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Abstract Both null and timelike rays experience trajec-
tory bending in a gravitational field. In this work, we sys-
tematically develop a perturbative method to compute the
deflection angle of rays with general velocity v in arbitrary
static and spherically symmetric spacetimes and in equato-
rial plane of arbitrary static and axisymmetric spacetimes.
We show that the expansion in the large closest approach
x0 limit depends on the asymptotic behavior of the metric
functions only, and the generated integrand is always inte-
grable, resulting in a deflection angle in a series form of
either x0 or b, the impact parameter. Using this method,
the deflection angles as series of both x0 and b are found
in Schwarzschild, Reissner–Nordström and Kerr–Newman
spacetimes to 17-th, 15-th and 6-th orders respectively, for
both lightrays and particles with general velocity. The effects
of the impact parameter, velocity and other parameters of the
spacatimes are briefly analyzed. Moreover, we show that for
spacetimes whose metric functions are only asymptotically
known, the deflection angle in the weak field limit can also be
calculated. Furthermore, it is shown that the deflection angle
in general static and spherically symmetric spacetime and
equatorial plane of static and axisymmetric spacetime to the
lowest non-trivial order, depends only on the impact param-
eter, velocity of the particle, and the effective ADM mass of
the spacetime but not on other parameters such as charge or
angular momentum. These deflection angles are used in an
exact gravitational lensing equation and the corresponding
apparent angles of the images of the source are also solved
perturbatively.

1 Introduction

One of the classical and important consequences of Gen-
eral Relativity (GR) is the deflection of lightlike geodesics
in curved spacetimes. One hundred years ago, Eddington’s
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observation of the star position shift played a major role in
helping GR won its acceptance by physicists and the public.
Nowadays, the deflection of lightlike rays is usually observed
by very long baseline radio interferometer [1] with an accu-
racy of sub-microarcsecond [2] . In 1991, the deflection of
light due to Jupiter was observed [3] and that due to Saturn
might be observed by Gaia [4].

The deflection of light leads to one important theoretical
and observational tool in modern astronomy and cosmology:
the gravitational lensing (GL). After the observation of the
first GL in 1979 [5], many features, including luminous arcs
[6,7], Einstein cross [8], Einstein rings [9], GL of CMB [10–
12], and supernovas [13,14] and even composition features
such as the SN Refsdal which combines the Einstein cross
with the GL of supernova [15] have been observed. The GL
were then used to study properties of the lens [16], coevo-
lution of supermassive black holes (BHs) and galaxies [17],
cosmological parameters such as large scale structure (for a
review see [18]), properties of the supernova [19], dark matter
substructure [20,21], and to discriminate alternative gravita-
tional theories. More recently, with the discovery of gravita-
tional wave (GW) [22–25], observation of its GL effects has
also been proposed and put to use [26,27].

Although traditionally lightrays have been the main mes-
senger in the observation of GL, with the observation of extra-
galactic neutrinos from SN 1987A [28,29] and blazer TXS
0506 + 056 [30,31] and the GWs, it is clear that these two
kinds of messengers in principle can also go through the
bending process and be observed in lensing scenarios. One
of them, neutrinos, are long known to have non-zero small
mass [32]; while for GWs, its speed can also deviate from the
speed of light in gravitational theories beyond GR [33,34].
Therefore in considering their lensing or GL of any other
massive particles, in principle one should compute the deflec-
tion angle and time delay formulas using timelike geodesics.
Currently, most theoretical works on the GL of these two mes-
sengers are still using corresponding values obtained using
lightlike rays [27,35–38]. Recently, some of us computed the
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deflection angles in Schwarzschild and Reissner–Nordström
(RN) spacetimes and time delay in Schwarzschild spacetime
for general velocity [39]. It was shown that the difference of
the apparent angles of lightrays and neutrinos can be corre-
lated to the neutrino mass and mass hierarchy [40,41]. More-
over, the dependence of the deflection angle on messenger
velocity can also cause small change of the BH shadow size
in these spacetimes [40,42]. These results show that in con-
sidering effects related to the trajectory bending of massive
particles, timelike instead of lightlike geodesics should be
used if a high accuracy is desired.

In GLs of both massless and massive particles, the GLs in
the strong field limit is important for a few reasons, especially
for their applications in strong field test of GR and alternative
gravitational theories. In the strong field limit of arbitrary
statics and spherically symmetric (SSS) spacetime, Bozza
[43] developed a general method to calculate the deflection
angle for lightrays and showed that it always diverges log-
arithmically as ln(x − x0) where x0 is the closest approach
of the ray. Many authors successfully calculated the deflec-
tion angles in the strong field limit for particular spacetimes
using this method [41,44–47]. However, from an observa-
tional point of view, all the light bending and GLs seen up
to now are in the weak field limit, i.e., with small deflection
angles. GL in the strong field limit will not be directly observ-
able in near future experiments because of its high resolution
and magnification requirement. For example, to resolve the
relativistic images produced by the Milky Way galaxy BH
requires an angle resolution of 10−2 microarcsecond, which
is 2 orders smaller than the resolution currently reachable
[41].

In this paper therefore, we still concentrate on the deflec-
tion angle and GL in the weak field limit, but for general
velocity. We propose a general formalism for computing
the deflection angle of particles with arbitrary velocity in
SSS spacetimes and in the equatorial plane of stationary and
axisymmetric (SAS) spacetimes. This procedure allows us
to expand the deflection angle in the power of the recipro-
cal of the closest approach x0 or impact parameter b, which
are large quantities in the weak field limit. Moreover, it will
also be shown that this procedure can be used to calculate
the deflection angle of metrics that are only known in the
asymptotic region. This is particularly useful because in most
spacetimes that have a complex matter distribution, the met-
ric functions are usually not analytically solvable while their
asymptotical behavior can usually be obtained using series
method. We will also show that for all equatorial geodesics in
any SAS and asymptotically flat spacetimes (note that SAS
spacetimes cover SSS spacetimes), the deflection angle to the
lowest non-trivial order always takes the form

α = 2m

b

(
1 + 1

v2

)
(1)

where m is the ADM mass of the spacetime, b is the impact
parameter and v is the speed of the test particles at infinity. In
other words, all other spacetime parameters such as effective
charges or angular momentum will not influence the deflec-
tion angle at this order. Again, we emphasis that all results in
this paper apply not only to null rays but signals with general
velocity.

Previously, the weak deflection angle has been calcu-
lated mainly using two slightly different but yet connected
approaches. The first and most traditional way is the direct
integration method which tackles the integral for the deflec-
tion angle directly. The second, which is more recent and
also very promising, is to utilize the Gauss–Bonnet theorem
to find the deflection in a somewhat more indirect but elegant
way [48–53]. From this point of view, our work leans more
towards the first category.

We arrange the paper in the following way. In Sect. 2,
we present the perturbative procedure for computing the
deflection angle in SSS spacetimes to any desired order. The
results are then used in Sect. 3 to find the deflection angle to
the minus 17th order of b in Schwarzschild spacetime and
minus 15th order in RN spacetime. We also give an exam-
ple (the SU(2) Yang–Mills–Einstein solution) for computing
the deflection angle in asymptotically known spacetimes. In
Sect. 4, the deflection angle in the equatorial plane of Kerr and
Kerr–Newman (KN) spacetimes are computed to the minus
6th order of b. We then in Sect. 5 show how all these deflec-
tion angles can be used to find the apparent angle in GL
perturbatively. Lastly, a few possible applications and direc-
tions of extension are discussed in Sect. 6. Throughout the
paper we use the geometric unit G = c = 1.

2 Deflection angle in SSS spacetimes

For general SSS spacetime, the metric can always be written
as

ds2 = −A(x)dt2 + B(x)dx2 + C(x)(dθ2 + sin2 θdφ2).

(2)

For this metric, the geodesic equations after two first integrals
take the form

ṫ = E

A(x)
, (3a)

φ̇ = L

C(x)
, (3b)

ẋ2 = 1

B(x)

(
κ − E2

A(x)
+ L2

C(x)

)
, (3c)

where ˙ denotes the derivative with respect to the proper time
(or affine parameter) λ. Here we have already set θ(λ) = π/2
without losing any generality and κ = 0, 1 for lightlike and
timelike particles respectively. E is the energy of the lightlike
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ray or that of unit mass of the test particles at infinity, which
can be related to their velocity v at infinity through

E = 1√
1 − v2

. (4)

L is the angular momentum of unit mass of the test particle
at infinity, satisfying

|L| = |p × r| = v√
1 − v2

b = b
√
E2 − 1, (5)

where b is the impact parameter of the ray. Here and hence-
forth, we assign the impact parameter to be a positive con-
stant, while the angular momentum L in principle can change
sign.

Using Eqs. (3)–(5), it is easy to show that after some simple
algebra, one can integrate dφ/dx to obtain the deflection
angle of a ray both originating and propagating from infinite
radius as [54]

α(x0) = I (x0) − (2n + 1)π (6)

where the change of the angular coordinate, I (x0), is

I (x0)

= 2
∫ ∞

x0

√
B(x)

(
E2 − κA(x0)

)
√
C(x)

√
E2
[
C(x)
A(x)

A(x0)
C(x0)

− 1
]

+ κA(x0)
(

1 − C(x)
C(x0)

)dx .

(7)

Here n is an integer such that −π ≤ α(x0) < π . In the weak
field limit, we should always choose n = 0.

Setting κ = 0, Eq. (7) reduces to the change of the angular
coordinate of lightlike ray given in Ref. [43,54]

I (x0) = 2
∫ ∞

x0

√
B(x)

√
C(x)

√
C(x)
A(x)

A(x0)
C(x0)

− 1
dx . (8)

The closest distance of approach x0 can be linked with L by
setting ẋ = 0 in Eq. (3c). Further using Eqs. (4) and (5), one
has the following relation between the impact parameter b
and x0

1

b
=

√
E2 − 1

|L| (9)

=
√
E2 − 1√

E2 − κA(x0)

√
A(x0)

C(x0)
≡ l

(
1

x0

)
. (10)

As we stated in Sect. 1, we are interested in the weak
field limit of the deflection angle. To calculate α(x0) in weak
deflection limit, then we should let x0 approach infinity. The
main content of this paper is then to show that the change of
the angular coordinate I (x0) and consequently the deflection
angle α(x0) can be expanded as a power series of 1

x0
and

the integral can always be carried out. Moreover, we find a
practical procedure to calculate the coefficient of each power,
for both null and timelike rays.

To carry out the expansion and integration of Eq. (7),
we first change variable from x to u = x0/x so that I (x0)

becomes
I (x0)

= 2
∫ 1

0

x0

u2

√
B(x0/u)(E2 − κA(x0))

√
C(x0/u)

√
E2
[
C(x0/u)
A(x0/u)

A(x0)
C(x0)

− 1
]

+ κA(x0)
(

1 − C(x0/u)
C(x0)

) du

≡
∫ 1

0
y(x0, u)du, (11)

where y(x0, u) stands for the integrand. This change of vari-
able effectively transforms a partial dependence of I (x0) on
x0 through the lower limit of the integral to a full dependence
on x0 through the integrand y(x0, u). For this integrand, since
in the weak field limit, x0 is much larger than any character-
istic length intrinsic to the spacetime, we can always do an
asymptotic expansion in powers of 1

x0
to find

y(x0, u)

= 1

x0
0

lim
z→∞

{
−2zA

( z
u

)
B
( z
u

)√
C(z)g(z)

u2C
( z
u

)
h(z, u)

}

+ 1

x1
0

lim
z→∞

⎧⎨
⎩− 2

u2

⎡
⎣

√
g(z)

h(z, u)

⎛
⎝ 1√

C
( z
u

)

×
(√

C(z)

(√
B
( z
u

)(√
A
( z
u

)(
−z2+κz3A′(z)

2g(z)

)

− z3A′ ( z
u

)
2A

( z
u

)
)

−
z3
√
A
( z
u

)
B ′ ( z

u

)
2B

( z
u

)
⎞
⎠

−
z3
√
A
( z
u

)
B
( z
u

)
C ′(z)

2
√
C(z)

⎞
⎠

+
z3
√
A
( z
u

)
B
( z
u

)
C(z)C ′ ( z

u

)
2C

( z
u

)3/2

⎞
⎠

+
z3
√
g(z)A

( z
u

)
B
( z
u

)
C(z)

2
√
C
( z
u

)
h(z, u)3

×
(
−A′(z)

(
κA

( z
u

)
C(z) + C

( z
u

)
g
( z
u

))

+E2
(
C(z)A′ ( z

u

)
+ A

( z
u

)
C ′(z)

)

+A(z)
(
κ
((

C
( z
u

)
− C(z)

)
A′ ( z

u

)

− A
( z
u

)
C ′(z)

)
− C ′ ( z

u

)
g
( z
u

)))⎤⎦
⎫⎬
⎭

+ 1

x2
0

lim
z→∞ y2

(
gμν(z), gμν

( z
u

)
, gμν(z)

′,

gμν

( z
u

)′
, gμν(z)

′′, gμν

( z
u

)′′)+ O
(

1

x3
0

)
(12)
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≡
∑
n=0

yn(x0, u)

xn0
(13)

where ′ denotes the derivative with respect to z, and

g(z) = E2 − κA(z), (14)

h(z, u) =
√
A(z)C

( z
u

)
g
( z
u

)
− A

( z
u

)
C(z)g(z), (15)

and yn(x0, u) (n ≥ 2) in Eqs. (12) and (13) denote the coef-

ficient of
(

1
x0

)n
. Setting κ = 0 in Eq. (12) yields for lightlike

rays,

y(x0, u) = 1

x0
0

lim
z→∞

⎧⎪⎪⎨
⎪⎪⎩

−
2z
√
B
( z
u

)

u2
√
C
( z
u

)√ A(z)C( z
u )

A( z
u )C(z)

− 1

⎫⎪⎪⎬
⎪⎪⎭

+ 1

x1
0

lim
z→∞

⎧⎨
⎩
z2

2

[
z

(
B
( z
u

)
C
( z
u

)
)′√

C
( z
u

)
B
( z
u

)

−2

√
B
( z
u

)
C
( z
u

)
](

A(z)C
( z
u

)
A
( z
u

)
C(z)

− 1

)−1/2

+ z3

2

√
B
( z
u

)
C
( z
u

)
(

A(z)C
( z
u

)
A
( z
u

)
C(z)

)′

(
A(z)C

( z
u

)
A
( z
u

)
C(z)

− 1

)−3/2

⎫⎪⎪⎬
⎪⎪⎭

+ 1

x2
0

lim
z→∞ y2

[
gμν(z), gμν

( z
u

)
, gμν(z)

′,

gμν

( z
u

)′
, gμν(z)

′′, gμν

( z
u

)′′]+ O
(

1

x0

)3

(16)

Integrand (12) and (16) have a few remarkable properties.

