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Abstract The main objective of this article is to investigate
the viability of bouncing cosmological scenarios using dif-
ferent forms of scale factors with perfect matter configuration
in the framework of extended symmetric teleparallel theory.
This modified proposal is defined by the function f (Q, T ),
where Q characterizes non-metricity and T denotes the trace
of energy-momentum tensor. We investigate the modified
field equations of this theory using different parametric val-
ues of the Hubble parameter and non-metricity to derive
viable solutions. These solutions are relevant in various cos-
mological bounce models such as symmetric-bounce, super-
bounce, oscillatory-bounce, matter-bounce and exponential-
bounce models. Furthermore, we examine the behavior of
energy density and pressure to analyze the characteristics
of dark energy. A comprehensive analysis is also conducted
to explore the behavior of the equation of state parameter
and deceleration parameter to examine the evolutionary eras
of the cosmos. Our findings show that the f (Q, T ) gravity
describes the cosmic expansion in the vicinity of the bounc-
ing point during the early and late times of cosmic evolution.

1 Introduction

Einstein’s general theory of relativity (EGTR) revolutionized
our understanding of gravity and spacetime, which plays a
crucial role in modern physics. It has been studied exten-
sively through observations and experiments on the basis
of complex shapes and measurements in space known as
Riemannian geometry. Weyl [1] provided a comprehensive
description of gravitational fields and matter using a more
general framework than Riemann’s space with the aim to
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unify electromagnetic and gravitational forces. The Levi-
Civita connection plays a vital role in the Riemann space by
comparing vector’s length [2,3]. However, Weyl proposed an
alternative connection that does not consider the magnitude
of vectors during parallel transport. To address this limitation,
he introduced a second connection referred to as the length
connection which focuses on adjusting or measuring the con-
formal factor without considering the movement of vector’s
direction. Beyond Riemannian geometry, non-Riemannian
geometries provide more comprehensive representations of
spacetime curvature incorporating torsion (turning or rota-
tion) and non-metricity (variation from metric compatibil-
ity). Weyl’s theory considers non-metricity through covari-
ance derivative of the metric tensor that is not equal to zero
[4]. Various extended theories of gravity in different context
has been discussed in [5–14].

The non-metricity offers a different cosmological model
in the absence of dark energy (DE). The incorporation of
non-metricity into gravitational theory is driven by a range
of mathematical and physical factors. One compelling reason
arises from the geometric explanation of the non-metricity
associated with the metric tensor. The concept of non-
metricity involves the alteration in the length of a vector as it
undergoes during parallel transport which offers the impor-
tant insights into the geometric characteristics of spacetime.
There is a growing interest among researchers in investi-
gating the geometry which involves the non-metricity, par-
ticularly the f (Q, T ) theory for multiple reasons including
its theoretical consequences, alignment with observational
data and its importance in cosmic scenarios [15]. This the-
ory presents a new geometric understanding of spacetime by
introducing the non-metricity as a fundamental quantity. This
extended theory incorporates the trace of energy-momentum
tensor (EMT) in the functional action of symmetric telepar-
allel theory and effectively accounts the cosmic accelerated
expansion. Researchers are increasingly interested in explor-
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ing various aspects of this theory. Arora et al. [16] examined
the characteristics of DE in this theory using different con-
straints on the model parameters. The same authors [17] ana-
lyzed that this theory offers a novel approach in understand-
ing the dark sector of the cosmos. The geometry of compact
stars with different considerations in f (Q) and f (Q, T ) the-
ory has been studied in [18–23].

Singh and Lalke [24] studied the cosmological implica-
tions using hyperbolic solutions in the context of this theory.
Their key findings demonstrated that this modified theory
provides a mechanism for explaining the accelerated expan-
sion of the cosmos. Xu and his colleagues [25] examined the
dynamics of the universe in the extended symmetric telepar-
allel theory and compared the obtained results with �CDM
model. Gadbail and his co-authors [26] uncovered important
cosmological insights in this modified framework and deter-
mined how this theory demonstrates the cosmic phenom-
ena. Narawade et al. [27] analyzed the cosmic acceleration
through various cosmographic parameters in the same the-
ory. Bourakadi et al. [28] demonstrated that this theory yields
significant consequences in the formation and evolution of
black holes. Shekh [29] investigated late-time cosmic accel-
eration through newly developed scale factor for the FRW
model in this theory. The cosmic acceleration through decel-
eration parameter in this context has been studied in [30].
Sharif and Ibrar [31] explored the reconstruction of a ghost
dark energy model in this context.

