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CrossMark
Abstract
We show that the Kaluza—Klein (KK) theory contains a fundamental problem:
The four-dimensional metric tensor and the electromagnetic potential vector
assumed in the KK theory belong to four-dimensional vector spaces that are
not integrable in general, resulting that the four-dimensional physical vari-
ables and the corresponding field equations derived from the five-dimensional
Einstein field equation (i.e. the four-dimensional Einstein field equation and
the Maxwell equations) are not defined on a four-dimensional submanifold.
That is, the four-dimensional spacetime assumed in the KK theory does not
exist. No satisfactory solutions are found within the KK formalism. Perhaps
the best approach to fix the problem is giving up the KK theory and looking
for a new unified scheme for gravitational and electromagnetic interactions in
the framework of a spacetime with extra dimensions, as having already been
explored in some literature.
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1. Introduction

The Kaluza—Klein (KK) theory represents the first attempt to unify the gravitational and
electromagnetic interactions in the framework of general relativity extended to a space-
time with extra dimensions [1-3]'. In the KK theory, the bulk spacetime is assumed to
be five-dimensional and described by the five-dimensional Einstein field equation. By 441

Original Content from this work may be used under the terms of the Creative Commons Attribution
BY 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

! An even earlier attempt to unify electromagnetic and gravitational fields in a five-dimensional spacetime before the
appearance of general relativity was given by Nordstrom in 1914 [4].
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decomposition of the five-dimensional spacetime metric, a four-dimensional Einstein field
equation and the Maxwell equations are derived from the five-dimensional Einstein field
equation, which are assumed to describe the four-dimensional world where we live. How to
make the extra dimension compact, small, and static has been a challenging problem in modern
theoretical physics [5-9]. Nowadays, introducing (compact or noncompact but warped) extra
dimensions in addition to the four dimensions of the spacetime where we live has been a popu-
lar strategy for unifying all fundamental interactions in nature, e.g. the theories of supergravity
[10, 11], superstring [12—15], and brane gravity [16—18]. To test the existence of extra dimen-
sions, the KK particles arising from the excitation of fields along the compact extra dimensions
have been extensively searched by the Large Hadron Collider [19-21].

Despite the success of the KK theory in derivation of the Maxwell equations from the
higher-dimensional Einstein field equation and its heavy influence on modern theories of uni-
fication, in this paper we show that the KK theory has a serious problem in its foundation:
The four-dimensional metric tensor and the electromagnetic potential vector assumed in the
KK theory are defined in vector spaces that are not integrable hence not tangent to any four-
dimensional submanifold, unless the electromagnetic field antisymmetric tensor vanishes. That
is, the four-dimensional spacetime assumed in the KK theory to support the effective four-
dimensional theory of electromagnetism and gravity is defined only when the electromagnetic
field vanishes, which conflicts the original aim of the KK theory in unifying the gravitational
and electromagnetic interactions.

The influence of the problem just mentioned may not be limited to the KK theory. As is
well known, one of the cornerstones of string theory—extra dimensions and compactification
of extra dimensions—originated from the KK theory with an extension from one extra dimen-
sion to multiple extra dimensions. In string theory, a popular approach to derive gauge fields
from higher-dimensional gravity is through the KK mechanism with an extension to space-
time of dimensions greater than five. For example, this is the case in the eleven-dimensional
supergravity when it is connected to the low-energy limit of M-theory [13-15].

The paper is organized as follows. In section 2, we outline the KK theory and derive the
representation of the four-dimensional metric tensor and the electromagnetic potential vec-
tor in the five-dimensional spacetime. The representation is uniquely determined by the self-
consistency requirement of the theory. In section 3, we discuss the geometric interpretation
of the above two KK variables and quantities derived from them (e.g. the electromagnetic
field antisymmetric tensor). We show that the four-dimensional quantities are in vector spaces
orthogonal to the direction of the extra dimension. In section 4, we prove that the vector spaces
containing the four-dimensional variables are not integrable unless the electromagnetic field
tensor vanishes. Thus, in general there does not exist a four-dimensional submanifold support-
ing the four-dimensional theory derived from the five-dimensional Einstein field equation.

