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Abstract: Let IF; be a field of order g, where g is a power of an odd prime p, and « and f are two
non-zero elements of IF;. The primary goal of this article is to study the structural properties of
cyclic codes over a finite ring R = Fy[uy, up]/ (12 — a2, u3 — B2, uyuy — upuy). We decompose the
ring R by using orthogonal idempotents A1, Ay, A3, and Ay as R = AjR @ AyR ® A3R @ A4R, and
to construct quantum-error-correcting (QEC) codes over R. As an application, we construct some

optimal LCD codes.
Keywords: cyclic code; Gray map; quantum code; LCD code

MSC: 94B05; 94B15; 94B60

1. Introduction

Throughout this paper, unless indicated otherwise, F; (where g is an odd prime
power) denotes the field of order g, and a and B are non-zero elements of ;. Next,
let us consider the finite ring R = Fyluy, up)/(u3 — &%, u3 — B?, uqup — upuy). It is
straightforward to check that R is a non-chain semi-local ring of order g*. Cyclic codes are
very useful for the construction of quantum-error-correcting (QEC) codes. QEC codes are
different from classical-error-correcting (CEC) codes. A significant breakthrough happened
in 1998, when Calderbank et al. [1] solved the problem of obtaining QEC codes with
the help of CEC codes over GF (4). Calderbank et al. [1] also introduced a method to
construct QEC codes from CEC codes. Over finite fields, cyclic codes have been extensively
investigated (see, for example, [2-5] and references therein). In 2015, from the cyclic
codes over F, + oF, + v’F, + 0’F, (where g = p™, p is a prime such that 3|(p — 1),
v* = v, and m is a positive integer), Gao et al. [6] constructed new quantum codes over F,.
Afterwards, Ozen et al. [7] constructed many ternary quantum codes from cyclic codes over
F3 + ulF3 + vlF3 + uovlF3. In 2021, Ashraf et al. [8] found better quantum and LCD codes over
the ring F'ym + vl m with v?> = 1, where m is a positive integer. In this article, we discuss
the structural properties of cyclic codes over the ring R. On this ring R, we construct a
Gray map that provides better parameters and contributes to the finding of better quantum
codes over R than presented in [8-13] (and references therein).

In this paper, our main aim is to study the structural properties of cyclic codes over
the finite ring R, and to construct quantum-error-correcting (QEC) codes over R. Moreover,
we also study LCD codes. The major contributions of this paper are as follows:

1. This paper provides superior quantum codes to those presented in recent references [8-13],
see Table 1.
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2.
3.

This paper provides some new quantum codes, see Table 2.
This paper investigates some optimal LCD codes over the ring R, see Table 3.

Table 1. Quantum codes from cyclic codes over R.

n ha(z) ha(z) h3(z) ha(z) 7(C) [[n, k, d]] [, k', d]],
10 z+1 z+1 z+4 z44 [40,36,2] [[40,32,2]]5 [[40,24,2]]5 [9]
20 (z+2)2 (z+2)2 (z+2)? (z+2)2 [80,68,3] [[80,56,3]]s [80,54,3]]5 [11]
(z+4) (z+4) (z+4) (z+4)
22 z+1 z+1 z+4 z+4 88,84,2] (88, 80,2]]5 [[88,48,2]]5 [9]
28 z+2 z42 z+3 z+3 [112,108,2]  [[112,104,2]]5 [[112,64,2]]5 [9]
30 (z+1)? (z+1)2 (z+1)? (z+1)? [120,104,3]  [[120,88,3]]5 [[120,32,3]]5 [12]
(Z2+z+1) (22 +z+1) (Z24+z+1) (Z2+z+1)
31 z+4 z+4 z+4 (ZB+22+z+4) [124,115,4]  [[124,106,4]5 ([124,100,4]]5 [8]
(22 +22+3z+4)
35 z+4 z+4 (z+4)? (z+4) [140,129,3]  [[140,118,3])s  [[140,112,2]]5 [9]
(20 4+ 25 + 24+
B+z224+z+1)
4 (z+4) (z+4) (z+4) (z+4) [168,140,4]  [[168,112,4])5  [[168,96,2]]5 [10]
(20 4224+ (20 + 224+ (20 + 224+ (20 4224+
323 +222+1) 323 +222+1) 322 +222+41) 323 +222 +1)
24 z+3 z+3 z+3 (z+3) 96,90, 3] [[96,84,3]]7 [[96,80,3]]7 [8]
(2 +z+4)
78 (z+3)?) (z+3)? (z+3)? (z+3)? [312,300,3] [[312,288,3]]13  [[312,282,3]]15 [13]
(z+12 (z+12) (z+12) (z+12)
12 1 z+1 z+1 (z+1) 48,41, 4] (48,34, 4]]17 [[48,32,4]]17 [8]
(2% +4z + 16)
(Z2+z+1)
19 z+18 z+18 (z+18)? (z+18)1 [76,58,4] [[76,40,4]]19
Table 2. New quantum codes from cyclic codes over R.
n hi(z) ha(2) hs(z)  ha(z)  #4(C) [[n, k, d]lq
(z+2)* (z+2)? z+2 1 [36,29,3]  [[36,22,3]]3  New quantum code
25 (z+4)° z+4 z+4 1 [100,92,3] [[100,84,3]]5 New quantum code
15 (z+4)2%(22+z+1) z+4 224z4+1 1 [60,53,3]  [[60,46,3]]5  New quantum code
14 (z+1)(z+6)3 z+1 z+6 1 [56,50,4] [[56,44,4]];  New quantum code
11 (z+10)° z+10 z+10 1 [44,37,4]  [[44,30,4]]11 New quantum code
Table 3. Gray images of LCD codes of length n over R.
n hi(z) ha(2) h3(z) hq(z) 1(C)
1 z+1 z+1 (z+1)(z2+1) [16,11,4]3 Optimal
22 z+1 z+1 z+1 z+1 [88,84,2]3 Optimal
6 1 z+1 z+1 (z+1)(22+z+1) [24,17,4]5
(22 +4z+1)
8 1 z+1 z+1 (z+1)(22 +4z+1) [32,27,4]7 Optimal
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Table 3. Cont.