It is seen that the order
(

1
x0

)0
term involves only the limits

of the metric functions, and the order
(

1
x0

)1
terms involve

up to the first order derivative of the metric functions. The(
1
x0

)2
term is not shown explicitly here because of its length,

but we can show that it only contains terms up to second
derivative of the metric functions. In general, it is found that
this expansion can always be carried out to arbitrary desired

order of 1
x0

and the coefficient for the
(

1
x0

)n
order involves

up to the nth derivative of the metric functions. Note that
although the expressions might appear long and tedious as
the order increases, the involved mathematics are only taking
derivatives and finding limits, and therefore still algebraically
simple. In this sense, this expansion is straightforward and
tractable, especially when the metric functions are explic-
itly known. As will be seen in Sect. 3, for explicit spacetime

metrics the coefficients for all orders of
(

1
x0

)n
are concise.

Therefore, length of the results of I (x0) obtained after inte-
grating u in Eqs. (12) and (16) will also be much shorter
comparing to the length of the integrand.

The second property, which is simple but fundamental,
is that the expansions use only the asymptotic behavior of
the metric functions to the desired order. In other words,
from the point of view of the deflection angle α(x0), the
rays with asymptotically large x0 do not experience how the
spacetime is curved in the central region. Spacetime in the
large x0 region to various orders of 1

x0
is enough to determine

the deflection angle to the corresponding order. Although
intuitively this seems simple, it is this property that allows
us to determine the deflection angle in spacetimes whose
metric function are not fully but only asymptotically known.
We shall see in Sect. 3.3 how the deflection in colored BH
spacetime can be calculated.

The third property of these expansions, is that they are
always integrable if the metric functions A(x), B(x) and
C(x)/x2 are finite at large x and have asymptotical expan-
sions of the form

A(x) =
∑
n=0

an
xn

, B(x) =
∑
n=0

bn
xn

,
C(x)

x2

=
∑
n=0

cn
xn

(n = 0, 1, 2, . . .) (17)

where an , bn and cn are finite. These conditions are
certainly satisfied by many familiar spacetimes such as
Schwarzschild, RN, Hayward [55], Bardeen [56], Gibbons–
Maeda–Garfinkle–Horowitz–Strominger (GMGHS) [57–59]
and Janis et al. [60] metrics. With these conditions, clearly
all the terms in various numerators in yn(x0, u) in Eq. (12)
can be expanded as series of their arguments, which become
powers of u. The only non-trivial parts are the denominators
in yn(x0, u), i.e., the terms 1/h(z, u)n . In the limit z → ∞,
they can be simplified as

lim
z→∞

1

h(z, u)n
=
[

1

a0(E − κa0)c0z2

u2

(1 − u2)

]n/2

. (18)

A further transformation of variable u → cos θ will trans-
form the expansion (13) into the following form

I (x0) =
∫ 0

1

∑
n=0

yn(u)

xn0
du

u→cos θ−−−−−→
∑
n=0

1

xn0

×
∫ π

2

0

n∑
m=0

yn,m cosm θ

(1 + cos θ)n
dθ. (19)

Here yn,m are functions obtained after the transformation and
they do not depend on the integration variable. Because of
the integrability of functions of type cosm θ

(1+cos θ)n
(m ≤ n), the
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expansion (12) becomes always integrable under conditions
Eq. (17).

In short, with the integrand expanded as (12), one can then
do the integral of u to get the change of the angular coordinate
as a power series of 1

x0

I (x0) =
∑
n=0

1

xn0

∫ 0

1
yn(u)du ≡

∑
n=0

In
xn0

, (20)

where In is the n-th order coefficient in I (x0). It is important
to note that the integral here can always be carried out because
of the integrability of Eq. (19).

Because the impact parameter b is much easier to be linked
to observable quantities in GLs, it is also desirable to write
the expansion (20) in series of 1

b . In that case, we can attempt
to directly solve Eq. (10) to obtain the inverse function

1

x0
= l−1

(
1

b

)
(21)

and then substituting into Eq. (12) and expanding around
large b to obtain the desired expansion

I (b) =
∑
n=0

I ′
n

bn
. (22)

Indeed, because what is needed is only the expansion of (21)
by not necessarily the inverse function l−1

( 1
b

)
itself, one

can use the Lagrange inversion theorem to directly find this
expansion without solving l−1

( 1
b

)
explicitly

1

x0
=
∑
n=0

1

n! lim
w→0

dn−1

dwn−1

{[
w

l(w) − l(0)

]n} 1

bn
. (23)

This will be especially useful for those metric functions in
Eq. (10) that are hard to find the inverse function l−1

( 1
b

)
analytically.

Moreover, for ultrarelativistic massive particles, we can
also further expand the integrand (12) around v = 1 and
integrate to find I (x0) or I (b) as a series expansion of the
velocity difference

I =
∑
n=0

[
1

xn0

∑
m=0

In,m(1 − v)m

]

=
∑
n=0

[
1

bn
∑
m=0

I ′
n,m(1 − v)m

]
. (24)

Apparently, the leading terms in the m summation
∑

n=0
In,0
xn0

or
∑

n=0
I ′
n,0
bn will be just the change of the angular coordinate

of lightlike rays.

3 Application to particular SSS spacetimes

In this section, we apply the procedure in Sect. 2 to some
known SSS spacetimes, namely the Schwarzschild, RN and
the colored BH spacetimes. We will find the deflection angles
in the weak deflection limit for general particle velocity, i.e.,
for both lightlike and timelike particles. The state of art of
the deflection angle for Schwarzschild metric is to the sixth
order of 1

x0
and 1

b for lightlike rays [61], and for RN metric

to the third order of 1
x0

and 1
b for lightlike rays [61], and to

various orders for some other interesting metrics as well [62–
67]. In the following, we present the change of the angular
coordinate to much higher orders for signals with general
velocity. As we explained before, although the idea of this
formalism is powerful and clear, the calculations, especially
taking high order derivatives, simplifications and integration
are tedious. Therefore in most cases we will avoid showing
the intermediate steps.

3.1 Deflection angle in the weak field limit in
Schwarzschild spacetime

For the Schwarzschild spacetime, the metric functions take
the form

A(x) = 1 − 2m

x
, B(x) = 1

A(x)
, C(x) = x2. (25)

After substituting into Eq. (12), simplifying and integrating
over u, we find I (x0) to the order 1

x17
0

IS(x0, v) =
17∑
n=0

Sn

(
m

x0

)n

+ O
(
m

x0

)18

, (26)

with

S0 = π, (27a)

S1 = 2

(
1 + 1

v2

)
, (27b)

S2 = 3π

4
+ (3π − 2)

1

v2 − 2
1

v4 , (27c)

S3 = 10

3
+
(

26 − 3π

2

)
1

v2

− 3(2π − 3)
1

v4 + 7

3

1

v6 , (27d)

S4 = 105π

64
+
(

93π

4
− 18

)
1

v2 +
(

69π

4
− 86

)

× 1

v4 + (12π − 23)
1

v6 − 3
1

v8 , (27e)

and the S5 to S17 terms are given in Eq. (A1) because of their
excessive length.
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For lightlike particles, setting v = 1 in Eq. (26) yields the
result

IS,γ (x0) =
17∑
n=0

Sn,γ

(
m

x0

)n

+ O
(
m

x0

)18

, (28)

with

S0,γ = π, (29a)

S1,γ = 4, (29b)

S2,γ = 15π

4
− 4, (29c)

S3,γ = 122

3
− 15π

2
, (29d)

S4,γ = 3465π

64
− 130, (29e)

with S5,γ to S17,γ given in Eq. (A2).
For ultrarelativistic particles, their change of the angular

coordinates can be obtained by expanding (26) around (28)
as series of (1−v). To the order (1−v)1, this takes the form

IS(x0, v → 1) = IS,γ (x0) + (1 − v)

×
[

4

(
m

x0

)1

+ (6π − 12)

(
m

x0

)2

+ (102 − 27π)

(
m

x0

)3

+
(

375π

2
− 542

)(
m

x0

)4

+ O
(
m

x0

)5
]

+ O(1 − v)2.

(30)

Higher order terms in
(
m
x0

)
are given in (A3) and terms of

order (1 − v)n (n ≥ 2) can be easily obtained too.
In order to write the expansion (26) in power series of 1

b ,
we first substitute metric functions (25) and κ = 1 into Eq.
(10)

1

b
= 1

x0

√
E2 − 1√

E2 −
(

1 − 2m
x0

)
√

1 − 2m

x0
. (31)

Using Eq. (23), we can find m
x0

in power series of m
b as

m

x0
=

17∑
n=1

CS,n

(m
b

)n + O
(m
b

)18
(32)

where the coefficients are

CS,1 = 1, (33a)

CS,2 = 1

v2 , (33b)

CS,3 = 2

v2 + 1

2v4 , (33c)

CS,4 = 4

(
1

v2 + 1

v4

)
, (33d)

and the CS,5 to CS,17 terms are given in Eq. (A4).

Putting Eq. (32) into Eq. (27), one finally obtain the change
of the angular coordinate in the power series of 1

b for general
velocity

IS(b, v) =
17∑
n=0

S′
n

(m
b

)n + O
(m
b

)18
, (34)

with

S′
0 = π, (35a)

S′
1 = 2

(
1 + 1

v2

)
, (35b)

S′
2 = 3π

4

(
1 + 4

v2

)
, (35c)

S′
3 = 2

(
5

3
+ 15

v2 + 5

v4 − 1

3v6

)
, (35d)

S′
4 = 105π

64

(
1 + 16

v2 + 16

v4

)
, (35e)

and S′
5 to S′

17 are given in Eq. (A5). Comparing the powers
of 1

b and 1
v

in each summand of (34), we can see that

lim
b→∞,v→0

Sn+2

Sn

(m
b

)2 → 1

v2+δ

(m
b

)2
, (36)

where δ = 0, 1 for odd and even n respectively. Therefore in
order for the entire expansion to converge, the velocity shall
not be indefinitely small. Rather, the range of convergence
for v is v ∈ (O (mb ) , 1]. Note that when b is large, this
range covers velocities of all interested rays or particles that
are (potentially) timelike. These include supernova neutrinos
and GWs in some generalized theories of GR.

After substituting v = 1 we obtain

IS,γ (b, v) =
17∑
n=0

S′
n,γ

(m
b

)n + O
(m
b

)18
, (37)

where

S′
0,γ = π, (38a)

S′
1,γ = 4, (38b)

S′
2,γ = 15π

4
, (38c)

S′
3,γ = 128

3
, (38d)

S′
4,γ = 3465π

64
, (38e)

and S′
5,γ to S′

17,γ are given in Eq. (A5).
Again, for the ultrarelativistic particle, the expansion in

powers of (1 − v)1 is

123



Eur. Phys. J. C           (2020) 80:242 Page 7 of 40   242 

20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

b/m

7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.15

0.20

0.25

0.30

0.35

b/m

8 10 12 14

10–7

10–5

0.001

0.100

b/m

(b)(a)

Fig. 1 The deflection angles in the Schwarzschild spacetime for null
rays (v = 1). a Partial sums (40) for b/m from 7 to 100 and from 7 to
10 in the inset (from bottom to top curve in each plot, k increases from 1
to 17) and the exact deflection angle (dashed red curve). b Contribution

from each order (from top to bottom curve n increases from 1 to 17) for
impact parameter b/m from 7 to 14. In a, we also illustrated the exact
deflection angle obtained using numerical method and in b a horizontal
line of 1 [as]

IS(b, v → 1) = IS,γ (b) + (1 − v)

×
[

4
(m
b

)1 + 6π
(m
b

)2 + 96
(m
b

)3

+315π

2

(m
b

)4 + O
(m
b

)5
]

+ O(1 − v)2. (39)

The higher order terms in
(m
b

)
are given in Eq. (A7). Cor-

rections in high orders of (1 − v)n (n ≥ 2) can be easily
obtained too.

3.1.1 Convergence of the series and effect of velocity

Although the main purpose of this work is not to examine
the effect of parameters in each metric, numerical study of
the deflection angles such as Eqs. (34), (43) and (88) can
not only reveal their validity but also the regions of converge
for b and moreover the effect of velocity. To examine the
convergence of the deflection angle (34), we plot in Fig. 1a
the partial sums

αS,k =
k∑

n=1

S′
n

(m
b

)n
(k = 1, . . . , 17), (40)

for lightrays and the corresponding exact values obtained
using numerical method to an accuracy of 10−15. We also
plot in Fig. 1b the contribution from each order S′

n

(m
b

)n for
lightrays.

It is seen from Fig. 1a that for all fixed b/m, the partial
sums converge to the exact deflection angle as the number of
terms in the partial sum increases. The minimal convergent
impact parameter can reach a sub 10m level. Indeed, as one
can see from the inset of Fig. 1a that when b � 10m, the
deflection angle is already larger than 0.2π . This value cer-
tainly exceeds the traditional weak deflection limits. There-
fore this nice applicability of the perturbative deflection angle
(34) shows clearly the power of the perturbative result, espe-
cially when high orders in the expansion can be known.

It is also noticeable from Fig. 1a that as b/m decreases
from large values, the low order contributions to Eq. (34)
becomes less dominant. As b/m approaches the strong field
limit which is bc/m = 3

√
3 for lightrays, the high order con-

tributions become more and more important and eventually
cause the divergence of the total deflection angle. In order to
determine the accuracy of the deflection angle calculated to
certain order, we plotted the contributions from each order
in Fig. 1b and a benchmark line of 1 [as]. Clearly in this
plot the slope of contribution S′

n

(m
b

)n should be −n. What
is important is that for any fixed b, as the order increases, the
contribution from each order decreases by a factor smaller
than 1. Therefore this decrease guarantees that the series con-
verges at all b considered. In particular, one sees that even
for b as small as ∼ 9.7 m, the deflection angle expanded to
the 17th order is still accurate to the 1 [as] level, which is
roughly the limit of GL observations of galaxies and galaxy
clusters.

To study the effect of signal velocity on the deflection
angle, we plot in Fig. 2a the contribution from each order
to the deflection angle for v = 0.9c, and in Fig. 2b for fixed
b = 10m and increasing v from 0.35c to c. Comparing Fig. 2a
to Fig. 1b, one can see that as v deviates from c, the contri-
bution to the deflection angle from each order also increases.
This leads to an increase of the impact parameter (from 9.4
to 10.5m) at which the accuracy of the expansion can reach
the 1 [as] level. For a fixed b = 10m, it is seen in Fig. 2b that
as v decreases, the deflection angle increases as dictated by
the series (34). However, it is known that for massive parti-
cle with velocity v at infinity, there exists a critical impact
parameter bc [41]

bc(v) =
[
8v4 + 20v2 − 1 + (8v2 + 1)3/2

]1/2
m√

2v2
(41)

below which the particle will spiral into the black hole. Using
this relation, it can be worked out then when v = vc = 0.43c,
bc = 10m. Particles with velocities at or below this value
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Fig. 2 The deflection angles in the Schwarzschild spacetime for time-
like rays. a Contribution from each order of the deflection angle in
Eq. (34) (from top to bottom line n increases from 1 to 17) for fixed
v = 0.9c and b/m from 7 to 14; b Partial sums (40) (from bottom to

top curve, k increases from 1 to 17) and exact value of the deflection
angle (dashed red curve) for fixed b = 10m and v from 0.35c to 1c.
The critical velocity for this value of b is shown by the dashed blue line

will all have larger bc’s and therefore for these particles if
their impact parameter b = 10m, then they will experience
a divergent deflection angle and eventually be captured by
the BH. This is also seen from the sharp deviation of the per-
turbative deflection angle (34) from the exact value starting
from v/c = 0.5. Below this velocity, the deflection angle,
Eq. (34), becomes invalid.

