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Neste trabalho revisamos alguns dos sistemas não-lineares mais paradigmáticos e desvendamos
algumas das suas surpreendentes interligações. Os problemas de interesse, descrito matematicamente
pelas equações de sine-Gordon, Toda e KdV, generalizam modelos f́ısicos conhecidos, como o pêndulo
simples, o sistema massa-mola e as ondas lineares em água, respectivamente. Depois de discutirmos as
peculiaridades decorrentes da presença de não-linearidades nos modelos, esclarecemos como os sistemas
apresentados são relacionados uns aos outros, indicando a existência de uma famı́lia de equações que
compartilham propriedades como a integrabilidade. Nós mostramos como a equação de KdV pode ser
convenientemente discretizada a fim de preservar tais caracteŕısticas importantes. Além de apresentarmos
as ligações estreitas que esta equação tem com a cadeia de Toda e com a equação sine-Gordon, nós
também investigamos outros procedimentos capazes de gerar um sistema integrável discreto a partir do
modelo KdV com a discretização de Hirota.
Palavras-chave: KdV, Sine-Gordon, Cadeia de Toda.

In this report we review some of the most paradigmatic nonlinear systems and unveil some of their
suprising interconnections. The problems of interest, described mathematically by the equations of
sine-Gordon, Toda and KdV, generalize well known physical models, the simple pendulum, the mass on
a spring and the linear waves, respectively. After discussing the differences arising from the presence of
nonlinearities in the models, we clarify how the systems presented are related to each other, indicating
existence of a family of equations sharing integrability properties. We show how the KdV equation
can be conveniently discretized in order to preserve important properties. Besides presenting the close
connections this equation has with respect to the Toda lattice and the sine-Gordon equation, we also
investigate other procedures capable of generating a discrete integrable system from the KdV model, as
the Hirota discretization.
Keywords: KdV, Sine-Gordon, Toda Lattice.

1. Introdução

A maior parte dos fenômenos que ocorrem na natu-
reza envolvem efeitos não-lineares. No entanto, os
cursos de graduação tendem a focar nos aspectos
lineares destes fenômenos. Dessa forma, em nossa
formação, somos levados a pensar que os sistemas
não-lineares são tão complicados que nunca podem
ser tratados de forma anaĺıtica. Assim, pode parecer
que o profissional da área deve resignar-se, apenas,
a simulações numéricas, como ocorre com a previsão
do tempo, por exemplo.

∗Endereço de correspondência: paulo.assis@ufg.br.

Diante de tal cenário, neste trabalho trazemos
uma introdução a alguns problemas não-lineares
que podem ser tratados exatamente, com obtenção
de soluções anaĺıticas, e que, embora possam pare-
cer à primeira vista completamente independentes,
estão relacionados entre si de uma maneira profunda
por meio de simetrias. Sabe-se que a presença de
simetrias num problema está associada à existência
de leis de conservação [1, 2], que podem permitir ou
facilitar a solução do problema.

Sistemas não-lineares que apresentam um número
suficientemente grande de leis de conservação po-
dem ser resolvidos analiticamente e são chamados
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integráveis [3]. O estudo desses sistemas forma uma
área de pesquisa que concatena diversos ramos da
matemática (como teoria de grupos, álgebra, teoria
de representação, topologia, geometria diferencial,
sistemas dinâmicos [4]) e permite abordar vários sis-
temas f́ısicos de relevância atual, como as equações
de KdV [5–7], Sine-Gordon [8, 9] e Schrodinger não-
linear [10], e, também, os problemas do pêndulo
real [11], de Fermi-Pasta-Ulam [12], ondas em águas
rasas [13], entre outros. Sendo assim, é uma áea
próspera, na f́ısica teórica, em especial, no estudo
de sistemas compostos por muitas part́ıculas intera-
gentes.

Uma caracteŕıstica comum dos sistemas integráveis
é a existência de excitações chamadas sólitons [3,14,
15], que são pacotes de onda solitários que mantêm
sua forma enquanto se propagam, mesmo após so-
frer colisões entre si. Descritos pela primeira vez
em 1834 [16], os sólitons são manifestações de um
balanço sutil entre efeitos dispersivos e não-lineares
que, isoladamente, tenderiam a destruir seu per-
fil de onda com o tempo. Os modelos não-lineares
exatamente solúveis, cujo comportamento pode ser
completamente descrito em qualquer instante, por
apresentar soluções em forma fechada, servem de
laboratório para a aplicação de métodos anaĺıticos
e perturbativos, e também como ponto de partida
para o estudo de sistemas para os quais não há
soluções anaĺıticas e as simulações numéricas são
computacionalmente custosas, quando não proibiti-
vas.

A existência de ondas cujo comportamento pode
ser interpretado como part́ıculas é mais que uma
curiosidade e possui implicações e aplicações rele-
vantes. Os sólitons podem ser usados para modelar
algumas part́ıculas exóticas [17] ou para descrever o
comportamento do encontro das correntes fluvias do
Rio Amazonas com as águas oceânicas durante as
marés altas, que geram o fenômeno conhecido como
pororoca [18]. De um ponto de vista matemático, os
sólitons permitem obter soluções exatas de equações
diferenciais não lineares que, a partida, poderiam
ser apenas investigadas numericamente.

