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Abstract
Current implementations of quantum key distribution (QKD) typically rely on
prepare-and-measure (P&M) schemes. Unfortunately, these implementations are not completely
secure, unless security proofs fully incorporate all imperfections of real devices. So far, existing
proofs have primarily focused on imperfections of either the light source or the measurement
device. In this paper, we establish a security proof for the loss-tolerant P&M QKD protocol that
incorporates imperfections in both the source and the detectors. Specifically, we demonstrate the
security of this scheme when the emitted states deviate from the ideal ones and Bob’s measurement
device does not meet the basis-independent detection efficiency condition. Furthermore, we
conduct an experiment to characterise the detection efficiency mismatch of commercial
single-photon detectors as a function of the polarisation state of the input light, and determine the
expected secret key rate in the presence of state preparation flaws when using such detectors. Our
work provides a way towards guaranteeing the security of actual implementations of widely
deployed P&M QKD.

1. Introduction

Quantum key distribution (QKD) offers the potential for communication certified with
information-theoretic security by utilizing the principles of quantum mechanics. Specifically, it enables two
legitimate parties, Alice and Bob, to generate a shared symmetric secret key, regardless of any eavesdropping
effort by a third party (Eve) [1–3].

As of today, significant results have been achieved to show how QKD can be deployed both in
metropolitan and inter-city networks [4–7] and over ground-to-satellite links [7, 8], as well as in commercial
systems [9–11]. Still, the widespread of this technology is challenged by the fact that real-world devices
present imperfections, potentially implying unnoticed security loopholes or information leakages. This fact
is remarked by the richness of literature in the field of quantum hacking [12–14], by examples of successful
attacks [15–20] and continuously proposed malicious schemes [21–26]. As a consequence, introducing
security proofs for QKD with realistic devices has become of paramount importance [27].

The most vulnerable part of a QKD setup is widely acknowledged to be the receiver, as it welcomes all
signals coming from the quantum channel. As a consequence, Eve can send additional light to the detectors,
inducing information leakage (e.g. through the so-called Trojan-horse attack [28, 29]), forcing a convenient
operational regime of the detectors (e.g. via an after-gate attack for gated detectors [30]) or directly blinding
them using bright light [16, 17]. Moreover, even if the aforementioned attacks could be prevented [31, 32],
the response of single-photon detectors (SPDs) typically depends on several degrees of freedom, such as time
of arrival, frequency, polarisation and spatial modes of the incoming pulses [33–36]. This allows Eve to
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manipulate the detection probability of the SPDs by changing the properties of the arriving signals [15, 19].
As QKD protocols require to discriminate different states at the receiver, multiple SPDs are usually needed.
Since realistic devices cannot be identical, Eve might modify the incoming quantum states in such a way that
a specific outcome detection is highly favoured. The latter issue is commonly addressed as detection
efficiency mismatch (DEM) [37–43].

On the transmitter side, security threats are typically less concerning. For example, issues related to
multi-photon emissions can be mitigated by means of the decoy-state method [44–48], while the effect of
state preparation flaws (SPFs) has been shown to be almost negligible thanks to the so-called loss-tolerant
(LT) approach [49] (although the latter crucially requires identical detectors). The effect of side-channels has
also been intensively studied [50–56].

As a result, in the last decade huge effort has been dedicated to the design of QKD protocols based on
quantum interference that could lift all assumptions on the receiver side, namely measurement-device-
independent [57] and twin-field QKD [58]. While on-field realisations of these schemes have been achieved
over large distances [59–61], prepare-and-measure (P&M) protocols are still being preferred for short- and
mid-range communication and for industrial products due to their simpler implementation. Thus, the
development of security proofs that can jointly account for both transmitter and receiver imperfections is of
great relevance.

In this work we extend the security proof for LT QKD to accommodate the existence of a DEM. In doing
so, we provide a unique recipe to establish the asymptotic security of P&M QKD protocols against coherent
attacks in the presence of both SPFs and DEM. Moreover, we conduct an experiment to characterise the DEM
in commercial SPDs and show that a secret key can be generated using such devices, even in the presence of
large SPFs. In detail, we adopt the complementarity framework introduced by Koashi [62] to provide an
upper bound on the phase-error rate, which ultimately quantifies the amount of privacy amplification that
Alice and Bob must perform in the postprocessing phase of the QKD protocol. Our idea generalises the LT
approach to the case in which the detection probability associated to the two measurement bases differs. In
particular, we show that characterising the efficiency of the SPDs and monitoring the send-and-receive
statistics of the protocol is enough to directly estimate all quantities involved in the computation of the secret
key rate (SKR). In so doing, we generalise and simplify the technique developed in [37].

The paper is organised as follows. In section 2 we illustrate the underlying assumptions for our analysis,
while in section 3 we present the details of the QKD scheme we evaluate. In section 4 we report the main
results of our study and provide a full procedure for the estimation of the SKR. We show the applicability of
our analysis by performing an experimental characterisation of two real detectors and studying how the DEM
affects performance in section 5. Finally, we discuss the implications of our work in section 6 and conclude
with some remarks in section 7. Further calculations and discussions can be found in the Appendices.

2. Assumptions

Our analysis relies on the following assumptions, whose implications are further discussed in appendix A.

(A1) Alice has a perfect single-photon source and she knows the qubit states {|ϕi〉B}i, with i ∈ {0Z,1Z,0X},
that she is sending to Bob. These might be different from the perfect |i〉B states (i.e. the eigenstates of
the Ẑ and X̂ Pauli matrices). Moreover, we assume the flawed states {|ϕi〉B}i to be pairwise linearly
independent and to lay on the XZ−plane of the Bloch sphere (which is always true, up to a lifting
filtering operation, as discussed in appendix A.2).

(A2) Alice’s lab is perfectly shielded from the eavesdropper such that no unwanted information leakage
occurs (i.e. there is no side channel in Alice’s source).

(A3) Bob employs an active BB84 receiver with two detectors. This means that the detectors are placed after
a basis selector such that the detector D0 (D1) measuring 0Z (1Z) is also employed to measure 0X (1X).

(A4) Bob receives the system B in a qubit space.
(A5) As illustrated in appendix A.2, Bob’s positive operator-valued measure (POVM) element assigning

outcome s ∈ {0,1} in the basis β ∈ {X,Z} has the form

M̂
sβ
BT = |sβ〉〈sβ |B ⊗

(
F̂s

†
F̂s
)
T
, (1)

while the POVM element associated to a failed detection in the basis β is given by

M̂
failβ
BT = 1̂− M̂

0β
BT − M̂

1β
BT. (2)

Here, T denotes an additional system of arbitrary dimension corresponding to a given efficiency-

affecting mode (e.g. time of arrival, frequency, polarisation or spatial mode), while F̂s
†
F̂s denotes the
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POVM element for such system corresponding to the detector Ds clicking [37]. In this respect, F̂s
†
F̂s

takes the role of a generalised efficiency operator, such that when the system T is in a state |γ〉T, the
efficiency ηs of detector Ds is given by

ηs := 〈γ|F̂s
†
F̂s|γ〉T . (3)

Note that when F̂s
†
F̂s = ηs1̂, with ηs ∈ [0,1], we obtain a model for detectors with constant efficiencies,

which might be different for D0 and D1. While this description might not be the most general one, it
well captures how the detectors functioning depends on additional modes and allows to investigate
any scenario in which the information-carrying degree of freedom can be decoupled from the
efficiency-affecting one.
We assume Bob can characterise his two detectors by performing an efficiency tomography

measurement, and thus he learns the POVM elements {F̂s
†
F̂s}s. We also assume F̂0 and F̂1 to be

invertible, as no positive SKR can be achieved when this requirement is not satisfied [37].
(A6) We consider the asymptotic case where Alice sends to Bob an infinite number of signals and investigate

coherent attacks.