Section 5 is devoted to discussion on the action principle and compactification of the extra
dimension under the assumption of the cylinder condition. We show that after compactific-
ation, although the four-dimensional Einstein field equation and the Maxwell equations can
be derived from the action principle, there still does not exist a four-dimensional submanifold
supporting the four-dimensional field equations. Finally, in section 6, we summarize the results
that we have obtained in this paper and discuss their implications.

Throughout the paper geometrized units with G =c =1 are adopted unless otherwise
stated, where G is the four-dimensional gravitational constant and c is the speed of light.
In addition, we will take (—,+,+,4,+) as the convention for the signature of the five-
dimensional spacetime metric. The abstract index notation for vectors and tensors advocated
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in [22] will be used. That is, vectors and tensors are denoted by letters followed by lower case
Latin indices, e.g. v*, gu», €tc.

2. The KK formalism

The success of the KK theory relies on a specific decomposition scheme of the metric tensor of
a five-dimensional bulk spacetime. Without loss of generality, in a five-dimensional spacetime
(M, gup») we take a coordinate system {x°,x', x> x>, x* = w} and write the matrix representa-

tion of the five-dimensional metric tensor g, as?
8uv + ¢2AMAV ¢2Au
¢2 Au ¢2 )

where indices A,B=0,1,2,3,4, and u,v =0,1,2,3. Capital Latin letters label coordinate
components of five-dimensional vectors and tensors. Lower case Greek letters label coordinate
components of four-dimensional vectors and tensors.

The 4 x 4 matrix g,,,, is interpreted as the component of the metric on a four-dimensional
spacetime (M, g.) associated with the coordinate system {x°,x!,x? x*}, the 4 x 1 matrix A M
as the component of an electromagnetic potential dual vector, and the function ¢ as a scalar
field in (M, g, ). With the convention in equation (1), the five-dimensional spacetime metric
tensor g, is represented in the coordinate system {x*,w} as

8ab = 8apdxydx) = (8 + $°A LA, )AXydxy +2¢°A ,dx(;, dwy) + P*dwedwy, , (2)

ey

8aB =

where the parentheses in the indices of a tensor denote symmetrization of the tensor about the
indices inside the parentheses. The Einstein summation convention for tensor components is
used, i.e. an index appearing in both subscripts and superscripts is summed over all dimensions
represented by the index.

The inverse of the 5 x 5 matrix in equation (1), which is also the component matrix of the
inverse five-dimensional metric tensor gub , 1S

g _AHM

~AB __
= T W E 3)

where the 4 x 4 matrix g is the inverse of g,,,,, i.e.

gm/gup = 5#p (4)
where §,” = 1 if 1 = v and 0 otherwise; and
AP =gM"A,, . 5)

Equations (4) and (5) automatically imply
A;L - g;wAV . (6)

By equation (3), the inverse five-dimensional metric tensor is represented as
a b (a b) a b
b _guv (O N (O N O\ (O 1 P\ (2 (2
& =8 <8xl‘> (8x"> 4 (8xl‘> (aw av: AT ow ow)

2 The form of metric decomposition in equation (1) agrees with the general case for the KK theory generalized to a
(4 + n)-dimensional spacetime to include non-Abelian gauge fields, where the ¢? is replaced by a matrix g;; with the
indices i and j running from 1 to n for the extra dimensions [23-25].

~
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It can be verified that the following reciprocal relation is satisfied

N 2\ 2\
= she _ S c_ s vVgM v
Zad =5, =06, dx! (axy) +dwu<aw> , @®)

where Sa" is the identity map in the five-dimensional spacetime.

In fact, the 5 x 5 matrices g4z and g% in equations (1) and (3) are inverse to each other if
and only if (a) the 4 x 4 matrices g" and g,,,, are inverse to each other (equation (4)), and (b)
the A* and A,, are related by equations (5) and (6). It should be noted that equations (4)—(6)
are not independent, since any two of them can give rise to the other.

The KK 4-metric tensor g,;, and the electromagnetic potential dual 4-vector A, are, respect-
ively, a tensor and a vector in the five-dimensional spacetime (M,gab). The question is
how they are expressed in coordinate components in the five-dimensional coordinate sys-
tem {x*,w}. Since g, are interpreted as the components of the four-dimensional metric in
coordinates {x*}, the y-v components of g, must be guv- Then, the general form of g,, must
be

8ab = guuvdxtidxy + 2gu4dx?adwb) + gaadwydwy | 9)

where g4 and g4 are to be determined. Similarly, since A, is interpreted as the coordinate
component of A, in {x*}, and A* = gM A, as the coordinate component of A%, we must have

Aq = A, dxt 4 Agdw, (10)

9 \* o\
A =AF [ — At — 11
(o) +4 (a) - o
where A4 and A* are to be determined.