Bouncing cosmology offers a compelling approach to
addressing solutions for initial singularity issues [32–35].
This concept aims to resolve the challenges associated with
the big bang singularity, which is a significant problem in
cosmology. The fundamental idea behind bouncing cosmol-
ogy is to propose a model where the universe does not origi-
nate from a singular point (as theorized by the big bang), but
instead undergoes a contraction followed by a bounce that
leads to its current expansion. This model helps to avoid the-
oretical complications and infinite values resulting from sin-
gularities, offering a smooth and more accurate explanation
of the cosmic origin and its dynamic properties. Furthermore,
cosmic bounce has been investigated in [36], which addresses
several issues of the early cosmos such as flatness problem,
horizon problem and initial singularity.

The investigation of bouncing cosmology in different
modified theories has gained significant attention due to its
fascinating characteristics. Ilyas and Rahman [37] explored
the FRW model in f (R) gravity that addresses the big
bang singularity through bouncing cosmology. Shamir [38]
examined the viable bouncing solutions in the framework of
f (G, T ) gravity, where G is Gauss-Bonnet invariant. Sta-
bility of the closed Einstein universe and Noether symmetry
approach in the modified famework has been discussed in
[39–43]. Zubair et al. [44] found that the matter-bounce mod-
els exhibit stability only for linear forms of f (R, T ) func-

tion while the reconstructed solutions show instability for the
power law model. The same authors [45] investigated bounc-
ing cosmology in the framework of f (T , T ) gravity, (T rep-
resents the torsion) by examining cosmographic parameters.
Ganiou et al. [46] used the reconstruction approach to analyze
the specific f (G) gravity models that describe the critical
phases of the cosmic evolution. Singh et al. [47] explored a
bouncing scenario in f (R, T ) gravity using parametrization
of the Hubble parameter. Their results offer valuable insights
into a cosmological model where the universe undergoes a
bounce, highlighting a key features such as singularity avoid-
ance, phantom divide crossing and extreme dynamics near
the bouncing point. Houndjo et al. [48] discussed the bounc-
ing cosmology in the context of f (T ) theory. Sharif et al.
[49] investigated the bouncing cosmology in the framework
of f (Q) gravity using a reconstruction approach with perfect
matter configuration.

This paper is organized as follows. Section 2 outlines
the fundamental formulation of f (Q, T ) gravity. A detailed
examination of different types of bouncing solutions are pre-
sented in Sect. 3. In order to evaluate the bouncing cosmos,
we calculate the solution to gravitational field equations using
a different parametrization of scale factor. Additionally, we
discuss the graphical behavior of cosmic parameters includ-
ing scale factor, Hubble parameter, fluids parameter and EoS
parameter. In Sect. 4, we examine the behavior of the deceler-
ation parameter and analyze the energy conditions, redshift
parameter to assess the viability of a non-singular bounce.
Our main findings are summarized in Sect. 5.

2 f (Q, T ) theory and FRW universe model

The corresponding integral action is defined as [15]

S = 1

2

∫
f (Q, T )

√−gd4x +
∫

Lm
√−gd4x . (1)

The non-metricity is given by

Q = −gγβ(Lα
σγ L

σ
βα − Lα

σαL
σ
γβ), (2)

where the disformation tensor is defined as

Lϕ
αζ = −1

2
gϕδ

(∇ζ gαδ + ∇αgδζ − ∇δgαζ

)
. (3)

The superpotential is expressed as

Pα
ζλ = −1

2
Lα

ζλ + 1

4
(Qα − Q̃α)gζλ − 1

4
δα

(ζ Qλ). (4)

The relation for non-metricity using superpotential is given
by

Q = −QαζλP
αζλ

= −1

4

[− QαζλQαζλ+2QαζλQλαζ −2Qϕ Q̃ϕ+QϕQϕ

]
.

(5)

123



Eur. Phys. J. C           (2024) 84:802 Page 3 of 16   802 

The corresponding field equations are

Tαβ = −1

2
f gαβ − 2√−g

∇ζ ( fQ
√−gPζαβ)− fQ(PζαλQ

ζλ
β

−2Qζλ
αPζλβ) + fT (Tαβ + θαβ). (6)

Here, fQ and fT represent the derivatives corresponding to
non-metricity and trace of EMT, respectively.

We consider a flat FRW universe model with scale factor
a(t) as

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2). (7)

The isotropic matter configuration is given by

Tαβ = (ρ + p)uαuβ − pgαβ, (8)

where ρ, p and uα represent the energy density, pressure and
four-velocity of the fluid, respectively. Using Eqs. (6)–(8),
the resulting field equations are

ρ = −1

2
f − 6H2 fQ − fT (ρ + p), (9)

p = 1

2
f + 2 fQ Ḣ + 2H fQQ + 6H2 fQ, (10)

with

Q = −6H2, T = ρ − 3p. (11)