n h1(z) hy(z) h3(z) ha(z) 1(C)
37 26 4 52° 26 4525 26 4475 20 +42° [148,124,5]11
+5z%+ +5z4+ +3z4+ +3z4+
423 + 572 473 4522 723 + 322 723 + 322
+5z+1 +5z+1 4z +1 4z +1
39 (22 4+2z+1) (22 4+z+1) (ZZ+z+1) (22 4+2z+1) [156,100, 4]11
(212 4 21 (212 4 21 (212 4 21 (212 4 210
+210 4 2° +210 + 29 +210 + 29 +210 + 29
+28 + 27+ +28 + 27+ +28 + 27+ +28 + 27+
26 125 4 4 26 425 4 4 26 425 4 4 26 425 4 4
+2% 422 +23 422 +23 422 +23 422
+z+1) +z+1) +z+1) +z+1)
11 210 429 4 28 210 429 4 28 z10 429 28 210 429 4 28 [44,4,11]q9
+27 + 25+ +27 4+ 25+ +27 4 25+ +27 4+ 28+
2D 424428 2D+ 24+ 28 20+ 24+ 28 D445
+22+z+1 +22+z+1 +22+z+1 +22+z+1
28 (z+1) (z+1) (z+1) (z+1) (112, 60,810
61,5 1 4 61,5 1 4 (z°+2°+ 61,5 1 4
(2°+2° +2*+ (2°+2° +2*+ A4 (2°+2°+2°+
3,2
B2 4z41) B2 4z41) z +i)+z+ B2 4z41)
6 5
(20 +112° + 324+ (20 4+ 112° 4 324+ (2° +82° + (20 + 82° + 324+
3z4+
112% + 322 112% + 322 82% + 322 8z% + 322
+11z+1) +11z+1) +8z+1) +8z+1)
34 (z+1) (z+1) (z+1) (z+1) 136,100, 4]0
8 7 6 8 7 6 (2% +1327 + 8 7 6
(z° +13z7 4+ 152+ (z° +13z7 4+ 152+ (z° 4+ 13z" + 152+
1526+
5 4
1625 + 82% + 162° 1625 + 824+ 163 1O 1;;?2 T 1625+ 824 +162°
2
+1522 + 13z + 1) 1524182 41) T2 J B2+ 5211324 1)

2. Preliminary Results

In this section, we deal with the study of some preliminaries and describe the Gray
map over the ring R. Moreover, we establish some important results which are needed
in the subsequent discussions. If a code C is an R-submodule of R" (where # is a positive
integer), then C is linear. The elements of C are called codewords. The size of C refers to the
total number of codewords in C, which is indicated by |C|. We recall some basic definitions
as following:

(i) The Hamming distance between two vectors x = (x1,X2,...,X,) and y = (y1,¥2,--.,Yn)
is the number of places where they differ, and is denoted by d(x, y).

(i) The Hamming weight of a vector x = (x1,xp,...,X,) is the number of non-zero x;
and is denoted by wt(x).