By equations (7) and (10), we have

_ y 9\’ 1 o\
A =gPA, = (g"A, — AMAy) (a;w) - [APA" — (qsz —i—ApA’)) A4} (8w> . (12)

By equation (5),comparison of equation (12) to equation (11) leads to

and

As=0, At = —A AP (13)
Thus, we must have

A, =A,dxl (14)

0 \* 9\
a__ Ap _ p
A=A <8xﬂ> ALA <8w> . (15)

By equations (9) and (11), we have

and

8avA” = (A + 8uaA”) dxtl + (g,A" + gasA®) dw, (16)

after submission of equation (6). Since g, and A? are interpreted as, respectively, the metric
tensor and the electromagnetic potential vector in a four-dimensional spacetime, we must have
gavA? = g.,A” = A,,. Then, comparison of equations (14) and (16) leads to

4
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8us =844 =0. (17)
Thus, in coordinates {x*,w} the 4-metric tensor g, is represented as
8ab = g;wdxgdxz . (18)

Then, by g = g*g"g ., we get the inverse 4-metric tensor

N/ o\ o\ a\” N[ o\
ab _ pv ( _ w = _ P — —
g (w) (W) 24 (W> (aw) ‘A A,,<8W> ((,M) . a9

From equations (18) and (19) we get

) ) 0\ 0\° )
8. = w8 =6, dx! <8x”) —Audxy <8w) =8 (20)

just as being expected.

Therefore, given the 4+1 decomposition of the five-dimensional metric in equation (1), the
four-dimensional metric tensor g, and the electromagnetic potential vector A% are uniquely
determined by equations (18) and (15). They are determined by the assumed form of the
five-dimensional metric and the self-consistency requirement of the theory, without additional
assumptions.

3. Geometric interpretation of the KK variables

For the KK theory to be meaningful, the 4-metric tensor g, and the electromagnetic poten-
tial 4-vector A, assumed in the KK theory, and the four-dimensional quantities derived from
them (e.g. the four-dimensional Ricci tensor R,;, and the electromagnetic field antisymmet-
ric tensor F,;,) must be defined on some four-dimensional manifold—or a four-dimensional
submanifold embedded in the five-dimensional manifold M. Such a submanifold M should
be a hypersurface in M, since dimM =4 = dim M — 1. Assuming that such a hypersur-
face has a unit normal n“, which must be spacelike since (M, g,) is supposed to be a four-
dimensional spacetime. That is, all vectors in a vector space tangent to M are orthogonal to
n“, and gabn"nb =n"n, = 1. Then, the 4-metric g,, on M must be related to the 5-metric g,
on M by gup = &up — NaMp, O, equivalently,

gab _ gab o nanb . (21)

The questions are: does such a hypersurface exist? If yes, how is it defined?

It appears that neither of the above two questions has been seriously considered in the
literature, at least to the knowledge of the present author. In his original paper [1] (English
translation in [26], page 61), Kaluza only wrote that ‘we are certainly free to consider our
space-time to be a four-dimensional part of an Rs’. Kaluza used Rs to denote a five-dimensional
spacetime. In [2] (English translation in [26], page 76), Klein only stated that ‘four of the

5
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coordinates, x', x2, x3, x*, say, are to characterize the usual space-time.” (Klein’s x!, x?, x*, x*

are equivalent to our x°, x!, x2, x> respectively, and his x corresponds to our w coordinate.)
How is ‘a four-dimensional part of an Rs’ defined? What is the exact meaning of ‘the usual
space-time’ in mathematics? These questions have never been clearly answered.

