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Neste trabalho revisamos alguns dos sistemas nao-lineares mais paradigmaticos e desvendamos
algumas das suas surpreendentes interligagoes. Os problemas de interesse, descrito matematicamente
pelas equagoes de sine-Gordon, Toda e KdV, generalizam modelos fisicos conhecidos, como o péndulo
simples, o sistema massa-mola e as ondas lineares em agua, respectivamente. Depois de discutirmos as
peculiaridades decorrentes da presenca de nao-linearidades nos modelos, esclarecemos como os sistemas
apresentados sdo relacionados uns aos outros, indicando a existéncia de uma familia de equacoes que
compartilham propriedades como a integrabilidade. N6s mostramos como a equagao de KdV pode ser
convenientemente discretizada a fim de preservar tais caracteristicas importantes. Além de apresentarmos
as ligagOes estreitas que esta equacado tem com a cadeia de Toda e com a equagao sine-Gordon, nos
também investigamos outros procedimentos capazes de gerar um sistema integravel discreto a partir do
modelo KdV com a discretizacao de Hirota.

Palavras-chave: KdV, Sine-Gordon, Cadeia de Toda.

In this report we review some of the most paradigmatic nonlinear systems and unveil some of their
suprising interconnections. The problems of interest, described mathematically by the equations of
sine-Gordon, Toda and KdV, generalize well known physical models, the simple pendulum, the mass on
a spring and the linear waves, respectively. After discussing the differences arising from the presence of
nonlinearities in the models, we clarify how the systems presented are related to each other, indicating
existence of a family of equations sharing integrability properties. We show how the KdV equation
can be conveniently discretized in order to preserve important properties. Besides presenting the close
connections this equation has with respect to the Toda lattice and the sine-Gordon equation, we also
investigate other procedures capable of generating a discrete integrable system from the KdV model, as

the Hirota discretization.
Keywords: KdV, Sine-Gordon, Toda Lattice.

1. Introducao

A maior parte dos fendmenos que ocorrem na natu-
reza envolvem efeitos ndo-lineares. No entanto, os
cursos de graduacao tendem a focar nos aspectos
lineares destes fendmenos. Dessa forma, em nossa
formacao, somos levados a pensar que os sistemas
nao-lineares sdo tdo complicados que nunca podem
ser tratados de forma analitica. Assim, pode parecer
que o profissional da area deve resignar-se, apenas,
a simulagoes numéricas, como ocorre com a previsao
do tempo, por exemplo.
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Diante de tal cenario, neste trabalho trazemos
uma introducao a alguns problemas nao-lineares
que podem ser tratados exatamente, com obtencao
de solugbes analiticas, e que, embora possam pare-
cer a primeira vista completamente independentes,
estao relacionados entre si de uma maneira profunda
por meio de simetrias. Sabe-se que a presenca de
simetrias num problema esta associada a existéncia
de leis de conservacao [12], que podem permitir ou
facilitar a solucao do problema.

Sistemas ndo-lineares que apresentam um ntmero
suficientemente grande de leis de conservacao po-
dem ser resolvidos analiticamente e sdo chamados
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integraveis [3]. O estudo desses sistemas forma uma
area de pesquisa que concatena diversos ramos da
matemética (como teoria de grupos, algebra, teoria
de representacao, topologia, geometria diferencial,
sistemas dindmicos [4]) e permite abordar vérios sis-
temas fisicos de relevancia atual, como as equacoes
de KdV [5-7], Sine-Gordon [8,9] e Schrodinger nao-
linear [10], e, também, os problemas do péndulo
real [11], de Fermi-Pasta-Ulam [12], ondas em dguas
rasas [13], entre outros. Sendo assim, é uma &ea
prospera, na fisica tedrica, em especial, no estudo
de sistemas compostos por muitas particulas intera-
gentes.

Uma caracteristica comum dos sistemas integraveis
é a existéncia de excitagbes chamadas sélitons [3,/14,
15[, que sdo pacotes de onda solitarios que mantém
sua forma enquanto se propagam, mesmo apds so-
frer colisdes entre si. Descritos pela primeira vez
em 1834 [16], os sélitons s@o manifestacdes de um
balango sutil entre efeitos dispersivos e nao-lineares
que, isoladamente, tenderiam a destruir seu per-
fil de onda com o tempo. Os modelos nao-lineares
exatamente soltuveis, cujo comportamento pode ser
completamente descrito em qualquer instante, por
apresentar solucoes em forma fechada, servem de
laboratério para a aplicacao de métodos analiticos
e perturbativos, e também como ponto de partida
para o estudo de sistemas para os quais nao ha
solucoes analiticas e as simulagbes numeéricas sao
computacionalmente custosas, quando nao proibiti-
vas.

A existéncia de ondas cujo comportamento pode
ser interpretado como particulas é mais que uma
curiosidade e possui implicagoes e aplicacoes rele-
vantes. Os sélitons podem ser usados para modelar
algumas particulas exéticas [17] ou para descrever o
comportamento do encontro das correntes fluvias do
Rio Amazonas com as dguas ocednicas durante as
marés altas, que geram o fené6meno conhecido como
pororoca [18]. De um ponto de vista matemético, os
sOlitons permitem obter solugoes exatas de equagoes
diferenciais nao lineares que, a partida, poderiam
ser apenas investigadas numericamente.

