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Abstract Both null and timelike rays experience trajec-
tory bending in a gravitational field. In this work, we sys-
tematically develop a perturbative method to compute the
deflection angle of rays with general velocity v in arbitrary
static and spherically symmetric spacetimes and in equato-
rial plane of arbitrary static and axisymmetric spacetimes.
We show that the expansion in the large closest approach
xo limit depends on the asymptotic behavior of the metric
functions only, and the generated integrand is always inte-
grable, resulting in a deflection angle in a series form of
either xo or b, the impact parameter. Using this method,
the deflection angles as series of both xo and b are found
in Schwarzschild, Reissner—Nordstrom and Kerr—Newman
spacetimes to 17-th, 15-th and 6-th orders respectively, for
both lightrays and particles with general velocity. The effects
of the impact parameter, velocity and other parameters of the
spacatimes are briefly analyzed. Moreover, we show that for
spacetimes whose metric functions are only asymptotically
known, the deflection angle in the weak field limit can also be
calculated. Furthermore, it is shown that the deflection angle
in general static and spherically symmetric spacetime and
equatorial plane of static and axisymmetric spacetime to the
lowest non-trivial order, depends only on the impact param-
eter, velocity of the particle, and the effective ADM mass of
the spacetime but not on other parameters such as charge or
angular momentum. These deflection angles are used in an
exact gravitational lensing equation and the corresponding
apparent angles of the images of the source are also solved
perturbatively.

1 Introduction

One of the classical and important consequences of Gen-
eral Relativity (GR) is the deflection of lightlike geodesics
in curved spacetimes. One hundred years ago, Eddington’s
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observation of the star position shift played a major role in
helping GR won its acceptance by physicists and the public.
Nowadays, the deflection of lightlike rays is usually observed
by very long baseline radio interferometer [1] with an accu-
racy of sub-microarcsecond [2] . In 1991, the deflection of
light due to Jupiter was observed [3] and that due to Saturn
might be observed by Gaia [4].

The deflection of light leads to one important theoretical
and observational tool in modern astronomy and cosmology:
the gravitational lensing (GL). After the observation of the
first GL in 1979 [5], many features, including luminous arcs
[6,7], Einstein cross [8], Einstein rings [9], GL of CMB [10—
12], and supernovas [13,14] and even composition features
such as the SN Refsdal which combines the Einstein cross
with the GL of supernova [15] have been observed. The GL
were then used to study properties of the lens [16], coevo-
lution of supermassive black holes (BHs) and galaxies [17],
cosmological parameters such as large scale structure (for a
review see [ 18]), properties of the supernova [ 19], dark matter
substructure [20,21], and to discriminate alternative gravita-
tional theories. More recently, with the discovery of gravita-
tional wave (GW) [22-25], observation of its GL effects has
also been proposed and put to use [26,27].

Although traditionally lightrays have been the main mes-
senger in the observation of GL, with the observation of extra-
galactic neutrinos from SN 1987A [28,29] and blazer TXS
0506 + 056 [30,31] and the GWs, it is clear that these two
kinds of messengers in principle can also go through the
bending process and be observed in lensing scenarios. One
of them, neutrinos, are long known to have non-zero small
mass [32]; while for GWs, its speed can also deviate from the
speed of light in gravitational theories beyond GR [33,34].
Therefore in considering their lensing or GL of any other
massive particles, in principle one should compute the deflec-
tion angle and time delay formulas using timelike geodesics.
Currently, most theoretical works on the GL of these two mes-
sengers are still using corresponding values obtained using
lightlike rays [27,35-38]. Recently, some of us computed the
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deflection angles in Schwarzschild and Reissner—Nordstrom
(RN) spacetimes and time delay in Schwarzschild spacetime
for general velocity [39]. It was shown that the difference of
the apparent angles of lightrays and neutrinos can be corre-
lated to the neutrino mass and mass hierarchy [40,41]. More-
over, the dependence of the deflection angle on messenger
velocity can also cause small change of the BH shadow size
in these spacetimes [40,42]. These results show that in con-
sidering effects related to the trajectory bending of massive
particles, timelike instead of lightlike geodesics should be
used if a high accuracy is desired.

In GLs of both massless and massive particles, the GLs in
the strong field limit is important for a few reasons, especially
for their applications in strong field test of GR and alternative
gravitational theories. In the strong field limit of arbitrary
statics and spherically symmetric (SSS) spacetime, Bozza
[43] developed a general method to calculate the deflection
angle for lightrays and showed that it always diverges log-
arithmically as In(x — xo) where x¢ is the closest approach
of the ray. Many authors successfully calculated the deflec-
tion angles in the strong field limit for particular spacetimes
using this method [41,44-47]. However, from an observa-
tional point of view, all the light bending and GLs seen up
to now are in the weak field limit, i.e., with small deflection
angles. GL in the strong field limit will not be directly observ-
able in near future experiments because of its high resolution
and magnification requirement. For example, to resolve the
relativistic images produced by the Milky Way galaxy BH
requires an angle resolution of 10~ microarcsecond, which
is 2 orders smaller than the resolution currently reachable
[41].

In this paper therefore, we still concentrate on the deflec-
tion angle and GL in the weak field limit, but for general
velocity. We propose a general formalism for computing
the deflection angle of particles with arbitrary velocity in
SSS spacetimes and in the equatorial plane of stationary and
axisymmetric (SAS) spacetimes. This procedure allows us
to expand the deflection angle in the power of the recipro-
cal of the closest approach x( or impact parameter b, which
are large quantities in the weak field limit. Moreover, it will
also be shown that this procedure can be used to calculate
the deflection angle of metrics that are only known in the
asymptotic region. This is particularly useful because in most
spacetimes that have a complex matter distribution, the met-
ric functions are usually not analytically solvable while their
asymptotical behavior can usually be obtained using series
method. We will also show that for all equatorial geodesics in
any SAS and asymptotically flat spacetimes (note that SAS
spacetimes cover SSS spacetimes), the deflection angle to the
lowest non-trivial order always takes the form

2y ] 1
a—7< v—2> (1)

@ Springer

where m is the ADM mass of the spacetime, b is the impact
parameter and v is the speed of the test particles at infinity. In
other words, all other spacetime parameters such as effective
charges or angular momentum will not influence the deflec-
tion angle at this order. Again, we emphasis that all results in
this paper apply not only to null rays but signals with general
velocity.

Previously, the weak deflection angle has been calcu-
lated mainly using two slightly different but yet connected
approaches. The first and most traditional way is the direct
integration method which tackles the integral for the deflec-
tion angle directly. The second, which is more recent and
also very promising, is to utilize the Gauss—Bonnet theorem
to find the deflection in a somewhat more indirect but elegant
way [48-53]. From this point of view, our work leans more
towards the first category.

We arrange the paper in the following way. In Sect. 2,
we present the perturbative procedure for computing the
deflection angle in SSS spacetimes to any desired order. The
results are then used in Sect. 3 to find the deflection angle to
the minus 17th order of b in Schwarzschild spacetime and
minus 15th order in RN spacetime. We also give an exam-
ple (the SU(2) Yang—Mills—Einstein solution) for computing
the deflection angle in asymptotically known spacetimes. In
Sect. 4, the deflection angle in the equatorial plane of Kerr and
Kerr—-Newman (KN) spacetimes are computed to the minus
6th order of b. We then in Sect. 5 show how all these deflec-
tion angles can be used to find the apparent angle in GL
perturbatively. Lastly, a few possible applications and direc-
tions of extension are discussed in Sect. 6. Throughout the
paper we use the geometric unit G = ¢ = 1.

2 Deflection angle in SSS spacetimes

For general SSS spacetime, the metric can always be written
as

ds? = —A(x)dr? + B(x)dx? + C(x)(d6? + sin® 6d¢?).
()

For this metric, the geodesic equations after two first integrals
take the form

. E
= o
b= L (3b)
o
B 1 E? L?
Y= B0 (K TAm C(x))’ G0

where ~ denotes the derivative with respect to the proper time
(or affine parameter) A. Here we have already set6 (1) = 7 /2
without losing any generality and k = 0, 1 for lightlike and
timelike particles respectively. E is the energy of the lightlike
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ray or that of unit mass of the test particles at infinity, which
can be related to their velocity v at infinity through

1
E=——. “
V1 =2
L is the angular momentum of unit mass of the test particle
at infinity, satisfying

— W E2 _
mb bV E 5)
where b is the impact parameter of the ray. Here and hence-
forth, we assign the impact parameter to be a positive con-
stant, while the angular momentum L in principle can change
sign.