In some references the authors have explicitly identified the four-dimensional spacetime
with the hypersurface defined by w = const without any proof or argument. For example, in
[27] Einstein and Bergmann wrote that ‘We consider a four dimensional surface cutting each of
the A-lines once and only once. We introduce on this surface 4 coérdinates x*(a = 1...4) and
assume x° equal zero on this surface.” (section I of [27], subsection ‘The Special Codrdinate
System’). Note that their coordinate x° corresponds to our w, and their x* correspond to our
x*(pn=0,1,2,3). Their ‘A-lines’ correspond to our w-lines. To distinguish it from the elec-
tromagnetic potential vector A“ used in this paper, let us denote the 5-vector ‘A’ used in [27]
by A“. In our notations, A = ¢~2(9/0w)* = ¢~'n%, which is related to the 4-vector poten-
tial A* by A, = A, + dw, (see equation (33) below, Einstein and Bergmann chose ¢ =1 so
that gabAaA” = 1). Similarly, in [28] (English translation in [26], page 108), Thiry wrote that
‘Kaluza’s attempt at a unified theory consists of considering space-time as the x” = const. sub-
space of a five-dimensional Riemann space, and of assuming this subspace cylindrical with
respect to the fifth coordinate x°.” (Thiry’s x° is equal to our w coordinate.)

There are also people taking different views. For example, Coquereaux & Esposito-Farese
[29] interpreted the four-dimensional spacetime as a hypersurface orthogonal to the w-lines by
stating that ‘Locally, the four-dimensional space orthogonal to this vector will be interpreted
as the usual space-time’. Their ‘this vector’ corresponds to our n® = ¢~1(9/0w)?, i.e. the
vector n“ in equation (33) below. However, Coquereaux & Esposito-Farese did not provide
evidence supporting their views. They did not even consider whether ‘the 4-dimensional space
orthogonal to this vector’ exists or not. As will be shown later in this paper, such a hypersurface
does not exist in general.

The view that the submanifold supporting the four-dimensional variables in the KK theory
coincides with the hypersurface defined by w = const was disproved in [30]. Let us use S to
denote the hypersurface defined by w = const, and write its unit normal as s*. The s¢ is defined
by gups®s? = 1 and g,p5*(0/0x*)* = 0 for 1 = 0...3. Thus we must have

sa= (@) dw, = S S (22)

th
VO +AAP

By equations (15) and (19), we have

A%, =— (3 a0 = — (3 A4 (23)

and

“ _aay —1/2 o \* a\* i —1/2 4
() e (2] e o

Hence, the four-dimensional variables g,, and A? are not orthogonal to s unless A, = 0.
By equation (2) we have the metric tensor on S(w = 0)

A AP

8ab = &ab — SaSp = (g/_tl/ + ¢2A,U«AV) dxﬁfdxz + 2¢2A#dx7adwb) + 1+ ¢2A AP
P

dwawy, . (25)

After restriction of the action of g,, on vectors tangent to S, we get the metric tensor on S
gub = (g;w + ¢2A,uAu) dxgdxlb/ . (26)

6
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The four-dimensional components of g, are not g,,,,, but g,,,, + P*A wAy. Hence, the KK the-
ory can be treated as approximately being defined on S only if the electromagnetic field is
sufficiently weak so that |¢?A,A, | < |g..| ~ 1, i.e. only if
2

Gl/2
If |pA u‘ 2 At the gqp and A, are not orthogonal to s and the KK theory cannot be treated
as being defined on the hypersurface defined by w =0.

To find a submanifold M supporting the KK four-dimensional variables, we submit
equations (7) and (19) into equation (21). We get

1 /0\7 0\
et =5 () (5s) @)

which immediately leads to a unique solution (up to a sign)

a a

n=¢ w, wi= () . 29)
ow

Thus, if the submanifold M exists, its unit normal n* must be a unit vector tangent to the

coordinate lines of the extra dimension. It is easy to verify that both g,;, and A? are orthogonal

to n®.

Let us denote the tangent space of the five-dimensional manifold M at a point p € M by ’7;
dim7, = dim M = 5. The disjoint union of 7, at all points of M is called the tangent bundle of
M and denoted as 7 = T (M). Let T be arank-4 subbundle of 7 (called a rank-4 distribution
or tangent distribution, or tangent subbundle [31]), described by a disjoint union of subspaces
containing all vectors and tensors orthogonal to w* o< n“ at all points of M, i.e. T = Hpe Ty

|pA,| < Agit = = 3.48 x 10* statvolt . (27)

with dim 7, = 4. The 7 is a smooth distribution in the sense that for each p € M we can find
an open neighborhood O of p such that in O, T is spanned by smooth vector and tensor fields
orthogonal to w*. We have gu, g,°, g € T. The g, is the metric tensor field in 7. The g*
is the inverse metric tensor field, and g’ the identity map in 7°. Since A,w“ = 0 = A%, we
have A,, A € T, too.

