Lepton flavor violation in the Littlest Higgs model with T-parity

realizing an inverse seesaw

PhD Thesis

Cinvestav

Author: Ivan Pacheco Zamudio
Advisor: Dr. Pablo Roig Garcés

Department of Physics
Centro de Investigacion y Estudios Avanzados del Instituto Politécnico Nacional

September 16, 2022



Agradecimientos

Agradecimientos a todos aquellos que estuvieron presente en este largo camino.



Introduccion

El Modelo Estandar de fisica de particulas elementales es una de las teorias més exitosas creadas por
el hombre, ésta logra explicar -en su mayoria- los fenémenos, procesos, interacciones que ocurren a
nivel fundamental entre particulas y ha sido comprobado con gran precisién experimentalmente. Por
ello existe un gran interés en hacer extensiones del modelo para encontrar una explicaciéon a aquellos
problemas que no pueden ser resueltos de forma satisfactoria con dicha teoria.

Una prueba importante del Modelo Estandar fue el hallazgo en 2012 por el LHC, de una particula
propuesta por Peter Higgs en 1964 mediante el llamado Mecanismo de Higgs, dicha particula es
nombrada en su honor Bosén de Higgs.

El Mecanismo de Higgs esta estrechamente relacionado con el rompimiento de simetria electrodébil
el cual se produce a una escala de energia v = 246 GeV, y se estima que la escala de energia de nueva
fisica sea del orden de ~ O (TeV).

Se han propuesto diferentes modelos para tratar de explicar esta diferencia entre las escalas de
energia, llamado problema de jerarquia, y estabilizar las contribuciones que existen de diagramas
cuadraticamente divergentes a la masa del Higgs.

Little Higgs, es uno de los modelos desarrollados para abordar el problema descrito anteriormente.
Modelos de tipo Little Higgs tienen como su principal caracteristica comin la propuesta de que el
Higgs es un pseudo-bosén de Nambu-Goldstone originado -en este caso- por el rompimiento del grupo
de simetria SU(5) a una escala de energia f ~ O(TeV). Dicha idea fue retomada por Arkani-Hamed,
Cohen y Georgi quienes construyeron el primer modelo Little Higgs exitoso |1]. A partir de esto, se le
han hecho varias extensiones al modelo Little Higgs vy en esta tesis abordaremos una de ellas: Modelo
Littlest Higgs con T-paridad.

Este modelo, abreviado LHT, tiene varias implicaciones fenomenoldgicas, por lo que nos pro-
pusimos estudiar las nuevas cotas a procesos de violacion de sabor lepténico (LFV) por medio de
interacciones de particulas propuestas que aparecen a una escala de energia de TeV’s, ademas de in-
troducir un mecanismo especifico de los llamados See Saw para involucrar neutrinos de Majorana que
no soélo aportaran a los procesos de LFV sino también a procesos de LNV. De esta manera, ademas,
el problema de jerarquia se relaciona con la masa infima de los neutrinos y, posiblemente, con la
explicacién de la asimetria bariénica del Universo mediante leptogénesis.

La estructura de la tesis se describe a continuacion: en el Capitulo [1, nombrado Standard Model,
se explican los requisitos necesarios que debe cumplir la Lagrangiana del modelo estdndar electrodébil
tales como simetria de fase global y local. Sabemos que la Electrodinamica Cuantica es una teoria
Abeliana, lo que implica que su mediador, el fotén, no interactia consigo mismo, pero a diferencia de
esto, en la teoria Electrodébil sus bosones de gauge, W+ y Z°, si pueden interactuar entre ellos, lo
que nos lleva a trabajar con una teoria no Abeliana. Por tanto es necesario conocer los campos de
Yang-Mills, contenido del subcapitulo En la segunda parte del Capitulo [I] se detalla el Modelo

Glashow-Weinberg-Salam, introduciendo el Mecanismo de Higgs, y revisando cémo éste origina las



masas de los bosones de gauge y los fermiones. Para finalizar con este capitulo se muestra la forma
de la Lagrangiana final del modelo, comentando brevemente cada una de sus partes constituyentes.

Como se menciond anteriormente, las implicaciones del LHT aqui estudiadas son -fundamentalmente-
de procesos de violacion de sabor leptonico, por lo que se incluye un breve Capitulo 2] dedicado a LFV.

En el Capitulo [3] se desarrolla detalladamente el Modelo de Littlest Higgs con T-paridad. Aqui
se explica como es el rompimiento de simetria SU(5)/SO(5) y la parametrizacion de la matriz de
Goldstones. Se introduce la T-paridad, que es una simetria Zs, y la acciéon que tiene en los campos y
Lagrangianas para hacer el modelo consistente. Se muestra como el grupo de gauge [SU(2) x U(1)]?,
que se encuentra dentro del grupo SU(5), se "rompera" al grupo del Modelo Estandar SU(2), xU(1)y,
dando asf lugar a la aparicién de nuevas particulas en un sector pesado: Wlf, Zy Ap. Tras considerar
efectos de EWSB, se recuperan los bosones de gauge conocidos: W+, Z0 y A. Se incluye el sector de
fermiones, introduciendo los multipletes de SU(5) que nos originan el sector pesado de fermiones junto
con los fermiones del Modelo Estandar, y ademas se incluye el multiplete correspondiente a fermiones
"espejo", los cuales son de vital importancia para el modelo.

En el Capitulo [4] se muestran las nuevas contribuciones a la amplitud por parte de los leptones T-
odd (espejo) y partner provenientes de LHT para el proceso . — ee€ a nivel de diagramas de pingiiino
y caja. Una vez calculadas las amplitudes, en los Capitulos [5] y [6] se desarrolla minuciosamente el
calculo para los factores de forma de los diagramas de pingiiino de v y bosén Z y los factores de
forma correspondientes a los diagramas de caja. LHT nos permite introducir un mecanismo para
generar masas de neutrinos de tipo de Majorana. En el Capitulo [7] se introduce detalladamente el
mecanismo de See Saw Inverso (ISS) para cumplir el objetivo de tener neutrinos de Majorana, asi como
las repercusiones en los procesos de LFV y LNV a través del célculo de los factores de forma en los
diagramas de pingiiino y caja, ya que aparecen diagramas donde el ntmero lepténico se viola por dos
unidades. Veremos que al considerar neutrinos pesados de Majorana aparecerdn nuevos acoplamientos
como lo son los neutros de tipo (656”) o, los cuales tendran un papel importante en el analisis numérico
de estos procesos. Para el Capitulo [§] reservamos el anélisis fenomenolégico de los procesos descritos
en el capitulo anterior, mostrando los valores representativos del modelo.

El decaimiento doble beta sin neutrinos es una de las pruebas mas fuertes para la comprobacién de
la existencia de neutrinos de Majorana, por lo que en esta tesis también enfocamos parte de nuestro
esfuerzo en calcular las predicciones de nuestro modelo a dicho proceso, esto puede ser encontrado en
el Capitulo 9

Finalmente, en el Capitulo llevando nuestro modelo mas alla para conseguir puebas més solidas
de autoconsistencia, se trabajo con decaimientos hadrénicos de tau (7) donde se han calculado, por
primera vez en el LHT, cotas para los branching ratios de 7 — (P, PP,V (¢ = e, u), asi como las
masas esperadas de los fermiones T-odd, partner y neutrinos de Majorana, angulos de mezcla para
efectos de LFV y acoplamientos neutros (#.S07)s lo cual nos permite validar la coincidencia con los
resultados obtenidos en el Capitulo

En el Capitulo [11]se escriben las conclusiones del trabajo de tesis. Se finaliza con nueve apéndices



donde se incluyen todas las herramientas usadas para el desarrollo de calculos necesarios en la tesis.



Abstract

The Standard Model of particle physics is one of the most successful theories created by humans, it
manages to explain basically all the phenomena, processes and interactions that occur at a fundamental
level between particles and has been minutely verified by data experimentally obtained. Therefore,
there is a great interest in making extensions of the model to find an explanation for those problems
that cannot be solved satisfactorily with this theory.

An important test of SM was the discovery in 2012 by the LHC of a particle proposed by Peter
Higgs in 1964 through the so-called Higgs Mechanism, that particle is named in his honor: Higgs
Boson.

The Higgs Mechanism is closely related with the electroweak symmetry breaking (EWSB) which
is produced at an energy scale v = 246 GeV, and it is estimated that the energy scale of new physics
is of order ~ O(TeV).

Several models have been proposed to attempt to explain this difference between the energy scales,
called hierarchy problem, and to stabilize the contributions that exist from quadratically divergent
diagrams correcting the Higgs mass.

Little Higgs is one class of models developed to address the problem described above. Little Higgs
Models have as their main common feature the proposal that the Higgs is a pseudo-Nambu-Goldstone
boson. In this particular case caused by the breaking of SU(5) symmetry group at an energy scale
f ~ O(TeV). This idea was taken up by Arkani-Hamed, Cohen and Georgi who built the first successful
Little Higgs model [1]. From this, several extensions have been made to the Little Higgs model and
in this thesis we will address one of them: Littlest Higgs Model with T-parity.

This model, abbreviated LHT, has several scopes and one of which we set to study here, is that
this model gives new contributions to lepton flavor violation (LFV) processes through interactions of
particles that appear at energy scale of TeV’s. In addition, a specific mechanism of the so-called See
Saw is introduced to involve Majorana neutrinos that will contribute to LFV processes but also to
LNV processes. In this way, the hierarchy problem is linked to understanding the tiny neutrino masses
and, possibly, to generating the baryon asymmetry of the universe via leptogenesis.

The structure of the thesis is described below: in Chapter [T} named Standard Model, we explain
the necessary requirements that the Lagrangian of the electroweak standard model must satisfy, such
as global and local phase symmetry. We know that Quantum Electrodynamics is an Abelian theory,
which implies that the mediator, the photon, does not self-interact, contrary to the Electroweak theory,
whose gauge bosons, W* and Z°, can interact with each other (and among themselves, in certain
combinations), which leads us to work with a non-Abelian theory, so it is necessary to know Yang-Mills
fields, content of subsection [[.1.3] For the second part of Chapter [I, the Glashow-Weinberg-Salam
Model is detailed by introducing the Higgs Mechanism and how it gives rise to the masses of gauge
bosons and fermions. We show the shape of the final Lagrangian of this model, commenting briefly

each of its constituent parts.



As we mentioned previously, the scope of LHT reaches lepton flavor violation processes, so a brief
Chapter [2| dedicated to LF'V is included.

In Chapter [3] the Littlest Higgs Model with T-parity is developed in detail. We explain how is
the symmetry breaking of SU(5)/SO(5) and the parameterization of the Goldstones matrix. The
T-parity is introduced, which is a Zs symmetry, and the action it has in the Lagrangian and fields to
make the model consistent is displayed. We show how the gauge group [SU(2) x U(1)]?, that is within
the SU(5) group, will "break" to the Standard Model SU(2)z x U(1)y group, and give rise to the
appearance of new particles in a heavy sector: Wf;, Zyg and Apg and how, after considering EWSB
effects, we also recover the known gauge bosons: W+, Z% and A. The fermion sector is also included,
introducing the SU(5) multiplets that will originate the heavy fermions sector as well as the Standard
Model fermions, and also the multiplet corresponding to mirror fermions, that are vitally important
for the model.

In Chapter {4| the new contributions to the amplitude by the T-odd (mirror) and partner leptons
from LHT for the process p — eee are shown at the level of diagrams of penguin and box types.
Once the amplitudes have been calculated, in Chapters [5] and [6] the calculation for the form factors
of the penguin diagrams of v and Z boson and form factors corresponding to the box diagrams are
covered. LHT allows us to introduce a mechanism to generate neutrino masses of Majorana nature. In
Chapter the Inverse See Saw (ISS) mechanism is introduced in detail to meet the objective of having
Majorana neutrinos as well as repercussions on the LF'V and LNV processes through the calculation
of the form factors from the penguin and box diagrams, since there are diagrams where the lepton
number is violated by two units. We will see that when considering heavy Majorana neutrinos, new
couplings will appear, such as the neutral couplings of type (6567, which will have an important
role in the numerical analysis of these processes. For the Chapter [§| we reserve the phenomenological
analysis of the processes described in the previous chapter showing representative values of the model.

Neutrinoless double beta decay is one of the strongest pieces of evidence for the possible existence
of Majorana neutrinos, so in this thesis we also focus part of our effort on calculating the predictions
of our model to this process, this can be found in Chapter [9}

Finally, in Chapter [I0] taking our model further to get more solid evidence that everything is on
the right track, we worked out -for the first time within the LHT- hadronic decays of tau (7) where
new bounds have been calculated for the branching ratios for 7 — ¢P, PP,V (¢ = e, u), as well as
the expected masses of the T-odd fermions, partner and Majorana neutrinos, mixing angles for LF'V
effects and neutral couplings (#.S67)s», which altogether enables us to validate the coincidence with
the results obtained in Chapter

In Chapter [I1] the conclusions of this thesis are written. Nine appendices are included, where all

the tools used for the development of calculations are detailed.
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1 STANDARD MODEL

1 Standard Model

Particle physics is the branch of physics which studies elementary particles and their properties. We
can say that the elementary particles are the fundamental constituents of all objects in the universe.
We mean by elementary particles: these are particles which do not have any substructure.

It’s not easy to tell which particles are elementary. It’s possible to say which particles are not
elementary, if one knows of some experiment that shows substructure of the object. But no experiment
can guarantee that a given object does not have any substructure. A new experiment might show
substructure in an object that was earlier considered elementary. For instance, protons and neutrons
came to be collectively called nucleons because they are the constituents of nuclei, and treated as
elementary particles. A few decades later, new experiments indicated that the nucleons themselves
have substructure. We now believe that they are made up of quarks, which are elementary particles
like the electrons |2|. Thus the list of elementary particles changes with time. There is no guarantee
that today’s elementary particles would not turn out to be composite objects tomorrow.

The electron, the proton and the neutron are all examples of fermions, which have an intrinsic an-
gular momentum, or spin, that is a half-integral multiple of the fundamental constant A. In particular,
all three of these have spin equal to %h. The other alternative is to have spin in integral multiples of
h, and particles carrying such spin are called bosons.

The Standard Model (SM) constitutes one of the most successful achievements in modern physics.
It provides a very elegant theoretical framework, which is able to describe the known experimental
facts in particle physics with high precision [3].

According to this model, all matter is built from fermions: six quarks and six leptons. The leptons
carry integral electric charge. The electron e with unit negative charge is familiar to everyone, and
the other charged leptons are the muon p and the tau 7, these are heavy versions of the electron. In
modern terminology, we call the muon a particle of the second generation, and the tau belongs to the
third generation.

In 1930, in order to explain the continuous spectrum of the electrons in nuclear beta decay, Pauli
proposed that a neutral fermion was produced in such processes. Neutral fermions are collectively
called neutrinos. A different flavour of charged lepton is paired with each flavour of neutrino, as
indicated by the subscript: these are called the electron-neutrino(v.), muon-neutrino(v,), and tau-
neutrino(v;). Summarizing, these neutrinos, along with the electron, the muon and the tau, form a
class of elementary particles which are called leptons. There is another class of elementary particles
which are called quarks. Unlike the leptons, no one has seen quarks in their free state. Quarks always

appear in bound states. Bound states involving quarks are called hadrons. The quarks carry fractional

1
3

its electric charge Q to the elementary charge e of the electron are given in Table [1] |4].

charges, of %e or —ze. For each of the various fundamental constituents, its symbol and the ratio of
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Particle Flavour Q
leptons poT 1
Ve Vy Vs 0

U c t 2

quarks J p_ g

Table 1: The fundamental fermions.

We have looked at the particles but the SM also comprises -extremely importantly- their inter-
actions. The different interactions are described in quantum language in terms of the exchange of
characteristic bosons (particles of integral spin) between the fermions constituents. These boson me-
diators are listed in Table 2

Interaction Mediator Symbol Number Spin (h)/Parity
Strong Gluon g 8 1~
Electromagnetic Photon vy 1 1~
Weak W and Z bosons W=, Z0 3 1-,17F
Gravity Graviton G 1 2t

Table 2: The boson mediators.

There are four kinds of fundamental interactions. The oldest known one is the gravitational inter-
action, known since the time of Newton in the 17th century. It is supposedly mediated by exchange of
a spin 2 boson called graviton. Electricity and magnetism were unified into the electromagnetic theory,
ans this is the second kind of interaction that we recognize to be fundamental and this interaction is
mediated by photon exchange. The third one is the strong interaction, required to explain the stability
of the atomic nuclei. The interquark force is mediated by a massless particle, the gluon. The last one
is the weak interaction, needed to explain the phenomenon of beta radioactivity. The mediators of
this interaction are the W= and Z° bosons, with masses of order 100 times the proton mass.

To indicate the relative magnitudes of the four types of interaction, the comparative strengths of

the force between two protons when just in contact are very roughly as follows |4].

Strong Electromagnetic Weak Gravity
1 102 1077 107

Table 3: Comparative strengths of the force between two protons.

In addition, the standard theory of electroweak interactions postulates that there is a spinless
boson. It is called the Higgs boson. The discovery of the Higgs boson, announced on July 4th of 2012
by the CERN LHC collaborations ATLAS and CMS, marked the completion of the SM. This event can
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be considered one of the greatest accomplishments of the High Energy Physics community. The Higgs
mass value agrees quite well with the range preferred by the electroweak precision tests (EWPT),
which confirms the success of the SM. Current measurements of its spin, parity, and couplings, also
seem consistent with the SM. The fact that LHC has verified the linear realization of spontaneous
symmetry breaking (SSB), as included in the SM, could also be taken as an indication that Nature
likes scalars. [5].

The Standard Model was proposed in 1967, and the discovery of the Higgs boson was announced
in 2012, i.e., a long 45 years later. It remained elusive for almost half a century. A big reason for the
elusiveness of the Higgs boson is its coupling to fermions. The coupling of the Higgs boson to any

fermion is proportional to the mass of the fermion, given by

_ V2my gy
v V2Myy

with a vev v = 246 GeV. Our experimental detectors are made out particles in the first generation of

(1)

fermions because they are constituents of stable material. The masses of the first generation fermions
are much smaller compared to the masses of fermions in the other generations. For the electron, eq.
tell us that the coupling is of order 10~7. With the up and the down quarks, the couplings are a
little bigger, maybe an order to magnitude. This is the basic reason why the Higgs boson is hard to
produce and to detect.

The mass of the Higgs boson is My = 125.10 £ 0.14 GeV [6].

1.1 Gauge Invariance
1.1.1 Global phase symmetry

Consider the free Dirac Lagrangian

Lo = ipy"Outp — mipn). (2)

This Lagrangian is invariant under a change of phase of the field ). Suppose we change over to a

new field

U (z) = exp(—ieQO)(x), (3)

where e, @ and 0 are all real numbers, with different interpretations. The quantity e stands for a
universal constant which sets up the scale of the phase, @ is a characteristic of the field ¢ (quantum
number) and 6 is a variable which determines how large the phase is. Note that we have not changed
the spacetime coordinates at all; the new field is defined in terms of the old field at the same spacetime

point. Such symmetries are called internal symmetries.
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Given the transformation from eq., we show that

il;/’)”ualﬂ/}/ - mzﬁlwl = izﬁfyua,uw - WW (4>
Thus, the Lagrangian from eq. is invariant under the transformation given from eq.. We can
see that 6 is independent of the spacetime coordinates, such that this transformation is called a global
symmetry.
1.1.2 Local symmetry
Now we want to see what happens if the parameter depends on spacetime coordinates, § = 6(z). The
derivative of ¢'(z) is
Ot (z) = exp(—ieQO) [0p(x) — ieQ(0u0)(2)] . (5)

There is an extra term, involving the derivatives of . The Lagrangian from eq. is not invariant

under this local transformation. We obtain then

Ly — Lo = eQ(9u0)P(x)7 (). (6)

Since we want the local symmetry, we would need to modify the original Lagrangian. So, instead

of the Lagrangian from eq.7 let us try
L = itpy" Dyap — mipnp, (7)
where

Dy = 0, + ieQA,, (8)

bringing in a new A,. This D, is usually called the covariant derivative. The prescription of
replacing ordinary derivatives by covariant derivatives is called minimal substitution |2].

The new Lagrangian must be invariant under the local symmetry, thus, under the local symmetry,
A, changes to A, such that

Ll — eQU'AMY Al = Lo — eQUy* Ay, (9)
or
Al = Ay +0,0. (10)

We can thus identify A, with the photon field and conclude that, in the urge for making the global

phase symmetry local, we have introduced the photon field in a natural form. If we are to regard this
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new field as the physical photon field, we must add to the Lagrangian a term corresponding to its
kinetic energy. Since the kinetic term must be invariant under eq., it can only involve the gauge

invariant field strength tensor

Fu = 0,4, — 0,A,. (11)

We are thus led to the Lagrangian of QED [7]

L =(iv"0, — m)y + ey Aynp — EFWF’“’. (12)

Note that the addition of a mass term %mzA#A” is prohibited by gauge invariance. The gauge
particle, the photon, must be massless, in agreement with experiment.

Local symmetries are also called gauge symmetries. Theories incorporating gauge symmetries are
called gauge theories. The spin-1 particles which are necessary to keep the gauge invariance are called
gauge bosons. QED is therefore a gauge theory, based on the gauge group U(1). The gauge boson for
QED is the photon.

1.1.3 Non-Abelian gauge symmetry: Yang-Mills fields

In 1954 Yang and Mills extended the gauge principle to non-Abelian symmetry. We are going to
illustrate the construction for the simplest case of isospin SU(2) [§].

Let the fermion field be an isospin doublet,

_ [
() "

Under an SU(2) transformation, we have

—i7-0
¥la) > '(x) = eap ( ’ ) o), (14)
where 7 = (71, 72, 73) are the Pauli matrices, satisfying
T Tj . Tk .o
[5275]} :Zeijkg Z?]vk: 1)2737 (]‘5)

and 0 = (01,65, 03) are the SU(2) transformation parameters. The free Lagrangian
Lo = () ("0 — m)i(x), (16)

is invariant under the global SU(2) symmetry with {6;},=1 2 3 being spacetime independent. However
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under the local symmetry transformation

(@) = P'(x) = U (0)¢(x), (17)

with

U(0) = exp <—7f’9(x)> , (18)

the free Lagrangian Lg is no longer invariant because the derivative term transforms as

D(@)0ut(z) = ¥ (2)0 () =tp(2)0utp(2)

+ (@) U™H(0) [0,U(0)] (). 1

To construct a gauge invariant Lagrangian we follow a procedure similar to that of the Abelian
case. We introduce the vector gauge field Az (1 = 1,2,3) (one for each group generator) to form the

gauge covariant derivative through the minimal coupling

—

= 1
Dy = <8u—i97— B M) Y, (20)

where g is the coupling constant. We want that D, have the same transformation property as 1
itself
D,y — (D) = U(0)Dyp. (21)

This implies that

(ém - z‘f’f”) W) = U () (au - z’gf';‘“> v,

S (22)
7oA - A ~
L= U0) 52U (@) - = 900U 0),
2 2 g
which defines the transformation law for the gauge fields. For an infinitesimal change 5(.@) < 1,
7. Al T - y 1 /7 -
no_ M_ngk[Jj}_, T.o,0
2 A XY R G
7oA i 1/7 . =
=—+ ¢hrigi Ak g<2.aue),
or .
Al = AL+ TR0 AT — P (23)

The second term is the transformation for a triplet representation under SU(2). Thus the ALS

carry charge, in contrast to the Abelian gauge field.
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To obtain the antisymmetric second-rank tensor of the gauge fields we can study the combination

(T
[D,Lw Dl/] ¢ =19 <2Fﬁu> ¢7 (24)
with . . . . .
T Fl T-A, 7 A |\ TA, THA
=0 —0 £ £ 25
9 1 9 v 92 g 9 ) 9 ) ( )
where
F, = 0,4, — 0,Al, + ge’* Al A% (26)
From the fact that D, 1 has the same gauge transformation property as v, we see that
([D;MDV] 1/})/ = U<6) [D;MDV]wa (27)
substituting eq. on both sides from eq., we have
7o, =U@O)(F Fu)U'(0). (28)
For the infinitesimal transformation #; < 1, this translates into
Fl =F', +*gipk,. (29)
The Fﬁy transforms nontrivially, however, the following product is gauge invariant
tr (7 Fu)(7- F™)| o Fl F'". (30)

The complete gauge invariant Lagrangian which describes the interaction between gauge fields AL
and SU(2) doublet fields
_ _ 1o
£ = iy Dy — mapyp — JF, . (31)

where F/i,, is given by eq. and D1 is given by eq. 1’ The pure Yang-Mills term, —iFﬁyFi“”,
i

1» which correspond to self-couplings of non-

contains factors that are trilinear and quadrilinear in A

Abelian gauge fields.

1.2 Standard Electroweak Theory - The Glashow-Weinberg-Salam Model

The SM is a gauge theory, based on the symmetry group SU(3)¢c ® SU(2)r ® U(1)y, which describes
strong, weak and electromagnetic interactions, via the exchange of the corresponding spin-1 gauge
fields: eight massless gluons and one massless photon, respectively , for the strong and electromagnetic
interactions, and three massive bosons, W and Z°, for the weak interaction.

The gauge symmetry is broken by the vacuum, which triggers the SSB of the electroweak group
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to the electromagnetic subgroup

SU3)c @ SUR2) @ U(L)y 2225 SU3)e © U(1)gep- (32)
The SSB mechanism generates the masses of the weak gauge bosons, and gives rise to the appear-

ance of a physical scalar particle in the model, the so-called Higgs. The fermion masses and mixings
are also generated through the SSB [3].

1.2.1 Higgs mechanism

We start with a Lagrangian with a local U(1) symmetry
L= —LFu B 4 (D46)' (D) — w2016 — A(o'6). (33)
where ;2 < 0. The gauge covariant derivative D, is defined by
D, = 0, +ieA,. (34)

The covariant derivative from eq.(34) is different to eq. one, the difference is a @ factor which
is a characteristic of the field so we can omit it without to lose generality. Spontaneous symmetry

breaking can occur if 42 < 0, for which the minimum is obtained if

{01910 = (35)

v
\/5 )
where

2

—H
v =4\ —. 36
. (36)
Only the magnitude of the vev is determined by the minimization condition. The phase can be
arbitrary. Let us assume that the vacuum is where the phase value is zero, the vev of ¢ is % We

can say that ¢(x) can not be the quantum field in this case. We should write [9)

o(z) = ¢1§<“ +n(a) + (), (37)

where 7(z) and ((z) have zero vevs. Using eq.(37) in kinetic term from eq.(33)
K\ T _ 1 H 1 Iz AM Lo 2 A AH
(D) (Dpg) = 5(8 m)(0un) + 5(8 O(0uC) + evA* 0, ¢ + QU ApAT (38)
We see that the U(1) gauge boson has a mass term after the symmetry is broken, the mass is given

by
My = ev. (39)
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Before we conclude that the gauge boson is massive, there is a problem to settle. There is a term
Ar9,( in eq.. Since it is quadratic in the fields, so it should be part of the free Lagrangian of the
system. However, it contains two different fields, A* and (, involving a derivative. If it were written
in terms of creation and annihilation operators, this would imply that we can have Feynman diagrams
in which an A* changes into a (, without any other particle interacting with them, and vice versa.

The eq. is not the only way that ¢ can be written in terms of quantum fields. Alternatively

we could have written
(;5(33) — 1)—’;}72(:6)61'((:6)/1;‘ (40)

If we keep only up to linear terms in quantum fields, this representation coincides with eq..
Here ((z)/v is the phase of the field ¢, we know that any phase, even if it is a spacetime dependent
one, it is irrelevant because of the local U(1) symmetry. Explicitly, the Lagrangian from eq.(33) is

invariant under the transformations

d(z) = ¢ (x) = e "W (z),

(41)
Ay(x) = Al (x) = Au(x) + 0,0(x).

Therefore, given the representation of the field ¢(z) as from eq., we can always choose a new
gauge through eq.. In particular, if we choose 0(x) = ((z)/ev, the gauge transformed fields are
given by

Ve (12)
A(2) = A,(2) + —-0,( @)

If we substitute these primed fields instead of the unprimed fields, the {(x) field (would-be Gold-
stone boson) disappears altogether from the Lagrangian. This Lagrangian then contains physical fields

only, and the gauge in which this takes place is called the unitary gauge.

1.2.2 Higgs boson multiplet

We introduce a scalar multiplet which is a doublet under the SU(2) part of the gauge group, and

(%) 63

The 2 indicates that it is a doublet of SU(2), and we have normalized the U(1) charge such that

its value is % for the multiplet ¢.

write this as
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The Lagrangian now contains terms involving ¢ as well. These are
Ly = (D"$)' (Do) — 1?01 — Ao 9)*. (44)

In general, when a multiplet transforms like an n-dimensional representation of SU(2) and has a

U(1) quantum number Y, we should write
Dy = 0, +igTMW +ig'Y By, (45)

where T, én) denote the generator of SU(2) in the n-dimensional representation, and Y is the identity
matrix times the hypercharge. For the doublet ¢, the SU(2) generators are 7,/2 (Pauli matrices) ,

and we can write
/
. T .g
D,¢ = (au + zg;aW,f + Z2Bu> )

46
-9 ¢ 4 i QWE + 9B, g(Wﬁ - iW/f) ot | (46)
"\ ¢ 2v2 \ g(Wl+iW2) —gW3+ 4B, b0

Let us now suppose that 2, the gauge symmetry will be spontaneously broken. The minimum for

the scalar potential will be obtained for scalar field configurations given by

%:%(f), (47)

and v = \/—p2/X. Any other vacuum satisfying eq. can be reached from this by a global SU(2) x
U(1) transformation. In this vacuum state, the generators 77 and T3 are no more part of the symmetry,
since 7, y 0 = (Th1+iTs)Po # 0. The diagonal generators T3 and the U(1) generator Y do not annihilate

the vacuum state either. However, we note that

<;8><U£@>:<8)- (48)

Thus there is one diagonal generator which annihilates the vacuum. This is a linear combination

of T3 and Y, given by
Q=T3+Y : Qpy=0. (49)

The original gauge symmetry is therefore broken down to a U(1) symmetry generated by (. This
is not the original U(1) part of the symmetry group. As we have shown, its generator is actually a
combination of an SU(2) generator and the original U(1) generator. To make this distinction, we
will write the original symmetry from now as SU(2) x U(1)y, whereas the remnant symmetry will be

called U(1)q. This latter is in fact the electromagnetic gauge symmetry.

10
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1.2.3 Gauge boson masses
Since ¢g cannot be described by creation and annihilation operators, we can write
¢+
() = | viH@+ic@) |- (50)
V2

where ¢, H and (¢ are all quantum fields with vanishing expectation values in the vacuum state. The
gauge boson masses are identified by substituting the vacuum expectation value ¢g for ¢(x) in the

Lagrangian from eq.. The relevant term from eq. is

) 2
e e Y A AT
gWi +iW2) —gW32 +4¢'B, v

1 1
= U7 [(W)* + (Wi)?] + Sv*(9' By — gW) (g B — gW™H)

1 2 N B 1 ) . g2 _ggl W3u
= (21)9) WH w “"‘g’l) < WH B/J ) _gg/ 9/2 BH )

(51)

1

since W+ = (W! F ZW2)/\@ For any charged spin-1 field V,, of mass M, the mass term in the
Lagrangian is M VJ V#. Thus, the mass of the charged W boson is

1
My = SV (52)

The remaining term is off-diagonal in the Ws’ and B, basis

1 1 2
5 [ (Wi)? 29 WiB" + ¢ BJ] =2 [gWi — ¢ B, ]

) (53)
+0[gW; + ¢'By]

One of the eigenvalues of the 2 x 2 matrix from eq. is zero, we have included this term in
eq.(p3)) with a combination of fields that is orthogonal to the combination given in the first term.
Now, the physical fields Z,, and A, diagonalize the mass matrix so that eq. must be identified
with . .

§M§Zﬁ + 5ME,A%, (54)

So, on normalizing the fields, we have [7]

'W32+gB
IPuTIPk Gith My =0

® /g2 T g2 ’ (55)

w3 1
Z, = Wi =B i, — SOV T g7

A

11
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We can define the combinations

Z,, = cos HWW;Z’ — sin Oy By,

(56)
A, =sin HWWg + cos Oy By,
where 6y is called the weak mixing, "Weinberg’ angle, defined by
Mw g
—— =cosf or = =tanfy. 57
My W g w (57)

The inequality Mz # My is due to the mixing between the Wl‘:’ and B, fields. The mass eigenstates
are then automatically a massless photon (4,) and a massive (Z,) field with Mz > My .
1.2.4 Masses of the Fermions

An attractive feature of the SM is that the same Higgs doublet which generates W+ and Z masses is
also sufficient to give masses to the leptons and quarks. For example, to generate the electron mass,

we include the following SU(2) x U(1) gauge invariant term in the Lagrangian

ot o Ve
( e e)L<¢O)€R+éR(¢_ ¢°)L<6)]- (58)
L

The Higgs doublet has exactly the required SU(2) x U(1) quantum numbers to couple to (épeg).

L=-G,

We spontaneously break the symmetry and substitute

1 0
QS:\/Q<U—1—H(:(;))7 (59)

into eq.. The neutral Higgs field H(x) is the only remnant of the Higgs doublet, after the spon-

taneous breaking has taken place. On substitution of ¢, the Lagrangian becomes

€

\/i(éLeR‘i‘éReL)h- (60)

L =———=v(érer + éger)

V2

We now choose G, so that

Gev
Me = , 61
e \/i ( )
and hence generate the required electron mass,
L =—mcee — e zeh. (62)

v

Note however that, since G, is arbitrary, the actual mass of the electron in not predicted.

The quark masses are generated in the same way. The only novel feature is that to generate a

12



1 STANDARD MODEL

mass for the upper member of a quark doublet, we must construct a new Higgs doublet from ¢

_ 40 .
e = iTa0)" = ( j ) e \/g ( “+f(x) ) : (63)

Due to the special properties of SU(2), ¢, transforms identically to ¢. It can therefore be used to

construct a gauge invariant contribution to the Lagrangian

az—Gd(u d)L(ZZ>dR—G"(“ d>L<jo)uR+h'c" (64)

= —mgdd — myuu — %th — %ﬂuh.

Here, we have just considered the ( u d ), quark doublet. However, weak interactions operate on
(uw d ), (c s )p,.. doublets, where the primed states (mass eigenstates) are linear combinations

of the flavor eigenstates. The quark Lagrangian is therefore of the form

40

c=-Gf(u d )L<ZZ >de—ij(m d, )L<_¢¢

with 4,5 = 1,..., N, where N is the number of quarks doublets. We can rewrite the quark Lagrangian

> ujR + h.c., (65)
in diagonal form
o h A h
L= —mbdidi <1 + U) - mzﬂluz <1 + U> . (66)

1.2.5 The Final Lagrangian

To summarize the standard (Glashow-Weinberg-Salam) model, we gather together all the ingredients

of the Lagrangian. The complete Lagrangian is given by Figure [1|[7].

13



1 STANDARD MODEL

W * Z, y kinetic
energies and
self-interactions

£=—iW,.-Ww 1B B

— 1 Y
+Ly“(r'¢9‘l - gET-W - 8’78 )L

A A kinetic energies

and their
interactions with

+Ey“(i¢?“ - g‘zB )R
W=*Zy

27k

2
- V(¢)

W % Z, v, and Higgs
masses and
couplings

+

. 1 Y
(13“ - gi'r-w“ —-g EB")‘#

{ lepton and quark

a a lepton and quark
=(G,L$R + G,L¢.R + hermitian conjugate). { masses and
coupling to Higgs

Figure 1: The complete Lagrangian of the SM.

L denotes a left-handed fermion (lepton or quark) doublet, and R denotes a right-handed fermion

singlet.
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2 LEPTON FLAVOR VIOLATION (LFV)

2 Lepton Flavor Violation (LFV)

Lepton mixing implies that the generational lepton numbers are not conserved. The most easy ob-
servables would be processes in which the initial and final states do not contain any neutrino. No such
process has been observed so far.

Neutrino oscillations provide a clear evidence for lepton flavor violation (LFV) in the neutral sector,
pointing out to physics beyond the Standard Model. However, no evidence of lepton flavor violating
processes in the charged sector has been found despite the great experimental effort on searching for
that violation [10].

LFV is absent in the SM with massless neutrinos. A minimal extension that includes right handed
neutrinos allowing for small neutrino Dirac masses might allow LFV reactions such as u — ey (though
at an unobservable level). In the SM, particle masses are proportional to the strengths of the inter-
actions between the particles and the Higgs bosons. Thus, the Dirac mass term like for example v,
must be multiplied by some very small coupling strength such that his mass is at least 50,000 times
smaller than the mass of the electron. But the electron and the v, are part of the same weak doublet,
and there seems to be no reason why they should have such enormously different interaction strengths
with the Higgs boson [11].

We briefly review some processes which are expected, and discuss what sort of rates to expect for
them.

2.1 Radiative decays

The muon might decay into the electron with the emission of a photon
w—e+. (67)

It cannot happen at the tree level. Figure [2] shows how the process might occur at the one-loop

level, this diagram is one of three possible diagrams that contributes to the process.

Ty

Figure 2: One-loop diagram for the process u — e + 7.

Experimentally, only an upper bound is known for the branching ratio [6] of the process from eq.

15



2 LEPTON FLAVOR VIOLATION (LFV)

(67)
B(p—e+7) <4.2x1071. (68)

For any acceptable value of neutrino masses, this branching ratio is well below 10740,
Processes like 7 — p+ v and 7 — e 4+ v are also expected to occur because of neutrino mixing

[12-14]. They are also expected to be very suppressed for exactly the same reason.

2.1.1 Purely leptonic decays

We can also contemplate decay processes involving charged leptons and antileptons only
po —e e et (69)

and its charge conjugate, as well as similar decays of the 7 lepton where the final state can contain
both muons and electrons. This process can occur at the one-loop level. One possible diagram is
obtained by attaching an outgoing e™e™ pair to the photon line of Figure [2l whereby the photon line

itself becomes an internal virtual line. There are other possibilities shown in Figure [3]

e (p2) VB et (—ps)
W- w+
w (p) 2 e (p1)

Figure 3: One-loop box diagram for the process u — 3e.

The upper limit on the branching ratio for this process is given by |[6]

B(u — 3e) < 1.0 x 10712, (70)

2.1.2 pu — e conversion in nuclei yN — eN

Other experiments look for flavour transitions of charged leptons either in decays, like 1 — e7, or in
bound states of a nucleus and a captured muon, usually referred to as g — e conversion. Considerable
theoretical and experimental effort has been dedicated to p — e conversion |15]. This process will lead
the limits on these transitions in the near future.

Muon-to-electron conversion is the spontaneous decay of a muon to an electron without the emis-
sion of neutrinos, within the Coulomb potential of an atomic nucleus: it is therefore only possible for
negative muons.

Since no neutrinos are produced, muon-to-electron conversion is not a weak sM interaction: thus

an observation of the process can only come from new physics.
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2 LEPTON FLAVOR VIOLATION (LFV)

The constraint of unchanged nucleus means that all the energy of the muon goes into the kinetic
energy of the electron and the recoil of the parent nucleus, hence the signature of such a process is
the presence of a monochromatic electron at an energy which is essentially the muon mass, corrected

for the binding energy and nuclear recoil
E.~m, - B, - E,, (71)

where B, ~ Z?a?m,,/2 is the muon binding energy and E, ~ mi /2mp the nuclear recoil energy.
There are many excellent articles motivating the search, such as Calibbi and Signorelli [16], de Gouvéa
and Vogel |17], or Marciano et al. |18§].

