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Abstract

We show that any toric Kdhler cone with smooth compact cross-section admits a
family of Calabi—Yau cone metrics with conical singularities along its toric divisors.
The family is parametrized by the Reeb cone and the angles are given explicitly in terms
of the Reeb vector field. The result is optimal, in the sense that any toric Calabi—Yau
cone metric with conical singularities along the toric divisor (and smooth elsewhere)
belongs to this family. We also provide examples and interpret our results in terms of
Sasaki—Einstein metrics.

Mathematics Subject Classification 32Q20 - 14M25 - 53C25

1 Introduction

Kéhler—Einstein metrics with conical singularities along divisors are canonical differ-
ential geometric structures on pairs of algebraic varieties endowed with real coefficient
divisors. More precisely, the natural algebro-geometric framework in which their the-
ory develops, is on the setting of kit pairs. From the analytic side, there is a general
existence theory of weak Kahler—Einstein metrics on kit pairs, see [20]. In particular,
one is interested in describing the tangent cones of these singular Kéhler—Einstein
metrics. The theory of normalized volumes of valuations [31] associates, by purely
algebraic methods, affine cones to kit pair singularities. It is expected that these alge-
braic cones agree with the tangent cones of the appropriate singular Kédhler—Einstein
metrics. This expectation has been verified in a few cases; in the absolute setting -
which means no cone singularities along divisors—see [24]. However, such results in
the logarithmic/cone singularities along divisors case are rare.
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In this paper, extending famous results of Martelli-Sparks—Yau [33] and Futaki—
Ono—Wang [18], we endow affine toric pairs with Calabi—Yau cone metrics with
conical singularities along the invariant divisors, which serve as natural candidates
for tangent cones in the toric setting. In particular, the metrics that we produce, are
plausible tangent cones of Kéhler—Einstein metrics (as provided by [7]) on toric log
Fano pairs at isolated singular points of the ambient variety, see [16,pp. 357-358] for
a precise statement in the ‘absolute’ case with no boundary conical divisors. More
generally, we would expect our metrics to arise as tangent cones of weak Kihler—
Einstein metrics at isolated toric pair singularities of ambient (non-necessarily toric)
varieties.

1.1 Main results
Let X be a toric Kéhler cone of complex dimension n + 1 with smooth compact cross
section. In what follows, T = R"*!/277"*! denotes a compact torus of dimension
n + 1 acting effectively and holomorphically on X. As we recall in Sect. 2.2, the
associated moment cone is

C= {p e R™1\ {0} st £a(p) >0 fora = 1,...,d},
where £, are the linear functions defining the facets F, = {¢, = 0} C C. We take
inward normals to the facets, so ¢, is given by taking the Euclidean inner product
against a primitive integer vector v, € Z"t1,

ea = ('a va).

The Reeb cone is the interior of the dual cone C(’)‘, where

c* = {q eR™! st (p,g) >0 forall p e c]
= {Zkuva Aa > O}.
a

We have an injective linear map L : R"*! — R given by
p = (b1(p), ... La(p)). (1.1)
The angles’ cone is the image of L intersected with the positive octant, that is
B={8=u,...,Bs) € R:y} NImage(L).

Equivalently, (81, ..., Bq) belongs to B if and only if there is a point p in the interior
of C such that

Ba=La(p) for a=1,....d. (1.2)
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The map (1.1) embeds the interior of the moment cone as Co = B C RY.

As a general rule, we use X to denote the cone without its apex. In particular, X
as well as its invariant divisors D, C X are smooth manifolds. We fix (X, w) as a
symplectic compact cone manifold and consider compatible Kéhler cone structures on
it, e.g. see [3, 33]. As a general fact, the corresponding compatible complex structures
that we consider are all biholomorphic. We provide a notion of a toric Kéhler cone
metric on X with cone angles 278, along D, (Definition 2.8) by defining a suitable
class of symplectic potentials (Definition 2.11). With these concepts, our main results
are the following.

Theorem 1.1 There is a (n + 1)-family of T-invariant compatible Calabi—Yau cone
metrics on (X, w) with cone singularities along its toric divisors. The family of metrics
can be realized in the following two equivalent ways.

e Fixing the Reeb vector field. For every & in the interior of C* there is a unique
B € B such that X has a T-invariant Calabi—Yau cone metric with cone angles
21 B, along D, and Reeb vector equal to §.

e Fixing the cone angles. For every B in B there is a unique & in the interior of C*
such that X has a T-invariant Calabi-Yau cone metric with cone angles 21w f,
along D, and Reeb vector equal to &.

In either case, the Calabi—Yau cone metric with prescribed Reeb vector or cone angles
is unique up to isometry.

More precisely, the map & +— S € B of the first part of Theorem 1.1 is explicitly given
by

1 N
b= oz fps ta(®)dF,

Pe
where dx = dx; A---ANdX, and (X1, ..., X,) are affine coordinates on the transversal
polytope P: :={x € C|(§,x) =1/2}.

Theorem 1.1 admits a Sasakian reformulation that goes as follows. Write S for the
link of the cone, so X = C(S) is diffeomorphic to

X=ER.oxS

and S is a Sasaki manifold of dimension 2n + 1. Let X, the codimension two sub-
manifolds of S cut out by D,, so

D, = C(Z,), with ¥, CS.

We can restate Theorem 1.1 in terms of the existence of toric Sasaki—Einstein metrics
on S with cone angles 2 8, along X,,. In particular, Theorem 1.1 asserts that any toric
compact Sasaki manifold admits a family of Sasaki-Einstein metrics with conical
singularities in real codimension two.

Theorem 1.1 provides a complete family, in the sense that if there is a Calabi—Yau
cone metric on X with cone angles 278, along D,, then the cone angles must neces-
sarily satisfy Eq. (1.2) and the metric must be isometric to one given by Theorem 1.1.
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The next result translates our condition B € B given by Eq. (1.2) in cohomological
terms.

Theorem 1.2 Let (X, w) be a toric Kdihler cone with smooth compact cross section.
The following statements are equivalent:

1. The cone angle condition given by Eq. (1.2) holds, i.e. B € B.

2. There is a compatible toric Calabi—Yau cone metric on (X, w) with cone angles
27 B4 along D,.

3. For any compatible toric Kdhler cone metric on (X, w) with cone angles 2w 3,
along D,, there exists a smooth function h on X such that the associated Ricci
form satisfies p® = i99h on X \ U, D,.

4. (X, > ,(1 = Ba)Dy,) is a kit log pair, where X = X U{o}, D, = D, U {0} and {0}
is the apex of the cone.

5. c1(H) =) ,(1 —Ba) E]andc1 > o1 —B)[Zalp > 0, where H C TS
is the contact distribution, [Z,] € H*(S, R) are the Poinaré duals of the smooth
toric submanifolds ¥, C S and cf is the basic first Chern class.

Recall that X = X U {0} has the structure of an affine toric algebraic variety,
homeomorphic to

R=o x S/({0} x S).

Its apex {o} is characterized as being the only fixed point of the torus action and the
variety X is singular at {0}, unless X = C"*!. The definition of a kit log pair will
be recalled in Sect. 4.2; it involves two conditions, which can be paired with their
corresponding Sasakian analogues as follows

Kg+ Y (1= Ba)Dy isR-Cartier e c1(H) = 2(1 — Bo)[Zal

the log discrepancies are > —1 «w cl Z(l — B)ZalB > 0.

From the algebraic point of view, the constraint on the cone angles given by Eq. (1.2)
is equivalent to K + Y, (1 — B4) D, being R-Cartier. On the other hand, from the
Sasakian perspective, Eq. (1.2) is equivalent to the vanishing of the ‘logarithmic’ first
Chern class ¢1(H) — Z (1 — Bo)[Z4]. In the toric case we consider, it is a general
factthatif Ky + ) (1 — Ba) D, is R-Cartier then the log pair (X, > 1= B.)Dy) is
automatlcally klt. Similarly, if ¢; (H) = )_,(1 — B4)[X4], then the basic logarithmic
first Chern class cfg — Y ,(1 = B)[X4]p is automatically positive. The klt property
of the pair/positivity of the logarithmic basic first Chern class are natural necessary
assumptions in the search of conically singular Calabi—Yau metrics, as provided by
Theorem 1.1.

1.2 Transversal polytopes, barycenters, Reeb vector fields and cone angles

The proof of Theorem 1.1 is a combination of the principal result of [25] and an
adaptation of the variational characterization of the vanishing of the transversal Futaki
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invariant [33]. In the recent years, thanks to the work of many people, e.g. [3, 5, 14, 21,
33], a precise dictionary between toric Kidhler geometry and convex affine geometry
over some convex polyhedral set (rational polytopes) has been established. This allows
us to translate any torus invariant geometric PDE problem on a toric polarized complex
manifold into a boundary value problem on a convex polytope P in an affine space H.
The boundary conditions depend on a labelling £ = (£1, ..., £4), that is a minimal
set of fixed affine linear functions such that P = {x € H | {,(x) >0, a=1,...,d).

An asset of this point of view is that given a Reeb vector, i.e. a toric polarized
symplectic cone (X, w, &) as above, we get a natural labelled polytope

Ps :={x € R [ (&, x)=1/2 andﬂa_lﬁa(x) >0, a=1,...,d}

Cix e R (£, x) = 1/2} =: Hy; a3
which is not necessarily rational but on which the PDE analogue to the Kdhler—Einstein
problem makes sense and its resolution, given by Wang—Zhu [37] in the smooth, non
conical, compact toric case, still holds. Along these lines, a straightforward application
of [25,Theorem 1.6 and § 6] is:

There exists a toric Calabi—Yau cone metric with Reeb vector field & and conical
singularities of angles 27 B, along the toric divisors D, if and only if the transversal
polytope Pg C C satisfies the following combinatorial condition:

(x)g The barycenter (with respect to any affine measure) of Pz, say p € P, satisfies

Brlei(p)=---=B7"(p)=m+ 17"

It turns out that the condition given by (1.2) is exactly the right one to run the vari-
ational principle established by Martelli—-Sparks—Yau [33] in our generalized setting.
Indeed, given B € B, it is the image of a unique point (n + 1)pg € Cp via the map
(1.1) and we can define the set Eg of Reeb vector fields whose transversal polytope
Pt contains pg. That is

Ep:=1{5 €Cql(& pp)=1/2},

which is a cross section of Cj and a convex open polytope in the affine hyperplane
defined by (-, pg) = 1/2. Then, extending the main result of Martelli-Sparks—
Yau [33], we prove

Lemma 1.3 The volume functional
vol : Eg — R

is strictly convex and its uniqgue minimum &g € Eg is the only Reeb vector field in
C; satisfying the condition (x)g. In particular, &g is the only Reeb vector field in C§
admitting a compatible toric Calabi—Yau cone metric with cone angles 2m, along
the toric divisors D,.
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The family of metrics given by Theorem 1.1 can be parametrized by either the Reeb
vector field & or by the cone angles § along the toric divisors, thus providing a bijection
between Cj and B = Cy. This illustrates a natural bijection between the interior of a
cone and the interior of its dual cone highlighted by Gigena in [19,Lemma 3.1]. The
maps £ — B and B — & are inverses of each other, are (—1)-homogeneous, and
define an analytic bijection between the C§j and B. In particular, it follows from the
algebraic character of the volume function, that the components of £(8) are algebraic
numbers over Q(8) and vice-versa.

