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Abstract: Let Fq be a field of order q, where q is a power of an odd prime p, and α and β are two

non-zero elements of Fq. The primary goal of this article is to study the structural properties of

cyclic codes over a finite ring R = Fq[u1, u2]/〈u1
2 − α2, u2

2 − β2, u1u2 − u2u1〉. We decompose the

ring R by using orthogonal idempotents ∆1, ∆2, ∆3, and ∆4 as R = ∆1R ⊕ ∆2R ⊕ ∆3R ⊕ ∆4R, and

to construct quantum-error-correcting (QEC) codes over R. As an application, we construct some

optimal LCD codes.

Keywords: cyclic code; Gray map; quantum code; LCD code

MSC: 94B05; 94B15; 94B60

1. Introduction

Throughout this paper, unless indicated otherwise, Fq (where q is an odd prime
power) denotes the field of order q, and α and β are non-zero elements of Fq. Next,
let us consider the finite ring R = Fq[u1, u2]/〈u2

1 − α2, u2
2 − β2, u1u2 − u2u1〉. It is

straightforward to check that R is a non-chain semi-local ring of order q4. Cyclic codes are
very useful for the construction of quantum-error-correcting (QEC) codes. QEC codes are
different from classical-error-correcting (CEC) codes. A significant breakthrough happened
in 1998, when Calderbank et al. [1] solved the problem of obtaining QEC codes with
the help of CEC codes over GF (4). Calderbank et al. [1] also introduced a method to
construct QEC codes from CEC codes. Over finite fields, cyclic codes have been extensively
investigated (see, for example, [2–5] and references therein). In 2015, from the cyclic
codes over Fq + vFq + v2Fq + v3Fq (where q = pm, p is a prime such that 3|(p − 1),
v4 = v, and m is a positive integer), Gao et al. [6] constructed new quantum codes over Fq.
Afterwards, Ozen et al. [7] constructed many ternary quantum codes from cyclic codes over
F3 + uF3 + vF3 + uvF3. In 2021, Ashraf et al. [8] found better quantum and LCD codes over
the ring Fpm + vFpm with v2 = 1, where m is a positive integer. In this article, we discuss
the structural properties of cyclic codes over the ring R. On this ring R, we construct a
Gray map that provides better parameters and contributes to the finding of better quantum
codes over R than presented in [8–13] (and references therein).

In this paper, our main aim is to study the structural properties of cyclic codes over
the finite ring R, and to construct quantum-error-correcting (QEC) codes over R. Moreover,
we also study LCD codes. The major contributions of this paper are as follows:

1. This paper provides superior quantum codes to those presented in recent references [8–13],
see Table 1.
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2. This paper provides some new quantum codes, see Table 2.
3. This paper investigates some optimal LCD codes over the ring R, see Table 3.

Table 1. Quantum codes from cyclic codes over R.

n h1(z) h2(z) h3(z) h4(z) η(C) [[n, k, d]]q [[n
′

, k
′

, d
′

]]q

10 z + 1 z + 1 z + 4 z + 4 [40, 36, 2] [[40, 32, 2]]5 [[40, 24, 2]]5 [9]

20 (z + 2)2 (z + 2)2 (z + 2)2 (z + 2)2 [80, 68, 3] [[80, 56, 3]]5 [[80, 54, 3]]5 [11]
(z + 4) (z + 4) (z + 4) (z + 4)

22 z + 1 z + 1 z + 4 z + 4 [88, 84, 2] [[88, 80, 2]]5 [[88, 48, 2]]5 [9]

28 z + 2 z + 2 z + 3 z + 3 [112, 108, 2] [[112, 104, 2]]5 [[112, 64, 2]]5 [9]

30 (z + 1)2 (z + 1)2 (z + 1)2 (z + 1)2 [120, 104, 3] [[120, 88, 3]]5 [[120, 32, 3]]5 [12]
(z2 + z + 1) (z2 + z + 1) (z2 + z + 1) (z2 + z + 1)

31 z + 4 z + 4 z + 4 (z3 + z2 + z + 4) [124, 115, 4] [[124, 106, 4]]5 [[124, 100, 4]]5 [8]
(z3 + z2 + 3z + 4)

35 z + 4 z + 4 (z + 4)2 (z + 4) [140, 129, 3] [[140, 118, 3]]5 [[140, 112, 2]]5 [9]
(z6 + z5 + z4+
z3 + z2 + z + 1)

42 (z + 4) (z + 4) (z + 4) (z + 4) [168, 140, 4] [[168, 112, 4]]5 [[168, 96, 2]]5 [10]
(z6 + 2z4+ (z6 + 2z4+ (z6 + 2z4+ (z6 + 2z4+

3z3 + 2z2 + 1) 3z3 + 2z2 + 1) 3z3 + 2z2 + 1) 3z3 + 2z2 + 1)

24 z + 3 z + 3 z + 3 (z + 3) [96, 90, 3] [[96, 84, 3]]7 [[96, 80, 3]]7 [8]
(z2 + z + 4)

78 (z + 3)2) (z + 3)2 (z + 3)2 (z + 3)2 [312, 300, 3] [[312, 288, 3]]13 [[312, 282, 3]]13 [13]
(z + 12 (z + 12) (z + 12) (z + 12)

12 1 z + 1 z + 1 (z + 1) [48, 41, 4] [[48, 34, 4]]17 [[48, 32, 4]]17 [8]
(z2 + 4z + 16)
(z2 + z + 1)

19 z + 18 z + 18 (z + 18)2 (z + 18)14 [76, 58, 4] [[76, 40, 4]]19 . . .