3.2 Weak deflection angle in RN spacetime

The RN metric is given by

A(x) = 1 − 2m

x
+ q2

x2 , B(x) = 1

A(x)
, C(x) = x2. (42)

where q is the total charge of the spacetime. Substituting
this into Eq. (12), simplifying and integrating over u we get
the change of the angular coordinate for RN metric to the
fifteenth order of 1

x0
for general velocity v

IRN(x0, v) =
15∑
n=0

Rn

(
m

x0

)n

+ O
(
m

x0

)16

, (43)

where

R0 = S0, (44a)

R1 = S1, (44b)

R2 = S2 −
(π

4
+ π

2v2

)
q̂2, (44c)

R3 = S3 −
[

2 −
(π

2
− 11

) 1

v2 − (π − 1)
1

v4

]
q̂2, (44d)

R4 = S4 −
[

45π

32
+
(

121π

8
− 10

)
1

v2

−
(

37 − 29π

4

)
1

v4 + (2π − 3)
1

v6

]
q̂2

+
(

9π

64
+ 7π

8v2 − π

8v4

)
q̂4, (44e)

where q̂ ≡ q/m, S1–S4 are the corresponding terms in
Schwarzschild spacetime given in Eq. (27) and R5–R15 are
given in Eq. (B1). The expansion coefficients (44) show that
the effect of the charge in the RN metric starts to appear in
the deflection angle from the second order in R2. Rewriting
Eq. (44c), we have

R2 = 3π

4
+ (3π − 2)

1

v2 − 2
1

v4 − π

4

(
1 + 2

v2

)
q̂2. (45)

This implies that the total deflection angle decreases mono-
tonically as |q̂| increases. This agrees with the observation in
Ref. [40]. Similar to the Schwarzschild case, comparison of
Rn+1 and Rn in the large x0 and small v limit also suggests
that in order for the expansion (44) to converge, the velocity
of the particles should be bounded within v ∈ (

√
m/x0, 1].

For lightlike particles, setting v = 1 we obtain its corre-
sponding IRN,γ (x0)

IRN,γ (x0) =
15∑
n=0

Rn,γ

(
m

x0

)n

+ O
(
m

x0

)16

(46)

where the coefficients are given by

R0,γ = S0,γ , (47a)

R1,γ = S1,γ , (47b)

R2,γ = S2,γ − 3π q̂2

4
, (47c)

R3,γ = S3,γ −
(

14 − 3π

2

)
q̂2, (47d)

R4,γ = S4,γ −
(

825π

32
− 50

)
q̂2 + 57π q̂4

64
, (47e)

where Sn,γ are given in Eq. (29) and R5,γ to R15,γ are given
in Eq. (B2). The result (47) agrees with the deflection angle
in Ref. [61]. For ultrarelativistic particles, the change of the
angular coordinates can be expanded around IRN,γ (x0). To
the order (1 − v)1, this is
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IRN(x0, v → 1) = IRN,γ (x0) + (1 − v)

×
{

4

(
m

x0

)
+
[
(6π − 12) − π q̂2

](m

x0

)2

+
[
3(34 − 9π) − (26 − 5π)q̂2

](m

x0

)3

+
[

375π

2
− 542 −

(
285π

4
− 186

)
q̂2

+5π

4
q̂4
](

m

x0

)4

+ O
(
m

x0

)5
}

+ O(1 − v)2, (48)

where for simplicity in the curl bracket the orders higher than(
1
x0

)4
were not shown.

In order to transform the change of angular coordinates
(43) into a power series of 1

b , we shall use the relation (10)
which in this case becomes for κ = 1

1

b
= 1

x0

√
E2 − 1√

E2 −
(

1 − 2m
x0

+ q2

x2
0

)
√

1 − 2m

x0
+ q2

x2
0

. (49)

Using this, m
x0

can be expanded as power series of m
b

m

x0
=

15∑
n=1

CRN,n

(m
b

)n + O
(m
b

)16
(50)

where the coefficients are

CRN,1 =CS,1, (51a)

CRN,2 =CS,2, (51b)

CRN,3 =CS,3 − q̂2

2v2 , (51c)

CRN,4 =CS,4 −
(

2

v2 + 1

v4

)
q̂2, (51d)

with CS,1 to CS,4 present in Eq. (33) and CRN,5 to CRN,15

given in Eq. (B3). Substituting this into expansion (43), the
change of the angular coordinate becomes

IRN(b, v) =
15∑
n=0

R′
n

(m
b

)n + O
(m
b

)16
, (52)

where

R′
0 = S′

0, (53a)

R′
1 = S′

1, (53b)

R′
2 = S′

2 − π

4

(
1 + 2

v2

)
q̂2, (53c)

R′
3 = S′

3 − 2

(
1 + 6

v2 + 1

v4

)
q̂2, (53d)

R′
4 = S′

4 − 45π

32

(
1 + 12

v2 + 8

v4

)
q̂2

+ 3π

64

(
3 + 24

v2 + 8

v4

)
q̂4, (53e)

and the higher order terms are given in Eq. (B4). For lightlike
rays, this reduces to

IRN,γ (b) = IS,γ (b) − 3π

4

(m
b

)2 − 16q̂2
(m
b

)3

+105

64
π
(
−18q̂2 + q̂4

) (m
b

)4 + O
(m
b

)5
,

(54)

where the first three orders were known in Ref. [61]. Again,
for the ultrarelativistic particle, the change of the angular
coordinate expanded to the (1 − v)1 order is

IRN(b, v → 1) = IRN,γ (b) + (1 − v)

×
[

4
(m
b

)
+ π

(
6 − q̂2

) (m
b

)2 + 32
(

3 − q̂2
) (m

b

)3

+15π

4

(
42 − 21q̂2 + q̂4

) (m
b

)4

+O
(m
b

)5
]

+ O(1 − v)2 (55)

and terms of order
(m
b

)5 and (1 − v)2 can be similarly com-
puted but not shown for simplicity reason here.

3.2.1 Effect of charge on deflection angle

In Fig. 3a we plot contribution of each order R′
n

( b
m

)n
to the

deflection angle (52) for q̂ = 0 and q̂ = 0.4 respectively and
v = 0.9c, and in Fig. 3b the same quantities but for q̂ = 0
and q̂ = 0.4 and b/m = 10. While in Fig. 3c for lightrays
with b = 10m, the contribution from each order in Eq. (52),
the total deflection angle (52) to the 15th order, and the exact
deflection angle obtained numerically, are shown.

It is seen from the comparison of Fig. 3a, b with Fig. 2,
the effects of b/m and v/c in RN spacetime are similar to
the case of Schwarzschild metric. Moreover, in each plot of
Fig. 3, a comparison between the q̂ = 0 and q̂ = 0.4 cases
shows that as explained from Eq. (45), the contribution of
each order R′

n

( b
m

)n
and therefore the total deflection will all

decrease as q increases. Figure 3c further illustrates that this
effect indeed is persistent to the region that q̂ > 1, i.e., from
an RN BH spacetime to naked singularity case. A comparison
of the deflection angle (52) to the exact value also reveals
that this expansion approximate the exact deflection angle
perfectly in both the RN BH and naked singularity cases.
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Fig. 3 The deflection angles in the RN spacetime. a Contribution from
each order of the deflection angle in Eq. (52) for fixed v = 0.9c and
b/m from 7 to 14 (from top to bottom n increases from 1 to 15); b
contribution from each order of the deflection angle (from bottom to

top n decreases from 15 to 1), the total deflection angle (solid blue
line), Eq. (52), and the exact deflection angle (solid red line) for fixed
b = 10m, v/c = 1 and q̂ from 0 to 1.2. The solid blue and red lines
overlap

3.3 Weak deflection angle in non-explicitly known SSS
spacetimes

As explained in Sect. 2, the change of the angular coordinate
in the large x0 limit shall be determined by the spacetime
in the large x0 region. In literatures, there are quite some
interesting SSS spacetimes whose metric functions are not
known explicitly and/or analytically due to the complexity
of the Einstein equations. However, very often their asymp-
totic behavior can be known from series analysis. We take
the colored BH in the SU(2) Yang–Mills–Einstein theory as
an example [68]. We will show that in this spacetime the
change of the angular coordinate can be solved to the order(

1
x0

)1
without having to know the explicit form of the metric

functions.
The metric of the colored BH are given at large x by [68]

A(x) = e−2δ(x)
(

1 − 2m(x)

x

)
x→∞−−−→ e−2δk

(
1 − 2Mk

x

)
,

(56)

B(x) =
(

1 − 2m(x)

x

)−1
x→∞−−−→

(
1 − 2Mk

x

)−1

, (57)

C(x) = x2, (58)

where −1 < δk < 0, 0 < Mk < 1 are constants and
k = 1, 2, . . . are indices characterizing colored BHs of
different masses.

It is clear that asymptotically this metric is almost identical
to the Schwarzschild spacetime at the first order except the
factor e−2δk in front of A(x). Substituting the metric into Eq.
(20), one finds the change of angular coordinate for general

velocity to the order
(

1
x0

)1
as

ICB(x0) = π + 2
[
2 − e2δk (δk+1)(1 − v2)δk+1

]
1 − e2δk (δk+1)(1 − v2)δk+1

Mk

x0

+O
(
Mk

x0

)2

. (59)

It is seen that for massive particles, ICB(x0) is affected by not
only the asymptotic mass Mk but also δk . For lightlike rays,
the change of the angular coordinate becomes

ICB,γ (x0) = π + 4Mk

x0
+ O

(
Mk

x0

)2

. (60)

To the order 1
x0

, this equals the changes of the angular coor-
dinate (28) in the Schwarzschild spacetime and (52) in the
RN spacetime.

The expansion of Mk
x0

in term of Mk
b in this metric can be

found using the same procedure as in Eq. (23) to be

Mk

x0
= v√

1 − e2δk (1 − v2)

Mk

b
+ O

(
Mk

b

)2

. (61)

Substituting this into Eq. (59), one can obtain the change of
the angular coordinate to the order of 1

b . Moreover, it is also
easy to see that for lightlike rays, this becomes

ICB,γ (b) = π + 4Mk

b
+ O

(
1

b

)2

. (62)

4 Weak deflection angle in Equatorial plane of SAS
spactimes

To find the deflection angle in the weak field limit in a non-
SSS spacetimes described by metric gμν , in principle one
could attempt to derive through the geodesic equations the
differential equation that the angular coordinate satisfies

dφ(x)

dx
= fns(x, E, p) (63)

where fns denotes some function derivable from the metric
functions gμν . Here the coordinate x should resemble the
meaning of distance when it is large, E denotes energy per
unit mass of the ray at infinity and p collectively stands for
all other parameters that might appear in the metric, such as
spacetime mass m, angular momentum per unit mass a etc.
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Integrating Eq. (63) then yields the change of the angular
coordinate for a ray coming and going to spatial infinity

I (x0) = 2
∫ ∞

x0

dφ(x)

dx
dx = 2

∫ ∞

x0

fns(x, E, p)dx . (64)

In order for the above process to make physical sense
and the integral to be eventually carried out, usually a few
requirements should be satisfied. The first is that there should
exist a spatial infinity (x → ∞) at which the spacetime is
approximated by a flat spacetime. Only in this circumstance,
the interpretation of the integral (64) subtracting π as the
deflection angle makes physical sense. The second is that the
metric should still possess certain amount of symmetries.
Indeed, the geodesic equations are originally second order
differential equations while Eq. (63) is already first order. For
this to happen, the spacetime will have to have at least the
necessary symmetries to allow the first integrals. Moreover,
only when the spacetime is static, the function fns(x, E, p)
in Eq. (63) and so that the change of the angular coordinate
can be static. Finally, from the practical point of view, the
function fns(x, E, p) should still be simple enough for the
integration to be carried out. This can require one or more
of the following conditions or techniques, such as simple
enough metric functions, specially picked trajectories in the
spacetime, or series expansions of the integrand over certain
parameters.

The above considerations naturally singles out the SAS
spacetimes as next suitable candidates for computation. We
start from the most general SAS metric given by the Weyl–
Lewis–Papapetrou line element [69–71]

ds2 = − e2U (dt − ωdφ)2

+ e−2U
[
e2γ (dρ2 + dz2) + ρ2dφ2

]
(65)

where (t, ρ, φ, z) are the coordinates and U, ω and γ are
arbitrary functions of ρ and z only. For latter easier reference,
we can rewrite this metric into the form

ds2 = −A(ρ, z)dt2 + B(ρ, z)dtdφ

+C(ρ, z)dφ2 + D(ρ, z)(dρ2 + dz2) (66)

where we have set A(ρ, z) = e2U , B(ρ, z) = 2ω e2U ,
C(ρ, z) = ρ2 e−2U −ω2 e2U and D(ρ, z) = e2(γ−U ). Note
there is a relation between these functions

C = ρ2 − B2/4

A
. (67)

We further assume that this spacetime allows a plenary
motion for particles in a plane with fixed z, which will be
called the equatorial plane henceforth. Indeed, without los-
ing any generality, the coordinates can be shifted along the
z axis so that this plane becomes z = 0. The motion in the
equatorial plane then becomes effectively 2+1 dimensional
whose metric after suppressing the z coordinate in the metric

functions becomes

ds2 = −A(ρ)dt2 + B(ρ)dtdφ + C(ρ)dφ2 + D(ρ)dρ2.

(68)

We then concentrate on the motion of particles in this plane.
The geodesic equations corresponding to metric (68) can

be readily obtained as

ṫ = E

A(ρ)

(
1 − B(ρ)2

4ρ2

)
+ LB(ρ)

2ρ2 , (69)

φ̇ = 1

2ρ2 [2L A(ρ) − EB(ρ)] , (70)

ρ̇2 = 4ρ2
[
E2 − κA(ρ)

]− [EB(ρ) − 2L A(ρ)]2

4ρ2AD
. (71)

where we have substituted (67). Here E and L are still energy
and angular momentum per unit mass of the particle at infi-
nite ρ. Note that because the SAS spacetimes might carry
a nonzero angular momentum, the direction of the angu-
lar momentum L is important in determining the shape and
deflection angle of the geodesics.