Diante do exposto, neste trabalho, revisamos al-
guns dos mais paradigmáticos sistemas não-lineares
integráveis e desvendamos algumas de suas supre-
endentes interconexões, num contexto acesśıvel a
estudantes de graduação, com algum domı́nio de
Mecânica Cĺssica e Equações Diferenciais. Em parti-
cular, estudamos sistemas bem conhecidos, como o

pêndulo simples, o sistema massa-mola e a equação
de onda linear, para mostrar que eles são, na verdade,
limites lineares das equações de sine-Gordon, Toda
e KdV, respectivamente. Mostramos, de forma clara,
como esses modelos, aparentemente distintos, estão
relacionados, sendo, efetivamente, representações
distintas de simetrias escondidas.

Tendo em vista nosso objetivo pedagógico, orga-
nizamos este trabalho da seguinte forma: Iniciamos,
na seção 2, com uma breve introdução a sistemas
não-lineares. Em particular, calculamos a solução
do pêndulo para além da tradicional aproximação
de pequenas oscilações e usamos esses resultados
para introduzir o modelo de Sine-Gordon em 3. Em
seguida, na seção 4 introduzimos rapidamente o
problema Fermi-Pasta-Ulan (FPU) e a modificação
proposta por Toda [12]. Com essas construções, mos-
tramos, na subseção 4.2 , por que o modelo de Sine-
Gordon pode ser entendido como uma teoria de
campo de Toda. Posteriormente, a equação KdV
é discutida na seção 5, onde mostramos como ela
pode ser entendida como o limite ultravioleta da
cadeia de Toda. Ademais, em 5.2, discutimos uma
descrição alternativa da equação de KdV por meio
do operador de Hirota, que nos permite construir
a solução para multi-sólitons. Como uma aplicação
dessa discretização, em 5.3, construimos a solução
para um sóiton. Por fim, discutimos, subseção 5.4,
rapidamente como as equações KdV e Sine-Gordon
estão conectadas. E, na seção 6 apresentamos nossas
conclusões.

2. Sistemas Lineares e Não-Lineares

Embora as equações lineares sejam geralmente mais
simples de se resolver, a não-linearidade manifesta-
se em variados sistemas f́ısicos. Por este motivo
existe um crescente interesse f́ısico e matemático
para analisar os fenômenos não-lineares.

Um sistema f́ısico descrito por uma equação dife-
rencial é linear quando, para ela, é válido o prinćıpio
da superposição [19]. Além do mais, a resposta a
pequenas variações em seus parâmetros iniciais, ou
a est́ımulos externos, é usualmente suave e direta-
mente proporcional ao est́ımulo. Em geral, um pulso
sob uma dinâmica linear normalmente espalhar-se-
ão com o tempo, num efeito chamado de dispersão.
Ele é o responsável por fazer as ondas perderem sua
forma e desaparecer.
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Já para o caso não-linear, este prinćıpio deixa
de ser verdadeiro, ou seja, duas soluções de uma
equação não-linear não podem ser combinadas line-
armente para formar outra solução. Isso dificulta a
obtenção de métodos anaĺıticos gerais para resolver
equações não-lineares. A resposta a est́ımulos ex-
ternos não é linearmente proporcional ao est́ımulo,
diferentemente do que ocorre nos sistemas lineare.
Assim, uma pequena variação nos parâmetros do
sistema pode provocar uma enorme diferença no
movimento. Uma outra importante propriedade das
excitações não-lineares é que podem apresentar-se
na forma de estruturas altamente coerentes e loca-
lizadas como os sólitons, que viajam a velocidade
constante e mantêm a forma por longas distâncias.

Uma sistema f́ısico que ilustra claramente tais
diferenças é o clássico pêndulo simples. O movi-
mento de um pêndulo simples em pequenas os-
cilações é harmônico e descrito por uma equação
linear. Já o regime de grandes oscilações é descrito
por uma equação não-linear. Enquanto a solução
para o pêndulo linear é bastante simples, encontrar
soluções exatas para ângulos não necessariamente
pequenos (pêndulo não-linear) é consideravelmente
mais dif́ıcil.

2.1. O pêndulo real

O estudo do pêndulo não-linear é oportuno para mos-
trar que fenômenos complexos podem ser originados
por modelos bastantes simples, desde que tratados
por meio de uma abordagem não-perturbativa. Po-
demos resolver o problema do pêndulo não-linear a
partir da conservação da energia mecânica. Dado
que a energia potencial associada ao problema é

U(θ) = mgl(1− cos θ),

podemos escrever a equação caracteŕıstica do movi-
mento pendular na forma

ml2 θ̈ +mgl sin θ = ml2 θ̈ + U ′(θ) = 0. (1)

Para resolvê-la multiplicamos ambos os lados de (1)
por θ̇,

ml2 θ̈ θ̇ +mgl sin θ θ̇ = ml2 θ̈ + U ′(θ)θ̇ = 0,

para obter,

d

dt

(
ml2

2 θ̇2 + U(θ)
)

= 0, (2)

que é a familiar lei de conservação da energia,

ml2

2 θ̇2 + U(θ) = ml2

2 θ̇2
max + U(θmax) = Emax.

Percebe-se que, no nosso caso, no ângulo de máxima
abertura θ = θmax = ±π a velocidade se anula e
temos θ̇ = 0, fixando-se dessa forma a energia para
completarmos uma volta. Assim, ao reescrevermos
a equação (2),(

dθ

dt

)2
= 2ω2 (1 + cos θ) ,

notamos que ela nos permite escrever a relação

1√
2

∫
dθ√

1 + cos θ
= ω

∫
dt = ω (t− t0) = ω τ,

para a variação da posição angular com variações
infinitesimais de tempo.

Na usual aproximação de ângulos pequenos, para
a qual se considera θ � 1, o lado esquerdo da ex-
pressã acima produz

∫ 1√
4−θ2 dθ = arcsin

(
θ
2

)
, indi-

cando que de fato o ângulo varia harmonicamente
nesse regime.

