed at CERN for physics data files. Files can be stored,

listed, retrieved and remotely accessed using CASTOR command-line tools or user

applications developed against the CASTOR API. Multiple access protocols are

available such as RFIO (Remote File IO), ROOT, XROOT and GridFTP. CASTOR

exposes also a SRM interface. The design is based on a component architecture

using a central database to save guard the state changes of CASTOR components.

The access to disk pools is controlled by the Stager; the directory structure is kept

by the Name Server. The tape access (write and recalls) is controlled by the Tape

Infrastructure.

The FUSE system was originally part of A Virtual Filesystem (AVFS), but has

since split off into its own project on SourceForge.net. FUSE is available for Linux,

FreeBSD, NetBSD (as PUFFS), OpenSolaris, and Mac OS X. It was officially

merged into the mainstream Linux kernel tree in kernel version 2.6.14. FUSE is

particularly useful for composing virtual file systems. Unlike traditional file

systems that essentially save data to and retrieve data from disk, virtual filesystems

do not actually store data themselves. They act as a view or translation of an

existing file system or storage device. In principle, any resource available to FUSE

implementation can be exported as a file system
 [5]

. There are many file systems and

applications were developed based on FUSE, like run-time-access, KIO FUSE

Gateway, LUFS bridge, mcachefs, Logic File System, GnomeVFS2 FUSE, AFUSE,

Mountlo, etc. However, for interaction with the CASTOR system, this is a new

application and a practical one
[6]

.

XROOTD aims at giving high performance, scalable fault tolerant access to

data repositories of many kinds. The typical usage is to give access to file-based

ones. It is based on a scalable architecture, a communication protocol, and a set of

plugins and tools based on those
[7]

. The freedom to configure it and to make it scale

(for size and performance) allows the deployment of data access clusters of virtually

any size, which can include sophisticated features, like authentication/authorization,

http://sourceforge.net/projects/avf
http://en.wikipedia.org/wiki/SourceForge.net
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/PUFFS_%28NetBSD%29
http://en.wikipedia.org/wiki/OpenSolaris
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Kernel_%28computer_science%29
http://en.wikipedia.org/wiki/Virtual_file_system

 Thesis for Master’s Degree at HIT and UBP

4

integrations with other systems
[8]

, WAN data distribution, etc. Recently, starting

from the fact that xrootd is just the name of one constituting block (the data access

daemon), the name "Scalla" is being sometimes used to refer to the whole software

suite. Its meaning is "Structured Cluster Architecture for Low Latency Access".

This Savannah point of access is supposed to grow and constitute a point of

aggregation for the various needs of people willing to use the platform for their data

access needs in the HEP community
[9]

. This will include access to updated source

code and to the documentation, as well to any other kind of information related to

the project. Xrootd is a newly developed tool and it is not be used widely, so it’s a

new application full of challenge. It is a high performance network storage system

widely used in High Energy Physics experiments such as Babar, STAR and LHC.

The underline Xroot data transfer protocol provides very high efficient access to the

ROOT based data files
[10]

. Using filesystem which is based on Xrootd to access data

files will not take the advantages provided by the Xroot data transfer protocol
[11]

.

For this reason, the preferred environments to use Xrootd are data import, export

and data management, not the actual data analysis. Because Xrootd is designed with

large data files in mind, it is not efficient to use the filesystem based on Xrootd for

large number of small files
[12]

.

1.2 CASTOR, FUSE, CASTORFS and Xrootd

1.2.1 CASTOR

CASTOR is a hierarchical storage management (HSM) system developed at

CERN. Files can be stored, listed, retrieved and accessed in CASTOR using

command line tools or applications built on top of the RFIO (Remote File IO) or

ROOT libraries
[13][14]

.

CASTOR provides a UNIX like directory hierarchy of file names. The

directories are always rooted /castor/cern.ch (the cern.ch will be different in other

CASTOR sites). The CASTOR name space can viewed and manipulated only

through CASTOR client commands and library calls. OS commands like ls or mkdir

will not work on CASTOR files. The CASTOR name space holds permanent tape

residence of the CASTOR files, while the more volatile disk disk residence is only

known to the stager, which is the disk cache management component in CASTOR.

When accessing or modifying a CASTOR file, one must therefore always use a

stager.

 Thesis for Master’s Degree at HIT and UBP

5

CASTOR name space can be viewed using the nsls or rfdir commands.

Both commands use the same mechanism for talking to CASTOR but there are

important differences:

 nsls can also list the tape residence (-T option) and supports a special

mode-bit 'm' flagging that the file has been migrated to tape

 rfdir is a RFIO command and can therefore also be used to list local or

remote files. nsls can only list CASTOR files

Example:

[lxplus] nsls -l /castor/cern.ch/user/l/linda

mrw-r--r-- 1 linda aa 29194240 Mar 08 2004 thesis.tar

mrw-r--r-- 1 linda aa 16723666 Jan 14 2004 muons.root

mrw-r--r-- 1 linda aa 2496 Aug 12 10:06 logfile

drwxr-xr-x 102 linda aa 0 Jul 20 13:45 higgs

[lxplus] rfdir /castor/cern.ch/user/l/linda

-rw-r--r-- 1 linda aa 29194240 Mar 08 2004 thesis.tar

-rw-r--r-- 1 linda aa 16723666 Jan 14 2004 muons.root

-rw-r--r-- 1 linda aa 2496 Aug 12 10:06 logfile

drwxr-xr-x 102 linda aa 0 Jul 20 13:45 higgs

[lxplus] rfdir .

drwxr-xr-x 6 linda root 4096 Oct 09 2003 private

drwxr-xr-x 27 linda root 4096 Aug 19 20:25 public

-rw-r--r-- 1 linda root 547 Oct 19 2000 .login

-rw-r--r-- 1 linda root 3905 Dec 10 1996 .profile

-rw-r--r-- 1 linda root 6228 Sep 28 2004 .tcshrc

-rw-r--r-- 1 linda root 2151 Dec 10 1996 .zprofile

-rw-r--r-- 1 linda root 3436 Dec 10 1996 .zshenv

-rw-r--r-- 1 linda root 4159 Dec 10 1996 .zshrc

[lxplus] nsls -T /castor/cern.ch/user/l/linda/thesis.tar

- 1 1 P16116 1663 00353758 29194240 0

/castor/cern.ch/user/l/linda/thesis.tar

Figure 1-1 is the overview of CASTOR2,

 Thesis for Master’s Degree at HIT and UBP

6

Figure 0-1-1 Castor status and overview

The functionality of CASTOR covers a wide range of the requirements of the

data management: SRM conventions for client command set, transactions for input

streams, handling of new queries, pluggable policies, request priorities, pluggable

protocols and SRM interfaces. Besides that, it also integrated authorization
[15]

,

authentication, resiliency against hardware failures and disaster recovery functions.

The scalability and the flexibility which are two important features in the domain of

high performance computing are also supported by CASTOR.

CASTOR provides a UNIX like directory hierarchy of file names. This

directory structure can be accessed using rfio (Remote File Input/Output) protocols

either at the command level or, for C programs, via function calls. The service at

RAL has an SRM interface which makes it GRID accessible
[16][17]

.

There are two families of commands that can be used to access CASTOR

locally at RAL:-

rf*: The rfio commands which can access both local and remote files. See

setting the environment for a warning about getting the right version of rf*.

ns*: The ns* CASTOR name server commands have additional functionality

but can only be used on local CASTOR files.

These commands don't use GRID certificates, it's all down to UNIX

permissions; when files are created they will be owned by the user running on the

http://www-numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/data_tutorial.html#eg_castor_env

 Thesis for Master’s Degree at HIT and UBP

7

UI. If subsequently accessed via some GRID service the username will normally be

different but so long as it belongs to the same group i.e. 'minos' then group

attributes can be used to control access.

1.2.2 FUSE

A filesystem is a method for storing and organizing computer files and

directories and the data they contain, making it easy to find and access them. If

somebody is using a computer, he/she is most likely using more than one kind of

filesystem. A filesystem can provided extended capabilities. It can be written as a

wrapper over an underlying filesystem to manage its data and provide an enhanced,

feature-rich filesystem (such as cvsfs-fuse, which provides a filesystem interface for

CVS, or a Wayback filesystem, which provides a backup mechanism to keep old

copies of data)
[18]

.

Before the advent of user space filesystems, filesystem development was the

job of the kernel developer. Creating filesystems required knowledge of kernel

programming and the kernel technologies (like vfs). And debugging required C and

C++ expertise
[19]

. But other developers needed to manipulate a filesystem -- to add

personalized features (such as adding history or forward-caching) and

enhancements.

Now, in a userspace program, we can implement a fully functional filesytem

by using FUSE. It provides features like simple library API, simple installation,

secure implementation, and efficient kernel interface in userspace. And, to top it all

off, FUSE has a proven track record of stability
[20]

. To create a filesystem in FUSE,

we need to install a FUSE kernel module and then use the FUSE library and API set

to create our filesystem
[21][22]

. The supper block, inode, dengry etc. are all virtual.

The request of the real information of a file will be passed from layer to layer

through drivers and interfaces until request handling program written by user in the

user space.

Figure 1-2 shows the data flow used by FUSE to access remote data. FUSE

contains three modules: FUSE kernel module, LibFUSE module, User program

module
[23]

. In user space, users should implement the filesystem which is

encapsulated by the Libfuse library. Libfuse provide the support to the main

filesystem framework, encapsulation for ―user implemented filesytem‖ code,

 Thesis for Master’s Degree at HIT and UBP

8

handling ―mount‖, communication with operating system module through character

device /dev/fuse.

The kernel module of FUSE has implemented the VFS interface which is used

for FUSE file driver module registration, the virtual device driver of FUSE,

providing maintenance of supper block, dentry, inode. FUSE kernel will receive the

VFS’s requests and pass them to LibFUSE. LibFUSE will pass them to our user

program interface to actually do the job (Figure 1-2).

Figure 1-0-2 How fuse works

When our user mode program calls fuse_main() (lib/helper.c), fuse_main()

parses the arguments passed to our user mode program, then calls fuse_mount()

(lib/mount.c).

fuse_mount() creates a UNIX domain socket pair, then forks and execs

fusermount (util/fusermount.c) passing it one end of the socket in the

FUSE_COMMFD_ENV environment variable.

fusermount (util/fusermount.c) makes sure that the fuse module is loaded.

fusermount then open /dev/fuse and send the file handle over a UNIX domain

socket back to fuse_mount().

fuse_mount() returns the filehandle for /dev/fuse to fuse_main().

fuse_main() calls fuse_new() (lib/fuse.c) which allocates the struct fuse

datastructure that stores and maintains a cached image of the filesystem data. Lastly,

 Thesis for Master’s Degree at HIT and UBP

9

fuse_main() calls either fuse_loop() (lib/fuse.c) or fuse_loop_mt() (lib/fuse_mt.c)

which both start to read the filesystem system calls from the /dev/fuse, call the

usermode functionsstored in struct fuse_operations datastructure before calling

fuse_main(). The results of those calls are then written back to the /dev/fuse file

where they can be forwarded back to the system calls.