Diante do exposto, neste trabalho, revisamos al-
guns dos mais paradigmaticos sistemas nao-lineares
integraveis e desvendamos algumas de suas supre-
endentes interconexoes, num contexto acessivel a
estudantes de graduagao, com algum dominio de
Mecanica Clssica e Equagoes Diferenciais. Em parti-
cular, estudamos sistemas bem conhecidos, como o
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péndulo simples, o sistema massa-mola e a equagao
de onda linear, para mostrar que eles sdo, na verdade,
limites lineares das equagoes de sine-Gordon, Toda
e KdV, respectivamente. Mostramos, de forma clara,
como esses modelos, aparentemente distintos, estao
relacionados, sendo, efetivamente, representacoes
distintas de simetrias escondidas.

Tendo em vista nosso objetivo pedagogico, orga-
nizamos este trabalho da seguinte forma: Iniciamos,
na se¢do [2] com uma breve introducgao a sistemas
nao-lineares. Em particular, calculamos a solucao
do péndulo para além da tradicional aproximacao
de pequenas oscilagdes e usamos esses resultados
para introduzir o modelo de Sine-Gordon em |3 Em
seguida, na secao [4| introduzimos rapidamente o
problema Fermi-Pasta-Ulan (FPU) e a modificacao
proposta por Toda [12]. Com essas construgoes, mos-
tramos, na subsecao [£.2], por que o modelo de Sine-
Gordon pode ser entendido como uma teoria de
campo de Toda. Posteriormente, a equagao KdV
¢ discutida na segao |5, onde mostramos como ela
pode ser entendida como o limite ultravioleta da
cadeia de Toda. Ademais, em discutimos uma
descrigao alternativa da equagao de KAV por meio
do operador de Hirota, que nos permite construir
a solucao para multi-solitons. Como uma aplicagao
dessa discretizacao, em construimos a solucao
para um séiton. Por fim, discutimos, subsecao
rapidamente como as equacées KdV e Sine-Gordon
estao conectadas. E, na se¢ao |§| apresentamos nossas
conclusoes.

2. Sistemas Lineares e Nao-Lineares

Embora as equagées lineares sejam geralmente mais
simples de se resolver, a ndo-linearidade manifesta-
se em variados sistemas fisicos. Por este motivo
existe um crescente interesse fisico e matematico
para analisar os fen6menos nao-lineares.

Um sistema fisico descrito por uma equagao dife-
rencial é linear quando, para ela, é valido o principio
da superposi¢ao [19]. Além do mais, a resposta a
pequenas variacoes em seus parametros iniciais, ou
a estimulos externos, é usualmente suave e direta-
mente proporcional ao estimulo. Em geral, um pulso
sob uma dindmica linear normalmente espalhar-se-
a0 com o tempo, num efeito chamado de dispersao.
Ele é o responsavel por fazer as ondas perderem sua
forma e desaparecer.
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Ja para o caso nao-linear, este principio deixa
de ser verdadeiro, ou seja, duas solucbes de uma
equacdo nao-linear ndo podem ser combinadas line-
armente para formar outra solugdo. Isso dificulta a
obtencao de métodos analiticos gerais para resolver
equacoes nao-lineares. A resposta a estimulos ex-
ternos nao é linearmente proporcional ao estimulo,
diferentemente do que ocorre nos sistemas lineare.
Assim, uma pequena varia¢gdo nos parametros do
sistema pode provocar uma enorme diferenca no
movimento. Uma outra importante propriedade das
excitagbes nao-lineares é que podem apresentar-se
na forma de estruturas altamente coerentes e loca-
lizadas como os sélitons, que viajam a velocidade
constante e mantém a forma por longas distancias.

Uma sistema fisico que ilustra claramente tais
diferencas é o classico péndulo simples. O movi-
mento de um péndulo simples em pequenas os-
cilagbes é harmonico e descrito por uma equagao
linear. J& o regime de grandes oscilagoes é descrito
por uma equacao nao-linear. Enquanto a solugao
para o péndulo linear é bastante simples, encontrar
solucoes exatas para angulos nao necessariamente
pequenos (péndulo nao-linear) é consideravelmente
mais dificil.

2.1. O péndulo real

O estudo do péndulo nao-linear é oportuno para mos-
trar que fendmenos complexos podem ser originados
por modelos bastantes simples, desde que tratados
por meio de uma abordagem nao-perturbativa. Po-
demos resolver o problema do péndulo nao-linear a
partir da conservacao da energia mecéanica. Dado
que a energia potencial associada ao problema é

U(0) = mgl(1 — cosb),

podemos escrever a equagdo caracteristica do movi-
mento pendular na forma

mi%0 +mglsin =mi*>6+U'(#) =0. (1)

Para resolvé-la multiplicamos ambos os lados de
por 6,

mi2060+mglsinf =m0+ U'(6)6 =0,

para obter,
4 m—l292+U(9) =0 2)
dt \ 2 -
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que ¢é a familiar lei de conservacdo da energia,

mi? ., ml

2
12
5 0+ U(0) = 5 0oz T UOmaz) = Emaz-
Percebe-se que, no nosso caso, no angulo de méxima
abertura 0 = 60,,,. = £7m a velocidade se anula e
temos 0 = 0, fixando-se dessa forma a energia para
completarmos uma volta. Assim, ao reescrevermos

a equacao ,

A
) =24%(1
(dt) w” (1 +cosb),

notamos que ela nos permite escrever a relagdo

1 df
ﬂ/m:W/dtZW(t—to)ZWT,

para a variagdo da posicdo angular com variacoes
infinitesimais de tempo.