No caso de uma amplitude genérica, uma forma
de simplificar a obtenção da solução é notar que

d

dφ
log

[
tan

(
φ

4

)]
= 1√

2
1√

1− cosφ
.

Sendo assim, usando-se θ = φ + π, chegamos à
solução,

ω τ = 1√
2

∫
dθ√

1 + cos θ
= log

(
tan θ4

)
a partir da qual podemos isolar a expressão para a
posição angular em função do tempo,

θ(t) = 4 arctan eω (t−t0), (3)

representada na Figura 1, tracejado verde. Com isso,
a solução que procuramos, pode ser escrita como,

θ(t) = 4 arctan
(
eω (t−t0) − 1
eω (t−t0) + 1

)
, (4)

cuja representação gráfica é dada pela Figura 1,
tracejado azul.

Nota-se que a posição angular não varia linear-
mente; na verdade, como esperado, temos uma va-
riação aproximadamente linear nas regiões próximas
da origem, isto é, quando as aberturas angulares

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2016-0083 Revista Brasileira de Ensino de F́ısica, vol. 39, nº 1, e1307, 2017



e1307-4 Sobre a conexão entre alguns modelos f́ısicos não-lineares

Figura 1: Representações gráficas das expressões (3) e (4),
indicando a posição do pêndulo não linear em função do
tempo.

são pequenas. Percebe-se, contudo, que, conforme
o pêndulo gira por múltiplos de π a partir da ori-
gem, ele atinge um ponto de equiĺıbrio (instável) e
o ângulo poderia parar de variar.

Tal afirmação pode ser verificada na fig. 2, onde so-
brepomos o comportamento do pêndulo simples, em
cinza, com o do pêndulo real, não-linear, em azul, e
observamos como as soluções são aproximadamente
equivalentes apenas para pequenas amplitudes. Con-
forme aumentamos a amplitude, chega um ponto
em que ao aumentarmos o deslocamento relativo
do pêndulo o torque restaurador já não cresce na
mesma proporção. De fato, o torque é descrito ma-
tematicamente por uma função senoidal.

Uma forma de analisar o comportamento futuro
do pêndulo n ao-linear é utilizar a ideia do espaço
de fase, mostrado na Figura 3, representado pelas
variáveis dinâmicas do sistema, a posição θ e a velo-
cidade angular θ̇. Nela, percebe-se que as curvas fe-
chadas representam oscilações com energia potencial
(E < 2mgl) e são, portanto, periódicas e limitadas,
não podendo assumir qualquer ângulo. No caso das
curvas abertas (E > 2mgl) temos um movimento
que não estão limitado, ou seja, o pêndulo pode
girar de 0 a 2θ tanto no sentido horário quanto anti-
horário e continuar o movimento indefinidamente.
A regularidade nos sistemas integráveis é notável,
não estando presente em outros regimes não linea-
res, como o caótico, no qual as curvas tenderiam a
preencher todo o espaço de fase de forma irregular.

3. O pêndulo real e Sine-Gordon estático

Um sistema de pêndulos enfileirados e acoplados
por molas de torção pode ser descrito pela equação

Figura 2: Nas figuras acima mostramos uma comparação
entre o comportamento linear, indicado pelas linhas
cont́ınuas acinzentadas, e o comportamento solitónico, re-
presentado pelas linhas tracejadas azuis. Na parte superior
tem-se o deslocamento angular do pêndulo em função do
tempo. No gráfico intermediário mostramos como se com-
porta a força sentida pelo pêndulo devido a sua abertura
angular que varia no tempo. Finalmente, na figura inferior
indicamos o potencial sentido pelo corpo.

de Sine - Gordon. Conhecida desde o séc XIX, no
entanto, ganhou importância apenas nos anos de
1970 quando se percebeu que sua solução levava a
estrutura do tipo sólitons, “kink” e “antikink”, como
mostrado na Figura 4. A equação de Sine-Gordon
é uma equação diferencial parcial não linear que
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Figura 3: Trajetórias no espaço de fase para o pêndulo real
com energias E = mgl

100 (curva cont́ınua fina), E = mgl
(curva pontilhada), E = 2mgl (curva tracejada-pontilhada),
E = 4mgl (curva tracejada), E = 6mgl (curva cont́ınua
grossa).

Figura 4: Soluções do tipo kink (ε = +1), indicada pela
curva ascendente tracejada em azul, e do tipo anti-kink
(ε = −1), mostrada na curva descendente pontilhada em
vermelho.

envolve o operador de d’Alembert e o seno de uma
função, da seguinte forma

φtt + φxx + µ2

β
sin βφ = 0, (5)

onde φ = φ(x, t) é uma função do espaço e do tempo.
Ela aparece em aplicações f́ısicas que vão desde
teorias de campos relativ́ısticos e junções Josephson
até linhas de transmissões mecânicas.

No caso do pêndulo, φ(x, t) descreve o seu ângulo
de rotacão. Note que, para pequenas amplitudes

(sinφ ' φ) a equação (5) se reduz a

φtt + φxx + µ2φ = 0 , (6)

conhecida como equação de Klein-Gordon e admite
soluções da forma

φ(x, t) = φ0 cos (kx− wt) ω =
√
µ2 + k2.