Figure 1-0-3 Fuse working procedure

 Thesis for Master’s Degree at HIT and UBP

10

Figure 1-0-4 rm function call procedure in FUSE

 Thesis for Master’s Degree at HIT and UBP

11

To create a filesystem with FUSE, we need to declare a structure variable of

type fuse_operations and pass it on to the fuse_main function. The

fuse_operations structure carries a pointer to functions that will be called when

the appropriate action is required
[24]

. None of those operations are absolutely

essential, but many are needed for a filesystem to work properly. We can implement

a full-featured filesystem with the special-purpose methods .flush, .release,

or .fsync. Some functions are explained as follows:

 getattr: int (*getattr) (const char *, struct stat *);

This is similar to stat(). The st_dev and st_blksize fields are ignored. The

st_ino field is ignored unless the use_ino mount option is given.

 readlink: int (*readlink) (const char *, char *, size_t);

This reads the target of a symbolic link. The buffer should be filled with a

null-terminated string. The buffer size argument includes the space for the

terminating null character. If the linkname is too long to fit in the buffer, it

should be truncated. The return value should be "0" for success.

 getdir: int (*getdir) (const char *, fuse_dirh_t,

fuse_dirfil_t);

This reads the contents of a directory. This operation is the opendir(),

readdir(), ..., closedir() sequence in one call. For each directory entry,

the filldir() function should be called.

 mknod: int (*mknod) (const char *, mode_t, dev_t);

This creates a file node. There is no create() operation; mknod() will be

called for creation of all non-directory, non-symlink nodes.

 mkdir: int (*mkdir) (const char *, mode_t);

rmdir: int (*rmdir) (const char *);

These create and remove a directory, respectively.

 unlink: int (*unlink) (const char *);

rename: int (*rename) (const char *, const char *);

These remove and rename a file, respectively.

 symlink: int (*symlink) (const char *, const char *);

This creates a symbolic link.

 link: int (*link) (const char *, const char *);

This creates a hard link to a file.

 Thesis for Master’s Degree at HIT and UBP

12

 chmod: int (*chmod) (const char *, mode_t);

chown: int (*chown) (const char *, uid_t, gid_t);

truncate: int (*truncate) (const char *, off_t);

utime: int (*utime) (const char *, struct utimbuf *);

These change the permission bits, owner and group, size, and

access/modification times of a file, respectively.

 open: int (*open) (const char *, struct fuse_file_info *);

This is the file open operation. No creation or truncation flags (O_CREAT,

O_EXCL, O_TRUNC) will be passed to open(). This should check if the

operation is permitted for the given flags. Optionally, open() may also

return an arbitrary filehandle in the fuse_file_info structure, which will

be passed to all file operations.

 read: int (*read) (const char *, char *, size_t, off_t, struct

fuse_file_info *);

This reads data from an open file. read() should return exactly the number

of bytes requested, except on EOF or error; otherwise, the rest of the data

will be substituted with zeroes. An exception to this is when the direct_io

mount option is specified, in which case the return value of the read()

system call will reflect the return value of this operation.

 write: int (*write) (const char *, const char *, size_t, off_t,

struct fuse_file_info *);

This writes data to an open file. write() should return exactly the number

of bytes requested except on error. An exception to this is when the

direct_io mount option is specified (as in the read() operation).

 statfs: int (*statfs) (const char *, struct statfs *);

This gets filesystem statistics. The f_type and f_fsid fields are ignored.

 flush: int (*flush) (const char *, struct fuse_file_info *);

This represents flush-cached data. It is not equivalent to fsync() -- it's not a

request to sync dirty data. flush() is called on each close() of a file

descriptor, so if a filesystem wants to return write errors in close() and the

file has cached dirty data, this is a good place to write back data and return

any errors. Since many applications ignore close() errors, this is not always

useful.

 Thesis for Master’s Degree at HIT and UBP

13

1.2.3 CastorFS

CASTOR logically presents files in a UNIX (POSIX) like directory hierarchy

of file names
[25][26]

. This suggests implementing a new filesystem capable of

operating on files stored on CASTOR using standard UNIX operation system calls

and commands like open, read, cp, rm, mkdir, ls, cat and find.

Figure 1-0-5 CastorFS

CastorFS have a performance problem for writing and reading files to/from

CASTOR compared to native RFIO about 14 times slower for writing and 3 times

slower for reading1 (see Table 1-1). This project will make a further

implementation for CastorFS by adding new module for the filesystem and using

new data transmitting policy to make a big improvement on CastorFS
[27]

.

Table 1-1 CastorFS performance

1.2.4 Xrootd

Scalla means Structured Cluster Architecture for Low Latency Access
[28]

.

This is the relatively new name given to the whole suite of tools which are part of

the (formerly called) XRootD distribution. The Scalla software suite provides two

fundamental building blocks: an xrootd server for low latency highbandwidth data

access and an olbd server for building scalable xrootd clusters. Scalla offers a

 Thesis for Master’s Degree at HIT and UBP

14

readily deployable framework in which to construct large fault-tolerant high

performance data access configurations using commodity hardware with a minimum

amount of administrative overhead
[29]

.

The xrootd server is designed to provide POSIX-like access to files and their

enclosing directory namespace
[30]

. The architecture is extensible in that it relies

heavily on a run-time plug-in mechanism so that new features can be added with a

minimum of disruption
[31]

. The plug-in components are shown in Figure 1-6. Seven

plug-in components are shown. The components mate (i.e., plug in) at different

architectural junctions.

Figure 1-0-6: Xrootd Server Architecture

The core component is the ―xrd‖. This component is responsible for network,

thread, data buffer, and protocol management. Because the ―xrd‖ is responsible for

a compact set of functions
[32]

, it was easily optimized to do them exceedingly well.

For instance, network management was engineered to use the most efficient

mechanism available for each type of host operating system. Data buffer

management is optimized to provide fast allocation and de-allocation of I/O buffers

on page boundaries. Protocol management is designed to allow any number of

protocols to be used at the same time. The protocol is selected at the time an initial

connection is made to the server. By default, the component that provides the xroot

protocol is statically linked with the ―xrd‖. As mentioned before, additional

protocols may be specified, and the ―xrd‖ loads these at run-time from appropriate

shared libraries. For instance, the PROOF system runs both the xroot protocol as

 Thesis for Master’s Degree at HIT and UBP

15

well a special protocol that provides parallel access to multiple data analysis servers

within the Root Framework.

The authentication component, XrdSec, plugs into the xroot protocol

component. Multiple authentication protocols can be used as the xroot protocol is

merely used to encapsulate the client/server interactions required by the protocol.

Currently, GSI, Kerberos IV and V, as well as simple password authentication are

supported. Additional authentication protocols may be implemented and placed in

shared libraries
[33]

. These protocols are dynamically loaded and used whenever the

client supports the particular protocol. Authentication models may also be restricted

on a host name and domain basis
[34][35]

.

1.3 The purpose of project

The purpose of project is to implement a user space file system according to

the requirements to provide a better virtual filesytem for the users to facilitate their

work and ease the server load by applying interesting mechanisms to the filesystem.

1.4 The status of related application

FUSE is used by many organizations to develop many commercial and

nonecomercial applications and products. Here are some introductions of the

application FUSE.

1.4.1 Application No.I

Wuala: A multi-platform, Java based Fully OS integrated distributed file

system. Using FUSE, MacFUSE and Callback File System respectively for file

system integration, in addition to a Java based app accessible from any Java enabled

web-browser. It is a secure online storage, file synchronization, versioning and

backup, service, originally developed and run by Caleido Inc., which is now part of

LaCie. Service is a combination of data centres that are provided by Wuala in

multiple European countries (France, Germany, and Switzerland) and the Wuala

cloud — distributed data storage that is provided by users who trade storage.

1.4.2 Application No. II

RTA is a library that we can attach to our program to expose our program's internal

arrays and data structures as if they were tables in a database. The database

 Thesis for Master’s Degree at HIT and UBP

16

interface uses a subset of the Postgres protocol and is compatible with the Postgres

bindings for C, PHP, and the Postgres command line tool, psql. One of the problems

facing Linux is the lack of run time access to status, statistics, and configuration of

a service once the service has started. We assume that to configure an application

we will be able to ssh into the box, vi the /etc configuration file, and do a 'kill -1' on

the process. Real time status and statistics are things Linux programmers don't even

think to ask for. The need for run time access is particularly pronounced for network

appliances where ssh is not available or might not be allowed. Another problem for

appliance designers is that more than one type of user interface may be required.

Sometimes a customer requires that no configuration information be sent over an

Ethernet line which transports unsecured user data. In such a case the customer may

turn off the web interface and require that configuration, status, and statistics be

sent over an RS-232 serial line. Other popular interfaces include the VGA console,

SNMP MIBs, and LDAP. The RTA package helps solve both of these problems by

giving run time access to the data structures and arrays inside our running program.

With minimal effort, we make our program's data structures appear as tables in a

Postgres database.

1.5 Main content and organization of the thesis

The main content of this topic is to make an introduction of the further

implementation of the CastorFS. The rest of the theis will be requirement analysis,

system design, implementation, testing and conclusion. In chapter2, we will

introduce the system requirement which includes functional requirement and

non-functional requriremnt. In chaper3, we will firstly introduce the overall desingn

of the system, and then the design for each importand part of the system will be

given. In the end of this chapter, we will see the key technologies which are applied

in this project. The last chapter will introduce the system implementation and

testing. The implementation and testing environment will firstly be given and then

the key interfaces, testing and evaluation will be introduced.

 Thesis for Master’s Degree at HIT and UBP

17

Chapter 2 System Requirement Analysis

2.1 The goal of the system

From the software engineering point of view, we need to do the requirement

analysis to define the problem as clearly as possible. After that, we will design and

implement the system with the current tools, the libraries that we can use. And then,

we will make the test to make sure the quality of software will be guaranteed. At

last, an evaluation report will be given to help the other people to well recogonize

the improvements between the new and old system and the guidelines will be given

to explain how the system should be well configured before people want to use it.

We want to provide filesystem to make users acess the romote data as if they

acess the data on their local machine.At the same time, by providing a interface

which complies to the POSIX standard, our users will be able to use the common

Linux commands to operate the remote data. This will help them work more

efficiently.

Specifically, during the internship, I need to make a supplement for the current

CastorFS by rewriting it in C++, adding the caching and replacing ns, rfio libraries

with Xrootd libriries for transmitting data. After that, I also need to investigate how

we deploy the sytem in LHCb computing cluster and write a guideline for the users.

2.2 The functional requirements

2.2.1 The requirement of implementing caching

Before a new CastorFS is implemented by reforming the original one, the

system needs be wrapped up to be able isolate the Linux system binding with the

FUSE functions to prepare for the furhter implementation. All the implementation

functions of the FUSE interfaces will be written in C++ and a middle wrapper layer

should be given shown as Figure 2-1.

It is the CastorFS user space program that implements normal I/O operations

such as getarrr(), open(), close(), read(), write(), opendir(), readdir(), mkdir(),

chown(), truncate(), utimens(), release(), gexattr(), listxattr(), removexattr(), create()

and unlink() against the CASTOR storage system.

 Thesis for Master’s Degree at HIT and UBP

18

Figure 2-1 Wrap up CastorFS in C++

CASTOR provides a UNIX like directory hierarchy of file names. The

directories are always rooted /castor/cern.ch (the cern.ch will be different in other

CASTOR sites). The CASTOR name space can viewed and manipulated only

through CASTOR client commands and library calls. OS commands like ls or mkdir

will not work on CASTOR files. The CASTOR name space holds permanent tape

residence of the CASTOR files, while the more volatile disk residence is only

known to the stager, which is the disk cache management component in CASTOR.

When accessing or modifying a CASTOR file, one must therefore always use a

stager. Since the CASTOR needs to deal with many files in the tape, if the user use

many Linux file accessing command like ―ls‖, that will make the load of CASTOR

side increasing dramatically. Therefore the frequently used file metadata should be

cached during a period of time to reduce the load on the CASTOR server side.