(iii) The Euclidean inner product of any two vectors x = (x1,x2,...,x,) and y = (y1,y2, ., yu)
is defined as x - y = xoyo + x1¥1 + ... + X,_1Yy»—1 and the dual of linear code C is
Ct={xeR'|x-y=0Vy € C}.

(iv) A code C is said to be self-dual if C = C*, self-orthogonal if C C C*, and dual
containing if ctcc.

Clearly, the ring R can be expressed as R = F; + u1F; + uolFy; + uquplF; such that
uf = a2, u3 = % and ujuy = upuy; here Iy is the finite field of order g, where g = p™ for
odd prime p and m > 1. It is a commutative non-chain semi-local ring with four maximal
ideals. An element z of R is of the form z = ay + ayuq + azup + aguquy, where a; € F; and
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1 <i < 4. With the help of a set of orthogonal idempotents, every element of this ring can
be represented:

o @)t
1= 40 ,
_ (et u)(B—up)
Ay = 1106[5 2,
_ (w—w)(B+up)
A3 - 140([3 2/

and

= o))

It is straightforward to show that A% =A;, 0=A7Aj,and A+ D82 + A3+ 04 =1,
where 1 < i,j < 4, and i # j. In view of the Chinese Remainder Theorem, we obtain
R = MR MR®ARD AR = MF; & Aoy & AsFy @ AylF,. Thus, we can express every
element z of Rasz = ay+ aruy +aguy + aguquy = Aq1z1 + Aozy + Azzz + Ayzy, where
a;,z; € Fq and1 <i<4.

The Gray map # : R — IF‘;% is defined by
N(Mz1+ Bozo + Bazz + Duza) = (21, 22, 23, 24) A, 1)

where A € GL4(Fy) is a fixed matrix and GL4(F;) is the linear group of all 4 x 4 invertible
matrices over the field F; such that AAT = el 4, where AT is the transpose of A and

e € F,\{0}.

The above Gray map is linear, and we can extend it component-wise from R" to IF‘qL”,
where 7 is a positive integer. For any element z = Ajzy 4+ Apzp + A3zz + Ayzs € R, the Lee
weight of z is defined as wy (z) = wg(7(z)), where wy represents the Hamming weight

over IF;. We begin our discussion with the following result related to the Gray map (1):

Proposition 1. The mapy : R — IF';L defined in (1) is an F4-linear and distance-preserving map
from (R",dp) to (F‘;",dH), where d;, = dp.

Proof. Let z, Z € R" such that
z = N1z1 4+ Apzp 4+ Azzz + Ayzy
7 = Alz; + Azz; + A3z; + A4221

and z;, z; € Fg for 1 <i < 4. Then, we have

n(z+ z/) = n(Az+ A1z/1 + Apzy + Agz/z + Azzz + A3z/3 4+ Agzg + A4z;)
N(B1(z1 +21) + Ba(z2 +23) + B3 (23 +23) + Balza +2,))
= (7 —I—zll, zz+z/2, Z3+z/3, Z4+Z;)A
(21,22,23,24) A + (21,2, 23, 24) A
= 17(z)+17(z,)for allz, z € R".

Furthermore, for any a € Fq, we have

n(az) = n(Djazy + Dpazy + Azazz + Aquzy)
= (az1,azp, 0z3,024)A
= w(z1,20,23,24)A
= an(z) forall z € R™.
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Hence, 77 is an Fq—linear. As for the second part, we know that

!/

di(z2) = wi(z—2)

= wu(p(z—2))
= wu(y(z) —1(2))

!

= dy(n(z),n(z)).

Therefore, 7 is a distance-preserving map. O

Define ®; ® 0, R O3 Q4 = {(91, 0>, 03, 94) | 0, e0;: 1<i< 4} and ©; O, &
O300; = {(61+602+03+064)|6; €O;: 1<i<4}. LetCbe alinear code of length n
over R. We define that

C1 = {1 € ]Fg’ | A1z1 + Apzp + Azzz + Ayzy € C, where zp, z3, z4 € Fg},

Cr, = {z € IF,;‘ | A1z1 4+ Apzp + Azzg + Ayzg € C, where z1, z3, z4 € IFZ‘},
C; = {z3 € IF;‘ | A1z1 + Apzp + Azzg + Ayzg € C, where z1, 23, z4 € IFZ‘},

and
Cy = {z4 € IFg | A1z1 + Apzp + Azzg + Ayzg € C, where z1, 23, 23 € IFg}

Now, each C; is a linear code of length n over I, for 1 < i < 4. Hence, any linear code of
length 1 can be represented as C = A1C1 & AyCy & A3C3 @ AyCyand |C| = [C1]|Ca]|C3]|Cy|
over R. A matrix is called a generator matrix of C if the rows of the matrix generate C. If
M; are the generator matrices of the linear code C;, for i = 1,2,3,4, respectively, then a
generator matrix of C is
A1 M,