Using Egs. (3)—(5), itis easy to show that after some simple
algebra, one can integrate d¢/dx to obtain the deflection
angle of a ray both originating and propagating from infinite
radius as [54]

a(xg) = I(xo) —

where the change of the angular coordinate, 7 (xo), is

I (x0)
\/B(x) (E2

o0
%0 Cw Ao
v C(x)\/E2 A<§> e

Ll =Ip xr|=

2n+ (6)

— kA(x0))
1} + K A(xo) (1 - gg(g))
(N

Here 7 is an integer such that —7 < «a(xg) < . In the weak
field limit, we should always choose n = 0.

Setting « = 0, Eq. (7) reduces to the change of the angular
coordinate of lightlike ray given in Ref. [43,54]

dx.

I(xo) = 2/00 VB dx. (8)
o O [C@ A

A(x) C(xo)

The closest distance of approach x( can be linked with L by
setting x = 0 in Eq. (3¢). Further using Egs. (4) and (5), one
has the following relation between the impact parameter b
and xo

1 JVE?Z-1 9
b L ©
E2 —1 A(xp) l(i) (10)

\/ — kA(xg) | Cxo) x0/)

As we stated in Sect. 1, we are interested in the weak
field limit of the deflection angle. To calculate o (xp) in weak
deflection limit, then we should let xo approach infinity. The
main content of this paper is then to show that the change of
the angular coordinate / (x() and consequently the deflection
angle o(xp) can be expanded as a power series of )CLO and
the integral can always be carried out. Moreover, we find a
practical procedure to calculate the coefficient of each power,
for both null and timelike rays.

To carry out the expansion and integration of Eq. (7),
we first change variable from x to u = xo/x so that I (xg)
becomes

I (x0)
_,['x VB(xo/u)(E? — kA(xp)) »
- 2
o u X 2
Vet e[St & - 1]+ eac (1- i)
1
z/ y(xo, u)du, (11)
0

where y(xq, u) stands for the integrand. This change of vari-
able effectively transforms a partial dependence of I (xp) on
xo through the lower limit of the integral to a full dependence
on x( through the integrand y(xo, ©). For this integrand, since
in the weak field limit, x¢ is much larger than any character-
istic length intrinsic to the spacetime, we can always do an
asymptotic expansion in powers of xlo to find

y(xo, u)
_io . {_ZZA( ) B (2) VT8 }
X i (Z) (z, 1)
| 2 | Vg 1
+F zll>oo AN
0 C

5 < > KZ3A(z)>
u 2g(z)
(

2YA() B (ﬁ)C%z)
2T

2 JA(%)B

u

(F)Cc@C (3)
20 (2 )3/2
\/g(z)A (2)C@)
2Fh(z u)3
X (—A (2) (KA (—) Cix)+C (E) 4 (3))
+£” (ca' (2)+4() @)
ra@ (e () - c@) 2 ()
o) - ()
5 ().

o (3)/ L 8", guv (5)N> +0 (7) (12)
0
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_ Z yn(x?l, u) (13)
0

where ' denotes the derivative with respect to z, and

g(2) = E? —kA(2), (14)

h(z, u) = \/A(Z)C (3) g (5) iy (5) C)gz), (15

and y, (xo, u) (n > 2) in Egs. (12) and (13) denote the coef-
1\" . . . . .
X_o) . Setting k = 01in Eq. (12) yields for lightlike

2z,/B (5)

AQDC(2)
ACE )C@

uzzaa[i[z(i%;) zz:i:;

—-1/2
1)

ficient of (
rays,

1
y(xo,u) = — lim §—
xo 7—> 00

s iii (A(<)>Cc(<)>)

AG)C@
1 i Z /
+;gzil&y2 &uv(2)s &uv . 8 (),

guv (2)/ 8w (@, g (Z)q +0 (;())3

(16)

Integrand (12) and (16) have a few remarkable properties.

0
It is seen that the order (Xl—o) term involves only the limits

1
of the metric functions, and the order (xio terms involve

up to the first order derivative of the metric functions. The

2
<i> term is not shown explicitly here because of its length,
X0

but we can show that it only contains terms up to second
derivative of the metric functions. In general, it is found that
this expansion can always be carried out to arbitrary desired

order of % and the coefficient for the (xlo ! order involves
up to the nth derivative of the metric functions. Note that
although the expressions might appear long and tedious as
the order increases, the involved mathematics are only taking
derivatives and finding limits, and therefore still algebraically
simple. In this sense, this expansion is straightforward and
tractable, especially when the metric functions are explic-

itly known. As will be seen in Sect. 3, for explicit spacetime

@ Springer

n

metrics the coefficients for all orders of (xio are concise.

Therefore, length of the results of 7 (xp) obtained after inte-
grating u in Eqgs. (12) and (16) will also be much shorter
comparing to the length of the integrand.

The second property, which is simple but fundamental,
is that the expansions use only the asymptotic behavior of
the metric functions to the desired order. In other words,
from the point of view of the deflection angle «(xp), the
rays with asymptotically large xo do not experience how the
spacetime is curved in the central region. Spacetime in the
large x( region to various orders of xlo is enough to determine
the deflection angle to the corresponding order. Although
intuitively this seems simple, it is this property that allows
us to determine the deflection angle in spacetimes whose
metric function are not fully but only asymptotically known.
We shall see in Sect. 3.3 how the deflection in colored BH
spacetime can be calculated.

The third property of these expansions, is that they are
always integrable if the metric functions A(x), B(x) and
C(x)/x? are finite at large x and have asymptotical expan-
sions of the form

A(X)ZZ%’ B(x) = b_,,7 C(x)
n=0

xn’ x2
Z -
= =
n=0

n=0
where a,, b, and c, are finite. These conditions are
certainly satisfied by many familiar spacetimes such as
Schwarzschild, RN, Hayward [55], Bardeen [56], Gibbons—
Maeda—Garfinkle-Horowitz—Strominger (GMGHS) [57-59]
and Janis et al. [60] metrics. With these conditions, clearly
all the terms in various numerators in y, (xo, #) in Eq. (12)
can be expanded as series of their arguments, which become
powers of u. The only non-trivial parts are the denominators
in y, (xo, u), i.e., the terms 1/ 4(z, u)". In the limit z — oo,
they can be simplified as
n/2
:| . (18)

. 1 1 u?
lim =
700 h(z, u)" ao(E — kag)coz® (1 — u?)
A further transformation of variable u — cos 6 will trans-
form the expansion (13) into the following form
0
N 1

I(x0) = / Z —y”(nu)du Hoosh, Z—n

1 n=0 *0 n=0 0

n
. Z Yn.m cos™ 0

2 m=0
x/ ———dé. (19)
0 (1 + cosB)"

Here y, , are functions obtained after the transformation and
they do not depend on the integration Variable Because of

the integrability of functions of type m (m < n), the

n=0,1,2,..) (17)
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expansion (12) becomes always integrable under conditions
Eq. (17).

In short, with the integrand expanded as (12), one can then
do the integral of u to get the change of the angular coordinate
as a power series of %

1 o I,
100 = Yo [ e =30 %, 20)
n=0"0

n=0 "0

where [, is the n-th order coefficient in 7 (xq). It is important
to note that the integral here can always be carried out because
of the integrability of Eq. (19).

Because the impact parameter » is much easier to be linked
to observable quantities in GLs, it is also desirable to write
the expansion (20) in series of %. In that case, we can attempt
to directly solve Eq. (10) to obtain the inverse function

L _ -1 ! 1)
X0 b

and then substituting into Eq. (12) and expanding around
large b to obtain the desired expansion

/

1(b) = I—" (22)
n=0 b

Indeed, because what is needed is only the expansion of (21)
by not necessarily the inverse function /! () itself, one
can use the Lagrange inversion theorem to directly find this

expansion without solving /=" (1) explicitly

1 1

— = — lim

R w "l 1
xo ‘= n! ul)%O dwn—1 {|:l(w) —1(0)] }b_” 3)

This will be especially useful for those metric functions in
Eq. (10) that are hard to find the inverse function / -1 (%)
analytically.