Here, H = ȧ
a is the Hubble parameter and dot demonstrates

the derivative with respect to time. These field equations are
in complex form due to the involvement of multivariate func-
tions and their derivatives. To address this challenge, we con-
sider a specific model as

f (Q, T ) = ξ1Q + ξ2T, (12)

to simplify the field equations and obtain explicit expressions
for energy density and pressure. Here, ξ1 and ξ2 are non-
zero arbitrary constants. Numerous studies have been con-
ducted on this model in the literature [50]. This model con-
siders a linear relationship between non-metricity and trace
of EMT, helping us to understand the gravitational phenom-
ena and allows for more accurate solutions. Consequently, it
is regarded as a valuable theoretical framework to compre-
hend the fundamental principles of gravitational physics and
carries importance for both theoretical analysis and practical
applications. The corresponding field equations are

ρ = 1

6ξ2
[4ξ1ξ2 Ḣ + 6ξ1H

2 − 18ξ1ξ2H
2], (13)

p = 1

9ξ2
[12ξ1ξ2(4ξ1 Ḣ + 6ξ1H

2)

−18ξ1ξ
2
2 H

2 + 4ξ1ξ
2
2 Ḣ + 6ξ1ξ2H

2]. (14)

In the following sections, we explore the behavior of var-
ious bouncing models, providing valuable insights into the
structure of cosmic evolution.

3 Bouncing models

This section examines the viability of various bouncing
models like symmetric-bounce, super-bounce, oscillatory-
bounce, matter-bounce and exponential-bounce II due to
their intriguing properties. This approach enables us to deter-
mine the gravitational model based on a selected cosmologi-
cal framework which can be derived using different forms
of scale factors and Hubble parameters [51]. To obtain a
comprehensive analysis, it is crucial that the above bounce
models must represent the dynamical behavior throughout
various cosmic eras. This can be achieved by analyzing dif-
ferent ranges of the parametric values to reconstruct different
cosmic epochs [52]. Different types of bouncing model are
outlined below.

3.1 Evolution of symmetric-bounce model

This model was first examined by Cai et al. [53] to formulate
the non-singular bounce after an ekpyrotic contraction phase.
The idea of a symmetric-bounce is based on the notion that
the cosmos undergoes a phase of contraction from the pre-
vious state of expansion, reaching a minimum size (bounce
point) and then starts to expand again. The term symmet-
ric in this context refers to the behavior of the cosmologi-
cal dynamics during the contraction and expansion phases.
This concept is significant in theoretical cosmology, bounc-
ing universe scenario and other modified gravity theories.
These models attempt to address cosmological challenges
such as the nature of the big bang singularity and the ori-
gin of the cosmos [54]. We consider the extended symmetric
bouncing cosmology characterized by scale factor as [55]

a = A e
ηt2

t2� , (15)

where t� and t are an arbitrary and cosmic time, A and η are
positive constants. However, the cosmic time is measured
in gigayears (Gyr). Understanding the evolution of the scale
factor is essential to comprehend how the universe expands,
contracts or undergoes a bouncing phase. The scale factor is
a positive function that quantifies the change in size of the
cosmos, representing its dynamics over time. The graphical
behavior of scale factor is shown in the left plot of Fig. 1
which shows a positive symmetric pattern, indicating that the
scale factor decreases and increases in a balanced manner on
either side of the bouncing point.

Using Eq. (15), the Hubble parameter and non-metricity
become

H =
(

2ηt

t�

2)
, Q = −24η2t2

t2
�

. (16)

The right plot of Fig. 1 demonstrates that the Hubble param-
eter is zero at bouncing point (t = 0) as well as shows con-
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Fig. 1 Behavior of scale factor and Hubble parameter versus cosmic time

Fig. 2 Behavior of density and pressure corresponding to cosmic time

traction before the bounce (t < 0) and expansion after the
bounce (t > 0). Using Eq. (16) into Eqs. (13)–(14), we obtain

ρ =
4tηξ1

(
− 3t (2t2 + 1)η(ξ2 − 7) + t�ξ2

)

t�(2ξ2
2 − 49)

, (17)

p = 1

t2
� (2ξ2

2 − 49)

[
4tηξ1

(
3t (2t2 + 1)η(ξ2 + 7)

+t�(3ξ2 + 14)
)]

. (18)

The units for energy density and pressure are considered
as GeV/cm3. Figure 2 shows the variation in density and
pressure for symmetric-bounce model. The graphical behav-
ior demonstrates that the energy density exhibits an pos-
itively increasing trend and pressure displays negatively
downward trajectory over time. This inverse relationship
between energy density and pressure is in accordance with
the expected behavior predicted by the DE model.