Ay My
AzMs3
AyMy

and a generator matrix of #(C) is
n(A1My)
- (155
1(84My)
Proposition 2. Let C = A1C1 @ AyCy @ AsCs @ AyCy be a linear code of length n over R. Then,

4
n(C)isa[4n, Y kj, d] linear code over Fy for 1 < i < 4, where each C; is an [n, k;, d] code.
i=1

Proof. The proof is obvious with the help of the Gray map. O

Proposition 3. If C is a linear code of length n over R, then n(C) = C1 ® C; ® C3 @ Cy.

Proof. The proof is similar to the one in [14]. O

Theorem 1. Let C be a self-orthogonal linear code of length n over R and A be a 4 X 4 non-singular
matrix over By which has the property AAT = ely, where 1y is the identity matrix, 0 # € € F,,
and AT is the transpose of matrix A. Then, the Gray image 11(C) is a self-orthogonal linear code of
length 4n over .

Proof. Suppose C is a self-orthogonal linear code of length n over R, i.e.,, C C C* and let
P, Q € y(C)suchthatP = 5(p) = (poA, p1A, ..., pn—1A)and Q = 1(q) = (904, A,
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..., qn—1A). We have to show that #(C) is self-orthogonal, thatis, P- Q = 0. Since C is
n—1 n—1

self-orthogonal, p-q = 420 pj-qj = 0. Therefore, P-Q = PQt = 'Zo ]o]-AATq]-l =
j= =

-1
mnE pj-q; = 0. Suppose P and Q are arbitrary, then ;7(C) C 5(C*). Thus, 7(C) is a
j=0
self-orthogonal linear code of length 41 over F;. [

3. Structural Properties of Cyclic Codes over R

Onring R, as described, we shall explore various structural properties of cyclic codes
and prove some results. We begin with the following definition:

Definition 1. A linear code C of length n over R is said to be a cyclic code if every cyclic shift of a
codeword c in C is again a codeword in C, i.e., if ¢ = (co,c1,¢2,...,cn—1) € C, then its cyclic shift
¢(c) = (cy—1,¢0,---,cn—2) € C, where the operator { is known as cyclic shift.

Theorem 2. Let C = A1Cy ® ArCy @ A3C3 ® A4Cy be a linear code of length n over R. Then, C
is a cyclic code over R if, and only if, each C; is a cyclic code over ¥y, where 1 < i < 4.

Proof. Suppose s is any codeword in C such that s = (sg, s1, ..., Sy,—1). We can write
its components as s; = Aqz1; + A2zp; + A3z3; + Dyzy;, where 214, 23, 234, z4; € Fyand
1<i<n-—1. Let

z1 = (201, 21,1, -+s Zn-11),
z2 = (202, 212, -+, Zu-12),
z3 = (203, 213, +++s Zn-13),
Z4 = (20,4, Z14r -y Zn—1,4)/

where z; € C;jand 1 < i < 4. Now, let us assume that every C; is a cyclic code over [F,
where 1 < i < 4. This implies that

0(z1) = (zn-1,1, 201, +++r Zn—21) € Cy,

4

22) = (2Zn—12, 202, ---, Zn-22) € Ca,

N

(
(z3) = (Zn—l,3/ 203, ---, Zn—23) € Ca,
(

N

z4) = (Zn—14, 204, ---, Zn-24) € Cy4,

Thus, A1{(z1) + A2C(z2) + A3 (z3) + Asl(z4) € C. It can easily be seen that A1{(z1) +
Ax((z2) + A3l (z3) + Agl(z4) = C(s). Hence, {(s) € C. We can conclude that C is a cyclic
code over R.

