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Introducción

El Modelo Estándar de física de partículas elementales es una de las teorías más exitosas creadas por
el hombre, ésta logra explicar -en su mayoría- los fenómenos, procesos, interacciones que ocurren a
nivel fundamental entre partículas y ha sido comprobado con gran precisión experimentalmente. Por
ello existe un gran interés en hacer extensiones del modelo para encontrar una explicación a aquellos
problemas que no pueden ser resueltos de forma satisfactoria con dicha teoría.

Una prueba importante del Modelo Estándar fue el hallazgo en 2012 por el LHC, de una partícula
propuesta por Peter Higgs en 1964 mediante el llamado Mecanismo de Higgs, dicha partícula es
nombrada en su honor Bosón de Higgs.

El Mecanismo de Higgs está estrechamente relacionado con el rompimiento de simetría electrodébil
el cual se produce a una escala de energía υ = 246 GeV, y se estima que la escala de energía de nueva
física sea del orden de ∼ O (TeV).

Se han propuesto diferentes modelos para tratar de explicar esta diferencia entre las escalas de
energía, llamado problema de jerarquía, y estabilizar las contribuciones que existen de diagramas
cuadráticamente divergentes a la masa del Higgs.

Little Higgs, es uno de los modelos desarrollados para abordar el problema descrito anteriormente.
Modelos de tipo Little Higgs tienen como su principal característica común la propuesta de que el
Higgs es un pseudo-bosón de Nambu-Goldstone originado -en este caso- por el rompimiento del grupo
de simetría SU(5) a una escala de energía f ∼ O(TeV). Dicha idea fue retomada por Arkani-Hamed,
Cohen y Georgi quienes construyeron el primer modelo Little Higgs exitoso [1]. A partir de esto, se le
han hecho varias extensiones al modelo Little Higgs y en esta tesis abordaremos una de ellas: Modelo
Littlest Higgs con T-paridad.

Este modelo, abreviado LHT, tiene varias implicaciones fenomenológicas, por lo que nos pro-
pusimos estudiar las nuevas cotas a procesos de violación de sabor leptónico (LFV) por medio de
interacciones de partículas propuestas que aparecen a una escala de energía de TeV’s, además de in-
troducir un mecanismo específico de los llamados See Saw para involucrar neutrinos de Majorana que
no sólo aportarán a los procesos de LFV sino también a procesos de LNV. De esta manera, además,
el problema de jerarquía se relaciona con la masa ínfima de los neutrinos y, posiblemente, con la
explicación de la asimetría bariónica del Universo mediante leptogénesis.

La estructura de la tesis se describe a continuación: en el Capítulo 1, nombrado Standard Model,
se explican los requisitos necesarios que debe cumplir la Lagrangiana del modelo estándar electrodébil
tales como simetría de fase global y local. Sabemos que la Electrodinámica Cuántica es una teoría
Abeliana, lo que implica que su mediador, el fotón, no interactúa consigo mismo, pero a diferencia de
esto, en la teoría Electrodébil sus bosones de gauge, W± y Z0, sí pueden interactuar entre ellos, lo
que nos lleva a trabajar con una teoría no Abeliana. Por tanto es necesario conocer los campos de
Yang-Mills, contenido del subcapítulo 1.1.3. En la segunda parte del Capítulo 1 se detalla el Modelo
Glashow-Weinberg-Salam, introduciendo el Mecanismo de Higgs, y revisando cómo éste origina las



masas de los bosones de gauge y los fermiones. Para finalizar con este capítulo se muestra la forma
de la Lagrangiana final del modelo, comentando brevemente cada una de sus partes constituyentes.

Como se mencionó anteriormente, las implicaciones del LHT aquí estudiadas son -fundamentalmente-
de procesos de violación de sabor leptónico, por lo que se incluye un breve Capítulo 2 dedicado a LFV.

En el Capítulo 3 se desarrolla detalladamente el Modelo de Littlest Higgs con T-paridad. Aquí
se explica cómo es el rompimiento de simetria SU(5)/SO(5) y la parametrización de la matriz de
Goldstones. Se introduce la T-paridad, que es una simetría Z2, y la acción que tiene en los campos y
Lagrangianas para hacer el modelo consistente. Se muestra como el grupo de gauge [SU(2)× U(1)]2,
que se encuentra dentro del grupo SU(5), se "romperá" al grupo del Modelo Estándar SU(2)L×U(1)Y ,
dando así lugar a la aparición de nuevas partículas en un sector pesado: W±H , ZH y AH . Tras considerar
efectos de EWSB, se recuperan los bosones de gauge conocidos: W±, Z0 y A. Se incluye el sector de
fermiones, introduciendo los multipletes de SU(5) que nos originan el sector pesado de fermiones junto
con los fermiones del Modelo Estándar, y además se incluye el multiplete correspondiente a fermiones
"espejo", los cuales son de vital importancia para el modelo.

En el Capítulo 4 se muestran las nuevas contribuciones a la amplitud por parte de los leptones T-
odd (espejo) y partner provenientes de LHT para el proceso µ→ eeē a nivel de diagramas de pingüino
y caja. Una vez calculadas las amplitudes, en los Capítulos 5 y 6 se desarrolla minuciosamente el
cálculo para los factores de forma de los diagramas de pingüino de γ y bosón Z y los factores de
forma correspondientes a los diagramas de caja. LHT nos permite introducir un mecanismo para
generar masas de neutrinos de tipo de Majorana. En el Capítulo 7 se introduce detalladamente el
mecanismo de See Saw Inverso (ISS) para cumplir el objetivo de tener neutrinos de Majorana, así como
las repercusiones en los procesos de LFV y LNV a través del cálculo de los factores de forma en los
diagramas de pingüino y caja, ya que aparecen diagramas donde el número leptónico se viola por dos
unidades. Veremos que al considerar neutrinos pesados de Majorana aparecerán nuevos acoplamientos
como lo son los neutros de tipo (θSθ†)``′ , los cuales tendrán un papel importante en el análisis numérico
de estos procesos. Para el Capítulo 8 reservamos el análisis fenomenológico de los procesos descritos
en el capítulo anterior, mostrando los valores representativos del modelo.

El decaimiento doble beta sin neutrinos es una de las pruebas más fuertes para la comprobación de
la existencia de neutrinos de Majorana, por lo que en esta tesis también enfocamos parte de nuestro
esfuerzo en calcular las predicciones de nuestro modelo a dicho proceso, esto puede ser encontrado en
el Capítulo 9.

Finalmente, en el Capítulo 10, llevando nuestro modelo más allá para conseguir puebas más sólidas
de autoconsistencia, se trabajó con decaimientos hadrónicos de tau (τ) donde se han calculado, por
primera vez en el LHT, cotas para los branching ratios de τ → `P, PP, V (` = e, µ), así como las
masas esperadas de los fermiones T-odd, partner y neutrinos de Majorana, ángulos de mezcla para
efectos de LFV y acoplamientos neutros (θSθ†)``′ lo cual nos permite validar la coincidencia con los
resultados obtenidos en el Capítulo 8.

En el Capítulo 11 se escriben las conclusiones del trabajo de tesis. Se finaliza con nueve apéndices



donde se incluyen todas las herramientas usadas para el desarrollo de cálculos necesarios en la tesis.



Abstract

The Standard Model of particle physics is one of the most successful theories created by humans, it
manages to explain basically all the phenomena, processes and interactions that occur at a fundamental
level between particles and has been minutely verified by data experimentally obtained. Therefore,
there is a great interest in making extensions of the model to find an explanation for those problems
that cannot be solved satisfactorily with this theory.

An important test of SM was the discovery in 2012 by the LHC of a particle proposed by Peter
Higgs in 1964 through the so-called Higgs Mechanism, that particle is named in his honor: Higgs
Boson.

The Higgs Mechanism is closely related with the electroweak symmetry breaking (EWSB) which
is produced at an energy scale υ = 246 GeV, and it is estimated that the energy scale of new physics
is of order ∼ O(TeV).

Several models have been proposed to attempt to explain this difference between the energy scales,
called hierarchy problem, and to stabilize the contributions that exist from quadratically divergent
diagrams correcting the Higgs mass.

Little Higgs is one class of models developed to address the problem described above. Little Higgs
Models have as their main common feature the proposal that the Higgs is a pseudo-Nambu-Goldstone
boson. In this particular case caused by the breaking of SU(5) symmetry group at an energy scale
f ∼ O(TeV). This idea was taken up by Arkani-Hamed, Cohen and Georgi who built the first successful
Little Higgs model [1]. From this, several extensions have been made to the Little Higgs model and
in this thesis we will address one of them: Littlest Higgs Model with T-parity.

This model, abbreviated LHT, has several scopes and one of which we set to study here, is that
this model gives new contributions to lepton flavor violation (LFV) processes through interactions of
particles that appear at energy scale of TeV’s. In addition, a specific mechanism of the so-called See
Saw is introduced to involve Majorana neutrinos that will contribute to LFV processes but also to
LNV processes. In this way, the hierarchy problem is linked to understanding the tiny neutrino masses
and, possibly, to generating the baryon asymmetry of the universe via leptogenesis.

The structure of the thesis is described below: in Chapter 1, named Standard Model, we explain
the necessary requirements that the Lagrangian of the electroweak standard model must satisfy, such
as global and local phase symmetry. We know that Quantum Electrodynamics is an Abelian theory,
which implies that the mediator, the photon, does not self-interact, contrary to the Electroweak theory,
whose gauge bosons, W± and Z0, can interact with each other (and among themselves, in certain
combinations), which leads us to work with a non-Abelian theory, so it is necessary to know Yang-Mills
fields, content of subsection 1.1.3. For the second part of Chapter 1, the Glashow-Weinberg-Salam
Model is detailed by introducing the Higgs Mechanism and how it gives rise to the masses of gauge
bosons and fermions. We show the shape of the final Lagrangian of this model, commenting briefly
each of its constituent parts.



As we mentioned previously, the scope of LHT reaches lepton flavor violation processes, so a brief
Chapter 2 dedicated to LFV is included.

In Chapter 3 the Littlest Higgs Model with T-parity is developed in detail. We explain how is
the symmetry breaking of SU(5)/SO(5) and the parameterization of the Goldstones matrix. The
T-parity is introduced, which is a Z2 symmetry, and the action it has in the Lagrangian and fields to
make the model consistent is displayed. We show how the gauge group [SU(2)×U(1)]2, that is within
the SU(5) group, will "break" to the Standard Model SU(2)L × U(1)Y group, and give rise to the
appearance of new particles in a heavy sector: W±H , ZH and AH and how, after considering EWSB
effects, we also recover the known gauge bosons: W±, Z0 and A. The fermion sector is also included,
introducing the SU(5) multiplets that will originate the heavy fermions sector as well as the Standard
Model fermions, and also the multiplet corresponding to mirror fermions, that are vitally important
for the model.

In Chapter 4 the new contributions to the amplitude by the T-odd (mirror) and partner leptons
from LHT for the process µ → eeē are shown at the level of diagrams of penguin and box types.
Once the amplitudes have been calculated, in Chapters 5 and 6 the calculation for the form factors
of the penguin diagrams of γ and Z boson and form factors corresponding to the box diagrams are
covered. LHT allows us to introduce a mechanism to generate neutrino masses of Majorana nature. In
Chapter 7 the Inverse See Saw (ISS) mechanism is introduced in detail to meet the objective of having
Majorana neutrinos as well as repercussions on the LFV and LNV processes through the calculation
of the form factors from the penguin and box diagrams, since there are diagrams where the lepton
number is violated by two units. We will see that when considering heavy Majorana neutrinos, new
couplings will appear, such as the neutral couplings of type (θSθ†)``′ , which will have an important
role in the numerical analysis of these processes. For the Chapter 8 we reserve the phenomenological
analysis of the processes described in the previous chapter showing representative values of the model.

Neutrinoless double beta decay is one of the strongest pieces of evidence for the possible existence
of Majorana neutrinos, so in this thesis we also focus part of our effort on calculating the predictions
of our model to this process, this can be found in Chapter 9.

Finally, in Chapter 10, taking our model further to get more solid evidence that everything is on
the right track, we worked out -for the first time within the LHT- hadronic decays of tau (τ) where
new bounds have been calculated for the branching ratios for τ → `P, PP, V (` = e, µ), as well as
the expected masses of the T-odd fermions, partner and Majorana neutrinos, mixing angles for LFV
effects and neutral couplings (θSθ†)``′ , which altogether enables us to validate the coincidence with
the results obtained in Chapter 8.

In Chapter 11 the conclusions of this thesis are written. Nine appendices are included, where all
the tools used for the development of calculations are detailed.
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42 Histogram for Br(τ → eeē) where the main value is shown. . . . . . . . . . . . . . . . . 110
43 Histogram for Br(τ → µµµ̄) where the main value is shown. . . . . . . . . . . . . . . . 110
44 Heat map that stands for the correlation matrix among (θSθ†)eµ−processes: Z → µ̄e,
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1 STANDARD MODEL

1 Standard Model

Particle physics is the branch of physics which studies elementary particles and their properties. We
can say that the elementary particles are the fundamental constituents of all objects in the universe.
We mean by elementary particles: these are particles which do not have any substructure.

It’s not easy to tell which particles are elementary. It’s possible to say which particles are not
elementary, if one knows of some experiment that shows substructure of the object. But no experiment
can guarantee that a given object does not have any substructure. A new experiment might show
substructure in an object that was earlier considered elementary. For instance, protons and neutrons
came to be collectively called nucleons because they are the constituents of nuclei, and treated as
elementary particles. A few decades later, new experiments indicated that the nucleons themselves
have substructure. We now believe that they are made up of quarks, which are elementary particles
like the electrons [2]. Thus the list of elementary particles changes with time. There is no guarantee
that today’s elementary particles would not turn out to be composite objects tomorrow.

The electron, the proton and the neutron are all examples of fermions, which have an intrinsic an-
gular momentum, or spin, that is a half-integral multiple of the fundamental constant ~. In particular,
all three of these have spin equal to 1

2~. The other alternative is to have spin in integral multiples of
~, and particles carrying such spin are called bosons.

The Standard Model (SM) constitutes one of the most successful achievements in modern physics.
It provides a very elegant theoretical framework, which is able to describe the known experimental
facts in particle physics with high precision [3].

According to this model, all matter is built from fermions: six quarks and six leptons. The leptons
carry integral electric charge. The electron e with unit negative charge is familiar to everyone, and
the other charged leptons are the muon µ and the tau τ , these are heavy versions of the electron. In
modern terminology, we call the muon a particle of the second generation, and the tau belongs to the
third generation.

In 1930, in order to explain the continuous spectrum of the electrons in nuclear beta decay, Pauli
proposed that a neutral fermion was produced in such processes. Neutral fermions are collectively
called neutrinos. A different flavour of charged lepton is paired with each flavour of neutrino, as
indicated by the subscript: these are called the electron-neutrino(νe), muon-neutrino(νµ), and tau-
neutrino(ντ ). Summarizing, these neutrinos, along with the electron, the muon and the tau, form a
class of elementary particles which are called leptons. There is another class of elementary particles
which are called quarks. Unlike the leptons, no one has seen quarks in their free state. Quarks always
appear in bound states. Bound states involving quarks are called hadrons. The quarks carry fractional
charges, of 2

3e or −1
3e. For each of the various fundamental constituents, its symbol and the ratio of

its electric charge Q to the elementary charge e of the electron are given in Table 1 [4].
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1 STANDARD MODEL

Particle Flavour Q

leptons e µ τ −1
νe νµ ντ 0

quarks u c t 2
3

d s b −1
3

Table 1: The fundamental fermions.

We have looked at the particles but the SM also comprises -extremely importantly- their inter-
actions. The different interactions are described in quantum language in terms of the exchange of
characteristic bosons (particles of integral spin) between the fermions constituents. These boson me-
diators are listed in Table 2.

Interaction Mediator Symbol Number Spin (~)/Parity
Strong Gluon g 8 1−

Electromagnetic Photon γ 1 1−

Weak W and Z bosons W±, Z0 3 1−, 1+

Gravity Graviton G 1 2+

Table 2: The boson mediators.

There are four kinds of fundamental interactions. The oldest known one is the gravitational inter-
action, known since the time of Newton in the 17th century. It is supposedly mediated by exchange of
a spin 2 boson called graviton. Electricity and magnetism were unified into the electromagnetic theory,
ans this is the second kind of interaction that we recognize to be fundamental and this interaction is
mediated by photon exchange. The third one is the strong interaction, required to explain the stability
of the atomic nuclei. The interquark force is mediated by a massless particle, the gluon. The last one
is the weak interaction, needed to explain the phenomenon of beta radioactivity. The mediators of
this interaction are the W± and Z0 bosons, with masses of order 100 times the proton mass.

To indicate the relative magnitudes of the four types of interaction, the comparative strengths of
the force between two protons when just in contact are very roughly as follows [4].

Strong Electromagnetic Weak Gravity
1 10−2 10−7 10−39

Table 3: Comparative strengths of the force between two protons.

In addition, the standard theory of electroweak interactions postulates that there is a spinless
boson. It is called the Higgs boson. The discovery of the Higgs boson, announced on July 4th of 2012
by the CERN LHC collaborations ATLAS and CMS, marked the completion of the SM. This event can
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1 STANDARD MODEL

be considered one of the greatest accomplishments of the High Energy Physics community. The Higgs
mass value agrees quite well with the range preferred by the electroweak precision tests (EWPT),
which confirms the success of the SM. Current measurements of its spin, parity, and couplings, also
seem consistent with the SM. The fact that LHC has verified the linear realization of spontaneous
symmetry breaking (SSB), as included in the SM, could also be taken as an indication that Nature
likes scalars. [5].

The Standard Model was proposed in 1967, and the discovery of the Higgs boson was announced
in 2012, i.e., a long 45 years later. It remained elusive for almost half a century. A big reason for the
elusiveness of the Higgs boson is its coupling to fermions. The coupling of the Higgs boson to any
fermion is proportional to the mass of the fermion, given by

hf =

√
2mf

υ
=

gmf√
2MW

, (1)

with a vev υ = 246 GeV. Our experimental detectors are made out particles in the first generation of
fermions because they are constituents of stable material. The masses of the first generation fermions
are much smaller compared to the masses of fermions in the other generations. For the electron, eq.
(1) tell us that the coupling is of order 10−7. With the up and the down quarks, the couplings are a
little bigger, maybe an order to magnitude. This is the basic reason why the Higgs boson is hard to
produce and to detect.

The mass of the Higgs boson is MH = 125.10± 0.14 GeV [6].

1.1 Gauge Invariance

1.1.1 Global phase symmetry

Consider the free Dirac Lagrangian

L0 = iψ̄γµ∂µψ −mψ̄ψ. (2)

This Lagrangian is invariant under a change of phase of the field ψ. Suppose we change over to a
new field

ψ′(x) = exp(−ieQθ)ψ(x), (3)

where e, Q and θ are all real numbers, with different interpretations. The quantity e stands for a
universal constant which sets up the scale of the phase, Q is a characteristic of the field ψ (quantum
number) and θ is a variable which determines how large the phase is. Note that we have not changed
the spacetime coordinates at all; the new field is defined in terms of the old field at the same spacetime
point. Such symmetries are called internal symmetries.
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1 STANDARD MODEL

Given the transformation from eq.(3), we show that

iψ̄′γµ∂µψ
′ −mψ̄′ψ′ = iψ̄γµ∂µψ −mψ̄ψ. (4)

Thus, the Lagrangian from eq.(2) is invariant under the transformation given from eq.(3). We can
see that θ is independent of the spacetime coordinates, such that this transformation is called a global
symmetry.

1.1.2 Local symmetry

Now we want to see what happens if the parameter depends on spacetime coordinates, θ = θ(x). The
derivative of ψ′(x) is

∂µψ
′(x) = exp(−ieQθ) [∂µψ(x)− ieQ(∂µθ)ψ(x)] . (5)

There is an extra term, involving the derivatives of θ. The Lagrangian from eq.(2) is not invariant
under this local transformation. We obtain then

L′0 − L0 = eQ(∂µθ)ψ̄(x)γµψ(x). (6)

Since we want the local symmetry, we would need to modify the original Lagrangian. So, instead
of the Lagrangian from eq.(2), let us try

L = iψ̄γµDµψ −mψ̄ψ, (7)

where

Dµ = ∂µ + ieQAµ, (8)

bringing in a new Aµ. This Dµ is usually called the covariant derivative. The prescription of
replacing ordinary derivatives by covariant derivatives is called minimal substitution [2].

The new Lagrangian must be invariant under the local symmetry, thus, under the local symmetry,
Aµ changes to A′µ such that

L′0 − eQψ̄′γµψ′A′µ = L0 − eQψ̄γµψAµ, (9)

or

A′µ = Aµ + ∂µθ. (10)

We can thus identify Aµ with the photon field and conclude that, in the urge for making the global
phase symmetry local, we have introduced the photon field in a natural form. If we are to regard this

4



1 STANDARD MODEL

new field as the physical photon field, we must add to the Lagrangian a term corresponding to its
kinetic energy. Since the kinetic term must be invariant under eq.(10), it can only involve the gauge
invariant field strength tensor

Fµν = ∂µAν − ∂νAµ. (11)

We are thus led to the Lagrangian of QED [7]

L = ψ̄(iγµ∂µ −m)ψ + eψ̄γµAµψ −
1

4
FµνF

µν . (12)

Note that the addition of a mass term 1
2m

2AµA
µ is prohibited by gauge invariance. The gauge

particle, the photon, must be massless, in agreement with experiment.
Local symmetries are also called gauge symmetries. Theories incorporating gauge symmetries are

called gauge theories. The spin-1 particles which are necessary to keep the gauge invariance are called
gauge bosons. QED is therefore a gauge theory, based on the gauge group U(1). The gauge boson for
QED is the photon.

1.1.3 Non-Abelian gauge symmetry: Yang-Mills fields

In 1954 Yang and Mills extended the gauge principle to non-Abelian symmetry. We are going to
illustrate the construction for the simplest case of isospin SU(2) [8].

Let the fermion field be an isospin doublet,

ψ =

(
ψ1

ψ2

)
. (13)

Under an SU(2) transformation, we have

ψ(x)→ ψ′(x) = exp

(
−i~τ · ~θ

2

)
ψ(x), (14)

where ~τ = (τ1, τ2, τ3) are the Pauli matrices, satisfying[τi
2
,
τj
2

]
= iεijk

τk
2

i, j, k = 1, 2, 3, (15)

and ~θ = (θ1, θ2, θ3) are the SU(2) transformation parameters. The free Lagrangian

L0 = ψ̄(x)(iγµ∂µ −m)ψ(x), (16)

is invariant under the global SU(2) symmetry with {θi}i=1,2,3 being spacetime independent. However

5



1 STANDARD MODEL

under the local symmetry transformation

ψ(x)→ ψ′(x) = U(θ)ψ(x), (17)

with

U(θ) = exp

(
−i~τ · ~θ(x)

2

)
, (18)

the free Lagrangian L0 is no longer invariant because the derivative term transforms as

ψ̄(x)∂µψ(x)→ ψ̄′(x)∂µψ
′(x) =ψ̄(x)∂µψ(x)

+ ψ̄(x)U−1(θ) [∂µU(θ)]ψ(x).
(19)

To construct a gauge invariant Lagrangian we follow a procedure similar to that of the Abelian
case. We introduce the vector gauge field Aiµ (i = 1, 2, 3) (one for each group generator) to form the
gauge covariant derivative through the minimal coupling

Dµψ =

(
∂µ − ig

~τ · ~Aµ
2

)
ψ, (20)

where g is the coupling constant. We want that Dµψ have the same transformation property as ψ
itself

Dµψ → (Dµψ)′ = U(θ)Dµψ. (21)

This implies that (
∂µ − ig

~τ · ~A′µ
2

)
(U(θ)ψ) = U(θ)

(
∂µ − ig

~τ · ~Aµ
2

)
ψ,

~τ · ~A′µ
2

= U(θ)
~τ · ~Aµ

2
U−1(x)− i

g
[∂µU(θ)]U−1(θ),

(22)

which defines the transformation law for the gauge fields. For an infinitesimal change ~θ(x)� 1,

~τ · ~A′µ
2

=
~τ · ~Aµ

2
− iθjAkµ

[τj
2
,
τk
2

]
− 1

g

(
~τ

2
· ∂µ~θ

)
=
~τ · ~Aµ

2
+

1

2
εijkτ iθjAkµ −

1

g

(
~τ

2
· ∂µ~θ

)
,

or
Ai′µ = Aiµ + εijkθjAkµ −

1

g
∂µθ

i. (23)

The second term is the transformation for a triplet representation under SU(2). Thus the Aiµs
carry charge, in contrast to the Abelian gauge field.
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1 STANDARD MODEL

To obtain the antisymmetric second-rank tensor of the gauge fields we can study the combination

[Dµ, Dν ]ψ ≡ ig
(
τ i

2
F iµν

)
ψ, (24)

with
~τ · ~Fµν

2
= ∂µ

~τ · ~Aν
2
− ∂ν

~τ · ~Aµ
2
− ig

[
~τ · ~Aµ

2
,
~τ · ~Aν

2

]
, (25)

where
F iµν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν . (26)

From the fact that Dµψ has the same gauge transformation property as ψ, we see that

([Dµ, Dν ]ψ)′ = U(θ) [Dµ, Dν ]ψ, (27)

substituting eq.(24) on both sides from eq.(27), we have

~τ · ~F ′µν = U(θ)(~τ · ~Fµν)U−1(θ). (28)

For the infinitesimal transformation θi � 1, this translates into

F i′µν = F iµν + εijkθjF kµν . (29)

The F iµν transforms nontrivially, however, the following product is gauge invariant

tr
[
(~τ · ~Fµν)(~τ · ~Fµν)

]
∝ F iµνF iµν . (30)

The complete gauge invariant Lagrangian which describes the interaction between gauge fields Aiµ
and SU(2) doublet fields

L = ψ̄iγµDµψ −mψ̄ψ −
1

4
F iµνF

iµν , (31)

where F iµν is given by eq.(26) and Dµψ is given by eq.(20). The pure Yang-Mills term, −1
4F

i
µνF

iµν ,
contains factors that are trilinear and quadrilinear in Aiµ, which correspond to self-couplings of non-
Abelian gauge fields.

1.2 Standard Electroweak Theory - The Glashow-Weinberg-Salam Model

The SM is a gauge theory, based on the symmetry group SU(3)C ⊗SU(2)L⊗U(1)Y , which describes
strong, weak and electromagnetic interactions, via the exchange of the corresponding spin-1 gauge
fields: eight massless gluons and one massless photon, respectively , for the strong and electromagnetic
interactions, and three massive bosons, W± and Z0, for the weak interaction.

The gauge symmetry is broken by the vacuum, which triggers the SSB of the electroweak group
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1 STANDARD MODEL

to the electromagnetic subgroup

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−−−→ SU(3)C ⊗ U(1)QED. (32)

The SSB mechanism generates the masses of the weak gauge bosons, and gives rise to the appear-
ance of a physical scalar particle in the model, the so-called Higgs. The fermion masses and mixings
are also generated through the SSB [3].

1.2.1 Higgs mechanism

We start with a Lagrangian with a local U(1) symmetry

L = −1

4
FµνF

µν + (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2, (33)

where µ2 < 0. The gauge covariant derivative Dµ is defined by

Dµ = ∂µ + ieAµ. (34)

The covariant derivative from eq.(34) is different to eq.(8) one, the difference is a Q factor which
is a characteristic of the field so we can omit it without to lose generality. Spontaneous symmetry
breaking can occur if µ2 < 0, for which the minimum is obtained if

|〈0|φ|0〉| = υ√
2
, (35)

where

υ =

√
−µ2

λ
. (36)

Only the magnitude of the vev is determined by the minimization condition. The phase can be
arbitrary. Let us assume that the vacuum is where the phase value is zero, the vev of φ is υ√

2
. We

can say that φ(x) can not be the quantum field in this case. We should write [9]

φ(x) =
1√
2

(υ + η(x) + iζ(x)), (37)

where η(x) and ζ(x) have zero vevs. Using eq.(37) in kinetic term from eq.(33)

(Dµφ)†(Dµφ) =
1

2
(∂µη)(∂µη) +

1

2
(∂µζ)(∂µζ) + eυAµ∂µζ +

1

2
e2υ2AµA

µ + · · · . (38)

We see that the U(1) gauge boson has a mass term after the symmetry is broken, the mass is given
by

MA = eυ. (39)

8



1 STANDARD MODEL

Before we conclude that the gauge boson is massive, there is a problem to settle. There is a term
Aµ∂µζ in eq.(38). Since it is quadratic in the fields, so it should be part of the free Lagrangian of the
system. However, it contains two different fields, Aµ and ζ, involving a derivative. If it were written
in terms of creation and annihilation operators, this would imply that we can have Feynman diagrams
in which an Aµ changes into a ζ, without any other particle interacting with them, and vice versa.

The eq.(37) is not the only way that φ can be written in terms of quantum fields. Alternatively
we could have written

φ(x) =
υ + η(x)√

2
eiζ(x)/υ. (40)

If we keep only up to linear terms in quantum fields, this representation coincides with eq.(37).
Here ζ(x)/υ is the phase of the field φ, we know that any phase, even if it is a spacetime dependent
one, it is irrelevant because of the local U(1) symmetry. Explicitly, the Lagrangian from eq.(33) is
invariant under the transformations

φ(x)→ φ′(x) = e−ieθ(x)φ(x),

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µθ(x).
(41)

Therefore, given the representation of the field φ(x) as from eq.(40), we can always choose a new
gauge through eq.(41). In particular, if we choose θ(x) = ζ(x)/eυ, the gauge transformed fields are
given by

φ′(x) =
υ + η(x)√

2
,

A′(x) = Aµ(x) +
1

eυ
∂µζ(x).

(42)

If we substitute these primed fields instead of the unprimed fields, the ζ(x) field (would-be Gold-
stone boson) disappears altogether from the Lagrangian. This Lagrangian then contains physical fields
only, and the gauge in which this takes place is called the unitary gauge.

1.2.2 Higgs boson multiplet

We introduce a scalar multiplet which is a doublet under the SU(2) part of the gauge group, and
write this as

φ

(
φ+

φ0

)
:

(
2,

1

2

)
. (43)

The 2 indicates that it is a doublet of SU(2), and we have normalized the U(1) charge such that
its value is 1

2 for the multiplet φ.
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The Lagrangian now contains terms involving φ as well. These are

Lφ = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2. (44)

In general, when a multiplet transforms like an n-dimensional representation of SU(2) and has a
U(1) quantum number Y , we should write

Dµ = ∂µ + igT (n)
a W a

µ + ig′Y Bµ, (45)

where T (n)
a denote the generator of SU(2) in the n-dimensional representation, and Y is the identity

matrix times the hypercharge. For the doublet φ, the SU(2) generators are τa/2 (Pauli matrices) ,
and we can write

Dµφ =

(
∂µ + ig

τa
2
W a
µ + i

g′

2
Bµ

)
φ

= ∂µ

(
φ+

φ0

)
+

i

2
√

2

(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

)(
φ+

φ0

)
.

(46)

Let us now suppose that µ2, the gauge symmetry will be spontaneously broken. The minimum for
the scalar potential will be obtained for scalar field configurations given by

φ0 =
υ√
2

(
0

1

)
, (47)

and υ =
√
−µ2/λ. Any other vacuum satisfying eq.(47) can be reached from this by a global SU(2)×

U(1) transformation. In this vacuum state, the generators T1 and T2 are no more part of the symmetry,
since τx,yφ0 = (T1±iT2)φ0 6= 0. The diagonal generators T3 and the U(1) generator Y do not annihilate
the vacuum state either. However, we note that(

1 0

0 0

)(
0

υ/
√

2

)
=

(
0

0

)
. (48)

Thus there is one diagonal generator which annihilates the vacuum. This is a linear combination
of T3 and Y , given by

Q = T3 + Y : Qφ0 = 0. (49)

The original gauge symmetry is therefore broken down to a U(1) symmetry generated by Q. This
is not the original U(1) part of the symmetry group. As we have shown, its generator is actually a
combination of an SU(2) generator and the original U(1) generator. To make this distinction, we
will write the original symmetry from now as SU(2)×U(1)Y , whereas the remnant symmetry will be
called U(1)Q. This latter is in fact the electromagnetic gauge symmetry.
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1.2.3 Gauge boson masses

Since φ0 cannot be described by creation and annihilation operators, we can write

φ(x) =

(
φ+

υ+H(x)+iζ(x)√
2

)
, (50)

where φ+, H and ζ are all quantum fields with vanishing expectation values in the vacuum state. The
gauge boson masses are identified by substituting the vacuum expectation value φ0 for φ(x) in the
Lagrangian from eq.(44). The relevant term from eq.(44) is

∣∣∣∣(ig τa2 W a
µ + i

g′

2
Bµ

)
φ0

∣∣∣∣2 =
1

8

∣∣∣∣∣
(

gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

)(
0

υ

)∣∣∣∣∣
2

=
1

8
υ2g2

[
(W 1

µ)2 + (W 2
µ)2
]

+
1

8
υ2(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ)

=

(
1

2
υg

)2

W+
µ W

−µ +
1

8
υ2
(
W 3
µ Bµ

)( g2 −gg′

−gg′ g′2

)(
W 3µ

Bµ

)
,

(51)

since W± = (W 1 ∓ iW 2)/
√

2. For any charged spin-1 field Vµ of mass M , the mass term in the
Lagrangian is MV †µV µ. Thus, the mass of the charged W boson is

MW =
1

2
υg. (52)

The remaining term is off-diagonal in the W 3
µ and Bµ basis

1

8
υ2
[
g2(W 3

µ)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
=

1

8
υ2
[
gW 3

µ − g′Bµ
]2

+ 0
[
gW 3

µ + g′Bµ
]2
.

(53)

One of the eigenvalues of the 2 × 2 matrix from eq.(51) is zero, we have included this term in
eq.(53) with a combination of fields that is orthogonal to the combination given in the first term.
Now, the physical fields Zµ and Aµ diagonalize the mass matrix so that eq.(53) must be identified
with

1

2
M2
ZZ

2
µ +

1

2
M2
AA

2
µ. (54)

So, on normalizing the fields, we have [7]

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

withMA = 0,

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

withMZ =
1

2
υ
√
g2 + g′2.

(55)
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We can define the combinations

Zµ = cos θWW
3
µ − sin θWBµ,

Aµ = sin θWW
3
µ + cos θWBµ,

(56)

where θW is called the weak mixing, ’Weinberg’ angle, defined by

MW

MZ
= cos θW or

g′

g
= tan θW . (57)

The inequalityMZ 6= MW is due to the mixing between theW 3
µ and Bµ fields. The mass eigenstates

are then automatically a massless photon (Aµ) and a massive (Zµ) field with MZ > MW .

1.2.4 Masses of the Fermions

An attractive feature of the SM is that the same Higgs doublet which generates W± and Z masses is
also sufficient to give masses to the leptons and quarks. For example, to generate the electron mass,
we include the following SU(2)× U(1) gauge invariant term in the Lagrangian

L = −Ge

[
( ν̄e ē )L

(
φ+

φ0

)
eR + ēR( φ− φ̄0 )L

(
νe

e

)
L

]
. (58)

The Higgs doublet has exactly the required SU(2)× U(1) quantum numbers to couple to (ēLeR).
We spontaneously break the symmetry and substitute

φ =

√
1

2

(
0

υ +H(x)

)
, (59)

into eq.(58). The neutral Higgs field H(x) is the only remnant of the Higgs doublet, after the spon-
taneous breaking has taken place. On substitution of φ, the Lagrangian becomes

L = −Ge√
2
υ(ēLeR + ēReL)− Ge√

2
(ēLeR + ēReL)h. (60)

We now choose Ge so that

me =
Geυ√

2
, (61)

and hence generate the required electron mass,

L = −meēe−
me

υ
ēeh. (62)

Note however that, since Ge is arbitrary, the actual mass of the electron in not predicted.
The quark masses are generated in the same way. The only novel feature is that to generate a

12



1 STANDARD MODEL

mass for the upper member of a quark doublet, we must construct a new Higgs doublet from φ

φc = iτ2φ
∗ =

(
−φ̄0

φ−

)
breaking−−−−−→

√
1

2

(
υ +H(x)

0

)
. (63)

Due to the special properties of SU(2), φc transforms identically to φ. It can therefore be used to
construct a gauge invariant contribution to the Lagrangian

L = −Gd
(
ū d̄

)
L

(
φ+

φ0

)
dR −Gu

(
ū d̄

)
L

(
−φ̄0

φ−

)
uR + h.c.,

= −mdd̄d−muūu−
md

υ
d̄dh− mu

υ
ūuh.

(64)

Here, we have just considered the ( u d )L quark doublet. However, weak interactions operate on
( u d′ )L, ( c s′ )L,... doublets, where the primed states (mass eigenstates) are linear combinations
of the flavor eigenstates. The quark Lagrangian is therefore of the form

L = −Gijd
(
ūi d̄′i

)
L

(
φ+

φ0

)
djR −Giju

(
ūi d̄′i

)
L

(
−φ̄0

φ−

)
ujR + h.c., (65)

with i, j = 1, ..., N , where N is the number of quarks doublets. We can rewrite the quark Lagrangian
in diagonal form

L = −mi
dd̄idi

(
1 +

h

υ

)
−mi

uūiui

(
1 +

h

υ

)
. (66)

1.2.5 The Final Lagrangian

To summarize the standard (Glashow-Weinberg-Salam) model, we gather together all the ingredients
of the Lagrangian. The complete Lagrangian is given by Figure 1 [7].
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1 STANDARD MODEL

Figure 1: The complete Lagrangian of the SM.

L denotes a left-handed fermion (lepton or quark) doublet, and R denotes a right-handed fermion
singlet.
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2 LEPTON FLAVOR VIOLATION (LFV)

2 Lepton Flavor Violation (LFV)

Lepton mixing implies that the generational lepton numbers are not conserved. The most easy ob-
servables would be processes in which the initial and final states do not contain any neutrino. No such
process has been observed so far.

Neutrino oscillations provide a clear evidence for lepton flavor violation (LFV) in the neutral sector,
pointing out to physics beyond the Standard Model. However, no evidence of lepton flavor violating
processes in the charged sector has been found despite the great experimental effort on searching for
that violation [10].

LFV is absent in the SM with massless neutrinos. A minimal extension that includes right handed
neutrinos allowing for small neutrino Dirac masses might allow LFV reactions such as µ→ eγ (though
at an unobservable level). In the SM, particle masses are proportional to the strengths of the inter-
actions between the particles and the Higgs bosons. Thus, the Dirac mass term like for example νe
must be multiplied by some very small coupling strength such that his mass is at least 50, 000 times
smaller than the mass of the electron. But the electron and the νe are part of the same weak doublet,
and there seems to be no reason why they should have such enormously different interaction strengths
with the Higgs boson [11].

We briefly review some processes which are expected, and discuss what sort of rates to expect for
them.

2.1 Radiative decays

The muon might decay into the electron with the emission of a photon

µ→ e+ γ. (67)

It cannot happen at the tree level. Figure 2 shows how the process might occur at the one-loop
level, this diagram is one of three possible diagrams that contributes to the process.

Figure 2: One-loop diagram for the process µ→ e+ γ.

Experimentally, only an upper bound is known for the branching ratio [6] of the process from eq.
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(67)
B(µ→ e+ γ) < 4.2× 10−13. (68)

For any acceptable value of neutrino masses, this branching ratio is well below 10−40.
Processes like τ → µ + γ and τ → e + γ are also expected to occur because of neutrino mixing

[12–14]. They are also expected to be very suppressed for exactly the same reason.

2.1.1 Purely leptonic decays

We can also contemplate decay processes involving charged leptons and antileptons only

µ− → e−e−e+, (69)

and its charge conjugate, as well as similar decays of the τ lepton where the final state can contain
both muons and electrons. This process can occur at the one-loop level. One possible diagram is
obtained by attaching an outgoing e+e− pair to the photon line of Figure 2 whereby the photon line
itself becomes an internal virtual line. There are other possibilities shown in Figure 3.

Figure 3: One-loop box diagram for the process µ→ 3e.

The upper limit on the branching ratio for this process is given by [6]

B(µ→ 3e) < 1.0× 10−12. (70)

2.1.2 µ− e conversion in nuclei µN → eN

Other experiments look for flavour transitions of charged leptons either in decays, like µ → eγ, or in
bound states of a nucleus and a captured muon, usually referred to as µ− e conversion. Considerable
theoretical and experimental effort has been dedicated to µ− e conversion [15]. This process will lead
the limits on these transitions in the near future.

Muon-to-electron conversion is the spontaneous decay of a muon to an electron without the emis-
sion of neutrinos, within the Coulomb potential of an atomic nucleus: it is therefore only possible for
negative muons.

Since no neutrinos are produced, muon-to-electron conversion is not a weak sM interaction: thus
an observation of the process can only come from new physics.
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The constraint of unchanged nucleus means that all the energy of the muon goes into the kinetic
energy of the electron and the recoil of the parent nucleus, hence the signature of such a process is
the presence of a monochromatic electron at an energy which is essentially the muon mass, corrected
for the binding energy and nuclear recoil

Ee ≈ mµ −Bµ − Er, (71)

where Bµ ≈ Z2α2mµ/2 is the muon binding energy and Er ≈ m2
µ/2mN the nuclear recoil energy.

There are many excellent articles motivating the search, such as Calibbi and Signorelli [16], de Gouvêa
and Vogel [17], or Marciano et al. [18].

The Mu2e experiment will search for the charged-lepton flavor violating (CLFV) neutrino-less
conversion of a negative muon into an electron in the field of a nucleus. The goal of the experiment
is to improve the previous upper limit by four orders of magnitude and reach a SES (single event
sensitivity) of 3× 10−17 on the conversion rate, a 90% CL of 8× 10−17, and a 5σ discovery reach at
2× 10−16. We can see that this bound is more restrictive than the eqs.(68) and (70). The experiment
will begin operations in 2022 [19].
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3 Littlest Higgs Model with T-parity

3.1 The Model

The Littlest Higgs with T-parity (LHT ) is a non-linear σ model based on the coset space SU(5)/SO(5),
where SU(5) is the global symmetry, so guarantees 14 Nambu-Goldstone bosons. The global symmetry
is broken by the vev of a 5 × 5 symmetric tensor. It is convenient to choose a basis in which the
symmetric tensor is proportional to

Σ0 =

0 0 I
0 1 0

I 0 0

 , (72)

where I represents a unit 2× 2 matrix. Here Σ0 = 〈Σ〉 is the VEV of gauge field Σ. It transforms as
Σ→ UΣUT for U ∈ SU(5).

The original SU(5) generators are shown in the Appendix A, but we are going to use a different
representation of the Lie algebra of SU(5). We introduce the matrix A [20]

A =



1
2 + i

2 0 0 1
2 −

i
2 0

0 1
2 + i

2 0 0 1
2 −

i
2

0 0 1 0 0
1
2 −

i
2 0 0 1

2 + i
2 0

0 1
2 −

i
2 0 0 1

2 + i
2

 , (73)

where A satisfies A2 = Σ0 and AT = A. We transform the usual matrix representantion of SU(5) via
the unitary transformation

λ̂a = AλaA
−1 =



1
2 + i

2 0 0 1
2 −

i
2 0

0 1
2 + i

2 0 0 1
2 −

i
2

0 0 1 0 0
1
2 −

i
2 0 0 1

2 + i
2 0

0 1
2 −

i
2 0 0 1

2 + i
2

λa



1
2 −

i
2 0 0 1

2 + i
2 0

0 1
2 −

i
2 0 0 1

2 + i
2

0 0 1 0 0
1
2 + i

2 0 0 1
2 −

i
2 0

0 1
2 + i

2 0 0 1
2 −

i
2

 ,

(74)
with λa the generators of SU(5).

With the new representation of SU(5), the unbroken SO(5) generators satisfy

T̂aΣ0 + Σ0T̂
T
a = 0, (75)

while the broken generators obey
X̂aΣ0 − Σ0X̂

T
a = 0. (76)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions
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3 LITTLEST HIGGS MODEL WITH T-PARITY

Π ≡ πaX̂a, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (77)

where f is the effective NP scale. Thus the matrix of NGB may be written as

Π =


χ+ η

2
√

5
h√
2

φ
h†√

2

2η√
5

hT√
2

φ† h∗√
2

χT + η

2
√

5

 . (78)

Here χ = χaσa/2 with σa the three Pauli matrices, η is a real singlet, and they are the Goldstone
bosons which are eaten to become the longitudinal modes of the partners of the SM gauge fields,

h =

(
h+

h0

)
is the SM Higgs doublet and finally φ =

(
−iΦ++ −iΦ+

√
2

−iΦ+
√

2
−Φ0+ΦP√

2

)
[21] is a complex

SU(2)L triplet.
As χ is given by χaσa/2, it has 3 degrees of freedom, η has only 1 degree of freedom, h has 4 ones

and finally φ has 6 d.o.f. So together they add up to the desired 14 Goldstone bosons (in Section 7
all the Goldstone bosons are shown explicitly in Π matrix).

3.2 Gauge and Scalar Sector

Now we gauge a subgroup of the global symmetry, and we do this in such a way that each gauge
coupling by itself preserves enough of the global symmetry to ensure that the Higgs doublet remains
an exact NGB. The gauge group is taken to be G1 × G2 = [SU(2) × U(1)]2, subgroup of the SU(5)

global symmetry.

Figure 4: The global SU(5) contains two copies of local [SU(2) × U(1)]2 that are diagonally broken
to one copy SU(2)× U(1) contained in SO(5).

As we can see in Figure 4 [20], f is the energy scale where the symmetry breaking [SU(2)×U(1)]2 →
SU(2)W × U(1)Y occurs. The global symmetry breaking scale, f , is constrained on the order of a
TeV.

The generators of the first G1 = SU(2)× U(1) are embedded into SU(5) as

Qa1 =

(
σa/2 0

0 03×3

)
, Y1 = diag(3, 3,−2,−2,−2)/10, (79)
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3 LITTLEST HIGGS MODEL WITH T-PARITY

while the generators of the second SU(2)× U(1) are given by

Qa2 =

(
03×3 0

0 −σa∗/2

)
, Y2 = diag(2, 2, 2,−3,−3)/10. (80)

The linear combination Qa1 + Qa2 satisfies eq.(75), and generates the unbroken symmetry that we
identify as SU(2)W of the SM. Now, the linear combination Y1 +Y2 satisfies eq.(75) too, and generates
the unbroken symmetry that we identify as U(1)Y . The orthogonal combinations are a subset of the
broken generator, i.e., {Qa1 − Qa2, Y1 − Y2} ⊂ {X̂a}. The vacuum breaks the [SU(2) × U(1)]2 gauge
symmetry down to the diagonal subgroup, giving one set of [SU(2) × U(1)] gauge bosons masses of
order of f , while the other set members are left massless at the scale f , and are identified as the
[SU(2)L × U(1)Y ] gauge fields of the SM.