2 Toric conical Kdhler metrics in action-angle coordinates
2.1 Basic example
We start by looking at C**!, we begin first with C. Let 8 > 0 and write Cs = (C, gp)
for the complex npmbers endowed with the singular metric gg = B2|z|12P2|dz|?.
Writing z = r1/B¢if we have

gp = dr’ + B*r’do?
which we recognize as the cone over a circle of length 27 8. Its Reeb vector field is

1Gro,) = By

and the symplectic form is wg = Brdr A df. The vector field dy generates a circle
action by holomorphic isometries, with Hamiltonian

In action angle coordinates (x, 8), we have wg = dx A d6 and
1
2Bx
— G//dxz + (G//)_ldez,

g8p = dx* + 2Bxd6>

with symplectic potential

1
G = ﬁx log x.

Consider next the product of two cones a’rl2 + ﬁfr%def and dr22 + /322r22d922. We
introduce variables (7, ¥) € (0, 00) x (0, w/2) defined by r; = rcos(y) and r, =
rsin(y). Itis then easy to check that Cg, x Cg, is a cone, in the sense that 8Cp, xCp, =
dr? + rzgs(zﬂ), with link



Toric Sasaki-Einstein metrics with conical singularities Page70f40 64

853, = dy? + B? cos®(Y)dO? + B3 sin®(y)d6?.

We see that g3 : defines a Sasaki metric on the three-sphere, with constant sectional
(

curvature 1 and cone angles 2778 and 273, along the Hopf circles defined by inter-
secting {z1 = 0} and {z» = 0} with the unit three-sphere.

Same way, the metric product Cg, x --- x Cg,_, defines a Calabi—Yau (indeed flat)
cone metric on C"*! with cone angles 277, along {z, = 0}. Its link is the (2n + 1)-
sphere, endowed with a Sasaki—Einstein metric of constant sectional curvature 1 and
cone angles 27, along the (2n — 1)-spheres cut out by {z, = 0} N $?"*+!_ Its Reeb
vector field is

1 o L n 1 0
B1 061 Brt1 0nt1

The diagonal action of T on Cg, x --- x Cg,,, is by Hamiltonian isometries. We have
action angle coordinates (x, 8) with components x; = S; rl.2 /2. The moment cone is
Ni{x; > 0} ¢ R"*! and the symplectic potential is

1 -
G = 3 ;ﬂa X log x4.

The Reeb vector/cone angles correspondence of Theorem 1.1 in this case is simply
_ (p-1 ~1
£8) =B, Bl

2.2 Symplectic potentials

The goal of this section is to describe Kéhler toric metrics with conical singularities in
terms of their symplectic potentials. To this end we need to review a bit action-angle
and complex coordinates on toric Kihler manifolds.

Remark 2.1 Since most of the content of the paper is differential-geometric, we use X
to denote the cone without its apex.

2.2.1 Symplectic potentials of smooth Kahler toric metrics

Let (X ntl g, ) be a smooth Kihler cone over a compact base with radial vector
field, classically denoted rd, € T'(T X). Recall that it means that 79, induces a free,
holomorphic and proper action of R and w is homogeneous of order 2 (i.e. £,y » =
2w) and that X /R™ =: S'is compact. The Reeb vector fieldis, by definition, & := Jrd,.

In what follows we assume moreover that (X, J, w) is foric meaning thata (n + 1)-
dimensional compact torus T acts effectively on X in a Hamiltonian fashion and
holomorphically. In that case, there is a unique momentum map p : X — t*, homo-
geneous of order 2 with respect to the Rt -action where t = Lie(T) and t* is its dual.
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According to [29], the moment cone C = p(X) is then a strictly convex rational
polyhedral cone (without its apex) that can be written as

C={xect'"\{0}|(x,€,)>0,a=1,...,d}

where d is the number of facets of C and 274y, ...,27€; € A C tare primitives in
the lattice of circle subgroups of T = t/A.

Remark 2.2 In most of the paper, we identify ¢ = R"*! and A = 277Z"*!. We also
use the Euclidean inner product to identify ¢ = t* = R"*!,

The fact that the cross section of the cone C(S) is a smooth manifold, amounts to C
being good in the sense of Lerman [29]. We let t = t* = R"*! then we have primitive
inward normals v, € Z"t! such that £4(-) = (vg, +), where (-, -) is the Euclidean inner
product. The good condition on C means that, for any face F' = DX: 1{la, =0}, the
following holds

N N
{Z VAVq,, VA € R} Nz = {ZVAUGA’ Vs € Z}.

A=1 A=1

Conversely, any good strictly convex rational polyhedral cone is the moment cone of
a smooth toric Kéhler cone.
Let Cy be the interior of C, so

Xo=pu N Co)=CyxT 2.1

is the set of points where the action is free [29]. The coordinates on X given by
the r.h.s. of (2.1) are called the action-angle coordinates, see [9, 21, 33]. Locally, it
gives coordinates (X, ..., Xn, 6, ..., 0,) € R¥*2 = ¢* x t on X where the class
[0] -with 6; ~ 6; + 27 - parametrizes T. Guillemin [21] proved that any T-invariant
Kihler structure (w, J, g) in action-angle coordinates (x, [0]) (thus on Xy), is of the
form

n
w = dei Adb;,
i=0

with ¢ = g and J = Jg given by
g6 = Gijdx; @dx; + Gde; ® do;, (2.2)
Jody, = Gijdp,, Jgds, = —G"dy,. (2.3)
Here, G;j = 392G /0x;0x are _the entries of the Hessian of a smooth strictly convex
function G : Cyp — R and GY are the entries of the inverse matrix. It is common to

call G a symplectic potential of gg. Observe that we need action-angle coordinates
(therefore momentum map and a fixed symplectic form) to interpret G or gg as a
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metric on X¢. The resulting metric does not depend on the choice of these coordinates
see [5].

The condition for a smooth strictly convex function G : Cy — R to define a smooth
Kéhler cone metrics are well-known as we recall now.

Proposition 2.3 [2, 5,21, 33] The tensor (2.2) extends as a smooth compatible Kdhler
cone metric on (X, w) if and only if

(i) the restriction of G to the interior of C -and to the interior of any of its faces of
positive dimension- is smooth, strictly convex and such that

d
1
G-3 X}ea logt, € C*(C); (2.4)
a=

(ii) the Hessian of G is homogeneous of order —1 with respect to the natural R™ -action
on t* (i.e. radial vector field Z;’l:o Xi %).
1

In that case, the Reeb vector field & = (&, ...,&,) € Cj Ct= R of gG is given
in coordinates as

Sj = 2Gijxi.
Definition 2.4 We denote
Se(C,0):={G:Co— R | G satisfies (i), (ii) and §; =2G;;x; as in Proposition 2.3}

the space of £é—symplectic potentials on C with respectto €1, ..., £4.

A nice fact (see again [9, 21, 33]) is that (x, 6) — (y = DG(x), 8) are complex
coordinates on the tangent space, meaning that z = y + i@ are local holomorphic
coordinates on Xg. If we let

Zk = logwg = yx + i,

then (wo, ... wy) are global coordinates on Xg = (C*"*+L, The Legendre transform
F of G, defined by

F(y)+Gx) = (x,y), V(x,y)eCoxt

is a Kdhler potential of w. Indeed
n

" " oF 02F
o= dx; AdO, = d(—) AdO = — dy; ANdO =2id0F:

as follows from the identity x = DF(y).
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Remark 2.5 Given another symplectic potential G € Se(C, £), the map
D, = (DG) o (DG): Co— Cp

extends as a smooth T-equivariant diffeomorphism of X such that CD’EGJG = Jg

and CD’:;Ga) = w +2i3d f where f is a smooth homogeneous (degree 0) T-invariant
function on X, see [5, 14, 33]. This is one way to get that any two T-invariant smooth
complex structures on a toric symplectic cone manifold (X, @) are biholomorphic.

Definition/Proposition 2.6 The Reeb cone C(’)k is the interior of the dual moment cone,
thatis Cj := {§ € t] (£, x) > 0, Yx € C}. Any smooth toric Kihler cone metric on
(X, w) has a Reeb vector field lying in Cjj and any & € Cj; is the Reeb vector field of
a smooth toric Kidhler cone metric on (X, w).

2.2.2 Toric Kahler metric with conical singularities along a divisor
For any a € {1, ..., d} we denote the divisor D, := M_l(ﬁgl(O) N C) in X. Recall
that, as proved in [25,§ 6.3], for any fixed @ € {l,...,d}, the tensor gg given by

Eq. (2.2) extends as a metric on Xo U D, with cone angle 28, along the divisor D,
provided that

Ll o0 -1 -1
G 2ﬂa Lalogl, € C™(CoU (£, (0)\ Upxal, (0))). (2.5)
Precisely, assuming that
|
G = 5,3” Lologl, + f
is convex on Co U (Z;l(O)\Ub#E;I(O)) with f smooth on Cy U (Z;l(O)\
Ussaty ' (0)), then

1

= dx2 + 2Baxad0; + C = BZIzo|* P~ Vdzg A dZp + C*.
2Baxq

8G

Here, up to a linear change of coordinates, we put x, = £,(x), 6, = ({,4,0) and
z0 = 2x4/ ﬂa)l/ 2Pa i The C* term on the r.h.s. is understood as smooth in terms
of (Izolﬁflzo, Z1, ..., 2n). The same comments apply at the intersection of two or
more divisors Dy, N--- N Dy, forl <k <n.

