CERN-THESIS-2011-083

09/09/2011

@

M F AR
Dissertation for Master’s Degree
(L)

(Master of Engineering)

HF CastorFS F Xrootd B =183
HRENH—PRITSEW

Further implementation of the

user space file system based on

CastorFS and Xrootd

Manjun JIAO

w1 2 X K Université Blaise Pascal

2011 % 9 H

H WK 2KS: TP31L FRAUS: 10213
[br 4570985 681 B ~IF
TRMLFMILXY
Dissertation for the Master’s Degree in Engineering
(LFEmML)

(Master of Engineering)

#F CastorFS 1 Xrootd B P 22 8] LA R G Bk — 2 % v
55z

Further implementation of the user space file system based
on CastorFS and Xrootd

fn + M xR £ EHR
= Jfi : Niko NEUFELD

&l = i = fREE K, Kun-Mean HOU
B 1 F {u: TEWL
= B LR

BT & B L B
H Hi: 201149 H
P ¥ LA PARIETIL R

i
e
_*

I3

Classified Index: TP311
U.D.C: 620

Dissertation for the Master’s Degree in Engineering

Further implementation of the user space file

system based on CastorFS and Xrootd

Candidate: JIAO Manjun
Supervisor: Niko NEUFELD
Associate Supervisor: Prof. Xiaofei XU
Prof Kun-mean HOU
Academic Degree Applied for: Master of Engineering
Speciality: Software Engineering
Affiliation: School of Software
Date of Defence: September, 2011

Degree-Conferring-Institution: Harbin Institute of Technology

Thesis for Master’s Degree at HIT and UBP

wm =

FERGNZ B T & 2 (CERND, B2 FAITH KA s (LHC) &
I AE M EAF M RGUR N B AT T 20 LR ER T g, XNRR
#t /& CASTOR (CERN @A EH ARG, TONIHT R F#SLIR 4t 7 3 KA
HGE R BHE SCHE . SR, A RS X A 00 i 3 R e i s e A LR AR
HAA Ay A AT 2205 10 AR AE e b O 3dE o IXBE—ANE T FUSE (FH 7 28 0|) S &
4t) FIP CASTOR % A% th 2 (NS R Rfio i) 130 fF & 4t CastorFS # F
KTt — Pk CASTOR R SEIAEH o 8 I S R 40 O 2 D) 4 0 & A2
LHCb (715 si b, SR G B R KRBk B AR R th R) 7 JC R VG Bl . X4 1 P A8
BRI R B B 1 SR I, e AN FEAR R HB 3 in T CASTOR il
55 a5 o 1) A, HUE AT WA SR AUE AT EE DR WL . BRIk Ah, 2218 %k
A A8 0 T8 AR K PR) T SO RA RN o XA, FRATTR B K —NEAEK
A R T R B BB P) K R B 3 AT A i A FH T 0 S0 A% B i Xrootd SR
H B4 i CastorFS LAk CASTOR Ml 45 #5 i IR 57 48, 4 (I B8 P (0 S04 4% iy i
%, At BRI RNLE . B RS LRU (Least recently used) 533
VENSEBLEAF EHAINLH], 18 FUSE #2410 s B L0 R G010 1 DL K
Xrootd Fr#& it ()45 & POSIX ArifE 1) D e B Bk 52 it — AN 2% BRI IR 55 #5 i 671
B, fEWEEEINRE S, WAL WNEREM AP B RS, MR R
4t LA AE LHCh (175 55 B2 MR I O & 4 el 30 8 AR & T R4 5

X##iAE: CastorFS, H P AR RSG, 2247, Xrootd

Thesis for Master’s Degree at HIT and UBP

Abstract

The LHC (Large Hadron Collider) experiments use a mass storage system for
recording petabytes of experimental data. This system is called CASTORM (CERN
Advanced STORage manager) and it is powerful and convenient for many use cases.
However, it is impossible to use standard tools and scripts straight away for dealing
with the files in the system since the users can access the data just in the way of
using command-line utilities and parsing their output. Thus a complete POSIX
filesystem — CastorFS™? is developed based on the FUSEP! (File System in
Userspace) and two CASTOR /O libraries-RFIO (Remote File 1/O) library and NS
(Name Server) library. Although it is applied successfully, it has serious limitation
of wide application because the 1/0 protocols it relies on are very old. Each time the
CASTOR side receives the calling for accessing data files from the user side, the
load of the CASTOR side system will increase quickly even out of its upper bound
and the system would crash. Besides that, those two protocols provide very
primitive mechanism for authentication and the data transmitting rate is very low.
Furthermore, since the CastorFS is implemented in C language, it can hardly be
extended by using the other well functioned libraries. Hence, it needs to be
rewritten in C++ with the implementation of caching and the Xrootd™ (eXtended
Root Daemon) which is developed by SLAC/CERN to provide a high performance,
scalable fault tolerant access to data. The new system implemented the LRU (Least
Recently Used) algorithm as the mechanism to manage the cache. We use FUSE as
the tool to provide the interfaces for the virtual filesystem. By implementing the
actual filesystem function with Xrootd Posix APIs, we provided a filesystem which
can effectively ease the server load, provide a steady data transmitting service and
provide a good data protection mechanism.

Keywords: CastorFS, FUSE, Caching, Xrootd

Thesis for Master’s Degree at HIT and UBP

Table of contents

B B e, |
PN S I A\ O IR |
CHAPTER 1 INTRODUCTIONcooiiiiie, 3
R = YN (] 20 16 | o TR 3
1.2 CASTOR, FUSE, CASTORFS AND XROOTD.....ccttvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 4
1.2, L CASTOR 4
O L 1] 7
R T O 1) o] o T 13
O (0 10) (o 13

1.3 THE PURPOSE OF PROJECT iiiiiiiiiiiiiiiiiiieteeeeeeeeeeeeeeee e e et esaaaaeanaees 15
1.4 THE STATUS OF RELATED APPLICATIONcoiviiiiiiiiiiiieiieeeeeeeeeeeeee e e e ee e 15
1.4.1 APPHCALION NO.T ..ooiiiiiiiiiie e 15
1.4.2 Application NO. Tlcooiiiiiii e 15

1.5 MAIN CONTENT AND ORGANIZATION OF THE THESIS..uuuiiiiiiiiiiviiiiiiieieeeeeeennns 16
CHAPTER 2 SYSTEM REQUIREMENT ANALYSIS......cooovieieiriiieee, 17
2.1 THE GOAL OF THE SYSTEM tuuuuiiiiiiiiieitiiiiiiiieeeseeestiiiinneeeesssesstisiseeesssssssssnnnns 17
2.2 THE FUNCTIONAL REQUIREMENTS ...uuuuuutuuustusssn.s 17
2.2.1 The requirement of implementing caching..........c.cccoooiviieiiiinennnne 17
2.2.2 The requirement of applying Xrootd in the system.............ccccoeevneene 19
2.2.3 The requirement of porting the system to Mac and Windows 19

2.3 THE UN-FUNCTIONAL REQUIREMENTS ..uuiiittiieeietieeeeeeie e e e eet s e e eeai e e s eean s 20
2.4 SUMMARY ..ttt ettt e e e e et e s e e e e s et e et s e e e s st e eab s e e e e s s eeerbbaa s 20
CHAPTER 3 SYSTEM DESIGN ..o 21
3.1 THE OVERALL DESIGN OF THE SYSTEM ...uiiiiiiieiiiiiie e eeeviiis e eeaanaaann 21
3.2 THE DESIGN OF THE WRAPPERottvtttiiiiiieeeiieeetiis s e e e s s e seaabbn s s e e s s s sesabaannns 23
3.3 THE DESIGN OF THE CACHINGitttttttieieeeeeiieeriiiies s s e e e s s eeessssassssesssenssssnnnns 24
3.4 THE DESIGN OF THE FILESYSTEM USING XROOTD ..uviiiieiiiiveririieseeeeeseeeennnnnnss 26
R A€o 2 1 =(o 2 1V [0 10 = 27
3.5.1 The application of FUSEcoooiiiiii e 27

Thesis for Master’s Degree at HIT and UBP

3.5.2 The application of Xrootd..........ccccceeeviiiiiiii e 32
3.5.3 The application of C++ standard librarycccccococeeviieniienieeee. 33
3.5.3 The application of LRU algorithm for cachingccccoceeiiiiinennnn. 34
3.5.3 The mechanism of authentication in CERN and Xrootd 35
3.5.5 The application of CMake and RPMBuild toolscccceeviieeeneen. 38

3.6 BRIEF SUMMARYutiiiiiiaiiesiieesieeaiee st e siee et et sbee et esnse et e snbeesnneenneesnneens 39
CHAPTER 4 SYSTEM IMPLEMENTATION AND TESTING........c.ccccvevenne. 40
4.1 THE ENVIRONMENT OF SYSTEM IMPLEMENTATIONouuviiiiiieieeenaiiiiiieeeeeeenns 40
4.1.1 Hardware enVIrONMENTcccviiiiiee et 40
4.1.2 Software enVIrONMENT..........cocviiiiiiie e 41
4.1.3 The implementation of Wrapper........ccccceeviieeiiie e 42
4.1.4 The implementation of CaChingccccceeviiiiiiiiiii e, 44
4.1.5 The implementation of new CastorFS with Xrootd.............cccceeeveenee. 47

4.3 KEY INTERFACES OF THE SOFTWARE SYSTEM ...viiiiiiaiieiiieesieeeieesnieesieesnieens 53
4.4 SYSTEM TESTING AND PERFORMANCE EVALUATION.....ccvteriiiiiieiieenieenieens 54
4.4.1 SYStEM TeSHING...ciiviieiiie et 54
4.4.2 Performance evaluationccccveeiiieeiie e 55

4.5 BRIEF SUMMARY .uiiiiiiieiissese s s s s s s s s s a s s s s s s s s e a s s s e e aaaanaaaaaa e e aannanenannaanannnnnnanas 59
CONCLUSION ...ttt sb et nee e 60
REFERENGCES ...ttt nae e 61
STATEMENT OF COPYRIGHT ...c.oiiiii et 64
LETTER OF AUTHORIZATION ..ottt 64
ACKNOWLEDGEMENT ...ooiiiicee ettt nnae e 65
RESUME ...ttt ettt et e et ear e et e nteeaneas 66

Thesis for Master’s Degree at HIT and UBP

Chapter 1 Introduction

1.1 Background

The CERN Advanced STORage manager (CASTOR) is a hierarchical storage
management system developed at CERN for physics data files. Files can be stored,
listed, retrieved and remotely accessed using CASTOR command-line tools or user
applications developed against the CASTOR API. Multiple access protocols are
available such as RFIO (Remote File 10), ROOT, XROOT and GridFTP. CASTOR
exposes also a SRM interface. The design is based on a component architecture
using a central database to save guard the state changes of CASTOR components.
The access to disk pools is controlled by the Stager; the directory structure is kept
by the Name Server. The tape access (write and recalls) is controlled by the Tape
Infrastructure.

The FUSE system was originally part of A Virtual Filesystem (AVFS), but has
since split off into its own project on SourceForge.net. FUSE is available for Linux,
FreeBSD, NetBSD (as PUFFS), OpenSolaris, and Mac OS X. It was officially
merged into the mainstream Linux kernel tree in kernel version 2.6.14. FUSE is
particularly useful for composing virtual file systems. Unlike traditional file
systems that essentially save data to and retrieve data from disk, virtual filesystems
do not actually store data themselves. They act as a view or translation of an
existing file system or storage device. In principle, any resource available to FUSE
implementation can be exported as a file system . There are many file systems and
applications were developed based on FUSE, like run-time-access, KIO FUSE
Gateway, LUFS bridge, mcachefs, Logic File System, GnomeVFS2 FUSE, AFUSE,
Mountlo, etc. However, for interaction with the CASTOR system, this is a new
application and a practical one!®.

XROOTD aims at giving high performance, scalable fault tolerant access to
data repositories of many kinds. The typical usage is to give access to file-based
ones. It is based on a scalable architecture, a communication protocol, and a set of
plugins and tools based on thosel”. The freedom to configure it and to make it scale
(for size and performance) allows the deployment of data access clusters of virtually
any size, which can include sophisticated features, like authentication/authorization,

http://sourceforge.net/projects/avf
http://en.wikipedia.org/wiki/SourceForge.net
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/PUFFS_%28NetBSD%29
http://en.wikipedia.org/wiki/OpenSolaris
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Kernel_%28computer_science%29
http://en.wikipedia.org/wiki/Virtual_file_system

Thesis for Master’s Degree at HIT and UBP

integrations with other systems!®, WAN data distribution, etc. Recently, starting
from the fact that xrootd is just the name of one constituting block (the data access
daemon), the name "Scalla" is being sometimes used to refer to the whole software
suite. Its meaning is "Structured Cluster Architecture for Low Latency Access".
This Savannah point of access is supposed to grow and constitute a point of
aggregation for the various needs of people willing to use the platform for their data
access needs in the HEP community™. This will include access to updated source
code and to the documentation, as well to any other kind of information related to
the project. Xrootd is a newly developed tool and it is not be used widely, so it’s a
new application full of challenge. It is a high performance network storage system
widely used in High Energy Physics experiments such as Babar, STAR and LHC.
The underline Xroot data transfer protocol provides very high efficient access to the
ROOT based data files™. Using filesystem which is based on Xrootd to access data
files will not take the advantages provided by the Xroot data transfer protocol 2.
For this reason, the preferred environments to use Xrootd are data import, export
and data management, not the actual data analysis. Because Xrootd is designed with
large data files in mind, it is not efficient to use the filesystem based on Xrootd for
large number of small files™?,

1.2 CASTOR, FUSE, CASTORFS and Xrootd

1.2.1 CASTOR

CASTOR is a hierarchical storage management (HSM) system developed at
CERN. Files can be stored, listed, retrieved and accessed in CASTOR using
command line tools or applications built on top of the RFIO (Remote File 10) or
ROOT libraries**1t,

CASTOR provides a UNIX like directory hierarchy of file names. The
directories are always rooted /castor/cern.ch (the cern.ch will be different in other
CASTOR sites). The CASTOR name space can viewed and manipulated only
through CASTOR client commands and library calls. OS commands like Is or mkdir
will not work on CASTOR files. The CASTOR name space holds permanent tape
residence of the CASTOR files, while the more volatile disk disk residence is only
known to the stager, which is the disk cache management component in CASTOR.
When accessing or modifying a CASTOR file, one must therefore always use a
stager.