Assumptions (A1)–(A2) imply that Alice knows precisely the states that are sent to the channel in each
round of the protocol. On the receiver side, assumptions (A3)–(A4)–(A5) imply that Bob’s POVMs are
known and are defined over the tensor product space of systems B and T, being the former a qubit space.
Importantly, we remark that our work is fully compatible with the decoy-state method for QKD [44–48], as
the latter allows to estimate relevant probabilities related to single-photon signals.

3. Protocol description

In this section we introduce the fundamentals of the P&M three-state protocol which we base our analysis
upon. We adopt the LT scheme, which considers basis mismatched events, and shall refer to it as the actual
protocol in the following. Note that in the asymptotic regime, the phase-error rate for this scheme is the same
as for the standard BB84 protocol [49].

Together with the actual protocol, we introduce a virtual protocol which is completely equivalent from
Eve’s viewpoint and allows for the phase-error rate estimation. Importantly, we fictitiously consider this
protocol only for the purpose of the security proof and there is no need to actually implement it.

Actual Protocol

1. State preparation: Alice selects the Z (X) basis with probability pZA (pXA). When the Z basis is selected, she
prepares a single-photon pulse in the state |ϕ0Z〉B or |ϕ1Z〉B uniformly at random, whereas a
single-photon pulse is prepared in the state |ϕ0X〉B for the X basis selection. Then, she sends the
single-photon pulse to Bob through a quantum channel. She repeats this step N times.
Together with the B system, Bob receives from the channel an auxiliary T system which encodes
information about the efficiency-affecting mode.

2. Measurement: For each pulse he receives, Bob selects the Z (X) basis with probability pZB (pXB). Then,
when the Z (X) basis is selected, he performs a measurement M̂Z

BT (M̂
X
BT) described by the POVM

{M̂0Z
BT,M̂

1Z
BT, M̂

failZ
BT }

(
{M̂0X

BT,M̂
1X
BT,M̂

failX
BT }

)
over systems B and T. The POVM elements M̂

sβ
BT for s ∈ {0,1}

and β ∈ {X,Z} are described by equation (1). The measurement outcomes corresponding to these

operators are defined as detection events. On the other hand, M̂
failβ
BT corresponds to an inconclusive event

in the basis β. Note that due to DEM we have that M̂
failX
BT 6= M̂

failZ
BT .

3. Sifting: Once the previous steps are completed, Bob announces to Alice over an authenticated public
channel in which rounds he obtained detection events, as well as the basis selection he made for each of
these. This way, they can compute the sifted key, defined as the bit string generated from the instances in
which Alice selected the Z basis and Bob obtained a detection event in the Z basis. Bob also shares with
Alice a fraction of his results, allowing her to compute the probabilities associated to each possible
detection event for each type of signal sent. Formally, we denote as psβ ,i the joint probability of Bob
obtaining an outcome sβ , with s ∈ {0,1} and β ∈ {X,Z}, and Alice sending the signal i ∈ {0Z,1Z,0X}.

4. Parameter estimation: By using the estimated probabilities for measurements in the X basis {psX,i}s,i,
Alice estimates an upper bound on the phase-error rate of the sifted key, while she estimates the bit-error
rate in the Z basis through the values of {psZ,i}s,i for i ∈ {0Z,1Z}. These are the crucial parameters for
privacy amplification and error correction, respectively.
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5. Data-postprocessing: Through discussions over an authenticated public channel, Alice and Bob perform
error correction, and then they conduct privacy amplification to generate a secret key.

The following virtual scheme is based on an equivalent entanglement-based (or source-replacement)
approach. Crucially, Eve cannot distinguish this protocol from the actual one, as both the quantum and
classical information available to Eve is the same for both protocols. Moreover, all the data that Alice and Bob
use for the phase-error rate estimation (that is, all of Alice and Bob’s detection data except for the sifted key)
are also the same for both schemes. As a result, the phase-error rate estimated from the virtual protocol can
be employed to determine the amount of privacy amplification needed to generate a secret key in the actual
protocol [62, 63].

Virtual Protocol

1. Distribution of entanglement: Alice prepares bipartite systems, each of which is composed of a shield
system A and a single-photon pulse B, in a joint entangled state in the form

|φ〉AB =
6∑

c=1

√
pc |c〉A

∣∣∣ϕ(c)〉
B
. (4)

Each projection of the shield system onto one of the orthonormal basis states {|c〉A}c∈{1,...,6} corresponds
to a different configuration of the state

∣∣ϕ(c)〉
B
sent to Bob and of the measurement basis choice for him.

Specifically, Alice’s measurement outcome being c ∈ {1,2} corresponds to the rounds in which both her
and Bob select the Z basis. For the sake of estimating the phase-error rate, in these rounds Bob is allowed
to replace his standard Z basis measurement with a so-called virtual X basis measurement over systems B
and T [62]. Details on the analytical form of this measurement are reported below. When Alice’s outcome
is c ∈ {3,4,5}, she is actually sending the states |ϕ0Z〉B, |ϕ1Z〉B and |ϕ0X〉B, respectively, while Bob
performs the same X basis measurement M̂X

BT as in the actual protocol. Finally, Alice’s outcome c= 6
corresponds to her sending |ϕ0X〉B and Bob measuring in the Z basis. Further details on this state
preparation procedure can be found in appendix A.1 and table 2.
After the preparation, Alice sends the system B to Bob through a quantum channel, while keeping the
shield system in her lab. She repeats this step N times.

2. Delayed state preparation and measurement: After transmission, Alice performs the projective
measurement described by {|c〉〈c|A}c over each of the N systems A she holds.

3. Announcement of detection events and bases for sifting, parameter estimation and postprocessing: These
phases are tackled as in the actual protocol. One can follow the scheme provided in figure 7 to relate the
quantities {psβ ,i}s,β,i introduced in the actual protocol to the statics of the virtual protocol for various
values of c.

Bob’s virtual X basis measurement includes two filtering operations acting on systems B and T, followed
by a projective measurement on system B. We further elaborate on filtering operations in section 3.1. In

detail, we consider Bob first performing the filtering described by {Q̂Z =

√
1̂− M̂

failZ
BT ,

√
M̂

failZ
BT }, followed by

another (virtual) filtering operation {ĜBT,

√
1̂− Ĝ

†
BTĜBT} and finally by the projective measurement

{|0X〉〈0X|B ⊗ 1̂T, |1X〉〈1X|B ⊗ 1̂T}. The analytical form of ĜBT is introduced in equation (B20).