In this paper, we say that the toric metric gg has cone angle 28, along D, if
its symplectic potential satisfies the smoothness condition in Eq. (2.5). In practice,
when proving existence theorems, one has to relax the smoothness condition (see [25,
35]) and consider C*® metrics. At the end, regularity results show that these weaker
notions of conical singularities satisfy the smoothness condition provided they solve
the Kdhler—Einstein equations on the complement of the conical divisors.
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Remark 2.7 Note that for making sense of g as a metric on X we are using the action-
angle coordinates of a fixed symplectic form » which admits a smooth extension to
X. There are two differential structures on X, meaning that there are two atlas; one
in which our fixed symplectic form extends smoothly and the other in which the
complex structure does. The last differential structure depends on the cone angles § =
(B1, - -, Ba). These two differential structures are equivalent, by diffeormorphisms
modelled on re’® — r1/8¢% in transverse directions to the conical divisors. In the
paper, when we say smooth, we mean smooth with respect to the atlas of our fixed
symplectic manifold.

Definition 2.8 Let (X, w) be a toric symplectic cone whose moment cone (C, £) is
strictly convex. A compatible toric Kéhler metric g with cone angles 28, along the
divisors D, is a toric Kihler cone metric on Xo = Co x T"*! such that for each
aell,..., d}

_ ; 2 2
8 <2ﬂaea<x>d€“ +2Patax) de“) ’

where 6, = ({,,0), extends smoothly (in the symplectic sense) over Xo U
(D \ Upa Dp) and restricts to a positive definite tensor on T D,. Similarly, for
l <k <nand!l = {ay,...,ax} C {l,...,d} with Dy, N --- N Dy non-empty,
we require

k
ez + 2ﬂa.£a.(x)d02,>
]Zl (2,Ba]eaj( ) aj J J aj

to extend smoothly over Xo U (Uaes Da \ Up1 Dp).

By the observation above and putting together the work of many people (in the
compact Kihler case [1, 2, 5, 13-15, 21, 25], made clear in the Kéhler cone case by
[33], see also [3, 26]) we get that

Proposition 2.9 Let B, ..., Ba € Roq. For G € C°(C) N C*®(Cy), the tensor g of
(2.2) is a toric Kdhler cone metric with conical singularities of angles 2m B, along the
divisors D, if and only if:

(i) the restriction of G to the interior of C, and to the interior of any of its faces of
positive dimension, is smooth and strictly convex and such that

d
1 _
G-5 20: B logt, € C®(C); (2.6)
a=!

(ii) the Hessian of G is homogeneous of order —1 with respect to the natural R -action
on t* (i.e. radial vector field Z?:o X; %).
1
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In that case the Reeb vector field & = (&), ...,&,) € Cj C t = R™ of g¢ is given
in coordinates as

n
§=2) Gixi.
i=0

Remark 2.10 The Reeb vector field & extends smoothly to the whole manifold X.
Following standard terminology, we say that (X, w, &) is quasi-regular if £ generates
a circle action (regular if the circle action is free) and irregular if & has at least one
non-closed orbit.

This prompts us to define the following set of functions
Definition 2.11 We denote

Se(C, L, B) ={G e CO(C) N C*(Cy) | G satisfies (i), (ii) of Proposition 2.9
andgj = 2G,-jxi}

the space of &-symplectic potentials on C with respect to €1, ..., £4 and cone angles
27B1, ..., 2784

Remark 2.12 In Definition 2.11 we have distinguished the natural integer labelling
L1, ..., {4 determined by the geometric (complex, algebraic or symplectic) structure
of X- from the cone angles f, ..., B4. Alternatively, one can mix these, by letting
Za = ,Ba_léa fora =1,...,d. This way l71, R fd gives another labelling of C, and
we will also write Sg (C, 0) = Se(C, ¢, B).

We define the B-Guillemin potential as
can ., 1 -1
G = o Xa:ﬁa Lqlogl,

and we observe that G € Sgean (C, £, B) for
é_-can — Zﬁ;lza
a

For later use, we record the following

0 can 1 —1 a

B_xiG =§§:ﬂa (14 log £,)v?, 2.7
82

axiaxj'

an ]
G =2 ) B e (2.8)
a
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Remark 2.13 1In the case where 81 = - -+ = 4 = 1, it was shown in [21], see also [9],
that G““" is the symplectic potential of the toric Kéhler metric obtained as the Kéhler
reduction of the flat metric on C¢ through the Delzant construction. It seems natural
to think that for general angles 8 € Rio, the B-Guillemin potential is the symplectic
potential of the toric Kéhler metric obtained as the Kihler reduction of the flat metric
on (C;f of § 2.1 this way.

Let us set
loo = Zﬁ;lga
a
and, for & € Cj,

1 |
Ge = Eﬁg log ls — EZOO log {eo.

We introduce a canonical symplectic potential with cone angles 27, along D, and
prescribed Reeb vector,

GE™" = G + Gy € S¢(C. L, ). 2.9)

The conditions (i) and (ii) defining S¢(C, €, B) translate as

Corollary 2.14 S:(C, ¢, B) coincides with the subspace of strictly convex functions on
the interior of C (and interior of faces of C) that can be written as

G_lf B e, log e 113 log ¢ +151 E+ f
= — 0 - = 0 =&lo
5 0 talOgLq 5 boo g Loo 2 g

a=1

where £ = ZZ:] ﬁ;lﬂa and f € C*°(C) is homogeneous of order 1 with respect
to the radial vector field )"} _ x; %

Symplectic potentials in Sg (C, £, B) correspond to symplectic potentials on com-
pact cross section labelled polytopes Pg. This will be crucial in our application. We
recall the following notion.

Definition 2.15 Given a convex compact polytope P in an affine space H given by
P:={xe H| 571 (x) >0, ...,Zd(x) > 0}, a symplectic potential on P with respect
tol Lo vvns fd is a continuous function u € C°(P) such that its restriction to the interior
of P, or any of its faces, is smooth and convex and such that

is smooth on P. We denote S(P, ?) the space of symplectic potentials on P with
respectto {1, ..., 4q.
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Note that, as linear functions on t*, B Ly Iy evvs ﬂd_lﬁd € t define affine functions
on the affine hyperplane {x € t*|(x, &) = 1/2} which plays the role of H in the
Definition 2.15.

Corollary 2.16 A &-symplectic potential G € Sg(C, £, B) on C is uniquely determined
by its restriction to Ps := C N {x e t*|(x,&) = 1/2}, which turns out to be a
symplectic potential on Pg with respect to the labelling induced by B, Yoy, ..., ﬂ;lﬂd.

Remark 2.17 For any 8 € R‘io and potential G € St (C, ¢, B), (g6, w) is a t-invariant
Kiéhler cone structure on (Cp x t, w) with Reeb vector field £ € t over the non compact
Sasakian manifold obtained as the link {r = 1} ~ ﬁg x t where r2 = g(&,&). Of
course, any local computation in the Kihler cone/Sasaki context is still valid here and
thus, for example

w= i85}’2
2

which implies that 2 /4 is, up to addition by an affine-linear function of the complex
coordinates y = d,G, the Legendre transform of G. In this situation, there is no
preferred lattice and no equivariant torus compactification of ﬁg x t into a smooth
manifold, but we always have a (non-compact) Kihler reduction (135 x (t/RE&), o, J )
so that

Ps x (t/R&) = x~'(1/2)/RE = {r = 1}/RE

and the pull back of @ on {r = 1} is the restriction of gaéﬂ which coincides with
i8510gr2 on{r = 1}.

2.3 Scalar and Ricci curvature of symplectic potentials and log Futaki invariant

Each Reeb vector field § € Cjj, determines a hyperplane Hy = {2(£,x) = 1} and
a corresponding polytope P; which is labelled by 8, Yoy, ..., ﬂd_lﬁd. In this section
we recall the Futaki invariant of the labelled polytope (Pg, B, 121, e, ,Bd_IEd) which
provides an obstruction to the existence of scalar-flat metric on (X, w, §) with conical
angle 278, along D,, [18, 25, 26]. Equivalently, this is an obstruction to the existence
of scalar-flat potential in Sg(C, Bl Ly Lyvvns ﬁd_lﬂd). Note that this is just a convex
affine translation of the classical Futaki invariant [17]. It agrees with the log Futaki
invariant, which arises in the more general setting of metrics with cone singularities
along divisors (not necessarily toric) see [22].

In the next statement, we denote (G'/) the inverse Hessian of a potential G &
Se(C, ¢, B). It is a smooth matrix valued function on C by [5] and we recall the so-
called Abreu formula which expresses the scalar curvature of the metric associated to
a potential G on X as

192Gl

Ry = — .
0 axiax]'

L
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The scalar curvature Ry can be, and will be, seen as a smooth function on C or
sometimes identified with its pull back on X, as a smooth T-invariant function. In the
next claim, we state straightforward consequences of the computations in [3], see also
[26, 33], which hold on X and then apply directly on the singular toric Kéhler metric
of Definition 2.8.

Proposition 2.18 A roric Kdhler cone (X”Jrl , J, ) with Reeb vector field & and con-
ical singularity of angle 2n B, along the divisor D, is scalar flat if and only the
corresponding potential G on C satisfies

2\ 3Gl
Ry = — =0 2.10
X - axiax]‘ ( )
i,j=0

and this happens if and only if the corresponding potentialu € S(Pg, £) on P satisfies

1 0%l
— = 1), 2.11
2 agar, — "D (2.11)
i,j=1
where (X1, ..., X,) are coordinates con the affine hyperplane He = {2(§, x) = 1}.

Formula (2.11) is the usual Abreu formula with a specific constant n(n + 1).

Via the correspondence between metrics and symplectic potentials and thanks to
Proposition 2.18, it makes sense to define scalar-flat symplectic potential (respectively
csc symplectic potential) as a potential satisfying Eq. (2.10) (respectively (2.11)). It
also makes sense to say that a symplectic potential is Kdhler—Einstein, as the Ricci
form pG of the associate metric g on Co x T, see (2.1), is

n

Ric(ge) = )

i,j.k=1

82 ij

dx; N db
3xi3xk A k

with respect to action-angle coordinates. Using the computations in [3] we can there-
fore specialize the latter Proposition to Ricci-flat metrics on X as follows.