Using Eqs. (70) and (71) to find dφ/dρ, it is easy to show
that the deflection angle for rays both coming and going to
infinite ρ takes the form

α(ρ0) = |I (ρ0)| − π, (72)

where we add an absolute sign because I (ρ0), the change of
the angular coordinate defined as

I (ρ0)

= 2
∫ ∞

ρ0

[2L A(ρ) − EB(ρ)]
√
A(ρ)D(ρ)

ρ

√
4ρ2

[
E2 − κA(ρ)

]− [EB(ρ) + 2L A(ρ)]2
dρ,

(73)

can be close to π or −π when L is positive (s = −1) or
negative (s = 1) respectively. The angular momentum L can
be linked to ρ0 by using ρ̇

∣∣
ρ=ρ0

= 0 in Eq. (71) to find

L = −2sρ0
√
E2 − κA(ρ0) + EB(ρ0)

2A(ρ0)
. (74)

Here since in the small spacetime spin limit the first term
in the numerator dominates the second term, it is clear then
the s = +1 and −1 correspond to the cases that the L are
negatively or positively oriented, respectively.

Equation (73) usually does not permit integration into
closed form in terms of elementary functions. Similar to the
procedure in Sect. 2 which leads I (x0) to power series of 1

x0

and then further to series of 1
b , one can also expand I (ρ0) in

Eq. (73) in the weak field, i.e., the large ρ0 limit, and integrate
to find the change of the angular coordinate in power series
of 1

ρ0
and eventually in powers of 1

b . We will not carry out
these formal steps as in Sect. 2 here because they are exactly
the same way and too tedious to show here. Rather we will
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only illustrate these steps in subsection (4.1) for equatorial
motion in Kerr and KN metrics respectively.

4.1 Weak deflection angle in equatorial plane of the Kerr
and KN spacetimes

With the above consideration, the next spacetimes we will
consider is naturally the Kerr and KN spacetimes. We will
show that the formalism for expanding the integrand in series
of 1

x0
can also be used here to find the change of the angular

coordinate of both massive and massless particles to high
orders. We will only illustrate the procedure and results in the
KN spacetime because setting its charge to zero will yield the
corresponding results in the Kerr metric. To our knowledge,
the deflection angle in Kerr spacetime has been known to
fourth order in 1

x0
and 1

b for lightlike rays [72,73].
The KN spacetime has a metric

ds2 = −
 − a2 sin2 θ

�
dt2

+
(
a2 + x2

)2 − a2
 sin2 θ

�
sin2 θdφ2

−2a sin2 θ
(
a2 − 
 + x2

)
�

dtdφ

+�



dx2 + �dθ2 (75)

where functions � and 
 are

�(x, θ) = x2 + a2 cos2 θ,


(x, θ) = x2 − 2mx + a2 + q2, (76)

andm, a and q are respectively the mass, angular momentum
per unit mass and charge of the KN spacetime.

In the equatorial plane, θ = π
2 and the metric (75) reduces

to

ds2 = −AKN(x)dt2 + BKN(x)dtdφ

+CKN(x)dφ2 + DKN(x)dx2, (77)

where

AKN(x) = 1 − 2m

x
+ q2

x2 ,

BKN(x) = 2aq2

x2 − 4am

x
,

CKN(x) = x2 + a2 + 2a2m

x
− a2q2

x2 ,

DKN(x) = x2

x2 − 2mx + a2 + q2 . (78)

The coordinate ρ in the standard metric (68) is related to the
coordinate x in metric (77) by [71,74]

ρ(x) =
√
x2 − 2mx + a2 + q2 sin θ

=
√
x2 − 2mx + a2 + q2, (79)

where θ = π
2 was used. The metric functions in (77) and

(68) are then related by

A(ρ(x)) = AKN(x), B(ρ(x)) = BKN(x),

C(ρ(x)) = CKN(x), D(ρ(x)) = DKN(x)

(
dρ(x)

dx

)−2

. (80)

Substituting Eqs. (78)–(80) into (73), the change of angu-
lar coordinate can be expressed as

IKN(x0)

= 2
∫ ∞

x0

[2L AKN(x) − EBKN(x)]
√
AKN(x)DKN(x)

ρ(x)
√

4ρ(x)2
[
E2 − κAKN(x)

]− [EBKN(x) − 2L AKN(x)]2
dx .

(81)

We can get rid of the angular momentum L in this equation
by using Eq. (74) which in this case becomes

L = −2sρ(x0)
√
E2 − κAKN(x0) + EBKN(x0)

2AKN(x0)
. (82)

Again, s = +1 and s = −1 correspond to the cases that L is
negative and positive respectively.

The integral (81) can not be carried out to find a closed
form and therefore an expansion of the integrand for large
x0 is needed. After integrating this expansion, we obtain a
series approximation of the change of the angular coordinate.
Here we skip these tedious middle steps and present the result

directly to the order
(
m
x0

)6
as

IKN(x0, v) =
6∑

n=0

Kn

(
m

x0

)n

+ O
(
m

x0

)7

, (83)

where

K0 = R0, (84a)

K1 = R1, (84b)

K2 = R2 + 4âs

v
, (84c)

K3 = R3 + âs

{[
(6π − 4)

1

v
+ (4π − 12)

1

v3

]

−π

v
q̂2
}

+ â2
(

1 + 1

v2

)
, (84d)

K4 = R4 + âs

{[
(52 − 3π)

1

v
+ (104 − 30π)

× 1

v3 − (12π − 36)
1

v5

]

−
[
(22 − π)

1

v
+ (18 − 5π)

1

v3

]
q̂2
}
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+ â2
{[

33π

16
− 2 +

(
21π

2
− 23

)
1

v2

−(5 − 3π

2
)

1

v4

]
−
(

5π

16
+ π

4v2

)
q̂2
}

(84e)

K5 = R5 + âs

{[(
−36 + 93π

2

)
1

v
+ (−436 + 159π)

1

v3

+(−460 + 141π)
1

v5
+ (−92 + 30π)

1

v7

]

+
[(

20 − 121π

4

)
1

v
+ (184 − 68π)

1

v3

+
(

84 − 51π

2

)
1

v5

]
q̂2 +

(
7π

4v
+ π

2v3

)
q̂4
}

+ â2
{[

19 − 3π

2
+
(

219 − 207π

4

)
1

v2

+
(

453

2
− 72π

)
1

v4 +
(

37

2
− 6π

)
1

v6

]

+
[
−8 + π

2
+
(

−85

2
+ 35π

4

)
1

v2

+
(

−13

2
+ 2π

)
1

v4

]
q̂2
}

+ â3s

[
(−16 + 6π)

1

v
+ (−16 + 6π)

1

v3

]

+ â4
(

−1

4
− 1

4v2

)
(84f)

K6 = R6 + âs

{[(
348 − 201π

8

)
1

v

+
(

2040 − 1113π

2

)
1

v3 +
(

3072 − 2013π

2

)
1

v5

+(1576 − 495π)
1

v7 +
(

652

3
− 70π

)
1

v9

]

+
[(

−946

3
+ 85π

4

)
1

v
+
(

−4034

3
+ 1451π

4

)
1

v3

+
(

−1330 + 873π

2

)
1

v5

+
(

−886

3
+ 185π

2

)
1

v7

]
q̂2

+
[(

52 − 25π

8

)
1

v
+
(

112 − 109π

4

)
1

v3

+
(

12 − 9π

2

)
1

v5

]
q̂4
}

+ â2
{[

−18 + 1173π

64
+
(

−747 + 2523π

8

)
1

v2

+
(

−2116 + 1365π

2

)
1

v4 +
(

−2149

2
+ 339π

)
1

v6

+
(

−111

2
+ 18π

)
1

v8

]

+
[

10 − 379π

32
+
(

315 − 2205π

16

)
1

v2

+
(

885

2
− 144π

)
1

v4 +
(

75

2
− 23π

2

)
1

v6

]
q̂2

+
(

41π

64
+ 29π

16v2 + π

8v4

)
q̂4
}

+ â3s

{[
(136 − 36π)

1

v
+
(

1520

3
− 150π

)
1

v3

+(168 − 54π)
1

v5

]
+
[
(−24 + 6π)

1

v

+(−24 + 6π)
1

v3

]
q̂2
}

+ â4
[
−3 + 19π

32
+
(

−51

4
+ 33π

8

)
1

v2

+
(

−7

4
+ 3π

4

)
1

v4 +
(

3π

32
+ π

16v2

)
q̂2
]

(84g)

where R0 to R6 are given in Eq. (44).
For lightlike rays, setting v = 1 we easily get their change

of the angular coordinate as

K0,γ = R0,γ , (85a)

K1,γ = R1,γ , (85b)

K2,γ = R2,γ + 4âs, (85c)

K3,γ = R3,γ + âs

×
(

10π − 16 − π q̂2
)

+ 2â2, (85d)

K4,γ = R4,γ + âs
[
192 − 45π − (40 − 6π)q̂2

]
+ â2

×
(

225π

16
− 30 − 9π q̂2

16

)
, (85e)

K5,γ = R5,γ + as

[
753π

2
− 1024 −

(
495π

4
− 288

)
q̂2

+9π q̂4

4

]
+ â2

[
483 − 525π

4
−
(

57 − 45π

4

)
q̂2
]

+ â3s(12π − 32) − â4

2
, (85f)

K6,γ = R6,γ + âs

[
21760

3
− 17225π

8

−
(

9856

3
− 913π

)
q̂2 +

(
176 − 279π

8

)
q̂4
]

+ â2
[
−4011 + 87885π

64
−
(

9765π

32
− 805

)
q̂2

+165π q̂4

64

]

+ â3s

[
2432

3
− 240π − (48 − 12π)q̂2

]

− â4
(

35

2
− 175π

32
− 5π q̂2

32

)
(85g)
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And for ultra-relativistic particles, their change of the angular
coordinate deviates from the lightlike rays’ amount. At order
(1 − v)1 this deviation is given by

IKN(x0, v → 1) = IKN,γ (x0) + (1 − v)

×
[

4âs

(
m

x0

)2

+
{[

(−40 + 18π) − π q̂2
]
âs

+2â2
}(m

x0

)3

+
{[

(544 − 153π) + (−76 + 16π)q̂2
]
âs

+
[
(−66 + 27π) − π q̂2

2

]
â2
}(

m

x0

)4

+
{[(

−4288 + 2877π

2

)
+
(

992 − 1447π

4

)
q̂2

+13π q̂4

4

]
âs

+
[(

1455 − 855π

2

)
+
(

−111 + 51π

2

)
q̂2
]
â2

+(−64 + 24π)â3s − â4

2

}(
m

x0

)5

+
{[(

34816 − 86577π

8

)
+
(

−39200

3
+ 7879π

2

)
q̂2

+
(

448 − 859π

8

)
q̂4
]
âs

+
[(

−16849 + 22155π

4

)
+
(

2625 − 7365π

8

)
q̂2

+33π q̂4

8

]
â2

+
[
(2496 − 756π) + (−96 + 24π)q̂2

]
â3s

+
[(

−65

2
+ 45π

4

)
+ π q̂2

8

]
â4
}(

m

x0

)6

+O
(
m

x0

)7
]

+ O (1 − v)2 . (86)

In order to express the change of the angular coordinate
in terms of the expansion of the impact parameter, again we
use the relation (9) with L given by Eq. (82) to obtain a series
expansion of 1

x0

m

x0
= m

b
+ 1

v2

(m
b

)2 +
(

2

v2 + 1

2v4 − 1

2v2 q̂
2

+2âs

v
+ â2

2

)(m
b

)3

+
[

4

v2 + 4

v4 −
(

2

v2 + 1

v4

)
q̂2

+
(

4

v
+ 6

v3 − 1

v
q̂2
)
âs +

(
1 + 2

v2

)
â2
] (m

b

)4

+
{

8

v2 + 18

v4 + 3

v6 − 1

8v8 −
(

6

v2 + 9

v4 + 3

4v6

)
q̂2

+
(

1

2v2 + 3

8v4

)
q̂4

+
[

8

v
+ 32

v3 + 8

v5
−
(

4

v
+ 8

v3

)
q̂2
]
âs

+
[

2 + 18

v2 + 15

4v4 −
(

1

2
+ 5

4v2

)
q̂2
]

×â2 + 4

v
â3s + 3â4

8

}(m
b

)5

+
{

16

v2 + 64

v4 + 32

v6 − 16

(
1

v2 + 3

v4 + 1

v6

)
q̂2

+
(

3

v2 + 6

v4 + 1

v6

)
q̂4

+
[

16

v
+ 120

v3 +90

v5
+ 5

v7 −
(

12

v
+ 60

v3 + 45

2v5

)
q̂2

+
(

1

v
+ 5

2v3

)
q̂4
]
âs

+
[

4 + 76

v2 + 76

v4 + 4

v6 −
(

2 + 22

v2 + 6

v4

)
q̂2
]
â2

+
(

20

v
+25

v3 − 5

2v
q̂2
)
â3s+

(
2 + 3

v2

)
â4
}(m

b

)6

+O
(m
b

)7
. (87)

It is seen that when b > 0 is fixed and q = 0, in the retrograde
case (sa > 0) the x0 will be smaller than in the prograde case
(sa < 0).

Substituting into Eq. (83) we obtain

IKN(b, v) =
6∑

n=0

K ′
n

(m
b

)n + O
(m
b

)7
, (88)

where

K ′
0 = R′

0, (89a)

K ′
1 = R′

1, (89b)

K ′
2 = R′

2 + 4âs

v
, (89c)

K ′
3 = R′

3 + π âs

(
4

v3 + 6

v
− q̂2

v

)
+ â2

(
2

v2 + 2

)
, (89d)

K ′
4 = R′

4 + 12âs

[
1

v5
+ 10

v3 + 5

v
− 2q̂2

(
1

v3 + 1

v

)]

+ 3π â2
[

1

2v4 + 9

2v2 + 15

16
− q̂2

(
1

4v2 + 3

16

)]

+ 4â3s

v
(89e)

K ′
5 = R′

5 + 3π âs

[
7

(
4

v5
+ 10

v3 + 5

2v

)
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−3q̂2
(

15

4v
+ 10

v3 + 2

v5

)
+ q̂4

(
1

v3 + 3

4v

)]

+ 4â2
[

7 + 75

v2 + 45

v4 + 1

v6 − q̂2
(

3 + 18

v2 + 3

v4

)]

+ 3π â3s

(
5

v
+ 4

v3 − 3q̂2

2v

)
+ 2â4

(
1 + 1

v2

)
, (89f)

K ′
6 = R′

6 + 10âs

[
42

v
+ 280

v3 + 252

v5
+ 24

v7 − 2

3v9

− 16q̂2
(

7

3v
+ 35

3v3 + 7

v5
+ 1

3v7

)

+2q̂4
(

3

v5
+ 10

v3 + 3

v

)]

+ 15π â2
[

7

(
15

64
+ 35

8v2 + 25

4v4 + 1

v6

)

− q̂2
(

35

32
+ 225

16v2 + 45

4v4 + 1

2v6

)

+q̂4
(

5

64
+ 9

16v2 + 1

8v4

)]

+ 40â3s

[
7

v
+ 50

3v3 + 3

v5
− 2q̂2

(
1

v
+ 1

v3

)]

+ 5π

4
â4
[

35

8
+ 45

2v2 + 3

v4 − q̂2
(

5

8
+ 3

4v2

)]
+4â5s

v

(89g)

where R′
0 to R′

6 are given in Eq. (53). From Eq. (89) it is
seen that the effect of the angular momentum per unit mass a

only starts to appear from order
( 1
b

)2
. Writing Eq. (89c) out

explicitly, we have

K2 = 3π

4

(
1 + 4

v2

)
− π

4

(
1 + 2

v2

)
q̂2 + 4âs

v
(90)

It is seen that when the geodesic motion is prograde, i.e.,
sa < 0 the deflection angle decreases as |a| increases. On
the contrary, if the geodesic motion is retrograde, i.e., sa > 0,
then the deflection angle is larger than the prograde case with
same |a|. Note that when Q = 0 for Kerr spacetime, the first
three orders agree with Eq. (96) of Ref. [75].