Moreover, for ultrarelativistic massive particles, we can
also further expand the integrand (12) around v = 1 and
integrate to find 7 (xg) or 1(b) as a series expansion of the
velocity difference

I = Z |:an zoln,m(l - U)m:|

n=0 0
1
-3 [5 S ta-or] o
n=0 m=0
Apparently, the leading terms in the m summation ), _, I)’C’;,O
0

!

I
ory ,_o ;j—,f) will be just the change of the angular coordinate
of lightlike rays.

3 Application to particular SSS spacetimes

In this section, we apply the procedure in Sect. 2 to some
known SSS spacetimes, namely the Schwarzschild, RN and
the colored BH spacetimes. We will find the deflection angles
in the weak deflection limit for general particle velocity, i.e.,
for both lightlike and timelike particles. The state of art of
the deflection angle for Schwarzschild metric is to the sixth
order of % and % for lightlike rays [61], and for RN metric
to the third order of % and % for lightlike rays [61], and to
various orders for some other interesting metrics as well [62—
67]. In the following, we present the change of the angular
coordinate to much higher orders for signals with general
velocity. As we explained before, although the idea of this
formalism is powerful and clear, the calculations, especially
taking high order derivatives, simplifications and integration
are tedious. Therefore in most cases we will avoid showing
the intermediate steps.

3.1 Deflection angle in the weak field limit in
Schwarzschild spacetime

For the Schwarzschild spacetime, the metric functions take
the form

A()—l—z—m B()—L C(x) = x* (25)
X) = PR x_A(x)’ xX) =x".

After substituting into Eq. (12), simplifying and integrating

over u, we find I (xq) to the order #
0

17 n 18
Is(o, ) =S, (ﬁ) +0 (ﬁ) , (26)
=0 X0 X0

with
SO =7, (273)
1
S =2<1 +—2>, (27b)
v
3 1 1
10 3\ 1
S = — 4 (26- ) =
T3 ( 2 ) 02
301 -3 4+ 11 27d)
J— jT— JE— —_——
vd o 38’
1057 937w 1 69
So= (2T ag) = 4 (22X —g6
YT T4 +< 4 >v2 +( 4 )
Lo — oL 5t (27¢)
X — 7 —23)— —3—, e
vé v v8

and the S5 to S17 terms are given in Eq. (A1) because of their
excessive length.
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For lightlike particles, setting v = 1 in Eq. (26) yields the
result

17 m n m 18
&Mm)=§:&y<%) +0<%) : (28)
n=0

with

So,y =, (29a)

Sty =4, (29b)
15

S2y = TJT —4, (29¢)
122 157

Sy =3~ (29d)
3465

Siy = 2 130, (29€)

with S5 ,, to S17,, givenin Eq. (A2).

For ultrarelativistic particles, their change of the angular
coordinates can be obtained by expanding (26) around (28)
as series of (1 — v). To the order (1 — v)!, this takes the form

Is(xp,v — 1) =I5, (x0) + (1 — v)

|: m\" m\? mY
« 4(—)-+&n—1%(—> +<m2—ZM>(—)
X0 X0 X0
4 5
+ (ﬁ - 542) <ﬁ> +0 (ﬂ) ] +01 - ).
2 X0 X0

(30)

Higher order terms in (;%) are given in (A3) and terms of
order (1 — v)" (n > 2) can be easily obtained too.
In order to write the expansion (26) in power series of l,

we first substitute metric functions (25) and ¥ = 1 into Eq.
(10)

1 1 E?2—1 2m
- = — 1 - —. 3D
b X0 E2—<1—2—m> X0

X0

Using Eq. (23), we can find ;"—0 in power series of 7 as

m man ma 18
w2 (5) o) 62
n=1

X()_

where the coefficients are

Cs1=1, (33a)
1
Csa =, (33b)
v
2 1
Cs3=—=+ 57, (33¢)
v 2v
1 1
Csa=4—=+—]), 33d
S.,4 <U2 + v4> (33d)

and the Cs 5 to Cs 17 terms are given in Eq. (A4).

@ Springer

Putting Eq. (32) into Eq. (27), one finally obtain the change
of the angular coordinate in the power series of % for general
velocity

17
B y ﬁ n T 18
@@J»_Z;&(b)-+o(b), (34)
with
Sy =7, (35a)
1
S| =2 (1 n —2) , (35b)
v
, 3 4
== (1+). (350)
5 15 5 1
S=2=+—= -—, 35d
(3 vz oyt 31)6) (35d)
1057 16 16
S, = o (1 +¥+F>’ (35e)

and S5 to S, are given in Eq. (A5). Comparing the powers
of % and % in each summand of (34), we can see that

lim 2 () o () (36)

where § = 0, 1 for odd and even n respectively. Therefore in
order for the entire expansion to converge, the velocity shall
not be indefinitely small. Rather, the range of convergence
forvisv € (O (%) , 1]. Note that when b is large, this
range covers velocities of all interested rays or particles that
are (potentially) timelike. These include supernova neutrinos
and GWs in some generalized theories of GR.
After substituting v = 1 we obtain

17
m\n m 18
Isy(bv) =38, (Z> +0 (Z) , (37)
n=0
where
S(/)’V =, (38a)
St =4 (38b)
157
/
S, = W (38¢)
128
/
53,), = 3 (38d)
g 34657 (38¢)
= N e
YT 64

and S , o S}, are given in Eq. (AS).
Again, for the ultrarelativistic particle, the expansion in
powers of (1 —v)! is
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Fig. 1 The deflection angles in the Schwarzschild spacetime for null
rays (v = 1). a Partial sums (40) for b/m from 7 to 100 and from 7 to
10 in the inset (from bottom to top curve in each plot, k increases from 1
to 17) and the exact deflection angle (dashed red curve). b Contribution

Is(b,v— 1) =I5, (b) + (1 —v)
o) o () e 3

RELLLY LS e (E)S] O v,

2 b b (39)

The higher order terms in (%) are given in Eq. (A7). Cor-
rections in high orders of (1 — v)" (n > 2) can be easily
obtained too.

3.1.1 Convergence of the series and effect of velocity

Although the main purpose of this work is not to examine
the effect of parameters in each metric, numerical study of
the deflection angles such as Egs. (34), (43) and (88) can
not only reveal their validity but also the regions of converge
for b and moreover the effect of velocity. To examine the
convergence of the deflection angle (34), we plot in Fig. 1a
the partial sums

k
n
as,k=§ S,’,(%) k=1,...,17),
n=1

for lightrays and the corresponding exact values obtained
using numerical method to an accuracy of 10713, We also
plot in Fig. 1b the contribution from each order S, (%)" for
lightrays.

It is seen from Fig. la that for all fixed b/m, the partial
sums converge to the exact deflection angle as the number of
terms in the partial sum increases. The minimal convergent
impact parameter can reach a sub 10m level. Indeed, as one
can see from the inset of Fig. la that when b < 10m, the
deflection angle is already larger than 0.2r. This value cer-
tainly exceeds the traditional weak deflection limits. There-
fore this nice applicability of the perturbative deflection angle
(34) shows clearly the power of the perturbative result, espe-
cially when high orders in the expansion can be known.

(40)

from each order (from top to bottom curve n increases from 1 to 17) for
impact parameter b/m from 7 to 14. In a, we also illustrated the exact
deflection angle obtained using numerical method and in b a horizontal
line of 1 [as]

It is also noticeable from Fig. 1a that as b/m decreases
from large values, the low order contributions to Eq. (34)
becomes less dominant. As b/m approaches the strong field
limit which is b./m = 3+/3 for lightrays, the high order con-
tributions become more and more important and eventually
cause the divergence of the total deflection angle. In order to
determine the accuracy of the deflection angle calculated to
certain order, we plotted the contributions from each order
in Fig. 1b and a benchmark line of 1 [as]. Clearly in this
plot the slope of contribution S, (%)n should be —n. What
is important is that for any fixed b, as the order increases, the
contribution from each order decreases by a factor smaller
than 1. Therefore this decrease guarantees that the series con-
verges at all b considered. In particular, one sees that even
for b as small as ~ 9.7 m, the deflection angle expanded to
the 17th order is still accurate to the 1 [as] level, which is
roughly the limit of GL observations of galaxies and galaxy
clusters.