The Mu2e experiment will search for the charged-lepton flavor violating (CLFV) neutrino-less
conversion of a negative muon into an electron in the field of a nucleus. The goal of the experiment
is to improve the previous upper limit by four orders of magnitude and reach a SES (single event
sensitivity) of 3 x 10717 on the conversion rate, a 90% CL of 8 x 10717, and a 50 discovery reach at
2 x 1076, We can see that this bound is more restrictive than the eqs. and . The experiment
will begin operations in 2022 [19].
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3 Littlest Higgs Model with T-parity

3.1 The Model

The Littlest Higgs with T-parity (LHT) is a non-linear o model based on the coset space SU(5)/SO(5),
where SU(5) is the global symmetry, so guarantees 14 Nambu-Goldstone bosons. The global symmetry
is broken by the vev of a 5 X 5 symmetric tensor. It is convenient to choose a basis in which the
symmetric tensor is proportional to

0
So= |0 (72)
I

oS = O
oS O H

where I represents a unit 2 x 2 matrix. Here ¥y = (X) is the VEV of gauge field X. It transforms as
¥ — USUT for U € SU(5).

The original SU(5) generators are shown in the Appendix [A] but we are going to use a different
representation of the Lie algebra of SU(5). We introduce the matrix A |20]

1 1 ]
st3 0 0 5-5 0
R I
A= 0 0 1 0 o |, (73)
1 j 1 i
2=z 0 0 3+5 0
1 ] 1 ]
0 3-3 0 0 35+3

where A satisfies A2 = ¥ and AT = A. We transform the usual matrix representantion of SU(5) via

the unitary transformation

1, i 1 1 1, i
3+ts O, 0 5—3 0' 5= 5 0' 0 5+535 0
0 d+i 0 0 4 0 -0 0 b+
Ao = AN AT = 0 0 1 0 0 [ 0 0 1 0 0 ,
1 _ i 1 1 1 _ i
s=3 0 0 3+3 0 sty 0 0 3-3 0
0 1-i 0 0 g+ 0 J+io 0 o)
(74)
with A, the generators of SU(5).
With the new representation of SU(5), the unbroken SO(5) generators satisfy
Ta20 + Eofg =0, (75)
while the broken generators obey
X0 — SoX! =0. (76)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions
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3 LITTLEST HIGGS MODEL WITH T-PARITY

II = 7%X?, and can be parameterized by the non-linear sigma model field
Y(x) = M/ 5T/ f = 2/ 3 (77)

where f is the effective NP scale. Thus the matrix of NGB may be written as

n h
XTas v ¢
_ h 7 h
=1 % ¥ (78)
T R T | 1
¢ vz X tas

Here x = x%0®/2 with o the three Pauli matrices, 7 is a real singlet, and they are the Goldstone

bosons which are eaten to become the longitudinal modes of the partners of the SM gauge fields,

Bt —iott 2L
h = 10 is the SM Higgs doublet and finally ¢ = ot _o0LdP [21] is a complex
vz Tz

SU(2)r, triplet.
As y is given by x®0®/2, it has 3 degrees of freedom, 1 has only 1 degree of freedom, h has 4 ones
and finally ¢ has 6 d.o.f. So together they add up to the desired 14 Goldstone bosons (in Section

all the Goldstone bosons are shown explicitly in IT matrix).

3.2 Gauge and Scalar Sector

Now we gauge a subgroup of the global symmetry, and we do this in such a way that each gauge
coupling by itself preserves enough of the global symmetry to ensure that the Higgs doublet remains
an exact NGB. The gauge group is taken to be Gy x Go = [SU(2) x U(1)]?, subgroup of the SU(5)
global symmetry.

SU(5) SN SO(5)
U U
SU@)x UL L SU@, xU1)y 2 Ul)pw

Figure 4: The global SU(5) contains two copies of local [SU(2) x U(1)]? that are diagonally broken
to one copy SU(2) x U(1) contained in SO(5).

As we can see in Figure 4] [20], f is the energy scale where the symmetry breaking [SU(2) x U(1)]? —
SU(2)w x U(1)y occurs. The global symmetry breaking scale, f, is constrained on the order of a
TeV.

The generators of the first G; = SU(2) x U(1) are embedded into SU(5) as

a/2 0
Q% = g / s Y]_ — dlag(?), 3, _2, _27 _2)/10) (79)
0  Osxs
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3 LITTLEST HIGGS MODEL WITH T-PARITY

while the generators of the second SU(2) x U(1) are given by

03x3 0 :
Q4 = ( OX A > , Ys = diag(2,2,2, -3, —-3)/10. (80)

The linear combination Qf + ) satisfies eq., and generates the unbroken symmetry that we
identify as SU(2)w of the SM. Now, the linear combination Y; 4 Y5 satisfies eq. too, and generates
the unbroken symmetry that we identify as U(1)y. The orthogonal combinations are a subset of the
broken generator, i.e., {Q¢ — Q%,Y; — Y2} C {X,}. The vacuum breaks the [SU(2) x U(1)]> gauge
symmetry down to the diagonal subgroup, giving one set of [SU(2) x U(1)] gauge bosons masses of
order of f, while the other set members are left massless at the scale f, and are identified as the
[SU(2)r x U(1)y] gauge fields of the SM.

T-parity is a natural symmetry of most little Higgs models (those that are product group models)
where SM particles are even under this symmetry (T-even), while the new particles at the TeV scale
are odd (T-odd). T-parity explicitly forbids any tree-level contributions from the heavy gauge bosons
to the observables involving only SM particles as external states, as a result, the corrections to EWPO
are generated exclusively at loop level. This implies that the constraints are generically weaker than
in the Little Higgs models without this symmetry since the most serious constraints resulted from the
tree-level corrections to EWPO throught to the exchange of heavy gauge bosons. In other words, when
we introduced T-parity, we eliminate the tree-level electroweak precision constraints that the Littlest
Higgs model has: because the external states in all experimentally tested processes are T-even, there
is no T-odd state that can contribute to such processes at tree-level.

Using eqs. and , a natural action of T-parity on the gauge fields is defined as

G1 <> Go, (81)

its action on the gauge fields G; exchanges the two gauge groups SU(2); x U(1);. Then, T invariance

requires that the gauge couplings associated to both factors are equal, leading to the Gauge Lagrangian

2
1 17 1AMV 1 v
Lo=) [2Tr (Wju,,W]H ) - ZB]-WBf } , (82)
j=1

where

Win = WeQS, Wi = 8,W; — 8, Wy — ig [Wm, ij} . Bju =0,Bj, — 0,B;,.  (33)

As mentioned earlier, the combination {Qf + Q%,Y1 + Y2} generates the SM gauge group. The
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3 LITTLEST HIGGS MODEL WITH T-PARITY

SM gauge bosons are the T-even combinations multiplying the unbroken gauge generators,

1 W3+ W3 By + By
W =~ (W) +Wy) Ti (WP +W5)], W= L2 B=—7=, 84
) [( 1 2) + ( 1 2 )] \/i \/E ( )
whereas the heavy gauge bosons are the T-odd combinations
1 W3 — W3 By — By
Wk = [(Wi =W Fi (W2 -Ww3)], wh=—"1_"2 By =——=. 85
i =5 (Wi = Wy) Fi (Wi —Wy)] H 3 H 7 (85)

The eqs. and are computed in Appendix .

Recalling that the heavy particles are T-odd and all SM particles are T-even, we have to impose
an extra transformation rule for the scalar sector. In order to ensure that the SM Higgs doublet is
T-even and the remaining Goldstone fields are T-odd, the T action on the scalar fields is defined as

follows,
n510=-000,  Q=dag(-1,-1,1,—1,-1), (86)

where 2 is an element of the center of the gauge group which commutes with 3

oy — M _h_ _
T — h _2n h”
II = 7 L 7 , (87)

_af h* DY A
¢ vz X T o
if we compared the eq. with the eq., we can see that the SM Higgs doublet keeps its parity.

Then,
» L3 = n05nton,. (88)

We know that ¥ = ¢2/f3 and since x and 7 are the Goldstone bosons which are eaten to become

the longitudinal modes of the partners of the SM gauge fields, we have

0o L
Il V2 hT
PR
o' 5 0
expanding ¥ until order of f%
2i 2
5 — <]I+fZH—f2H2+...>EO
N ¢ 5 0 , hTh V2¢h*  hth+ 2¢¢! . (90)
:zo+?z by 0 b -5 V2hte  2hTh 2hT gt +0<f3>.
0 % of 20T + hTh*  /2¢th hth*

21
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Now, including the EWSB, the vacuum expectation values of h and ¢ are [20]

1 0 0 0
<h>0=\/§<vh>a <¢>o:(00), (o)

where vy, = 246 GeV is the EWSB scale and h is the physical Higgs field. Thus, considering the

eq., the eq. transforms as

00 0 0
o0 w0
=5 0w 00 v | (92)
00 0 0 0
0 0 vy, 0 0

Then, including the EWSB effects, the vev of the ¥ field has the form [22]

( 0 0 0 0 0 0 0 0 1 0
5 0 0 v, 0 0 0 -2 (1-cy) %sv 0 (1+cy)
/I/ . .
> =exp T 0 vp, 0 0 wp =10 ﬁsv & 0 ﬁsv . (93)
0 0 0 0 O 1 0 0 0 0
\ 0 0 vy, 0 O 0 3(1+c) %sv 0 —3(1-cy)
where
2 2
Sy, = Sin <\/;Uh> , Cyy, = COS <\/;Uh> . (94)

The scalar Lagrangian of the gauged theory is obtained from the non-linear o model field 3 in the
Littlest Higgs

2
£s = Lrri(D,5) (0", (95)
where )
DS =09,5—i» [gW (QiZ+2Q4T) + gjB; (V;2 + Y]] (96)

j=1
In the above equation, the @); and Y; are the gauged generators, Wi and Bj are the SU(2); and
U(1); gauge fields, respectively, and g; and g} are the corresponding coupling constants. We know
that the T-parity exchanges the two gauge groups as we can see from eq., i.e., under this T-parity
the gauge bosons and the [SU(2) x U(1)]; generators change as

Wla — W2a, Bi + Bs, Qlll A4 Qg, Y & Y. (97)
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Because the Lagrangian Lg is T-even, from the eqs. and (97) it is easy to see that

g1 =0 =V2qw, d,=d5=V2d, (98)

where gy is the SU(2)w coupling constant and ¢’ is the U(1)y coupling constant.
Then, the eq. looks as

2
DuE = 0,8 —iv2Y  [gwW (Q5S +3Q4T) +¢'B; (V;£ +3Y])]. (99)
j=1

Under T-parity, the relevant term for calculating the mass of gauge bosons is

2

NG 22: [gWWf (Q;ff: n EQ;LT) +¢'B; (in + 37 )} . (100)
j=1

We have, to lowest order, 3= >, in the gauge sector before EWSB; there is a linear combination

of gauge bosons that acquire a mass of order f, from eq.(100)
we ) V21 -1 wg |’
" 2 (101)
B\ 1 (1 1 B
By ) v2\1 <1 By |’

From eq.(101)) we see the SM light gauge bosons are W} and By,. At this stage, they are massless
and T-even, while the heavy gauge bosons are W, and By, they are T-odd and massive. After high

energy symmetry breaking, their masses are |23

Mwe =gwf,  Mp, = —F%=. (102)

In Appendix [C| we computed the masses of gauge bosons.
Now, considering the EWSB effects of order (vy/ f )2, the ¥ field according to eq. is

0 0 0o 1 0
0 —€2/2 —ie 0 1-¢€%/2

=10 i€ 1—€¢2 0 i€ , (103)
1 0 0 0 0
0 1—-€2/2 e 0 —€2/2

with € = Y.
f
When we include the EWSB effects, the LHT model must reproduce the SM gauge bosons, i.e.,
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W=, Z and A bosons have to appear. Moreover, the masses of the heavy sector will have small
corrections of order %5

We are separating explicitly the third components, W13 and I/V23 , which is convenient, because in
the Scalar Lagrangian of order %;’ this component has a different transformation. Now, we split W7
and Wg, a=1,2.
The Scalar Lagrangian, with EWSB effects is explicitly

fQQIQ/V 64 2 a a\2
£S = 4 —Ewl W2 +e€ Wl W2 (Wl —W2)

Faiy [ 3 32 lysoos 20131173 3 1173)\2
TR (Wi —w3) 4”1”2 +EWTWE + (W — W5)
(104)

f2 12 5 9
|: < Bl + 32 2B]_BQ> +e€ Ble + = 5 (Bl BQ) :|

fzgwg [
1

€ 2
(- 008 W3 (B = o)+ 3 (BavE o+ BaD) ) - @ (B + )

Also we are considering the crossed terms of W; and Bj in the Scalar Lagrangian. We can see
in the Scalar Lagrangian, the terms W]?’ are separated explicitly of the terms Wi, W2, W} and W2,
moreover Wf’ is the only component of W}* and W3 that mixes with the B; bosons.

Finally, the Scalar Lagrangian for the light and heavy gauge bosons sector is

2 2,2 2
o [ (-

2| 4 612
RO
+% :f25g/2 <1 Z;’;) (Ap)?
+% :Zlcgfgfgw (1 6”;2)] 72,

The light gauge sector includes the Wf, Zr,, and Ap bosons, that we identify as the SM gauge

bosons with masses

1/2 2
gwUp Uy, gwp Uy,
M. = 1— =~ 1-—
Wi T g ( 6f2> 2 ( 12f2)’
gwUh_ (4 _ U}QL 1/2 _ MWLi (106)
6f2

"~ 2cosfy
My, =0,
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and the mass of the heavy bosons are
2\ 1/2 2
_ _ _ Y ~ _ Y

_fd 502 1/2 _Id 502
MAH—A“M Nﬁ(l_Sf?)'

In Appendix [C| we show the process to obtain their masses.

(107)

3.3 Fermion Sector

The LHT must implemented in the fermion sector, too. We would like to introduce SM fermions that
transform linearly under the gauge symmetries to avoid large contributions to four fermion operators
that would require the scale f to be large. As we have seen before, T-parity exchanges SU(2); and
SU(2)2, so one must introduce two doublets 11, and 15, which transform linearly under SU(2); and
SU(2)2 respectively, i.e., for each SM SU(2)r, doublet, a doublet under SU(2); and one under SU(2)2
are introduced. The T-even combination is associated with the SM SU(2), doublet while the T-odd
combination is given a mass of order the breaking scale f.

For each lepton/quark doublet, embedding is possible in incomplete representations ¥, Wy of the
global SU(5) symmetry. An additional set of fermions forming a T-odd SO(5) multiplet ¥, which
is right-handed and transforms non-linearly under the full SU(5), is introduced to give mass to the

extra fermions; the field content can be expressed as follows |22,24]

P 0 15103
U= 0 |, Vo=1| 0 [, Vp=| xr |- (108)
0 o YR

with y g is a lepton singlet and 1); for each SM left-handed lepton doublet is [25]

Yicry = —i0% Ly = —io® [ TER )= 1,2, (109)
bir(R)
and for left-handed quarks doublet [24]
Vicr) = _iG2Qi(R) — g2 [ YL : i=1,2. (110)
d;1(R)

Also 1;% has the form as the egs. 1D and 1) with the difference that there are right-handed
and heavy fermions: £gr, uggr, and dgr. The extra doublet g, is assumed to be heavy enough to
agree with EWPD, is T-odd as desired, and the gauge singlet x g completes the SO(5) representation.
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These fields transform under SU(5) as follows
\111 — V*\Ill, \I/Q — V\IIQ, \I/R — U\I/R, (111)

where U = exp (iu® (I, V') T%) [26] belongs to the unbroken SO(5) and is a non-linear representation
of the SU(5), the function u® depends on the Goldstone fields IT and the SU(5) rotation V in a
non-linear way.

Under the action of T-parity on the multiplets, one has
Uy & QEO‘I’Q, Up — Q\IIR. (112)

We desire that ¥ interacted with other fields which obey linear transformations laws, so we intro-
duce a field ¢ = exp (iIl/f). In terms of ¢ the field ¥ can be expressed as ¥ = ¢2%, and from the

linear transformation of X, we have that, by action of T-parity,
T T
¢ 5 act, (113)
with invariance under global transformation,
=255 VEVT, £ VUl = Uz VTS, (114)

Recalling that the T-even combination of i; and o are the SM electroweak lepton and quark
doublets, while T-odd combination is given a Dirac mass of order O(f) with the ¥¢ through the

following non-linear Yukawa Lagrangian

Ly = —nf (Vo + Tr20¢T) Wi — mpW g — MU W + hc.

=—kf (@25 + T1205) Vg — kotp§ 0% — MXTxR + hoc. (115)

where we included two incomplete SO(5) multiplets, defined as [23,27,/51]

o 0
= 0 |, W= x|, withv, 5 QU and ¥ 5 QuX, (116)
0 0
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Since we want to calculate first the mass of order O(f) we can approach & = exp (iIl/f) ~ I, then

Ly, = —kf (@25 + ‘31205) Vg
~—kf (‘I’Q + @120) Up

0 0 1
= —Kf (00@2)+(1/3100) 0 10 VR
100 (117)
o5
=—xf(0 0 da+in )| xn
()
=—Krf (@51 + ?/_12) 7;%,
we defined the T-odd combination as
1
Y = 7 (Y1 +12), (118)
and the T-even combination given by
bsar = —= (1 — v2) (119)
Then,
Ly, = ﬁlﬂfTZJH”lZJR + IQQ\I’g\IJR + h.c. (120)

As we can see from the eq. , the Yukawa Lagrangian gives a Dirac mass M_ = /21 f to the
T-odd combination g, together with 1&%, and a mass kg to the Dirac pair from ®r. The T-even
combination 1gs remains massless and is identified with the SM lepton or quark doublet.

If now we consider EWSM effects of order (v,/f)? the field £ is

1 0 0 0 0
2 2
0 1-gh 30 —gp
Ex~| 0 %’g 1 i% 0 %ﬁ , (121)
0 0 0 1 0
2 .
0 —gp o 0 1—gh
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- - A\T
and considering as ¥}, = —i02¢¢ and §¢ = ( ag  dg ) , then
—dir, 0 —ds,
U1j, 0 ﬁ%
vy = 0 ; Uy = 0 ; Yr=1| xr | (122)
0 —dar, —df
0 U2y, ug,

thus, introducing the above matrix and these multiplets in the Yukawa Lagrangian we have among
other terms
2

- - v
Ly, = k1fdf (dip + dar) + k1 fuf (dr + Uar) (1 - 8;2> — kifug (1 +agr) +---,  (123)

defining the T-odd combinations as

1 1
ug = 7 (uir + uar), dy = 7 (dir +dar), (124)

the Yukawa Lagrangian is written as

2
Ly, = V2k1 fdud§ + V261 fupus, <1 - ;;2) — V21 fufuy + - - . (125)

After EWSB, a small mass splitting between the T-odd up and down-type quarks is induced, and

their masses are |28|

il )
v VA 8f2)" (126)

Mgy = V21 f.

The Yukawa Lagrangian Ly,, fixes the transformation properties of the heavy fermions including
their gauge couplings, even more, the non-linear couplings of the right-handed heavy fermions are
fixed to be [29] (we change the signs of the second line from eq.(127) and the covariant derivative from
eq. in order to obtain the SM couplings)

Ly, =Wy Dy W1 4 iV D, Uy
= 1 1 \
+ Wy <8u — 56N (Dug) — 3¢ (EoDqufT )> e, (127)

+ UG — Uf,
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3 LITTLEST HIGGS MODEL WITH T-PARITY

with the covariant derivative defined as
Dy = 0y — V2igw (W,Qf + W5,Q3) — V2ig' (Y1 B, + YaBa,) . (128)

In order to assign the proper SM hypercharge y = —1 to the charged right-handed leptons £z, which
are SU(5) singlets and T-even, the corresponding gauge and T-invariant Lagrangian is similar to the
SM one

Ly =ilpy* (0u + ig'yBy) LR (129)

3.4 Top Sector

In order to avoid dangerous contributions to the Higgs mass from one loop quadratic divergences, the
third generation Yukawa sector must be modified. The ¥ and W5 multiplets for the third generation
must be completed to representations of the SU(3); (upper-left corner) and SU(3)2 (lower-right
corner) subgroups of SU(5). These multiplets are (we change the notation Ur; — t}, and Ur; — t’;)
22]

qQ 0
Ql = tlLl ) Q2 = t/LQ ) (130)
0 q2

they obey the same transformation laws under T-parity and the SU(5) symmetry as ¥; and Wy. The
quark doublets are embedded such that
g = —0o* e . (131)
bri

In addition to the SM right-handed top quark field usgr, which is assumed to be T-even, the model
contains two SU(2)-singlet fermions ¢, and t’5, of hypercharge 2/3, which transform under T-parity
as

thy < —ths. (132)

The top Yukawa couplings arise from the Lagrangian of the form

Ly _2\1/§)\1f€ijk€ry {(@1)1 () e By = (Q2%0), (i)ﬂ(i)ky] U3

(133)
+ Ao f (flth,Rl + z/L2’5/1~22) + h.c.,

where 3 = $oQXTQY, is the image of ¥ under T-parity and the indices 4,7 = 1,2,3 and z,y = 4, 5.
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3 LITTLEST HIGGS MODEL WITH T-PARITY

The T-parity eigenstates are

1 1 1
“ =5 (@1 F g2) , e = NG (thy Ft12) the = NG (tr1 F tho) - (134)

Thus, the Lagrangian is

1 - _ -
Le=Mf <2 (1+co) Ty + S”uL+> usg + Ao f (t/LthlRJr + tlL—t}z—) + h.c. (135)

V2

The T-odd states ¢} and t};_ combine to form a Dirac fermion 7", with mass M7y = Ao f.
We can see that the T-odd top sector does not mix with the T-even heavy and the T-even SM top

quark. The mass terms for the T-even states are diagonalized by [22]

tr, = cos Bury — sin Bt , tr = cosaugp — sinaty, (136)

Tr+ = sin Bur + cos Bt Try = sinaugp + cos atp,, (137)

where t is identified with the SM top and T} is its T-even heavy partner.

The masses of the two T-even Dirac fermios to leading order in (vy/f) |22] read

A1 AU, /12
t /)\% +)\% Ty 1 2f ( )

As the Yukawa couplings of the other SM quarks are small, there is no need to introduce additional
heavy partners to cancel their quadratically divergent contribution of the Higgs mass. Then the

Yukawa coupling for the other up-type and down-type fermions is given by

Lup = _2\1/5/\uf€ijkﬁzy [(@1)Z (Z)j;p (E)ky - (@2EO)Z~ (i)yx(i)ky} ug + h.c.,

. (139)
iA\g — _ - -~
Ldown = G feijenys [(\Ilz)x (2)iy (8),. X — (¥1%0), (z)iy(z)jzx} dr + h.c.,
and their masses are |24]
2
Yh
mu:)‘uvh< - 3f2>’

(140)

with i =1,2 and j = 1,2, 3.
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

4 Generic New Physics contributions to LFV processes

As we know, the SM contributions to the LFV processes like ;1 — ey and p — eee are negligible since
they are proportional to the observed neutrino masses |13}|14,30-32]. Nevertheless, the new LHT
contributions shall be considered and they will generally give branching ratios only slightly below
than current upper limits. One expects that the dominant contributions come from the exchange of
the new vector bosons and heavy fermions required to realize the discrete symmetry 7' that allows
the Littlest Higgs Model to remain viable with a typical mass scale accessible to LHC. In this section
we will discuss generic contributions to the LFV processes that will be studied in this Ph. D. Thesis.
The following material was published in the article |33].

Two types of diagrams contribute to u — eee EL which are shown in Figure . In the diagrams of

H e H \\ e

€3 €2

€3 =)
Figure 5: Generic penguin and box diagrams for u — eee.

penguin type the exchanged vector boson can be a v or a Z but not a heavy vector boson because
the coupling is forbidden by T-parity. The amplitude for this process also receives contributions from

box diagrams. The total amplitude for p(p) — e(p1)e(p2)é(ps) can be written |25]
M = M'y—penguin + MZ—penguin + Mbogm (141)
with

2
e o
Moy —penguin = @E(Pl)[QQ’Y” (AL P + AT PR) + myic™ Q,(AY P + AY Pp)lu(p)

(142)
X u(p2)vuv(ps) — (p1 < p2),
62
Mz —penguin = @5(201)[’7“ (FLPr + FrPg)u(p)u(p2) [y, (Z1 Pr + ZPr)|v(p3) (143)

- (pl Al p?)a

"We do not discuss in detail g — ey or Z — pé, which can be seen as building blocks of the y — eeé decays.
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

(144)

o' Pru(p)|[u(p2)op Pro(ps)] — (p1 <> p2)}
+ 2B [u(p1) o™ Pru(p)][a(p2) 0w Pro(ps)] — (p1 <> p2)}.

We have defined new vertex form factors in the penguin amplitudes
APR = F) o/Q%  AYT = (F), £iF})/my, FLp=—Ffp, (145)

and used that Q®> < M % in Eq. 1} Z§ p are the corresponding Z couplings to the electron in the
SM. The dipole form factors F' AZ4 g are dropped from the amplitude because their contributions are

effectively suppressed by a factor mi /MI%VH Then, the total width can be written as [25|

2

T = eee) = - AVR + AP — 2(APAR + AFAT 1 hc)
m 22 1 1
v ab 1480 (e 2 Lot 50 + Lnk 4 5P

1 1
+ 57 Bs1” +B5%) + 6(1Br|* + |BL*) — 5(ByBy™ + By'By" + h.c)
1
- g(AfBlL* + ARBEr  ALBLI* 4 ARBE* 4 h.c)
146)
5 (
- g(AfBIL* + ALBIR* 1 ALBR* + ARBLI* + h.c)

+ 3 {20FL + 1Fral®) + | Fuaf? + |Fre

+ (BFF}, + BEFL, + BYFfp + BEFY, + hee) +2(AVEr, + ARFLp + hee)
+ (AVF}p + ARFY, + hee) — 4(ARF}, + AV, 4+ hee)

—2(ALFY, + ARFr 4+ he) } .

We are going to develop each term of the total amplitude explicitly.
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

4.1 M, _penguin contribution

The total amplitude is given by Eq. (141]
M = M'y—pengm'n + MZ—penguin + Mbmm
so, the total width is

L(p — eee) = |M7—pen9uin‘2 + |MZ—pen9um‘2 + [ Moo |

(147)
+ MV—PEHQUWMTprenguin + M'y—penguinMZOI + MZ—penguinMZm; + h.c.

From the Eq. (142)), writing the second term explicitly

2

e o _
Moy —penguin = @ﬂ(m)[QQ’Y“(AlLPL + AT PR) + myio™ Qu (A5 P + AFPg)u(p) x u(p2)vuv(ps)

— (p1 < p2),
(148)

where @) and R are the vector bosons momenta entering the vertex. They are defined as Q = p — pq,
and R = p — p2. |My_penguin|® has terms whose behaviors are é, %, ﬁ, é, and %. We will
study them in two parts: the first three of them do not have any problems and their computation is
direct, but in the last ones we need to proceed carefully because they are divergent.

Then, we can write |./\/l,y,pmgm-n|2 as follows

1 1 1 1 1
2
| My —penguin|” = A1 (QT R2> + Ao <Q2Rz’ @7 R4> . (149)

1
R2»

Q? = 2(p2 - p3) and R% = 2(p; - p3). Developing A; we obtain

Although A; depends on é and it is possible to remove them if we consider m, = 0. Hence,

Ay = 16e* (JALP + | ARP?) [A@p - p3) (1 - p2) + (- p2) (01 p3) + (0~ 1) (p2 - p3)]

(150)
— 8e'my, (AFAT* + AV AT + AL AT + ATASY) [4(p1 - p2) + (p1 - p3) + (p2 - p3)].-
As is expressed as the sum of three contributions
1 1 1 1 1 1
AQ <622_R27 @7 _R4> = AQl (Q4> +A22 <_R4> + A23 <Q2_R2> . (151)
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As is more difficult than Ay, since if we consider m, = 0, As is divergent, then now we must take
massive electrons. The first term of the Eq. (151)) is

2 4
Aoy =16 “ (JAZ1? + [AFI*) [mZ (2(p - p3)(p1 - p3) — (p - p1)(p2 - p3)) + 2(p - p2)(p1 - p2)]

(152)
— (p-p1)mg +2(p2 - p3) [(p- p2)(p1 - p2) + (p - p3)(p1 - p3)]

here, as Q = p — py is comparable with m, since the photon is massless, e(p1) is considered massless

too and the e(py)e(ps) pair is massive. The same happens to Age, because we just change (p1 <> p2)

24

— (A5 > +|AZ?) [m2 (2(p - p3)(p2 - p3) — (P p2)(p1 - p3)) + 2(p - p1)(p1 - p2)]

—(p 'p2)m€ +2(p1-p3) [(p-p1)(p1-p2) + (- p3) (P2 - p3)] -

(153)

In Ag3 the term ﬁ appears, so it is necessary to consider now e(p;),e(p2) massless and €(p3) massive

2 4
Aoz = 43z (143 1+ 1AST) (=8(p - pa) (b1 - p2)” +8(p - p2) (b1 - p3)(P1 - p2) +8(p - p1) (P2 P3)(P1 - P2)
+mZ [4(p - p1)(p1 - p2) — 4(p - p2)(p1 - p2) — 5(p - p3)(p1 - p2) + (P p2)(P1 - p3) + (- p1)(p2 - p3)]) -

(154)

The photon penguin contribution to the y — 3e decay width is given by

1 d®py d3pa d*ps 4 § :
| in = 21)454) _ 2
y—penguin 2mu / (27T)32E1 / (27‘(’)32E2 / (27T)32E3 ( 7T) (p b1—p2— pd X X= |M penguzn‘

spm

(155)
We have added 1/2 twice explicitly, one comes from the two indistinguishable electrons in the final
state, and the other one because the initial state is a muon, with two possible polarizations.
Before starting, an important tool that will help us for analyzing the photon penguin contribution to

the u — 3e decay width is to solve the next type of integral

dp; [ Ppr [ Pp 50)( o
A= 5mu/ /QEk/QEl —pj —pk—p) x Gpi-pj) ok -p1), iFJFkFL

(156)

where G is a constant and the e factor is extracted from the ’M'y—penguin|2~

For this integral we are assuming that m, = 0 and taking the particular case

pi=p, Dj=D3, Dk=Dpi, PI=D2, (157)
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with
pP=m., pl=p3=p3=0 (158)
Then
Ge* Epr [ dPps d3p3
A — — P — . . 159
soryn | 5o [ S | - m =) < o)), (159)
making ¢ = p — p2 = p1 + ps3, we can write (159)) as
d p2 /\ o
A=G P50 (), (160)
with 5
d°py d3 P3 (4
Lo (q) = 54( - 161
o () / o / 2B, (¢ — 1 — P3)P1oD3A, (161)

Iy, is a rank-2 tensor and can depend only on the 4-vector ¢. So the most general form for Iy, can

be written as |9
I (q) = Ad°gro + Bardo- (162)

Multiplying by ¢** the Eqs. (161)) and (162)) and matching them

a3 3
(4A + B)q? /2511 255 (¢ —p1 —p3)(p1 - p3). (163)

Now contracting the two equations with ¢*¢?, and as P = p% =0

dpy [ dPps3
(A+ B)q §A( — - p3)2. 164
+ /2E1/2E3 (¢ —p1 —p3)(p1 - p3) (164)

Egs. (163) and (164)) have Lorentz invariant quantities on both sides, so we can choose any frame for

evaluating these integrals. The convenient frame is COM, where

p—p2=0=p +p3, (165)

since m, = 0,
Ey = E3 = |p1| = |p3| = F, (166)
(p1-p3)com = k* —pi - ps = k> + |pi|> = k* + k* = 2k°. (167)

35



4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

Thus, (163) can be written

Ppr [ dp
(4A+ B)acom /21/2E35(4)(q p1 —p3)(p1 - p3)com
1 3
PP*pr [ dps B > _ 2\o12
— [ [ SRt — 206 (i — )2k
d3
= [Pt - 20) (168)
1
T k2dkdQs(L — k)
mdy
4 )

in the COM frame ¢ = (go, 0), then aton = 48, in (168)

4A+B:%. (169)
For (I63)
d*p1 d3p3
(4+ Blabor = [ G2 [ G2 a1~ m)or - plEon
1
:2/#Mm&?—@ (170)
_ T4
8 ?
thus,
A+B:%, (171)

solving the system of equations (169)) and (171)) we obtain A = J; and B = {5, substituting them in
(162)

™
—(¢* 90 + 20245).- (172)

The Eq. (160) takes the shape

p2
G/ 23 (4% 9r0 + 20700)

d3
24 g% (p-p2)+2(p-q)(p2-9), q=p—p2 (173)
= 26 [ RGP 12 ) 4207~ pep)p 2~ 1),
Y °F p p2 P -Dp2)(p-Pp2 pT—=p-p2){P-pP2—P
in the muon rest system
D= (muaﬁ) and P2 = (EZ)ﬁQ)a (174)
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thus,
_ 2 2,2
b-p2= m,uE27 P2 = 07 p = mlp (175)

so (|173]) results

d3
A= ”G/ b2 ((m, — 2my, Ey)my, By + 2(m?. — myFo)m, Fo)

2F,
3
= G/ P2 (3m,, — 4E2)m2 By (176)
2F,
4m

my/2

The limits have been chosen as follows: the lower limit of the electron energy e(p2) can certainly be
zero if the e(py)e(ps) pair carries the entire energy. The upper limit is obtained when the e(p;)e(ps3)
pair is emitted in the same direction, opposite to the direction of the electron e(p2). In this case
p2 = p1 + ps, it implies that Es = E; + F3 and we are considering that m. = 0. Furthermore,
m,, = E1 + Eo + E3 by conservation of energy, then substituting it in the above relation we obtain
Ey =my/2.