The EoS parameter (ω = p
ρ
) can be classified based on

different stages of cosmic evolution. One can obtain matter-
dominated eras such as dust, radiative fluid and stiff matter
for ω = 0, 1

3 , 1, respectively, whereas, the vacuum, phantom
and quintessence phases of the cosmos are characterized by
ω = −1, ω < −1, − 1 < ω < − 1

3 , respectively [56].
Using Eqs. (17) and (18), we calculate the value of the EoS

parameter for symmetric-bounce model as

ω = −3η(ξ2 + 7)
(
2t3 + t

) + (3ξ2 + 14)t�
3η(ξ2 − 7)t

(
2t2 + 1

) − ξ2t�
. (19)

Figure 3 shows that the EoS parameter becomes singular at
the bounce point and undergoes rapid evolution in the vicinity
of the bounce. During this period, the EoS parameter exhibits
symmetry around the epoch of the bounce and transitions into
the phantom region (ω < −1). This behavior indicates a
significant shift in the characteristics of this parameter as the
system approaches and moves towards the bouncing point. In
the context of cosmology, such a bounce represents a critical
phase where the cosmos shows transition from a contracting
state to an expanding one.

3.2 Analysis of super-bounce model

The concept of super-bounce is characterized by a power-
law scale factor which was first proposed in [57]. The idea
of a super-bounce suggests that the cosmos undergoes cycles
of expansion and contraction, rather than a single expansion
followed by infinite expansion without encountering a sin-
gularity. The general form of the scale factor is defined as
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Fig. 3 Behavior of EoS parameter for different parametric values

a = e
(
tb−t
t0

) 2
Z2

, (20)

where Z > 3, t0 > 0 and tb denotes the time of the bounce
event. The graphical behavior of the super-bounce scale fac-
tor is shown in the left plot of Fig. 4. The graph indicates
that the scale factor is positive, but does not show a sym-
metric pattern in this model on either side of the bouncing
point. The corresponding value of the Hubble parameter and
non-metricity become

H = − 2

Z2

(
1

tb − t

)
, Q = 24

Z4

(
1

tb − t

)2

. (21)

In the right plot of Fig. 4 demonstrates the behavior of the
Hubble parameter in super-bounce with distinct character-
istics before and after the bouncing point. This parameter
changes its signatures during the transition phase of con-
traction/ expansion and becomes singular at H = 0. This
indicates a critical phase, where the dynamics of the cos-
mos undergoes a significant transformation. Using Eq. (21)
in Eqs. (13)–(14), we have

ρ = − 1

Z4(t − tb)2(2ξ2
2 − 49)

[
2ξ1

((
Z

2 + 18
)
ξ2 − 126

)]
,

(22)

p = − 1

Z4(t − tb)2(2ξ2
2 − 49)(3ξ2 − 14)

×[
36ξ1

(
(ξ2(5ξ2 − 7) + 98) + 7Z2(ξ2

2 − 28)
)]

. (23)

Figure 5 depicts the graphical representation of fluid
parameters for the super-bounce model, which are closely
resemble those obtained in the symmetric-bounce model and
are consistent with behavior of the DE model. We use Eqs.
(22) and (23) to determine the EoS parameter value for super-
bounce model as

ω = 1

(3ξ2 − 14)
(
ξ2(Z2 + 18) − 126)

[
18ξ2(7 − 5ξ2) + 98)

+7Z2(ξ2
2 − 28)

]
. (24)

Figure 6 shows that the behavior of EoS parameter is iden-
tical as obtain in symmetric-bounce model. This means that
the physical conditions governing the cosmic behavior is sta-
ble and does not reach infinite values at any point during the
bounce which ensures a smooth transition through this criti-
cal phase.

3.3 Evolution of oscillatory-bounce model

The concept of an oscillatory-bounce is significant in the
field of cosmology and scenarios involving the expansion
and contraction of the cosmos. In this bouncing scenario, the
cosmos undergoes a periodic cycles of expansion and con-
traction. Each cycle initiates with a big bang followed by a
phase of expansion and concludes with a big crunch, where
the cosmos contracts back to a dense state before beginning
with another big bang. This cyclic pattern implies a repeti-
tive sequence of cosmic events alternating between expan-
sion and contraction over successive cycles [58]. The corre-
sponding expression for the scale factor is expressed as

a = A sin2
(
Bt

t�

)
, (25)

where A and B are non-negative constants. In the left
side of Fig. 7 shows the graphical behavior of scale factor

Fig. 4 Behavior of scale factor and Hubble parameter versus cosmic time

123



  802 Page 6 of 16 Eur. Phys. J. C           (2024) 84:802 

Fig. 5 Behavior of matter components versus cosmic time

Fig. 6 Behavior of EoS parameter corresponding to cosmic time

in oscillatory-bounce model. The oscillatory-bounce model
indicates that the cosmos undergoes a periodic cycles of con-
traction and expansion. This model shows that there are two
distinct types of bounce events. The first type occurs when
t = nπ t�

B
, where n is an integer. This scenario corresponds

to a big bang singularity marking a point where the cos-
mos contracts to a singular point before expanding again.
The second type of bounce takes place when t = (2n+1)π t�

2B .
This occurs when the cosmos reaches its maximum size as
expansion ends and the cosmos begins to contract again. This
transitional behavior of cosmos is critical in understanding
the dynamics of its evolution as predicted by this model.