The implementation of a caching mechanism for storing information about

frequently requested CASTOR file meta-data is very critical for the wide

application of this file system. For the caching, users need to be able to set the

caching lasting time, i.e. the efficient lasting time of the cached meta-data because

after a period of time there might be some modifications made by the other users on

the same file or directory. Another reason for setting the caching efficient time is

that CASTOR doesn’t provide any call back function to inform the modification of

the files on CASTOR server.

FUSE interface

Wrapper Interface

implementation

in C++

Other

libraries

Castor

RFIO

Castor

NS

 Thesis for Master’s Degree at HIT and UBP

19

2.2.2 The requirement of applying Xrootd in the system

The xrd is a server that can dynamically support multiple TCP/IP application

service layer protocols. The xrd is a generalized daemon and it makes its primary

decision on which protocol to support based on the name given to the executable.

Currently, the following executable names are fully supported: xrootd for eXtended

Root Daemon and related protocols. Records that do not start with a recognized

identifier are ignored. This includes blank record and comment lines (i.e., lines

starting with a pound sign, #). Other directives are documented in supplemental

guide specific to the component they deal with. The location of the configuration

file is specified on the xrootd command line. Because each component has a unique

prefix, a common configuration file can be used for the whole system. Refer to the

manual ―Configuration File Syntax‖ on how to specify and use conditional

directives and set variables. These features are indispensable for complex

configuration files usually encountered in large installations.

The application of Xrootd is mainly about the using of the new protocols

provided by Xrootd and adding the authentication mechanism provided by Xrootd

to make the CastorFS faster and more secure.

2.2.3 The requirement of porting the system to Mac and Windows

Since our users use different operation systems, it will be practical if we

provide the CastorFS not only on Linux but also on Mac and Windows. The

requirement is to implement the CastorFS on Mac which will base on MacFUSE

and

Windows which will base on the Windows FUSE.

Therefore, after a careful investigation and discussion with experienced

software developers in CERN, we found that CASTOR2 client side library didn’t

support Mac and Windows operating systems. At the same time, Xrootd client

library needs a uified authentication support from the CERN server. It would be too

complex to implement the functions based on the windows and Mac. So we decided

to leave this part to be implemented in the future once Castor and Xrootd provide a

full support for the Mac and Windows operating system.

Beside that, we can install the system on the computing cluster, and then we

can use the secure shell to exchange data between two networked devices inorder to

use the service.

 Thesis for Master’s Degree at HIT and UBP

20

2.3 The un-functional requirements

1. Understandability:

(1) Interface elements should be easy to understand

(2) For a walk up and use system, the purpose of the system should be easily

understandable

2. Learnability:

(1) The user documentation and help should be complete

(2) The help should be context sensitive and explain how to achieve common

tasks

(3) The system should be easy to learn

3. Operability:

(1) The interface actions and elements should be consistent

(2) Error messages should explain how to recover from the error

(3) The system should be customisable to meet specific user needs

(4) A style guide should be used

4. Attractiveness:

The screen layout and colour should be appealing.

2.4 Summary

Requirements analysis involves frequent communication with system users to

determine specific feature expectations, resolution of conflict or ambiguity in

requirements as demanded by the various users or groups of users, avoidance of

feature creep and documentation of all aspects of the project development process

from start to finish. During the requirement analysis, we defined the functional

requirement and non-functional requirement for the virtual file system. For the

functional requirements, we need to first make some improvements on the old

version CastorFS. Later, we need to apply the new xrootd protocol on the CastorFS.

During the implementation, the evaluation report also should be delivered to

visualize the actual improvement of the system.

http://whatis.techtarget.com/definition/0,289893,sid9_gci860179,00.html

 Thesis for Master’s Degree at HIT and UBP

21

Chapter 3 System Design

3.1 The overall design of the system

To design for the new CastorFS will have close interactions with FUSE,

caching mechanism and XrdPosix interface. The new CastorFS will implement all

the functions that are nessassary for handling the operations in a filesystem by

invoking the Xrootd posix functions. Some meta-data of directory entries will be

cached for the future use. The overall design is show as Figure 3-1.

Figure 3-1 System overall design

For the workplan, there are 3 main tasks which are given according to the

requirement analysis. Because the work will be done based on some brand new

 Thesis for Master’s Degree at HIT and UBP

22

systems and tools, it takes a period of time for me to get familiar with the new

systems and tools.

Table 3-1 Workplan

The Gantt chart below (in table 3-2) illustrates the start and finish dates of the

terminal elements and summary elements of a project. Terminal elements and

summary elements comprise the work breakdown structure of the project. This also

shows the dependency (i.e., precedence network) relationships between activities.

From this chart, we can see clearly the project structure and the overall time

assignment.

 Thesis for Master’s Degree at HIT and UBP

23

Table 3-2 Work plan Gantt chart

3.2 The design of the wrapper

Since Xrootd is implemented in C++ and there are some sophisticated libraries

we can use in C++, before moving on to the caching part, we need to provide a

wrapper layer for the original CastorFS. The original CastorFS was implemented in

C.

The first requirement for mixing code is that the C and C++ compilers you are

using must be compatible. They must, for example, define basic types such as int,

float or pointer in the same way. The Solaris Operating System (Solaris OS)

specifies the Application Binary Interface (ABI) of C programs, which includes

information about basic types and how functions are called. Any useful compiler for

the Solaris OS must follow this ABI.

Sun C and C++ compilers follow the Solaris OS ABI and are compatible.

Third-party C compilers for the Solaris OS usually also follow the ABI. Any C

 Thesis for Master’s Degree at HIT and UBP

24

compiler that is compatible with the Sun C compiler is also compatible with the Sun

C++ compiler.

The C runtime library used by our C compiler must also be compatible with the

C++ compiler. C++ includes the standard C runtime library as a subset, with a few

differences. If the C++ compiler provides its own versions of of the C headers, the

versions of those headers used by the C compiler must be compatible.

Sun C and C++ compilers use compatible headers, and use the same C runtime

library. They are fully compatible.

FUSE didn’t provide a C++ version, so we need to provide a wrapper for the

FUSE to hook the functions up with the real implementations in C++. If we declare

a C++ function to have C linkage, it can be called from a function compiled by the

C compiler. A function declared to have C linkage can use all the features of C++,

but its parameters and return type must be accessible from C if you want to call it

from C code. For example, if a function is declared to take a reference to an

IOstream class as a parameter, there is no (portable) way to explain the parameter

type to a C compiler. The C language does not have references or templates or

classes with C++ features.

For wrapping the old CastorFS, we still need to use the ogrial NS and Rfio

libraries. And they are written in C. So at the same time, we need to access the C

libraries in C++. The C++ language provides a "linkage specification" with which

you declare that a function or object follows the program linkage conventions for a

supported language. The default linkage for objects and functions is C++. All C++

compilers also support C linkage, for some compatible C compiler.

When you need to access a function compiled with C linkage (for example, a

function compiled by the C compiler), declare the function to have C linkage. Even

though most C++ compilers do not have different linkage for C and C++ data

objects, you should declare C data objects to have C linkage in C++ code. With the

exception of the pointer-to-function type, types do not have C or C++ linkage.

3.3 The design of the caching

There are many caching algorithms we can apply for the project.

There are (1) Belady's Algorithm: The most efficient caching algorithm would

be to always discard the information that will not be needed for the longest time in

the future. This optimal result is referred to as Belady's optimal algorithm or the

http://en.wikipedia.org/wiki/Laszlo_Belady
http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm

 Thesis for Master’s Degree at HIT and UBP

25

clairvoyant algorithm. Since it is generally impossible to predict how far in the

future information will be needed, this is generally not implementable in practice.

The practical minimum can be calculated only after experimentation, and one can

compare the effectiveness of the actually chosen cache algorithm. (2) Least

Recently Used (LRU): discards the least recently used items first. This algorithm

requires keeping track of what was used when, which is expensive if one wants to

make sure the algorithm always discards the least recently used item. General

implementations of this technique require keeping "age bits" for cache-lines and

track the "Least Recently Used" cache-line based on age-bits. In such

implementation, every time a cache-line is used, the age of all other cache-lines

changes. LRU is actually a family of caching algorithms with members including:

2Q by Theodore Johnson and Dennis Shasha and LRU/K by Pat O'Neil, Betty

O'Neil and Gerhard Weikum. (3) Most Recently Used (MRU): discards, in contrast

to LRU, the most recently used items first. According to "When a file is being

repeatedly scanned in a [Looping Sequential] reference pattern, MRU is the best

replacement algorithm." In the authors also point out that for random access

patterns and repeated scans over large datasets (sometimes known as cyclic access

patterns) MRU cache algorithms have more hits than LRU due to their tendency to

retain older data. MRU algorithms are most useful in situations where the older an

item is, the more likely it is to be accessed. (4) Pseudo-LRU (PLRU): For caches

with large associativity (generally >4 ways), the implementation cost of LRU

becomes prohibitive. If a scheme that almost always discards one of the least

recently used items is sufficient, the PLRU algorithm can be used which only needs

one bit per cache item to work.

After a careful studying of all those algorithms, we decided to adopt LRU

caching algorithm as our method for the implementation because we are more

interested in the recently accessed meta-data of a folder. Those meta-data would be

more likely to be accessed in a certain period of time.

The need for caching behaviour sometimes arises during system development.

Generally the desire is to preserve some expensive-to-obtain results so they can be

reused ―for free‖ without repeating the expensive operation in future. Typically the

expense arises because a complex calculation is needed to obtain the result, or

because it must be obtained via a time consuming I/O operation. If the total number

of such results dealt with over the lifetime of the system does not consume

http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
http://en.wikipedia.org/wiki/Page_replacement_algorithm#Variants_on_LRU
http://www.vldb.org/conf/1994/P439.PDF
http://en.wikipedia.org/wiki/Pseudo-LRU
http://en.wikipedia.org/wiki/CPU_cache#Associativity

 Thesis for Master’s Degree at HIT and UBP

26

excessive memory, it may suffice to store them in a simple key-value cache (for

example, a std::map), with the key being the input to the expensive function and the

value being the result. This is often referred to as ―memoisation‖ of a function.

However, for most applications, this approach would quickly consume too

much memory to be of practical value. The memory consumption issue can be

addressed by limiting the maximum number of items stored in the cache or, if the

items have a variable size, limiting the aggregate total stored. Initially the cache is

empty and records (key-value pairs) can be stored in it freely. After some further

usage, it will fill up. Once full, the question arises of what to do with subsequent

additional records which it seems desirable to cache, but for which there is no space

(given the limited capacity constraint) without taking action to remove some other

records from the store. Assuming the records most recently added to the cache are

those most likely to be accessed again (ie assuming some temporal coherence in the

access sequence), a good general strategy is to make way for a new record by

deleting the record in the cache which was ―least recently used‖. This is called an

LRU replacement strategy.

We will use the C++ standard library and the typical C++ container, iterator as

well as algorithm to implement the LRU caching.

3.4 The design of the filesystem using Xrootd

The XrdPosix package allows standard POSIX I/O calls to either vector the I/O

to local files or to xrootd served files. In order to use this package we must use the

provided POSIX/Xrootd wrapper. We can use the dynamic wrapper or the static

wrapper. The dynamic wrapper provides the fastest and easiest way of using xrootd

with our application as well as with most Unix commands. The static wrapper

provides us with precise control over its deployment and consequently is safer and

much faster.