By equations (2) and (14), we have

WA, = $*A,dxt =3 9 ’ 9 cdx“ (30)
“ pea be \ oxr Ow ar
By equation (8), we have
o\ - d\"
7 =6b_ —
dxh (8)5“) 0,0 —dw, <8W> . (31)

Hence, we get

o ol 9 b 9 c
2 — 0 _ b - _— EY _ — 2
¢ Aa = &bc <8W> |f21 dwa <8W> ‘| 8ac (aw> (ZS dWa 9 (32)
where we have used g,.(0/0w)?(0/0w)¢ = g44 = ¢*. Submitting the definition of n? in

equation (29) into equation (32), we get the relation

A, = qbfln,l —dw, . (33)

3 The g.” = &, — nun® is also the projection operator mapping a vector (and a tensor) in T to a vector (and a tensor)

in7.
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Equation (33) states that A¢ is obtained from orthogonal decomposition of the vector field
1 = gdwy, = (g**)'/%5: one component is along the direction of w (i.e. the direction of n“
by equation (29)), the other (which is o —A“) is in the direction orthogonal to w*.

By ﬁ[adwb] =0, where the brackets in the indices of a tensor denote antisymmetriza-

tion of the tensor about the indices inside the brackets, equation (33) implies that @[QA,,] =
Via (d)*lnb]), ie.

VieAs) =03V~ + 6 'Viany . (34)

Although V, is the derivative operator associated with the metric g5, equation (34) remains
valid if V, is replaced by any derivative operator. By equation (34), we have the antisymmetric
tensor of the electromagnetic field

Fap =28,8,"V1cAg = 207 '8,°¢, Vienay , (35)

where we have used the identity gabn;, = 0. By definition, F,;, € T since Fapw? =0 = Fwe.
If w* were timelike and n,n* = —1, the quantity

Wap = ga“gbd@[dnc] (36)

would be called the vorticity tensor of the congruence of the integral curves of the vector field
w? [32]. Similarly, the expansion tensor would be defined by

eab = gacgbdv(cnd) = E£ngub 5 (37)
where £, is the Lie derivative generated by n® (as usual, the tilde above £, indicates that the
operation is in the five-dimensional spacetime). Now w* is spacelike and n,n“ = 1. We can
still define the w,;, and 0,, by equations (36) and (37) and call them the vorticity tensor and
the expansion tensor, respectively, of the integral curves of w*. Both w,;, and 0, are € T, since
they both are orthogonal to w®. Then, equation (35) is equivalent to

Fu= _2¢_lwab . (38)

Therefore, the electromagnetic field antisymmetric tensor in the KK theory is proportional to
the vorticity tensor of the congruence of the extra dimension coordinate curves.

4. Submanifold supporting the effective four-dimensional theory does not
exist

As shown in section 3, the KK four-dimensional field variables g,, and A, are contained in
a rank-4 distribution 7~ with members orthogonal to the extra dimension coordinate vector
field w”. In order that there exists an integral submanifold of 7T, i.e. a submanifold M C M
whose tangent space at any p € M coincides with 7,, the distribution 7 must be involutive,
i.e. for any X%, ¥ € T the commutator (Lie bracket) [X, Y] € T (Frobenius’s theorem, [31]).
The condition that the tangent subbundle 7 is integrable is equivalent to that the vector field
w? is hypersurface orthogonal, i.e. there exists a hypersurface orthogonal to w.

By Frobenius’s theorem, w* is hypersurface orthogonal if and only if [X,Y]* € T for all
X, Y* € T, which is mathematically equivalent to the condition that there is a dual vector v,
such that [22, 33]
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V(aWh] = WiV - (39)

Equation (39) is equivalent to the condition that the congruence of the spacelike curves
tangent to w* is vorticity-free, which is proved as follows. Since w* = ¢n®, equation (39) is
equivalent to

V) = niavy) (40)
where v, =v, + @a In¢. Then we have

8.8V iena = 8.8y nevyy =0, 1)
since g,“n. = 0. By equation (36) we get then

Wap = 0. (42)

Equation (40) can also be derived from equation (42), since by @unb = Oup + Wpa + ngap
we have

@[unb] = Wha T N[aqp] , (43)

where a, = n?V,n,. Thus, wg, = 0 implies @[anb] = n[,ap), i.. equation (40) if we take vy =
ap. Therefore, a necessary and sufficient condition for a congruence of timelike or spacelike
curves to be hypersurface orthogonal is that the congruence is vorticity-free.