T-parity is a natural symmetry of most little Higgs models (those that are product group models)
where SM particles are even under this symmetry (T-even), while the new particles at the TeV scale
are odd (T-odd). T-parity explicitly forbids any tree-level contributions from the heavy gauge bosons
to the observables involving only SM particles as external states, as a result, the corrections to EWPO
are generated exclusively at loop level. This implies that the constraints are generically weaker than
in the Little Higgs models without this symmetry since the most serious constraints resulted from the
tree-level corrections to EWPO throught to the exchange of heavy gauge bosons. In other words, when
we introduced T-parity, we eliminate the tree-level electroweak precision constraints that the Littlest
Higgs model has: because the external states in all experimentally tested processes are T-even, there
is no T-odd state that can contribute to such processes at tree-level.

Using eqs.(75) and (76), a natural action of T-parity on the gauge fields is defined as

G1 ↔ G2, (81)

its action on the gauge fields Gi exchanges the two gauge groups SU(2)i ×U(1)i. Then, T invariance
requires that the gauge couplings associated to both factors are equal, leading to the Gauge Lagrangian

LG =
2∑
j=1

[
−1

2
Tr
(
W̃jµνW̃

µν
j

)
− 1

4
BjµνB

µν
j

]
, (82)

where

W̃jµ = W a
jµQ

a
j , W̃jµν = ∂µW̃jν − ∂νW̃jµ − ig

[
W̃jµ, W̃jν

]
, Bjµν = ∂µBjν − ∂νBjµ. (83)

As mentioned earlier, the combination {Qa1 + Qa2, Y1 + Y2} generates the SM gauge group. The
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3 LITTLEST HIGGS MODEL WITH T-PARITY

SM gauge bosons are the T-even combinations multiplying the unbroken gauge generators,

W± =
1

2

[(
W 1

1 +W 1
2

)
∓ i
(
W 2

1 +W 2
2

)]
, W 3 =

W 3
1 +W 3

2√
2

, B =
B1 +B2√

2
, (84)

whereas the heavy gauge bosons are the T-odd combinations

W±H =
1

2

[(
W 1

1 −W 1
2

)
∓ i
(
W 2

1 −W 2
2

)]
, W 3

H =
W 3

1 −W 3
2√

2
, BH =

B1 −B2√
2

. (85)

The eqs.(84) and (85) are computed in Appendix B.
Recalling that the heavy particles are T-odd and all SM particles are T-even, we have to impose

an extra transformation rule for the scalar sector. In order to ensure that the SM Higgs doublet is
T-even and the remaining Goldstone fields are T-odd, the T action on the scalar fields is defined as
follows,

Π
T−→ Π̂ = −ΩΠΩ, Ω = diag(−1,−1, 1,−1,−1), (86)

where Ω is an element of the center of the gauge group which commutes with Σ0

Π̂ =


−χ− η

2
√

5
h√
2

−φ
h†√

2
− 2η√

5
hT√

2

−φ† h∗√
2
−χT − η

2
√

5

 , (87)

if we compared the eq.(87) with the eq.(78), we can see that the SM Higgs doublet keeps its parity.
Then,

Σ
T−→ Σ̃ = Σ0ΩΣ†ΩΣ0. (88)

We know that Σ = e2iΠ/fΣ0, and since χ and η are the Goldstone bosons which are eaten to become
the longitudinal modes of the partners of the SM gauge fields, we have

Π =


0 h√

2
φ

h†√
2

0 hT√
2

φ† h∗√
2

0

 , (89)

expanding Σ until order of 1
f2

Σ =

(
I +

2i

f
Π− 2

f2
Π2 + . . .

)
Σ0

= Σ0 +
2i

f


φ h√

2
0

h†√
2

0 hT√
2

0 h∗√
2

φ†

− 1

f2

 hTh
√

2φh∗ h†h+ 2φφ†√
2h†φ 2hTh∗

√
2hTφ†

2φ†φ+ hTh∗
√

2φ†h h†h∗

+O
(

1

f3

)
.

(90)
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Now, including the EWSB, the vacuum expectation values of h and φ are [20]

〈h〉0 =
1√
2

(
0

υh

)
, 〈φ〉0 =

(
0 0

0 0

)
, (91)

where υh = 246 GeV is the EWSB scale and h is the physical Higgs field. Thus, considering the
eq.(91), the eq.(89) transforms as

Π =
1√
2


0 0 0 0 0

0 0 υh 0 0

0 υh 0 0 υh

0 0 0 0 0

0 0 υh 0 0

 . (92)

Then, including the EWSB effects, the vev of the Σ field has the form [22]

Σ = exp


i
√

2

f


0 0 0 0 0

0 0 υh 0 0

0 υh 0 0 υh

0 0 0 0 0

0 0 υh 0 0




Σ0 =



0 0 0 1 0

0 −1
2 (1− cυ) i√

2
sυ 0 1

2 (1 + cυ)

0 i√
2
sυ cυ 0 i√

2
sυ

1 0 0 0 0

0 1
2 (1 + cυ) i√

2
sυ 0 −1

2 (1− cυ)


, (93)

where

sυh = sin

(√
2υh
f

)
, cυh = cos

(√
2υh
f

)
. (94)

The scalar Lagrangian of the gauged theory is obtained from the non-linear σ model field Σ in the
Littlest Higgs

LS =
f2

8
Tr[(DµΣ)(DµΣ)†], (95)

where

DµΣ = ∂µΣ− i
2∑
j=1

[
gjW

a
j

(
QajΣ + ΣQaTj

)
+ g′jBj

(
YjΣ + ΣY T

j

)]
. (96)

In the above equation, the Qj and Yj are the gauged generators, W a
j and Bj are the SU(2)j and

U(1)j gauge fields, respectively, and gj and g′j are the corresponding coupling constants. We know
that the T-parity exchanges the two gauge groups as we can see from eq.(81), i.e., under this T-parity
the gauge bosons and the [SU(2)× U(1)]j generators change as

W a
1 ↔W a

2 , B1 ↔ B2, Qa1 ↔ Qa2, Y1 ↔ Y2. (97)
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Because the Lagrangian LS is T-even, from the eqs.(96) and (97) it is easy to see that

g1 =g2 =
√

2gW , g′1 = g′2 =
√

2g′, (98)

where gW is the SU(2)W coupling constant and g′ is the U(1)Y coupling constant.
Then, the eq.(96) looks as

DµΣ = ∂µΣ− i
√

2

2∑
j=1

[
gWW

a
j

(
QajΣ + ΣQaTj

)
+ g′Bj

(
YjΣ + ΣY T

j

)]
. (99)

Under T-parity, the relevant term for calculating the mass of gauge bosons is∣∣∣∣∣∣−i√2

2∑
j=1

[
gWW

a
j

(
Qaj Σ̃ + Σ̃QaTj

)
+ g′Bj

(
YjΣ̃ + Σ̃Y T

j

)]∣∣∣∣∣∣
2

. (100)

We have, to lowest order, Σ̃ = Σ0, in the gauge sector before EWSB, there is a linear combination
of gauge bosons that acquire a mass of order f , from eq.(100)(

W a
L

W a
H

)
=

1√
2

(
1 1

1 −1

)(
W a

1

W a
2

)
,(

BL

BH

)
=

1√
2

(
1 1

1 −1

)(
B1

B2

)
.

(101)

From eq.(101) we see the SM light gauge bosons are W a
L and BL. At this stage, they are massless

and T-even, while the heavy gauge bosons are W a
H and BH , they are T-odd and massive. After high

energy symmetry breaking, their masses are [23]

MWa
H

= gW f, MBH =
g′f√

5
. (102)

In Appendix C, we computed the masses of gauge bosons.
Now, considering the EWSB effects of order (υh/f)2, the Σ field according to eq.(93) is

Σ =


0 0 0 1 0

0 −ε2/2 −iε 0 1− ε2/2
0 iε 1− ε2 0 iε

1 0 0 0 0

0 1− ε2/2 iε 0 −ε2/2

 , (103)

with ε = υh
f .

When we include the EWSB effects, the LHT model must reproduce the SM gauge bosons, i.e.,

23



3 LITTLEST HIGGS MODEL WITH T-PARITY

W±, Z and A bosons have to appear. Moreover, the masses of the heavy sector will have small
corrections of order υ2

f2 .
We are separating explicitly the third components, W 3

1 and W 3
2 , which is convenient, because in

the Scalar Lagrangian of order υ2

f2 , this component has a different transformation. Now, we split W a
1

and W a
2 , a = 1, 2.

The Scalar Lagrangian, with EWSB effects is explicitly

LS =
f2g2

W

4

[
−ε

4

6
W a

1W
a
2 + ε2W a

1W
a
2 + (W a

1 −W a
2 )2

]
+
f2g2

W

4

[
ε4

8

((
W 3

1 −W 3
2

)2 − 1

4
W 3

1W
3
2

)
+ ε2W 3

1W
3
2 +

(
W 3

1 −W 3
2

)2]
+
f2g′2

4

[
ε4
(

1

8

(
B2

1 +B2
2

)
− 5

12
B1B2

)
+ ε2B1B2 +

1

5
(B1 −B2)2

]
+
f2gW g

′

4

[
ε4

4

(
−
(
W 3

1 −W 3
2

)
(B1 −B2) +

2

3

(
B1W

3
2 +B2W

3
1

))
− ε2

(
B1W

3
2 +B2W

3
1

)]
.

(104)

Also we are considering the crossed terms of Wj and Bj in the Scalar Lagrangian. We can see
in the Scalar Lagrangian, the terms W 3

j are separated explicitly of the terms W 1
1 , W 2

1 , W 1
2 and W 2

2 ,
moreover W 3

j is the only component of W a
1 and W a

2 that mixes with the Bj bosons.
Finally, the Scalar Lagrangian for the light and heavy gauge bosons sector is

LS =
1

2

[
g2
Wυ

2
h

4

(
1−

υ2
h

6f2

)]
W+
LW

−
L

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
W+
HW

−
H

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
(ZH)2

+
1

2

[
f2g′2

5

(
1−

5υ2
h

4f2

)]
(AH)2

+
1

2

[
g2
Wυ

2
h

4 cos2 θW

(
1−

υ2
h

6f2

)]
Z2
L.

(105)

The light gauge sector includes the W±L , ZL, and AL bosons, that we identify as the SM gauge
bosons with masses

MW±L
=
gWυh

2

(
1−

υ2
h

6f2

)1/2

≈ gWυh
2

(
1−

υ2
h

12f2

)
,

MZL =
gWυh

2 cos θH

(
1−

υ2
h

6f2

)1/2

=
MW±L

cos θW
,

MAL = 0,

(106)
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and the mass of the heavy bosons are

MW±H
= MZH = fgW

(
1−

υ2
h

4f2

)1/2

≈ fgW
(

1−
υ2
h

8f2

)
,

MAH =
fg′√

5

(
1−

5υ2
h

4f2

)1/2

≈ fg′√
5

(
1−

5υ2
h

8f2

)
.

(107)

In Appendix C, we show the process to obtain their masses.

3.3 Fermion Sector

The LHT must implemented in the fermion sector, too. We would like to introduce SM fermions that
transform linearly under the gauge symmetries to avoid large contributions to four fermion operators
that would require the scale f to be large. As we have seen before, T-parity exchanges SU(2)1 and
SU(2)2, so one must introduce two doublets ψ1, and ψ2, which transform linearly under SU(2)1 and
SU(2)2 respectively, i.e., for each SM SU(2)L doublet, a doublet under SU(2)1 and one under SU(2)2

are introduced. The T-even combination is associated with the SM SU(2)L doublet while the T-odd
combination is given a mass of order the breaking scale f .

For each lepton/quark doublet, embedding is possible in incomplete representations Ψ1, Ψ2 of the
global SU(5) symmetry. An additional set of fermions forming a T-odd SO(5) multiplet ΨR, which
is right-handed and transforms non-linearly under the full SU(5), is introduced to give mass to the
extra fermions; the field content can be expressed as follows [22,24]

Ψ1 =

 ψ1

0

0

 , Ψ2 =

 0

0

ψ2

 , ΨR =

 ψ̃cR
χR

ψR

 , (108)

with χR is a lepton singlet and ψi for each SM left-handed lepton doublet is [25]

ψi(R) = −iσ2liL(R) = −iσ2

(
νiL(R)

`iL(R)

)
, i = 1, 2, (109)

and for left-handed quarks doublet [24]

ψi(R) = −iσ2qi(R) = −iσ2

(
uiL(R)

diL(R)

)
, i = 1, 2. (110)

Also ψ̃cR has the form as the eqs. (109) and (110), with the difference that there are right-handed
and heavy fermions: `HR, uHR, and dHR. The extra doublet ψR, is assumed to be heavy enough to
agree with EWPD, is T-odd as desired, and the gauge singlet χR completes the SO(5) representation.
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These fields transform under SU(5) as follows

Ψ1 → V ∗Ψ1, Ψ2 → VΨ2, ΨR → UΨR, (111)

where U = exp (iua (Π, V )T a) [26] belongs to the unbroken SO(5) and is a non-linear representation
of the SU(5), the function ua depends on the Goldstone fields Π and the SU(5) rotation V in a
non-linear way.

Under the action of T-parity on the multiplets, one has

Ψ1 ↔ ΩΣ0Ψ2, ΨR → ΩΨR. (112)

We desire that Ψ interacted with other fields which obey linear transformations laws, so we intro-
duce a field ξ = exp (iΠ/f). In terms of ξ the field Σ can be expressed as Σ = ξ2Σ0, and from the
linear transformation of Σ, we have that, by action of T-parity,

ξ
T−→ Ωξ†Ω, (113)

with invariance under global transformation,

Σ = ξ2Σ0 → V ΣV T , ξ → V ξU † = UξΣ0V
TΣ0. (114)

Recalling that the T-even combination of ψ1 and ψ2 are the SM electroweak lepton and quark
doublets, while T-odd combination is given a Dirac mass of order O(f) with the ψ̃c through the
following non-linear Yukawa Lagrangian

LYH = −κf
(

Ψ2ξ + Ψ1Σ0ξ
†
)

ΨR − κ2ΨLΨR −MΨχ
LΨR + h.c.

= −κf
(

Ψ2ξ + Ψ1Σ0ξ
†
)

ΨR − κ2ψ̃cLψ̃
c
R −MχLχR + h.c. (115)

where we included two incomplete SO(5) multiplets, defined as [23,27,51]

ΨL =

 ψ̃cL
0

0

 , Ψχ
L =

 0

χL

0

 , with ΨL
T−→ ΩΨL, and Ψχ

L
T−→ ΩΨχ

L. (116)
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Since we want to calculate first the mass of order O(f) we can approach ξ = exp (iΠ/f) ≈ I, then

LYH = −κf
(

Ψ̄2ξ + Ψ̄1Σ0ξ
†
)

ΨR

≈ −κf
(
Ψ̄2 + Ψ̄1Σ0

)
ΨR

= −κf

( 0 0 ψ̄2

)
+
(
ψ̄1 0 0

) 0 0 1

0 1 0

1 0 0


ΨR

= −κf
(

0 0 ψ̄2 + ψ̄1

) ψ̃cR
χR

ψR


= −κf

(
ψ̄1 + ψ̄2

)
ψ̃cR,

(117)

we defined the T-odd combination as

ψH =
1√
2

(ψ1 + ψ2) , (118)

and the T-even combination given by

ψSM =
1√
2

(ψ1 − ψ2) . (119)

Then,

LYH =
√

2κ1fψ̄H ψ̃R + κ2ΨT
RΨR + h.c. (120)

As we can see from the eq. (120), the Yukawa Lagrangian gives a Dirac mass M− =
√

2κ1f to the
T-odd combination ψH , together with ψ̃cR, and a mass κ2 to the Dirac pair from ΦR. The T-even
combination ψSM remains massless and is identified with the SM lepton or quark doublet.

If now we consider EWSM effects of order (υh/f)2 the field ξ is

ξ ≈



1 0 0 0 0

0 1− υ2
h

8f2
iυh
2f 0 − υ2

h
8f2

0 iυh
2f 1− υ2

h
4f2 0 iυh

2f

0 0 0 1 0

0 − υ2
h

8f2
iυh
2f 0 1− υ2

h
8f2


, (121)
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and considering as ψ̃cR = −iσ2q̃cL and q̃cL =
(
ũcL d̃cL

)T
, then

Ψ1 =


−d1L

u1L

0

0

0

 , Ψ2 =


0

0

0

−d2L

u2L

 , ΨR =


−d̃cR
ũcR
χR

−dcL
ucL

 , (122)

thus, introducing the above matrix and these multiplets in the Yukawa Lagrangian we have among
other terms

LYH = κ1fd
c
L

(
d̄1L + d̄2L

)
+ κ1fu

c
L (ū1L + ū2L)

(
1−

υ2
h

8f2

)
− κ1fu

c
R (ū1L + ū2L) + · · · , (123)

defining the T-odd combinations as

uH =
1√
2

(u1L + u2L) , dH =
1√
2

(d1L + d2L) , (124)

the Yukawa Lagrangian is written as

LYH =
√

2κ1fd̄Hd
c
L +
√

2κ1fūHu
c
L

(
1−

υ2
h

8f2

)
−
√

2κ1fu
c
RuH + · · · . (125)

After EWSB, a small mass splitting between the T-odd up and down-type quarks is induced, and
their masses are [28]

muH =
√

2κ1f

(
1−

υ2
h

8f2

)
,

mdH =
√

2κ1f.

(126)

The Yukawa Lagrangian LYH fixes the transformation properties of the heavy fermions including
their gauge couplings, even more, the non-linear couplings of the right-handed heavy fermions are
fixed to be [29] (we change the signs of the second line from eq.(127) and the covariant derivative from
eq.(128) in order to obtain the SM couplings)

LYH = iΨ1γ
µD∗µΨ1 + iΨ2γ

µDµΨ2

+ iΨ
c
Rγ

µ

(
∂µ− 1

2
ξ† (Dµξ)−

1

2
ξ
(

Σ0D
∗
µΣ0ξ

†
))

Ψc
R

+ Ψc
R → Ψc

L,

(127)
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with the covariant derivative defined as

Dµ = ∂µ −
√

2igW
(
W a

1µQ
a
1 +W a

2µQ
a
2

)
−
√

2ig′ (Y1B1µ + Y2B2µ) . (128)

In order to assign the proper SM hypercharge y = −1 to the charged right-handed leptons `R, which
are SU(5) singlets and T-even, the corresponding gauge and T-invariant Lagrangian is similar to the
SM one

L′F = i`Rγ
µ
(
∂µ + ig′yBµ

)
`R. (129)

3.4 Top Sector

In order to avoid dangerous contributions to the Higgs mass from one loop quadratic divergences, the
third generation Yukawa sector must be modified. The Ψ1 and Ψ2 multiplets for the third generation
must be completed to representations of the SU(3)1 (upper-left corner) and SU(3)2 (lower-right
corner) subgroups of SU(5). These multiplets are (we change the notation ULi → t′Li and URi → t′Ri)
[22]

Q1 =

 q1

t′L1

0

 , Q2 =

 0

t′L2

q2

 , (130)

they obey the same transformation laws under T-parity and the SU(5) symmetry as Ψ1 and Ψ2. The
quark doublets are embedded such that

qi = −σ2

(
uLi

bLi

)
. (131)

In addition to the SM right-handed top quark field u3R, which is assumed to be T-even, the model
contains two SU(2)L-singlet fermions t′R1 and t′R2 of hypercharge 2/3, which transform under T-parity
as

t′R1 ↔ −t′R2. (132)

The top Yukawa couplings arise from the Lagrangian of the form

Lt =
1

2
√

2
λ1fεijkεxy

[(
Q1

)
i
(Σ)jx (Σ)ky −

(
Q2Σ0

)
i
(Σ̃)jx(Σ̃)ky

]
u3R

+ λ2f
(
t
′
L1t
′
R1 + t

′
L2t
′
R2

)
+ h.c. ,

(133)

where Σ̃ = Σ0ΩΣ†ΩΣ0, is the image of Σ under T-parity and the indices i, j = 1, 2, 3 and x, y = 4, 5.
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The T-parity eigenstates are

q± =
1√
2

(q1 ∓ q2) , t′L± =
1√
2

(
t′L1 ∓ t′L2

)
, t′R± =

1√
2

(
t′R1 ∓ t′R2

)
. (134)

Thus, the Lagrangian is

Lt = λ1f

(
1

2
(1 + cυ) t

′
L+ +

sυ√
2
ūL+

)
u3R + λ2f

(
t
′
L+t
′
R+ + t

′
L−t
′
R−

)
+ h.c. (135)

The T-odd states t′L− and t′R− combine to form a Dirac fermion T−, with mass MT− = λ2f .
We can see that the T-odd top sector does not mix with the T-even heavy and the T-even SM top
quark. The mass terms for the T-even states are diagonalized by [22]

tL = cosβuL+ − sinβt′L+, tR = cosαu3R − sinαt′R+, (136)

TL+ = sinβuL+ + cosβt′L+, TR+ = sinαu3R + cosαt′R+, (137)

where t is identified with the SM top and T+ is its T-even heavy partner.
The masses of the two T-even Dirac fermios to leading order in (υh/f) [22] read

mt =
λ1λ2υh√
λ2

1 + λ2
2

, mT+ =
√
λ2

1 + λ2
2f. (138)

As the Yukawa couplings of the other SM quarks are small, there is no need to introduce additional
heavy partners to cancel their quadratically divergent contribution of the Higgs mass. Then the
Yukawa coupling for the other up-type and down-type fermions is given by

Lup = − 1

2
√

2
λufεijkεxy

[(
Q1

)
i
(Σ)jx (Σ)ky −

(
Q2Σ0

)
i
(Σ̃)jx(Σ̃)ky

]
uR + h.c.,

Ldown =
iλd

2
√

2
fεijεxyz

[(
Ψ2

)
x

(Σ)iy (Σ)jzX −
(
Ψ1Σ0

)
x

(Σ̃)iy(Σ̃)jzX̃
]
dR + h.c.,

(139)

and their masses are [24]

mi
u = λiuυh

(
1−

υ2
h

3f2

)
,

mj
d = λjdυh

(
1−

υ2
h

12f2

)
,

(140)

with i = 1, 2 and j = 1, 2, 3.
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4 Generic New Physics contributions to LFV processes

As we know, the SM contributions to the LFV processes like µ→ eγ and µ→ eee are negligible since
they are proportional to the observed neutrino masses [13, 14, 30–32]. Nevertheless, the new LHT
contributions shall be considered and they will generally give branching ratios only slightly below
than current upper limits. One expects that the dominant contributions come from the exchange of
the new vector bosons and heavy fermions required to realize the discrete symmetry T that allows
the Littlest Higgs Model to remain viable with a typical mass scale accessible to LHC. In this section
we will discuss generic contributions to the LFV processes that will be studied in this Ph. D. Thesis.
The following material was published in the article [33].
Two types of diagrams contribute to µ → eee 1, which are shown in Figure 5. In the diagrams of

Figure 5: Generic penguin and box diagrams for µ→ eee.

penguin type the exchanged vector boson can be a γ or a Z but not a heavy vector boson because
the coupling is forbidden by T -parity. The amplitude for this process also receives contributions from
box diagrams. The total amplitude for µ(p)→ e(p1)e(p2)e(p3) can be written [25]

M =Mγ−penguin +MZ−penguin +Mbox, (141)

with

Mγ−penguin =
e2

Q2
u(p1)[Q2γµ(AL1PL +AR1 PR) +mµiσ

µνQν(AL2PL +AR2 PR)]u(p)

× u(p2)γµυ(p3)− (p1 ↔ p2),

(142)

MZ−penguin =
e2

M2
Z

u(p1)[γµ(FLPL + FRPR)]u(p)u(p2)[γµ(ZeLPL + ZeRPR)]υ(p3)

− (p1 ↔ p2),

(143)

1We do not discuss in detail µ→ eγ or Z → µē, which can be seen as building blocks of the µ→ eeē decays.
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Mbox = e2BL
1 [u(p1)γµPLu(p)][u(p2)γµPLυ(p3)]

+ e2BR
1 [u(p1)γµPRu(p)][u(p2)γµPRυ(p3)]

+ e2BL
2 {[u(p1)γµPLu(p)][u(p2)γµPRυ(p3)]− (p1 ↔ p2)}

+ e2BR
2 {[u(p1)γµPRu(p)][u(p2)γµPLυ(p3)]− (p1 ↔ p2)}

+ e2BL
3 {[u(p1)PLu(p)][u(p2)PLυ(p3)]− (p1 ↔ p2)}

+ e2BR
3 {[u(p1)PRu(p)][u(p2)PRυ(p3)]− (p1 ↔ p2)}

+ e2BL
4 {[u(p1)σµνPLu(p)][u(p2)σµνPLυ(p3)]− (p1 ↔ p2)}

+ e2BR
4 {[u(p1)σµνPRu(p)][u(p2)σµνPRυ(p3)]− (p1 ↔ p2)}.

(144)

We have defined new vertex form factors in the penguin amplitudes

AL,R1 = F γL,R/Q
2, AL,R2 = (F γM ± iF

γ
E)/mµ, FL,R = −FZL,R, (145)

and used that Q2 �M2
Z in Eq. (143). ZeL,R are the corresponding Z couplings to the electron in the

SM. The dipole form factors FZM,E are dropped from the amplitude because their contributions are
effectively suppressed by a factor m2

µ/M
2
WH

. Then, the total width can be written as [25]

Γ(µ→ eeē) =
α2m5

µ

32π

[
|AL1 |2 + |AR1 |2 − 2(AL1A

R∗
2 +AL2A

R∗
1 + h.c.)

+ (|AL2 |2 + |AR2 |2)

(
16

3
ln
mµ

me
− 22

3

)
+

1

6
(|BL

1 |2 + |BR
1 |2) +

1

3
(|BL

2 |2 + |BR
2 |2)

+
1

24
(|BL

3 |2 + |BR
3 |2) + 6(|BL

4 |2 + |BR
4 |2)− 1

2
(BL

3 B
L∗
4 +BR

3 B
R∗
4 + h.c.)

+
1

3
(AL1B

L∗
1 +AR1 B

R∗
1 +AL1B

L∗
2 +AR1 B

R∗
2 + h.c.)

− 2

3
(AR2 B

L∗
1 +AL2B

R∗
1 +AL2B

R∗
2 +AR2 B

L∗
2 + h.c.)

+
1

3

{
2(|FLL|2 + |FRR|2) + |FLR|2 + |FRL|2

+ (BL
1 F
∗
LL +BR

1 F
∗
RR +BL

2 F
∗
LR +BR

2 F
∗
RL + h.c.) + 2(AL1F

∗
LL +AR1 F

∗
RR + h.c.)

+ (AL1F
∗
LR +AR1 F

∗
RL + h.c.)− 4(AR2 F

∗
LL +AL2F

∗
RR + h.c.)

− 2(AL2F
∗
RL +AR2 F

∗
LR + h.c.) } ] .

(146)

We are going to develop each term of the total amplitude explicitly.
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4.1 Mγ−penguin contribution

The total amplitude is given by Eq. (141)

M =Mγ−penguin +MZ−penguin +Mbox,

so, the total width is

Γ(µ→ eee) = |Mγ−penguin|2 + |MZ−penguin|2 + |Mbox|2

+Mγ−penguinM†Z−penguin +Mγ−penguinM†box +MZ−penguinM†box + h.c.
(147)

From the Eq. (142), writing the second term explicitly

Mγ−penguin =
e2

Q2
u(p1)[Q2γµ(AL1PL +AR1 PR) +mµiσ

µνQν(AL2PL +AR2 PR)]u(p)× u(p2)γµυ(p3)

− (p1 ↔ p2),

(148)

where Q and R are the vector bosons momenta entering the vertex. They are defined as Q = p− p1,
and R = p − p2. |Mγ−penguin|2 has terms whose behaviors are 1

Q2 , 1
R2 , 1

Q2R2 , 1
Q4 , and 1

R4 . We will
study them in two parts: the first three of them do not have any problems and their computation is
direct, but in the last ones we need to proceed carefully because they are divergent.
Then, we can write |Mγ−penguin|2 as follows

|Mγ−penguin|2 = Λ1

(
1

Q2
,

1

R2

)
+ Λ2

(
1

Q2R2
,

1

Q4
,

1

R4

)
. (149)

Although Λ1 depends on 1
Q2 and 1

R2 , it is possible to remove them if we consider me = 0. Hence,
Q2 = 2(p2 · p3) and R2 = 2(p1 · p3). Developing Λ1 we obtain

Λ1 = 16e4
(
|AL1 |2 + |AR1 |2

)
[4(p · p3)(p1 · p2) + (p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

− 8e4m2
µ

(
AR2 A

L∗
1 +AL1A

R∗
2 +AL2A

R∗
1 +AR1 A

L∗
2

)
[4(p1 · p2) + (p1 · p3) + (p2 · p3)] .

(150)

Λ2 is expressed as the sum of three contributions

Λ2

(
1

Q2R2
,

1

Q4
,

1

R4

)
= Λ21

(
1

Q4

)
+ Λ22

(
1

R4

)
+ Λ23

(
1

Q2R2

)
. (151)
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Λ2 is more difficult than Λ1, since if we consider me = 0, Λ2 is divergent, then now we must take
massive electrons. The first term of the Eq. (151) is

Λ21 = 16
m2
µe

4

Q4

(
|AL2 |2 + |AR2 |2

) [
m2
e (2(p · p3)(p1 · p3)− (p · p1)(p2 · p3)) + 2(p · p2)(p1 · p2)

]
− (p · p1)m4

e + 2(p2 · p3) [(p · p2)(p1 · p2) + (p · p3)(p1 · p3)] ,

(152)

here, as Q = p− p1 is comparable with me since the photon is massless, e(p1) is considered massless
too and the e(p2)e(p3) pair is massive. The same happens to Λ22, because we just change (p1 ↔ p2)

Λ22 = 16
m2
µe

4

R4

(
|AL2 |2 + |AR2 |2

) [
m2
e (2(p · p3)(p2 · p3)− (p · p2)(p1 · p3)) + 2(p · p1)(p1 · p2)

]
− (p · p2)m4

e + 2(p1 · p3) [(p · p1)(p1 · p2) + (p · p3)(p2 · p3)] .

(153)

In Λ23 the term 1
Q2R2 appears, so it is necessary to consider now e(p1),e(p2) massless and e(p3) massive

Λ23 = 4
m2
µe

4

Q2R2

(
|AL2 |2 + |AR2 |2

) (
−8(p · p3)(p1 · p2)2 + 8(p · p2)(p1 · p3)(p1 · p2) + 8(p · p1)(p2 · p3)(p1 · p2)

+m2
e [4(p · p1)(p1 · p2)− 4(p · p2)(p1 · p2)− 5(p · p3)(p1 · p2) + (p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

)
.

(154)

The photon penguin contribution to the µ→ 3e decay width is given by

Γγ−penguin =
1

2mµ

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3
(2π)4δ(4)(p−p1−p2−p3)×1

2
×1

2

∑
spin

|Mγ−penguin|2.

(155)
We have added 1/2 twice explicitly, one comes from the two indistinguishable electrons in the final
state, and the other one because the initial state is a muon, with two possible polarizations.
Before starting, an important tool that will help us for analyzing the photon penguin contribution to
the µ→ 3e decay width is to solve the next type of integral

∆ =
e4

8(2π)5mµ

∫
d3pj
2Ej

∫
d3pk
2Ek

∫
d3pl
2El

δ(4)(pi − pj − pk − pl)×G(pi · pj)(pk · pl), i 6= j 6= k 6= l,

(156)

where G is a constant and the e4 factor is extracted from the |Mγ−penguin|2.
For this integral we are assuming that me = 0 and taking the particular case

pi = p, pj = p3, pk = p1, pl = p2 , (157)
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with
p2 = m2

µ, p2
1 = p2

2 = p2
3 = 0. (158)

Then

∆ =
Ge4

8(2π)5mµ

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E3
δ(4)(p− p1 − p2 − p3)× (p · p3)(p1 · p2), (159)

making q = p− p2 = p1 + p3, we can write (159) as

∆ = G

∫
d3p2

2E2
pλpσ2Iλσ(q), (160)

with

Iλσ(q) =

∫
d3p1

2E1

∫
d3p3

2E3
δ(4)(q − p1 − p3)p1σp3λ, (161)

Iλσ is a rank-2 tensor and can depend only on the 4-vector q. So the most general form for Iλσ can
be written as [9]

Iλσ(q) = Aq2gλσ +Bqλqσ. (162)

Multiplying by gλσ the Eqs. (161) and (162) and matching them

(4A+B)q2 =

∫
d3p1

2E1

∫
d3p3

2E3
δ(4)(q − p1 − p3)(p1 · p3). (163)

Now contracting the two equations with qλqσ, and as p2
1 = p2

3 = 0

(A+B)q4 =

∫
d3p1

2E1

∫
d3p3

2E3
δ(4)(q − p1 − p3)(p1 · p3)2. (164)

Eqs. (163) and (164) have Lorentz invariant quantities on both sides, so we can choose any frame for
evaluating these integrals. The convenient frame is COM, where

p− p2 = 0 = p1 + p3, (165)

since me = 0,
E1 = E3 = |~p1| = |~p3| = k, (166)

(p1 · p3)COM = k2 − ~p1 · ~p3 = k2 + |~p1|2 = k2 + k2 = 2k2. (167)
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Thus, (163) can be written

(4A+B)q2
COM =

∫
d3p1

2E1

∫
d3p3

2E3
δ(4)(q − p1 − p3)(p1 · p3)COM

=

∫
d3p1

2k

∫
d3p3

2k
δ(q0 − 2k)δ(3)(~q − ~p1 − ~p3)2k2

=

∫
d3p1

2
δ(q0 − 2k)

=
1

4

∫
k2dkdΩδ(

q0

2
− k)

=
πq2

0

4
,

(168)

in the COM frame q = (q0,~0), then q2
COM = q2

0, in (168)

4A+B =
π

4
. (169)

For (164)

(A+B)q4
COM =

∫
d3p1

2E1

∫
d3p3

2E3
δ(4)(q − p1 − p3)(p1 · p3)2

COM

=
1

2

∫
k4dkdΩδ(

q0

2
− k)

=
πq4

0

8
,

(170)

thus,
A+B =

π

8
, (171)

solving the system of equations (169) and (171) we obtain A = π
24 and B = π

12 , substituting them in
(162)

Iλσ(q) =
π

24
(q2gλσ + 2qλqσ). (172)

The Eq. (160) takes the shape

∆ =
π

24
G

∫
d3p2

2E2
pλpσ2 (q2gλσ + 2qλqσ)

=
π

24
G

∫
d3p2

2E2
(q2(p · p2) + 2(p · q)(p2 · q)), q ≡ p− p2

=
π

24
G

∫
d3p2

2E2
((p2 + p2

2 − 2p · p2)(p · p2) + 2(p2 − p · p2)(p · p2 − p2
2)),

(173)

in the muon rest system
p = (mµ,~0) and p2 = (E2, ~p2), (174)
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thus,
p · p2 = mµE2, p2

2 = 0, p2 = m2
µ, (175)

so (173) results

∆ =
π

24
G

∫
d3p2

2E2
((m2

µ − 2mµE2)mµE2 + 2(m2
µ −mµE2)mµE2)

=
π

24
G

∫
d3p2

2E2
(3mµ − 4E2)m2

µE2

=
4m2

µπ
2

48
G

∫ mµ/2

0
dE2(3mµE

2
2 − 4E3

2).

(176)

The limits have been chosen as follows: the lower limit of the electron energy e(p2) can certainly be
zero if the e(p1)e(p3) pair carries the entire energy. The upper limit is obtained when the e(p1)e(p3)

pair is emitted in the same direction, opposite to the direction of the electron e(p2). In this case
p2 = p1 + p3, it implies that E2 = E1 + E3 and we are considering that me = 0. Furthermore,
mµ = E1 + E2 + E3 by conservation of energy, then substituting it in the above relation we obtain
E2 = mµ/2.
Integrating the Eq. (176), we obtain

∆ =
α2m5

µ

3072π
G. (177)

Another type of integral which will be of aid is

Ω =
e4

8(2π)5mµ

∫
d3pj
2Ej

∫
d3pk
2Ek

∫
d3pl
2El

δ(4)(pi − pj − pk − pl)×G(pj · pk), i 6= j 6= k 6= l, (178)

where G is a constant. We solve the case pi = p, pj = p1, pk = p2, and pl = p3 and p1, p2, p3 satisfy
that p2

1 = p2
2 = p2

3 = 0. Then

Ω =
Ge4

64(2π)5mµ

∫
d3p1

|~p1|

∫
d3p2

|~p2|

∫
d3p3

|~p3|
δ(4)(p− p1 − p2 − p3)(p1 · p2). (179)

Integrating on ~p3

Ω =
Ge4

64(2π)5mµ

∫
d3p1

|~p1|

∫
d3p2

|~p2|
1

|~p1 + ~p2|
δ(mµ − |~p1| − |~p2| − |~p1 + ~p2|)(p1 · p2). (180)

Defining u as follows
u ≡

√
|~p1|2 + |~p2|2 + 2|~p1||~p2|cosθ, (181)

and
d3p2 = 2π

u

|~p1|
|~p2|d|~p2|du, (182)
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substituting last two equations in (180)

Ω =
Ge4

64(2π)4mµ

∫
d3p1

|~p1|2

∫
d|~p2|duδ(mµ − |~p1| − |~p2| − u)(p1 · p2). (183)

We have that p = (mµ, 0) amd p = p1 + p2 + p3, then

p1 · p2 =
m2
µ

2
−mµ|~p3|. (184)

The limits for |~p2| are calculated from Eq. (181), since

u± = ||~p1| ± |~p2||, (185)

therefore
mµ

2
− |~p1| ≤ |~p2| ≤

mµ

2
and |~p1| ≤

mµ

2
. (186)

As d3p1 = 4π|~p1|2d|~p1|, and evaluating the integral on u the Eq. (183) is transformed in

Ω =
πG

16(2π)4mµ

∫ mµ/2

0
d|~p1|

∫ mµ/2

mµ/2−|~p1|
d|~p2|

(
−1

2
m2
µ +mµ|~p1|+mµ|~p2|

)
, (187)

finally we obtain

Ω =
α2m3

µ

768π
G. (188)

So, from the Eqs. (177) and (188) we can get the contribution to the width of the photon due to the
term Λ1

(
1
Q2 ,

1
R2

)

ΓΛ1 =
α2m5

µ

32π

[(
|AL1 |2 + |AR1 |2

)
− 2

(
AR2 A

L∗
1 +AL1A

R∗
2 +AL2A

R∗
1 +AR1 A

L∗
2

)]
. (189)

Now we are going to analyze the contribution of the Λ2

(
1

Q2R2 ,
1
Q4 ,

1
R4

)
term. In this case, we have

that
p = (mµ, 0), p1 = (|~p1|, ~p1), p2 = (|~p2|, ~p2), p1 = (E3, ~p3), (190)

then

ΓΛ2 =
1

8mµ

∫
d3p1

(2π)32|~p1|

∫
d3p2

(2π)32|~p2|

∫
d3p3

(2π)32E3
(2π)4δ(4)(p− p1 − p2 − p3)Λ2

(
1

Q2R2
,

1

Q4
,

1

R4

)
=

1

8mµ

∫
d3p1

(2π)32|~p1|

∫
d3p2

(2π)32|~p2|

∫
d3p3

(2π)32E3
(2π)4δ(4)(p− p1 − p2 − p3) (Λ21 + Λ22 + Λ23) .

(191)
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We integrate first the Λ21 term. In this case e(p1) is massless and e(p2)e(p3) are massive.

ΓΛ21 =
e4mµ(|AL2 |2 + |AR2 |2)

4(2π)5

∫
d3p1

|~p1|

∫
d3p2

E2

∫
d3p3

E3
δ(4)(p− p1 − p2 − p3)×G21, (192)

where

G21 =
1

(mµ − 2|~p1|)2

[
m3
µ

2
(E2 + E3)− 2m2

µE2E3 +mµ|~p1|
(
−m

2
e

2
−mµ(E2 + E3) + 4E2E3

)
+m2

e|~p1|2
]
.

(193)
Integrating on p3

ΓΛ21 =
e4mµ(|AL2 |2 + |AR2 |2)

4(2π)5

∫
d3p1

|~p1|

∫
d3p2

E2

1

E3
δ(mµ − |~p1| − E2 − E3)×G21, (194)

with ~p2
3 = (~p1 + ~p2)2, then

E3 =
√
|~p1 + ~p2|2 +m2

e =
√
|~p1|2 + |~p2|2 + 2|~p1||~p2|cosθ +m2

e ≡ u (195)

also we have that
d3p1 = 2π

u|~p1|
|~p2|

d|~p1|du, (196)

hence,

ΓΛ21 =
e4mµ(|AL2 |2 + |AR2 |2)

4(2π)5

∫
d3p2

|~p2|E2

∫
d|~p1|duδ(mµ − |~p1| − E2 − u)×G21|E3=u. (197)

The integration on u allows us to define the limits for |~p1|. These limits are given by

mµ(mµ − 2E2)

2(mµ − E2 +
√
E2

2 −m2
e)
≤ |~p1| ≤

mµ(mµ − 2E2)

2(mµ − E2 −
√
E2

2 −m2
e)
. (198)

Considering d3p2 = 4πE2|~p2|dE2 and the limits for E2 as (E2)min = me and (E2)max = mµ/2

ΓΛ21 =
e4mµ(|AL2 |2 + |AR2 |2)

4(2π)5

∫ mµ/2

me

dE2

∫ |~p1|+

|~p1|−
d|~p1| ×G21|u=mµ−| ~p1|−E2

. (199)

The integral (199) is solved by using Mathematica 10.0 [34].
ΓΛ22 is completely identical to ΓΛ21 because we just change (p1 ↔ p2) the physical argument is the
same.
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Now, we work with the last term

ΓΛ23 =
1

8mµ

∫
d3p1

(2π)32|~p1|

∫
d3p2

(2π)32|~p2|

∫
d3p3

(2π)32E3
(2π)4δ(4)(p− p1 − p2 − p3)× Λ23

=
e4(|AL2 |2 + |AR2 |2)

16(2π)5

∫
d3p1

|~p1|

∫
d3p2

|~p2|

∫
d3p3

E3
δ(4)(p− p1 − p2 − p3)×F

(200)

where

F =
1

(mµ − 2|~p1|)(mµ − 2|~p2|)
[
−8E3

(
A2 − 2AmµE3 +m2

µE
2
3

)
+ 8|~p2| (AB −BmµE3 +mµ|~p2|(mµE3 −A)) + +8|~p1| (AB −BmµE3 +mµ|~p1|(mµE3 −A))

+m2
e(|~p1|(4A− 4mµE3 +B)−mµ|~p1|2 + |~p2|(−4A−+4mµE3 +B)−mµ|~p2|2 − 5AE3 + 5mµE

2
3)
]
,

(201)

and A =
m2
µ+m2

e

2 and B =
m2
µ−m2

e

2 .
Integrating on p3

ΓΛ23 =
e4(|AL2 |2 + |AR2 |2)

16(2π)5

∫
d3p1

|~p1|

∫
d3p2

|~p2|
1

E3
δ(mµ − |~p1| − |~p2| − E3)×F, (202)

with |~p3|2 = |~p1 + ~p2|2, defining as

E3 =
√
|~p1 + ~p2|2 +m2

e =
√
|~p1|2 + |~p2|2 + 2|~p1||~p2|cosθ +m2

e ≡ u, (203)

d3p2 = 2π
u|~p2|
|~p1|

d|~p2|du, (204)

the Eq. (202) transforms to

ΓΛ23 =
e4(|AL2 |2 + |AR2 |2)

16(2π)4

∫
d3p1

|~p1|2

∫
d|~p2|duδ(mµ − |~p1| − |~p2| − u)×F|E3=u. (205)

From the Eq. (233) we can see that u± =
√
|~p1 + ~p1|2 +m2

e, therefore

m2
µ −m2

e − 2mµ|~p1|
2mµ

≤ |~p2| ≤
m2
µ −m2

e − 2mµ|~p1|
2(mµ − 2|~p1|)

, (206)

substituting d3p1 = 4π|~p1|2d|~p1| and the limits for |~p1| are (|~p1|)min = 0 and (|~p1|)max =
m2
µ−m2

e

2mµ
in

the Eq. (205)

ΓΛ23 =
πe4(|AL2 |2 + |AR2 |2)

4(2π)4

∫ m2
µ−m

2
e

2mµ

0
d|~p1|

∫ |~p2|+

|~p2|−
d|~p2| ×F|u=mµ−|~p1|−|~p2|. (207)
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The last integral was evaluated by Mathematica 10.0 [34].
Therefore, the total value of the contribution of ΓΛ2 is given by Eqs. (199) and (207)

ΓΛ2 = ΓΛ21 + ΓΛ22 + ΓΛ23 , (208)

omitting terms ∼ O(me) , we obtain

ΓΛ2 =
α2m5

µ

32π
(|AL2 |2 + |AR2 |2)

(
16

3
ln

(
mµ

me

)
− 26

3

)
. (209)

Finally the total contribution of |Mγ−penguin| is given by Eqs. (189) and (209)

Γγ−penguin =
α2m5

µ

32π

[
|AL1 |2 + |AR1 |2 − 2

(
AL1A

R∗
2 +AL2A

R∗
1 + h.c.

)
+(|AL2 |2 + |AR2 |2)

(
16

3
ln

(
mµ

me

)
− 26

3

)] (210)

In [25] the authors report the following result

Γγ−penguin =
α2m5

µ

32π

[
|AL1 |2 + |AR1 |2 − 2

(
AL1A

R∗
2 +AL2A

R∗
1 + h.c.

)
+(|AL2 |2 + |AR2 |2)

(
16

3
ln

(
mµ

me

)
− 22

3

)]
,

(211)

we realize that our results differ by 4/3 since we obtained 26/3 and in their result appears 22/3, it is
important to say that it is not really significant because the dominant term is the logarithm and we
have the same coefficient in that term 2.