Integrating the Eq. , we obtain

2,5
Sl e (177)
3072w
Another type of integral which will be of aid is
d*py, d?’Pl L
Q= i — Dk — i k#1 178
5mu/ /2Ek/2El —pj—pe—p) xGpj-pr), i#£j#k#L (178)

where G is a constant. We solve the case p; = p, pj = p1, pr = p2, and p; = p3 and p1, p2, p3 satisfy
that p? = p2 = pg = 0. Then

G€4 d3p1 /d3p2 d D3
2= s (p—p1—pa— - p2). 179
64(27)°my, / P P2 Iz (= p1=p2=p3)(p1-p2) (179)

Integrating on p3

By [dBPpy 1
0= / P2 G(m,, — p] — B2l — [y + Bel)(pr - pe). (180)
27T 577% 1l J o 1pa| [Py + Pl (= [P = |

Defining u as follows

u= \/\]3’1]24— |D2|% + 2|p1||p2|cosb, (181)
and
u -

d3py = 27?@\102’6”]92\61% (182)
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substituting last two equations in ({180))

G€4 d3p1
d|fs|dud(m,, — 11| — [a] — u)(p1 - pa)- 183
64(2m)4m,, 151’2/ |P2|dud(my — [Py| — [P2| — u)(p1 - p2) (183)

0 =
We have that p = (my,0) amd p = p1 + p2 + p3, then

mi .
P1-p2=—" my|p3. (184)

The limits for |ps| are calculated from Eq. (181), since

uy = ||p1] £ [Pl (185)
therefore
m . L.o.m Lo.m
L =g <Ippl < 2F and [p] < R (186)
2 2 2
As d®py = 47|py1|?d|py|, and evaluating the integral on u the Eq. (183 is transformed in
G My /2 my/2 1
Q= / dlﬁll/ d|p2| <—m2 + my|p1| +m |ﬁ2|) : (187)
16(2m)*my, Jo My /2~ |71 | 2 0 .
finally we obtain
Q= an?‘G (188)
- 768T

So, from the Eqs. (177) and (188]) we can get the contribution to the width of the photon due to the
term Aq (QQ, V2

2.5
a‘m
Tay = 55 [(1AV] + ATP) = 2 (AT + AP A" + A7 AT + ATAY7)] (189)
Now we are going to analyze the contribution of the As ( Q21R2, Ql4, R4> term. In this case, we have
that
p = (my,0), p1 = (|p1|,p1), p2= (|p2|,p2), p1 = (E3,P3), (190)
then
1 d3ps 4 1 1 1
Iy, = 2m)46W (p — p1 — p2 — p3)Aa [ =s) —, —
= | 3zrp1| Gn 32|p2| @rpap, O7 O e phe (e i e

1 / d3ps3
- 8my ) (2r 32yp1| 271' 32|p2\ (27)32F;3

(2m)*0W (p — p1 — p2 — p3) (A2 + Aoz + Agg) .
(191)
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We integrate first the Ag; term. In this case e(p;) is massless and e(p2)ée(p3) are massive.

etm AL + AR a3 d3 a3
Lay = u(| A1) / |p1fl/ pz/ P35 (p — p1 — pa — p3) x G, (192)
where
1 mj, 2 - me 2 |2
Go1 = m 7(E2 + Eg) — QmuEzEg + m#|p1| —7 — m“(Eg + Eg) +4FE5F3 | + me‘pﬂ
(193)
Integrating on p3
e*m AL 2 —|— AR1Y) a3 d3py 1 .
Dy, = SO [On [ O L, il - B2 - B x G (190
with p§ = (1 + p2)?, then
By = /[Py + ol + m2 = V[P + |2 + 2] [[pa|cosd + m2 = u (195)
also we have that ~
Bl g5, (196)
|92
hence,
e'myu(|AS PP + |AF1?) [ d’pe
T, = —2 2 /d*dé — |p1| — B2 — Ga1|By=u- 197
Az 127y AT D1 |dud( P1] — B2 — u) X Ga1|By=u (197)
The integration on u allows us to define the limits for |p|. These limits are given by
my(my, — 2E») < |p1| < my(my, — 2F5) (198)
my, — By + \/E5 —m2) " 2(my, — By — \/E? —m2)
Considering d3py = 4w Es|ps|dE> and the limits for Ey as (E2)min = me and (E2)mae = my/2
4 L2 R|2\ pmu/2 |71+
em(!A2!+A2|)/“ / .
[py = —F dE d G lumm, — 5| By - 199
Ao 4(2m)s me ’ [P1]— 71l > 21’“—""% |pi|—Ea2 (199)

The integral (199) is solved by using Mathematica 10.0 [34].
I'a,, is completely identical to I'y,, because we just change (p; <+ p2) the physical argument is the

same.
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Now, we work with the last term

1 d®p3 4
Tpyy = 2mV45@ (p — py — Do — A
Aas 8my, / 27 32|p1| / 27 32|p2\ (2w 32E3( ™) (p=p1=p2 = ps) x Az

200
AP LIAE) [ b [ [ .
= = D(p—p1—p2—p3) x k
16(2m)° il J P2l
where
1
* = - — [—8E5 (A% — 2Am, Fs + m*E?
(= 7 —27) | o wBs + my )
+ 8|p2| (AB — Bm, E3 4+ my,|pa|(muEs — A)) + +8|p1| (AB — BmyEs +my|pi|(muEs3 — A))
+mZ(|p1|(4A — 4m,Es + B) — mu|pi|* + |[P2| (—4A — +4m, Es + B) — m|ps|* — 5AE; + 5m,E3)]
(201)
2_ 2
and A = +m and B = 2me
Integrating on p3
et(|A51° + [AF%) /d3p1 d®py 1 L
r = —0 — —F 202
Aoz — 16 27T |p1 ’p2| Es ( |p1| ’p2| 3) X *a ( )
with |p5|* = [p1 + pa?, defining as
Bz = /|y + pal? +m2 = V|12 + [p2f? + 2[p1[[F2|cost + m? = u, (203)
Py = 222 g1 (204)
P4
the Eq. (202) transforms to
e(|A51° + A [ ;e | .
Dpgy = 16(27‘(’)4 |ﬁ1|2 /d|p2|dU(5(mu - ’p1| - |p2‘ - u) X *’E3=u' (205)
From the Eq. 1} we can see that ug = /[Py + p1|? + m2, therefore
m2 —m2 — 2m,|p; m2 —m2 — 2m,|p;
1 e M‘pl‘ < ’ﬁ2| < I e _’,U‘|p1| (206)
2my, 2(mu —2[p1|)

2 9
substituting d®p; = 4x|p1|%d|p1| and the limits for |py| are (|p1])min = 0 and (|P1])maz = mgm:ne in
the Eq. (205)

AL + |AR)?) [ o |P2]+
Tayy = 2 2 / d|p; d|p: 151 =[5 - 207
Aas 4(2m)4 0 ol ol 12} X Kz~ 5117 (207)
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The last integral was evaluated by Mathematica 10.0 [34].
Therefore, the total value of the contribution of I'y, is given by Egs. (199) and (207)

F/\2 = F/\21 + FA22 + F/\237 (208)

omitting terms ~ O(m.) , we obtain

2

a’m? 16 m 26
ao = St (A5 4+ 1af?) (5 m () - ). (20)
e

Finally the total contribution of |My_penguin| is given by Eqgs. (189) and (209))

oa?m?
Ty —penguin = 37“ [[AF]2 + |AR)2 — 2 (AF AR + AZAT 4 hec)
y 16 26 (210)
AL 2 AR 2 | my e
+(ARP + |AFP) (3w (2e) - 2
In |25] the authors report the following result
o*m?
Ty penguin = —5—- [JAF2 + |AR]? — 2 (AP AR + AL AT 4 hee)
i (211)

16 m 22
H1afR 4 1a8P) (3 m (2e) - 2]

we realize that our results differ by 4/3 since we obtained 26/3 and in their result appears 22/3, it is
important to say that it is not really significant because the dominant term is the logarithm and we

have the same coefficient in that term [P

4.2 My _penguin contribution

Now we analyze the Z-penguin contribution to the y — 3e decay width. From Eq. (143) the Z-penguin

contribution is written as

e2

Mz —penguin = @ﬂ(pl)['v“ (FL P + FrPR)lu(p)u(p2) u(ZL PL + Z5Pr)]v(ps)

— (p1 <> p2),

*We have nevertheless verified, using FORM |35|, the correct coefficient of %
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in this case we shall consider m, = 0 because m, < m,,. Hence,

4

M4
+16(|F*| 251 + [ FrIPIZE1*) (0 - p1) (P2 - p3)

+16(|FL (251> + | FrI?|ZE P) (- p2) (p1 - 3) ]

IMz—penguinl® = [64(1FL* 1 ZL” + [FrI*IZE1*) (p - p3) (p1 - p2)

(212)

S0, I' z_penguin 1s given by

1 d3p d3p d3p
FZ—penguin: /( ! /( 2 /( & (277)45(4)(]7 —P1—P2— p3 Z|MZ pengmn|

2m“ 27T)32E1 27T)32E2 27‘(’)32E3 spzn
(213)
Substituting the Eq. (212)) in (213) the first term is
d3p1 [ dpo d3p3
AN =G — Py — . . 214
1 /2E1/2E2 2E3 P p1—Dp2 —p3) X (p-p3)(p1 - p2), (214)
where G is .
8e
G=————(|FL1Z5? + |Fr|*| Z%|%). 215
g P20 + 1 FPIZ5 ) (215)

We recall that we have resolved this kind of integral before in Eq. (177)), in this case G is given by

Eq. (215)), therefore

O42
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where we have defined the following expressions

1= (IFLL! + |Frr|?), (216)

FrZ FLZ FrZs FrZs,
Frp, = —==, Fp , Frp=-—3% Fgrr= : (217)
M3 M3 M3 M3
The second term in the Eq. (213) is
et dp1 [ dpa [ dPps
Ay = (2r)4s™ _
? 8(2m)>m, My | 2E; / 2E, / 2E3 ) (b=p1=p2=ps) (218)

< 16(|FL*| ZR1* + [FrI*| ZE ) (p - 1) (p2 - p3),

using the Eq. (177) again, we obtain

2 5

[0
Ay =

199+ E(|FLrl? + |FRe|?). (219)
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

The last one in Eq. (213) is

4 3 3
e dpl/dp2/dp3 J5@)
As = (2m)s -
8T 8@n)pm,ME | 2B, | 2B, | 2B ™) 0P = p1=p2 = ps) (220)
X 16(|FL*| Z&* + | FrI*| 271 (p - p2) (1 - P3),
thus,
A o, 2y |F 221
3= To7r E(|FLrl® + |Frel?). (221)

We sum the Egs. (216)), (219) and (221) to obtain the total contribution of Z-penguin

2,5
T2 penguin = 3 | < {20 Ful? + | Frnl?) + [ Funl? + |Fro ) (222)
—penguin 397 3 LL RR LR RL .

4.3 M,,, contribution

This contribution is given by Eq. (144)

+ ¢ By {[u(p1)y" Pru(p)][u(p2) v, Pro(ps)] — (p1 ¢ p2)}
+ €* By{[u(p1)7* Pru(p)] [@(p2)v. PLo(ps)] — (p1 < p2)}
]
)

PRU(p)][H(m)PRv(m)] —(p1 < p2)}
p1)o"” Pru(p)|[u(p2)ow Pro(ps)] — (p1 < p2)}
+ 2 Bi{[u(p1) o™ Pru(p)|[u(p2) 0w Pro(ps)] — (p1 < p2)}.

With aid of FeynCalc 9.2.0 [36] from the equation above we obtain

(Mpos|* = 4€? [A(|BL|* + |Bf|?) + (|B%|? + | BS|?) + 144(|Bf | + | Bf|?)
—12(ByB{* + B{B{* + By By* + Bi'B§™)| (p - p3)(p1 - p2) (223)
+16€%(|BS > + | B [(p - p2) (01 - p3) + (0 p1) (p2 - p3)] -

We can see that in the Eq. (223]) the only contributing integrals are shown in the Eq. (156)), therefore
the result is given by Eq. (177). According to the above, the contribution of My, is

a*m?

1 1 1
Dhor =~ | 2(IBL P + |BPP) + S (1BY 1 +|BSP) + o (1Bs > + | BS'?)
321 |6 3 24 (224)

1
+6(IBE + |B?) = 5(By BY* + B{'B{" + h.c.)| .
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES

' 1 . .
4.4 My penguinMz_penguin, contribution

We recall the total width has interference terms like
MV—PengmnMTZ—penguin + h.c. (225)

Since m, < My, in the interference /\/lv_pengm-n./\/lT we will consider m, = 0.

Z —penguin
Then
Mz penguinM!_ e uin = 646" (FLLAL + FrrAf™) (p - ps)(p1 - p2)
+ 16" (FLrAT* + FroAT) [(p- p2)(p1 - p3) + (p - 1) (p2 - p3)]

— 32e"m’ (FrrAS* + FLLAF) (p1 - p2)
— 8e'm (FrrAY* + FLrAY*) [(p2 - ps) + (p1 - p3)].-

(226)

The result of this interference is obtained through the Eqs. (177) and (188)) that we have computed

previously, just redefining the constants adequately. Hence

oz2m5 1

32; 3 (2(FLL AT + FrrAT) + (FLrAl* + Fro ATY)

—A(FrrAY" + FLL AT*) — 2(FrrAY* + FLL AF))] .

F _ —
Z= (227)

As MZ—penguinMT

y—penguin

tion to the u — 3e decay width of this interference is given by

is the hermitian conjugate of Mw—pengumMTZ—pen guin’ the total contribu-

2,5
a”m 1 *
F('ny)finterference = 327TM B} (Q(AlLFl*/L + A{%FER + hC) + (AfFLR + A{%FI;L + hC)

3 (228)
—4(AFF}, + AYFhp + hee) — 2(AFFy + ASFrp + hee))].

4.5 Mv_pengum./\/lzox contribution

Now, we are going to analyze the interference between y-penguin and box diagrams, which is given

by

Mb(mMI/—penguin = 3264("4{/31[/* + A{EB{%*)(p ’ p3)(p1 : pQ)
+16€* (AT BE* + AT BI*) (- p2)(p1 - p3) + (p - p1)(p2 - p3)]
— 16¢"m’ (Ay Bf* + AFB{™)(p1 - p2)

— 8e*m2 (AL B + AFBE) [(p2 - p3) + (01 - p3)].

(229)
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4 GENERIC NEW PHYSICS CONTRIBUTIONS TO LFV PROCESSES
Taking the results of the Egs. (177)) and ((188)), the contribution of the equation above is

oa?md 1

2

(230)
2 (AEB 4 AfBE 1+ ALBE ¢ AgBQL*)] .

Also we need to add the hermitian conjugate of MboxMTy—penguin’ therefore, the total contribution is

a?m? 1
F(’y—box)—interference = 327]_# |:3 (AfBlL* + A{{Bf%* + A%BQL* + A{%Bé%* + hC)

(231)
2
2 (BB + AFBE ¢ ARBE 4+ ARBE 4 h.c.)] |

4.6 M Z_,,engum/\/lzox contribution
Finally, we are going to compute the last contribution to the y — 3e decay width which is given by

Mz penguinM}y, =€* {32FL L BE*(p - p3)(p1 - p2) + 32Frr BE*(p - p3)(p1 - p2)
+16FLrBy* [(p - p2)(p1 - p3) + (0~ p1) (P2 - p3)]

(232)
H16FRLBY" [(p - p2)(p1 - p3) + (p - p1)(p2 - p3)]} -
With the results of the Egs. (177)) and (188)), we have that
o*ml R . "
L'z poet = Wﬂu (Bl “Frp + By *Frpr + B; *Frr+ B, *FRL)
o?md 1, , (233)
Som [3 (Bi"Fr+ B Frp + By"Frr + B§*FRL)] '

The total contribution of the interference between Z-penguin and box diagrams needs the addition of

the hermitian conjugate term, MbomMgfpenguin’ hence

F(Z—boz)—interference =

a2mz [1

397 3(BlLFl*/L+B{%FI§R+BQLFER+B§FEL+h.c.):| .

(234)
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5 EXTRACTING FORM FACTORS FROM THE y — E~v AMPLITUDE IN THE LHT

5 Extracting Form Factors from the © — ey Amplitude in the LHT

Most general structure of the  — ey amplitude for on-shell fermions f;; can be written in terms of
six form factors |25

iTH(p1,p2) = ie [y* (FY Py + Fy Pr) + (iFy; + Fyys5)0" Qu + (iFy + Fps)Q*] (235)

with Pr 1 = %(1 +75) and Q = p2 — p1 the vector boson momentum entering the vertex.

The development is done in the 't Hooft-Feynman (§ = 1) gauge. We are going to consider in the
1 — ey decay that the photon is on-shell and then only the dipole form factors FX/[ g contribute.
Furthermore, the electron mass is neglected (m. ~ 0). We show below the topologies of the diagrams
that contribute to the y — ey decay .

< 4]
e

VIII IX X

IV

Figure 6: Topologies of the diagrams that contribute to the processes v, Z — £¢'.

We can write the two-body decays ¢ — ¢'~, Z — £¢', and h — £¢ in terms of three-point form
factors with the generic form ,

F3 = ZVJ VieF3(myy,, )
(236)

ZVT m““ WTW Vf;’f VeeGs(mae, ..),

H
7]7
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5 EXTRACTING FORM FACTORS FROM THE y — E~v AMPLITUDE IN THE LHT

where V;y are the matrix elements of the 3 x 3 unitary mixing matrix parametrizing the misalignment
between the SM left-handed charged leptons £ with the heavy mirror ones £z. The Wj; are the matrix
elements of the 3 x 3 unitary mixing matrix parametrizing the misalignment between the mirror leptons
and their partners ¢ in the SO(5) (right-handed) multiplets.

We write down the Feynman rules that we need for computing each diagram in LHT model [25]:

[VuFF| = iey*(gLPL + grPr),
[SFF] = (cLPL+cRPR)
[ViS(p1)S(p2)] = ieG(p1 — p2)*, (237)
[SV.V,] = zng“”
]

Vu(p1) Vi (p2)Vp(p3)] = ied [g" (p2 — p1)” + 9”7 (p3 — p2)!" + 9" (p1 — p3)"] -

[ V,FF | 9L \ 9R |
'Yf}{f}{ _Qféz] _Qféij
ZH@J” - ( + 10cW f2) VIZJJZ 0
. - 2
ZHVHVIJ‘I 23‘/;CW 6“ 28‘/38‘/\/ (1 B 41}?) 6ij
Alyt | (b = #5%) Vil 0
Whv 0 75 Vit 0

Table 4: Fermion couplings to gauge bosons.

’ SFF H cr, ‘ CR
Opi_pi i _1 cw i My v
—. . [2 2 .. . m.; ..
] i _tm |1 _v (5 Sw. ) _ 2 Va2
Wt || Tooy iy {1 IE ng; TTHG, )} Ve | ~Toew 3., Vi
+551 g7 i Vi 1/ i My yrig
w Tyl fsw MWH H V2sw Mwy Viie

Table 5: Fermion couplings to Goldstone boson.

| Svv ] K \
wEWEy +iMwpy,,
AWEZ | Fibw, 22 (1- %)

Table 6: Heavy and SM gauge bosons couplings to Goldstone boson.
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5 EXTRACTING FORM FACTORS FROM THE y — E~v AMPLITUDE IN THE LHT

| vss | G \
ywEwT Fl
ZwrwT :I:% (1 - ﬁ)

Table 7: Goldstone boson couplings to SM gauge boson.

L vvv [T ]
WWIJ{FW}} -1
ZWEW o

Table 8: Triple heavy and SM gauge bosons couplings.

5.1 Diagrams exchanging 7

The diagrams that contribute to the u — ey decay exchanging Zy are given by the topologies (I) and
(IIT). We have to recall that the field w® is eaten by the heavy gauge boson Zp.

We can write the amplitude of the next diagram which is shown in the Figure [7] as

N

e

Figure 8: Diagram of mo-

Figure 7: Diagram ex-
menta for Zp exchange.

changing Zg (Topology I).

it = SW NP ey in
327
7

/ d*k VO PL(p, — k+ Mo)y"(p, — k¥ + M)y’ Prgsa (239)
(2m)* (k2 — M2 +i€)((p1 — k)2 — M2 +i€)((p2 — k)2 — M2 + ie)’

[0

where ¢ = pa —p1, M1 = Mz, My = myi, and ay = 2

Now, we analyse the self-energy diagrams.
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e

Figure 10: Diagram of mo-
menta for self-energy dia-
gram.

Figure 9: Self-energy dia-
gram (Topology VII).

The amplitude of the diagram shown in the Figure [J] is

iTH = aw Z iex i / d*k ’WﬁyyﬂPL(pl —k+ M2)7aPL9a,,3 (239)
32 & HETHE [ (2m)t (pF + i) (K2 — M +i€) ((p1 — k)? — M3 + ie)
' ' Figure 12: Diagram of mo-
Figure L1: Self-energy dia- menta for self-energy dia-
gram (Topology VIII). gram.
The amplitude corresponding to the Figure [11]is
T = W N ey / d'k Py — K Mo Py ) ey (240)
32m < HETHE [ (27)4 (k2 — M2 + i€)(p2 — m2 +i€)((p2 — k)2 — M3 + ie)

Considering the contribution of each one of the diagrams above we obtain that the form factor F,|z,
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5 EXTRACTING FORM FACTORS FROM THE y — E~v AMPLITUDE IN THE LHT

is given by [25] (loop function are given the in the appendices)

) « oxt i 3
I: Fllz, =—iF}lz, = m%mu S ViV [Co +3C1+ 5Cn |- (241)
7

We are going to compute next the contributions of the diagrams exchanging an w” boson.

n

e

Figure 13: Diagram with an
w” boson exchange (Topol-

ogy III).

Figure 14: Diagram of mo-
menta for w® exchange.

The amplitud of the diagram corresponding to the Figure omitting the ?—z—suppressed terms in

the Feynman rules, is given by

W . (242
327 e 2m)4 (k2 — M2 +ie)((p1 — k)2 — M2 +i€)((p2 — k)2 — M2 + i€) (242)

4 _ B — _
P Zvie*vf}zyi/ (d ko Pr(py— k+ Ma)y"(p, — F + Ma)(MaPL — my,Pr)
2
My
ME:
Now, we will develop the self-energy diagrams for w°.

where y; =
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e

Figure 15: Self-energy dia- Figure 16: Diagram of mo-
gram exchanging a w° bo- menta for self-energy dia-
son (Topology IX). gram exchanging an w®.

The amplitude of the diagram shown in the Figure [15]is

(243)

Z Vle*vw Z/ d'k 7#¢1PR<J¢1 — f + M) (MaPr, — m,, PR) .
1% | om0 +ie) (k2 — M2 + ie)((p1 — k)% — M3 + ic)

Figure 18: Diagram of mo-

menta for self-energy dia-

gram exchanging an w?.

Figure 17: Self-energy dia-
gram (Topology X).

The amplitude corresponding to the Figure[17|is

iTH = O‘iw vies i, l/ (d4k Pr(p, — k + Ma)(MaPr, — m, Pr)(p, + my )" o)

2m)t (k2 — M} + ie)(p3 — mj, + i€)((p2 — k)* — M3 +i€)’

Adding the contributions of the 3 diagrams above, the w® contributions to the form factors yields [25]
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. . 3
s Flz, = —iFglz, = muz Vi Vilgys [ 2011} : (245)

The total contribution for the form factor is the sum of the egs. (241) and (245) [25]

aw mu

Total : F],\Z‘ZH = _ZF’EY“ZH = EMQ
W

Vi VitiFr (yi), (246)

where

3 x 3
FZ(x) = M12 [C() +3C1 + 5011 — 5 (Cl — 2011>]

247
1+2m+5x2—1‘3+ 32 | (247)
= —= nzx
3 8(1—=x)3 4(1 — x)* ’

The integrals were developed with aid of Package-X [38].
During the process of calculating the integrals the muon mass must be considered m, # 0, otherwise
the self-energy diagrams will be undetermined. Finally, we just take the terms which are proportional

to the muon mass m,,.

5.2 Diagrams exchanging Ay

This contribution can be obtained from diagrams with Zp, replacing Zy by Ag. It is convenient to

introduce the mass ratio

Yy = ay;, a= =X (248)
Then,

2
y oy _ow my iSW ze*
Falaw = =iFglan = 7 M3 252, Z ieEz (4)

o m# ze*
_ oW E F
167 M7, z(vi),

(249)

in agreement with [25].

5.3 Diagrams exchanging Wy

The diagrams that contribute to the y — ey decay width are given by the Topologies II, IV, V and
VI. We are going to show the development of the diagram given by the topology 1V.

The Feynman rules that we need to write the amplitudes are given in the Apendix B.2 in [25].
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P1
rd
r1 — }")//
q //
AN, Y
N
RN
po — k>
pr2

Figure 20: Diagram of mo-

Figure 19: Diagram corre-
menta in Topology IV.

sponding to Topology IV.

Taking My = My, and M = myi and introducing the mass ratio

2
my

Yi = =, (250)
Mg,
with mp; = my ~m,; , the amplitude associated with the Figure @ reads
iTH — AW S Vi v / d'k Pr(F + My)(MyPr, — my, Pr)(p1 + pa — 2k)"
167 2 HETHES | OmT (1 = M +ie) (1 — )2 — M + i) (p2 — k)2 — M + ie)
(251)

The self-energy type diagrams are given by the Figures 21] and 23]

u

e

Figure 21: Diagram corre- Figure 22: Diagram of mo-
sponding to Topology IX. menta in Topology IX.
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u

Figure 23: Diagram corre- Figure 24: Diagram of mo-
sponding to Topology X. menta in Topology X.

The amplitudes are given respectively by

T — oW Z Ze* " / d*k 'YMHﬁPR(H/l — F+ M) (Mo Pr, — m,uPR) (252)
He (2m)* (p} + ie)(k? — M} + ie)((p1 — k)* — M3 + i)’
d4k MyP; — m,P —k+ M>y)P + my, )y
i = = OW S ey yz/ i 2( 2P = 12%)(17@2 f+ M) R(Hz L;)v )
167 < (2m)* (k2 — M7 +ie)(py — m2 +ie)((p2 — k)? — My + ie)
From the eqs. (251)), (252) and (253)) we obtain
v: F}| = —iF7| ="y Z Co+3C + °C (254)
: M I My EMw,, 16 u Hgyz 0 15t -
This result is in agreement with [25].
For the other contributions we have that 25|
I FYlwy, = —iFblw, = 16 muZV“*V”‘ [3C1 —C1], (255)
Vi Fllwy =—iFilw, =0, (256)
. a .
VI: Flw, = ~iFglw, = 15 mu Y Vi Vify C1. (257)
i
i aw m w1 0
Total :  Fylwy, = —iFglw, = EMig::H Z Vit ViteFw (yi), (258)
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where

Fy(z) = M} |2C, - 3C — = (CQ +3C + gcnﬂ

259
_§_3x—15x2—6x3+ 323 . (259)
6 12(1 — z)3 2(1 — 2)4 ‘

SM contributions mediated by W bosons are negligible due to the tiny neutrino masses.

Something that is interesting about the above results is they are similar to the SM contributions with
massive neutrinos, if we consider W instead of Wy, v/* instead of 1/}[ and V]i ung instead of Vi, and
since the neutrino mass in tiny in SM, x; = m?,z /MSV < 1, the eq. reduces to

Fiv (2) — g ~2yoe), (260)

so that we recover SM result bounded by neutrino oscillation experiments:

3a ; i _
Blp = ev)sm = 5| > VEunsVirvstil® S 107 (261)
[

5.4 Contributions from partner leptons (¢ = (¢, €)

The contributions from partner leptons ¢ = (¢, £¢) only involve topologies III, IV, IX and X in the
Figure [6] because they do not couple to one T-odd gauge boson and a SM charged lepton.

The scalar triplet ® contributes to the process u — ey, the corresponding diagrams can be obtained
replacing Wff by ®* and Zy, Ay by ®° and ®F.

We are going to develop the next diagram

Figure 26: Diagram of mo-

Figure 25: Diagram ex-
menta for ¢ exchange.

changing a ® boson.

The Feynman rules what we need are
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(SFF] o]
’ qr*agﬁf\\vvg £V \ 0 \

kff

Table 9: Partner lepton Scalar-Fermion-Fermion coupling [29].

[S)SE)V, [ G ]
[ 7oy [ 1]

Table 10: Partner lepton Scalar-Scalar-Vector coupling [37].

Then, the amplitude corresponding to the Figure [25|is

d*k Pr(k + M) Pr(p1 + p2 — 2k)

TH — VT mez WTW mekV /
53 oty [

hence,

. _ P My, ot W oaw m
VA FJP\Z|DC = —ZF;L,C Zkv Hi W W Hk V 16 M2 |:Cl + 011:| ,
7]

according with the Appendix A for the Three-Point Functions, we have that

e — 3= —1 4 5z + 222 z?
FM(Q?) = [01 + 2011] =

20—2?7 @ 20—a)

Inz,

. This result is in agreement with [37].

Similarly for the contribution to £¢ we obtain [37]

m2._:
IIT: F]P\Z|ZC:_ZFg|ZC:ZVT mez WTW mZHkVEOCW m‘quc < V]>’

£ UMy MMy, Fl6r M2 M\ M2
4,4,k
with ) ( )
je —4 45z 4 5z z(l -2z
Fi(z) = - In .
M@ = Ao 1—zp 7
W,A/Z,0,6

Observing the form factors above F,

masses in the loop.

2m)* (k2 — M3 +ie)[(p1 — k)? — M7 + ie][(p2 — k)? —

M2 +ie]’
(262)

(263)

(264)

(265)

(266)

, they are finite and depend just on the ratio of the particle

We know that m,,,, = mye,, (1 —v?/8f%) ~ my,,, M&VH = M%H = 5MiH(1 + 02/ fA) )t} ~ 5M3H/t%V

where we have neglected terms suppressed by v?/f? factors, while the masses of 7; and /; are the same,

therefore in the form factors their own v?/f? corrections can be neglected. Since we are considering

7; and ¢; have the same mass, it means that the different components of the same S U(2)r multiplet
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are degenerate when substituted in FJ\V;’A/ 2L For the case of the electroweak triplet ®, we consider

the same argument.
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6 Extracting Form Factors from the y — eee Amplitude in the LHT

This process can be studied like a £ — ¢/¢'¢' decay which involves photon and Z penguin diagrams as
well as box contributions.

The amplitude can be written as follows [37]
T (pe, por) = ie{[iF)(Q7) + FR(Q*)vs) o' Qu + FJ(Q*)Y"PL}, (267)

with @, = (pr — pe)y- In our case ¢ — p and ¢ — e therefore the corresponding right-handed
vector form factor vanishes (m. =~ 0). Due the constraints of LHT only photon and Z penguin
diagrams contribute, since Ay and Zgy do not couple to two ordinary fermions, as required by T-

parity conservation.

6.1 The y—penguin contributions

The form factors F]'\Y/[ and Fg have the same expressions (]247|, |249L |259L |264|, |266[) as for an on-shell

photon, since terms of order @Q? can be neglected [25]. We are going to show the contributions to F7

which are proportional to Q2 ~ mi

as expected.

The form factor F}|z, contribution is given by the following diagrams

€ “ e H

e e e

Figure 27: Penguin diagram exchanging Figure 28: Penguin diagram exchanging
Z gauge boson. w? Goldstone boson.

and we also need to consider their self-energy diagrams, which contribute to FX in this process.

The amplitude of the diagrams above can be written as
M~ Ly X Legy, (268)

where £, = ieti(p3)y v (p4) is independent of the loop integration whereas the relevant part for the

latter is given by the effective Zppe transition as follows
Lye = w(p2)T (2, pr)u(p1)- (269)
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Therefore, ny‘ (p2,p1), for diagram [27is given by eq. 1}

Z ze* / d'k fYaPL(ZéQ - %—i_ M2)’Y”(p1 - k + M2)75PLgﬁa
(2m)* (k2 — M +i€e)((p1 — k)2 — M2 +i€)((p2 — k)2 — M3 + i€)’

and self-energy diagrams are given by egs. and (| -
Now, 1“7 (p2, p1) corresponding to diagram [28)is given by eq. (242))

jexy FifL d'k PR(? - % + M2)’Y“(]r’5 - k + M2)(M2PL - m,uPR)
ZV Vire z/ 2m)T (k2 — M122—|— (1 — k)2 1_ M2 +i€)((py — k)2 — M2 +ie)’

and self-energy diagrams are determined by eqs. (243]) and (244)).
With aid of Package-X [38] and the Projector command, we add the contributions of the two topologies

above, therefore, the form factor F} |z, is

o *
Fllzy = WZ Ze GZ (vi)

aw Q i ip ~(1) (270)
= EM*I%VH ZZ: Vire VG (i),
with [25] [37]
x 1 1 T 1 1 9
Gz(yi) = <1 + 5) —; T 3B+ Coo— SMiCo) - 5Co+C1+ §(2 +z)Cn | Q7
(271)
Q? Q!
(@)
=3p07 @05
W, 1 z(18—1lz—2*) 4—16z+ 92
Gz @) =36+ —_i=ap A1 — )t B (272)

where M1 = MZH and MQ = mgiH.
Similarly, the form factor of Ay is obtained just replacing Zy by Ay and y; by y, = 56%,[/% / s%,v,
hence [25] [37]

aW Q 1 26* 1,
Fg’AH:EW Z i G (1), (273)

Now, the contributions of diagrams with Wy are given by the topologies II, IV, V, and VI, yielding

OéW
Fllwy = Z Vi Vit Gw (yi)

(274)

aw Q2 iexy st (1)
= EMigvH ; Vire VitlGw (i),
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with [25] [37]
GW(JJ):—+B1+6000+JU< B1—|—COO—M100> (201+ CH)Q
275)
Q% Q* (
W, 5 z(124+z-T2%)  2*(12 10z + 2?)
Gy (x) = 18+ 24(1 — 2)? + 1201 = 2)! Inz. (276)

Due to the unitarity of the mixing matrix, the z-independent terms in Gy (x) drop out (including the
ultraviolet divergence). After considering the explicit expressions of B and C' functions shown in the
Appendices |[Ef and [, we obtain the eq.. The SM prediction is obtained by replacing Wy by W,
Vi by v and Vigg by Vi, e-

The new contributions due to F}/| .z are given by [37]

aw Q? Mg gy, my 1 1
Fllori = Gy 22 2 Vhape Wi Wiy e Vie (6P @) + 6P @), (277)
ijk
with
e o 2
Gye(x) = —By — 2C = EQ G (x)
278
G(l)(m) _ 2 —Tx+ 1122 + x3 In o ( )
RN T2(1 — )3 1201 —z)4 7
and
20 — 4 2922 2 — 213
Gg)(w) _ 20— d3w 29 + 3¢ + 20 Inz. (279)

36(1 —x)3 6(1 —x)*

6.2 The Z—penguin contributions

7 penguins diagrams involve a Z boson propagator which for small momentum transfer processes is
proportional to M, 2. The dipole form factors F ]\%[, g+ Which are chirality flipping and hence proportional
to the muon mass, can be neglected as compared to FLZ . This is in contrast with the v—penguin, for
which QFX/I’E(N QFJ\%[,E) ~Q*/ME, < mi/MI%VH ~ FJ, to be compared with F'Z ~ 1. This justifies
neglecting Ffj 5 in the Z-penguin [25].

Thus, at leading order the Z¢¢' vertex reduces to

T (pe, per) = ieF{ (Q*)V Py (280)
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Taking My = My, , M2 = mp; and y; = m%ﬁ/M‘%VH, and using the unitarity of Vi, we obtain 25| [37]

FEZFLZ|WH+F5‘AH+F5’ZH+Fg’PC+F5‘Zcﬂ (281>

where,
A aw P, 2 1 — — 92— o —
7 |WH = m ;V;Ieg ;Ilz [—QCW <—2 + B1 +6CH — yi M Co) — YiCyy (Bl + 2000)

1— 1
+2(1 + yz) ( Bl + COO yZM1200>

2\ 2 2 = [1+4(Coo — Coo + M7 (Co — 2C))]

72 16
; M? vty
1 ip 2 1 i )
s (o) 2]
2
. 4% jiexyrip U Yi 1o W(0),
—mZVf% HengL (vi),

Ff|zy = sze*vw — 2¢jy) —1+1§1+000—1y'M2 Co
Lizn 87TCWSW 4 4 2 97 Zn
2

yi) o’ cw 2sw
14+ 8) -2 (24 (2, 22 =0
: {< o) (5 (S5 =0

1 1— 1
F#l4, = § -2 —~ 4+ =B+ Cop— —y.M?% _C
Llay = 87TCWSW CW) ( 4 + 271 + oo 2yz A0
1 sW v, v? (5, sSw o, cw

2 _ m%q e m%c,
Ff|yc+Fg|zc - insz My, WTW mZHk Vk:KQi [HEC ( ]) + (1 o 2612/‘/)H£ (3)] =0,

~ —

Smswew < Y1 My M} M2 M2
with
W (0) 6—x 24 3z
H = 1
r (@) 1—954_(1—36)2 n

HY (2) = 5 F (2) 26 FF (2), (262)

HY () = Ff ().

The eqs. and 1' have been renamed as FEC and Fgc, respectively. The only term that con-
tributes to three body lepton decays is HEV(O), which comes from the diagrams with Wy and it is

proportional to v2/f2. The other terms are negligible as long as Q? < v?.

6.3 Box diagrams

In the u — eee process there are eight different kinds of box diagrams, which are shown in Figure 29
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Figure 29: Box diagrams corresponding to p — ee€ process in the LHT model .

As we can see, these diagrams are classified in two types: A and B. Type A diagrams are crossed
diagrams with the two outgoing leptons. In the limit of zero external momenta (all internal masses
are much larger than the muon mass) all of them have the same form, being proportional to a scalar

integral over the internal momentum ¢. The amplitude due to box diagrams is given by

TRV

Mior = *BL(0)u(p1)y" Pru(pe)u(ps)yu Pro(p2). (283)

Thus, all box form factors except BlL , which appears in the eqs. (144 and (283), vanish. We use the
Fierz identity
(L Pp(2) (3lvuPrl4) = — (B Pr|2)(vuPL|4)- (284)

The whole BE(0) form factor is written as follows
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In |25] we can find the generic expressions for the contributions from diagrams of types A and B

o . 1
A By = 2@2 [(Qlfl 92’392619262 + 4ClLefCZLIE 1 LQ) DO(MlvMvameHJ)
i (286)

iex iy je jex iex U je jex . . 2 2, 2 2
(91:1 Cra9r1€r2 + CL19L2CJngL2 ) mHZmH]DO(Ml’M2amHivaj)] )

L o 1 2
B pE =2 Y |- (alsahalds + jekicheiels ) Do AR i iy
ij (287)
+ (gl eicligly + cis ol ol el ) muima; Do(MZ, M3, m, m¥,) |
We just need to replace the vertex coefficients given by the Feynman rules from Table [ to [I0]
We are going to show the development of the diagrams with Wy, where we just write the numerator

and omit the ie factor:

Al:
It Z Viiy Vitd Virel® o Po(—g + my )y Polp)(p2ly” Pu(—g + m,; )7 P|ps)gapgss
2883
= D1 Y Po(—g + myy 3 Prlp) (ol P (4 + m,y )P o) 259
= ..4¢% (p1|" Pr|p) (p2| 7 Prps).
then, the result of the diagram A1l with Wy is given by
4 Z Vi Vi Vi (1 PLIp) (p2 |7 PLlps).- (289)
A2:
1 .
~ah g, " ZVW*V’“ Vel o117 Pu(=g + my ) PLp) (2] Pr(—g -+ m; )7 Prlps) g
= L1V Pr(=d + my ) Pr|p) (2| Pr(=4 + 1m0, )7 PLIP3)
= wmyg my (P Prlp) (P2l Pr |ps),
(290)
thus,
1 ze* zu je i
~ah 0, e g, 2 VA Vil VAP " PLip) el P ) (201)
Sw

]
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A3:
1 *
4 A A2 M2 m, i m ] Z 26 E‘ <p1|PR( g+mV}{)’7MPL’p><p2|7aPL(_¢+mV%)PL|p3>ga,u
= o (p1|Pr(=g + m, )V Pr|p) (polnuPr(=g¢ +m,; ) Prlps)
= ey myg (p1|y* Prlp) (2], Prlps),
(292)
hence,
. M2 my, m, Z Vi ViV (o1 y" PLip) (p2 ). Prips).- (293)
A4:
1 2 ze*
TN D VAR VAV P g LB o\ P + ) P
ij (294)
a* (V" Prlp) (o2l Prlps),
therefore,
2
q ek
T > VI VIIVE P (1 PLp) (palu Prlps). (295)
sw My, "
Adding all the contributions above and using the functions of the Appendix [F} we obtain
a 1 1 1 ~
B (Wy,Wg) = o ash %, 4f2 ZXU Kl + 4yiyj> do(yiy5) — 2yiy;do(Yi, y5) | » (296)

with x;; = V’e*VW ng|2 and we have used that MI%V/Mz =v2/4f2.
Now, we are going to show the development of the diagrams with Zy. Here, we have omitted the

02/ f? contribution from the Feynman rules.

Al:
71§~ HPp(— . Y’ P PPL(— )P
1 Xij (P1[v" Pr(=¢ + myi ) Prlp)(p2|v” PL(—¢ + my )Y PLIP3)gangsy
16s H H
= ..4¢*(p1 V" Pr|p) (p2|7uPrIps)
then,
2
q
T >~ Xij (P11 Pr|p) (palu Prlps). (298)
w ij

64



6 EXTRACTING FORM FACTORS FROM THE p — EEE AMPLITUDE IN THE LHT

A2:
1
“iosh, 0z, ey Z Xij (PrV* PL(=g + my, ) PLlp)(p2| Pr(=d + m )7 PLlps) goy.
ij
= g myg (prY* PLip) (21 Prlps),
thus,
1
~ ez Mo, D Xig (1" PLp) (b2l Prlps)-
W Zg ij
A3:
1
Ti6st, Mg, ZXU (p1|Pr(—d + mgi )7" Pr|p)(p2|y* Pr(—g +m ) PL|P3) gop
ij
= wmg myg (prY* PLip) (21 Prlps),
hence,
1
~ ez M, D Xig (11" PLp) (palyuPrlps)-
W Zg ij
A4:
1658 M2 Mg My ZXMpll R(—d +mq, ) Pr|p)(p2| Pr(—g +m,; ) Pr|ps)
H 1]
= . (p1 7" PLIp) (p2|7u PrLIp3),
therefore,
2
q
16s% M2 m?gng, Z Xij (P11 Pr|p) (2|7 PLIps3)-
w VA ij
B1:
71 i v B o
1657 ZXij<P1W Pr(d +mg, )7 PLip)(p2|y" Pr(—g +m )7 PLIP3)gapgs
ij
= ... — 4¢*(p1 v Pr|p) (p2|, PrIp3)
then,
2
q
ot 2 Xig (1Y PLIp) (b2 Prlps).
w ij
B2:
1
1654, M2 M, Mgs Z Xij (P1|Pr(d + myi )y Prlp)(p2| Pr(—4 + mgaf‘l)VaPL\p@gau

H 1%

= m@{m% <p1"yMPL’p><p2|’7,uPL|p3>7
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thus,
1
Tosf, 022, "0, 2 i P P} 2P ps) (308)
ij
B3:
1
me Mys ZXU pllv“PL(ﬁerW )PLIp) (p2|v* Pr(—¢ + m, )PL|p3>ga,u
K (309)
mgs mys (p1y* Prip) (P2l Prlps),
hence,
1
Wmﬁ zﬂ > i (P11 Prp) (p2 |7 Prps). (310)
ij
B4:
1
ngl m? > Xij (p1|Pr(d + mgs ) Pr|p) (p2| Pr(—d +my; ) Prlps)
H = H
Y (311)
= ... — (P V" Prlp) (p2|vuPrlps),
therefore,

q2

ngz ea ZXzJ (p1v" PLIp) (D270 PLIP3)- (312)

ij
From the contributions above we obtain [25] [37]
a 1 1 0?2 ~
BH(Zi, Zi) = - 17 O Xis | ~3do(wir i) 313
1( H) H) o 168%1/ M]%V 4f2 ZXz] O(yzayj) ) ( )
ij
where My, = Mgz,

It is important to note that in |25| the numerators for B2 and B3 are misspelled.