Na usual aproximacao de dngulos pequenos, para
a qual se considera § < 1, o lado esquerdo da ex-

\/ﬁ df = arcsin (g), indi-
cando que de fato o dngulo varia harmonicamente
nesse regime.

No caso de uma amplitude genérica, uma forma

de simplificar a obtencao da solucao é notar que

pressa acima produz [

do & 4)]  V2/I—cosé
Sendo assim, usando-se § = ¢ + w, chegamos a
solucgdo,

1 do 0
WwT=— | ———= =log | tan -
ﬂ/\/1+cose g( 4)
a partir da qual podemos isolar a expressao para a
posicao angular em fungao do tempo,

0(t) = 4arctan e® (=10 (3)

representada na Figura[l] tracejado verde. Com isso,
a solugdo que procuramos, pode ser escrita como,

w(tfto) -1
(&
Q(t) =4 arctan (ew(t_t())_i_l>’ (4)

cuja representacao grafica é dada pela Figura [T}
tracejado azul.

Nota-se que a posi¢cao angular nao varia linear-
mente; na verdade, como esperado, temos uma, va-
riacdo aproximadamente linear nas regioes proximas
da origem, isto é, quando as aberturas angulares
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Figura 1: Representacdes gréficas das expressdes e ,
indicando a posi¢do do péndulo nao linear em funcdo do
tempo.

sdo pequenas. Percebe-se, contudo, que, conforme
o péndulo gira por multiplos de 7 a partir da ori-
gem, ele atinge um ponto de equilibrio (instével) e
o angulo poderia parar de variar.

Tal afirmacado pode ser verificada na fig. [2], onde so-
brepomos o comportamento do péndulo simples, em
cinza, com o do péndulo real, ndo-linear, em azul, e
observamos como as solugées sao aproximadamente
equivalentes apenas para pequenas amplitudes. Con-
forme aumentamos a amplitude, chega um ponto
em que ao aumentarmos o deslocamento relativo
do péndulo o torque restaurador ja nao cresce na
mesma propor¢ao. De fato, o torque é descrito ma-
tematicamente por uma fungao senoidal.

Uma forma de analisar o comportamento futuro
do péndulo n ao-linear é utilizar a ideia do espago
de fase, mostrado na Figura [3] representado pelas
variaveis dindmicas do sistema, a posicao 0 e a velo-
cidade angular 0. Nela, percebe-se que as curvas fe-
chadas representam oscila¢bes com energia potencial
(E < 2mgl) e sdo, portanto, periddicas e limitadas,
nao podendo assumir qualquer angulo. No caso das
curvas abertas (E > 2mgl) temos um movimento
que nao estdo limitado, ou seja, o péndulo pode
girar de 0 a 26 tanto no sentido horario quanto anti-
horério e continuar o movimento indefinidamente.
A regularidade nos sistemas integraveis é notavel,
nao estando presente em outros regimes nao linea-
res, como o cadtico, no qual as curvas tenderiam a
preencher todo o espaco de fase de forma irregular.

3. O péndulo real e Sine-Gordon estatico

Um sistema de péndulos enfileirados e acoplados
por molas de tor¢ao pode ser descrito pela equagao
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Figura 2: Nas figuras acima mostramos uma comparagio
entre o comportamento linear, indicado pelas linhas
continuas acinzentadas, e o comportamento soliténico, re-
presentado pelas linhas tracejadas azuis. Na parte superior
tem-se o deslocamento angular do péndulo em fun¢do do
tempo. No gréfico intermediario mostramos como se com-
porta a forca sentida pelo péndulo devido a sua abertura
angular que varia no tempo. Finalmente, na figura inferior
indicamos o potencial sentido pelo corpo.

de Sine - Gordon. Conhecida desde o séc XIX, no
entanto, ganhou importancia apenas nos anos de
1970 quando se percebeu que sua solugao levava a
estrutura do tipo sélitons, “kink” e “antikink”, como
mostrado na Figura[dl A equagao de Sine-Gordon
é uma equacao diferencial parcial nao linear que
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Figura 3: Trajetdrias no espaco de fase para o péndulo real
com energias £ = (curva continua fina), £ = mgl
(curva pontilhada), E = 2mgl (curva tracejada-pontilhada),
E = 4mgl (curva tracejada), E = 6mgl (curva continua
grossa).

-10 -5

Figura 4: Solugdes do tipo kink (¢ = +1), indicada pela
curva ascendente tracejada em azul, e do tipo anti-kink
(e = —1), mostrada na curva descendente pontilhada em
vermelho.

envolve o operador de d’Alembert e o seno de uma
funcdo, da seguinte forma

2

¢tt + d)x:p + % sin qu = 07 (5)

onde ¢ = ¢(x,t) é uma funcao do espago e do tempo.