4.2 MZ−penguin contribution

Now we analyze the Z-penguin contribution to the µ→ 3e decay width. From Eq. (143) the Z-penguin
contribution is written as

MZ−penguin =
e2

M2
Z

u(p1)[γµ(FLPL + FRPR)]u(p)u(p2)[γµ(ZeLPL + ZeRPR)]υ(p3)

− (p1 ↔ p2),

2We have nevertheless verified, using FORM [35], the correct coefficient of 22
3
.
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in this case we shall consider me = 0 because me � mµ. Hence,

|MZ−penguin|2 =
e4

M4
Z

[
64(|FL|2|ZeL|2 + |FR|2|ZeR|2)(p · p3)(p1 · p2)

+ 16(|FL|2|ZeR|2 + |FR|2|ZeL|2)(p · p1)(p2 · p3)

+ 16(|FL|2|ZeR|2 + |FR|2|ZeL|2)(p · p2)(p1 · p3) ] .

(212)

So, ΓZ−penguin is given by

ΓZ−penguin =
1

2mµ

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3
(2π)4δ(4)(p−p1−p2−p3)×1

4

∑
spin

|MZ−penguin|2.

(213)
Substituting the Eq. (212) in (213) the first term is

Λ1 = G

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E3
δ(4)(p− p1 − p2 − p3)× (p · p3)(p1 · p2), (214)

where G is

G =
8e4

(2π)5mµM4
Z

(|FL|2|ZeL|2 + |FR|2|ZeR|2). (215)

We recall that we have resolved this kind of integral before in Eq. (177), in this case G is given by
Eq. (215), therefore

Λ1 =
α2m5

µ

48π
(|FLL|2 + |FRR|2), (216)

where we have defined the following expressions

FLL =
FLZ

e
L

M2
Z

, FLR =
FLZ

e
R

M2
Z

, FRL =
FRZ

e
L

M2
Z

, FRR =
FRZ

e
R

M2
Z

. (217)

The second term in the Eq. (213) is

Λ2 =
e4

8(2π)5mµM4
Z

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E3
(2π)4δ(4)(p− p1 − p2 − p3)

× 16(|FL|2|ZeR|2 + |FR|2|ZeL|2)(p · p1)(p2 · p3),

(218)

using the Eq. (177) again, we obtain

Λ2 =
α2m5

µ

192π
(|FLR|2 + |FRL|2). (219)
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The last one in Eq. (213) is

Λ3 =
e4

8(2π)5mµM4
Z

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E3
(2π)4δ(4)(p− p1 − p2 − p3)

× 16(|FL|2|ZeR|2 + |FR|2|ZeL|2)(p · p2)(p1 · p3),

(220)

thus,

Λ3 =
α2m5

µ

192π
(|FLR|2 + |FRL|2). (221)

We sum the Eqs. (216), (219) and (221) to obtain the total contribution of Z-penguin

ΓZ−penguin =
α2m5

µ

32π

[
1

3

{
2(|FLL|2 + |FRR|2) + |FLR|2 + |FRL|2

}]
. (222)

4.3 Mbox contribution

This contribution is given by Eq. (144)

Mbox = e2BL
1 [u(p1)γµPLu(p)][u(p2)γµPLυ(p3)]

+ e2BR
1 [u(p1)γµPRu(p)][u(p2)γµPRυ(p3)]

+ e2BL
2 {[u(p1)γµPLu(p)][u(p2)γµPRυ(p3)]− (p1 ↔ p2)}

+ e2BR
2 {[u(p1)γµPRu(p)][u(p2)γµPLυ(p3)]− (p1 ↔ p2)}

+ e2BL
3 {[u(p1)PLu(p)][u(p2)PLυ(p3)]− (p1 ↔ p2)}

+ e2BR
3 {[u(p1)PRu(p)][u(p2)PRυ(p3)]− (p1 ↔ p2)}

+ e2BL
4 {[u(p1)σµνPLu(p)][u(p2)σµνPLυ(p3)]− (p1 ↔ p2)}

+ e2BR
4 {[u(p1)σµνPRu(p)][u(p2)σµνPRυ(p3)]− (p1 ↔ p2)}.

With aid of FeynCalc 9.2.0 [36] from the equation above we obtain

|Mbox|2 = 4e2
[
4(|BL

1 |2 + |BR
1 |2) + (|BL

3 |2 + |BR
3 |2) + 144(|BL

4 |2 + |BR
4 |2)

−12(BL
3 B

L∗
4 +BR

3 B
R∗
4 +BL

4 B
L∗
3 +BR

4 B
R∗
3 )
]

(p · p3)(p1 · p2)

+ 16e2(|BL
2 |2 + |BR

2 |2) [(p · p2)(p1 · p3) + (p · p1)(p2 · p3)] .

(223)

We can see that in the Eq. (223) the only contributing integrals are shown in the Eq. (156), therefore
the result is given by Eq. (177). According to the above, the contribution ofMbox is

Γbox =
α2m5

µ

32π

[
1

6
(|BL

1 |2 + |BR
1 |2) +

1

3
(|BL

2 |2 + |BR
2 |2) +

1

24
(|BL

3 |2 + |BR
3 |2)

+6(|BL
4 |2 + |BR

4 |2)− 1

2
(BL

3 B
L∗
4 +BR

3 B
R∗
4 + h.c.)

]
.

(224)
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4.4 Mγ−penguinM†
Z−penguin contribution

We recall the total width has interference terms like

Mγ−penguinM†Z−penguin + h.c. (225)

Since me �MZ , in the interferenceMγ−penguinM†Z−penguin we will consider me = 0.
Then

MZ−penguinM†γ−penguin = 64e4(FLLA
L∗
1 + FRRA

R∗
1 )(p · p3)(p1 · p2)

+ 16e4(FLRA
L∗
1 + FRLA

R∗
1 ) [(p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

− 32e4m2
µ(FRRA

L∗
2 + FLLA

R∗
2 )(p1 · p2)

− 8e4m2
µ(FRLA

L∗
2 + FLRA

R∗
2 ) [(p2 · p3) + (p1 · p3)] .

(226)

The result of this interference is obtained through the Eqs. (177) and (188) that we have computed
previously, just redefining the constants adequately. Hence

ΓZ−γ† =
α2m5

µ

32π

[
1

3

(
2(FLLA

L∗
1 + FRRA

R∗
1 ) + (FLRA

L∗
1 + FRLA

R∗
1 )

−4(FRRA
L∗
2 + FLLA

R∗
2 )− 2(FRRA

L∗
2 + FLLA

R∗
2 )
)]
.

(227)

AsMZ−penguinM†γ−penguin is the hermitian conjugate ofMγ−penguinM†Z−penguin, the total contribu-
tion to the µ→ 3e decay width of this interference is given by

Γ(γ−Z)−interference =
α2m5

µ

32π

[
1

3

(
2(AL1F

∗
LL +AR1 F

∗
RR + h.c.) + (AL1F

∗
LR +AR1 F

∗
RL + h.c.)

−4(AR2 F
∗
LL +AL2F

∗
RR + h.c.)− 2(AL2F

∗
RL +AR2 F

∗
LR + h.c.)

)]
.

(228)

4.5 Mγ−penguinM†
box contribution

Now, we are going to analyze the interference between γ-penguin and box diagrams, which is given
by

MboxM†γ−penguin = 32e4(AL1B
L∗
1 +AR1 B

R∗
1 )(p · p3)(p1 · p2)

+ 16e4(AL1B
L∗
2 +AR1 B

R∗
2 ) [(p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

− 16e4m2
µ(AL2B

R∗
1 +AR2 B

L∗
1 )(p1 · p2)

− 8e4m2
µ(AL2B

R∗
2 +AR2 B

L∗
2 ) [(p2 · p3) + (p1 · p3)] .

(229)
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Taking the results of the Eqs. (177) and (188), the contribution of the equation above is

Γbox−γ† =
α2m5

µ

32π

[
1

3

(
AL1B

L∗
1 +AR1 B

R∗
1 +AL1B

L∗
2 +AR1 B

R∗
2

)
−2

3

(
AL2B

R∗
1 +AR2 B

L∗
1 +AL2B

R∗
2 +AR2 B

L∗
2

)]
.

(230)

Also we need to add the hermitian conjugate ofMboxM†γ−penguin, therefore, the total contribution is

Γ(γ−box)−interference =
α2m5

µ

32π

[
1

3

(
AL1B

L∗
1 +AR1 B

R∗
1 +AL1B

L∗
2 +AR1 B

R∗
2 + h.c.

)
−2

3

(
AL2B

R∗
1 +AR2 B

L∗
1 +AL2B

R∗
2 +AR2 B

L∗
2 + h.c.

)]
.

(231)

4.6 MZ−penguinM†
box contribution

Finally, we are going to compute the last contribution to the µ→ 3e decay width which is given by

MZ−penguinM†box =e4
{

32FLLB
L∗
1 (p · p3)(p1 · p2) + 32FRRB

R∗
1 (p · p3)(p1 · p2)

+ 16FLRB
L∗
2 [(p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

+16FRLB
R∗
2 [(p · p2)(p1 · p3) + (p · p1)(p2 · p3)]

}
.

(232)

With the results of the Eqs. (177) and (188), we have that

ΓZ−box† =
α2m5

µ

96π

(
BL∗

1 FLL +BR∗
1 FRR +BL∗

2 FLR +BR∗
2 FRL

)
=
α2m5

µ

32π

[
1

3

(
BL∗

1 FLL +BR∗
1 FRR +BL∗

2 FLR +BR∗
2 FRL

)]
.

(233)

The total contribution of the interference between Z-penguin and box diagrams needs the addition of
the hermitian conjugate term, MboxM

†
Z−penguin, hence

Γ(Z−box)−interference =
α2m5

µ

32π

[
1

3

(
BL

1 F
∗
LL +BR

1 F
∗
RR +BL

2 F
∗
LR +BR

2 F
∗
RL + h.c.

)]
. (234)
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5 Extracting Form Factors from the µ→ eγ Amplitude in the LHT

Most general structure of the µ → eγ amplitude for on-shell fermions fij can be written in terms of
six form factors [25]

iΓµ(p1, p2) = ie
[
γµ
(
F VL PL + F VR PR

)
+ (iF VM + F VE γ5)σµνQν + (iF VS + F VP γ5)Qµ

]
, (235)

with PR,L = 1
2(1± γ5) and Q = p2 − p1 the vector boson momentum entering the vertex.

The development is done in the ’t Hooft-Feynman (ξ = 1) gauge. We are going to consider in the
µ → eγ decay that the photon is on-shell and then only the dipole form factors F γM,E contribute.
Furthermore, the electron mass is neglected (me ≈ 0). We show below the topologies of the diagrams
that contribute to the µ→ eγ decay [37].

Figure 6: Topologies of the diagrams that contribute to the processes γ, Z → ¯̀̀ ′.

We can write the two-body decays ` → `′γ, Z → ¯̀̀ ′, and h → ¯̀̀ ′ in terms of three-point form
factors with the generic form [37],

F3 =
∑
i

V †`′iVi`F3(m`Hi , ...)

+
∑
i,j,k

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`G3(mν̄cj
, ...),

(236)
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where Vi` are the matrix elements of the 3× 3 unitary mixing matrix parametrizing the misalignment
between the SM left-handed charged leptons ` with the heavy mirror ones `H . TheWjk are the matrix
elements of the 3×3 unitary mixing matrix parametrizing the misalignment between the mirror leptons
and their partners ¯̀c in the SO(5) (right-handed) multiplets.
We write down the Feynman rules that we need for computing each diagram in LHT model [25]:

[VµFF ] = ieγµ(gLPL + gRPR),

[SFF ] = ie(cLPL + cRPR),

[VµS(p1)S(p2)] = ieG(p1 − p2)µ,

[SVµVν ] = ieKgµν ,

[Vµ(p1)Vν(p2)Vρ(p3)] = ieJ [gµν(p2 − p1)ρ + gνρ(p3 − p2)µ + gµρ(p1 − p3)ν ] .

(237)

VµFF gL gR

γf̄ iHf
j
H −Qfδij −Qfδij

ZH ¯̀i
H`

j −
(

1
2sW

+ xH
10cW

υ2

f2

)
V ij
H` 0

ZHν
i
Hν

j
H

1
2sW cW

δij
1

2sW cW

(
1− υ2

4f2

)
δij

AH ¯̀i
H`

j
(

1
10cW

− xH
2sW

υ2

f2

)
V ij
H` 0

ZH ¯̀i
H`

j
H

1
2sW cW

(
−1 + 2s2

W

)
δij

1
2sW cW

(
−1 + 2s2

W

)
δij

W+
H ν

i
H`

j 1√
2sW

V ij
H` 0

Table 4: Fermion couplings to gauge bosons.

SFF cL cR

ω0 ¯̀i
H`

j i
2sW

m
`i
H

MZH

[
1 + υ2

f2

(
−1

4 + xH
cW
sW

)]
V ij
H` − i

2sW

m`i
MZH

V ij
H`

η ¯̀i
H`

j i
10cW

m
`i
H

MAH

[
1− υ2

f2

(
5
4 + xH

sW
cW

)]
V ij
H` − i

10cW

m`i
MAH

V ij
H`

ω+νiH`
j − i√

2sW

m
νi
H

MWH
V ij
H`

i√
2sW

m`i
MWH

V ij
H`

Table 5: Fermion couplings to Goldstone boson.

SV V K

ω±W∓Hγ ±iMWH

ω±W∓HZ ∓iMWH

cW
sW

(
1− υ2

4f2c2W

)
Table 6: Heavy and SM gauge bosons couplings to Goldstone boson.
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V SS G

γω±ω∓ ∓1

Zω±ω∓ ± cW
sW

(
1− υ2

8f2c2W

)
Table 7: Goldstone boson couplings to SM gauge boson.

V V V J

γW+
HW

−
H −1

ZW+
HW

−
H

cW
sW

Table 8: Triple heavy and SM gauge bosons couplings.

5.1 Diagrams exchanging ZH

The diagrams that contribute to the µ→ eγ decay exchanging ZH are given by the topologies (I) and
(III). We have to recall that the field ω0 is eaten by the heavy gauge boson ZH .
We can write the amplitude of the next diagram which is shown in the Figure 7 as

Figure 7: Diagram ex-
changing ZH (Topology I).

Figure 8: Diagram of mo-
menta for ZH exchange.

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`

∫
d4k

(2π)4

γαPL(/p2
− /k +M2)γµ(/p1

− /k +M2)γβPLgβα

(k2 −M2
1 + iε)((p1 − k)2 −M2

2 + iε)((p2 − k)2 −M2
2 + iε)

, (238)

where q = p2 − p1, M1 = MZH , M2 = m`iH
and αW ≡ α

s2W
.

Now, we analyse the self-energy diagrams.
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Figure 9: Self-energy dia-
gram (Topology VII).

Figure 10: Diagram of mo-
menta for self-energy dia-
gram.

The amplitude of the diagram shown in the Figure 9 is

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`

∫
d4k

(2π)4

γµ/p1
γβPL(/p1

− /k +M2)γαPLgα,β

(p2
1 + iε)(k2 −M2

1 + iε)((p1 − k)2 −M2
2 + iε)

. (239)

Figure 11: Self-energy dia-
gram (Topology VIII).

Figure 12: Diagram of mo-
menta for self-energy dia-
gram.

The amplitude corresponding to the Figure 11 is

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`

∫
d4k

(2π)4

γαPL(/p2
− /k +M2)γβPL(/p2

+mµ)γµgα,β

(k2 −M2
1 + iε)(p2

2 −m2
µ + iε)((p2 − k)2 −M2

2 + iε)
. (240)

Considering the contribution of each one of the diagrams above we obtain that the form factor F γM |ZH
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is given by [25] (loop function are given the in the appendices)

I : F γM |ZH = −iF γE |ZH =
αW
16π

mµ

∑
i

V ie∗
H` V

iµ
H`

[
C0 + 3C1 +

3

2
C11

]
. (241)

We are going to compute next the contributions of the diagrams exchanging an ω0 boson.

Figure 13: Diagram with an
ω0 boson exchange (Topol-
ogy III).

Figure 14: Diagram of mo-
menta for ω0 exchange.

The amplitud of the diagram corresponding to the Figure 13, omitting the υ2

f2 -suppressed terms in
the Feynman rules, is given by

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`yi

∫
d4k

(2π)4

PR(/p2
− /k +M2)γµ(/p1

− /k +M2)(M2PL −mµPR)

(k2 −M2
1 + iε)((p1 − k)2 −M2

2 + iε)((p2 − k)2 −M2
2 + iε)

, (242)

where yi =
M2

2

M2
1
.

Now, we will develop the self-energy diagrams for ω0.
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Figure 15: Self-energy dia-
gram exchanging a ω0 bo-
son (Topology IX).

Figure 16: Diagram of mo-
menta for self-energy dia-
gram exchanging an ω0.

The amplitude of the diagram shown in the Figure 15 is

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`yi

∫
d4k

(2π)4

γµ/p1
PR(/p1

− /k +M2)(M2PL −mµPR)

(p2
1 + iε)(k2 −M2

1 + iε)((p1 − k)2 −M2
2 + iε)

. (243)

Figure 17: Self-energy dia-
gram (Topology X).

Figure 18: Diagram of mo-
menta for self-energy dia-
gram exchanging an ω0.

The amplitude corresponding to the Figure 17 is

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`yi

∫
d4k

(2π)4

PR(/p2
− /k +M2)(M2PL −mµPR)(/p2

+mµ)γµ

(k2 −M2
1 + iε)(p2

2 −m2
µ + iε)((p2 − k)2 −M2

2 + iε)
. (244)

Adding the contributions of the 3 diagrams above, the ω0 contributions to the form factors yields [25]
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III : F γM |ZH = −iF γE |ZH = −αW
32π

mµ

∑
i

V ie∗
H` V

iµ
H`yi

[
C1 −

3

2
C11

]
. (245)

The total contribution for the form factor is the sum of the eqs. (241) and (245) [25]

Total : F γM |ZH = −iF γE |ZH =
αW
16π

mµ

M2
WH

∑
i

V ie∗
H` V

iµ
H`FZ(yi), (246)

where

FZ(x) = M2
1

[
C0 + 3C1 +

3

2
C11 −

x

2

(
C1 −

3

2
C11

)]
= −1

3
+

2x+ 5x2 − x3

8(1− x)3
+

3x2

4(1− x)4
ln x,

(247)

The integrals were developed with aid of Package-X [38].
During the process of calculating the integrals the muon mass must be considered mµ 6= 0, otherwise
the self-energy diagrams will be undetermined. Finally, we just take the terms which are proportional
to the muon mass mµ.

5.2 Diagrams exchanging AH

This contribution can be obtained from diagrams with ZH , replacing ZH by AH . It is convenient to
introduce the mass ratio

y′i = ayi, a =
M2
WH

M2
AH

=
5c2
W

s2
W

. (248)

Then,

F γM |AH = −iF γE |AH =
αW
16π

mµ

M2
AH

1

25

s2
W

c2
W

∑
i

V ie∗
H` V

iµ
H`FZ(y′i)

=
αW
16π

mµ

M2
WH

1

5

∑
i

V ie∗
H` V

iµ
H`FZ(y′i),

(249)

in agreement with [25].

5.3 Diagrams exchanging WH

The diagrams that contribute to the µ → eγ decay width are given by the Topologies II, IV, V and
VI. We are going to show the development of the diagram given by the topology IV.
The Feynman rules that we need to write the amplitudes are given in the Apendix B.2 in [25].
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Figure 19: Diagram corre-
sponding to Topology IV.

Figure 20: Diagram of mo-
menta in Topology IV.

Taking M1 = MWH
and M2 = mνiH

and introducing the mass ratio

yi =
m2
Hi

M2
WH

, (250)

with mHi ≡ m`iH
' mνiH

, the amplitude associated with the Figure 19 reads

iΓµ = −αW
16π

∑
i

V ie∗
H` V

iµ
H` yi

∫
d4k

(2π)4

PR(/k +M2)(M2PL −mµPR)(p1 + p2 − 2k)µ

(k2 −M2
2 + iε)((p1 − k)2 −M2

1 + iε)((p2 − k)2 −M2
1 + iε)

.

(251)
The self-energy type diagrams are given by the Figures 21 and 23.

Figure 21: Diagram corre-
sponding to Topology IX.

Figure 22: Diagram of mo-
menta in Topology IX.
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Figure 23: Diagram corre-
sponding to Topology X.

Figure 24: Diagram of mo-
menta in Topology X.

The amplitudes are given respectively by

iΓµ = −αW
16π

∑
i

V ie∗
H` V

iµ
H` yi

∫
d4k

(2π)4

γµ /p1PR( /p1 − /k +M2)(M2PL −mµPR)

(p2
1 + iε)(k2 −M2

1 + iε)((p1 − k)2 −M2
2 + iε)

, (252)

iΓµ = −αW
16π

∑
i

V ie∗
H` V

iµ
H` yi

∫
d4k

(2π)4

(M2PL −mµPR)( /p2 − /k +M2)PR( /p2 +mµ)γµ

(k2 −M2
1 + iε)(p2

2 −m2
µ + iε)((p2 − k)2 −M2

2 + iε)
. (253)

From the eqs. (251), (252) and (253) we obtain

IV : F γM |MWH
= −iF γE |MWH

= −αW
16π

mµ

∑
i

V ie∗
H` V

iµ
H`yi

[
C0 + 3C1 +

3

2
C11

]
. (254)

This result is in agreement with [25].
For the other contributions we have that [25]

II : F γM |WH
= −iF γE |WH

= −αW
16π

mµ

∑
i

V ie∗
H` V

iµ
H`

[
3C11 − C1

]
, (255)

V : F γM |WH
= −iF γE |WH

= 0, (256)

V I : F γM |WH
= −iF γE |WH

=
αW
16π

mµ

∑
i

V ie∗
H` V

iµ
H` C1, (257)

Total : F γM |WH
= −iF γE |WH

=
αW
16π

mµ

M2
WH

∑
i

V ie∗
H` V

iµ
H`FW (yi), (258)

54



5 EXTRACTING FORM FACTORS FROM THE µ→ Eγ AMPLITUDE IN THE LHT

where

FW (x) = M2
1

[
2C1 − 3C11 − x

(
C0 + 3C1 +

3

2
C11

)]
=

5

6
− 3x− 15x2 − 6x3

12(1− x)3
+

3x3

2(1− x)4
ln x.

(259)

SM contributions mediated by W bosons are negligible due to the tiny neutrino masses.
Something that is interesting about the above results is they are similar to the SM contributions with
massive neutrinos, if we consider W instead of WH , νi instead of νiH and V †PMNS instead of VH`, and
since the neutrino mass in tiny in SM, xi = m2

νi/M
2
W � 1, the eq. (259) reduces to

FW (x)→ 5

6
− x

4
+O(x2), (260)

so that we recover SM result bounded by neutrino oscillation experiments:

B(µ→ eγ)SM =
3α

32π
|
∑
i

V ei
PMNSV

µi∗
PMNSxi|

2 . 10−54. (261)

5.4 Contributions from partner leptons ¯̀c = (ν̄c, ¯̀c)

The contributions from partner leptons ¯̀c = (ν̄c, ¯̀c) only involve topologies III, IV, IX and X in the
Figure 6 because they do not couple to one T-odd gauge boson and a SM charged lepton.
The scalar triplet Φ contributes to the process µ → eγ, the corresponding diagrams can be obtained
replacing W±H by Φ± and ZH , AH by Φ0 and ΦP .
We are going to develop the next diagram

Figure 25: Diagram ex-
changing a Φ boson.

Figure 26: Diagram of mo-
menta for Φ exchange.

The Feynman rules what we need are
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SFF cL cR

Φ+ν̄ci `
j Wik

m`Hk√
2f
Vkj 0

Table 9: Partner lepton Scalar-Fermion-Fermion coupling [29].

S(p1)S(p2)Vµ G

Φ+Φ−γ −1

Table 10: Partner lepton Scalar-Scalar-Vector coupling [37].

Then, the amplitude corresponding to the Figure 25 is

iΓµ =
∑
i,j,k

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`

∫
d4k

(2π)4

PR(/k +M2)PL(p1 + p2 − 2k)µ

(k2 −M2
2 + iε)[(p1 − k)2 −M2

1 + iε][(p2 − k)2 −M2
1 + iε]

,

(262)
hence,

IV : F γM |ν̄c = −iF γE |ν̄c =
∑
i,j,k

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`
αW
16π

mµ

M2
Φ

[
C1 +

3

2
C11

]
, (263)

according with the Appendix A for the Three-Point Functions, we have that

F ν̄
c

M (x) =

[
C1 +

3

2
C11

]
=
−1 + 5x+ 2x2

12(1− x)3
+

x2

2(1− x)4
lnx, (264)

where x =
m2
νc
j

M2
Φ
. This result is in agreement with [37].

Similarly for the contribution to ¯̀c we obtain [37]

III : F γM |¯̀c = −iF γE |¯̀c =
∑
i,j,k

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`
αW
16π

mµ

M2
Φ

F
¯̀c
M

(
m2
νcj

M2
Φ

)
, (265)

with

F
¯̀c
M (x) =

−4 + 5x+ 5x2

6(1− x)3
− x(1− 2x)

(1− x)4
lnx. (266)

Observing the form factors above FW,A/Z,ν̄,
¯̀

M , they are finite and depend just on the ratio of the particle
masses in the loop.
We know that mνHi = m`Hi(1−υ2/8f2) ≈ m`Hi , M

2
WH

= M2
ZH

= 5M2
AH

(1 +υ2/f2)/t2W ≈ 5M2
AH
/t2W

where we have neglected terms suppressed by υ2/f2 factors, while the masses of νi and `i are the same,
therefore in the form factors their own υ2/f2 corrections can be neglected. Since we are considering
νi and `i have the same mass, it means that the different components of the same SU(2)L multiplet
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are degenerate when substituted in FW,A/Z,ν̄,
¯̀

M . For the case of the electroweak triplet Φ, we consider
the same argument.
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6 Extracting Form Factors from the µ→ eeē Amplitude in the LHT

This process can be studied like a `→ `′ ¯̀′`′ decay which involves photon and Z penguin diagrams as
well as box contributions.
The amplitude can be written as follows [37]

iΓµγ(p`, p`′) = ie{
[
iF γM (Q2) + F γE(Q2)γ5

]
σµνQν + F γL(Q2)γµPL}, (267)

with Qν = (p`′ − p`)ν . In our case ` → µ and `′ → e therefore the corresponding right-handed
vector form factor vanishes (me ≈ 0). Due the constraints of LHT only photon and Z penguin
diagrams contribute, since AH and ZH do not couple to two ordinary fermions, as required by T-
parity conservation.

6.1 The γ−penguin contributions

The form factors F γM and F γE have the same expressions (247, 249, 259, 264, 266) as for an on-shell
photon, since terms of order Q2 can be neglected [25]. We are going to show the contributions to F γL ,
which are proportional to Q2 ∼ m2

µ as expected.
The form factor F γL |ZH contribution is given by the following diagrams

Figure 27: Penguin diagram exchanging
ZH gauge boson.

Figure 28: Penguin diagram exchanging
ω0 Goldstone boson.

and we also need to consider their self-energy diagrams, which contribute to F VL in this process.
The amplitude of the diagrams above can be written as

M∼ Lλµe × `eēλ, (268)

where `λeē = ieū(p3)γλυ(p4) is independent of the loop integration whereas the relevant part for the
latter is given by the effective ZHµe transition as follows

Lλµe = ū(p2)Γλγ(p2, p1)u(p1). (269)
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Therefore, Γλγ(p2, p1), for diagram 27 is given by eq. (238)

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`

∫
d4k

(2π)4

γαPL(/p2
− /k +M2)γµ(/p1

− /k +M2)γβPLgβα

(k2 −M2
1 + iε)((p1 − k)2 −M2

2 + iε)((p2 − k)2 −M2
2 + iε)

,

and self-energy diagrams are given by eqs. (239) and (240).
Now, Γλγ(p2, p1) corresponding to diagram 28 is given by eq. (242)

iΓµ =
αW
32π

∑
i

V ie∗
H` V

iµ
H`yi

∫
d4k

(2π)4

PR(/p2
− /k +M2)γµ(/p1

− /k +M2)(M2PL −mµPR)

(k2 −M2
1 + iε)((p1 − k)2 −M2

2 + iε)((p2 − k)2 −M2
2 + iε)

,

and self-energy diagrams are determined by eqs. (243) and (244).
With aid of Package-X [38] and the Projector command, we add the contributions of the two topologies
above, therefore, the form factor F γL |ZH is

F γL |ZH =
αW
4π

∑
i

V ie∗
H` V

iµ
H`GZ(yi)

=
αW
4π

Q2

M2
WH

∑
i

V ie∗
H` V

iµ
H`G

(1)
Z (yi),

(270)

with [25] [37]

GZ(yi) =
(

1 +
x

2

)(
−1

4
+

1

2
B1 + C00 −

x

2
M2

1C0

)
−
(

1

2
C0 + C1 +

1

8
(2 + x)C11

)
Q2,

=
Q2

M2
1

G
(1)
Z (x) +O

(
Q4

M4
1

)
,

(271)

G
(1)
Z (x) =

1

36
+
x(18− 11x− x2)

48(1− x)3
− 4− 16x+ 9x2

24(1− x)4
lnx, (272)

where M1 = MZH and M2 = m`iH
.

Similarly, the form factor of AH is obtained just replacing ZH by AH and yi by y′i = 5c2
W yi/s

2
W ,

hence [25] [37]

F γL |AH =
αW
4π

Q2

M2
WH

1

5

∑
i

V ie∗
H` V

iµ
H`G

(1)
Z (y′i). (273)

Now, the contributions of diagrams with WH are given by the topologies II, IV, V, and VI, yielding

F γL |WH
=
αW
4π

∑
i

V ie∗
H` V

iµ
H`GW (yi)

=
αW
4π

Q2

M2
WH

∑
i

V ie∗
H` V

iµ
H`G

(1)
W (yi),

(274)
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with [25] [37]

GW (x) = −1

2
+B1 + 6C00 + x

(
1

2
B1 + C00 −M2

1C0

)
−
(

2C1 +
1

2
C11

)
Q2

= ∆ε − ln
M2

1

µ2
+
Q2

M2
1

G
(1)
W (x) +O

(
Q4

M4
1

)
,

(275)

G
(1)
W (x) = − 5

18
+
x(12 + x− 7x2)

24(1− x)3
+
x2(12− 10x+ x2)

12(1− x)4
lnx. (276)

Due to the unitarity of the mixing matrix, the x-independent terms in GW (x) drop out (including the
ultraviolet divergence). After considering the explicit expressions of B and C functions shown in the
Appendices E and F, we obtain the eq.(276). The SM prediction is obtained by replacing WH by W ,
νiH by νi and VH` by V

†
PMNS .

The new contributions due to F γL |νc,`c are given by [37]

F γL |νc,`c =
αW
4π

Q2

M2
Φ

∑
ijk

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`

(
G

(1)
νc (x) +G

(1)

`
c (x)

)
, (277)

with

Gνc(x) = −B1 − 2C00 =
Q2

M2
Φ

G
(1)
νc (x)

G
(1)
νc (x) =

2− 7x+ 11x2

72(1− x)3
+

x3

12(1− x)4
lnx,

(278)

and

G
(1)

`
c (x) =

20− 43x+ 29x2

36(1− x)3
+

2− 3x+ 2x3

6(1− x)4
lnx. (279)

6.2 The Z−penguin contributions

Z penguins diagrams involve a Z boson propagator which for small momentum transfer processes is
proportional toM−2

Z . The dipole form factors FZM,E , which are chirality flipping and hence proportional
to the muon mass, can be neglected as compared to FZL . This is in contrast with the γ−penguin, for
which QF γM,E(∼ QFZM,E) ∼ Q2/M2

WH
/ m2

µ/M
2
WH
∼ F γL , to be compared with FZL ∼ 1. This justifies

neglecting FZM,E in the Z-penguin (143) [25].
Thus, at leading order the Z``′ vertex reduces to

iΓµZ(p`, p`′) = ieFZL (Q2)γνPL. (280)
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TakingM1 = MWH
,M2 = mHi and yi = m2

Hi/M
2
WH

, and using the unitarity of VH` we obtain [25] [37]

FZL = FZL |WH
+ FZL |AH + FZL |ZH + FZL |νc + FZL |`c , (281)

where,

FZL |WH
=

αW
8πcW sW

∑
i

V ie∗
H` V

iµ
H`

[
−2c2

W

(
−1

2
+B1 + 6C00 − yiM2

1C0

)
− yic2

W

(
B1 + 2C00

)
+2(1 +

yi
2

)

(
1

2
B1 + C00 −

1

2
yiM

2
1C0

)
+
υ2

f2

yi
16

[
1 + 4

(
C00 − C00 +M2

1

(
C0 − 2C0

))]]
=

αW
8πcW sW

∑
i

V ie∗
H` V

iµ
H`

[
−2c2

W

(
∆ε − ln

M2
1

µ2

)
+
υ2

f2

yi
8
HW (yi)

]
=

αW
8πcW sW

∑
i

V ie∗
H` V

iµ
H`

υ2

f2

yi
8
H
W (0)
L (yi),

FZL |ZH =
αW

8πcW sW

∑
i

V ie∗
H` V

iµ
H`(1− 2c2

W )

(
−1

4
+

1

2
B1 + C00 −

1

2
yiM

2
ZH
C0

)
×
[(

1 +
yi
2

)
− υ2

f2

(
yi
4

+

(
cW
sW

yi −
2sW
5cW

)
xH

)]
= 0,

FZL |AH =
αW

8πcW sW

∑
i

V ie∗
H` V

iµ
H`(1− 2c2

W )

(
−1

4
+

1

2
B1 + C00 −

1

2
y′iM

2
AH
C0

)
× 1

25

s2
W

c2
W

[(
1 +

y′i
2

)
− υ2

f2

(
5

4
y′i +

(
sW
cW

y′i + 10
cW
sW

)
xH

)]
= 0,

FZL |νc+FZL |`c =
αW

8πsW cW

∑
ijk

V †`′i
m`Hi

MWH

W †ijWjk
m`Hk

MWH

Vk`
Q2

M2
Φ

[
Hνc

L

(
m2
νcj

M2
Φ

)
+ (1− 2c2

W )H`
c

L

(
m2
νcj

M2
Φ

)]
= 0,

with

H
W (0)
L (x) =

6− x
1− x

+
2 + 3x

(1− x)2
lnx,

Hνc

L (x) =
1

2
F `

c

L (x)− 2c2
WF

νc

L (x),

H`
c

L (x) = F `
c

L (x).

(282)

The eqs.(278) and (279) have been renamed as F νcL and F `
c

L , respectively. The only term that con-
tributes to three body lepton decays is HW (0)

L , which comes from the diagrams with WH and it is
proportional to υ2/f2. The other terms are negligible as long as Q2 � υ2.

6.3 Box diagrams

In the µ→ eee process there are eight different kinds of box diagrams, which are shown in Figure 29.
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Figure 29: Box diagrams corresponding to µ→ eee process in the LHT model [25].

As we can see, these diagrams are classified in two types: A and B. Type A diagrams are crossed
diagrams with the two outgoing leptons. In the limit of zero external momenta (all internal masses
are much larger than the muon mass) all of them have the same form, being proportional to a scalar
integral over the internal momentum q. The amplitude due to box diagrams is given by

M`→`′1`′2`′3
box = e2BL(0)u(p1)γµPLu(p`)u(p3)γµPLυ(p2). (283)

Thus, all box form factors except BL
1 , which appears in the eqs. (144) and (283), vanish. We use the

Fierz identity
〈1|γµPL|2〉〈3|γµPL|4〉 = −〈3|γµPL|2〉〈1|γµPL|4〉. (284)

The whole BL
1 (0) form factor is written as follows

BL
1 (0) = BL

1 (WH ,WH) +BL
1 (ZH , ZH) +BL

1 (AH , AH) +BL
1 (AH , ZH) +BL

1 (Φ,Φ). (285)
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In [25] we can find the generic expressions for the contributions from diagrams of types A and B

A : BL
1 = 2

α

4π

∑
ij

[(
gie∗L1 g

iµ
L2g

je
L1g

je∗
L2 +

1

4
cie∗L1 c

iµ
L2c

je
L1c

je∗
L2

)
D̃0(M2

1 ,M
2
2 ,m

2
Hi,m

2
Hj)

−
(
gie∗L1 c

iµ
L2g

je
L1c

je∗
L2 + cie∗L1g

iµ
L2c

je
L1g

je∗
L2

)
mHimHjD0(M2

1 ,M
2
2 ,m

2
Hi,m

2
Hj)
]
,

(286)

B : BL
1 = 2

α

4π

∑
ij

[
−
(

4gie∗L2 g
iµ
L1g

je
L1g

je∗
L2 +

1

4
cie∗L2 c

iµ
L1c

je
L1c

je∗
L2

)
D̃0(M2

1 ,M
2
2 ,m

2
Hi,m

2
Hj)

+
(
gie∗L2 c

iµ
L1c

je
L1g

je∗
L2 + cie∗L2g

iµ
L1g

je
L1c

je∗
L2

)
mHimHjD0(M2

1 ,M
2
2 ,m

2
Hi,m

2
Hj)
]
.

(287)

We just need to replace the vertex coefficients given by the Feynman rules from Table 4 to 10.
We are going to show the development of the diagrams with WH , where we just write the numerator
and omit the ie factor:

A1:

1

4s4
W

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL(−/q +mνiH
)γνPL|p〉〈p2|γβPL(−/q +m

νjH
)γαPL|p3〉gαµgβν

= ...〈p1|γµPL(−/q +mνiH
)γνPL|p〉〈p2|γνPL(−/q +m

νjH
)γµPL|p3〉

= ...4q2〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(288)

then, the result of the diagram A1 with WH is given by

q2

s4
W

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL|p〉〈p2|γµPL|p3〉. (289)

A2:

− 1

4s4
WM

2
WH

mνiH
m
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL(−/q +mνiH
)PL|p〉〈p2|PR(−/q +m

νjH
)γαPL|p3〉gαµ

= ...〈p1|γµPL(−/q +mνiH
)PL|p〉〈p2|PR(−/q +m

νjH
)γµPL|p3〉

= ...mνiH
m
νjH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(290)

thus,

− 1

4s4
WM

2
WH

m2
νiH
m2
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL|p〉〈p2|γµPL|p3〉. (291)
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A3:

− 1

4s4
WM

2
WH

mνiH
m
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|PR(−/q +mνiH
)γµPL|p〉〈p2|γαPL(−/q +m

νjH
)PL|p3〉gαµ

= ...〈p1|PR(−/q +mνiH
)γµPL|p〉〈p2|γµPL(−/q +m

νjH
)PL|p3〉

= ...mνiH
m
νjH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(292)

hence,

− 1

4s4
WM

2
WH

m2
νiH
m2
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL|p〉〈p2|γµPL|p3〉. (293)

A4:

1

4s4
WM

4
WH

m2
νiH
m2
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|PR(−/q +mνiH
)PL|p〉〈p2|PR(−/q +m

νjH
)PL|p3〉

= ...q2〈p1|γµPL|p〉〈p2|γµPL|p3〉,
(294)

therefore,
q2

4s4
WM

4
WH

m2
νiH
m2
νjH

∑
ij

V ie∗
H` V

iµ
H`|V

je
H`|

2〈p1|γµPL|p〉〈p2|γµPL|p3〉. (295)

Adding all the contributions above and using the functions of the Appendix F, we obtain

BL
1 (WH ,WH) =

α

2π

1

4s4
W

1

M2
W

υ2

4f2

∑
ij

χij

[(
1 +

1

4
yiyj

)
d̃0(yi, yj)− 2yiyjd0(yi, yj)

]
, (296)

with χij = V ie∗
H` V

iµ
H`|V

je
H`|

2 and we have used that M2
W /M

2
WH

= υ2/4f2.
Now, we are going to show the development of the diagrams with ZH . Here, we have omitted the
υ2/f2 contribution from the Feynman rules.

A1:

1

16s4
W

∑
ij

χij〈p1|γµPL(−/q +m`iH
)γνPL|p〉〈p2|γβPL(−/q +m

`jH
)γαPL|p3〉gαµgβν

= ...4q2〈p1|γµPL|p〉〈p2|γµPL|p3〉
(297)

then,
q2

4s4
W

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (298)
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A2:

− 1

16s4
WM

2
ZH

m`iH
m
`jH

∑
ij

χij〈p1|γµPL(−/q +m`iH
)PL|p〉〈p2|PR(−/q +m

`jH
)γαPL|p3〉gαµ

= ...m`iH
m
`jH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(299)

thus,

− 1

16s4
WM

2
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (300)

A3:

− 1

16s4
WM

2
ZH

m`iH
m
`jH

∑
ij

χij〈p1|PR(−/q +m`iH
)γµPL|p〉〈p2|γαPL(−/q +m

`jH
)PL|p3〉gαµ

= ...m`iH
m
`jH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(301)

hence,

− 1

16s4
WM

2
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (302)

A4:

1

16s4
WM

4
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|PR(−/q +m`iH
)PL|p〉〈p2|PR(−/q +m

`jH
)PL|p3〉

= ...q2〈p1|γµPL|p〉〈p2|γµPL|p3〉,
(303)

therefore,
q2

16s4
WM

4
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (304)

B1:

1

16s4
W

∑
ij

χij〈p1|γµPL(/q +m`iH
)γνPL|p〉〈p2|γβPL(−/q +m

`jH
)γαPL|p3〉gαµgβν

= ...− 4q2〈p1|γµPL|p〉〈p2|γµPL|p3〉
(305)

then,

− q2

4s4
W

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (306)

B2:

1

16s4
WM

2
ZH

m`iH
m
`jH

∑
ij

χij〈p1|PR(/q +m`iH
)γµPL|p〉〈p2|PR(−/q +m

`jH
)γαPL|p3〉gαµ

= ...m`iH
m
`jH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(307)
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thus,
1

16s4
WM

2
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (308)

B3:

1

16s4
WM

2
ZH

m`iH
m
`jH

∑
ij

χij〈p1|γµPL(/q +m`iH
)PL|p〉〈p2|γαPL(−/q +m

`jH
)PL|p3〉gαµ

= ...m`iH
m
`jH
〈p1|γµPL|p〉〈p2|γµPL|p3〉,

(309)

hence,
1

16s4
WM

2
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (310)

B4:

1

16s4
WM

4
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|PR(/q +m`iH
)PL|p〉〈p2|PR(−/q +m

`jH
)PL|p3〉

= ...− q2〈p1|γµPL|p〉〈p2|γµPL|p3〉,
(311)

therefore,

− q2

16s4
WM

4
ZH

m2
`iH
m2
`jH

∑
ij

χij〈p1|γµPL|p〉〈p2|γµPL|p3〉. (312)

From the contributions above we obtain [25] [37]

BL
1 (ZH , ZH) =

α

2π

1

16s4
W

1

M2
W

υ2

4f2

∑
ij

χij

[
−3d̃0(yi, yj)

]
, (313)

where MWH
≈MZH .

It is important to note that in [25] the numerators for B2 and B3 are misspelled.
The others form factors are given by [25] [37]

BL
1 (AH , AH) =

α

2π

1

16s4
W

1

M2
W

υ2

4f2

∑
ij

χij

[
− 3

50a
d̃0(y′i, y

′
j)

]
, (314)

BL
1 (AH , ZH) =

α

2π

1

16s4
W

1

M2
W

υ2

4f2

∑
ij

χij

[
−3

5

M2
AH

M2
WH

d̃0(y′i, y
′
j , a)

]
, (315)

BL
1 (Φ,Φ) =

α

2π

1

16s4
W

1

M2
Φ

∑
ij

χij d̃0

(
m2
ν̄ci

M2
Φ

,
m2
ν̄cj

M2
Φ

)
, (316)

where y′i = m2
`Hi
/M2

AH
and a = M2

WH
/M2

AH
. The new contributions from the partner leptons ν̄c and

¯̀c are equal (neglecting small mass differences within the scalar triplet Φ components) and included
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in BL
1 (Φ,Φ).