3.1. Filtering operations

Formally, a filtering operation is defined as a set of two Kraus operators
{
Q̂s, Q̂f

}
(respectively, success and

fail operators) acting on a given system S1 in a state |x〉S1 such that, with a certain probability ps ⩽ 1, the final

state of the system is given by Q̂s |x〉S1 [64]. This is equivalent to considering an additional system S2 and
defining an unitary operation on the joint system S1 ⊗ S2 in the form

U |x〉S1 |0〉S2 = Q̂s |x〉S1 ⊗ |s〉S2 + Q̂f |x〉S1 ⊗ |f〉S2 , (5)

for any state |x〉S1 . Here the (arbitrary) orthonormal states |s〉S2 and |f〉S2 for system S2 denote success and
failure of the filter, respectively. Crucially, this notion highlights how measuring the system S2 after applying
the filtering allows to immediately assert whether the filtering was successful. It follows from equation (5)
that the probability of successful filtering can be found as

ps := 〈x|Q̂s
†
Q̂s|x〉S1 . (6)

4
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Importantly, through this paper we will address as ‘filter’ to a success operator Q̂s, therefore specifying
only the evolution of a system in the case of successful filtering, since failure events are discarded. Note that
for a filter to be valid it is sufficient that Q̂sQ̂†

s ⩽ 1̂ (equivalently, Q̂†
s Q̂s ⩽ 1̂), as this implies the existence of a

valid corresponding failure operator and thus guarantees the non-violation of the unitarity of quantum
mechanics.

Following the approach in [37], in this work we adopt the so-called Procrustean method of filtering [65].
This choice is motivated by the fact that, due to the DEM, Bob’s detectors do not project onto perfectly
orthogonal states of the joint system BT. Procrustean filtering allows, with a success probability smaller than
unity, to orthogonalise the initial states and therefore offers a convenient way to apply Koashi’s security proof
[62]. More details on this matter can be found in appendix A.2.

4. Main result

In this section we summarise the main results of our analysis, providing a straightforward way to compute
the SKR from experimental data. The proof of these results can be found in appendix B.

Let us consider the protocol introduced in section 3 and assume that the requirements in section 2 are
met. LetVVVi = (Vx

i ,0,V
z
i )

T denote the Bloch vector of the state |ϕi〉B, with i ∈ {0Z,1Z,0X}. We define

p3 = p4 :=
pZApXB

2
, p5 := pXApXB , (7)

and

q̃̃q̃qs =

q̃sX,1
q̃sX,X
q̃sX,Z

 :=

p3 p3Vx
0Z p3Vz

0Z
p4 p4Vx

1Z p4Vz
1Z

p5 p5Vx
0X p5Vz

0X

−1psX,0Z
psX,1Z
psX,0X

, (8)

for s ∈ {0,1}.
Now, consider the unitary diagonalisation of the following Gram matrix

F̂0
(
F̂1

†
F̂1
)−1

F̂†0 = ÛD̂Û†, (9)

such that D̂= diag(D1,D2, . . .), with Di ⩾ 0 ∀i. Let us define

Ĉ := Ĉ1Û
†F̂0, (10)

where

Ĉ1 = diag(
√
η1,

√
η2, . . .) , ηi :=min

(
1

Di
,1

)
. (11)

Moreover, consider a set of four real, non-negative valuesΛΛΛ = {λ−s ,λ+s }s∈{0,1} such that

λ−s F̂s
†
F̂s ⩽ Ĉ

†
Ĉ⩽ λ+s F̂s

†
F̂s, (12)

for s ∈ {0,1}.
Then, for the general case of coherent attacks, the asymptotic SKR per signal sent R is lower bounded as

R⩾ psiftZ

[
rvirt,LX

(
1− h2

(
eUp
))

− fh2 (eb)
]
, (13)

where

psiftZ :=
1∑

s=0

(psZ,0Z + psZ,1Z) (14)

is the probability of being in a sifted key round, the term rvirt,LX denotes a lower bound on the fraction of sifted
key rounds in which Bob’s virtual X basis measurement is successful (that is, the fraction of sifted key rounds
for which Bob succeeds in making a guess for Alice’s virtual X measurement outcome), h2 (x) =−x log2
(x)− (1− x) log2(1− x) denotes the binary entropy, eUp is an upper bound on the phase-error rate, f is the
efficiency parameter associated to the error correction process and eb is the bit-error rate. The latter quantity

5
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can be directly inferred from the estimates of the detection probabilities in the sifted key rounds and is given
by

eb :=
p0Z,1Z + p1Z,0Z

psiftZ

. (15)

As for the bounds rvirt,LX and eUp , let us first define

pvirt,LX := pZApZB

[
〈ϕ0Z |ϕ1Z〉

(
λ+0 +λ−0

2
q̃0X,X +

λ+1 +λ−1
2

q̃1X,X

)
−
(
λ+0 − 3λ−0

2
q̃0X,1 +

λ+1 − 3λ−1
2

q̃1X,1

)]
,

(16)

corresponding to a lower bound on the average of the conditional probabilities of the filters in Bob’s virtual X
measurement introduced in section 3 being successful, given Alice and Bob’s outcomes in the previous
rounds of the virtual protocol. Then, we have that

rvirt,LX =
pvirt,LX

psiftZ

, (17)

while for the upper bound on the phase-error rate we have that

eUp =
perr,UXvirt

pvirt,LX

:=
1

pvirt,LX

[
1−〈ϕ0Z |ϕ1Z〉

2

(
3λ+0 −λ−0

2
q̃0X,1 −

λ+0 +λ−0
2

q̃0X,X

)
+

1+ 〈ϕ0Z |ϕ1Z〉
2

(
3λ+1 −λ−1

2
q̃1X,1 +

λ+1 +λ−1
2

q̃1X,X

)]
, (18)

where perr,UXvirt denotes an upper bound on the average of the conditional probabilities of Bob making an error
in his predictions in the virtual X measurement.

Although any choice ofΛΛΛ satisfying equation (12) is a valid choice, one should pick the values that
maximise the SKR. Nevertheless, as equations (16)–(18) depend on the experimental data through the
estimates of {psβ ,i}s,β,i (and, thus, q̃̃q̃qs), finding the optimal setΛΛΛmight be non-trivial. Nevertheless, we note

that the term pvirt,LX in equation (16) appears both at the numerator of equation (17) and at the denominator
of equation (18), and thus we conjecture that maximising this quantity over the possible values ofΛΛΛ
corresponds to an optimisation of the SKR. This has a great impact since pvirt,LX is a linear combination of the
parameters inΛΛΛ and, crucially, the constraints onΛΛΛ given by equation (12) are semidefinite constraints on
linear operators. Therefore, one can find suitable values ofΛΛΛ by employing semidefinite programming, which
allows for a fast and efficient optimisation. In detail, the semidefinite program (SDP) to solve is defined as

maximise pvirt,LX ,

subject to λ−s F̂s
†
F̂s ⩽ Ĉ

†
Ĉ, s ∈ {0,1} ,

Ĉ
†
Ĉ⩽ λ+s F̂s

†
F̂s, s ∈ {0,1} ,

pvirt,LX ⩽ psiftZ ,

perr,UXvirt ⩽ 1
2p

virt,L
X .

(19)

The second to last condition of the SDP above implies that rvirt,LX ⩽ 1, which is due to the fact that Bob
performs a virtual X measurement for the sifted key rounds and therefore the probability of being in these
rounds upper bounds the probability of Bob’s virtual X measurement being successful. The last condition
implies that the maximum phase-error rate allowed is 1/2, corresponding to a uniformly random guess.