Ela aparece em aplicagoes fisicas que vao desde
teorias de campos relativisticos e jungoes Josephson
até linhas de transmissdes mecanicas.

No caso do péndulo, ¢(z,t) descreve o seu angulo
de rotacdo. Note que, para pequenas amplitudes
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(sin¢ ~ ¢) a equacao (9| se reduz a

Gt + Puw + 120 =0, (6)

conhecida como equacao de Klein-Gordon e admite
solugoes da forma

d(x,t) = ¢p cos (kx —wt)  w = /p?+ k2.

No entanto, aqui, estamos interessados nos casos
em que o péndulo pode oscilar em amplitudes ar-
bitrérias, pequenas ou grandes. Note que os papéis
de z e t, nessa equagao, sdo intercambidveis e pode-
mos inicialmente supor que ¢4 = 0, de modo que
nao hé variacdo de ¢ no tempo, no chamado regime
estatico. Assim, temos a equacgao para o péndulo

nao linear,
2

¢x:v + &Sinﬂ¢ =0
B
cuja solucao,
4 etrr 1
/B¢(x) = B arctan m N (7)

ja foi demonstrada na se¢ao . Como a equagao
¢ invariante por transformagoes de Lorentz podemos
aplicar um boost,

x — cosh (x) [x — ctanh ()],

na equacao para obter a solugdo viajante da
equagao de Sine-Gordon ,

€ p(cosh (x) @ —sinh (x) ct) _ q

4
o(x,t) = 3 arctan e nlcosh (x) = —sinh (x) et) 4 |

A solucdo acima representa uma onda solitaria lo-
calizada viajando com uma velocidade c¢. De acordo
com os sinais € = =+ classificamos a solugdo em
kink, o péndulo rotaciona de 0 para 2m, e antikink,o
péndulo rotaciona de 0 para —27, como representado
na Figura , abaixo.

O que acabamos de ver foi um problema envol-
vendo uma equacao diferencial nao-linear para o
qual foi possivel encontrar uma solucao exata, isto
é, um problema integravel. A seguir veremos um
pouco sobre os primodrdios dessa area e apresentare-
mos alguns outros exemplos de modelos exatamente
integraveis.
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4. Cadeias de Toda e o Problema de
Fermi-Pasta-Ulam

As pesquisas entorno dos sélitons ficaram inertes até
o inicio de 1950, quando o estudo de oscilagGes em re-
des ndo lineares ganhou evidéncia, apds os trabalhos
de Fermi, Pasta e Ulam no problema da parti¢ao de
energia |20]. O problema de Fermi-Pasta Ulam foi
um dos precursores das simulacdes computacionais
na area da Fisica e constitui-se de simulacoes em
uma rede de particulas ligadas entre si através de mo-
las que obedecem a Lei de Hooke com uma corre¢ao
nao-linear quadratica. Esperava-se que a deformagao
linear quebrasse o comportamento ergoédico do sis-
tema, mas, surpreendentemente, os estados visitados
durante a evolucdo ndo eram quaisquer. A distri-
buicao de energia entre os modos apresentava um
comportamento aproximadamente periédico, fato
atribuido & presenca de simetrias escondidas. Em
1981, Morikazu Toda modificou o problema de FPU
introduzindo uma interacdo exponencial, eq. , en-
tre os elementos da cadeia, tornando-o um problema
integréavel [12].

Como citado o problema de Fermi-Pasta Ulam
consiste em modificar a rede linear, adicionando
uma nao linearidade quadratica (ak Ax?) & forca
de Hooke, da seguinte forma,

F=—kAz — akAz?,

onde « é o pardmetro de deformagao (arbitraria-
mente grande ou pequeno) e Az é o deslocamento
em relagdo ao ponto de equilibrio. Logo, a forca
experimentada por uma particula j na rede de FPU
permite-nos escrever a equagao de movimento satis-
feita por

m:'n'j =k (l’j+1 — 2(5]' + l’jfl) [1 + Oé(l’j+1 — :L‘jfl)] .

O FPU néo é um sistema integravel: o ntimero
de quantidades conservadas é insuficiente para res-
tringir univocamente sua evolucdo. A suficiéncia
das simetrias em uma cadeia nao-linear aparece nos
modelos de Toda, como veremos a seguir.

4.1. A cadeia de Toda

Os estudos das redes nao-lineares de Fermi, Pasta
e Ulam mostraram que as mesmas possuem com-
portamento aproximadamente periddico [20]. Toda,
em seu trabalho, concluiu que estas estruturas esta-
riam ligadas a uma interagcao exponencial entre as
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particulas da rede |21]. E mostrou que esta interacao
admite ondas periddicas, o que estava de acordo com
os estudos de Fermi,Pasta e Ulam.

A rede de Toda é constituida de N corpos dis-
cretos sujeitos a uma interacao que cresce expon-
cialmente com a distacia entre os corpos vizinhos,
de modo que o par g,,q,—1 estd associado a um
potencial

112
V{(qn; Gn-1) = e eBlan—an1),

e, portanto, a n-ésima particula sofre uma interacao
devida ao seu vizinho a esquerda e também uma
devida ao seu vizinho da direita,

2
— L B(gn—qn-1) B(qn+1—qn)
V’VL - 452 (6 + (& + ) .