On the other hand, let us assume that C is a cyclic code over R. Next, let us consider

si = Mz1,i+Mozo;+ N3z3; + Myzyj, where zy = (201, 211, -+, Zu-11),22 = (202, Z12,
s Zn-12), 23 = (203, 213, ---, Zn-13), and zg = (204, Z14, ---, Zyn-14). Then,
71 € C1, zp € Cy, z3 € C3, and z4 € C4. Again, s = (So, S1, «--y Sn—l) € C, and by

this hypothesis {(s) € C. We have A1{(z1) + Ax{(z2) + A3((z3) + Asl(z4) € C. Here,
{(zi) € C;, where 1 < i < 4. Consequently, every C; is a cyclic code of length n over [,
wherel <i<4. O

Theorem 3. Let C = A1C1 @ AyCy @ A3C3 @ AyCy be a cyclic code of length n over R and h;(z)
4
dn— Y hi(z)
be the standard generator polynomial of C;. Then, C = (h(z)) and |C| = gq =1 , where
h(z) = Ahi(2) + Aghy(z) + Ashs(z) + Aghy(z) and 1 < i < 4.

Proof. GivenC; = (h;(z)), where1l <i<4andC = A1C; ® AxCr ® A3C3 B AyCy. Letc €
C be such thatc = {C(Z) ‘ Alhl(z) + Azhz(z) + A3h3(2) + A4h4(Z) for hz‘(Z) € Cl} There-
fore, C C (A1h1(z), Myha(z), Ashs(z), Agha(z)) C R[z]/(z" —1). For any Aqt1(z)h1(z) +
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Mot (2)h2(z) + Asts(2)h3(z) + Bats(z)hy(z) € (A1h1(z) + Daha(z) + Ashs(z) + Aghy(z)) C
R[z]/(z" — 1), where t1(2),t2(2),t3(2z), and t4(z) € R[z]/(z" — 1), there exist 51(z), s2(2),
s3(z), and s4(z) € IFy[z] such that

Aiti(z) = Aisi(z),

where 1 < i < 4. Hence, (A1hi(z), Axhy(z), Ashs(z), Asha(z)) C C. This implies
(Aihi(2), Moha(z), Ashs(z), Asha(z)) = C. Since |C| = |C1]|C2|[C5][C4l, we have
ol — q4n7i§0hi(z).
[

Theorem 4. Let C = A1Cy @ ArCr @ A3C3 & AyCy be a cyclic code of length n over R. Then,
there exists a unique monic polynomial h(z) € Rlz| such that C = (h(z)) and h(z) divides
(2" —1). If hj(z) is the standard generator polynomial of C;, 1 <i < 4, then h(z) = A1hi(z) +
Aohy (Z) + Aghs (Z) + A4h4(2).

Proof. By Theorem 3, C = (A1h1(z), Aoha(z), Ashs(z), Aghy(z)), where h;(z) is the gen-
erator polynomial of C;and 1 < i < 4. Leth(z) = A1h1(z) + Axhy(z) + Azhs(z) + Aghs(z).
From here, (h(z)) C C. Now, Ajhi(z) = Ajh(z)and1 <i < 4,s0C C <h( )}, hence
C = (h(z)). Since h;(z) is a monic right divisor of (z" — 1), there are s;(z) € F,[z]/(z" — 1),
where 1 <i <4,suchthatz” —1 = s1(2)hi(z) = sa(z)h2(z) = s3(z)h3(z) = sa(z)ha(z).
This shows thatz" —1 = [Alsl(z) + AzSz(Z) + AgSg( ) + A4S4( )N’l( ) ie., h( )|(Z — 1)
Here, each h;(z) is unique, and hence h(z) is unique. O

Theorem 5. Let C = A1Cy @ ArCy @ A3Cs & AyCy be a cyclic code of length n over R. Then,
Ct = MG @ MCE @ A3C5 @ AyCF- is also a cyclic code of length n over R.

Proof. C' isa cyclic code of length n over R, since C is a cyclic code of length 1 over R. Now,
we will show that Ct = A1C{- @ A2Cy @ A3C3 @ A4Cy-. Here, C is a cyclic code of of length
n over R. This implies C is a linear code of length n over R. Let T} = {t; € IF "3y, 13, Iy

such that Z tiA; € C1},for1 < i < 4.Hence, C' is uniquely expressedas C* = @% AT,
Thereforel, 71"1 C ClL. Conversely, letg € ClL. This impliesg-s; = 0V s; € Cj. Consider
y = i Aisi € C.Now, Ajg-y = Aysy-q = 0. This shows that A1g € Ci-. From the
specifilc: éxpression of C+, we obtain g € Ty. From here, C L C Ty. Therefore, ClL =T;.In
the same manner, CiJ- = T;for1 <i < 4.Hence, C+ = Alcf‘ ® M Cs- D A3C3J- &) A4Ci-. O

Lemma 1 ([1]). Let C = (h(z)) be a cyclic code of length n over F;; h(z) be the generator
polynomial of C. Then C*+ C C if, and only if,

z" =1 = 0 (mod h(z)h*(z)),
where the reciprocal polynomial of h(z) is denoted by h*(z).
Theorem 6. Let C = A1C1 @ AyCyr @ A3C3 @ A4Cy be a cyclic code of length n over R and