Thesis for Master’s Degree at HIT and UBP

CASTOR name space can be viewed using the ns1s or rfdir commands.
Both commands use the same mechanism for talking to CASTOR but there are
important differences:

e nsls can also list the tape residence (-t option) and supports a special
mode-bit 'm' flagging that the file has been migrated to tape

e rfdir isa RFIO command and can therefore also be used to list local or
remote files. ns1s can only list CASTOR files

Example:

[1xplus] nsls -1 /castor/cern.ch/user/1/linda

Mrw-r—-r—- 1 linda aa 29194240 Mar 08 2004 thesis.tar
mrw-r—-r-- 1 linda aa 16723666 Jan 14 2004 muons.root
mrw-r—--r-—- 1 linda aa 2496 Aug 12 10:06 logfile
drwxr-xr-x 102 linda aa 0 Jul 20 13:45 higgs

[1xplus] rfdir /castor/cern.ch/user/1l/linda

—rw-r--r-- 1 linda aa 29194240 Mar 08 2004 thesis.tar
—rw-r—-r-- 1 linda aa 16723666 Jan 14 2004 muons.root
- rw-r—--r-—- 1 linda aa 2496 Aug 12 10:06 logfile
drwxr-xr-x 102 linda aa 0 Jul 20 13:45 higgs

[1xplus] rfdir

drwxr-xr-x 6 linda root 4096 Oct 09 2003 private
drwxr-xr-x 27 linda root 4096 Aug 19 20:25 public

- rw-r—--r-—- 1 linda root 547 Oct 19 2000 .login

- rw-r—--r-—- 1 linda root 3905 Dec 10 1996 .profile
—rw-r—--r-—- 1 linda root 6228 Sep 28 2004 .tcshrc
—rw-r—--r-—- 1 linda root 2151 Dec 10 1996 .zprofile
-rw-r—--r-- 1 linda root 3436 Dec 10 1996 .zshenv
-rw-r—--r-- 1 linda root 4159 Dec 10 1996 .zshrc

[1xplus] nsls -T /castor/cern.ch/user/l/linda/thesis.tar
- 1 1 P16116 1663 00353758 29194240 0
/castor/cern.ch/user/1/linda/thesis.tar

Figure 1-1 is the overview of CASTOR2,

Thesis for Master’s Degree at HIT and UBP

Stager

Job | |Qry | Error|

apeDaemo

Tape Serve

Figure 0-1-1 Castor status and overview

The functionality of CASTOR covers a wide range of the requirements of the
data management: SRM conventions for client command set, transactions for input
streams, handling of new queries, pluggable policies, request priorities, pluggable
protocols and SRM interfaces. Besides that, it also integrated authorization!*®
authentication, resiliency against hardware failures and disaster recovery functions.
The scalability and the flexibility which are two important features in the domain of
high performance computing are also supported by CASTOR.

CASTOR provides a UNIX like directory hierarchy of file names. This
directory structure can be accessed using rfio (Remote File Input/Output) protocols
either at the command level or, for C programs, via function calls. The service at
RAL has an SRM interface which makes it GRID accessible!*/!7],

There are two families of commands that can be used to access CASTOR
locally at RAL:-

rf*: The rfio commands which can access both local and remote files. See
setting the environment for a warning about getting the right version of rf*,

ns*: The ns* CASTOR name server commands have additional functionality
but can only be used on local CASTOR files.

These commands don't use GRID certificates, it's all down to UNIX
permissions; when files are created they will be owned by the user running on the

http://www-numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/data_tutorial.html#eg_castor_env

Thesis for Master’s Degree at HIT and UBP

Ul. If subsequently accessed via some GRID service the username will normally be
different but so long as it belongs to the same group i.e. 'minos' then group
attributes can be used to control access.

1.2.2 FUSE

A filesystem is a method for storing and organizing computer files and
directories and the data they contain, making it easy to find and access them. If
somebody is using a computer, he/she is most likely using more than one kind of
filesystem. A filesystem can provided extended capabilities. It can be written as a
wrapper over an underlying filesystem to manage its data and provide an enhanced,
feature-rich filesystem (such as cvsfs-fuse, which provides a filesystem interface for
CVS, or a Wayback filesystem, which provides a backup mechanism to keep old
copies of data)!*®!.

Before the advent of user space filesystems, filesystem development was the
job of the kernel developer. Creating filesystems required knowledge of kernel
programming and the kernel technologies (like vfs). And debugging required C and
C++ expertisel®!. But other developers needed to manipulate a filesystem -- to add
personalized features (such as adding history or forward-caching) and
enhancements.

Now, in a userspace program, we can implement a fully functional filesytem
by using FUSE. It provides features like simple library API, simple installation,
secure implementation, and efficient kernel interface in userspace. And, to top it all
off, FUSE has a proven track record of stability™®®. To create a filesystem in FUSE,
we need to install a FUSE kernel module and then use the FUSE library and API set
to create our filesystem!®"?2]. The supper block, inode, dengry etc. are all virtual.
The request of the real information of a file will be passed from layer to layer
through drivers and interfaces until request handling program written by user in the
user space.

Figure 1-2 shows the data flow used by FUSE to access remote data. FUSE
contains three modules: FUSE kernel module, LibFUSE module, User program
module™. In user space, users should implement the filesystem which is
encapsulated by the Libfuse library. Libfuse provide the support to the main

filesystem framework, encapsulation for “user implemented filesytem” code,

Thesis for Master’s Degree at HIT and UBP

handling “mount”, communication with operating system module through character
device /dev/fuse.

The kernel module of FUSE has implemented the VFS interface which is used
for FUSE file driver module registration, the virtual device driver of FUSE,
providing maintenance of supper block, dentry, inode. FUSE kernel will receive the
VFS’s requests and pass them to LibFUSE. LibFUSE will pass them to our user
program interface to actually do the job (Figure 1-2).

example/ello np'iuse

P}

...... Sy i
] : : -
‘ Is =1 Ainpyfuse (libfuse J
,
A
. i I : :
(glibe : alibe J :
b A W
wserspace [e
kernel
FUSE
VFS
‘ NFS
‘ Ex13

Figure 1-0-2 How fuse works

When our user mode program calls fuse_main() (lib/helper.c), fuse_main()
parses the arguments passed to our user mode program, then calls fuse_mount()
(lib/mount.c).

fuse_mount() creates a UNIX domain socket pair, then forks and execs
fusermount (util/fusermount.c) passing it one end of the socket in the
FUSE_COMMFD_ENV environment variable.

fusermount (util/fusermount.c) makes sure that the fuse module is loaded.
fusermount then open /dev/fuse and send the file handle over a UNIX domain
socket back to fuse_mount().

fuse_mount() returns the filehandle for /dev/fuse to fuse_main().

fuse_main() calls fuse_new() (lib/fuse.c) which allocates the struct fuse
datastructure that stores and maintains a cached image of the filesystem data. Lastly,

Thesis for Master’s Degree at HIT and UBP

fuse_main() calls either fuse_loop() (lib/fuse.c) or fuse_loop_mt() (lib/fuse_mt.c)
which both start to read the filesystem system calls from the /dev/fuse, call the
usermode functionsstored in struct fuse_operations datastructure before calling
fuse_main(). The results of those calls are then written back to the /dev/fuse file
where they can be forwarded back to the system calls.

user programs

calls
A4
fuse main
> fuse mount
fork _
EF kot fusermount
fd fd, exit
calls
> fuse new
_datastructure
calls
»{ fuse_loop(fuse loop mt)

L y

receive session

A J

process session —

v

uninstall fuse fs

Figure 1-0-3 Fuse working procedure

Thesis for Master’s Degree at HIT and UBP

“rm /mnt/fuse/file" FUSE filesystem daemon
>sys_read()
>fuse_dev_read()
>request_wait()
[sleep on fc->waitq]

>sys_unlink()
>fuse_unlink()
[get request from
fc->unused_list]
>request_send()
[queue req on fc->pending]
[wake up fc->waitq] [woken up]
>request_wait_answer()
[sleep on reg->waitq]
<request_wait()
[remove req from fc->pending
[copy req to read buffer]
[add req to fe->processing]
<fuse_dev_read()

<sys_read()
[perform unlink]

I
I
|
|
[
[
I
I
|
|
|
|
|
[
[
[
[
I
I
|
|
|
|
I
|
[
I
|
I
I
|
|
|
|
|
1
[
1
I
I
[
|
|
|
I
1
[
: >sys_write()
: >fuse_dev_write()
: [look up req in fc->processing
: [remove from fc->processing]
: [copy write buffer to req]
[woken up] : [wake up reqg->waitq]
: <fuse_dev_write()
| <sys_write()
|
<request_wait_answer() |
<request_send() :
[add request to :
fc->unused_list] :
<fuse_unlink() :
|
I

<sys_unlink()

Figure 1-0-4 rm function call procedure in FUSE

10

Thesis for Master’s Degree at HIT and UBP

To create a filesystem with FUSE, we need to declare a structure variable of
type fuse operations and pass it on to the fuse main function. The
fuse operations Structure carries a pointer to functions that will be called when

the appropriate action is required

. None of those operations are absolutely
essential, but many are needed for a filesystem to work properly. We can implement
a full-featured filesystem with the special-purpose methods .fiush, .release,

or . fsync. Some functions are explained as follows:

e gQetattr: int (*getattr) (const char *, struct stat *);
This is similar to stat(). The st_dev and st_blksize fields are ignored. The
st_ino field is ignored unless the use_ino mount option is given.

o readlink: int (*readlink) (const char *, char *, size t);
This reads the target of a symbolic link. The buffer should be filled with a
null-terminated string. The buffer size argument includes the space for the
terminating null character. If the linkname is too long to fit in the buffer, it
should be truncated. The return value should be "0" for success.

e getdir: int (*getdir) (const char *, fuse dirh t,
fuse dirfil t);
This reads the contents of a directory. This operation is the opendir (),
readdir (), ..., closedir () Sequence in one call. For each directory entry,
the fi11dir () function should be called.

e mknod: int (*mknod) (const char *, mode t, dev_t);
This creates a file node. There is N0 create () Operation; mknod () will be
called for creation of all non-directory, non-symlink nodes.

e mkdir: int (*mkdir) (const char *, mode t);
rmdir: int (*rmdir) (const char *);
These create and remove a directory, respectively.

e unlink: int (*unlink) (const char *);
rename: int (*rename) (const char *, const char *);
These remove and rename a file, respectively.

e symlink: int (*symlink) (const char *, const char *);
This creates a symbolic link.

e Jlink: int (*link) (const char *, const char *);

This creates a hard link to a file.

11

Thesis for Master’s Degree at HIT and UBP

chmod: int (*chmod) (const char *, mode t);

chown: int (*chown) (const char *, uid t, gid t);
truncate: int (*truncate) (const char *, off t);
utime: int (*utime) (const char *, struct utimbuf *);

These change the permission bits, owner and group, size, and
access/modification times of a file, respectively.

open: int (*open) (const char *, struct fuse file info *);
This is the file open operation. No creation or truncation flags (o _crear,
0 EXCL, o TrRUNC) Will be passed to open (). This should check if the
operation is permitted for the given flags. Optionally, open () may also
return an arbitrary filehandle in the fuse file info structure, which will
be passed to all file operations.

read: int (*read) (const char *, char *, size t, off t, struct
fuse file info *);

This reads data from an open file. read () should return exactly the number
of bytes requested, except on EOF or error; otherwise, the rest of the data
will be substituted with zeroes. An exception to thisis when the direct io
mount option is specified, in which case the return value of the read ()
system call will reflect the return value of this operation.

write: int (*write) (const char *, const char *, size t, off t,
struct fuse file info *);

This writes data to an open file. write () should return exactly the number
of bytes requested except on error. An exception to this is when the
direct io mount option is specified (as in the read () operation).
statfs: int (*statfs) (const char *, struct statfs *);

This gets filesystem statistics. The £ type and £ fsid fields are ignored.
flush: int (*flush) (const char *, struct fuse file info *);
This represents flush-cached data. It is not equivalent to fsync() -- it's not a
request to sync dirty data. flush() is called on each close() of a file
descriptor, so if a filesystem wants to return write errors in close() and the
file has cached dirty data, this is a good place to write back data and return
any errors. Since many applications ignore close() errors, this is not always
useful.

12

Thesis for Master’s Degree at HIT and UBP

1.2.3 CastorFS

CASTOR logically presents files in a UNIX (POSIX) like directory hierarchy
of file names®!®! This suggests implementing a new filesystem capable of
operating on files stored on CASTOR using standard UNIX operation system calls
and commands like open, read, cp, rm, mkdir, Is, cat and find.

FUSE library

+

CASTOR RFIO library

Y

+

NmMmIOVO—-1Unrn

CASTOR NS library

Figure 1-0-5 CastorFS
CastorFS have a performance problem for writing and reading files to/from
CASTOR compared to native RFIO about 14 times slower for writing and 3 times
slower for readingl (see Table 1-1). This project will make a further
implementation for CastorFS by adding new module for the filesystem and using
new data transmitting policy to make a big improvement on CastorFS®7.

Table 1-1 CastorFS performance

Tool Read (Mb/s) Write (Mb/s)
POSIX ¢p command on CastorF'S 31 5
rfep command (based on CASTOR RFIO library) 100 70

1.2.4 Xrootd

Scalla means Structured Cluster Architecture for Low Latency Access!®®!.
This is the relatively new name given to the whole suite of tools which are part of
the (formerly called) XRootD distribution. The Scalla software suite provides two
fundamental building blocks: an xrootd server for low latency highbandwidth data
access and an olbd server for building scalable xrootd clusters. Scalla offers a

13

Thesis for Master’s Degree at HIT and UBP

readily deployable framework in which to construct large fault-tolerant high
performance data access configurations using commodity hardware with a minimum
amount of administrative overhead®..