Para cada corpo discreto presente na rede, tem-se
uma amplitude y,, tal que ¥, e ¥, correspondem
a velocidade e a aceleracdo do corpo que ocupa o
n-ésimo sitio da rede. No caso de massa unitaria, as
equagoes de movimento satisfeitas pelas particulas
de sua rede podem ser obtidas pela funcdo Hamilto-
niana associada ao problema,

N1
H=Y (s + V).
k=1 2

descritas por

. OH
dn = {QmH}PB = +3T?n = Pn,
. oH oV
Pn = {pmH}pB:_gz = F,.

g
Logo, temos um sistema acoplado regido por
2

[ (emqn—qnfl) _ eﬁ(qwl*%))

(8)

4.2. O modelo de Sine-Gordon como uma
teoria de campo de Toda

O caso mais simples, ndo trivial, correspondente
a apenas dois corpos, com N = 2, interagindo de
acordo com o potencial de Toda é,

@i = eBlai—qo) _ oBlaz—q1)

112
48
G = Zﬁ ePl2—a) _ oBlas—a2)
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onde consideramos por simplicidade o problema com
condigoes de contorno periddicas de modo que deve-
mos interpretar gg =q2 € g3 = q1 €

2
. e B Bai—a2) _ Blez—q1)
ql q2_2/8(6 1 2 e 2 1).

Introduzindo g = q1 — ¢2 obtemos simplesmente

2 2
s M Bg _ —Ba) — H h
G 55 (e e ) 3 sinh (3q) .
No caso de uma constante de acoplamento ima-
ginaria 8 = ib, teremos

2 2
.. K ibq —ibg ne
=_— (e —e¢ = ——sin (bq) .
i=35 ( ) 5 Sin (bg)

Poderiamos considerar também o potencial de
Toda associado a um campo, ao invés de particulas,
an(t) — ¢n(x,t) € pp(t) — mu(z,t), a partir da
seguinte densidade Hamiltoniana

N
H-Y
k=1

Lo 12 oednn) | Blonsi—o
57.%_'_@(6(1@ k1)+e(k+1 k))'

As equagoes de movimento sdo dadas por

%‘b" = {onMH}pp=Jdyd(z - y)% = T,
%Wn = {m,H}pg = [dyd(z— y)éjﬁyy

2 2 2
Dobn = Lron+ w (66(%7%71) _ 65(%“7%)) ’

de modo que, para N = 2 com condicGes de contorno
periddicas e ip = @1 — @2, temos

2

but = duw + % sin (8) ,

que é a equagao de sine-Gordon.

5. A equacao de KdV para fluidos rasos

A derivacao da equacdo de onda linear é baseada em
trés suposigoes simplificadoras: (i) Nao ha dissipagao,
ou seja, a equacao é invariante com a inversao do
tempo; (ii) Nao ha disperséo, ou seja, a velocidade de
grupo, vy = g—‘,‘; = v é constante; (iii) A amplitude de
oscilacao é pequena e, entao, os termos nao lineares
sdo omitidos. Iniciando pela solu¢do mais conhecida
para uma onda viajante,

o(x,t) = ¢pcos (kz+wt) 9)
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sendo k o nimero de onda dado por k = 2{ ew = 2%

a frequéncia angular, temos
0
Ox?

1 0%

— 2T
v? Ot? ’

(10)
conhecida como equagdo de onda linear. Ou seja,
a equacao @ é na verdade uma das solugdes que
satisfaz a equacdo de onda linear. A solugdo geral
da equacao de onda linear ¢é a superposicao de
duas ondas viajando em direcdes opostas,

o(x,t) = flz —vt) + g(z + vt), (11)
ou seja, uma onda viajando para a direita e outra
viajando para a esquerda, sendo f e g funcdes ar-
bitrarias. Cada uma dessas duas ondas é solucdo de
(10).

Com o intuito de modificarmos a relagao de dis-
persdo, w(k) = kv, uma das alteragdes mais imedia-
tas a se fazer consiste na introducao de um termo
dispersivo, substituindo-a por

wk)=(k— Bk +--)v. (12)

Ao considerar pequena a dispersao introduzida,
podemos manter apenas os dois primeiros termos de
e a solucao da equacado de onda em sua forma
complexa pode ser expressa como

(,0(37, t) = g ei(kw—(k— ﬂk3)vt)‘
Onde, entéo, se verifica que a equacdo satisfeita por
essa onda tem a forma

e pode, convenientemente, ser reescrita na forma de
uma lei de conservacao, em termos da equacao de
continuidade,

op 0J
FiZ2 o
ot Tor
onde temos, por comparacao,
o D%
=7 J=op+ B2,
P v ¢ ot Ox?