In the file of XrootdPosixXrootd.hh, we can find those POSIX functions which

can be directly used in our implementation of new CastorFS:

 Thesis for Master’s Degree at HIT and UBP

27

Figure 3-2 Xrootd POSIX interface

We can use all the functions provided above for the implementation. Mainly

we will use the related funcitons in Xrootd to implement the APIs in FUSE in order

to make the function call passed smoothly through the file sytem.

3.5 Key techniques

3.5.1 The application of FUSE

In our implementation, FUSE plays a critical role. It provides a way for

combining the Linux system calls with the functions handlers which are

implemented by us to do the job as a filesytem.

 Thesis for Master’s Degree at HIT and UBP

28

Figure 3-3 FUSE function call

FUSE is particularly useful for writing virtual file systems. Unlike traditional

file systems that essentially save data to and retrieve data from disk, virtual

filesystems do not actually store data themselves. They act as a view or translation

of an existing file system or storage device.

In principle, any resource available to a FUSE implementation can be exported

as a file system. A FUSE filesystem is a program that listens on a socket for file

operations to perform, and performs them. The FUSE library (libfuse) provides the

communication with the socket, and passes the requests on to our code. It

accomplishes this by using a "callback" mechanism. The callbacks are a set of

functions you write to implement the file operations, and a struct fuse_operations

containing pointers to them. In the case of CastorFS, the callback struct is named

castorfs_oper. There are a total of 34 file operations defined in castorfsfs.c with

pointers in castorfs_oper. The initialization uses a syntax that not everyone is

familiar with; looking at a part of the initialization of the struct we see

struct fuse_operations castorfs_oper = {

 .getattr = castorfs_getattr,

 .readlink = castorfs_readlink,

 .open = castorfs_open,

http://en.wikipedia.org/wiki/Virtual_file_system

 Thesis for Master’s Degree at HIT and UBP

29

 .read = castorfs_read

};

(This isn’t the complete struct — just for explains how FUSE works) This

indicates that castorfs_oper.getattr points to castorfs_getattr(),

castorfs_oper.readlink points to castorfs_readlink(),castorfs_oper.open points to

castorfs_open(), and castorfs_oper.read points to castorfs_read(). Each of these

functions is my re-implementation of the corresponding filesystem function: when a

user program calls read(), my castorfs_read() function ends up getting called. In

general, what all of my reimplementations do is to log some information about the

call, and then call the original system implementation of the operation on the

underlyng filesystem.

When the function is called, it is passed two parameters: a file path (which is

relative to the root of the mounted file system), and a pointer to a

struct fuse_file_info which is used to maintain information about the file.

castorfs_open() starts by translating the relative path it was given to a full path

in the underlying filesystem using my castorfs_fullpath() function. It then logs the

full path, and the address of the fi pointer. It passes the call on down to the

underlying fileystem, and sees if it was successful. If it was, it stores away the file

descriptor returned by open() (so I'll be able to use it later), and returns 0. If it failed,

it returns -errno. About the return value:

0 should be returned on success. This is the normal behavior for most of the

calls in the libraries; exceptions are documented.

A negative return value denotes failure. If I return a value of -i, a -1 will be

returned to the caller and errno is set to i. My castorfs_error() function looks up

errno as set by the system open() call, logs the error, and returns -errno to this

function so I can pass it to the user.

Notice that FUSE performs some translations. The open() system call is

documented as returning a file descriptor (behavior I'm depending on), not 0 — so

when my return is passed to the original caller, FUSE recognizes that I sent a 0 and

returns an appropriate file descriptor (not necessarily the same one I got from my

call to open()!). Meanwhile, I've got the underlying file open, and I've got its file

descriptor in fi. Future calls to my code will include this pointer, so I'll be able to

get the file descriptor and work with it. So... the user program has an open file in the

mounted filesystem, and a file descriptor that it is keeping track of. Whenever that

 Thesis for Master’s Degree at HIT and UBP

30

program tries to do anything with that file descriptor, the operation is intercepted by

the kernel and sent to the castorfsfs program. Within my program, I also have a file

open in the underlying directory, and a file descriptor. When the operation is sent to

my program, I'll log it and then perform the same operation on my file.

To make this concrete, let's take a look at castorfs_read():

int castorfs_read(const char *path, char *buf, size_t size, off_t offset, struct

fuse_file_info *fi)

{

 int retstat = 0;

 log_msg("castorfs_read(path=\"%s\", buf=0x%08x, size=%d, offset=%lld,

fi=0x%08x)\n",

 path, (int) buf, size, offset, (int) fi);

 retstat = pread(fi->fh, buf, size, offset);

 if (retstat < 0)

 retstat = castorfs_error("castorfs_read read");

 return retstat;

}

This function allows us to read data from some specified offset from the

beginning of a file (so it corresponds more directly to the pread() function than to

read()).

The main thing to point out about this function is that I use my file descriptor,

which I put in fi when I opened the file, to read it. Also, if I get a non-error return

from pread(), I pass this value up to the caller. In this case FUSE doesn't perform

any translations, it just returns the value I gave it. To return an error, I use the same

technique as in castorfs_open().FUSE provides a mechanism to place entries in a

directory structure. The directory structure itself is opaque, so the basic mechanism

is to create the data and call a FUSE-supplied function to put it in the structure.

When our readdir() callback is invoked, one of the parameters is a function

called filler(). The purpose of this function is to insert directory entries into the

directory structure, which is also passed to our callback as buf.

filler()'s prototype looks like this:

int fuse_fill_dir_t(void *buf, const char *name,

 const struct stat *stbuf, off_t off);

 Thesis for Master’s Degree at HIT and UBP

31

You insert an entry into buf (the same buffer that is passed to readdir()) by

calling filler() with the filename and optionally a pointer to a struct stat containing

the file type.

castorfs_readdir() uses filler() in as simple a way as possible to just copy the

underlying directory's filenames into the mounted directory. Notice that the offset

passed to castorfs_readdir() is ignored, and an offset of 0 is passed to filler(). This

tells filler() to manage the offsets into the directory structure for itself. Here's the

code:

int castorfs_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t

offset, struct fuse_file_info *fi)

{

 int retstat = 0;

 DIR *dp;

 struct dirent *de;

 log_msg("castorfs_readdir(path=\"%s\", buf=0x%08x, filler=0x%08x,

offset=%lld, fi=0x%08x)\n",

 path, (int) buf, (int) filler, offset, (int) fi);

 dp = (DIR *) (uintptr_t) fi->fh;

 de = readdir(dp);

 if (de == 0)

 return -errno;

 do {

 log_msg("calling filler with name %s\n", de->d_name);

 if (filler(buf, de->d_name, NULL, 0) != 0)

 return -ENOMEM;

 } while ((de = readdir(dp)) != NULL);

 log_fi(fi);

 return retstat;

}

By default, FUSE runs multi-threaded: this means (in brief) that a second

request can be handled by the filesystem before an earlier request has completed;

 Thesis for Master’s Degree at HIT and UBP

32

this in turn raises the possibility that different threads can be simultaneously

modifying a single data structure, which will cause very difficult-to-debug bugs.

There are a couple of things that can be done about the problem:

If the filesystem is executed with the -s option, it is run single-threaded. this

eliminates the problem, at a cost in performance -- frankly, given the nature and

intent of many fuse filesystems, it seems to me like the default should be

single-threaded and multi-threaded should require an option. But I didn't write it, so

it's not my call.

We can analyse our code for critical sections, and insert the normal

syncronization primitives (such as semaphores) to ensure no dangerous races occur.

Of course, there are several places where FUSE translates a single call into a

sequence of calls to our functions; I haven't investigated whether FUSE takes any

steps to ensure the atomicity of these calls. If it doesn't (and I suspect that's the case;

trying to do so in any meaningful way in the absence of knowledge of the data we're

exposing through our filesystem seems somewhere between difficult and impossible

to me), then trying to do it seems really, really hard.

Note that even if we do make our filesystem single-threaded, that doesn't guard

against access to the underlying data structures through some other means. Taking

BBFS as an example:

We can have a single underlying directory mounted through two different

mountpoints by using two invocations of bbfs.

A directory that has a BBFS filesystem mounted on top of it is still accessible

to normal filesystem operations.

Either of these facts is sufficient to completely negate any efforts made in our

filesystem to guard atomicity.

We should note that the FUSE code itself is careful about locking its own code

and data structures. So far as we know, dangerous race conditions won't occur

outside of our code.

3.5.2 The application of Xrootd

Xrootd serves a number of local directories to the network in a unified

namespace. Files under Xrootd are accessed via a URL like:

root://SERVERNAME//PATH/TO/FILE.root. There is a library that will

allow the standard POSIX to "see" xrootd space. You can use it from the command

 Thesis for Master’s Degree at HIT and UBP

33

line by setting two variables:

LD_PRELOAD=$ROOTSYS/lib/libXrdPosixPreload.so

XROOTD_VMP=daya0001:/xrootd/. All the functions in the Xrootd library

could be called directly in our program.

3.5.3 The application of C++ standard library

The Standard Template Library, or STL, is a C++ library of container classes,

algorithms, and iterators; it provides many of the basic algorithms and data

structures of computer science. The STL is a generic library, meaning that its

components are heavily parameterized: almost every component in the STL is a

template.

Like many class libraries, the STL includes container classes: classes whose

purpose is to contain other objects. The STL includes the classes vector, list, deque,

set, multiset, map, multimap, hash_set, hash_multiset, hash_map, and

hash_multimap. Each of these classes is a template, and can be instantiated to

contain any type of object.

Iterators are the mechanism that makes it possible to decouple algorithms from

containers: algorithms are templates, and are parameterized by the type of iterator,

so they are not restricted to a single type of container. Concepts are not a part of the

C++ language; there is no way to declare a concept in a program, or to declare that a

particular type is a model of a concept. Nevertheless, concepts are an extremely

important part of the STL. Using concepts makes it possible to write programs that

cleanly separate interface from implementation: the author of find only has to

consider the interface specified by the concept Input Iterator, rather than the

implementation of every possible type that conforms to that concept. Similarly, if

we want to use find, we need only to ensure that the arguments you pass to it are

models of Input Iterator. This is the reason why find and reverse can be used with

lists, vectors, C arrays, and many other types: programming in terms of concepts,

rather than in terms of specific types, makes it possible to reuse software

components and to combine components together.

http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Deque.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/multiset.html
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Multimap.html
http://www.sgi.com/tech/stl/hash_set.html
http://www.sgi.com/tech/stl/hash_multiset.html
http://www.sgi.com/tech/stl/hash_map.html
http://www.sgi.com/tech/stl/hash_multimap.html

 Thesis for Master’s Degree at HIT and UBP

34

3.5.3 The application of LRU algorithm for caching

STL users needing an LRU-replacement cache generally gravitate towards

std::map, because of its good support for keyed value accesses (O(log n) access

complexity). The problem then is how to implement the eviction strategy.

The most obvious naive solution is to use a

std::map<K,std::pair<timestamp_type,V> >

The timestamp_t holds a scalar quantity, the ordering of which indicates when

the value was last accessed relative to other values; typically some sort of

incrementing serial number is used rather than an actual clock-derived time, to

ensure a one-to-one mapping from timestamps to records. Keys then give O(log n)

access to values and timestamps, and timestamps can be updated without the need to

adjust the map’s tree-structure (as this depends entirely on the key values).

However, to determine the minimum timestamp in order to evict a record, it is

necessary to perform a O(n) search over all the records to determine the oldest one.

As a solution to eviction being expensive, it might be tempting to implement

the cache as a std::list<std::pair<K,V> >

Moving any item accessed to the tail of the list (a cheap operation for lists),

ensures the least-recently-used item can trivially be obtained (for erasure) at the list

head by begin(). However, it is now necessary to resort to a O(n) search simply to

look up a key in the cache.