Only if w* is hypersurface orthogonal the distribution 7 in a neighborhood of any point is
integrable and can be spanned by coordinate base vector fields [22]. By equations (38) and (42),
w? is hypersurface orthogonal if and only if

Fup=0. (44)

Thus, the submanifold M supporting the KK variables exists if and only if the electromagnetic
field antisymmetric tensor vanishes. This restriction on the KK theory is too strong, as there can
be no unification of the gravitational and electromagnetic interactions if the electromagnetic
field vanishes.

5. Action and compactification of the extra dimension

When the cylinder condition is satisfied, i.e. all components of the five-dimensional metric
tensor are independent of the extra dimension coordinate [1], the Maxwell equations can easily
be derived from the action principle*. The cylinder condition is equivalent to the requirement
that w* is a Killing vector of the five-dimensional spacetime, i.e.

£,85=0. (45)

When the above condition is satisfied, the Ricci scalar R associated with the five-dimensional
bulk metric g, is related to the Ricci scalar R associated with the KK four-dimensional metric
8ab by [29, 34, 35]

D __ ¢2 b v

R=R- TFabF‘ + Vo, (46)

where 1 is a vector.

4 1If the cylinder condition is dropped the derived field equations are much more complicated, see, e.g. [36].

9
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S'(w=L) (9/oxH)?

S(w=0) /I

% (8/axM)?

Figure 1. Under the cylinder condition the five-dimensional spacetime can be compac-
tified along the direction of extra dimension [i.e. the direction of w* = (9/0w)“]. This
way, the hypersurface S(w = 0) in (M, g,,) is identified with the S’(w = L) under the
map generated by w*. The black dot on S is identified with the black dot on S’, the circle
on S identified with the circle on S’, and so on (as indicated by dashed lines). The KK
variables A“ and g, are orthogonal to w” hence not tangent to S, since in general w* is
not orthogonal to S. In fact, w” is not orthogonal to any hypersurface unless the elec-
tromagnetic field F,, vanishes. Note that to make the extra dimension unaccessible to
current experiments its circumference C,, = ¢ L has to be small.

The determinant of the five-dimensional metric, g = detgap, is related to the determinant
of the four-dimensional metric, g = detg,,, by g = ¢?g. Thus, we have \/—g = ¢/—g and
the five-dimensional action of gravity

&zé/mﬁ@mmzé/m/¢@—fdﬂﬂVﬂfm 47)

where G is the five-dimensional gravitational constant. The divergence term in equation (46),
Vv*, has been dropped off since it has no contribution to the action integral under appropriate
boundary conditions.

Since w* is a Killing vector field, the five-dimensional spacetime can be compactified along
the direction of extra dimension, i.e. the direction of w-lines (figure 1). That is, a spacetime
point {x*,w} in (M, &) is identified with the spacetime point {x*,w + L} in (M, g4), where
L >0 is a constant. Then, the value of w is restricted to the region of [0,L), which leads to
[ dw = L. To have the circumference of the extra dimension—which is C,, = ¢ [dw = ¢ L—
to be constant, ¢ must be constant [34]°. For the extra dimension to be unaccessible to current
experiments the length C,, = ¢ L must be sufficiently small [2]. Then, equation (47) becomes

5 It should be noted that ¢ cannot be constant if the vacuum Einstein field equation Ra;, = 0 is imposed. This follows
because the equation R,,, = 0 entails that

GV = £
ad)*T Fab7

as first noted by Jordan [37] and Thiry [28].
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Aa' Gab

Wa

Figure 2. The Kaluza—Klein tube obtained by compactification of the extra dimension
in the direction of w”. The five-dimensional spacetime tube is made of twisted wires,
each wire representing a hypersurface defined by w = const. The blue circle on the right
represents the w-coordinate line with a length of C,, = ¢ L. The KK variables A and
gapb are contained in a four-dimensional tangent subbundle 7~ orthogonal to w*.