Por outro lado, a fim de introduzir efeitos de nao
linearidade, adicionamos em .J, acima, um termo

quadratico em ¢,
Pp A,

J = B— + —
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de modo que a equacdo resultante regendo esse
comportamento assume a forma,
0 3 0
92 . 2P L 4%¥

ox Ox3 + ox (13)

Ao realizar uma mudanca de varidveis e reescalar ¢,
conforme segue,

ko + k1,
ko + k3 x,
= ky+kst,

114
RS
|

¥
x
t
obtémos relagbes que permitem reescrever ([13]) como

ou v |[Au Ak ou 3 Pul
aﬁkgKkl m“)’“SaﬂB"%agS]—O’

ou ainda, de forma mais concisa, com kg = %, ki =
]4}3 =1le ]{75 =,
u2
Ur + <A+Bu§§> =0,
2 3

equivalente a conhecida equagao de KdV,

up + Aty + B gy, = 0. (14)
Logo, vé-se que tal equagdo pode ser vista como uma
generalizacdo relativamente natural da equagao de
onda de D’Alembert para a qual foram introduzi-
das deformagoes simples capazes de gerar efeitos
dispersivos e nao lineares.

5.1. A equacao de KAV como o limite
continuo para a cadeia de Toda

Ambas, a equacao de KAV para ondas rasas e a rede
discreta nao linear de Toda, tém soluc¢oes multiso-
litbnicas. Suas solugdes e métodos de solugdes sao
similares. Nesse se¢do iremos descrever a relacao
entre elas iniciando da cadeia de Toda para che-
gar na equacao de KdV, mantendo a propriedade
de ser integravel. O objetivo é alcancado ao reali-
zar a aproximacao da cadeia de Toda para o limite
continuo.

Iniciando pela equacdo de Newton para uma particula

sujeita a um potencial V (), responséavel pela in-
teracdo entre vizinhos, que depende da distancia
entre as particulas vizinhas, sendo que as duas pri-
meiras vizinhas exercem forcas em sentidos opostos,
temos

*yn,
m
o2

= _V/(yn - yn—l) + V/(yn—l-l - yn)-
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Podemos supor que a interagdo pode ser expan-
dida em termos de um deslocamento relativo r,, =
UYn+1 — Yn de uma forma que generaliza o poten-
cial de Hooke para uma forga elastica linear, agora
incluindo termos néo lineares,

1 1 1
V(rp) = ikriJrgkaorqu Zkalrﬁ+-~ .

E possivel considerarmos que a amplitude da onda
discreta y,(t) varia tdo suavemente que pode ser
considerada uma funcdo continua de x = n h, sendo
h a distancia média entre duas particulas adjacentes.
Dessa forma, temos uma discretizacao do perfil da
onda, y(z,t) = yn(t).

Para caracterizar a amplitude da onda num sitio
vizinho da rede discreta podemos também utilizar
uma expansao de Taylor,

Oy h? 0%y

oy 1% h3 83y
Or 2! Ox2

3! 0a3

ht 0y

Ynt1 =yth DT

de modo que a equagdo de movimento pode ser
escrita, com ¢y = h\/%, € = 2aph, h%*¢ — 0, como

Oy 0%y

“0x 052

h? oty
12 Ozt

similar aquela conhecida como equacédo de Boussi-
nesq [13|, descrevendo ondas em dguas razas, sendo,
em principio, exatamente integravel.

Se usarmos uma lenta variagdo na escala do tempo

_ Oy 1 _
comu-a—g, T = 5€ct, e £ =z — cpt, temos,
2

desprezando termos de ordem €~
cur +euug + 2 =0
T ¢t pueee = 0

de modo que ao assumirmos que |e| ~ h? obtemos a
integravel equacao da KdV,

1
Ur + wug + EU&S =0.

Existe ainda uma maneira alternativa de transfor-
mar a equacao de Toda, em sua forma exponencial,
sem expansoes, na equag ao de KdV. Para realizar
tal transformacao nds primeiramente escrevemos a
equacao de movimento da cadeia de Toda em termos
da variavel 7, = Yn+1 — Yn,

9%ry,
ot?

=2e " — e 1

T
—e n+1’
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e utilizando a forca entre duas particulas como sendo
igual a f, = e7™ — 1, a equagdo de movimento
expressa-se da seguinte maneira,

2

0
20 log(fn+1) = foy1 + fao1 — 2fn.

Finalmente, introduzimos um parametro positivo
h, tal que 0 < h < 1, e reescalamos o parametro
temporal bem como a variavel de amplitude da onda
discreta de acordo com t = 73, e f, = C h2uy(T),
levando-nos a

2

or2 ht

Podemos similarmente reescalar o pardmetro es-
pacial do problema em termos do parametro adimen-
sional h de tal modo que nos encontremos num refe-
rencial em movimento para a direita com velocidade
(h%th) >0, talquex =nh— (%—iﬂ) 0T, e
a amplitude u,, pode ser vista como uma funcdo das
variaveis = e 7, u(z,7) = up (7). Em termos delas,
a equagao para a cadeia exponencial de Toda na
forma é reescrita como

o 1 5\ 0\?2 2
<587_(h2_h>5$> log(1+Ch U(%ﬂ)

= % [u(z 4+ h,7) +ulx — h,7) — 2u(x,7)].(16)

Ao substituirmos h = 1 na equagio acima, obte-
mos novamente a equagao original exponencial de
Toda. Também quando h # 1, ainda temos a cadeia
exponencial de Toda, porque nds apenas mudamos
as escalas e adicionamos coordenadas de movimento.
No entanto, temos que considerar o caso no limite
em que h = 0. No limite em quando h tende
a 0 pelo lado positivo, h — 04, o lado esquerdo da

equagao torna-se,
0%u C 0*u C?0%u
200+ 555" 573

0xdt  h* Oz 2 Ox
ap0Os usarmos expansao em série de Taylor para a
fung¢ao logaritimica. Ja o lado direito da equacao

se torna,

(17)