The others form factors are given by [25] |37]

a 1 1 3 ~
Bi(Ap, A i | ——do (Yl 14
(A, A) = 553 f22xj[ 50ado<yz,yj>], (314)
a 1 1 3 M3
B (AHazH) 27‘1’ 1684 M2 4f2 ZXZ] [_5MI%V dO(ymny )]7 (315)
H
B @)= & A 316
l( ’ )_%168WM2 ZXU 0 M27M2 ( )

where y, = m%Hi /Mf‘H and a = MI%VH /Mle. The new contributions from the partner leptons 7¢ and

(¢ are equal (neglecting small mass differences within the scalar triplet ® components) and included
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in BF(®,®).
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7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

7 Neutrino masses in the LHT and new contributions to LFV pro-

cesses

The LHT is a non-linear ¢ model based on the coset space SU(5)/SO(5), with the SU(5) global
symmetry broken by the vacuum expectation value (VEV) giving rise to 14 NG bosons [25]

—w?/2 —n/v/20 —wt /2 —int V2 —i Tt —i%
—w /2 w/2 —n/v/20 W ) %
II= —im /2 (v + h — i) /2 \/%77 —int /\/2 (v +h+in%) /2 |,
1P~ i% it~ /vV2  —w®/2 —n/v20 —w™/V2
.- i PO+ P v —im0
z% <I>\EI> hH; —wt /2 w?/2 —n/v/20

(317)
which decomposes into the SM Higgs doublet (—in™/v/2, (v +h+i7°)/2)T, a complex SU(2), triplet
®, and the longitudinal modes of the heavy gauge fields w*, w® and 7. They act on the fundamental
representation of the unbroken subgroup multiplying by & = e¢/f. The action of T—parity is defined
to make T—odd all but the SM Higgs doublet.

In the fermion sector each SM lepton doublet I;, = (vr, ¢ L)T is doubled introducing two incomplete

quintuplets (o2 is the second Pauli matrix)

*’L'O'2l1L 0
U, = 0 . Wy = 0 . (318)
0 —iUQZQL

The action of T-parity on the LH leptons is then defined to be

\Ifl — QEO\IIQ, (319)
with
Q = diag(—-1,-1,1,—-1,-1), So=| o 1 0o |. (320)
1owo 0 O

This discrete symmetry is implemented in the fermion sector duplicating the SM doublet I;, = (11, —
la1)/V/2, corresponding to the T-even combination (U1 4+ Q¥X¢W¥s)/v/2 , that remains light, with an
extra heavy mirror doublet I, = (vyL EHL)T = (I1z + la1) /+/2 obtained from the T-odd orthogonal
combination (¥; — Q¥gWs)/v/2. This extra doublet per family will get its mass combining with a RH
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doublet IR (eigenvector of T) in an SO(5) multiplet Vg,
v,
Up = Xz . U5 QUp, (321)

—io?lyR

the superscript (¢) denotes a partner lepton field, not to be confused with charge conjugation. The

non-linear Yukawa coupling generating this large mass ~ f reads [39)]
Ly, = —rf (@g + @12@) U — koUW — MUY g + hee,, (322)

where € = ¢/ the first term preserves the global symmetry for &€ — VEUT. While the second one
is its T-transformed once the T-transformed of U is fixed to be QWU g.
Approaching & = exp (iII/f) ~ I, then

Ly, = —kf (@g + @1205) Ui+ hee. = V26 f Prpbur — koS s — MXIXR, (323)

with ¥ p = —io?lyp. This Lagrangian gives a vector-like mass v2kf to vg.
The lepton singlets xr must also get a large (vector-like) mass by combining with a LH singlet xr,
through a direct mass term without further couplings to the Higgs. Thus, its mass term is written

(which matches with eq. (323))
Ly =—MX;xr+ h.c.. (324)

Xz is an SU(5) singlet and it is therefore nature to include a small Majorana mass for it. Once LN is

assumed to be only broken by small Majorana masses p in the heavy LH neutral sector,

L, = —%xm +he. (325)

the resulting (T-even) neutrino mass matrix reduces to the inverse see-saw one [39]:

v
L = —% (v Xr X5) ML= | xS | + hee., (326)
XL
where
gt y ‘0 ) 1k* fsin <f7f) 0T
v = | ik'fsin <f7f) 0 M ; (327)
0 M* I

with each entry standing for a 3 x 3 matrix to take into account the 3 lepton families. The x entries

are given by the Yukawa Lagrangian in eq. (322)) and M stands for the direct heavy Dirac mass matrix
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from eq. , and p is the mass matrix of small Majorana masses in eq..

On considering the hierarchy u << kf << M (inverse see-saw), the mass eigenvalues for M are ~ 10
TeV, of the order of 4x f with f ~ TeV as required by current EWPD if we assume the s eigenvalues
to be order 1 H On the contrary, the p eigenvalues shall be much smaller than the GeV.

Let U be a unitary transformation that diagonalizes M and transforms the states (vz, ¥r) to the mass

states (1/2 \IJ}L‘), light and heavy (quasi-Dirac) neutrinos, [ and h, respectively

] c
ut [T )= ), with @ = R (328)
g3 \I/L XL

The matrix U can be written as [41] [42]

V1 — BBt
U= 5B 5 , (329)
—Bt V1 — BB
such that U satisfies
ML 0346
T _ v X
U MU = ( O MZ , (330)

where we can see U decouples the heavy from the light neutrino fields. B is a complex 3 x 3 matrix

and we consider that

(-3 n
V1-BBf~1- %BBT - éBB‘TBBT - (2742”) (BBT) o (331)

n!l’ (—5)

in our case we will just admit terms of the order BBT.

In order to diagonalize the M matrix, we can rewrite it defining the next matrices:

Mp = ( i f sin (ﬁ“) ) . Mp= ( AB M ) , (332)

0 K

hence,

mT-even — (0 Mp (333)
Mp Mg

According to |41] a first approximation in B is

B*=MhM,' — B= Mz) (Mél)* = <zf sin <\/gf) kM7t (MT)™Y —ifsin (\gf> /{M(13>34)

3We have considered lighter, O(4 TeV), Majorana neutrino masses in ref. [40].
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Therefore, computing the eq. (331

1 1
V1—-BBt~1- 5BBT ~1— 599*, (335)

where we have omitted terms of the order of u because of u << kf << M and we redefine B — ©

v
0= (—0u*(MT)™" 0), with 6= —ifsin <> kML, (336)
( ) T
we can see © is a 3 X 6 matrix and 6 is a 3 x 3 matrix in agreement with [39,/43]. So that, the U

matrix is written as

1
o [ 1206 © (337)
-of  1-lefe )’

then, we have that the M!, and ./\/l?< matrices in the eq. |D are given by [39,41-43|
Iy, _ Tarar—1 . p* T h _
(M,)ij = —(MpMp "Mp)i; = Gik:uklejl? M, = Mg, (338)

we have assumed without loss of generality that the x mass matrix, M, is diagonal and positive
definite. The diagonalized (Majorana) mass terms of eq. (328)) thus read

3 9
v 1 e oh
L= =5 | ML)k + 3 (M), VT | . (339)
i=1 Jj=4

We notice M!, is a 3 x 3 matrix and M’; is a 6 x 6 matrix. We can work in the basis where the charged

lepton mass matrix is diagonal
l * l
M, = UPMNSDVUILMNSv (340)

from eq. (338),
w= (0" UppinsDoUb s ()7, (341)

where Upysnys in the Pontecorvo-Maki-Nakagawa-Sakata matrix and Dly the diagonal neutrino mass
matrix.

Applying explicitly U in the eq. (328)

1-leef  -o ve \ _ [ (342)
of — 3670 15 h
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due to the eq. (340) the light and heavy eigenstates are (mixing relations between flavor and mass

eigenstates)
3 3 1 9
> (Upnns)igvr; =D [laxs — Q(GGT)]UVLJ =) 0,0,
- ) g (343)
j=4 j=1

where © matrix elements give the mixing between light and heavy (quasi-Dirac) neutrinos to leading
order.

Let ® be a flavor eigenstate composed by

Ul
oy =U \Iﬁl , (344)

L

thus, in terms of the mass eigenstates from the eq. (343) the SM charged current is modified as follows

9 3
Ly =2 W ZZ(I)LZ’Y"%L]

=1 j=1

3 3
g
= EWJ (Z{UITDMNS[L’)X?) - *(GGT)]}ZJVLZ + Z GT q’h ) Yy,

j=1 \i=1 i=4

(345)

we can separate the Lagrangian above in two parts each one fixing the coupling between the SM

leptons and the light and heavy quasi Dirac neutrinos, respectively,

3 3
_ ] 1
Ly = %W/f S VWA Pl + hee., with Wi = {Uf yg[1axs — 5(9(9*)]}@7
j=1 i=1
3 9 (346)
th _ Y9 o+ Trot .
chh = EWM Z > UhOL A PLl; + h.c.
j=11i=4
The SM neutral current is written as
20059W & Z Z VLY VL (347)

7=11i=1
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we consider just the first order approximation to ©©" matrix and write down the light and heavy

neutral currents,

L, = 20080W HZZVleﬂ PLV]l-, with  X;; = {U]T:MNS[l?)x:a — (00N UpnNs}ij,
Jj=11=1
h _ Th(ot
Ly = 20089[/{/ Z 2 i @ UPMNS)@J’YMPLV + h.c.. (348)
9
£h = UHO10)7 P Yk,
z 20030W Z Ji7" P

Now, we do not consider the p term (u < kf < M) in the © matrix, © = (03x3 ). Therefore, the
eigenstates in the eq. (343) transform as [39)

3

3 9
1
> (Upnns)ijvi; = > [laxa — 5(90T)]ijVLj = OiixL,
=1

j=1 J=7

9 . 3 (349)
X’}:z‘ = Z[l?ms - i(HTQ)]inLj + Z HL-Z/LJ',
J=T J=1
hence, the Lagrangians from eqs. (346)) and (348]|) read
g 3.~ 3 1
Ly = EWJ Z VWi Pl + h.c., with W;; = Z(UILMNS)ik[13><3 _ 5(99T)]kj’
'J_l k=1
(350)
ol =9 W+ Z XFOT AP + ..
i,j=1
and
3
Ly = Z VM (X, Pr, — XJjPR)VJl-, with X;; = Z (U;LMNs“Bxi% _ (QQT)D‘ (Uprins)iis
2005 HW 52 ] "
3
th t ! . _ 1
ﬁZ - 26089 M ]Z:l Xz YZ]PL - Y;jPR)VJ + h.C., Wlth Y;j = galk(UPMNS)kj7
3
h .
L= 20059 i Z Xi"(SiPr — SJjPR)XJ" with Sj; = Z 9fk9kj~
i,j=1 k=1
(351)

where the dimension of the square W and X mixing matrices is 3 x 3. If we compare our charged-
current and neutral-current interactions from egs. (350) and (351f) with the SM ones, we observe that
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they differ by the presence of the # matrix which is a consequence of introducing Majorana neutrinos.

We can define the B;; and C;; matrices according to SM charged and neutral currents |44]

3 3
Bij = Z Uiku]ij and Cj; = ZUkz‘U;ij, (352)
k=1 k=1

where B mixing matrix is 3 x 9, whereas C' is a 9 X 9 matrix.

All LHT particles extended with Majorana neutrinos are collected in Table [12]

Particle Content of LHT with Majorana neutrinos

Nambu—Goldstone bosons

SM Higgs (—im*/V2, (v+h+in°)/2)
Longitudinal modes of the heavy gauge fields wE, Wl ny
Complex SU(2)y, triplet < ZQZE)/\@ (iq)g(ﬁ_ (I/)I\D/)i/ﬂ )
Gauge bosons
SM gauge bosons (T-even) WFE, Z,~}
Heavy gauge bosons (T-odd) W&, Zy, A}
Fermions (i = 1,2,3)
SM Fermions (T-even) {¢ vt ut,db}
Mirror /Heavy/T-odd Fermions {0, Vi, uly, diy
Partner Fermions {66, 08, uf, dS}

Majorana neutrinos (i = 1,2, 3)

Heavy Majorana neutrinos \ X%

Table 11: The full content of particles of LHT with Majorana neutrinos.

We give the corresponding Feynman rules for the interaction vertices from the eqgs. (350) and
(351), we adopt the convention Feynman rule = —iL.

Figure 30: _i%W;Wij’YMPL- Figure 31: —i\%W:@%v“PL.
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Particle Content of LHT with Majorana neutrinos

Nambu—Goldstone bosons
SM Higgs (—in*/V2, (v+h+in°)/2)
Longitudinal modes of the heavy gauge fields wE Wl n
id i® /2
( i0/V2 (100 + ©F)/v2 )

Complex SU(2), triplet

Gauge bosons

SM gauge bosons (T-even) (W=, 71,7}
Heavy gauge bosons (T-odd) Wi, Zy, A}
Fermions (i = 1,2,3)

SM Fermions (T-even) {e vt b dy}
Mirror/Heavy/T-odd Fermions {ly, Vi, uly, diy }
Partner Fermions {68, 08, us, ds}

Majorana neutrinos (i = 1,2, 3)

Heavy Majorana neutrinos ‘ X%i

Table 12: The full content of particles of LHT with Majorana neutrinos.

uz.
J
Z
ul.
7
. . Figure 33:
Figure 32: —i—L— X ;4" Pp. ;
2cos By 10 —i5o25— (0T Upnins) iy Pr-

We calculate the box form factors of the amplitude for £ — ¢/¢”¢" that receives contributions from

the diagrams shown in Figures [35] and

We recall from eq. (283) that the amplitude due to box diagrams is given by

M = 2 Fpt(pe )y Pru(pe)a(per )y, Pro(pen), (353)

where Fp is the form factor. Because of the Fierz identity from eq. (284]) all the box diagrams can be
reduced to the form of the equation above.
The contributions of the diagrams in Figure [35] are the same as those of eq.(296)) except for constants.

3
i aw
F = Ty, S AWGW, Won W+ (€ )} (i y)), (354)
ij=1
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Figure 34:
(0 H)zJVMPL

- 2 cos 9W

Efff Efﬂ' Efff R-‘*f Eff}'

Figure 35: Box diagrams contributing to ¢ — ¢/¢"¢".

Ef."f £ Efff ¢ EI"I"J"

JE,!e".l" E" E.’.’ ff

Figure 36: Explicit LNV contributions are introduced by these diagrams.

Vﬁx? aw

L T VR Z {(Wuw}, 9@/// Ouri + (0 < OV} (yi, 25), (355)
W
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3

XEx aw t t h
FB T = m i]zz:l{egieg/ieemjgguj + (ZI < Ell)}fB(xi, IL']), (356)

with
! 1 *
feiy;) =1+ Vi do(yi, vj) — 2ysy;do(yi, yj)

Ly \ 4 Yi
B (i, x5) = (1 + 4) dy'(yi, xj) — 252dg (yi, @), (357)
ZTj Lj
h L1\
fe(@i,xj) =1+~ do (i, zj) — 2

4xi:cj

h
i do(l’i,i’j),

2 2
where y; = 1\% and z; = % We have defined the above functions in the Appendix .
2 .

Calculating the LNV diagrams is more complicated than the first ones, we show the Feynman rules

for fermionic vertices [45H47| between a scalar and fermionic fields, where,
;= CTyCT =Ty, (358)

and,

1 il =14

o

with @, a scalar or vector field and A\, ¥ Majorana and Dirac fermion fields respectively. Notice that
in our case the interactions we have are V,F'I', because we were able to fix the Feynman rules from
eqs. and , the Feynman rules for SF'F can immediately be obtained since longitudinal
component of W boson is equivalent to a scalar (Goldstone).

We use this convention in the Feynman Rules [45,46|, because we can proceed without involving the
C matrices explicitly in the calculation (the physical observables do not depend on the representation
in the Dirac space). Besides, this convention allows us to use Dirac propagators even for Majorana
fermions.

We will use the next properties

(a[yaPr|b)(c|y* Prld) = 2(a|PL|d)(c|Pr|b), (360)
(aly*+" Pr|b){c|vuy Prld) = 4(a| PL|b)(c| Pr|d), (361)
u(p) = Co'(p), u'(p) =0(p)C", (362)

v(p) = Ca' (p), ' (p) =ulp)CT, (363)
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il’

il’

il’

il’

(g) (b)

Figure 37: The Feynman rules for fermionic vertices.

ct=ct=-c, cPicT =P, C(oPp)TCT = —7,Pr. (364)

Then, we develop the left diagram in Figure

a(pen) [T (g + ma)T] ulpe)iper) [T(—g +mi)T'] v(pe)

= U(per) [V Pr(¢ + mi)y" Pr] u(pe)i(per) [vuPr(—¢ + mj)v.Pr| v(pe)
= mym;a(per) [v*y" Pr] u(pe)i(per) [vuyw Pr]v(pe)

= 4mym; [t(per ) Pru(pe)] [@(per) Pro(per)], where we have used eq.([361]).

(365)
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Taking the first fermion chain and transposing

[@(pen) Pru(pe)] = u” (pe) PL " (pen)
= 0(pe)CT PLCTv(pyn) using egs. and (363) (366)
= —0(pe) Prv(per) using eq. 1D

hence,

—0(pe) Pro(per )u(per ) Pro(per)

|
§>

[@(per) Pru(pe)] [@(per ) Pro(per )] =

1 7 .
= 5 [ (pf)’YMPRU(pZ/)] [u(pgu)’}/“PL’U(pem)] , using eq. "
1 U l .
= —5 [v" (o) (uPr) 0" (p0)] [i(per )7 Pro(pe)] . applying the T
1 U T AT » ~ M
= +§ [u(p£/)0<7/.LPR) C u(p@)] ['Ll,(pg//)’y PL'U(pZ’”)]
1 A~
- 5 [ (pé/)’YuPLU(pg)] [u(pf”)'}/MPLU(pg///)] .
(367)
Therefore, the eq. (365) reads as
—2mm; [@(pe) v, Pra(pe)] [@(pe)y* Pro(pen)] . (368)

Taking all the constants from the Feynamn rules (egs. (350) and (351)), and considering the contri-
bution of (¢ +» ¢") we have

(047,74
My =—5—7 7 ZW&Ww WorniWh s (4y/Bigdo(yi, ;) - (369)
167 M sW —

),

We have to consider the contributions of type A2a, A3a and A4a, as shown in Figure but now
applied to LNV.
We know M 49, = M 43,4, thus

B J\TZV ]\n;;v W(pen) [Prg +mi)y" Pr] u(pe)a(per) | Pr(—¢ +my)y i Pr|v(pe)
= ]\ZZV J\%fv [@(pern) Pru(pe)] [@(per) Pro (per)] (370)
;q2 ]\T;VZV ]7\7;] [ﬁ<p€ )’Y;LPLU<p£>] [ﬁ(pg//)ﬁy“PLU(pgw)] , using eq.’
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hence the A2a and A3a amplitudes read

aw

Magg = Maze = W

ZWEZWg/ W Wg// <\/y2y]d0(yl7yj)> . (371)

Finally, the A4a amplitude for Majorana neutrinos is given by

m? m2. .
M; M2 (pgm) [PL(g + mZ)PL] u(pg)u(pgu) [PR(—g + mj)PR] U(pf’)
3 3
= %9 fi(pen) Pu(o)] [i(per) Pro(pe)] (372)
Mg, M,
1 mf mi’ . N N .
= o2 12 [Mee) v Lrape)] [@(pen)n Pro(pen)] , using eq.(367),
w M
therefore,
aw
M(A4a) W Z W&WZ’ Wg/// WZ” ((yiyj)3/2d0(yia y])) . (373)

The whole contribution of left diagram in Figure [30] is given by

!
v, v,

l
Fg_ vy = M +M(A2a + Ma3a) + M(a40q)
aw I-LNV (374)
= — WZW,WWW,, iy i)
T5E SW; Wy o5 Y (i)
where,
5 (i yy) = VUi (2670(1/7;, y;) — (4+ yiy;)do(yi, yj)) ,
. 1
Ih—LNV _ Iy, .\ _ h, ..
B ) = e (2~ (15 2 ) ). 55)
1 1
h—
h LNV(m-i,a:j) = N (ng(a;,,x]) <4+ l’ﬁj) dg(xz,a:j)> ,
with y; = mQ/MW, m; standing for the mass of light neutrinos; x; = MI%V/M;, M; standing for the

mass of heavy neutrinos. We have added the f5 (th,h)=LN V(

2i, z;) functions as they will be used in the
following equations.

The contributions of the center and right diagrams in Figure [36] are written as follows
3 9

I/X aW
ot = Tomaiz s 2o 2o WeiberiWeniberi [ =Y (yis ), (376)
TV wSw i =7
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XiXy aw hoLNV
Fpliny = m Z 01000500 Vi(ai, ;). (377)

Consequently, the complete Fp form factor from eq.(353)) is given by the eqs.(354]), (355]), (356]), (374,

BT) and @7

I Iyl hh

FB:F1J+FZXJ+F XJ‘FFBl ]LNV+FBZXLNV+FB LNV (378)

7.1 Bounds on LFV processes

We present various LFV processes in this section: ¢ — ¢y and ¢ — ¢'¢"¢", where the last one has
three possible channels that are shown in Table [13| [48| ﬁ

’ Type Flavor AN
1 (20 =0 = 0" et rocee o i
2 CEL £ =" s enn s e
3 CA =00 e T e

Table 13: Three diferent decay channels of the £ — ¢'¢"0" processes.

All of them involve the effective interaction of a neutral vector boson with a pair of on-shell
fermions, through a loop with Majorana neutrinos.

The effective V00 vertices (¢ # ¢') are written in terms of the following form factor |37]

T4 (pe, per) = ie{ [iF)(Q%) + FL(Q*)s) o Qu + FJ(Q* )" PL},

. PN (379)
ZFZ(pfva’) = ’LeFL (Q )7 PL7

with Q, = (p — pe)y is the momentum of the V' boson.

7.1.1 ( — {'y decays

In order to constrain the elements of the # matrix in LFV processes such as y — ey, 7 — ey and
T — wy decays we are going to compute the contributions coming from light-heavy neutrinos using 't
Hooft-Feynman gauge.

Gauge invariance reduces the £ — ¢~ vertex for an on-shell photon to a dipole transition,

i (pe, per) = e [iFy(Q%) + Fp(Q*)s] o Qu, (380)

4We do not consider H — ¢, since it does not enter as a relevant building block of the studied processes, and it is
necessarily below current and near future sensitivities |[49|. This is a general feature of LH models [50-52].
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where @, = (ppr — pr)y. Neglecting my < my
o
D ) = S (3P + 1P (381)

The form factor is written as follows

aw My
=Uyp; Uej Tor M2 FY (), (382)
with x = J‘J\{Ig and Uy Ue] are the vertex interactions.
Because of FX/[ = —iF}, and the branching ratios for these types of processes are obtained dividing
by the SM decay width
G2m3.
F(gj — &yjﬁi) = 719271-37’ (383)
where G is the Fermi constant, hence
2
Br(¢ — (') |Ugl U Fy ()] (384)

The active (light) neutrino contribution is analogous to the SM one, we just replace Uppyns by W due
to Feynman rule from the eq. . We notice W matrix has the SM contribution which is Upyrnvs
matrix and also it has a “correction” coming from introducing heavy neutrinos, given by 661 term.
The Feynman diagrams are given by topologies II, IV, V and VI shown in the Flgure [6l For active
reads [25|

M27

neutrinos m,; < My, then the F},(z) function from the eq.(382), defining x =

FY (1) = 10 — 33z + 4522 — 423 N 33 |
nr
M\E 12(1 — z)3 2(1 — z)*
5 3z — 1522 — 623 33

—2 1
6 R0—2?7 < ai—ap™®

(385)

and considering x < 1, it behaves as

FYy(z) — g _ T 0. (386)

e~ 8

Therefore, the branching ratio of u — ey due to active neutrinos is

3a t v 2
Br(p — ev) = o |We; W, Fir (y)]| - (387)

Now, we are going to discuss the contribution of heavy neutrinos. For the y — ey decay, the form

factors will be similar to the Subsection 2.3, since the topologies 1I, IV, V and VI are involved with

this type of neutrinos as well. For the y — ey decay, the F7(z) function is given by
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Figure 38: Feynman diagrams involved in the g — ey decay considering heavy neutrinos. We have to
take into account the self-energy diagrams, additionally. ¢ are the would-be Goldstones absorbed by
W boson.

FY (@) —102® + 332 — 45z + 4 L3
xTr) =
M 12(1 — z)3 2(1 — x)4
1 223 — 722 + 11z 3x

_ 1 1
37 A1—2p  Toi—af™™

Inx

(388)

2
with x = %—ng and M is the mass of X’i- Considering Mz%z[ < ]\4]2 (x —0),

3 1 11
FY (z) = - Tx +O(2?). (389)

Hence, the contribution to the branching ratio from heavy neutrinos X}i is written as
3 2
Br(n— e7) = 5 eejeljpﬁ(x)] . (390)

It is important to note that the contribution to the Br(u — e7y) coming from vy neutrinos we have
computed in the eq. (258]) behaves as

2

3a | M2 ) ;
Br(pn — e) = —— | =" Vi Vify Fw (2)| (391)
21 MI%VH
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2
m
where z = 4% the equation above can be written as

42>
W W f

2

Br(u — ey) = V’E*VITZFW( )|, (392)

4f2

however, this contribution is neglected because of v2/4f? << 1 term.
Summing the contributions from eqs. (387) and (390]) yields the complete branching ratio to u — ey
decay

2
eeﬂ;m )+ We, W Fi(y)| (393)

Br(u — ey) =

2 2
mVL

M2,
M2 9 y = M2
Taking the approx1mat10ns from the eqgs. (386]) and (389), we obtain

with z = and W;; matrix is given by the eq. (350)).

Br(u — ey) %30[

1 1lx 5 y
<3 - ) 9eg9Lg (6 - 4) (UILMNS)EJ(UPMNS)IU

21
. (304)
y_ > Ut (007U 4yt 000 ..(U .
+ S 12 ( PMNS)E]( PMNS)uj + ( PMNS )ej (UPMNS)pj ’
as the sum on the repeated index is understood, the PMNS matrix satisfies [53]
> Uaillhi =bag (. =e,p,7), UU =UU=1, (395)
i
therefore the second term is canceled and considering the leading terms
Jdally i 5y |
Br(pu — ey) = o ‘306?0;0 606]0“3 (356
2
~ 32 050 .
We know that Br(u — ey) < 4.2 x 10713 (at 90% C.L.) [6[39], hence
66" ) <0.14 % 1074, (397)

For 7 decays the SM branching ratio (eq.(383)) must be corrected multiplying by 0.17 to take into

account other possible decay channels [25], therefore

2

Br(r = ev) = (0. 17) i (@) + We, WEFY (y)| (398)

taking the value of Br(t — ev) < 3.3 x 1078 (at 90% C.L.) [6,/39] and the same consideration on
xz — 0 and y — 0 yield
3
Br(r — ey) ~ (0.17)8—0‘|9€j0:j12, (399)
T
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105675 < 0.95 x 1072, (400)

Finally, for BR(T — uv) < 4.4 x 1078 (at 90% C.L.) |6,:39]

3a * v 2
Br(r — uy) = (0.17) Ousbr 730 (@) + Wi W3 Fiy ) (401)
3a "
~ (0.17)87‘9uj07j|27
therefore,
16,567 ;] < 0.011. (402)

We notice that our result from the eq. (397) matches with the reported one in the Table 1 of [39] but
the results from the egs. (400) and (402) do not. For tau decays in [39] the 0.17 factor is missing.

7.1.2 TypeL: { — 0'0"0" with (£ 0 = (" = ("

The M0 amplitude for decays Type I gets contributions from v and Z penguins diagrams, and
it also receives contributions from box diagrams. All theses diagrams are similar to those shown in
Section @ where we replace Wy by W, Zg by Z and vy by ¢! and x", which are Majorana neutrinos.

Therefore, we can write the whole £ — ¢/¢'¢/ amplitude as
MEPEEE _ pE0T | pEr 0T pgiottl (403)

where each amplitude is defined as follows |37]

AN . v
My TS =q(py)e [iFy,(0)2Pro™™ (p1 — pe)y + F} ((p1 — pe)*)v* Pr] u(pe)
1
X —Uu ev — < )
(pl — p€)2 (p3)’7/1 (p2) (pl p3)
e, _ 1
/\/lz—> 12 =u(pr) (—eFLZ(O)) ’Y“PLU(W)WU(ZB)% (ngL + g;%PR) v(p2) (404)
A
— (p1 < p3),
00000 _ _
My 128 =€ BL(0)(p1)7* Pru(pe)T(ps)vu Po(p2),

where Fj, = iF};. The photon magnetic and Z left-handed vector form factors, Fy,(0) and F#(0)
respectively, are evaluated at Q% = (p; — pg)? = 0 because their leading terms are momentum inde-
pendent for small momentum transfer Q? ~ m? whereas the photon left-handed vector form factor,
F} ((p1 — pe)?), is linear in Q2.

The form factors Fy; and F}. have the the same expressions than the egs.(386)) and (389)), where we
have supposed m,l <K My, and M)y, < M; with m, and M; the mass of light and heavy Majorana
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neutrinos, respectively. So, the complete FAZI is given by

3

! hooo My L h
By = FY+ FYy = T (W W Fii () + 00,01, F () (405)
w j=1
. 2 M?2
with x = A’:}—é’v and y = /.

J
The F} form factor is obtained from the diagrams in the Figure it is given by

3
vt h
> (W WiFE @) + 0030, FX ) (406)

aw
SWMI%V

h
F)=F/ +FY =

where

FY () = 2M3 A, 4 O <x2(12 — 10z + 2H)lnxr  72® — 22 — 122 5) |

6(1 — z)* o120 -x)3 9 (407)
XN ong2 o (1242 — 10y + D)ny | 20y® — 963> + 57y + 1
R ( 6(1 )1 36(1 - y)? |

with A, = % —vg +In(47) +1n ( A?Z ) which regulates the ultraviolet divergence in 4 — 2¢ dimensions
w

is canceled by unitarity of mixing matrices.
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T—1

1 I
]";'//YjI f’
¢
z ¢-
N | vilxd
¢‘\ !
T—1V

Figure 39: Z penguins diagrams that contribute to the decay. Diagrams corresponding to T' — I and
T — I11 allow to mix light and heavy Majorana neutrinos.

We take into account Z penguin diagrams that are shown in Figure [39] that involve purely light
neutrinos, a mixing of light and heavy neutrinos, and diagrams in which only heavy neutrinos appear.
We calculate the one-loop contributions in the Feynman “t Hoof gauge, therefore, we also take in
account the diagrams of the would-be-Goldstone fields. The form factor from v!-diagrams in Figure
is given by

3
FEQ) = gt 30 [WeilWiF (a::Q%)
ij=1 (408)

+W£'ijinTi (Gl(ﬂ%%’; Q) + ziw; H (x4, 25 QQ)” ;
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(we have used that Xj; = X;-ri from eq. (351))), where

Fl(aj‘i; Qg) = —2012/[/ [Q2(61 + 62 + 612) + 6600 — 1] — (1 — 28%/[/)33‘1'600 — 2512,1/331-M3V€0

1 _
- 5= 2s3) [(2+ 2) By + 1],
1 (409)
Gz, 25,Q%) = —Q*(Co + C1 4 Ca + C12) +2Ch0 — 1 — §$i$jMI%VCO>
1 1
HY (i, 255 Q%) = M3, Co + §Q2C'12 — Cpo + T

We see a difference in Z7;v; vertex in this process: if the neutrinos were SM neutrinos, the Zv;v;
vertex would be ~ d;;. In this case, the neutrinos have a Majorana nature, so their Z I/fyjl- interaction
is given by X;; matrix, which is shown in eq. (351)).

Analytic expressions for the above functions in the low Q2 limit can be given by

b} 522 Inz; oT; 1
Fl 10 =— ([ ==2 2 Ae [ v 7 .
(20) (2 SW> P12 2m—1) @
1 1 1 (x; — 1)562 Inz; (z;— 1)562- Inz;
! J [ j
R H U WAV — , 410
G(-T €y O) 2( 2)—'_2(551_1'])( .’D—l .’Ej—l ( )
1 1 1 zi(z; —4) Inz;  zj(x; —4) Inz;
Hl ; .. —_ _ - Ae - i X% § .
(i, 25;0) 4< +2>+4(x¢—xj)< p— o

with z; ; = m?’j /Mgv, m; are the light neutrino masses. The contribution from v'y"*—diagrams in

Figure [39|is written as

3
Il (&% |
F[? X (Qz) 7W Z |:95’ W ( ]ZGlh(wm ij Q2 + YT H L, ij Q2 )

87TCWSW

=1 (411)
—i—Wg/jH};i <Yj];Gl2h(xj,yl, \/> (i Q >] ,
where
G (xi,y5; Q%) = —Q*(Co + C1 + Cy + Cha) +2Cpp — 1 — ;;U; & Co,
H{Mi,y5; Q%) = My Co + %Q2012 — Coo + %, w2)
G, y5;Q?) = —Q¥(Co + Oy + Ca + Cra) +2Cg0 — 1 — ;ZMVQVCO,
Hi (xj, i3 Q%) = My Co + %QQCH — Coo + %,
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and their analytic expressions are
lh l . 1
Gi' (x4, y5;0) = G'(x4,25;0)  with xj — 17 ,
j

1
H{h(azi,yj;O) = Hl(xi,xj;O) with <a:j — > ,

'71” (413)
Géh(azj,yi;O) = Gl(xi,:zj;O) with <:cl — > ,
Yi
1h l . 1
H3"(z4,9i;0) = H'(z,2;;0) with <:1:Z — ) ,
Yi

with z; ; = m%’j/M2  Yij = M‘%V/ng, being m; and M;; the light and heavy neutrinos masses,
respectively.

h
The F LZ X" form factor, which stands for the contribution from y"-diagrams, yields

3

FZ—Xh 2y aw (9/-(9T~Fh ” 2
F@Q) = g O [t Q%)

=1 (414)
+9m5ji92 (Gh(yu Yy Q%) + H"(yi, y5; Q2)>] ;

YiY;

(Sji = SJT-i from the eq. 1} where

o _ 1 1 _
F"(yi; Q%) = —2c}y [Q*(C1 + T2 + Cr2) + 6Co0 — 1] — (1 — 2s%,)—Coo — 253 — M3, Co

— %(1 —2s%) {(2 + yli)Bl + 1] ,

(415)
11
G" (i, 953 Q%) = =Q*(Co + Cr + Ca + Ciz) + 200 — 1 = 5 My Co,
iYj
1 1
H"(yi, ;3 Q%) = M, Co + §Q2012 — Coo + Yk

where y; ; = MI%V /MZ?]-, M; ; are the heavy neutrino masses. Analytic expressions for the functions
F' Gh and H" in the low Q2 limit are written as

5 5 Iny; 5

h 2 [

1 1,') = — *—2 w Ag— — “F
(y ) (2 ’ ) 2(1 yi)2 2(1 y’L)

o 1 1 (1 —y,) Iny, yi) Iny;

G (i yj30) = 5 (Ae - 2) 2y ) (_ (1 —]yi) T ]> 7
o 1 1 (1 —4yi)y; Inyi | (1 —4y;)y: Iny;

A0 = =5 (B 3) + s (5 )

The ultraviolet divergences (A.) cancel in (410]), (413]) and (416]) using the following properties of the

1
47
(1-

(416)

_l’_
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mixing matrices [44,48|

9 3 9
ZBikBJT-k = 0ij, Z B;iinj = Z Cikc;k =Cy,
k=1 k=1 k=1
9
> BixCrj = Byj,
k=1
9 9 3
qu)kCiijk = qu)kBikClij = Zm<1>kBikB;k =0. (417)
k=1 k=1 k=1

The box diagrams are computed in eqs. (354)), (355 and (356]) by replacing the £¢'¢"¢"" flavor factor
by £¢'¢'¢’. In this case there are no LNV vertices.
After integrating the three-body phase space the decay width reads [37]
2,5
4

T — 070y =2

™

m 1
3|1 AL|* + 2| Ag|? (8 o 13) +2/Furf® + |Frrf* + 5 |Brf

el

(418)
— (6AL A} — (AL — 2AR)(2Ffy, + Fip + B}) — FuiBj +huc.)],

where we have defined

F 2F7,(0) gL F7(0) grF7(0)
A, =L  Ap="M Frp=—-22L "7 p =L 7 B — B0 419
L Q2 ’ R my ) LL eM% ) LR QM% y L L( )7 ( )

with gz, r the corresponding Z couplings to the charged lepton ¢'.

7.1.3 Type IT: £ — ('0"0" with £ # (' £ (" = ("

This process can be expressed like ¢ — ¢/0"0" since 0" = ¢".

The difference between processes Type I and Type II is that there are no crossed penguin dia-
gram contributions in the last one. This is due to #/¢” coming from through pair production. Two
gauge boson LFV transitions would be needed for swapping ¢ and ¢”. This is the reason why the
U(pe) — £'(p1)0"(p2)€" (p3) amplitude MU has no py < pe term in eq.. Nevertheless,
there are additional diagrams for the box contributions at this order for swapping ¢ and ¢”. The box
contributions are calculated in egs. , and , the additional contributions are considered
once the flavor factors with £¢/¢"¢"" are replaced by the appropriate ones with £¢/¢"¢". Furthermore,
there is no symmetry factor of 1/2 in the phase space integration needed to obtain the decay width

because all three final leptons are distinguishable. The final decay width can be written as [37]

— a2m5
L0 — 00"y = 7# [2|AL!2 + 4|Ag)? <4 m% - 7) + |Fro|? + |Frr* + | BL?
¢ . (420)
* * * BL Bz
— 4ALAR_(AL_2AR) FLL+FLR+7 —FLL 9 +hC y
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with the same definitions as in eq. (414)).

7.1.4 Type III: { — 00"0" with £ £ 0 = 0" £ 0"

We are going to analyze ¢ — £'¢"¢"" decays with the (¢ # ¢ = ¢” # (") condition, hence these

processes just have box contributions.
Recalling that the eqgs.(354), (355)), (356)), (374), (376 and (377) yield the complete Fp form factor

from eq.(353))

I Il

FB:FZ]+F1XJ+F XJ+F;Z]LNV+FBZX%,NV+FXZ>CL]NV (421)
1/%1/{ aw
FB ! - 16 M2 Z{WK'LWZ’ W”, Wé” + (E e”)}le(ylﬂy])7
4 WSW
4,j=1
ViXy aw Ih
LTI T S WV s + 0 €0} ),
2,7=1
FX?X? _ ot o O 4 (0 5 OOV R (0
B - 167TM2 SW Zl{ 4 00 Z’” 2 ( AN )}fB($Z¢$j)7
. " (422)
ViV _ aw t f—LNV
FB ]LNV - m Zl WK’LW[/ W[”’ W[// (ylvy])7
i,
Véxh aw
Fgy Z Wi j Wi f "NV (yi, ),

B—LNV — 167 M2 SW

hyh
X X5
Fp_iny = 167r.’\[2 SW E : ‘9&96’ omiOe

5 MY (@i 1),

where the f (Lif h)( 2i, 2j) and f (Lihh)= LNV(zi, z;) functions are shown in the Appendix

l l
The Fjy “"7 form factor just involves active neutrinos, therefore, y;,y; — 0 (m;,m; < My) which

implies
5 v5) ~ =1+ (g5 + i) (1+Ing;)] (423)
YirYj—
therefore,
Vél’gl' aw ’ T T / 1"
Fg'~-— T 1670252, > AWaWi W ;Wi + (€ £} 1+ (y; + i) (1 + Inyy)]. (424)
Wi j=1
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vixh . . . . . e
The Fg5"™7 form factor involves a mixing of active and heavy neutrinos, due to their masses satisfying

m; < My < mj, respectively. We have that y;, z; — 0

1
fgl(yi, ;) ~ 2;(1+1Inz;) + —yi(Inz; — 7). (425)
Yi,25—0 4
Hence,
vt 1
FB J 167“'M2 SW ; ]ZY{WEZWZI Z”' 0@// (El — e//)} |:$](1 + ln[E]) + Zyl(lnx] - 7):| . (426)

The F éin form factor appears from the interaction of two heavy neutrinos, then we need to analyze

the behavior of the fg, function with My, < M;, M;. Therefore,

1 1 x; 9 3 7
fg(xi,xj)hwj_}o ~ T; [(2% — 3> E In <x]> + Inz; + 1 Inz; + x; (3 Inz; + 4) + 4}

1 ; 1 1
+ —1In (%) + = (6 lnxj + 7) + *ij (13 lnxj + 7) s
i xj 4 4

(427)

we have assumed heavy neutrinos are not degenerate but they may be of the same order of magnitude
(mi ~ myj). If the x;/x; ratio approached 1 much faster than 1/x; diverges, we could get rid of the
1 ln ( 7) term, otherwise this one is divergent.