The xrootd server is designed to provide POSIX-like access to files and their
enclosing directory namespacel®®. The architecture is extensible in that it relies
heavily on a run-time plug-in mechanism so that new features can be added with a
minimum of disruption®!, The plug-in components are shown in Figure 1-6. Seven
plug-in components are shown. The components mate (i.e., plug in) at different
architectural junctions.

xrd Layer
(Threading, Memory. Protocol Driver)

Protocol Plug-in Authentication

(static xroot prototol) Plug-in
Logical Filesystem Plug-in Authorization

(libXrdOfs.s0) Plug-in
Physical Filesystem Plug-in Name-2-Name

(libXrdOfs.s0) Plug-in

Figure 1-0-6: Xrootd Server Architecture

The core component is the “xrd”. This component is responsible for network,
thread, data buffer, and protocol management. Because the “xrd” is responsible for
a compact set of functions®, it was easily optimized to do them exceedingly well.
For instance, network management was engineered to use the most efficient
mechanism available for each type of host operating system. Data buffer
management is optimized to provide fast allocation and de-allocation of 1/O buffers
on page boundaries. Protocol management is designed to allow any number of
protocols to be used at the same time. The protocol is selected at the time an initial
connection is made to the server. By default, the component that provides the xroot
protocol is statically linked with the “xrd”. As mentioned before, additional
protocols may be specified, and the “xrd” loads these at run-time from appropriate
shared libraries. For instance, the PROOF system runs both the xroot protocol as

14

Thesis for Master’s Degree at HIT and UBP

well a special protocol that provides parallel access to multiple data analysis servers
within the Root Framework.

The authentication component, XrdSec, plugs into the xroot protocol
component. Multiple authentication protocols can be used as the xroot protocol is
merely used to encapsulate the client/server interactions required by the protocol.
Currently, GSI, Kerberos 1V and V, as well as simple password authentication are
supported. Additional authentication protocols may be implemented and placed in
shared libraries'®¥!. These protocols are dynamically loaded and used whenever the
client supports the particular protocol. Authentication models may also be restricted
on a host name and domain basis41!.

1.3 The purpose of project

The purpose of project is to implement a user space file system according to
the requirements to provide a better virtual filesytem for the users to facilitate their
work and ease the server load by applying interesting mechanisms to the filesystem.

1.4 The status of related application

FUSE is used by many organizations to develop many commercial and
nonecomercial applications and products. Here are some introductions of the
application FUSE.

1.4.1 Application No.l

Wuala: A multi-platform, Java based Fully OS integrated distributed file
system. Using FUSE, MacFUSE and Callback File System respectively for file
system integration, in addition to a Java based app accessible from any Java enabled
web-browser. It is a secure online storage, file synchronization, versioning and
backup, service, originally developed and run by Caleido Inc., which is now part of
LaCie. Service is a combination of data centres that are provided by Wuala in
multiple European countries (France, Germany, and Switzerland) and the Wuala
cloud — distributed data storage that is provided by users who trade storage.

1.4.2 Application No. 11

RTA is a library that we can attach to our program to expose our program's internal
arrays and data structures as if they were tables in a database. The database

15

Thesis for Master’s Degree at HIT and UBP

interface uses a subset of the Postgres protocol and is compatible with the Postgres
bindings for C, PHP, and the Postgres command line tool, psql. One of the problems
facing Linux is the lack of run time access to status, statistics, and configuration of
a service once the service has started. We assume that to configure an application
we will be able to ssh into the box, vi the /etc configuration file, and do a 'kill -1' on
the process. Real time status and statistics are things Linux programmers don't even
think to ask for. The need for run time access is particularly pronounced for network
appliances where ssh is not available or might not be allowed. Another problem for
appliance designers is that more than one type of user interface may be required.
Sometimes a customer requires that no configuration information be sent over an
Ethernet line which transports unsecured user data. In such a case the customer may
turn off the web interface and require that configuration, status, and statistics be
sent over an RS-232 serial line. Other popular interfaces include the VGA console,
SNMP MIBs, and LDAP. The RTA package helps solve both of these problems by
giving run time access to the data structures and arrays inside our running program.
With minimal effort, we make our program's data structures appear as tables in a
Postgres database.

1.5 Main content and organization of the thesis

The main content of this topic is to make an introduction of the further
implementation of the CastorFS. The rest of the theis will be requirement analysis,
system design, implementation, testing and conclusion. In chapter2, we will
introduce the system requirement which includes functional requirement and
non-functional requriremnt. In chaper3, we will firstly introduce the overall desingn
of the system, and then the design for each importand part of the system will be
given. In the end of this chapter, we will see the key technologies which are applied
in this project. The last chapter will introduce the system implementation and
testing. The implementation and testing environment will firstly be given and then
the key interfaces, testing and evaluation will be introduced.

16

Thesis for Master’s Degree at HIT and UBP

Chapter 2 System Requirement Analysis

2.1 The goal of the system

From the software engineering point of view, we need to do the requirement
analysis to define the problem as clearly as possible. After that, we will design and
implement the system with the current tools, the libraries that we can use. And then,
we will make the test to make sure the quality of software will be guaranteed. At
last, an evaluation report will be given to help the other people to well recogonize
the improvements between the new and old system and the guidelines will be given
to explain how the system should be well configured before people want to use it.

We want to provide filesystem to make users acess the romote data as if they
acess the data on their local machine.At the same time, by providing a interface
which complies to the POSIX standard, our users will be able to use the common
Linux commands to operate the remote data. This will help them work more
efficiently.

Specifically, during the internship, | need to make a supplement for the current
CastorFS by rewriting it in C++, adding the caching and replacing ns, rfio libraries
with Xrootd libriries for transmitting data. After that, | also need to investigate how
we deploy the sytem in LHCb computing cluster and write a guideline for the users.

2.2 The functional requirements

2.2.1 The requirement of implementing caching

Before a new CastorFS is implemented by reforming the original one, the
system needs be wrapped up to be able isolate the Linux system binding with the
FUSE functions to prepare for the furhter implementation. All the implementation
functions of the FUSE interfaces will be written in C++ and a middle wrapper layer
should be given shown as Figure 2-1.

It is the CastorFS user space program that implements normal 1/O operations
such as getarrr(), open(), close(), read(), write(), opendir(), readdir(), mkdir(),
chown(), truncate(), utimens(), release(), gexattr(), listxattr(), removexattr(), create()
and unlink() against the CASTOR storage system.

17

Thesis for Master’s Degree at HIT and UBP

Castor J Castor

N/

Interface Wrapper
implementation G FUSE interface
in C++

U

Other

libraries

Figure 2-1 Wrap up CastorFS in C++

CASTOR provides a UNIX like directory hierarchy of file names. The
directories are always rooted /castor/cern.ch (the cern.ch will be different in other
CASTOR sites). The CASTOR name space can viewed and manipulated only
through CASTOR client commands and library calls. OS commands like Is or mkdir
will not work on CASTOR files. The CASTOR name space holds permanent tape
residence of the CASTOR files, while the more volatile disk residence is only
known to the stager, which is the disk cache management component in CASTOR.
When accessing or modifying a CASTOR file, one must therefore always use a
stager. Since the CASTOR needs to deal with many files in the tape, if the user use
many Linux file accessing command like “Is”, that will make the load of CASTOR
side increasing dramatically. Therefore the frequently used file metadata should be
cached during a period of time to reduce the load on the CASTOR server side.

The implementation of a caching mechanism for storing information about
frequently requested CASTOR file meta-data is very critical for the wide
application of this file system. For the caching, users need to be able to set the
caching lasting time, i.e. the efficient lasting time of the cached meta-data because
after a period of time there might be some modifications made by the other users on
the same file or directory. Another reason for setting the caching efficient time is
that CASTOR doesn’t provide any call back function to inform the modification of
the files on CASTOR server.

18

Thesis for Master’s Degree at HIT and UBP

2.2.2 The requirement of applying Xrootd in the system

The xrd is a server that can dynamically support multiple TCP/IP application
service layer protocols. The xrd is a generalized daemon and it makes its primary
decision on which protocol to support based on the name given to the executable.
Currently, the following executable names are fully supported: xrootd for eXtended
Root Daemon and related protocols. Records that do not start with a recognized
identifier are ignored. This includes blank record and comment lines (i.e., lines
starting with a pound sign, #). Other directives are documented in supplemental
guide specific to the component they deal with. The location of the configuration
file is specified on the xrootd command line. Because each component has a unique
prefix, a common configuration file can be used for the whole system. Refer to the
manual “Configuration File Syntax” on how to specify and use conditional
directives and set variables. These features are indispensable for complex
configuration files usually encountered in large installations.

The application of Xrootd is mainly about the using of the new protocols
provided by Xrootd and adding the authentication mechanism provided by Xrootd
to make the CastorFS faster and more secure.

2.2.3 The requirement of porting the system to Mac and Windows

Since our users use different operation systems, it will be practical if we
provide the CastorFS not only on Linux but also on Mac and Windows. The
requirement is to implement the CastorFS on Mac which will base on MacFUSE and
Windows which will base on the Windows FUSE.

Therefore, after a careful investigation and discussion with experienced
software developers in CERN, we found that CASTOR2 client side library didn’t
support Mac and Windows operating systems. At the same time, Xrootd client
library needs a uified authentication support from the CERN server. It would be too
complex to implement the functions based on the windows and Mac. So we decided
to leave this part to be implemented in the future once Castor and Xrootd provide a
full support for the Mac and Windows operating system.

Beside that, we can install the system on the computing cluster, and then we
can use the secure shell to exchange data between two networked devices inorder to
use the service.

19

Thesis for Master’s Degree at HIT and UBP

2.3 The un-functional requirements

1. Understandability:

(1) Interface elements should be easy to understand

(2) For a walk up and use system, the purpose of the system should be easily
understandable

2. Learnability:

(1) The user documentation and help should be complete

(2) The help should be context sensitive and explain how to achieve common
tasks

(3) The system should be easy to learn

3. Operability:

(1) The interface actions and elements should be consistent

(2) Error messages should explain how to recover from the error

(3) The system should be customisable to meet specific user needs

(4) A style guide should be used

4. Attractiveness:

The screen layout and colour should be appealing.

2.4 Summary

Requirements analysis involves frequent communication with system users to
determine specific feature expectations, resolution of conflict or ambiguity in
requirements as demanded by the various users or groups of users, avoidance of
feature creep and documentation of all aspects of the project development process
from start to finish. During the requirement analysis, we defined the functional
requirement and non-functional requirement for the virtual file system. For the
functional requirements, we need to first make some improvements on the old
version CastorFS. Later, we need to apply the new xrootd protocol on the CastorFS.
During the implementation, the evaluation report also should be delivered to
visualize the actual improvement of the system.

20

http://whatis.techtarget.com/definition/0,289893,sid9_gci860179,00.html

Thesis for Master’s Degree at HIT and UBP

Chapter 3 System Design

3.1 The overall design of the system

To design for the new CastorFS will have close interactions with FUSE,
caching mechanism and XrdPosix interface. The new CastorFS will implement all
the functions that are nessassary for handling the operations in a filesystem by
invoking the Xrootd posix functions. Some meta-data of directory entries will be
cached for the future use. The overall design is show as Figure 3-1.

Fuse
%int* getattr() CastorFS
®int* readlink() XrdPosixXrootd
®int* mknod() %int cfuse_getattr()
int* mkdir() %int cfuse_readdir() %int Close()
%int* unlink() %int cfuse_create() %int Closedir()
®int* rmdir() %int cfuse_read() %int Lseek()
%®int* symlink() %int cfuse_write() %int Open()
®int* rename() %int cfuse_release() %int Opendir()
%int* link() <} *%int cfuse_unlink() %int Stat()
%int* chmod() %int cfuse_mkdir() %int Unlink()
%int* chown() %int cfuse_rmdir() %int Rmdir()

%int* truncate()
®int* utime()
%int* open()
%int* read()
int* write()
%int* statfs()
%int* flush()
*.0

%int cfuse_truncate()
%int cfuse_utimens()
%int cfuse_getxattr()
%int cfuse_listxattr()
%int cfuse_removexattr()
%int cfuse_chown()

®ssize t Write()
%®hool isXrootdDir()
%void setEnv()
%long Debug()

®.0

Cache

Stimer

Extimestamp

%void lookUpCache()
%void insert()
%void evict()

Figure 3-1 System overall design
For the workplan, there are 3 main tasks which are given according to the
requirement analysis. Because the work will be done based on some brand new

21

Thesis for Master’s Degree at HIT and UBP

systems and tools, it takes a period of time for me to get familiar with the new

systems and tools.

Table 3-1 Workplan

Hame -

~ Familiarize FUSE and Linux programming AFT
frite a simple file system by implement the FUSE interface

Test the usages of linux api functions especilly the functions
to manage the file system

~ Make the analysisz and preparation for the project
fnalyre the current castorfs’ dizadwentages in a statistical way
et the Grid certification for the FC
Set the configuration for data access for the local FC
Get to dmow CERN and the honor to be able to work here
Di=zcuss with Sacha about his work of castorfs

“ Design and implement the caching of Castorfs

Get to lmow the different caching mechanisms and draw a
comparison

Under=standing the key problems to be solwed for the caching

Make a plan for the project

Cheoose the mechanism which fits the system best and make a
dezign

Implement the caching
Test the caching and write a report for the project
Get familiar with Xrootd
In=tall and test the {rootd
Analysze the problem and make a daszign for the system
Modify castorfs by inwoking the functions prowided by rootd
Test the system and write the report
* Prepare presentation for every Tuesday

*'Write a monthly report to summerize and look forward

Inration

20 days?
10 days?
10 days?

6 days?
day’
day?
day?
day?
day’
34 days?

T days?

—_ = e

1 day?
1 day?
1 day?

B days?
T days?
11 days
1 day?

4 day=?
51 days?
23 days?
90 days
66 days

Start

-

Mon 04704511

Mon 04,/04/11
Mon 13,/04/11

Mon 25704511
Mon 02/05/11
Mon 2570411
Mon 25/04/11
Tue 26/04/11
Tue 26/04/11

Mon 04704511
Mon 04/04/11

Fri 29/04/11
Mon 0Z,/05/11
Mon 0Z,/05/11

Tue 03/05/11
Wed 11/05/11
Mon 02/05/11
Tue 17/05/11
Wed 18/05/11
Tue 24/05/11
Wed 03/05/11
Mon 02705511
Fri 06/05/11

Finish -
Fri 29/04f11
Fri 15/04/11
Fri 23/04/11

Mon 02705511
Mon 0Z2/05/11
Mon 25/04/11
Mon 25/04/11
Tue 26/04/11
Tue 26/04/11

Tha 19/05/11
Thu 28/04/11

Fri 29/04/11
Mon 02,0511
Mon 02,0511

Tue 10/05/11
Thu 19/05/11
Mon 16/05/11
Tue 17/05/11
Mon 23705111
Tue 02/05/11
Fri 02/09/11
Fri 02709511
Fri 05708111

The Gantt chart below (in table 3-2) illustrates the start and finish dates of the
terminal elements and summary elements of a project. Terminal elements and

summary elements comprise the work breakdown structure of the project. This also

shows the dependency (i.e., precedence network) relationships between activities.

From this chart, we can see clearly the project structure and the overall time

assignment.