The expressions for H and Q corresponding to this bounc-
ing model turn out to be

H = 2B

t�
cot

(
Bt

t�

)
, Q = −24B2

t2
�

cot2
(
Bt

t�

)
. (26)

The graphical behavior of the Hubble parameter in the
oscillatory-bounce is shown in the right side of Fig. 7. The
Hubble parameter becomes singular at bouncing point for
t = nπ t�

B
. Moreover, the Hubble parameter undergoes a tran-

sition phase of contraction and expansion at t = (2n+1)π t�
2B .

Specifically, it shifts from positive values to negative values
at these points. This indicates that there is a critical moment,

where the Hubble parameter crosses zero by changing its
phase from expansion towards contraction.

Using Eq. (26) in Eqs. (13)–(14), we obtain the field equa-
tions corresponding to this model as

ρ = 1

t2
� (2ξ2

2 − 49)

[
2B2ξ1

(
− 6(ξ2 − 7)

(
cot2

(
Bt

t�

)
− 2

)

+(84 − 13ξ2) × csc2
(
Bt

t�

))]
, (27)

p = 1

t2
� (2ξ2

2 − 49)

[
2B2ξ1

(
− 6(ξ2 − 7)

(
cot2

(
Bt

t�

)
− 2

)

+(70 − 9ξ2) × csc2
(
Bt

t�

))]
. (28)

Figure 8 depicts the change in matter variables for oscillatory-
bounce model. This model demonstrates an oscillation in the
behavior of the fluid parameters. Prior to the bounce, there
is a positive increase in energy density and it displays a pos-
itive decrease after the bounce. Similarly, pressure exhibits
a negative pattern in the behavior. These graphical behavior
support the current cosmic expansion. Using Eqs. (27) and
(28), we obtain the corresponding EoS parameter as

ω = −
6(ξ2 + 7)

(
cot2

(
Bt
t�

)
− 2

)
+ (9ξ2 + 70) csc2

(
Bt
t�

)

6(ξ2 − 7)
(

cot2
(
Bt
t�

)
− 2

)
+ (13ξ2 − 84) csc2

(
Bt
t�

)

(29)

Figure 9 shows that the EoS parameter oscillates over time
reflecting the dynamic nature of the cosmological evolution
under this framework. The graphical representation provides
a powerful insight into the underlying physical processes
driving the oscillations and their impact on the behavior of
model.

3.4 Study of matter-bounce model

The matter-bounce scenario is a cosmological model pro-
posed as an alternative to the big bang theory. In the matter-
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Fig. 7 Behavior of scale factor and Hubble parameter versus cosmic time

Fig. 8 Behavior of energy density and pressure for different values of A

Fig. 9 Behavior of EoS parameter for different values of A

bounce model, the cosmos undergoes a phase of contraction
before expanding again, rather than beginning from a singu-
larity as in the big bang theory. The motivation for the matter-
bounce model arises from addressing some of the theoretical
issues present in the standard big bang model. The matter-
bounce model attempts to provide an alternative framework
that avoids initial singularities. An intriguing method alterna-
tive to inflation is the concept of matter-bounce model [59],
which is notable for its compatibility with observational evi-
dence from the Planck observational data [60]. The corre-

sponding scale factor is expressed as

a = A

(
3

2
ρct

2 + 1

) 1
3

. (30)

In the given context, 0 < ρc < 1 represents a critical density.
The critical density is a fundamental concept in cosmology
used to understand the fate and geometry of the cosmos based
on its overall density. In the left plot of Fig. 10 demonstrates
the behavior of matter-bounce scale factor is positive and
symmetric on either side of the bouncing point. The Hubble
parameter and non-metricity scalar for this case are given by

H = 2tρc
2 + 3ρct2 , Q = −6

(
2tρc

2 + 3ρct2

)2

. (31)

In the right side of Fig. 10 illustrates the behavior of
the Hubble parameter across different phases of the cosmic
bounce. In the pre-bounce phase, the Hubble parameter is
negative, indicating a contracting universe. As the cosmos
approaches towards the critical bounce point, the Hubble
parameter reaches to zero which signifies a momentary end
in the contraction and marking the transition between con-
traction and expansion phases. By following the bouncing
point during the post-bounce epoch, the Hubble parameter
becomes positive reflecting the cosmic expansion. This tran-
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Fig. 10 Behavior of scale factor and Hubble parameter to cosmic time

Fig. 11 Behavior of energy density and pressure for different values of ρc

sition through the phases highlight the dynamic nature of the
cosmological model. Substituting Eq. (31) into Eqs. (13)–
(14), the resulting field equations are expressed as