Table 2. New quantum codes from cyclic codes over R.

n h1(z) h2(z) h3(z) h4(z) η(C) [[n, k, d]]q

9 (z + 2)4 (z + 2)2 z + 2 1 [36, 29, 3] [[36, 22, 3]]3 New quantum code

25 (z + 4)6 z + 4 z + 4 1 [100, 92, 3] [[100, 84, 3]]5 New quantum code

15 (z + 4)2(z2 + z + 1) z + 4 z2 + z + 1 1 [60, 53, 3] [[60, 46, 3]]5 New quantum code

14 (z + 1)(z + 6)3 z + 1 z + 6 1 [56, 50, 4] [[56, 44, 4]]7 New quantum code

11 (z + 10)5 z + 10 z + 10 1 [44, 37, 4] [[44, 30, 4]]11 New quantum code

Table 3. Gray images of LCD codes of length n over R.

n h1(z) h2(z) h3(z) h4(z) η(C)

4 1 z + 1 z + 1 (z + 1)(z2 + 1) [16, 11, 4]3 Optimal

22 z + 1 z + 1 z + 1 z + 1 [88, 84, 2]3 Optimal

6 1 z + 1 z + 1 (z + 1)(z2 + z + 1) [24, 17, 4]5 . . .
(z2 + 4z + 1)

8 1 z + 1 z + 1 (z + 1)(z2 + 4z + 1) [32, 27, 4]7 Optimal
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Table 3. Cont.

n h1(z) h2(z) h3(z) h4(z) η(C)

37 z6 + 5z5 z6 + 5z5 z6 + 4z5 z6 + 4z5 [148, 124, 5]11
+5z4+ +5z4+ +3z4+ +3z4+

4z3 + 5z2 4z3 + 5z2 7z3 + 3z2 7z3 + 3z2

+5z + 1 +5z + 1 4z + 1 4z + 1

39 (z2 + z + 1) (z2 + z + 1) (z2 + z + 1) (z2 + z + 1) [156, 100, 4]11
(z12 + z11 (z12 + z11 (z12 + z11 (z12 + z11

+z10 + z9 +z10 + z9 +z10 + z9 +z10 + z9

+z8 + z7+ +z8 + z7+ +z8 + z7+ +z8 + z7+
z6 + z5 + z4 z6 + z5 + z4 z6 + z5 + z4 z6 + z5 + z4

+z3 + z2 +z3 + z2 +z3 + z2 +z3 + z2

+z + 1) +z + 1) +z + 1) +z + 1)

11 z10 + z9 + z8 z10 + z9 + z8 z10 + z9 + z8 z10 + z9 + z8 [44, 4, 11]19
+z7 + z6+ +z7 + z6+ +z7 + z6+ +z7 + z6+
z5 + z4 + z3 z5 + z4 + z3 z5 + z4 + z3 z5 + z4 + z31
+z2 + z + 1 +z2 + z + 1 +z2 + z + 1 +z2 + z + 1

28 (z + 1) (z + 1) (z + 1) (z + 1) [112, 60, 8]19

(z6 + z5 + z4+ (z6 + z5 + z4+
(z6 + z5 +

z4+)
(z6 + z5 + z4+

z3 + z2 + z + 1) z3 + z2 + z + 1)
z3 + z2 + z +

1)
z3 + z2 + z + 1)

(z6 + 11z5 + 3z4+ (z6 + 11z5 + 3z4+
(z6 + 8z5 +

3z4+
(z6 + 8z5 + 3z4+

11z3 + 3z2 11z3 + 3z2 8z3 + 3z2 8z3 + 3z2

+11z + 1) +11z + 1) +8z + 1) +8z + 1)

34 (z + 1) (z + 1) (z + 1) (z + 1) [136, 100, 4]19

(z8 + 13z7 + 15z6+ (z8 + 13z7 + 15z6+
(z8 + 13z7 +

15z6+
(z8 + 13z7 + 15z6+

16z5 + 8z4 + 16z3 16z5 + 8z4 + 16z3 16z5 + 8z4 +
16z3 16z5 + 8z4 + 16z3

+15z2 + 13z + 1) +15z2 + 13z + 1)
+15z2 + 13z +

1)
+15z2 + 13z + 1)

2. Preliminary Results

In this section, we deal with the study of some preliminaries and describe the Gray
map over the ring R. Moreover, we establish some important results which are needed
in the subsequent discussions. If a code C is an R-submodule of Rn (where n is a positive
integer), then C is linear. The elements of C are called codewords. The size of C refers to the
total number of codewords in C, which is indicated by |C|. We recall some basic definitions
as following:

(i) The Hamming distance between two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is the number of places where they differ, and is denoted by d(x, y).
(ii) The Hamming weight of a vector x = (x1, x2, . . . , xn) is the number of non-zero xi

and is denoted by wt(x).
(iii) The Euclidean inner product of any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is defined as x · y = x0y0 + x1y1 + . . . + xn−1yn−1 and the dual of linear code C is
C⊥ = {x ∈ Rn |x · y = 0 ∀ y ∈ C}.