22

Hame

Thesis for Master’s Degree at HIT and UBP

Table 3-2 Work plan Gantt chart

hpr " 11 ay 11 Tun " 11 Tl " 11 Mg " 11 Eep "L

~ Familiarize FUSE and Linux programming APT

~ Make the analysis and preparation for the project %
pnalyze the current casterfs’ dizadwentagzez in a2 statistieal way :
Get the Grid certification for the FC 1 lfl]l]%
Set the configuration for data access for the local PC L Ifl]l]%
Get to dmow CEREN and the honor to be able to work here 1 ill]l]%
Discuss with Sacha about his work of castorfs 1 zll]l]%

Write a zimple file system by implement the FUSE interface

Te=t the nzagez of linmx api functionz especilly the functions

to manage the file system

“ Design and implement the caching of Castorfs

Get to kmow the different caching mechanisms and draw a S & 100%
comparison

w
Understanding the key problems to be solwed for the caching - 100%

>
Malkke a plan for the project 100%

>
Choose the mechanism which fits the system best and make a2 100%
design
Implement the caching 1%
Test the caching and write a report for the project = %

Get familiar with Hrootd L}

Inztall and test the Xrootd
fnalyse the problem and malke 2 design for the =ystem

Madify castorfs by inwveking the functions provided by Xrootd

Test the system and write the report

* Prepare presentation for every Tuesday

*Write a monthly report to summerize and look forward

27|03 1017 [24 |01 [08

15 [22 29 [05 [12 [19 |26 [03 [10 |17 [24 31 |07 14 |21 [28 [04 11

Y 0%

100%
80%

%10
" 100%

g 43

gns
2 0%

"okckoko%ok ok ok ok ok ok ok ok o5 ok okokoxn’ o3
oy " ox ' ox LN

3.2 The design of the wrapper

Since Xrootd is implemented in C++ and there are some sophisticated libraries
we can use in C++, before moving on to the caching part, we need to provide a
wrapper layer for the original CastorFS. The original CastorFS was implemented in
C.

The first requirement for mixing code is that the C and C++ compilers you are
using must be compatible. They must, for example, define basic types such as int,
float or pointer in the same way. The Solaris Operating System (Solaris OS)
specifies the Application Binary Interface (ABI) of C programs, which includes
information about basic types and how functions are called. Any useful compiler for
the Solaris OS must follow this ABI.

Sun C and C++ compilers follow the Solaris OS ABI and are compatible.
Third-party C compilers for the Solaris OS usually also follow the ABI. Any C

23

Thesis for Master’s Degree at HIT and UBP

compiler that is compatible with the Sun C compiler is also compatible with the Sun
C++ compiler.

The C runtime library used by our C compiler must also be compatible with the
C++ compiler. C++ includes the standard C runtime library as a subset, with a few
differences. If the C++ compiler provides its own versions of of the C headers, the
versions of those headers used by the C compiler must be compatible.

Sun C and C++ compilers use compatible headers, and use the same C runtime
library. They are fully compatible.

FUSE didn’t provide a C++ version, so we need to provide a wrapper for the
FUSE to hook the functions up with the real implementations in C++. If we declare
a C++ function to have C linkage, it can be called from a function compiled by the
C compiler. A function declared to have C linkage can use all the features of C++,
but its parameters and return type must be accessible from C if you want to call it
from C code. For example, if a function is declared to take a reference to an
IOstream class as a parameter, there is no (portable) way to explain the parameter
type to a C compiler. The C language does not have references or templates or
classes with C++ features.

For wrapping the old CastorFS, we still need to use the ogrial NS and Rfio
libraries. And they are written in C. So at the same time, we need to access the C
libraries in C++. The C++ language provides a "linkage specification” with which
you declare that a function or object follows the program linkage conventions for a
supported language. The default linkage for objects and functions is C++. All C++
compilers also support C linkage, for some compatible C compiler.

When you need to access a function compiled with C linkage (for example, a
function compiled by the C compiler), declare the function to have C linkage. Even
though most C++ compilers do not have different linkage for C and C++ data
objects, you should declare C data objects to have C linkage in C++ code. With the
exception of the pointer-to-function type, types do not have C or C++ linkage.

3.3 The design of the caching

There are many caching algorithms we can apply for the project.

There are (1) Belady's Algorithm: The most efficient caching algorithm would
be to always discard the information that will not be needed for the longest time in
the future. This optimal result is referred to as Belady's optimal algorithm or the

24

http://en.wikipedia.org/wiki/Laszlo_Belady
http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm

Thesis for Master’s Degree at HIT and UBP

clairvoyant algorithm. Since it is generally impossible to predict how far in the
future information will be needed, this is generally not implementable in practice.
The practical minimum can be calculated only after experimentation, and one can
compare the effectiveness of the actually chosen cache algorithm. (2) Least
Recently Used (LRU): discards the least recently used items first. This algorithm
requires keeping track of what was used when, which is expensive if one wants to
make sure the algorithm always discards the least recently used item. General
implementations of this technique require keeping "age bits" for cache-lines and
track the "Least Recently Used" cache-line based on age-bits. In such
implementation, every time a cache-line is used, the age of all other cache-lines
changes. LRU is actually a family of caching algorithms with members including:
2Q by Theodore Johnson and Dennis Shasha and LRU/K by Pat O'Neil, Betty
O'Neil and Gerhard Weikum. (3) Most Recently Used (MRU): discards, in contrast
to LRU, the most recently used items first. According to "When a file is being
repeatedly scanned in a [Looping Sequential] reference pattern, MRU is the best
replacement algorithm.” In the authors also point out that for random access
patterns and repeated scans over large datasets (sometimes known as cyclic access
patterns) MRU cache algorithms have more hits than LRU due to their tendency to
retain older data. MRU algorithms are most useful in situations where the older an
item is, the more likely it is to be accessed. (4) Pseudo-LRU (PLRU): For caches
with large associativity (generally >4 ways), the implementation cost of LRU
becomes prohibitive. If a scheme that almost always discards one of the least
recently used items is sufficient, the PLRU algorithm can be used which only needs
one bit per cache item to work.

After a careful studying of all those algorithms, we decided to adopt LRU
caching algorithm as our method for the implementation because we are more
interested in the recently accessed meta-data of a folder. Those meta-data would be
more likely to be accessed in a certain period of time.

The need for caching behaviour sometimes arises during system development.
Generally the desire is to preserve some expensive-to-obtain results so they can be
reused “for free” without repeating the expensive operation in future. Typically the
expense arises because a complex calculation is needed to obtain the result, or
because it must be obtained via a time consuming /O operation. If the total number
of such results dealt with over the lifetime of the system does not consume

25

http://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
http://en.wikipedia.org/wiki/Page_replacement_algorithm#Variants_on_LRU
http://www.vldb.org/conf/1994/P439.PDF
http://en.wikipedia.org/wiki/Pseudo-LRU
http://en.wikipedia.org/wiki/CPU_cache#Associativity

Thesis for Master’s Degree at HIT and UBP

excessive memory, it may suffice to store them in a simple key-value cache (for
example, a std::map), with the key being the input to the expensive function and the
value being the result. This is often referred to as “memoisation” of a function.

However, for most applications, this approach would quickly consume too
much memory to be of practical value. The memory consumption issue can be
addressed by limiting the maximum number of items stored in the cache or, if the
items have a variable size, limiting the aggregate total stored. Initially the cache is
empty and records (key-value pairs) can be stored in it freely. After some further
usage, it will fill up. Once full, the question arises of what to do with subsequent
additional records which it seems desirable to cache, but for which there is no space
(given the limited capacity constraint) without taking action to remove some other
records from the store. Assuming the records most recently added to the cache are
those most likely to be accessed again (ie assuming some temporal coherence in the
access sequence), a good general strategy is to make way for a new record by
deleting the record in the cache which was “least recently used”. This is called an
LRU replacement strategy.

We will use the C++ standard library and the typical C++ container, iterator as
well as algorithm to implement the LRU caching.

3.4 The design of the filesystem using Xrootd

The XrdPosix package allows standard POSIX 1/0 calls to either vector the 1/0
to local files or to xrootd served files. In order to use this package we must use the
provided POSIX/Xrootd wrapper. We can use the dynamic wrapper or the static
wrapper. The dynamic wrapper provides the fastest and easiest way of using xrootd
with our application as well as with most Unix commands. The static wrapper
provides us with precise control over its deployment and consequently is safer and
much faster.

In the file of XrootdPosixXrootd.hh, we can find those POSIX functions which
can be directly used in our implementation of new CastorFS:

26

13
0w

{ T O s s VI T T s T (O s SO o S ¢ Y o O o O T Y o B I Y |

1 1 1 1
s L Ry

I

[¥ O PV % I)

[T e} 1 &y tn

[¥ O PV N T R

I

[T I]

& L

Thesis for Master’s Degree at HIT and UBP

public:

POSTX methods

static int Close(int fildes, int Stream=0) ;

static intc Closedir (DIR *dirp):

static int Festat (int fildes, struct stat *buf);
static int Fzync(int fildes);

statiec int Ftruncate (int fildes, off t offset):

static long long Getxattr (const char ¥path, const char ¥name,
wvolid *value, unsigned long long size) !
static off t© Lgeek(int filde=, off t offser, int whence):

static int Mkdir (const char *path, mode t mode):;

static const int isStream = ; // Internal for Cpen oflag

statiec int Cpen({const char *path, int oflag, mode_t mode=0,
XrdPosixCallBack #*chkP=1):

static DIR* Cpendir (const char “%path):;

static ssize t Pread(int fildes, wvoid *buf, size t nbyte, off t offsert);
static ssize_t BRead(int fildes, wvoid #*buf, size_t nbyte):

static ssize_t Readv(int fildes, const struct ilovec *iov, int iovcnt) !
static struct dirent+® Eeaddir (DIR *dirp) s

static =struct direntéd* Readdired (DIR *dirp):

static int Eeaddir r (DIER *dirp, struct dirent *entry, struct dirent *dresult);
static int Readdir&4 r(DIR #*dirp, struct direnté&4 #*entry, struct direnté¢ **result);
statiec int Bename (const char *oldpath, const char *newpath) r

static woid Rewinddir (DIR *dirp):

static int Emdir (const char *path):

static woid Seekdir(DIR #*dirp, long loc) !

static int Stat{const char #%path, struct stat *buf):

static int Statfs (const char *path, struct statfs *buf);

static int Statvis(const char *path, =struct statvifs *buf);

static ssize_t Pwrite(int fildes, const void *buf, size t nbyte, off_t offset):

static long Telldir (DIR *dirp)
static int Truncate (const char #*path, off t offset);
statiec int Unlink(const char *path):

static ssize_t Write(int fildes, const wvold *buf, size_t nbyte):;
static sgsize t Write(int fildes, wvoid *buf, size t nbyte, off t offset):

static ssize t Writev(int fildes, const struct iovec *iov, int iovent):
Figure 3-2 Xrootd POSIX interface
We can use all the functions provided above for the implementation. Mainly
we will use the related funcitons in Xrootd to implement the APIs in FUSE in order
to make the function call passed smoothly through the file sytem.

3.5 Key techniques

3.5.1 The application of FUSE

In our implementation, FUSE plays a critical role. It provides a way for
combining the Linux system calls with the functions handlers which are
implemented by us to do the job as a filesytem.

27

Thesis for Master’s Degree at HIT and UBP

Is -l ftrmp/fuse | | I[J libfuse)

) P :
' (glibc J :[glibc '
Userspace L———----——-— N IS S S N —
Kernel FUSE
MNFS
VES
Ext3

Figure 3-3 FUSE function call

FUSE is particularly useful for writing virtual file systems. Unlike traditional
file systems that essentially save data to and retrieve data from disk, virtual
filesystems do not actually store data themselves. They act as a view or translation
of an existing file system or storage device.

In principle, any resource available to a FUSE implementation can be exported
as a file system. A FUSE filesystem is a program that listens on a socket for file
operations to perform, and performs them. The FUSE library (libfuse) provides the
communication with the socket, and passes the requests on to our code. It
accomplishes this by using a "callback” mechanism. The callbacks are a set of
functions you write to implement the file operations, and a struct fuse_operations
containing pointers to them. In the case of CastorFS, the callback struct is named
castorfs_oper. There are a total of 34 file operations defined in castorfsfs.c with
pointers in castorfs_oper. The initialization uses a syntax that not everyone is
familiar with; looking at a part of the initialization of the struct we see

struct fuse_operations castorfs_oper = {

.getattr = castorfs_getattr,
.readlink = castorfs_readlink,
.open = castorfs_open,

28

http://en.wikipedia.org/wiki/Virtual_file_system

Thesis for Master’s Degree at HIT and UBP

.read = castorfs_read

j

(This isn’t the complete struct — just for explains how FUSE works) This
indicates that castorfs_oper.getattr points to castorfs_getattr(),
castorfs_oper.readlink points to castorfs_readlink(),castorfs_oper.open points to
castorfs_open(), and castorfs_oper.read points to castorfs_read(). Each of these
functions is my re-implementation of the corresponding filesystem function: when a
user program calls read(), my castorfs_read() function ends up getting called. In
general, what all of my reimplementations do is to log some information about the
call, and then call the original system implementation of the operation on the
underlyng filesystem.

When the function is called, it is passed two parameters: a file path (which is
relative to the root of the mounted file system), and a pointer to a
struct fuse_file_info which is used to maintain information about the file.

castorfs_open() starts by translating the relative path it was given to a full path
in the underlying filesystem using my castorfs_fullpath() function. It then logs the
full path, and the address of the fi pointer. It passes the call on down to the
underlying fileystem, and sees if it was successful. If it was, it stores away the file
descriptor returned by open() (so I'll be able to use it later), and returns 0. If it failed,
it returns -errno. About the return value:

0 should be returned on success. This is the normal behavior for most of the
calls in the libraries; exceptions are documented.

A negative return value denotes failure. If I return a value of -i, a -1 will be
returned to the caller and errno is set to i. My castorfs_error() function looks up
errno as set by the system open() call, logs the error, and returns -errno to this
function so | can pass it to the user.