For the fl LNV considering v;, y; — 0 we obtain

— LNV(

~ 2/v:y;(1 + 2 Iny;), (428)

Vi Yj)
Yi,y;—0

which yields

! aw
JLNV 167TM2 5 Z{WZ'LWW WEW WZ” } [2 V ylyj(l + 2 hly])] . (429)
w ij

),

For the flh LNV the considerations what we make are Yi,xj — 0, then

5 (i) ~ 2,/yi@;(Inz; — 1), (430)
yi,l‘jA)O
therefore
vl X
FB ]LNV W ZZ{W@ZGZ/ Wzmzeg//]} [2,/yzx](lnx] — 1)] . (431)
Ty Sw =1 j=T7
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Lyl
Finally, for FgZ_XiNV if x;,z; — 0, the fg_LNV behaves as

Y (@, ) ~ [l <x]> + /252 Iy + 1) + 3/ (Inzy + 1)
x4,2;—0 xy X Zj (432)

+

1 T,
mm(ln:rj +1) +, /ﬁ(Q Inz; +1).
VEiLj

We naively observe that we have a perturbative unitarity issue with the functions from the eqgs. (427)
and when x; ; — 0 that it is equivalent to consider m;; — oo, but we must understand that
infinity (co) is an unphysical value. Then, in order to not violate perturbative unitarity, the heavy
neutrino masses m; j can not to exceed an upper limit which makes the (427 and functions not
divergent. Thus, all form factors from are finite.

Due to this process has no penguin contributions, the total decay width for £ — ¢'¢"¢" is given by

2,9
T(¢— 007"y = % 1Fp?, (433)
T
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Then, the branching ratio is written down as follows

— a2 2
Br(£ — £0'0") = W | Fp)

12872
2 1l I h hoh 11 I h hoh 2
w Viv; ViX; Xi X;j vivj ViX; Xi X
= 12872 Fg/ +Fg/ + g7 + Fg pny + Fp_pny + FB1ENY
a? 3
= Ty | D AWGWE W Wik + (€ e )} [+ (g + i) (1+ Iny)]

1,j=1

3 9
1
YN Wi, 0L, 00+ (¢ 07} [%‘(1 +1Inzj) + - yi(lnz; — 7)]
i=1 j=7

9
05,0000 01 + (¢ <> 0" — = “ln( = inx; + —z;lnz;
+i;7{ 29030 V¢ j+( )} [(ij 3> 22, n(xj) + x;lnx +4a: nr;

‘iz (3 Inz; + 4) + 1% + Ejln <%> + 1 (6 Inz; +7) + 1% (13 Inz; + 7)]

3
+ Y AWaW, Werni W, (2575 (1 + 2 Iny;)]

i,J
3 9
+ Z Z{Weﬂe/jwwﬁe"j} [2\/yiz;(Inzj — 1)]
i=1 j=T7
9 X; X5 xX;
+ Z {%ngj@,,,iégnj} ;;111 <1’J> =+ \ /;Z(Q IDCCZ' + 1) + 3,/{L‘il‘j(ln$]’ + 1)
i,j=T \/ J ! J

1 :L‘j 2

JTiT; X ’

(2 Inz; + 1)}

(434)

in the equation above we are considering y — 0 and x — 0, where the y variable is corresponding to
active neutrinos and x variable stands for heavy neutrinos. The masses of active neutrinos are of the
order of O(eV), while we assume that the masses of heavy neutrinos are of the order of O(TeV), and
the well-known mass of W boson is of the order of O(100GeV), therefore the y variable approaches
zero faster than the z variable does. This ensures that the 1y; (Inz; — 7) and 2,/7;z;(Inz; — 1) terms
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are finite. Hence, the branching ratio at leading order behaves as

2
Br(f — (07" = 12‘8 . Z{W&Wf, W Wi+ (€ 45 "))
t,j=1
9 t + 1 xT; T; 1 T;
. () s P 2 i Liy L[
3 Wt ¢ [ ) £ <%> i (2)
1,j=7 (435)

—i—i (6 h’l.’E] =+ 7 :| Z {94195/ 95,,, 9@/]} J:z (x]> + l 2 lnxz + 1
4,j=7 V

1 2
(Inz; +1) + 4/ —](2 Inx; + 1)]
VLilj I,

From the definition of W;; matrix (350]), we can reduce the following terms

_l’_

)

WZinT/ W prnr ~Wg,, = Oppr Oprrrgrr — Oppr O pin ‘9;[,, . 5@///4//94192& + (9&'0;/ N '9;[,, .
WZ/LWE// W 117 WZ/ = 544//64///[/ —_— 5@4//94/// HEI —_— 5[///4/6[19é// + 067’06// GZ/// 9[/

(436)

therefore (the sum on the repeated index is understood), the branching ratio looks as follows

Oé2

12872
—+ (5@[//5[///@/ — 555”95”/]'0@ . — (56”/8/9&05”7; -+ 951'06”1‘95”796’3‘}

1 x; T; 1 Z;
Ot + 000003 | (g3 =3) g (5) + 2 (5)
(437)

1 T; T [x;
+1 (6 lnx] + 7):| + {ezieg/jeg,,,ieguj} —;)ln <]> —+ (2 IHLL'Z 1)
xT Z; Zj

J
+#(lnx'+l)+ —](2 Inz; + 1)
V/Lilj J Ty J

2
as the process that we are analyzing satisfies (¢ # ¢/ = ¢/ # "), hence

Br(f — £'0"0") =

{6€Z16€///ZH - 5€el€£l” eeﬁ - 66///4//0[10£, + Hheﬁl HZ/// 96"

)

Br(¢ — £0"0") =

128 2 ‘ {9{298/ 9(”’ 9@” (E/ A E//)}

N i\, Ly (7
+{0 0[/ f’” 0@// (6 RN )} |:<237] 3 233] n 7 +4{L‘31n z;

o — /a (438)
(6 lna:] + 7):| + {9&9@]'95,,,2-9(//]‘} ;ln <]> + N T (2 lnx, =+ 1)
J

1 T 2
+— = (Inz; +1) + /x—Z(Z Inz; + 1)]
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Now, we are going to consider the 7 — eefi and 7 — pué processes which yield 6]

1 xz; x; 1 x;
—20,:00.0,:0" + 2070607 0o || — — () 4 —In [ 2
et Hi"e] + T A 21,‘]' 3 21’]' n ﬂZj + 433j n .Tj

1 i j i
+ (6 Inz; + 7)} +65.00;07 0. %m <f’53> + /22 Iy + 1)

j xI; l‘J

2
~ a
Br(1 — eepn) = (0.17) 12;‘;2

2

1 .
bz + 1) + /2 < 1.5 x 10°8(C.L = 90%),

2Inz; +1
— U2 s + 1)

(439)

2

_ «
Br(t — ppe) = (0.17) 12;‘;2

1 T; xz; 1 z;
—20,:0" 0.,0"  +201 0,670, |(— — Pl () 4 —In (2
pAT eI g + TiTH e T 233]' 3 QCCJ' n .CL‘]' + 455]' n l‘j

1 i j i
+5 (6 Inz; + 7)} +65.0,;60.0,; %m (%) + /%(2 Inz; + 1)
J

i\

e+ 1)+ /2 Iy 4 1)
—\1Nx; — nT;
,/iL'Z'iL‘j J Z; J

with i,7 = 1,2,3. The 0.17 factor is because we need to take into account other possible decay channels

2
< 1.7 x 1078(C.L = 90%),

(440)

for the tau. Notice all contributions of diagrams with explicit lepton number violating (LNV) vertices

come from 6 matrix defined by the interactions from (350) due to introducing Majorana neutrinos.

7.2 Contributions to Z — ¢/’ decays
At leading order the Z — ¢ vertex reduces to
il (pe, pr) = ieF7 (Q*)Y" Pr. (441)

We work in the approximation of zero light neutrino masses. Therefore, only diagrams with heavy
neutrinos contribute to this process. In this type of decay we have that Q? = M%, so the Z width is
written as follows

T(Z — ) = %MZ\FLZ (M2)2, (442)

where the FZ(M2) form factor is given by

_h
FE(M3) = F ™ (yi, ys3 M) (443)
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_~h
The F LZ X" form factor receives 10 contributions from the Figure

FFx = W NP plo) 144
L dmew sw ; z (444)

where the form factors of the different diagrams are:

Topology 1
1
FD = 0,07, (—Sji [M2(Co + C1 + Ca + C12) — 2000 + 1] + S, y.y.MvaCo) ) (445)
iYj
where Coo,0,1,2,12 = Co0,0,1,2,12(0, M%, 0; M;, M, My );
Topology 11
FP = —2¢3,0,,6, (M2 [Ch + Cy + Cha] +6Co0 — 1), (446)
where Coo,1,2,12 = Coo,1,212(0, M%, 0; My, My, Mw);
Topology III
1 1 1 1
FP = Z0p,60 | —=Sji—M3,Co+ ST, [ — [MZC —2C, +] : 447
Z 2 5V Je Yiy; w0 ji Yiy; Zz“12 00 9 ( )
where Coo,0,12 = C00,0,12(0, M%, 05 My, M, My );
Topology IV
FO = (1 - 253,)00,;6],
7z = —(1—=2siy)0p; &»;COO, (448)
(3
where C()() = C()()(O, M%, 0; Mi, Mw, Mw);
Topology V and VI
1
FP 4+ F = —2sﬁveg,j9}i§Ma,Co, (449)
(3
where Cy = Cp(0, M2,0; M;, My, My );
Self-energy diagrams
1 1
P+ P+ B + Py = — (1= 253)00,6), [(2 + ) By + 1] : (450)

where By = B1(0; M;, My ). In all these expressions we have defined y; ; = M%,/MZ]-, being M; ; the
heavy neutrino masses. The form factors above are in agreement with [54], we have different signs in
the egs. (446]) and (450). Writing the 10 form factors above in a compact way we obtain a similar
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expressions from the eqs. (414)), (415)), and (416)).

3
Fi(M7) = 87TCWSW Z [95, 9 F (i3 M)
J=1 (451)
1
+00; S50}, (Gh yi, yjs M) + H" (s, y;: M3 )] :
LgR5iYp ( j Z) \/yT% ( j Z)
where
_ _ 1— 1 —
Fh(yi; M%) = —2012/1/ [M%(Cl +Cqy+ 012) +6Coo — 1] — (1 — 2812/1/)5000 — 23124/fM1%[/CO
1 9 1.—
¢ L1 (452)
G (g, 93 M7) = —M(Co + Cr + Ca + Cz) + 2000 — 1 = 5o -Miy Co,
iYj

1 1
Hh(yiayﬁ M3%) = M3,Co + §M%C12 — Coo + 7

with y; ; = MW JM; j, M; ; are the heavy neutrino masses. Analytic expressions for the functions

Fh G" and H" at order of M% are written as

5 5 Iny; 5 1
Fhly; M2) = — [ = —2s%, ) Ac — - -
(yzv Z) <2 5w> € 2(1_:[/1)2 2(1—1/1) +4
lj% 1 20.2 2 2
6/24y; —1) —4y;(5 —8) — (2 —1)| Iny;

—(1 — y:)[88y3 (siy — 1) — 2y7 (164s3y, — 171) — 1;(297 — 230s7y,) — (25, + 11)])

1 1 1 1 —vy:) lny; 1 —vy;) lny; M2
Gh(yi,yj;M§)=2<Ae—)—2(y. o (—( ;) ny +( ) yj)—l—zx(terms),
J

2 (1—-yi) (1—y;) M
1 1 1 (1 —dy))y; ny; (1 —4dy;)ys ny;\ | M
H"(yi,yj; M2) = == (Ac+ = ) — - ] ] L) 2 (¢ :
(i, yj3 Mz) = — ( + 2> o < i-s T - + 2 (terms)

(453)

These functions are parameterized under the consideration of heavy neutrino masses (M; > My ),
where we have defined the variable y; = M%V /M?. We observe that the variable y; is the inverse of
x;, which is the one defined by light neutrino masses z; = m? /M‘%V (m; < Myy). Then, if we rewrite
the ", G" and H" functions with the x; j variables instead of y; ; we recover the results reported for
MZ — 0 in [44,48,54].

We can see from G" and H” that the term of order M% is suppressed by

M2 , being M; ; the heavy
neutrino masses. For heavy neutrinos we know that M; > My, therefore, it satisfies M; > My
as well. So, we just consider terms at the lowest order in G" and H" functions. Otherwise, from

the F" function the term of order M% is not suppressed by heavy neutrino masses, hence we need
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to do a more detailed analysis. We do a series expansion of F” function to higher orders of My to
study its behavior. In this expansion there appear terms like MLZ" In (Mi2 /M%V) with n > 2 which
are suppressed due to M; > 1. Besides, the terms whose behavior is (Myz/My)"™ with n > 4 vanish

because of unitarity of the mixing matrices. Finally, the F" is given by

5 M? MZ (1 M?
FM'(ys; M2) ~ = ln< : >—Z ((1—23%) 1n< d >> (454)
2 M3, ) M \12 M,
M% 1 2 . .
where —% = - = 1.286 and sy, = 0.23153 (6], it yields

Mgv w
F(ys: M2) >y (ME) (0.09567) 1 <MZ’2> (455)
Yis VA ~ — In — . n 5
2 M2, M3,

we see the second term is 26.13 times smaller than the first one. To finish, we write the equation

above in terms of y;

5
FM'(ys; M2) = -5 In () + (0.09567) In (y;) . (456)

7.3 The p — e conversion in nuclei

The 4 — e conversion in nuclei has penguin and box contributions as £ — £/¢""¢"" decay, replacing the
last two leptons by a quark q = u or d. It has no crossed penguin diagrams because the lower fermionic
line where the gauge boson is attached is now a coherent sum of quarks composing the probed nucleus.
There is also no crossed box contributions due to the exchange of leptons.

We can write the interaction with a quark q = u or d

Mﬂqﬂeq — Mfy“]ﬁeq _|_Mlg1_>eq +Mﬂq—>€q7 (457>

box

with the amplitudes defined as |37]

MU= =qi(py)e [iF) (0)2Pro™ (p1 — o)y + F (1 — pe)* )V Pr] ulpe)

1 _
X ———3T(p3)Vu(91, PL + 9k, Pr)V(D2),
(p1 — pe) (458)
eq  — 1 _
MG <t(pr) (=eFE (0)) 7" Pru(pe) 3y Tps) v (924 Pr + 92 Pr) v(p2),
7
0—e' 0 _ _
M, 2 =e2 B (0)a(p1) v Pru(pe)a(ps )1, Pro(ps).

99



7 NEUTRINO MASSES IN THE LHT AND NEW CONTRIBUTIONS TO LFV PROCESSES

The form factors F},(0), F] and FZ(0) are given by (405, , and (414)), respectively while the
couplings gf( R)q read [48|

z 1-— %SIQ/V z 2SW
SwWwCw CW <459)
2.2
o7 = —1+ 38w gl = S
Ld 2swew Rd ™= 3y

We have a couple of new box diagrams shown in Figure [40] We have been working under the approxi-

H e U e
\\ Vi Xi // \\ Vit //

< g
// u,ct \\ / d,s, b \\
d d u u

Figure 40: Box diagrams contributing to i — e conversion in nuclei considering light-heavy Majorana
neutrinos.

mation where light Majorana neutrinos are massless. Then, we just consider the contribution which
is coming from heavy Majorana neutrinos x”. The form factors corresponding to diagrams in Figure

[40] are written as

d aw

L= t6mg 7 Z 00l Vil T (i 25) (460)
" aw

BL 167TM2 SW Z 0#1961|V’UJ| fBu (yh ]) (461)

where y; = M3, /M? with M; the mass of heavy neutrinos, 2 = mgi /M3, with m,, the mass of the
i-th quark, V;; is the CKM matrix. In agreement with [48] and recalling the egs. (727)), , and

(729) in Appendix

o) = (14 10 ) )~ 22 ) (162)
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where (making the necessary adjustments)

2 Iny; zty; Inx? "
dlh y‘,l‘u — Yi ? + J J 4 ? ’ 463
L Y e B (e e I T () M

_ s (Y 2 Inz¥ .
df)h(yi, xy) _ %2 ny; _ yl(uJQ) j _ Yi _ (464)

(L =g)* (L —wia}f)  (L—2a)*(1—wixy) (1 —wi)(1—})
with y; = M, /M? (i =1,2,3) and Ty = m%j/M%/ (7 =1,2,3). The function fp, is written
d 25\ an T3 in
fB. (i, xf) = — | 4+ 475» do' (i, =) + Zjdo (i, ). (465)
7 1

We can neglect all the quark masses, except that of the top quark, and defining z; = m? /M%V, we

may reduce the fp_ functions

3
> Vial fay (in2Y) = Vial® [f5a(vir 20) — F5,(9i,0)] = F5,(1i,0), (466)
=3
3
Z Vs £, (i 29) = [, (4:,0), (467)
i=i

as we observe in [48|. Afterwards, the u—e conversion rate in a nucleus with Z protons and N = A—Z
neutrons yields [37,/48]
5 74
CZe o 5 u u u d d dy|?
R = T ZFPmu 2Z(Ai1L + Asr) — (2Z + N)(FLp, + Fig + Bp) — (Z + 2N)(Fp, + Fir + BL)) )
Capt
(468)

where Zg is the nucleus effective charge for the muon and Fp the associated for factor. In Table [14]
we gather the input parameters for Al and for Ti and Au [37,48,55.56].

Nucleus N Z Zeff Fp FCapt [GGV}
2TAlL 14 13 115 064 4.6 x1079
3STi 26 22 176 054 1.7 x10718
197Au || 118 79 33.5 0.16 8.6 x107'8

Table 14: Input parameters for different nuclei.
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8 Limits on LFV processes driven by O(TeV) Majorana neutrinos

In this section we show the numerical results for each LF'V processes through Monte Carlo simulations.
We are going to consider the light neutrinos massless approximation. Therefore, only diagrams that
involve heavy Majorana neutrinos contribute to the processes. We begin the discussion with LFV Z
decays, LFV Type I and II and pu — e conversion in nuclei as they share the same free parameters:
three heavy neutrinos masses M; with i = 1,2, 3 and neutral couplings given by (AS6). Afterwards,
we focus in wrong sign processes to bind the corresponding LNV couplings, and we finish with © — e
conversions in nuclei. In the following subsections we are using the limits of (#61)y, previously obtained

by ¢ — ¢'~y decays. These limits are written in eqs. (397), (400]), and (402)).

8.1 LFV Z decays

We start with LFV Z decays (Z — #¢') whose branching ratios are given by

L(Z — o)

Br(Z — ') = T ;
Z

(469)

with T'z = 2.4952 4+ 0.0023 GeV [6]. Because we are considering the light neutrinos massless approxi-

mation the Z width is written as follows

3 3
! W . 2
TM(Z — 1) = o ‘Z [eg, 05 F (yi; M3)
=1 (470)
1 2
+0p;S;:0), <Gh Y53 M2) + H"(yi, y;; M3 )] ,
2'§25iVy; (yiryj3 M%) N (Yi> yj3 Mz)
where the F*, G* and H" functions are given by the eq.(453).
8.1.1 Z — fie
In this process we know that
—4
0 jHM <0.14 x 1074, (471)
and from PDG [6] Br(Z — fie) < 7.5 x 1077 (C.L. = 95%), it yields
ajy —4\ ph 2
Br(Z — fie) =——W M, ( [(0.14 x 10~ Fh (y;; M2)
1927‘(2 FZ
2 (472)

<T75x 1077,

+66j5ji02n‘ <Gh(yi7yj§ M) +

1
Hh y’uy7M2 ):|
N (i yj: Mz)

102



8 LIMITS ON LFV PROCESSES DRIVEN BY O(TEV) MAJORANA NEUTRINOS

812 Z —Te

For this process the limit on the mixing coupling Hejﬁij is

<0.95x 1072 (473)

0c;0)

and from PDG [6] Br(Z — 7e) < 9.8 x 1075 (C.L. = 95%), it yields

3

Br(Z — 7e) =—W___ ), ‘ [(0.95 x 1072) F (yi; M2)
19272¢3, Tz
) (474)
o ot iy 0 M2 Bl oy A2 -6
+0¢; 50, <G (yi,y;; M7) + y-y'H (yz,yj,MZ)>} <9.8x107°.
iYj
81.3 7 —7u
The mixing coupling is given by
(emeij < 0.011, (475)
and from PDG [6] Br(Z — 7u) < 1.2 x 1075 (C.L. = 95%), it yields
aiy h 2
Br(Z — 7p) =— W ___pp Ho.on F(y;: M
r(Z = Tp) 102m2c2 1, 17 (0.011) F*(yi; M7)
: (476)

<1.2x107°.

+0,;5;:01 (G’%yz-, Yy M2) + H"(yi, ;5 M%))]

YilY;
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8.2 Type I: ¢ — (/0"0" with ( £ =" = ("

In this section we write explicitly the form factors and the limits on the mixing couplings for y — eeé€,

T — eee and T — ppi decays.

8.2.1 pu— eee

The form factors involved in this decay are given as follows

A F7 Z 0 (1297 —10y; +1) Iny; 20y} — 96y + 57y; + 1
L= @2 87TM2 eif 6(1 — y)2 36(1 — )? ’

2F7,(0) 2y} — Ty} +11y; | 3yi Iny;
Ap = eez : : )
R my, 87TM2 Z ( 4(1 —y;)3 " 2(1 - yi)”‘)

3
gL F7(0) aw 2 t 5 Iny; 5
Frp=— = —142 0.0, ( - -
L eM2 16ws§VM5V( +25) 2 |feifl 2(1—y,)2  2(1—w)

ij=1
1 (1—-y;) Iny; (1 —y;) Iny;
+0.,5; 9* < < J + J
! 2(yi — yj) (1—w) (1—y;)
1 1 (Z/j(l — dys) yi | yi(1— 4y;) lnyj)>]
VY5 4 — y5) 1—y 1—y; ’

grF#(0) ; 5 Iny; 5
Frp=— = 0eit)y; | — -
LR eM? SWMVQV ZZ “ 21 —w)* 201 —w)

1 (1 —y;) Iny; (1 —y) Iny;
+0e7 S50 <— <— : :
“ 2(yi — ;) (1—w) (1-yj)
1 1 (_yj(l —dy)) nys i1~ 4y;) lnyj)>]
V95 4i — yj) L —y; 1—y; ’
1 Yi Yi 1
By = Br(0) = 0099 [(—3) n( >+1 ( >+(61ny<+7)
87rM 2 2 s%, ]Zl parer 2y; 2y; Yj 4y, Yj 4 ’
(477)
with z; ; = /MW, Yij = MW/ ”, where M; ; are the masses of heavy neutrinos. We can bind
the form factor above with the following limits |57]
10,i00.] <0.14 x 1074, and 06!, = |6.]*> < 2.5 x 1073, (478)

and we take the value from the PDG [6] for Br(iu — eee) < 1 x 1072 (C.L = 90%).

8.2.2 71 — ece

The form factors involved in this decay are given by the eq. (477), we only need to change p — 7 in

the mixing matrices.
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We can bind the couplings terms as follows [57]
10,407 <0.95x 1072, and 0,0, = (6> < 2.5 x 1073, (479)
ant we take the value from the PDG [6] for Br(r — eeé) < 2.7 x 1078 (C.L = 90%).

8.2.3 71— uup

The form factors in this decay are given by the eq. (477 considering 7 instead of u, and p instead of
e in the 8 matrices.

We can limit the couplings terms as follows [57]
10-:07;] < 0.011, and 6,;0], = [0,> < 0.021, (480)

ant we take the value from the PDG [6] for Br(r — puji) < 2.1 x 1078 (C.L = 90%).
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8.3 Type II: ¢ — 0'0"0" with ¢ £ 0" # (" = ("
8.3.1 7 —=eun

The form factors involved in this decay are given as follows

(1297 —10y; +1) Iny; | 20y? — 96y + 57y; + 1
Ap =L =" Zeez :
Q2 87rM 6(1— ;)2 36(1 — y;)3
2F,(0) 2y3 — Ty? + 11y; 3y Iny;
A — 9@1 C L )
pm MO oS o, (BT )
3
gL F7 (0) ow 5 t 5 Iny; 5
Frp=— = 142 0000 — -
e eM2 167rs§VMV2V( 2si) ;1 T\ 200 -w)? 21 —w)

; 1 (1 —yj) ny; | (1—y) Iny,
+0ejSi07; ( 2(yi — vj) ( (1 —w) " (1-y;) >

1 1 (_yj(l — 4yi) Iny;  yi(1 = dy,) 1nyj>)]
V5 4(i = y5) 1—-y 1—y; ’ (481)
gRFLZ(O) ow 3 t 5 Iny; 5
FLR - - D) = - P} ee’iHTi
eMz 8t My, by 2(1 —y)2 21 —wy)
1 (1 —yj) Iy (1 — i) Iny;
10,567, ( (— J J
’ 2(yi — yj) (1 —w) 1—%
1 1 <_yj(1 — 4y;) Iny; N yi(1 — 4y;) lny])>]
VYiY; 4y — yj) 1—y; 1 -y,
1 Yi
Br, = B (0 01,0ci8] 0,5 + 01,0,i6], ;0. [( ) n<>
0= 87rM2 2,52, ;1{ O i) 295 ") 2y \y
—i——l ( >+6lny‘+7},
dy; Yj 4 ( ’ )
with z; ; = /M2 s Yig = MI%V/ D where M; ; are the masses of heavy neutrinos. We can bind

this processes from the PDG [6] Br(7 — epji) < 2.7x 1078 (C.L. = 90%) and the mixing couplings [57]
1067 < 0.14 x 1074, 66| < 0.95 x 1072, [6,:65,[ < 0.011, ]6,[* < 0.021, (482)

8.3.2 7 — uee

The form factors in these processes are very similar to the 7 — euji decay, we need to replace u by e.
From the PDG [6] Br(r — epji) < 1.8 x 1078 (C.L. = 90%) and we add the mixing coupling [57]

0.2 < 2.5 x 1078, (483)
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8.4 The i — e conversion rate

In this section we are going to study the pu — e conversion in nuclei taking into account Majorana

neutrinos. The form factors involved in these processes are

A F(Q*) Z 0.6 12y2 10y; + 1) Iny; ~ 20y3 — 96y? + 57y; + 1
=02 87rM2 e 6(1— y)2 36(1 — )3 ’
2F) (0) 293 — Ty? + 11y; 3y Iny;
A — M _ 061 1 1 7 (3 7 7
2R my 87r]\42 Z < 4(1 —y;)3 * 2(1 - yi)4>
3
FZ 4 Iny;
Fpy =——*£ (O)QgLu == OM; 2 <1 - 512/V> Z |:06i9,£i <_ 0y 2 ° )
MZ 167TMWSW 3 ij=1 2(1 — yz) 2(1 — yz)
1 (1—y;) Iny; (1 —w) lny;
+0555w¢<— (- J + J
T 2y — yy) (1—wi) (1—y;)
B 1 1 (_yj(l — 4y;) Iny; + yi(1 — 4y;) Iny; )]
VU5 4y — y5) 1—y 1 —y;

FZ(0)g% ayw > 5 lny; 5
Y. — — L Ru _ 0 QT ? _
LR M2 127 M Z:: R 21y 201~

w i,j=1
1 (1—-y;) Ing; (1 — ;) Iny;

+0 g..of (_ <_ J

TR 2y — y)) (1—yi) (1—-y)
1 1 (_yj(l — 4y;) Iny; LY i(1 — 4y;) Iny; )]

VY5 Hyi — yj) 1—y 1 —y; (184)

FZ(0)g% o 2
Fi,=— L](w)QgLu T Mmg 2 < 1+3SW>
zZ T My Sy ij=1

1 (1-y)) Ing; (1 —yi) Iny;
+96'S‘i0Ti <_ <_ j j
PRI 2(y; — yj) (1—w) (1—yj)

)
[eezeT < Q?EIZ _2(1iyi)>
)

B 1 1 (_yj(l—élyi) lnyi+ yi(1 — 4y;) Iny; )]
VY5 4yi — y;) -y 1 —y;

FF(0)g% aw o { 5 Iny;
pd — _ YL Ru _ 0..00 (— !
LR M3 247 M2, ;::1 i\ (1 — )2 2(1 — )

oot (1 (1—y;) Iny;  (1—y) Iny;
*9‘”Sﬂeﬂi< 2<yi—yj>< T-w) * (-y) )

1 1 (_yj(l —4ys) nyi i1 — 4y;) 1nyj>>]
VY 4y yﬁ 1 —yi 1—y; ’

aw
Bl=_——"
b 16m Mg, s,

Zemeez ‘Vzd, [de(yi,fEt) - de<yia0>] - de(yivo)) )

a

Bt —__ W NTgfg. 0
L 167TM3V812/V ZZ; H eszu(y’La )7
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where
1 xt) [ y; Iny; yir? Inzy Yi }
Ty 22) < iy ) [T=020—pa) T T=a(—pz) Q=g —a1)
y [ y; Iny; i lnzy Yi }
vi |(1—wi)?2(1—yize)  (1—2)?(1 —yime) (1 —yi)(1 —24)

“ih y; Iny; Yi (485)
51,0 = do' (1 0) (I-y)? (1—w)

B - y; Iny; Yi
B (Yi,0) = —4dg' (i, 0) = —4 ((1 —yi)? " (1- yi)) ’

with y; = MI%V/MZ2 and z; = m? /M2, being M; and m; the masses of heavy neutrinos and quark top
respectively. From the eq. (397) we can bind the form factors above by

106, < 0.14 x 1074, (486)

and taking the following values from PDG [6]: m; = 172.76 £0.30 GeV and |V;4| = (8.0£0.3) x 1073.
We are able to measure these processes via two nuclei: 357Ti and 137Au, which share the same form

factors, they differ by constants in the conversion rate. Such constants are given in Table [I4] therefore

574

a’Z 9
R = ﬁFpT m, )44(A1L b Aop) — TO(FY, + Flip + BY) — T4(F, + Pl + BO|",  (487)
aptrj
Oé5Z§ﬂA 5 ” ” w d d d 2
Rpu = s m) ‘158(A1L ¥ Aog) — 276(FY, + Fip + BY) — 315(F, + Fi, + B[
Captau
(488)

from PDG [6]: R(Ti) < 4.3 x 10712 (C.L. = 90%) and R(Au) < 7 x 10713 (C.L. = 90%).

8.5 Global Analysis

In this subsection we do a global analysis of the 10 processes above: LFV Z decays Z — e, Z — Te,
and Z — Tu; LFV Type I u — eece, 7 — eee and 7 — pup; LFV Type II 7 — eupp and 7 — puee;
@ — e conversion in nuclei 55Ti and 137Au.

We do the analysis through a single Monte Carlo simulation where the 10 processes are run simulta-
neously. The peculiarity of all these LF'V processes is that they share the same free parameters: three
heavy neutrino masses M; with ¢ = 1, 2,3 and the neutral couplings given by (0507) matrices.

Every process is submitted under its own limit reported by PDG [6], though the conditions on the
heavy neutrinos masses and neutral couplings of heavy Majorana neutrinos are the same for all, hence

after several attempts we decided to take the heavy neutrino masses interval from 15 to 20 TeV, since

108



8 LIMITS ON LFV PROCESSES DRIVEN BY O(TEV) MAJORANA NEUTRINOS

in this interval is where there are the greatest number of results that satisfy the limit of the branching
ratios and conversion rates.

From the form factors of all those LE'V decays we can see that they receive two contributions: one is
coming from charged couplings (#9") and the second one comes from neutral couplings (A.S6%). It im-
plies that there is an interference between them. Therefore, we are able to determine the sign of each
entry of the (A9T) matrices, i.e., we can know whether the interference is constructive or destructive.
We will set (07) elements positive in order to determine the (relative) sign of the (6S0") elements.
What the Monte Carlo simulation does is finding combinations of the free parameters values that
return a value for each branching ratio and conversion rate that is less than the experimentally
measured upper limit [6]. In the following Table we show the predicted values for the branching

ratios, conversion rates and heavy neutrino masses. The modulus of the (HSGT)EM elements are all

LFV Z decays Our mean values || Present limits [6] |
Br(Z — fie) 1.20 x 10~ 3.7x 1077 |
Br(Z — 7e) 1.46 x 1078 4.9 x 1076
Br(Z — 7p) 1.09 x 1078 0.6 x 107
LFV Type 1
Br(u — ecé) 1.85 x 1071 1.0x107 12
Br(r — eee) 4.16 x 1077 2.7 x 1078
Br(r — i) 4.24 x 1079 2.1x 1078
LFV Type II
Br(t — epufi) 3.60 x 107 2.7 x 1078
Br(T — peé) 2.48 x 1079 1.8 x 1078

[ — e conversion rate
R(Ti) 6.21 x 10~14 4.3 x 1071
R(Au) 7.82 x 10714 7.0 x 10712

Heavy neutrino masses

M; (TeV) 17.186
M, (TeV) 17.185
Ms (TeV) 17.187

Table 15: Mean values for branching ratios, conversion rates and three heavy neutrino masses com-
pared to current upper limits (at 95% confidence level for the Z decays and at 90% for all other
processes). Statistical errors are at the 1% level and order permille for the heavy neutrino masses.

smaller than 7.5 x 10719, while for the other flavor combinations we get |(8S07).,| < 5.13 x 10~7 and
1(0S67),r| < 6.2 x 1077,

In order to find relations among the above processes we group them into 3 categories because of
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their neutral couplings: (05607, (0S07)e,, and (0567) ..

o (0807, —processes: Z — fie, u — eeé, and p — e conversion in nuclei 35Ti and 17 Au.
o (0SO") e —processes: Z — Te, T — eeé, and T — ejufi.

o (0S07),.—processes: Z — Ty, T — ppfi, and T — piee.

In next Figures [} 2] and [43] we present the distribution of values for LEV Type I processes

(similarly for all other processes analyzed in this thesis) in histograms where we can see their main

values indicated.

3500
3500
3000 . -14
Mean value:1.85 x 10 3000 Mean value:4.16 x 10-2
2500
2500
dg 2000 ‘g 2000
3 3
QO 1500 O 1500
1000 1000
500 500
0 0
1 2 3 _4 5 6 0.0 0.2 04 06 _ 0.8 1.0 12
Br(u—eeé) fort Br(t—eeé) fes
Figure 41: Histogram for Br(y — eeé) where Figure 42: Histogram for Br(7 — eeé) where
the main value is shown. the main value is shown.

Mean value:4.24 x 10~°
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1e-9

4 B 6
Br(t-puf)

Figure 43: Histogram for Br(r — pup) where
the main value is shown.

In Figure a heat map is shown that stands for the correlation matrix among (656").,—processes
and their free parameters. First of all, we see that there is no sizeable correlation among any process
with its free parameters. Second, the small correlation among every entry of (GSOT)W matrix is

negative, it indicates that while one of them increases the other decreases. Furthermore, Z — [e
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decay is strongly correlated with p — eeé as well as conversion rate in 35 Ti with %87Au. In Figures
and [46| the behavior of their correlations are shown in scatter plots.

In Figure |47] we can see the correlations among (0.S67)., —processes and their free parameters. The
interpretation of this plot is very similar to Figure [#4] The branching ratios of these decays have a
sizeable correlation to each other, but the predominant one is between Br(Z — 7e) and Br(7 — eee).
We show all these behaviors in Figures [48] 49 and

For (0S0"),,.—processes their branching ratios are not correlated with any free parameter as we can
observe in Figure Nevertheless, we can see sizeable correlations among branching ratios, where the
largest one is between Br(Z — 7u) and Br(r — pee). The correlations of every decay to all others
are displayed in Figures and

If we observe the three heat maps for the processes whose behavior involves neutral couplings given
by (6S61),, matrix, we realize that the three heavy masses are strongly correlated with each other
(recall that the values for heavy neutrinos are the same for all processes).

Finally, we add a heat map in Figure [55| where only branching ratios and conversion rates are involved.
This heat map that stands for a correlation matrix seems a block matrix where each block represents
a category of (6S0"),,—processes, with aid of this plot we can conclude that processes with different
neutral coupling have a very small correlation.

The scatter plots among two pairs of heavy neutrino masses in Figures and [57] show neatly that

solutions do not restrict to the nearly degenerate case.
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Figure 44: Heat map that stands for the correlation matrix among (QSHT)w—processes: Z — [ie,

[ — eeé, p — e conversion in nuclei 35 Ti and 337 Au, and their free parameters.

1e-14
1e-13
6
5 20
64
D 15
S
X 2
3 R 1.0
o
2
0.5
]
0.0
00 05 10 15 20 25 30 m o = = 0
Br(Z - ue) fe=i4 R(Ti) 1e-13
Figure 45: Scatter plot Br(Z — fie) vs. Figure 46: Scatter plot R(Ti) vs. R(Au).

Br(u — eee).
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Figure 47: Heat map that stands for the correlation matrix among (0S6%)., —processes: Z — Te,
T — eee, T — eufi, and their free parameters.
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Figure 48: Scatter plot Br(Z — 7e) vs. Figure 49: Scatter plot Br(Z — 7e) vs.
Br(r — eee). Br(t — eup).
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Figure 50: Scatter plot Br(Z — eee) vs. Br(r — euft).
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Figure 51: Heat map that stands for the correlation matrix among (HSHT)M—processes: Z — T,
T — ppp, T — pee, and their free parameters.
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Figure 52: Scatter plot Br(Z — 7u) vs.

_ Figure 53: Br(Z — 7u) vs. Br(t — uee).
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Figure 54: Br(7 — ppit) vs. Br(t — pee).
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Figure 55: Heat map that stands for the correlation matrix exclusively among the 10 processes analysed
in this section. We can distinguish that this matrix seems a block matrix representation where each

block corresponds to each neutral coupling category.
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Figure 56: Scatter plot M vs. Ms. Figure 57: Scatter plot Ms vs. Ms.
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8.6 Bounds for wrong sign processes, Type III: ¢ — (/00" with ¢ # (' = (" # ("

In this subsection we are going to study two tau decays which are known as wrong processes: 7 — eefi
and 7 — pupe. We analyze them assuming that the terms associated with LNV vertices are free

parameters, thus we are able to bind these couplings.