For lightlike rays, setting v = 1, this becomes

IKN,γ (b) =
6∑

n=0

K ′
n,γ

(m
b

)n + O
(m
b

)7
, (91)

where

K ′
0,γ = R′

0,γ , (92a)

K ′
1,γ = R′

1,γ , (92b)

K ′
2,γ = R′

2,γ + 4âs, (92c)

K ′
3,γ = R′

3,γ + π âs(10 − q̂2) + 4â2, (92d)

K ′
4,γ = R′

4,γ + 48âs(4 − q̂2)

+ 3π

16
â2(95 − 7q̂2) + 4â3s, (92e)

K ′
5,γ = R′

5,γ + 21π

4
âs(66 − 27q̂2 + q̂4)

+ 32â2(16 − 3q̂2) + 3π â3s

×
(

9 − q̂2

2

)
+ 4â4, (92f)

K ′
6,γ = R′

6,γ + 320

3
âs(56 − 32q̂2 + 3q̂4)

+ 105π

64
â2(759 − 246q̂2 + 7q̂4)

+ 160

3
â3s(20 − 3q̂2)

+ 5

32
â4
(

239 − 11q̂2
)

+ 4â5s. (92g)

The first four orders here agrees with Refs. [72,73].

4.1.1 Effect of angular momentum on deflection angle

In Fig. 4a, we plot each order in the deflection angle (88)
for v = 1 and â = 0, â = 0.3 for both the retrograde and
prograde motions. It is seen for the first nontrivial order of
the deflection angles, the lines completely overlap for dif-
ferent â. This is indeed a consequence of Eq. (88), where
the effect of â only starts to appear from the third order (the
second nontrivial order). For third or higher orders, it is seen
that the retrograde motion has a larger deflection angle than
in the Schwarzschild spacetime which is yet larger than the
prograde motion case. This is indeed a manifestation of the
frame-dragging effect of a rotating spacetime. In Fig. 4b, the
impact parameter is fixed at b = 10m and the velocity varies
from 0.7c to 1.0c with two spacetime rotation directions with
â = 0.3. It is seen that as v decreases, the deflection angles
at all orders increase for both rotation directions. This can be
understand from the observation that slower particles (keep-
ing b fixed) tend to pass by the BH with a closer distance
and therefore are more influenced by it, leading to a larger
deflection angle. Moreover, the deflection angle is increased
regardless whether the BH is rotating or not, or the direction
of the rotation. In Fig. 4c, the dependence of the deflection
angles on the angular momentum is shown. It is seen that
as â increases, i.e., the rotation of the spacetime becomes
faster, the deflection angle increases for retrograde motion
and decreases for prograde motion. Moreover, similar to the
case of RN spacetime, it is seen that the total deflection angle
computed using Eq. (88) works even when the angular param-
eter is beyond its critical value â = √

1 − q̂2 for the extreme
KN spacetime. In other words, the deflection angle (88) is
valid for both the KN BH and naked singularity spacetimes.
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Fig. 4 The deflection angles at each order of Eq. (88) in the KN space-
time. a v = 1, q̂ = 0, â = 0.3; b b/m = 30, q̂ = 0, â = 0.3; The
horizontal line in a is the 1 [as] line. c b/m = 100, v/c = 0.9, q̂ = 0.4.

For each order in these plots, solid, dashed and dotted lines correspond
to â = 0, prograde motion and retrograde motion respectively

4.2 Universal weak deflection angle to the lowest
non-trivial order

In previous sections/subsections we see that the change of
the angular coordinate can be calculated for all known SSS
spacetimes and for SAS spacetimes in the equatorial plane.
Changes of the angular coordinate at high orders of 1

x0
or 1

b
depend on the parameters in different ways. But through the
examples, we do see that to the lowest order, all spacetimes
have a change of the angular coordinate π . Now we will
show that this feature is universal to at least geodesics on the
equatorial plane of general SAS spacetimes which are also
asymptotically flat. These spacetime certainly include all the
spacetimes in previous sections, in particular the SSS space-
times specified by metric (2). This value although sounds
intuitively trivial, was never proven rigorously before.

Furthermore and more importantly, we will also show that
for geodesics in the equatorial plane of such spacetimes, to
the next (the lowest nontrivial) order, the change of the angu-
lar coordinate always takes the form

I (b) = π + 2

(
1 + 1

v2

)(m
b

)
+ O

(m
b

)2
, (93)

where m is the ADM mass of the spacetime. Recently, Ref.
[76] derived a deflection angle to the first nontrivial order
in terms of an energy-momentum distribution of the SSS
spacetime. From that point of view, our result here further
proves that to the first non-trivial order, ADM mass is the
only parameter of an asymptotically flat spacetime that will
affect the change of the angular coordinate. Other parame-
ters in these spacetimes such as charge or angular momen-
tum can only appear at higher orders. In addition, Eq. (93)
also dictates how the particle velocity will affect this angle.
Expanding Eq. (93) around v = 1 yield the correction of
the deflection angle of ultrarelativistic particle with respect
to lightlike rays to the lowest nontrivial order of both 1

b and
(1 − v).

α(b, v → 1) = αγ (b) + 4(1 − v)
(m
b

)

+O
(

(1 − v)i
(m
b

) j
)

, (94)

where i + j ≥ 2.
We now show (93). In Eq. (73) we have calculated the

change of the angular coordinate in terms of general met-
ric functions in Eq. (68). In order for this spacetime to be
asymptotically flat, these metric functions should asymptot-
ically satisfy the following conditions [77]

A(ρ) = 1 − 2m

ρ
+ O(ρ)−2, (95a)

B(ρ) = −4am

ρ
+ O(ρ)−2, (95b)

C(ρ) = ρ2 + 2mρ + O(ρ)0, (95c)

D(ρ) = 1 + 2m

ρ
+ O(ρ)−2, (95d)

where m is the effective total ADM mass of the spacetime.
The effective parameters of charge and angular momentum
of the spacetime will only appear in the higher orders of this
expansion. Substituting Eq. (95) into Eq. (73), changing the
integration variables from ρ to u = ρ0/ρ, series expanding
the integrand in the large ρ0 limit and then carrying out the
integration, the result of the change of angular coordinate is
found to be

I (ρ0) = π + 2

(
1 + 1

v2

)(
m

ρ0

)
+ O

(
m

ρ0

)2

. (96)

To express Eq. (96) in terms of the impact parameter b, we
can again using Eq. (9) and (74) to find to the lowest order

m

ρ0
= m

b
+ O

(
1

b2

)
. (97)

123



Eur. Phys. J. C           (2020) 80:242 Page 17 of 40   242 

Substituting this into Eq. (96), we immediately have to the
first non-trivial order

I (b) = π + 2

(
1 + 1

v2

)(m
b

)
+ O

(m
b

)2
, (98)

which is the desired Eq. (93).

5 Gravitational lensing in the weak field limit

One main application of the deflection angles is in the GL in
the weak field limit. The configuration of the GL in the weak
field limit in the SSS or equatorial plane of SAS spacetime
is illustrated in Fig. 5. We will denote the distance between
the lens and source as dls and observer and lens as dol, and
the angular position of the source and its image against the
observer-lens axis as β and θ respectively. These angles as
well as the deflection angle α are all small in the weak field
limit. A lens equation linking these lengths and angles can
be established, from which the apparent angle θ of the image
are usually solved.

In the following, we will start from an exact lens equa-
tion derived directly from the geometric relations in GL but
without using small angle or large length approximation [78]

dos sin β = dol sin θ cos(α − θ)

−
√
d2

ls − d2
ol sin2 θ sin(α − θ). (99)

The reason that we use the exact length equation but not the
usual first order equation

β = θ − dls

dls + dol
α. (100)

I

L

S

O

θ

β

α

b

b

Fig. 5 GL in the weak lensing limit. O, L , S and I stand for the
observer, lens, source and image respectively. α, β, θ are the deflection
angle, the source and image angular positions respectively

is that we would like to compute the apparent angle θ

using perturbative method to higher orders and therefore this
requires a lens equation accurate to high orders too. Equa-
tion (100) although can be derived using different approaches
(see Ref. [78] for a review and comparison of different
approaches) and were used commonly in most GL compu-
tations, more exact equation such as Eq. (99) has to be used
when the error induced by the Eq. (100) exceeds observa-
tional sensitivity.

Using Eq. (99), we will then illustrate how the various
orders in the deflection angle α (e.g., Eqs. (34), (52) and (88)
after subtracting π ) will perturbatively determine the appar-
ent angle θ to the corresponding order. Using this perturbative
method, the apparent angle θ to any desired accuracy can be
achieved, provided that the deflection angle α can be calcu-
lated in prior to that order. Note that our method and result
here will apply to not only null signal but signal with general
velocity.

For the solution process, we first substitute the deflection
angle α whose general form is a power series of 1

b

α =
∞∑
i=1

αiε
i

bi
(101)

into the Eq. (99). Here αi for Schwarzschild, RN, Kerr and
KN spacetimes can be read off from Eqs. (35), (53), (89), (A5)
and (B4) respectively. The small parameter ε is supplemented
to track the order of large distances such as b or dos and it shall
be set to 1 in final results. Next, the 1

b in α can be replaced
by the geometric relation

1

b
= 1

dol sin θ
(102)

so that only measurable lengths appear. In the third step, we
can substitute the ansatz for the series solution of θ

θ =
∑
i=1

θiε
i (103)

into the resultant equation. Finally, expanding both sides of
the equation as power series of ε and collecting the coefficient
of each order, one finds a system of algebraic equations of
θi . The first three of these are

0 = dls + dol

dos
θ1 − dlsα1

dol

1

θ1
− sin β, (104a)

0 = dol

[
dlsα1 + dol(dls + dol)θ

2
1

]
θ2 − dlsα2, (104b)

0 = 6dlsd
2
olθ1

[
dlsα1 + dol (dls + dol) θ2

1

]
θ3

−
[
d2

ls

(
6α3 − 12dolα2θ2 + 6d2

olα1θ
2
2 − α3

1

)

+ 3dlsdol(dls + dol)α
2
1θ2

1

123



  242 Page 18 of 40 Eur. Phys. J. C           (2020) 80:242 

− d2
ol

(
2d2

ls + 6dlsdol + 3d2
ol

)
α1θ

4
1

+d3
ol

(
d2

ls + 4dlsdol + 3d2
ol

)
θ6

1

]
. (104c)

After expanding sin β, the first equation (104a) coincides
with the leading order lens equation (100). Note that in this
equation system, for each i , only θi is the unknown in the i-
th equation. θ j with j < i in the i th equation can always be
solved in the equations prior to the i th equation. Moreover,
except Eq. (104a) which is not a linear equation of θ1 but
still solvable, all other equations are linear in its unknown θi .
Therefore the perturbative method guarantees that the equa-
tion system is iteratively solvable so that the final apparent
angle can be obtained. This solvability is one of the advan-
tages of the method.

Solving the system (104), we find the solution to θi as

θ1 = dosdol sin β ±√
(dosdol sin β)2 + 4dlsdol(dls + dol)α1

2dol(dls + dol)
,

(105a)

θ2 = dlsα2

dol
[
dlsα1 + dol(dls + dol)θ

2
1

] , (105b)

θ3 = 1

6dlsd2
olθ1

[
dlsα1 + dol (dls + dol) θ2

1

]
×
[
d2

ls

(
6α3 − 12dolα2θ2 + 6d2

olα1θ
2
2 − α3

1

)

+ 3dlsdol(dls + dol)α
2
1θ2

1

− d2
ol

(
2d2

ls + 6dlsdol + 3d2
ol

)
α1θ

4
1

+d3
ol

(
d2

ls + 4dlsdol + 3d2
ol

)
θ6

1

]
. (105c)

The higher order equations and solutions can be similarly
obtained.

It is seen from Eq. (105) that the solution to θm (m ≥
2) depends on the lowest order apparent angle θ1 and the
deflection angle from the 1st to the mth orders, αn (1 ≤ n ≤
m), as a power law function, except a common denominator
which only depend on α1 and θ1 but not higher order ones.
Moreover, counting the orders of distances dol and dls and
the small angles θ1, one finds that θm+1 is smaller than θm
by an order of dolθ1. This implies that if a certain calculation
accuracy of the apparent angle θ is desired, one can work out
from Eq. (105) to what order the deflection angle should be
used. This tractability is another advantage of the perturbative
method. With the series expansion of θ known, we can find
the magnification of the images using

μ = sin θ

sin β

dθ

dβ
(106)

and expand around small angles of θ . Again, the result will
be of a series form. For simplicity reason, we will not show
these results explicitly.

6 Discussions

We have studied a perturbative method to compute the deflec-
tion angle in general SSS and equatorial plane of SAS space-
times for arbitrary velocity v. It was shown that the involved
integral in this method can always be carried out and there-
fore a series in either the closest radial coordinate x0 or the
impact parameter b can always be found

I =
∞∑
n=0

Cn(v, p)

(
1

x0

)n

=
∞∑
n=0

C ′
n(v, p)

(
1

b

)n

(107)

where we used p to collectively denote any parameter of the
spacetime, and Cn(v, p) and C ′

n(v, p) are two sets of coeffi-
cient functions. Using this method, we were able to compute
the deflection angle to the 17th order in the Schwarzschild
spacetime, 15th order in the RN spacetime and 6th order in
the KN and consequently Kerr spacetime. Using these results,
we studied how v, b and various parameters of the space-
time affect the total deflection angle and the deflection angle
at each order. Two general features are particularly worth
mentioning. The first is that although the deflection angles
are obtained perturbatively as a series of 1/b when its large,
the valid range of the found deflection angle can extend to
much smaller b, even when the deflection angle is not small
anymore. The second is that the found deflection angles in the
RN and KN metrics describe accurately the deflection angle
not only for their BH spacetimes but also for their naked
singularity cases. This last point here lays the foundation to
apply these deflection angle results in the corresponding GLs
to reveal the relevant features, if any, of these naked singu-
larity spacetimes.

Using this perturbative method, we have shown that the
deflection angle in the weak field limit in the asymptotically
flat spacetimes depends only on the asymptotical behavior of
the metric functions but not their values at small b. In partic-
ular, it was shown that the deflection angle of particles with
general velocity in an EYM spacetime whose metric is only
asymptotically known, can be computed. Moreover, we also
illustrated that for equatorial motion in general SAS (includ-
ing SSS) spacetimes, the deflection angle to the first nontriv-
ial order depends only on the ADM mass of the spacetime
and the asymptotical velocity of the particle in the specific
way given by Eq. (98).