Notice that FUSE performs some translations. The open() system call is
documented as returning a file descriptor (behavior I'm depending on), not 0 — so
when my return is passed to the original caller, FUSE recognizes that I sent a 0 and
returns an appropriate file descriptor (not necessarily the same one | got from my
call to open()!). Meanwhile, I've got the underlying file open, and I've got its file
descriptor in fi. Future calls to my code will include this pointer, so I'll be able to
get the file descriptor and work with it. So... the user program has an open file in the
mounted filesystem, and a file descriptor that it is keeping track of. Whenever that

29

Thesis for Master’s Degree at HIT and UBP

program tries to do anything with that file descriptor, the operation is intercepted by
the kernel and sent to the castorfsfs program. Within my program, | also have a file
open in the underlying directory, and a file descriptor. When the operation is sent to
my program, I'll log it and then perform the same operation on my file.

To make this concrete, let's take a look at castorfs_read():

int castorfs_read(const char *path, char *buf, size_t size, off t offset, struct
fuse_file_info *fi)

{

int retstat = O;

log_msg("castorfs_read(path=\"%s\", buf=0x%08x, size=%d, offset=%lId,
fi=0x%08x)\n",

path, (int) buf, size, offset, (int) fi);

retstat = pread(fi->fh, buf, size, offset);

if (retstat < 0)

retstat = castorfs_error("castorfs_read read");

return retstat;

}

This function allows us to read data from some specified offset from the
beginning of a file (so it corresponds more directly to the pread() function than to
read()).

The main thing to point out about this function is that I use my file descriptor,
which I put in fi when | opened the file, to read it. Also, if I get a non-error return
from pread(), | pass this value up to the caller. In this case FUSE doesn't perform
any translations, it just returns the value | gave it. To return an error, | use the same
technique as in castorfs_open().FUSE provides a mechanism to place entries in a
directory structure. The directory structure itself is opaque, so the basic mechanism
is to create the data and call a FUSE-supplied function to put it in the structure.

When our readdir() callback is invoked, one of the parameters is a function
called filler(). The purpose of this function is to insert directory entries into the
directory structure, which is also passed to our callback as buf.

filler()'s prototype looks like this:

int fuse_fill_dir_t(void *buf, const char *name,

const struct stat *stbuf, off t off);

30

Thesis for Master’s Degree at HIT and UBP

You insert an entry into buf (the same buffer that is passed to readdir()) by
calling filler() with the filename and optionally a pointer to a struct stat containing
the file type.

castorfs_readdir() uses filler() in as simple a way as possible to just copy the
underlying directory's filenames into the mounted directory. Notice that the offset
passed to castorfs_readdir() is ignored, and an offset of O is passed to filler(). This
tells filler() to manage the offsets into the directory structure for itself. Here's the
code:

int castorfs_readdir(const char *path, void *buf, fuse fill dir_t filler, off t
offset, struct fuse_file_info *fi)

{

int retstat = O;
DIR *dp;
struct dirent *de;

log_msg("castorfs_readdir(path=\"%s\", buf=0x%08x, filler=0x%08x,
offset=%IId, fi=0x%08x)\n",
path, (int) buf, (int) filler, offset, (int) fi);

dp = (DIR *) (uintptr_t) fi->fh;
de = readdir(dp);
if (de ==0)
return -errno;
do {
log_msg("calling filler with name %s\n", de->d_name);
if (filler(buf, de->d_name, NULL, 0) 1=0)
return -ENOMEM:;
} while ((de = readdir(dp)) = NULL);
log_fi(fi);
return retstat;
}
By default, FUSE runs multi-threaded: this means (in brief) that a second
request can be handled by the filesystem before an earlier request has completed;

31

Thesis for Master’s Degree at HIT and UBP

this in turn raises the possibility that different threads can be simultaneously
modifying a single data structure, which will cause very difficult-to-debug bugs.

There are a couple of things that can be done about the problem:

If the filesystem is executed with the -s option, it is run single-threaded. this
eliminates the problem, at a cost in performance -- frankly, given the nature and
intent of many fuse filesystems, it seems to me like the default should be
single-threaded and multi-threaded should require an option. But I didn't write it, so
it's not my call.

We can analyse our code for critical sections, and insert the normal
syncronization primitives (such as semaphores) to ensure no dangerous races occur.
Of course, there are several places where FUSE translates a single call into a
sequence of calls to our functions; | haven't investigated whether FUSE takes any
steps to ensure the atomicity of these calls. If it doesn't (and | suspect that's the case;
trying to do so in any meaningful way in the absence of knowledge of the data we're
exposing through our filesystem seems somewhere between difficult and impossible
to me), then trying to do it seems really, really hard.

Note that even if we do make our filesystem single-threaded, that doesn't guard
against access to the underlying data structures through some other means. Taking
BBFS as an example:

We can have a single underlying directory mounted through two different
mountpoints by using two invocations of bbfs.

A directory that has a BBFS filesystem mounted on top of it is still accessible
to normal filesystem operations.

Either of these facts is sufficient to completely negate any efforts made in our
filesystem to guard atomicity.

We should note that the FUSE code itself is careful about locking its own code
and data structures. So far as we know, dangerous race conditions won't occur
outside of our code.

3.5.2 The application of Xrootd

Xrootd serves a number of local directories to the network in a unified
namespace. Files under Xrootd are accessed via a URL like:
root://SERVERNAME//PATH/TO/FILE.root. There is a library that will
allow the standard POSIX to "see" xrootd space. You can use it from the command

32

Thesis for Master’s Degree at HIT and UBP

line by setting two variables:
LD PRELOAD=$ROOTSYS/1lib/libXrdPosixPreload.so

XROOTD VMP=daya0001:/xrootd/. All the functions in the Xrootd library
could be called directly in our program.

3.5.3 The application of C++ standard library

The Standard Template Library, or STL, is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data
structures of computer science. The STL is a generic library, meaning that its
components are heavily parameterized: almost every component in the STL is a
template.

Like many class libraries, the STL includes container classes: classes whose
purpose is to contain other objects. The STL includes the classes vector, list, deque,
set, multiset, map, multimap, hash_set, hash_multiset, hash_map, and
hash_multimap. Each of these classes is a template, and can be instantiated to
contain any type of object.

Iterators are the mechanism that makes it possible to decouple algorithms from
containers: algorithms are templates, and are parameterized by the type of iterator,
so they are not restricted to a single type of container. Concepts are not a part of the
C++ language; there is no way to declare a concept in a program, or to declare that a
particular type is a model of a concept. Nevertheless, concepts are an extremely
important part of the STL. Using concepts makes it possible to write programs that
cleanly separate interface from implementation: the author of find only has to
consider the interface specified by the concept Input Iterator, rather than the
implementation of every possible type that conforms to that concept. Similarly, if
we want to use find, we need only to ensure that the arguments you pass to it are
models of Input Iterator. This is the reason why find and reverse can be used with
lists, vectors, C arrays, and many other types: programming in terms of concepts,
rather than in terms of specific types, makes it possible to reuse software
components and to combine components together.

33

http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Deque.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/multiset.html
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Multimap.html
http://www.sgi.com/tech/stl/hash_set.html
http://www.sgi.com/tech/stl/hash_multiset.html
http://www.sgi.com/tech/stl/hash_map.html
http://www.sgi.com/tech/stl/hash_multimap.html

Thesis for Master’s Degree at HIT and UBP
3.5.3 The application of LRU algorithm for caching

STL users needing an LRU-replacement cache generally gravitate towards
std::map, because of its good support for keyed value accesses (O(log n) access
complexity). The problem then is how to implement the eviction strategy.

The most obvious naive solution is to use a

std::map<K,std::pair<timestamp_type,V> >

The timestamp_t holds a scalar quantity, the ordering of which indicates when
the value was last accessed relative to other values; typically some sort of
incrementing serial number is used rather than an actual clock-derived time, to
ensure a one-to-one mapping from timestamps to records. Keys then give O(log n)
access to values and timestamps, and timestamps can be updated without the need to
adjust the map’s tree-structure (as this depends entirely on the key values).
However, to determine the minimum timestamp in order to evict a record, it is
necessary to perform a O(n) search over all the records to determine the oldest one.

As a solution to eviction being expensive, it might be tempting to implement
the cache as a std::list<std::pair<K,v> >

Moving any item accessed to the tail of the list (a cheap operation for lists),
ensures the least-recently-used item can trivially be obtained (for erasure) at the list
head by begin(). However, it is now necessary to resort to a O(n) search simply to
look up a key in the cache.

While either naive solution can be got to work (and may well be a simple
pragmatic solution to caching a few tens of items) certainly neither can be
considered scalable due to the O(n) behaviour associated with either identifying
eviction targets or accessing values by key.

It is possible to implement an LRU-replacement cache with O(log n) eviction
and access using a pair of STL maps:

typedef std::map<timestamp_type,K> timestamp_to_key type;

typedef std::map<

K,
std::pair<V,timestamp_type>

> key_to_value_type;

On accessing key to_value by a key, we obtain access to both the value
required and the timestamp, which can be updated in both the accessed record and,

34

Thesis for Master’s Degree at HIT and UBP

by lookup, timestamp_to_key. When an eviction is required, the lowest timestamp
in timestamp_to_key provides the key to the record which must be erased.

Pedants will observe that further slight improvement would also have the
timestamp_to key type map’s value be an iterator into the key to value type but
this introduces a circular type definition. It might be tempting to try to break the
dependency by using void in place of the iterator, but iterators cannot portably be
cast to pointers. In any case, the first iterator optimization mentioned benefits the
updating of timestamps needed during cache hits whereas this second iterator
optimization benefits the eviction associated with cache misses. Since in a well
functioning cached system cache hits should be far more common than misses, this
second optimisation is likely of much less value than the first. Another
consideration is that whatever expensive operation is required to generate a new
result following a cache miss is likely to be hugely more expensive than any O(logn)
access to the cache. Therefore this second optimisation is not considered further.

In fact there is one final powerful optimisation possible. The only operations
actually done on timestamp_to_key are to access its head (lowest timestamp, least
recently used) element, or to move elements to the (most recently used) tail.
Therefore it can be replaced by a std::list; this also eliminates the need for any
actual instances of timestamp_type (and therefore any concerns about the timestamp
possibly overflowing). A list-and-map implementation is almost twice as fast as a
version (not shown) using a pair of maps. See Listing 1 for a complete example
using typedef std::list<K> key_tracker_type;

typedef std::map<
K,
std::pair<V,key_tracker_type::iterator>
> key_to_value_type;

3.5.3 The mechanism of authentication in CERN and Xrootd

CERN Authentication main goal is to provide a Single Sign On (SSO) solution
for CERN Web Applications.

The current CERN Authentication SSO solution allows people to authenticate
on a Web Site, i.e. EDH, and then re-use the same authentication to use another
Web application, i.e. WinServices, without entering again the credentials. The main
goal is to make things easier for the user. For years, every CERN application

35

Thesis for Master’s Degree at HIT and UBP

handled its own user database, because no real central solution was provided for
authentication mecanisms. This lowered dramatically the user experience when
accessing to CERN applications, as different credential pairs had to be remembered:
one login on AFS, another on Mail, a third one in AIS, and different passwords
everywhere.

The usual workaround was to write the credentials on a small yellow paper and
stick it on the screen, or under the keyboard for more security.

With the CERN Authentication solution, users have only one login and
password pair to remember. If any security problem occurs on the account, a simple
click can disable it, blocking instantly all CERN Applications access.

For the xrootd, it provides flexible security architecture which includes
multiple protocols which garantie the easily expandable features and simultaneous
heterogeneous protocols which allows multiple administrative domains to be given.

p2p heart, applhication

BT) e LV TA Bl | e g T PGt A ’ y A, ST
Filzsysiem Logicul Lyyer S, -nllnorization

Filesystem Physical Layer OSS |/ (included in

Filesystem Implementation i< nsSss

distribution)

Figure 3-4 Xrootd server architecture

The authentication and authorization are developed as runtime plug-in
componets, so they could be easily substituted and trivial to extend. At the same
time, client/server architecture plugin will make the other application layer
architecture portable.

36

Thesis for Master’s Degree at HIT and UBP

login

Client-Specific Security Configuration

authenticate

Multiple handshakes allowed
during authentication phase
(required by some PKI protocols)

Self
Configuration

e Dynamically selected by client e
Server specifies availability 8
Libraries managed by hibXrdSec.so S i

Figure 3-5 Xrootd security architecture

Protocol
Selection

The xrootd-implementation in dCache includes a pluggable authentication
framework. To control which authentication mechanism is used by xrootd, add the
xrootdAuthNPlugin option to our dCache configuration and set it to the desired
value.

The previously explained methods to restrict access via xrootd can also be used
together. The precedence applied in that case is as following: The permission check
executed by the authorization plugin (if one is installed) is given the lowest priority,
because it can controlled by a remote party. E.g. in the case of token based
authorization, access control is determined by the file catalogue (global namespace).
The same argument holds for many strong authentication mechanisms - for example,
both the GSI protocol as well as the Kerberos protocols require trust in remote
authorities. However, this only affects user authentication, while authorization
decisions can be adjusted by local site administrators by adapting the gPlazma
configuration. To allow local site’s administrators to override remote security
settings, write access can be further restricted to few directories (based on the local
namespace, the pnfs). Setting xrootd access to read-only has the highest priority,
overriding all other settings.

37

Thesis for Master’s Degree at HIT and UBP

3.5.5 The application of CMake and RPMBuild tools

The principal benefit of open source software is, as its name implies, access to
the inner workings of an application. Given the source, we can study how an
application works; change, improve, and extend its operation; borrow and repurpose
code (per the limits of the application's license); and port the application to novel
and emergent platforms.

However, such liberal access is not always wanted. For instance, a user may
not want the onus of building from source code. Instead, he or she may simply want
to install the software much like a traditional "shrink-wrapped™ application: insert
media, run setup, answer a few prompts, and go. Indeed, for most computer users,
such pre-built software is preferred. Pre-built code is less sensitive to system
vagaries and thus more uniform and predictable.

In general, a pre-built, open source application is called a package and bundles
all the binary, data, and configuration files required to run the application. A
package also includes all the steps required to deploy the application on a system,
typically in the form of a script. The script might generate data, start and stop
system services, or manipulate files and directories. A script might also perform
operations to upgrade existing software to a new version.

Because each operating system has its idiosyncrasies, a package is typically
tailored to a specific system. Moreover, each operating system provides its own
package manager, a special utility to add and remove packages from the system. For
example, Debian Linux-based systems use the Advanced Package Tool (APT),
while Fedora Linux systems use the RPM Package Manager. The package manager
precludes partial and faulty installations and "uninstalls” by adding and removing
the files in a package atomically. The package manager also maintains a manifest of
all packages installed on the system and can validate the existence of prerequisites
and co-requisites beforehand.