As an alternative to solving the SDP in equation (19), in appendix B we prove that valid lower and upper

analytical bounds for Ĉ
†
Ĉ in equation (12), although possibly suboptimal, are obtained for

λ−0 =min
(
D−1
max,1

)
, λ+0 =min

(
D−1
min,1

)
,

λ−1 =min
(
D−1
max,1

)
Dmin, λ+1 =min

(
D−1
min,1

)
Dmax, (20)

where Dmax (Dmin) is the maximum (minimum) eigenvalue of the operator D̂ introduced in equation (9).
Importantly, we remark that in the optimisation given by equation (19) we are not optimising the SKR

directly, therefore the theory of SDP does not guarantee that the values ofΛΛΛ found through this algorithm
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are the optimal for equation (13). Nevertheless, they are suitable values whose performance can be directly
compared with the ones in equation (20).

In the next section we show a direct application of our analysis, together with the computation ofΛΛΛ
through both equations (19) and (20).

5. Experimental characterisation and key rate simulation

To illustrate the applicability of our method, we compute numerically the SKR based on the experimental
characterisation of two commercial SPDs. In detail, we consider the DEM induced by the detectors response
to different polarisation states for the incoming photons. We employ two ID Qube NIR Free Running
single-photon avalanche diodes (SPADs) produced by the company ID Quantique [66]. For both units, the
nominal single-photon detection efficiency is set to ηth = 25% and the dead time to τ thd = 20 µs.

While this choice of detectors is motivated by the availability of equipment in our lab, we remark that the
polarisation-induced DEM of SPADs is widely recognised as small compared with the one of
superconducting nanowire SPDs [67], for which it would be of interest to conduct an analogous analysis.

5.1. Probing the polarisation-induced DEM
In this analysis we adopt the standard detector model depicted in figure 1. In detail, the single-photon
detection efficiency η ⩽ 1 is modelled as the action of a beam splitter (BS) of equal transmittance, placed
before a unitary efficiency detector (UED). As in our case we are investigating polarisation-dependent
detection efficiency, the action of the BS depends on the polarisation state of the incoming light.

Consider a flux of photons arriving at the UED at an average rate R ′
in, measured in photons per second

(s−1) or, equivalently, per arbitrary time unit. Let τ d denote the actual detector dead time. Following the
analysis carried out in [68], the average rate of total detected photons is given by

Rdet =
R ′
in

1+R ′
inτd

. (21)

Suppose now that the detector receives from the channel a train of single-photon states at a rate Rin,sp. At
each round, the input state ρ̂ in figure 1 is given by ρ̂sp = |1〉〈1|, with |1〉 being the single-photon Fock state.
This means that after the BS the state becomes

ρ̂ ′
sp = η |1〉〈1|+(1− η) |vac〉〈vac| , (22)

the latter term denoting the vacuum state. As a result, it can be considered that the UED receives photons at
an incident rate R ′

in = ηRin,sp +Rdark, since dark counts can be modelled as sporadic photons reaching the
detector. Substitution in equation (21) yields a model to characterise the single-photon detection efficiency
and the dead time of the detector by measuring the value of Rdet for different incoming photon rates and
then interpolating the experimental data.

Crucially, performing this characterisation would require a reliable single-photon source. In our case, we
adopt a standard laser which is gain-switched at a repetition rate ν= 80 MHz and is successively attenuated
to the single photon level. Note that since ν� 1/τ thd , the detector sees the incoming light as a continuous
wave. Nevertheless, by pulsing the laser we mitigate beating effects due to reflections in the optical line,
which might induce fluctuations of the average intensity that ultimately alter the results. In fact, a laser
operating in continuous-wave mode can suffer from ‘cavity effects’ due to imperfect fiber connections that
can cause multiple weak reflections which interfere with the original signal from the source, thus leading to
fluctuations in the optical power arriving at the detector. This effect is greatly minimized when the laser is
pulsed, since due to gain-switching the pulses have an approximately uniformly random phase relation, and
thus the average power at the detectors is more stable.

Adopting a pulsed laser source, the signal arriving at the detector at each round consists of a weak
coherent pulse of intensity µ. Going through the BS in figure 1, which models the non-ideal efficiency, causes
an attenuation of the intensity µ→ ηµ, which means that after the BS the state of the pulse takes the form

ρ̂ ′
ch =

∣∣√ηµeiϕ〉〈√ηµeiϕ∣∣= e−ηµ
∞∑

n,m=0

(√
ηµ
)n+m

ei(n−m)ϕ

√
n!m!

|n〉〈m| , (23)

where the last expression corresponds to the state expansion in the Fock basis. This implies that the
probability of not being in a vacuum state is given by

∞∑
k=1

〈k|ρ̂ ′
ch|k〉= 1− e−ηµ ηµ≪1

≈ ηµ, (24)
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Figure 1.Modelling of a realistic SPD (dotted box). The input state ρ̂ goes first through a beam splitter (BS) of transmittance η,
which models the limited detector efficiency as the coupling of the input mode and the vacuum state (|vac⟩) with a lost line.
Afterwards, the light is directed towards a unitary efficiency detector (UED) which has realistic dead time and dark count rate.

Figure 2. Experimental setup for the characterisation of the polarisation-dependent DEM of two detectors D0 and D1. Here PC,
polarisation controller; Pol, polarimeter; BS, balanced beam splitter; VA, variable attenuator.

where the final approximation holds in our case since, for all the data acquisition rounds we perform, the
value of µ satisfies µ⩽ 0.1. Therefore, we have that the average rate of incoming photons to the UED is
given by

R ′
in ≈ ηµν+Rdark = ηRin,ch +Rdark, (25)

where we have defined the average rate of photons sent to the detector in the case of coherent light
Rin,ch := µν. For ease of notation, in the following we neglect the subscript ch.

To measure the average count rate of the detectors while changing the rate and the polarisation state of
the incoming photons we adopt the fiber-based scheme described in figure 2. Here, we study four
polarisations states, namely horizontal (|H〉), vertical (|V〉), diagonal (|D〉= (|H〉+ |V〉)/

√
2) and

circular-left (|L〉= (|H〉+ i |V〉)/
√
2), as they suffice in providing a full tomography of the operators

{F̂s
†
F̂s}s∈{0,1}. For each polarisation, we measure the average amount of detected photons per second over a

10 s time window. The measured dark counts rates of the two SPDs over such time window are 930 s−1 and
630 s−1, respectively. We note that since we do not employ polarisation-maintaining fiber, the polarisation
state at the entrance of the SPDs might be, in all generality, different from the one measured by the
polarimeter in figure 2, up to a unitary transformation. Hence, the basis adopted for the characterisation of
the SPDs is the one of the polarisation states at the polarimeter.

For illustration purposes, we depict the results of this analysis for the case of horizontal and vertical
polarisations in figure 3. The full results are reported in table 1. We remark that these values only serve the
purpose of explaining the application of our analysis and, as such, performing a more extensive parameter
estimation with high precision and small uncertainty goes beyond the scope of this paper. On this note,
table 1 seems to suggest that the dead time of detector D1 depends on the polarisation of the incoming light.
However, all dead time estimates can be considered equivalent within the statistical error coming from the
parameter estimation, which means that there is no experimental evidence of the dead time of the detectors
being polarisation-dependent, given the precision of the measurements.