Proposition 2.19 A toric Kéihler cone (X", J, w) with Reeb vector field & and con-
ical singularity of angle 2nfB, along the divisor D, is Ricci-flat if and only the
corresponding potential u € S(Pg, £, B) on Pg is a Kéhler-Einstein potential with
scalar curvature n(n + 1), that is satisfies

S ks 2.12)
_ —(n s )

£ 0% 0% T

where (X1, ..., X,) are coordinates con the affine hyperplane He = {2(&, x) = 1}.

Next, we note that the integral of the scalar curvature of a toric Sasakian metric
with conical singularities, depends only on the Reeb vector and the cone angles. The
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link S = X|,=; corresponds, under the moment map, to
P: ={{,x)=1/2}NnC.
Similarly, 1(X1) = Ag, with X1 = X|,<; and A¢ is the polytope
A ={x € C s.t.2(§,x) < 1}.
We let D, be the divisor corresponding to {£{, = 0}. Set £, C S,so0 D, = C(Z,).

Also, let F, = Ag N {€, = 0}.

Lemma 2.20 With the above notation

Vol(S) = 2(n + D(2m)" T Vol(Ag), Vol(Z,) = 2n(27)" |va| ! VoI(F,),
(2.13)

where on the left hand sides the volume is computed with respect to the symplectic
Sform w on § and the toric contact form ng form induced by &, and on the right hand
side the volume and the norm are computed with respect to the standard Lebesgue
measure on Euclidean space.

Proof The key point here is that (X, w) is a smooth symplectic manifold,' so the
conical singularities of the metric have no influence and the integral of the volume
form " /n! proceeds as in the smooth case. Following [33,p. 51], we compute the
volume of X1 = {r < 1} in two different ways. First, using spherical coordinates

1
Vol(S)
Vol(X1) = Vol(S gy = . 2.14
ol(X1) 0()/0r r =0 (2.14)
In action-angle coordinates,

a)n
Vol(X) = / — = (271)’“rl Vol(Ag). (2.15)

ul(ag N

Equating the right hand sides of Eqs. (2.14) and (2.15) results into the first equation
in (2.13). The other equation follows the same way. O

Proposition 2.21 We have
2w
Rydx = — Zﬂa Vol(2,) — 2(n + 1) Vol(S). (2.16)
w=l(Ag) no=

In particular, if Ry = 0, then

7Y Ba Vol(Z4) = n(n + 1) Vol(S). (2.17)

I Recall that smoothness is understood with respect to the symplectic coordinates, see Remark 2.7.
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Proof We follow [33,p. 52], incorporating the boundary conditions given by the cone
angles. We let do be the induced Lebesgue measure on the boundary of Ag, integrate
by parts and use Eq. (2.7) to get

_ +1 ij -1 +1 ijg 1g1—1
w/[:b_l(Ag) Rxdx = 2m)" Z/; Gl. v;?|va| do — 2m)" / Gi §il§1” do
a a

P
20+ 1)

Vol (P,
g ol

= Q2m)""1 Y " 2B4lval T Vol(Fy) — @)™

2
— Z Ba VOI(Z,) — 2(n + 1) Vol(S).

In the last equality we have used Eq. (2.13) together with the identity Vol(Ps) =
2(n + 1)|&| Vol(Ag). O

Example 2.22 Let S be the three-sphere equipped with the metric g s3 (Sect. 2.1),

which constant curvature 1 and two Hopf circles with cone angles 271, 27, of
respective lengths 2778 and 2778;. We have Vol(S) = 18,272 and Eq. (2.17) reads

w(B12n By + Br2np) = 2,31,3227'[2.

Welink Eq. (2.17) with a previous observation of [ 3] and introduce the (transversal)
log Futaki invariant. As shown in [3], the scalar curvature of a Sasaki metric g,,
associated to u € S(Pg, ,31_161, ...,ﬂd_lﬂd), on the link § = {z € X |(u(z), &) =
1/2} is the pull back of

" 9%yl

scalg, = —2n —4
~ 0x;0x;

= Rx +2n(2n +1).

L,

A simple but useful calculation of [13,Lemma 3.3.5] using the boundary conditions
satisfied by u € S(Ps, ﬂflﬂl, R ﬂ;lﬁd) shows that, what we call the total transver-
sal scalar curvature is

S€) = J o

- 22/ 0t p =ZZﬂa/ 6.1 (2.18)
a BPE a F,

where o g is the volume form on 9 P defined by

/(scalgu + 2n)dvolg,
s

ﬂa_ldﬁu Aogpg=—dX| A--- Adx, onthefacet F,N Pg; (2.19)

where the fibers of the cotangent space of t* are naturally identified to t and
(X1, ..., X,) are affine coordinates on the hyperplane Hg. Actually, the calculation
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[13,Lemma 3.3.5] shows more, namely that for any u € S(P%, /3;1@1, R ,Bd_lﬁd),
we have

n

f = > u | f@dx =2 / F@0oe g,
P 3Pg

i j=I

for any affine function f. Which in turn implies that the L2(Pg, dx)-projection of the
transversal scalar curvature

n
§ tj
— uij

ij=1

on the space of affine functions, does not depend on the potential u € S(Ps, B, ey,
.., B, "€4) but only on P: and the labelling B, '¢1, ..., B, 4. We call this affine
function Ag. We have Ag(X) = Ag+ Y i, A;X; on P; with the constants A j given
by

n

Z(f x,-;z,-mz)A,:z/ Xiogp, for i=0,... 1
3 dP:

J=0

fapg o¢.p
Ty, 3
on t = Aff(Hg, R) given by

in particular Ag = . The (transversal) log Futaki invariant is the linear function

Jop. 0e.8
0 22 | rax. (2.20)

L = _0s P
S’ﬂ(f) v/i;Pg faé’ﬂ fP§ dx P

We recall the following well-known obstruction.

Corollary 2.23 The log Futaki invariant Lg g vanishes ifand only if Ag = Ao. Equiva-
lently, the log Futaki invariant vanishes if and only if the barycenter of (Pz, dX) agrees
with the barycenter of (0 P, o¢ g). In particular, if there exists a compatible scalar-flat
Kdihler cone metric on (X, w) with Reeb vector field & and conical singularities of
angle 2t B, along D, then Lg g = 0.

Of course the (log) Futaki invariant is an obstruction to constant scalar curvature
Sasaki metrics not only those for which Ry = 0.

Remark 2.24 Whenever & is regular, P is a Delzant polytope associated to the smooth
toric symplectic reduction of (X, w) at the level 1/2. In that case, it is easy to show
that (2.20) is, up to a positive dimensional constant, the log Futaki invariant of [22].
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3 Proof of Theorem 1.1

The first part of Theorem 1.1 is proved in Corollary 3.4 below and the second part
follows from Corollary 3.13.

3.1 Fixing the Reeb vector field

Summarizing the discussion of Sects. 2.2, 2.3 and in particular Proposition 2.19, the
search of Ricci-flat toric Kéhler cone metric with conical singularities along the invari-
ant divisors boils down to the study of symplectic potentials on (labelled) polytopes
solving Eq. 2.12. This last problem has been studied in [25] for compact simple
polytope after a suggestion made in [15]. We recall the main result.

Proposition 3.1 [25] Let P be a simple compact convex polytope with d-facets
(ordered Fy,...Fy) and labelling {1, ...,¢4. Given a set Bi,...,Pq € R,
S(P, ﬂl_lél sy ,Bd_lﬁd) contains a KE symplectic potential if and only if there exists
A>0and p e P such that Mg = L4(p) fora =1, ...,d where p is the barycenter
of P, up to an overall homothety.

In [25], the last statement is expressed in terms of monotone labelled polytopes,
which are defined just below. It says that a labelled polytope (P, ¢) admits a KE
potential in S(P, £) if and only if it is monotone and its log Futaki invariant vanishes.

Definition 3.2 A labelled compact polytope (P,~l7) is monotone if and only if there
exist p € Pand A > Osuchthat £;(p) =--- =€4(p) = A.

Remark 3.3 To explain why the monotone condition is a necessary condition, we recall
that a compact symplectic orbifold (W, w) is called monotone if 3A > 0 such that

AMw] =2me1 (W)

in de Rham cohomology. In particular this condition is necessary to have a w-
compatible Kihler—Einstein metric of positive scalar curvature. In the toric setting,
(W, ) is monotone if and only the associated labelled polytope (P, £) is monotone
in the sense of Definition 3.2. The proof of this fact works for non-Delzant labelled
polytope, see eg [14] and [27,Lemma 2.4], as it amounts to compare the Ricci poten-
tial and the Kéhler potential as functions on the moment polytope. That is, to check if
there exist p € t*, A > 0 such that

X = —% logdet(u;j)y — A((x — p, dyu) — u(x)) 3.1

is smooth on P for some (and then any) u € S(P, ). In Proposition 4.1, we give a
cone version of this monotone condition.

Proposition 3.1 applies directly to Kihler cone metrics thanks to Corollary 2.16
and Proposition 2.19 and we get the following existence result where we denote for a
facet F, = {thl (0} N C, the corresponding divisor D, C X.
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Corollary 3.4 Let (xntl J,w) be a toric Kihler cone with Reeb vector field

& and moment cone C with primitive inward normals £1,...,¢5 € y/iads
There are Bi,...,Bs € RY, unique up to an overall homothety, such that
S(Pe, ,31_161, cee ﬂd_lﬁd) contains a KE symplectic potential. In particular, given

any Reeb vector field & there exists a unique Ricci-flat Kéhler cone metric on X with
conical singularities along UD, (but the angles might be greater than 21 ).

This finishes the proof of the first item in Theorem 1.1.

Remark 3.5 The family of metrics in Theorem 1.1, parametrized by the Reeb cone, has
a natural “Weil-Petersson’ type metric. We can associate for any £ € Cg; a conically
singular Sasaki—Einstein metric gsg (£). Up to a constant dimensional factor, the total
volume of gsg (&) is equal to Vol(Ag). The Hessian of the convex function

& — log(Vol(Ag))

defines a canonical complete metric on the interior of the Reeb cone [34,Appendix A.1],
hence on our parametrized family of Calabi—Yau cone metrics. It is interesting to ask
what is the behaviour of the Calabi—Yau/Sasaki—FEinstein cone metrics as the param-
eter B approaches d8. We expect that if one of the cone angles goes to zero, then the
corresponding divisor is pushed to infinity, modelled in transverse directions by a flat
cone Cg that converges to a cylinder as § — 0. More interestingly, if we approach
a point in in B for which non of the cone angles vanishes, then we would expect
that only the vertex of Calabi—Yau cone metrics is pushed to infinity by developing a
single cuspidal point.