(iv) A code C is said to be self-dual if C = C⊥, self-orthogonal if C ⊆ C⊥, and dual
containing if C⊥ ⊆ C.

Clearly, the ring R can be expressed as R = Fq + u1Fq + u2Fq + u1u2Fq such that
u2

1 = α2, u2
2 = β2 and u1u2 = u2u1; here Fq is the finite field of order q, where q = pm for

odd prime p and m ≥ 1. It is a commutative non-chain semi-local ring with four maximal
ideals. An element z of R is of the form z = a1 + a2u1 + a3u2 + a4u1u2, where ai ∈ Fq and
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1 ≤ i ≤ 4. With the help of a set of orthogonal idempotents, every element of this ring can
be represented:

∆1 =
(α + u1)(β + u2)

4αβ
,

∆2 =
(α + u1)(β − u2)

4αβ
,

∆3 =
(α − u1)(β + u2)

4αβ
,

and

∆4 =
(α − u1)(β − u2)

4αβ
.

It is straightforward to show that ∆2
i = ∆i, 0 = ∆i∆j, and ∆1 + ∆2 + ∆3 + ∆4 = 1,

where 1 ≤ i, j ≤ 4, and i 6= j. In view of the Chinese Remainder Theorem, we obtain
R = ∆1R ⊕ ∆2R ⊕ ∆3R ⊕ ∆4R = ∆1Fq ⊕ ∆2Fq ⊕ ∆3Fq ⊕ ∆4Fq. Thus, we can express every
element z of R as z = a1 + a2u1 + a3u2 + a4u1u2 = ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4, where
ai, zi ∈ Fq and 1 ≤ i ≤ 4.

The Gray map η : R −→ F4
q is defined by

η(∆1z1 + ∆2z2 + ∆3z3 + ∆4z4) = (z1, z2, z3, z4)A, (1)

where A ∈ GL4(Fq) is a fixed matrix and GL4(Fq) is the linear group of all 4 × 4 invertible
matrices over the field Fq such that AAT = ǫI4×4, where AT is the transpose of A and
ǫ ∈ Fq\{0}.

The above Gray map is linear, and we can extend it component-wise from Rn to F4n
q ,

where n is a positive integer. For any element z = ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4 ∈ R, the Lee
weight of z is defined as wL(z) = wH(η(z)), where wH represents the Hamming weight
over Fq. We begin our discussion with the following result related to the Gray map (1):

Proposition 1. The map η : R −→ F4
q defined in (1) is an Fq-linear and distance-preserving map

from (Rn, dL) to (F4n
q , dH), where dL = dH .

Proof. Let z, z
′
∈ Rn such that

z = ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4

z
′
= ∆1z

′

1 + ∆2z
′

2 + ∆3z
′

3 + ∆4z
′

4

and zi, z
′

i ∈ Fn
q for 1 ≤ i ≤ 4. Then, we have

η(z + z
′
) = η(∆1z1 + ∆1z

′

1 + ∆2z2 + ∆2z
′

2 + ∆3z3 + ∆3z
′

3 + ∆4z4 + ∆4z
′

4)

= η(∆1(z1 + z
′

1) + ∆2(z2 + z
′

2) + ∆3(z3 + z
′

3) + ∆4(z4 + z
′

4))

= (z1 + z
′

1, z2 + z
′

2, z3 + z
′

3, z4 + z
′

4)A

= (z1, z2, z3, z4)A + (z
′

1, z
′

2, z
′

3, z
′

4)A

= η(z) + η(z
′
) f or all z, z

′
∈ Rn.

Furthermore, for any α ∈ Fq, we have

η(αz) = η(∆1αz1 + ∆2αz2 + ∆3αz3 + ∆4αz4)

= (αz1, αz2, αz3, αz4)A

= α(z1, z2, z3, z4)A

= αη(z) f or all z ∈ Rn.
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Hence, η is an Fq-linear. As for the second part, we know that

dL(z, z
′
) = wL(z − z

′
)

= wH(η(z − z
′
))

= wH(η(z)− η(z
′
))

= dH(η(z), η(z
′
)).

Therefore, η is a distance-preserving map.

Define Θ1 ⊗ Θ2 ⊗ Θ3 ⊗ Θ4 = {(θ1, θ2, θ3, θ4) | θi ∈ Θi : 1 ≤ i ≤ 4} and Θ1 ⊕ Θ2 ⊕
Θ3 ⊕ Θ4 = {(θ1 + θ2 + θ3 + θ4) | θi ∈ Θi : 1 ≤ i ≤ 4}. Let C be a linear code of length n
over R. We define that

C1 = {z1 ∈ F
n
q | ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4 ∈ C, where z2, z3, z4 ∈ F

n
q},

C2 = {z2 ∈ F
n
q | ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4 ∈ C, where z1, z3, z4 ∈ F

n
q},

C3 = {z3 ∈ F
n
q | ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4 ∈ C, where z1, z2, z4 ∈ F

n
q},

and

C4 = {z4 ∈ F
n
q | ∆1z1 + ∆2z2 + ∆3z3 + ∆4z4 ∈ C, where z1, z2, z3 ∈ F

n
q}.