Importantly, we observe a systematic decrease of both detectors efficiency for the polarisation state |H〉.
This could be due to a joint DEM of the two detectors, or to polarisation-dependent losses in the elements of
the optical line that we employ in our characterisation setup (see figure 2). In detail, we have experimentally
measured intensity fluctuations at the detectors entrance up to 5% when changing the polarisation, which
are compatible with the nominal polarisation-dependent loss in the BSs we adopt, which is up to 0.2 dB
according to the manufacturer. Nevertheless, BSs are typically part of the measurement scheme and, in all
generality, for the sake of proving the implementation security it is meaningful to consider the worst case
scenario, that is, the one in which the discrepancy in efficiency we observe is due to polarisation-dependent
DEM of the SPDs.

It follows from Assumption (A5) that the efficiency of the detector Ds for s ∈ {0,1} when the incoming
photons are in a polarisation state |σ〉 ∈ {|H〉 , |V〉 , |D〉 , |L〉} can be found through equation (3) to be

8
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Figure 3. Experimental data for the characterisation of the efficiency of detectors D0 (figure 2(a)) and D1 (figure 2(b)),
considering horizontal and vertical polarisation of the incoming light. We interpolate the experimental data (full markers) with
the model given by equations (21)–(25) (dashed lines) through the non-linear least squares method. The efficiency η and the
dead time τ d are then estimated as the optimal parameters of the interpolation. We note that error bars associated to the
experimental points in these plots, which correspond to the standard deviation of the measurements over the time window, are
not quite visible, as they are approximately 1% of the detected values.

Table 1. Results of the characterisation of the detection efficiency of two SPADs when changing the polarisation of the incoming light.
The values in this table are obtained as the optimal parameters of the interpolation of the function in equations (21) and (25) over the
experimental data. The relative error (i.e. the statistical error normalised to the measured value) in the estimates of η is about 1% for all
data acquisitions, while the one of τ d is of the order of 0.05%.

H V D L

η τ d (µs) η τ d (µs) η τ d (µs) η τ d (µs)

D0 22.33% 20.18 23.99% 20.18 23.78% 20.18 23.69% 20.18
D1 22.50% 20.18 24.20% 20.19 24.01% 20.19 23.86% 20.18

ησs := 〈σ|F̂s
†
F̂s|σ〉. Therefore, the analytical form of {F̂s

†
F̂s}s∈{0,1} can be computed from the experimental

data as

F̂s
†
F̂s =

(
αs βs
β∗
s γs

)
, with


αs = ηHs
γs = ηVs

Re(βs) = ηDs − 1
2

(
ηHs + ηVs

)
Im(βs) =

1
2

(
ηHs + ηVs

)
− ηLs .

(26)

Combining equation (26) with the data provided in table 1 gives the efficiency matrices of the two detectors:

F̂0
†
F̂0 =

(
0.2233 0.0062− 0.0052j

0.0062+ 0.0052j 0.2399

)
, (27)

F̂1
†
F̂1 =

(
0.2250 0.0066− 0.0051j

0.0066+ 0.0051j 0.2420

)
, (28)

while the operators {F̂s}s for s ∈ {0,1} can be found from the diagonalisation of the hermitian matrices in
equations (27) and (28) as

F̂s
†
F̂s = Û†

s D̂sÛs, F̂s = D̂1/2
s Ûs. (29)

The maximum and minimum efficiency of the detectors can be found as the maximum and minimum
eigenvalues of the operators in equations (27) and (28). By computing them, one finds that the efficiency
ranges for D0 and D1 are [22.00%,24.32%] and [22.16%,24.54%], respectively.

5.2. SKR simulation
To compute the SKR, we consider the case of a time-bin-encoding three-state protocol. To simulate the
detection statistics, we focus on the case in which Eve manipulates the polarisation of the incoming light

9
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Figure 4. Lower bound on the asymptotic SKR for the three-state protocol with SPFs and DEM corresponding to the detector
matrices reported in equations (27) and (28). The results are obtained through the analysis in section 4, considering an efficiency
of the error correction code f = 1.16. We compare the performance of our approach adopting the values ofΛΛΛ provided by the
analytical bounds (AB) in equation (20) (dashed lines) with the values given by the SDP in equation (19) (solid lines). The black

dash-dotted line corresponds to the results for identical detectors working at the nominal efficiency (i.e. F̂0
†
F̂0 = F̂1

†
F̂1 = 25%)

and no SPFs. From the full picture (figure (a)) it looks clear that the estimated DEM does not affect the performance greatly. By
looking in more detail (figure (b)), we can observe, as expected, that higher SPFs correspond to lower SKR. Moreover, for the case
we are considering, the results adopting the termsΛΛΛ obtained thought analytical bounds and SDP coincide.

without affecting the signal state prepared by Alice. Formally, this corresponds to the case in which at every
round

|ϕi〉B |σ0〉T
Eve−−→ |ϕi〉B |σE〉T , (30)

where i ∈ {0Z,1Z,0X}, |σ0〉T denotes the (arbitrary) polarisation of the pulses sent by Alice and |σE〉T is the
polarisation state set by Eve. For concreteness, we choose the scenario in which Eve selects |σE〉T as the
eigenstate corresponding to the minimum eigenvalue of F̂1

†
F̂1, effectively forcing D1 to operate at the

minimum possible detection efficiency. In this case, the probability of each detector clicking when receiving a
photon is given by

ησE
0 := 〈σE|F̂0

†
F̂0|σE〉= 22.01%, ησE

1 := 〈σE|F̂1
†
F̂1|σE〉= 22.16%. (31)

To account for SPFs, we consider three possible values of the overlap of the flawed Z states given by

cZ01 := 〈ϕ0Z |ϕ1Z〉B ∈ {0.01,0.1,0.3} , (32)

and study the case in which Alice sends her three states with equal a priori probability pi = 1/3, while Bob
measures the incoming signals in the Z basis with probability pZB = 2/3. The joint probability of Alice
sending the state i and Bob detecting sβ , with s ∈ {0,1} and β ∈ {X,Z}, is then computed as

psβ ,i =
pβB

3

[
ηch|〈ϕi|sβ〉|2ησE

s

(
1− pdark

2

)
+ pdark

(
1− ηch|〈ϕi|sβ〉|2ησE

s

)(
1− pdark

2

)]
, (33)

where ηch = 10−αL/10 is the transmittance of a lossy channel of length L with attenuation coefficient α= 0.2
dB/km for standard single-mode optical fiber. The value of pdark has been set to 10−6, corresponding to an
upper bound on the dark count probability for these detectors in a QKD setup running at 1 GHz. Here we
consider the case in which double clicks are randomly assigned to single clicks with equal probability [69].