ρ = 1

(2ξ2ρ2
c − 49)(3t2ρc + 2)2[

2ξ1ρc(2ξ2 − 21t2ρc(ξ2 − 6))
]
, (32)

p = 1

(2ξ2ρ2
c − 49)(3t2ρc + 2)2[

2ξ1ρc(28 + 84t2ρc + ξ2(9t
2ρc + 6))

]
. (33)

Figure 11 determines that the behavior of fluid parameters is
consistent with the expected behavior of DE model. Using
Eqs. (32) and (33), the EoS parameter for this bouncing model
is as follows

ω = −28 + 6ξ2 + 3t2(28 + 3ξ2)ρc

−2ξ2 + 21t2(ξ2 − 6)ρc
. (34)

Figure 12 demonstrates that the EoS parameter becomes sin-
gular at the bouncing point and undergoes rapid changes near
the bounce. Notably, the EoS parameter shows symmetry
around the bouncing epoch and exhibits significant evolution
in the phantom region. This evolution describes the dynam-
ical change in the nature of matter and energy in the cosmos
during this critical phase.

Fig. 12 Behavior of EoS parameter for different values of ρc

3.5 Discussion on exponential-bounce model II

The exponential model describes the expansion history of the
cosmos. This model is an extension of the original exponen-
tial model (also known as the exponential inflationary uni-
verse or exponential expansion) to explain the rapid expan-
sion of the universe in the early moments of the big bang. In
the context of theories related to inflation and the dynamics
of the cosmic expansion, this model is referred to a bouncing
scenario where the scale factor evolves exponentially with
time. In this bouncing model, the scale factor is represented

123



Eur. Phys. J. C           (2024) 84:802 Page 9 of 16   802 

Fig. 13 Behavior of scale factor and Hubble parameter to cosmic time

Fig. 14 Behavior of energy density and pressure for different values of ς

as

a = A

(
h0

ς + 1
(t − tb)

ς+1
)

, (35)

where h0 and ς are an arbitrary constant. The graphical rep-
resentation of scale factor is shown in the left plot of Fig. 13
for different values of model parameter (ς). The graph indi-
cates positive and an asymmetrical pattern in the behavior
of the scale factor relative to time in the exponential-bounce
model II.

The corresponding Hubble parameter and non-metricity
are given as follows

H = h0(t − tb)
ς , Q = −6h2

0(t − tb)
2ς . (36)

The right plot of Fig. 13 demonstrates that the Hubble param-
eter becomes singular at bouncing point and this specific
value denotes the location of the bounce. Prior to the bounce,
the Hubble parameter is negative and becomes positive in the
post-bounce phase. This change signifies the transition from
a contracting to an expanding phases in the cosmic evolution.
By applying Eq. (36) in Eqs. (13)–(14), we obtain

ρ = 1

(2ξ2
2 − 49)

[
h0(t − tb)

ς−1ξ1(−9h0(t − tb)
ς−1)(ξ2 − 7)

+ςξ2
]
, (37)

p = 1

(2ξ2
2 − 49)

[
h0(t − tb)

ς−1ξ1(9h0(t − tb)
ς−1)(ξ2 + 7)

+ς(3ξ2 + 14)
]
. (38)

In Fig. 14, the energy density shows an upward trend whereas
the pressure demonstrates a downward pattern, aligning with
the anticipated behavior in the DE model. Using Eqs. (37)
and (38), we get

ω = (9h0(t − tb)ς+1)(ξ2 + 7) + ς(3ξ2 + 14)

(−9h0(t − tb)ς+1)(ξ2 − 7) + ςξ2)
(39)

The EoS parameter does not display symmetry around the
bouncing epoch and evolves in the phantom region as shown
in Fig. 15. In the context of f (Q, T ) gravity, this exponential-
bounce model II demonstrates behavior similar to the expo-
nential model I.

4 Analysis of different physical aspects

In this section, we explore a comprehensive analysis of vari-
ous physical aspects like deceleration parameter, energy con-
ditions and redshift analysis that influence the study of dif-
ferent cosmological solutions. By examining the behavior of
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Fig. 15 Behavior of EoS parameter for different values of ς

these parameters, we aim to uncover insights that contribute
to a deeper understanding of cosmic dynamics.

4.1 Deceleration parameter

The deceleration parameter (q) is a dimensionless quantity
which measures the rate of expansion of the universe. It is
defined as

q = −aȧ

ȧ2 = −1 − Ḣ

H2 . (40)

The positive value of deceleration parameter indicates an
decelerated cosmos whereas a negative value demonstrates
an accelerated universe. The asymmetrical nature of the
deceleration parameter is shown in the Fig. 16. The negative
value of deceleration parameter indicates that the universe is
undergoing accelerated expansion. This behavior aligns with
observations of distant supernova and the cosmic microwave
background, which provide evidence for the influence of dark
energy driving the accelerated expansion.