4
C = (h(z)) = (¥ Ahi(z)), where h;(z) be the generator polynomial of C;. Then, C*+ C C if,
i=1

and only, if
z" —1 = 0 (mod hi(z)hj(z)),

where the reciprocal polynomial of h;(z) is denoted by h} (z) and 1 < i < 4.
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n—1

Proof. Suppose z" —1 = 0 (mod h;(z)h}(z)) for 1 < i < 4. Hence, by Lemma 1, we have

4
Cf- C C;. From here, we can write A;Ct C A;C; for1 < i < 4. Similarly, Ct =Yy AiCil -
i=0

4 4 4
Y. A,C; = C. Conversely, assume C*+ C C and AiCil C Y. AiCj, but each C; is a cyclic
=0 i

i=0 i i=0

code over Iy, such that A;C; = C(modA;). This implies that CZ.l C C;, where1 <i < 4. By
Lemma 1, we obtain
z" —1 = 0 (mod hi(z)hj(z)),

where the reciprocal polynomial of /;(z) is denoted by I (z) for1 <i < 4. [

Corollary 1. Let C = A1Cy @ AyCyr @ A3C3 @ AyCy be a cyclic code of length n over R. Then,
Ct CCifandonlyif, C;- C Ciand 1 <i < 4.

4. Quantum and LCD Codes
This section deals with the study of quantum and LCD codes over the ring R. We
begin with the following definition: Let p be a prime and q = p™ for a positive integer
m. Let H(C) be a g-dimensional Hilbert space over the complex field C. Then, the set of
n-folded tensor products H(C)" = H® H® ... ® H is also a q""-dimensional Hilbert space.
N———

n—times

Definition 2 ([15]). A quantum code represented by [[n,k, d|], is defined as a subspace of H(C)"
with dimension q* and minimum distance d. Moreover, we consider [[n, k,d]], to be better than
[[n', K, d/]]q if either or both of the following conditions hold:

(i) d > d whenever the code rate % = % (larger distance).

I
(ii) % > %, whenever the distanced = d ( larger code rate).

Lemma 2 ([2]). (Theorem 3) (CSS Construction) Let C1 = [n,kq,dq]gand Co = [n, ko, d5], be
two linear codes over GF(q) with C3~ C Cy. Furthermore, let d = min{wgt(v) : v € (C;\C5-) U
(Co\Ci)} > min(dy,dy). Then, there exists a QEC code with the parameters [[n, ky + ko — n,d]],.
In particular, if ClL C Cy, then there exists a QEC code with the parameters [[n,2k; — n,d1]],,
where d; = min{wgt(v) : v € (C;\Ci")}.

Theorem 7. Let C be a cyclic code of length n over R, and let the parameters of its Gray image be
[4n,k,dy). If C+ C C, then there exists a QECC [[4n, 2k — 4n, d )] over Fy.

Proof. Let us consider x = (xg,x1,...,%,-1) € C,y = (Yo, y1,---,Yn_1) € C*+, where
i I I ! ! i i !

x; = a; +u1b; + upc; +uqupd; and y; = a;+ ulbi +upc; + uluzdi, a;, b;, c;, d;, a;, bi’ci’di S Fq

for 0 <i <n—1. Since x -y = 0. This gives

n—1
Y (a; 4 ub; + upc; + ugupd;) (a; + urb; + upc; + ugupd;) = 0
i=0

/ !/ / / ! ! ! ! !
Z (aiai + ulaibi + Uza;c; + Mﬂlzaidl- + M1bi(1i + l’ézbibi + M1M2biCl~ + IXZMQbZ'di + MzCiﬂZ-+

i=0

Mlugcib; + ﬁzcic; + ﬁzulcid; + uluzdia; + azuzdib; + ,Bzuldic; + Dézﬁzdid;) = 0

n—1

Y [(aia; + 02bib; + B2cic; + a2BPd;d;) + uy (ab; + bia; + BPeid; + BPdic;)+

i=0

Uy (ﬂiC; + oczbl-d;- + cia; + Dczdib;-) + uquy (al-d; + biC; + Cib; + dl-a;-)} = 0.
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The above relation yields

n—1
Y (@a; + a®bib; + BPoic; + oa?pPdid;) = 0
i=0
n-1 / / / ’
(aib; + bia; + pPcid; + Bdic;) = 0
i=0
n_l i ! ! i
(ajc; + oc2bl-dl- +cia; + oczdl-bl-) =0
i=0
n-1 / / / ’
Z (ﬂidl’ + bici + Cibi + diﬂi) = 0.
i=0