If you're a software developer or a systems administrator, providing your
application as a package makes installations, upgrades, and maintenance much
easier. Here, you learn how to use the popular RPM Package Manager to bundle a
utility. For purposes of demonstration, you'll bundle the networking utility wget,
which downloads files from the Internet. The wget utility is useful but isn't
commonly found standard in distributions. (An analog, curl, is often included in

38

Thesis for Master’s Degree at HIT and UBP

distributions.) Be aware that you can use RPM to distribute most anything—scripts,
documentation, and data—and perform nearly any maintenance task.

CMake is used to control the software compilation process using simple
platform and compiler independent configuration files. CMake generates native
makefiles and workspaces that can be used in the compiler environment of your
choice. CMake is quite sophisticated: it is possible to support complex
environments requiring system configuration, pre-processor generation, code
generation, and template instantiation. CMake is controlled by writing instructions
in CMakelLists.txt files. Each directory in your project should have a
CMakelLists.txt file. What is nice about CMake is that CMakeLists.txt files in a
sub-directory inherit properties set in the parent directory, reducing the amount of
code duplication. For our sample project, we only have one subdirectory: wO1-cpp.
The CMakeLists.txt file for the top-level cmake directory is pretty simple but
demonstrates a few key features.

3.6 Brief summary

In this part, we introduced the system design which includes the overall design
of the system, the design of the wrapper, the design of the caching and the design
for the new CastorFS which will use xrootd protocol for the implementation. The
key technologies are introduced in detail. The actual implementation will be given
in the next chapter.

39

Thesis for Master’s Degree at HIT and UBP

Chapter 4 System Implementation and Testing

Following the phase of the requirement analysis and general design, the
technical solution has been set up, according to the design of system, we can
perform the work of implementation.

4.1 The environment of system implementation

4.1.1 Hardware environment

Since we develop the system firstly on the personal computer, and then migrate
the system to the Ixplus and the compluting cluser in LHCb, we will see the
hardware environment respectively.

(1) PC Hardware configuration:

There are 2 processors in the PC and each one has an Intel(R) Pentium(R) 4
CPU 2.80GHz processor with 512KB cache.

(2) LHCb computing cluster

There are 8 processors in the PC and each one has an Intel(R) Xeon(R) CPU
E5410 @ 2.33GHz. Each processor has 6144 KB cache. Each plus node will use 8G
memory.

Figure 4-1 LHCb plus cluster

40

Thesis for Master’s Degree at HIT and UBP

4.1.2 Software environment

The system will be implemented based on the SLC6 (Linux
localhost.localdomain 2.6.32-71.29.1.el6.i686 #1 SMP Tue May 10 17:35:05 CDT
2011 686 686 11386 GNU/Linux). Linux version 2.6.32-71.29.1.el16.i686
(mockbuild@sl6.fnal.gov) with the gcc version 4.4.4 20100726 (Red Hat 4.4.4-13)
(GCC)) #1 SMP Tue May 10 17:35:05 CDT 2011.

Scientific Linux CERN 6 will be a Linux distribution build within the
framework of Scientific Linux which in turn is rebuilt from the freely available Red
Hat Enterprise Linux 6 (Server) product sources under terms and conditions of the
Red Hat EULA. Scientific Linux CERN is built to integrate into the CERN
computing environment but it is not a site-specific product: all CERN site
customizations are optional and can be deactivated for external users.

There are some packages which should be installed first, the FUSE pakages:

(1) fuse-libs-2.8.3-1.e16.i686

(2) gvfs-fuse-1.4.3-9.e16.i686

(3) fuse-devel-2.8.3-1.e16.i686

The Xrootd Packages:

(1) xrootd-server-devel-3.0.4-1.el6.i686

(2) xrootd-libs-3.0.4-1.el6.i686

(3) xrootd-doc-3.0.3-2.el6.noarch

(4) xrootd-server-3.0.4-1.e16.1686

(5) xrootd-libs-devel-3.0.4-1.e16.i1686

(6) xrootd-client-3.0.4-1.el6.i686

(7) xrootd-client-devel-3.0.4-1.e16.i686

The other related software packages should also be installed on the machine.

The CERN SVN will be used to manage the code version. Subversion is a
version control system that is widely used by many Open Source projects such as
Apache and GCC. Subversion started as a project to implement features missing in
CVS. Some of these features are: (1) Subversion tracks structure of folders. CVS
doesn't have the concept of folders. (2) Subversion has a global revision number for
the whole repository. CVS tracks each file individually. A commit that represents
one logical change to the project code may change a group of files; in Subversion,
this commit will have one revision number instead of separate revision numbers for
every changed file in CVS. (3) Subversion commits are atomic. (4) Subversion

41

http://www.scientificlinux.org/
https://www.redhat.com/software/rhel/
https://www.redhat.com/software/rhel/
http://subversion.tigris.org/

Thesis for Master’s Degree at HIT and UBP

retains the revision history of moved or copied files. (5) Subversion commands are
very similar to CVS. It's very easy to switch for CVS users. Most of the time, it's a
matter of replacing cvs with svn.

The Central SVN Service is accessible only for CERN registered computer
users. After each modification of the code, it will be stored and shared in the
system.

4.1.3 The implementation of wrapper

We have two file to perform the wraping. The wrap.hh declares all the
functions which will be used to hook up with the FUSE APIs to perform the real
operations in the filesystem. In wrap.cc, the functions in C++ will be invoked to
implement the C functions. We will be able to compile it respectively using gcc and
g++. After we get the related .o object files, we are able to link them together to
make a virtual filesystem work.

We can see the code as follow.

#include "wrap.hh"

#include "castorfs.hh"

int init_castorfs(int argc, char* argv[]){

return initCastorFS(argc, argv);

}

void set_cfuseoper(struct fuse_operations* oper_pointer){

setCfuseoper(oper_pointer);

}

int wrap_getattr(const char *path, struct stat *statbuf) {

return CastorFS::Instance()->Get_attr(path, statbuf);
}
int wrap_mkdir(const char *path, mode_t mode) {
return CastorFS::Instance()->Mkdir(path, mode);
}
int wrap_rmdir(const char *path) {
return CastorFS::Instance()->Rmdir(path);

}

int wrap_mknod(const char* path, mode_t mode, dev_t rdev){

return CastorFS::Instance()->Mknod(path, mode, rdev);

42

Thesis for Master’s Degree at HIT and UBP

}

int wrap_unlink(const char* path){
return CastorFS::Instance()->Unlink(path);
}
int wrap_chown(const char *path, uid_t uid, gid_t gid) {
return CastorFS::Instance()->Chown(path, uid, gid);
}
int wrap_truncate(const char *path, off_t newSize) {
return CastorFS::Instance()->Truncate(path, newSize);
}
int wrap_utimens(const char *path, const struct timespec ts[2]) {
return CastorFS::Instance()->Utimens(path, ts);
}
int wrap_open(const char *path, struct fuse_file_info *fileInfo) {
return CastorFS::Instance()->Open(path, fileInfo);
}
int wrap_read(const char *path, char *buf, size_t size, off_t offset, struct
fuse_file_info *filelnfo) {
return CastorFS::Instance()->Read(path, buf, size, offset, filelnfo);
}
int wrap_write(const char *path, const char *buf, size_t size, off_t offset, struct
fuse_file_info *filelnfo) {
return CastorFS::Instance()->Write(path, buf, size, offset, fileInfo);
}
int wrap_release(const char *path, struct fuse_file_info *filelnfo) {
return CastorFS::Instance()->Release(path, fileInfo);

¥

int wrap_getxattr(const char *path, const char *name, char *value, size_t size)

{

return CastorFS::Instance()->Getxattr(path, name, value, size);

¥

int wrap_removexattr(const char *path, const char *name) {
return CastorFS::Instance()->Removexattr(path, name);

43

Thesis for Master’s Degree at HIT and UBP

int wrap_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset,
struct fuse_file_info *fileInfo) {
return CastorFS::Instance()->Readdir(path, buf, filler, offset,
fileInfo);

}

4.1.4 The implementation of caching

We use C++ standard library to implement caching. We use a template -
template <typename Key, typename Value> class to provide an implementation for
providing the application for a series of the application of the least recently used
caching mechanism.

In our design and implementation, we will record the already retrieved
meta-data for each entry of the files in Castor. The key will be the fullpath of one
file and the value will be the related meta-data, normally a structure (struct stat).
The reason we do that is based on the fact that the load on the server side could be
very high and we can ease the burden on the server side by storing the most
probablly retrieved data in the cache to provide a local storage of the data.

Here we will see the basic data structure which is used in the class and then we
will see the logic inside the implementation.

(1) typedef std::map<

K,
std::pair<std::pair<V,typename key tracker_type::iterator>,int>
> key_to_value_type;

First, we define this map container to hold all the key and value pairs. From
each key, we can find the related pair which is composed anthother pair. The int
type of value will be used to record the system time at when the pair is stored in the
cache. Then we will be able to set a time limitation for distinguishing the expired
data. The std::pair<V,typename key_tracker_type::iterator> is used to build a
relationship between the value and iterator in order we can trace back from the list
which will be introduced as follow to the map container.

(2) typedef std::list<K> key tracker_type: This is a list which will be used to
track the key. Each time, when we use retrieved data in the cache. We will ajust the
sequence of this list to be able to put the least recently used data in the end of the

44

Thesis for Master’s Degree at HIT and UBP

list. Therefore, when the number of the caching reaches to its limitation, we can
evict the head of the list to get extra space for storing the new data.

(3) int (* _fn)(const char*, V*): This is defined as a function which will be
used to retrieve the related data if we can’t find them in the cache.

(4) time_t timer: this will be used to define the expiring time for the cache.
Since we will not be able to predict the time of modifications of the files in a system,
we need to set a expiring time for the cached data.

(5) const size_t _capacity: this will be used to indicate the number of
information entries we can store in the cache. Since the meta-data will be cached in
the system, the capacity of all the data will not be very large, so we should take full
advantage of that. In other words, we can set the _capacity a big one.

(6) key_tracker_type key tracker; this is a list to track a sequence of the key
data in the map. It will be changed dynamicly according to the accessing history of
the map container.

(7) key to_value type _key to value; this is a map container. All the
information will be hold by that. We will perform many operation based on that.

The implementation flow chart is shown in figure 4-2.

45

Thesis for Master’s Degree at HIT and UBP

Find the value in tha
map

map container?

h 4

Get the value by invaking Get the timestamp for
Cris_lstat(), riio_stat()

the wvalue

he value in the

fos

.)

key related positian is

Evict ane element in the
map container whaose

the front side of the list

Find and delete the
related emement of
key in the list

Put the element
related with the key in
the end of the list

in

v

|

!

the end of the list

Insert the ralated key in |

Delete the tuple in the

map cantainer

Return the value

h

’

in the map container

Insert the value (tuple)

Insert the related key in

the end of the list

v

1

Return the value

Insert the value (tuple]
i

n the map container

v

Return the value

End

Figure 4-2 Cache

mechanism

For the caching, when we want to retrieve the meta-data in the cache, first we
will search the map to find the data.

const typename key_to_value_type::iterator it =_key to_value.find(k)

46

Thesis for Master’s Degree at HIT and UBP

We will use the “find” method provided in the algorithm.h to perform this
operation. If we can’t find the value which we want, we will invoke the related
function to get the data and store them in the form of key, value, time which
indicate the time point at when they are retrieved. At the same time, the retrived
value will be returned to the function which actually handles the system call. If we
can find the key and the related value in the cache, it will be returned to the function
which called for the information of that entry. At that moment, the key of that entry
in the key list will be moved to the end of the list. With the growing of the number
of the data in the cache, we will meet the limitation of the cache. In that situation, if
we retrieve the information of a new entry and we want to store the related
meta-data in the map, we need to evict the least used element whose position is
indicated in the head of the key list. By doing that, we implemented the caching.

4.1.5 The implementation of new CastorFS with Xrootd

(1) The initialization of FUSE

The fuse library provides support for analysing parameters passed from the
command line. It is desirable to use this since fuse_main itself needs command line
parameters and it is best that the user get a consistent interface.

The basic idea seems to be that the file system calls a fuse library routine to
parse the parameters, classify them and (depending on classification) call back to
the file system to let it action those parameters which it is interested in. It also
assembles a modified list of parameters to be passed into the fuse_main interface.
The parameter list is expected to have the following form:

[-ooption[,option]*] [-flag]* [-key[]|=value]* [filesysargument]* mountpoint
-- anything

flag and key can be any string other than o or - followed by space. Options,
flags and keys may be in any order preceding the fixed parameters.

Initiating parameter processing: int fuse_opt_parse(struct fuse_args *args, void
*data, const struct fuse_opt opts[], fuse_opt_proc_t proc) should be called to initiate
the process of parameter analysis. “args” is a structure that initially should contain
the input args and argument count (there is a macro for defining this (Q.V.)). On
return it contains the output args list to be passed to fuse_main. “data” is a pointer
to any object the file system requires it to be (it may be NULL) it is passed into the
call back procedure but it can also be used as a pointer to an area to receive values

47

Thesis for Master’s Degree at HIT and UBP

from certain types of argument. “opts” is a row of templates describing the options
available (again there are macros to assist in defining this (Q.V.)). “proc” is a call
back procedure called by fuse_opt_parse as it processes the parameters. Parameter
analysis callback procedure

typedef int (*fuse_opt_proc_t)(void *data, const char *arg, int key,struct
fuse_args *outargs);

For certain options (determined by values in the opts array) the call back
procedure is called with:

* data (the pointer passed into fuse_opt_parse).

* arg the argument or option in question. (Some processing is done so that -x
yz becomes -xyz note -oxyz is a special case and becomes xyz).

* key the value used in declaring the option or FUSE_OPT_KEY_NONOPT
(for items not in the form of an option) or FUSE_OPT_KEY_OPT (for options
items not matching any option).

* The output argument list is the current output arguments.

The call back routine should reply -1 on error, 0 to discard the argument
(presumably having processed it in some way), 1 to retain it so that it will be passed
to fuse_main. The call back procedure can also add arguments to the argument
array.

int fuse_opt_add_arg(struct fuse_args *args, const char *arg) - can be called by
the option call back procedure to add an argument to the output arguments for
fuse_main. The add_arg procedure takes the outargs parameter passed into the call
back procedure and a string containing the new argument. An instance of the use of
this is shown in the passfs example where the -m flag forces foreground processing
by appending -f to the argument list.