To study the effect of signal velocity on the deflection
angle, we plot in Fig. 2a the contribution from each order
to the deflection angle for v = 0.9¢, and in Fig. 2b for fixed
b = 10m and increasing v from 0.35¢ to c. Comparing Fig. 2a
to Fig. 1b, one can see that as v deviates from c, the contri-
bution to the deflection angle from each order also increases.
This leads to an increase of the impact parameter (from 9.4
to 10.5m) at which the accuracy of the expansion can reach
the 1 [as] level. For a fixed b = 10m, it is seen in Fig. 2b that
as v decreases, the deflection angle increases as dictated by
the series (34). However, it is known that for massive parti-
cle with velocity v at infinity, there exists a critical impact
parameter b, [41]

[8v* + 2002 — 1 4+ 802 + 1)3/2]* m
V22

below which the particle will spiral into the black hole. Using
this relation, it can be worked out then when v = v, = 0.43c,
b. = 10m. Particles with velocities at or below this value

be(v) =

(41)
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<. 0.001 \

o 1075t

107+

8 10 12 14
b/m

(a)

Fig. 2 The deflection angles in the Schwarzschild spacetime for time-
like rays. a Contribution from each order of the deflection angle in
Eq. (34) (from top to bottom line n increases from 1 to 17) for fixed
v = 0.9c and b/m from 7 to 14; b Partial sums (40) (from bottom to

will all have larger b.’s and therefore for these particles if
their impact parameter b = 10m, then they will experience
a divergent deflection angle and eventually be captured by
the BH. This is also seen from the sharp deviation of the per-
turbative deflection angle (34) from the exact value starting
from v/c = 0.5. Below this velocity, the deflection angle,
Eq. (34), becomes invalid.

3.2 Weak deflection angle in RN spacetime

The RN metric is given by

A ! 2m g 1

(x) = —T-i-x—z, B(x)—m,
where ¢ is the total charge of the spacetime. Substituting
this into Eq. (12), simplifying and integrating over u we get
the change of the angular coordinate for RN metric to the
fifteenth order of % for general velocity v

Cx)=x%. (42)

15 m n m 16

Irn(x0.v) = Y Ry (—) +0 (—) : 43)
X0 X0

n=0
where
Ro = So, (442)
Ry =51, (44b)
Ry=S —<£+l) 52 (44c)

2 =02 4 21}2 q,

T 1 L.,
R3_s3—[2—(5—11)§—(n—l)v—Jq C(44d)
RS 457 N iz 1

PTT T, 8 V2
297\ 1 1] .
o T T d
Z = T4 44
+ (64 * 32 8v4> (44e)
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(b)

top curve, k increases from 1 to 17) and exact value of the deflection
angle (dashed red curve) for fixed » = 10m and v from 0.35¢ to lc.
The critical velocity for this value of b is shown by the dashed blue line

where ¢ = ¢g/m, S|-S4 are the corresponding terms in
Schwarzschild spacetime given in Eq. (27) and Rs—Rs are
given in Eq. (B1). The expansion coefficients (44) show that
the effect of the charge in the RN metric starts to appear in
the deflection angle from the second order in R;. Rewriting
Eq. (44c), we have
Ry = 3%—#(371—2)%2—2”—14—%(1—1—5—2)@2. (45)
This implies that the total deflection angle decreases mono-
tonically as |g| increases. This agrees with the observation in
Ref. [40]. Similar to the Schwarzschild case, comparison of
R,4+1 and Ry, in the large x¢ and small v limit also suggests
that in order for the expansion (44) to converge, the velocity
of the particles should be bounded within v € (/m/xo, 1].
For lightlike particles, setting v = 1 we obtain its corre-

sponding Irn,y (x0)

15 m\" m\ 10
IrN,, (x0) = Ry, (—) + 0O (—) (46)
’ nX:(:) "7\ xo X0
where the coefficients are given by
Ro,y = So,y, (47a)
Ry, =Sy, (47b)
3n4?
Roy =Sy — 4q : (47¢)
3
Ry, = Ssy — (14 - 7”) g% (47d)
8251 57w g*
Ri, =84, — [ —— —50) 4> , 47
4y =S4y ( %) )‘] + ) 47e)

where S, ,, are given in Eq. (29) and Rs ,, to R5 ,, are given
in Eq. (B2). The result (47) agrees with the deflection angle
in Ref. [61]. For ultrarelativistic particles, the change of the
angular coordinates can be expanded around Igrn,y, (x0). To
the order (1 — v)!, this is
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Irn(xg, v = 1) = IrN,y (x0) + (1 —v)

« !4 <:1—0> n [(671 —12) - m}z] (%)2

3
+ [3(34 —97) — (26 — Sn)cjz] (ﬁ>
X

0
3757 285w 2
+ — = 542 — 7 186 ) ¢

4 5
+5—”é4} (ﬁ) +O (ﬁ> } Lo —v)?, (48
4 X0 X0

where for simplicity in the curl bracket the orders higher than

(%0)4 were not shown.

In order to transform the change of angular coordinates
(43) into a power series of L we shall use the relation (10)
which in this case becomes for k = 1

1 1 VE? -1 2m g2
- =— l——+ . (49)
b X0 2 2m q* o %0
E- — (1 % + g)
Using this, )’31—0 can be expanded as power series of 7
" S e (MY 4 0 (M) 50
% = ,;1 RN,n (z) + (z) (50)
where the coefficients are
CrN,1 =Cs 1, (51a)
CrN,2 =Cs 2, (51b)
~2
CrNn,3 =Cs 3 — ook (51c)
2 1Y .,
Crna=Csa— |5 +—7)9q, (51d)
v v

with Cs; to Cs 4 present in Eq. (33) and CrN,5 to CrN, 15
given in Eq. (B3). Substituting this into expansion (43), the
change of the angular coordinate becomes

15
m\n m 16
a0 =Y R, (7) +0(3) - (52)
n=0
where
R) =S, (53a)
R, =5, (53b)
;o T 2\ .o
RZ_SZ—Z(HU—z)q, (53¢)
Ry=5,—2 1+ 2y ) (53d)
v vt

32 2
37 24 8\ .
+a@+ﬁ+7>{ (53¢)

and the higher order terms are given in Eq. (B4). For lightlike
rays, this reduces to

Ign.y (b) = Is. (b) — 37” (g)Z — 1642 (%)3

+16%5n (—18@2 n c}“) (%)4 +O (%)5 ,
(54)

where the first three orders were known in Ref. [61]. Again,
for the ultrarelativistic particle, the change of the angular
coordinate expanded to the (1 — v)! order is

Irn(b, v — 1) = Ign,y (D) + (1 —v)
L) e (=) (G) 2 (6-4) (5)

) ()

+O (%)5} + O3 - v)? (55)

and terms of order (%)5 and (1 — v)? can be similarly com-
puted but not shown for simplicity reason here.

3.2.1 Effect of charge on deflection angle

In Fig. 3a we plot contribution of each order R, (%)" to the
deflection angle (52) for § = 0 and ¢ = 0.4 respectively and
v = 0.9¢, and in Fig. 3b the same quantities but for ¢ = 0
and § = 0.4 and b/m = 10. While in Fig. 3c for lightrays
with b = 10m, the contribution from each order in Eq. (52),
the total deflection angle (52) to the 15th order, and the exact
deflection angle obtained numerically, are shown.