Now, each Ci is a linear code of length n over Fq for 1 ≤ i ≤ 4. Hence, any linear code of
length n can be represented as C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 and |C| = |C1||C2||C3||C4|
over R. A matrix is called a generator matrix of C if the rows of the matrix generate C. If
Mi are the generator matrices of the linear code Ci, for i = 1, 2, 3, 4, respectively, then a
generator matrix of C is

M =







∆1M1
∆2M2
∆3M3
∆4M4







and a generator matrix of η(C) is

η(M) =







η(∆1M1)
η(∆2M2)
η(∆3M3)
η(∆4M4)







.

Proposition 2. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a linear code of length n over R. Then,

η(C) is a [4n,
4
∑

i=1
ki, d] linear code over Fq for 1 ≤ i ≤ 4, where each Ci is an [n, ki, d] code.

Proof. The proof is obvious with the help of the Gray map.

Proposition 3. If C is a linear code of length n over R, then η(C) = C1 ⊗ C2 ⊗ C3 ⊗ C4.

Proof. The proof is similar to the one in [14].

Theorem 1. Let C be a self-orthogonal linear code of length n over R and A be a 4× 4 non-singular
matrix over Fq which has the property AAT = ǫI4, where I4 is the identity matrix, 0 6= ǫ ∈ Fq,
and AT is the transpose of matrix A. Then, the Gray image η(C) is a self-orthogonal linear code of
length 4n over Fq.

Proof. Suppose C is a self-orthogonal linear code of length n over R, i.e., C ⊆ C⊥ and let
P, Q ∈ η(C) such that P = η(p) = (p0 A, p1 A, . . . , pn−1 A) and Q = η(q) = (q0 A, q1 A,
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. . . , qn−1 A). We have to show that η(C) is self-orthogonal, that is, P · Q = 0. Since C is

self-orthogonal, p · q =
n−1
∑

j=0
pj.qj = 0. Therefore, P · Q = PQ⊥ =

n−1
∑

j=0
pj AATq⊥j =

m
n−1
∑

j=0
pj.qj = 0. Suppose P and Q are arbitrary, then η(C) ⊆ η(C⊥). Thus, η(C) is a

self-orthogonal linear code of length 4n over Fq.

3. Structural Properties of Cyclic Codes over R

On ring R, as described, we shall explore various structural properties of cyclic codes
and prove some results. We begin with the following definition:

Definition 1. A linear code C of length n over R is said to be a cyclic code if every cyclic shift of a
codeword c in C is again a codeword in C, i.e., if c = (c0, c1, c2, . . . , cn−1) ∈ C, then its cyclic shift
ζ(c) = (cn−1, c0, . . . , cn−2) ∈ C, where the operator ζ is known as cyclic shift.

Theorem 2. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a linear code of length n over R. Then, C
is a cyclic code over R if, and only if, each Ci is a cyclic code over Fq, where 1 ≤ i ≤ 4.

Proof. Suppose s is any codeword in C such that s = (s0, s1, . . . , sn−1). We can write
its components as si = ∆1z1,i + ∆2z2,i + ∆3z3,i + ∆4z4,i, where z1,i, z2,i, z3,i, z4,i ∈ Fq and
1 ≤ i ≤ n − 1. Let

z1 = (z0,1, z1,1, . . . , zn−1,1),

z2 = (z0,2, z1,2, . . . , zn−1,2),

z3 = (z0,3, z1,3, . . . , zn−1,3),

z4 = (z0,4, z1,4, . . . , zn−1,4),

where zi ∈ Ci and 1 ≤ i ≤ 4. Now, let us assume that every Ci is a cyclic code over Fq,
where 1 ≤ i ≤ 4. This implies that

ζ(z1) = (zn−1,1, z0,1, . . . , zn−2,1) ∈ C1,

ζ(z2) = (zn−1,2, z0,2, . . . , zn−2,2) ∈ C2,

ζ(z3) = (zn−1,3, z0,3, . . . , zn−2,3) ∈ C3,

ζ(z4) = (zn−1,4, z0,4, . . . , zn−2,4) ∈ C4,

Thus, ∆1ζ(z1) + ∆2ζ(z2) + ∆3ζ(z3) + ∆4ζ(z4) ∈ C. It can easily be seen that ∆1ζ(z1) +
∆2ζ(z2) + ∆3ζ(z3) + ∆4ζ(z4) = ζ(s). Hence, ζ(s) ∈ C. We can conclude that C is a cyclic
code over R.