4.2 Analysis of energy conditions

Energy conditions are viable constraints with specific phys-
ical properties based on the energy-momentum tensor used to
assess the physical consistency of cosmic models. Researchers
impose these constraints to evaluate the viability of different
cosmic configurations. The energy bounds are classified into
several types as null energy condition (0 ≤ ρ + p), dominant
energy condition (0 ≤ ρ, 0 ≤ ρ ± p), weak energy condition
and strong energy condition (0 ≤ ρ + p, 0 ≤ ρ +3p). In this
study, we present a graphical representation of these energy
constraints for all considered bouncing cosmological mod-
els. By examining these conditions, we can understand the
characteristics of cosmic geometries and their relationship to
the EMT. The violation of the null energy condition implies
the violation of all other energy conditions, which guarantees
the existence of a non-singular bounce [61].

Figures 17, 18, 19, 20 and 21 demonstrate that the bounc-
ing criteria of the cosmos is satisfied for all the considered
models, providing a comprehensive analysis of these con-
ditions under which the universe exhibit a bounce epoch,
ensuring the avoidance of singularities. The detailed graph-
ical representation supports the stability and consistency of
non-singular bounce in this theoretical framework. These
results underscore the interplay between energy condition
violations and the bouncing behavior. The violation of energy
conditions is a critical requirement for the realization of a
non-singular bounce.

4.3 Evaluation of redshift

In this section, we examine the redshift parameter (z) to study
the behavior of matter configuration and cosmological sce-
nario. The scale factor is given by a(t) = a0tϕ , where ϕ is
an arbitrary constant and we assume the current value of a0

as 1. The value of deceleration parameter is used as defined
in Eq. (40). By using the value of ϕ = 1

1+q in scale factor,
we have

a(t) = t
1

1+q , (41)

where q = −0.831+0.091
−0.091 [62]. The rate at which the universe

is currently expanding can be described as

H = ȧ

a
= H = (1 + q)−1t−1, H0 = (1 + q)−1t−1

0 . (42)

The expansion of the universe is affected by parameters such
as q and H0. To analyze the connection between the redshift
parameter and the scale factor, we have

H = H0(1 + z)1+q , Ḣ = −H0(1 + z)2+2q . (43)

The value of non-metricity in Eq. (11) is determined as

Q = −6H2
0 (1 + z)2+2q . (44)

The field equations in terms of redshift are given by

ρ = −1

49 + 2(ξ2 − 7)ξ2
[9ξ1(ξ2 − 7)H2

0 (z + 1)2q+2], (45)

p = 1

(49 + 2(ξ2
2 − 7)ξ2

[9ξ1(ξ2 − 7)H2
0 (z + 1)2q+2]. (46)

Figure 22 shows the variation of energy density and pres-
sure as function of redshift for the considered f (Q, T )

model. The graphical behavior shows that the energy density
increases and remains positive while the pressure decreases
negatively which is consistent with the behavior of the DE.
The EoS parameter is essential in cosmology because it
describes the relationship between the pressure and density
of the cosmic matter. Figure 23 demonstrates the graphical
behavior of the EoS parameter as a function of redshift. This
parameter shows the phantom region (ω < −1) which indi-
cates an accelerated expansion of the universe.
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Fig. 16 Behavior of deceleration parameter for all the bouncing models

5 Final remarks

Recent cosmological observations, including measurements
of cosmic microwave background radiation, Planck data,
supernovae type-Ia, large-scale structures and galaxy redshift
surveys indicate that the expansion of the cosmos is accel-
erating [63–66]. This discovery has led to the paradigm of
modified theories of gravity as a fundamental framework for
understanding gravitational interactions and their influence
on cosmic expansion. These modified theories incorporate
additional gravitational fields, spatial dimensions and higher-
order derivatives offering diverse approaches to explain the
phenomenon of cosmic acceleration through modifications
to EGTR. The big bang cosmology faces significant chal-
lenges with the initial singularity and inflationary paradigm

prompting diverse solutions in the literature. Several meth-
ods have been employed in the literature to address this issue
and bouncing cosmology is considered as one of the most
effective alternatives. Additionally, modified gravity offers
a promising framework for developing new cosmological
models that can eliminate the long-standing cosmological
challenges. This study aims to investigate the singularity
issue in the context of f (Q, T ) gravity using bouncing cos-
mology.