67



7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

7 Neutrino masses in the LHT and new contributions to LFV pro-
cesses

The LHT is a non-linear σ model based on the coset space SU(5)/SO(5), with the SU(5) global
symmetry broken by the vacuum expectation value (VEV) giving rise to 14 NG bosons [25]

Π =



−ω0/2− η/
√

20 −ω+/
√

2 −iπ+/
√

2 −iΦ++ −iΦ+
√

2

−ω−/2 ω0/2− η/
√

20 υh+h+iπ0

2 −iΦ+/
√

2 −iΦ0+ΦP√
2

−iπ−/
√

2
(
υh + h− iπ0

)
/2

√
4
5η −iπ+/

√
2

(
υh + h+ iπ0

)
/2

iΦ−− iΦ−√
2

iπ−/
√

2 −ω0/2− η/
√

20 −ω−/
√

2

iΦ−√
2

iΦ0+ΦP√
2

υh+h−iπ0

2 −ω+/
√

2 ω0/2− η/
√

20


,

(317)
which decomposes into the SM Higgs doublet (−iπ+/

√
2, (υ+h+ iπ0)/2)T , a complex SU(2)L triplet

Φ, and the longitudinal modes of the heavy gauge fields ω±, ω0 and η. They act on the fundamental
representation of the unbroken subgroup multiplying by ξ = eiΠ/f . The action of T–parity is defined
to make T–odd all but the SM Higgs doublet.
In the fermion sector each SM lepton doublet lL = (νL `L)T is doubled introducing two incomplete
quintuplets (σ2 is the second Pauli matrix)

Ψ1 =

 −iσ
2l1L

0

0

 , Ψ2 =

 0

0

−iσ2l2L

 . (318)

The action of T-parity on the LH leptons is then defined to be

Ψ1 ←→ ΩΣ0Ψ2, (319)

with

Ω = diag(−1,−1, 1,−1,−1), Σ0 =

 0 0 12×2

0 1 0

12×2 0 0

 . (320)

This discrete symmetry is implemented in the fermion sector duplicating the SM doublet lL = (l1L −
l2L)/

√
2, corresponding to the T-even combination (Ψ1 + ΩΣ0Ψ2)/

√
2 , that remains light, with an

extra heavy mirror doublet lHL = (νHL `HL)T = (l1L + l2L) /
√

2 obtained from the T-odd orthogonal
combination (Ψ1−ΩΣ0Ψ2)/

√
2. This extra doublet per family will get its mass combining with a RH
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doublet lHR (eigenvector of T) in an SO(5) multiplet ΨR,

ΨR =

 ψ̃cR
χR

−iσ2lHR

 , ΨR
T−→ ΩΨR, (321)

the superscript (c) denotes a partner lepton field, not to be confused with charge conjugation. The
non-linear Yukawa coupling generating this large mass ∼ f reads [39]

LYH = −κf
(

Ψ2ξ + Ψ1Σ0ξ
†
)

ΨR − κ2ΨLΨR −MΨχ
LΨR + h.c., (322)

where ξ = eiΠ/f , the first term preserves the global symmetry for ξ → V ξU †. While the second one
is its T-transformed once the T-transformed of ΨR is fixed to be ΩΨR.
Approaching ξ = exp (iΠ/f) ≈ I, then

LYH = −κf
(

Ψ2ξ + Ψ1Σ0ξ
†
)

ΨR + h.c. ≈
√

2κf ψHLψHR − κ2ψ̃cLψ̃
c
R −MχLχR, (323)

with ψHR = −iσ2lHR. This Lagrangian gives a vector-like mass
√

2κf to νH .
The lepton singlets χR must also get a large (vector–like) mass by combining with a LH singlet χL
through a direct mass term without further couplings to the Higgs. Thus, its mass term is written
(which matches with eq. (323))

LM = −MχLχR + h.c.. (324)

χL is an SU(5) singlet and it is therefore nature to include a small Majorana mass for it. Once LN is
assumed to be only broken by small Majorana masses µ in the heavy LH neutral sector,

Lµ = −µ
2
χcLχL + h.c., (325)

the resulting (T-even) neutrino mass matrix reduces to the inverse see-saw one [39]:

LνM = −1

2

(
νcl χR χcL

)
MT−even

ν

 νL

χcR
χL

+ h.c., (326)

where

MT−even
ν =


0 iκ∗fsin

(
υ√
2f

)
0

iκ†fsin
(

υ√
2f

)
0 M †

0 M∗ µ

 , (327)

with each entry standing for a 3× 3 matrix to take into account the 3 lepton families. The κ entries
are given by the Yukawa Lagrangian in eq. (322) andM stands for the direct heavy Dirac mass matrix
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from eq. (324), and µ is the mass matrix of small Majorana masses in eq.(325).
On considering the hierarchy µ << κf << M (inverse see-saw), the mass eigenvalues for M are ∼ 10

TeV, of the order of 4πf with f ∼ TeV , as required by current EWPD if we assume the κ eigenvalues
to be order 1 3. On the contrary, the µ eigenvalues shall be much smaller than the GeV.
Let U be a unitary transformation that diagonalizesM and transforms the states (νL ΨL) to the mass
states

(
νlL Ψh

L

)
, light and heavy (quasi-Dirac) neutrinos, l and h, respectively

U†
(

νL

ΨL

)
=

(
νlL
Ψh
L

)
, with ΨL =

(
χcR
χL

)
. (328)

The matrix U can be written as [41] [42]

U =

( √
1− BB† B
−B†

√
1− B†B

)
, (329)

such that U satisfies

UTMU =

(
Ml

ν 03×6

06×3 Mh
χ

)
, (330)

where we can see U decouples the heavy from the light neutrino fields. B is a complex 3 × 3 matrix
and we consider that

√
1− BB† ≈ 1− 1

2
BB† − 1

8
BB†BB† − · · · −

Γ
(
−1

2 + n
)

n!Γ
(
−1

2

) (
BB†

)n
− · · · , (331)

in our case we will just admit terms of the order BB†.
In order to diagonalize theM matrix, we can rewrite it defining the next matrices:

MD =

(
iκ†f sin

(
υ√
2f

)
0

)
, MR =

(
0 M †

M∗ µ

)
, (332)

hence,

MT−even
ν =

(
0 MT

D

MD MR

)
. (333)

According to [41] a first approximation in B is

B∗ = MT
DM

−1
R → B = M †D

(
M−1
R

)∗
=

(
if sin

(
υ√
2f

)
κM−1µ∗(MT )−1 − if sin

(
υ√
2f

)
κM−1

)
.

(334)
3We have considered lighter, O(4 TeV), Majorana neutrino masses in ref. [40].
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Therefore, computing the eq. (331)

√
1− BB† ≈ 1− 1

2
BB† ≈ 1− 1

2
θθ†, (335)

where we have omitted terms of the order of µ because of µ << κf << M and we redefine B → Θ

Θ =
(
−θµ∗(MT )−1 θ

)
, with θ = −if sin

(
υ√
2f

)
κM−1, (336)

we can see Θ is a 3 × 6 matrix and θ is a 3 × 3 matrix in agreement with [39, 43]. So that, the U
matrix is written as

U =

(
1− 1

2ΘΘ† Θ

−Θ† 1− 1
2Θ†Θ

)
, (337)

then, we have that theMl
ν andMh

χ matrices in the eq. (330) are given by [39,41–43]

(Ml
ν)ij = −(MT

DM
−1
R MD)ij = θ∗ikµklθ

†
jl, Mh

χ = MR, (338)

we have assumed without loss of generality that the χ mass matrix, M , is diagonal and positive
definite. The diagonalized (Majorana) mass terms of eq. (328) thus read

LνM = −1

2

 3∑
i=1

(Ml
ν)iνlLiν

l
Ri +

9∑
j=4

(Mh
χ)jΨh

LjΨ
h
Rj

 . (339)

We noticeMl
ν is a 3×3 matrix andMh

χ is a 6×6 matrix. We can work in the basis where the charged
lepton mass matrix is diagonal

Ml
ν = U∗PMNSDlνU

†
PMNS , (340)

from eq. (338),
µ = (θ∗)−1U∗PMNSDlνU

†
PMNS(θ†)−1, (341)

where UPMNS in the Pontecorvo-Maki-Nakagawa-Sakata matrix and Dlν the diagonal neutrino mass
matrix.
Applying explicitly U† in the eq. (328)(

1− 1
2ΘΘ† −Θ

Θ† 1− 1
2Θ†Θ

)(
νL

ΨL

)
=

(
νlL
Ψh
L

)
, (342)
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due to the eq. (340) the light and heavy eigenstates are (mixing relations between flavor and mass
eigenstates)

3∑
j=1

(UPMNS)ijν
l
Lj =

3∑
j=1

[13×3 −
1

2
(ΘΘ†)]ijνLj −

9∑
j=4

ΘijΨLj ,

Ψh
Li =

9∑
j=4

[16×6 −
1

2
(Θ†Θ)]ijΨLj +

3∑
j=1

Θ†ijνLj ,

(343)

where Θ matrix elements give the mixing between light and heavy (quasi-Dirac) neutrinos to leading
order.
Let Φ be a flavor eigenstate composed by

ΦL = U

(
νlL
Ψh
L

)
, (344)

thus, in terms of the mass eigenstates from the eq. (343) the SM charged current is modified as follows

LW =
g√
2
W+
µ

9∑
i=1

3∑
j=1

ΦLiγ
µ`Lj

=
g√
2
W+
µ

3∑
j=1

(
3∑
i=1

{U †PMNS [13×3 −
1

2
(ΘΘ†)]}ijνlLi +

9∑
i=4

Θ†ijΨ
h
Li

)
γµ`Lj ,

(345)

we can separate the Lagrangian above in two parts each one fixing the coupling between the SM
leptons and the light and heavy quasi Dirac neutrinos, respectively,

LlW =
g√
2
W+
µ

3∑
j=1

3∑
i=1

νliWijγ
µPL`j + h.c., with Wij = {U †PMNS [13×3 −

1

2
(ΘΘ†)]}ij ,

LlhW =
g√
2
W+
µ

3∑
j=1

9∑
i=4

Ψh
i Θ†ijγ

µPL`j + h.c..

(346)

The SM neutral current is written as

LZ =
g

2cosθW
Zµ

9∑
j=1

9∑
i=1

νLiγ
µνLj , (347)
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we consider just the first order approximation to ΘΘ† matrix and write down the light and heavy
neutral currents,

LlZ =
g

2cosθW
Zµ

3∑
j=1

3∑
i=1

νliXijγ
µPLν

l
j , with Xij = {U †PMNS [13×3 − (ΘΘ†)]UPMNS}ij ,

LlhZ =
g

2cosθW
Zµ

3∑
j=1

9∑
i=4

Ψh
i (Θ†UPMNS)ijγ

µPLν
l
j + h.c..

LhZ =
g

2cosθW
Zµ

3∑
j=1

9∑
i=4

Ψh
i (Θ†Θ)ijγ

µPLΨh
j .

(348)

Now, we do not consider the µ term (µ� κf �M) in the Θ matrix, Θ = (03×3 θ). Therefore, the
eigenstates in the eq. (343) transform as [39]

3∑
j=1

(UPMNS)ijν
l
Lj =

3∑
j=1

[13×3 −
1

2
(θθ†)]ijνLj −

9∑
j=7

θijχLj ,

χhLi =

9∑
j=7

[13×3 −
1

2
(θ†θ)]ijχLj +

3∑
j=1

θ†ijνLj ,

(349)

hence, the Lagrangians from eqs. (346) and (348) read

LlW =
g√
2
W+
µ

3∑
i,j=1

νliWijγ
µPL`j + h.c., with Wij =

3∑
k=1

(U †PMNS)ik[13×3 −
1

2
(θθ†)]kj ,

LlhW =
g√
2
W+
µ

3∑
i,j=1

χhi θ
†
ijγ

µPL`j + h.c..

(350)

and

LlZ =
g

2 cos θW
Zµ

3∑
i,j=1

νliγ
µ(XijPL −X†ijPR)νlj , with Xij =

3∑
k=1

(
U †PMNS [13×3 − (θθ†)]

)
ik

(UPMNS)kj ,

LlhZ =
g

2cosθW
Zµ

3∑
i,j=1

χhi γ
µ(YijPL − Y †ijPR)νlj + h.c., with Yij =

3∑
k=1

θ†ik(UPMNS)kj ,

LhZ =
g

2 cos θW
Zµ

3∑
i,j=1

χhi γ
µ(SijPL − S†ijPR)χhj , with Sij =

3∑
k=1

θ†ikθkj .

(351)

where the dimension of the square W and X mixing matrices is 3 × 3. If we compare our charged-
current and neutral-current interactions from eqs. (350) and (351) with the SM ones, we observe that
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they differ by the presence of the θ matrix which is a consequence of introducing Majorana neutrinos.
We can define the Bij and Cij matrices according to SM charged and neutral currents [44]

Bij =

3∑
k=1

UikU†kj and Cij =

3∑
k=1

UkiU†kj , (352)

where B mixing matrix is 3× 9, whereas C is a 9× 9 matrix.

All LHT particles extended with Majorana neutrinos are collected in Table 12.

Particle Content of LHT with Majorana neutrinos
Nambu–Goldstone bosons

SM Higgs
(
−iπ+/

√
2, (υ + h+ iπ0)/2

)
Longitudinal modes of the heavy gauge fields ω±, ω0, η

Complex SU(2)L triplet
(

iΦ−− iΦ−/
√

2

iΦ−/
√

2 (iΦ0 + ΦP )/
√

2

)
Gauge bosons

SM gauge bosons (T-even) {W±L , ZL, γ}
Heavy gauge bosons (T-odd) {W±H , ZH , AH}

Fermions (i = 1,2,3)
SM Fermions (T-even) {`iL, νiL, uiL, diL}

Mirror/Heavy/T-odd Fermions {`iH , νiH , uiH , diH}
Partner Fermions {`ci , νci , uci , dci}

Majorana neutrinos (i = 1, 2, 3)

Heavy Majorana neutrinos χhLi

Table 11: The full content of particles of LHT with Majorana neutrinos.

We give the corresponding Feynman rules for the interaction vertices from the eqs. (350) and
(351), we adopt the convention Feynman rule = −iL.

Figure 30: −i g√
2
W+
µ Wijγ

µPL. Figure 31: −i g√
2
W+
µ θ
†
ijγ

µPL.
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Particle Content of LHT with Majorana neutrinos
Nambu–Goldstone bosons

SM Higgs
(
−iπ+/

√
2, (υ + h+ iπ0)/2

)
Longitudinal modes of the heavy gauge fields ω±, ω0, η

Complex SU(2)L triplet
(

iΦ−− iΦ−/
√

2

iΦ−/
√

2 (iΦ0 + ΦP )/
√

2

)
Gauge bosons

SM gauge bosons (T-even) {W±L , ZL, γ}
Heavy gauge bosons (T-odd) {W±H , ZH , AH}

Fermions (i = 1,2,3)
SM Fermions (T-even) {`iL, νiL, uiL, diL}

Mirror/Heavy/T-odd Fermions {`iH , νiH , uiH , diH}
Partner Fermions {`ci , νci , uci , dci}

Majorana neutrinos (i = 1, 2, 3)

Heavy Majorana neutrinos χhLi

Table 12: The full content of particles of LHT with Majorana neutrinos.

Figure 32: −i g
2 cos θW

Xijγ
µPL. Figure 33:

−i g
2 cos θW

(θ†UPMNS)ijγ
µPL.

We calculate the box form factors of the amplitude for `→ `′`′′ ¯̀′′′ that receives contributions from
the diagrams shown in Figures 35 and 36.

We recall from eq. (283) that the amplitude due to box diagrams is given by

M`→`′`′′`′′′
box = e2FBu(p`′)γ

µPLu(p`)u(p`′′)γµPLυ(p`′′′), (353)

where FB is the form factor. Because of the Fierz identity from eq. (284) all the box diagrams can be
reduced to the form of the equation above.
The contributions of the diagrams in Figure 35 are the same as those of eq.(296) except for constants.

F
νliν

l
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)}f lB(yi, yj), (354)
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Figure 34:
−i g

2 cos θW
(θ†θ)ijγ

µPL.

Figure 35: Box diagrams contributing to `→ `′`′′ ¯̀′′′.

Figure 36: Explicit LNV contributions are introduced by these diagrams.

F
νliχ

h
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{W`iW
†
`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}f lhB (yi, xj), (355)
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F
χhi χ

h
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}fhB(xi, xj), (356)

with

f lB(yi, yj) =

(
1 +

1

4
yiyj

)
d̄0(yi, yj)− 2yiyjd0(yi, yj),

f lhB (yi, xj) =

(
1 +

1

4

yi
xj

)
d̄lh0 (yi, xj)− 2

yi
xj
dlh0 (yi, xj),

fhB(xi, xj) =

(
1 +

1

4

1

xixj

)
d̄h0(xi, xj)− 2

1

xixj
dh0(xi, xj),

(357)

where yi =
m2
i

M2
W

and xj =
M2
W

M2
j
. We have defined the above functions in the Appendix G.

Calculating the LNV diagrams is more complicated than the first ones, we show the Feynman rules
for fermionic vertices [45–47] between a scalar and fermionic fields, where,

Γ′i = CΓTi C
T = ηiΓi, (358)

and,

ηi =

{
1 if Γi = 1,iγ5, γµγ5

−1 if Γi = γν , σµν
, (359)

with Φ, a scalar or vector field and λ, Ψ Majorana and Dirac fermion fields respectively. Notice that
in our case the interactions we have are VµFF , because we were able to fix the Feynman rules from
eqs. (350) and (351), the Feynman rules for SFF can immediately be obtained since longitudinal
component of W boson is equivalent to a scalar (Goldstone).
We use this convention in the Feynman Rules [45, 46], because we can proceed without involving the
C matrices explicitly in the calculation (the physical observables do not depend on the representation
in the Dirac space). Besides, this convention allows us to use Dirac propagators even for Majorana
fermions.
We will use the next properties

〈a|γαPR|b〉〈c|γαPL|d〉 = 2〈a|PL|d〉〈c|PR|b〉, (360)

〈a|γµγνPL|b〉〈c|γµγνPR|d〉 = 4〈a|PL|b〉〈c|PR|d〉, (361)

u(p) = Cv̂T (p), uT (p) = v̂(p)CT , (362)

v(p) = CûT (p), vT (p) = û(p)CT , (363)
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Figure 37: The Feynman rules for fermionic vertices.

CT = C−1 = −C, CP TL C
T = PL, C(γαPL)TCT = −γαPR. (364)

Then, we develop the left diagram in Figure 36

û(p`′′′)
[
Γ′(/q +mi)Γ

]
u(p`)û(p`′′)

[
Γ(−/q +mj)Γ

′] v(p`′)

= û(p`′′′)
[
γµPR(/q +mi)γ

νPL
]
u(p`)û(p`′′)

[
γµPL(−/q +mj)γνPR

]
v(p`′)

= mimj û(p`′′′) [γµγνPL]u(p`)û(p`′′) [γµγνPR] v(p`′)

= 4mimj [û(p`′′′)PLu(p`)] [û(p`′′)PRv(p`′)] , where we have used eq.(361).

(365)
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Taking the first fermion chain and transposing

[û(p`′′′)PLu(p`)] = uT (p`)P
T
L û

T (p`′′′)

= v̂(p`)C
TP TL C

T v(p`′′′) using eqs.(362) and (363)

= −v̂(p`)PLv(p`′′′) using eq.(364),

(366)

hence,

[û(p`′′′)PLu(p`)] [û(p`′′)PRv(p`′)] = −v̂(p`)PLv(p`′′′)û(p`′′)PRv(p`′)

= −1

2
[v̂(p`)γµPRv(p`′)] [û(p`′′)γ

µPLv(p`′′′)] , using eq.(360)

= −1

2

[
vT (p`′)(γµPR)T v̂T (p`)

]
[û(p`′′)γ

µPLv(p`′′′)] , applying the T

= +
1

2

[
û(p`′)C(γµPR)TCT û(p`)

]
[û(p`′′)γ

µPLv(p`′′′)]

= −1

2
[û(p`′)γµPLû(p`)] [û(p`′′)γ

µPLv(p`′′′)] .

(367)

Therefore, the eq. (365) reads as

−2mimj [û(p`′)γµPLû(p`)] [û(p`′′)γ
µPLv(p`′′′)] . (368)

Taking all the constants from the Feynamn rules (eqs. (350) and (351)), and considering the contri-
bution of (`′ ↔ `′′) we have

M(1) = − αW
16πM2

W s
2
W

3∑
i,j

W`iW
†
`′jW`′′′iW

†
`′′j

(
4
√
yiyjd0(yi, yj)

)
. (369)

We have to consider the contributions of type A2a, A3a and A4a, as shown in Figure 29, but now
applied to LNV.
We knowMA2a =MA3a, thus

− mi

MW

mj

MW
û(p`′′′)

[
PL(/q +mi)γ

µPL
]
u(p`)û(p`′′)

[
PR(−/q +mj)γ mj

MW
u
PR

]
v(p`′)

= −q2 mi

MW

mj

MW
[û(p`′′′)PLu(p`)] [û(p`′′)PRv(p`′)]

=
1

2
q2 mi

MW

mj

MW
[û(p`′)γµPLû(p`)] [û(p`′′)γ

µPLv(p`′′′)] , using eq.(367),

(370)
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hence the A2a and A3a amplitudes read

MA2a =MA2a =
αW

16πM2
W s

2
W

3∑
i,j

W`iW
†
`′jW`′′′iW

†
`′′j

(√
yiyj d̃0(yi, yj)

)
. (371)

Finally, the A4a amplitude for Majorana neutrinos is given by

m2
i

M2
W

m2
j

M2
W

û(p`′′′)
[
PL(/q +mi)PL

]
u(p`)û(p`′′)

[
PR(−/q +mj)PR

]
v(p`′)

=
m3
i

M2
W

m3
j

M2
W

[û(p`′′′)PLu(p`)] [û(p`′′)PRv(p`′)]

= −1

2

m3
i

M2
W

m3
j

M2
W

[û(p`′)γµPLû(p`)] [û(p`′′)γ
µPLv(p`′′′)] , using eq.(367),

(372)

therefore,

M(A4a) = − αW
16πM2

W s
2
W

3∑
i,j

W`iW
†
`′jW`′′′iW

†
`′′j

(
(yiyj)

3/2d0(yi, yj)
)
. (373)

The whole contribution of left diagram in Figure 36 is given by

F
νliν

l
j

B−LNV =M(1) +M(A2a) +M(A3a) +M(A4a)

=
αW

16πM2
W s

2
W

3∑
i,j

W`iW
†
`′jW`′′′iW

†
`′′jf

l−LNV
B (yi, yj).

(374)

where,

f l−LNVB (yi, yj) =
√
yiyj

(
2d̃0(yi, yj)− (4 + yiyj)d0(yi, yj)

)
,

f lh−LNVB (yi, xj) =
1

√
xixj

(
2d̃lh0 (yi, xj)−

(
4 +

1

xixj

)
dlh0 (yi, xj)

)
,

fh−LNVB (xi, xj) =
1

√
xixj

(
2d̃h0(xi, xj)−

(
4 +

1

xixj

)
dh0(xi, xj)

)
,

(375)

with yi = m2
i /M

2
W , mi standing for the mass of light neutrinos; xj = M2

W /M
2
j , Mj standing for the

mass of heavy neutrinos. We have added the f (lh,h)−LNV
B (zi, zj) functions as they will be used in the

following equations.
The contributions of the center and right diagrams in Figure 36 are written as follows

F
νliχ

h
j

B−LNV =
αW

16πM2
W s

2
W

3∑
i=1

9∑
j=7

W`iθ`′jW`′′′iθ`′′jf
lh−LNV
B (yi, xj), (376)

80



7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

F
χhi χ

h
j

B−LNV =
αW

16πM2
W s

2
W

9∑
i,j=7

θ†`iθ`′jθ
†
`′′′iθ`′′jf

h−LNV
B (xi, xj). (377)

Consequently, the complete FB form factor from eq.(353) is given by the eqs.(354), (355), (356), (374),
(376) and (377)

FB = F
νliν

l
j

B + F
νliχ

h
j

B + F
χhi χ

h
j

B + F
νliν

l
j

B−LNV + F
νliχ

h
j

B−LNV + F
χhi χ

h
j

B−LNV . (378)

7.1 Bounds on LFV processes

We present various LFV processes in this section: ` → `′γ and ` → `′`′′ ¯̀′′′, where the last one has
three possible channels that are shown in Table 13 [48] 4.

Type Flavor `→ `′`′′ ¯̀′′′

1 ` 6= `′ = `′′ = `′′′ µ→ eeē τ → eeē τ → µµµ̄
2 ` 6= `′ 6= `′′ = `′′′ τ → eµµ̄ τ → µeē
3 ` 6= `′ = `′′ 6= `′′′ τ → eeµ̄ τ → µµē

Table 13: Three diferent decay channels of the `→ `′`′′ ¯̀′′′ processes.

All of them involve the effective interaction of a neutral vector boson with a pair of on-shell
fermions, through a loop with Majorana neutrinos.
The effective V ``′ vertices (` 6= `′) are written in terms of the following form factor [37]

iΓµγ(p`, p`′) = ie{
[
iF γM (Q2) + F γE(Q2)γ5

]
σµνQν + F γL(Q2)γµPL},

iΓγZ(p`, p`′) = ieFZL (Q2)γµPL,
(379)

with Qν = (p`′ − p`)ν is the momentum of the V boson.

7.1.1 `→ `′γ decays

In order to constrain the elements of the θ matrix in LFV processes such as µ → eγ, τ → eγ and
τ → µγ decays we are going to compute the contributions coming from light-heavy neutrinos using ’t
Hooft-Feynman gauge.
Gauge invariance reduces the `→ `′γ vertex for an on-shell photon to a dipole transition,

iΓµγ(p`, p`′) = ie
[
iF γM (Q2) + F γE(Q2)γ5

]
σµνQν , (380)

4We do not consider H → ¯̀̀ , since it does not enter as a relevant building block of the studied processes, and it is
necessarily below current and near future sensitivities [49]. This is a general feature of LH models [50–52].
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where Qν = (p`′ − p`)ν . Neglecting m`′ � m`

Γ(`→ `′γ) =
α

2
m3
` (|F

γ
M |

2 + |F γE |
2). (381)

The form factor is written as follows

F γM = U`′jU
∗
`j

αW
16π

m`

M2
W

FχM (x), (382)

with x =
M2
W

M2
j

and U`′jU∗`j are the vertex interactions.

Because of F γM = −iF γE , and the branching ratios for these types of processes are obtained dividing
by the SM decay width

Γ(`j → `iνj ν̄i) =
G2
Fm

5
`j

192π3
, (383)

where GF is the Fermi constant, hence

Br(`→ `′γ) =
3α

2π

∣∣U`′jU∗`jFχM (x)
∣∣2 . (384)

The active (light) neutrino contribution is analogous to the SM one, we just replace UPMNS byW due
to Feynman rule from the eq. (350). We notice W matrix has the SM contribution which is UPMNS

matrix and also it has a “correction” coming from introducing heavy neutrinos, given by θθ† term.
The Feynman diagrams are given by topologies II, IV, V and VI shown in the Figure 6. For active
neutrinos mνli

�MW , then the F νM (x) function from the eq.(382), defining x =
m2
νi

M2
W
, reads [25]

F νM (x) =
10− 33x+ 45x2 − 4x3

12(1− x)3
+

3x3

2(1− x)4
lnx

=
5

6
− 3x− 15x2 − 6x3

12(1− x)3
+

3x3

2(1− x)4
lnx,

(385)

and considering x� 1, it behaves as

F νM (x)→ 5

6
− x

4
+O(x2). (386)

Therefore, the branching ratio of µ→ eγ due to active neutrinos is

Br(µ→ eγ) =
3α

2π

∣∣∣WejW
†
µjF

ν
M (y)

∣∣∣2 . (387)

Now, we are going to discuss the contribution of heavy neutrinos. For the µ → eγ decay, the form
factors will be similar to the Subsection 2.3, since the topologies II, IV, V and VI are involved with
this type of neutrinos as well. For the µ→ eγ decay, the FχM (x) function is given by
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Figure 38: Feynman diagrams involved in the µ→ eγ decay considering heavy neutrinos. We have to
take into account the self-energy diagrams, additionally. φ are the would-be Goldstones absorbed by
W boson.

Fχ
h

M (x) =
−10x3 + 33x2 − 45x+ 4

12(1− x)3
+

3x

2(1− x)4
lnx

=
1

3
− 2x3 − 7x2 + 11x

4(1− x)3
+

3x

2(1− x)4
lnx,

(388)

with x =
M2
W

M2
j

and Mj is the mass of χhL. Considering M
2
M �M2

j (x→ 0),

Fχ
h

M (x)→ 1

3
− 11x

4
+O(x2). (389)

Hence, the contribution to the branching ratio from heavy neutrinos χhL is written as

Br(µ→ eγ) =
3α

2π

∣∣∣θejθ†µjFχM (x)
∣∣∣2 . (390)

It is important to note that the contribution to the Br(µ → eγ) coming from νH neutrinos we have
computed in the eq. (258) behaves as

Br(µ→ eγ) =
3α

2π

∣∣∣∣∣ M2
W

M2
WH

V ie∗
H` V

iµ
H`FW (x)

∣∣∣∣∣
2

, (391)
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where x =
m2
Hi

M2
WH

. Using M2
W

M2
WH

= υ2

4f2 , the equation above can be written as

Br(µ→ eγ) =
3α

2π

∣∣∣∣ υ2

4f2
V ie∗
H` V

iµ
H`FW (x)

∣∣∣∣2 , (392)

however, this contribution is neglected because of υ2/4f2 << 1 term.
Summing the contributions from eqs. (387) and (390) yields the complete branching ratio to µ→ eγ

decay

Br(µ→ eγ) =
3α

2π

∣∣∣θejθ†µjFχM (x) +WejW
†
µjF

ν
M (y)

∣∣∣2 , (393)

with x =
M2
W

M2
j
, y =

m2
νi

M2
W

and Wij matrix is given by the eq. (350).

Taking the approximations from the eqs. (386) and (389), we obtain

Br(µ→ eγ) ≈3α

2π

∣∣∣∣(1

3
− 11x

4

)
θejθ

†
µj +

(
5

6
− y

4

)
(U †PMNS)ej(UPMNS)µj

+

(
y

8
− 5

12

)(
(U †PMNS)ej(θθ

†UPMNS)µj + (U †PMNSθθ
†)ej(UPMNS)µj

)∣∣∣∣2 , (394)

as the sum on the repeated index is understood, the PMNS matrix satisfies [53]∑
i

UαiU
∗
βi = δαβ (α, β = e, µ, τ), UU † = U †U = 1, (395)

therefore the second term is canceled and considering the leading terms

Br(µ→ eγ) ≈ 3α

2π

∣∣∣∣13θejθ†µj − 5

6
θejθ

†
µj

∣∣∣∣2
≈ 3α

8π

∣∣∣θejθ†µj∣∣∣2 . (396)

We know that Br(µ→ eγ) < 4.2× 10−13 (at 90% C.L.) [6, 39], hence∣∣∣θejθ†µj∣∣∣ < 0.14× 10−4. (397)

For τ decays the SM branching ratio (eq.(383)) must be corrected multiplying by 0.17 to take into
account other possible decay channels [25], therefore

Br(τ → eγ) = (0.17)
3α

2π

∣∣∣θejθ†τjFχM (x) +WejW
∗
τjF

ν
M (y)

∣∣∣2 , (398)

taking the value of Br(τ → eγ) < 3.3 × 10−8 (at 90% C.L.) [6, 39] and the same consideration on
x→ 0 and y → 0 yield

Br(τ → eγ) ≈ (0.17)
3α

8π
|θejθ∗τj |2, (399)

84



7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

|θejθ†τj | < 0.95× 10−2, (400)

Finally, for BR(τ → µγ) < 4.4× 10−8 (at 90% C.L.) [6, 39]

Br(τ → µγ) = (0.17)
3α

2π

∣∣∣θµjθ†τjFχM (x) +WµjW
∗
τjF

ν
M (y)

∣∣∣2
≈ (0.17)

3α

8π
|θµjθ∗τj |2,

(401)

therefore,
|θµjθ†τj | < 0.011. (402)

We notice that our result from the eq. (397) matches with the reported one in the Table 1 of [39] but
the results from the eqs. (400) and (402) do not. For tau decays in [39] the 0.17 factor is missing.

7.1.2 Type I: `→ `′`′′ ¯̀′′′ with ` 6= `′ = `′′ = `′′′

TheM`→`′`′ ¯̀′ amplitude for decays Type I gets contributions from γ and Z penguins diagrams, and
it also receives contributions from box diagrams. All theses diagrams are similar to those shown in
Section 6, where we replace WH by W , ZH by Z and νH by νl and χh, which are Majorana neutrinos.
Therefore, we can write the whole `→ `′`′ ¯̀′ amplitude as

M`→`′`′ ¯̀′ =M`→`′`′ ¯̀′
γ +M`→`′`′ ¯̀′

Z +M`→`′`′ ¯̀′
box , (403)

where each amplitude is defined as follows [37]

M`→`′1`′2 ¯̀′
3

γ =u(p1)e
[
iF γM (0)2PRσ

µν(p1 − p`)ν + F γL((p1 − p`)2)γµPL
]
u(p`)

× 1

(p1 − p`)2
u(p3)γµev(p2)− (p1 ↔ p3),

M`→`′1`′2 ¯̀′
3

Z =u(p1)
(
−eFZL (0)

)
γµPLu(p`)

1

M2
Z

u(p3)γµ
(
gZLPL + gZRPR

)
v(p2)

− (p1 ↔ p3),

M`→`′1`′2 ¯̀′
3

box =e2BL(0)u(p1)γµPLu(p`)u(p3)γµPLv(p2),

(404)

where F γE = iF γM . The photon magnetic and Z left-handed vector form factors, F γM (0) and FZL (0)

respectively, are evaluated at Q2 = (p1 − p`)2 = 0 because their leading terms are momentum inde-
pendent for small momentum transfer Q2 ∼ m2

` whereas the photon left-handed vector form factor,
F γL
(
(p1 − p`)2

)
, is linear in Q2.

The form factors F γM and F γE have the the same expressions than the eqs.(386) and (389), where we
have supposed mνli

� MW , and MM � Mj with mνli
and Mj the mass of light and heavy Majorana
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neutrinos, respectively. So, the complete F γM is given by

F γM = F ν
l

M + Fχ
h

M =
αW
16π

m`

M2
W

3∑
j=1

(
W`′jW

†
`jF

νl

M (x) + θ`′jθ
†
`jF

χh

M (y)
)
, (405)

with x = m2
ν

M2
W

and y =
M2
W

M2
j
.

The F γL form factor is obtained from the diagrams in the Figure 38, it is given by

F γL = F ν
l

L + Fχ
h

L =
αW

8πM2
W

3∑
i

(
W`′jW

†
`jF

νl

L (x) + θ`′jθ
†
`jF

χh

L (y)
)
, (406)

where

F ν
l

L (x) = 2M2
W∆ε +Q2

(
x2(12− 10x+ x2)lnx

6(1− x)4
− 7x3 − x2 − 12x

12(1− x)3
− 5

9

)
,

Fχ
h

L (y) = 2M2
W∆ε +Q2

(
−(12y2 − 10y + 1)lny

6(1− y)4
+

20y3 − 96y2 + 57y + 1

36(1− y)3

)
,

(407)

with ∆ε = 1
ε − γE + ln(4π) + ln

(
µ2

M2
W

)
which regulates the ultraviolet divergence in 4− 2ε dimensions

is canceled by unitarity of mixing matrices.
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Figure 39: Z penguins diagrams that contribute to the decay. Diagrams corresponding to T − I and
T − III allow to mix light and heavy Majorana neutrinos.

We take into account Z penguin diagrams that are shown in Figure 39 that involve purely light
neutrinos, a mixing of light and heavy neutrinos, and diagrams in which only heavy neutrinos appear.
We calculate the one-loop contributions in the Feynman ´t Hoof gauge, therefore, we also take in
account the diagrams of the would-be-Goldstone fields. The form factor from νl-diagrams in Figure
39 is given by

FZ−ν
l

L (Q2) =
αW

8πcW sW

3∑
i,j=1

[
W`′iW

†
`iF

l(xi;Q
2)

+W`′jXjiW
†
`i

(
Gl(xi, xj ;Q

2) +
√
xixjH

l(xi, xj ;Q
2)
)]
,

(408)
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(we have used that Xji = X†ji from eq. (351)), where

F l(xi;Q
2) = −2c2

W

[
Q2(C1 + C2 + C12) + 6C00 − 1

]
− (1− 2s2

W )xiC00 − 2s2
WxiM

2
WC0

− 1

2
(1− 2s2

W )
[
(2 + xi)B1 + 1

]
,

Gl(xi, xj ;Q
2) = −Q2(C0 + C1 + C2 + C12) + 2C00 − 1− 1

2
xixjM

2
WC0,

H l(xi, xj ;Q
2) = M2

WC0 +
1

2
Q2C12 − C00 +

1

4
.

(409)

We see a difference in Zν̄iνj vertex in this process: if the neutrinos were SM neutrinos, the Zν̄iνj
vertex would be ∼ δij . In this case, the neutrinos have a Majorana nature, so their Zν̄liν

l
j interaction

is given by Xij matrix, which is shown in eq. (351).
Analytic expressions for the above functions in the low Q2 limit can be given by

F l(xi; 0) = −
(

5

2
− 2s2

W

)
∆ε +

5x2
i lnxi

2(xi − 1)2
− 5xi

2(xi − 1)
+

1

4
,

Gl(xi, xj ; 0) =
1

2

(
∆ε −

1

2

)
+

1

2(xi − xj)

(
(xj − 1)x2

i lnxi
xi − 1

−
(xi − 1)x2

j lnxj

xj − 1

)
,

H l(xi, xj ; 0) = −1

4

(
∆ε +

1

2

)
+

1

4(xi − xj)

(
xi(xi − 4) lnxi

xi − 1
− xj(xj − 4) lnxj

xj − 1

)
.

(410)

with xi,j = m2
i,j/M

2
W , mi are the light neutrino masses. The contribution from νlχh−diagrams in

Figure 39 is written as

FZ−ν
lχh

L (Q2) =
αW

8πcW sW

3∑
i,j=1

[
θ`′jW

†
`i

(
YjiG

lh
1 (xi, yj ;Q

2) + Y †ji

√
xi
yj
H lh

1 (xi, yj ;Q
2)

)

+W`′jθ
†
`i

(
Y †jiG

lh
2 (xj , yi;Q

2) + Yji

√
xj
yi
H lh

2 (xj , yi;Q
2)

)]
,

(411)

where

Glh1 (xi, yj ;Q
2) = −Q2(C0 + C1 + C2 + C12) + 2C00 − 1− 1

2

xi
yj
M2
WC0,

H lh
1 (xi, yj ;Q

2) = M2
WC0 +

1

2
Q2C12 − C00 +

1

4
,

Glh2 (xj , yi;Q
2) = −Q2(C0 + C1 + C2 + C12) + 2C00 − 1− 1

2

xj
yi
M2
WC0,

H lh
2 (xj , yi;Q

2) = M2
WC0 +

1

2
Q2C12 − C00 +

1

4
,

(412)
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and their analytic expressions are

Glh1 (xi, yj ; 0) = Gl(xi, xj ; 0) with

(
xj →

1

yj

)
,

H lh
1 (xi, yj ; 0) = H l(xi, xj ; 0) with

(
xj →

1

yj

)
,

Glh2 (xj , yi; 0) = Gl(xi, xj ; 0) with

(
xi →

1

yi

)
,

H lh
2 (xj , yi; 0) = H l(xi, xj ; 0) with

(
xi →

1

yi

)
,

(413)

with xi,j = m2
i,j/M

2
W , yi,j = M2

W /M
2
i,j , being mi and Mi,j the light and heavy neutrinos masses,

respectively.
The FZ−χ

h

L form factor, which stands for the contribution from χh-diagrams, yields

FZ−χ
h

L (Q2) =
αW

8πcW sW

3∑
i,j=1

[
θ`′iθ

†
`iF

h(yi;Q
2)

+θ`′jSjiθ
†
`i

(
Gh(yi, yj ;Q

2) +
1

√
yiyj

Hh(yi, yj ;Q
2)

)]
,

(414)

(Sji = S†ji from the eq.(351)) where

F h(yi;Q
2) = −2c2

W

[
Q2(C1 + C2 + C12) + 6C00 − 1

]
− (1− 2s2

W )
1

yi
C00 − 2s2

W

1

yi
M2
WC0

− 1

2
(1− 2s2

W )

[
(2 +

1

yi
)B1 + 1

]
,

Gh(yi, yj ;Q
2) = −Q2(C0 + C1 + C2 + C12) + 2C00 − 1− 1

2

1

yiyj
M2
WC0,

Hh(yi, yj ;Q
2) = M2

WC0 +
1

2
Q2C12 − C00 +

1

4
,

(415)

where yi,j = M2
W /M

2
i,j , Mi,j are the heavy neutrino masses. Analytic expressions for the functions

F h, Gh, and Hh in the low Q2 limit are written as

F h(yi; 0) = −
(

5

2
− 2s2

W

)
∆ε −

5 lnyi
2(1− yi)2

− 5

2(1− yi)
+

1

4
,

Gh(yi, yj ; 0) =
1

2

(
∆ε −

1

2

)
+

1

2(yj − yi)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
,

Hh(yi, yj ; 0) = −1

4

(
∆ε +

1

2

)
+

1

4(yj − yi)

(
−(1− 4yi)yj lnyi

(1− yi)
+

(1− 4yj)yi lnyj
(1− yj)

)
.

(416)

The ultraviolet divergences (∆ε) cancel in (410), (413) and (416) using the following properties of the
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mixing matrices [44,48]

9∑
k=1

BikB
†
jk = δij ,

3∑
k=1

B†kiBkj =
9∑

k=1

CikC
†
jk = Cij ,

9∑
k=1

BikCkj = Bij ,

9∑
k=1

mΦkCikCjk =
9∑

k=1

mΦkBikC
†
kj =

3∑
k=1

mΦkBikB
†
jk = 0. (417)

The box diagrams are computed in eqs. (354), (355) and (356) by replacing the ``′`′′`′′′ flavor factor
by ``′`′`′. In this case there are no LNV vertices.
After integrating the three-body phase space the decay width reads [37]

Γ(`→ `′`′`′) =
α2m5

`

96π

[
3|AL|2 + 2|AR|2

(
8 ln

m`

m`′
− 13

)
+ 2|FLL|2 + |FLR|2 +

1

2
|BL|2

− (6ALA
∗
R − (AL − 2AR)(2F ∗LL + F ∗LR +B∗L)− FLLB∗L + h.c.)] ,

(418)

where we have defined

AL =
F γL
Q2

, AR =
2F γM (0)

m`
, FLL = −

gLF
Z
L (0)

eM2
Z

, FLR = −
gRF

Z
L (0)

eM2
Z

, BL = BL(0), (419)

with gL,R the corresponding Z couplings to the charged lepton `′.

7.1.3 Type II: `→ `′`′′ ¯̀′′′ with ` 6= `′ 6= `′′ = `′′′

This process can be expressed like `→ `′`′′`′′ since `′′ = `′′′.
The difference between processes Type I and Type II is that there are no crossed penguin dia-
gram contributions in the last one. This is due to `′′`′′ coming from through pair production. Two
gauge boson LFV transitions would be needed for swapping `′ and `′′. This is the reason why the
`(p`) → `′(p1)`′′(p2)`′′(p3) amplitude M`→`′1`′′2`′′3 has no p1 ↔ p2 term in eq.(404). Nevertheless,
there are additional diagrams for the box contributions at this order for swapping `′ and `′′. The box
contributions are calculated in eqs. (354), (355) and (356), the additional contributions are considered
once the flavor factors with ``′`′′`′′′ are replaced by the appropriate ones with ``′`′′`′′. Furthermore,
there is no symmetry factor of 1/2 in the phase space integration needed to obtain the decay width
because all three final leptons are distinguishable. The final decay width can be written as [37]

Γ(`→ `′`′′`′′) =
α2m5

`

96π

[
2|AL|2 + 4|AR|2

(
4 ln

m`

m`′′
− 7

)
+ |FLL|2 + |FLR|2 + |BL|2

−
(

4ALA
∗
R − (AL − 2AR)

(
F ∗LL + F ∗LR +

B∗L
2

)
− FLL

B∗L
2

+ h.c.

)]
,

(420)
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with the same definitions as in eq. (414).

7.1.4 Type III: `→ `′`′′ ¯̀′′′ with ` 6= `′ = `′′ 6= `′′′

We are going to analyze ` → `′`′′ ¯̀′′′ decays with the (` 6= `′ = `′′ 6= `′′′) condition, hence these
processes just have box contributions.
Recalling that the eqs.(354), (355), (356), (374), (376) and (377) yield the complete FB form factor
from eq.(353)

FB = F
νliν

l
j

B + F
νliχ

h
j

B + F
χhi χ

h
j

B + F
νliν

l
j

B−LNV + F
νliχ

h
j

B−LNV + F
χhi χ

h
j

B−LNV . (421)

F
νliν

l
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)}f lB(yi, yj),

F
νliχ

h
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{W`iW
†
`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}f lhB (yi, xj),

F
χhi χ

h
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}fhB(xi, xj),

F
νliν

l
j

B−LNV =
αW

16πM2
W s

2
W

3∑
i,j=1

W`iW
†
`′jW`′′′iW

†
`′′jf

l−LNV
B (yi, yj),

F
νliχ

h
j

B−LNV =
αW

16πM2
W s

2
W

3∑
i,j=1

W`iθ`′jW`′′′iθ`′′jf
lh−LNV
B (yi, xj),

F
χhi χ

h
j

B−LNV =
αW

16πM2
W s

2
W

3∑
i,j=1

θ†`iθ`′jθ
†
`′′′iθ`′′jf

h−LNV
B (xi, xj),

(422)

where the f (l,lh,h)
B (zi, zj) and f (l,lh,h)−LNV

B (zi, zj) functions are shown in the Appendix G.

The F
νliν

l
j

B form factor just involves active neutrinos, therefore, yi, yj → 0 (mi,mj � MW ) which
implies

f lB(yi, yj)
∣∣∣
yi,yj→0

≈ − [1 + (yj + yi) (1 + lnyj)] , (423)

therefore,

F
νliν

l
j

B ≈ − αW
16πM2

W s
2
W

3∑
i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)} [1 + (yj + yi) (1 + lnyj)] . (424)
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The F
νliχ

h
j

B form factor involves a mixing of active and heavy neutrinos, due to their masses satisfying
mi �MW � mj , respectively. We have that yi, xj → 0

f lhB (yi, xj)
∣∣∣
yi,xj→0

≈ xj(1 + lnxj) +
1

4
yi(lnxj − 7). (425)

Hence,

F
νliχ

h
j

B ≈ αW
16πM2

W s
2
W

3∑
i=1

9∑
j=7

{W`iW
∗
`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}

[
xj(1 + lnxj) +

1

4
yi(lnxj − 7)

]
. (426)

The FχiχjB form factor appears from the interaction of two heavy neutrinos, then we need to analyze
the behavior of the fhB function with MW �Mi,Mj . Therefore,

fhB(xi, xj)|xi,xj→0 ≈ xi

[(
1

2xj
− 3

)
1

2xj
ln

(
xi
xj

)
+ lnxi +

9

4
lnxj + xj

(
3 lnxj +

3

4

)
+

7

4

]
+

1

4xj
ln

(
xi
xj

)
+

1

4
(6 lnxj + 7) +

1

4
xj (13 lnxj + 7) ,

(427)

we have assumed heavy neutrinos are not degenerate but they may be of the same order of magnitude
(mi ∼ mj). If the xi/xj ratio approached 1 much faster than 1/xj diverges, we could get rid of the
1
xj

ln
(
xi
xj

)
term, otherwise this one is divergent.

For the f l−LNVB considering yi, yj → 0 we obtain

f l−LNVB (yi, yj)
∣∣∣
yi,yj→0

≈ 2
√
yiyj(1 + 2 lnyj), (428)

which yields

F
νliν

l
j

B−LNV =
αW

16πM2
W s

2
W

3∑
i,j

{W`iW
†
`′jW`′′′iW

†
`′′j}

[
2
√
yiyj(1 + 2 lnyj)

]
. (429)

For the f lh−LNVB the considerations what we make are yi, xj → 0, then

f lh−LNVB (yi, xj)
∣∣∣
yi,xj→0

≈ 2
√
yixj(lnxj − 1), (430)

therefore

F
νliχ

h
j

B−LNV ≈
αW

32πM2
W s

2
W

3∑
i=1

9∑
j=7

{W`iθ`′jW`′′′iθ`′′j}
[
2
√
yixj(lnxj − 1)

]
. (431)
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Finally, for F
χliχ

l
j

B−LNV if xi, xj → 0, the fh−LNVB behaves as

fh−LNVB (xi, xj)
∣∣∣
xi,xj→0

≈
√
xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1) + 3
√
xixj(lnxj + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1).