Adding an extra option to the output option list - int fuse_opt_add_opt(char
**opts, const char *opt); this is meant to be called by the option call back procedure
to add an option to the comma separated list of output options for fuse_main but the
semantics are unclear as it is not clear where the **opts parameter would ‘come
from'. The procedure can take a null opts parameter and a string containing the new
option. <to do: further research>. Initialising the fuse args structure - a macro
procedure is provided to initialise the structure: FUSE_ARGS_INIT(argc, argv)
where argc and argv are the corresponding values from the main() procedure of the
file system as in:

48

Thesis for Master’s Degree at HIT and UBP

int main(int argc, char *argv[]) {
struct fuse_args args = FUSE_ARGS_INIT(argc, argv);

¥

Setting up the fuse_opts array - the fuse opts array is used to define a template
and a key for each parameter. The key is used to identify the parameter in calls to
the parameter analysis call back. Two macro procedures are provided to assist in
setting up the array: FUSE_OPT_KEY (templ, key) and FUSE_OPT_END as in

static struct fuse_opt passfs_opts[] = {

FUSE_OPT_KEY("--help", KEY_HELP),

FUSE_OPT_KEY("--version", KEY_VERSION),

FUSE_OPT_KEY("-h", KEY_HELP),

FUSE_OPT_KEY("-V", KEY_VERSION),

FUSE_OPT_KEY (("stats", KEY_STATYS),

FUSE_OPT_KEY("-log=",KEY_LOGFILE),

FUSE_OPT_KEY("-root ",KEY_ROOT),

FUSE_OPT_END

j

The key parameter needs to be a positive integer that uniquely identifies the
particular option (typical generated as part of an enum). Thus in the example above
--version and -V are synonyms.

Form of the template parameter in the fuse_opt structure

This is quite complex and it shoul be noted that the fuse_opt.h file documents
other forms than can be created with the FUSE_OPT_KEY macro. Ignoring these
features the possible forms are:

1. "-string™ (where string can be anything provided it doesn't start with o or
consist of only - or contain =). This is a flag type parameter with no value.

2. "string” (where string can be anything provided it doesn't start with - or
contain =). This will match one of a list of options after -o.

3. "-string=" as 1 except that a value is expected to follow the =.

4. "string=" as 2 except that a value is expected to follow the =.

5. "-string " as 1 except that a parameter is expected after the string. Note that
this matches both -stringvalue and -string value (the intervening space is ignored).

49

Thesis for Master’s Degree at HIT and UBP

The additional features provide for formatted templates with either %s or%lu
appearing after the = or space. In this case the value (a pointer to a string or an
unsigned integer) is stored at an offset relative to the data parameter passed into
fuse_opt_parse. The offset value is held in the matching fuse_opt structure of the
fuse_opt array. The call back procedure is not called.

The forms "-string=" and "-string " are different, even though they both mean
that a parameter value follows. If you want the user to be able to use either form and
provide both templates then you need to be aware that both templates may be
matched and your call back procedure called twice. Thus for instance if the user
supplies -string= then your routine will be entered once with =value and once with
value

(2) Initialize FUSE account

We use getgrnam_r("fuse”,&fuse_group,buf,bufsize,&pfuse_group) to get a
pointer to a structure containing the broken-out fields of the record in the group
database (e.g., the local group file /etc/group, NIS, and LDAP) that matches the
group name name.

We use setgroups(1,&fuse_group.gr_gid) to set the supplementary group IDs
for the process. Function fuse_main() is for the lazy. This is all that has to be called
from the main() function. This function does the following: 1) parses command line
options (-d -s and -h) 2) passes relevant mount options to the fuse_mount() 3)
installs signal handlers for INT, HUP, TERM and PIPE 4) registers an exit handler
to unmount the filesystem on program exit 5) creates a fuse handle 6) registers the
operations calls either the single-threaded or the multi-threaded event loop

(3) The function of CastorFS::GetAttr(const char* , struct stat*) is used for
retrieving the meta-data of the the certain files. Before we use the xrootd function to
get the data, first we need to get the full path of a file. Since all the files are
managed in the unified way of root://castorlhcb//castor, we need to add the URL
before each path we want to use. In this function, we will deal directly with the
cache, the function calls will not be done in the function but in the cache. The
related function in xrootd will be XrdPosixXrootd::Stat(char*, struct stat*). It will
return all the information about one directory in the form of struct stat.

(4) The function of int CastorFS::Readdir(const char* path, void *buf,
fuse_fill_dir_t filler, off t offset, struct fuse_file_info *fi) is used for get all the
entries of one directory. The readdir implementation keeps track of the offsets of the

50

http://fuse.sourceforge.net/doxygen/fuse__common_8h.html#30d394a6127b20455bf5a4899e56e759

Thesis for Master’s Degree at HIT and UBP

directory entries. It uses the offset parameter and always passes non-zero offset to
the filler function. When the buffer is full (or an error happens) the filler function
will return '1'. The function typedef int(* fuse_fill_dir_t)(void *buf, const char
*name, const struct stat *stbuf, off_t off) is defined by FUSE to add an entry in a
readdir() operation. One DIR pointer will be wused to point to
xrdPosixXrootd::Opendir(FULLPATH). Then the XrdPosixXrootd::Readdir(dp)
should be called to get the related file information organized with struct dirent.
struct dirent { long d_ino; off_t d_off; unsigned short d_reclen; char d_name; }. In
the end of the implementation of the function, XrdPosixXrootd::Closedir(dp) will
be called to make sure the directory will be safely closed.

(5) int CastorFS::Mknod(const char* path, mode_t mode, dev_t rdev) is used to
create a new node (file) for the filesystem. This function will be implemented by
using XrdPosixXrootd::Open(rootpath, O_CREAT | O_EXCL | O_WRONLY,
S IRUSRI|S_IWUSR|S_IRGRP|S_IROTH). By provide special parameter for the
Open function, it will perform the right function as we want to create a
non-existance file. If the file exists, O_CREAT flag has no effect except as noted
under O_EXCL below. Otherwise, the file shall be created; the user ID of the file
shall be set to the effective user ID of the process; the group ID of the file shall be
set to the group ID of the file's parent directory or to the effective group ID of the
process; and the access permission bits (see <sys/stat.h>) of the file mode shall be
set to the value of the third argument taken as type mode_t modified as follows: a
bitwise AND is performed on the file-mode bits and the corresponding bits in the
complement of the process' file mode creation mask. Thus, all bits in the file mode
whose corresponding bit in the file mode creation mask is set are cleared. When bits
other than the file permission bits are set, the effect is unspecified. The third
argument does not affect whether the file is open for reading, writing, or for both.
Implementations shall provide a way to initialize the file's group ID to the group ID
of the parent directory. Implementations may, but need not, provide an
implementation-defined way to initialize the file's group ID to the effective group
ID of the calling process. If O_CREAT and O_EXCL are set, open() shall fail if the
file exists. The check for the existence of the file and the creation of the file if it
does not exist shall be atomic with respect to other threads executing open() naming
the same filename in the same directory with O_EXCL and O_CREAT set. If
O_EXCL and O_CREAT are set, and path names a symbolic link, open() shall fail

51

http://fuse.sourceforge.net/doxygen/fuse_8h.html#e2a2054f9852fd6020c26a1bcc7f1042
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html

Thesis for Master’s Degree at HIT and UBP

and set errno to [EEXIST], regardless of the contents of the symbolic link. If
O _EXCL is set and O_CREAT is not set, the result is undefined. O_ WRONLY is
used for indicating that the file is open for writing only. S_IRUSR is for reading
permission for owner. S_IWUSR is to give write permission to owner. S_IXUSR
is to give execute/search permission to owner. S_IROTH is used for give read
permission to the others.

(6) int CastorFS::Open(const char* path, struct fuse_file_info *fi) is
implementd by invoking the function int fd = XrdPosixXrootd::Open(rootpath,
fi->flags, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH). Here we use the same
arguments as those in the last function for the third parameter to indicate the way
we operate the files.

(7) int CastorFS::Read(const char* path, char *buf, size_t size, off_t offset,
struct fuse_file_info *fi). In this function, we mainly wused int
XrdPosixXrootd::Pread(fd, buf, size, offset) to fill the buf to read the file.

(8) int CastorFS::Write(const char* path, const char *buf, size t size, off t
offset, struct fuse file_info *fi). In this function, we wuse the
xrdPosixXrootd::Pwrite(fd, buf, size, offset) to send the related parameters from
the linux operating system to the Xrootd function.

(9) int CastorFS::Unlink(const char* path) deletes a name from the
filesystem. If that name was the last link to a file and no processes have the file
open the file is deleted and the space it was using is made available for reuse. If
the name was the last link to a file but any processes still have the file open the file
will remain in existence until the last file descriptor referring to it is closed. If the
name referred to a symbolic link the link is removed. If the name referred to a
socket, fifo or device the name for it is removed but processes which have the
object open may continue to use it. Unlink function is used to delete one node and
we use XrdPosixXrootd::Unlink(rootpath) directly to perform the certain task.

(10) int CastorFS::Mkdir(const char* path, mode_t mode) is used to create a
directory. It is called when we use the Linux command to create a new directory.
The related XrdPosixXrootd::Mkdir(rootpath, mode) is used to implement this
function.

(11) int CastorFS::Rmdir(const char* path) is implemented to provide a
function to rmove a empty directory and the XrdPosixXrootd::Rmdir(rootpath) is
called in the function.

52

Thesis for Master’s Degree at HIT and UBP

(12) int CastorFS::Truncate(const char* path, off t size) causes the regular
file named by path or referenced by fd to be truncated to a size of precisely length
bytes. If the file previously was larger than this size, the extra data is lost. If the
file previously was shorter, it is extended, and the extended part reads as zero
bytes. The file pointer is not changed. If the size changed, then the ctime and
mtime fields for the file are updated, and suid and sgid mode bits may be cleared.

(13) int CastorFS::Getxattr(const char *path, const char *name, char *value,
size_t size) retrieves the value of the extended attribute identified by name and
associated with the given path in the filesystem. The length of the attribute value
is returned. And the XrdPosixXrootd::Getxattr(rootpath, name, xattr, size) is used
for implement this function.

4.2 Key Interfaces of the software system

The first interface shows options for Castor filesystem and FUSE, we provide
options for the filesystem and the cache valide time for the users to configure the

file system.

[localhost] fafs/cern.chfuser/m/mjiao/Program/Castor-FUSE-Xrootd/Debug > ./binfca
torfs ——help
usage: ./binfcastorfs [options] mountpoint

general options:
-0 opt,[opt...] mount options
-h -~help print help
-U --version print version

CASTORFS options:
castor_readonly readonly mount
castor_user CASTOR user name
{(default: getpwuid{uid})
castor_debug CASTOR debug lewvel
castor_cache_validtime Castor cache valid time duaration (default:

castor_uid CASTOR user uid
castor_gid CASTOR user gid
castor_root CASTOR root directory {default: '/castor')
castor_stage_host CASTOR stage host

(set environment variable STAGE_HOST)
castor_stage_swvcclass CASTOR stage service class

{set environment variable STAGE_SUCCLASS)

FUSE options:
-d -0 debug enable debug output {implies -f)
-f foreground operation
-5 disable multi-threaded operation

-0 allow _other allow access to other users

Figure 4-3 CastorFS options

53

Thesis for Master’s Degree at HIT and UBP

The file system is fully integrated in the Linux system and the filesystem

operations are the same as the standard filesystem (figure 4-4).
[localhost] Ftmp/2 > 1s

[localhost] Atmp/f2 > cd cern.ch
[localhost] Atmp/f2/fcern.ch > 1s

[localhost] Atmpf2/fcern.ch »> cd user
[localhost] stmpf2/fcern.chfuser > 1s
ebutz

Figure 4-4 CastorFsS interface

4.3 System Testing and Performance evaluation

4.3.1 System Testing

For the system testing, we performed the white box testing to check the
program sequence during all the phases of system implementation. The white box
testing is maily performed by checking the implementation of each virtual
filesystem functions. Those function are: getattr(), readdir(), open(), write(),
unlink(), mkdir(), rmdir(), truncate() and the functions implemented for the caching,
the one that is to do the retrieving opration-the overloaded operater ().

After the accomplishment of the file system, we performed the black box
testing to check all paths for the data flow and all the functions in the file system.
We do the test by writing the related script for each function. At the same time we
get the system performance result for the next section too. We go to the command
line after the system is mounted and we perform the POSIX Linux filesystem
operation functions:

In this testing, we firstly get into mjiao directory and create a file 123 and then
write “hello” to to the file and we also displayed the content of the file. After that,
we created a directory calld “test-dierctory” and we can see that, it works as we
expected.

54

Thesis for Master’s Degree at HIT and UBP

mjiao@plusl9 mjiacl$ s -1s

® 1 mjiao onliners © Aug 29 09:16
i 1 mjiao onliners @ Aug 29 10:14
jiao@plusl® mjiaol$ touch 123
mjiao@plusl9 mjiacl$ echo hello = 123
23: Function not implemented
jiao@plusl® mjiaol$ echo hello == 123
Jiao@plusl9 mjiacl$ cat 123

mjiao@plusl9 mjiacl$ mkdir test-directory
mjiao@plusl9 mjiaol$ 1s

23

mjiao@plusl9 mjiaols rm

mjiao@plusl9 mjiaol$ 1s

mjiao@plusl9 mjiacl$ 1s
20 09:

29 10:14

29 12:32

Figure 4-5 Test result
Here, we also did a test for the authentication mechanism. We put all the
system implementation files to the isima machine which has no certification and we
tried to mount the filesystem to mountpoint. Later, we tried to “Is” the folder of
mountpoint and we can see that the operation was canceld due to the authorization
policy provided by the xrootd.

ocalhost] sfhome/isima/Castor-FUSE-Xrootd/Debug = make
ining dependencies of target castorfs

%] Built target ca
ing dependenci i
;] Building / sim tor-FUSE-Xrootd/Debug/castorfs.l.gz
1 Built target man
wost] /home/isima/Castor-FUSE-Xrootd/Debug > mkdir ~/mountpoint
[localhost] fhome/isima or-FUSE-Xrootd/Debug = ./ storfs ~/mountpoint/
[localhost] /fhome/isima/Castor-FUSE cotd/Debug > cd ~/mountpoint
[localhost] /home/isima/mountpoint]
1s: reading directory .: Operation canc
[Localhost] /home/isima/mountpoint =

Figure 4-6 Authentication test
4.3.2 Performance evaluation

(1) To retrieve the information of 2678 set of record in a directory, we did two
types of performance evaluation against the 4 commands.