Additionally, 7(x) - 7(y) = 0. Therefore, (C*) C 5(C)*. Since 7 is bijective, |(C+)| =
|7(C)*|. Hence, 7(C*) = 5(C)*. Moreover, C* C C implies 7(C)* C 5(C). Hence, 7(C) is
a dual-containing linear code with parameters [41, k, dp;]. Thus by Lemma 2, there exists a
quantum-error-correcting code with the parameters [[4n1, 2k — 41, dy]]; over F;. [

Definition 3 ([16]). A linear code C of length n over R is said to be linear complementary dual
(LCD)ifcNC* = {0}.

Lemma 3 ([17]). Let C be a cyclic code of length n over I, generated by a polynomial h(z) such
that n = p*1t, where p and t are relatively prime and ky > 0. Then, C is an LCD code if, and only
if, h(z) is a self-reciprocal and all the monic irreducible factors of h(z) have the same multiplicity in
h(z) and in z" — 1.

Definition 4. A linear code C of length n over R is said to be reversible if (c,,—1,¢n—2,...,¢1,¢0) €
C, forall (co,cq,¢2,...,¢y-1) € C.

Lemma 4 ([17]). Let C be a cyclic code of length n over F; such that gcd(n, p) = 1. Then, C is a
reversible code if, and only if, C is an LCD code.

The proofs of Theorems 8-10, Corollaries 2 and 3, and Lemma 5 are similar to those
in [18].

Theorem 8. Let C = A1Cy @ ArCy @ A3C3 @ A4Cy be a cyclic code of length n over R. Then, C
is an LCD code if, and only if, C1,Ca, C3, and Cy are LCD codes of length n over IF.

Corollary 2. Let n = p'm and gcd(m,p) = 1. Let C = A1Cq & MCy B A3C5 D AyCy be
a cyclic code of length n over R, where C; = (h;(z)) such that h;j(z) € F; and hi(z)|(z" — 1)
fori=1,2,3,4. Then, C is an LCD code if, and only if, hi(z) is self-reciprocal and each monic
irreducible factor of h;(z) has the same multiplicity in h;(z) and in 2" — 1 fori =1,2,3,4.

Theorem 9. Let C = A1C1 ® AyCy @ AzCs @ AyCy be a cyclic code of length n over R with
ged(n, p) = 1. Then, C is an LCD code if, and only if, C1,Cy, Cs, and Cy are reversible codes of
length n over .

Corollary 3. For gcd(n,p) =1,1et C = A1Cq @ AyCy & A3C3 ® AyCy be a cyclic code of length
n over R, where C1,Ca,C3, and Cy are cyclic codes of length n over F;. Then, C is an LCD code if,
and only if, h;(z) is a self-reciprocal polynomial in ¥y for i = 1,2,3,4.

Lemma 5. Let C be a linear code of length n over R. Then, n(CNC*) = n(C)Ny(C)*.

Theorem 10. Let C be a linear code of length n over R. Then, C is an LCD code if, and only if, its
Gray image 11(C) is an LCD code of length 4n over .
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5. Applications

In this section, we present some applications of the results proven in the previous
sections. Example 3 and Table 1 demonstrate that our results provide several quantum
codes which are better than the existing quantum codes that have been reported [8-13].
Moreover, we obtained new quantum codes in Example 1 and in Table 2. All of the compu-
tations involved in these examples were accomplished by using the Magma computation
system [19]. We begin our discussion with the following example:

Example 1. Let R = F3[u1,u2}/<u% -1, u% — 1, uyup — upuq) be a finite commutative ring,
n = 9,anda = p =1 Then,

22 —1 = (z+2)° € Fa[x].

Take
h(z) = (z+2)*
hy(z) = (z+2)?
h3(z) = (z+2)
h4<2) =1
and
-1 1 1 1
1 1 1 -1
A 1 -1 1 1
1 1 -1 1

Here, matrix A satisfies the condition AAT = I;.4, where A € GLy4 (F3) and lyy4 is an identity
4
matrix. The cyclic code C = (Y, Ajhi(z)) is of length 9 over R and its Gray image is of length 36,
i=0
dimension 29, and distance 3 over F3, i.e., [36,29, 3]3. Moreover
22 —1 = 0 (mod hi(2)k} (z)),

for1l <i <4 Thus, C Lce by Theorem 6. In view of Theorem 7, we conclude that there exists a
quantum code [[36,22, 3]]3. This quantum code is a new quantum code (see [20] for details).