Regarding the extension of this method, the first and most
apparent is to apply this method in other interesting SSS
and SAS spacetimes to compute their deflection angles and
study the GL effects in the weak field limit [79]. Results
found for these spacetimes are expected to not only reveal
effect of spacetime parameters to signal deflection or GL, but
also properties of the messenger itself, such as the neutrino
mass/mass hierarchy and massive GWs. Secondly, we also
expect that this perturbative method is applicable to other
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computations involving integration of the geodesic equa-
tions, e.g., in the computation of time delay in GLs. We are
currently working along this direction.
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Appendix A: High order terms of the deflection angles in
Schwarzschild spacetime

For Schwarzschild metric, the S5 to S17 in Eq. (26) are

S5 = 42

5
−
(

201π

16
− 174

)
1

v2 − (117π − 285)
1

v4

− (63π − 255)
1

v6 −
(

24π − 207

4

)
1

v8 + 83

20

1

v10 ,

(A1a)

S6 = 1155π

256
+
(

8787π

64
− 114

)
1

v2

+
(

10851π

32
− 1246

)
1

v4

+
(

2007π

4
− 4207

3

)
1

v6 + (183π − 687)
1

v8

+
(

48π − 443

4

)
1

v10 − 73

12

1

v12 , (A1b)

S7 = 858

35
+
(

4866

5
− 9897π

128

)
1

v2

+
(

3809 − 42105π

32

)
1

v4

+
(

7431 − 35535π

16

)
1

v6

+
(

20861

4
− 3585π

2

)
1

v8

+
(

34731

20
− 480π

)
1

v10

+
(

9253

40
− 96π

)
1

v12 + 523

56

1

v14 , (A1c)

S8 = 225225π

16384
+
(

185637π

256
− 3138

5

)
1

v2

+
(

963063π

256
− 61062

5

)
1

v4

+
(

331515π

32
− 31487

)
1

v6

+
(

670665π

64
− 34265

)
1

v8

+
(

5670π − 67199

4

)
1

v10

+
(

1188π − 84097

20

)
1

v12

+
(

192π − 19071

40

)
1

v14 − 119

8

1

v16 , (A1d)

S9 = 4862

63
+
(

174858

35
− 858633π

2048

)
1

v2

+
(

179357

5
− 363561π

32

)
1

v4

+
(

1873517

15
− 1248837π

32

)
1

v6

+
(

733511

4
− 119295π

2

)
1

v8

+
(

533009

4
− 329445π

8

)
1

v10

+
(

1979077

40
− 16524π

)
1

v12

+
(

2765857

280
− 2832π

)
1

v14

+
(

2183697

2240
− 384π

)
1

v16 + 14051

576

1

v18 , (A1e)

S10 = 2909907π

65536
+
(

59009547π

16384
− 112174

35

)
1

v2

+
(

131274411π

4096
− 3405538

35

)
1

v4

+
(

37060149π

256
− 2249681

5

)
1

v6

+
(

71222277π

256
− 4427723

5

)
1

v8

+
(

17880387π

64
− 17282663

20

)
1

v10

+
(

1148721π

8
− 9235633

20

)
1

v12

+
(

45444π − 5480777

40

)
1

v14

+
(

6576π − 6354781

280

)
1

v16
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+
(

768π − 4442329

2240

)
1

v18

− 13103

320

1

v20 , (A1f)

S11 = 8398

33
+
(

2560186

105
− 69502047π

32768

)
1

v2

+
(

9762087

35
− 687200823π

8192

)
1

v4

+
(

53657057

35
− 992311497π

2048

)
1

v6

+
(

76784969

20
− 157756977π

128

)
1

v8

+
(

98956459

20
− 199770417π

128

)
1

v10

+
(

141049413

40
− 36346527π

32

)
1

v12

+
(

58958723

40
− 920367π

2

)
1

v14

+
(

812709823

2240
− 119736π

)
1

v16

+
(

344536399

6720
− 14976π

)
1

v18

+
(

54036263

13440
− 1536π

)
1

v20 + 98601

1408

1

v22 ,

(A1g)

S12 = 156165009π

1048576
+
(

1127476893π

65536
− 1640018

105

)
1

v2

+
(

15337199865π

65536
− 14309566

21

)
1

v4

+
(

811056015π

512
− 4948511

)
1

v6

+
(

40234680075π

8192
− 108659839

7

)
1

v8

+
(

2069467071π

256
− 505097751

20

)
1

v10

+
(

1897384125π

256
− 1406267327

60

)
1

v12

+
(

66690645π

16
− 103772803

8

)
1

v14

+
(

5541675π

4
− 247796467

56

)
1

v16

+
(

305280π − 1247909311

1344

)
1

v18

+
(

33600π − 109722263

960

)
1

v20

+
(

3072π − 109282609

13440

)
1

v22 − 15565

128

1

v24 ,

(A1h)

S13 = 371450

429
+
(

132929354

1155
− 2692560531π

262144

)
1

v2

+
(

201718541

105
− 9148875279π

16384

)
1

v4

+
(

322639187

21
− 79680420705π

16384

)
1

v6

+
(

1640587857

28
− 38369599155π

2048

)
1

v8

+
(

3320156743

28
− 77018937885π

2048

)
1

v10

+
(

5524434529

40
− 2824294095π

64

)
1

v12

+
(

3935582091

40
− 1994399505π

64

)
1

v14

+
(

19772726781

448
− 113269545π

8

)
1

v16

+
(

17027542177

1344
− 3974940π

)
1

v18

+
(

6218405311

2688
− 758400π

)
1

v20

+
(

37267872227

147840
− 74496π

)
1

v22

+
(

9707157937

591360
− 6144π

)
1

v24

+ 1423159

6656

1

v26 , (A1i)

S14 = 2151252675π

4194304
+
(

83870896827π

1048576
− 85161542

1155

)
1

v2

+
(

809464836033π

524288
− 240298306

55

)
1

v4

+
(

962194187907π

65536
− 1604380399

35

)
1

v6

+
(

2189788132125π

32768
− 4424711827

21

)
1

v8

+
(

1349158008105π

8192
− 14451331681

28

)
1

v10

+
(

964210959135π

4096
− 103776190227

140

)
1

v12

+
(

53821800135π

256
− 184429954727

280

)
1

v14

+
(

7644473325π

64
− 105485967949

280

)
1

v16

+
(

90569745π

2
− 9045013899

64

)
1

v18

+
(

10977900π − 46951853681

1344

)
1

v20

+
(

1844928π − 25271133577

4480

)
1

v22
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+
(

163584π − 27159543721

49280

)
1

v24

+
(

12288π − 19569983309

591360

)
1

v26

− 1361617

3584

1

v28 , (A1j)

S15 = 430882

143
+
(

7965387158

15015
− 101220705717π

2097152

)
1

v2

+
(

14056313867

1155
− 1810356103581π

524288

)
1

v4

+
(

154414032013

1155
− 11074290444657π

262144

)
1

v6

+
(

303126382501

420
− 7550111290137π

32768

)
1

v8

+
(

127020227977

60
− 11021492762301π

16384

)
1

v10

+
(

1026649289287

280
− 4787507625975π

4096

)
1

v12

+
(

1116601325089

280
− 2595547784295π

2048

)
1

v14

+
(

6334749108503

2240
− 115465265325π

128

)
1

v16

+
(

3006211349669

2240
− 851607585π

2

)
1

v18

+
(

5794564149407

13440
− 138028101π

)
1

v20

+
(

13812175825843

147840
− 29395104π

)
1

v22

+
(

1141544032877

84480
− 4411008π

)
1

v24

+
(

9195429924133

7687680
− 356352π

)
1

v26

+
(

1024712963063

15375360
− 24576π

)
1

v28

+ 10461043

15360

1

v30 , (A1k)

S16 = 1933976154825π

1073741824

+
(

1529093331957π

4194304
− 5107039334

15015

)
1

v2

+
(

39753044858427π

4194304
− 394482990514

15015

)
1

v4

+
(

63300442855389π

524288
− 434319372413

1155

)
1

v6

+
(

794767425731583π

1048576
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1155

)
1

v8

+
(

85917453284949π

32768
− 3455378035567

420

)
1

v10

+
(

176717454948705π

32768
− 7122654069149

420

)
1

v12

+
(

28896972701355π

4096
− 6199928952201

280

)
1

v14

+
(

99481202698185π

16384
− 763897992473

40

)
1

v16

+
(

57006172575π
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− 25030972225933

2240

)
1

v18

+
(

11456023755π

8
− 30314838647029

6720

)
1

v20

+
(

404474862π − 16991569011289

13440

)
1

v22

+
(

76722612π − 36014522343589

147840

)
1

v24

+
(

10394112π − 18859803514961

591360

)
1

v26

+
(

771072π − 19833376444423

7687680

)
1

v28

+
(

49152π − 2061930347341

15375360

)
1

v30

− 1259743
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1

v32 , (A1l)

S17 = 2357178
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+
(

36069111362

15015
− 14890226486601π

67108864

)
1

v2

+
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72583108089
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− 5297294087775π

262144

)
1

v4

+
(

149950442373
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− 86614899454125π

262144

)
1

v6

+
(

1004889697831
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− 4972861857705π

2048

)
1

v8

+
(

6729314550183

220
− 637518587407443π

65536

)
1

v10

+
(

2956925896701

40
− 24110437475817π

1024

)
1

v12

+
(

2743131628633
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− 74466297264975π

2048

)
1

v14

+
(

52773568983405

448
− 2401364359845π
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)
1

v16

+
(

37347372420843

448
− 27148502564865π

1024

)
1

v18

+
(

79271572704617

1920
− 105280583331π

8

)
1

v20

+
(

9252941772369

640
− 9182292273π

2

)
1

v22

+
(

20203810510113

5632
− 1147100220π

)
1

v24
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+
(

136575742403537

219648
− 195992160π

)
1

v26

+
(

10884221610983

146432
− 24192000π

)
1

v28

+
(

28366854891847

5125120
− 1658880π

)
1

v30

+
(

66338835211301

246005760
− 98304π

)
1

v32

+ 623034403

278528

1

v34 . (A1m)

and for lightlike rays these become

S5,γ = 7783

10
− 3465π

16
, (A2a)

S6,γ = 310695π

256
− 21397

6
, (A2b)

S7,γ = 544045

28

− 765765π

128
, (A2c)

S8,γ = 530675145π

16384

− 400353

4
, (A2d)

S9,γ = 1094345069

2016

− 350975625π

2048
, (A2e)

S10,γ = 61238992815π

65536

− 3274477761

1120
, (A2f)

S11,γ = 33880841953

2112

− 166985013195π

32768
, (A2g)

S12,γ = 819(36025412555π − 113062658048)

1048576
, (A2h)

S13,γ = 17954674772417

36608

− 40904635446675π

262144
, (A2i)

S14,γ = 3654071183280375π

4194304

− 53937207017735

19712
, (A2j)

S15,γ = 1532445398265737

99840

− 10244859509950065π

2097152
, (A2k)

S16,γ = 29546784214957377225π

1073741824

− 4027582104301883

46592
, (A2l)

S17,γ = 6193832627891384481

12673024

− 10439883710287799625π

67108864
. (A2m)

The full form of the expansion (30) is

IS(x0, v → 1) = IS,γ (x0) + (1 − v)

×
[

4

(
m

x0

)1

+ (6π − 12)

(
m

x0

)2

+ (102 − 27π)

(
m

x0

)3

+
(

375π

2
− 542

)(
m

x0

)4

+
(

6947

2
− 8505π

8

)(
m

x0

)5

+
(

210735π

32
− 40605

2

)(
m

x0

)6

+
(

2475251

20
− 2498265π

64

)(
m

x0

)7

+
(

30225195π

128
− 14770307

20

)(
m

x0

)8

+
(

996907893

224
− 1447430985π

1024

)(
m

x0

)9

+
(

69647092515π

8192
− 5976368855

224

)(
m

x0

)10

+
(

215463718145

1344
− 835623443655π

16384

)(
m

x0

)11

+
(

10036865773935π

32768
− 307844832381

320

)(
m

x0

)12

+
(

243970659948739

42240

−240943980632355π

131072

)(
m

x0

)13

+
(

5785423336868175π

524288

−97615569852587

2816

)(
m

x0

)14

+
(

15233751847277841

73216

−69444310090079925π

1048576

)(
m

x0

)15

+
(

833588786453526675π

2097152

−639983494401301615

512512

)(
m

x0

)16

123



Eur. Phys. J. C           (2020) 80:242 Page 23 of 40   242 

+
(

307272383850733443143

41000960

−80043485420373397065π

33554432

)(
m

x0

)17

+O
(
m

x0

)18
]

+ O(1 − v)2. (A3)

For Schwarzschild metric, when x0 is expressed in terms
of b in Eq. (32), the high order terms are

CS,5 =
(

8

v2 + 18

v4 + 3

v6 − 1

8v8

)
, (A4a)

CS,6 = 16

(
1

v2 + 4

v4 + 2

v6

)
, (A4b)

CS,7 =
(

32

v2 + 200

v4 + 200

v6 + 25

v8 − 5

4v10 + 1

16v12

)
,

(A4c)

CS,8 = 64

(
1

v2 + 9

v4 + 15

v6 + 5

v8

)
, (A4d)

CS,9 =
(

128

v2 + 1568

v4 + 3920

v6 + 2450

v8

+245

v10 − 49

4v12 + 7

8v14 − 5

128v16

)
, (A4e)

CS,10 = 256

(
1

v2 + 16

v4 + 56

v6 + 56

v8 + 14

v10

)
, (A4f)

CS,11 = 512

v2 + 10368

v4 + 48384

v6 + 70560

v8

+ 31752

v10 + 2646

v12 − 126

v14

+ 81

8v16 − 45

64v18 + 7

256v20 , (A4g)

CS,12 = 1024

(
1

v2 + 25

v4 + 150

v6 + 300

v8 + 210

v10 + 42

v12

)
,

(A4h)

CS,13 = 2048

v2 + 61952

v4 + 464640

v6 + 1219680

v8

+ 1219680

v10 + 426888

v12 + 30492

v14 − 5445

4v16

+ 1815

16v18 − 605

64v20 + 77

128v22 − 21

1024v24 , (A4i)

CS,14 = 4096

(
1

v2 + 36

v4 + 330

v6 + 1100

v8

+1485

v10 + 792

v12 + 132

v14

)
, (A4j)

CS,15 = 8192

v2 + 346112

v4 + 3807232

v6 + 15704832

v8

+ 27483456

v10 + 20612592

v12 + 5889312

v14

+ 368082

v16 − 61347

4v18 + 20449

16v20

− 1859

16v22 + 1183

128v24 − 273

512v26 + 33

2048v28 , (A4k)

CS,16 = 16384

(
1

v2 + 49

v4 + 637

v6 + 3185

v8

+7007

v10 + 7007

v12 + 3003

v14 + 429

v16

)
, (A4l)

CS,17 = 32768

v2 + 1843200

v4 + 27955200

v6 + 166566400

v8

+ 449729280

v10 + 577152576

v12

+ 343543200

v14 + 82818450

v16 ,

+ 4601025

v18 − 715715

4v20 + 117117

8v22 − 88725

64v24

+ 15925

128v26 − 4725

512v28 + 495

1024v30 − 429

32768v32 .