3.2 Fixing the cone angles

Consider a toric Kihler cone (X”‘H, J, wp) with moment cone C and primitive
inward normals €1, ..., ¢4 € Z"t!. Let B1,..., B4 € R* be a set of positive real
numbers. We wonder if there exists a Ricci-flat T-invariant toric Kéhler cone met-
ric @ which is smooth on X\ U, D, and has conical singularities of angle 278,
along D,. That is, according to Proposition 2.19, if there exists a KE potential in
Se(C, By e, ..., By ) for some £ € .

Lemma 3.6 Ifthere exists & € ty such that Sz (C, ,31_161, e, ,Bd_lﬁd) contains a KE
potential then there exists a ray Eg C C such thatVp € Eg,

Brlti(p) = =By ap).
In particular, B = (B1, ..., Ba) € B.

Proof If there exists a KE potential in S(Pe, B141, ..., Balq) it implies [14, 25] that
(Pe, ,3]_1£1, e, ,Bd_léd) is monotone in the sense of Definition 3.2. That is, there
exists p € P such that

Brlei(p) = = B a(p).
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This condition holds for any point in the ray passing through p € P C C by linearity.
(]

Given a point p lying in the interior of C the set of angles 8, = £,(p) satisfy the claim
of the last Lemma. It is easy to see that any set of angles satisfying the condition is
obtained this way. We conclude

Corollary 3.7 The set of angles B € Ri satisfying the condition of Lemma 3.6 is a
(n 4+ 1)-dimensional cone which agrees with the angles’ cone B = Cy defined in the
Introduction.

Since B € B, there is aray Eg C C and a constant A¢ depending on & € Cj; such
that

Brlli(p) =+ =By ba(p) =
where p is the single point lying in P N Eg. Denote p = (py, ..., p,) the expression
of p in the coordinates (X1, ..., X,) of the hyperplane Hg := {x € t*| (€, x) = 1/2}
and put
1 & . —
O p 1= — S DTG = pydiRy A AdF A Ady (3.2)
' £l

where J}, means that dx; is omitted.
Lemma 3.8 Assume that B € B. Then o g as defined in (3.2) satisfies Eq. (2.19).

Proof Pick a € {1,...,d}, restricted on Hg, £, is an affine linear function so that
Ba L, (X = ¢, + (Ba de,, %) for some constant c,. Identifying the fibers of the
cotangent space of t* to t, we have 8 Yde, = Z?:l sq,idXx; for some constants s, ;.
For x € F, N Pg, we have

- L e _ .
B, ldly nogp = e > sai(E = p)dFi A A dFy
i=1

1 ~ ~ ~
= — (B dt,, & — p)dF| A - AdF,

& (3.3)
= i (ﬁa_lza(i) - ﬂcl_lﬁa(p)) diy A - A dF,
= —dX| A+ ANdXy,
using that B; 1€,(p) = A forany a € {1,...,d}. .

Recall that the volume of the Sasaki metric g4, associated to ¢ € S(Pg, B, 161, e,
,Bd_lﬁd), on the link Ng = {z € X | (u(2), &) = 1/2} is given by (2m)"vol(§) where

1 - -
vol(§) :=W/;V$wg¢=/&dx1/\---/\dxn.
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Using Stokes” Theorem we have

Lemma 3.9 Assume that B € B. Then ot g as defined in (3.2) is globally defined on
the hyperplane Hg and

no_ -
dog g = del A ANdXy.

In particular S(§) = 2;—Evol(§).

We are interested in the case S(§) = 2n(n + 1)vol(&) because we want Kidhler—
Ricci-flat cones. By the latter Lemma 3.9 this coincides with the condition Az =
(n + 1)~ 1. Therefore, we pick the unique qp € Eg such that

_ _ 1
Bl i) == B alqp) = —

and define the set of Reeb vector fields £ € C; whose polytope P: contains gg, that
is

Bp=1{eCyl(E qp) =1/2}. (3.4)

Pick & € Eg, then Eg = C; N {& + v | (v, gg) = 0} and so Eg is an open convex set
in the hyperplane {§ + v | (v, gg) = 0}. Observe also that

Bp={6eCl|PsNEsg=1{qp)} = €Cilre =+ D1

In particular, for § € Eg we have S(§) = 2n(n + 1)vol(§) and
/ oep=n(+1) [ dFi AL AdE. (3.5)
P Pg

This will be used in the proof of the following Lemma.

Lemma 3.10 Assume that B € B. Then the volume functional vol : Eg — R is convex
and proper and its unique critical point § € Eg is characterized by the condition that
the barycenter of Pg coincides with the one of (3 P, oz g). In particular, the critical
point of vol in Eg is the unique § € Eg with vanishing transversal Futaki invariant.

Proof Let & = & + tv be a small path in Eg, so that v € tis such (v, gg) = 0. As
before we use that any ¢ € t defines naturally, by restriction, an affine linear on the
affine hyperplane on He C t* in which lies Pg, so we may write £(X) for ¥ € Hg to
emphasis that it is not linear in X € H. We pick again coordinates (X1, ..., X;) on
He.
One easily shows, see [32, 33], that

<ivol(§})> =—m+1 V(X)dX1 A - AdXy.
dt =0 Pe
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It readily infers that & € crit vol if and only if gg is the barycenter of (P, @). Indeed,
as a linear function on Hg, since (v, gg) = 0, v is linear in X — gg.

Writing @w = dX| A--- AdX,, 0 = o¢ g and gg = (gp.,1, - - -» gp,n), We have for
i=1,...,n
A
/ Yo =22 fdo
3 n Pt
)Lg ~ )»g -
= = Xjo — — dx; No (3.6)
n Jap: n Jpg
Ag -

1 -
=—= Xio — —/ (xi —gp.i)o.
n dPg n P

Now using (3.5) and Az = (n + 1)~! because & € Eg, we get that

1 1 - 1 - qB.i
l+-)— | = | Fo+ 2B (3.7)
n fPE @ Jp fana P n

using (3.5). This shows that g4 is the barycenter of ( Pz, @) if and only if bar(Ps, ') =
bar(d P, o).
Moreover, it is straightforward to check that

d2
(FVOI(S,))I_O =m+Dn+2) /PE V(%) w

which proves that vol is convex on Eg. The properness of vol along the boundary of
the cone Cyj, see [33, 34], implies the properness on Eg. O

Remark 3.11 The map §& — Vol(Ag), is also known as the characteristic function of
C*. Up to a constant dimensional factor, it is also given by

é—)/efg’x)dx.
c

The convexity and properness along the boundary are classical results, see
[34,Proposition A.10].

Combined with the existence result in [25] we have the next

Corollary 3.12 If B € B, then there exists one and only one Reeb vector field & € C§
such that St (C, ,31_151, el ﬁd_lﬁd) contains a KE potential.

Using the correspondence recalled in Proposition 2.9 it yields to the following

Corollary 3.13 Ler (X"t', J, w) be toric Kiihler cone (over a compact link) with
labelled cone (C, {1, ...,L5). There exists a (n + 1)-dimensional set of angles
B ebBC Ri for which there is a unique (up to isometry) Calabi—Yau cone met-
ric w(B), compatible with the complex structure J, which is smooth on the open dense
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set where the torus action is free and has cone angles 21 8, along the divisors E;l 0).
Moreover, the Reeb vector field of w(f) is the unique critical point of the volume
Sfunctional in the set of B-normalized Reeb vector fields Eg C ty.

We have now completed the proof of Theorem 1.1.

Example 3.14 As explained in the Introduction, our conically singular Calabi—Yau
cone metrics provide tangent cone models for singular Kéhler—Einstein metrics on
toric kit pairs. We see how this works in the toy example of projective cones
[30,Section 3.2]. It is a general fact, that if wc = (i /2)8E_ir2 is a Calabi—Yau cone,
then wx g = (i/2)3d log(1 +r2) defines a Kihler—Einstein metric with positive Ricci
and its tangent cone at the apex is the given Calabi—Yau cone, To(wkxr) = wc. The
metric wg g has finite diameter. If w¢ is quasiregular then wg g can be compactified by
introducing a suitable cone angle along a copy of the base as a divisor at infinity, see
[30,Proposition 3.3]. In the toric irregular case we can still think of wg g as a solution
to the Kéhler-Einstein equation on the polytope Ag.

4 Proof of Theorem 1.2

In this section we provide a geometric interpretation of the cone angle constraints
defining the angles’ cone B, leading to the proof of Theorem 1.2. If Eq. 1.2 holds,
then Theorem 1.1 guarantees the existence of a Calabi—Yau metric on X with cone
angles 28, along D,, so (1) = (2) in Theorem 1.2. Clearly, 2) = (3).
From Proposition 4.1 below we get that (3) = (1), so we conclude that the first
three items in Theorem 1.2 are equivalent. The equivalence (1) <= (4) follows
from Propositions 4.3 and 4.4. Similarly, (1) <= (5) follows from Propositions 4.6
and 4.8.

4.1 Smooth Ricci potential and the monotone condition

Lemma 3.6 above, shows that the angle constraints 8 € B, expressed by Eq. (1.2),
is a necessary condition for the existence of a Calabi—Yau cone metric on X with
cone angles 27 B, along its toric divisors D,. Coming up next, we strength this result
showing that the angle constraints 8 € B is equivalent to the existence of a smooth
potential for the associated Ricci form on X. Precisely we have the following.

Proposition4.1 Let G € S:(C, ¢, B) define a toric Kihler cone metric on (X, w)
with cone angles 21 B, along its toric divisors D, and let p be its associated Ricci

form. There is a function h, smooth outside the apex, which satisfies p = iddh on
Xo:=X\Uy,D, ifand only if B € B.

We note here that 4 assumed to be smooth with respect to the differential structure
of the fixed smooth symplectic manifold (X, w) and p is the Ricci form of the Kihler
structure defined by G via. The argument of the next proof goes along the lines of
[18, Proposition 6.8].