On the other hand, let us assume that C is a cyclic code over R. Next, let us consider
si = ∆1z1,i + ∆2z2,i + ∆3z3,i + ∆4z4,i, where z1 = (z0,1, z1,1, . . . , zn−1,1), z2 = (z0,2, z1,2,
. . . , zn−1,2), z3 = (z0,3, z1,3, . . . , zn−1,3), and z4 = (z0,4, z1,4, . . . , zn−1,4). Then,
z1 ∈ C1, z2 ∈ C2, z3 ∈ C3, and z4 ∈ C4. Again, s = (s0, s1, . . . , sn−1) ∈ C, and by
this hypothesis ζ(s) ∈ C. We have ∆1ζ(z1) + ∆2ζ(z2) + ∆3ζ(z3) + ∆4ζ(z4) ∈ C. Here,
ζ(zi) ∈ Ci, where 1 ≤ i ≤ 4. Consequently, every Ci is a cyclic code of length n over Fq,
where 1 ≤ i ≤ 4.

Theorem 3. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R and hi(z)

be the standard generator polynomial of Ci. Then, C = 〈h(z)〉 and |C| = q
4n−

4
∑

i=0
hi(z)

, where
h(z) = ∆1h1(z) + ∆2h2(z) + ∆3h3(z) + ∆4h4(z) and 1 ≤ i ≤ 4.

Proof. Given Ci = 〈hi(z)〉, where 1 ≤ i ≤ 4 and C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4. Let c ∈
C be such that c = {c(z) | ∆1h1(z) + ∆2h2(z) + ∆3h3(z) + ∆4h4(z) for hi(z) ∈ Ci}. There-
fore, C ⊆ 〈∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)〉 ⊆ R[z]/〈zn − 1〉. For any ∆1t1(z)h1(z) +
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∆2t2(z)h2(z) + ∆3t3(z)h3(z) + ∆4t4(z)h4(z) ∈ 〈∆1h1(z) + ∆2h2(z) + ∆3h3(z) + ∆4h4(z)〉 ⊆
R[z]/〈zn − 1〉, where t1(z), t2(z), t3(z), and t4(z) ∈ R[z]/〈zn − 1〉, there exist s1(z), s2(z),
s3(z), and s4(z) ∈ Fq[z] such that

∆iti(z) = ∆isi(z),

where 1 ≤ i ≤ 4. Hence, 〈∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)〉 ⊆ C. This implies
〈∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)〉 = C. Since |C| = |C1||C2||C3||C4|, we have

|C| = q
4n−

4
∑

i=0
hi(z)

.

Theorem 4. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R. Then,
there exists a unique monic polynomial h(z) ∈ R[z] such that C = 〈h(z)〉 and h(z) divides
(zn − 1). If hi(z) is the standard generator polynomial of Ci, 1 ≤ i ≤ 4, then h(z) = ∆1h1(z) +
∆2h2(z) + ∆3h3(z) + ∆4h4(z).

Proof. By Theorem 3, C = 〈∆1h1(z), ∆2h2(z), ∆3h3(z), ∆4h4(z)〉, where hi(z) is the gen-
erator polynomial of Ci and 1 ≤ i ≤ 4. Let h(z) = ∆1h1(z) + ∆2h2(z) + ∆3h3(z) + ∆4h4(z).
From here, 〈h(z)〉 ⊆ C. Now, ∆ihi(z) = ∆ih(z) and 1 ≤ i ≤ 4, so C ⊆ 〈h(z)〉, hence
C = 〈h(z)〉. Since hi(z) is a monic right divisor of (zn − 1), there are si(z) ∈ Fq[z]/〈zn − 1〉,
where 1 ≤ i ≤ 4, such that zn − 1 = s1(z)h1(z) = s2(z)h2(z) = s3(z)h3(z) = s4(z)h4(z).
This shows that zn − 1 = [∆1s1(z) + ∆2s2(z) + ∆3s3(z) + ∆4s4(z)]h(z), i.e., h(z)|(zn − 1).
Here, each hi(z) is unique, and hence h(z) is unique.

Theorem 5. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R. Then,
C⊥ = ∆1C

⊥
1 ⊕ ∆2C

⊥
2 ⊕ ∆3C

⊥
3 ⊕ ∆4C

⊥
4 is also a cyclic code of length n over R.

Proof. C⊥ is a cyclic code of length n over R, since C is a cyclic code of length n over R. Now,
we will show that C⊥ = ∆1C

⊥
1 ⊕∆2C

⊥
2 ⊕∆3C

⊥
3 ⊕∆4C

⊥
4 . Here, C is a cyclic code of of length

n over R. This implies C is a linear code of length n over R. Let T1 = {t1 ∈ Fn
q | ∃ t2, t3, t4

such that
4
∑

i=1
ti∆i ∈ C⊥}, for 1 ≤ i ≤ 4. Hence, C⊥ is uniquely expressed as C⊥ = ⊕4

i=1 ∆iTi.

Therefore, T1 ⊆ C⊥
1 . Conversely, let q ∈ C⊥

1 . This implies q · s1 = 0 ∀ s1 ∈ C1. Consider

y =
4
∑

i=1
∆isi ∈ C. Now, ∆1q · y = ∆1s1 · q = 0. This shows that ∆1q ∈ C⊥

1 . From the

specific expression of C⊥, we obtain q ∈ T1. From here, C⊥ ⊆ T1. Therefore, C⊥
1 = T1. In

the same manner, C⊥
i = Ti for 1 ≤ i ≤ 4. Hence, C⊥ = ∆1C

⊥
1 ⊕∆2C

⊥
2 ⊕∆3C

⊥
3 ⊕∆4C

⊥
4 .