(A4m)

The S′
5 to S′

17 in Eq. (34) are given by

S′
5 = 2

(
21

5
+ 105

v2 + 210

v4 + 42

v6 − 3

v8 + 1

5v10

)
, (A5a)

S′
6 = 1155π

256

(
1 + 36

v2 + 30

v4 + 4

v6

)
, (A5b)

S′
7 = 2

(
429

35
+ 3003

5v2 + 3003

v4 + 3003

v6

+429

v8 − 143

5v10 + 13

5v12 − 1

7v14

)
, (A5c)

S′
8 = 45045π

16384

(
5 + 320

v2 + 2240

v4 + 3584

v6 + 1280

v8

)
,

(A5d)

S′
9 = 2

(
2431

63
+ 21879

7v2 + 29172

v4 + 68068

v6

+ 43758

v8 + 4862

v10 − 884

3v12 + 204

7v14

− 17

7v16 + 1

9v18

)
, (A5e)

S′
10 = 2909907π

65536

(
1 + 100

v2 + 1200

v4 + 3840

v6

+3840

v8 + 1024

v10

)
, (A5f)

S′
11 = 2

(
4199

33
+ 46189

3v2 + 230945

v4 + 969969

v6

+ 1385670

v8 + 646646

v10 + 58786

v12 − 3230

v14

+323

v16 − 95

3v18 + 7

3v20 − 1

11v22

)
, (A5g)

S′
12 = 22309287π

1048576

(
7 + 1008

v2 + 18480

v4
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+98560

v6 + 190080

v8 + 135168

v10 + 28672

v12

)
, (A5h)

S′
13 = 2

(
185725

429
+ 2414425

33v2 + 4828850

3v4 + 10623470

v6

+ 26558675

v8 + 26558675

v10 + 9657700

v12 + 742900

v14

− 37145

v16 + 10925

3v18 − 1150

3v20

+ 1150

33v22 − 25

11v24 + 1

13v26

)
, (A5i)

S′
14 = 717084225π

4194304

(
3 + 588

v2 + 15288

v4 + 122304

v6

+384384

v8 + 512512

v10 + 279552

v12 + 49152

v14

)
, (A5j)

S′
15 = 2

(
215441

143
+ 48474225

143v2 + 113106525

11v4

+ 98025655

v6 + 378098955

v8 + 646969323

v10

+ 490128275

v12 + 145422675

v14 + 9694845

v16

− 443555

v18 + 42021

v20 − 50025

11v22

+ 5075

11v24 − 5481

143v26 + 29

13v28 − 1

15v30

)
, (A5k)

S′
16 = 644658718275π

1073741824

(
3 + 768

v2 + 26880

v4

+ 301056

v6 + 1397760

v8 + 2981888

v10 + 2981888

v12

+1310720

v14 + 196608

v16

)
, (A5l)

S′
17 = 2

(
1178589

221
+ 20036013

13v2 + 801440520

13v4

+ 801440520

v6 + 4407922860

v8 + 11460599436

v10

+ 14586217464

v12 + 8815845720

v14

+ 2203961430

v16 + 129644790

v18 − 5458728

v20

+ 496248

v22 − 53940

v24 + 75516

13v26 − 7192

13v28

+ 2728

65v30 − 11

5v32 + 1

17v34

)
. (A5m)

The high order terms in Eq. (37) are given by

S′
5,γ = 3584

5
, (A6a)

S′
6,γ = 255255π

256
, (A6b)

S′
7,γ = 98304

7
, (A6c)

S′
8,γ = 334639305π

16384
, (A6d)

S′
9,γ = 18743296

63
, (A6e)

S′
10,γ = 29113619535π

65536
, (A6f)

S′
11,γ = 218103808

33
, (A6g)

S′
12,γ = 10529425731825π

1048576
, (A6h)

S′
13,γ = 21676163072

143
, (A6i)

S′
14,γ = 977947275623175π

4194304
, (A6j)

S′
15,γ = 693637218304

195
, (A6k)

S′
16,γ = 5929294332103310025π

1073741824
, (A6l)

S′
17,γ = 18769007083520

221
. (A6m)

For the fast speed expansion of the deflection angle in
terms of b, the full results to 17-th order is

IS(b, v → 1) = IS,γ (b) + (1 − v)

×
[

4
(m
b

)1 + 6π
(m
b

)2 + 96
(m
b

)3 + 315π

2

(m
b

)4

+2560
(m
b

)5 + 135135π

32

(m
b

)6 + 344064π

5

(m
b

)7

+14549535π

128

(m
b

)8 + 12976128

7

(m
b

)9

+25097947875π

8192

(m
b

)10 + 149946368

3

(m
b

)11

+2707566616755π

32768

(m
b

)12 + 14831058944

11

(m
b

)13

+1168766256232575π

524288

(m
b

)14

+5202279137280

143

(m
b

)15

+126155198555389575π

2097152

(m
b

)16

+63814624083968

65

(m
b

)17 + O
(m
b

)18
]

+O(1 − v)2. (A7)

Appendix B: High order terms of the deflection angles in
RN spacetime

For R5 to R15 in Eq. (44), they are given by

R5 = S5 −
[

28

3
+
(

473

3
− 85π

8

)
1

v2 −
(

153π

2
− 184

)
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× 1

v4 +
(

665

6
− 27π

)
1

v6 −
(

4π − 43

6

)
1

v8

]
q̂2

+
[

2 +
(

26 − 25π

16

)
1

v2 −
(

11π

2
− 47

4

)
1

v4

+
(

π

2
− 1

4

)
1

v6

]
q̂4, (B1a)

R6 = S6 −
[

1575π

256
+
(

20101π

128
− 368

3

)
1

v2

−
(

3397

3
− 4921π

16

)
1

v4 +
(

2655π

8
− 922

)
1

v6

−
(

1801

6
− 79π

)
1

v8 +
(

8π − 95

6

)
1

v10

]
q̂2

+
[

525π

256
+
(

1329π

32
− 28

)
1

v2

−
(

204 − 441π

8

)
1

v4

+
(

105π

4
− 267

4

)
1

v6 −
(

3π

2
− 5

4

)
1

v8

]
q̂4

−
(

25π

256
+ 157π

128v2 − 5π

32v4 + π

16v6

)
q̂6, (B1b)

R7 = S7 +
[
−198

5
+
(

13381π

128
− 20413

15

)
1

v2

+
(

96527π

64
−13091

3

)
1

v4 +
(

16249π

8
−40831

6

)
1

v6

+
(

4777π

4
− 41507

12

)
1

v8 +
(

208π − 91307

120

)
1

v10

+
(

16π − 4049

120

)
1

v12

]
q̂2

+
[

18 +
(

1565

3
− 4903π

128

)
1

v2

+
(

14803

12
− 6811π

16

)
1

v4

+
(

5147

4
− 3033π

8

)
1

v6

+
(

6349

24
− 197π

2

)
1

v8 +
(

4π − 103

24

)
1

v10

]
q̂4

+
[
−2 +

(
411π

128
− 47

)
1

v2 +
(

1143π

64
− 205

4

)
1

v4

−
(

11

8
+ 15π

16

)
1

v6 +
(

3π

8
− 1

8

)
1

v8

]
q̂6, (B1c)

R8 = S8 +
[
−105105π

4096
+
(

14938

15
− 608893π

512

)
1

v2

+
(

85417

5
− 1348113π

256

)
1

v4

+
(

109123

3
− 766485π

64

)
1

v6

+
(

189181

6
− 308185π

32

)
1

v8 +
(

44805

4
− 3795π

)

× 1

v10 +
(

221449

120
− 516π

)
1

v12

+
(

2821

40
− 32π

)
1

v14

]
q̂2

+
[

121275π

8192
+
(

301055π

512
− 1396

3

)
1

v2

+
(

1081745π

512
− 20473

3

)
1

v4

+
(

113345π

32
− 128557

12

)
1

v6

+
(

117695π

64
− 73183

12

)
1

v8 +
(

320π − 21215

24

)

× 1

v10 +
(

301

24
− 10π

)
1

v12

]
q̂4

+
[
−11025π

4096
+
(

60 − 44751π

512

)
1

v2

+
(

710 − 28461π

128

)
1

v4 +
(

2105

4
− 5757π

32

)

× 1

v6 +
(

81

8
+ 105π

32

)
1

v8

+
(

7

8
− 3π

2

)
1

v10

]
q̂6 +

(
1225π

16384
+ 803π

512v2

+ 39π

512v4 + 11π

64v6 − 5π

128v8

)
q̂8, (B1d)

R9 = S9 +
[
−1144

7
+
(

398377π

512
− 993439

105

)
1

v2

+
(

1193677π

64
− 884186

15

)
1

v4

+
(

1756347π

32
− 1757143

10

)
1

v6

+
(

277265π

4
− 638909

3

)
1

v8

+
(

151885π

4
− 2952011

24

)
1

v10

+
(

11094π − 662131

20

)
1

v12

+
(

1232π − 2430129

560

)
1

v14

+
(

64π − 81603

560

)
1

v16

]
q̂2

+
[

572

5
+
(

29178

5
− 479403π

1024

)
1

v2

+
(

605559

20
− 610641π

64

)
1

v4

+
(

290011

4
− 1447125π

64

)
1

v6
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+
(

513933

8
− 83985π

4

)
1

v8

+
(

963711

40
− 58815π

8

)
1

v10

+
(

426581

160
− 948π

)
1

v12

+
(

24π − 5363

160

)
1

v14

]
q̂4

+
[
−88

3
+
(

51385π

512
− 3878

3

)
1

v2

+
(

101435π

64
− 15251

3

)
1

v4

+
(

20495π

8
− 66211

8

)
1

v6

+
(

9275π

8
− 10331

3

)
1

v8

−
(

2321

48
+ 35π

4

)
1

v10

+
(

5π − 187

48

)
1

v12

]
q̂6

+
[

2 +
(

74 − 11177π

2048

)
1

v2

+
(

297

2
− 2837π

64

)
1

v4 +
(

97

4
− 303π

64

)
1

v6

+
(

11

64
− 13π

8

)
1

v8 +
(

5π

16
− 5

64

)
1

v10

]
q̂8, (B1e)

R10 = S10 +
[
−6891885π

65536

+
(

140900

21
− 252273505π

32768

)
1

v2

+
(

19342783

105
− 62200733π

1024

)
1

v4

+
(

11143912

15
− 122414497π

512

)
1

v6

+
(

37511813

30
− 100535597π

256

)
1

v8

+
(

6043237

6
− 41702245π

128

)
1

v10

+
(

10252363

24
− 530825π

4

)
1

v12

+
(

459593

5
− 30578π

)
1

v14

+
(

5586893

560
− 2864π

)
1

v16

+
(

167371

560
− 128π

)
1

v18

]
q̂2

+
[

2837835π

32768
+
(

11553985π

2048
− 14306

3

)
1

v2

+
(

39435901π

1024
− 1745708

15

)
1

v4

+
(

16127133π

128
− 7822791

20

)
1

v6

+
(

21081145π

128
− 6302849

12

)
1

v8

+
(

1601545π

16
− 7400429

24

)
1

v10

+
(

207435π

8
− 674701

8

)
1

v12

+
(

2636π − 1201277

160

)
1

v14

+
(

13547

160
− 56π

)
1

v16

]
q̂4

+
[
−945945π

32768
+
(

1312 − 26840595π

16384

)
1

v2

+
(

27705 − 18934095π

2048

)
1

v4

+
(

140245

2
− 23203875π

1024

)
1

v6

+
(

502879

8
− 5010525π

256

)
1

v8

+
(

69555

4
− 740715π

128

)
1

v10

+
(

3007

16
+ 75π

4

)
1

v12

+
(

225

16
− 15π

)
1

v14

]
q̂6

+
[

218295π

65536
+
(

2587225π

16384
− 110

)
1

v2

+
(

2671225π

4096
− 1910

)
1

v4

+
(

425675π
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)
1

v26

+
(

4096π − 474709559719

46126080

)
1

v28

]
q̂2

+
[

520030

33
+
(

558094393

231
− 453796829565π

2097152

)
1

v2

+
(

10373089567

220
− 3497652641007π

262144

)
1

v4

+
(

182975695523

420
− 18034226099139π

131072

)
1

v6

+
(

325825175491

168
− 20291680546395π

32768

)
1

v8

+
(

128507228313

28
− 23891530102155π

16384

)
1

v10

+
(

1394216730049

224
− 2031978790035π

1024

)
1

v12

+
(

818119180837

160
− 831854452275π

512

)
1

v14

+
(

2914791387891

1120
− 106293678165π

128

)
1

v16

+
(

318286394221

384
− 2102223375π

8

)
1

v18

+
(

1715720714479

10752
− 51196380π

)
1

v20
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+
(

687075808093

39424
− 5442480π

)
1

v22

+
(

912156014347

1182720
− 262272π

)
1

v24

+
(

3072π − 6799588657

1182720

)
1

v26

]
q̂4

+
[
−104006

9
+
(

305152568245π

2097152
− 14758213

9

)
1

v2

+
(

8587738068725π

1048576
− 7316477575

252

)
1

v4

+
(

19882426496725π

262144
− 121126993285

504

)
1

v6

+
(

39315663524235π

131072
− 22541416171

24

)
1

v8

+
(

4961161009785π

8192
− 640557093557

336

)
1

v10

+
(

2798348743365π

4096
− 205667335109

96

)
1

v12

+
(

453138674835π

1024
− 267516375655

192

)
1

v14

+
(

85142511825π

512
− 12494746835

24

)
1

v16

+
(

135735015π

4
− 432904194095

4032

)
1

v18

+
(

6414845π

2
− 318024721277

32256

)
1

v20

+
(

2800π − 428420209

9216

)
1

v22

+
(

1760π − 162383909

64512

)
1

v24

]
q̂6

+
[

4522 +
(

4129017

7
− 108590638615π

2097152

)
1

v2

+
(

260396503

28
− 1367748775685π

524288

)
1

v4

+
(

3754420781

56
− 5538552907005π

262144

)
1

v6

+
(

295741006457

1344
− 1151898226415π

16384

)
1

v8

+
(

68925037933

192
− 933776901575π

8192

)
1

v10

+
(

38600073859

128
− 197097035835π

2048

)
1

v12

+
(

50159186077

384
− 42409353455π

1024

)
1

v14

+
(

273972066611

10752
− 1047962285π

128

)
1

v16

+
(

3526526387

3584
− 2313375π

8

)
1

v18

+
(

86040151

21504
− 11685π

2

)
1

v20

+
(

600π − 13731205

21504

)
1

v22

]
q̂8

+
[
−4522

5
+
(

19544855799π

2097152
− 537803

5

)
1

v2

+
(

425205679437π

1048576
− 29216037

20

)
1

v4

+
(

179001734037π

65536
− 347709929

40

)
1

v6

+
(

229155751461π

32768
− 6996174717

320

)
1

v8

+
(

63860737185π

8192
− 15735960657

640

)
1

v10

+
(

15145432575π

4096
− 7388608919

640

)
1

v12

+
(

223610079π

512
− 1804617143

1280

)
1

v14

+
(

2203299π

256
− 35225211

2560

)
1

v16

+
(

3543713

5120
− 4431π

4

)
1

v18

+
(

441π

4
− 416381

5120

)
1

v20

]
q̂10

+
[

238

3
+
(

25543

3
− 1521029175π

2097152

)
1

v2

+
(

1108009

12
− 819930945π

32768

)
1

v4

+
(

9491881

24
− 8077077115π

65536

)
1

v6

+
(

111721631

192
− 382959035π

2048

)
1

v8

+
(

81368179

384
− 541470785π

8192

)
1

v10

+
(

5892029

512
− 1145015π

256

)
1

v12

+
(

191099π

512
− 248939

1536

)
1

v14

+
(

103985

3072
− 1379π

16

)
1

v16

+
(

147π

16
− 4081

1024

)
1

v18

]
q̂12

+
[
−2 +

(
33239375π

2097152
− 191

)
1

v2

+
(

313951835π

1048576
− 4907

4

)
1

v4
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+
(

100267485π

262144
− 11039

8

)
1

v6

+
(

14461015π

131072
− 17665

64

)
1

v8

−
(

123

128
+ 241235π

16384

)
1

v10

+
(

59085π

8192
− 469

512

)
1

v12

+
(

261

1024
− 3927π

2048

)
1

v14

+
(

231π

1024
− 33

1024

)
1

v16

]
q̂14, (B1k)