It is seen from the comparison of Fig. 3a, b with Fig. 2,
the effects of b/m and v/c in RN spacetime are similar to
the case of Schwarzschild metric. Moreover, in each plot of
Fig. 3, a comparison between the ¢ = 0 and ¢ = 0.4 cases
shows that as explained from Eq. (45), the contribution of
each order R), (%)n and therefore the total deflection will all
decrease as g increases. Figure 3c further illustrates that this
effect indeed is persistent to the region that ¢ > 1, i.e., from
an RN BH spacetime to naked singularity case. A comparison
of the deflection angle (52) to the exact value also reveals
that this expansion approximate the exact deflection angle
perfectly in both the RN BH and naked singularity cases.
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0.001

Ry,y'(b/m)" and Iry
)
&

0.80

Fig. 3 The deflection angles in the RN spacetime. a Contribution from
each order of the deflection angle in Eq. (52) for fixed v = 0.9¢ and
b/m from 7 to 14 (from top to bottom 7 increases from 1 to 15); b
contribution from each order of the deflection angle (from bottom to

3.3 Weak deflection angle in non-explicitly known SSS
spacetimes

As explained in Sect. 2, the change of the angular coordinate
in the large x¢ limit shall be determined by the spacetime
in the large xo region. In literatures, there are quite some
interesting SSS spacetimes whose metric functions are not
known explicitly and/or analytically due to the complexity
of the Einstein equations. However, very often their asymp-
totic behavior can be known from series analysis. We take
the colored BH in the SU(2) Yang—Mills—Einstein theory as
an example [68]. We will show that in this spacetime the
change of the angular coordinate can be solved to the order

1
(%) without having to know the explicit form of the metric

functions.
The metric of the colored BH are given at large x by [68]

A(x) = e 2@ (1 - 2m(x)) 220 o2k (1 - —2Mk> :

X X
(56)
~1 -1
B(x) = (1 _ 2m(x)> X—00 (1 B 2Mk> ’ 57)
X X
Cx) = xz, (58)

where —1 < 8y < 0, 0 < M} < 1 are constants and
k=1, 2, . are indices characterizing colored BHs of
different masses.

Itis clear that asymptotically this metric is almost identical
to the Schwarzschild spacetime at the first order except the
factor e 2% in front of A(x). Substituting the metric into Eq.
(20), one finds the change of angular coordinate for general

1
velocity to the order ( 1 ) as

x0

2 [2 — 2@t (1 — U2)5k+1] M,
1 — 2@t (1 — p2)detl E

M 2
+0 <—"> .
X0

Icg(x0) =7 +

(59)
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(b)

top n decreases from 15 to 1), the total deflection angle (solid blue
line), Eq. (52), and the exact deflection angle (solid red line) for fixed
b = 10m, v/c = 1 and ¢ from 0 to 1.2. The solid blue and red lines
overlap

Itis seen that for massive particles, Icg (xp) is affected by not
only the asymptotic mass My, but also ;. For lightlike rays,
the change of the angular coordinate becomes

4M M\ >
Icp.,y(x0) =7 + — +0 (—") .

X0 X0

(60)

To the order xl—o, this equals the changes of the angular coor-
dinate (28) in the Schwarzschild spacetime and (52) in the
RN spacetime.

The expansion of 1)‘(4—(;‘ in term of % in this metric can be
found using the same procedure as in Eq. (23) to be

M v M M \?
Mi _ Mi o (M)
X0 1 —eXk(l —v2) b b
Substituting this into Eq. (59), one can obtain the change of
the angular coordinate to the order of %. Moreover, it is also

easy to see that for lightlike rays, this becomes

4M, 1\?
Icp.y(b) =7 + 7" o) <Z) .

(61)

(62)

4 Weak deflection angle in Equatorial plane of SAS
spactimes

To find the deflection angle in the weak field limit in a non-
SSS spacetimes described by metric g, in principle one
could attempt to derive through the geodesic equations the
differential equation that the angular coordinate satisfies

de (x)
dx

where f;s denotes some function derivable from the metric
functions g,,. Here the coordinate x should resemble the
meaning of distance when it is large, E denotes energy per
unit mass of the ray at infinity and p collectively stands for
all other parameters that might appear in the metric, such as
spacetime mass m, angular momentum per unit mass a etc.

=fl‘lS(x’ E7 P) (63)
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Integrating Eq. (63) then yields the change of the angular
coordinate for a ray coming and going to spatial infinity

oo oo
I(x0) = z/ 900 4 2/ fusx, E, p)dx.  (64)
X0 d‘x X0

In order for the above process to make physical sense
and the integral to be eventually carried out, usually a few
requirements should be satisfied. The first is that there should
exist a spatial infinity (x — o0) at which the spacetime is
approximated by a flat spacetime. Only in this circumstance,
the interpretation of the integral (64) subtracting 7 as the
deflection angle makes physical sense. The second is that the
metric should still possess certain amount of symmetries.
Indeed, the geodesic equations are originally second order
differential equations while Eq. (63) is already first order. For
this to happen, the spacetime will have to have at least the
necessary symmetries to allow the first integrals. Moreover,
only when the spacetime is static, the function fys(x, E, p)
in Eq. (63) and so that the change of the angular coordinate
can be static. Finally, from the practical point of view, the
function fs(x, E, p) should still be simple enough for the
integration to be carried out. This can require one or more
of the following conditions or techniques, such as simple
enough metric functions, specially picked trajectories in the
spacetime, or series expansions of the integrand over certain
parameters.

The above considerations naturally singles out the SAS
spacetimes as next suitable candidates for computation. We
start from the most general SAS metric given by the Weyl—
Lewis—Papapetrou line element [69-71]

ds? = — eV (dr — wdg)?
4o [eZV dp? +dz2) + p2d¢>2] 65)

where (¢, p, ¢, z) are the coordinates and U, w and y are
arbitrary functions of p and z only. For latter easier reference,
we can rewrite this metric into the form

ds? = —A(p, 2)dt> + B(p, z)dtd¢
+C(p, 2)d¢? + D(p, 2)(dp? + dz?) (66)

where we have set A(p,z) = e2U, B(p,z2) = 2we?V,
C(p,z2) = p*e 2V —w?e?V and D(p, z) = e*7~Y) Note
there is a relation between these functions
p* — B*/4

—

We further assume that this spacetime allows a plenary
motion for particles in a plane with fixed z, which will be
called the equatorial plane henceforth. Indeed, without los-
ing any generality, the coordinates can be shifted along the
z axis so that this plane becomes z = 0. The motion in the
equatorial plane then becomes effectively 2+1 dimensional
whose metric after suppressing the z coordinate in the metric

C = (67)

functions becomes

ds? = —A(p)dt* + B(p)drde + C(p)dep? + D(p)dp>.
(68)
We then concentrate on the motion of particles in this plane.

The geodesic equations corresponding to metric (68) can
be readily obtained as

._ E B(p)*\ , LB(p)
T A (1_ 40 >+ 207 )
. 1
¢ = 5,7 2LAG) — EB(p)]. (70)
4p% [E? —kA(p)] — [EB(p) — 2LA(p)]?
g W [E (p)}; —LEB() L
p*AD

where we have substituted (67). Here E and L are still energy
and angular momentum per unit mass of the particle at infi-
nite p. Note that because the SAS spacetimes might carry
a nonzero angular momentum, the direction of the angu-
lar momentum L is important in determining the shape and
deflection angle of the geodesics.

Using Egs. (70) and (71) to find d¢p/dp, it is easy to show
that the deflection angle for rays both coming and going to
infinite p takes the form

a(po) = [I(po)| —m, (72)

where we add an absolute sign because / (pg), the change of
the angular coordinate defined as

I(po)
_ 2/°° [2LA(p) — EB(p)IVA(p)D(p) dp
w pJ4p? [E? — kA(p)] — LEB(p) +2LA(p)
(73)
can be close to w or —m when L is positive (s = —1) or

negative (s = 1) respectively. The angular momentum L can
be linked to pg by using 'é|p:po = 01in Eq. (71) to find

I— —2spoy/ E* — k A(po) + EB(po)
2A(po) '

Here since in the small spacetime spin limit the first term
in the numerator dominates the second term, it is clear then
the s = +1 and —1 correspond to the cases that the L are
negatively or positively oriented, respectively.

Equation (73) usually does not permit integration into
closed form in terms of elementary functions. Similar to the
procedure in Sect. 2 which leads I (xg) to power series of xlo

(74)

and then further to series of %, one can also expand 7 (pp) in
Eq. (73) in the weak field, i.e., the large pg limit, and integrate
to find the change of the angular coordinate in power series
of % and eventually in powers of }7 We will not carry out
these formal steps as in Sect. 2 here because they are exactly
the same way and too tedious to show here. Rather we will

@ Springer



242 Page 12 of 40

Eur. Phys. J. C (2020) 80:242

only illustrate these steps in subsection (4.1) for equatorial
motion in Kerr and KN metrics respectively.