While either naive solution can be got to work (and may well be a simple

pragmatic solution to caching a few tens of items) certainly neither can be

considered scalable due to the O(n) behaviour associated with either identifying

eviction targets or accessing values by key.

It is possible to implement an LRU-replacement cache with O(log n) eviction

and access using a pair of STL maps:

typedef std::map<timestamp_type,K> timestamp_to_key_type;

typedef std::map<

 K,

 std::pair<V,timestamp_type>

> key_to_value_type;

On accessing key_to_value by a key, we obtain access to both the value

required and the timestamp, which can be updated in both the accessed record and,

 Thesis for Master’s Degree at HIT and UBP

35

by lookup, timestamp_to_key. When an eviction is required, the lowest timestamp

in timestamp_to_key provides the key to the record which must be erased.

Pedants will observe that further slight improvement would also have the

timestamp_to_key_type map’s value be an iterator into the key_to_value_type but

this introduces a circular type definition. It might be tempting to try to break the

dependency by using void in place of the iterator, but iterators cannot portably be

cast to pointers. In any case, the first iterator optimization mentioned benefits the

updating of timestamps needed during cache hits whereas this second iterator

optimization benefits the eviction associated with cache misses. Since in a well

functioning cached system cache hits should be far more common than misses, this

second optimisation is likely of much less value than the first. Another

consideration is that whatever expensive operation is required to generate a new

result following a cache miss is likely to be hugely more expensive than any O(logn)

access to the cache. Therefore this second optimisation is not considered further.

In fact there is one final powerful optimisation possible. The only operations

actually done on timestamp_to_key are to access its head (lowest timestamp, least

recently used) element, or to move elements to the (most recently used) tail.

Therefore it can be replaced by a std::list; this also eliminates the need for any

actual instances of timestamp_type (and therefore any concerns about the timestamp

possibly overflowing). A list-and-map implementation is almost twice as fast as a

version (not shown) using a pair of maps. See Listing 1 for a complete example

using typedef std::list<K> key_tracker_type;

 typedef std::map<

 K,

 std::pair<V,key_tracker_type::iterator>

 > key_to_value_type;

3.5.3 The mechanism of authentication in CERN and Xrootd

CERN Authentication main goal is to provide a Single Sign On (SSO) solution

for CERN Web Applications.

 The current CERN Authentication SSO solution allows people to authenticate

on a Web Site, i.e. EDH, and then re-use the same authentication to use another

Web application, i.e. WinServices, without entering again the credentials. The main

goal is to make things easier for the user. For years, every CERN application

 Thesis for Master’s Degree at HIT and UBP

36

handled its own user database, because no real central solution was provided for

authentication mecanisms. This lowered dramatically the user experience when

accessing to CERN applications, as different credential pairs had to be remembered:

one login on AFS, another on Mail, a third one in AIS, and different passwords

everywhere.

The usual workaround was to write the credentials on a small yellow paper and

stick it on the screen, or under the keyboard for more security.

 With the CERN Authentication solution, users have only one login and

password pair to remember. If any security problem occurs on the account, a simple

click can disable it, blocking instantly all CERN Applications access.

For the xrootd, it provides flexible security architecture which includes

multiple protocols which garantie the easily expandable features and simultaneous

heterogeneous protocols which allows multiple administrative domains to be given.

Figure 3-4 Xrootd server architecture

The authentication and authorization are developed as runtime plug-in

componets, so they could be easily substituted and trivial to extend. At the same

time, client/server architecture plugin will make the other application layer

architecture portable.

 Thesis for Master’s Degree at HIT and UBP

37

Figure 3-5 Xrootd security architecture

The xrootd-implementation in dCache includes a pluggable authentication

framework. To control which authentication mechanism is used by xrootd, add the

xrootdAuthNPlugin option to our dCache configuration and set it to the desired

value.

The previously explained methods to restrict access via xrootd can also be used

together. The precedence applied in that case is as following: The permission check

executed by the authorization plugin (if one is installed) is given the lowest priority,

because it can controlled by a remote party. E.g. in the case of token based

authorization, access control is determined by the file catalogue (global namespace).

The same argument holds for many strong authentication mechanisms - for example,

both the GSI protocol as well as the Kerberos protocols require trust in remote

authorities. However, this only affects user authentication, while authorization

decisions can be adjusted by local site administrators by adapting the gPlazma

configuration. To allow local site’s administrators to override remote security

settings, write access can be further restricted to few directories (based on the local

namespace, the pnfs). Setting xrootd access to read-only has the highest priority,

overriding all other settings.

 Thesis for Master’s Degree at HIT and UBP

38

3.5.5 The application of CMake and RPMBuild tools

The principal benefit of open source software is, as its name implies, access to

the inner workings of an application. Given the source, we can study how an

application works; change, improve, and extend its operation; borrow and repurpose

code (per the limits of the application's license); and port the application to novel

and emergent platforms.

However, such liberal access is not always wanted. For instance, a user may

not want the onus of building from source code. Instead, he or she may simply want

to install the software much like a traditional "shrink-wrapped" application: insert

media, run setup, answer a few prompts, and go. Indeed, for most computer users,

such pre-built software is preferred. Pre-built code is less sensitive to system

vagaries and thus more uniform and predictable.

In general, a pre-built, open source application is called a package and bundles

all the binary, data, and configuration files required to run the application. A

package also includes all the steps required to deploy the application on a system,

typically in the form of a script. The script might generate data, start and stop

system services, or manipulate files and directories. A script might also perform

operations to upgrade existing software to a new version.

Because each operating system has its idiosyncrasies, a package is typically

tailored to a specific system. Moreover, each operating system provides its own

package manager, a special utility to add and remove packages from the system. For

example, Debian Linux-based systems use the Advanced Package Tool (APT),

while Fedora Linux systems use the RPM Package Manager. The package manager

precludes partial and faulty installations and "uninstalls" by adding and removing

the files in a package atomically. The package manager also maintains a manifest of

all packages installed on the system and can validate the existence of prerequisites

and co-requisites beforehand.

If you're a software developer or a systems administrator, providing your

application as a package makes installations, upgrades, and maintenance much

easier. Here, you learn how to use the popular RPM Package Manager to bundle a

utility. For purposes of demonstration, you'll bundle the networking utility wget,

which downloads files from the Internet. The wget utility is useful but isn't

commonly found standard in distributions. (An analog, curl, is often included in

 Thesis for Master’s Degree at HIT and UBP

39

distributions.) Be aware that you can use RPM to distribute most anything—scripts,

documentation, and data—and perform nearly any maintenance task.

CMake is used to control the software compilation process using simple

platform and compiler independent configuration files. CMake generates native

makefiles and workspaces that can be used in the compiler environment of your

choice. CMake is quite sophisticated: it is possible to support complex

environments requiring system configuration, pre-processor generation, code

generation, and template instantiation. CMake is controlled by writing instructions

in CMakeLists.txt files. Each directory in your project should have a

CMakeLists.txt file. What is nice about CMake is that CMakeLists.txt files in a

sub-directory inherit properties set in the parent directory, reducing the amount of

code duplication. For our sample project, we only have one subdirectory: w01-cpp.

The CMakeLists.txt file for the top-level cmake directory is pretty simple but

demonstrates a few key features.

3.6 Brief summary

In this part, we introduced the system design which includes the overall design

of the system, the design of the wrapper, the design of the caching and the design

for the new CastorFS which will use xrootd protocol for the implementation. The

key technologies are introduced in detail. The actual implementation will be given

in the next chapter.

 Thesis for Master’s Degree at HIT and UBP

40

Chapter 4 System Implementation and Testing

Following the phase of the requirement analysis and general design, the

technical solution has been set up, according to the design of system, we can

perform the work of implementation.

4.1 The environment of system implementation

4.1.1 Hardware environment

Since we develop the system firstly on the personal computer, and then migrate

the system to the lxplus and the compluting cluser in LHCb, we will see the

hardware environment respectively.

(1) PC Hardware configuration:

There are 2 processors in the PC and each one has an Intel(R) Pentium(R) 4

CPU 2.80GHz processor with 512KB cache.

(2) LHCb computing cluster

There are 8 processors in the PC and each one has an Intel(R) Xeon(R) CPU

E5410 @ 2.33GHz. Each processor has 6144 KB cache. Each plus node will use 8G

memory.

Figure 4-1 LHCb plus cluster

 Thesis for Master’s Degree at HIT and UBP

41

4.1.2 Software environment

The system will be implemented based on the SLC6 (Linux

localhost.localdomain 2.6.32-71.29.1.el6.i686 #1 SMP Tue May 10 17:35:05 CDT

2011 i686 i686 i386 GNU/Linux). Linux version 2.6.32-71.29.1.el6.i686

(mockbuild@sl6.fnal.gov) with the gcc version 4.4.4 20100726 (Red Hat 4.4.4-13)

(GCC)) #1 SMP Tue May 10 17:35:05 CDT 2011.

Scientific Linux CERN 6 will be a Linux distribution build within the

framework of Scientific Linux which in turn is rebuilt from the freely available Red

Hat Enterprise Linux 6 (Server) product sources under terms and conditions of the

Red Hat EULA. Scientific Linux CERN is built to integrate into the CERN

computing environment but it is not a site-specific product: all CERN site

customizations are optional and can be deactivated for external users.

There are some packages which should be installed first, the FUSE pakages:

(1) fuse-libs-2.8.3-1.el6.i686

(2) gvfs-fuse-1.4.3-9.el6.i686

(3) fuse-devel-2.8.3-1.el6.i686

The Xrootd Packages:

(1) xrootd-server-devel-3.0.4-1.el6.i686

(2) xrootd-libs-3.0.4-1.el6.i686

(3) xrootd-doc-3.0.3-2.el6.noarch

(4) xrootd-server-3.0.4-1.el6.i686

(5) xrootd-libs-devel-3.0.4-1.el6.i686

(6) xrootd-client-3.0.4-1.el6.i686

(7) xrootd-client-devel-3.0.4-1.el6.i686

The other related software packages should also be installed on the machine.

The CERN SVN will be used to manage the code version. Subversion is a

version control system that is widely used by many Open Source projects such as

Apache and GCC. Subversion started as a project to implement features missing in

CVS. Some of these features are: (1) Subversion tracks structure of folders. CVS

doesn't have the concept of folders. (2) Subversion has a global revision number for

the whole repository. CVS tracks each file individually. A commit that represents

one logical change to the project code may change a group of files; in Subversion,

this commit will have one revision number instead of separate revision numbers for

every changed file in CVS. (3) Subversion commits are atomic. (4) Subversion

http://www.scientificlinux.org/
https://www.redhat.com/software/rhel/
https://www.redhat.com/software/rhel/
http://subversion.tigris.org/

 Thesis for Master’s Degree at HIT and UBP

42

retains the revision history of moved or copied files. (5) Subversion commands are

very similar to CVS. It's very easy to switch for CVS users. Most of the time, it's a

matter of replacing cvs with svn.

The Central SVN Service is accessible only for CERN registered computer

users. After each modification of the code, it will be stored and shared in the

system.

4.1.3 The implementation of wrapper

We have two file to perform the wraping. The wrap.hh declares all the

functions which will be used to hook up with the FUSE APIs to perform the real

operations in the filesystem. In wrap.cc, the functions in C++ will be invoked to

implement the C functions. We will be able to compile it respectively using gcc and

g++. After we get the related .o object files, we are able to link them together to

make a virtual filesystem work.

We can see the code as follow.