With this choice of parameters we can compute the entries of the terms q̃̃q̃qs in equation (8). To proceed to
the calculation of the SKR given by equation (13), the only missing ingredient are the values ofΛΛΛ. For these,
we both solve the SDP in equation (19) and obtain the analytical bounds provided by equation (20). The
results are displayed in figure 4. Critically, we observe that the mismatches in the detectors efficiencies due to
polarisation do not dramatically affect the performance of the protocol. This point is further investigated in
the next section. Similarly, the role of SPFs is also mitigated, thanks to the LT approach. For the specific case
under investigation, we also find that the results of the analytical bounds and SDP coincide, although in all
generality this might not always be the case.
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Figure 5. Lower bound on the asymptotic SKR for the three-state protocol with SPFs corresponding to cZ01 = 0.1 and detector
matrices reported in equation (34). The results are obtained through the analysis in section 4, solving the SDP in equation (19)
and considering an efficiency of the error correction code f = 1.16. Results suggest that our analysis is capable of providing a
secret key with a DEM greater than 50%, under the considered intensity of the SPFs.

Robustness against large DEM
All previous results in this section are based on the characterisation of realistic devices. Nevertheless, it is of
interest to investigate as well how the performance of our proof is affected by larger DEM. To do so, we
consider now the exemplificative case of a perfect detector D ′

0 working at the nominal efficiency of 25% for
all polarisation states, and a faulty detector D ′

1 whose efficiency in a particular (arbitral) polarisation state is
changed. The polarisation-dependent efficiency operators in this case take the form:

F̂ ′
0

†
F̂ ′
0 =

(
0.25 0
0 0.25

)
, F̂ ′

1

†
F̂ ′
1 =

(
0.25 0
0 0.25(1−∆η)

)
, (34)

where∆η denotes the relative DEM. We compute the SKR adopting our proof as illustrated in the previous
section for an intermediate case of SPFs, that is, cZ01 = 0.1.

Results are displayed in figure 5. We note that our analysis is robust against DEM of large magnitude,
even in presence of significant SPFs. For the case at hand, the maximum tolerable relative DEM is about
53.7%, corresponding to a minimum efficiency for the detector D ′

1 of 11.58%.

6. Discussion

Results in section 4 show directly how both SPFs and DEM affect the SKR. Importantly, we find that in case
of identical detectors it holds λ−s = λ+s = 1 for s ∈ {0,1}, and thus we retrieve the results of the original LT
work [49]. In this latter case, experimental data from the actual protocol where Bob measures in the X basis
can be used to estimate the phase-error rate directly, due to the fact that the basis-independent detection
efficiency condition holds.

We also note that in equation (9) the choice of which label (‘0’ or ‘1’) is assigned to the physical devices is
completely arbitrary, hence one should choose the labelling that maximises equation (13).

Crucially, while the non-orthogonality of the Z states directly affects the SKR, the deviation of |ϕ0X〉 from
|0X〉 can be arbitrarily large, given that the state |ϕ0X〉 is perfectly characterised. This is due to the fact that for
the LT method the role of this state is only to help in the definition of the terms q̃̃q̃qs in equation (8). In this
respect, to achieve positive SKR Alice only needs to be able to prepare three pure states, select the most
orthogonal ones as her key (Z) states and adopt the last one as trial state to compute the action of the channel
on her signals.

It is important to remark the physical intuition behind the computation of the bounds in equations (17)
and (18). The potential of the LT approach lays in the fact that events in which Alice selects the Z basis and
Bob measures the incoming signals in the X basis, which are typically discarded, can be actually used to
characterise the channel action on the travelling systems and, therefore, help to estimate the phase-error rate.
In the presence of DEM, this cannot be done in a straightforward way, as different detection probabilities in
the two bases make impossible to directly relate the statistics of Bob’s Z and X basis measurements. The role
of the Procrustean virtual filter is precisely to remove this imbalance of the detectors, such that a scenario in
which the detectors are equal can be restored in the virtual scheme. From here, operational inequalities such
as the one in equation (12) can be employed to relate the statistics of Bob’s virtual X outcomes to his actual X
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measurements, which he experimentally performs. This concept is illustrated in figure 9 and further
discussed in appendix A.2.

In section 5.1 we illustrate the experimental procedure we carried out to estimate the detectors
efficiencies for different polarisation states of light. In doing so, we also obtain estimates of the dead time of
the detectors, finding the results that we report in table 1. We remark that the dead time does not play a
direct role in our security proof, nor in the simulations of the SKR in figures 4 and 5. In fact, the way in
which the dead time of the detectors impacts security is by limiting the rate at which Bob can detect events
that contribute to the generation of the secret key. More in detail, in the time window of duration equal to
the dead time which immediately follows a click, the detector is restoring its operational regime and,
consequently, will not be able to detect any signal. This means that during this time window the efficiency of
such detector is zero for any state of system T. As all events during this time interval can only trigger a
detection in one of the two detectors, these cannot be considered secure [18]. Crucially, we underline how
Bob receiving its signal when both detectors are active is an implicit requirement of Assumption (A5) being
satisfied. This follows from the fact that the the efficiency of the detector Ds being zero for any state formally

translates to F̂s
†
F̂s ≡ 0 (that is not invertible, as required in Assumption (A5)). In practice, to prevent that

events recorded in this insecure time window are used to generate the raw key, it is recommended that the
receiver is equipped with a mechanism (such as a shutter or a variable attenuator) that blocks pulses from
reaching the detectors during the dead time, or continuously monitors if both detectors are active.
Alternatively, under the assumption that Eve cannot increase the dead time of the detectors by injecting
external light, one could simply analyse all events in the post-processing and discard the events whose
detection time was less than one dead time away from the previous one.

7. Conclusions

In this paper, we have provided a security proof for the LT QKD protocol, incorporating imperfections in
both the source and measurement devices. Specifically, we have considered a setup subject to both SPFs and
DEM, for which the efficiency of the detectors varies according to several degrees of freedom of the received
pulses, such as arrival time, frequency, polarisation, and spatial modes. Under assumptions on realistic SPFs
and a experimentally-characterised polarisation-dependent DEM for commercial single-photon detectors,
our security proof shows that small differences in the detectors efficiency do not affect much the key
generation rate. In this respect, our work proves that LT QKD can be applied to setups with slightly
unbalanced detection efficiency with minimal penalty.

We conclude this paper with some open questions. We first remark for future reference that a more
comprehensive analysis might benefit of relaxation of some assumptions we made in section 2, particularly
the restriction of the information-carrying system to a qubit space for both Alice (Assumption (A1)) and
Bob (Assumption (A4)). Moreover, as in this work we have only considered SPFs, it is relevant to extend our
security proof including also other major source imperfections, such as correlations among emitted pulses
and side-channels [50–54]. Finally, our work provides a security proof in the asymptotic regime, where the
number of emitted pulses is assumed to be infinite. From here, it will be of interest to conduct a security
analysis for finite lengths. In this latter case, it should be noted that, as mentioned in the discussion leading to
equation (B16), it is necessary to consider probability trials across the entire train of emitted pulses. This
supports the use of Kato’s inequality [70], which provides better convergence for finite lengths with respect to
Azuma’s inequality [71].
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Appendix A. Setupmodel

In this appendix we present a brief description of the model we use to describe the transmitter and receiver
components of the QKD system considered, relating them to the assumptions reported in section 2. The
notation we introduce here is later used in appendix B for the proof of our results.