Proof Since p is invariant under T and the R™ action by dilations, that is Eagi p=0
for alli and £,5, p = 0, we can assume that the same holds for /. On the pre-image
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of the interior of the moment cone, Xo = u~'(Cp) = (C*)"*+!, we have a Kihler
potential F given by the Legendre transform of the symplectic potential G. The Ricci
form is

p = —idd logdet Fij
=iddh.

We use logarithmic complex coordinates z; = logw; = y; + if; with
(wo, ..., wy) € (C*H"! = X\ U,D,. Any T-invariant pluri-harmonic function on
(C*)"*! is an affine function of ( Y0, - - - » Yn). Therefore, up to subtracting a constant
from &, we have

log det Fij = —2y;yi — h

withy = (3o, ..., ¥u) € R"T!. Equivalently,
0G
det G;j = exp (2)/[8— + h) . “.1)
Xi

Taking the derivative with respect to x;dy;, we get

(v.§) =—n—1

Write
d
1 . 1 1
G = E;ﬁa lylog b, — 5zoologzzoo + Eslogz;- +f

as in Corollary 2.14.

(i) Incorporating the boundary behaviour (2.7), we see that exp (Zyi % + h) equals
(up to a constant factor)

- 9
[TCasto)f Corre; "  exp (Zyi—f + h) ;
a 8}([

(ii) and det G;; = fo I Egl with fy smooth on C minus the apex, see [2].2
It follows from Eq. (4.1) together with (i) and (ii), that

(vg,y) = —B4 forall a. “4.2)

We see that p := —y belongs to the interior of C and Eq. (1.2) holds.

2 Indeed f € H(d — n — 1) meaning that is homogeneous of degree d — n — 1.
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Conversely, assume that 8 € Band G € S¢(C, £, ). Same as before, det G;; =
foll, K;l with fy smooth and positive on C. As usual,

p = i3dlogdet(G;))

=i0d (Sl —Zlog€a>
a

with S = log fo smooth on C. On the other hand, we have complex coordinates (y, 6)
for the Kéhler structure defined by G, where y; = 0G/dx;. Giveny = (Yo, ..., Yn) €
R"t! we have a pluriharmonic function on Xy

G

2y, y) = 23—)/5
X

=> B va, v)logly + o,
a

where S; is smoothon C. If wetake y = p, so (v, V) = Ba, Wesee that SZ+Za log ¥,

is pluri-harmonic on X¢. We conclude that p = iddh on X with 2 = S| 4+ S» smooth
on C. |

In the setting of Porposition 4.1, the volume form «"*!/(n 4 1)! defines an Her-
mitian metric on Ky (outside the apex, of course) regarded as an holomorphic line
bundle with the complex structure determined by G. This Hermitian metric is smooth
on X\U, D, and |dzo A. .. Adzy|? = (det F;;)~'. The volume form e "1 /(n+1)!
defines a flat smooth Hermitian metric on Kx|x\u,p,. Which extends only continu-
ously (w.r.t. to the complex atlas detrmined by G) over the invariant divisors outside
the apex. On X \ U, D, we can write a locally defined unitary section of Ky by

Q= e"o‘e*h/Z(det F,-j)l/zdzl A ANdzy,

where o is a real valued function of the arguments (6p, ..., 6,). If we set o =
— Zi y;0;, then

Q= e_zt'”z"dzl A ANdzy,

1= 1
=w, ".w =Vagwy A+ A dwy,

is a unitary holomorphic (or equivalently, parallel) section of Kx. Up to a constant
factor, the volume form of any Ricci flat Kéhler cone metric on X with cone angles
27, and Reeb vector £ as above, is given by Q A Q.

Let ,OT denote the transverse Ricci form, it is related to the Ricci curvature of the
cone via

p=p" —@n+1)dn. (4.3)
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The existence of a Ricci potential as above, where & is a smooth function on C,
homogeneous of degree 0 and basic, that is

roph =0, &(h) =0;

is equivalent -as follows from Eq. (4.3)- to / being a transverse Ricci potential p! =
(n + 1)dn + idgdgh on the complement of the toric submanifolds £, C S of the
Sasakian link. Here dp denotes the basic d-operator, see [18]. Globally, we have the
current equation

p" = (1= B)[Zal = (n + Ddn +idpdgh

on §. The existence of such a Ricci potential % is guaranteed if we assume that cf -
> (1=B)[Z4]p € R-[dnlpg C Hé (S). Indeed after a D-homothetic transformation
one can always assume that the constant multiple of [dn]p is equal to n + 1. Finally,
we note that C{B —> .1 =B)[Zp € R-[dnlg C Hé(S) is equivalent to c¢; (H) =
> o1 = Ba)[Z4] as cohomology classes in H2(S,R).

The content of Proposition 4.1 can also be interpreted in terms of monotone labelled
cones as mentioned in Remark 3.3. More precisely, we let (C, ) with labelling by =
Ba 1. We say that (C, 57) is monotone if any of the following (equivalent) conditions
holds

(i) there exists aray E; C C such thatVy € Ej,
(y. &) == (y. La);
(i1) the inward normals ¢ Iy vnns Ed are contained in an affine hyperplane of t;

(iii) 3& € C; such that (P, ?) is a monotone labelled polytope;
(iv) V& € C§, (Pg, £) is a monotone labelled polytope.

With this notion, the condition 8 € B is equivalent to (C, 0) being monotone.
4.2 Algebraic point of view

We setup some standard algebraic geometry notation, following Cox-Little-Schenck’s
book [11]. Our toric Kdhler cone X is isomorphic to a complex affine variety

X = U, = Spec(C[S,]).
Here, 0 = C* and S, is the semigroup given by A* N C where A* is the dual lattice

to the kernel of the exponential map A = ker(exp) C t.3 Our affine toric variety X
corresponds to the fan that consists of the single cone o and all of its faces.

3 The standard algebraic notation ([11])is A = N, A* = M.Sot = N ®R, * = M ® R and our
complexified torus T @ C agrees with Ty = (N ® C)/N.
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Remark 4.2 This is the only section of the paper with purely algebro-geometric content.
For simplicity of notation, in this section we will write X for the cone with the apex.
Similarly, we also write D, for the invariant Weil divisors, so 0 € D,,.

X is a normal affine variety with an isolated singularity at {0}, so Kx is well-
defined as a Weil divisor, see [11, Definition 8.0.20]. We also have the toric Weil
divisors Dy, ..., D;. The basic fact, [11, Theorem 8.2.3], is that

meaning that Ky + ZZ:I D, is the principal divisor of a meromorphic function. In
particular, Kx + ZZ:] D, is always Cartier.

Proposition 4.3 The angle constraint expressed by Eq. (1.2) is equivalent to the log
canonical divisor

d
Kx+ Y (1= Ba)Dq

a=1
being R-Cartier.

Proof Given real coefficients ¢, the R-divisor E = ZZ:] cqa D, is R-Cartier if and
only if, there is p € t* such that ¢, = —(p, v,), where v, € A C t are the vectors
corresponding to D, in the fan description; see [11,Theorem 4.2.8]. In our notation,
£y, = (-, vy) are the linear functions defining the facets of the moment cone C of X
and A* ® R = t*. We are interested in the case where

d
E=Kx+) (1-B)Dq

a=1
d
= - Z /3a D,.
a=1

We conclude that the divisor E is R-Cartier if and only if there is p € t* such that
By = L4(p) foreverya = 1,...,d. Since B, > 0 we must necessarily have that p
belongs to the interior of C C t*. O

Assume that Ky + ), (1 — B)aD, is R-Cartier and write A = )~ (1 — )4 Dy,
then (X, A) issaid tobe alogpair. Letw : ¥ — X be alog smooth resolution, thatis a
proper birational morphism with ¥ smooth and Exc(r) U, 7~ (D) a simple normal
crossing divisor. Write A’ for the proper transform of A, thatis A" =" (1 —B).D),
with D/, equal to the closure of 7~1(D, N X"¢8), with X"°¢ = X \ {0}. Write E; for
the irreducible divisors lying on the exceptional locus of &, so Exc(w) = U; E;. Since
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Kx + A is R-Cartier, we can pull-it back to the resolution and write

Ky + A =a*(Kx + M)+ ) aiE, 4.4)

1

for some a; € R. The numbers a; are the (log) discrepancies. The pair (X, A) is klt if
the discrepancies satisfy a¢; > —1 for all i.*

Proposition 4.4 IfKx+)_,(1—pB)a D, isR-Cartier, then the pair (X, ) ,(1—B4)Da)
is klt.

Proof Recall that, the fan of X consists of the single cone ¢ and all its faces, with
o = Cone(vy, ..., vg). The generating rays of o are vy, ..., vy and we write o (1) =
{vi, ..., va}. We take a toric log smooth resolution 7 : ¥ — X. The variety Y is given
by a fan ¥ which is obtained by adding some vectors v’ in the interior of the cone o.
That is, the generating rays of X are given by vy, ..., vy together with some vectors v;
lying on the interior of 0. We write X (1) = o (1) U{v;}. The map 7 corresponds to the
inclusion map of fans of X into ¢ and the v/ correspond to the irreducible components
E; C Y of the exceptional divisor.

Let p € Cyp C t* be as in the proof of Proposition 4.3, so (p, v,) = B, for
a=1,...,d. We have

7 (Kx +A)=— Y (p.u)D,
ues(1)

=Ky+ Y (1—(p,u))D,

ues (1)

=Ky +A+E-) (p.v)Dy:

v

where A’ = Zuea(l)(l —(p, u))) D, is the strict transform of A = ZZ:I (1-84)D,
and E = ), Dy is the exceptional divisor. Therefore,

Ky + A+ E=n"Kx+A)+ ) (p.v)Dy.

v

For each v' € (1) \ o (1), we write v/ = )" A,v, with 2, > 0. So, (p,v') =
» o raBa. Since B, > 0 forall a, A, > 0 for all @ and not all A, vanish, we see that
{p, V") > 0 for all v". We conclude that

Ky + A =n*(Kx +A)+ Y ayDy,

v

with a, = {p, v') — 1 > —1. Hence, the pair (X, A) is klt. O

4 We have assumed that Ba > 0 for all a, so the coefficients of A are always strictly less than one, and this
avoids the log canonical case.
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Proposition 4.4 is a pair version of the well known fact that toric Q-Gorenstein
singularities are automatically klt.