#include "wrap.hh"

#include "castorfs.hh"

int init_castorfs(int argc, char* argv[]){

 return initCastorFS(argc, argv);

}

void set_cfuseoper(struct fuse_operations* oper_pointer){

 setCfuseoper(oper_pointer);

}

int wrap_getattr(const char *path, struct stat *statbuf) {

 return CastorFS::Instance()->Get_attr(path, statbuf);

}

int wrap_mkdir(const char *path, mode_t mode) {

 return CastorFS::Instance()->Mkdir(path, mode);

}

int wrap_rmdir(const char *path) {

 return CastorFS::Instance()->Rmdir(path);

}

int wrap_mknod(const char* path, mode_t mode, dev_t rdev){

 return CastorFS::Instance()->Mknod(path, mode, rdev);

 Thesis for Master’s Degree at HIT and UBP

43

}

int wrap_unlink(const char* path){

 return CastorFS::Instance()->Unlink(path);

}

int wrap_chown(const char *path, uid_t uid, gid_t gid) {

 return CastorFS::Instance()->Chown(path, uid, gid);

}

int wrap_truncate(const char *path, off_t newSize) {

 return CastorFS::Instance()->Truncate(path, newSize);

}

int wrap_utimens(const char *path, const struct timespec ts[2]) {

 return CastorFS::Instance()->Utimens(path, ts);

}

int wrap_open(const char *path, struct fuse_file_info *fileInfo) {

 return CastorFS::Instance()->Open(path, fileInfo);

}

int wrap_read(const char *path, char *buf, size_t size, off_t offset, struct

fuse_file_info *fileInfo) {

 return CastorFS::Instance()->Read(path, buf, size, offset, fileInfo);

}

int wrap_write(const char *path, const char *buf, size_t size, off_t offset, struct

fuse_file_info *fileInfo) {

 return CastorFS::Instance()->Write(path, buf, size, offset, fileInfo);

}

int wrap_release(const char *path, struct fuse_file_info *fileInfo) {

 return CastorFS::Instance()->Release(path, fileInfo);

}

int wrap_getxattr(const char *path, const char *name, char *value, size_t size)

{

 return CastorFS::Instance()->Getxattr(path, name, value, size);

}

int wrap_removexattr(const char *path, const char *name) {

 return CastorFS::Instance()->Removexattr(path, name);

}

 Thesis for Master’s Degree at HIT and UBP

44

int wrap_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,

struct fuse_file_info *fileInfo) {

 return CastorFS::Instance()->Readdir(path, buf, filler, offset,

fileInfo);

}

...

4.1.4 The implementation of caching

We use C++ standard library to implement caching. We use a template -

template <typename Key, typename Value> class to provide an implementation for

providing the application for a series of the application of the least recently used

caching mechanism.

In our design and implementation, we will record the already retrieved

meta-data for each entry of the files in Castor. The key will be the fullpath of one

file and the value will be the related meta-data, normally a structure (struct stat).

The reason we do that is based on the fact that the load on the server side could be

very high and we can ease the burden on the server side by storing the most

probablly retrieved data in the cache to provide a local storage of the data.

Here we will see the basic data structure which is used in the class and then we

will see the logic inside the implementation.

 (1) typedef std::map<

 K,

 std::pair<std::pair<V,typename key_tracker_type::iterator>,int>

 > key_to_value_type;

First, we define this map container to hold all the key and value pairs. From

each key, we can find the related pair which is composed anthother pair. The int

type of value will be used to record the system time at when the pair is stored in the

cache. Then we will be able to set a time limitation for distinguishing the expired

data. The std::pair<V,typename key_tracker_type::iterator> is used to build a

relationship between the value and iterator in order we can trace back from the list

which will be introduced as follow to the map container.

(2) typedef std::list<K> key_tracker_type: This is a list which will be used to

track the key. Each time, when we use retrieved data in the cache. We will ajust the

sequence of this list to be able to put the least recently used data in the end of the

 Thesis for Master’s Degree at HIT and UBP

45

list. Therefore, when the number of the caching reaches to its limitation, we can

evict the head of the list to get extra space for storing the new data.

(3) int (* _fn)(const char*, V*): This is defined as a function which will be

used to retrieve the related data if we can’t find them in the cache.

(4) time_t timer: this will be used to define the expiring time for the cache.

Since we will not be able to predict the time of modifications of the files in a system,

we need to set a expiring time for the cached data.

(5) const size_t _capacity: this will be used to indicate the number of

information entries we can store in the cache. Since the meta-data will be cached in

the system, the capacity of all the data will not be very large, so we should take full

advantage of that. In other words, we can set the _capacity a big one.

(6) key_tracker_type _key_tracker; this is a list to track a sequence of the key

data in the map. It will be changed dynamicly according to the accessing history of

the map container.

(7) key_to_value_type _key_to_value; this is a map container. All the

information will be hold by that. We will perform many operation based on that.

The implementation flow chart is shown in figure 4-2.

 Thesis for Master’s Degree at HIT and UBP

46

Figure 4-2 Cache mechanism

For the caching, when we want to retrieve the meta-data in the cache, first we

will search the map to find the data.

const typename key_to_value_type::iterator it =_key_to_value.find(k)

 Thesis for Master’s Degree at HIT and UBP

47

We will use the ―find‖ method provided in the algorithm.h to perform this

operation. If we can’t find the value which we want, we will invoke the related

function to get the data and store them in the form of key, value, time which

indicate the time point at when they are retrieved. At the same time, the retrived

value will be returned to the function which actually handles the system call. If we

can find the key and the related value in the cache, it will be returned to the function

which called for the information of that entry. At that moment, the key of that entry

in the key list will be moved to the end of the list. With the growing of the number

of the data in the cache, we will meet the limitation of the cache. In that situation, if

we retrieve the information of a new entry and we want to store the related

meta-data in the map, we need to evict the least used element whose position is

indicated in the head of the key list. By doing that, we implemented the caching.

4.1.5 The implementation of new CastorFS with Xrootd

(1) The initialization of FUSE

The fuse library provides support for analysing parameters passed from the

command line. It is desirable to use this since fuse_main itself needs command line

parameters and it is best that the user get a consistent interface.

The basic idea seems to be that the file system calls a fuse library routine to

parse the parameters, classify them and (depending on classification) call back to

the file system to let it action those parameters which it is interested in. It also

assembles a modified list of parameters to be passed into the fuse_main interface.

The parameter list is expected to have the following form:

[-ooption[,option]*] [-flag]* [-key[]|=value]* [filesysargument]* mountpoint

-- anything

flag and key can be any string other than o or - followed by space. Options,

flags and keys may be in any order preceding the fixed parameters.

Initiating parameter processing: int fuse_opt_parse(struct fuse_args *args, void

*data, const struct fuse_opt opts[], fuse_opt_proc_t proc) should be called to initiate

the process of parameter analysis. ―args‖ is a structure that initially should contain

the input args and argument count (there is a macro for defining this (Q.V.)). On

return it contains the output args list to be passed to fuse_main. ―data‖ is a pointer

to any object the file system requires it to be (it may be NULL) it is passed into the

call back procedure but it can also be used as a pointer to an area to receive values

 Thesis for Master’s Degree at HIT and UBP

48

from certain types of argument. ―opts‖ is a row of templates describing the options

available (again there are macros to assist in defining this (Q.V.)). ―proc‖ is a call

back procedure called by fuse_opt_parse as it processes the parameters. Parameter

analysis callback procedure

typedef int (*fuse_opt_proc_t)(void *data, const char *arg, int key,struct

fuse_args *outargs);

For certain options (determined by values in the opts array) the call back

procedure is called with:

* data (the pointer passed into fuse_opt_parse).

* arg the argument or option in question. (Some processing is done so that -x

yz becomes -xyz note -oxyz is a special case and becomes xyz).

* key the value used in declaring the option or FUSE_OPT_KEY_NONOPT

(for items not in the form of an option) or FUSE_OPT_KEY_OPT (for options

items not matching any option).

* The output argument list is the current output arguments.

The call back routine should reply -1 on error, 0 to discard the argument

(presumably having processed it in some way), 1 to retain it so that it will be passed

to fuse_main. The call back procedure can also add arguments to the argument

array.

int fuse_opt_add_arg(struct fuse_args *args, const char *arg) - can be called by

the option call back procedure to add an argument to the output arguments for

fuse_main. The add_arg procedure takes the outargs parameter passed into the call

back procedure and a string containing the new argument. An instance of the use of

this is shown in the passfs example where the -m flag forces foreground processing

by appending -f to the argument list.

Adding an extra option to the output option list - int fuse_opt_add_opt(char

**opts, const char *opt); this is meant to be called by the option call back procedure

to add an option to the comma separated list of output options for fuse_main but the

semantics are unclear as it is not clear where the **opts parameter would 'come

from'. The procedure can take a null opts parameter and a string containing the new

option. <to do: further research>. Initialising the fuse_args structure - a macro

procedure is provided to initialise the structure: FUSE_ARGS_INIT(argc, argv)

where argc and argv are the corresponding values from the main() procedure of the

file system as in:

 Thesis for Master’s Degree at HIT and UBP

49

int main(int argc, char *argv[]) {

struct fuse_args args = FUSE_ARGS_INIT(argc, argv);

 ...

}

Setting up the fuse_opts array - the fuse opts array is used to define a template

and a key for each parameter. The key is used to identify the parameter in calls to

the parameter analysis call back. Two macro procedures are provided to assist in

setting up the array: FUSE_OPT_KEY(templ, key) and FUSE_OPT_END as in

static struct fuse_opt passfs_opts[] = {

FUSE_OPT_KEY("--help", KEY_HELP),

FUSE_OPT_KEY("--version", KEY_VERSION),

FUSE_OPT_KEY("-h", KEY_HELP),

FUSE_OPT_KEY("-V", KEY_VERSION),

FUSE_OPT_KEY("stats", KEY_STATS),

FUSE_OPT_KEY("-log=",KEY_LOGFILE),

FUSE_OPT_KEY("-root ",KEY_ROOT),

FUSE_OPT_END

};

The key parameter needs to be a positive integer that uniquely identifies the

particular option (typical generated as part of an enum). Thus in the example above

--version and -V are synonyms.

Form of the template parameter in the fuse_opt structure

This is quite complex and it shoul be noted that the fuse_opt.h file documents

other forms than can be created with the FUSE_OPT_KEY macro. Ignoring these

features the possible forms are:

 1. "-string" (where string can be anything provided it doesn't start with o or

consist of only - or contain =). This is a flag type parameter with no value.

2. "string" (where string can be anything provided it doesn't start with - or

contain =). This will match one of a list of options after -o.

3. "-string=" as 1 except that a value is expected to follow the =.

4. "string=" as 2 except that a value is expected to follow the =.

5. "-string " as 1 except that a parameter is expected after the string. Note that

this matches both -stringvalue and -string value (the intervening space is ignored).

 Thesis for Master’s Degree at HIT and UBP

50

The additional features provide for formatted templates with either %s or%lu

appearing after the = or space. In this case the value (a pointer to a string or an

unsigned integer) is stored at an offset relative to the data parameter passed into

fuse_opt_parse. The offset value is held in the matching fuse_opt structure of the

fuse_opt array. The call back procedure is not called.

The forms "-string=" and "-string " are different, even though they both mean

that a parameter value follows. If you want the user to be able to use either form and

provide both templates then you need to be aware that both templates may be

matched and your call back procedure called twice. Thus for instance if the user

supplies -string= then your routine will be entered once with =value and once with

value

 (2) Initialize FUSE account

We use getgrnam_r("fuse",&fuse_group,buf,bufsize,&pfuse_group) to get a

pointer to a structure containing the broken-out fields of the record in the group

database (e.g., the local group file /etc/group, NIS, and LDAP) that matches the

group name name.