2
I, = %/ <R % am”) V—gd'x. (48)

The appearance of the term —(¢?/4)F,,F® in the Lagrangian density in equation (48)
guarantees that the Maxwell equations can be derived from the five-dimensional Einstein field
equation by variation of the action I, with respect to the potential vector A®. In fact, if we
identify G /C,, as the four-dimensional gravitational constant G=1 (i.e. C,, = G)and ¢ =2,
the action in equation (48) reduces to the total action of gravity and electromagnetic fields
in a four-dimensional spacetime (see [22], appendix E). Note that, however, all the quantities
(Fap, R, and g) appearing in the integral of equation (48) are defined in the tangent subbundle
T orthogonal to w®, since they all are derived from A,, g5, and the derivative operator V,,
associated with gg,.

According to the results in section 4, the rank-4 distribution 7 is not integrable and hence
8ab» Ay, and quantities derived from them are not tangent to any four-dimensional submanifold
embedded in M unless the electromagnetic field F, vanishes. Although under the cylinder
condition the four-dimensional Einstein field equation and the Maxwell equations are success-
fully derived from the five-dimensional Einstein field equation through the action principle,
these equations are not supported by a four-dimensional submanifold hence do not define a
four-dimensional spacetime.

The manifold structure of the KK theory, after the extra dimension is compactified, is depic-
ted in figure 2. The five-dimensional spacetime ‘tube’ is made of twisted four-dimensional
‘wires’, with each wire representing a hypersurface w = const. The transverse cross-section
of the spacetime tube corresponds to the w-coordinate lines, i.e. curves whose tangent vectors
are w* = (9/0w)“, as indicated by the blue circle in the figure. The KK variables A%, g5, and
the associated distribution 7, are in the longitudinal direction along the tube (i.e. the direction
perpendicular to w?). They are not tangent to any four-dimensional submanifold. Thus, the
action in equation (48) is defined in the rank-4 tangent subbundle or distribution 7, but not
defined on a four-dimensional submanifold.

6. Summary and discussion

All existing physical theories are defined on a smooth manifold with or without a well-
defined spacetime metric. In the KK theory, the five-dimensional theory is defined on a five-
dimensional manifold with a Lorentz metric determined by the five-dimensional Einstein
field equation. The four-dimensional metric tensor and the electromagnetic potential vector

1
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assumed in the KK theory must be defined on a four-dimensional submanifold (i.e. a hyper-
surface) embedded in the five-dimensional manifold, in order for the derived four-dimensional
theory (including the four-dimensional Einstein field equation and the Maxwell equations) to
be able to describe the four-dimensional world where we live and do physical experiments.
But this is not the case, as has been shown in this paper.

In general, the four-dimensional KK variables g,,, A,, and other geometric quantities
derived from them (e.g. the four-dimensional Ricci tensor R, and the electromagnetic field
antisymmetric tensor F ;) are in a four-dimensional subbundle that is not tangent to any four-
dimensional submanifold, since by the KK construction g,, and A, are orthogonal to the vector
field w* generating the extra dimension but w* is not hypersurface orthogonal unless the elec-
tromagnetic field vanishes. Thus, the results presented in the paper lead us to such a paradox:
the KK theory is valid mathematically only if the electromagnetic field derived from the KK
theory vanishes. This is a general conclusion, independent of the cylinder condition adopted
for derivation of the four-dimensional field equations.

When the electromagnetic field is weak and has a negligible effect on the spacetime metric,
i.e. when condition (27) is satisfied, the four-dimensional metric tensor and the electromagnetic
potential vector can be regarded as approximately being defined on the hypersurface of w =
const. But then the KK theory becomes an approximate and weak-field limit theory, conflicting
the original spirit of unification of gravitational and electromagnetic interactions. In addition,
without a precisely defined four-dimensional submanifold supporting the four-dimensional
variables, it is hard to accept the approximate theory since it is not well defined in mathematics.
An ultimate solution to the problem raised in this paper may be given by a different 441
decomposition of a five-dimensional spacetime metric as having been proposed in [30], where
the four-dimensional spacetime is defined on a hypersurface that is not orthogonal to the extra
dimension, but then the theory is different from the KK theory since an electromagnetic field
equation with a curvature-coupled term is derived.
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