Example 2. Let R = Fyo[uy, up]/(ud — 4, u3 — 1, uyup — upuy) be a finite commutative ring,
n =19, anda =2,  =1. Then,

29 -1 = (z4+18)Y € Fyo[x].

Take
hi(z) = (z+18)
hy(z) = (z+18)
h(z) = (z+18)2
hy(z) = (2—1—18)14
and
-1 1 1 1
1 1 1 -1
A= 1 -1 1 1
1 1 -1 1
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Here, matrix A satisfies the condition AAT = 5ly..4, where A € GLy(F19) and Iy, 4 is an identity
4
matrix. The cyclic code C = (Y. A;h;(z)) is of length 19 over R and its Gray image is of length 76,
i=0
dimension 58, and distance 4 over Fy9, i.e., [76,58,4]19. Moreover
z¥ —1 = 0 (mod hi(z)h}(z)),

for 1 <i < 4. Application of Theorem 6 yields C+ C C. By Theorem 7, we conclude that there
exists a quantum code [[76,40, 4]]19.

Example 3. Let R = Fsluy, up]/(u? — 1, u3 — 1, uyus — upuy) be a finite commutative ring,
n = 30,and o = B = 1. Then,

291 = (z41)°=z+4)5(2 +2+1)°(2F +4z+1)° € Fs[x].

Take
h(z) = h(z) = h3(z) = ha(z) = (2+1)*(F+z+1)
and
-1 1 1 1
1 1 1 -1
A= 1 -1 1 1
1 1 -1 1

Here, matrix A satisfies the condition AAT = 41,4, where A € GL4(Fs5) and Iy 4 is an identity
4
matrix. The cyclic code C = () Ajhi(z)) is of length 30 over R and its Gray image is of length
i=0
120, dimension 104, and distance 3 over Fs, i.e., [120,104, 3]5. Moreover

z%0 —1= 0 (mod hi(z)hi(z)),

for 1 < i < 4. This implies that C*+ C C by Theorem 6. In view of Theorem 7, we conclude that
there exists a quantum code [[120, 88, 3||s, which has the same minimum distance but a larger code
rate than the best previously known quantum code [[120, 32, 3]]5 (see [12] for details). Therefore, our
quantum code [[120, 88, 35 is better than the best previously known quantum code [[120,32,3]]5
reported in [12].

Example 4. Let R = Fs[uq, up] /<u% -1, u% — 4, ujup — upuq) be a finite commutative ring,
n = 6ua=1andp =2 Then,

221 = (z4+1)(z+4) (22 +2z+1)(z> +4z+1) € F5[x].

Take
h(z) =1
ha(z) = (z+1)
h3(z) = (z+1)
hy(z) = (z+1)(Z2+z+1)(22+4z+1)
and
-1 1 1 1
1 1 1 -1
A = 1 -1 1 1
1 1 -1 1

Matrix A satisfies the condition AAT = 4144, where A € GLy4 (Fs) and Iyx4 is an identity
matrix. Here, hy(z), ha(z), h3(z), and hy(z) are self-reciprocal polynomials. By Corollary 3,
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4
C = (X Ajhi(z)) is an LCD code of length 6 over the ring R. Hence, by Theorem 10, its Gray
i=0
image 11(C) is also an LCD code with the parameters [24,17,4]5 over Fs.

4
In Table 1 we present QEC codes obtained from cyclic codes C = ( } A;h;(z)) of length

i=0
n over R, where C; = (h;(z)), such that z" — 1 = 0 (mod h;(z)h!(z)) fori = 1,2,3,4. Itis
noted that our QEC codes [[n, k, d]]; are better than the existing quantum codes ([n', K, d,]]q
collected from the different references mentioned in this article. In Table 2, we obtain new

4
quantum codes, and in Table 3 we construct LCD codes C = () A;h;(z)) of length n over
i=0

R, where gcd(n,p) = 1, C; = (hi(z)), and h;(z) is the self—reci}rocal divisor of z" — 1 in
Fy[z] fori =1,2,3,4.

6. Conclusions

In this article, we discuss some of the structural properties of cyclic codes over the
ring R = Fyluy, up) /(% — a2, u3 — B?, ujus — upuy), where a and f are non-zero elements
of Fy. Furthermore, we obtain better quantum codes than presented in [8-13]. As an
application, we obtain LCD codes over the ring R. This study can be generalized to a
product of finite rings. We hope that this study will encourage readers to investigate these

codes over other finite rings to explore new and better quantum codes in the future.
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