Remark 4.5 1t follows from Propositions 4.3 and 4.4 that, if 8 = (81, ..., B4) belongs
to the n + 1-dimensional polytope B N (0, 1)¢, where B C R is the angles’ cone,
then the pair (X, A) iskltand A = )" (1 — B4) D, is effective.

The above is an affine analogue of the fact that projective toric varieties are of ‘log
Fano type’, see [11,Example 11.4.26]. Indeed, let Z be a projective toric variety, for
simplicity, assume it is smooth. Let L be an ample line bundle on Z, so it gives a
Delzant lattice polytope. Multiplying by a sufficiently large constant and translating
we can assume that the origin is an interior point of the polytope, and this implies that
L=} ,a,E, where E, are the toric divisors, and a, > 0.If € > 0 is small so that
€a, < 1forall p, then Zp(l —e€ay) E,, is effective and the pair (Z, Zp(l —e€ap)Ep)
is log Fano. The last assertion follows from the following

c1(2) =Y (1 —eap)ci(Ey) =€ Y _apci(Ep)
P P

=eci(L)
> 0.

4.3 Sasakian point of view

We denote by [2,] € H 2(S, R) the Poincaré duals of the toric sumbanifolds ¥, C S
and by H = &+ = ker(n) C TS the contact distribution, with first Chern class
ci(H) € H* (S, R).

Proposition 4.6 The angle constraint, given by Eq. (1.2) are equivalent to

ct(H) =) (1= B[] (4.5)

as de Rham co-homology classes in H*(S, R).

Proof The main ingredient is the following exact sequence, see [8,Equation 7.2.1],
HY(S) 5 H2(S) > H*(S,R) = HA(S) (4.6)

where a(a) = aldn]p and 1[-]p = [-]. On the other hand Hé(S) = Hl(S, R), see
[8,Proposition 7.2.3, item (v)]. A well known result of Lerman asserts that the funda-
mental group of § is finite, 71 (S) = spang{vy, ... vd}/Z”“, so H'(S, R) vanishes
and the last term in the sequence (4.6) is 0. We can then split the sequence and write

Hp(S) = H*(S,R) ® R - [dn]p.
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We recall that l(cf ) = c1(H), see [18, proof of Proposition 4.3]. It follows that
Eq. (4.5) is equivalent to

of = (1= B)IZalp € R-[dnls. 4.7

a

On the other hand, it follows from the formula for the transverse Ricci curvature, that
of =) [Zs,
a

which is a Sasakian analogue to a well-known toric formula. It follows that Eq. (4.7)
is equivalent to

> BalZals € R [dnls. (4.8)

Consider the linear map L from the vector space §,R-[X,;] = R to Hé /R-[dn]p =
R thatsends (a1, ..., otg) to TTo (Y, @u[Zalp) where T1 : H3 — H3z/R-[dnlp
is the quotient projection. The conclusion is that Eq. (4.5) is equivalent to (81, . . ., Ba)
belong to the kernel of the above linear map. Because the linear map is surjective, the
dimension of its kernel is equal to n + 1.

Recall that 39 log ¢, can be interpreted as the curvature of a smooth Hermitian
metric on the line bundle associated to D, C X, see [21]. (Here we are working on
the outside the apex, so X and D, are smooth.) We can restrict this line to a complex
line bundle L, on S. The pull-back of #85 log £, by the inclusion § C X gives
a representative of c¢1(L,) = [¥,] € H Z(S, R), see [18] for a reference on Chern
classes of basic complex vector bundles. On the other hand, if p € t* then

Z(,;, v4)30 log €, = 0 4.9)

a
on X. Indeed, we let G = %Zu lylog by, with £, = (v, -); S0
y = DG(x)
= %Zva (1 +log €, (x)).
a

Given some fixed p € R"*!, the affine linear function of the y coordinates (p, y) is
given by taking inner product with p in the above equation:

2(p.y) =) (P, va) loga(x) +C,

a

with constant C = Za( P, Vq). In particular, since affine linear functions of y are
pluri-harmonic, (4.9) holds. Restricting Eq. (4.9) to S, we see that ), B,[Z,] = 0
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in H2(S, R) (equivalently B € ker(L)) if there is some p € t* such that 8, = £,(p)

fora =1, ..., d. By dimension counting, we conclude that if 8 € ker(L) then there
must be some p € t* such that 8, = £,(p) foralla = 1, ..., d. Hence, the lemma
follows. O

Remark 4.7 The above proof shows that Eq. (4.5) is equivalent to ), B4[%X,] = 0 in
HZ2(S,R). It is well known that if M is a compact toric manifold, then H 2(M,R)
is generated by the Poincaré duals of its toric divisors subject to the relations
Za(va, p)[D,] = 0 for every p € t*. The above argument gives a Sasakian ana-
logue, showing that H 2(S,R) is generated by the Poincaré duals of ¥, subject to
> . (va, p)[E4] = 0 for every p € t*.

We now prove that if the logarithmic first Chern class of the contact distribution
vanishes, then the logarithmic basic first Chern class is automatically positive. This is
a special feature of the toric set up, and it can be considered as a Sasakian analogue
of Proposition 4.4.

Proposition 4.8 If Eq. (4.5) holds, then

of =3 (= B)[Zals > 0. 4.10)

Proof Combining the exact sequence (4.6), together with Eq. (4.5), we get that

of = (= B)IZals = tldyls.

for some v € R. The fact that t > 0 follows by taking the wedge product with
(dn)"~' A 1 integrating over S. Up to positive dimensional factors, we have:

e The Lh.s. is the transverse scalar curvature, which is positive and given by the
volume of the boundary of the cross section polytope determined by the Reeb
vector.

e The r.h.s. is T Vol(S).

We deduce from the above two bullets that T > 0.

Alternatively, we can also argue as follows. If Eq. (1.2) holds, then the compact
polytope P¢ labelled by B, 1¢, is monotone. The constant 7 is given by evaluating
B¢, at some interior point of P, so this number can only be positive. O

5 Examples

In this section we provide examples and compare our work with previously known
results about Kéhler—Einstein metrics on toric manifolds with conical singularities,
[12, 25].

We make explicit the cone angle constraints expressed by Eq. (1.2). In order to
determine the angles’ cone B C R9, in the general context of Theorem 1.1, we
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consider the linear map R"*! — R< given by the d x (n + 1) matrix A whose d
rows are the vectors vlT, R vg. Then B = Image(A) N R‘io. In practice, we find
a basis {n1,...,n4—n—1} for the kernel of AT = (vy,...,vg) and then B is the
intersection of the positive octant Rio with the linear space given by (8, n;) = 0 for
i =1,...,d—n—1.Thecondition that X admits a smooth Calabi—Yau cone metrc, that
is the affine toric singularity Xis Q-Gorenstein, is equivalenttoR. g x (1, ..., 1) € B,
in other words the image of A contains the ray where all the entries are equal.

5.1 Cones over projective toric varieties

Let (M, L) be acompact polarized toric manifold, so it corresponds to a lattice Delzant
polytope

P=n¢_{i, =0} CR",

where £, = (0g,-) + Aq with D, € Z" the primitive inward normals. Under this
correspondence,

L= Zxaba,
a

where D, are the toric divisors corresponding to £,. We consider the cone over P,
that is the affine toric manifold X whose moment cone is

C={(p.s) eR"™"s>0, pesP).

As an algebraic variety, X is the Spec of the C-algebra of the semi-group C N Z"*1,
and it is isomorphic to the total space of the dual of L with its zero section contracted
to a point, (L*)*. The facet normals to C are

Va = (Va, Xa).

A well-known family of examples is when P is the anit-canonical polytope of a Fano
variety, in which case P is reflexive and we can take A, = 1 for all a. Then, the
singularity X is Gorenstein and it admits a smooth Calabi—Yau cone metric by [18].
But in general, there is no reason for the vectors v, to lie on a hyperplane, which
correspond to the Q-Gorenstein condition, necessary to admit smooth Calabi—Yau
cone metrics.

For any polytope P as above, not necessarily reflexive, there is one parameter family
of toric Kéhler-Einstein metrics w;, for t > 0, with cone angles 27 ¢, along ba and

Ba = 2, (p), with p = Barycenter(P).
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The Kihler—Einstein equation is

Ric(wr) = ey + Y (1 = 1Ba)[Dla.

We recall that, up to 277 factors, the class of Ric(wy) is ¢1 (M) and it is equal to Za [b]a.

On the other hand, for any p € R? we have >4 éa (p)[ﬁ]a = c¢1(L). We conclude that
a; = t. The supremum of ¢ > 0 such that 8, < 1 for all a is the invariant R(M, L)
studied by Datar—Guo—Song—Wang [12]. We can lift these conical Kihler-Einstein
metrics on the polytope P to regular Calabi—Yau cone metrics on X with cone angles
2n B, along D,. Recall that & € t, defines a cross section {(y, £) = n 4+ 1}, so this
cross section is equal to P x {1} for & = (0,n 4 1). Note that R~ - (0, 1) C t;. The
Reeb/cone angle correspondence restricted to this ray of regular structures is then

11,y Ba) =t (P)s ..., La(p)) < 1710, n + 1).

5.2 Three dimensional cones

Consider first the case when X = (Kj;)* is the canonical bundle of a smooth del
Pezzo surface M with its zero section contracted at the apex. The corresponding M
is either CP?, CP! x CP' or the blow ups of the projective plane at either one, two
or three points: d Py, d P,, d P3. All the corresponding X admit smooth Calabi—Yau
cone metrics, the structure is irregular in the d P; and d P, cases and a regular lift of a
smooth Kihler—Einstein metric on the base in the remaining cases. Since K j is Cartier
in all these cases, the angles’ cone is determined by the requirement that ), B, D, is
R-Cartier. The list of reflexive polygons, taken from [11,Section 8.3], and associated
cones goes as follows.

1. M = CP!' x CP!, then
vertices of P = {(—1, —1), (=1, 1), (1, 1), (1, =1}

In the following we use 0 = C* and o (1) is the set of facet normals to C,
equivalently, the ray generators of o.

0(1) = {Ul = (17()’ 1)7 V2 = (07 1’ 1)v V3 = (_1707 l)v V4 = (O’ _17 1)}
angles’ cone B = {1 + B3 = B2 + B4} N Rio.