For lightlike rays, setting v = 1 in the above equation
produces

R5,γ = S5,γ −
(

469 − 945π

8

)
q̂2

+
(

79

2
− 105π

16

)
q̂4, (B2a)

R6,γ = S6,γ −
(

227745π

256
− 2493

)
q̂2

+
(

31605π

256
− 595

2

)
q̂4 − 315π q̂6

256
, (B2b)

R7,γ = S7,γ +
(

647955π

128
− 336457

20

)
q̂2

+
(

13281

4
− 120015π

128

)
q̂4

+
(

2625π

128
− 407

4

)
q̂6, (B2c)

R8,γ = S8,γ

+
(

1982019

20
− 132837705π

4096

)
q̂2

+
(

68866875π

8192
− 99891

4

)
q̂4

+
(

5229

4
− 2009385π

4096

)
q̂6 + 30345π q̂8

16384
, (B2d)

R9,γ = S9,γ +
(

99324225π

512
− 34599415

56

)
q̂2

+
(

15975817

80
− 63378315π

1024

)
q̂4

+
(

2766225π

512
− 436271

24

)
q̂6

+
(

7963

32
− 114345π

2048

)
q̂8, (B2e)

R10,γ = S10,γ +
(

208366467

56
− 78147084015π

65536

)
q̂2

+
(

15189128955π

32768
− 23002213

16

)
q̂4

+
(

1436721

8
− 1930944015π

32768

)
q̂6

+
(

113163435π

65536
− 155331

32

)
q̂8

− 193347π q̂10

65536
, (B2f)

R11,γ = S11,γ +
(

235891610955π

32768
− 30497954329

1344

)
q̂2

+
(

2313962803

224
− 53538459975π

16384

)
q̂4

+
(

8797063275π

16384
− 54734277

32

)
q̂6

+
(

5388773

64
− 841575735π

32768

)
q̂8

+
(

4625775π

32768
− 37649

64

)
q̂10, (B2g)

R12,γ = S12,γ +
(

131592603181

960

−22914193617315π

524288

)
q̂2

+
(

23941565382735π

1048576
− 2288375219

32

)
q̂4

+
(

1407175289

96
− 1231101756885π

262144

)
q̂6

+
(

355936355775π

1048576
− 67044835

64

)
q̂8

+
(

1035463

64
− 2924276355π

524288

)
q̂10

+ 5127969π q̂12

1048576
, (B2h)

R13,γ = S13,γ +
(

34596684547425π

131072

−17527835840519

21120

)
q̂2

+
(

376091506903

768
− 40801130054685π

262144

)
q̂4

+
(

2515221764055π

65536
− 7740478913

64

)
q̂6

+
(

3022083897

256
− 977380328925π

262144

)
q̂8

+
(

14042373345π

131072
− 44314579

128

)
q̂10

+
(

347547

256
− 89396307π

262144

)
q̂12, (B2i)

R14,γ = S14,γ +
(

7053379738825

1408

−6690887021944125π

4194304

)
q̂2
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+
(

4402850339802915π

4194304

−12654212780671

3840

)
q̂4

+
(

60935687417

64
− 1273048447896225π

4194304

)
q̂6

+
(

158640607530405π

4194304
− 30311686613

256

)
q̂8

+
(

675290915

128
− 7122235535415π

4194304

)
q̂10

+
(

70888442625π

4194304
− 12801815

256

)
q̂12

− 35002539π q̂14

4194304
, (B2j)

R15,γ = S15,γ +
(

20181385376026875π

2097152

−201267377207613

6656

)
q̂2

+
(

371049227959295

16896

−14654459189895525π

2097152

)
q̂4

+
(

4863074421740535π

2097152
− 11197800076079

1536

)
q̂6

+
(

570686344201

512

−742846835125395π

2097152

)
q̂8

+
(

46298654394993π

2097152
− 178381330463

2560

)
q̂10

+
(

1999224191

1536

−851988352215π

2097152

)
q̂12

+
(

1675358685π

2097152
− 1575575

512

)
q̂14. (B2k)

When x0 is expressed in terms of b in Eq. (50), the high
order terms are

CRN,5 = CS,5 − 3

(
2

v2 + 3

v4 + 1

4v6

)
q̂2

+ 1

2

(
1

v2 + 3

4v4

)
q̂4, (B3a)

CRN,6 = CS,6 − 16

(
1

v2 + 3

v4 + 1

v6

)
q̂2

+
(

3

v2 + 6

v4 + 1

v6

)
q̂4, (B3b)

CRN,7 = CS,7 −
(

40

v2 + 200

v4 + 150

v6

+ 25

2v8 − 5

16v10

)
q̂2

+
(

12

v2 + 45

v4 + 45

2v6 + 15

16v8

)
q̂4

−
(

+ 1

2v2 + 5

4v4 + 5

16v6

)
q̂6, (B3c)

CRN,8 = CS,8 − 48

(
2

v2 + 15

v4 + 20

v6 + 5

v8

)
q̂2

+ 40

(
1

v2 + 6

v4 + 6

v6 + 1

v8

)
q̂4

−
(

4

v2 + 18

v4 + 12

v6 + 1

v8

)
q̂6, (B3d)

CRN,9 = CS,9 −
(

224

v2 + 2352

v4 + 4900

v6

+2450

v8 + 735

4v10 − 49

8v12 + 7

32v14

)
q̂2

+
(

120

v2 + 1050

v4 + 1750

v6

+2625

4v8 + 525

16v10 − 35

64v12

)
q̂4

−
(

20

v2 + 140

v4 + 175

v6 + 175

4v8 + 35

32v10

)
q̂6

+
(

1

2v2 + 21

8v4 + 35

16v6 + 35

128v8

)
q̂8, (B3e)

CRN,10 = CS,10 − 512

(
1

v2 + 14

v4 + 42

v6 + 35

v8 + 7

v10

)
q̂2

+ 336

(
1

v2 + 12

v4 + 30

v6 + 20

v8 + 3

v10

)
q̂4

− 80

(
1

v2 + 10

v4 + 20

v6 + 10

v8 + 1

v10

)
q̂6

+
(

5

v2 + 40

v4 + 60

v6 + 20

v8 + 1

v10

)
q̂8, (B3f)

CRN,11 = CS,11 −
(

1152

v2 + 20736

v4 + 84672

v6

+ 105840

v8 + 39690

v10 + 2646

v12 − 189

2v14

+ 81

16v16 − 45

256v18

)
q̂2

+
(

896

v2 + 14112

v4 + 49392

v6 + 51450

v8

+15435

v10 + 3087

4v12 − 147

8v14 + 63

128v16

)
q̂4

−
(

280

v2 + 3780

v4 + 11025

v6 + 18375

2v8

+33075

16v10 + 2205

32v12 − 105

128v14

)
q̂6
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+
(

30

v2 + 675

2v4 + 1575

2v6 + 7875

16v8

+ 4725

64v10 + 315

256v12

)
q̂8

−
(

1

2v2 + 9

2v4 + 63

8v6 + 105

32v8 + 63

256v10

)
q̂10,

(B3g)

CRN,12 = CS,12 − 1280

(
2

v2 + 45

v4 + 240

v6

+420

v8 + 252

v10 + 42

v12

)
q̂2

+ 768

(
3

v2 + 60

v4 + 280

v6 + 420

v8 + 210

v10 + 28

v12

)
q̂4

− 448

(
2

v2 + 35

v4 + 140

v6 + 175

v8 + 70

v10 + 7

v12

)
q̂6

+ 140

(
1

v2 + 15

v4 + 50

v6 + 50

v8 + 15

v10 + 1

v12

)
q̂8

−
(

6

v2 + 75

v4 + 200

v6 + 150

v8 + 30

v10 + 1

v12

)
q̂10,

(B3h)

CRN,13 = CS,13 −
(

5632

v2 + 154880

v4 + 1045440

v6

+2439360

v8 + 2134440

v10 + 640332

v12 + 38115

v14 − 5445

4v16

+ 5445

64v18 − 605

128v20 + 77

512v22

)
q̂2

+
(

5760

v2 + 142560

v4 + 855360

v6 + 1746360

v8

+ 1309770

v10 + 654885

2v12 + 31185

2v14 − 13365

32v16

+ 4455

256v18 − 495

1024v20

)
q̂4

−
(

2688

v2 + 59136

v4 + 310464

v6 + 543312

v8

+339570

v10 + 67914

v12 + 4851

2v14 − 693

16v16 + 231

256v18

)
q̂6

+
(

560

v2 + 10780

v4 + 48510

v6 + 282975

4v8

+282975

8v10 + 169785

32v12 + 8085

64v14 − 1155

1024v16

)
q̂8

−
(

42

v2 + 693

v4 + 10395

4v6 + 24255

8v8

+72765

64v10 + 14553

128v12 + 693

512v14

)
q̂10

+
(

1

2v2 + 55

8v4 + 165

8v6 + 1155

64v8

+ 1155

256v10 + 231

1024v12

)
q̂12, (B3i)

CRN,14 = CS,14 − 12288

(
1

v2 + 33

v4 + 275

v6 + 825

v8

+990

v10 + 462

v12 + 66

v14

)
q̂2

+ 14080

(
1

v2 + 30

v4 + 225

v6

+600

v8 + 630

v10 + 252

v12 + 30

v14

)
q̂4

− 7680

(
1

v2 + 27

v4 + 180

v6 + 420

v8

+378

v10 + 126

v12 + 12

v14

)
q̂6

+ 2016

(
1

v2 + 24

v4 + 140

v6 + 280

v8

+210

v10 + 56

v12 + 4

v14

)
q̂8

− 224

(
1

v2 + 21

v4 + 105

v6 + 175

v8

+105

v10 + 21

v12 + 1

v14

)
q̂10

+
(

7

v2 + 126

v4 + 525

v6 + 700

v8

+315

v10 + 42

v12 + 1

v14

)
q̂12, (B3j)

CRN,15 = CS,15 −
(

26624

v2 + 1038336

v4 + 10469888

v6

+ 39262080

v8 + 61837776

v10

+ 41225184

v12 + 10306296

v14

+ 552123

v16 − 306735

16v18 + 20449

16v20 − 5577

64v22

+ 1183

256v24 − 273

2048v26

)
q̂2

+
(

33792

v2 + 1208064

v4 + 11073920

v6 + 37374480

v8

+52324272

v10 + 30522492

v12 + 6540534

v14

+ 2335905

8v16 − 259545

32v18 + 51909

128v20

− 4719

256v22 + 1001

2048v24

)
q̂4

−
(

21120

v2 + 686400

v4 + 5662800

v6

+ 16988400

v8 + 20810790

v10 + 10405395

v12 +7432425

4v14

+1061775

16v16 − 353925

256v18 + 23595

512v20 − 2145

2048v22

)
q̂6
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+
(

6720

v2 + 196560

v4 + 1441440

v6

+ 3783780

v8 + 3972969

v10 + 6621615

4v12

+945945

4v14 + 405405

64v16 − 45045

512v18 + 3003

2048v20

)
q̂8

+
(

−1008

v2 − 26208

v4 − 168168

v6

− 378378

v8 − 1324323

4v10 − 441441

4v12 − 189189

16v14

− 27027

128v16 + 3003

2048v18

)
q̂10

+
(

56

v2 + 1274

v4 + 7007

v6 + 105105

8v8 + 147147

16v10

+147147

64v12 + 21021

128v14 + 3003

2048v16

)
q̂12

−
(

1

2v2 + 39

4v4 + 715

16v6 + 2145

32v8

+ 9009

256v10 + 3003

512v12 + 429

2048v14

)
q̂14. (B3k)

The high order terms of Eq. (53) are

R′
5 = S′

5 − 4

(
7

3
+ 140

3v2 + 70

v4 + 28

3v6 − 1

3v8

)
q̂2

+ 2

(
1 + 15

v2 + 15

v4 + 1

v6

)
q̂4, (B4a)

R′
6 = S′

6 − 1575π

256

(
1 + 30

v2 + 80

v4 + 32

v6

)
q̂2

+ 105π

256

(
5 + 120

v2 + 240

v4 + 64

v6

)
q̂4

− 5π

256

(
5 + 90

v2 + 120

v4 + 16

v6

)
q̂6, (B4b)

R′
7 = S′

7 − 6

5

(
33 + 1386

v2 + 5775

v4

+4620

v6 + 495

v8 − 22

v10 + 1

v12

)
q̂2

+ 2

(
9 + 315

v2 + 1050

v4

+630

v6 + 45

v8 − 1

v10

)
q̂4

− 2

(
1 + 28

v2 + 70

v4 + 28

v6 + 1

v8

)
q̂6, (B4c)

R′
8 = S′

8 − 105105π

4096

(
1 + 56

v2 + 336

v4

+448

v6 + 128

v8

)
q̂2

+ 17325π

8192

(
7 + 336

v2 + 1680

v4

+1792

v6 + 384

v8

)
q̂4

− 1575π

4096

(
7 + 280

v2 + 1120

v4 + 896

v6 + 128

v8

)
q̂6

+ 35π

16384

(
35 + 1120

v2 + 3360

v4 + 1792

v6 + 128

v8

)
q̂8,

(B4d)

R′
9 = S′

9 − 8

7

(
143 + 10296

v2 + 84084
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The full form of Eq. (54) is

IRN,γ (b) = IS,γ (b) − 3π
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) (m

b

)6

−256

5

(
288q̂2 − 80q̂4 + 5q̂6
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