#!/bin/bash

foriin $(seq 1 50);

55

do

lusr/bin/time -f %e --output=third.txt -a Is

Thesis for Master’s Degree at HIT and UBP

/home/mjiao/3/cern.ch/user/m/mjiao

{usr/bin/time -f %e --output=first.txt -a Is

/home/mjiao/1/cern.ch/user/m/mjiao

{usr/bin/time -f %e --output=nsls.txt -a nsls /castor/cern.ch/user/m/mjiao
{usr/bin/time -f %e --output=second.txt -a Is
/home/mjiao/2/cern.ch/user/m/mjiao

done

We did 50 times of those 4 operations to retrieve the data with performint the
simple “Is” operation. After we got all the result, we calculated the mean value for
the performance shown in table 4-1.

Table 4-1 Performance of “Is” operation

Tool time (s)
Is (xrdfs) 0.9724
Is (new castorfs) 1.76244
Is (castorfs) 2.0268
nsls 1.1382

Here is the 50 times of the performance comparison:

10
7.5

CX

E :

Is /m performance

B new castorfs
Is

M original
castorfs Is

castorfs with
xrootd

M nsls

Figure 4-7 Performance diagram

56

Thesis for Master’s Degree at HIT and UBP

Later, we did a comparison of retrieving meta-data for the same directory with

the command (Is -1), and the performance is show in table 4-2.

Table 4-2 Performance of “Is -1” operation

Tool Time(s)
Posix Is -l (xrdfs) 31.5812
Posix Is -I(new castorfs) 16.3372
Posix Is -I(castorfs) 61.608
nsls —I 1.9368

The related diagram to show the performance comparison

functions
100
75
)
§ 50
25

Is -l Im performance

Figure 4-8 Performance comparison

between all those

M new castorfs
Is
M original
castorfs Is
| castorfs with
xrootd Is

W nsls

-

We can see from figure 4-8 and figure 4-9 that, the Castorfs implemented with

Xrootd protocol can operate faster than the Castorfs implemented with RFio and Ns

protocols. We can also see that, with the implementation of cache, we can retrieve

the meta-data much faster.

57

Thesis for Master’s Degree at HIT and UBP

Is -1 /m performance

100 B new castorfs
|5
M original
75 castorfs |s
castorfs
xrootd |s
i) without
_% 50 cache
- A A l l M nsls
25 ‘

operations

Figure 4-9 Performance comparison (castorfs without cache)

(2) The performance of reading and writing data
The reading and writing data performance is critical for the CastorFS since our
users will deal a lot with the data analysis on CERN computing cluster. We need to
provide a good way for them to upload and download big size files.
All the performace statistics are got from the testing on plus19 node in LHCb.

Table 4-3 Read and write peroformance

Tool Read(Mb/s) Write(Mb/s)
POSIX cp command on new CastorFS with Xrootd 61 35

POSIX cp command on CastorFS with NS, Rfio 31 5

rfcpo command (based on CASTOR RFIO library) 100 70

xrdcp command (based on xrootd library) 112 97

We can see from table 4-3 that compared with the original CastorFS (line 2)
which is implemented by using NS, Rfio libraries. The new CastorFS (line 1)
improved almost twice reading speed and seven times of wrting speed on Plus node.

58

Thesis for Master’s Degree at HIT and UBP

Table 4-4 Retrieving meta-data performance

Tool Time(s)
POSIX Is command on new CastorFS with xrootd 33
POSIX Is command on CastorFS with NS, Rfio 53.7
nsls command (based on CASTOR Ns library) 2.4

xrd (Is) command (based on xrootd library) 25

From table 4-4, we can see that with the new implementation with xrootd to
retrieve the meta-data of all the entries in the same folder the performance is better
than the original one (line 2).

4.4 Brief summary

The environment of implementing the system is based on the computing
environment in CERN. | used my local machine, LHCb computing cluster and
Ixplus to either implement the system or do the evaluation. The new CastorFS

improved a lot on the meta-data retrieving, reading and writing speed compared to
the original one.

59

Thesis for Master’s Degree at HIT and UBP

Conclusion

The goal of the present work was to implement a new virtual filesystem with
caching mechanism based on FUSE and the data transmitting protocol provided by
Xrootd. This implied the analysis of the old file system to find the problem, making
the design, doing the implementation, perfroming testing and evaluation for the
system. The development was carried out within the online team of LHCb, one of
the four experiments that have been approved for the future high energy collider
LHC (Large Hadron Collider) at CERN. This virtual fileystem is used for giving a
file system which complied with POSIX standards in order to make the
manipulation of remote data easier for the user.

We successfully provided the cache mechanism for the system by adopting the
LRU algorithm and implemented it with C++ container, algorithm, and iterator.
Later, we implemented all the important functions which could handle most of the
file system operations for the virtual file system by using Xrootd libraries. At each
development phase, we did the tesing and evaluation for the system in the
environment of computer in LHCb, Ixplus which is maintained by CERN IT
department, and LHCb inside computing cluster.

For the future work, we plan to investigate more about the security aspect
provided by Xrootd. Currently, we can use Kerberos ticket-granting ticket to make
the access for 25 hours. We want to make an extension of the time for this security
mechanism by using certification properly. We also notice that the function of
sendfile which is used for transferring data between file descriptor provided by
Linux may help us to build a more real filesystem in the future.

60

Thesis for Master’s Degree at HIT and UBP

References

[1] Fabrizio F. Large databases on the GRID. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment Volume 623, Issue 2, 11 November 2010

[2] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic et al.
ROOT — A C++ framework for petabyte data storage, statistical analysis and
visualization. Computer Physics Communications, December 2009

[3] Luis B and Rassul A. Lazy update: An efficient implementation of LRU next
term stacks. Information Processing Letters Volume 54, Issue 2, 28 April 1995.

[4] Antonis P, Athanasios V and loannis S. Approximate analysis of LRU in the
case of short term correlations. Computer Networks, 24 April 2008

[5] Yang J, Bai Y, Qiu Y. To Select the Service in Context Aware Systems Using
Concept Similarity Mechanism[C]. 2008 International Symposium on
Electronic Commerce and Security. 2008: 143-147.

[6] A. Mazurov, N. Neufeld. CASTORFS — A Filesystem To Access CASTOR,
Journal of Physics: Conference Series 219 (2010) 052023

[7] CASTOR service at CERN - http://cern.ch/castor

[8] Filesystem in user space — http://fuse.sourceforge.net

[9] Xrootd introduction — http://xrootd.slac.stanford.edu/docs.html

[10] Filesystem based on FUSE -
http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems

[11] Opti-Cache introduction - http://www.bsiopti.com/ocart.html

[12] MacFUSE introduction- http://code.google.com/p/macfuse/

[13] E. Driscoll, J. Beavers, H. Tokuda - FUSE-NT: Userspace File Systems for
Windows NT

[14] Waterfall introduction - http://en.wikipedia.org/wiki/Waterfall_model

[15] Extreme programming - http://www.extremeprogramming.org/rules.html

[16] G. Donvito, V. Spinoso and G.P. Maggi. Interactive access and optimization of
a CMS computing farm. Nuclear Physics B - Proceedings Supplements. June
2011, Pages 82-84

[17] RenéBrun. Summary of session 1: Computing technology and environment
for physics research. Nuclear Instruments and Methods in Physics Research

61

Thesis for Master’s Degree at HIT and UBP

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume 559, Issue 1, 1 April 2006

[18] A. Salnikov. Evolution of the configuration database design. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 1 April 2006

[19] A. L. S. Angelis, J. Bartke, M. Yu. Bogolyubsky, E. Ga dysz-Dziadus et al.

CASTOR: Centauro and strange object research in nucleus-nucleus collisions at
the LHC. Nuclear Physics B - Proceedings Supplements Volume 97, Issues 1-3,
April 2001

[20] Peter Gditlicher. Design and test beam studies for the CASTOR» calorimeter
of the CMS experiment. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume 623, Issue 1, 1 November 2010

[21] Edward Haletky. Deploying LINUX on the Desktop. Deploying LINUX on the
Desktop 2005, Pages 181-190

[22] N. Brook, H. Bulten, J. Closier, D. Galli, C. Gaspar et al. LHCb distributed
computing and the GRID. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment Volume 502, Issues 2-3, 21 April 2003, Pages 334-338

[23] Jamie Shiers. The Worldwide LHC Computing Grid (worldwide LCG).
Computer Physics Communications. Volume 177, Issues 1-2, July 2007

[24] Soha Maad, Brian Coghlan, Geoff Quigley. Towards a complete grid
filesystemr functionality. Future Generation Computer Systems. Volume 23,
Issue 1, 1 January 2007

[25] Jim Mellander. Unix Filesystem Security. Information Security Technical
Report. Volume 7, Issue 1, 31 March 2002

[26] Jirgen Branke, Pablo Funes. Evolutionary design of en-route caching
strategies. Applied Soft Computing. Volume 7, Issue 3, June 2007

[27] Edith Cohen, Haim Kaplan and Uri Zwick. Connection caching: model and +«
algorithms. Journal of Computer and System Sciences, August 2003

[28] Niels Sluijs, Fr&lé&ic Iterbeke. Cooperative caching versus proactive
replication for location dependent request patterns. Journal of Network and
Computer Applications Volume 34, Issue 2, March 2011

62

http://www.sciencedirect.com/science/article/pii/S0168900210004882#hit2
http://www.sciencedirect.com/science/article/pii/S0167739X06001324#hit2
http://www.sciencedirect.com/science/article/pii/S0022000003000412#hit1
http://www.sciencedirect.com/science/article/pii/S0022000003000412#hit1

Thesis for Master’s Degree at HIT and UBP

[29] Philip S. Yu and Edward A. MacNair. Performance study of a collaborative
method for hierarchical cachingr in proxy servers. Computer Networks and
ISDN Systems Volume 30, Issues 1-7, April 1998

[30] Mohamed F. Ahmed and Swapna S. Gokhale. Linux» bugs: Life cycle,
resolution and architectural analysis. Information and Software Technology
Volume 51, Issue 11, November 2009

[31] M. Zilker and P. Heimann. High-speed data acquisition with the Solaris and
Linux operating systems. Fusion Engineering and Design Volume 48, Issues 1-2,
1 August 2000

[32] André Neto, Filippo Sartori et al. Linux real-time framework for fusion
devices. Fusion Engineering and Design Volume 84, Issues 7-11, June 2009

[33] Amnon Barak and Oren La'adan. The MOSIX multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems
Volume 13, Issues 4-5, March 1998

[34] loana Banicescu, Ricolindo L. Carifb. Design and implementation of a novel
dynamic load balancing library for cluster computing. Parallel Computing
Volume 31, Issue 7, July 2005

[35] Les Robertson. The distributed data-base for the CERN SPS control system.
Computer Physics Communications Volume 110, Issues 1-3, May 1998

63

http://www.sciencedirect.com/science/article/pii/S0169755298000154#hit2
http://www.sciencedirect.com/science/article/pii/S0950584909001037#hit2

Thesis for Master’s Degree at HIT and UBP

Fe /RIE Tl K F A+ F 418 3 R 6114 7= BR

Statement of Copyright

ARNFBE] AL PTIRAE B L AR S (PSR E English Title), 24 A
IR T T, ARG RV TR 5 TS i L 2 A7 399 1) i S7 3k AT B 9 AR i BUAS
IR o AEAS NPT, 830 B i B A SRS 5 Al N % 3R el 5 i 1)
FORR o REASC BT FE A TR AN AR, 38 CAE SO DLAWT R s
BB AR B B A 45 R 58 A AR N 7R AH

EEZ 7. iR H#:. 201148 H15 H
BRET I XEMET ML FERARNE

Letter of Authorization

ANGEE T e R T RS 0 FORAE . A A A SO e, B

(1) CERZAAL A T A I 4% A A E $ 58 A 35 (2) ST LR FH REHID
75 BN B CH Al S A T B ORI FE A BRI AR D (3) A MABIT H 1,
AT AKG 2218 SCAE Dy BRI B 570 K bl W B it H ek 5 1) Y ik 555 (4D
MRAEAH S EESR, 1A [X B I & 22 A8 3

ARNARAE 7 FIRBE .
YEE A4, IR H#f: 2011 &£ 8 H 15 H
Qs 4. el Hi. 2011 £ 8 A 18 H

64

Thesis for Master’s Degree at HIT and UBP

Acknowledgement

At the end of this work, | want to thank my supervisor, Doc. Niko Neufeuld, for
having trusted me, my ideas and my work and for his support and precious advice
during the development of the project and the the writing of the thesis.

| want to thank my supervisors at HIT and ISIMA, Prof. Xiaofie Xu and Prof.
Kun-mean HOU for their essential contribution towards my technical education, for
having given me great support in this project, and especially, for the many hours
they spent to read and correct this document.

| want to thank in particular Dr. Alexander Mazurov for his priceless help in
understanding the architecture of computing cluster in LHCb and for his patience in
teaching me all he knows about FUSE.

Many thanks also to my colleagues at CERN, especially Guoming, Christophe
and Gregoire; theire positive attitude have encouraged me day by day.

| cannot forget to thank my parents and my sister. They always trusted me and
supported my choices.

A special thank to my two great friends, Carson and Ben. Even if far away, |
could feel their affection and theire support all the time.

Many thanks to all my friends, in particular to Louis and Pierre for their
friendship during my stay at CERN.

Finally, I want to thank Jean-Pierre, without whom | woud have never been
working at CERN and | would have never lived this great experience.

65

Thesis for Master’s Degree at HIT and UBP

Resume

Manjun JIAO

(manjun.jiao@gmail.com) Male
Oct 12, 1986 born in Anhui, China

Education

Date University Degree | Major

09/2010 — | ISIMA Master 2 | Software Engineering
09/2011

09/2009 — | Harbin Institute of Technology Master 1 | Software Engineering
07/2010

09/2003 — | Harbin Institute of Technology Bachelor | Software Engineering
07/2008

Working experiences and training

July 2010 - September 2010, Institut de recherché pour 1’ingénierie de
I’agriculture et de ’environnement, Clermont-Ferrand. Responsible for making a
tool for configurating the Wireless sensor network and its nodes
- designing the graphic interface for defining the data collection and
transmission policies and the energy policies by using Java
June 2007- August 2008, Beijing Wenlu Laser Technique Ltd. Beijing.
Developer of management system for Audio and Video market:
- analyzing requirements, designing system,, accomplishing the system and
testing.
- designing a module to collect data of the business, analyze the data and
generate the report with graphic interface.

Competences

« English: Fluent; French: Intermidiate
« C++,C, Java, C#
+ Embedded system, Linux

66