Lemma 1 ([1]). Let C = 〈h(z)〉 be a cyclic code of length n over Fq; h(z) be the generator

polynomial of C. Then C⊥ ⊆ C if, and only if,

zn − 1 ≡ 0 (mod h(z)h∗(z)),

where the reciprocal polynomial of h(z) is denoted by h∗(z).

Theorem 6. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R and

C = 〈h(z)〉 = 〈
4
∑

i=1
∆ihi(z)〉, where hi(z) be the generator polynomial of Ci. Then, C⊥ ⊆ C if,

and only, if
zn − 1 ≡ 0 (mod hi(z)h

∗
i (z)),

where the reciprocal polynomial of hi(z) is denoted by h∗i (z) and 1 ≤ i ≤ 4.
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Proof. Suppose zn − 1 ≡ 0 (mod hi(z)h
∗
i (z)) for 1 ≤ i ≤ 4. Hence, by Lemma 1, we have

C⊥
i ⊆ Ci. From here, we can write ∆iC

⊥ ⊆ ∆iCi for 1 ≤ i ≤ 4. Similarly, C⊥ =
4
∑

i=0
∆iC

⊥
i ⊆

4
∑

i=0
∆iCi = C. Conversely, assume C⊥ ⊆ C and

4
∑

i=0
∆iC

⊥
i ⊆

4
∑

i=0
∆iCi, but each Ci is a cyclic

code over Fq, such that ∆iCi ≡ C(mod∆i). This implies that C⊥
i ⊆ Ci, where 1 ≤ i ≤ 4. By

Lemma 1, we obtain
zn − 1 ≡ 0 (mod hi(z)h

∗
i (z)),

where the reciprocal polynomial of hi(z) is denoted by h∗i (z) for 1 ≤ i ≤ 4.

Corollary 1. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R. Then,
C⊥ ⊆ C if, and only if, C⊥

i ⊆ Ci and 1 ≤ i ≤ 4.

4. Quantum and LCD Codes

This section deals with the study of quantum and LCD codes over the ring R. We
begin with the following definition: Let p be a prime and q = pm for a positive integer
m. Let H(C) be a q-dimensional Hilbert space over the complex field C. Then, the set of
n-folded tensor products H(C)n = H ⊗ H ⊗ . . . ⊗ H

︸ ︷︷ ︸

n−times

is also a qn-dimensional Hilbert space.

Definition 2 ([15]). A quantum code represented by [[n, k, d]]q is defined as a subspace of H(C)n

with dimension qk and minimum distance d. Moreover, we consider [[n, k, d]]q to be better than

[[n
′
, k

′
, d

′
]]q if either or both of the following conditions hold:

(i) d > d
′

whenever the code rate k
n = k

′

n
′ (larger distance).

(ii) k
n >

k
′

n
′ , whenever the distance d = d

′
(larger code rate).

Lemma 2 ([2]). (Theorem 3) (CSS Construction) Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be

two linear codes over GF(q) with C⊥
2 ⊆ C1. Furthermore, let d = min{wgt(v) : v ∈ (C1\C

⊥
2 ) ∪

(C2\C
⊥
1 )} ≥ min(d1, d2). Then, there exists a QEC code with the parameters [[n, k1 + k2 − n, d]]q.

In particular, if C⊥
1 ⊆ C1, then there exists a QEC code with the parameters [[n, 2k1 − n, d1]]q,

where d1 = min{wgt(v) : v ∈ (C1\C
⊥
1 )}.

Theorem 7. Let C be a cyclic code of length n over R, and let the parameters of its Gray image be
[4n, k, dH ]. If C⊥ ⊆ C, then there exists a QECC [[4n, 2k − 4n, dH ]]q over Fq.

Proof. Let us consider x = (x0, x1, . . . , xn−1) ∈ C, y = (y0, y1, . . . , yn−1) ∈ C⊥, where
xi = ai + u1bi + u2ci + u1u2di and yi = a

′

i + u1b
′

i + u2c
′

i + u1u2d
′

i, ai, bi, ci, di, a
′

i, b
′

i , c
′

i, d
′

i ∈ Fq

for 0 ≤ i ≤ n − 1. Since x · y = 0. This gives

n−1

∑
i=0

(ai + u1bi + u2ci + u1u2di)(a
′

i + u1b
′

i + u2c
′

i + u1u2d
′

i) = 0

n−1

∑
i=0

(aia
′

i + u1aib
′

i + u2aic
′

i + u1u2aid
′

i + u1bia
′

i + α2bib
′

i + u1u2bic
′

i + α2u2bid
′

i + u2cia
′

i+

u1u2cib
′

i + β2cic
′

i + β2u1cid
′

i + u1u2dia
′

i + α2u2dib
′

i + β2u1dic
′

i + α2β2did
′

i) = 0
n−1

∑
i=0

[(aia
′

i + α2bib
′

i + β2cic
′

i + α2β2did
′

i) + u1(aib
′

i + bia
′

i + β2cid
′

i + β2dic
′

i)+

u2(aic
′

i + α2bid
′

i + cia
′

i + α2dib
′

i) + u1u2(aid
′

i + bic
′

i + cib
′

i + dia
′

i)] = 0.
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The above relation yields