A.1. Transmitter
In a three-state QKD scheme, let |ϕ0Z〉, |ϕ1Z〉 and |ϕ0X〉 denote the flawed quantum states prepared by Alice
(which can be in principle different from the perfect |0Z〉, |1Z〉 and |0X〉 states). These states are illustrated in
figure 6. For later convenience, we make a choice of the axes of the Bloch sphere in such a way that all states
share the same Y coordinate and |ϕ0Z〉 and |ϕ1Z〉 are symmetric with respect to the X axis. Note that this is
always possible, given that the Bloch vectors of the flawed states are not all parallel (visually, this means that
these states form a non-degenerate triangle on a plane cutting the Bloch sphere). Here we focus on the
particular case of states laying on the XZ plane of the sphere, since any set of states sharing the same Y
coordinate can be uniformly lifted to this plane through a filter q |0Y〉〈0Y|+(1− q) |1Y〉〈1Y| with 0⩽ q< 1.
This ensures that 〈ϕ0Z |ϕ1Z〉 ∈ R.

Therefore, the Z states prepared by Alice for system B can be written as

|ϕaZ〉B = cos

(
θ− aπ

2

)
|0Z〉B +(−1)a sin

(
θ− aπ

2

)
|1Z〉B , (A1)

for a= 0,1 and an angle θ ∈ (−π,π] (see figure 6), which typically satisfies |θ| � 1 in practical
implementations.

Equivalently, we can consider Alice preparing the joint states

|ΨZ〉A′B =
1√
2
(|0Z〉A′ |ϕ0Z〉B + |1Z〉A′ |ϕ1Z〉B) , (A2)

|ΨX〉A′B = |0X〉A′ |ϕ0X〉B , (A3)

for a two-qubit system A ′B. She then keeps the system A′ in her lab, while sending the system B to Bob.
When preparing |ΨZ〉A′B, by measuring A′ in the Z basis she eventually selects the state of system B.

Now, let the virtual X states of system B be defined as the balanced superposition of the actual Z states,
namely

∣∣ϕvirt0X

〉
B
:=

|ϕ0Z〉B + |ϕ1Z〉B
‖|ϕ0Z〉B + |ϕ1Z〉B‖

≡ |0X〉B ,∣∣ϕvirt1X

〉
B
:=

|ϕ0Z〉B − |ϕ1Z〉B
‖|ϕ0Z〉B − |ϕ1Z〉B‖

≡ |1X〉B . (A4)

We notice that these virtual X states coincide with the true X̂ eigenstates, due to the fact that the flawed Z
states are symmetric with respect to the X axis of the Bloch sphere. Since |aZ〉A′ =

(
|0X〉A′ +(−1)a |1X〉A′

)
/√

2 for a ∈ {0,1}, the state |ΨZ〉A ′B in equation (A2) can be rewritten as

|ΨZ〉A ′B =
√
p0virtX

|0X〉A′

∣∣ϕvirt0X

〉
B
+
√
p1virtX

|1X〉A′

∣∣ϕvirt1X

〉
B
, (A5)

where p0virtX
(p1virtX

) denotes the probability of Alice sending Bob the virtual state
∣∣ϕvirt0X

〉
B
(
∣∣ϕvirt1X

〉
B
) in the virtual

scenario. These probabilities are given by

p0virtX
=

‖|ϕ0Z〉B + |ϕ1Z〉B‖
2

4
=

1+ 〈ϕ0Z |ϕ1Z〉B
2

,

p1virtX
= 1− p0virtX

.

(A6)

Remarkably, equation (A5) highlights how measuring the virtual X states Bob could predict the outcome of
an X measurement on Alice’s system A′, when she prepares |ΨZ〉A ′B. This is the core aspect of Koashi’s
security proof based on complementarity [62]. Moreover, although in practical applications Alice sends Bob
the states |ϕ0Z〉B and |ϕ1Z〉B with equal a priori probability in the key rounds, the probability of sending the
virtual X states are generally different (as clearly visible in figure 6, where the state

∣∣ϕvirt0X

〉
is favored).
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Figure 6. Illustration of the flawed quantum states |ϕi⟩i∈{0Z,1Z,0X} for the B system prepared by Alice (in green). Due to

imperfections in the state preparation process, they differ from the eigenstates of the X̂ and Ẑ Pauli matrices (in blue). The
choice of the X and Z axes of the Bloch sphere is done in such a way that the states |ϕ0Z ⟩ and |ϕ1Z ⟩ are symmetric with respect
to the X axis, i.e. they are rotated by the same angle θ from their ideal reference states.

As further discussed in appendix B, it is meaningful to study the evolution through the channel of all
these states in the protocol, with a specific focus on the detection statistics in the X basis for the actual states
and in the Z basis for the virtual states. For this, we define the virtual, equivalent scheme introduced in
section 3. In this virtual scheme, an auxiliary shield system A is adopted to describe a total of six different
configurations, each corresponding to a specific state sent by Alice and a measurement choice for Bob. This
description allows us to use the same notation for the analysis of the actual states sent and the one of the
virtual X states in equation (A4), which are not actually sent. In doing so, we have that the resulting state over
the joint system AB is in the form introduced in equation (4), and measuring in the orthonormal basis
{|c〉A}c∈{1,...,6} of the shield system allows to select both a state

∣∣ϕ(c)〉
B
and a measurement basis for Bob. A

summary of the virtual scheme is illustrated in figure 7, while the states
∣∣ϕ(c)〉

B
, their corresponding

probability and measurement basis are reported in table 2.
Following the model introduced in [37], we consider an additional system T which allows to characterise

the nature of the efficiency mismatch. Intuitively, one can for example think of states
{. . . , |−1〉T , |0〉T , |1〉T , . . .} representing delays in the time of arrival of the single-photon to Bob’s detector,
or |σ〉T denoting a polarisation state for the incoming light as studied in section 5, although this analysis
applies to arbitrary mismatch-inducing modes. We shall introduce this system T in a trivial configuration
|0〉T, allowing Eve to fully act on it in the channel. As a result, at each round of the protocol the joint state of
the three systems A, B and T at the output of the transmitter is

|φ〉ABT = |φ〉AB ⊗ |0〉T , (A7)

with |φ〉AB given by equation (4).

A.2. Receiver

The operators F̂s
†
F̂s acting on system T that appear in equation (1) represent the generalised efficiency of the

two detectors [37]. Precisely, the quantity 〈γ|F̂s
†
F̂s|γ〉T represents the probability of the detector Ds clicking

when the system T is in a state |γ〉. Note that Assumption (A3) in section 2 implies that the operators F̂s
†
F̂s

are the same in the Z and X basis, as the same physical device used to detect sX is also employed to measure sZ
(thus having the same detection efficiency).