4.1 Weak deflection angle in equatorial plane of the Kerr
and KN spacetimes

With the above consideration, the next spacetimes we will
consider is naturally the Kerr and KN spacetimes. We will
show that the formalism for expanding the integrand in series
of xlo can also be used here to find the change of the angular
coordinate of both massive and massless particles to high
orders. We will only illustrate the procedure and results in the
KN spacetime because setting its charge to zero will yield the
corresponding results in the Kerr metric. To our knowledge,
the deflection angle in Kerr spacetime has been known to
fourth order in XLO and }—J for lightlike rays [72,73].
The KN spacetime has a metric

A — a?sin? 6
a—dtz

ds? = —
)y
2 2\2 2A «in2
a”+x —a“Asin“ 0
( ) sin” 0dg?
)
2asin?0 (a®> — A + x2
— ( )dtdqb
)y
X 2
+de + Xdo (75)
where functions ¥ and A are
S(x,0) = x> + a®cos? 0,
A(x,0) :x2—2mx+a2+q2, (76)

and m, a and ¢q are respectively the mass, angular momentum
per unit mass and charge of the KN spacetime.

In the equatorial plane, 6 = % and the metric (75) reduces
to

ds? = —AKN(x)dtz + Bxn(x)dtde

+Ckn(x)d¢* + Dy (x)dx?, (77)
where
2m  q*
Agn(x) =1 — — + —,
X X
2aq*>  4dam
BKN(X) = 2 — T
X X
242 2.2
Crn(n) = 2% +a? 4 01 3 :
X
¥2

Dgn(x) = (78)

x2 —2mx 4+ a? + g%’

The coordinate p in the standard metric (68) is related to the
coordinate x in metric (77) by [71,74]

@ Springer

ox) = \/x2 —2mx + a? + g%sin 0

=/x2 —2mx + a® + ¢2, (79)

where 6 = 7 was used. The metric functions in (77) and
(68) are then related by

A(p(x)) = Axn(x), B(p(x)) = Bgn(x),

dp(x)\ 2
C(p(x)) = Ckn(x), D(p(x))zDKN(x)( o )
(80)

Substituting Eqgs. (78)—(80) into (73), the change of angu-
lar coordinate can be expressed as

Ixn (x0)
, /* [2L Ak () — E Bgn ()] VAN DRn ()
50 p(0y/4p(0)? [E2 — k Akn(0)] — [EBrx (v) — 2L Ak ()1
(81)

dx.

We can get rid of the angular momentum L in this equation
by using Eq. (74) which in this case becomes

_ —25p(x0)v/ E? — k Akn(x0) 4+ E B (X0)
2AknN(x0) .

Again, s = +1 and s = —1 correspond to the cases that L is
negative and positive respectively.

The integral (81) can not be carried out to find a closed
form and therefore an expansion of the integrand for large
xo is needed. After integrating this expansion, we obtain a
series approximation of the change of the angular coordinate.
Here we skip these tedious middle steps and present the result

L

(82)

6
directly to the order (x%) as
6 m\" m 7
Ikn(x0.v) = > K, (—) +0 (—) : (83)
X0 X0

n=0
where
Ko = Ry, (84a)
K1 =Ry, (84b)

42

Ky=Ry+ -, (84¢)

v

1 1
K3 = Rz +as H:(6n —4)— + (47 — 12)—3]
v v

T, R 1
——q2}+a2 <1+—2),
v v

1
K4 = Rs+as {|:(52 —3m)— 4 (104 — 307)
v

(84d)

1 1
— — (127 — 36)—
0 (127 )US]

2y s smis |}
—|@22-m)-+ A8 =5m)— |¢
v v
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337 2 21w 3 1

a* 16 2 2
b4 S T

—5-y—| = )42

( 2)1)4} (l6+4v2>q}

93
K5=R5+as{[<—3é+7”) (- 436+159n)—

(84e)

1
+(—460 + 1417{)—5 + (=92 + 30n)—7}
v v
4 (20 1217\ 1
4 v
517\ 1 T T
84— —— ) — |42 G4
+< 2)ﬁ]q+(w+dv) }
3 2077\ 1
~2
19 — — 219 — —— )| —=
vt {[10-F+ (2057 )
453 1 37 1
+<T—727T>F+<?—671)v6:|

n 8+n+ 85+357r 1
2 2 4 v2

1
+ (184 — 687m) —
v

(84f)

2017\ 1
Ko = Re + ds {[(348— —”) -
8 v

11137\ 1 20137\ |
+<2o40— 2”>—+(3072— 2”)—

1 652 1
+(1576 — 4B%n)—= + | — — 707 |
v 3

L9 8Ty 1, (4034 145im 1
3 4 ) 3 4 v3
|
+< 1330+—873”)—5
v
L (886, 185T) I
3 2 )
10 1
+[<52——)— <12—ﬂ>—3
v
+(12 7))
1173 25237\ 1
{[ 18 + ”+<—747+ ”)—

8 v?
13657T 1 2149 1
( 2116 + >v4+<_7+339”>v_6

111 1
< 187r) 8]
v

+ (315 22057\ 1
16 v2

885 1 75 23w\ 1

— — 1447 | — )= |47
+<2 ”)w+<2 2>v4q
41 297 T\ a4
—t+—=+-—=)q

4
1520 1
+a3s (136—36n)— 2 1507 ) —
3 v3

+(168 — 5471)v—5:| + [(—24 + 671)%

1] .,
+H(=24+6m)— 1 g

ta 3+19n+ 51+33n 1
32 4 8 ) v?

n 7+37t 1+ 37r+ T .2
474 ) T\ T e )

where Rg to Rg are given in Eq. (44).
For lightlike rays, setting v = 1 we easily get their change
of the angular coordinate as

(84¢g)

Ko, = Ro.y. (85)
Kiy =Ry, (85b)
K3, = Ry, + 4as, (85¢)
K3, = R3, +as

x (107[ 16— nc}z) 4242, (85d)

Kiy = Ryy +as[192 — 457 — (40 — 6m)3°] +a°

2251 974>
= 30— ,
. ( 16 16 )

753 495
&#:&#+m[2”—mm—(7£—mg

9 g* 525 45
™4 20483 - 227 (57 -7 52
4 4 4

~4

(85e)

als(12r —32) — (85f)
. [21760 172257
K¢,y = Re,y +as 3 3

9856 279
- (T - 913;1) <176 - T”)q }

878857 (97657
A2 ~2
—4011 - — 805
ta [ R < 32 )q
1657 G*
N q
64

2432
+a’s [T — 2407 — (48 — 127)§ }

(31T 5mq?
2 32 32

(852)
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And for ultra-relativistic particles, their change of the angular 8 18 3 1 6 9 3\ 2
: : {ohtl Mt tw s (2t as)d
coordinate deviates from the lightlike rays’ amount. At order v v v 8v v v 4v
(1 — v)! this deviation is given b 1 3\ .
s 507+ 577"
2v 8v

Ixkn(xp, v — 1) = Ixn,y (x0) + (1 —v)

X |:4Els <;n_0>2 + {[(—40 + 187) — rrc}z] as
+24%) (%)3

+ {[(544 — 1537) 4 (=76 + 16n)éz] as

N 4
n |:(—66 +270) — ”i} Az} (ﬁ>
2 X0
2877 1447
+{[(—4288+—2”>+(992— ”)gz

137447 .
+ n i|as

855w 5171 2 | A2
1455 — —— | + | =111 q°|a
+(—64 4 247)a’s — } ( )
86577 39200 78797
34816 — G>
| (o =57 ) + (5524 57
5
v <448 - %) 44} as
22155 7365
+|:<—16849+ ; ”)+(2625— 8”>g2

337g*
+ gq }az

+ [(2496 —7567) + (=96 + 24n)£12] &%

+[ _65+457t +7'rc}2:|A4} m\°®

(7 T) N <%>
m 7

+0 (—) } +0(1-v)?. (86)
X0

In order to express the change of the angular coordinate
in terms of the expansion of the impact parameter, again we
use the relation (9) with L given by Eq. (82) to obtain a series
expansion of %

Bl [\)laf>
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1 1Y .,
+{E+F+E_l6<ﬁ+v4+ﬁ>q

2+ 24 022
— — + — a
v 2 )
20 25 5 5\ .3 3\ 4] /m\©
Sog) e ()
+<v+v3 2v )as—i—( +v2>a b
m\7
+0 (7). 87
b 87)
Itis seenthat when b > Oisfixed and ¢ = 0, in the retrograde
case (sa > 0) the xo will be smaller than in the prograde case
(sa < 0).
Substituting into Eq. (83) we obtain