8.6.1 7 —=eei

This case is a realistic method to find a possible branching ratio limit as we do not assume the
(ameﬂ)f(eejeej) term as a global factor. We work in the light neutrinos massless approximation,
therefore we get rid of the first term of in eq. (439)

2 3
1 i i 1 i
Br(t — eefi) = (0.17)1;‘;’T2 2.66 x 1077 > K 3) Y (y) +—1In (y>

o1 L\2y; 2y;  \¥yi/ Ay \yj

3
1 i j [Yi
+Z (6 Iny; + 7):| + Z (emeTi)T(er@ej) %ln <y]) + %(2 Iny; + 1)
j J

ij=1 J Yi

1 Yi
Iny; + 1) + j21ny‘—|—1]
(g 1) 4 [ 22 g + 1)

with y; ; = MI%V /ij, being M; ; the masses of heavy neutrinos. We have 9 free parameters: M;,
(0,4:07:)T, and 0,;0,; with i = 1,2, 3.
We bind the coupling terms as follows |57]

2
< 1.5 x 107%(C.L = 90%),

+

(489)

|9M197—1‘ + ’0“297—2‘ + ‘9H3HT3’ < 0.32 x 10_3,

(490)
|661981‘ + ’9629@2‘ + ‘963063’ < 0.01,
from the equations above we limit each term
—0.32 x 1073 < (0,10:1)", (0,42072)", (0,30-3)T < 0.32 x 1073, (1)
—0.01 S (061961)7 (962062)7 (063963) S OOL
and the product of them must satisfy that
10,4i0+:]|0¢0c5] < 0.32 x 107°. (492)
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8.6.2 7 = pue

We will work with the branching ratio for 7 — pué decay assuming that the (HeiHTi)T(HWHW-) term is

not a global factor, it is written as follows

2 3
1 ; i 1 i
Br(r — ppe) < (0.17) 1;222 3.08 x 1077 Y [( - 3> Yi n <y> +—In (y>

= L\2y; 2y, Yj 4y \Yj

3
1 i j i
+5 (6 ny; + 7)} + 37 (0eibri) (00,5 %m (yf> + /%(2 Iny; + 1)
j J

ij=1 j Yi

1 Yi 2
+ Iny; +1) + ]2lny'+1}
D) @ Iy )

< 1.7x107%(C.L = 90%),

(493)
with y; ; = M‘%V /ij, being M; ; the masses of heavy neutrinos. Therefore, now we have 9 free
parameters: M;, (0,:6.)", and (0,30,5) with i =1,2,3.

We bind the coupling terms as follows
10c1071| + [Oe20-2| + |0e30-3] < 0.9 x 1072, (194)
|9M10H1| + |0M29M2| + ‘9“39'”3’ < 00075,
from the equations above we limit each term
—0.9 %1073 x 1073 < (0,10:1)", (0,:20+2)T, (0,30-3)" < 0.9 x 1072, (495)
—0.0075 < (961951), (9329e2), (963953) < 0.0075,
and the product of them must satisfy that
|0i0-]10,,j6,,5] < 0.68 x 107°. (496)

8.7 Joint Analysis

We are analysing the wrong sign processes which were computed simultaneously through a single
Monte Carlo Simulationlﬂ As we have seen from eqgs. (489) and the free parameters are the
heavy neutrino masses (M;—123) and the LNV couplings. The heavy neutrino masses M; (i = 1,2, 3)
run from 15 to 20 TeV, we decided to take this interval based on the experience gained in the previous
processes as in this one data are more concentrated. The conditions on LNV couplings are given by

([9T) and (195).

In the following Table [I6] we show the final results for branching ratios of wrong sign processes, heavy

Before doing the simultaneous Monte Carlo simulation we did a simplified analysis for each process aiming to
examine the results for quasi-degenerated cases.
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neutrino masses and LNV couplings.

Branching Ratios Our mean values
Br(r — eeft) 1.8 x 1079
Br(1 — ppe) 1.9 x 1079
Heavy neutrino masses

M; (TeV) 17.170

My (TeV) 17.166

M3 (TeV) 17.166

LNV couplings

(0c10,1)T (2.24 +£9.59) x 107
(0e20,0)T (14.82 +£9.69) x 10~7
(030,3)T (1.84 £9.79) x 1077
|0c:04] 2.76 x 10~%
(0,10,1) (0.75 4+ 2.98) x 10~°
(0,20,2) —(8.78 £2.99) x 107°
(0,30,3) (1.02 £2.98) x 10"
‘Qmem‘ 8.5 x 1073
(0,10:1)7 (2.08 £2.26) x 10~°

(0,:2072)7 —(0.39 +2.27) x 107©

(0,:3073)7 (0.55 £2.25) x 1076
10,4i0+4] 6.52 x 1074
(0c10e1) (3.88+1.95) x 10~
(0e20e2) (4.59 +1.96) x 10>
(0e30e3) —(5.04 +1.95) x 10~°
0ci0ci 5.65 x 1073

Table 16: Mean values for the free parameters and branching ratios in the wrong sign processes
considering Majorana neutrinos in the LHT. Statistical errors which are not shown are smaller than
the last significant figure. We recall the 90% C.L. limits [6]: 1.5x 1078 (on Br(r — eeji)) and 1.7x 1078
(on Br(1 — ppe)).

The heavy neutrino masses (M;) present a sizeable correlation among them as in the previous
analysis. Also, LNV couplings: [0;0-;| and |6,,;0,;| are moderately correlated with the heavy neutrino
masses, while 6,;0-;| and |0.;0.;| have a minimum correlation with them.

LHT is not to able to bind LFV processes known as "wrong sign" throught T-odd leptons [37].
However, when we extend the LHT model involving Majorana neutrinos with aid of ISS, the branching

ratios get a finite value of order ~ 1072, LHT extended with Majorana neutrinos also allows us to
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propose values for LNV couplings shown in Table which have not reported before in papers as

The mean values for the heavy neutrino masses from the studies in the previous section differ only

slightly from the "Wrong Sign’ analysis, ~ 0.12% in all cases.
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Figure 58: Heat map that stands for a correlation matrix among wrong sign branching ratios and free
parameters.
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9 Neutrinoless Double Beta Decay 0rv33 and its analogous tau decay

Total lepton number L = L. + L, + L; is an absolutely conserved quantum number in the Standard
Model (SM). Some extensions of the SM include interactions that can induce L non-conservation [5§].
The hypothesis of the neutrino mixing was confirmed by the observation of the neutrino oscillations
in experiments with the atmospheric, solar, reactor and accelerator neutrinos.

The electric charges of neutrinos are equal to zero. For neutrinos there are two fundamentally different

possibilities:

e if the total lepton number L = L.+ L, + L. is conserved, neutrino fields v;(z) are complex four
component Dirac fields. In this case neutrinos v; and antineutrinos 7; have the same mass and
different lepton numbers (L(v;) = —L(7;) = 1).

e If there are no conserved lepton numbers, neutrino fields v;(x) are two component Majorana

fields. In this case v; = ;.

Investigation of the neutrino oscillations does not allow to distinguish these two possibilities. In order
to reveal the Majorana nature of v; it seems necessary to observe processes in which the total lepton
number is violated. Neutrinoless double -decay of some nuclei is the only such process whose study
allows to reach the necessary sensitivity [59].

The usual double beta decay is the process in which a nucleus A(Z, N) decays into an isobar with the

electric charge differing by two units
A(Z,N) = A(Z £2,N F 2) + 2eT + 20.(2v),

double beta decay is the process of the second order in weak interaction (Gr), and the corresponding
decay rates are very low: typical lifetimes of the nuclei with respect to the 23 decay are T' > 10
years.

If neutrinos are Majorana particles, the lepton number is not conserved, and the neutrino emitted in
one of the elementary beta decay processes forming the 25 decay can be absorbed in another, leading
to the neutrinoless double beta (0v33) decay

A(Z,N) = A(Z +2,N F2) + 2¢7.

Such processes would have a very clear experimental signature: since the recoil energy of a daughter
nucleus is negligibly small, the sum of the energies of the two electrons or positrons in the final
state should be equal to the total energy release, i.e. should be represented by a discrete energy
line [60]. There are many experiments whose aim is searching for new limits of neutrinoless double
beta decays [61].
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9.1 Limits from Neutrinoless Double Beta Decay 0v33

In the neutrino sector, lepton number violation by two units (AL = 2), as implied by a Majorana mass
term, plays a crucial role. If the neutrino has a Majorana mass, then it will contribute to (AL = 2)

LNV processes. The basic process with (AL = 2) can be generically expressed by [62]
W-W= =145, (497)

where W™ is a virtual SM weak boson and ¢12 = e, 1, 7. The best known example is neutrinoless
double-beta decay (0v5f3), which proceeds via the parton-level subprocess dd — vu W*W — uue”e™.
The key subprocess in (0v33) is W-W ™ — e~ e, mediated by a Majorana ve.

One possible future collider which is being vigorously investigated at the moment is a high-energy
linear ete™ collider, known generically as the Next Linear Collider (NLC). With such a collider, it
is possible to replace the positron by another electron and look at e~”e™ collisions. If the electron
neutrino has a Majorana mass, it may be possible to observe the process e"e~ — W~W . This is
essentially the inverse of neutrinoless double beta decay [63].

Suppose that the v, mixes with other neutrinos. So, once the mass matrix is diagonalized, v, can be

expressed in terms of the mass eigenstates N;
ve ="y Ueli, (498)
i

where we have left the number of new neutrinos unspecified and the mixing matrix U is unitary [63].
Assuming that the N; are Majorana neutrinos, they will contribute to the process e"e™ — W~W ™
through the diagrams of Figure

Figure 59: Diagrams contributing to e"e™ — W~ W ™.

We begin by studying constraints on light and heavy neutrino. The most commonly assumed

mechanism of OvBg is light neutrino exchange, for which the “effective mass” or "Majorana mass"
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|mee| is constrained as follows [63,64], with the most recent one [65]

el =Y (Uei)? (my,)i < (36 — 156) meV, (499)
i
where the sum is over the light neutrinos and their masses are called (m,);. In this case we are
considering that (m,); < 1 GeV.
In case heavy neutrinos (M; > 1 GeV) are exchanged in neutrinoless double beta decay, the following

quantity is constrained in [62H64], with an updated limit in [66]

1 Vern |2
= [Vem[° <(2.33 — 4.12) x 1079 Tev !, 500
| Mee|
ee B mNm/
m

where the sum is over the heavy neutrinos and the matrix describing their mixing with leptons is
called V.

Now, focusing in our model, we have three heavy neutrinos and the mixing matrix is called 6. From
Tables and (16| we approximate the values for each heavy neutrino mass ~ 17.2 TeV (assuming a
degenerate case), then we may bind the eq.

1 0 2 0 2 0 2 ’ ’067;|2
172 ToV (10e1]® + [0e2] +’63|)<;m¢

(501)
<1721T8V> (10e1 ] + [Be2|* + 0es]?) < (233 — 4.12) x 107% TeV 1.
So, we can limit the mixing of v, with the three heavy neutrinos as follows
3
D 10eil* < (4.0 —7.1) x 1077, (502)
i=1

It is important to recall that we have approached this value by assuming degenerate heavy neutrino
masses M ~ 17.2 TeV. Tau decays that we study in the next section and neutrinoless double beta
decay (Ov(3) are examples of LNV processes. The result from the eq. agrees with the value of
|6¢ife;| from Table [16| due to it being one order of magnitude smaller than the limit of LNV coupling
predicted for the model. One possibility to find LNV processes is the Majorana neutrinos existence.
It is shown to be observable for masses up to 106 GeV, which has to be compared with an LHC reach
not exceeding 400 GeV [64].

9.2 Lepton Number Violating Tau Decays

In this section we are studying tau decays into an anti-lepton and two mesons
77 (pr) = £ (pe+ ) My (01) My (g2), (503)
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where M, My = m, K. Lepton number violation in three-body decays of 7 leptons has been widely
investigated previously [62,67-71]. Typical neutrino-exchange diagrams contributing in this type of 7

decay are shown in Figure [60

My o

T_/"’/, Lol
V:’/Xfl

w- M,

Figure 60: Neutrino-exchange tree level diagram induced by crossing of the W=W = — £7¢~ to LNV
in T — (T M M,y .

My w M,
e
%?/(/ > €+
|14
X vi/x!
4 T

Figure 61: Box level diagram to LNV in 7 — ¢ M M .

This mode is cleaner in principle than Ov 33 since the hadronic part does not involve complicated
nuclear structure. For the tree level amplitude, the hadronic part can be expressed in terms of the
decay constants of the mesons in a model independent way. The box diagram includes hadronic
matrix elements which cannot be simplified in terms of decay constants and needs to be evaluated in
a model dependent way. We expect the tree level amplitude to dominate and do not include the box
diagram. The decay amplitude for lepton number violating tau decays can be separated into leptonic
and hadronic parts [62L[71]

iM = (Mlep)w(Mhad)W- (504)

The leptonic part of the subprocess 7= — ¢TW ~*W —* is obtained by crossing the W="W = — {=(~
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amplitude, therefore, we will develop that amplitude first.
As the decay is mediated solely by the exchange of Majorana neutrinos, we recall how these ones
interact with W bosons and leptons from the eq. (350))
p 3 3 3
ﬁ%/[/ = ﬁWJZZ sz’y Pl +h.c., with W;; = Z PMNS)zk[13><3 - *(Gm)]km
j=11i= k=1
£lh _ g W+Z
2 I

V;
1
3 9
Z XfQZ]’y“PLKj + h.c..
7j=1i=7

where W;;(6;;) is the light(heavy) neutrino mixing matrix. We see in Figure 60 that both light and

heavy neutrinos contribute to the process, so the amplitude contains a lepton part of the form |72]

2 3 3
g 7 g 7
(Miep)yw = 5 > 51’7,1PLWJN-Vé)(@%PLWgZiV@ +5 Z Kl’mpLaeliX?)(@%PL@@@'XZ), (505)

=1

where the underbrackets indicate contraction. Following the useful relations from egs. (361))-(364]), it

is straightforward to see that the second fermion chain in the above equation transforms as follows

oy PLv} + Gy PLxt = v (3 PL)°0S + X2 (3 PL)°S

o o (506)
= — (Vi Prls + X! PrlS),
since v} and x? are Majorana neutrinos (v})¢ = vf, (x)¢ = x and (v, PL)¢ = —7, Pg, therefore,
7\
(Micp)ywr = =5 WZUWJW(MPLV !y Prl3) — Z Ousibesi (O Prx X1 X v Prts),  (507)
i=1 i=1

the contraction of Majorana neutrino fields turns out to be the usual fermion propagator. Then,
01 =7u(py,) and €5 = v(pyg,) the (Mjep),m takes the form

F+m +M;

2 3
g
(Miep)r = =5 Y _1lpe) P (WZ”W@ P g +9M%% MQ)%PRU(%), (508)
=1

where k(q) and m;(M;) are the momentum exchanged and mass by the light(heavy) neutrinos of

Majorana, respectively. The ¥ and ¢ terms vanish

(pe, )V Prky Pro(pe,) = EU(pe, )Y Prya Y Pro(pey)
= k*u(pe, ) Yu Yoy PLPrU(pes) (509)
—0,
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hence,
2

3
9 _
(Mlep py = _? Zu le

=1

”g W j m; 0. :00.,; M;
19 MotV JARAL SYRAZY)

+ P . 510
< ? 2 Z‘[ig YuYv RU(Z?ZQ) ( )

Finally, we obtain the leptonic amplitude for 7= — /TW =W~ by crossing the above expression
(@(pe,) = v(pr) and v(pe,) = v(pe+))

2 3 WIW! mi 0,0, M;

g _ z TiV+i V14

(Mlep)/u/ = _5 Zv(pr) ( 12— Qi ‘ + q2 — M2 ) 'YM’YVPRU(Z%*)' (511)
1 'L 3

1=

Now, we analyze the hadronic part
(MPady = MR My, + (My 4> M), (512)
where M’th and MY, are the amplitudes for the M; and M2 meson, respectively.

My, = L VGEM [gyipyq),

\[
My = f

CKM (513)
=V, 7 [@Y" Prql,

where are the quark flavor-mixing matrix elements for the mesons. In the hadronic case we

VCK M
M;
consider the initial state to be the vacuum state. This is because the initial state contains no quarks.
Let us denote the hadronic current appearing in the square bracket j*¥(x), where the co-ordinate
dependence comes from the field operators. This dependence can be factored out in the form of an
exponential. This exponential does not enter the Feynman amplitude, but rather contributes to an
energy-momentum conserving delta function. Once this factor is taken out, we are left with the matrix

element of j#¥(0). Thus we can write [2]

(M{ (q1)]5"(0)]0) = V2i far

(514)
(M (q2)157(0)[0) = V2i far,q5,

where fj, are constants. They are called meson decay constants. Therefore, the eq. (512)) is written
as
(MPD = —gPVGEMVEEM fun fadlas + (M1 & My). (515)

From the egs. (511) and (515 we obtain the whole amplitude of 7~ (p;) — £+ (pe+ )M (q1) M, (g2)
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by substituting them in the eq. (504)), it reads

4 3
. g
iM ZEVA%KMVA%KMJ’MJM2 ZWJngﬂmz (
i=1

4 3 — _
9" CKMy,CKM U(pr)ghighPro(pev)  T(pr)ghgh Pro(per )\ (516)
J_yCKMy, 0,:0p+; M;
+ 9 My Mo fM1fM2 Zz; 0+ < (pT _ (J1)2 . MZQ + (pT _ q2)2 _ MZQ
:Mlight + Mheavy-

The total amplitude receives two contributions: one of them comes from light neutrinos (WLWgﬂ)
and the other one comes from heavy neutrinos (6,;6,+;).

Now, we can compare the energy scale of the process to the square of the masses of the Majorana
neutrinos and see what impact this comparison has on the amplitude. For light neutrinos compared
to the energy scale in the processes (ml2 < (pr — @)% (pr — @2)%), we can neglect the mass in the

denominator, so the light neutrino amplitude becomes as follows

U(pr)ghgh Prv(pe+) n 0(pr)ghgh Prv(pe+)

4
9 \,CKMy,CKM
Mi = 5 mr
light B LM1 LMQ Iaay s (Mg ( (p- q1)2 (pr — q2)2

). e
where we have defined (m.+) = 330, WTTng .;mi, similarly to the eq. (499). (m.,+) is an effective
mass of a light Majorana neutrino |73].

If the heavy neutrinos satisfy that (M? > (p, — q1)?, (pr — g2)?), the contribution of the second term
in eq. (516|) is dominated by a similar factor to the eq. (500))

4
Mheavy = _.QQV]\?E{MV]SQKMJCML]CMz@ (WPT)%‘}QPRU(?H) + E(pT)%%PRU(pFF)) ) (518)

where = 25’:1 %‘iﬂ. Then, with the latter assumptions the total amplitude is written as

1
<M7—z+ >
follows

4
. g
M= VMV fu fustmes) (

U(pr)ghgh Prv(pe+) N U(PT)%QAPRU(I?H))

(pr —q1)? (Pr — 2)? (519)

4
— TVGEMVEEM fy fM2<M1€+> ((pr) s Pro(per ) + T(pr)gogh Pro (pes)) -

This expression has a suppression issue in the Majorana light neutrinos sector: the Mj;g5; is neglected
since the Majorana light neutrinos are identified as SM ones and it is well known their masses are
very small.

When the heavy neutrino mass is kinematically accessible (M? ~ (p,—q1)?, (pr—g2)?), the process may
undergo a resonant production of the heavy neutrino which substantially enhances the transition rate.
Therefore, the decay amplitude for the process can be enhanced through the resonant production of

a heavy Majorana neutrino. This enhancement of the amplitude is known as the resonant mechanism
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[62]. For tau decays the resonant contribution is from heavy Majorana neutrinos with masses of order
MeV to GeV, but in the Subsection we estimated masses for heavy Majorana neutrinos in this
model (LHT) of the order TeV, so we can not contemplate the resonant contribution.

The other contibution Mjequy is suppressed by a ~ ﬁ factor with M; ~ O(TeV). Nevertheless,

we expect that Mpeq,y Will be less suppressed than Mjgpe, it being the dominant contribution of
7= — (T M M, . Then, from the eq. we are focusing only in Mpequy

4
iM = —%VﬁfMVﬁfM fa 13\42<Ml£+> ((p-) g1 g Pr (D) + 0(pr)ghgh Pr(Dy+))

4 1 (520)
9 \CKMy,CKM
= —?VMI VM2 fMl fM2 <MT£+> (Ml + MQ)
Considering Gr/v/2 = g?/8, then
2 1 2 9
L(r™ — ("M My) = 16G% fir, far, |Vig KM VGEM| Gl My + Ms|?, (521)

where

2 1/ d*pyp / d*qi / e
M+ Mol T 2m, ) (27)%2E, | (2m)32E,;, | (27)32Ew,

x (2m)2D (p, — pe — 1 — 2)8(pr - o) (a1 - @)%

(522)
Working at the tau rest frame and taking my+ ~ 0
DPr = (m7'76)7 be = (‘p_z‘mp_Z)a q1 = (EMUq_i)) q2 = (EMqu_é) (523)
yields
2
8(pr - pe)(q1 - @2) = 2m, By (m2 —m3;, — m3y, — 2m.Ey)” . (524)
In the case My = Ma(mas, = ma, = m), the eq. (522)) becomes
9 1 m7/2 |p—é|+ L 9 9 2
Mt Mol =g [ [ gl n? —om? - omelg)t 629
m Pe|—
where ) )
—2m.E —2m. E
= < Il < T (526)

2<mT—EM+\/E%4—m2> Q(mT—EM—,/EJQVI—m2>

The |M; + M2]2 is a function which depends of m = m,, mg, and we computed it in FeynCalc |36].
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9.2.1 7T—et(uM)n n

Because we are considering my+ = 0, the |Mj + Ma|? term does not depend of m,+, hence, both

processes end up sharing the same value of [M; + Ms|2.

2

1
D™ = etnmn) = 1665 Vaal' | g | M1+ Mol (527)
1 2
T(r™ = ptn 7)) = 16GLf2 Vil L) My + My|?. (528)
T
We know that 5 5
1 0,0 1 0,0,
— TV el d — T MZ‘ 2
AR Sl Tl 7 e R Bl 7 (529)

We may bind the above equations as we did in eq. (501)) considering the neutrino mass (4 TeV) and
taking from the Table [16| the values of |0.;0.;| = 8.763 x 10™* and |0,,;0,;| = 1.937 x 1073, therefore,

0 . —4
< .
0 . —4
’<ML+> 1’79729Tue|v - 6i572.2XT1e()\/ =379 X107 Gev.
Taking m, = 1.77686 GeV and m, = 0.13957039 GeV, the value of [M; + M;|? is given by
|IMy + My|? = 2.13957 x 107*(GeV)". (531)
Using the following constant values [6]
Gr = 1.166378 x 107°(GeV) 2,
|Vipa| = 0.9737, (532)

fr = 0.093GeV.

This is a cautionary note to point out that there are different conventions of defining f,; which differ
by a factor of v/2. Some people do not put the factor of v/2 on the right hand side of eq. , so for
them fr turns out to be about 130 MeV |2].

So, (7~ —wetn 77 ) and I'(r~ — ptn~7~) are given as follows

Dt~ = etn 77) < 1.096 x 1072 GeV, (533)

D(r~ = ptr 7)) < 6.11 x 107* GeV. (534)
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The branching ratios for both processes are obtained dividing by the SM tau decay width, hence

T(r~ — etn ™
Br(r— — etrr) = LT Fe ") 159 x 1072, (535)
T

T(r~ — ptrn
Br(r— — ptrn—) = L0 %F“ ) < 8.89 % 102, (536)

9.2.2 7—et(u)K K~

In this case the decay widths are given by

1 2
F(T_ — €+K_K_) = 16G%f;1{, ’Vus’4 W ‘Ml + M2’27 (537)
Tet
1 2
(1~ = u K K™) = 16GH i [Vus| | ———| |IM1+ My|?, (538)
<M'ru+>

where the value of kaon decay constant (similar comment with respect to its normalization applies as
in the pion case above) is [2]
fr =0.110 GeV, (539)

the mg and the CKM matrix elements are taken from |[6]
my = 0.493677 GeV,  |Vis| = 0.2221. (540)

In this case
|IM1 4+ My|? = 6.30908 x 1077 (GeV)". (541)

Then, the eqs. (537)) and (538) yield

N(77 — e K K7) < 1.71 x 107% GeV, (542)

D77 = K K7) < 9.56 x 107% GeV. (543)
Finally, the branching ratios for these processes read

It~ —etK"K™)

Br(t- = e"K K7) = T

<248 x 10732, (544)

't~ - putK"K")

Br(t- - utK K™) = T
.

< 1.38 x 10731 (545)
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We see that theses processes are more suppressed when the mesons are K~ than 7~ due to K~ being

heavier.

9.23 7T—oet(ut)m K~

In this case both 7~ and K~ take place in the tau decay

7 (pr) = L (pee )7 (1) K™ (q2),

where, the four-momentum of each particle is

—,

Pr = (m7'70)7 Pe = (‘p}‘ap_z)v q1 = (EW7Q;)7 q2 = (Equ_f()a

so, the eq.(H24]) becomes

= S\ 2
8(pr - po)(q1 - @2) = 2my|py| (M2 — m2 — mi — 2m.|pi|)” .

In this case the eq. (522)) is written as follows

m?.#»mgr 7771%{

) 1 S pely 9 9 9 -
M+ Mo = aB, [ dgillg) (m2 - m2 - md — 2m.|77])
(ﬂ.) My Ip_ﬂ*

with

The decay width of these processes is expressed as

2
_ N 2 1
T(r~ = T~ K7) = 16GHf2 2 |[VERMySEM)| G My + Maf?,
T
thus, writing explicitly the decay width for each process
L
D = eta K) = 16GHRE WaaVisl? | | 1M1+ Mo,
TE
2
T(r~ = ptn K7) = 16G% 212 [ViaVas|® G My + Mo
T

2
9

(546)

(547)

(548)

(549)

(550)

(551)

(552)

(553)

The integral from eq. (549) was computed with aid of FeynCalc 36|, so that the above equations yield

D(t7 = eTn  K7) < 4.63 x 107 GeV,
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D(r~ — ptr K7) <258 x 10743 GeV. (555)

Therefore, Br(r~ — e*7~K~) and Br(r~ — pu*7~ K ) are given by

Br(r~ = etn K7) < 6.73 x 10731, (556)

Br(r~ — puTn  K7) < 3.75 x 107%. (557)

Taking the current values from Particle Data Group [6]

<2.0x107% (C.L =90%),
<3.9x%x107% (C.L =90%),
Br(r~ = e"K K~) <33x107% (C.L = 90%

Br(r~ —efnn7) )
) )
) )
Br(r~ = p K K7) <4.7x 1078 (C.L = 90%)
) )
) )

Br(r— = putr

(558)

Br(r~ — "7 K7) <3.2x107° (C.L = 90%),
Br(r— = ptn K7) <4.8x107% (C.L = 90%),

we can see that our results obtained by LHT are more constrained than the current limits. It was
expected because we started from the fact that Mjeqy, is small due to the masses of the heavy
neutrinos as we explained before in the egs. and . Another possible process may be
7~ — (Tp~p~, but this is also suppressed by space phase as m, = 775.26 MeV, so it is not considered

in our discussion.
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10 Lepton Flavour Violation in Hadron Decays of the Tau Lepton in
LHT

Throughout this work [74] LF'V processes have been studied considering, firstly, the effects of T-odd
particles, which are specific to the traditional LHT, in y — ey and 1 — eeé decays. Such contributions
can be extended to general processes £ — ¢y and £ — ¢'¢"¢" or 1 — e conversion in nuclei. In addition,
we have introduced Majorana neutrinos through an Inverse Seesaw (ISS) mechanism and examined
the scenario where just heavy Majorana neutrinos have a sizeable contribution to LFV processes.
Now, in this section we apply our model for the study of LFV tau decays into hadrons: 7 — uP,
T — pV and 7 — pPP where P (V) is short for a pseudoscalar (vector) meson.

We are going to consider the effects of T-odd particles as well as heavy Majorana neutrinos since
terms at order of O(v?/f?) are taken into account, where v is the vev of the SM Higgs and f is the
energy scale of NP (~ TeV), it yields v?/f? < 1. We begin our analysis determining the amplitudes
of the 7 — ugq with q = u, d, s quarks and, afterwards, proceed to hadronize the corresponding
quarks bilinears. For this latter step we will employ the tools given by chiral symmetry and dispersion
relations, enforcing the right short-distance behaviour to the form factors.

As we said before, we are taking into account T-odd fermions, thus partner leptons /¢ = (¢, £¢) also
will appear. We recall the content of particles given by egs. and , and the Lagrangian
that gives masses to heavy leptons. To give mass to partner leptons we need to introduce two
incomplete SO(5) multiplets [23,27,51]

3 0
vp=| o |, vi=| x. |, withv, 50U, and ¥¥ 5 Quy. (559)
0 0

This multiplet introduces Dirac mass terms for the 1&% (the superscript (°) denotes partner lepton

fields, not to be confused with charge conjugation) and yp fields as follows
Ly, = —kf (@5 n Ezoﬁ) U — koUW — MUY g + hec,, (560)
Then, partner and singlet leptons receive a ko and M masses.

10.1 7 —=4qq (L =-e,p)

Two generic topologies are involved in this amplitude: i) penguin-like diagrams, namely 7 — ¢{~, Z},
followed by {v,Z} — ¢q and ii) box diagrams. We will assume, for simplicity, that light quarks and
leptons (¢) are massless in our calculation. Corrections induced by their finite masses can be safely
neglected.

The full amplitude is given by two contributions: one of them comes from T-odd particles and the
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other from heavy Majorana neutrinos, then
M = MT7edd o MM (561)

where each one is written

MT—Odd — M$_Odd+M’£70dd+M€;{Odda
MM = MY M+ M

box ?

(562)

we will use the 't Hooft-Feynman gauge along the calculation and will write ¢ = u for definiteness.

10.1.1 T-odd contribution

The Feynman diagrams that contribute to the M}L‘)dd amplitude are shown in Figure@ (it is impor-
tant to recall the contribution from partner leptons £¢ = (7¢,£¢) ), whose structure is similar to eq.
(142)) doing the corresponding adjustments

2
—o €” _ . v

MEodd = > i(p) Q" (ALPL + ARPr) + im.o" Q, (A} Pp + AR Pg)|7(p) (563)

X q(lﬂ])@q’hﬂ(pq):

where @), is the electric charge matrix:

1 , (564)

1
Q=3

in units of [e], ¢ = (u,d, s)", and Q* = (py + pg)* is the squared momentum transfer.

The form factors have been defined as |25]
A =F]/Q*, AR =TF}/Q* A} = (F), +iF})/m.;, A% = (Fy, —iF})/m:. (565)

We have that F), = —iF}, so that A2 =0, and A}, vanishes with m,, [37]. Therefore, only Al and

A%% contribute to the amplitude, and it becomes

e2

@ﬁ

M0 = () [2i F7 Q) Prot Qu + F(Q*)V Pl (p)(pg) Qqvna(Pa), (566)

where F}, is given by

Fyy = Fylwy + Figlzy + Fiylag + Fifloe + Filge, (567)
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whose Fy/|z. a, w pepe functions were already computed in egs. (246)), (249), (258), (263), and

(265)), respectively, but in this case we consider terms at order of O(Q?). All those functions agree
with [37]. We write explicitly the form factor above

aw m, V2 ; ; 1
= T6r MQT 12 ZV“?VEIQ [FWH(% Q%)+ Fz, (i, Q%) + gFZH(ayia Q%}
- - (569
aW mr int "MW 171 fHk _
v W, Wi V . Fr ,
167TM24f2;€ He pAfy E (MZ’Q>+ ¢ <M2 Q)]
where
1 2y+5y°—y° 3y°
F = 1
e I T TR
N 1 Q* (244 546y — 2479y + 561y° — 339y" + 6Ty° N y(6 — 17y — 16y%) Iny
48 M7 60(1 — y)° (1—1y)Sb ’
5 3y — 15y% — 693 393
F == — 1
W) =6 T g e gyt Y
LY Q? (134 — 759y + 1941y? — 2879y3 — 69y* + 122° N y3(4 — 34y + 3y3) Iny
24 M2, 60(1 — y)? (1—y)6 ’
-1+ 51‘ + 222 z?
Frl@)=—ha—ms tTagoap®
1:72@72 13 — 87x + 33322 + 29323 — 1224 n 238+ z)Inz
24 M} 60(1 — z)5 (1—x)6 ’
—4+5x+ 52 (1 -—27)
Fr(z) = 60—27  (I—a) Inx
1 Q% [4+ 129z — 23122 — 9123 + 9x? N (1 —42%)Inx
8 M2 60(1 — z)5 (1— )6 ’
(569)
2 2 m2
. mir MWH 502 I,Jc_
Wlthy,—wbemgm}[_m@:m ,a:ME‘H— 2 :MZH,anda::M(%.
We have used M‘%V/M2 = v?/(4f?). Here V};, are the matrix elements of the 3 x 3 unitary mixing

matrix parametrizing the misalignment between the SM left-handed charged leptons £ with the heavy
mirror ones £f7. The Wj;, are the matrix elements of the 3 x 3 unitary mixing matrix parametrizing the
misalignment between the mirror leptons and their partners £¢ in the SO(5) (right-handed) multiplets
[37].
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We list the masses of particles which are involved in the form factors [24}25[29]

2
My = 2:W (1 - 1;f2> , Mz =My/cw, v=~246 GeV, (p factor is conserved),
/ v? f 50° /
My, =My, == (1= 2}, Ma, = -2 (1-22), Mp=v2M,2, 570
Wy Zy SW 8f2 9 Ag \/BCW 8f2 9 ] f hU ( )
02
My, = V2kif = muyi, My = MH; (1 - 8f2> y o Mye ye = Ky,

with M}, being the mass of the SM Higgs scalar and k;; the diagonal entries of the x matrix (see eq.
(1323])). We observe from eq. - ) that the contributions from partner leptons seem to behave as

~ %ML% ~ 4f4’ but mp; /My is of order of O(f?/v?), then the partner lepton term is like ~ v?/f2.

The F} form factor is given by the egs. (270), (273)), (274)), and (277). Therefore, F; can be expressed
as follows [25,37|

Fjlgy =20 @ S iy (G%”(zﬁ) 16D (ay) + G <yz->)

47 MX%V )
52 ' (571)
ayy it M 11t mek (1) (1)
+ = 2M24f4ZVH£M Wi Wy, ek (Gyc(x)mzc (:c)),
where
G (y) = L y(8—1ly—y?) 4-16y+9y*
z 36 48(1 — y)3 24(1 — )4
) 5 y(12+y—T7y%) (12— 10y + y2)
GW( ) - T 9q 3 4 lny7
18 24(1 — y) 12(1 — y) (572)
G0 (z) = 2 — 7w+ 11z? N 23 I
e TS ER DT G T et
(1), \ 20— 43z + 2922 2—33:+2:U31
G @) = —ga = T ea—at BT
2 mQC
with y; = —mfl , T = > and a = 505"/.
MWH MWH Sty
The penguin-like diagrams with Z are given in Figure @ They are expressed in eq. (143
T—odd _ e? Z
My =2 AP0 (F{ Pr + F Pr)m(0)a(pq) (v (Z1.Pr + ZrPr))a(pg), (573)
where
_ 9 (a2
AR 7(T3 — 5w Qq);
Wg , (574)
Zr = ———siyyQq,
cw
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being
g 1
Ty = 3 -1 . (575)
—1
The corresponding right-handed vector form factor F' g is O (m% / f2) in the LHT and thus negligible
as f ~ O(TeV). The left-handed form factor F'Z, at order of O(Q?) according to [37], is given by
F{ = F{lwy + F{|ay + F |2y + F{lpe + F{

2 2
__oaw iptyrir ) VT g W(0) Q Wy, B AlZ A)Z
a SWCWSWZVHZ VH@{SJCQHL (i) + MI%VH [HL (i) + (1 = 2cy) (5HL (ay:) +H;'" (y ))]}

2

_aw W mT MY vrrt Mgy, o . 7
* 87TCW8W M2 2f2 Z He M W W M V [HL(x) + <1 2cw)HL(x>:| ) (576)
with
W (0) 6—y 2+ 3y
H = In y,
L () 1—y ' (1—y)p Y
HY (y) = 26 (y) - 264, G (v),
A)Z
H 2 (y) = G (),
. 1
H () = 50 (1) — 26y G (),
Hf(x) = G;)(fﬂ)a (577)

being y; = m?%, /MI%VH and y; = m,%ic /MZ. The expression for G(Zl), GS/), G(Plc) and Gép can be consulted
in eqs. (272), (76)), (278) and , respectively.

To add the contributions from box diagrams we need to introduce the quark sector in the LHT, we
will see that this part is very similar to the lepton sector. As in the eq. we embed two SU(5)
incomplete quintuplets and introduce a right-handed SO(5) multiplet Uz [24]

ity 0 Vg
U = 0 , Uy = 0 , Yr=1 xr |, (578)
0 112 YR

i = —0%g; = —o < o ) (i=12), ¢p=-0° ( o ) . (579)
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U; and U satisfy the egs. (319) and (321)), respectively. We also have T-parity eigenstates which are
T-even and T-odd, they are given by

q1 — g2 q1+ g2
= 3 = 9 580
qSM \/§ qH \/é ( )

gsm are the left-handed SM quark doublets (T-even), and g are the left-handed mirror quark doublets

(T-odd).The right-handed mirror quark doublet is given by Wx. The mirror quarks can be given O(f)

masses via eq. (322)
Ly, = —Kif (@g n @1205) g+ he (581)

The mirror fermions thus acquire masses after EWSB, given by (similarly to the lepton sector) [24}28]

2

v
mCIl{z = ‘/i’izqf =mpi, My =M (1 - 8f2> ) (582)

where k! are the eigenvalues of the mass matrix 9. As in the lepton sector, we have partner quarks
g° = (u¢, d°) as well. Due to the symmetries on field content, there are analogies between both sectors.
We show the Feynman rules in Tables and [19] [24}37].

[V.FF] = iv"(9.PL + grPr)  (9L,rR <> 91 R);

' (583)
[SFF] = i(crPL + crPR) (cL,r < CR L)-

V,FF gL _
Ui Aguj ﬁ + ﬁiﬂH% Vitu
U LU ﬁ - ﬁxH%i V;I]u
dpiApd, 10iw - 251W wH%z Vlfljd
EHiZde — (251W + ﬁmH%) VIZ{Jd
ﬂHiW;dj ﬁlsw VIZJJd
diWgu; \/ilsw Hu

Table 17: Fermion couplings to SM and heavy gauge bosons. The mixing angle between heavy neutral
bosons is given by zy = 5g¢'/(4(5g% — ¢'?)) with e = gsy = ¢'cw. We neglect the gr component
because light quarks are massless in our approximation and the corresponding contribution vanishes
in this limit.

Partner quarks ¢ = (@€, d°) do not couple to one T-odd gauge boson and SM charged lepton [37].
They just couple to the scalar ®, thus ¢1, ¢° and ¢! are propagated. We will discuss the Feynman
rules of these fields next.