(432)

We naively observe that we have a perturbative unitarity issue with the functions from the eqs. (427)
and (432) when xi,j → 0 that it is equivalent to consider mi,j → ∞, but we must understand that
infinity (∞) is an unphysical value. Then, in order to not violate perturbative unitarity, the heavy
neutrino masses mi,j can not to exceed an upper limit which makes the (427) and (432) functions not
divergent. Thus, all form factors from (422) are finite.
Due to this process has no penguin contributions, the total decay width for `→ `′`′′ ¯̀′′′ is given by

Γ(`→ `′`′′ ¯̀′′′) =
α2m5

`

192π
|FB|2 , (433)
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Then, the branching ratio is written down as follows

Br(`→ `′`′′ ¯̀′′′) =
α2
W

128π2
|FB|2

=
α2
W

128π2

∣∣∣∣F νliνljB + F
νliχ

h
j

B + F
χhi χ

h
j

B + F
νliν

l
j

B−LNV + F
νliχ

h
j

B−LNV + F
χhi χ

h
j

B−LNV

∣∣∣∣2
=

α2
W

128π2

∣∣∣∣∣∣−
3∑

i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)} [1 + (yj + yi) (1 + lnyj)]

+
3∑
i=1

9∑
j=7

{W`iW
∗
`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}

[
xj(1 + lnxj) +

1

4
yi(lnxj − 7)

]

+

9∑
i,j=7

{θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+ xilnxi +

9

4
xilnxj

+xixj

(
3 lnxj +

3

4

)
+

7

4
xi +

1

4xj
ln

(
xi
xj

)
+

1

4
(6 lnxj + 7) +

1

4
xj (13 lnxj + 7)

]
+

3∑
i,j

{W`iW
†
`′jW`′′′iW

†
`′′j}

[
2
√
yiyj(1 + 2 lnyj)

]
+

3∑
i=1

9∑
j=7

{W`iθ`′jW`′′′iθ`′′j}
[
2
√
yixj(lnxj − 1)

]

+
9∑

i,j=7

{θ†`iθ`′jθ
†
`′′′iθ`′′j}

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1) + 3
√
xixj(lnxj + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 ,
(434)

in the equation above we are considering y → 0 and x→ 0, where the y variable is corresponding to
active neutrinos and x variable stands for heavy neutrinos. The masses of active neutrinos are of the
order of O(eV), while we assume that the masses of heavy neutrinos are of the order of O(TeV), and
the well-known mass of W boson is of the order of O(100GeV), therefore the y variable approaches
zero faster than the x variable does. This ensures that the 1

4yi (lnxj − 7) and 2
√
yixj(lnxj − 1) terms
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are finite. Hence, the branching ratio at leading order behaves as

Br(`→ `′`′′ ¯̀′′′) =
α2
W

128π2

∣∣∣∣∣∣−
3∑

i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)}

+
9∑

i,j=7

{θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+

1

4xj
ln

(
xi
xj

)

+
1

4
(6 lnxj + 7)

]
+

9∑
i,j=7

{θ†`iθ`′jθ
†
`′′′iθ`′′j}

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 ,

(435)

From the definition of Wij matrix (350), we can reduce the following terms

W`iW
†
`′iW`′′′jW

†
`′′j = δ``′δ`′′′`′′ − δ``′θ`′′′jθ†`′′j − δ`′′′`′′θ`iθ

†
`′i + θ`iθ

†
`′iθ`′′′jθ

†
`′′j ,

W`iW
†
`′′iW`′′′jW

†
`′j = δ``′′δ`′′′`′ − δ``′′θ`′′′jθ†`′j − δ`′′′`′θ`iθ

†
`′′i + θ`iθ

†
`′′iθ`′′′jθ

†
`′j ,

(436)

therefore (the sum on the repeated index is understood), the branching ratio looks as follows

Br(`→ `′`′′ ¯̀′′′) =
α2
W

128π2

∣∣∣−{δ``′δ`′′′`′′ − δ``′θ`′′′jθ†`′′j − δ`′′′`′′θ`iθ†`′i + θ`iθ
†
`′iθ`′′′jθ

†
`′′j

+ δ``′′δ`′′′`′ − δ``′′θ`′′′jθ†`′j − δ`′′′`′θ`iθ
†
`′′i + θ`iθ

†
`′′iθ`′′′jθ

†
`′j}

+{θ†`iθ`′iθ
†
`′′′jθ`′′j + θ†`iθ`′′iθ

†
`′′′jθ`′j}

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+

1

4xj
ln

(
xi
xj

)

+
1

4
(6 lnxj + 7)

]
+ {θ†`iθ`′jθ

†
`′′′iθ`′′j}

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 ,

(437)

as the process that we are analyzing satisfies (` 6= `′ = `′′ 6= `′′′), hence

Br(`→ `′`′′ ¯̀′′′) =
α2
W

128π2

∣∣∣−{θ`iθ†`′iθ`′′′jθ†`′′j + (`′ ↔ `′′)}

+ {θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+

1

4xj
ln

(
xi
xj

)

+
1

4
(6 lnxj + 7)

]
+ {θ†`iθ`′jθ

†
`′′′iθ`′′j}

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 .

(438)
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Now, we are going to consider the τ → eeµ̄ and τ → µµē processes which yield [6]

Br(τ → eeµ̄) = (0.17)
α2
W

128π2

∣∣∣∣−2θτiθ
†
eiθµjθ

†
ej + 2θ†τiθeiθ

†
µjθej

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+

1

4xj
ln

(
xi
xj

)

+
1

4
(6 lnxj + 7)

]
+ θ†τiθejθ

†
µiθej

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 < 1.5× 10−8(C.L = 90%),

(439)

Br(τ → µµē) = (0.17)
α2
W

128π2

∣∣∣∣−2θτiθ
†
µiθejθ

†
µj + 2θ†τiθµiθ

†
ejθµj

[(
1

2xj
− 3

)
xi

2xj
ln

(
xi
xj

)
+

1

4xj
ln

(
xi
xj

)

+
1

4
(6 lnxj + 7)

]
+ θ†τiθµjθ

†
eiθµj

√ xi
x3
j

ln

(
xj
xi

)
+

√
xi
xj

(2 lnxi + 1)

+
1

√
xixj

(lnxj + 1) +

√
xj
xi

(2 lnxj + 1)

]∣∣∣∣2 < 1.7× 10−8(C.L = 90%),

(440)

with i, j = 1, 2, 3. The 0.17 factor is because we need to take into account other possible decay channels
for the tau. Notice all contributions of diagrams with explicit lepton number violating (LNV) vertices
come from θ matrix defined by the interactions from (350) due to introducing Majorana neutrinos.

7.2 Contributions to Z → ``′ decays

At leading order the Z → ``′ vertex reduces to

iΓµZ(p`, p`′) = ieFZL (Q2)γµPL. (441)

We work in the approximation of zero light neutrino masses. Therefore, only diagrams with heavy
neutrinos contribute to this process. In this type of decay we have that Q2 = M2

Z , so the Z width is
written as follows

Γ(Z → ``′) =
α

3
MZ |FZL (M2

Z)|2, (442)

where the FZL (M2
Z) form factor is given by

FZL (M2
Z) = FZ−χ

h

L (yi, yj ;M
2
Z). (443)

96



7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

The FZ−χ
h

L form factor receives 10 contributions from the Figure 39

FZ−χ
h

L =
αW

8πcW sW

10∑
a=1

F
(a)
Z (444)

where the form factors of the different diagrams are:
Topology I

F
(1)
Z = θ`′jθ

†
`i

(
−Sji

[
M2
Z(C0 + C1 + C2 + C12)− 2C00 + 1

]
+ S†ji

√
1

yiyj
M2
WC0

)
, (445)

where C00,0,1,2,12 ≡ C00,0,1,2,12(0,M2
Z , 0;Mi,Mj ,MW );

Topology II

F
(2)
Z = −2c2

W θ`′jθ
†
`i

(
M2
Z [C1 + C2 + C12] + 6C00 − 1

)
, (446)

where C00,1,2,12 ≡ C00,1,2,12(0,M2
Z , 0;Mi,MW ,MW );

Topology III

F
(3)
Z =

1

2
θ`′jθ

†
`i

(
−Sji

1

yiyj
M2
WC0 + S†ji

√
1

yiyj

[
M2
ZC12 − 2C00 +

1

2

])
, (447)

where C00,0,12 ≡ C00,0,12(0,M2
Z , 0;Mi,Mj ,MW );

Topology IV

F
(4)
Z = −(1− 2s2

W )θ`′jθ
†
`i

1

yi
C00, (448)

where C00 ≡ C00(0,M2
Z , 0;Mi,MW ,MW );

Topology V and VI

F
(5)
Z + F

(6)
Z = −2s2

W θ`′jθ
†
`i

1

yi
M2
WC0, (449)

where C0 ≡ C0(0,M2
Z , 0;Mi,MW ,MW );

Self-energy diagrams

F
(7)
Z + F

(8)
Z + F

(9)
Z + F

(10)
Z = −1

2
(1− 2s2

W )θ`′jθ
†
`i

[(
2 +

1

yi

)
B1 + 1

]
, (450)

where B1 ≡ B1(0;Mi,MW ). In all these expressions we have defined yi,j = M2
W /M

2
i,j , being Mi,j the

heavy neutrino masses. The form factors above are in agreement with [54], we have different signs in
the eqs. (446) and (450). Writing the 10 form factors above in a compact way we obtain a similar
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expressions from the eqs. (414), (415), and (416).

FZL (M2
Z) =

αW
8πcW sW

3∑
i,j=1

[
θ`′iθ

†
`iF

h(yi;M
2
Z)

+θ`′jSjiθ
†
`i

(
Gh(yi, yj ;M

2
Z) +

1
√
yiyj

Hh(yi, yj ;M
2
Z)

)]
,

(451)

where

F h(yi;M
2
Z) = −2c2

W

[
M2
Z(C1 + C2 + C12) + 6C00 − 1

]
− (1− 2s2

W )
1

yi
C00 − 2s2

W

1

yi
M2
WC0

− 1

2
(1− 2s2

W )

[
(2 +

1

yi
)B1 + 1

]
,

Gh(yi, yj ;M
2
Z) = −M2

Z(C0 + C1 + C2 + C12) + 2C00 − 1− 1

2

1

yiyj
M2
WC0,

Hh(yi, yj ;M
2
Z) = M2

WC0 +
1

2
M2
ZC12 − C00 +

1

4
,

(452)

with yi,j = M2
W /M

2
i,j , Mi,j are the heavy neutrino masses. Analytic expressions for the functions

F h, Gh, and Hh at order of M2
Z are written as

F h(yi;M
2
Z) = −

(
5

2
− 2s2

W

)
∆ε −

5 lnyi
2(1− yi)2

− 5

2(1− yi)
+

1

4

+
M2
Z

72M2
W

1

(1− yi)4

(
6[24y2

i (s
2
W − 1)− 4yi(5s

2
W − 8)− (2s2

W − 1)] lnyi

−(1− yi)[88y3
i (s

2
W − 1)− 2y2

i (164s2
W − 171)− yi(297− 230s2

W )− (2s2
W + 11)]

)
,

Gh(yi, yj ;M
2
Z) =

1

2

(
∆ε −

1

2

)
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
+
M2
Z

M2
j

× (terms),

Hh(yi, yj ;M
2
Z) = −1

4

(
∆ε +

1

2

)
− 1

4(yi − yj)

(
−(1− 4yi)yj lnyi

(1− yi)
+

(1− 4yj)yi lnyj
(1− yj)

)
+
M2
Z

M2
i

× (terms).

(453)

These functions are parameterized under the consideration of heavy neutrino masses (Mi � MW ),
where we have defined the variable yi = M2

W /M
2
i . We observe that the variable yi is the inverse of

xi, which is the one defined by light neutrino masses xi = m2
i /M

2
W (mi �MW ). Then, if we rewrite

the F h, Gh and Hh functions with the xi,j variables instead of yi,j we recover the results reported for
M2
Z → 0 in [44, 48,54].

We can see from Gh and Hh that the term of order M2
Z is suppressed by M2

Z

M2
i,j
, being Mi,j the heavy

neutrino masses. For heavy neutrinos we know that Mi � MW , therefore, it satisfies Mi � MZ

as well. So, we just consider terms at the lowest order in Gh and Hh functions. Otherwise, from
the F h function the term of order M2

Z is not suppressed by heavy neutrino masses, hence we need
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to do a more detailed analysis. We do a series expansion of F h function to higher orders of MZ to
study its behavior. In this expansion there appear terms like 1

Mn
i

ln
(
M2
i /M

2
W

)
with n ≥ 2 which

are suppressed due to Mi � 1. Besides, the terms whose behavior is (MZ/MW )n with n ≥ 4 vanish
because of unitarity of the mixing matrices. Finally, the F h is given by

F h(yi;M
2
Z) ≈ 5

2
ln

(
M2
i

M2
W

)
−
M2
Z

M2
W

(
1

12
(1− 2s2

W ) ln

(
M2
i

M2
W

))
, (454)

where M2
Z

M2
W

= 1
c2W

= 1.286 and s2
W = 0.23153 [6], it yields

F h(yi;M
2
Z) ≈ 5

2
ln

(
M2
i

M2
W

)
− (0.09567) ln

(
M2
i

M2
W

)
, (455)

we see the second term is 26.13 times smaller than the first one. To finish, we write the equation
above in terms of yi

F h(yi;M
2
Z) ≈ −5

2
ln (yi) + (0.09567) ln (yi) . (456)

7.3 The µ− e conversion in nuclei

The µ− e conversion in nuclei has penguin and box contributions as `→ `′`′′ ¯̀′′′ decay, replacing the
last two leptons by a quark q = u or d. It has no crossed penguin diagrams because the lower fermionic
line where the gauge boson is attached is now a coherent sum of quarks composing the probed nucleus.
There is also no crossed box contributions due to the exchange of leptons.
We can write the interaction with a quark q = u or d

Mµq→eq =Mµq→eq
γ +Mµq→eq

Z +Mµq→eq
box , (457)

with the amplitudes defined as [37]

Mµq→eq
γ =u(p1)e

[
iF γM (0)2PRσ

µν(p1 − p`)ν + F γL((p1 − p`)2)γµPL
]
u(p`)

× 1

(p1 − p`)2
u(p3)γµ(gγLqPL + gγRqPR)v(p2),

Mµq→eq
Z =u(p1)

(
−eFZL (0)

)
γµPLu(p`)

1

M2
Z

u(p3)γµ
(
gZLqPL + gZRqPR

)
v(p2),

M`→`′1`′2 ¯̀′
3

box =e2Bq
L(0)u(p1)γµPLu(p`)u(p3)γµPLv(p2).

(458)
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The form factors F γM (0), F γL and FZL (0) are given by (405), (406), and (414), respectively while the
couplings gZL(R)q read [48]

gZLu =
1− 4

3s
2
W

2sW cW
, gZRu = −2sW

3cW
,

gZLd =
−1 + 2

3s
2
W

2sW cW
, gZRd =

sW
3cW

.

(459)

We have a couple of new box diagrams shown in Figure 40 We have been working under the approxi-

Figure 40: Box diagrams contributing to µ− e conversion in nuclei considering light-heavy Majorana
neutrinos.

mation where light Majorana neutrinos are massless. Then, we just consider the contribution which
is coming from heavy Majorana neutrinos χh. The form factors corresponding to diagrams in Figure
40 are written as

Bd
L =

αW
16πM2

W s
2
W

3∑
i,j=1

θ†µiθei|Vjd|
2fBd

(
yi, x

u
j

)
, (460)

Bu
L =

αW
16πM2

W s
2
W

3∑
i,j=1

θ†µiθei|Vuj |
2fBu

(
yi, x

d
j

)
, (461)

where yi = M2
W /M

2
i with Mi the mass of heavy neutrinos, xqi = m2

qi/M
2
W with mqi the mass of the

i-th quark, Vij is the CKM matrix. In agreement with [48] and recalling the eqs. (727), (728), and
(729) in Appendix G

fBd(yi, x
u
j ) =

(
1 +

1

4

xuj
yi

)
d̄lh0 (yi, x

u
j )− 2

xuj
yi
dlh0 (yi, x

u
j ), (462)
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where (making the necessary adjustments)

dlh0 (yi, x
u
j ) =

y2
i lnyi

(1− yi)2(1− yixuj )
+

xuj yi lnxuj
(1− xuj )2(1− yixuj )

+
yi

(1− yi)(1− xuj )
, (463)

d̄lh0 (yi, x
u
j ) =

yi lnyi
(1− yi)2(1− yixuj )

+
yi(x

u
j )2 lnxuj

(1− xuj )2(1− yixuj )
+

yi
(1− yi)(1− xuj )

, (464)

with yi = M2
W /M

2
i (i = 1, 2, 3) and xuj = m2

qj/M
2
W (j = 1, 2, 3). The function fBu is written

fBu(yi, x
d
j ) = −

(
4 +

xdj
4yi

)
d̄lh0 (yi, x

u
j ) + 2

xuj
yi
dlh0 (yi, x

u
j ). (465)

We can neglect all the quark masses, except that of the top quark, and defining xt = m2
t /M

2
W , we

may reduce the fBq functions

3∑
i=j

|Vjd|2fBd
(
yi, x

u
j

)
= |Vtd|2 [fBd(yi, xt)− fBd(yi, 0)]− fBd(yi, 0), (466)

3∑
i=j

|Vuj |2fBu(yi, x
d
j ) = fBu(yi, 0), (467)

as we observe in [48]. Afterwards, the µ−e conversion rate in a nucleus with Z protons and N = A−Z
neutrons yields [37,48]

R =
α5Z4

eff

ΓCaptZ
F 2
Pm

5
µ

∣∣∣2Z(A1L +A2R)− (2Z +N)(F uLL + F uLR +Bu
L)− (Z + 2N)(F dLL + F dLR +Bd

L)
∣∣∣2 ,

(468)

where Zeff is the nucleus effective charge for the muon and FP the associated for factor. In Table 14
we gather the input parameters for Al and for Ti and Au [37,48,55,56].

Nucleus N Z Zeff FP ΓCapt[GeV ]
27
13Al 14 13 11.5 0.64 4.6 ×10−19

48
22Ti 26 22 17.6 0.54 1.7 ×10−18

197
79 Au 118 79 33.5 0.16 8.6 ×10−18

Table 14: Input parameters for different nuclei.
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8 Limits on LFV processes driven by O(TeV) Majorana neutrinos

In this section we show the numerical results for each LFV processes through Monte Carlo simulations.
We are going to consider the light neutrinos massless approximation. Therefore, only diagrams that
involve heavy Majorana neutrinos contribute to the processes. We begin the discussion with LFV Z
decays, LFV Type I and II and µ − e conversion in nuclei as they share the same free parameters:
three heavy neutrinos masses Mi with i = 1, 2, 3 and neutral couplings given by (θSθ†). Afterwards,
we focus in wrong sign processes to bind the corresponding LNV couplings, and we finish with µ− e
conversions in nuclei. In the following subsections we are using the limits of (θθ†)`′` previously obtained
by `→ `′γ decays. These limits are written in eqs. (397), (400), and (402).

8.1 LFV Z decays

We start with LFV Z decays (Z → ``′) whose branching ratios are given by

Br(Z → ``′) =
Γ(Z → ``′)

ΓZ
, (469)

with ΓZ = 2.4952± 0.0023 GeV [6]. Because we are considering the light neutrinos massless approxi-
mation the Z width is written as follows

7Γ(Z → ``′) =
α3
W

192π2c2
W

MZ

∣∣∣∣∣∣
3∑

i,j=1

[
θ`′iθ

†
`iF

h(yi;M
2
Z)

+θ`′jSjiθ
†
`i

(
Gh(yi, yj ;M

2
Z) +

1
√
yiyj

Hh(yi, yj ;M
2
Z)

)]∣∣∣∣2 ,
(470)

where the F h, Gh and Hh functions are given by the eq.(453).

8.1.1 Z → µ̄e

In this process we know that ∣∣∣θejθ†µj∣∣∣ < 0.14× 10−4, (471)

and from PDG [6] Br(Z → µ̄e) < 7.5× 10−7 (C.L. = 95%), it yields

Br(Z → µ̄e) =
α3
W

192π2c2
WΓZ

MZ

∣∣∣[(0.14× 10−4)F h(yi;M
2
Z)

+θejSjiθ
†
µi

(
Gh(yi, yj ;M

2
Z) +

1
√
yiyj

Hh(yi, yj ;M
2
Z)

)]∣∣∣∣2 < 7.5× 10−7.

(472)
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8.1.2 Z → τ̄ e

For this process the limit on the mixing coupling θejθ
†
τj is∣∣∣θejθ†τj∣∣∣ < 0.95× 10−2, (473)

and from PDG [6] Br(Z → τ̄ e) < 9.8× 10−6 (C.L. = 95%), it yields

Br(Z → τ̄ e) =
α3
W

192π2c2
WΓZ

MZ

∣∣∣[(0.95× 10−2)F h(yi;M
2
Z)

+θejSjiθ
†
τi

(
Gh(yi, yj ;M

2
Z) +

1
√
yiyj

Hh(yi, yj ;M
2
Z)

)]∣∣∣∣2 < 9.8× 10−6.

(474)

8.1.3 Z → τ̄µ

The mixing coupling is given by ∣∣∣θµjθ†τj∣∣∣ < 0.011, (475)

and from PDG [6] Br(Z → τ̄µ) < 1.2× 10−5 (C.L. = 95%), it yields

Br(Z → τ̄µ) =
α3
W

192π2c2
WΓZ

MZ

∣∣∣[(0.011)F h(yi;M
2
Z)

+θµjSjiθ
†
τi

(
Gh(yi, yj ;M

2
Z) +

1
√
yiyj

Hh(yi, yj ;M
2
Z)

)]∣∣∣∣2 < 1.2× 10−5.

(476)
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8.2 Type I: `→ `′`′′ ¯̀′′′ with ` 6= `′ = `′′ = `′′′

In this section we write explicitly the form factors and the limits on the mixing couplings for µ→ eeē,
τ → eeē and τ → µµµ̄ decays.

8.2.1 µ→ eee

The form factors involved in this decay are given as follows

AL =
F σL
Q2

=
αW

8πM2
W

3∑
i=1

θeiθ
†
µi

(
−(12y2

i − 10yi + 1) lnyi
6(1− yi)4

+
20y3

i − 96y2
i + 57yi + 1

36(1− yi)3

)
,

AR =
2F γM (0)

mµ
=

αW
8πM2

W

3∑
i=1

θeiθ
†
µi

(
−2y3

i − 7y2
i + 11yi

4(1− yi)3
+

3yi lnyi
2(1− yi)4

)
,

FLL = −
gLF

Z
L (0)

eM2
Z

= − αW
16πs2

WM
2
W

(−1 + 2s2
W )

3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

FLR = −
gRF

Z
L (0)

eM2
Z

= − αW
8πM2

W

3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

BL = BL(0) =
αW

8πM2
W s

2
W

3∑
i,j=1

θ†µiθeiθ
†
ejθej

[(
1

2yj
− 3

)
yi

2yj
ln

(
yi
yj

)
+

1

4yj
ln

(
yi
yj

)
+

1

4
(6 lnyj + 7)

]
,

(477)

with xi,j = M2
i,j/M

2
W , yi,j = M2

W /M
2
i,j , where Mi,j are the masses of heavy neutrinos. We can bind

the form factor above with the following limits [57]

|θµiθ†ei| < 0.14× 10−4, and θeiθ
†
ei = |θe|2 < 2.5× 10−3, (478)

and we take the value from the PDG [6] for Br(µ→ eeē) < 1× 10−12 (C.L = 90%).

8.2.2 τ → eee

The form factors involved in this decay are given by the eq. (477), we only need to change µ→ τ in
the mixing matrices.
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We can bind the couplings terms as follows [57]

|θτiθ†ei| < 0.95× 10−2, and θeiθ
†
ei = |θe|2 < 2.5× 10−3, (479)

ant we take the value from the PDG [6] for Br(τ → eeē) < 2.7× 10−8 (C.L = 90%).

8.2.3 τ → µµµ

The form factors in this decay are given by the eq. (477) considering τ instead of µ, and µ instead of
e in the θ matrices.
We can limit the couplings terms as follows [57]

|θτiθ†µi| < 0.011, and θµiθ
†
µi = |θµ|2 < 0.021, (480)

ant we take the value from the PDG [6] for Br(τ → µµµ̄) < 2.1× 10−8 (C.L = 90%).
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8.3 Type II: `→ `′`′′ ¯̀′′′ with ` 6= `′ 6= `′′ = `′′′

8.3.1 τ → eµµ̄

The form factors involved in this decay are given as follows

AL =
F σL
Q2

=
αW

8πM2
W

3∑
i=1

θeiθ
†
τi

(
−(12y2

i − 10yi + 1) lnyi
6(1− yi)4

+
20y3

i − 96y2
i + 57yi + 1

36(1− yi)3

)
,

AR =
2F γM (0)

mµ
=

αW
8πM2

W

3∑
i=1

θeiθ
†
τi

(
−2y3

i − 7y2
i + 11yi

4(1− yi)3
+

3yi lnyi
2(1− yi)4

)
,

FLL = −
gLF

Z
L (0)

eM2
Z

= − αW
16πs2

WM
2
W

(−1 + 2s2
W )

3∑
i,j=1

[
θeiθ

†
τi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
τi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

FLR = −
gRF

Z
L (0)

eM2
Z

= − αW
8πM2

W

3∑
i,j=1

[
θeiθ

†
τi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
τi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

BL = BL(0) =
αW

8πM2
W s

2
W

3∑
i,j=1

{θ†τiθeiθ
†
µjθµj + θ†τiθµiθ

†
µjθej}

[(
1

2yj
− 3

)
yi

2yj
ln

(
yi
yj

)

+
1

4yj
ln

(
yi
yj

)
+

1

4
(6 lnyj + 7)

]
,

(481)

with xi,j = M2
i,j/M

2
W , yi,j = M2

W /M
2
i,j , where Mi,j are the masses of heavy neutrinos. We can bind

this processes from the PDG [6] Br(τ → eµµ̄) < 2.7×10−8 (C.L. = 90%) and the mixing couplings [57]

|θeiθ†µi| < 0.14× 10−4, |θeiθ†τi| < 0.95× 10−2, |θµiθ†τi| < 0.011, |θµ|2 < 0.021. (482)

8.3.2 τ → µeē

The form factors in these processes are very similar to the τ → eµµ̄ decay, we need to replace µ by e.
From the PDG [6] Br(τ → eµµ̄) < 1.8× 10−8 (C.L. = 90%) and we add the mixing coupling [57]

|θe|2 < 2.5× 10−8. (483)
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8.4 The µ− e conversion rate

In this section we are going to study the µ − e conversion in nuclei taking into account Majorana
neutrinos. The form factors involved in these processes are

A1L =
F γL(Q2)

Q2
=

αW
8πM2

W

3∑
i=1

θeiθ
†
µi

(
−(12y2

i − 10yi + 1) lnyi
6(1− yi)4

+
20y3

i − 96y2
i + 57yi + 1

36(1− yi)3

)
,

A2R =
2F γM (0)

mµ
=

αW
8πM2

W

3∑
i=1

θeiθ
†
µi

(
−2y3

i − 7y2
i + 11yi

4(1− yi)3
+

3yi lnyi
2(1− yi)4

)
,

F uLL = −
FZL (0)gZLu
M2
Z

= − αW
16πM2

W s
2
W

(
1− 4

3
s2
W

) 3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

F uLR = −
FZL (0)gZRu

M2
Z

=
αW

12πM2
W

3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

F dLL = −
FZL (0)gZLu
M2
Z

= − αW
16πM2

W s
2
W

(
−1 +

2

3
s2
W

) 3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

F dLR = −
FZL (0)gZRu

M2
Z

= − αW
24πM2

W

3∑
i,j=1

[
θeiθ

†
µi

(
− 5 lnyi

2(1− yi)2
− 5

2(1− yi)

)

+θejSjiθ
†
µi

(
− 1

2(yi − yj)

(
−(1− yj) lnyi

(1− yi)
+

(1− yi) lnyj
(1− yj)

)
− 1
√
yiyj

1

4(yi − yj)

(
−yj(1− 4yi) lnyi

1− yi
+
yi(1− 4yj) lnyj

1− yj

))]
,

Bd
L =

αW
16πM2

W s
2
W

3∑
i=1

θ†µiθei
(
|Vtd|2 [fBd(yi, xt)− fBd(yi, 0)]− fBd(yi, 0)

)
,

Bu
L =

αW
16πM2

W s
2
W

3∑
i=1

θ†µiθeifBu(yi, 0),

(484)
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where

fBd(yi, xt) =

(
1 +

1

4

xt
yi

)[
yi lnyi

(1− yi)2(1− yixt)
+

yix
2
t lnxt

(1− xt)2(1− yixt)
+

yi
(1− yi)(1− xt)

]
− 2

xt
yi

[
y2
i lnyi

(1− yi)2(1− yixt)
+

xtyi lnxt
(1− xt)2(1− yixt)

+
yi

(1− yi)(1− xt)

]
,

fBd(yi, 0) = d̄lh0 (yi, 0) =
yi lnyi

(1− yi)2
+

yi
(1− yi)

,

fBu(yi, 0) = −4d̄lh0 (yi, 0) = −4

(
yi lnyi

(1− yi)2
+

yi
(1− yi)

)
,

(485)

with yi = M2
W /M

2
i and xt = m2

t /M
2
W , being Mi and mt the masses of heavy neutrinos and quark top

respectively. From the eq. (397) we can bind the form factors above by

|θeiθ†µi| < 0.14× 10−4, (486)

and taking the following values from PDG [6]: mt = 172.76± 0.30 GeV and |Vtd| = (8.0± 0.3)× 10−3.
We are able to measure these processes via two nuclei: 48

22Ti and 197
79 Au, which share the same form

factors, they differ by constants in the conversion rate. Such constants are given in Table 14, therefore

RT i =
α5Z4

effTi

22ΓCaptTi

F 2
PTi

m5
µ

∣∣∣44(A1L +A2R)− 70(F uLL + F uLR +Bu
L)− 74(F dLL + F dLR +Bd

L)
∣∣∣2 , (487)

RAu =
α5Z4

effAu

79ΓCaptAu

F 2
PAu

m5
µ

∣∣∣158(A1L +A2R)− 276(F uLL + F uLR +Bu
L)− 315(F dLL + F dLR +Bd

L)
∣∣∣2 ,
(488)

from PDG [6]: R(Ti) < 4.3× 10−12 (C.L. = 90%) and R(Au) < 7× 10−13 (C.L. = 90%).

8.5 Global Analysis

In this subsection we do a global analysis of the 10 processes above: LFV Z decays Z → µ̄e, Z → τ̄ e,
and Z → τ̄µ; LFV Type I µ → eeē, τ → eeē and τ → µµµ̄; LFV Type II τ → eµµ̄ and τ → µeē;
µ− e conversion in nuclei 48

22Ti and 197
79 Au.

We do the analysis through a single Monte Carlo simulation where the 10 processes are run simulta-
neously. The peculiarity of all these LFV processes is that they share the same free parameters: three
heavy neutrino masses Mi with i = 1, 2, 3 and the neutral couplings given by (θSθ†) matrices.
Every process is submitted under its own limit reported by PDG [6], though the conditions on the
heavy neutrinos masses and neutral couplings of heavy Majorana neutrinos are the same for all, hence
after several attempts we decided to take the heavy neutrino masses interval from 15 to 20 TeV, since
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in this interval is where there are the greatest number of results that satisfy the limit of the branching
ratios and conversion rates.
From the form factors of all those LFV decays we can see that they receive two contributions: one is
coming from charged couplings (θθ†) and the second one comes from neutral couplings (θSθ†). It im-
plies that there is an interference between them. Therefore, we are able to determine the sign of each
entry of the (θθ†) matrices, i.e., we can know whether the interference is constructive or destructive.
We will set (θθ†) elements positive in order to determine the (relative) sign of the (θSθ†) elements.
What the Monte Carlo simulation does is finding combinations of the free parameters values that
return a value for each branching ratio and conversion rate that is less than the experimentally
measured upper limit [6]. In the following Table we show the predicted values for the branching
ratios, conversion rates and heavy neutrino masses. The modulus of the (θSθ†)eµ elements are all

LFV Z decays Our mean values Present limits [6]
Br(Z → µ̄e) 1.20× 10−14 3.7× 10−7

Br(Z → τ̄ e) 1.46× 10−8 4.9× 10−6

Br(Z → τ̄µ) 1.09× 10−8 0.6× 10−5

LFV Type I
Br(µ→ eeē) 1.85× 10−14 1.0×10−12

Br(τ → eeē) 4.16× 10−9 2.7× 10−8

Br(τ → µµµ̄) 4.24× 10−9 2.1× 10−8

LFV Type II
Br(τ → eµµ̄) 3.60× 10−9 2.7× 10−8

Br(τ → µeē) 2.48× 10−9 1.8× 10−8

µ− e conversion rate
R(Ti) 6.21× 10−14 4.3× 10−13

R(Au) 7.82× 10−14 7.0× 10−12

Heavy neutrino masses
M1 (TeV) 17.186

M2 (TeV) 17.185

M3 (TeV) 17.187

Table 15: Mean values for branching ratios, conversion rates and three heavy neutrino masses com-
pared to current upper limits (at 95% confidence level for the Z decays and at 90% for all other
processes). Statistical errors are at the 1% level and order permille for the heavy neutrino masses.

smaller than 7.5× 10−10, while for the other flavor combinations we get |(θSθ†)eτ | < 5.13× 10−7 and
|(θSθ†)µτ | < 6.2× 10−7.

In order to find relations among the above processes we group them into 3 categories because of
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their neutral couplings: (θSθ†)eµ, (θSθ†)eτ , and (θSθ†)µτ .

• (θSθ†)eµ−processes: Z → µ̄e, µ→ eeē, and µ− e conversion in nuclei 48
22Ti and 197

79 Au.

• (θSθ†)eτ−processes: Z → τ̄ e, τ → eeē, and τ → eµµ̄.

• (θSθ†)µτ−processes: Z → τ̄µ, τ → µµµ̄, and τ → µeē.

In next Figures 41, 42 and 43 we present the distribution of values for LFV Type I processes
(similarly for all other processes analyzed in this thesis) in histograms where we can see their main
values indicated.

Figure 41: Histogram for Br(µ → eeē) where
the main value is shown.

Figure 42: Histogram for Br(τ → eeē) where
the main value is shown.

Figure 43: Histogram for Br(τ → µµµ̄) where
the main value is shown.

In Figure 44 a heat map is shown that stands for the correlation matrix among (θSθ†)eµ−processes
and their free parameters. First of all, we see that there is no sizeable correlation among any process
with its free parameters. Second, the small correlation among every entry of (θSθ†)eµ matrix is
negative, it indicates that while one of them increases the other decreases. Furthermore, Z → µ̄e
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decay is strongly correlated with µ→ eeē as well as conversion rate in 48
22Ti with 197

79 Au. In Figures 45
and 46 the behavior of their correlations are shown in scatter plots.
In Figure 47 we can see the correlations among (θSθ†)eτ−processes and their free parameters. The
interpretation of this plot is very similar to Figure 44. The branching ratios of these decays have a
sizeable correlation to each other, but the predominant one is between Br(Z → τ̄ e) and Br(τ → eeē).
We show all these behaviors in Figures 48, 49 and 50.
For (θSθ†)µτ−processes their branching ratios are not correlated with any free parameter as we can
observe in Figure 51. Nevertheless, we can see sizeable correlations among branching ratios, where the
largest one is between Br(Z → τ̄µ) and Br(τ → µeē). The correlations of every decay to all others
are displayed in Figures 52, 53 and 54.
If we observe the three heat maps for the processes whose behavior involves neutral couplings given
by (θSθ†)`′` matrix, we realize that the three heavy masses are strongly correlated with each other
(recall that the values for heavy neutrinos are the same for all processes).
Finally, we add a heat map in Figure 55 where only branching ratios and conversion rates are involved.
This heat map that stands for a correlation matrix seems a block matrix where each block represents
a category of (θSθ†)`′`−processes, with aid of this plot we can conclude that processes with different
neutral coupling have a very small correlation.
The scatter plots among two pairs of heavy neutrino masses in Figures 56 and 57 show neatly that
solutions do not restrict to the nearly degenerate case.

111



8 LIMITS ON LFV PROCESSES DRIVEN BY O(TEV) MAJORANA NEUTRINOS

Figure 44: Heat map that stands for the correlation matrix among (θSθ†)eµ−processes: Z → µ̄e,
µ→ eeē, µ− e conversion in nuclei 48

22Ti and 197
79 Au, and their free parameters.

Figure 45: Scatter plot Br(Z → µ̄e) vs.
Br(µ→ eeē).

Figure 46: Scatter plot R(Ti) vs. R(Au).
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Figure 47: Heat map that stands for the correlation matrix among (θSθ†)eτ−processes: Z → τ̄ e,
τ → eeē, τ → eµµ̄, and their free parameters.

Figure 48: Scatter plot Br(Z → τ̄ e) vs.
Br(τ → eeē).

Figure 49: Scatter plot Br(Z → τ̄ e) vs.
Br(τ → eµµ̄).

113



8 LIMITS ON LFV PROCESSES DRIVEN BY O(TEV) MAJORANA NEUTRINOS

Figure 50: Scatter plot Br(Z → eeē) vs. Br(τ → eµµ̄).

Figure 51: Heat map that stands for the correlation matrix among (θSθ†)µτ−processes: Z → τ̄µ,
τ → µµµ̄, τ → µeē, and their free parameters.
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Figure 52: Scatter plot Br(Z → τ̄µ) vs.
Br(τ → µµµ̄). Figure 53: Br(Z → τ̄µ) vs. Br(τ → µeē).

Figure 54: Br(τ → µµµ̄) vs. Br(τ → µeē).
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Figure 55: Heat map that stands for the correlation matrix exclusively among the 10 processes analysed
in this section. We can distinguish that this matrix seems a block matrix representation where each
block corresponds to each neutral coupling category.
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Figure 56: Scatter plot M1 vs. M2. Figure 57: Scatter plot M2 vs. M3.
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8.6 Bounds for wrong sign processes, Type III: `→ `′`′′ ¯̀′′′ with ` 6= `′ = `′′ 6= `′′′

In this subsection we are going to study two tau decays which are known as wrong processes: τ → eeµ̄

and τ → µµē. We analyze them assuming that the terms associated with LNV vertices are free
parameters, thus we are able to bind these couplings.

8.6.1 τ → eeµ̄

This case is a realistic method to find a possible branching ratio limit as we do not assume the
(θµiθτi)

†(θejθej) term as a global factor. We work in the light neutrinos massless approximation,
therefore we get rid of the first term of in eq. (439)

Br(τ → eeµ̄) = (0.17)
α2
W

128π2

∣∣∣∣∣∣2.66× 10−7
3∑

i,j=1

[(
1

2yj
− 3

)
yi

2yj
ln

(
yi
yj

)
+

1

4yj
ln

(
yi
yj

)

+
1

4
(6 lnyj + 7)

]
+

3∑
i,j=1

(θµiθτi)
†(θejθej)

√ yi
y3
j

ln

(
yj
yi

)
+

√
yi
yj

(2 lnyi + 1)

+
1

√
yiyj

(lnyj + 1) +

√
yj
yi

(2 lnyj + 1)

]∣∣∣∣2 < 1.5× 10−8(C.L = 90%),

(489)

with yi,j = M2
W /M

2
i,j , being Mi,j the masses of heavy neutrinos. We have 9 free parameters: Mi,

(θµiθτi)
†, and θeiθei with i = 1, 2, 3.

We bind the coupling terms as follows [57]

|θµ1θτ1|+ |θµ2θτ2|+ |θµ3θτ3| < 0.32× 10−3,

|θe1θe1|+ |θe2θe2|+ |θe3θe3| < 0.01,
(490)

from the equations above we limit each term

− 0.32× 10−3 ≤ (θµ1θτ1)†, (θµ2θτ2)†, (θµ3θτ3)† ≤ 0.32× 10−3,

− 0.01 ≤ (θe1θe1), (θe2θe2), (θe3θe3) ≤ 0.01,
(491)

and the product of them must satisfy that

|θµiθτi||θejθej | < 0.32× 10−5. (492)
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8.6.2 τ → µµē

We will work with the branching ratio for τ → µµē decay assuming that the (θeiθτi)
†(θµjθµj) term is

not a global factor, it is written as follows

Br(τ → µµē) < (0.17)
α2
W

128π2

∣∣∣∣∣∣3.08× 10−7
3∑

i,j=1

[(
1

2yj
− 3

)
yi

2yj
ln

(
yi
yj

)
+

1

4yj
ln

(
yi
yj

)

+
1

4
(6 lnyj + 7)

]
+

3∑
i,j=1

(θeiθτi)
†(θµjθµj)

√ yi
y3
j

ln

(
yj
yi

)
+

√
yi
yj

(2 lnyi + 1)

+
1

√
yiyj

(lnyj + 1) +

√
yj
yi

(2 lnyj + 1)

]∣∣∣∣2 < 1.7× 10−8(C.L = 90%),

(493)

with yi,j = M2
W /M

2
i,j , being Mi,j the masses of heavy neutrinos. Therefore, now we have 9 free

parameters: Mi, (θeiθτi)
†, and (θµiθµi) with i = 1, 2, 3.

We bind the coupling terms as follows

|θe1θτ1|+ |θe2θτ2|+ |θe3θτ3| < 0.9× 10−3,

|θµ1θµ1|+ |θµ2θµ2|+ |θµ3θµ3| < 0.0075,
(494)

from the equations above we limit each term

− 0.9× 10−3 × 10−3 ≤ (θµ1θτ1)†, (θµ2θτ2)†, (θµ3θτ3)† ≤ 0.9× 10−3,

− 0.0075 ≤ (θe1θe1), (θe2θe2), (θe3θe3) ≤ 0.0075,
(495)

and the product of them must satisfy that

|θeiθτi||θµjθµj | < 0.68× 10−5. (496)

8.7 Joint Analysis

We are analysing the wrong sign processes which were computed simultaneously through a single
Monte Carlo simulation5. As we have seen from eqs. (489) and (493) the free parameters are the
heavy neutrino masses (Mi=1,2,3) and the LNV couplings. The heavy neutrino masses Mi (i = 1, 2, 3)

run from 15 to 20 TeV, we decided to take this interval based on the experience gained in the previous
processes as in this one data are more concentrated. The conditions on LNV couplings are given by
(491) and (495).
In the following Table 16 we show the final results for branching ratios of wrong sign processes, heavy

5Before doing the simultaneous Monte Carlo simulation we did a simplified analysis for each process aiming to
examine the results for quasi-degenerated cases.
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neutrino masses and LNV couplings.

Branching Ratios Our mean values
Br(τ → eeµ̄) 1.8× 10−9

Br(τ → µµē) 1.9× 10−9

Heavy neutrino masses
M1 (TeV) 17.170

M2 (TeV) 17.166

M3 (TeV) 17.166

LNV couplings
(θe1θτ1)† (2.24± 9.59)× 10−7

(θe2θτ2)† (14.82± 9.69)× 10−7

(θe3θτ3)† (1.84± 9.79)× 10−7

|θeiθτi| 2.76× 10−4

(θµ1θµ1) (0.75± 2.98)× 10−5

(θµ2θµ2) −(8.78± 2.99)× 10−5

(θµ3θµ3) (1.02± 2.98)× 10−5

|θµiθµi| 8.5× 10−3

(θµ1θτ1)† (2.08± 2.26)× 10−6

(θµ2θτ2)† −(0.39± 2.27)× 10−6

(θµ3θτ3)† (0.55± 2.25)× 10−6

|θµiθτi| 6.52× 10−4

(θe1θe1) (3.88± 1.95)× 10−5

(θe2θe2) (4.59± 1.96)× 10−5

(θe3θe3) −(5.04± 1.95)× 10−5

|θeiθei| 5.65× 10−3

Table 16: Mean values for the free parameters and branching ratios in the wrong sign processes
considering Majorana neutrinos in the LHT. Statistical errors which are not shown are smaller than
the last significant figure. We recall the 90% C.L. limits [6]: 1.5×10−8 (on Br(τ → eeµ̄)) and 1.7×10−8

(on Br(τ → µµē)).

The heavy neutrino masses (Mi) present a sizeable correlation among them as in the previous
analysis. Also, LNV couplings: |θeiθτi| and |θµiθµi| are moderately correlated with the heavy neutrino
masses, while |θµiθτi| and |θeiθei| have a minimum correlation with them.
LHT is not to able to bind LFV processes known as "wrong sign" throught T-odd leptons [37].
However, when we extend the LHT model involving Majorana neutrinos with aid of ISS, the branching
ratios get a finite value of order ∼ 10−9. LHT extended with Majorana neutrinos also allows us to
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propose values for LNV couplings shown in Table 16, which have not reported before in papers as [57].
The mean values for the heavy neutrino masses from the studies in the previous section differ only
slightly from the ’Wrong Sign’ analysis, ∼ 0.12% in all cases.

Figure 58: Heat map that stands for a correlation matrix among wrong sign branching ratios and free
parameters.
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9 Neutrinoless Double Beta Decay 0νββ and its analogous tau decay

Total lepton number L = Le + Lµ + Lτ is an absolutely conserved quantum number in the Standard
Model (SM). Some extensions of the SM include interactions that can induce L non-conservation [58].
The hypothesis of the neutrino mixing was confirmed by the observation of the neutrino oscillations
in experiments with the atmospheric, solar, reactor and accelerator neutrinos.
The electric charges of neutrinos are equal to zero. For neutrinos there are two fundamentally different
possibilities:

• if the total lepton number L = Le +Lµ +Lτ is conserved, neutrino fields νi(x) are complex four
component Dirac fields. In this case neutrinos νi and antineutrinos ν̄i have the same mass and
different lepton numbers (L(νi) = −L(ν̄i) = 1).

• If there are no conserved lepton numbers, neutrino fields νi(x) are two component Majorana
fields. In this case νi ≡ ν̄i.