We use setgroups(1,&fuse_group.gr_gid) to set the supplementary group IDs

for the process. Function fuse_main() is for the lazy. This is all that has to be called

from the main() function. This function does the following: 1) parses command line

options (-d -s and -h) 2) passes relevant mount options to the fuse_mount() 3)

installs signal handlers for INT, HUP, TERM and PIPE 4) registers an exit handler

to unmount the filesystem on program exit 5) creates a fuse handle 6) registers the

operations calls either the single-threaded or the multi-threaded event loop

(3) The function of CastorFS::GetAttr(const char* , struct stat*) is used for

retrieving the meta-data of the the certain files. Before we use the xrootd function to

get the data, first we need to get the full path of a file. Since all the files are

managed in the unified way of root://castorlhcb//castor, we need to add the URL

before each path we want to use. In this function, we will deal directly with the

cache, the function calls will not be done in the function but in the cache. The

related function in xrootd will be XrdPosixXrootd::Stat(char*, struct stat*). It will

return all the information about one directory in the form of struct stat.

(4) The function of int CastorFS::Readdir(const char* path, void *buf,

fuse_fill_dir_t filler, off_t offset, struct fuse_file_info *fi) is used for get all the

entries of one directory. The readdir implementation keeps track of the offsets of the

http://fuse.sourceforge.net/doxygen/fuse__common_8h.html#30d394a6127b20455bf5a4899e56e759

 Thesis for Master’s Degree at HIT and UBP

51

directory entries. It uses the offset parameter and always passes non-zero offset to

the filler function. When the buffer is full (or an error happens) the fil ler function

will return '1'. The function typedef int(* fuse_fill_dir_t)(void *buf, const char

*name, const struct stat *stbuf, off_t off) is defined by FUSE to add an entry in a

readdir() operation. One DIR pointer will be used to point to

xrdPosixXrootd::Opendir(FULLPATH). Then the XrdPosixXrootd::Readdir(dp)

should be called to get the related file information organized with struct dirent.

struct dirent { long d_ino; off_t d_off; unsigned short d_reclen; char d_name; }. In

the end of the implementation of the function, XrdPosixXrootd::Closedir(dp) will

be called to make sure the directory will be safely closed.

(5) int CastorFS::Mknod(const char* path, mode_t mode, dev_t rdev) is used to

create a new node (file) for the filesystem. This function will be implemented by

using XrdPosixXrootd::Open(rootpath, O_CREAT | O_EXCL | O_WRONLY,

S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH). By provide special parameter for the

Open function, it will perform the right function as we want to create a

non-existance file. If the file exists, O_CREAT flag has no effect except as noted

under O_EXCL below. Otherwise, the file shall be created; the user ID of the file

shall be set to the effective user ID of the process; the group ID of the file shall be

set to the group ID of the file's parent directory or to the effective group ID of the

process; and the access permission bits (see <sys/stat.h>) of the file mode shall be

set to the value of the third argument taken as type mode_t modified as follows: a

bitwise AND is performed on the file-mode bits and the corresponding bits in the

complement of the process' file mode creation mask. Thus, all bits in the file mode

whose corresponding bit in the file mode creation mask is set are cleared. When bits

other than the file permission bits are set, the effect is unspecified. The third

argument does not affect whether the file is open for reading, writing, or for both.

Implementations shall provide a way to initialize the file's group ID to the group ID

of the parent directory. Implementations may, but need not, provide an

implementation-defined way to initialize the file's group ID to the effective group

ID of the calling process. If O_CREAT and O_EXCL are set, open() shall fail if the

file exists. The check for the existence of the file and the creation of the file if it

does not exist shall be atomic with respect to other threads executing open() naming

the same filename in the same directory with O_EXCL and O_CREAT set. If

O_EXCL and O_CREAT are set, and path names a symbolic link, open() shall fail

http://fuse.sourceforge.net/doxygen/fuse_8h.html#e2a2054f9852fd6020c26a1bcc7f1042
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html

 Thesis for Master’s Degree at HIT and UBP

52

and set errno to [EEXIST], regardless of the contents of the symbolic link. If

O_EXCL is set and O_CREAT is not set, the result is undefined. O_WRONLY is

used for indicating that the file is open for writing only. S_IRUSR is for reading

permission for owner. S_IWUSR is to give write permission to owner. S_IXUSR

is to give execute/search permission to owner. S_IROTH is used for give read

permission to the others.

(6) int CastorFS::Open(const char* path, struct fuse_file_info *fi) is

implementd by invoking the function int fd = XrdPosixXrootd::Open(rootpath,

fi->flags, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH). Here we use the same

arguments as those in the last function for the third parameter to indicate the way

we operate the files.

(7) int CastorFS::Read(const char* path, char *buf, size_t size, off_t offset,

struct fuse_file_info *fi). In this function, we mainly used int

XrdPosixXrootd::Pread(fd, buf, size, offset) to fill the buf to read the file.

(8) int CastorFS::Write(const char* path, const char *buf, size_t size, off_t

offset, struct fuse_file_info *fi). In this function, we use the

xrdPosixXrootd::Pwrite(fd, buf, size, offset) to send the related parameters from

the linux operating system to the Xrootd function.

(9) int CastorFS::Unlink(const char* path) deletes a name from the

filesystem. If that name was the last link to a file and no processes have the file

open the file is deleted and the space it was using is made available for reuse. If

the name was the last link to a file but any processes still have the file open the file

will remain in existence until the last file descriptor referring to it is closed. If the

name referred to a symbolic link the link is removed. If the name referred to a

socket, fifo or device the name for it is removed but processes which have the

object open may continue to use it. Unlink function is used to delete one node and

we use XrdPosixXrootd::Unlink(rootpath) directly to perform the certain task.

(10) int CastorFS::Mkdir(const char* path, mode_t mode) is used to create a

directory. It is called when we use the Linux command to create a new directory.

The related XrdPosixXrootd::Mkdir(rootpath, mode) is used to implement this

function.

(11) int CastorFS::Rmdir(const char* path) is implemented to provide a

function to rmove a empty directory and the XrdPosixXrootd::Rmdir(rootpath) is

called in the function.

 Thesis for Master’s Degree at HIT and UBP

53

(12) int CastorFS::Truncate(const char* path, off_t size) causes the regular

file named by path or referenced by fd to be truncated to a size of precisely length

bytes. If the file previously was larger than this size, the extra data is lost. If the

file previously was shorter, it is extended, and the extended part reads as zero

bytes. The file pointer is not changed. If the size changed, then the ctime and

mtime fields for the file are updated, and suid and sgid mode bits may be clea red.

(13) int CastorFS::Getxattr(const char *path, const char *name, char *value,

size_t size) retrieves the value of the extended attribute identified by name and

associated with the given path in the filesystem. The length of the attribute value

is returned. And the XrdPosixXrootd::Getxattr(rootpath, name, xattr, size) is used

for implement this function.

4.2 Key Interfaces of the software system

The first interface shows options for Castor filesystem and FUSE, we provide

options for the filesystem and the cache valide time for the users to configure the

file system.

Figure 4-3 CastorFS options

 Thesis for Master’s Degree at HIT and UBP

54

The file system is fully integrated in the Linux system and the filesystem

operations are the same as the standard filesystem (figure 4-4).

Figure 4-4 CastorFS interface

4.3 System Testing and Performance evaluation

4.3.1 System Testing

For the system testing, we performed the white box testing to check the

program sequence during all the phases of system implementation. The white box

testing is maily performed by checking the implementation of each virtual

filesystem functions. Those function are: getattr(), readdir(), open(), write(),

unlink(), mkdir(), rmdir(), truncate() and the functions implemented for the caching,

the one that is to do the retrieving opration-the overloaded operater ().

After the accomplishment of the file system, we performed the black box

testing to check all paths for the data flow and all the functions in the file system.

We do the test by writing the related script for each function. At the same time we

get the system performance result for the next section too. We go to the command

line after the system is mounted and we perform the POSIX Linux filesystem

operation functions:

In this testing, we firstly get into mjiao directory and create a file 123 and then

write ―hello‖ to to the file and we also displayed the content of the file. After that,

we created a directory calld ―test-dierctory‖ and we can see that, it works as we

expected.

 Thesis for Master’s Degree at HIT and UBP

55

Figure 4-5 Test result

 Here, we also did a test for the authentication mechanism. We put all the

system implementation files to the isima machine which has no certification and we

tried to mount the filesystem to mountpoint. Later, we tried to ―ls‖ the folder of

mountpoint and we can see that the operation was canceld due to the authorization

policy provided by the xrootd.

Figure 4-6 Authentication test

4.3.2 Performance evaluation

 (1) To retrieve the information of 2678 set of record in a directory, we did two

types of performance evaluation against the 4 commands.

#!/bin/bash

 for i in $(seq 1 50);

 Thesis for Master’s Degree at HIT and UBP

56

 do

 /usr/bin/time -f %e --output=third.txt -a ls

/home/mjiao/3/cern.ch/user/m/mjiao

 /usr/bin/time -f %e --output=first.txt -a ls

/home/mjiao/1/cern.ch/user/m/mjiao

 /usr/bin/time -f %e --output=nsls.txt -a nsls /castor/cern.ch/user/m/mjiao

 /usr/bin/time -f %e --output=second.txt -a ls

/home/mjiao/2/cern.ch/user/m/mjiao

 done

We did 50 times of those 4 operations to retrieve the data with performint the

simple ―ls‖ operation. After we got all the result, we calculated the mean value for

the performance shown in table 4-1.

Table 4-1 Performance of “ls” operation

Tool time (s)

ls (xrdfs) 0.9724

ls (new castorfs) 1.76244

ls (castorfs) 2.0268

nsls 1.1382

 Here is the 50 times of the performance comparison:

Figure 4-7 Performance diagram

5

 Thesis for Master’s Degree at HIT and UBP

57

Later, we did a comparison of retrieving meta-data for the same directory with

the command (ls -l), and the performance is show in table 4-2.

Table 4-2 Performance of “ls -l” operation

Tool Time(s)

Posix ls -l (xrdfs) 31.5812

Posix ls -l(new castorfs) 16.3372

Posix ls -l(castorfs) 61.608

nsls –l 1.9368

The related diagram to show the performance comparison between all those

functions

Figure 4-8 Performance comparison

We can see from figure 4-8 and figure 4-9 that, the Castorfs implemented with

Xrootd protocol can operate faster than the Castorfs implemented with RFio and Ns

protocols. We can also see that, with the implementation of cache, we can ret rieve

the meta-data much faster.

 Thesis for Master’s Degree at HIT and UBP

58

Figure 4-9 Performance comparison (castorfs without cache)

(2) The performance of reading and writing data

 The reading and writing data performance is critical for the CastorFS since our

users will deal a lot with the data analysis on CERN computing cluster. We need to

provide a good way for them to upload and download big size files.

 All the performace statistics are got from the testing on plus19 node in LHCb.

Table 4-3 Read and write peroformance

Tool Read(Mb/s) Write(Mb/s)

POSIX cp command on new CastorFS with Xrootd 61 35

POSIX cp command on CastorFS with NS, Rfio 31 5

rfcp command (based on CASTOR RFIO library) 100 70

xrdcp command (based on xrootd library) 112 97

 We can see from table 4-3 that compared with the original CastorFS (line 2)

which is implemented by using NS, Rfio libraries. The new CastorFS (line 1)

improved almost twice reading speed and seven times of wrting speed on Plus node.