The Feynman rule for ¢%uu; (¢°dmd;) only has the Pgr component which behaves as ~ m,, (mq)

[43], but we are considering that light quarks are massless, hence box diagrams that involve these
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SFF CL
ﬂHiw+dj T\rf; ng

_ mé 2 i
Ui u, —277;?“ (1 + %2 (% — é—fv)) Vi,
1+% (3+ :cHtgw)) Vitu

UHNU; i2\/5f

.m
—t \/E}VHJU

EHiw_uj
— md '
dyd; | i (1+ P ( 1y tgw)) Vi

- . m%,. 1]
dHﬂ]dj 22\/%} 1-— ]TQ (* + .T[]jlfQW)) V[?d
— m

Ty | w3

Table 18: Fermion couplings to heavy Goldstone bosons. We have assumed that light quarks are
massless, this is why we neglect the cg factor, which does not contribute in this limit. In this process
we do not take into account ufnu; interaction as it behaves as ~ O(v?/f2). As there are two vertices
like that in box diagrams their total contribution is suppressed by O(v*/f*) and thus negligible.

interactions do not contribute. The ¢0Ufuj vertex is connected to the ¢0Tm€j one through ¢%. The
second vertex behaves as ~ my, [37], where in one case £ will be 7 but in the other ¢’ will be y and
we are taking m,, = 0, therefore box diagrams with these couplings vanish. So, box diagrams with @0

Goldstone boson do not contribute to the 7 — ugq decay.

T u
Yy

>
I U
L - ----
S-
o

U; U;

Figure 62: Box diagram that contains qbouifuj and ¢0€Tﬁ€j vertices connected by ¢°. We see ¢"0r; 1
vertex is proportional to m,. Hence it vanishes for massless daughter lepton.

There are three couplings of the ¢ Goldstone boson: ¢! UHUj, oF dej, and ¢F ui%j which can
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be related to ¢ fy;¢;. The latter vertex is given by ﬂ/;j% (1 + %) Pr [29], when ¢; = p this

contribution vanishes as m,, = 0. Therefore, »P Goldstone does not contribute to the process.

T u
\\ . //
>

|

p-
Ugi, Ui (A ;) \\

(@) (@)

\\ .
o i

u

Figure 63: Box diagrams with ¢© contribution. It is cancelled by ¢* THJJ- vertex due to m, = 0.

SFF cr,
SRl | Wik AV,
Orufd; | WAV
O dfuj || WAV,

Table 19: ¢T couplings to partner leptons and quarks [29.[37].

We see in Table that the Feynman rules for the some vertices containing ¢™, neglecting the
masses of the SM fermions, involve couplings of O(v?/f?). As each diagram contains at least two
such vertices, if any, they are suppressed by a factor of O(v*/f*). So we do not take into account
those contributions. Only the box diagram which involves interaction between ®*vf¢; with &t ufd;
(and its h.c.) contributes. Finally we show in Figure [64] all box diagrams that appear when T-odd

and partner fermions are considered.
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Figure 64: Box diagrams where T-odd particles, partner leptons and quarks, are involved.

The box amplitude is defined as
M2 = & BY (0)a(p' )y P (p)a(pg) YuPra(pg), (584)

where ¢ = {u,d, s}.
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10 LEPTON FLAVOUR VIOLATION IN HADRON DECAYS OF THE TAU LEPTON IN LHT

Therefore, in accordance to |37], the form factors from box diagrams are given by

2
w oW 1UZU U vy du\ 7/ tu d ty d
Pl =59ns2, | 212, 172 i i [_< +2xZHyJH> ooy ) o Ay dol ", i)

2m
3 1, d 3 3 — v d _ 2m dc

f2 ’ f2
d__aw Z Crr g u b g b g oy
BL _W M2 f2 X% [<2+ xHy]H>d (:L‘iH,yjH)_4xiHyde0(xz’H’yjH)

3 - 3 - m2. 2m2.
_idO(x Hy]H> - %d0< HaayjH) - ng(axiHvayjHa :| ZXUdO < ) f2j> ’

(585)

with xEU’Z)H = m%y,z);l/MI%VH’ yj(u’d)H = (mH]) 2IM,., a = Mg, /M3, = 5¢y/spy. The mixing

coefficients involve mirror lepton mixing matrices as well as mirror quark ones
d jd d
X = Vit vigvistvie . b = vigtvipvitivig, (586)

and

V= 3 Vi v, e g Myt M

H? Hq
kn,r,s My MWH My
Eut M 11/t Mg yrnryrdf Mup, afyr7a Mugs v ,sd
X5 = kz Vitd g WeiWin g = VT Vi = W W 7 Vil (587)
n,r,s

In analogy to the lepton sector, the misalignment between the partner quark mass eigenstates and
the mirror quarks as well as those between the mirror and SM quarks are parametrized by the corre-

sponding 3 x 3 unitary matrices, Vflq and Wg-, respectively.

10.1.2 Majorana contribution

Now, we are going to compute the MMal contribution. As we showed in eq.(562)), it is composed by
three parts
MYV = MIS 4 MM + MY (588)

box ’

~v and Z penguin diagrams and box diagrams which involve Majorana neutrinos. In this case we will
work with the assumption that light Majorana neutrinos are massless, therefore just heavy Majorana
neutrinos are taken into account.

The contributions from v— and Z—penguin diagrams and box diagrams are very similar to the ones
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10 LEPTON FLAVOUR VIOLATION IN HADRON DECAYS OF THE TAU LEPTON IN LHT

for p — e conversion in nuclei (see eq. (458)):

MY = —fi(p)[i2F 7 (Q*) Pro™ Qu + FJ(Q* )V P (p)a(pg)1uQqa(Pg)

Q?“

2
Mz" = az P (FL P+ FEPR)Ir ()3 (974 Pr + 97ty Pr) apa).
My = ¢ B} (0)a(p )7 Por(p)d(pg) v Pra(pa), (589)

with @), given by eq. 1’ and the couplings gf( R)q indicated in eq. |D
The form factors Fy; (from Feynman diagrams II, IV, V and VI shown in the Figure @, F}' (from

diagrams in Figure and F LZ (see Figure are given by , , and respectively

(omitting the light Majorana neutrinos contribution) are:

h OéW m 2

hooaw h 9
Fg:F}f :§20ﬂj9};jF5 (Y5, @),
)

3

1
FIQY) = [6 O F" (i3 Q) + 0,5.55:81, (Gh viny53 Q%) + ——H" (i, y;; Q° )} :
L ( ) 87TCWSW i;I KTy ( ) 2V AtV K ) ( J ) \/M ( J )
(591)
where
P, Q%) = 1 2y3 — Ty? + 11y 3y In (592)
o R T T R
1 Q% (134y> — 759y} + 1941y} — 28797 — 69y; + 12 (4yF — 34y; + 3) Iny;
2402 60y; (1 — y;)° i (1—y;)° ’
2 2 3 2
9 Q (12y* — 10y + 1)Iny  20y> — 96y“ + 57y + 1
=2A, — 593
E @ =28 M? ( 6y(1 —y)? 36y (1 — y)? ’ (553)
with y = Mvé’, Ac==>—vg+1In(4r) +1n (M2 ) which regulates the ultraviolet divergence in 4 — 2¢

dimensions, and is canceled by unitarity of mixing matrices (eq. (417)). The explicit functions F”,
G", and H" are written in eq. (452), and their analytic expressions are in eq. (453) where it is
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necessary to change M % by Q? and the (terms) expressions are as follows

h 2 5 Q (1 2
F'(yi; Q%) =~ —y it o 125, (1 —2sy) Iny; ),
j 3

1 Q2 ((L—w)B0+yy) — 202+ 6y; — i) +¥7 (1 + ;)
12(1 — y;)? M? (i —y;) (1 —y;)?
N (=6 4 yi(3 + 15y, — 4y?) + y7 (6 — 20y; — 4y3) + y7 (6 — 20y, + 6y7)) Iny;
(1—yy)?
yi(3 — dy; + 6y;(1 + y;) — 1242) In (%ﬂ)
(yi —y;)?
Q* Cyi(wi(1+3y;) — B +y;))Iny;
M7 6(1 — y;)? (1—y;)?
y
(1= i) ((1 = 3y; — 247) — yi + 5vay;) y;(1 = 3y;) In (?i)
2 + 2
(yi — ;) (L —y5) (i — yj)

G"(yi,y;; Q%)+ (terms) = —

_l’_

H"(yi,yj; Q%) : (terms) = —

(594)

For box diagrams we just consider the contribution coming from heavy Majorana neutrinos y"
Figure [0} they read

d aw
By, = 16703 53, Z 0,07, Vial* 5, (i, 22) | (595)
aw
Bu Te-AT2 2 9 10 u, (2]
L= 167 M2 SW Z Iz T’L’VJ‘ fBu(y ]) (596)

where y; = MI%V/M? with M; the mass of heavy neutrinos, z] = m?h_ /M%V with mg, the mass of the i-th
quark, Vj; is the CKM matrix. The fp, and fp, functions yield (egs. (462)) and (465]) respectively)

o) = (14 1) )~ 22 ) (597
d
i ) = <4+4yz>do (1o7) + 22l ). (599

where d(yi, z) and d¥ (i, z) are taken from eqgs. |D and 1}

Under the same assumption as in the calculation of y — e conversion in nuclei, the fp_ functions
become [48|

3
Z \Vial* FB, (i 2) = Vaal* 1B, (i ©¢) — fB, (i, 0)] — fB,4 (i, 0), (599)

=7
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3
Z |Vuj|2fBu (ylax?) = fBu(yi7O)a (600)

=]

with @z, = m?/M3,.

10.2 Hadronization

Tau decays we are considering have as final states pseudoscalar mesons and vector resonances. Hadroniza-
tion of quark bilinears gives rise to the final-state hadrons.

Resonance Chiral Theory (RxT), that naturally includes Chiral Perturbation Theory (xPT), con-
siders the resonances as active degrees of freedom into the Lagrangian since they participate in the
dynamics of the processes. We are working under RxT scheme in order to hadronize the relevant
currents involved in our analysis. For more details on the procedure followed in this part, see |75.|76]
where the definitions of all expressions are fully given.

In Appendix [H] we write all the useful tools for the development which is shown next.

We remind that the complete amplitude has two contributions:
M = MT7odd o pMai] (601)

where each one receives contributions coming from y—, Z—penguins and box diagrams.
The FAVJ form factor, considering both contributions of T-odd leptons (eq. (568)) and Majorana

neutrinos (eq. (591))), is written as follows

2

3
Fir = f‘g" ]\TZ; {Z (6 9 i Z“Q2) 4f2VI%*V |:FWH( Q2)+FZH( VH,QZ)—F;FZH(axi”H,QQ)])

2m3¢ 2mC
Vc< f2J7Q2>+F£g< 72 ,Q)] , (602)

Similarly, F} can be written from egs. (571) and (591)) as

i=1
3
WT

HZ KW, k/ikk VHE
k::

47rM5V M2 5

s ( " ) +a <2m35 )] (603)
f2 P f2 )

aw 3.1 T—— Q2 1y, ¢ ) @
Fi= S| GO0l FY (24, Q%) + MEy SVl Vi, [GW< )+ 6P @) + 26 VH)]

o M, M2 Q2

+v Z Vg? Kig W;g Wj kRkk V}]}Z

WH i,5,k=1
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The form factor coming from Z—penguin diagrams, taking into account T-odd particles (eq. (576]))

as well as Majorana neutrinos (eq. (591))) reads

3

z__ oW ot mhe,. 02 oot (chin o 02 1 2
FL _87TCWSW Zl |:9p’7’67"LF (Z’L’Q )+0M]S]10TZ (G (Zl)ZJ7Q )+ mH (ZZ)ZjaQ ))
2 1 , ,
F2 Vit Vil 52 B Oty ST [ ) + (0= 2ch) (g H ) + H (o)
8f Mg, 5

Q? 2 ; ; N B 2m3¢ 2m

VDIV SV Wi Wk Vi [HY | —52 | + (1= 2¢2)HY | — . (604)
Mgz 2Mg, W f f

For box diagrams the BY form factors are given by egs. (585]), (595) and (596

aw
BL=Tomniz 3, UZlemf)nfBAzw

8f22 i [(8+ #Hy;lH>d< Y5 — a2 )

3 3 _ 2m 2m3e
+§d0(xVHyjH) + 7(10( ay] ) - gdo(ale‘/H’adeHva :| 2f2 ZXUdO ( ]> ;

50a f2 T2
(605)
o 3
w
B% - 16T M2, 2 Z 9#10; (|V;5d|2 [de(tht) - de(Zi7O)] - de(Zi,O))
Ty Sy i j=1
U2 u 7 U fr U
+@wa [<2+ S JH> do(x{", yH ) — Az y ¥ do (2 Y™
1,3
3o vy u 3 v U 5 M2 - 2m,/9 Qmuc.
_§do(xiHyjH) _ ﬁdO(axiHvayjH) _ 7d0( ayj , )] + iTEV X;’ijdo ( f2z : f2]> 7
(606)
vl u,d
with x( JH — m?y}e)%/Ma,H, yj(- )= (mH]) /MWH, a= MWH/MAH = bcdy, /¥, and z; = M3, /M?

being M; the heavy Majorana neutrino mass.
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10.3 7 — uP

These decays where P = {n° 7,7/} are mediated only by axial-vector current (Z gauge boson) and

box diagrams. Thus, the amplitude is given by
Mo yup = MY+ ML (607)

From Appendix [H each contribution reads

2
ME = —ijcwﬂj;am ;u@') [QF7PL](p)
Mgox - _7’92FZB @PL] ( ) (608)

where C(P) and Bj(P) functions are shown in Appendix [H| F' ~ 0.0922 GeV is the decay constant of
the pion, FLZ is given by eq. 1} and, as we know, Fg is negligible.
So we can write explicitly the amplitude for each decay considering P = {7% n,n'}. Mixing effects

among these particles, which are isospin-suppressed |77], are negligible.

10.3.1 7 — px®

In this case where we are considering that P = 7% with 70 = “aﬁdg, taking into account the C'(P)

and Bj(P) functions from Appendix [H| the contributions to the amplitude become

2 2
Mg = il CEOR) [QFFPL] ) = —iol () [@QFEPL] 70),
fow = —i*FBGO)() [RPr) 7(0) = —ig”F 5(BY — BYEG) [P (). (609)

Unlike the expressions from Appendix [H] in the equation above the sum over the mixing matrices
does not appear because it is included within the form factors FLZ and B%, which are defined in egs.

(604), [G05) and (60G).

We can write the branching ratio of this decay as follows

1 /\1/2(m mz,m2

Br(r — pn®) = =
s

5 Z |MT4),U,7TO| (610)

where M, _,,p is defined in eq. (739)). Hence, it yields

2 _
Z |MT*),LLTI'O| 9
l’f

1
— Z [(mz + mi —m20)(akoal 4+ 08601%) + 2m,m. (aFoalty — bF0) | . (611)
Tkl
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Considering from [6] m,o = 134.9768 MeV, m,, = 105.6583 MeV, and m, = 1776.86 MeV

1
Z ‘M’T—MAWO‘Q = 2

if T okl

~ (886.44 MeV) [1 12a¥oal% + 0.88bF, b } : (612)
k|l

Z [(mz + mi — mio)(afroaifo + bfrobifo) + ZmMmT(ak al o — b bi:‘o)} ,

0

The generic expressions for a’lg and bl;; are indicated in eq. 1} for P = ¥ they become

1 F
Z Z
= " A.F
0 2M2s%,cn 27" Lo
1 F
Vo = - =N FF
0 QM%SIZ/VCW 9 TR LY
F
B _
aro = _@ATuz(BL BY),
B F d u
bﬂ_o - 7ﬁ27ﬂ§(BL - BL) (613)
w

10.3.2 7 — un

Considering P = n with n ~ %(uﬂ + dd — 2s5) ﬁ and C(P) and B;(P) functions from Appendix

the contributions to the amplitude are given by
. 92 F 1

A
2ey M % V6

M = —1'921?72\1/g [(\/isin 6, — cos0,) BY + (2V/2sin 6, + cos 977)3;3} () [@QPL]T(p).  (614)

The branching ratio reads

M) = — (sin 0, + V2 cos 977) a) [@FLZPL} 7(p),

1 AY2(m2, m m

I mir. Z Moyl (615)

Br(r — un) =

where M, yields

1
> Myl = CT [(mz +m% — m2)(akal + bE6l) + 2myum, (akalr — bEb) | (616)
X T k.l

5A more refined hadronization requires using the double-angle mixing scheme for the 7 — ' mesons |78]. See, for
instance, Refs. [79,80].
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From [6] m, = 547.862 MeV and m,,  given previously, we get

1
Z ‘MT—mn’Q = 9
/l‘,f

~ (807.10 MeV) [1 13afal + 0. 87bkbl*} : (617)
Kl

For P = n from eq. 1} and 1} the a’j; and b’} factors turn out to be

3 [(mz +m2 —m2)(akals + bEbE) + 2mm, (afals — b,f;bg;)] ,
T ok

2
z g rlog. Z
ay =3 %cwgﬁ (s1n0n+\/§cosﬁn> AL FT
2
z g F 1 z
V= Bz 3 g (VI Sl

°F 1
%B = _LAwi [(ﬂsin 0, — cos 0,) BY + (2V/2sin 6, + cos Gn)B‘Ll} ,

2 2v/3
B g°F 1 d
b, = _Tzwﬂ [(\@sin 0, — cos 0,) BY + (2v/2sin 6, + cos GT,)BL} . (618)

10.3.3 17— un
For the case P =1 with ' = \[(uu + dd + s3) taking the C(P) and B;(P) functions from Appendix

H] the amplitude contributions are written as follows
n . 92 F 1 \[ . — ! A
M} = —z%@% < 2sin ), — cos 6?77> () [@F; P 7(p),

My = —ngF2\1/§ [(sin 0y — 2V2 cos 0)) B — (sin 6, + v/2 cos an)Bﬂ i) [@PL)T(p).  (619)

The branching fraction is given by

/\1/2(m m m
where M., yields
1 * * * *
S Mo = [m +m2 —m2)(abals + 6 + 2mym. (abals — bEBE) | (621)
if Tkl
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From [6] m,y = 957.78 MeV and m,, , given previously, we obtain

1 ko le | kol kol ok ple
Z ‘MT*),UW”? = 2m7_ Z [(m?. —+ mi — m%/)<a,’7/an/ =+ bn/bn/) + Qm“mT(an/an/ — bn/bn/)] ,
if k,l

~ (633.43 MeV) > [1.17alyals + 0830005 (622)
%l

For P =7/ from eq. l) and 1) in Appendix [H| the a'f) and b’fg factors become

a? = — g L (ﬁsin@ —COSH)A F?
n' 2M%0W2\/6 n n Tut'L
2
Z g F 1 . Z
bn/ = —2M%C 57 (\/58111 077 — COS 67]) ETMFL 5
B F N L 6, — 233 cos0,)BY — (sinfy + v/2 cos 0, B
ay == EWE (sin6, — cos ) B}, — (sinf, + v2cosb,)B} | ,
bB = QZ—FE L('e 2v/2cos 0,)) B$ — (sin 6, + /2 cos 6,)) BY (623)
=Ty w2\/§ sin oy — costy) by — (sin b, + costy)br | -

104 71— uPP

In this part we will consider the decays into the pairs PP = {rt7~, Kt K~ KK} (others are CKM-
or isospin-suppressed). The contributions to this kind of decays come from y—, Z— penguins and box

diagrams. Thus, the total amplitude can be written as follows
Mosupp = MEP + MEP + MEL. (624)

Using the expressions shown in Appendix[H| we hadronize the quark bilinears and get the contributions

for each decay that are presented next.

104.1 7 — punta™

As mentioned earlier, the total amplitude receives three contributions coming from y—, Z— penguins

and box diagrams, hence the amplitude for this decay is

Mo ypmin- =M™ + ME™ + MET (625)
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where each amplitude is given by eq. (749) (see Appendix

2

M5 = ORQAY, — ) P (QP)PL + 2imcbony P (@) Pal (),
M5 S ), ~ ) FE Prlr (),
M =S R (s)(BE - BORG) (P, - p) Pur(o) (626)

(recalling that the sum over the mixing matrices does not appear because it is included within the
form factors). The vector form factor ;™ is given by eq. (757) in Appendix
From Appendix [H] the branching ratio for this decay yields

_ 1 S+ 1
BI‘(’T — //J7T+7T ) = 647’[‘377’1,72_1—‘7./8 dS/t dtg Z |MT—>/L7T+71'_ 2, (627)
- - Z'7-fl

where s = (p, + pg)? and t = (p — pg)?, so the limits of the integrals are

=L [(mi = m2)” = (N2 (s,m2m2) F A2 (2, s m2>)2] ,

T 4s ’
S = 4m72r+7
51 = (my —my)>. (628)

10.4.2 71— pKtK-

The total amplitude for this decays reads as
Y e e KTK~ KTK-
Mokt k- =M, + M7 + Mpo (629)

where from Appendix [H] each amplitude can be written

e? +
M =GR W@, — 9 FLQ) P + 2imeplio,upi By (Q°) Prl7 (1),

2V
ME T =g22‘°;§M§F§+K ()P, ~ pIFL PLIr(p)
MBS =75 9 R (5) (Y BHORW)(p, — p,) Prr(p), (630)

the vector form factor Fé{ “K” is shown in Appendix . The branching ratio expression is very similar

to 7 — pumT T, we just need to replace m, by my in the integral limits.
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10.4.3 7 — puKOKO

The total amplitude is given by

KOKO0 KOKO0 KOKO
T uKOKO — M’y + MZ + MBOX : (631)

M

From Appendix [H] each amplitude is expressed as follows

— 2 —
ME = S5 R ()@ (9, — ) FR(Q) e + 2imeplioup F(Q) Prlr (o)

S
_ s2 o

ME'R g L B )0)) 5, 9 IFE P (),
— 2 _

MEE =T R (5)(BY - BRW) (p, — p,) PLr (), (632)

with F‘IfOF given in Appendix . The branching ratio can be obtained from eq. (750) with mp, =

mp, = Mo in the limits of the integral.

10.5 7 —uV

The calculation of observables involving hadron resonances as external states is not properly defined
within quantum field theory because hadron resonances decay strongly and are not proper asymptotic
states, as is required in that framework. When an experiment measures a final state with a vector
resonance, the experiment reconstructs its structure from the pair of pseudoscalar mesons with a
squared total mass approaching m%/, where V' = p,¢. For instance, from the chiral point of view,
two pions in a J = I = 1 state are indistinguishable from a p. Then, following the expressions from
Appendix [H] the branching ratios can be obtained. The procedure is very similar to 7 — uPP decays,

we need to computed the same integral (eq. [750) where now the limits on s are different. They are
given by eq. (753]).
10.6 Numerical Analysis

First of all, we recall the masses of particles which come from LHT that are involved in the processes
under study [24,25.29]:

2
Myw v (1 Y > , Mz =My /cw, v=~246 GeV, (p factor is conserved),

T osy U 12f2
/ v? f 502 /
My, =Mz =-—|1-— My, =—— 11— — Mo = vV 2Mp~ 633
Wy Zu Sy 8f2 ) Ap \/BCW 8f2 ) o \[ hUa ( )
2
v
Myi = \/ifiiif =M, Myi = MH; (1 - 8f2> y  Mye ye = K2,
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with M}, being the mass of the SM Higgs scalar, k;; the diagonal entries of the x matrix (see eq. )
(similarly for the masses of T-odd quarks with «; instead of k;; and replacing dy-quark by ¢y and
ug-quark by vg) and ko the mass matrix of partner leptons from eq. (kd similarly for partner
quarks of u and d types). Due to My, = 125.25+0.17 GeV [6] and v ~ 246 GeV, we can approximate

V2

Mg = \/§th ~ 5, (634)
and assuming universality [39],
M; f
|kis| < 0.17 (TeV) <2.136 (TeV) , (635)
for f larger than a TeV. This effective description requires M; < 4xf with M; the heavy Majorana

neutrino masses.

So far, the free parameters are: f (scale of new physics); r; and k] (Yukawa couplings for T-odd
leptons and quarks); ko and k3, mass matrices for partner leptons.

The expressions X;‘j, Xglj, )’(%‘j and )’(fj (see eq. 1' describe the interaction vertices from box diagrams,

those can be re-written in terms of free parameters as follows

4
_ v k -
%= S VR kW Winkan VBTV K WAHWE ke Vi
k,n,r,s
d vt v? )’ kot t dt t d
O T
Xij = AME (1 - 8f2> Z Vire ’{kkaiWin”nnVﬁzVHq ngij qus/{’l;svflq7 (636)

k,n,r,s

where we see a small shift between interaction vertices of order O(v?/8f?). The mixing matrix of
heavy Majorana neutrinos is bounded by eq. (402)

10,5671 < 0.011. (637)

Considering just mixing between two lepton families the mixing matrix of T-odd leptons (VI%* foﬁ)

and the mixing matrix among partner leptons (VVZTJW]k) can be parameterized as follows |37]

1 0 0 1 0 0
V=10 cosly sinby , W=1 0 cosOy sinfy |, (638)
0 —sinfy cosby 0 —sinfy cosOy

where Oy, Oy € [0, 7/2) is the physical range for the mixing angles and fy must not be confused with
the weak-mixing ("Weinberg’) angle. We have assumed g — 7 mixing, similarly for the evaluation of
processes with 7 — e but the 2 x 2 rotation matrices now involve the first and third T—odd lepton

families (analogous mixings, in the top left 2 x 2 submatrix, can be used for quark contributions to
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1 — e conversion in nuclei).

We will assume no extra quark mixing and degenerate heavy quarks, then V}qn and W17 will be equal to
the identity. Therefore, the other free parameter are: 6y, fy and neutral couplings of heavy Majorana
neutrinos: (656%),,,.

For the form factors we do a consistent expansion on the squared transfer momenta over both the
squared masses of heavy particles Q%/A\? being A = {My,,, Mz,,, Ma,,, Mg, M;}. This amounts to an
expansion, at the largest, in the m2/f? ratio.

For completeness, we include two analyses: first we do not assume heavy Majorana neutrinos contribu-
tions and the second case involves the presence of heavy Majorana neutrinos raising from the Inverse
See Saw mechanism seen in previous sections. We have decided to include the first case because there

is not a previous analysis without contributions coming from Majorana neutrinos for those processes.

10.6.1 7 — (P ({=e,p)

We begin the discussion of results with the case where the processes have no Majorana neutrinos.
These processes are computed in a single Monte Carlo simulation which runs them simultaneously.

The resulting values obtained from our analysis are shown in Table

T —{P ({ =e,u) (C.L. = 90%) without Majorana neutrinos contribution.

New physics (NP) scale (TeV) Mixing angles
f \ 1.49 v 42.78°
Branching ratio Ow 42.69°
Br(r — en?) 5.24 x 1077 Masses of partner leptons (mye = myc)(TeV)
Br(r — pm®) | 3.42x 1077 [ mye 3.12
Br(r — en) 2.32x 1077 | mye 3.15
Br(r — un) 1.91 x 1079 Mye 3.37
Br(r — en/) 2.20 x 1078 Masses of partner quarks (mye = mge) (TeV)
Br(r — pn') 1.79 x107% | mye 3.55
Masses of T-odd leptons (TeV)
my, 2.11
me2, 2.11
myg 2.12
m,) 2.10
m,z 2.11
m,; 2.11
Masses of T-odd quarks (TeV)
mdiq 2.71
My 2.70

Table 20: Mean values for branching ratios, masses of LHT heavy particles, and mixing angles obtained
by Monte Carlo simulation of 7 — ¢P (¢ = e, i) processes where Majorana neutrinos contribution is

not considered.
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During all Monte Carlo simulations of our analysis each branching ratio has been delimited con-
sidering their C.L. with aid of SpaceMath package .

We observe that T-odd leptons are lighter than T-odd quarks by 0.6 TeV which means that |x;| <
||, that is, the Yukawa couplings of T-odd quarks are more intense (|x;;| < 1.002 and |s};| < 1.282).
We recall that in our model we are considering degenerate T-odd quarks for simplicity.

Regarding partner leptons (m,¢) and partner quarks (mye) their masses are above 3 TeV, being
the latter the heaviest particles coming from LHT.

The mean values for mixing angles 6y and 6y are 42.78° and 42.69°, respectively. If these values
are transformed to rad (perhaps it is a more comfortable way to read this information), they become
Oy ~ Oy =~ mw/4.2. This result is close to maximize the LFV effects, since this happens when 0y =
Oy = /4.

In Figures [65| and [66| the correlations among branching ratios and their free parameters are shown
for both decay modes, ¢ = e and £ = u. We want to highlight the free parameters that have sizeable
correlations among them. The magnitude of Yukawa couplings for T-odd leptons is anticorrelated
with the T-odd quark ones. This could explain why the T-odd leptons are lighter than T-odd quarks.
On the other hand, the correlations among the Yukawa couplings of T-odd leptons are high, which

implies their masses are very similar.
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Figure 65: Heat map where we can see that there is no correlation among 7 — eP decays and their
free parameters (case without Majorana neutrinos).

In the following scatter plots in Figures [67] and [68 we observe that the data accumulates in the

lower left corner, which means that we have more points with small branching ratios. In Figures
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Figure 66: Heat map for 7 — puP decays and their free parameters, where we see a similar behavior
to 7 — eP decays (case without Majorana neutrinos).

and [70] we see how the branching ratios for both decay modes behave versus f. In both scatter plots
the decay mode with P = 7’ reaches the highest values, meanwhile the P = 7 channel is the most
restricted one.

The mean values of branching ratios from our numerical analysis are at most just by 2 orders of

magnitude smaller than the current ones @, recalling that we considered only particles from LHT.
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Figure 67: Scatter plot Br(r — en®) vs.

Br(7 — en’) without Majorana neutrinos.

Figure 68: Scatter plot Br(r — pun®) vs.
Br(7 — un) without Majorana neutrinos.
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Figure 69: Scatter plot f vs. Br(r — eP) Figure 70: Scatter plot f vs. Br(r — uP)
without Majorana neutrinos. without Majorana neutrinos.

Now we include the contribution from Majorana neutrinos. Then, as in Section |8 the decays
can be distinguished by their neutral couplings: (656").,—processes and (OSOT)#T—processes. Both
types of decays share almost the same free parameters just differing by the neutral couplings of heavy
Majorana neutrinos. Therefore, the phenomenological analysis for 7 — (P (¢ = e, u) decays is done
through a single Monte Carlo simulation in which the six decays are run simultaneously. In Table [2]]
the corresponding analysis results are shown.

In this case, with heavy Majorana neutrinos contribution, the new physics (NP) scale is greater
than the case without them, the difference is not really sizeable, just ~ 0.02 TeV. In this case we
realize that the T-odd leptons are heavier that the previous case by ~ 0.09 TeV, but the T-odd quarks
keep basically the same values. Actually, here the mass ordering between T-odd leptons and quarks
(m(&l/)'}] > Mg, ) is reversed with respect to the analysis without Majorana neutrinos.

The partner particles behavior is different that the T-odd ones. In partner particles the quarks
are heavier than leptons. The presence of Majorana neutrinos causes the partner leptons have very
similar masses to partner quarks.

Now, the new values that appear in this analysis are the masses of heavy Majorana neutrinos and
their neutral couplings. We observe that the masses of Majorana neutrinos are above 19 TeV, being
the maximum difference among them ~ 0.18 TeV. Their neutral couplings for both processes have the
same order of magnitude, ~ O(1077).

In the following two heatmaps in Figures [71] and [72] we realize that branching ratios are almost
uncorrelated with their free parameters.

The relation among Yukawa couplings of T-odd leptons and quarks is kept from the previous case,
without Majorana neutrinos. Likewise, the high correlation among Yukawa couplings of T-odd leptons
continues when Majorana neutrinos are added.

The way the branching ratios are correlated in this analysis looks different than the case without
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T — (P ({=e,u) (C.L. = 90%) with Majorana neutrinos contribution.

New physics (NP) scale (TeV) Mixing angles
f \ 1.51 6y 43.07°
Branching ratio Ow 42.82°
Br(r — en?) 8.69 x 1079 Masses of partner leptons (mye = myc)(TeV)
Br(r — ur?) 6.96 x 107 Mye 3.26
Br(r — en) 6.19 x 1079 Myg 3.26
Br(r — un) 5.19 x 107 My 3.30
Br(r — en’) 2.19 x 1078 Masses of partner quarks (mye = mge) (TeV)
Br(r = pn') | 1.94x107° Mys | 3.31
Masses of T-odd leptons (TeV) Masses of heavy Majorana neutrinos (TeV)
m, 3.06 M; 19.18
me, 3.03 M,y 19.07
m 3.03 M; 19.25
my 3.05 Neutral couplings of heavy Majorana neutrinos
mye 3.02 [(0S07)er| 3.32x 107
m,s 3.02 [CRZ P 3.90 x 1077
Masses of T-odd quarks (TeV)
Mg, 2.78
muvH 2.78

Table 21: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of 7 — ¢P (¢ = e, u1) processes.

Majorana neutrinos. For both processes with ¢ = e and ¢ = p considering Majorana neutrinos
contribution, the decay modes with P = 7 and P = have the highest correlations. To explain that,
we need to get back to egs. and and see that their a’f_—, and b’]% factors look similar in these
cases.

In contrast to the analysis done in Subsections and here the heavy Majorana neutrinos
are barely correlated among them. Recalling the results obtained in Subsections and the mean
value for heavy Majorana masses is around 17.2 TeV, differing slightly (~ 0.12%) in all cases. In this
analysis the mean value for heavy Majorana neutrinos is ~ 19.16 TeV. Thus, the difference between
these new results and the previous ones is just ~ 10.23%.

The mean values for mixing angles 6y and 6y are 43.07° and 42.82°, respectively. They become
in rad y =~ Oy ~ 7/4.18, this result is close to maximize the LFV effects, since this happens when
Oy = Oy = 7/4.

The two neutral couplings |(0.S67)¢,| (¢ = e, 1) have the same order of magnitude, O(10~7), which
matches the values obtained in Subsections [8.5

The interpretation of the following Figures [76] [77] and [78] is analogous to the case
without Majorana neutrinos contributions, but now we include the correlation between branching

ratio versus masses of Majorana neutrinos, that looks similar to the branching ratios with respect to
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Figure 71: Heat map where we can see that there is no correlation among 7 — eP decays and their
free parameters.

f plots.
We realize that the mean values of branching ratios from this numerical analysis, considering
Majorana neutrinos contribution are smaller just by 2 orders of magnitude with respect to the current

ones []§[], similarly as the previous case, with only particles from LHT.
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Figure 72: Heat map for 7 — puP decays and their free parameters, where we see a similar behavior
to 7 — eP decays.
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Figure 77: Scatter plot My vs. Br(r — eP).
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Figure 76: Scatter plot f vs. Br(7 — uP).
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Figure 78: Scatter plot My vs. Br(r — uP).
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10.6.2 17— (PP, (V ({=¢,p)

Because the structure of the branching ratios for the processes 7 — (PP and 7 — {V ({ = e, p) is
very similar they have been computed simultaneously by a single Monte Carlo simulation. We can
see the obtained results for this analysis in Tables and where two cases have been handled:
firstly when particles coming from LHT are involved in the processes. Second, adding the effects of

Majorana neutrinos.

T — (PP, IV ({ =e,pu) (C.L. = 90%) without Majorana neutrinos contribution

New physics (NP) scale (TeV) Mixing angles
f \ 1.50 0y 43.36°
Branching ratio Ow 41.50°
Br(t — entr™) [3.92x 1077 | Masses of partner leptons (m,c = myc)(TeV)
Br(r — prtr™) | 3.96 x 1079 | mye 3.20
Br(r — eKTK™) | 238 x 1079 | myg 3.15
Br(r — uKTK™) | 2.85 x 1077 | mye 3.31
Br(r — eK°K0) | 1.15 x 1079 | Masses of partner quarks (myc = mge) (TeV)
Br(r — pKOKO) | 1.33 x 107 | mye 3.32

Br(r — ep) 1.10 x 107°
Br(t — up) 1.12 x 107
Br(1 — e¢) 1.77 x 107°
Br(r — ue) 1.87 x 1079
Masses of T-odd leptons (TeV)

myy 3.12
my2 2.98
m,s 3.09

H

Masses of T-odd quarks (TeV)

mar 2.92
My 2.91

H

Table 22: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of 7 — ¢PP, ¢V (¢ = e, u) processes without Majorana
neutrinos.

We see that the Majorana neutrinos effects on the new physics scale (NP) and T-odd particles is
that they are both larger than when those contributions are not considered. The new physics (NP)
scale and T-odd leptons increase by ~ 0.05 TeV whereas the T-odd quarks grow by ~ 0.8 TeV. The
mass ordering in T-odd particles seen in 7 — /P without Majorana neutrinos case is conserved when
Majorana neutrinos contribution is added in 7 — ¢PP, £V, i.e., T-odd quarks are heavier. This

hierarchy of masses is reversed if Majorana neutrinos are taken into account in 7 — ¢P and they are
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excluded in 7 — (PP, ¢V, though.

While in Tables and the masses of T-odd quarks do not exceed 3 TeV, in Table 23] are
around 3.7 TeV, which is above ~ 1 TeV from the values obtained by 7 — ¢P analysis.

Unlike 7 — ¢PP, £V processes with Majorana neutrinos, in all other cases the masses of partner
leptons are above 3 TeV. For partner quarks, in all cases they are heavier than lepton partners. Only
in T — (PP, £V processes with Majorana neutrinos the T-odd particles are heavier than the partners
ones.

The values for mixing angles 8y, and 0y do not have a sizeable difference between this section and

the previous one ~ 7/4.20. We see that the values tend to maximize the LFV effects.
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Figure 79: Heat map for 7 — ePP, eV decays and their free parameters not considering Majorana
neutrinos.

The Figures [79) and [94] stand for a correlation matrix where we can see how branching
ratios and free parameters are correlated.

It does not matter whether there are Majorana neutrinos or not, the correlation among branching
ratios for 7 — (PP, £V processes look very similar in both cases. This can be understood as a result
of the largest contribution for every processes coming from the pions loop in the F‘I/D P(s) function.
Then, as this dominant contribution is proportional for all decays modes, this causes the correlations
among them to be maximal.

In the cases from this section the high correlation among Yukawa couplings, which appears in the

7 — (P decays, vanishes. It can bee seen from the mass values of T-odd particles in Tables [20] and
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Figure 80: Heat map for 7 — puPP, uV decays and their free parameters, where we see a similar
behavior to 7 — ePP, eV decays not considering Majorana neutrinos.

where they are practically the same. On the other hand, in Tables [22] and [23| the masses of T-odd
particles can be distinguished from each other easily.

If the magnitudes of neutral couplings in Table 23| are compared with the ones in Table we will
realize that they conserve the order of magnitude.

If a comparison is done among Majorana neutrino masses obtained by the analysis of 7 — ¢P and
T — {PP, £V, two masses in the latter case are lighter since their values are below 19 TeV. Yet, this
case has the heaviest Majorana neutrino My < 19.33 TeV.