No entanto, aqui, estamos interessados nos casos
em que o pêndulo pode oscilar em amplitudes ar-
bitrárias, pequenas ou grandes. Note que os papéis
de x e t, nessa equação, são intercambiáveis e pode-
mos inicialmente supor que φtt = 0, de modo que
não há variação de φ no tempo, no chamado regime
estático. Assim, temos a equação para o pêndulo
não linear,

φxx + µ2

β
sin βφ = 0

cuja solução,

β φ(x) = 4
β

arctan
(
e±µx − 1
e±µx + 1

)
, (7)

já foi demonstrada na seção (2). Como a equação (5)
é invariante por transformações de Lorentz podemos
aplicar um boost,

x→ cosh (χ) [x − c tanh (χ) t],

na equação (7) para obter a solução viajante da
equação de Sine-Gordon (5),

φ(x, t) = 4
β

arctan
(
eε µ(cosh (χ)x− sinh (χ) ct) − 1
eε µ(cosh (χ)x− sinh (χ) ct) + 1

)
.

A solução acima representa uma onda solitária lo-
calizada viajando com uma velocidade c. De acordo
com os sinais ε = ± classificamos a solução em
kink, o pêndulo rotaciona de 0 para 2π, e antikink,o
pêndulo rotaciona de 0 para −2π, como representado
na Figura (4), abaixo.

O que acabamos de ver foi um problema envol-
vendo uma equação diferencial não-linear para o
qual foi posśıvel encontrar uma solução exata, isto
é, um problema integrável. A seguir veremos um
pouco sobre os primórdios dessa área e apresentare-
mos alguns outros exemplos de modelos exatamente
integráveis.
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4. Cadeias de Toda e o Problema de
Fermi-Pasta-Ulam

As pesquisas entorno dos sólitons ficaram inertes até
o ińıcio de 1950, quando o estudo de oscilações em re-
des não lineares ganhou evidência, após os trabalhos
de Fermi, Pasta e Ulam no problema da partição de
energia [20]. O problema de Fermi-Pasta Ulam foi
um dos precursores das simulações computacionais
na área da F́ısica e constitui-se de simulações em
uma rede de part́ıculas ligadas entre si através de mo-
las que obedecem a Lei de Hooke com uma correção
não-linear quadrática. Esperava-se que a deformação
linear quebrasse o comportamento ergódico do sis-
tema, mas, surpreendentemente, os estados visitados
durante a evolução não eram quaisquer. A distri-
buição de energia entre os modos apresentava um
comportamento aproximadamente periódico, fato
atribúıdo à presença de simetrias escondidas. Em
1981, Morikazu Toda modificou o problema de FPU
introduzindo uma interação exponencial, eq. (8), en-
tre os elementos da cadeia, tornando-o um problema
integrável [12].

Como citado o problema de Fermi-Pasta Ulam
consiste em modificar a rede linear, adicionando
uma não linearidade quadrática (αk∆x2) à força
de Hooke, da seguinte forma,

F = −k∆x− αk∆x2,

onde α é o parâmetro de deformação (arbitraria-
mente grande ou pequeno) e ∆x é o deslocamento
em relação ao ponto de equiĺıbrio. Logo, a força
experimentada por uma part́ıcula j na rede de FPU
permite-nos escrever a equação de movimento satis-
feita por

mẍj = k (xj+1 − 2xj + xj−1) [1 + α(xj+1 − xj−1)] .

O FPU não é um sistema integrável: o número
de quantidades conservadas é insuficiente para res-
tringir univocamente sua evolução. A suficiência
das simetrias em uma cadeia não-linear aparece nos
modelos de Toda, como veremos a seguir.

4.1. A cadeia de Toda

Os estudos das redes não-lineares de Fermi, Pasta
e Ulam mostraram que as mesmas possuem com-
portamento aproximadamente periódico [20]. Toda,
em seu trabalho, concluiu que estas estruturas esta-
riam ligadas a uma interação exponencial entre as

part́ıculas da rede [21]. E mostrou que esta interação
admite ondas periódicas, o que estava de acordo com
os estudos de Fermi,Pasta e Ulam.

A rede de Toda é constitúıda de N corpos dis-
cretos sujeitos a uma interação que cresce expon-
cialmente com a distâcia entre os corpos vizinhos,
de modo que o par qn, qn−1 está associado a um
potencial

V (qn, qn−1) = µ2

4β2 e
β(qn−qn−1),

e, portanto, a n-ésima part́ıcula sofre uma interação
devida ao seu vizinho à esquerda e também uma
devida ao seu vizinho da direita,

Vn = µ2

4β2

(
eβ(qn−qn−1) + eβ(qn+1−qn)

)
.

Para cada corpo discreto presente na rede, tem-se
uma amplitude yn, tal que ẏn e ÿn correspondem
à velocidade e à aceleração do corpo que ocupa o
n-ésimo śıtio da rede. No caso de massa unitária, as
equações de movimento satisfeitas pelas part́ıculas
de sua rede podem ser obtidas pela função Hamilto-
niana associada ao problema,

H =
N∑
k=1

(1
2p

2
k + Vk

)
,

descritas por

q̇n = {qn, H}PB = + ∂H

∂pn
= pn,

ṗn = {pn, H}PB = −∂H
∂qn

= − ∂V
∂qn

= Fn.

Logo, temos um sistema acoplado regido por

q̈n = ṗn = Fn = µ2

4β
(
eβ(qn−qn−1) − eβ(qn+1−qn)

)
.

(8)

4.2. O modelo de Sine-Gordon como uma
teoria de campo de Toda

O caso mais simples, não trivial, correspondente
a apenas dois corpos, com N = 2, interagindo de
acordo com o potencial de Toda é,

q̈1 = µ2

4β

(
eβ(q1−q0) − eβ(q2−q1)

)
,

q̈2 = µ2

4β

(
eβ(q2−q1) − eβ(q3−q2)

)
,
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onde consideramos por simplicidade o problema com
condições de contorno periódicas de modo que deve-
mos interpretar q0 = q2 e q3 = q1 e

q̈1 − q̈2 = µ2

2β
(
eβ(q1−q2) − eβ(q2−q1)

)
.