 Thesis for Master’s Degree at HIT and UBP

59

Table 4-4 Retrieving meta-data performance

Tool Time(s)

POSIX ls command on new CastorFS with xrootd 33

POSIX ls command on CastorFS with NS, Rfio 53.7

nsls command (based on CASTOR Ns library) 2.4

xrd (ls) command (based on xrootd library) 25

 From table 4-4, we can see that with the new implementation with xrootd to

retrieve the meta-data of all the entries in the same folder the performance is better

than the original one (line 2).

4.4 Brief summary

The environment of implementing the system is based on the computing

environment in CERN. I used my local machine, LHCb computing cluster and

lxplus to either implement the system or do the evaluation. The new CastorFS

improved a lot on the meta-data retrieving, reading and writing speed compared to

the original one.

 Thesis for Master’s Degree at HIT and UBP

60

Conclusion

The goal of the present work was to implement a new virtual filesystem with

caching mechanism based on FUSE and the data transmitting protocol provided by

Xrootd. This implied the analysis of the old file system to find the problem, making

the design, doing the implementation, perfroming testing and evaluation for the

system. The development was carried out within the online team of LHCb, one of

the four experiments that have been approved for the future high energy collider

LHC (Large Hadron Collider) at CERN. This virtual fileystem is used for giving a

file system which complied with POSIX standards in order to make the

manipulation of remote data easier for the user.

We successfully provided the cache mechanism for the system by adopting the

LRU algorithm and implemented it with C++ container, algorithm, and iterator.

Later, we implemented all the important functions which could handle most of the

file system operations for the virtual file system by using Xrootd libraries. At each

development phase, we did the tesing and evaluation for the system in the

environment of computer in LHCb, lxplus which is maintained by CERN IT

department, and LHCb inside computing cluster.

For the future work, we plan to investigate more about the security aspect

provided by Xrootd. Currently, we can use Kerberos ticket-granting ticket to make

the access for 25 hours. We want to make an extension of the time for this security

mechanism by using certification properly. We also notice that the function of

sendfile which is used for transferring data between file descriptor provided by

Linux may help us to build a more real filesystem in the future.

 Thesis for Master’s Degree at HIT and UBP

61

References

[1] Fabrizio F. Large databases on the GRID. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment Volume 623, Issue 2, 11 November 2010

[2] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic et al.

ROOT — A C++ framework for petabyte data storage, statistical analysis and

visualization. Computer Physics Communications, December 2009

[3] Luis B

and Rassul A. Lazy update: An efficient implementation of LRU next

term stacks. Information Processing Letters Volume 54, Issue 2, 28 April 1995.

[4] Antonis P, Athanasios V

and Ioannis S. Approximate analysis of LRU in the

case of short term correlations. Computer Networks, 24 April 2008

[5] Yang J, Bai Y, Qiu Y. To Select the Service in Context Aware Systems Using

Concept Similarity Mechanism[C]. 2008 International Symposium on

Electronic Commerce and Security. 2008: 143-147.

[6] A. Mazurov, N. Neufeld. CASTORFS – A Filesystem To Access CASTOR,

Journal of Physics: Conference Series 219 (2010) 052023

[7] CASTOR service at CERN – http://cern.ch/castor

[8] Filesystem in user space – http://fuse.sourceforge.net

[9] Xrootd introduction – http://xrootd.slac.stanford.edu/docs.html

[10] Filesystem based on FUSE -

http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems

[11] Opti-Cache introduction - http://www.bsiopti.com/ocart.html

[12] MacFUSE introduction- http://code.google.com/p/macfuse/

[13] E. Driscoll, J. Beavers, H. Tokuda - FUSE-NT: Userspace File Systems for

Windows NT

[14] Waterfall introduction - http://en.wikipedia.org/wiki/Waterfall_model

[15] Extreme programming - http://www.extremeprogramming.org/rules.html

[16] G. Donvito, V. Spinoso and G.P. Maggi. Interactive access and optimization of

a CMS computing farm. Nuclear Physics B - Proceedings Supplements. June

2011, Pages 82-84

[17] René Brun. Summary of session 1: Computing technology and environment

for physics research. Nuclear Instruments and Methods in Physics Research

 Thesis for Master’s Degree at HIT and UBP

62

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 559, Issue 1, 1 April 2006

[18] A. Salnikov. Evolution of the configuration database design. Nuclear

Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 1 April 2006

[19] A. L. S. Angelis, J. Bartke, M. Yu. Bogolyubsky, E. G dysz-Dziadu et al.

CASTOR: Centauro and strange object research in nucleus-nucleus collisions at

the LHC. Nuclear Physics B - Proceedings Supplements Volume 97, Issues 1-3,

April 2001

[20] Peter Göttlicher. Design and test beam studies for the CASTOR calorimeter

of the CMS experiment. Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 623, Issue 1, 1 November 2010

[21] Edward Haletky. Deploying LINUX on the Desktop. Deploying LINUX on the

Desktop 2005, Pages 181-190

[22] N. Brook, H. Bulten, J. Closier, D. Galli, C. Gaspar et al. LHCb distributed

computing and the GRID. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment Volume 502, Issues 2-3, 21 April 2003, Pages 334-338

[23] Jamie Shiers. The Worldwide LHC Computing Grid (worldwide LCG).

Computer Physics Communications. Volume 177, Issues 1-2, July 2007

[24] Soha Maad, Brian Coghlan, Geoff Quigley. Towards a complete grid

filesystem functionality. Future Generation Computer Systems. Volume 23,

Issue 1, 1 January 2007

[25] Jim Mellander. Unix Filesystem Security. Information Security Technical

Report. Volume 7, Issue 1, 31 March 2002

[26] Jürgen Branke, Pablo Funes. Evolutionary design of en-route caching

strategies. Applied Soft Computing. Volume 7, Issue 3, June 2007

[27] Edith Cohen, Haim Kaplan and Uri Zwick. Connection caching: model and

algorithms. Journal of Computer and System Sciences, August 2003

[28] Niels Sluijs, Frédéric Iterbeke. Cooperative caching versus proactive

replication for location dependent request patterns. Journal of Network and

Computer Applications Volume 34, Issue 2, March 2011

http://www.sciencedirect.com/science/article/pii/S0168900210004882#hit2
http://www.sciencedirect.com/science/article/pii/S0167739X06001324#hit2
http://www.sciencedirect.com/science/article/pii/S0022000003000412#hit1
http://www.sciencedirect.com/science/article/pii/S0022000003000412#hit1

 Thesis for Master’s Degree at HIT and UBP

63

[29] Philip S. Yu and Edward A. MacNair. Performance study of a collaborative

method for hierarchical caching in proxy servers. Computer Networks and

ISDN Systems Volume 30, Issues 1-7, April 1998

[30] Mohamed F. Ahmed and Swapna S. Gokhale. Linux bugs: Life cycle,

resolution and architectural analysis. Information and Software Technology

Volume 51, Issue 11, November 2009

[31] M. Zilker and P. Heimann. High-speed data acquisition with the Solaris and

Linux operating systems. Fusion Engineering and Design Volume 48, Issues 1-2,

1 August 2000

[32] André Neto, Filippo Sartori et al. Linux real-time framework for fusion

devices. Fusion Engineering and Design Volume 84, Issues 7-11, June 2009

[33] Amnon Barak and Oren La'adan. The MOSIX multicomputer operating system

for high performance cluster computing. Future Generation Computer Systems

Volume 13, Issues 4-5, March 1998

[34] Ioana Banicescu, Ricolindo L. Cariño. Design and implementation of a novel

dynamic load balancing library for cluster computing. Parallel Computing

Volume 31, Issue 7, July 2005

[35] Les Robertson. The distributed data-base for the CERN SPS control system.

Computer Physics Communications Volume 110, Issues 1-3, May 1998

http://www.sciencedirect.com/science/article/pii/S0169755298000154#hit2
http://www.sciencedirect.com/science/article/pii/S0950584909001037#hit2

 Thesis for Master’s Degree at HIT and UBP

64

哈尔滨工业大学硕士学位论文原创性声明

Statement of Copyright

本人郑重声明：此处所提交的硕士学位论文《中文题目 English Title》，是本人

在导师指导下，在哈尔滨工业大学攻读硕士学位期间独立进行研究工作所取得

的成果。据本人所知，论文中除已注明部分外不包含他人已发表或撰写过的研

究成果。对本文的研究工作做出重要贡献的个人和集体，均已在文中以明确方

式注明。本声明的法律结果将完全由本人承担。

 作者签字： 焦满峻 日期： 2011 年 8 月 15 日

哈尔滨工业大学硕士学位论文使用授权书

Letter of Authorization

本人完全了解哈尔滨工业大学关于保存、使用学位论文的规定，即：

（1）已获学位的研究生必须按学校规定提交学位论文；（2）学校可以采用影印、

缩印或其他复制手段保存研究生上交的学位论文；（3）为教学和科研目的，学

校可以将学位论文作为资料在图书馆及校园网上提供目录检索与阅览服务；（4）

根据相关要求，向国家图书馆报送学位论文。

本人保证遵守上述规定。

作者签名： 焦满峻 日期：2011 年 8 月 15 日

导师签名： 日期：2011 年 8 月 18 日

 Thesis for Master’s Degree at HIT and UBP

65

Acknowledgement

At the end of this work, I want to thank my supervisor, Doc. Niko Neufeuld, for

having trusted me, my ideas and my work and for his support and precious advice

during the development of the project and the the writing of the thesis.

I want to thank my supervisors at HIT and ISIMA, Prof. Xiaofie Xu and Prof.

Kun-mean HOU for their essential contribution towards my technical education, for

having given me great support in this project, and especially, for the many hours

they spent to read and correct this document.

I want to thank in particular Dr. Alexander Mazurov for his priceless help in

understanding the architecture of computing cluster in LHCb and for his patience in

teaching me all he knows about FUSE.

Many thanks also to my colleagues at CERN, especially Guoming, Christophe

and Gregoire; theire positive attitude have encouraged me day by day.

I cannot forget to thank my parents and my sister. They always trusted me and

supported my choices.

A special thank to my two great friends, Carson and Ben. Even if far away, I

could feel their affection and theire support all the time.

Many thanks to all my friends, in particular to Louis and Pierre for their

friendship during my stay at CERN.

Finally, I want to thank Jean-Pierre, without whom I woud have never been

working at CERN and I would have never lived this great experience.

 Thesis for Master’s Degree at HIT and UBP

66

Resume

Manjun JIAO

(manjun.jiao@gmail.com) Male

Oct 12, 1986 born in Anhui, China

Education

Date University Degree Major

09/2010 –

09/2011

ISIMA Master 2 Software Engineering

09/2009 –

07/2010

Harbin Institute of Technology Master 1 Software Engineering

09/2003 –

07/2008

Harbin Institute of Technology Bachelor Software Engineering

Working experiences and training

July 2010 – September 2010, Institut de recherché pour l’ingénierie de

l’agriculture et de l’environnement, Clermont-Ferrand. Responsible for making a

tool for configurating the Wireless sensor network and its nodes

- designing the graphic interface for defining the data collection and

transmission policies and the energy policies by using Java

June 2007– August 2008, Beijing Wenlu Laser Technique Ltd. Beijing.

Developer of management system for Audio and Video market:

- analyzing requirements, designing system,, accomplishing the system and

testing.

- designing a module to collect data of the business, analyze the data and

generate the report with graphic interface.

Competences

· English: Fluent; French: Intermidiate

· C++, C, Java, C#

· Embedded system, Linux