Investigation of the neutrino oscillations does not allow to distinguish these two possibilities. In order
to reveal the Majorana nature of νi it seems necessary to observe processes in which the total lepton
number is violated. Neutrinoless double β-decay of some nuclei is the only such process whose study
allows to reach the necessary sensitivity [59].
The usual double beta decay is the process in which a nucleus A(Z, N) decays into an isobar with the
electric charge differing by two units

A(Z,N)→ A(Z ± 2, N ∓ 2) + 2e∓ + 2ν̄e(2νe),

double beta decay is the process of the second order in weak interaction (GF ), and the corresponding
decay rates are very low: typical lifetimes of the nuclei with respect to the 2β decay are T & 1019

years.
If neutrinos are Majorana particles, the lepton number is not conserved, and the neutrino emitted in
one of the elementary beta decay processes forming the 2β decay can be absorbed in another, leading
to the neutrinoless double beta (0νββ) decay

A(Z,N)→ A(Z ± 2, N ∓ 2) + 2e∓.

Such processes would have a very clear experimental signature: since the recoil energy of a daughter
nucleus is negligibly small, the sum of the energies of the two electrons or positrons in the final
state should be equal to the total energy release, i.e. should be represented by a discrete energy
line [60]. There are many experiments whose aim is searching for new limits of neutrinoless double
beta decays [61].
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9.1 Limits from Neutrinoless Double Beta Decay 0νββ

In the neutrino sector, lepton number violation by two units (∆L = 2), as implied by a Majorana mass
term, plays a crucial role. If the neutrino has a Majorana mass, then it will contribute to (∆L = 2)

LNV processes. The basic process with (∆L = 2) can be generically expressed by [62]

W−W− → `−1 `
−
2 , (497)

where W− is a virtual SM weak boson and `1,2 = e, µ, τ . The best known example is neutrinoless
double-beta decay (0νββ), which proceeds via the parton-level subprocess dd→ uu W ∗W → uu e−e−.
The key subprocess in (0νββ) is W−W− → e−e−, mediated by a Majorana νe.
One possible future collider which is being vigorously investigated at the moment is a high-energy
linear e+e− collider, known generically as the Next Linear Collider (NLC). With such a collider, it
is possible to replace the positron by another electron and look at e−e− collisions. If the electron
neutrino has a Majorana mass, it may be possible to observe the process e−e− → W−W−. This is
essentially the inverse of neutrinoless double beta decay [63].
Suppose that the νe mixes with other neutrinos. So, once the mass matrix is diagonalized, νe can be
expressed in terms of the mass eigenstates Ni

νe =
∑
i

UeiNi, (498)

where we have left the number of new neutrinos unspecified and the mixing matrix U is unitary [63].
Assuming that the Ni are Majorana neutrinos, they will contribute to the process e−e− → W−W−

through the diagrams of Figure 59.

Figure 59: Diagrams contributing to e−e− →W−W−.

We begin by studying constraints on light and heavy neutrino. The most commonly assumed
mechanism of 0νββ is light neutrino exchange, for which the “effective mass” or "Majorana mass"
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|mee| is constrained as follows [63,64], with the most recent one [65]

|mee| ≡
∑
i

(Uei)
2 (mν)i ≤ (36− 156) meV, (499)

where the sum is over the light neutrinos and their masses are called (mν)i. In this case we are
considering that (mν)i � 1 GeV.
In case heavy neutrinos (Mi � 1 GeV) are exchanged in neutrinoless double beta decay, the following
quantity is constrained in [62–64], with an updated limit in [66]

1

|Mee|
≡
∑
m′

|Vem′ |2

mNm′
≤ (2.33 − 4.12)× 10−6 TeV−1, (500)

where the sum is over the heavy neutrinos and the matrix describing their mixing with leptons is
called V .
Now, focusing in our model, we have three heavy neutrinos and the mixing matrix is called θ. From
Tables 15 and 16 we approximate the values for each heavy neutrino mass ∼ 17.2 TeV (assuming a
degenerate case), then we may bind the eq. (500)

(
1

17.2 TeV

)(
|θe1|2 + |θe2|2 + |θe3|2

)
<

3∑
i=1

|θei|2

mi(
1

17.2 TeV

)(
|θe1|2 + |θe2|2 + |θe3|2

)
< (2.33 − 4.12)× 10−6 TeV−1.

(501)

So, we can limit the mixing of νe with the three heavy neutrinos as follows

3∑
i=1

|θei|2 < (4.0 − 7.1)× 10−5. (502)

It is important to recall that we have approached this value by assuming degenerate heavy neutrino
masses M ≈ 17.2 TeV. Tau decays that we study in the next section and neutrinoless double beta
decay (0νββ) are examples of LNV processes. The result from the eq. (502) agrees with the value of
|θeiθei| from Table 16 due to it being one order of magnitude smaller than the limit of LNV coupling
predicted for the model. One possibility to find LNV processes is the Majorana neutrinos existence.
It is shown to be observable for masses up to 106 GeV, which has to be compared with an LHC reach
not exceeding 400 GeV [64].

9.2 Lepton Number Violating Tau Decays

In this section we are studying tau decays into an anti-lepton and two mesons

τ−(pτ )→ `+(p`+)M−1 (q1)M−2 (q2), (503)
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where M−1 ,M
−
2 = π,K. Lepton number violation in three-body decays of τ leptons has been widely

investigated previously [62,67–71]. Typical neutrino-exchange diagrams contributing in this type of τ
decay are shown in Figure 60.

Figure 60: Neutrino-exchange tree level diagram induced by crossing of the W−W− → `−`− to LNV
in τ → `+M−1 M

−
2 .

Figure 61: Box level diagram to LNV in τ → `+M−1 M
−
2 .

This mode is cleaner in principle than 0νββ since the hadronic part does not involve complicated
nuclear structure. For the tree level amplitude, the hadronic part can be expressed in terms of the
decay constants of the mesons in a model independent way. The box diagram includes hadronic
matrix elements which cannot be simplified in terms of decay constants and needs to be evaluated in
a model dependent way. We expect the tree level amplitude to dominate and do not include the box
diagram. The decay amplitude for lepton number violating tau decays can be separated into leptonic
and hadronic parts [62,71]

iM = (Mlep)µν(Mhad)µν . (504)

The leptonic part of the subprocess τ− → `+W−∗W−∗ is obtained by crossing the W−W− → `−`−
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amplitude, therefore, we will develop that amplitude first.
As the decay is mediated solely by the exchange of Majorana neutrinos, we recall how these ones
interact with W bosons and leptons from the eq. (350)

LlW =
g√
2
W+
µ

3∑
j=1

3∑
i=1

νliWijγ
µPL`j + h.c., with Wij =

3∑
k=1

(U †PMNS)ik[13×3 −
1

2
(θθ†)]kj ,

LlhW =
g√
2
W+
µ

3∑
j=1

9∑
i=7

χhi θ
†
ijγ

µPL`j + h.c..

where Wij(θij) is the light(heavy) neutrino mixing matrix. We see in Figure 60 that both light and
heavy neutrinos contribute to the process, so the amplitude contains a lepton part of the form [72]

(Mlep)µν =
g2

2

3∑
i=1

( ¯̀
1γµPLW

†
`1i
ν li)(

¯̀
2γνPLW

†
`2i
νli) +

g2

2

3∑
i=1

( ¯̀
1γµPLθ`1iχ

h
i )( ¯̀

2γνPLθ`2iχ
h
i ), (505)

where the underbrackets indicate contraction. Following the useful relations from eqs. (361)-(364), it
is straightforward to see that the second fermion chain in the above equation transforms as follows

¯̀
2γνPLν

l
i + ¯̀

2γνPLχ
h
i = νli(γνPL)c`c2 + χhi (γνPL)c`c2

= −(νliγνPR`
c
2 + χhi γνPR`

c
2),

(506)

since νli and χ
h
i are Majorana neutrinos (νli)

c = νli , (χhi )c = χhi and (γνPL)c = −γνPR, therefore,

(Mlep)µν = −g
2

2

3∑
i=1

W †`1iW
†
`2i

( ¯̀
1γµPLν

l
iν
l
i γνPR`

c
2)− g2

2

3∑
i=1

θ`1iθ`2i(
¯̀
1γµPLχ

h
i χ

h
i γνPR`

c
2), (507)

the contraction of Majorana neutrino fields turns out to be the usual fermion propagator. Then,
`1 = u(p`1) and `c2 = v(p`2) the (Mlep)µν takes the form

(Mlep)µν = −g
2

2

3∑
i=1

u(p`1)γµPL

(
W †`1iW

†
`2i

/k +mi

k2 −m2
i

+ θ`1iθ`2i
/q +Mi

q2 −M2
i

)
γνPRv(p`2), (508)

where k(q) and mi(Mi) are the momentum exchanged and mass by the light(heavy) neutrinos of
Majorana, respectively. The /k and /q terms vanish

u(p`1)γµPL/kγνPRv(p`2) = kαu(p`1)γµPLγαγνPRv(p`2)

= kαu(p`1)γµγαγνPLPRv(p`2)

= 0,

(509)
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hence,

(Mlep)µν = −g
2

2

3∑
i=1

u(p`1)

(
W †`1iW

†
`2i
mi

k2 −m2
i

+
θ`1iθ`2iMi

q2 −M2
i

)
γµγνPRv(p`2). (510)

Finally, we obtain the leptonic amplitude for τ− → `+W−W− by crossing the above expression
(u(p`1)→ v(pτ ) and v(p`2) = v(p`+))

(Mlep)µν = −g
2

2

3∑
i=1

v(pτ )

(
W †τiW

†
`+i
mi

k2 −m2
i

+
θτiθ`+iMi

q2 −M2
i

)
γµγνPRv(p`+). (511)

Now, we analyze the hadronic part

(Mhad)µν =Mµ
M1
Mν

M2
+ (M1 ↔M2), (512)

whereMµ
M1

andMν
M2

are the amplitudes for the M1 and M2 meson, respectively.

Mµ
M1

=
g√
2
V CKM
M1

[qγµPLq] ,

Mν
M2

=
g√
2
V CKM
M2

[qγνPLq] ,
(513)

where V CKM
Mi

are the quark flavor-mixing matrix elements for the mesons. In the hadronic case we
consider the initial state to be the vacuum state. This is because the initial state contains no quarks.
Let us denote the hadronic current appearing in the square bracket jµ,ν(x), where the co-ordinate
dependence comes from the field operators. This dependence can be factored out in the form of an
exponential. This exponential does not enter the Feynman amplitude, but rather contributes to an
energy-momentum conserving delta function. Once this factor is taken out, we are left with the matrix
element of jµ,ν(0). Thus we can write [2]

〈M−1 (q1)|jµ(0)|0〉 =
√

2ifM1q
µ
1 ,

〈M−2 (q2)|jν(0)|0〉 =
√

2ifM2q
ν
2 ,

(514)

where fMi are constants. They are called meson decay constants. Therefore, the eq. (512) is written
as

(Mhad)µν = −g2V CKM
M1

V CKM
M2

fM1fM2q
µ
1 q

ν
2 + (M1 ↔M2). (515)

From the eqs. (511) and (515) we obtain the whole amplitude of τ−(pτ ) → `+(p`+)M−1 (q1)M−2 (q2)
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by substituting them in the eq. (504), it reads

iM =
g4

2
V CKM
M1

V CKM
M2

fM1fM2

3∑
i=1

W †τiW
†
`+i
mi

(
v(pτ ) /q1 /q2PRv(p`+)

(pτ − q1)2 −m2
i

+
v(pτ ) /q2 /q1PRv(p`+)

(pτ − q2)2 −m2
i

)

+
g4

2
V CKM
M1

V CKM
M2

fM1fM2

3∑
i=1

θτiθ`+iMi

(
v(pτ ) /q1 /q2PRv(p`+)

(pτ − q1)2 −M2
i

+
v(pτ ) /q2 /q1PRv(p`+)

(pτ − q2)2 −M2
i

)
=Mlight +Mheavy.

(516)

The total amplitude receives two contributions: one of them comes from light neutrinos (W †τiW
†
`+i

)

and the other one comes from heavy neutrinos (θτiθ`+i).
Now, we can compare the energy scale of the process to the square of the masses of the Majorana
neutrinos and see what impact this comparison has on the amplitude. For light neutrinos compared
to the energy scale in the processes (m2

i � (pτ − q1)2, (pτ − q2)2), we can neglect the mass in the
denominator, so the light neutrino amplitude becomes as follows

Mlight =
g4

2
V CKM
M1

V CKM
M2

fM1fM2〈mτ`+〉
(
v(pτ ) /q1 /q2PRv(p`+)

(pτ − q1)2
+
v(pτ ) /q2 /q1PRv(p`+)

(pτ − q2)2

)
, (517)

where we have defined 〈mτ`+〉 ≡
∑3

i=1W
†
τiW

†
`+i
mi, similarly to the eq. (499). 〈mτ`+〉 is an effective

mass of a light Majorana neutrino [73].
If the heavy neutrinos satisfy that (M2

i � (pτ − q1)2, (pτ − q2)2), the contribution of the second term
in eq. (516) is dominated by a similar factor to the eq. (500)

Mheavy = −g
4

2
V CKM
M1

V CKM
M2

fM1fM2

1

〈Mτ`+〉
(
v(pτ ) /q1 /q2PRv(p`+) + v(pτ ) /q2 /q1PRv(p`+)

)
, (518)

where 1
〈Mτ`+ 〉

=
∑3

i=1
θτiθ`+i
Mi

. Then, with the latter assumptions the total amplitude is written as
follows

iM =
g4

2
V CKM
M1

V CKM
M2

fM1fM2〈mτ`+〉
(
v(pτ ) /q1 /q2PRv(p`+)

(pτ − q1)2
+
v(pτ ) /q2 /q1PRv(p`+)

(pτ − q2)2

)
− g4

2
V CKM
M1

V CKM
M2

fM1fM2

1

〈Mτ`+〉
(
v(pτ ) /q1 /q2PRv(p`+) + v(pτ ) /q2 /q1PRv(p`+)

)
.

(519)

This expression has a suppression issue in the Majorana light neutrinos sector: theMlight is neglected
since the Majorana light neutrinos are identified as SM ones and it is well known their masses are
very small.
When the heavy neutrino mass is kinematically accessible (M2

i ' (pτ−q1)2, (pτ−q2)2), the process may
undergo a resonant production of the heavy neutrino which substantially enhances the transition rate.
Therefore, the decay amplitude for the process can be enhanced through the resonant production of
a heavy Majorana neutrino. This enhancement of the amplitude is known as the resonant mechanism
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[62]. For tau decays the resonant contribution is from heavy Majorana neutrinos with masses of order
MeV to GeV, but in the Subsection 8.7 we estimated masses for heavy Majorana neutrinos in this
model (LHT) of the order TeV, so we can not contemplate the resonant contribution.
The other contibution Mheavy is suppressed by a ∼ 1

Mi
factor with Mi ∼ O(TeV). Nevertheless,

we expect that Mheavy will be less suppressed than Mlight, it being the dominant contribution of
τ− → `+M−1 M

−
2 . Then, from the eq.(519) we are focusing only inMheavy

iM = −g
4

2
V CKM
M1

V CKM
M2

fM1fM2

1

〈Mτ`+〉
(
v(pτ ) /q1 /q2PRv(p`+) + v(pτ ) /q2 /q1PRv(p`+)

)
= −g

4

2
V CKM
M1

V CKM
M2

fM1fM2

1

〈Mτ`+〉
(M1 +M2).

(520)

Considering GF /
√

2 = g2/8, then

Γ(τ− → `+M−1 M
−
2 ) = 16G4

F f
2
M1
f2
M2

∣∣V CKM
M1

V CKM
M2

∣∣2 ∣∣∣∣ 1

〈Mτ`+〉

∣∣∣∣2 |M1 +M2|2 , (521)

where

|M1 +M2|2 =
1

2mτ

∫
d3 ~p`

(2π)32E`

∫
d3 ~q1

(2π)32EM1

∫
d3 ~q2

(2π)32EM2

× (2π)4δ(4)(pτ − p` − q1 − q2)8(pτ · p`)(q1 · q2)2.

(522)

Working at the tau rest frame and taking m`+ ≈ 0

pτ = (mτ ,~0), p` = (|~p`|, ~p`), q1 = (EM1 , ~q1), q2 = (EM2 , ~q2) (523)

yields
8(pτ · p`)(q1 · q2) = 2mτE`

(
m2
τ −m2

M1
−m2

M2
− 2mτE`

)2
. (524)

In the case M1 = M2(mM1 = mM2 = m), the eq. (522) becomes

|M1 +M2|2 =
1

4(2π)3

∫ mτ/2

m
dEM

∫ |~p`|+
|~p`|−

d|~p`||~p`|(m2
τ − 2m2 − 2mτ |~p`|)2, (525)

where
m2
τ − 2mτEM

2
(
mτ − EM +

√
E2
M −m2

) < |~p`| < m2
τ − 2mτEM

2
(
mτ − EM −

√
E2
M −m2

) . (526)

The |M1 +M2|2 is a function which depends of m = mπ,mK , and we computed it in FeynCalc [36].
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9.2.1 τ → e+(µ+)π−π−

Because we are considering m`+ ≈ 0, the |M1 +M2|2 term does not depend of m`+ , hence, both
processes end up sharing the same value of |M1 +M2|2.

Γ(τ− → e+π−π−) = 16G4
F f

4
π− |Vud|

4

∣∣∣∣ 1

〈Mτe+〉

∣∣∣∣2 |M1 +M2|2 , (527)

Γ(τ− → µ+π−π−) = 16G4
F f

4
π− |Vud|

4

∣∣∣∣ 1

〈Mτµ+〉

∣∣∣∣2 |M1 +M2|2 . (528)

We know that
1

〈Mτe+〉
=

3∑
i=1

θτiθei
Mi

, and
1

〈Mτµ+〉
=

3∑
i=1

θτiθµi
Mi

. (529)

We may bind the above equations as we did in eq. (501) considering the neutrino mass (4 TeV) and
taking from the Table 16 the values of |θeiθτi| = 8.763× 10−4 and |θµiθτi| = 1.937× 10−3, therefore,∣∣∣∣ 1

〈Mτe+〉

∣∣∣∣ < |θτiθei|
17.2 TeV

=
2.76× 10−4

17.2 TeV
= 1.604× 10−8GeV−1,∣∣∣∣ 1

〈Mτµ+〉

∣∣∣∣ < |θτiθµi|
17.2 TeV

=
6.52× 10−4

17.2 TeV
= 3.79× 10−8GeV−1.

(530)

Taking mτ = 1.77686 GeV and mπ = 0.13957039 GeV, the value of |M1 +M2|2 is given by

|M1 +M2|2 = 2.13957× 10−4(GeV)7. (531)

Using the following constant values [6]

GF = 1.166378× 10−5(GeV)−2,

|Vud| = 0.9737,

fπ = 0.093GeV.

(532)

This is a cautionary note to point out that there are different conventions of defining fπ which differ
by a factor of

√
2. Some people do not put the factor of

√
2 on the right hand side of eq. (514), so for

them fπ turns out to be about 130 MeV [2].
So, Γ(τ− → e+π−π−) and Γ(τ− → µ+π−π−) are given as follows

Γ(τ− → e+π−π−) < 1.096× 10−42 GeV, (533)

Γ(τ− → µ+π−π−) < 6.11× 10−42 GeV. (534)
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The branching ratios for both processes are obtained dividing by the SM tau decay width, hence

Br(τ− → e+π−π−) =
Γ(τ− → e+π−π−)

Γτ
< 1.59× 10−29, (535)

Br(τ− → µ+π−π−) =
Γ(τ− → µ+π−π−)

Γτ
< 8.89× 10−29. (536)

9.2.2 τ → e+(µ+)K−K−

In this case the decay widths are given by

Γ(τ− → e+K−K−) = 16G4
F f

4
K− |Vus|

4

∣∣∣∣ 1

〈Mτe+〉

∣∣∣∣2 |M1 +M2|2 , (537)

Γ(τ− → µ+K−K−) = 16G4
F f

4
K− |Vus|

4

∣∣∣∣ 1

〈Mτµ+〉

∣∣∣∣2 |M1 +M2|2 , (538)

where the value of kaon decay constant (similar comment with respect to its normalization applies as
in the pion case above) is [2]

fK = 0.110 GeV, (539)

the mK and the CKM matrix elements are taken from [6]

mK = 0.493677 GeV, |Vus| = 0.2221. (540)

In this case
|M1 +M2|2 = 6.30908× 10−5 (GeV)7. (541)

Then, the eqs. (537) and (538) yield

Γ(τ− → e+K−K−) < 1.71× 10−45 GeV, (542)

Γ(τ− → µ+K−K−) < 9.56× 10−45 GeV. (543)

Finally, the branching ratios for these processes read

Br(τ− → e+K−K−) =
Γ(τ− → e+K−K−)

Γτ
< 2.48× 10−32, (544)

Br(τ− → µ+K−K−) =
Γ(τ− → µ+K−K−)

Γτ
< 1.38× 10−31. (545)
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We see that theses processes are more suppressed when the mesons are K− than π− due to K− being
heavier.

9.2.3 τ → e+(µ+)π−K−

In this case both π− and K− take place in the tau decay

τ−(pτ )→ `+(p`+)π−(q1)K−(q2), (546)

where, the four-momentum of each particle is

pτ = (mτ ,~0), p` = (|~p`|, ~p`), q1 = (Eπ, ~qπ), q2 = (EK , ~qK), (547)

so, the eq.(524) becomes

8(pτ · p`)(q1 · q2) = 2mτ |~p`|
(
m2
τ −m2

π −m2
K − 2mτ |~p`|

)2
. (548)

In this case the eq. (522) is written as follows

|M1 +M2|2 =
1

4(2π)3

∫ m2
τ+m2

π−m
2
K

2mτ

mπ

dEπ

∫ |~p`|+
|~p`|−

d|~p`||~p`|
(
m2
τ −m2

π −m2
K − 2mτ |~p`|

)2
, (549)

with
m2
τ − 2mτEπ +m2

π −m2
K

2
(
mτ − Eπ +

√
E2
π −m2

π

) < |~p`| < m2
τ − 2mτEπ +m2

π −m2
K

2
(
mτ − Eπ −

√
E2
π −m2

π

) . (550)

The decay width of these processes is expressed as

Γ(τ− → `+π−K−) = 16G4
F f

2
πf

2
k

∣∣V CKM
π V CKM

K

∣∣2 ∣∣∣∣ 1

〈Mτ`+〉

∣∣∣∣2 |M1 +M2|2 , (551)

thus, writing explicitly the decay width for each process

Γ(τ− → e+π−K−) = 16G4
F f

2
πf

2
k |VudVus|

2

∣∣∣∣ 1

〈Mτe+〉

∣∣∣∣2 |M1 +M2|2 , (552)

Γ(τ− → µ+π−K−) = 16G4
F f

2
πf

2
k |VudVus|

2

∣∣∣∣ 1

〈Mτµ+〉

∣∣∣∣2 |M1 +M2|2 . (553)

The integral from eq. (549) was computed with aid of FeynCalc [36], so that the above equations yield

Γ(τ− → e+π−K−) < 4.63× 10−44 GeV, (554)
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Γ(τ− → µ+π−K−) < 2.58× 10−43 GeV. (555)

Therefore, Br(τ− → e+π−K−) and Br(τ− → µ+π−K−) are given by

Br(τ− → e+π−K−) < 6.73× 10−31, (556)

Br(τ− → µ+π−K−) < 3.75× 10−30. (557)

Taking the current values from Particle Data Group [6]

Br(τ− → e+π−π−) < 2.0× 10−8 (C.L = 90%),

Br(τ− → µ+π−π−) < 3.9× 10−8 (C.L = 90%),

Br(τ− → e+K−K−) < 3.3× 10−8 (C.L = 90%),

Br(τ− → µ+K−K−) < 4.7× 10−8 (C.L = 90%),

Br(τ− → e+π−K−) < 3.2× 10−8 (C.L = 90%),

Br(τ− → µ+π−K−) < 4.8× 10−8 (C.L = 90%),

(558)

we can see that our results obtained by LHT are more constrained than the current limits. It was
expected because we started from the fact that Mheavy is small due to the masses of the heavy
neutrinos as we explained before in the eqs. (519) and (520). Another possible process may be
τ− → `+ρ−ρ−, but this is also suppressed by space phase as mρ = 775.26 MeV, so it is not considered
in our discussion.
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10 Lepton Flavour Violation in Hadron Decays of the Tau Lepton in
LHT

Throughout this work [74] LFV processes have been studied considering, firstly, the effects of T-odd
particles, which are specific to the traditional LHT, in µ→ eγ and µ→ eeē decays. Such contributions
can be extended to general processes `→ `′γ and `→ `′`′′ ¯̀′′′ or µ→ e conversion in nuclei. In addition,
we have introduced Majorana neutrinos through an Inverse Seesaw (ISS) mechanism and examined
the scenario where just heavy Majorana neutrinos have a sizeable contribution to LFV processes.
Now, in this section we apply our model for the study of LFV tau decays into hadrons: τ → µP ,
τ → µV and τ → µPP where P (V ) is short for a pseudoscalar (vector) meson.
We are going to consider the effects of T-odd particles as well as heavy Majorana neutrinos since
terms at order of O(υ2/f2) are taken into account, where υ is the vev of the SM Higgs and f is the
energy scale of NP (∼ TeV), it yields υ2/f2 � 1. We begin our analysis determining the amplitudes
of the τ → µqq̄ with q = u, d, s quarks and, afterwards, proceed to hadronize the corresponding
quarks bilinears. For this latter step we will employ the tools given by chiral symmetry and dispersion
relations, enforcing the right short-distance behaviour to the form factors.
As we said before, we are taking into account T-odd fermions, thus partner leptons ¯̀c = (ν̄c, ¯̀c) also
will appear. We recall the content of particles given by eqs. (318) and (321), and the Lagrangian
(322) that gives masses to heavy leptons. To give mass to partner leptons we need to introduce two
incomplete SO(5) multiplets [23, 27,51]

ΨL =

 ψ̃cL
0

0

 , Ψχ
L =

 0

χL

0

 , with ΨL
T−→ ΩΨL, and Ψχ

L
T−→ ΩΨχ

L. (559)

This multiplet introduces Dirac mass terms for the ψ̃cR (the superscript (c) denotes partner lepton
fields, not to be confused with charge conjugation) and χR fields as follows

LYH = −κf
(

Ψ2ξ + Ψ1Σ0ξ
†
)

ΨR − κ2ΨLΨR −MΨχ
LΨR + h.c., (560)

Then, partner and singlet leptons receive a κ2 and M masses.

10.1 τ → `qq̄ (` = e, µ)

Two generic topologies are involved in this amplitude: i) penguin-like diagrams, namely τ → `{γ, Z},
followed by {γ, Z} → qq̄ and ii) box diagrams. We will assume, for simplicity, that light quarks and
leptons (`) are massless in our calculation. Corrections induced by their finite masses can be safely
neglected.
The full amplitude is given by two contributions: one of them comes from T-odd particles and the
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other from heavy Majorana neutrinos, then

M =MT−odd +MMaj, (561)

where each one is written

MT−odd =MT−odd
γ +MT−odd

Z +MT−odd
box ,

MMaj =MMaj
γ +MMaj

Z +MMaj
box ,

(562)

we will use the ’t Hooft-Feynman gauge along the calculation and will write ` = µ for definiteness.

10.1.1 T-odd contribution

The Feynman diagrams that contribute to theMT−odd
γ amplitude are shown in Figure 6 (it is impor-

tant to recall the contribution from partner leptons ¯̀c = (ν̄c, ¯̀c) ), whose structure is similar to eq.
(142) doing the corresponding adjustments

MT−odd
γ =

e2

Q2
µ(p′)[Q2γµ(A1

LPL +A1
RPR) + imτσ

µνQν(A2
LPL +A2

RPR)]τ(p)

× q(pq)Qqγµq(pq̄),
(563)

where Qq is the electric charge matrix:

Qq =
1

3

 2

−1

−1

 , (564)

in units of |e|, q = (u, d, s)T , and Q2 = (pq + pq̄)
2 is the squared momentum transfer.

The form factors have been defined as [25]

A1
L = F γL/Q

2, A1
R = F γR/Q

2, A2
L =

(
F γM + iF γE

)
/mτ , A2

R =
(
F γM − iF

γ
E

)
/mτ . (565)

We have that F γM = −iF γE , so that A2
L = 0, and A1

R vanishes with mµ [37]. Therefore, only A1
L and

A2
R contribute to the amplitude, and it becomes

MT−odd
γ =

e2

Q2
µ(p′)[2iF γM (Q2)PRσ

µνQν + F γL(Q2)γµPL]τ(p)q(pq)Qqγµq(pq̄), (566)

where F γM is given by

F γM = F γM |WH
+ F γM |ZH + F γM |AH + F γM |ν̄c + F γM |¯̀c , (567)
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whose F γM |ZH ,AH ,WH ,ν̄c,¯̀c
functions were already computed in eqs. (246), (249), (258), (263), and

(265), respectively, but in this case we consider terms at order of O(Q2). All those functions agree
with [37]. We write explicitly the form factor above

F γM =
αW
16π

mτ

M2
W

υ2

4f2

∑
i

V iµ†
H` V

iτ
H`

[
FWH

(yi, Q
2) + FZH (yi, Q

2) +
1

5
FZH (ayi, Q

2)

]

+
αW
16π

mτ

M2
Φ

υ2

4f2

∑
i,j,k

V iµ†
H`

m`Hi

MW
W †ijWjk

m`Hk

MW
V kτ
H`

[
Fν̄c

(
m2
νcj

M2
Φ

, Q2

)
+ F ¯̀c

(
m2
νcj

M2
Φ

, Q2

)]
,

(568)

where

FZH (y) = −1

3
+

2y + 5y2 − y3

8(1− y)3
+

3y2

4(1− y)4
ln y

+
1

48

Q2

M2
ZH

(
24 + 546y − 2479y2 + 561y3 − 339y4 + 67y5

60(1− y)5
+
y(6− 17y − 16y2) ln y

(1− y)6

)
,

FWH
(y) =

5

6
− 3y − 15y2 − 6y3

12(1− y)3
+

3y3

2(1− y)4
ln y

+
y

24

Q2

M2
WH

(
134− 759y + 1941y2 − 2879y3 − 69y4 + 12x5

60(1− y)5
+
y3(4− 34y + 3y3) ln y

(1− y)6

)
,

Fν̄c(x) =
−1 + 5x+ 2x2

12(1− x)3
+

x2

2(1− x)4
lnx

+
x2

24

Q2

M2
Φ

(
13− 87x+ 333x2 + 293x3 − 12x4

60(1− x)5
+
x3(8 + x) lnx

(1− x)6

)
,

F ¯̀c(x) =
−4 + 5x+ 5x2

6(1− x)3
− x(1− 2x)

(1− x)4
lnx

+
1

8

Q2

M2
Φ

(
4 + 129x− 231x2 − 91x3 + 9x4

60(1− x)5
+
x(1− 4x2) lnx

(1− x)6

)
,

(569)

with yi =
m2
Hi

M2
WH

being mHi ≡ m`iH
' mνiH

, a =
M2
WH

M2
AH

=
5c2W
s2W
∼ 15, MWH

= MZH , and x =
m2
νc
j

M2
Φ
.

We have used M2
W /M

2
WH

= υ2/(4f2). Here V i
H` are the matrix elements of the 3× 3 unitary mixing

matrix parametrizing the misalignment between the SM left-handed charged leptons ` with the heavy
mirror ones `H . TheWjk are the matrix elements of the 3×3 unitary mixing matrix parametrizing the
misalignment between the mirror leptons and their partners `c in the SO(5) (right-handed) multiplets
[37].
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We list the masses of particles which are involved in the form factors [24,25,29]

MW =
υ

2sW

(
1− υ2

12f2

)
, MZ = MW /cW , υ ' 246 GeV, (ρ factor is conserved),

MWH
= MZH =

f

sW

(
1− υ2

8f2

)
, MAH =

f√
5cW

(
1− 5υ2

8f2

)
, MΦ =

√
2Mh

f

υ
,

m`iH
=
√

2κiif ≡ mHi, mνiH
= mHi

(
1− υ2

8f2

)
, m`c,νc = κ2,

(570)

with Mh being the mass of the SM Higgs scalar and κii the diagonal entries of the κ matrix (see eq.
(323)). We observe from eq. (568) that the contributions from partner leptons seem to behave as
∼ υ2

4f2
1
M2

Φ
∼ υ4

4f4 , but mHi/MW is of order of O(f2/v2), then the partner lepton term is like ∼ υ2/f2.
The F γL form factor is given by the eqs. (270), (273), (274), and (277). Therefore, F γL can be expressed
as follows [25,37]

F γL |ZH =
αW
4π

Q2

M2
WH

∑
i

V iµ∗
H` V

iτ
H`

(
G

(1)
Z (yi) +

1

5
G

(1)
Z (ayi) +G

(1)
W (yi)

)
+
αW
4π

Q2

2M2
h

υ4

4f4

∑
ijk

V iµ†
H`

m`Hi

MW
W †ijWjk

m`Hk

MW
V kτ
H`

(
G

(1)
νc (x) +G

(1)

`
c (x)

)
,

(571)

where

G
(1)
Z (y) =

1

36
+
y(18− 11y − y2)

48(1− y)3
− 4− 16y + 9y2

24(1− y)4
ln y,

G
(1)
W (y) = − 5

18
+
y(12 + y − 7y2)

24(1− y)3
+
y2(12− 10y + y2)

12(1− y)4
ln y,

G
(1)
νc (x) =

2− 7x+ 11x2

72(1− x)3
+

x3

12(1− x)4
lnx,

G
(1)

`
c (x) =

20− 43x+ 29x2

36(1− x)3
+

2− 3x+ 2x3

6(1− x)4
lnx.

(572)

with yi =
m2
Hi

M2
WH

, xi =
m2
νc
i

M2
WH

and a =
5c2W
s2W

.

The penguin-like diagrams with Z are given in Figure 6. They are expressed in eq. (143)

MT−odd
Z =

e2

M2
Z

µ(p′)[γµ(FZL PL + FZRPR)]τ(p)q(pq)[γµ(ZLPL + ZRPR)]q(pq̄), (573)

where

ZL =
g

cW
(T q3 − s

2
WQq),

ZR = − g

cW
s2
WQq,

(574)
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being

T q3 =
1

2

 1

−1

−1

 . (575)

The corresponding right-handed vector form factor FZR is O
(
m2
τ/f

2
)
in the LHT and thus negligible

as f ∼ O(TeV). The left-handed form factor FZL , at order of O(Q2) according to [37], is given by

FZL = FZL |WH
+ FZL |AH + FZL |ZH + FZL |νc + FZL |`c

=
αW

8πcW sW

∑
i

V iµ†
H` V

iτ
H`

{
υ2

8f2
H
W (0)
L (yi) +

Q2

M2
WH

[
HW
L (yi) + (1− 2c2

W )

(
1

5
H
A/Z
L (ayi) +H

A/Z
L (yi)

)]}

+
αW

8πcW sW

Q2

M2
h

υ2

2f2

∑
ijk

V iµ†
H`

m`Hi

MWH

W †ijWjk
m`Hk

MWH

V kτ
H`

[
H ν̄
L(x) + (1− 2c2

w)H
¯̀
L(x)

]
, (576)

with

H
W (0)
L (y) =

6− y
1− y

+
2 + 3y

(1− y)2
ln y,

HW
L (y) = 2G

(1)
Z (y)− 2c2

WG
(1)
W (y),

H
A/Z
L (y) = G

(1)
Z (y),

H ν̄
L(x) =

1

2
G

(1)

`
c (x)− 2c2

WG
(1)
νc (x),

H
¯̀
L(x) = G

(1)

`
c (x), (577)

being yi = m2
Hi/M

2
WH

and yi = m2
ν̄ci
/M2

Φ. The expression for G(1)
Z , G(1)

W , G(1)
νc and G(1)

`
c can be consulted

in eqs. (272), (276), (278) and (279), respectively.
To add the contributions from box diagrams we need to introduce the quark sector in the LHT, we
will see that this part is very similar to the lepton sector. As in the eq. (318) we embed two SU(5)

incomplete quintuplets and introduce a right-handed SO(5) multiplet ΨR [24]

Ψ1 =

 iψ1

0

0

 , Ψ2 =

 0

0

iψ2

 , ΨR =

 ψcR
χR

ψR

 , (578)

with (σ2 is the second Pauli matrix)

ψi = −σ2qi = −σ2

(
ui

di

)
(i = 1, 2), ψR = −σ2

(
uHR

dHR

)
. (579)
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Ψi and ΨR satisfy the eqs. (319) and (321), respectively. We also have T-parity eigenstates which are
T-even and T-odd, they are given by

qSM =
q1 − q2√

2
, qH =

q1 + q2√
2

, (580)

qSM are the left-handed SM quark doublets (T-even), and qH are the left-handed mirror quark doublets
(T-odd).The right-handed mirror quark doublet is given by ΨR. The mirror quarks can be given O(f)

masses via eq. (322)
LYH = −κqf

(
Ψ2ξ + Ψ1Σ0ξ

†
)

ΨR + h.c. (581)

The mirror fermions thus acquire masses after EWSB, given by (similarly to the lepton sector) [24,28]

md
Hi =

√
2κqi f ≡ mHi, mu

Hi = mHi

(
1− υ2

8f2

)
, (582)

where κqi are the eigenvalues of the mass matrix κq. As in the lepton sector, we have partner quarks
q̄c = (ūc, d̄c) as well. Due to the symmetries on field content, there are analogies between both sectors.
We show the Feynman rules in Tables 17, 18 and 19 [24,37].

[VµFF] = iγµ(gLPL + gRPR) (gL,R ↔ g∗L,R),

[SFF] = i(cLPL + cRPR) (cL,R ↔ c∗R,L).
(583)

VµFF gL

uHiAHuj

(
1

10cW
+ 1

2sW
xH

υ2

f2

)
V ij
Hu

uHiZHuj

(
1

2sW
− 1

10cW
xH

υ2

f2

)
V ij
Hu

dHiAHdj

(
1

10cW
− 1

2sW
xH

υ2

f2

)
V ij
Hd

dHiZHdj −
(

1
2sW

+ 1
10cW

xH
υ2

f2

)
V ij
Hd

uHiW
+
Hdj

1√
2sW

V ij
Hd

dHiW
−
Huj

1√
2sW

V ij
Hu

Table 17: Fermion couplings to SM and heavy gauge bosons. The mixing angle between heavy neutral
bosons is given by xH = 5gg′/(4(5g2 − g′2)) with e = gsW = g′cW . We neglect the gR component
because light quarks are massless in our approximation and the corresponding contribution vanishes
in this limit.

Partner quarks q̄c = (ūc, d̄c) do not couple to one T-odd gauge boson and SM charged lepton [37].
They just couple to the scalar Φ, thus φ+, φ0 and φP are propagated. We will discuss the Feynman
rules of these fields next.
The Feynman rule for φ0ūHiuj (φ0d̄Hidj) only has the PR component which behaves as ∼ mu (md)

[43], but we are considering that light quarks are massless, hence box diagrams that involve these
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SFF cL

uHiω
+dj −im

d
Hi√
2f
V ij
Hd

uHiω
0uj −im

d
Hi

2f

(
1 + υ2

f2

(
1
8 −

xH
tgW

))
V ij
Hu

uHiηuj i
mdHi
2
√

5f

(
1 + υ2

f2

(
9
8 + xHtgW

))
V ij
Hu

dHiω
−uj −im

d
Hi√
2f
V ij
Hu

dHiω
0dj i

mdHi
2f

(
1 + υ2

f2

(
−1

8 + xH
tgW

))
V ij
Hd

dHiηdj i
mdHi
2
√

5f

(
1− υ2

f2

(
5
8 + xHtgW

))
V ij
Hd

uciηuj −iW q
ik

mdHK
2
√

5f
V kj
Hu

3υ2

4f2

Table 18: Fermion couplings to heavy Goldstone bosons. We have assumed that light quarks are
massless, this is why we neglect the cR factor, which does not contribute in this limit. In this process
we do not take into account uciηuj interaction as it behaves as ∼ O(υ2/f2). As there are two vertices
like that in box diagrams their total contribution is suppressed by O(υ4/f4) and thus negligible.

interactions do not contribute. The φ0uciuj vertex is connected to the φ0`Hi`j one through φ0. The
second vertex behaves as ∼ m`j [37], where in one case ` will be τ but in the other `′ will be µ and
we are taking mµ = 0, therefore box diagrams with these couplings vanish. So, box diagrams with φ0

Goldstone boson do not contribute to the τ → µqq̄ decay.

Figure 62: Box diagram that contains φ0uciuj and φ0`Hi`j vertices connected by φ0. We see φ0`Hiµ
vertex is proportional to mµ. Hence it vanishes for massless daughter lepton.

There are three couplings of the φP Goldstone boson: φPuHiuj , φPdHidj , and φPuciuj which can
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be related to φP `Hi`j . The latter vertex is given by iVij
m`j√

2f

(
1 + υ2

4f2

)
PR [29], when `j = µ this

contribution vanishes as mµ = 0. Therefore, φP Goldstone does not contribute to the process.

Figure 63: Box diagrams with φP contribution. It is cancelled by φP `Hi`j vertex due to mµ = 0.

SFF cL

Φ+νHi`j
m`Hi√

2f
V ij
H`

υ2

8f2

Φ+νci `j Wik
m`Hk√

2f
V kj
H`

Φ+uHidj
mdHi√

2f
V ij
Hd

υ2

8f2

Φ−dHiuj −mdHi√
2f
V ij
Hu

υ2

8f2

Φ+ucidj W q
ik

mdHk√
2f
V kj
Hd

Φ−dciuj −W q
ik

mdHk√
2f
V kj
Hu

Table 19: φ+ couplings to partner leptons and quarks [29,37].

We see in Table 19 that the Feynman rules for the some vertices containing φ+, neglecting the
masses of the SM fermions, involve couplings of O(υ2/f2). As each diagram contains at least two
such vertices, if any, they are suppressed by a factor of O(υ4/f4). So we do not take into account
those contributions. Only the box diagram which involves interaction between Φ+νci `j with Φ+ucidj

(and its h.c.) contributes. Finally we show in Figure 64 all box diagrams that appear when T-odd
and partner fermions are considered.
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Figure 64: Box diagrams where T-odd particles, partner leptons and quarks, are involved.

The box amplitude is defined as

MT−odd
box = e2Bq

L(0)µ(p′)γµPLτ(p)q(pq)γµPLq(pq), (584)

where q = {u, d, s}.
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Therefore, in accordance to [37], the form factors from box diagrams are given by

Bu
L =

αW
32πs2

W

 1

M2
W

υ2

4f2

∑
i,j

χuij

[
−
(

8 +
1

2
x`Hi ydHj

)
d̄0(x`Hi , ydHj ) + 4x`Hi ydHj d0(x`Hi , ydHj )

−3

2
d̄0(xνHi ydHj )− 3

50a
d̄0(axνHi , aydHj ) +

3

5
d̄0(axνHi , aydHj , a)

]
+

1

f2

∑
i,j

χ̄uij d̄0

(
2m2

νci

f2
,
2m2

dcj

f2

) ,

Bd
L =

αW
32πs2

W

 1

M2
W

υ2

4f2

∑
i,j

χdij

[(
2 +

1

2
x`Hi yuHj

)
d̄0(x`Hi , yuHj )− 4x`Hi yuHj d0(x`Hi , yuHj )

−3

2
d̄0(xνHi yuHj )− 3

50a
d̄0(axνHi , ayuHj )− 3

5
d̄0(axνHi , ayuHj , a)

]
+

5

f2

∑
i,j

χ̄dij d̄0

(
2m2

νci

f2
,
2m2

ucj

f2

) ,

(585)

with x
(ν,`)H
i = m2

(ν,`)iH
/M2

WH
, y(u,d)H

j = (mu,d
Hj)

2/M2
WH

, a = M2
WH

/M2
AH

= 5c2
W /s

2
W . The mixing

coefficients involve mirror lepton mixing matrices as well as mirror quark ones

χuij = V iµ†
H` V

iτ
H`V

ju†
Hq V

ju
Hq, χdij = V iµ†

H` V
iτ
H`V

jd†
Hq V

jd
Hq, (586)

and

χ̄uij =
∑
k,n,r,s

V kµ†
H`

m`Hk

MWH

W †kiWin
m`Hn

MWH

V nτ
H`V

ru†
Hq

mdHr

MWH

W q†
rjW

q
js

mdHs

MWH

V su
Hq,

χ̄dij =
∑
k,n,r,s

V kµ†
H`

m`Hk

MWH

W †kiWin
m`Hn

MWH

V nτ
H`V

rd†
Hq

muHr

MWH

W q†
rjW

q
js

muHs

MWH

V sd
Hq. (587)

In analogy to the lepton sector, the misalignment between the partner quark mass eigenstates and
the mirror quarks as well as those between the mirror and SM quarks are parametrized by the corre-
sponding 3× 3 unitary matrices, V i

Hq and W q
ij , respectively.