Introduzindo q = q1 − q2 obtemos simplesmente

q̈ = µ2

2β
(
eβq − e−βq

)
= µ2

β
sinh (βq) .

No caso de uma constante de acoplamento ima-
ginária β = ib, teremos

q̈ = µ2

2β
(
eibq − e−ibq

)
= −µ

2

2b sin (bq) .

Podeŕıamos considerar também o potencial de
Toda associado a um campo, ao invés de part́ıculas,
qn(t) → φn(x, t) e pn(t) → πn(x, t), a partir da
seguinte densidade Hamiltoniana

H =
N∑
k=1

[
1
2π

2
k + µ2

4β2

(
eβ(φk−φk−1) + eβ(φk+1−φk)

)]
.

As equações de movimento são dadas por

∂
∂tφn = {φn,H}PB =

∫
dy δ(x− y) δH

δπn[y] = πn,
∂
∂tπn = {πn,H}PB =

∫
dy δ(x− y) δH

δϕn[y] ,
∂2

∂t2φn = ∂2

∂x2φn + µ2

β

(
eβ(φn−φn−1) − eβ(φn+1−φn)

)
,

de modo que, para N = 2 com condições de contorno
periódicas e iφ = φ1 − φ2, temos

φtt = φxx + µ2

β
sin (βφ) ,

que é a equação de sine-Gordon.

5. A equação de KdV para fluidos rasos

A derivação da equação de onda linear é baseada em
três suposições simplificadoras: (i) Não há dissipação,
ou seja, a equação é invariante com a inversão do
tempo; (ii) Não há dispersão, ou seja, a velocidade de
grupo, vg = ∂ω

∂k = v é constante; (iii) A amplitude de
oscilação é pequena e, então, os termos não lineares
são omitidos. Iniciando pela solução mais conhecida
para uma onda viajante,

ϕ(x, t) = ϕ0 cos (k x+ ω t) (9)

sendo k o número de onda dado por k = 2π
λ e ω = 2π

T
a frequência angular, temos

∂2ϕ

∂x2 −
1
v2
∂2ϕ

∂t2
= 0, (10)

conhecida como equação de onda linear. Ou seja,
a equação (9) é na verdade uma das soluções que
satisfaz a equação de onda linear. A solução geral
da equação de onda linear (10) é a superposição de
duas ondas viajando em direções opostas,

ϕ(x, t) = f(x− vt) + g(x+ vt), (11)

ou seja, uma onda viajando para a direita e outra
viajando para a esquerda, sendo f e g funções ar-
bitrárias. Cada uma dessas duas ondas é solução de
(10).

Com o intuito de modificarmos a relação de dis-
persão, ω(k) = k v, uma das alterações mais imedia-
tas a se fazer consiste na introdução de um termo
dispersivo, substituindo-a por

ω(k) = ( k − B k3 + · · · ) v. (12)

Ao considerar pequena a dispersão introduzida,
podemos manter apenas os dois primeiros termos de
(12) e a solução da equação de onda em sua forma
complexa pode ser expressa como

ϕ(x, t) = ϕ0 e
i(k x−(k−βk3) v t).

Onde, então, se verifica que a equação satisfeita por
essa onda tem a forma

∂ϕ

∂x
+B

∂3ϕ

∂x3 + 1
v

∂ϕ

∂t
= 0,

e pode, convenientemente, ser reescrita na forma de
uma lei de conservação, em termos da equação de
continuidade,

∂ρ

∂t
+ ∂J

∂x
= 0,

onde temos, por comparação,

ρ = ϕ

v
, e J = ϕ+B

∂2ϕ

∂x2 .

Por outro lado, a fim de introduzir efeitos de não
linearidade, adicionamos em J , acima, um termo
quadrático em φ,

J = ϕ+ B
∂2ϕ

∂x2 + A

2 ϕ
2,
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de modo que a equação resultante regendo esse
comportamento assume a forma,

∂ϕ

∂x
+B

∂3ϕ

∂x3 +A
∂ϕ

∂x
+ 1
v

∂ϕ

∂t
= 0. (13)

Ao realizar uma mudança de variáveis e reescalar φ,
conforme segue,

ϕ → u = k0 + k1 ϕ,
x → ξ = k2 + k3 x,
t → τ = k4 + k5 t,

obtêmos relações que permitem reescrever (13) como

∂u

∂τ
+ v

k5

[(
Au

k1
− Ak0

k1
+ 1

)
k3
∂u

∂ξ
+ B k3

3
∂3u

∂ξ3

]
= 0,

ou ainda, de forma mais concisa, com k0 = 1
A , k1 =

k3 = 1 e k5 = v,
uτ +

(
A
u2

2 +B uξξ

)
ξ

= 0,

equivalente à conhecida equação de KdV,

ut +Auux +B uxxx = 0. (14)

Logo, vê-se que tal equação pode ser vista como uma
generalização relativamente natural da equação de
onda de D’Alembert para a qual foram introduzi-
das deformações simples capazes de gerar efeitos
dispersivos e não lineares.

5.1. A equação de KdV como o limite
cont́ınuo para a cadeia de Toda

Ambas, a equação de KdV para ondas rasas e a rede
discreta não linear de Toda, têm soluções multiso-
litônicas. Suas soluções e métodos de soluções são
similares. Nesse seção iremos descrever a relação
entre elas iniciando da cadeia de Toda para che-
gar na equação de KdV, mantendo a propriedade
de ser integrável. O objetivo é alcançado ao reali-
zar a aproximação da cadeia de Toda para o limite
cont́ınuo.