C 0%u n C 0*u
h20x?2 12 0x*
Igualando e para formar temos,

apos o cancelamento dos termos semelhantes,

Lo (o, gouy_ 1o
Ox \Or 46 0z ) 246 Oz4’

(18)
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Tomando § = ﬁ e reescalando, conveniente-

mente, o pardmetro C' da seguinte forma, C' — "i—f,

temos

*u

8(8u Aau)_ Iu _
oxt

"oz \or T20x

ou ainda,

0
— (ur + Auuy + Bugy,) = 0.
ox
Por fim, usando-se a condi¢ao de que quando x
tende ao infinito a amplitude u deve anular-se, nos
obtemos a equacdo de KdV,
Uy + Autg + Bugg, = 0. (19)
Essa é portanto uma maneira alternativa de escrever
a equacao de Korteweg e de Vries para as ondas
solitarias em canais como o limite continuo do mo-
delo de Toda para uma cadeia discreta de particulas
que interagem por meio de uma generalizagao dos
potenciais de Hooke e Fermi-Pasta-Ulam.

5.2. A forma bilinear de Hirota para a KdV

Nesta secao apresentamos um outro procedimento,
devido a Hirota [22], que produz uma nova forma
para a equacdo de KdV. A vantagem do método
de Hirota é que ele é mais algébrico que analitico
e pode ser facilmente implementado para produzir
resultados mais rapidamente. Para implementé-lo,
notamos que na equagio de KdV, para que tenhamos
um balanco entre todos os termos dominantes, in-
troduzimos uma tranformacao para novas variaveis
dependentes w = v log(F’), com grau 0,

U = Wyy = V Ogy log(F), (20)
tal que a equacdo de movimento pode ser escrita
como

=0,

T

que pode ser integrada de modo que a constante de
integracao se anule, pois os campos comportam-se
como w — 0 conforme |z| — co. Isso resulta numa
equacao que tem grau quatro em F', com a seguinte
estrutura, se fixarmos v = 12%,

F Fy—Fy Fi+B (3F2, — 4F, Fry + F Frouy) = 0.
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Tal equagao pode ser apresentada de uma maneira
mais compacta e conveniente,

(D2Di+BD})F-F =0, (21)

em termos do chamado operador D de Hirota, defi-
nido por

P f(x) = f(z + )

de forma que

Flo+8)gle—8) =3 o0 (D} f(a) - g(a)
n=0 """
onde
Dy f-g= (0 — 0,)" f(21)9(22) o=

Percebe-se que D opera num produto de duas
funcdes de forma parecida com o operador de Leib-
nitz, diferindo apenas por um sinal relativo, por
exemplo,

DyDi(f-g) =

A equagdo , bilinear em F' e escrita em termos
do operador de Hirota, denota a forma bilinear de
Hirota para a equacdo de KdV. Sua vantagem é
que permite construir solugdes por meio de uma
expansao do tipo

fxg_fg:m
fgxt_fxgt_ftgx+fgact-

F(z,t) = fo(z,t) + efi(z,t) + € folx, t) + ..., (22)

determinando as solugoes f;(z,t) ordem a ordem no
parametro e.

5.3. Solucao para um séliton

A partir da equacao de KdV na forma bilinear ,
com a seguinte forma geral

P(D)F-F =0, (23)

para um polinémio P par qualquer dos operadores
de Hirota (os termos impares se cancelam devido a
antissimetria de D), podemos construir suas solugoes
por uma expansao em um parametro e.

Substituindo tal expansao na equagao (23|
obtemos

P(D)(fO'f0+€(f0'f1+ f1'f0)+"')=0,

e os termos de ordem €” desaparecem quando fo(x,t) =

1. De fato, sabemos que u = 0 é uma solucao para a
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KdV, no vacuo. Para os termos de ordem € notamos

h fi(z,t) = exp [\/g(a; - vt)]

é solucdo e que para ordens mais elevadas podemos
tomar fj(x,t) = 0, no caso da solugdo de apenas
um sdliton.

Nesse ponto, entao, a expressao ([20) proporciona

(24)

— B \/I(x—vt)
w(zx, t) = 122 log (1 +eVE )
e obtemos, finalmente a conhecida solucdo de 1
séliton para a equagdo de KdV,

u(z,t) = 3szech2 B\/g(x - vt)} )

cuja representacio grafica pode ser vista na Figura
[] para diferentes valores de A e B.

A partir desta solucédo mostramos, em se-
guida, como os valores das constantes A, referente
ao termo nao linear, e B, associado ao termo dis-
persivo da equacao de KdV, afetam a forma da

(25)

u(x,0)

B
LNy
[y

.
-10

T;
Figura 5: Solugdes da KdV para diferentes valores de A (em
cima) e B (em baixo). Em linhas continuas, tracejadas e

pontilhadas mostramos esses parametros com valores iguais
a 0.5, 1.0e 2.0, respectivamente.
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sua solucdo, como visto na Figura . Percebemos
que, a medida que diminuimos o termo dispersivo, a
solucao da KdV fica mais estreita (na Figura, a es-
querda) e em oposigao, quando diminuimos o termo
de nao linearidade (na Figura, a direita) a solugao
se torna mais alargada. O importante é que a nao
linearidade compensa a dispersao criando uma onda
que matem sua forma preservada.