10.1.2 Majorana contribution

Now, we are going to compute theMMaj contribution. As we showed in eq.(562), it is composed by
three parts

MMaj =MMaj
γ +MMaj

Z +MMaj
box , (588)

γ and Z penguin diagrams and box diagrams which involve Majorana neutrinos. In this case we will
work with the assumption that light Majorana neutrinos are massless, therefore just heavy Majorana
neutrinos are taken into account.
The contributions from γ− and Z−penguin diagrams and box diagrams are very similar to the ones
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for µ→ e conversion in nuclei (see eq. (458)):

MMaj
γ =

e2

Q2
µ(p′)[i2F γM (Q2)PRσ

µνQν + F γL(Q2)γµPL]τ(p)q(pq)γµQqq(pq̄),

MMaj
Z =

e2

M2
Z

µ(p′)[γµ(FZL PL + FZRPR)]τ(p)q(pq)[γµ
(
gZLqPL + gZRqPR

)
]q(pq̄),

MMaj
box = e2Bq

L(0)µ(p′)γµPLτ(p)q(pq)γµPLq(pq̄), (589)

with Qq given by eq. (564) and the couplings gZL(R)q indicated in eq. (459).
The form factors F γM (from Feynman diagrams II, IV, V and VI shown in the Figure 6), F γL (from
diagrams in Figure 38) and FZL (see Figure 39) are given by (405), (406), and (414) respectively
(omitting the light Majorana neutrinos contribution) are:

F γM = Fχ
h

M =
αW
16π

mτ

M2
W

3∑
j=1

θµjθ
†
τjF

χh

M (yj , Q
2), (590)

F γL = Fχ
h

L =
αW
8π

3∑
i

θµjθ
†
τjF

χh

L (yj , Q
2),

FZ−χ
h

L (Q2) =
αW

8πcW sW

3∑
i,j=1

[
θµiθ

†
τiF

h(yi;Q
2) + θµjSjiθ

†
τi

(
Gh(yi, yj ;Q

2) +
1

√
yiyj

Hh(yi, yj ;Q
2)

)]
,

(591)

where

Fχ
h

M (y,Q2) =
1

3
− 2y3 − 7y2 + 11y

4(1− y)3
+

3y

2(1− y)4
ln y (592)

− 1

24

Q2

M2
j

(
134y5

j − 759y4
j + 1941y3

j − 2879y2
j − 69yj + 12

60yj(1− yj)5
+

(4y2
j − 34yj + 3) ln yj

(1− yj)6

)
,

Fχ
h

L (y,Q2) = 2∆ε +
Q2

M2
j

(
−(12y2 − 10y + 1) ln y

6y(1− y)4
+

20y3 − 96y2 + 57y + 1

36y(1− y)3

)
, (593)

with y =
M2
W

M2
j
, ∆ε = 1

ε − γE + ln(4π) + ln
(

µ2

M2
W

)
which regulates the ultraviolet divergence in 4− 2ε

dimensions, and is canceled by unitarity of mixing matrices (eq. (417)). The explicit functions F h,
Gh, and Hh are written in eq. (452), and their analytic expressions are in eq. (453) where it is
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necessary to change M2
Z by Q2 and the (terms) expressions are as follows

F h(yi;Q
2) ≈ −5

2
lnyi +

Q2

M2
j

(
1

12yi
(1− 2s2

W ) lnyi

)
,

Gh(yi, yj ;Q
2) : (terms) = − 1

12(1− yi)2

Q2

M2
j

(
(1− yi)(3(1 + yj)− 2yi(2 + 6yj − y2

j ) + y2
i (1 + yj))

(yi − yj)(1− yj)2

+
(−6 + yi(3 + 15yj − 4y2

j ) + y2
i (6− 20yj − 4y2

j ) + y2
i (6− 20yj + 6y2

j )) ln yj

(1− yj)3

+
yi(3− 4yj + 6yi(1 + yj)− 12y2

i ) ln
(
yj
yi

)
(yi − yj)2

 ,

Hh(yi, yj ;Q
2) : (terms) = − Q

2

M2
i

yj
6(1− yi)2

(
−yj(yi(1 + 3yj)− (3 + yj)) ln yj

(1− yj)3

+
(1− yi)((1− 3yj − 2y2

j )− yi + 5yiyj)

(yi − yj)(1− yj)2
+
yj(1− 3yi) ln

(
yj
yi

)
(yi − yj)2

 . (594)

For box diagrams we just consider the contribution coming from heavy Majorana neutrinos χh in
Figure 40, they read

Bd
L =

αW
16πM2

W s
2
W

3∑
i,j=1

θµiθ
†
τi|Vjd|

2fBd
(
yi, x

u
j

)
, (595)

Bu
L =

αW
16πM2

W s
2
W

3∑
i,j=1

θµiθ
†
τi|Vuj |

2fBu(yi, x
d
j ), (596)

where yi = M2
W /M

2
i withMi the mass of heavy neutrinos, xqi = m2

qi/M
2
W withmqi the mass of the i-th

quark, Vij is the CKM matrix. The fBd and fBu functions yield (eqs. (462) and (465) respectively)

fBd(yi, x
u
j ) =

(
1 +

1

4

xuj
yi

)
d̄lh0 (yi, x

u
j )− 2

xuj
yi
dlh0 (yi, x

u
j ), (597)

fBu(yi, x
d
j ) = −

(
4 +

xdj
4yi

)
d̄lh0 (yi, x

u
j ) + 2

xuj
yi
dlh0 (yi, x

u
j ). (598)

where dlh0 (yi, x
u
j ) and d̄lh0 (yi, x

u
j ) are taken from eqs. (463) and (464).

Under the same assumption as in the calculation of µ → e conversion in nuclei, the fBq functions
become [48]

3∑
i=j

|Vjd|2fBd
(
yi, x

u
j

)
= |Vtd|2 [fBd(yi, xt)− fBd(yi, 0)]− fBd(yi, 0), (599)
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3∑
i=j

|Vuj |2fBu(yi, x
d
j ) = fBu(yi, 0), (600)

with xt = m2
t /M

2
W .

10.2 Hadronization

Tau decays we are considering have as final states pseudoscalar mesons and vector resonances. Hadroniza-
tion of quark bilinears gives rise to the final-state hadrons.
Resonance Chiral Theory (RχT), that naturally includes Chiral Perturbation Theory (χPT), con-
siders the resonances as active degrees of freedom into the Lagrangian since they participate in the
dynamics of the processes. We are working under RχT scheme in order to hadronize the relevant
currents involved in our analysis. For more details on the procedure followed in this part, see [75, 76]
where the definitions of all expressions are fully given.
In Appendix H we write all the useful tools for the development which is shown next.
We remind that the complete amplitude has two contributions:

M =MT−odd +MMaj, (601)

where each one receives contributions coming from γ−, Z−penguins and box diagrams.
The F γM form factor, considering both contributions of T-odd leptons (eq. (568)) and Majorana
neutrinos (eq. (591)), is written as follows

F γM =
αW
16π

mτ

M2
W

{
3∑
i=1

(
θµiθ

†
τiF

χh

M (zi, Q
2) +

υ2

4f2
V iµ∗
H` V

iτ
H`

[
FWH

(x`Hi , Q2) + FZH (xνHi , Q2) +
1

5
FZH (axνHi , Q2)

])

+
1

M2
h

υ4

4f2

3∑
i,j,k=1

V iµ†
H` κiiW

†
ijWjkκkkV

kτ
H`

[
Fν̄c

(
2m2

νcj

f2
, Q2

)
+ F ¯̀c

(
2m2

`cj

f2
, Q2

)] , (602)

Similarly, F γL can be written from eqs. (571) and (591) as

F γL =
αW

4πM2
W

{
3∑
i=1

(
1

2
θµiθ

†
τiF

χh

L (zi, Q
2) +M2

W

Q2

M2
WH

V iµ∗
H` V

iτ
H`

[
G

(1)
W (x`Hi ) +G

(1)
Z (xνHi ) +

1

5
G

(1)
Z (axνHi )

])

+υ2M
2
W

M2
h

Q2

M2
WH

3∑
i,j,k=1

V iµ†
H` κiiW

†
ijWjkκkkV

kτ
H`

[
G

(1)
νc

(
2m2

νci

f2

)
+G

(1)

`
c

(
2m2

νcj

f2

)] . (603)
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The form factor coming from Z−penguin diagrams, taking into account T-odd particles (eq. (576))
as well as Majorana neutrinos (eq. (591)) reads

FZL =
αW

8πcW sW

3∑
i,j=1

[
θµiθ

†
τiF

h(zi;Q
2) + θµjSjiθ

†
τi

(
Gh(zi, zj ;Q

2) +
1

√
zi, zj

Hh(zi, zj ;Q
2)

)

+
∑
i

V iµ†
H` V

iτ
H`

{
υ2

8f2
H
W (0)
L (x`Hi ) +

Q2

M2
WH

[
HW
L (x`Hi ) + (1− 2c2

W )

(
1

5
H
A/Z
L (axνHi ) +H

A/Z
L (xνHi )

)]}

+
Q2

M2
Φ

υ2

2M2
W

∑
ijk

V iµ†
H` κiiW

†
ijWjkκkkV

kτ
H`

[
H ν̄
L

(
2m2

νcj

f2

)
+ (1− 2c2

w)H
¯̀
L

(
2m2

νcj

f2

)] . (604)

For box diagrams the Bq
L form factors are given by eqs. (585), (595) and (596)

Bu
L =

αW
16πM2

W s
2
W


3∑

i,j=1

θµiθ
†
τifBu(zi, 0)

− υ2

8f2

∑
i,j

χuij

[(
8 +

1

2
x`Hi ydHj

)
d̄0(x`Hi , ydHj )− 4x`Hi ydHj d0(x`Hi , ydHj )

+
3

2
d̄0(xνHi ydHj ) +

3

50a
d̄0(axνHi , aydHj )− 3

5
d̄0(axνHi , aydHj , a)

]
+
M2
W

2f2

∑
i,j

χ̄uij d̄0

(
2m2

νci

f2
,
2m2

dcj

f2

) ,

(605)

Bd
L =

αW
16πM2

W s
2
W


3∑

i,j=1

θµiθ
†
τi

(
|Vtd|2 [fBd(zi, xt)− fBd(zi, 0)]− fBd(zi, 0)

)
+
υ2

8f2

∑
i,j

χdij

[(
2 +

1

2
x`Hi yuHj

)
d̄0(x`Hi , yuHj )− 4x`Hi yuHj d0(x`Hi , yuHj )

−3

2
d̄0(xνHi yuHj )− 3

50a
d̄0(axνHi , ayuHj )− 3

5
d̄0(axνHi , ayuHj , a)

]
+

5

2

M2
W

f2

∑
i,j

χ̄dij d̄0

(
2m2

νci

f2
,
2m2

ucj

f2

) ,

(606)

with x(ν,`)H
i = m2

(ν,`)iH
/M2

WH
, y(u,d)H

j = (mu,d
Hj)

2/M2
WH

, a = M2
WH

/M2
AH

= 5c2
W /s

2
W and zi = M2

W /M
2
i

being Mi the heavy Majorana neutrino mass.
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10.3 τ → µP

These decays where P = {π0, η, η′} are mediated only by axial-vector current (Z gauge boson) and
box diagrams. Thus, the amplitude is given by

Mτ→µP =MP
Z +MP

Box. (607)

From Appendix H each contribution reads

MP
Z = −i g

2

2cW

F

M2
Z

C(P )
∑
i

µ(p′)
[
/QFZL PL

]
τ(p),

MP
Box = −ig2F

∑
i

Bi(P )µ(p′) [/QPL] τ(p), (608)

where C(P ) and Bj(P ) functions are shown in Appendix H, F ' 0.0922 GeV is the decay constant of
the pion, FZL is given by eq. (604) and, as we know, FZR is negligible.
So we can write explicitly the amplitude for each decay considering P = {π0, η, η′}. Mixing effects
among these particles, which are isospin-suppressed [77], are negligible.

10.3.1 τ → µπ0

In this case where we are considering that P = π0 with π0 = uū−dd̄√
2

, taking into account the C(P )

and Bj(P ) functions from Appendix H, the contributions to the amplitude become

Mπ0

Z = −i g
2

2cW

F

M2
Z

C(π0)µ(p′)
[
/QFZL PL

]
τ(p) = −i g

2

2cW

F

M2
Z

µ(p′)
[
/QFZL PL

]
τ(p),

Mπ0

Box = −ig2FB(π0)µ(p′) [/QPL] τ(p) = −ig2F
1

2
(Bd

L −Bu
L)µ(p′) [/QPL] τ(p). (609)

Unlike the expressions from Appendix H, in the equation above the sum over the mixing matrices
does not appear because it is included within the form factors FZL and Bq

L, which are defined in eqs.
(604), (605) and (606).
We can write the branching ratio of this decay as follows

Br(τ → µπ0) =
1

4π

λ1/2(m2
τ ,m

2
µ,m

2
π0)

m2
τΓτ

1

2

∑
i,f

|Mτ→µπ0 |2, (610)

whereMτ→µP is defined in eq. (739). Hence, it yields

∑
i,f

|Mτ→µπ0 |2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

π0)(akπ0a
l∗
π0 + bkπ0b

l∗
π0) + 2mµmτ (akπ0a

l∗
π0 − bkπ0b

l∗
π0)
]
. (611)
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Considering from [6] mπ0 = 134.9768 MeV, mµ = 105.6583 MeV, and mτ = 1776.86 MeV

∑
i,f

|Mτ→µπ0 |2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

π0)(akπ0a
l∗
π0 + bkπ0b

l∗
π0) + 2mµmτ (akπ0a

l∗
π0 − bkπ0b

l∗
π0)
]
,

≈ (886.44 MeV)
∑
k,l

[
1.12akπ0a

l∗
π0 + 0.88bkπ0b

l∗
π0

]
. (612)

The generic expressions for akP and bkP are indicated in eq. (746), for P = π0 they become

aZπ0 = − 1

2M2
Zs

2
W cW

F

2
∆τµF

Z
L ,

bZπ0 = − 1

2M2
Zs

2
W cW

F

2
ΣτµF

Z
L ,

aBπ0 = − F

2s2
W

∆τµ
1

2
(Bd

L −Bu
L),

bBπ0 = − F

2s2
W

Στµ
1

2
(Bd

L −Bu
L). (613)

10.3.2 τ → µη

Considering P = η with η ≈ 1√
6
(uū+ dd̄− 2ss̄) 6, and C(P ) and Bj(P ) functions from Appendix H,

the contributions to the amplitude are given by

Mη
Z = −i g

2

2cW

F

M2
Z

1√
6

(
sin θη +

√
2 cos θη

)
µ(p′)

[
/QFZL PL

]
τ(p),

Mη
Box = −ig2F

1

2
√

3

[
(
√

2 sin θη − cos θη)B
u
L + (2

√
2 sin θη + cos θη)B

d
L

]
µ(p′) [/QPL] τ(p). (614)

The branching ratio reads

Br(τ → µη) =
1

4π

λ1/2(m2
τ ,m

2
µ,m

2
η)

m2
τΓτ

1

2

∑
i,f

|Mτ→µη|2, (615)

whereMτ→µη yields

∑
i,f

|Mτ→µη|2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

η)(a
k
ηa
l∗
η + bkηb

l∗
η ) + 2mµmτ (akηa

l∗
η − bkηbl∗η )

]
. (616)

6A more refined hadronization requires using the double-angle mixing scheme for the η − η′ mesons [78]. See, for
instance, Refs. [79, 80].
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From [6] mη = 547.862 MeV and mµ,τ given previously, we get

∑
i,f

|Mτ→µη|2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

η)(a
k
ηa
l∗
η + bkηb

l∗
η ) + 2mµmτ (akηa

l∗
η − bkηbl∗η )

]
,

≈ (807.10 MeV)
∑
k,l

[
1.13akηa

l∗
η + 0.87bkηb

l∗
η

]
. (617)

For P = η from eq. (742) and (743) the akP and bkP factors turn out to be

aZη = − g2

2M2
ZcW

F

2

1√
6

(
sin θη +

√
2 cos θη

)
∆τµF

Z
L ,

bZη = − g2

2M2
ZcW

F

2

1√
6

(
sin θη +

√
2 cos θη

)
ΣτµF

Z
L ,

aBη = −g
2F

2
∆τµ

1

2
√

3

[
(
√

2 sin θη − cos θη)B
u
L + (2

√
2 sin θη + cos θη)B

d
L

]
,

bBη = −g
2F

2
Στµ

1

2
√

3

[
(
√

2 sin θη − cos θη)B
u
L + (2

√
2 sin θη + cos θη)B

d
L

]
. (618)

10.3.3 τ → µη′

For the case P = η′ with η′ ≈ 1√
3
(uū+ dd̄+ ss̄) taking the C(P ) and Bj(P ) functions from Appendix

H, the amplitude contributions are written as follows

Mη
Z = −i g

2

2cW

F

M2
Z

1√
6

(√
2 sin θη − cos θη

)
µ(p′)

[
/QFZL PL

]
τ(p),

Mη
Box = −ig2F

1

2
√

3

[
(sin θη − 2

√
2 cos θη)B

d
L − (sin θη +

√
2 cos θη)B

u
L

]
µ(p′) [/QPL] τ(p). (619)

The branching fraction is given by

Br(τ → µη′) =
1

4π

λ1/2(m2
τ ,m

2
µ,m

2
η′)

m2
τΓτ

1

2

∑
i,f

|Mτ→µη′ |2, (620)

whereMτ→µη′ yields∑
i,f

|Mτ→µη′ |2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

η′)(a
k
η′a

l∗
η′ + bkη′b

l∗
η′) + 2mµmτ (akη′a

l∗
η′ − bkη′bl∗η′)

]
. (621)
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From [6] mη′ = 957.78 MeV and mµ,τ given previously, we obtain

∑
i,f

|Mτ→µη′ |2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

η′)(a
k
η′a

l∗
η′ + bkη′b

l∗
η′) + 2mµmτ (akη′a

l∗
η′ − bkη′bl∗η′)

]
,

≈ (633.43 MeV)
∑
k,l

[
1.17akη′a

l∗
η′ + 0.83bkη′b

l∗
η′

]
. (622)

For P = η′ from eq. (742) and (743) in Appendix H the akP and bkP factors become

aZη′ = − g2

2M2
ZcW

F

2

1√
6

(√
2 sin θη − cos θη

)
∆τµF

Z
L ,

bZη′ = − g2

2M2
ZcW

F

2

1√
6

(√
2 sin θη − cos θη

)
ΣτµF

Z
L ,

aBη′ = −g
2F

2
∆τµ

1

2
√

3

[
(sin θη − 2

√
2 cos θη)B

d
L − (sin θη +

√
2 cos θη)B

u
L

]
,

bBη′ = −g
2F

2
Στµ

1

2
√

3

[
(sin θη − 2

√
2 cos θη)B

d
L − (sin θη +

√
2 cos θη)B

u
L

]
. (623)

10.4 τ → µPP

In this part we will consider the decays into the pairs PP = {π+π−,K+K−,K0K0} (others are CKM-
or isospin-suppressed). The contributions to this kind of decays come from γ−, Z− penguins and box
diagrams. Thus, the total amplitude can be written as follows

Mτ→µPP =MPP
γ +MPP

Z +MPP
Box. (624)

Using the expressions shown in Appendix H we hadronize the quark bilinears and get the contributions
for each decay that are presented next.

10.4.1 τ → µπ+π−

As mentioned earlier, the total amplitude receives three contributions coming from γ−, Z− penguins
and box diagrams, hence the amplitude for this decay is

Mτ→µπ+π− =Mπ+π−
γ +Mπ+π−

Z +Mπ+π−
Box , (625)
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where each amplitude is given by eq. (749) (see Appendix H)

Mπ+π−
γ =

e2

Q2
F ππV (s)µ(p′)[Q2(/pq − /pq)F

γ
L(Q2)PL + 2imτp

µ
qσµνp

ν
qF

γ
M (Q2)PR]τ(p),

Mπ+π−
Z =g2 2s2

W − 1

2cWM2
Z

F ππV (s)µ(p′)(/pq − /pq)[F
Z
L PL]τ(p),

Mπ+π−
Box =

g2

2
F ππV (s)(Bu

L −Bd
L)µ(p′)(/pq − /pq)PLτ(p), (626)

(recalling that the sum over the mixing matrices does not appear because it is included within the
form factors). The vector form factor F ππV is given by eq. (757) in Appendix I.
From Appendix H the branching ratio for this decay yields

Br(τ → µπ+π−) =
1

64π3m2
τΓτ

∫ s+

s−

ds

∫ t+

t−

dt
1

2

∑
i,f

|Mτ→µπ+π− |2, (627)

where s = (pq + pq)
2 and t = (p− pq)2, so the limits of the integrals are

t+− =
1

4s

[(
m2
τ −m2

µ

)2 − (λ1/2(s,m2
π+ ,m

2
π−)∓ λ1/2(m2

τ , s,m
2
µ)
)2
]
,

s− = 4m2
π+ ,

s+ = (mτ −mµ)2. (628)

10.4.2 τ → µK+K−

The total amplitude for this decays reads as

Mτ→µK+K− =MK+K−
γ +MK+K−

Z +MK+K−
Box , (629)

where from Appendix H each amplitude can be written

MK+K−
γ =

e2

Q2
FK

+K−
V (s)µ(p′)[Q2(/pq − /pq)F

γ
L(Q2)PL + 2imτp

µ
qσµνp

ν
qF

γ
M (Q2)PR]τ(p),

MK+K−
Z =g2 2s2

W − 1

2cWM2
Z

FK
+K−

V (s)µ(p′)(/pq − /pq)[F
Z
L PL]τ(p),

MK+K−
Box =

g2

2
FK

+K−
V (s)(Bu

L −Bd
L)µ(p′)(/pq − /pq)PLτ(p), (630)

the vector form factor FK+K−
V is shown in Appendix I. The branching ratio expression is very similar

to τ → µπ+π+, we just need to replace mπ by mK in the integral limits.
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10.4.3 τ → µK0K0

The total amplitude is given by

M
τ→µK0K0 =MK0K0

γ +MK0K0

Z +MK0K0

Box . (631)

From Appendix H each amplitude is expressed as follows

MK0K0

γ =
e2

Q2
FK

0K0

V (s)µ(p′)[Q2(/pq − /pq)F
γ
L(Q2)PL + 2imτp

µ
qσµνp

ν
qF

γ
M (Q2)PR]τ(p),

MK0K0

Z =g2 2s2
W − 1

2cWM2
Z

FK
0K0

V (s)µ(p′)(/pq − /pq)[F
Z
L PL]τ(p),

MK0K0

Box =
g2

2
FK

0K0

V (s)(Bu
L −Bd

L)µ(p′)(/pq − /pq)PLτ(p), (632)

with FK0K0

V given in Appendix I. The branching ratio can be obtained from eq. (750) with mP1 =

mP2 = mK0 in the limits of the integral.

10.5 τ → µV

The calculation of observables involving hadron resonances as external states is not properly defined
within quantum field theory because hadron resonances decay strongly and are not proper asymptotic
states, as is required in that framework. When an experiment measures a final state with a vector
resonance, the experiment reconstructs its structure from the pair of pseudoscalar mesons with a
squared total mass approaching m2

V , where V = ρ, φ. For instance, from the chiral point of view,
two pions in a J = I = 1 state are indistinguishable from a ρ. Then, following the expressions from
Appendix H the branching ratios can be obtained. The procedure is very similar to τ → µPP decays,
we need to computed the same integral (eq. 750) where now the limits on s are different. They are
given by eq. (753).

10.6 Numerical Analysis

First of all, we recall the masses of particles which come from LHT that are involved in the processes
under study [24,25,29]:

MW =
υ

2sW

(
1− υ2

12f2

)
, MZ = MW /cW , υ ' 246 GeV, (ρ factor is conserved),

MWH
= MZH =

f

sW

(
1− υ2

8f2

)
, MAH =

f√
5cW

(
1− 5υ2

8f2

)
, MΦ =

√
2Mh

f

υ
,

m`iH
=
√

2κiif ≡ mHi, mνiH
= mHi

(
1− υ2

8f2

)
, m`c,νc = κ2,

(633)
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withMh being the mass of the SM Higgs scalar, κii the diagonal entries of the κ matrix (see eq. (323))
(similarly for the masses of T-odd quarks with κqii instead of κii and replacing dH -quark by `H and
uH -quark by νH) and κ2 the mass matrix of partner leptons from eq. (560) (κq2 similarly for partner
quarks of u and d types). Due to Mh = 125.25±0.17 GeV [6] and υ ' 246 GeV, we can approximate

MΦ =
√

2Mh
f

υ
≈
√

2

2
f, (634)

and assuming universality [39],

|κii| < 0.17

(
Mi

TeV

)
≤ 2.136

(
f

TeV

)
, (635)

for f larger than a TeV. This effective description requires Mi . 4πf with Mi the heavy Majorana
neutrino masses.
So far, the free parameters are: f (scale of new physics); κii and κqii (Yukawa couplings for T-odd
leptons and quarks); κ2 and κq2, mass matrices for partner leptons.
The expressions χuij , χ

d
ij , χ̄

u
ij and χ̄

d
ij (see eq. (587)) describe the interaction vertices from box diagrams,

those can be re-written in terms of free parameters as follows

χ̄uij =
υ4

4M4
W

∑
k,n,r,s

V kµ†
H` κkkW

†
kiWinκnnV

nτ
H`V

ru†
Hq κ

d
rrW

q†
rjW

q
jsκ

d
ssV

su
Hq,

χ̄dij =
υ4

4M4
W

(
1− υ2

8f2

)2 ∑
k,n,r,s

V kµ†
H` κkkW

†
kiWinκnnV

nτ
H`V

rd†
Hq κ

u
rrW

q†
rjW

q
jsκ

u
ssV

sd
Hq , (636)

where we see a small shift between interaction vertices of order O(υ2/8f2). The mixing matrix of
heavy Majorana neutrinos is bounded by eq. (402)

|θµjθ†τj | < 0.011. (637)

Considering just mixing between two lepton families the mixing matrix of T-odd leptons (V iµ∗
H` V

iτ
H`)

and the mixing matrix among partner leptons (W †ijWjk) can be parameterized as follows [37]

V =

 1 0 0

0 cos θV sin θV

0 − sin θV cos θV

 , W =

 1 0 0

0 cos θW sin θW

0 − sin θW cos θW

 , (638)

where θV , θW ∈ [0, π/2) is the physical range for the mixing angles and θW must not be confused with
the weak-mixing (’Weinberg’) angle. We have assumed µ − τ mixing, similarly for the evaluation of
processes with τ − e but the 2 × 2 rotation matrices now involve the first and third T–odd lepton
families (analogous mixings, in the top left 2 × 2 submatrix, can be used for quark contributions to
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µ→ e conversion in nuclei).
We will assume no extra quark mixing and degenerate heavy quarks, then V q

H` andW
q will be equal to

the identity. Therefore, the other free parameter are: θV , θW and neutral couplings of heavy Majorana
neutrinos: (θSθ†)µτ .
For the form factors we do a consistent expansion on the squared transfer momenta over both the
squared masses of heavy particles Q2/λ2 being λ = {MWH

,MZH ,MAH ,MΦ,Mi}. This amounts to an
expansion, at the largest, in the m2

τ/f
2 ratio.

For completeness, we include two analyses: first we do not assume heavy Majorana neutrinos contribu-
tions and the second case involves the presence of heavy Majorana neutrinos raising from the Inverse
See Saw mechanism seen in previous sections. We have decided to include the first case because there
is not a previous analysis without contributions coming from Majorana neutrinos for those processes.

10.6.1 τ → `P (` = e, µ)

We begin the discussion of results with the case where the processes have no Majorana neutrinos.
These processes are computed in a single Monte Carlo simulation which runs them simultaneously.
The resulting values obtained from our analysis are shown in Table 20.

τ → `P (` = e, µ) (C.L. = 90%) without Majorana neutrinos contribution.
New physics (NP) scale (TeV) Mixing angles

f 1.49 θV 42.78◦

Branching ratio θW 42.69◦

Br(τ → eπ0) 5.24× 10−9 Masses of partner leptons (mνc = m`c)(TeV)
Br(τ → µπ0) 3.42× 10−9 mνc1

3.12
Br(τ → eη) 2.32× 10−9 mνc2

3.15
Br(τ → µη) 1.91× 10−9 mνc3

3.37
Br(τ → eη′) 2.20× 10−8 Masses of partner quarks (muc = mdc) (TeV)
Br(τ → µη′) 1.79× 10−8 muci

3.55
Masses of T-odd leptons (TeV)

m`1H
2.11

m`2H
2.11

m`3H
2.12

mν1
H

2.10
mν2

H
2.11

mν3
H

2.11
Masses of T-odd quarks (TeV)

mdiH
2.71

muiH
2.70

Table 20: Mean values for branching ratios, masses of LHT heavy particles, and mixing angles obtained
by Monte Carlo simulation of τ → `P (` = e, µ) processes where Majorana neutrinos contribution is
not considered.
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During all Monte Carlo simulations of our analysis each branching ratio has been delimited con-
sidering their C.L. with aid of SpaceMath package [81].

We observe that T-odd leptons are lighter than T-odd quarks by 0.6 TeV which means that |κii| <
|κqii|, that is, the Yukawa couplings of T-odd quarks are more intense (|κii| < 1.002 and |κqii| < 1.282).
We recall that in our model we are considering degenerate T-odd quarks for simplicity.

Regarding partner leptons (mνci
) and partner quarks (muci

) their masses are above 3 TeV, being
the latter the heaviest particles coming from LHT.

The mean values for mixing angles θV and θW are 42.78◦ and 42.69◦, respectively. If these values
are transformed to rad (perhaps it is a more comfortable way to read this information), they become
θV ≈ θW ≈ π/4.2. This result is close to maximize the LFV effects, since this happens when θV =

θW = π/4.
In Figures 65 and 66 the correlations among branching ratios and their free parameters are shown

for both decay modes, ` = e and ` = µ. We want to highlight the free parameters that have sizeable
correlations among them. The magnitude of Yukawa couplings for T-odd leptons is anticorrelated
with the T-odd quark ones. This could explain why the T-odd leptons are lighter than T-odd quarks.
On the other hand, the correlations among the Yukawa couplings of T-odd leptons are high, which
implies their masses are very similar.

Figure 65: Heat map where we can see that there is no correlation among τ → eP decays and their
free parameters (case without Majorana neutrinos).

In the following scatter plots in Figures 67 and 68 we observe that the data accumulates in the
lower left corner, which means that we have more points with small branching ratios. In Figures 69
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Figure 66: Heat map for τ → µP decays and their free parameters, where we see a similar behavior
to τ → eP decays (case without Majorana neutrinos).

and 70 we see how the branching ratios for both decay modes behave versus f . In both scatter plots
the decay mode with P = η′ reaches the highest values, meanwhile the P = η channel is the most
restricted one.

The mean values of branching ratios from our numerical analysis are at most just by 2 orders of
magnitude smaller than the current ones [6], recalling that we considered only particles from LHT.

Figure 67: Scatter plot Br(τ → eπ0) vs.
Br(τ → eη′) without Majorana neutrinos.

Figure 68: Scatter plot Br(τ → µπ0) vs.
Br(τ → µη) without Majorana neutrinos.
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Figure 69: Scatter plot f vs. Br(τ → eP )
without Majorana neutrinos.

Figure 70: Scatter plot f vs. Br(τ → µP )
without Majorana neutrinos.

Now we include the contribution from Majorana neutrinos. Then, as in Section 8, the decays
can be distinguished by their neutral couplings: (θSθ†)eτ−processes and (θSθ†)µτ−processes. Both
types of decays share almost the same free parameters just differing by the neutral couplings of heavy
Majorana neutrinos. Therefore, the phenomenological analysis for τ → `P (` = e, µ) decays is done
through a single Monte Carlo simulation in which the six decays are run simultaneously. In Table 21
the corresponding analysis results are shown.

In this case, with heavy Majorana neutrinos contribution, the new physics (NP) scale is greater
than the case without them, the difference is not really sizeable, just ∼ 0.02 TeV. In this case we
realize that the T-odd leptons are heavier that the previous case by ∼ 0.09 TeV, but the T-odd quarks
keep basically the same values. Actually, here the mass ordering between T-odd leptons and quarks
(m(`,ν)iH

> m(d,u)iH
) is reversed with respect to the analysis without Majorana neutrinos.

The partner particles behavior is different that the T-odd ones. In partner particles the quarks
are heavier than leptons. The presence of Majorana neutrinos causes the partner leptons have very
similar masses to partner quarks.

Now, the new values that appear in this analysis are the masses of heavy Majorana neutrinos and
their neutral couplings. We observe that the masses of Majorana neutrinos are above 19 TeV, being
the maximum difference among them ∼ 0.18 TeV. Their neutral couplings for both processes have the
same order of magnitude, ∼ O(10−7).

In the following two heatmaps in Figures 71 and 72 we realize that branching ratios are almost
uncorrelated with their free parameters.

The relation among Yukawa couplings of T-odd leptons and quarks is kept from the previous case,
without Majorana neutrinos. Likewise, the high correlation among Yukawa couplings of T-odd leptons
continues when Majorana neutrinos are added.

The way the branching ratios are correlated in this analysis looks different than the case without
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τ → `P (` = e, µ) (C.L. = 90%) with Majorana neutrinos contribution.
New physics (NP) scale (TeV) Mixing angles

f 1.51 θV 43.07◦

Branching ratio θW 42.82◦

Br(τ → eπ0) 8.69× 10−9 Masses of partner leptons (mνc = m`c)(TeV)
Br(τ → µπ0) 6.96× 10−9 mνc1

3.26
Br(τ → eη) 6.19× 10−9 mνc2

3.26
Br(τ → µη) 5.19× 10−9 mνc3

3.30
Br(τ → eη′) 2.19× 10−8 Masses of partner quarks (muc = mdc) (TeV)
Br(τ → µη′) 1.94× 10−8 muci

3.31
Masses of T-odd leptons (TeV) Masses of heavy Majorana neutrinos (TeV)

m`1H
3.06 M1 19.18

m`2H
3.03 M2 19.07

m`3H
3.03 M3 19.25

mν1
H

3.05 Neutral couplings of heavy Majorana neutrinos
mν2

H
3.02 |(θSθ†)eτ | 3.32× 10−7

mν3
H

3.02 |(θSθ†)µτ | 3.90× 10−7

Masses of T-odd quarks (TeV)
mdiH

2.78
muiH

2.78

Table 21: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of τ → `P (` = e, µ) processes.

Majorana neutrinos. For both processes with ` = e and ` = µ considering Majorana neutrinos
contribution, the decay modes with P = η and P = η′ have the highest correlations. To explain that,
we need to get back to eqs. (618) and (623) and see that their akP and bkP factors look similar in these
cases.

In contrast to the analysis done in Subsections 8.5 and 8.7, here the heavy Majorana neutrinos
are barely correlated among them. Recalling the results obtained in Subsections 8.5 and 8.7 the mean
value for heavy Majorana masses is around 17.2 TeV, differing slightly (∼ 0.12%) in all cases. In this
analysis the mean value for heavy Majorana neutrinos is ∼ 19.16 TeV. Thus, the difference between
these new results and the previous ones is just ∼ 10.23%.

The mean values for mixing angles θV and θW are 43.07◦ and 42.82◦, respectively. They become
in rad θV ≈ θW ≈ π/4.18, this result is close to maximize the LFV effects, since this happens when
θV = θW = π/4.

The two neutral couplings |(θSθ†)`τ | (` = e, µ) have the same order of magnitude, O(10−7), which
matches the values obtained in Subsections 8.5.

The interpretation of the following Figures 73, 74, 75, 76, 77 and 78 is analogous to the case
without Majorana neutrinos contributions, but now we include the correlation between branching
ratio versus masses of Majorana neutrinos, that looks similar to the branching ratios with respect to
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Figure 71: Heat map where we can see that there is no correlation among τ → eP decays and their
free parameters.

f plots.
We realize that the mean values of branching ratios from this numerical analysis, considering

Majorana neutrinos contribution are smaller just by 2 orders of magnitude with respect to the current
ones [6], similarly as the previous case, with only particles from LHT.
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Figure 72: Heat map for τ → µP decays and their free parameters, where we see a similar behavior
to τ → eP decays.

Figure 73: Scatter plot Br(τ → eη) vs.
Br(τ → eη′).

Figure 74: Scatter plot Br(τ → µπ0) vs.
Br(τ → µη).
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Figure 75: Scatter plot f vs. Br(τ → eP ). Figure 76: Scatter plot f vs. Br(τ → µP ).

Figure 77: Scatter plot M1 vs. Br(τ → eP ). Figure 78: Scatter plot M1 vs. Br(τ → µP ).
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10.6.2 τ → `PP, `V (` = e, µ)

Because the structure of the branching ratios for the processes τ → `PP and τ → `V (` = e, µ) is
very similar they have been computed simultaneously by a single Monte Carlo simulation. We can
see the obtained results for this analysis in Tables 22 and 23, where two cases have been handled:
firstly when particles coming from LHT are involved in the processes. Second, adding the effects of
Majorana neutrinos.

τ → `PP, `V (` = e, µ) (C.L. = 90%) without Majorana neutrinos contribution
New physics (NP) scale (TeV) Mixing angles

f 1.50 θV 43.36◦

Branching ratio θW 41.50◦

Br(τ → eπ+π−) 3.92× 10−9 Masses of partner leptons (mνc = m`c)(TeV)
Br(τ → µπ+π−) 3.96× 10−9 mνc1

3.20
Br(τ → eK+K−) 2.38× 10−9 mνc2

3.15
Br(τ → µK+K−) 2.85× 10−9 mνc3

3.31
Br(τ → eK0K0) 1.15× 10−9 Masses of partner quarks (muc = mdc) (TeV)
Br(τ → µK0K0) 1.33× 10−9 muci

3.32
Br(τ → eρ) 1.10× 10−9

Br(τ → µρ) 1.12× 10−9

Br(τ → eφ) 1.77× 10−9

Br(τ → µφ) 1.87× 10−9

Masses of T-odd leptons (TeV)
m`1H

3.13
m`2H

2.99
m`3H

3.10
mν1

H
3.12

mν2
H

2.98
mν3

H
3.09

Masses of T-odd quarks (TeV)
mdiH

2.92
muiH

2.91

Table 22: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of τ → `PP, `V (` = e, µ) processes without Majorana
neutrinos.

We see that the Majorana neutrinos effects on the new physics scale (NP) and T-odd particles is
that they are both larger than when those contributions are not considered. The new physics (NP)
scale and T-odd leptons increase by ∼ 0.05 TeV whereas the T-odd quarks grow by ∼ 0.8 TeV. The
mass ordering in T-odd particles seen in τ → `P without Majorana neutrinos case is conserved when
Majorana neutrinos contribution is added in τ → `PP, `V , i.e., T-odd quarks are heavier. This
hierarchy of masses is reversed if Majorana neutrinos are taken into account in τ → `P and they are
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excluded in τ → `PP, `V , though.
While in Tables 20, 21 and 22, the masses of T-odd quarks do not exceed 3 TeV, in Table 23 are

around 3.7 TeV, which is above ∼ 1 TeV from the values obtained by τ → `P analysis.
Unlike τ → `PP, `V processes with Majorana neutrinos, in all other cases the masses of partner

leptons are above 3 TeV. For partner quarks, in all cases they are heavier than lepton partners. Only
in τ → `PP, `V processes with Majorana neutrinos the T-odd particles are heavier than the partners
ones.

The values for mixing angles θV and θW do not have a sizeable difference between this section and
the previous one ∼ π/4.20. We see that the values tend to maximize the LFV effects.

Figure 79: Heat map for τ → ePP, eV decays and their free parameters not considering Majorana
neutrinos.

The Figures 79, 80, 93 and 94 stand for a correlation matrix where we can see how branching
ratios and free parameters are correlated.

It does not matter whether there are Majorana neutrinos or not, the correlation among branching
ratios for τ → `PP, `V processes look very similar in both cases. This can be understood as a result
of the largest contribution for every processes coming from the pions loop in the FPPV (s) function.
Then, as this dominant contribution is proportional for all decays modes, this causes the correlations
among them to be maximal.

In the cases from this section the high correlation among Yukawa couplings, which appears in the
τ → `P decays, vanishes. It can bee seen from the mass values of T-odd particles in Tables 20 and

164



10 LEPTON FLAVOUR VIOLATION IN HADRON DECAYS OF THE TAU LEPTON IN LHT

Figure 80: Heat map for τ → µPP, µV decays and their free parameters, where we see a similar
behavior to τ → ePP, eV decays not considering Majorana neutrinos.

21 where they are practically the same. On the other hand, in Tables 22 and 23 the masses of T-odd
particles can be distinguished from each other easily.

If the magnitudes of neutral couplings in Table 23 are compared with the ones in Table 21, we will
realize that they conserve the order of magnitude.

If a comparison is done among Majorana neutrino masses obtained by the analysis of τ → `P and
τ → `PP, `V , two masses in the latter case are lighter since their values are below 19 TeV. Yet, this
case has the heaviest Majorana neutrino M2 < 19.33 TeV.

The branching ratios for all processes, when Majorana neutrinos contribution is considered, are
greater than when this contribution is excluded. All our results for τ → `P, PP, V (` = e, µ) are very
promising, as they are only, at most, 2 orders of magnitude smaller than current bounds [6].

In the scatter plots in Figures 81, 82, 83, 84, 85, 86, 87 and 88 we see how the branching ratios are
related. For scatter plots with `π+π− vs. `K+K−, (` = e, µ) the points are more spread out as the
BR of ππ increases. The scatter plots in Figures 86 and 88 show a similar behavior, they have a gap
when Br(τ → µK+K−) ∼ 3− 4× 10−9, If we had more points, the gap would reduce and eventually
vanish.

We observe that the branching ratios are arranged in triplets in Figures 89 and 90 where sometimes
the two points representing the KK modes are closer and sometimes not that much, but the triplet
pattern is maintained. Figures 91 and 92 show how the branching ratios for τ → `V processes behave
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Figure 81: Scatter plot Br(τ → eπ+π−) vs.
Br(τ → eK+K−) without Majorana neutri-
nos contribution.

Figure 82: Scatter plot Br(τ → eK+K−) vs.
Br(τ → eK0K0) without Majorana neutrinos
contribution.

Figure 83: Scatter plot Br(τ → eπ+π−) vs.
Br(τ → eρ) without Majorana neutrinos con-
tribution.

Figure 84: Scatter plot Br(τ → eK+K−) vs.
Br(τ → eφ) without Majorana neutrinos con-
tribution.

with respect to f , where the decay modes with V = φ as final state reach the highest values.
The interpretation of scatter plots in Figures 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105

and 106 is analogous to the scatter plots in which Majorana neutrinos are not involved, since the
behavior that scatter plots describe when effects of Majorana neutrinos are considered does not change.
Additionally, in the case with Majorana neutrinos we can see how branching ratios behave faced to
Majorana neutrino masses Mi in Figures 107, 108, 109 and 110. They look like the scatter plots with
Br(τ → `PP (V )) vs. f , which makes sense because the masses of Majorana neutrinos are related to
f as ≤ 4πf
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Figure 85: Scatter plot Br(τ → µπ+π−) vs.
Br(τ → µK+K−) without Majorana neutri-
nos contribution.

Figure 86: Scatter plot Br(τ → µK+K−) vs.
Br(τ → µK0K0) without Majorana neutrinos
contribution.

Figure 87: Scatter plot Br(τ → µπ+π−) vs.
Br(τ → µρ) without Majorana neutrinos con-
tribution.

Figure 88: Scatter plot Br(τ → µK+K−) vs.
Br(τ → µφ) without Majorana neutrinos con-
tribution.
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Figure 89: Scatter plot f vs. Br(τ → ePP )
without Majorana neutrinos contribution.

Figure 90: Scatter plot f vs. Br(τ → µPP )
without Majorana neutrinos contribution.

Figure 91: Scatter plot f vs. Br(τ → eV )
without Majorana neutrinos contribution.

Figure 92: Scatter plot f vs. Br(τ → µV )
without Majorana neutrinos contribution.
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τ → `PP, `V (` = e, µ) (C.L. = 90%) with Majorana neutrinos contribution
New physics (NP) scale (TeV) Mixing angles

f 1.54 θV 43.61◦

Branching ratio θW 42.21◦

Br(τ → eπ+π−) 4.75× 10−9 Masses of partner leptons (mνc = m`c)(TeV)
Br(τ → µπ+π−) 4.90× 10−9 mνc1

2.91
Br(τ → eK+K−) 2.53× 10−9 mνc2

2.99
Br(τ → µK+K−) 3.38× 10−9 mνc3

2.95
Br(τ → eK0K0) 1.16× 10−9 Masses of partner quarks (muc = mdc) (TeV)
Br(τ → µK0K0) 1.50× 10−9 muci

3.08
Br(τ → eρ) 1.33× 10−9 Masses of heavy Majorana neutrinos (TeV)
Br(τ → µρ) 1.39× 10−9 M1 18.82
Br(τ → eφ) 1.78× 10−9 M2 19.33
Br(τ → µφ) 2.08× 10−9 M3 18.92

Masses of T-odd leptons (TeV) Neutral couplings of heavy Majorana neutrinos
m`1H

3.49 |(θSθ†)eτ | 2.20× 10−7

m`2H
3.47 |(θSθ†)µτ | 3.14× 10−7

m`3H
3.21

mν1
H

3.48
mν2

H
3.46

mν3
H

3.20
Masses of T-odd quarks (TeV)

mdiH
3.73

muiH
3.71

Table 23: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of τ → `PP, `V (` = e, µ) processes.
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Figure 93: Heat map for τ → ePP, eV decays and their free parameters.

Figure 94: Heat map for τ → µPP, µV decays and their free parameters, where we see a similar
behavior to τ → ePP, eV decays.
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Figure 95: Scatter plot Br(τ → eπ+π−) vs.
Br(τ → eK+K−).

Figure 96: Scatter plot Br(τ → eK+K−) vs.
Br(τ → eK0K0).

Figure 97: Scatter plot Br(τ → eπ+π−) vs.
Br(τ → eρ).

Figure 98: Scatter plot Br(τ → eK+K−) vs.
Br(τ → eφ).
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Figure 99: Scatter plot Br(τ → µπ+π−) vs.
Br(τ → µK+K−).

Figure 100: Scatter plot Br(τ → µK+K−) vs.
Br(τ → µK0K0).

Figure 101: Scatter plot Br(τ → µπ+π−) vs.
Br(τ → µρ).

Figure 102: Scatter plot Br(τ → µK+K−) vs.
Br(τ → µφ).
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Figure 103: Scatter plot f vs. Br(τ → ePP ). Figure 104: Scatter plot f vs. Br(τ → µPP ).

Figure 105: Scatter plot f vs. Br(τ → eV ). Figure 106: Scatter plot f vs. Br(τ → µV ).
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Figure 107: Scatter plot M1 vs. Br(τ →
ePP ).

Figure 108: Scatter plot M1 vs. Br(τ →
µPP ).

Figure 109: Scatter plot M1 vs. Br(τ → eV ). Figure 110: Scatter plot M1 vs. Br(τ → µV ).
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11 Conclusions and Prospects

Littlest Higgs Model with T-parity, LHT, is such an exciting framework trying to better understand
processes beyond SM as (observable) LFV and LNV ones, while at the same time attempting to
alleviate the hierarchy problem affecting, generically, the Higgs mass. Simultaneously, within our
setting, it could shed light on the smallness of neutrino masses (and possibly on baryogenesis through
leptogenesis). For that purpose, LHT, through a spontaneous collective breaking of a global symmetry,
gives us a large number of new particles whose masses are of order O(f), the new physics (NP) scale
of energy, f ∼ O (TeV). Our results for the studied LFV decays are quite promising as they lie
approximately one order of magnitude below current bounds, so probing the theory at current and
forthcoming colliders is possible. Nevertheless, the story does not end here, thanks to LHT symmetry
that enables adding neutrinos realizing an ISS mechanism, i.e., LHT can be extended to a model with
neutrinos of Majorana nature, which is really marvelous because we can tackle LNV processes as well
(this has not been fully explored yet and it appears as a bright avenue for future research).

In this work we developed all the needed tools in order to get the numerical predictions of branching
ratios, particle masses, couplings, etc., coming from our model.