The motivation to investigate the bouncing cosmology in
the framework of f (Q, T ) theory is to examine the viability
of non-singular bouncing solutions. By using different con-
straints, it is possible to assess the validity of this theory in
comparison to other cosmic models. Therefore, integrating
bouncing cosmology in the modified f (Q, T ) theory offers
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Fig. 17 Behavior of energy conditions for different parametric values

Fig. 18 Analysis of energy conditions corresponding to cosmic time
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Fig. 19 Graphs of energy constraints for oscillatory-bounce model

Fig. 20 Evaluation of energy conditions for different values of ρc
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Fig. 21 Behavior of energy bounds for exponential-bounce model

Fig. 22 Behavior of matter variables corresponding to redshift

a platform to address the fundamental inquiries in cosmol-
ogy such as the cosmic origin, DE/dark matter nature and
behavior of gravity at classic and quantum levels. The main
goal of this research is to examine how f (Q, T ) gravity con-
tributes to construct effective cosmological models which
explore the issue of accelerated expansion of the cosmos and
its potential implications. The rate of cosmic expansion is
determined by using different scale factors and the Hubble
parameters. There are two scenarios to consider, i.e., the scale
factor approaches to zero (big bang singularity) or consider-
ing the bouncing models. In the cosmic bounce models, the
scale factor never reaches to zero, thus avoiding any space-
time singularity. Initially, the cosmos expands, then contracts

and this cycle of expansion and contraction continues until
to reach a minimum size of the scale factor.

We have focused on investigating the familiar bouncing
cosmological scenarios in a flat FRW spacetime character-
ized by a perfect fluid matter distribution. Our study encom-
passes five distinct types of bouncing solutions, includ-
ing symmetric-bounce, super-bounce, oscillatory-bounce,
matter-bounce, and exponential bouncing models. We have
analyzed the cosmological parameters including scale fac-
tor, Hubble parameter, EoS parameter, deceleration param-
eter and behavior of energy conditions associated with each
of these solutions. The main findings are summarized as fol-
lows.
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Fig. 23 Behavior of EoS parameter versus redshift

• The scale factor is a positive function that varies over time
to describe the changing size of the cosmos, reflecting
its expansion dynamics with respect to cosmic time (left
plot of Figs. 1, 4, 7, 10 and 13). These graphs exhibit a
symmetrical pattern illustrating that these scale factors
increase and decrease evenly on both sides of a bouncing
point except exponential model II scale factor.

• The Hubble parameter is negative during the pre-bounce
phase indicating a contracting cosmos. As the universe
approaches the critical bouncing point (t = 0), the Hub-
ble parameter approaches to zero. Moving into the post-
bounce epoch, the Hubble parameter becomes positive
which signifies the cosmic expansion. This progression
through the phases describes the dynamic nature of all
the considered cosmic model as it transitions between
contraction and expansion phases.

• The graphical behavior of energy density and pressure
reveals a an inverse relationship between energy density
and pressure which is in accordance with the expected
behavior predicted by the DE model.

• The EoS parameter helps us to comprehend how differ-
ent energy components interact and influence the over-
all dynamics during the bouncing point. At the point
of bounce, the EoS parameter becomes singular and
undergoes rapid change. It shows symmetry around the
bounce epoch and transitions into the phantom region.
This change signifies a significant shift in the character-
istics of this parameter as it moves towards the bouncing
point.

• The behavior of deceleration parameter is crucial to
understand the cosmic dynamics. The deceleration param-
eter shows the cosmic accelerated expansion as shown in
Fig. 16. This behavior is consistent with the cosmological
observations and also describes the role of dark energy
in driving this accelerated expansion.

• We have discussed the cosmic acceleration and expansion
through energy conditions in this framework. The NEC
is violated for all the bouncing models which ensures the

existence of non-singular cosmic bounce in this modified
framework (Figs. 17, 18, 19, 20, 21).

• The energy density in terms of redshift function shows
positively increasing behavior while pressure demon-
strates the negatively decreasing behavior for the con-
sidered f (Q, T ) model, confirming that the cosmos is in
the expansion phase (Fig. 22).

• The graphical behavior of the EoS parameter correspond-
ing to redshift represents the phantom region, which
shows the cosmic accelerated expansion (Fig. 23).

We have examined the existence of non-singular cosmic
bounce models under the influence of modified f (Q, T )

terms. Our analysis on the physical aspects has unveiled a fea-
sible profile of cosmological models. We have investigated
several fundamental bounce models including symmetric-
bounce, super-bounce, oscillatory-bounce, matter-bounce
and exponential-bounce that delineate the cosmic evolution.
It is worth noting that all these models indicate the presence
of viable bouncing cosmology in this theoretical framework.
In a recent paper, Gadbail et al. [67] investigated various
cosmic bounce models in f (Q) gravity and explored cosmic
evolution using fixed parametric values. Agrawal and his col-
leagues [68] studied the matter-bounce scenario in f (R, T )

theory for various parametric values greater than 1. We have
done graphical analysis for both values less and greater than
1. Our findings not only coincide with the existing literature
but also provide further understanding of the dynamics of
cosmic evolution. Our results demonstrate that cosmic solu-
tions remain feasible even when considering modified terms,
highlighting the strength of our theoretical framework.
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