The fan of X is consists of the single cone o with generating rays vy, . . ., v4. There
is a sub-cone 6’ C o with generating rays

{v] = (0,0,1),v5 = (0, 1, 1), vé =(1,1,1),v, = (1,0, D}.
The toric variety associated to ¢’ is known as the conifold, or 7'!-!-singularity,

C=U, ={UV =2ZW}cC*
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The variety C is isomorphic to the total space of O(—1, —1) over CP' x CP! with
its zero section contracted to a point. The inclusion o’ C o realizes a twofold
covering map and X = C/Z,. The base of the conifold, S = C N §”, is identified
with 2 x §3. The Kihler—Einstein product metric on CP' x CP! lifts to a smooth
homogeneous Sasaki—Einstein metric, which leads to a regular Calabi—Yau cone
on C, known as the Stenzel metric. More generally, the ray of regular Calabi—Yau
cone metrics on C with equal cone angle 2778 along the four toric divisors, are lifts
of CIPg x CIPg. Here we have used CIPg to denote the Riemann sphere endowed
with the rugby ball metric with cone angles 278 and polarized by O(1) (area =
27), its symplectic potential is

B~ ylogy + B~ (1 —y)log(1 — y).

The link S of C can be identified with the set of unit vectors on O(—1, —1) on
each factor. Write X; = D; N S for the real codimension two submanifolds of
S given by the intersection of the four toric divisors with the link. Each %; is
diffeormorphic to § 3. We have H2(S) = R, and each of the Poincaré duals of ¥;
is a generator. Moreover [X1] = [¥3], [Z2] = [Z4] and [Z1] = —[22]. On the
other hand, c{(H) = 0, where H C TS is the contact distribution. We see that
the requirement associated to the angles’ cone condition: 81 + B3 = B2 + B4; is
equivalent to c; (H) = ) _; (1 — B)[Z;].

Up to a constant factor, the volume functional Vol(Ag) in o', with coordinates
(&1, &, &3), is equal to

&
E162(&3 — &) (& — &)

Given 8 = B(p) € B, the Reeb vector is given by minimizing Vol(Ag) on C* N

{(§, p) =3}.
2. M = d Py, the blow up of CP? at one point, then

vertices of P = {(—1, —1), (=1, 1), (0, 1), (2, = 1)},
o(l) ={vi=(1,0,1),v2 = (0, -1, 1),
v3=(—1,—1,1),v4 = (0, 1, 1)}
angles’ cone B = {281 + 283 =382 + B4} N Rio.

The barycenter of P is located at
1/1 2
P=-=,—2).
4\3 3
The affine linear functions defining P are

ly=x+1, ﬁz:—y+1, @3=—x—y+1, 54=y+1-
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Evaluating at the barycenter, 8, = fg(Pc), we have

g3 g T 1B S
=17 b= =1 Pa=g

6 9
The vector 8 = (13/12,7/6,13/12,5/6) satisfies 28, + 283 = 382 + B4. The
family of Kihler—Einstein metrics w; on M, which solve

Ric(ay) = tw; + Y (1 = 1pa)[Da),

lifts to a family of regular Calabi—Yau cone metrics on X with Reeb vector field
and cone angles related by

£ =1710,0,3) « 18.

The ‘upper Ricci lower bound invariant” R = R(M, K ) is the supremum of all
t > 0 such that the entries of 7 are all < 1, equivalently R = (max, ;)" In the
case M = d P;, we easily see that R = 6/7. On the other hand, the ray of angles
R.o-(1, 1, 1, 1) corresponds to a ray of irrational vector fields, see [32], which give
rise, when all cone angles are equal to 257, to a smooth irregular Sasaki—Einstein
metric.

. M = d P, the blow up of CP? at two points, then

vertices of P = {(—1, —1), (—1, 1), (0, 1), (1, 0), (1, —1)},
o(l) ={vy,...,vs}

with

v1=(1,0,1), v =(0,-1,1), 13 =1(0,1,1)
V4 = (_1705 1)5 US = (_17 _17 1)
B={B1+3Bs=285+2Bs, fo+2Bs=ph3+2B5) "R,

The barycenter of P is located at

2 I 1
P==-—2,—7%).
7 373
The affine linear functions defining P are

b=x+1, bh=-y+]1,
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Evaluating at the barycenter, 8, = fg(PC), we have

19 23 19 23 25
o ﬁz—a, ,33—57 ,34—5, ,35—5,

B =
and R = 21/25. The same commentaries as in the d Py example apply, namely the
metrics w; lift to regular Calabi—Yau cone metrics on X with cone angles 27t 8,
along the toric divisors and Reeb vector 1710, 0, 3).

4. M = d Ps, the blow up of CPP? at three points, then

vertices of P = {(—1, —1), (—1,0), (0, 1), (1, 1), (1, 0), (0, —1)},
o(l) ={vy,..., ve}

with

v =(1,0,1), vpb=(0,1,1), v3=(1,—-1,1)

vy =(—1,1,1), v =(—1,0,1), vg = (0, —1,1).
={B1+3B5 =2B4+2P6, P2+ 2B5
=284+ Po, B3 +2Bs = P2+ 286} NRE

The barycenter of P is located at zero and M admits a family of conical Kihler—
Einstein metrics w; with cone angles 7 - (1, ..., 1), smooth at t = 1. The oy lift
to regular Calabi—Yau cone metrics on X with cone angles 27 along the toric
divisors and Reeb vector ¢! 0,0, 3).

In the previous examples we have considered the anti-canonical polarization and
X = (Ku)*. However, we can still apply Theorem 1.1 to X = (L1 where L is
any polarization L on M. Taking different polarizations L we obtain different sets of
inward normal vectors v, and different toric varieties (L ~")*. In particular, if L is not
a positive rational multiple of the anti-canonical, then the vertex singularity of X is not
Q-Gorenstein and its angles’ cone B does not contain the ray R.¢ - (1, ..., 1). This
situation is also contemplated by our Theorem 1.1 and the cohomological conditions
on the angles given by Theorem 1.2 apply the same way. Following next, we provide
a few examples.

1. If @ and b are positive integers, with a < b, we can take L = O(a, b) over
CP! x CP'. Its moment polytope is the rectangle P = [0, a] x [0, b] and C =
Cone(P x {1}) is the moment cone of X, one easily checks that the facet normals
of C do not lie on a hyperplane. The family of regular structures, with Reeb vector
t=1.(0, 0, 3) and cone angles 2771 (a /2, b/2, a/2, b/2), are lifts of products of two
rugby ball metrics, CPg, x CPPg, with 81 = ta/2 and > = tb/2 and polarizations
O(a) on the first factor and O(b) on the second.

2. Let M be the blow up of CPP? at one point and take as a moment polytope P the
convex hull of (1, 0), (1, 1), (2, 2), (2, 0) with inward normals v; = (1, 0), 1y =
1, -1),03 = ( 1,0), v4 = (0, 1). The Plcard group of M has rank two, it is
generated by D1, .. D4 subject to relations D1 + D2 = D3 and Dz = D4 The
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anti-canonical class is — Ky = Zu ﬁa = Zﬁl + 3ﬁ3. On the other hand, the
polarization on M associated to P,is L = ﬁ1 + 252. There is a family of Kédhler—
Einstein metrics wy, in the cohomology class 2w ¢ (L), with Ric(w;) = tw; on
M\U, D, = (C*)? and cone angles7(5/9,7/9,4/9,7/9). Inparticular,att = 9/7
(which is the invariant R(M, L)), the cone angles are (5/7, 1,4/7, 1). The metrics
w; can be written explicitly, see [25,Section 6.4], and therefore so do their regular
lifts to X.

There is no need for M to be Fano, so we can also consider polarized Hirzebruch
surfaces (M, L) with M = F, = P(O @ O(a)). In general, X does not have to be
(L~1* with L an ample line bundle over a smooth compact toric surface. For example,
the affine toric varieties X corresponding to the ¥ 7-9 singularities, see [33]. These are
Gorenstein and admit smooth Calabi—Yau cone metrics, our Theorem 1.1 realizes each
of these metrics as a member in a three dimensional family by introducing cone angles.
Following [33], the facet normals to the moment cone of the Y7+ singularity are

o) ={v=(01,0,0,vu=0p-—g—1Lp—q),v3=(1,p,p)va=(,10)}
and B given by (p +¢)B1 + (p — q)B3 = pP2 + pPa.
5.2.1 Explicit formula for symplectic potentials

As a final remark we give a recipe to get explicit toric conically singular Calabi—
Yau metric on Kihler cone whose moment cone has 4 facets. Recall that all
the Kéhler—FEinstein potentials on convex quadrilateral are explicitely known by
Apostolov—Calderbank—Gauduchon [4] and the second author [28]. To write down
the explicit formula one needs to put suitable coordinates on the quadrilateral that
depends on the type (trapezoids, parallelogram or generic) of the quadrilateral. Thus,
given any Calabi—Yau cone metric as in Theorem 1.1 with a four faced good moment
cone the associated potential on the tranversal polytope has no choice to fall into the
category of metrics studied by [4]. On the other hand, we note that any two strictly
convex four faced cones in R3 are equivalent under SL(3, R). Thus, the symplec-
tic potential of a Calabi—Yau cone metric as in Theorem 1.1 with a four faced good
moment cone can be realized (on the complement of the invariant divisors) as one
of KE potential the family of a fixed cone C (with base a square, say) and various
labelling. Let’s do an example in detail. To simplify assume the Calabi—Yau metric
we started with on X is a smooth one (i.e. 81 = - -- = B4 = 1) and the moment cone,
image of u : X — R3, is some four face strictly convex cone C C R3 with inwards
primitive normals wy, ..., w4 € Z 3 There is a unique automorphism ¢ € SL(3, R)
sending C to C := {(xo, x1, x2) € R? | xo & x1 £ x> > 0} and then (¢~ ) *w, = ravq
for some r, > 0 where the vy, ..., v4 € 73 are the unique inwards primitive normals
to C. Then the symplectic potential associated to the Calabi—Yau metric on X (with
respect to the moment map ¢ o ; and associated action-angle coordinates) is the only
KE potential in S¢(C, ¢, ) where g = (rl_l, e, r4_1) € B, ¢, = v, and & is the
Reeb vector field. Moreover, this KE potential can be written down explicitly using
Hamiltonian 2-form coordinates [4, 28].
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