Our effort was focused firstly on studying purely leptonic decays involved in Section 7. Afterwards,
the analysis was extended to LFV hadronic decays of the tau lepton, in Section 10. The most important
results can be summarized as follows:

• From the numerical analysis done in Section 8 the new physics (NP) energy scale is around
f ∼ 1.36 TeV, whereas in Section 10 f ∼ 1.50 TeV. The difference between these two figures is
∼ 9.34%, which is reasonable at this stage (a global analysis of all LFV processes is needed and
will be presented elsewhere).

• LHT with Majorana neutrinos extension enables to bind the LNV couplings shown in Table 16.
This is a novel result since they were not restricted in ref. [57].

• Regarding new couplings that we first encounter, there arise the neutral couplings of heavy
Majorana neutrinos, denoted as (θSθ†)``′ . The magnitude of these couplings agree in both sets
of analyses, as reported in Sections 8 and 10.

• Masses of particles coming from LHT, T-odd and partner fermions, are below 4 TeV, almost 5

times lighter than heavy Majorana neutrinos. This is consistent with the first item.

• The masses of heavy Majorana neutrinos in Section 10 are Mi ∼ 19 TeV (we recall that Mi ∼
4πf). Compared to previous analyses in Section 8, these masses of heavy Majorana neutrinos
are heavier by ∼ 2 TeV (∼ 10% of difference) and f is fully consistent.

• In all τ → ``′ ¯̀′′ (including wrong-sign) decays and in µ → e conversion in Ti, the mean values
of our simulated events satisfying all present bounds are only one order of magnitude smaller
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than current limits. In µ→ eeē, Z → τ̄ ` and conversion in Au, our mean values are around two
orders of magnitude smaller than current limits (only Z → µ̄e does not have the potential for
probing our results in the near future).

• The pattern of correlations among processes is completely different to the ‘traditional’ LHT
(without heavy Majorana neutrinos), where for instance wrong-sign decays are negligible. It
should also be noted that the correlation between L → `γ and L → ``′ ¯̀′′ decays, which is a
celebrated signature distinguishing underlying models producing the LFV, here is broken, as
the former decays depend only on the charged current mixings θθ† and the neutral current ones
also on the neutral current admixtures, θSθ†, which reduces sizeably the correlation among
both decay modes. Only within the LHT, upon eventual discovery of LFV in charged leptons in
several processes, correlations among them would immediately distinguish the usual scenario [37]
from the one studied here.

All these results have been published in [33] and [74] and they offer us rosy prospects in a near
future:

• Due to mean values of new physics (NP) energy scale f , masses of heavy Majorana neutrinos
Mi and neutral couplings (θSθ†)``′ matching in all our studies, we plan to undertake a global
analysis (including purely leptonic processes and conversions in nuclei, see e.g. refs. [76,89,90]),
which is required and will be presented elsewhere.

• All our results are very promising and will be probed in current and near future measurements,
as they lie approximately only one order of magnitude below currents bounds [6].
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A APPENDIX: SU(5) GENERATORS

A Appendix: SU(5) generators

We begin by enumerating the generalized generators of the SU(5) symmetry group [82].

SU(3) Generators

The SU(3) generators are embedded in SU(5)

λ1 =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , λ2 =


0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , λ3 =


1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

λ4 =


0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , λ5 =


0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , λ6 =


0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

λ7 =


0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0

 , λ8 =
1√
3


1 0 0 0 0

0 1 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0

 .

Mixed Quantum Numbers Generators

The generators with non vanishing SU(3) and SU(2) quantum numbers are not present in the SM.
They can be computed through the commutator relations between the generators of SU(3) and the
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generators of SU(2)

λ9 =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 , λ10 =


0 0 0 i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

 , λ11 =


0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 ,

λ12 =


0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0

 , λ13 =


0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

 , λ14 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0

 ,

λ15 =


0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 , λ16 =


0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

 , λ17 =


0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

 ,

λ18 =


0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 0 0 0

0 i 0 0 0

 , λ19 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 , λ20 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 0 0

0 0 i 0 0

 .

SU(2) Generators

The SU(2) generators are embedded in SU(5)

λ21 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 , λ22 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
0 0 0 i 0

 , λ23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 −1

 .
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Diagonal Generator

We have another diagonal generator that we will identify eventually with the SM hypercharge

λ24 =
1√
15


−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 3 0

0 0 0 0 3

 ,

where, under the unitary transformation.

λ̂a = AλaA
−1.

The unbroken generators are λ̂2, λ̂5, λ̂7, λ̂10, λ̂12, λ̂14, λ̂16, λ̂18, λ̂20, λ̂22 and the broken generators are
λ̂1, λ̂3, λ̂4, λ̂6, λ̂8, λ̂9, λ̂11, λ̂13, λ̂15, λ̂17, λ̂19, λ̂21, λ̂23, λ̂24.

B Appendix: T-even and T-odd combinations

We choose the [SU(2)× U(1)]1 × [SU(2)× U(1)]2 generators as

Qa1 =

(
σa/2 0

0 03×3

)
, Y1 = diag(3, 3,−2,−2,−2)/10, (639)

Qa2 =

(
03×3 0

0 −σa∗/2

)
, Y2 = diag(2, 2, 2,−3,−3)/10 (640)

with {σa} are the Pauli matrices. As {Qa1 +Qa2, Y1 + Y2} is unbroken then

W = W a
1Q

a
1 +W a

2Q
a
2 = W 1

1Q
1
1 +W 2

1Q
2
1 +W 3

1Q
3
1 +W 1

2Q
1
2 +W 2

2Q
2
2 +W 3

2Q
3
2 =

W 3
1

2
W 1

1
2 −

iW 2
1

2
W 1

1
2 +

iW 2
1

2 −W 3
1

2

0

−W 3
2

2 −
(
W 1

2
2 +

iW 2
2

2

)
−
(
W 1

2
2 −

iW 2
2

2

)
W 3

2
2


,
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and

B = B1Y1 +B2Y2 =
1

5



3B1
2 +B2

3B1
2 +B2

B2 −B1

−B1 − 3B2
2

−B1 − 3B2
2

 . (641)

Since SM gauge bosons are T-even, it satisfies

WΣ0 − Σ0W
T = (642)

W 3
1 +W

3
2

2

(W 1
1 +W

1
2 )−i(W 2

1 +W
2
2 )

2
(W 1

1 +W
1
2 )+i(W 2

1 +W
2
2 )

2 −W
3
1 +W

3
2

2

0

−W
3
1 +W

3
2

2 − (W 1
1 +W

1
2 )+i(W 2

1 +W
2
2 )

2

− (W 1
1 +W

1
2 )−i(W 2

1 +W
2
2 )

2
W 3

1 +W
3
2

2


,

(643)

and

BΣ0 − Σ0B
T =



B1+B2
2

B1+B2
2

0

−B1+B2
2

−B1+B2
2

 . (644)

Thus, we have respectively

W± =
1

2
[(W 1

1 +W 1
2 )∓ i(W 2

1 +W 2
2 )], W 3 =

W 3
1 +W 3

2√
2

, B =
B1 +B2√

2
. (645)

And now, as {Qa1 −Qa2, Y1 − Y2} is broken, then

WH = W a
1Q

a
1 −W a

2Q
a
2 = W 1

1Q
1
1 +W 2

1Q
2
1 +W 3

1Q
3
1 −W 1

2Q
1
2 −W 2

2Q
2
2 −W 3

2Q
3
2 = (646)

W 3
1

2
W 1

1−iW 2
1

2
W 1

1 +iW 2
1

2 −W 3
1

2

0
W 3

2
2

W 1
2 +iW 2

2
2

W 1
2−iW 2

2
2 −W 3

2
2


, (647)
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and

BH = B1Y1 −B2Y2 =
1

5



3B1
2 −B2

3B1
2 −B2

−(B1 +B2)
3B2

2 −B1

3B2
2 −B1

 . (648)

So

WHΣ0 − Σ0W
T
H = (649)

W 3
1 −W

3
2

2

(W 1
1 −W

1
2 )−i(W 2

1 −W
2
2 )

2
(W 1

1 −W
1
2 )+i(W 2

1 −W
2
2 )

2 −W
3
1 −W

3
2

2

0

−W
3
1 −W

3
2

2 − (W 1
1 −W

1
2 )+i(W 2

1 −W
2
2 )

2

− (W 1
1 −W

1
2 )−i(W 2

1 −W
2
2 )

2
W 3

1 −W
3
2

2


,

(650)

and

BHΣ0 − Σ0B
T
H =



B1−B2
2

B1−B2
2

0

−B1−B2
2

−B1−B2
2

 . (651)

Finally the T-odd combinations expand the heavy gauge sector

W±H =
1

2
[(W 1

1 −W 1
2 )∓ i(W 2

1 −W 2
2 )], W 3

H =
W 3

1 −W 3
2√

2
, BH =

B1 −B2√
2

. (652)

C Appendix: Scalar Sector

We know that the Scalar Lagrangian in Littlest Higgs is

LS =
f2

8
Tr[(DµΣ)(DµΣ)†], (653)

where

DµΣ = ∂µΣ− i
2∑
j=1

[
gjW

a
j

(
QajΣ + ΣQaTj

)
+ g′jBj

(
YjΣ + ΣY T

j

)]
, (654)
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when we introduce the T-parity, the Scalar Lagrangian must be T-even, thus, we have that g1 = g2 =√
2gW and g′1 = g′2 =

√
2g′, so the eq. (654) is written as

DµΣ = ∂µΣ− i
√

2
2∑
j=1

[
gWW

a
j

(
QajΣ + ΣQaTj

)
+ g′Bj

(
YjΣ + ΣY T

j

)]
. (655)

Recall that the action of T-parity in the scalar sector is defined as

Π→ −ΩΠΩ, and Σ→ Σ̃ = Σ0ΩΣ†ΩΣ0, (656)

with Ω = diag (−1,−1, 1,−1,−1). The term relevant for computing the mass of gauge bosons, under
the T-parity, is ∣∣∣∣∣∣−i√2

2∑
j=1

[
gWW

a
j

(
Qaj Σ̃ + Σ̃QaTj

)
+ g′Bj

(
YjΣ̃ + Σ̃Y T

j

)]∣∣∣∣∣∣
2

. (657)

Calculating before introducing EWSM effects and taking at first order Σ = Σ0, then

Σ̃ = Σ0ΩΣ†ΩΣ0 = Σ0ΩΣ0ΩΣ0 = Σ0. (658)

Developing the eq.(657) by parts

gWW
a
1

(
Qa1Σ0 + Σ0Q

aT
1

)
=

 0 0 gWW
a
1 /2

0 0 0

gWW
a
1 /2 0 0

 , (659)

where W a
1 = W a

1 σ
a,

g′B1

(
Y1Σ0 + Σ0Y

T
1

)
=

 0 0 g′B1/10

0 −2g′B1/5 0

g′B1/10 0 0

 , (660)

gWW
a
2

(
Qa2Σ0 + Σ0Q

aT
2

)
=

 0 0 −gWW a
2 /2

0 0 0

−gWW a
2 /2 0 0

 , (661)

where W a
2 = W a

2 σ
a∗,

g′B2

(
Y2Σ0 + Σ0Y

T
2

)
=

 0 0 −g′B2/10

0 2g′B2/5 0

−g′B2/10 0 0

 . (662)
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Therefore 0 0 gW
2 (W a

1 −W a
2 ) + g′

10 (B1 −B2)

0 2g′

5 (B2 −B1) 0
gW
2 (W a

1 −W a
2 ) + g′

10 (B1 −B2) 0 0

 , (663)

then

2

∣∣∣∣∣∣∣∣


0 0
(
gW
2 (W a

1 −W a
2 ) + g′

10 (B1 −B2)
)
I2×2

0 2g′

5 (B2 −B1) 0(
gW
2 (W a

1 −W a
2 ) + g′

10 (B1 −B2)
)
I2×2 0 0


∣∣∣∣∣∣∣∣
2

,

(664)
where I2×2 is a identity matrix 2× 2, and omitting all crossed terms of W a

j and Bj , we have
(
g2W
2 (W a

1 −W a
2 )

2
+ g′2

50 (B1 −B2)
2
)
2×2

0 0

0 8g′2

25 (B1 −B2)
2

0

0 0
(
g2W
2 (W a

1 −W a
2 )

2
+ g′2

50 (B1 −B2)
2
)
2×2

 ,

(665)

since LS = f2

8 Tr[(DµΣ)(DµΣ)†], we have that

LS =
f2

8

(
2g2
W

(
W a

1 −W 2
2

)2
+

2

5
(B1 −B2)2

)
=
f2

8

(
2g2
W

(
W a2

1 +W a2
2 − 2W a

1W
a
2

)
+

2

5

(
B2

1 +B2
2 − 2B1B2

))
=
f2

4
g2
W

(
W a

1 W a
2

)( 1 −1

−1 1

)(
W a

1

W a
2

)

+
f2

20
g′2
(
B1 B2

)( 1 −1

−1 1

)(
B1

B2

)
.

(666)

We defined gauge bosons mass eigenstates(
W a
L

W a
H

)
=

1√
2

(
1 1

1 −1

)(
W a

1

W a
2

)
,(

BL

BH

)
=

1√
2

(
1 1

1 −1

)(
B1

B2

)
.

(667)

We can see that W a
L and BL are T-even, while W a

H and BH are T-odd. Also we can write this as

W a
L = cosψW a

1 + sinψW a
2 , W a

H = sinψW a
1 − cosψW a

2 , (668)
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where the mixing angle is given by sinψ = cosψ = 1/
√

2. Thus, diagonalizing the matrices, we have

LS =
f2

4
g2
W

(
W a

1 W a
2

)( 1 −1

−1 1

)(
W a

1

W a
2

)

+
f2

20
g′2
(
B1 B2

)( 1 −1

−1 1

)(
B1

B2

)

=
f2

4
g2
W

(
W a
L W a

H

)( 0 0

0 2

)(
W a
L

W a
H

)

+
f2

20
g′2
(
BL BH

)( 0 0

0 2

)(
BL

BH

)
+ · · · ,

=
f2

2
g2
WW

a
H

2 +
f2

10
g′2B2

H ,

=
1

2

(
f2g2

WW
a2
H +

f2g′2

5
B2
H

)
.

(669)

Thus, the masses of gauge bosons are

MWa
H

= gW f, MBH =
g′f√

5
. (670)

If we consider EWSB effects of order (υh/f)2, the Σ field is

Σ =


0 0 0 1 0

0 ε4/12− ε2/2 i
(
ε− ε3/3

)
0 1− ε2/2 + ε4/12

0 i
(
ε− ε3/3

)
1− ε2 + ε4/6 0 i

(
ε− ε3/3

)
1 0 0 0 0

0 1− ε2/2 + ε4/12 i
(
ε− ε3/3

)
0 ε4/12− ε2/2

 , (671)

with ε = υh/f .
We can recalculate the masses of gauge bosons as above, now we do not omit the crossed terms of

W a
j and Bj , where a = 1, 2. We have that

LS =
f2g2

W

4

[
−ε

4

6
W1W2 + ε2W1W2 + (W1 −W2)2

]
+
f2g2

W

4

[
ε4

8

((
W 3

1 −W 3
2

)2 − 1

4
W 3

1W
3
2

)
+ ε2W 3

1W
3
2 +

(
W 3

1 −W 3
2

)2]
+
f2g′2

4

[
ε4
(

1

8

(
B2

1 +B2
2

)
− 5

12
B1B2

)
+ ε2B1B2 +

1

5
(B1 −B2)2

]
+
f2gW g

′

4

[
ε4

4

(
−
(
W 3

1 −W 3
2

)
(B1 −B2) +

2

3

(
B1W

3
2 +B2W

3
1

))
− ε2

(
B1W

3
2 +B2W

3
1

)]
.

(672)
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Analyzing the Scalar Lagrangian by parts, taking the eigenstates defined above and diagonalizing the
matrices from eq.(672)

−ε
4

6
W a

1W
a
2 + ε2W a

1W
a
2 + (W a

1 −W a
2 )2 =

(
W a
L W a

H

)( ε2

2

(
1− ε2/6

)
0

0 2
(
1− ε2/4

) )( W a
L

W a
H

)

=
ε2

2

(
1− ε2

6

)
W a2
L + 2

(
1− ε2

4

)
W a2
H .

(673)

If we defined as [25]

W±H =
1√
2

(
W 1
H ∓ iW 2

H

)
, W±L =

1√
2

(
W 1
L ∓ iW 2

L

)
, (674)

then

−ε
4

6
W a

1W
a
2 + ε2W a

1W
a
2 + (W a

1 −W a
2 )2 =

ε2

2

(
1− ε2

6

)
W+
LW

−
L + 2

(
1− ε2

4

)
W+
HW

−
H . (675)

Now, the second line of Lagrangian

ε4

8

((
W 3

1 −W 3
2

)2 − 1

4
W 3

1W
3
2

)
+ ε2W 3

1W
3
2 +

(
W 3

1 −W 3
2

)2
=
ε4

8

(
(W 3

1 )2 + (W 3
2 )2 − 10

3
W 3

1W
3
2

)
+ ε2W 3

1W
3
2 + (W 3

1 −W 3
2 )2,

(676)

(
W 3
L W 3

H

) ε2

2

(
1− ε2

6

)
0

0 2
(

1− ε2

4

) ( W 3
L

W 3
H

)
=
ε2

2

(
1− ε2

6

)(
W 3
L

)2
+ 2

(
1− ε2

4

)(
W 3
H

)2
.

(677)
For the third line of the Lagrangian

ε4
(

1

8

(
B2

1 +B2
2

)
− 5

12
B1B2

)
+ ε2B1B2 +

1

5
(B1 −B2)

2

=
(
BL BH

) ε2

2

(
1− ε2

6

)
0

0 2
5

(
1− 5ε2

4

) ( BL

BH

)
=
ε2

2

(
1− ε2

6

)
(BL)

2
+

2

5

(
1− 5ε2

4

)
(BH)

2
.

(678)

Finally

ε4

4

(
−
(
W 3

1 −W 3
2

)
(B1 −B2) +

2

3

(
B1W

3
2 +B2W

3
1

))
− ε2

(
B1W

3
2 +B2W

3
1

)
, (679)
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with the aid of

B1W
3
2 +B2W

3
1 =

1

2

[(
W 3

1 +W 3
2

)
(B1 +B2)−

(
W 3

1 −W 3
2

)
(B1 −B2)

]
= W 3

LBL −W 3
HBH ,

(680)

we will obtain

ε4

4

(
−8

3
W 3
HBH +

2

3
W 3
LBL

)
− ε2

(
W 3
LBL −W 3

HBH
)

= −ε2
(

1− ε2

6

)
W 3
LBL + ε2

(
1− 2ε2

3

)
W 3
HBH .

(681)

Finally the Lagrangian looks

LS =
1

2

[
g2
Wυ

2
h

4

(
1−

υ2
h

6f2

)]
W+
LW

−
L

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
W+
HW

−
H

+
1

2

[
g2
Wυ

2
h

4

(
1−

υ2
h

6f2

)] (
W 3
L

)2
+

1

2

[
f2g2

W

(
1−

υ2
h

4f2

)] (
W 3
H

)2
+

1

2

[
g′2υ2

h

4

(
1−

υ2
h

6f2

)]
(BL)2

+
1

2

[
f2g′2

5

(
1−

5υ2
h

4f2

)]
(BH)2

+
1

2

[
−
gW g

′υ2
h

2

(
1−

υ2
h

6f2

)]
W 3
LBL

+
1

2

[
gW g

′υ2
h

2

(
1−

2υ2
h

3f2

)]
W 3
HBH .

(682)

As we can see in the Lagrangian above the neutral light sector is given by W 3
L, BL, and W

3
LBL

υ2
h

4

(
1−

υ2
h

6f2

)(
g2
W

(
W 3
L

)2 − 2gW g
′W 3

LBL + g′2 (BL)2
)
. (683)

The eq. (683) has the same form that the off-diagonal terms of the standard model for electroweak
interactions, so from this sector we will get the SM neutral gauge bosons ZL and AL. We need to
diagonalize the matrix (

W 3
L BL

)( g2
W −gwg′

−gwg′ g′2

)(
W 3
L

BL

)
, (684)
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the physical fields ZL and AL are [7](
ZL

AL

)
=

1√
g2
W + g′2

(
gW −g′

g′ gW

)(
W 3
L

BL

)
, (685)

For the light sector the mixing angle is just the SM Weinberg angle

g′

gW
= tan θW , (686)

in terms of θW

AL = cos θWBL + sin θWW
3
L, ZL = − sin θWBL + cos θWW

3
L. (687)

Thus,

(
W 3
L BL

)( g2
W −gwg′

−gwg′ g′2

)(
W 3
L

BL

)
=
(
ZL AL

)( g2
W + g′2 0

0 0

)(
ZL

AL

)
, (688)

so the eq.(683) looks like

υ2
h

4

(
1−

υ2
h

6f2

)(
g2
W

(
W 3
L

)2 − 2gW g
′W 3

LBL + g′2 (BL)2
)

=
υ2
h

4

(
1−

υ2
h

6f2

)(
g2
W + g′2

)
Z2
L. (689)

then
υ2
h

4

(
1−

υ2
h

6f2

)(
g2
W + g′2

)
Z2
L =

g2
Wυ

2
h

4 cos2 θW

(
1−

υ2
h

6f2

)
Z2
L. (690)

Replacing this in the Lagrangian

LS =
1

2

[
g2
Wυ

2
h

4

(
1−

υ2
h

6f2

)]
W+
LW

−
L

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
W+
HW

−
H

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)] (
W 3
H

)2
+

1

2

[
f2g′2

5

(
1−

5υ2
h

4f2

)]
(BH)2

+
1

2

[
gW g

′υ2
h

2

(
1−

2υ2
h

3f2

)]
W 3
HBH

+
1

2

[
g2
Wυ

2
h

4 cos2 θW

(
1−

υ2
h

6f2

)
Z2
L

]
.

(691)
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Now, the heavy gauge sector is

f2g2
W

(
1−

υ2
h

4f2

)(
W 3
H

)2
+
gW g

′υ2
h

2

(
1−

2υ2
h

3f2

)
W 3
HBH +

f2g′2

5

(
1−

5υ2
h

4f2

)
(BH)2 . (692)

The new mass eigenstates in the neutral heavy sector will be a linear combination of the W 3
H and

the BH gauge bosons, producing an AH and a ZH . The mixing angle introduced into the neutral
heavy sector by EWSB will be of order

(
υ2
h/f

2
)
[23]

sin θH ≈ xH
υ2
h

f2
, xH =

5gW g
′

4
(
5g2
W − g′2

) . (693)

The new heavy neutral mass eigenstates are given by

ZH = sin θHBH + cos θHW
3
H , AH = cos θHBH − sin θHW

3
H . (694)

So we have (
ZH

AH

)
=

 1 xH
υ2
h
f2

−xH
υ2
h
f2 1

( W 3
H

BH

)
, (695)

and their masses are [23]

M2
ZH

= g2
W f

2

(
1−

υ2
h

4f2

)
, M2

AH
=
g′2f2

5

(
1−

5υ2
h

4f2

)
. (696)

Finally, the Scalar Lagrangian is

LS =
1

2

[
g2
Wυ

2
h

4

(
1−

υ2
h

6f2

)]
W+
LW

−
L

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
W+
HW

−
H

+
1

2

[
f2g2

W

(
1−

υ2
h

4f2

)]
(ZH)2

+
1

2

[
f2g′2

5

(
1−

5υ2
h

4f2

)]
(AH)2

+
1

2

[
g2
Wυ

2
h

4 cos2 θW

(
1−

υ2
h

6f2

)]
Z2
L.

. (697)

The light gauge sector includes W±L , ZL, and AL bosons, that we identify as the SM gauge bosons
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with masses

MW±L
=
gWυh

2

(
1−

υ2
h

6f2

)1/2

≈ gWυh
2

(
1−

υ2
h

12f2

)
,

MZL =
gWυh

2 cos θH

(
1−

υ2
h

6f2

)1/2

=
MW±L

cos θW
,

MAL = 0,

(698)

and the mass of the heavy bosons are

MW±H
= MZH = fgW

(
1−

υ2
h

4f2

)1/2

≈ fgW
(

1−
υ2
h

8f2

)
,

MAH =
fg′√

5

(
1−

5υ2
h

4f2

)1/2

≈ fg′√
5

(
1−

5υ2
h

8f2

)
.

(699)

189



D APPENDIX: TWO-POINT FUNCTIONS

D Appendix: Two-point Functions

Considering a diagram with two legs, the general form to write the corresponding loop amplitude is

i

16π2
{B0, B

µ} = µ4−D
∫

dDq

(2π)D
{1, qµ}

(q2 −m2
0)[(q + p)2 −m2

1]
, (700)

where m0 and m1 are the internal masses in the loop. The corresponding tensor coefficients are
functions of the invariant quantities (args) = (p2,m2

0,m
2
1), where p is the momentum of the particle.

The functions B ≡ B(0;M2
1 ,M

2
2 ) and B ≡ B(0;M2

2 ,M
2
1 ) read

B0 = B0 = ∆ε + 1−
M2

1 ln
M2

1
µ2 −M2

2 ln
M2

2
µ2

M2
1 −M2

2

, (701)

B1 = −∆ε

2
+

4M2
1M

2
2 − 3M4

1 −M4
2 + 2M4

1 ln
M2

1
µ2 + 2M2

2 (M2
2 − 2M2

1 ) ln
M2

2
µ2

4(M2
1 −M2

2 )2

= −B0 −B1,

(702)

with ∆ε ≡ 2
ε − γ + ln 4π. These functions are ultraviolet divergent in D = 4 dimensions.
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E Appendix: Three-point Functions

In the Appendix C of [25] are shown the three-point functions that we used in the amplitude devel-
opment. The function’s arguments are (args) = (p2

1, Q
2, p2

2;m2
0,m

2
1,m

2
2), with p1 and p2 the external

momenta,m0 the mass propagator,M1 andM2 the masses of particles within the loop and Q ≡ p2−p1.

i

16π2
= {C0, C

µ,Cµν}(args) =

µ4−D
∫

dDq

(2π)D
{1, qµ, qµqν}

(q2 −m2
0)[(q + p1)2 −m2

1][(q + p2)2 −m2
2]
.

(703)

The functions C ≡ C(0, Q2, 0;M2
1 ,M

2
2 ,M

2
2 ) with x ≡M2

2 /M
2
1 are given by

C0 =
1

M2
2

[
1− x+ lnx

(1− x)2

+
Q2

M2
1

−2− 3x+ 6x2 − x3 − 6x lnx

12x(1− x)4

]
,

(704)

C1 = C2 =
1

M2
1

−3 + 4x− x2 − 2 lnx

4(1− x)3
+O(Q4), (705)

C11 = C22 = 2C12 =
1

M2
1

11− 18x+ 9x2 − 2x3 + 6 lnx

18(1− x)4
+O(Q4), (706)

C00 = −1

2
B1 −

Q2

M2
1

11− 18x+ 9x2 − 2x3 + 6 lnx

72(1− x)4
+O(Q4). (707)

Defining C ≡ C(0, Q2, 0;M2
2 ,M

2
1 ,M

2
1 ),

C0 =
1

M2
2

[
−1 + x− lnx

(1− x)2

+
Q2

M2
1

−1 + +x− 3x2 − 2x3 + 6x2 lnx

12x(1− x)4

]
+O(Q4),

(708)

C1 = C2 =
1

M2
1

1− 4x+ 3x2 − 2x2 lnx

4(1− x)3
, (709)

C11 = C22 = 2C12 =
1

M2
1

−2 + 9x− 18x2 + 11x3 − 6x3 lnx

18(1− x)4
, (710)

C00 = −1

2
B1 −

Q2

M2
1

−2 + 9x− 18x2 + 11x3 + 6x3 lnx

72(1− x)4
+O(Q4). (711)
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It is important to note that functions C00 y C00 are ultraviolet divergent in D = 4 dimensions.
In the limit Q2 = 0 the following useful relations among two and three point functions hold

B1 + 2C00 = 0 (712)

−1

4
+

1

2
B1 + C00 −

x

2
M2

1C0 = 0 (713)

−1

2
+B1 + 6C00 − xM2

1C0 = ∆ε − ln
M2

1

µ2
. (714)
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F Appendix: Four-point Functions

The functions that we used in our development are all ultraviolet finite

i

16π2
{D0, D

µ, Dµν}(args) =

∫
d4q

(2π)4

{1, qµ, qµqν}
(q2 −m2

0)[(q + k1)2 −m2
1][(q + k2)2 −m2

2][(q + k3)2 −m2
3]
,

(715)
with kj =

∑j
i pi and (args) = (p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2;m2

0,m
2
1,m

2
2,m

2
3). In the limit of

zero external momenta, only the following integrals are relevant

i

16π2
D0 =

∫
d4q

(2π)2

1

(q2 −m2
0)(q2 −m2

1)(q2 −m2
2)(q2 −m2

3)
, (716)

i

16π2
D00 =

1

4

∫
d4q

(2π)2

q2

(q2 −m2
0)(q2 −m2

1)(q2 −m2
2)(q2 −m2

3)
. (717)

In the terms of the mass ratios x = m2
1/m

2
0, y = m2

2/m
2
0, z = m2

3/m
2
0 the integrals above can be

written as [25] [37]

d0(x, y, z) ≡ m4
0D0 =

[
x lnx

(1− x)(x− y)(x− z)
− y ln y

(1− y)(x− y)(y − z)

+
z ln z

(1− z)(x− z)(y − z)

]
,

(718)

d̃0(x, y, z) ≡ 4m2
0D00 =

[
x2 lnx

(1− x)(x− y)(x− z)
− y2 ln y

(1− y)(x− y)(y − z)

+
z2 ln z

(1− z)(x− z)(y − z)

]
.

(719)

d̃′0(x, y, z) =
x2 lnx

(1− x)(x− y)(z − x)
+

y2 ln y

(1− y)(x− y)(z − y)
+

z2 ln z

(1− z)(x− z)(y − z)
, (720)

with d̃(x, y) = d̃′(x, y, 1). For two equals masses (m0 = m3) we get

d0(x, y) = −
[

x lnx

(1− x)2(x− y)
− y ln y

(1− y)2(x− y)
+

1

(1− x)(1− y)

]
, (721)

d̃0(x, y) = −
[

x2 lnx

(1− x)2(x− y)
− y2 ln y

(1− y)2(x− y)
+

1

(1− x)(1− y)

]
. (722)
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G Appendix: Light-Heavy Four-point Functions

The form factors involved in the `→ `′`′′ ¯̀′′′ decay are given by the eqs. (354), (355) and (356).

F
νliν

l
j

B =
αW

16πM2
W s

2
W

3∑
i,j=1

{W`iW
†
`′iW`′′′jW

†
`′′j + (`′ ↔ `′′)}f lB(yi, yj), (723)

F
νliχ

h
j

B =
αW

16πM2
W s

2
W

3∑
i=1

9∑
j=7

{W`iW
∗
`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}f lhB (yi, xj), (724)

F
χhi χ

h
j

B =
αW

16πM2
W s

2
W

9∑
i,j=7

{θ†`iθ`′iθ
†
`′′′jθ`′′j + (`′ ↔ `′′)}fhB(xi, xj), (725)

where we have added the superscripts (l), (lh) and (h) to the fB functions to indicate that these
functions are composed of light-light, light-heavy and heavy-heavy neutrinos, respectively.
Since the masses of light neutrinos satisfy mi � MW , it is convenient to define the yi variable as
yi =

m2
i

M2
W

as in this limit yi → 0. On the other hand, the condition of the heavy neutrino masses is

MW �Mj , hence it is natural to define xj =
M2
W

M2
j
, so the xj variable behaves as xj → 0.

The f lB(yi, yj) function is formed by the d0 and d̄0 functions. Because just light neutrinos are consid-
ered in the fB function the d0 and d̄0 ones have yi,j as variables. Therefore, d0 and d̄0 functions are
given from the eqs. (721) and (722). So the f lB(yi, yi) function can be written as

f lB(yi, yj) =

(
1 +

1

4
yiyj

)
d̄0(yi, yj)− 2yiyjd0(yi, yj), (726)

with yi,j =
m2
i,j

M2
W

(i, j = 1, 2, 3).

The f lhB (yi, xj) function mixes light-heavy neutrinos, then it has yi and xj as variables. The d0

and d̄0 functions defined in the Appendix C have variables which behave as m2
i

M2
W
. The consideration

on heavy neutrinos variables is xj =
M2
W

M2
j
, though. We have to refactor them considering the yi and

xj variables for light and heavy neutrinos respectively,

dlh0 (yi, xj) =
yixj lnyi

(1− yi)2(1− yixj)
+

x2
j lnxj

(1− xj)2(1− yixj)
+

xj
(1− yi)(1− xj)

, (727)

d̄lh0 (yi, xj) =
y2
i xj lnyi

(1− yi)2(1− yixj)
+

xj lnxj
(1− xj)2(1− yixj)

+
xj

(1− yi)(1− xj)
, (728)
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where yi = m2
i /M

2
W (i = 1, 2, 3) and xj = M2

W /M
2
j (j = 1, 2, 3). From the equations above the

f lhB (yi, xj) function is read as follows

f lhB (yi, xj) =

(
1 +

1

4

yi
xj

)
d̄lh0 (yi, xj)− 2

yi
xj
dlh0 (yi, xj). (729)

Finally, the fhB(xi, xj) function just has heavy-neutrino variables xi,j = M2
W /M

2
j , hence, we need to

refactor the d0 and d̄0 functions as

dh0(xi, xj) = −

[
x2
ixj lnxi

(1− xi)2(xi − xj)
−

xix
2
j lnxj

(1− xj)2(xi − xj)
+

xixj
(1− xi)(1− xj)

]
, (730)

d̄h0(xi, xj) = −
[

xixj lnxi
(1− xi)2(xi − xj)

− xixj lnxj
(1− xj)2(xi − xj)

+
xixj

(1− xi)(1− xj)

]
, (731)

with i, j = 1, 2, 3. Therefore, the fhB(xi, xj) function is given by

fhB(xi, xj) =

(
1 +

1

4

1

xixj

)
d̄h0(xi, xj)− 2

1

xixj
dh0(xi, xj). (732)

For the functions which coming from LNV contributions f (l,lh,h)−LNV
B (zi, zj) (eq. (375)) we can apply

the same arguments as the previous f l,lh,hB (zi, zj), therefore

f l−LNVB (yi, yj) =
√
yiyj

(
2d̄0(yi, yj)− (4 + yiyj)d0(yi, yj)

)
,

f lh−LNVB (yi, xj) =

√
yi
xj

(
2d̄lh0 (yi, xj)− (4 +

yi
xj

)dlh0 (yi, xj)

)
,

fh−LNVB (xi, xj) =
1

√
xixj

(
2d̄h0(xi, xj)−

(
4 +

1

xixj

)
dh0(xi, xj)

)
,

(733)

with yi = m2
i /M

2
W , mi the mass of light neutrinos; xj = M2

W /M
2
j , Mj the mass of heavy neutrinos.
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H Appendix: Hadronization tools

Within the RχT framework, bilinear light quark operators coupled to the external sources are added
to the massless QCD Lagrangian:

LQCD = L0
QCD + q [γµ(υµ + γ5a

µ)− (s− ipγ5)] q, (734)

where the auxiliary fields defined as υµ = υµi λ
i/2, aµ = aµi λ

i/2, and s = siλ
i, with λi the Gell-Mann

matrices, are Hermitian matrices in the flavour space. Once the RχT action LRχT is fixed, we can get
the hadronization of the bilinear quark current by taking the appropriate functional derivative with
respect to the external fields:

Si = −qλiq =
∂LRχT

∂si

∣∣∣∣
j=0

, P i = qiγ5λ
iq =

∂LRχT

∂pi

∣∣∣∣
j=0

,

V i
µ = qγµ

λi

2
q =

∂LRχT

∂υµi

∣∣∣∣
j=0

, Aiµ = qγµγ5
λi

2
q =

∂LRχT

∂aµi

∣∣∣∣
j=0

, (735)

where j = 0 indicates that all external currents are set to zero.
The vector form factor from the γ contribution to the decay into two pseudoscalar mesons is driven
by the electromagnetic current

V em
µ =

u,d,s∑
d

Qqqγµq = V 3
µ +

1√
3
V 8
µ = Jem

µ , (736)

where Qq is the electric charge of the q quark. We get also

uγµPLu = J3
µ +

1√
3
V 8
µ +

2√
6
J0
µ,

dγµPLd = −J3
µ +

1√
3
V 8
µ +

2√
6
J0
µ,

sγµPLs = − 2√
3
V 8
µ +

2√
6
J0
µ, (737)

with J iµ = (V i
µ −Aiµ)/2. The vector current contributes to an even number of pseudoscalar mesons or

a vector resonance, while axial-vector current gives an odd number of pseudoscalar mesons.
In Z contribution both vector and axial-vector currents do contribute:

JZµ = V Z
µ +AZµ ,

V Z
µ =

g

2cW
qγµ

[
2s2
WQq − T

(q)
3

]
q,

AZµ =
g

2cW
qγµγ5T

(q)
3 q, (738)
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with Qq (see eq. (564)) and T (q)
3 = diag(1,−1,−1)/2 the electric charge and and weak hypercharges,

respectively.

H.1 τ → µP

The τ → µP decay, in our model, is mediated only by axial-vector current (Z gauge boson), it means
thatMγ does not contribute. The total amplitude for τ → µP reads as

Mτ→µP =MP
Z +MP

Box, (739)

whereMP
Z is given by

MP
Z = −i g

2

2cW

F

M2
Z

C(P )
∑
j

V jµ∗
` V jτ

` µ(p′)
[
/Q(FZL PL + FZRPR)

]
τ(p),

MP
Box = −ig2F

∑
j

V jµ∗
` V jτ

` Bj(P )µ(p′) [/QPL] τ(p), (740)

where ZL = g
cW

(T q3 − s2
WQq) and ZR = − g

cW
s2
WQq. The hadronization of the quark bilinear inMZ

is determined by vector and axial-vector currents from eq. (738), which are written in terms of one P
meson, it turns out to be [75]

V Z
µ = 0,

AZµ = − g

2cW
F{C(π0)∂µπ

0 + C(η)∂µη + C(η′)∂µη
′}, (741)

where F ' 0.0922 GeV is the decay constant of the pion and the C(P ) functions are given by [75,76]

C(π0) = 1,

C(η) =
1√
6

(
sin θη +

√
2 cos θη

)
,

C(η′) =
1√
6

(√
2 sin θη − cos θη

)
. (742)

The box amplitude is composed by the following Bj(P ) factors [83]

Bj(π
0) =

1

2
(Bj

d −B
j
u),

Bj(η) =
1

2
√

3

[
(
√

2 sin θη − cos θη)B
j
u + (2

√
2 sin θη + cos θη)B

j
d

]
,

Bj(η
′) =

1

2
√

3

[
(sin θη − 2

√
2 cos θη)B

j
d − (sin θη +

√
2 cos θη)B

j
u

]
, (743)
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where the Bj
q functions are the form factors from box diagrams and the angle θη ' −18◦.

The branching ratio reads

Br(τ → µP ) =
1

4π

λ1/2(m2
τ ,m

2
µ,m

2
P )

m2
τΓτ

1

2

∑
i,f

|Mτ→µP |2, (744)

where Γτ ≈ 2.267×10−12 GeV and λ(x, y, z) = (x+ y− z)2−4xy, thusMτ→µP is given by eq. (739).
Thus,

∑
i,f

|Mτ→µP |2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

P )(akPa
l∗
P + bkP b

l∗
P ) + 2mµmτ (akPa

l∗
P − bkP bl∗P )

]
, (745)

with k, l = Z,B. Defining ∆τµ = mτ −mµ and Στµ = mτ +mµ we get

aZP = − g2

2cW

F

2

C(P )

M2
Z

∆τµ(FZL + FZR ),

bZP =
g2

2cW

F

2

C(P )

M2
Z

Στµ(FZR − FZL ),

aBP = −g
2F

2
∆τµBj(P ),

bBP = −g
2F

2
ΣτµBj(P ). (746)

H.2 τ → µPP

This channels are mediated by γ−, Z−penguins and box diagrams. Using the the electromagnetic
current (eq. (736)), the electromagnetic form factor reads

〈P1(p1)P2(p2)|V em
µ |0〉 = (p1 − p2)µF

P1P2
V (Q2), (747)

where Q = p1 + p2 and FP1P2
V (Q2) is steered by both I = 1 and I = 0 vector resonances. Then, the

complete amplitude is given by

Mτ→µPP =MPP
γ +MPP

Z +MPP
Box. (748)
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The next step is to hadronize the quark bilinears appearing in each amplitude. They turn out to be

MPP
γ =

e2

Q2
FP1P2
V (s)×∑

j

V jµ∗
` V jτ

` µ(p′)[Q2(/pq − /pq)F
γ
L(Q2)PL + 2imτp

µ
qσµνp

ν
qF

γ
M (Q2)PR]τ(p),

MPP
Z =g2 2s2

W − 1

2cWM2
Z

FP1P2
V (s)

∑
j

V jµ∗
` V jτ

` µ(p′)(/pq − /pq)[γ
µ(FZL PL + FZRPR)]τ(p),

MPP
Box =

g2

2
FP1P2
V (s)

∑
j

V jµ∗
` V jτ

` (Bj
u −B

j
d)µ(p′)(/pq − /pq)PLτ(p). (749)

After computing each amplitude, we get the following branching ratio

Br(τ → µPP ) =
κPP

64π3m2
τΓτ

∫ s+

s−

ds

∫ t+

t−

dt
1

2

∑
i,f

|Mτ→µPP |2, (750)

where κPP is 1 for PP = π+π−,K+K−,K0K̄0 and 1/2 for PP = π0π0. In terms of the momenta of
the particles participating in the process, s = (pq + pq)

2 and t = (p− pq)2, so that

t+− =
1

4s

[(
m2
τ −m2

µ

)2 − (λ1/2(s,m2
P1
,m2

P2
)∓ λ1/2(m2

τ , s,m
2
µ)
)2
]
,

s− = 4m2
P ,

s+ = (mτ −mµ)2. (751)

H.3 τ → µV

For these cases the branching ratio of τ → µV is related with the τ → µPP by trying to implement
the experimental procedure as follows

Br(τ → µV ) =
∑
P1,P2

Br(µP1P2)

∣∣∣∣∣∣
V

. (752)

In the above equation the s limits are now restricted to

s− = M2
V −

1

2
MV ΓV , s+ = M2

V +
1

2
MV ΓV . (753)

Therefore, when V = ρ, φ their branching ratios are given by

Br(τ → µρ) = Br(τ → µπ+π−)
∣∣
ρ
,

Br(τ → µφ) = Br(τ → µK+K−)
∣∣
φ

+ Br(τ → µK0K̄0)
∣∣
φ
. (754)
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I Appendix: Hadronic form factors

The vector form factors FPPV (s), defined by eq. (747) , are based on two key points:

• At s � M2
R (being MR a generic resonance mass), the vector form factor should match the

O(p4) result of χPT.

• Form factors of QCD currents should vanish for s�M2
R.

We include energy-dependent widths for the wider resonances ρ(770) and ρ(1450) or constant for the
narrow ones: ω(782) and φ(1020). For the ρ(770) we take the definition put forward in [84]

Γρ(s) =
Mρs

96πF 2

[
σ3
π(s)θ(s− 4m2

π) +
1

2
σ3
K(s)θ(s− 4m2

K)

]
, (755)

where σP (s) =

√
1− 4

m2
P
s , while ρ(1450) is parameterized as follows

Γρ′(s) = Γρ′(M
2
ρ′)

s

M2
ρ′

(
σ3
π(s) + 1

2σ
3
K(s)θ(s− 4m2

K)

σ3
π(M2

ρ′) + 1
2σ

3
K(M2

ρ′)θ(s− 4m2
K)

)
θ(s− 4m2

π), (756)

with Γρ′(M
2
ρ′) = 400± 60 MeV [6]. We get the following expressions for the vector form factors

F ππV (s) =F (s) exp
[
2Re

(
H̃ππ(s)

)
+Re

(
H̃KK(s)

)]
, (757)

F (s) =
M2
ρ

M2
ρ − s− iMρΓρ(s)

[
1 +

(
δ
M2
ω

M2
ρ

− γ s

M2
ρ

)
s

M2
ω − s− iMωΓω

]
− γs

M2
ρ′ − s− iMρ′Γρ′(s)

,

(758)

FK
+K−

V (s) =
1

2

M2
ρ

M2
ρ − s− iMρΓρ(s)

exp
[
2Re

(
H̃ππ(s)

)
+Re

(
H̃KK(s)

)]
+

1

2

[
sin2 θV

M2
ω

M2
ω − s− iMωΓω

+ cos2 θV
M2
φ

M2
φ − s− iMφΓφ

]
exp

[
3Re

(
H̃KK(s)

)]
,

(759)

FK
0K0

V (s) =− 1

2

M2
ρ

M2
ρ − s− iMρΓρ(s)

exp
[
2Re

(
H̃ππ(s)

)
+Re

(
H̃KK(s)

)]
+

1

2

[
sin2 θV

M2
ω

M2
ω − s− iMωΓω

+ cos2 θV
M2
φ

M2
φ − s− iMφΓφ

]
exp

[
3Re

(
H̃KK(s)

)]
,

(760)
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where we have defined the following terms

β =
Θρω

3M2
ρ

,

γ =
FVGV
F 2

(1 + β)− 1,

δ =
FVGV
F 2

− 1,

H̃PP (s) =
s

F 2
MP (s),

MP (s) =
1

12

(
1− 4

m2
P

s

)
JP (s)− kP (Mρ)

6
+

1

288π2
,

JP (s) =
1

16π2

[
σP (s) ln

σP (s)− 1

σP (s) + 1
+ 2

]
,

kP (µ) =
1

32π2

(
ln
m2
P

µ2
+ 1

)
. (761)

The β parameter includes the contribution of the isospin breaking ρ − ω mixing through Θρω =

−3.3 × 10−3 GeV2 [85]. The asymptotic constrain on the NC → ∞ vector form factor indicates
FVGV ' F 2 [86]. We will use ideal mixing between the octet and single vector components, θV = 35◦.
We note that when isospin-breaking effects are turned off, the resummation of the real part of the
chiral loop functions is not undertaken and the contribution from the ρ′ is neglected, the well-known
results from the vector-meson dominance hypothesis are recovered. More elaborated form factors are
obtained using the results presented here as seeds for the input phaseshift in the dispersive formulation,
see e.g. refs. [87, 88]. These refinements modify only slightly the numerical results obtained with the
form factors quoted in this appendix.
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