6
m\”n m\7

Inov) =Y K, () +0(3) (88)

n=0
where
K\ = Ry, (89a)
K{ =Rj, (89b)

44
K= Ry + ==, (89¢)
K. =R ~ 4 6 ‘}2 A2 2

v v v

1 10 5 1 1
K,=R,+12as| = +—+--2¢*— +-
4 4+ (1S|:v5+v3+v q <U3+U>i|
o 1
+3ma 24+
4335

9 - 15 (1,3
16 4 \42 " 16
v

Kt = R.+3mas |7 4 + 10+ >
= Tas - - -—
3 3 vSoovd 2
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482|171+ =S+ —=+——-¢(3+ =5+
+a|:+v2+v4+v6 q(+u2+u4>]

5 4 3§ 1
+3na3s< +__E>+2&4<1+¥>’ (891)

K — R + 104 42 42 280 252 24 2
= as — — PR
6 6 v Vs v 39

03
7 35 7 1
16 (L 2 L
i <3v+3v3+v5+3v7>

+24* <%+1—2+§>]
v v v
+15n&2|:7<£+£+£+i>
64 8v2 4t 9
_512<§+ 25 45 4 1 )
32 7 1602 T 4vt T 200

_|_"4 i.}.i_ki
T \64 " 1602 " 82

+40&3s[z+5—0+i—2q2(1+i>]

33 S v V3

_|_5_7T"4 |:35_|_45 +i_6}2 (§+i>i| +@
4 8 22 vt 8 4v2 v

(89¢g)

where R, to Ry are given in Eq. (53). From Eq. (89) it is
seen that the effect of the angular momentum per unit mass a
only starts to appear from order ( ) Writing Eq. (89¢) out
explicitly, we have

k=T (14 )T (14 2) g0 2 (90)
T v2 4 2 )1 v

It is seen that when the geodesic motion is prograde, i.e.,
sa < 0 the deflection angle decreases as |a| increases. On
the contrary, if the geodesic motion is retrograde, i.e., sa > 0,
then the deflection angle is larger than the prograde case with
same |a|. Note that when Q = 0 for Kerr spacetime, the first
three orders agree with Eq. (96) of Ref. [75].

For lightlike rays, setting v = 1, this becomes

6
m\n m\7
vy ®) =Y K, (3) +0(3) o1
n=0
where
Ky, =R, (92a)
Ki, =Rj,. (92b)
K}, =R}, +4as, (920)

K}, =R, +mas(10 — §°) + 4a> (924d)

Kj, =R}, +48as(4 — g%

37
+ —a 295 — 74%) + 4a°s,

21m
) ~—as(66 — 274% + ¢%)

(92e)

Kg,y = Rg’y +

+32a%(16 — 3§%) + 3ma’s

A2 .
99— — 407,
( 2>+a

320
Ké,y = Rg ,+ T&S(Sé - 32 + 3q )

105
T 62(759 — 2464% + 7%
64

160
+ T£z3s(20 —34%)

(92f)

+

5
4 2 g (239 - 11@2) + 485s. (92¢)

32

The first four orders here agrees with Refs. [72,73].

4.1.1 Effect of angular momentum on deflection angle

In Fig. 4a, we plot each order in the deflection angle (88)
forv = 1anda = 0, a = 0.3 for both the retrograde and
prograde motions. It is seen for the first nontrivial order of
the deflection angles, the lines completely overlap for dif-
ferent a. This is indeed a consequence of Eq. (88), where
the effect of a only starts to appear from the third order (the
second nontrivial order). For third or higher orders, it is seen
that the retrograde motion has a larger deflection angle than
in the Schwarzschild spacetime which is yet larger than the
prograde motion case. This is indeed a manifestation of the
frame-dragging effect of a rotating spacetime. In Fig. 4b, the
impact parameter is fixed at b = 10m and the velocity varies
from 0.7¢ to 1.0c with two spacetime rotation directions with
a = 0.3. It is seen that as v decreases, the deflection angles
at all orders increase for both rotation directions. This can be
understand from the observation that slower particles (keep-
ing b fixed) tend to pass by the BH with a closer distance
and therefore are more influenced by it, leading to a larger
deflection angle. Moreover, the deflection angle is increased
regardless whether the BH is rotating or not, or the direction
of the rotation. In Fig. 4c, the dependence of the deflection
angles on the angular momentum is shown. It is seen that
as a increases, i.e., the rotation of the spacetime becomes
faster, the deflection angle increases for retrograde motion
and decreases for prograde motion. Moreover, similar to the
case of RN spacetime, it is seen that the total deflection angle
computed using Eq. (88) works even when the angular param-
eter is beyond its critical value @ = /1 — §2 for the extreme
KN spacetime. In other words, the deflection angle (88) is
valid for both the KN BH and naked singularity spacetimes.
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Fig. 4 The deflection angles at each order of Eq. (88) in the KN space-
time.av=1, 4g=0,a=03bb/m=230, g =0, a=0.3; The
horizontal line in a is the 1 [as] line.¢ b/m = 100, v/c = 0.9, ¢ = 0.4.

4.2 Universal weak deflection angle to the lowest
non-trivial order

In previous sections/subsections we see that the change of
the angular coordinate can be calculated for all known SSS
spacetimes and for SAS spacetimes in the equatorial plane.
Changes of the angular coordinate at high orders of xl—o or %
depend on the parameters in different ways. But through the
examples, we do see that to the lowest order, all spacetimes
have a change of the angular coordinate 7. Now we will
show that this feature is universal to at least geodesics on the
equatorial plane of general SAS spacetimes which are also
asymptotically flat. These spacetime certainly include all the
spacetimes in previous sections, in particular the SSS space-
times specified by metric (2). This value although sounds
intuitively trivial, was never proven rigorously before.

Furthermore and more importantly, we will also show that
for geodesics in the equatorial plane of such spacetimes, to
the next (the lowest nontrivial) order, the change of the angu-
lar coordinate always takes the form

1(b)=n+2<1+v1—2> <%>+O<%>2,

where m is the ADM mass of the spacetime. Recently, Ref.
[76] derived a deflection angle to the first nontrivial order
in terms of an energy-momentum distribution of the SSS
spacetime. From that point of view, our result here further
proves that to the first non-trivial order, ADM mass is the
only parameter of an asymptotically flat spacetime that will
affect the change of the angular coordinate. Other parame-
ters in these spacetimes such as charge or angular momen-
tum can only appear at higher orders. In addition, Eq. (93)
also dictates how the particle velocity will affect this angle.
Expanding Eq. (93) around v = 1 yield the correction of
the deflection angle of ultrarelativistic particle with respect
to lightlike rays to the lowest nontrivial order of both % and

(1 —v).

93)
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For each order in these plots, solid, dashed and dotted lines correspond
to a = 0, prograde motion and retrograde motion respectively

m
alb,v— 1) = ay, (b) +4(1 —v) (3)
4O ((1 — oy (%)’)

where i + j > 2.

We now show (93). In Eq. (73) we have calculated the
change of the angular coordinate in terms of general met-
ric functions in Eq. (68). In order for this spacetime to be
asymptotically flat, these metric functions should asymptot-
ically satisfy the following conditions [77]

(94)

A(p) =1— 27”1 +0(p) 7%, (952)
4

B(p) = —% +0(p) 2, (95b)

C(p) = p*> +2mp + O(p)°, (95¢)

D(p) =1+ 27”‘ +0(p) 72, (95d)

where m is the effective total ADM mass of the spacetime.
The effective parameters of charge and angular momentum
of the spacetime will only appear in the higher orders of this
expansion. Substituting Eq. (95) into Eq. (73), changing the
integration variables from p to u = pg/p, series expanding
the integrand in the large pg limit and then carrying out the
integration, the result of the change of angular coordinate is
found to be

1 m m\?
Iww=n+2(k+7><—)+0(—>.
v £0 £0

To express Eq. (96) in terms of the impact parameter b, we
can again using Eq. (9) and (74) to find to the lowest order

m m 1
—=—+4+0(=).
po b " (bz)

(96)

o7
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Substituting this into Eq. (96), we immediately have to the
first non-trivial order

Y (R 3 RO R

which is the desired Eq. (93).