Abaixo, na Figura [, apresentamos a evolugao
temporal da equacdo de KdV. Percebemos, na Fi-
gura da esquerda, que sua forma permanece inal-
terada a medida que o tempo passa, isso se deve,
a combinagcao singular entre os termos dispersivo e

b)

W

\
BN\

W
W

N

]

§§8§§§§

e
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nao linear da equagao de KdV. Introduzindo uma
pequena modificacdo na discretizacao da equagao
que quebra a integrabilidade do problema numérico
e mostramos o resultado na Figura ao centro. Por
fim, apresentamos a evolucao da equacao de KdV
utilizando como condi¢ao incial uma fungao senoi-
dal, a direita. Percebemos que essa solucao nao é
estavel sob a evolugao temporal de Korteweg e de
Vries, ndo correspondendo a uma solugao soliténica.
De fato, dentre as infinitas possibilidades para as
condigoes iniciais apenas uma classe muito restrita

comportar-se-4 como sélitons.

5.4. O parentesco entre as equacoes de
KdV e Sine-Gordon

Tendo visto que a equacao de KAV pode ser transfor-
mada na equacao de Toda e que esta é intimamente
ligada & equacdo de sine-Gordon, aqui buscaremos
relacionar mais diretamente as equagoes de KdV e

sine-Gordon. Note que substituindo

u=1v>%i v (26)

na equagao de KdV,

U + Autug + B uggr =0,

obtemos

. |6B
2’1}:|:’L\/Zax (Ut+AU2vx+vaxz):0

sendo que a equagao

v+ Av? vy + Buger =0

¢ uma equacio de KdV modificada denotada por

Focusing Miura . Logo, se v satisfizer a equagao
de KdV modificada entao v dada em é uma

solucdo para a equagao de KdV original.
Usando a transformacao

g@bz’
2 .
Bo2+iy/8B8e,,

v =

u =

na equacgao de KdV modificada obtemos

Figura 6: a) Evolucdo temporal da solug3o da eq. de KdV.
a 3 ifi 2
b) Evo~|u<;ao temporal da equagdo c!eNva. modificada. c) by + AB* 4 LB 0
evolucao de um cosseno como condi¢do inical da KdV. t 12 zIT .
T
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Notamos que uma solugdo para a equacao acima é
dada por

o(x,t) = ;tanh_1 [pe“()‘x’ﬂ]

desde que A = —6B, B = ﬁ e A = eX. O curi-
oso deste resultado é que o campo ¢(z,t) acima é
solucdo para a equacdo de Sinh-Gordon, que se rela-
ciona com o Sine-Gordon por meio da transformacao
f — if. Na verdade, em [24] os autores mostram
que as equagoes de KdV (modificada) e Sine-Gordon
possuem familias equivalentes de integrais de movi-
mento.

6. Conclusoes e Perspectivas

Neste trabalho, revisamos alguns dos mais para-
digmaéticos sistemas nao lineares e desvendamos al-
gumas de suas supreendentes interconexoes, num
contexto acessivel a estudantes de graduacao, com
algum dominio de Mecénica Classica e Equagoes
Diferenciais. Os problemas de interesse, descritos
matematicamente pelas equacoes de sine-Gordon,
Toda e de Kortweg e de Vries (KdV), generalizam
modelos fisicos bastante conhecidos como o péndulo
simples, o sistema massa-mola e as ondas lineares,
respectivamente e oferecem uma boa oportunidade
para introduzir fendmenos nao-lineares a estudan-
tes de graduacdo. Apds discutirmos as diferencas
decorrentes da presenca de nao-linearidades nos mo-
delos, esclarecemos como os sistemas apresentados
relacionam-se entre si, indicando a existéncia de uma
familia de equacGes que compartilham propriedades
de integrabilidade.

Procuramos aqui fornecer uma boa fonte da li-
teratura cldssica sobre sélitons e sistemas integraveis,
mas também incluir trabalhos modernos em dinamica
nao-linear, um universo abrangente, com interessan-
tes aplicagoes. Material em lingua portuguesa que
trate fendmenos nao-lineares e solitons pode ser en-
contrado, como em [25H29], mas ndo em volume
compativel com sua importancia e ocorrendo predo-
minantemente na forma de dissertacoes e teses,por
exemplo [30-33]. Nao obstante, vale destacar que a
comunidade cientifica brasileira tem sido bastante
ativa nesta area, inserindo-a em universo bastante
abrangente que inclui desde a fisica de plasmas [34],
mecanica estatistica, [35H39] e.g., equagoes diferen-
ciais [40-43|, fisica mateméatica [44-47], altas ener-
gias [48,49|, etc. Logo, em meio a tantas ocorréncias,

Revista Brasileira de Ensino de Fisica, vol. 39, n® 1, 1307, 2017
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reforcamos a ideia de que os sistemas nao-lineares
correspondem a uma area importante e ativa, mere-
cendo atencao por parte dos estudantes.
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