n−1

∑
i=0

(aia
′

i + α2bib
′

i + β2cic
′

i + α2β2did
′

i) = 0

n−1

∑
i=0

(aib
′

i + bia
′

i + β2cid
′

i + β2dic
′

i) = 0

n−1

∑
i=0

(aic
′

i + α2bid
′

i + cia
′

i + α2dib
′

i) = 0

n−1

∑
i=0

(aid
′

i + bic
′

i + cib
′

i + dia
′

i) = 0.

Additionally, η(x) · η(y) = 0. Therefore, η(C⊥) ⊆ η(C)⊥. Since η is bijective, |η(C⊥)| =
|η(C)⊥|. Hence, η(C⊥) = η(C)⊥. Moreover, C⊥ ⊆ C implies η(C)⊥ ⊆ η(C). Hence, η(C) is
a dual-containing linear code with parameters [4n, k, dH ]. Thus by Lemma 2, there exists a
quantum-error-correcting code with the parameters [[4n, 2k − 4n, dH ]]q over Fq.

Definition 3 ([16]). A linear code C of length n over R is said to be linear complementary dual
(LCD) if C ∩ C⊥ = {0}.

Lemma 3 ([17]). Let C be a cyclic code of length n over Fq generated by a polynomial h(z) such

that n = pk1 t, where p and t are relatively prime and k1 ≥ 0. Then, C is an LCD code if, and only
if, h(z) is a self-reciprocal and all the monic irreducible factors of h(z) have the same multiplicity in
h(z) and in zn − 1.

Definition 4. A linear code C of length n over R is said to be reversible if (cn−1, cn−2, . . . , c1, c0) ∈
C, for all (c0, c1, c2, . . . , cn−1) ∈ C.

Lemma 4 ([17]). Let C be a cyclic code of length n over Fq such that gcd(n, p) = 1. Then, C is a
reversible code if, and only if, C is an LCD code.

The proofs of Theorems 8–10, Corollaries 2 and 3, and Lemma 5 are similar to those
in [18].

Theorem 8. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R. Then, C
is an LCD code if, and only if, C1, C2, C3, and C4 are LCD codes of length n over Fq.

Corollary 2. Let n = ptm and gcd(m, p) = 1. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be
a cyclic code of length n over R, where Ci = 〈hi(z)〉 such that hi(z) ∈ Fq and hi(z)|(z

n − 1)
for i = 1, 2, 3, 4. Then, C is an LCD code if, and only if, hi(z) is self-reciprocal and each monic
irreducible factor of hi(z) has the same multiplicity in hi(z) and in zn − 1 for i = 1, 2, 3, 4.

Theorem 9. Let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length n over R with
gcd(n, p) = 1. Then, C is an LCD code if, and only if, C1, C2, C3, and C4 are reversible codes of
length n over Fq.

Corollary 3. For gcd(n, p) = 1, let C = ∆1C1 ⊕ ∆2C2 ⊕ ∆3C3 ⊕ ∆4C4 be a cyclic code of length
n over R, where C1, C2, C3, and C4 are cyclic codes of length n over Fq. Then, C is an LCD code if,
and only if, hi(z) is a self-reciprocal polynomial in Fq for i = 1, 2, 3, 4.

Lemma 5. Let C be a linear code of length n over R. Then, η(C ∩ C⊥) = η(C) ∩ η(C)⊥.

Theorem 10. Let C be a linear code of length n over R. Then, C is an LCD code if, and only if, its
Gray image η(C) is an LCD code of length 4n over Fq.
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5. Applications

In this section, we present some applications of the results proven in the previous
sections. Example 3 and Table 1 demonstrate that our results provide several quantum
codes which are better than the existing quantum codes that have been reported [8–13].
Moreover, we obtained new quantum codes in Example 1 and in Table 2. All of the compu-
tations involved in these examples were accomplished by using the Magma computation
system [19]. We begin our discussion with the following example:

Example 1. Let R = F3[u1, u2]/〈u2
1 − 1, u2

2 − 1, u1u2 − u2u1〉 be a finite commutative ring,
n = 9, and α = β = 1. Then,

z9 − 1 = (z + 2)9 ∈ F3[x].

Take
h1(z) = (z + 2)4

h2(z) = (z + 2)2

h3(z) = (z + 2)

h4(z) = 1

and

A =







−1 1 1 1
1 1 1 −1
1 −1 1 1
1 1 −1 1







.

Here, matrix A satisfies the condition AAT = I4×4, where A ∈ GL4(F3) and I4×4 is an identity

matrix. The cyclic code C = 〈
4
∑

i=0
∆ihi(z)〉 is of length 9 over R and its Gray image is of length 36,

dimension 29, and distance 3 over F3, i.e., [36, 29, 3]3. Moreover

z9 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. Thus, C⊥ ⊆ C by Theorem 6. In view of Theorem 7, we conclude that there exists a
quantum code [[36, 22, 3]]3. This quantum code is a new quantum code (see [20] for details).