Iniciando pela equação de Newton para uma part́ıcula
sujeita a um potencial V (ϕ), responsável pela in-
teração entre vizinhos, que depende da distância
entre as part́ıculas vizinhas, sendo que as duas pri-
meiras vizinhas exercem forças em sentidos opostos,
temos

m
∂2yn
∂t2

= −V ′(yn − yn−1) + V ′(yn+1 − yn).

Podemos supor que a interação pode ser expan-
dida em termos de um deslocamento relativo rn =
yn+1 − yn de uma forma que generaliza o poten-
cial de Hooke para uma força elástica linear, agora
incluindo termos não lineares,

V (rn) = 1
2k r

2
n + 1

3k a0 r
3
n + 1

4k a1 r
4
n + · · · .

É posśıvel considerarmos que a amplitude da onda
discreta yn(t) varia tão suavemente que pode ser
considerada uma função cont́ınua de x = nh, sendo
h a distância média entre duas part́ıculas adjacentes.
Dessa forma, temos uma discretização do perfil da
onda, y(x, t)→ yn(t).

Para caracterizar a amplitude da onda num śıtio
vizinho da rede discreta podemos também utilizar
uma expansão de Taylor,

yn±1 = y±h∂y
∂x

+ h2

2!
∂2y

∂x2 ±
h3

3!
∂3y

∂x3 + h4

4!
∂4y

∂x4 ±· · · ,

de modo que a equação de movimento pode ser
escrita, com c0 = h

√
k
m , ε = 2a0h, h

2ε→ 0, como

1
c2

0

∂2y

∂t2
= ∂2y

∂x2 + ε
∂y

∂x

∂2y

∂x2 + h2

12
∂4y

∂x4

similar àquela conhecida como equação de Boussi-
nesq [13], descrevendo ondas em águas razas, sendo,
em prinćıpio, exatamente integrável.

Se usarmos uma lenta variação na escala do tempo
com u = ∂y

∂ξ
, τ = 1

2 ε c0 t, e ξ = x − c0t, temos,

desprezando termos de ordem ε2,

ε uτ + ε u uξ + h2

12uξξξ = 0,

de modo que ao assumirmos que |ε| ∼ h2 obtemos a
integrável equação da KdV,

uτ + uuξ + 1
12uξξξ = 0.

Existe ainda uma maneira alternativa de transfor-
mar a equação de Toda, em sua forma exponencial,
sem expansões, na equaç ao de KdV. Para realizar
tal transformação nós primeiramente escrevemos a
equação de movimento da cadeia de Toda em termos
da variável rn = yn+1 − yn,

∂2rn
∂t2

= 2e−rn − e−rn−1 − e−rn+1 ,
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e utilizando a força entre duas part́ıculas como sendo
igual a fn = e−rn − 1, a equação de movimento
expressa-se da seguinte maneira,

∂2

∂t2
log(fn + 1) = fn+1 + fn−1 − 2fn.

Finalmente, introduzimos um parâmetro positivo
h, tal que 0 < h ≤ 1, e reescalamos o parâmetro
temporal bem como a variável de amplitude da onda
discreta de acordo com t = τ

h3 , e fn = C h2un(τ),
levando-nos a
∂2

∂τ2 log
(
C h2un + 1

)
= C

h4 (un+1 + un−1 − 2un) .(15)

Podemos similarmente reescalar o parâmetro es-
pacial do problema em termos do parâmetro adimen-
sional h de tal modo que nos encontremos num refe-
rencial em movimento para a direita com velocidade(

1
h2 − h2

)
> 0 , tal que x = nh−

(
1
h2 − h2

)
δ τ, e

a amplitude un pode ser vista como uma função das
variáveis x e τ , u(x, τ) = un(τ). Em termos delas,
a equação para a cadeia exponencial de Toda na
forma (15) é reescrita como(
δ
∂

∂τ
−
( 1
h2 − h

2
)
∂

∂x

)2
log

(
1 + Ch2u(x, τ)

)
= C

h4 [u(x+ h, τ) + u(x− h, τ)− 2u(x, τ)] .(16)

Ao substituirmos h = 1 na equação acima, obte-
mos novamente a equação original exponencial de
Toda. Também quando h 6= 1, ainda temos a cadeia
exponencial de Toda, porque nós apenas mudamos
as escalas e adicionamos coordenadas de movimento.
No entanto, temos que considerar o caso no limite
em que h = 0. No limite em (16) quando h tende
a 0 pelo lado positivo, h→ 0+, o lado esquerdo da
equação (16) torna-se,

− 2 δ C ∂2u

∂x∂τ
+ C

h2
∂2u

∂x2 −
C2

2
∂2u

∂x2 . (17)

após usarmos expansão em série de Taylor para a
função logaŕıtimica. Já o lado direito da equação
(16) se torna,

C

h2
∂2u

∂x2 + C

12
∂4u

∂x4 . (18)

Igualando (17) e (18) para formar (16) temos,
após o cancelamento dos termos semelhantes,

− ∂

∂x

(
∂u

∂τ
+ C

4δ
∂ u

∂x

)
= 1

24δ
∂4u

∂x4 .

Tomando δ = 1
24B e reescalando, conveniente-

mente, o parâmetro C da seguinte forma, C → AB
12 ,

temos

− ∂

∂x

(
∂u

∂τ
+ A

2
∂ u

∂x

)
−B∂

4u

∂x4 = 0,

ou ainda,

∂

∂x
(uτ +Auux +B uxxx) = 0.