The branching ratios for all processes, when Majorana neutrinos contribution is considered, are
greater than when this contribution is excluded. All our results for 7 — ¢P, PP,V (¢ = e, ) are very
promising, as they are only, at most, 2 orders of magnitude smaller than current bounds @

In the scatter plots in Figures B3] and [88 we see how the branching ratios are
related. For scatter plots with ¢rt7~ vs. /KTK~, (¢ = e, ) the points are more spread out as the
BR of 77 increases. The scatter plots in Figures [86] and [88] show a similar behavior, they have a gap
when Br(r — uK+tK~) ~ 3 —4 x 1079 If we had more points, the gap would reduce and eventually
vanish.

We observe that the branching ratios are arranged in triplets in Figures|89 and [90| where sometimes
the two points representing the K K modes are closer and sometimes not that much, but the triplet

pattern is maintained. Figures|[91] and [92| show how the branching ratios for 7 — ¢V processes behave
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Figure 82: Scatter plot Br(t — eKTK ™) vs.
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Figure 84: Scatter plot Br(r — eKTK ™) vs.

Br(r — e¢) without Majorana neutrinos con-
tribution.

with respect to f, where the decay modes with V' = ¢ as final state reach the highest values.
The interpretation of scatter plots in Figures [o7 P8 [TO0], [T01], [T02] [T03] [T04], [T05]

and is analogous to the scatter plots in which Majorana neutrinos are not involved, since the

behavior that scatter plots describe when effects of Majorana neutrinos are considered does not change.

Additionally, in the case with Majorana neutrinos we can see how branching ratios behave faced to

Majorana neutrino masses M; in Figures [T07], [T08] [T09] and [I10] They look like the scatter plots with
Br(r — ¢PP(V)) vs. f, which makes sense because the masses of Majorana neutrinos are related to

fas<Anf
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Figure 87: Scatter plot Br(r — urt7™) vs.
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T = (PP, {V (£ =e,u) (C.L. = 90%) with Majorana neutrinos contribution

New physics (NP) scale (TeV) Mixing angles
S | 154 2% 43.61°
Branching ratio Ow 42.21°
Br(t — ertr) | 4.75x 1077 | Masses of partner leptons (m,c = myc)(TeV)
Br(r — prtn™) | 4.90 x 107° mye 2.91
Br(r = eKTK™) | 2.53 x 107 Mg 2.99
Br(t — uK+tK™) | 3.38 x 107° My 2.95
Br(t — eK°K9) | 1.16 x 107 | Masses of partner quarks (m,c = mgc) (TeV)
Br(r — uKK0) | 1.50 x 107° My 3.08
Br(r — ep) 1.33 x 1079 Masses of heavy Majorana neutrinos (TeV)
Br(r — pp) 1.39 x 1079 M; 18.82
Br(t — e¢) 1.78 x 1079 M, 19.33
Br(r — uo) 2.08 x 107 M3 18.92
Masses of T-odd leptons (TeV) | Neutral couplings of heavy Majorana neutrinos
mg, 3.49 [(0S07)e,| 2.20 x 1077
me 3.47 [CRZPA 3.14 x 1077
mys 3.21
H
my 3.48
m,2 3.46
H
mys 3.20
Masses of T-odd quarks (TeV)
H
m,i 3.71
H

Table 23: Mean values for branching ratios, masses of LHT heavy particles, mixing angles and neutral
couplings obtained by Monte Carlo simulation of 7 — (PP, ¢V ({ = e, uu) processes.
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Figure 103: Scatter plot f vs. Br(r — ePP).
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Figure 104: Scatter plot f vs. Br(r — uPP).
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11 Conclusions and Prospects

Littlest Higgs Model with T-parity, LHT, is such an exciting framework trying to better understand
processes beyond SM as (observable) LFV and LNV ones, while at the same time attempting to
alleviate the hierarchy problem affecting, generically, the Higgs mass. Simultaneously, within our
setting, it could shed light on the smallness of neutrino masses (and possibly on baryogenesis through
leptogenesis). For that purpose, LHT, through a spontaneous collective breaking of a global symmetry,
gives us a large number of new particles whose masses are of order O(f), the new physics (NP) scale
of energy, f ~ O (TeV). Our results for the studied LFV decays are quite promising as they lie
approximately one order of magnitude below current bounds, so probing the theory at current and
forthcoming colliders is possible. Nevertheless, the story does not end here, thanks to LHT symmetry
that enables adding neutrinos realizing an ISS mechanism, i.e., LHT can be extended to a model with
neutrinos of Majorana nature, which is really marvelous because we can tackle LNV processes as well
(this has not been fully explored yet and it appears as a bright avenue for future research).

In this work we developed all the needed tools in order to get the numerical predictions of branching
ratios, particle masses, couplings, etc., coming from our model.

Our effort was focused firstly on studying purely leptonic decays involved in Section[7] Afterwards,
the analysis was extended to LE'V hadronic decays of the tau lepton, in Section[10] The most important

results can be summarized as follows:

e From the numerical analysis done in Section |8 the new physics (NP) energy scale is around
f ~ 1.36 TeV, whereas in Section [10| f ~ 1.50 TeV. The difference between these two figures is
~ 9.34%, which is reasonable at this stage (a global analysis of all LEV processes is needed and

will be presented elsewhere).

e LHT with Majorana neutrinos extension enables to bind the LNV couplings shown in Table

This is a novel result since they were not restricted in ref. [57].

e Regarding new couplings that we first encounter, there arise the neutral couplings of heavy
Majorana neutrinos, denoted as (#.S67)y». The magnitude of these couplings agree in both sets
of analyses, as reported in Sections [§] and

e Masses of particles coming from LHT, T-odd and partner fermions, are below 4 TeV, almost 5

times lighter than heavy Majorana neutrinos. This is consistent with the first item.

e The masses of heavy Majorana neutrinos in Section [10| are M; ~ 19 TeV (we recall that M; ~
4 f). Compared to previous analyses in Section , these masses of heavy Majorana neutrinos

are heavier by ~ 2 TeV (~ 10% of difference) and f is fully consistent.

e In all 7 — £¢'¢" (including wrong-sign) decays and in y — e conversion in Ti, the mean values

of our simulated events satisfying all present bounds are only one order of magnitude smaller
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than current limits. In 4 — eeé, Z — 7¢ and conversion in Au, our mean values are around two
orders of magnitude smaller than current limits (only Z — jie does not have the potential for

probing our results in the near future).

e The pattern of correlations among processes is completely different to the ‘traditional’ LHT
(without heavy Majorana neutrinos), where for instance wrong-sign decays are negligible. It
should also be noted that the correlation between L — ¢y and L — £¢'¢" decays, which is a
celebrated signature distinguishing underlying models producing the LFV, here is broken, as
the former decays depend only on the charged current mixings #9" and the neutral current ones
also on the neutral current admixtures, #S6t, which reduces sizeably the correlation among
both decay modes. Only within the LHT, upon eventual discovery of LFV in charged leptons in
several processes, correlations among them would immediately distinguish the usual scenario [37]

from the one studied here.

All these results have been published in [33] and [74] and they offer us rosy prospects in a near

future:

e Due to mean values of new physics (NP) energy scale f, masses of heavy Majorana neutrinos
M; and neutral couplings (HSGT)M matching in all our studies, we plan to undertake a global
analysis (including purely leptonic processes and conversions in nuclei, see e.g. refs. |76,89,90]),

which is required and will be presented elsewhere.

e All our results are very promising and will be probed in current and near future measurements,

as they lie approximately only one order of magnitude below currents bounds [6].
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A Appendix: SU(5) generators

We begin by enumerating the generalized generators of the SU(5) symmetry group [82].

SU(3) Generators

The SU(3) generators are embedded in SU(5)

01 00O 0 — 0 0 O 1 0 0 0O
10 000 : 0 0 0 O 0 -1 0 0O
Ar=]100 0 0 0|, A2=]10 0 00 0 |, A3=| 0 0 00 0 [,
0 00O0O 0 0 00O 0 0 00O
00 00O 0 0 00O 0 0 000
001 0O 00 — 00 00000
00 00O 00 0 0O 00100
M=]100 0 0|, A= 43a 0 0 0 0 |, XM=| 01 00 0 [,
00 00O 00 0 00O 00 00O
000 O0O 00 0 0O 00 0O00O0
00 0 00O 10 0 00
00 -2 00 01 0 00
Ar=104¢ 0 0 0|, As = 1 00 -2 00
V3
00 0 0O 0 0 0 0
00 0 00O 00 00

Mixed Quantum Numbers Generators

The generators with non vanishing SU(3) and SU(2) quantum numbers are not present in the SM.

They can be computed through the commutator relations between the generators of SU(3) and the
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generators of SU(2)
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SU(2) Generators

The SU(2) generators are embedded in SU(5)
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Diagonal Generator

We have another diagonal generator that we will identify eventually with the SM hypercharge

-2 0 0 00
0 -2 00
A ! 0 0 200
2% = = - :
V15
0 30
0O 0 0 0 3
where, under the unitary transformation.
Ao = AN A7L

The unbroken generators are Ao, A5, A7, A10, A12, A14, A 16, A\18, A20, A22 and the broken generators are
)\la )\37 )\4a /\67 )\87 A97 )\117 )\137 )\157 )\177 A197 )‘217 )‘237 A24~

B Appendix: T-even and T-odd combinations

We choose the [SU(2) x U(1)]; x [SU(2) x U(1)]2 generators as

a/2 0
o Yi= diag(3,3,-2,-2,-2)/10, (639)
0  Osxs
a O3x3 0 .
QZ = ) Y2 = dZCLg(Q, 27 27 _37 _3)/10 (640)
0 —0%/2

with {o®} are the Pauli matrices. As {Q} + Q5,Y1 + Y2} is unbroken then

W = WiQf + W5Q5 = WiQi + WiQT + WiQT + Wy Q; + W3Q3 + W3Q3 =

‘171 2 1172 2 11732
1 ( 1 1
2 T3 T2
0 ,
2 < 2 2
T\2 T 2 2
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and
5+ by
1 Bt 5,
B:BlYl—FBng:g By — By
3B
—Bi -2
- %
Since SM gauge bosons are T-even, it satisfies
W —SoWT =
W3 +Ww3 (Wi +w3)—i(W2+W3)
2 2
(W) eiwiewd) _wisws
2 2
0
CwEwg (Wl ) +i(WEews)
2 2
_(wiwy)—i(wiws) Wi+ W3
2 2
and
Bi1+B»
2
B1+Bs
2
BYy — %oB = 0
__ Bi+B>
2
_Bi+B>
2
Thus, we have respectively
1 W+ w3 Bi + Bs
W = (W] + Wy) Fi(W? + W3 wi="—"1_"2 B= .
2[( 1+ 2):F( 1+ 2)]a \/g ’ \/i

And now, as {Q} — Q%,Y1 — Yz} is broken, then

Wy = WiQt — W5Q5 = WiQi + WiQi + WiQt — W Qi — W3Q3 — W3Q3 =

w3 Wi—iw?
2 2
Wi+iw? _w
2 2
0 ;
w3 Wi +iWs
2 2
Wh—iW2 w3
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C APPENDIX: SCALAR SECTOR

and
-5,
% -z,
By = B1Y:1 — ByYs, = — —(Bl + Bg) (648)
% -z,
% -5,
So
WyEo — SoWh = (649)
wi-wE (Wi —wy)—i(Wi-w3)
2
(Wll_Wz)+l(W1 _WQZ) 7W137W23
2
0 )
_wi-wy _ (Wi-wy ) +i(wr-w3)
2 2
(Wi wy) —i(wE W) wy-wy
2 2
(650)
and
B1—Bs
2
Bi—Bs
2
Byp¥o — YoBY = 0 (651)
_Bi-B»
2
_Bi—-By
2
Finally the T-odd combinations expand the heavy gauge sector
1 w3 — w3 Bi — By
WE = Z[(W! - W Fi(W? - w2, Wi =L "2 By = —_—=. 652
H 2[( 1 2) F (Wi 5)] H NG H ) (652)
C Appendix: Scalar Sector
We know that the Scalar Lagrangian in Littlest Higgs is
f2 LT
Ls = g Tr{(DuE)(D"E)T], (653)
where )
DS =0,S—iY [gW (QIE+2QT) +g;B; (V;Z+xY])], (654)

J=1
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C APPENDIX: SCALAR SECTOR

when we introduce the T-parity, the Scalar Lagrangian must be T-even, thus, we have that gy = g2 =
V29w and ¢} = gh = V24, so the eq. (654) is written as

2
DS =0,8—ivV2Y  [gwW (Q5S+3Q4T) +¢'B; (V;£ +3v])]. (655)
j=1

Recall that the action of T-parity in the scalar sector is defined as
II— —QIQ, and ¥ — % =300, (656)

with Q = diag (—1,—1,1,—1,—1). The term relevant for computing the mass of gauge bosons, under

the T-parity, is
2

—iV2 22: oWy (@5 +3Q5) +9'B; (viE+ 5] )] | - (657)
j=1

Calculating before introducing EWSM effects and taking at first order 3 = ¥g, then

Y = 20308, = Zp05008 = . (658)

Developing the eq.(657)) by parts

0 0 gwWi/2
gwWi Q%0 + 2@} = 0 0 0 , (659)
gwWi/2 0 0

where W¢ = Wog,

0 0 ¢'B1/10
g'Bi (Y1%0 + %Y} = 0  —2¢/B;/5 0 : (660)
g’B1/10 0 0
0 0 —gwWs/2
gwWs (Q5%0 + 20Q5") = 0 0 0 , (661)
—gwWg/2 0 0
where W3 = W0,
0 0  —¢'By/10
g'By (Y2%0 + S0y ) = 0 29/B/5 0 . (662)
—¢'By/10 0 0
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C APPENDIX: SCALAR SECTOR

Therefore
0 o0 B (Wi = W3) + §5 (B — Ba)
0 % (By — By) 0 . (663)
(Wi —=Wg) + 45 (Br — Ba) 0 0
then
/ 2
0 0 (2 (W = W8) + & (B = B2) ) Iy
2 0 2 (B, - B)) 0 :
(gTW (W _W§)+%(Bl —B2)) Iox2 0 0
(664)
where loyo is a identity matrix 2 x 2, and omitting all crossed terms of Wi and Bj, we have
(% v —ws) + G (B - B)?) 0 0
0 8¢° (By — By)? 0 :
2 a a 2 2 2
0 0 (4w —ws?+ & (B -B?)
(665)
since Lg = %ZTT[(DNE)(D“E)T], we have that
2
2 2
Ls= % (2g%V (Wi —w3)" + = (B1— Bz)2>
2 2
- % <2g§V (W2 + Wg? — 2W{Ws) + s (Bf + B3 — 23132)>
_ f2 2 a a 1 -1 Wla (666)
_ZgW<W1 WQ) -1 1 Wy

f2 2 ( I -1 By
+ = By B ) .
209 1 b2 11 B,
We defined gauge bosons mass eigenstates
(g )= ) ()
we | v2\1 -1 wg |’
H ? (667)
B\ 1 1 1 By
By )] v2\1 -1 By |
We can see that W' and By, are T-even, while W§, and By are T-odd. Also we can write this as

Wi = cosypWi + sinyp Wy, Wi = sin W} — cos p Wy, (668)
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where the mixing angle is given by sint) = cosv = 1//2. Thus, diagonalizing the matrices, we have
> 1 -1 wi
-1 1 W
f2 12 1 -1 Bl
* 9509 ( B B, ) 1 1 By
) 0 0 Wi
0 2 Wi (669)

f2,2 0 0 By,
* 907 (BL BH) 0 2 Bp T

f22 2 222

= g2 WE+ - g”B
59 H+109 H>
1

f2gl2
::Z(f@@W$?+ —DBi ).

Thus, the masses of gauge bosons are
Mwg =gwf,  Mp, ==F%. (670)

If we consider EWSB effects of order (uvy,/f)?, the X field is

0 0 0 1 0
0 €et/12—¢€%/2 i(e—€/3) 0 1—€2/2+¢t/12

Y=10 i(e—€/3) 1-+¢€/6 0 i(e—€¥/3) , (671)
1 0 0 0 0
0 1—-€/2+€¢*/12 i(e—€/3) 0  €*/12—¢€*/2

with e = vy / f.
We can recalculate the masses of gauge bosons as above, now we do not omit the crossed terms of
w3 and Bj, where a = 1,2. We have that

o [ € 2

ES: TW |:—6W1W2+62W1W2+(W1_W2) :|
Powv [€8 (s _way? — Lysws) & wsws + (wd — wi)?
TS (Wi —W5) — Wil +EWTWy + (W — W5)

(672)

f29/2 a1l 00 2 5 2 1 2
+ € g (Bl + BQ) — EBlBQ +e€ BlBQ + g (Bl — BQ)

fPowyg [€* 3 3 2 3 3 2 3 3
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Analyzing the Scalar Lagrangian by parts, taking the eigenstates defined above and diagonalizing the
matrices from eq.(672)

4 ’ :
_ € atyra 2117aTA/ G a _ a2 _ a (1_6/6) 0 WL
SWIWE + W + (Wi — Wg)? —( Wi ) ( 0 2 (1—€2/4) Wi

(2w 2)

(673)
If we defined as |25|

Wi = (Wh FiWE), Wi = (WL FiW3), (674)

1 1
V2 V2

then

4 2 2 2
f%wag + EWEWE + (W — W) = % <1 - 66> WW, +2 <1 - 64) WiWy.  (675)

Now, the second line of Lagrangian

et 2 1 2 €t 10
S (0w = w)? = Jwpwg )+ ewpwg o (v - )’ = (OvEp e ane - i)

+ EWPWS + (W — W32,
(676)

(i) (F0F 0 () -5 () e (- ) e

For the third line of the Lagrangian

5
— 12BlBg) + 6231B2 + = (Bl 32)2

1

(5 ) (709 g(:s;))(ggi@i)wmuzof)w

Finally

] N

2
<— (WP —W3) (B1 — Ba) + 3 (B1W3 + Bng’)) — & (B1W3 + BoW?), (679)
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with the aid of

1
BiW3 + ByW = 5 (WP +W3) (By + By) — (W7 — W3) (B1 — By)] (680)
=W}B, — W} By,
we will obtain
C(Bwiny+ wis,) - > (WPBL — Wi By) = —€ - Vwis e (1-2 ) wis
4 3 HPH 3 L € L HDPH) = —¢€ 6 LDPL T€ 3 HDPH-
(681)
Finally the Lagrangian looks
LTghd (1 9] s
=  R—
Ls=5 |74 62)) "
119 9 Ui 1=
+2_fgW<1_4f2 WpWy
1 [giyoi Vi 32
- 1— )| (w
T3 5r2)| (i)
1[ Y
5 | P (1- 5 ) | (W)
2] 4f%) |
1 [g20? 02\ ] (682)
+ 5 hii1— )| (B)?
2| 4 6/2)
1 [ f2g? 502\ ] )
- 1- 1) (B
T3 Af? _( )
L[ _gwg'vi Ui 5
+§ - 2 _67]02 WLBL
1 [gwg'vi 207 3
- —Zh B
tol 2 32 Wi B

As we can see in the Lagrangian above the neutral light sector is given by Wg, By, and WgB L

2
Yh

| (8 (W5)* — 20wg WiBL + g (BL)? 683
; g (WE)" = 20wg' WiBL + g7 (BL)’) . (683)

_ _h
612
The eq. (683)) has the same form that the off-diagonal terms of the standard model for electroweak

interactions, so from this sector we will get the SM neutral gauge bosons Z; and A;. We need to

2 —Gu / W3
(wi B )( v )(BL>, (684
—Yuw L

diagonalize the matrix
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the physical fields Z; and Ay, are [7]

Zr\ 1 gow —9 \ [ WP
AL A /9‘2/[/ —+ 9’2 g/ aw By, 7
For the light sector the mixing angle is just the SM Weinberg angle

/
g _ tan Gy,
gw

in terms of Gy
Ay, :cos9WBL+sin9WWI?j, Zr, = *SinewBLjLCOSGng.

Thus,

2 G / W3 2 + 12 0 VA
< Wg By, ) w 929 L) = ( Zr, Ap ) w3 L )
—gwg 9 By, 0 0 Ap

so the eq.(683) looks like

U}21 Uizz 2 32 11173 2 2 U}% U/% 2 2\ 2
o 1—@ <9W(WL) —29wg WiBL +g (BL)):Z 1_672 (91 +97) Z1.

then
2 2

2 2 2

Uh Up 2 12\ 72 IJw Uh 2
1— ) (g3 +g?) 22 = - IWTh (1 Yk g2

4 ( 6f2> (g g ) L 4cos29W< 6f2> L

Replacing this in the Lagrangian

+ % _ng%V (1 — :i) WhEWy

vy [ea (1= 2)] iy

AL (-

wa [ (-5 o
r 2 ,,2 2

5 et (- 572) 4]
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Now, the heavy gauge sector is

’U2 9 gWg/UQ 2,02 f29/2 5U2
b (1= ) 0"+ R (1= G i+ 5 (1= G o o

The new mass eigenstates in the neutral heavy sector will be a linear combination of the WI?;, and
the By gauge bosons, producing an Ay and a Zy. The mixing angle introduced into the neutral
heavy sector by EWSB will be of order (v?/f?) 23]

2 /
)
W

1

The new heavy neutral mass eigenstates are given by

Zy = sinf@g By + cos GHWI?;,, A =cosOyBy — sin@HWE}. (694)
So we have .
Z 1 zph w3
)= e P Ho (695)
Apn —zpgs 1 By
and their masses are [23|
2 12 2 2
2 _ 2 g2 Uh s _9°f 5,
Mz, = gw/f (1 - 4f2> o My, == (1 - 4f2> : (696)

Ulghd (BN ] -
Lg = 2[ 1 1 62 wWrw,
1 [ 2 2 1 UIZz ] W-‘rw—
+§ f Iw _4702 |V
g (1= 2] 2wy (697)
2 |1 I a2 )|\
1[f%¢"? 502\ ] 9
- 1- 2% )| (a4
+2_ = e _( H)
Al ()
2 |4 cos? Oy 6f

The light gauge sector includes WLi, Zr, and Ay bosons, that we identify as the SM gauge bosons
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with masses

gwUp 7 12 gwUp vl

WL 2 6f2 2 12f2

v oo (o v\ Mg (698)
Zr 2cos Oy 62 cos Oy’

My, =0,

and the mass of the heavy bosons are

MWIj;:MZH:fQW<1_4fQ> ’%fgW(—SJQ),

(699)
M :fgl <1_5’U,21>1/2%fg' <1_5’U}2L>
A B\ 5\ 8f2)°
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D Appendix: Two-point Functions

Considering a diagram with two legs, the general form to write the corresponding loop amplitude is

i dP 1, g"
@{Bo, B'} = ,u4D/ (QW)qD (@2 — m%){[(qur}p)? ] (700)

where mg and m; are the internal masses in the loop. The corresponding tensor coefficients are
functions of the invariant quantities (args) = (p?,m%, m?), where p is the momentum of the particle.

The functions B = B(0; M, M3) and B = B(0; M3, M?) read

2 2
2 M; 2 M
Ml 1117 — M2 1117

B0:§0:A€—|—1— s (701)
M2 = M?
2712 4 4 47, M 27 12 2 1, M3
By =--*¢
! > " A(M2 — M2)? (702)
== _EO _Ela

with A, = % — v+ In4r. These functions are ultraviolet divergent in D = 4 dimensions.
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E Appendix: Three-point Functions

In the Appendix C of [25]| are shown the three-point functions that we used in the amplitude devel-

opment. The function’s arguments are (args) = (p3, Q%, p3; m2, m2, m3), with p; and py the external

momenta, mg the mass propagator, My and M the masses of particles within the loop and @ = ps—p1.

S {Cy, CH,CH* }(args) =

16m2
v 703
M4D/ d"q {1,¢",¢"q"} (703)
(2m)P (q* = m§)[(q + p1)* — m3][(q + p2)* — m3]
The functions C' = C(0, Q?,0; M2, M2, M2) with x = M2/M? are given by
1 [1-z+4+1nzx
g | o
+Q72—2—3x+6$2—3:3—63:1n3:
M} 122(1 — x)? ’
1 —3+4z—2? -2z 4
Ci=0y=— @) 705
1 11 —18z +92% —22° + 61nz A
C11 =Cyp =201 = — @ 706
11 22 2= 18(1 — 2)" +0(@Q"), (706)
1 Q%11 — 182+ 92> — 223 + 6Inx A
Coo=—-=B1— — (@) . 707
00 551 M2 72(1 = 2)t +0(Q") (707)
Defining C' = C(0,Q?%,0; M2, M, M?),
— 1 |[-142z—Inzx
Co=—|—7———
T M3 (-2
2 2 3 2 (708)
Q7 —14++4o 32" —22° + 62" Inx + QY
M} 12z(1 — z)* ’
s, 1 1-4x+32° 22" Inz (700)
R V7 41— z)3 ’
Gt = B — 90 1 =249z —182% + 112° — 62° Inz (710)
11 — 22 — 12 — M12 18(1 — $)4 )
o _ g 7Q72—2+9x—18x2+11x3+6x31nx+O(Q4) (711)
RV 72(1 — z)* '
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E APPENDIX: THREE-POINT FUNCTIONS

It is important to note that functions Cog y Coo are ultraviolet divergent in D = 4 dimensions.

In the limit @ = 0 the following useful relations among two and three point functions hold

Bi +2Ch =0 (712)

1 1— T
—— 4+ -B1 + —ZMCy = 1
113 1+ Coo 22\416’0 0 (713)

Mp

o (714)

1 = _ _
—§+B1+6COO—xM1200 =A.—In
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F Appendix: Four-point Functions

The functions that we used in our development are all ultraviolet finite

dq {1,¢",¢"q"}

(2m)* (g2 — mg)[(q + k1)? — m3][(q + k2)* — m3][(q + k3)? — m3]’
(715)

with k; = Y27 p; and (args) = (p1,p3, 03,01, (p1 + p2)?, (P2 + p3)*;mg, mi, m3,m3). In the limit of

zero external momenta, only the following integrals are relevant

i B dq 1
Do = / : (716)

b
1672

{Dy, D", D*"}(args) = /

1672 2m)2 (¢? — m3)(q® — m3)(¢®> — m3)(¢> — m3)’

i 1 / dq q>
——Dgp = — . 717
16:27% = 1) CrE (@ = md) (@ = m)(& — M) — md) (717)

In the terms of the mass ratios z = m?/m3, y = m3/mi, = = m%/m3 the integrals above can be
written as [25] |37]

_ _ zlnz _ ylny
do(,y,2) = moDo [a_x)(x_y)(x_z) 1=y -y -2 (118)
zlnz
*(1—z><x—z><y—z>}’
- 22lnz y2lny
do(,y, 2) = 4mDoo = oz — ) — 2 (1 — ) — — 2
[(1 )(22112( ) A=y —y)(y—2) (719)
+<1_z>(x_z><y_z>]
~ B 22lnz y?Iny ZInz
S e e s B ) i ey S e o T v R G
with 5(1;7 y) = c?’(x, y,1). For two equals masses (mg = ms) we get
__— zlnx B ylny 1 ]
bV = T e TP 9 09 (72
- __' 22lnx B y21ny 1 ]
R e R R R (R I s ] & (72
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G Appendix: Light-Heavy Four-point Functions

The form factors involved in the £ — £¢"¢"" decay are given by the eqs. (354), (355) and (356].

1242 aw

. I
Fg’ m Z (W W WerWh + (€ & )} (i y7), (723)
Vi
P8 = T ZZWMWW~VHMﬁwm (724)
167rM SW ==
X?X? ow - 1 T / 1" h
P = 167 M2, 5%, Z,;{@eﬂf'i%ﬂé"j + (0 )} (@i, z5), (725)

where we have added the superscripts (1), (Ih) and (h) to the fp functions to indicate that these
functions are composed of light-light, light-heavy and heavy-heavy neutrinos, respectively.

Since the masses of light neutrinos satisfy m; < Myy, it is convenient to define the y; variable as

2
Y = ]\%’ as in this limit y; — 0. On the other hand, the condition of the heavy neutrino masses is
w

2
My, < Mj, hence it is natural to define x; = ]}\/[42 , so the x; variable behaves as z; — 0.
The f4(y;,y;) function is formed by the dy and dy functions. Because just light neutrinos are consid-

ered in the fp function the dy and dy ones have Y¥;; as variables. Therefore, dy and dp functions are
given from the egs. (721 and (722). So the f4(y;,y;) function can be written as

1 _
F5iu) = ( 1+ ~wiys | do(yi, y;) — 2viyido(yi, y;), (726)
1
2
with y; ; = 7]\’}—3; (i,j =1,2,3).

The f]lgh(yi,acj) function mixes light-heavy neutrinos, then it has y; and x; as variables. The dy

and dy functions defined in the Appendix C have variables which behave as my The consideration

g

on heavy neutrinos variables is x; = J>\442 , though. We have to refactor them considering the y; and

x; variables for light and heavy neutrinos respectively,

d (yi, ;) vigj nyi 7j Ina; + i (727)
yi? x j - M

PR A=y P -y T 0= 2P ey) | (L) ay)

“Ih y,?a?j Iny; x; Inx; xj

do' (yi, 2j) = (728)

T 0=y —py) Q=20 —gey)  A—g)(1—ay)
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where y; = m?/MZ, (i = 1,2,3) and z; = ]\/.I'I%V/Mj2 (j = 1,2,3). From the equations above the
h(y;, ;) function is read as follows
Lyi\ = Yi
Pt = (14 12 ) ) — 22 ). (729)
Lj Lj
Finally, the fg(xi, x;) function just has heavy-neutrino variables x; ; = MI%V /Mf, hence, we need to
refactor the dy and dg functions as
ziz; Inz; xm? Inx; i

B o) — i _
B L e B (R Eope R ([ Ry R

- [ xixi Inx; r;xi Inx; Ti |
Pl o) — — i Iz i) N i 731
00 t) = | -2y Q—agfoi—ap)  G-mi-gpy) Y

with i,j = 1,2, 3. Therefore, the f(x;, ;) function is given by

Fh(an ) = <1+1

h
e db (i, ;). (732)

) ng(l‘l,xj) -2

l‘iiﬂj

For the functions which coming from LNV contributions f (Lihh)=LNV (21, 25) (eq. 1} we can apply

Llh,h
(

the same arguments as the previous f 2i, 2j), therefore

LY (yi,y5) = iy (2do(yi, y5) — (44 yiy;)do (v v5))

lh—LNV Yi Lh Lh
B (yiawj): T <d (y,,mj) (4+ J)d (ylaxj)) (733)

J
L (odt@iay) — (44— ) d( a)
- TiyXTj) — iy Tj P
Vit \ Y J zix; ) ° J

with y; = m?/M32,, m; the mass of light neutrinos; ;= M‘%V/sz, M; the mass of heavy neutrinos.
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H Appendix: Hadronization tools

Within the RxT framework, bilinear light quark operators coupled to the external sources are added

to the massless QCD Lagrangian:
Lqcp = Loep + 7 (0" +y50") — (s —ipys)] g, (734)

where the auxiliary fields defined as v* = v’ A /2, at = all /2, and s = ;A\, with A\ the Gell-Mann
matrices, are Hermitian matrices in the flavour space. Once the RxT action Lg,T is fixed, we can get
the hadronization of the bilinear quark current by taking the appropriate functional derivative with

respect to the external fields:

. , oL . . oL
S'=—g\Ng= 7;@ : Pt =qivsN'g = 7;’,@ ;
Silj=0 Pi =0
U OLRyT . pY OLRyT
Ve=Tw54= —F5a ; A = 5a= g : (735)
n= Dy ol |, weo TR 0ai |,y

where j = 0 indicates that all external currents are set to zero.
The vector form factor from the « contribution to the decay into two pseudoscalar mesons is driven

by the electromagnetic current

u,d,s

1
m — 3 8 m
V=" Qugvug = Vi + %VH = Jom, (736)
d
where @), is the electric charge of the g quark. We get also

_ 1 2
uy,Pru= Jg’ + %Vf + %JE,
_ 1 2
dv, Prd = —J) + %Vf + %JS,

2 8 2 0
e R (737)

with J), = (V! — A!,)/2. The vector current contributes to an even number of pseudoscalar mesons or

5y, Prs = —

a vector resonance, while axial-vector current gives an odd number of pseudoscalar mesons.

In Z contribution both vector and axial-vector currents do contribute:

Z _ ;72 Z
JZ =VZ + AZ,

Z g _ 2
Vu = EQ% [2SWQq - Tg(q) q,
g _
AT = Sow Ty, (738)
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with Qg (see eq. (D and Téq) = diag(1,—1,—1)/2 the electric charge and and weak hypercharges,
respectively.
H1 7—=uP

The 7 — pP decay, in our model, is mediated only by axial-vector current (Z gauge boson), it means

that M., does not contribute. The total amplitude for 7 — uP reads as

Mooup = MY + Moy, (739)
where M? is given by
M5 = =i L Py SV VIR [@UFE P + FEP)) 7).
2ew M3 7
Mo = =ig"F 3 VIV B (PYERY) [@PL) (), (740)
J
where Z;, = %(Tg —8%,Q,) and Zp = —%s%‘,Qq. The hadronization of the quark bilinear in Mz

is determined by vector and axial-vector currents from eq. (738, which are written in terms of one P

meson, it turns out to be [75|

Z __
vZ =0,

g
Aff = =5 SF{C()0um” + C)un + C o)D) (741)

where F' ~ 0.0922 GeV is the decay constant of the pion and the C'(P) functions are given by |75|76]

C(n%) =1,
I
C(n) = 76 (sm&n + V2 cos 977) ,
N L :
C(n) = 7 (\/ism 6, — cos 977> . (742)

The box amplitude is composed by the following B;(P) factors [83|

1 . .
By(x") = 1 (B}~ BY),
1 | |
Bj(n) = Vel [(\/ﬁsin 0, — cos 0,) BJ 4 (2v/2sin 6, + cos en)le] )
1 | |
Bil) = 5 [(sm 6, — 2V/2 cos 0,) B) — (sinf, + /2 cos en)Bg] , (743)
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where the Bg functions are the form factors from box diagrams and the angle 6, ~ —18°.

The branching ratio reads

1 A2(m2,m
o Z Ml (741)

Br(r — pP) =

where I'; & 2.267 x 10712 GeV and A(z,y, 2) = (z+y —2)? — 4wy, thus M,_, ,p is given by eq. (739).
Thus,

1 " %
> I Mepl? = = 37 [(m2 +m2 = mb) (ahals + bhblE) + 2m,mo (abalp — bpE) | (745)
if Tk

with k,1 = Z, B. Defining A;, = m; —m, and X, = m; + m, we get

z g*> FCO(P)

9T 52 M2 M2 A (FE + FR),

V= o G S P~ D),

ag = _gQQFATqu(P)a

i =L m, (). (746)

H.2 7 — uPP

This channels are mediated by y—, Z—penguins and box diagrams. Using the the electromagnetic

current (eq. (736])), the electromagnetic form factor reads

(PL(p1) Pa(p2)[V™(0) = (p1 — p2) (@), (747)

where () = p1 + p2 and F‘flPQ(QQ) is steered by both I = 1 and I = 0 vector resonances. Then, the
complete amplitude is given by

MT%#PP = Miﬁ + M? + MBox‘ (748)
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The next step is to hadronize the quark bilinears appearing in each amplitude. They turn out to be

2
MEP @Fplpz(s)x

ZVWW NIQ*(p, — PFL(Q°) P+ 2imeplio,u vy F (Q7) Prl7(p),

P 25 j sk y 7JT—
M?:ngﬂWQQJWWmm%www#m+%&mm
J
ME —%Fé’”’z () Y V" V(B = B (p, — p,) Prr(p). (749)
J

After computing each amplitude, we get the following branching ratio

t+
where kpp is 1 for PP =777~ KT K—, K°K? and 1/2 for PP = 77", In terms of the momenta of
the particles participating in the process, s = (p, + pz)? and t = (p — pg)?, so that

1 2
= g2 ) (Vs ) N )

4s
5. =4mb,
sy = (my —my)% (751)

H3 7—-uV

For these cases the branching ratio of 7 — uV is related with the 7 — uPP by trying to implement

the experimental procedure as follows

Br(t — uV) = > Br(uPiP)| . (752)

PP v

In the above equation the s limits are now restricted to
2 1 2 1
= MV — §MVFV, S+ = MV + §MVFV. (753)
Therefore, when V' = p, ¢ their branching ratios are given by

Br(r — pp) = Br(r — unt7n7)

p’

Br(7 — u¢) = Br(r — ,uK*Kf)‘(b + Br(r — pK°K?)| (754)

6
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I Appendix: Hadronic form factors

The vector form factors F‘I/D P(s), defined by eq. 1D , are based on two key points:

e At s < M2 (being Mg a generic resonance mass), the vector form factor should match the
O(p*) result of xPT.

e Form factors of QCD currents should vanish for s > MI%.

We include energy-dependent widths for the wider resonances p(770) and p(1450) or constant for the
narrow ones: w(782) and ¢(1020). For the p(770) we take the definition put forward in [84]

T,(s) = 9274532 {af’r(s)ﬂ(s —Am2) + %U}g’((s)ﬂ(s - 4m%()] : (755)

where op(s) =1/1 — 4%%’, while p(1450) is parameterized as follows

s o3(s) + 203.(5)0(s — 4m?%)
L, (s)=T,(M?) s 2 K K 0(s — 4m?), (756)
r FATe Mg, J?r(Mp%) + %U%(Mi,)@(S —4dm?,)

with T,y (MPQ,) =400 £+ 60 MeV [6]. We get the following expressions for the vector form factors

FT™(s) =F(s) exp [236 (ﬁm(s)> + Re (ﬁKK(s))} , (757)
Fs) = M; (M s 5 B 78
TMZ — s —iM,T,(s) M2 MZ) ME—s —iMJT,] T MZ s —iMyT,(s)
(758)
2
K+tK~— _1 Mp ¥ ¥
Fy (s) SO s M, (8) exp [2Re (Hm(s)> + Re (HKK(S))]
Ll o M 2 M 7
+ 5 sin 9VM3 E— v + cos GVMQ% SV exp [BRe (HKK(S)):|,
(759)
2
KOKO, \ _ 1 Mp 7 T
Fy %(s) = 2T~ 5~ iM, (%) exp [2Re (Hm(s)> + Re (HKK(S)):|
L2 M 2 M )
+ 5 [sin GVMU% E— + cos HVM(% ST exp [SRe (HKK(S)H,
(760)
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where we have defined the following terms

Opw
B=5
3M3
FyG
Y= ‘;Qv(l—i_ﬁ)_lv
F
5= ;(,j" —1,
~ s
pr(s) = F2Mp($),
_ 1 mp kp(M)) 1
Mp(s) = 15 (1 _4s> Te(s) = =67+ 2ggm2°
1 op(s) —1
Te(s) = {52 {UP(S)I op(s) + 1 +2} ’
1 m?

The (3 parameter includes the contribution of the isospin breaking p — w mixing through ©,, =
—3.3 x 1073 GeV? [85]. The asymptotic constrain on the No — oo vector form factor indicates
FyGy ~ F? |86]. We will use ideal mixing between the octet and single vector components, fy = 35°.
We note that when isospin-breaking effects are turned off, the resummation of the real part of the
chiral loop functions is not undertaken and the contribution from the p’ is neglected, the well-known
results from the vector-meson dominance hypothesis are recovered. More elaborated form factors are
obtained using the results presented here as seeds for the input phaseshift in the dispersive formulation,
see e.g. refs. [87,88]. These refinements modify only slightly the numerical results obtained with the

form factors quoted in this appendix.
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