Example 2. Let R = F19[u1, u2]/〈u2
1 − 4, u2

2 − 1, u1u2 − u2u1〉 be a finite commutative ring,
n = 19, and α = 2, β = 1. Then,

z19 − 1 = (z + 18)19 ∈ F19[x].

Take
h1(z) = (z + 18)

h2(z) = (z + 18)

h3(z) = (z + 18)2

h4(z) = (z + 18)14

and

A =







−1 1 1 1
1 1 1 −1
1 −1 1 1
1 1 −1 1







.
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Here, matrix A satisfies the condition AAT = 5I4×4, where A ∈ GL4(F19) and I4×4 is an identity

matrix. The cyclic code C = 〈
4
∑

i=0
∆ihi(z)〉 is of length 19 over R and its Gray image is of length 76,

dimension 58, and distance 4 over F19, i.e., [76, 58, 4]19. Moreover

z19 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. Application of Theorem 6 yields C⊥ ⊆ C. By Theorem 7, we conclude that there
exists a quantum code [[76, 40, 4]]19.

Example 3. Let R = F5[u1, u2]/〈u2
1 − 1, u2

2 − 1, u1u2 − u2u1〉 be a finite commutative ring,
n = 30, and α = β = 1. Then,

z30 − 1 = (z + 1)5(z + 4)5(z2 + z + 1)5(z2 + 4z + 1)5 ∈ F5[x].

Take
h1(z) = h2(z) = h3(z) = h4(z) = (z + 1)2(z2 + z + 1)

and

A =







−1 1 1 1
1 1 1 −1
1 −1 1 1
1 1 −1 1







.

Here, matrix A satisfies the condition AAT = 4I4×4, where A ∈ GL4(F5) and I4×4 is an identity

matrix. The cyclic code C = 〈
4
∑

i=0
∆ihi(z)〉 is of length 30 over R and its Gray image is of length

120, dimension 104, and distance 3 over F5, i.e., [120, 104, 3]5. Moreover

z30 − 1 ≡ 0 (mod hi(z)h
∗
i (z)),

for 1 ≤ i ≤ 4. This implies that C⊥ ⊆ C by Theorem 6. In view of Theorem 7, we conclude that
there exists a quantum code [[120, 88, 3]]5, which has the same minimum distance but a larger code
rate than the best previously known quantum code [[120, 32, 3]]5 (see [12] for details). Therefore, our
quantum code [[120, 88, 3]]5 is better than the best previously known quantum code [[120, 32, 3]]5
reported in [12].

Example 4. Let R = F5[u1, u2]/〈u2
1 − 1, u2

2 − 4, u1u2 − u2u1〉 be a finite commutative ring,
n = 6, α = 1, and β = 2. Then,

z6 − 1 = (z + 1)(z + 4)(z2 + z + 1)(z2 + 4z + 1) ∈ F5[x].

Take
h1(z) = 1

h2(z) = (z + 1)

h3(z) = (z + 1)

h4(z) = (z + 1)(z2 + z + 1)(z2 + 4z + 1)

and

A =







−1 1 1 1
1 1 1 −1
1 −1 1 1
1 1 −1 1







.

Matrix A satisfies the condition AAT = 4I4×4, where A ∈ GL4(F5) and I4×4 is an identity
matrix. Here, h1(z), h2(z), h3(z), and h4(z) are self-reciprocal polynomials. By Corollary 3,
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C = 〈
4
∑

i=0
∆ihi(z)〉 is an LCD code of length 6 over the ring R. Hence, by Theorem 10, its Gray

image η(C) is also an LCD code with the parameters [24, 17, 4]5 over F5.

In Table 1 we present QEC codes obtained from cyclic codes C = 〈
4
∑

i=0
∆ihi(z)〉 of length

n over R, where Ci = 〈hi(z)〉, such that zn − 1 ≡ 0 (mod hi(z)h
∗
i (z)) for i = 1, 2, 3, 4. It is

noted that our QEC codes [[n, k, d]]q are better than the existing quantum codes [[n
′
, k

′
, d

′
]]q

collected from the different references mentioned in this article. In Table 2, we obtain new

quantum codes, and in Table 3 we construct LCD codes C = 〈
4
∑

i=0
∆ihi(z)〉 of length n over

R, where gcd(n, p) = 1, Ci = 〈hi(z)〉, and hi(z) is the self-reciprocal divisor of zn − 1 in
Fq[z] for i = 1, 2, 3, 4.

6. Conclusions

In this article, we discuss some of the structural properties of cyclic codes over the
ring R = Fq[u1, u2]/〈u2

1 − α2, u2
2 − β2, u1u2 − u2u1〉, where α and β are non-zero elements

of Fq. Furthermore, we obtain better quantum codes than presented in [8–13]. As an
application, we obtain LCD codes over the ring R. This study can be generalized to a
product of finite rings. We hope that this study will encourage readers to investigate these
codes over other finite rings to explore new and better quantum codes in the future.
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