5 Gravitational lensing in the weak field limit

One main application of the deflection angles is in the GL in
the weak field limit. The configuration of the GL in the weak
field limit in the SSS or equatorial plane of SAS spacetime
is illustrated in Fig. 5. We will denote the distance between
the lens and source as djs and observer and lens as d,], and
the angular position of the source and its image against the
observer-lens axis as 8 and 6 respectively. These angles as
well as the deflection angle « are all small in the weak field
limit. A lens equation linking these lengths and angles can
be established, from which the apparent angle 6 of the image
are usually solved.

In the following, we will start from an exact lens equa-
tion derived directly from the geometric relations in GL but
without using small angle or large length approximation [78]

dos Sin B = do) sin 6 cos(a — 6)

—\/dE — d? sin? 0 sin(a — 0). (99)

The reason that we use the exact length equation but not the
usual first order equation

dls

=0 - ———«. 100
'3 dls“l‘dola ( )

Fig. 5 GL in the weak lensing limit. O, L, S and [ stand for the
observer, lens, source and image respectively. «, 8, 6 are the deflection
angle, the source and image angular positions respectively

is that we would like to compute the apparent angle 6
using perturbative method to higher orders and therefore this
requires a lens equation accurate to high orders too. Equa-
tion (100) although can be derived using different approaches
(see Ref. [78] for a review and comparison of different
approaches) and were used commonly in most GL compu-
tations, more exact equation such as Eq. (99) has to be used
when the error induced by the Eq. (100) exceeds observa-
tional sensitivity.

Using Eq. (99), we will then illustrate how the various
orders in the deflection angle « (e.g., Egs. (34), (52) and (88)
after subtracting ) will perturbatively determine the appar-
entangle 0 to the corresponding order. Using this perturbative
method, the apparent angle 6 to any desired accuracy can be
achieved, provided that the deflection angle « can be calcu-
lated in prior to that order. Note that our method and result
here will apply to not only null signal but signal with general
velocity.

For the solution process, we first substitute the deflection
angle o whose general form is a power series of %

(101)

>\ g€l

14
=35
i=1
into the Eq. (99). Here «; for Schwarzschild, RN, Kerr and
KN spacetimes can be read off from Eqgs. (35), (53), (89), (AS)
and (B4) respectively. The small parameter € is supplemented
to track the order of large distances such as b or dys and it shall
be set to 1 in final results. Next, the % in « can be replaced
by the geometric relation

1 1

b dysinf

(102)

so that only measurable lengths appear. In the third step, we
can substitute the ansatz for the series solution of 6

0=> b
i=1

into the resultant equation. Finally, expanding both sides of
the equation as power series of € and collecting the coefficient
of each order, one finds a system of algebraic equations of
;. The first three of these are

(103)

_dis +d0191 s 1
dos do 61

0=du [dlsotl + do (dis + d01)912] 0> — disaz,

0

sin 8, (104a)
(104b)
0 = 6disd301 [disor + oy (dis + do) 07 | 5

— [dlzs (6a3 — 12dyj020; + 65"31011922 - “%)

+ 3didoi (dis + dot)r 67
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- dgl (2d125 + 6d)sdo + 3d§1) Ollef'

+d3 (4R + 4didor + 343 65 (104c)

After expanding sin 8, the first equation (104a) coincides
with the leading order lens equation (100). Note that in this
equation system, for each 7, only 6; is the unknown in the i-
th equation. 6; with j < i in the ith equation can always be
solved in the equations prior to the ith equation. Moreover,
except Eq. (104a) which is not a linear equation of 6; but
still solvable, all other equations are linear in its unknown 6;.
Therefore the perturbative method guarantees that the equa-
tion system is iteratively solvable so that the final apparent
angle can be obtained. This solvability is one of the advan-
tages of the method.

Solving the system (104), we find the solution to 6; as

_ dosdor sin B %/ (desdo sin )2 + 4diydol (dis + dot)ory

01
2dol (dls + dol)

(105a)
_ disatr
 dot [disay + doi(dis + do)6?]
_ 1
 6aisd? 01 [diserr + doi (dis + dop) 67 ]

x [d2 (65 — 12diaat + 6430163 — o

)

(105b)

03

+ 3disdo1 (dis + dol)ollzelz
- dgl <2d1% + 6disdo) + Sdgl) 0119?

3 (4R + 4diodor + 343 65 (105¢)
The higher order equations and solutions can be similarly
obtained.

It is seen from Eq. (105) that the solution to 6,, (m >
2) depends on the lowest order apparent angle 6; and the
deflection angle from the 1st to the mth orders, o, (1 < n <
m), as a power law function, except a common denominator
which only depend on «; and 61 but not higher order ones.
Moreover, counting the orders of distances d, and djs and
the small angles 61, one finds that 6,11 is smaller than 6,
by an order of dy0;. This implies that if a certain calculation
accuracy of the apparent angle 6 is desired, one can work out
from Eq. (105) to what order the deflection angle should be
used. This tractability is another advantage of the perturbative
method. With the series expansion of 8 known, we can find
the magnification of the images using

in6 do
p= (106)
sin 8 df
and expand around small angles of 6. Again, the result will
be of a series form. For simplicity reason, we will not show

these results explicitly.

@ Springer

6 Discussions

We have studied a perturbative method to compute the deflec-
tion angle in general SSS and equatorial plane of SAS space-
times for arbitrary velocity v. It was shown that the involved
integral in this method can always be carried out and there-
fore a series in either the closest radial coordinate x( or the
impact parameter b can always be found

ac 1y &, 1\"
1=§cn<v,p> (x—o) =n§)c,,<v,p) (5) (107)

where we used p to collectively denote any parameter of the
spacetime, and C, (v, p) and C),(v, p) are two sets of coeffi-
cient functions. Using this method, we were able to compute
the deflection angle to the 17th order in the Schwarzschild
spacetime, 15th order in the RN spacetime and 6th order in
the KN and consequently Kerr spacetime. Using these results,
we studied how v, b and various parameters of the space-
time affect the total deflection angle and the deflection angle
at each order. Two general features are particularly worth
mentioning. The first is that although the deflection angles
are obtained perturbatively as a series of 1/b when its large,
the valid range of the found deflection angle can extend to
much smaller b, even when the deflection angle is not small
anymore. The second is that the found deflection angles in the
RN and KN metrics describe accurately the deflection angle
not only for their BH spacetimes but also for their naked
singularity cases. This last point here lays the foundation to
apply these deflection angle results in the corresponding GLs
to reveal the relevant features, if any, of these naked singu-
larity spacetimes.

Using this perturbative method, we have shown that the
deflection angle in the weak field limit in the asymptotically
flat spacetimes depends only on the asymptotical behavior of
the metric functions but not their values at small b. In partic-
ular, it was shown that the deflection angle of particles with
general velocity in an EYM spacetime whose metric is only
asymptotically known, can be computed. Moreover, we also
illustrated that for equatorial motion in general SAS (includ-
ing SSS) spacetimes, the deflection angle to the first nontriv-
ial order depends only on the ADM mass of the spacetime
and the asymptotical velocity of the particle in the specific
way given by Eq. (98).

Regarding the extension of this method, the first and most
apparent is to apply this method in other interesting SSS
and SAS spacetimes to compute their deflection angles and
study the GL effects in the weak field limit [79]. Results
found for these spacetimes are expected to not only reveal
effect of spacetime parameters to signal deflection or GL, but
also properties of the messenger itself, such as the neutrino
mass/mass hierarchy and massive GWs. Secondly, we also
expect that this perturbative method is applicable to other
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computations involving integration of the geodesic equa-
tions, e.g., in the computation of time delay in GLs. We are
currently working along this direction.
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Appendix A: High order terms of the deflection angles in
Schwarzschild spacetime

For Schwarzschild metric, the S5 to S17 in Eq. (26) are
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For Schwarzschild metric, when xq is expressed in terms
of b in Eq. (32), the high order terms are
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The high order terms in Eq. (37) are given by
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Appendix B: High order terms of the deflection angles in
RN spacetime

For Rs to R;5 in Eq. (44), they are given by
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When x is expressed in terms of b in Eq. (50), the high
order terms are
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