Por fim, usando-se a condição de que quando x
tende ao infinito a amplitude u deve anular-se, nós
obtemos a equação de KdV,

uτ +Auux +B uxxx = 0. (19)

Essa é portanto uma maneira alternativa de escrever
a equação de Korteweg e de Vries para as ondas
solitárias em canais como o limite cont́ınuo do mo-
delo de Toda para uma cadeia discreta de part́ıculas
que interagem por meio de uma generalização dos
potenciais de Hooke e Fermi-Pasta-Ulam.

5.2. A forma bilinear de Hirota para a KdV

Nesta seção apresentamos um outro procedimento,
devido a Hirota [22], que produz uma nova forma
para a equação de KdV. A vantagem do método
de Hirota é que ele é mais algébrico que anaĺıtico
e pode ser facilmente implementado para produzir
resultados mais rapidamente. Para implementá-lo,
notamos que na equação de KdV, para que tenhamos
um balanço entre todos os termos dominantes, in-
troduzimos uma tranformação para novas variáveis
dependentes w = ν log(F ), com grau 0,

u = wxx = ν ∂xx log(F ), (20)

tal que a equação de movimento pode ser escrita
como (

wxt + A

2 w2
xx +Bwxxxx

)
x

= 0,

que pode ser integrada de modo que a constante de
integração se anule, pois os campos comportam-se
como w → 0 conforme |x| → ∞. Isso resulta numa
equação que tem grau quatro em F , com a seguinte
estrutura, se fixarmos ν = 12BA ,

F Fxt−Fx Ft+B
(
3F 2

xx − 4Fx Fxxx + F Fxxxx
)

= 0.
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Tal equação pode ser apresentada de uma maneira
mais compacta e conveniente,(

DxDt +BD4
x

)
F · F = 0, (21)

em termos do chamado operador D de Hirota, defi-
nido por

eδDxf(x) = f(x+ δ)

de forma que

f(x+ δ) g(x− δ) =
∞∑
n=0

δn

n! (Dn
x f(x) · g(x)) ,

onde

Dn
xf · g = (∂x1 − ∂x2)nf(x1)g(x2)

∣∣∣
x2=x1=x

.

Percebe-se que D opera num produto de duas
funções de forma parecida com o operador de Leib-
nitz, diferindo apenas por um sinal relativo, por
exemplo,

Dx (f · g) = fx g − f gx,
DxDt (f · g) = f gxt − fx gt − ft gx + f gxt.

A equação (21), bilinear em F e escrita em termos
do operador de Hirota, denota a forma bilinear de
Hirota para a equação de KdV. Sua vantagem é
que permite construir soluções por meio de uma
expansão do tipo

F (x, t) = f0(x, t) + εf1(x, t) + ε2f2(x, t) + ..., (22)

determinando as soluções fi(x, t) ordem a ordem no
parâmetro ε.

5.3. Solução para um sóliton

A partir da equação de KdV na forma bilinear (21),
com a seguinte forma geral

P (D)F · F = 0, (23)

para um polinômio P par qualquer dos operadores
de Hirota (os termos ı́mpares se cancelam devido a
antissimetria deD), podemos construir suas soluções
por uma expansão em um parâmetro ε.

Substituindo tal expansão (22) na equação (23)
obtemos

P (D)
(
f0 · f0 + ε( f0 · f1 + f1 · f0) + · · ·

)
= 0,

e os termos de ordem ε0 desaparecem quando f0(x, t) =
1. De fato, sabemos que u = 0 é uma solução para a

KdV, no vácuo. Para os termos de ordem ε notamos
que

f1(x, t) = exp
[√

v

B
(x− vt)

]
(24)

é solução e que para ordens mais elevadas podemos
tomar fj(x, t) = 0, no caso da solução de apenas
um sóliton.

Nesse ponto, então, a expressão (20) proporciona

w(x, t) = 12B
A

log
(
1 + e

√
v
B

(x−vt)
)

e obtemos, finalmente a conhecida solução de 1
sóliton para a equação de KdV,

u(x, t) = 3v
A

sech2
[1

2

√
v

B
(x− vt)

]
, (25)

cuja representação gráfica pode ser vista na Figura
5 para diferentes valores de A e B.

A partir desta solução (25) mostramos, em se-
guida, como os valores das constantes A, referente
ao termo não linear, e B, associado ao termo dis-
persivo da equação de KdV, afetam a forma da

Figura 5: Soluções da KdV para diferentes valores de A (em
cima) e B (em baixo). Em linhas cont́ınuas, tracejadas e
pontilhadas mostramos esses parâmetros com valores iguais
a 0.5, 1.0 e 2.0 , respectivamente.
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sua solução, como visto na Figura (5). Percebemos
que, a medida que diminúımos o termo dispersivo, a
solução da KdV fica mais estreita (na Figura, à es-
querda) e em oposição, quando diminúımos o termo
de não linearidade (na Figura, à direita) a solução
se torna mais alargada. O importante é que a não
linearidade compensa a dispersão criando uma onda
que matem sua forma preservada.

Abaixo, na Figura 6, apresentamos a evolução
temporal da equação de KdV. Percebemos, na Fi-
gura da esquerda, que sua forma permanece inal-
terada a medida que o tempo passa, isso se deve,
à combinação singular entre os termos dispersivo e

Figura 6: a) Evolução temporal da solução da eq. de KdV.
b) Evolução temporal da equação de KdV modificada. c)
evolução de um cosseno como condição inical da KdV.

não linear da equação de KdV. Introduzindo uma
pequena modificação na discretização da equação
que quebra a integrabilidade do problema numérico
e mostramos o resultado na Figura ao centro. Por
fim, apresentamos a evolucão da equação de KdV
utilizando como condição incial uma função senoi-
dal, à direita. Percebemos que essa solução não é
estável sob a evolução temporal de Korteweg e de
Vries, não correspondendo a uma solução solitônica.
De fato, dentre as infinitas possibilidades para as
condições iniciais apenas uma classe muito restrita
comportar-se-á como sólitons.

5.4. O parentesco entre as equações de
KdV e Sine-Gordon

Tendo visto que a equação de KdV pode ser transfor-
mada na equação de Toda e que esta é intimamente
ligada à equação de sine-Gordon, aqui buscaremos
relacionar mais diretamente as equações de KdV e
sine-Gordon. Note que substituindo

u = v2 ± i

√
6B
A

vx (26)

na equação de KdV,

ut +Auux +B uxxx = 0,

obtemos2 v ± i
√

6B
A
∂x

(vt +Av2 vx +B vxxx
)

= 0

sendo que a equação

vt +Av2 vx +B vxxx = 0

é uma equação de KdV modificada denotada por
Focusing Miura [23]. Logo, se v satisfizer a equação
de KdV modificada então u dada em (26) é uma
solução para a equação de KdV original.

Usando a transformação

v = β
2φx,

u = β2

4 φ
2
x ± i

√
6B
A

β
2φxx

na equação de KdV modificada obtemos(
φt + Aβ2

12 φ3
x +B φxxx

)
x

= 0.
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Notamos que uma solução para a equação acima é
dada por

φ(x, t) = 4
β

tanh−1
[
ρ eµ(λx−

t
λ)]

desde que A = −6B, B = 1
µ2λ4 e λ = eχ. O curi-

oso deste resultado é que o campo φ(x, t) acima é
solução para a equação de Sinh-Gordon, que se rela-
ciona com o Sine-Gordon por meio da transformação
β → iβ. Na verdade, em [24] os autores mostram
que as equações de KdV (modificada) e Sine-Gordon
possuem famı́lias equivalentes de integrais de movi-
mento.

6. Conclusões e Perspectivas

Neste trabalho, revisamos alguns dos mais para-
digmáticos sistemas não lineares e desvendamos al-
gumas de suas supreendentes interconexões, num
contexto acesśıvel a estudantes de graduação, com
algum domı́nio de Mecânica Clássica e Equações
Diferenciais. Os problemas de interesse, descritos
matematicamente pelas equações de sine-Gordon,
Toda e de Kortweg e de Vries (KdV), generalizam
modelos f́ısicos bastante conhecidos como o pêndulo
simples, o sistema massa-mola e as ondas lineares,
respectivamente e oferecem uma boa oportunidade
para introduzir fenômenos não-lineares a estudan-
tes de graduação. Após discutirmos as diferenças
decorrentes da presença de não-linearidades nos mo-
delos, esclarecemos como os sistemas apresentados
relacionam-se entre si, indicando a existência de uma
famı́lia de equações que compartilham propriedades
de integrabilidade.

Procuramos aqui fornecer uma boa fonte da li-
teratura clássica sobre sólitons e sistemas integráveis,
mas também incluir trabalhos modernos em dinâmica
não-linear, um universo abrangente, com interessan-
tes aplicações. Material em ĺıngua portuguesa que
trate fenômenos não-lineares e sólitons pode ser en-
contrado, como em [25–29], mas não em volume
compat́ıvel com sua importância e ocorrendo predo-
minantemente na forma de dissertações e teses,por
exemplo [30–33]. Não obstante, vale destacar que a
comunidade cient́ıfica brasileira tem sido bastante
ativa nesta área, inserindo-a em universo bastante
abrangente que inclui desde a f́ısica de plasmas [34],
mecânica estat́ıstica, [35–39] e.g., equações diferen-
ciais [40–43], f́ısica matemática [44–47], altas ener-
gias [48,49], etc. Logo, em meio a tantas ocorrências,

reforçamos a ideia de que os sistemas não-lineares
correspondem a uma área importante e ativa, mere-
cendo atenção por parte dos estudantes.
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Os autores agradecem à Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior (CAPES) pelo apoio
recebido para o desenvolvimento deste trabalho.

Referências

[1] E. Noether, Nachr. D. Konig. Gesellsch. D. Wiss.
Zu Göttingen, Math-phys. Klasse 1918, 235 (1918).

[2] H. Goldstein, C. Poole and J. Safko, Classical Me-
chanic (Addison-Wesley, Upper Saddle River, 1980),
3ª ed.

[3] A. Das, Integrable Models - Lecture Notes in Physics
(World Scientific, Cingapura, 1989).

[4] O. Babelon, D. Bernard and M. Talon, Introduction
to Classical Integrable Systems (Cambridge Univer-
sity Press, Cambridge, 2003).

[5] D.J. Korteweg and G. De Vries, Philosophical Ma-
gazine 39, 422 (1895).

[6] N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett.
15, 240 (1965).

[7] P. Lax, Comm. Pure Applied Math. 21, 467 (1968).
[8] E. Bour, J. Ecole Imperiale Polytechnique 19, 1

(1862).
[9] R. Rajaraman, Solitons and Instantons: An Intro-

duction to Solitons and Instantons in Quantum Fi-
eld Theory (North-Holland Personal Library, North-
Holland, 1989), pp. 34-45.

[10] R.Y. Chiao, E. Garmire and C.H. Townes, Phys.
Rev. Lett. 13, 479 (1964).

[11] D.K. Campbell, Nonlinear Science from Paradigms
to Practicalities, dispońıvel em http://library.
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