The measurements operators M̂
sβ
BT introduced in equation (1) can be equivalently modelled as the result

of a filter

Q̂β = |0β〉〈0β |B ⊗
(
F̂0
)
T
+ |1β〉〈1β | ⊗

(
F̂1
)
T
, (A8)

followed by a projection |sβ〉〈sβ |B ⊗ 1̂T on the system B. In fact, we have that

M̂
sβ
BT = Q̂†

β

(
|sβ〉〈sβ |B ⊗ 1̂T

)
Q̂β . (A9)

This is relevant because the filtering discriminates the ‘successful’ and ‘failure’ bit measurement outcome,
while the following projective measurement simply assigns the bit value to successful events. This is due to

14
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Figure 7. This diagram illustrates the six scenarios corresponding to the states {|c⟩A}c∈{1,...,6} in the virtual protocol introduced
in section 3 and explains the quantities in the summary provided in table 2. Proceeding from left to right, Alice prepares the
entangled states |ΨZ⟩A′B and |ΨX⟩A′B given by equations (A2) and (A3) with probability pZA and pXA , respectively. Then, by

performing a projective measurement ẐA′ (X̂A′ ) in the Z (X) basis, she post-selects the sending state of the B system she is sending
to Bob. For later use, here we already distinguish the possible measurement basis choices of Bob, including their probabilities in
the definitions of the scenarios described by c ∈ {1, . . . ,6}. From Assumption (A5) in section 2, Bob’s measurements act on a
joint system BT, being system T the one describing the efficiency-affecting mode. The red box refers to the case of Bob
performing a virtual X basis measurement to predict the outcomes Alice would obtain by performing a measurement X̂A′ in the
sifted key rounds (c ∈ {1,2}). The phase-error rate is defined in terms of these outcomes. As the virtual measurement involves
the sifted key rounds, the probability of performing the virtual measurement is the same of Bob performing an actual Z
measurement. The cases for which c ∈ {3,4,5} correspond to the actual X measurement rounds, while the case labelled by c= 6
is not useful for our analysis and is considered for normalisation purposes only.

Table 2. Emitted states
∣∣ϕ(c)

〉
B
and associated probabilities pc in the virtual protocol. The quantity pavirtX

for a ∈ {0,1} is the probability

of Alice sending the virtual state
∣∣ϕvirt

aX

〉
B
and is given by equation (A6), while pγA (pγB ) denotes the probability of Alice (Bob) selecting

the basis γ ∈ {X,Z} to prepare (measure) the quantum states.

c

∣∣∣ϕ(c)
〉
B pc Bob’s basis

1
∣∣ϕvirt

0X

〉
B

p0virtX
pZApZB virtual X

2
∣∣ϕvirt

1X

〉
B

p1virtX
pZApZB virtual X

3 |ϕ0Z⟩B pZApXB/2 X
4 |ϕ1Z⟩B pZApXB/2 X
5 |ϕ0X⟩B pXApXB X
6 |ϕ0X⟩B pXApZB Z

the fact that the operator associated to failed filtering for Q̂β is indeed
√
M̂

failβ
BT . In this respect, the sifted key

rounds are those where the filtering Q̂Z is successful (note that Alice’s measurements of her shield system are
always successful). We summarise the two equivalent descriptions of Bob’s POVMs in figure 8.

We conclude remarking that although our analysis applies to a system T of arbitrary dimension, for all
practical purposes it might be beneficial to consider it to be finite [37]. In fact, Bob could, in principle, apply
some mode-correction filtering at the entrance of his lab, effectively limiting the dimensionality of possible
input modes. For example, when the system T models shifts in the time of arrival of the signals, one can
consider a finite number of discrete shifts by introducing a Gaussian filtering operation at the entry of the lab
[37]. Moreover, if only a partial characterisation of the efficiency operators is available, one should consider

the worst case scenario minimising the SKR given by equation (13) over the possible missing entries of F̂s
†
F̂s,

which might cause the problem to be intractable for a system T of infinite dimension. Finally, note that while
we restrict our analysis to a single efficiency-affecting mode, this approach can be generalised in a
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Figure 8. Bob’s scheme for a successful measurement in (a) the Z basis and (b) the X basis. For each figure, Bob’s POVM elements
corresponding to a successful measurement outcome (right-hand side) can be equivalently described by a filter Q̂β , with
β ∈ {X,Z}, which determines whether or not the states ρ̂ coming from the channel trigger a detection, followed by projective

measurements to assign the bit value (left-hand side). A failed measurement is equivalently described by the M̂
sβ
BT POVM element

or the Q̂β filter not succeeding.

straightforward way to a scenario with several efficiency-affecting modes, simply by considering multiple

systems T1, . . . ,Tn and defining efficiency matrices F̂s
†
F̂s for each of them.

Appendix B. Security against coherent attacks

In this appendix we provide the full security proof against coherent attacks. We do so by first developing an
analytical description of the way Bob’s outcomes for the actual signal states are affected by Eve’s attack and by
his measurement schemes (section B.1). From here, we extend the description to the case of virtual states,
relating their statistics to those of the actual states (section B.2). We conclude the analysis by computing a
lower bound on the SKR (section B.3) through an upper bound on the phase-error rate (section B.4). The
conceptual map of our approach is depicted in figure 9.

B.1. Security analysis of the actual states
Let

|Φ〉ABT =
∣∣∣φ(<l)

〉
ABT

∣∣∣φ(l)
〉
ABT

∣∣∣φ(>l)
〉
ABT

, (B1)

denote the global state prepared by Alice during N rounds of the protocol, where
∣∣φ(<l)

〉
ABT

(
∣∣φ(>l)

〉
ABT

)
denotes the full set of states of the rounds that precede (follow) round l. The lth round state takes the form
given by equation (A7).

For coherent attacks, the action of Eve is represented by a joint unitary operator V̂BTE acting on all the
transmitted systems BT, together with Eve’s ancillary system E, resulting in a state |Ψ〉 given by

|Ψ〉= V̂BTE |Φ〉ABT |0〉E =
∑
i

Ê(i)BT |Φ〉ABT |i〉E . (B2)

Let now

Ô(l−1)
ABT :=

l−1⊗
u=1

M̂
cu,suβ
ABT , (B3)

where M̂
cu,suβ
ABT := |c〉〈c|Au

⊗ M̂
sβ
BuTu

is the Kraus operator associated to the measurement of the systems A, B and
T at round u, yielding outcome c for the shield system and s ∈ {0,1} for Bob’s measurement in the basis
β ∈ {X,Z}. The joint state of systems A, B and T at round l conditioned on the previous observations is then
given by

ρ̂
l|O(l−1)

ABT =
∑
i

Tr̄l

[
P̂
(
Ô(l−1)

ABT Ê(i)BT |Φ〉ABT
)]
/p(l),
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Figure 9.Workflow of the security proof provided in this paper. The boxes in this figure refer to either the actual measurements
illustrated in figure 8, or the virtual measurement reported in figure 10. For the sifted key rounds, we consider a virtual
framework where Bob’s actual Z measurement is substituted by a virtual one. The latter is designed by first employing the same
filter Q̂Z, such that the length of the sifted key in the actual and virtual schemes is preserved. Then, an additional virtual filter ĜBT

is applied, before a projective measurement in the X basis is performed. By properly choosing the virtual filter ĜBT, we can
balance the DEM, such that the efficiency associated to Bob’s measurements on system B is the same for every state of the system

T. From here, we lower and upper bound these POVM operators so that each efficiency operator F̂s
†
F̂s is coupled to the projector

|sX⟩⟨sX|B in the X basis, for s ∈ {0,1}. Crucially, these bound operators are now proportional to the measurements that Bob
actually performs in the X basis. As a result, we can relate Bob’s virtual measurement results to the experimental data.

p(l) = Tr

[∑
i

Tr̄l

[
P̂
(
Ô(l−1)

ABT Ê(i)BT |Φ〉ABT
)]]

, (B4)

where Tr̄l represents the trace over all systems but A,B and T at round l and P̂(|ψ 〉) := |ψ 〉〈ψ |. By letting
{|⃗x<l〉} ({|⃗x>l〉}) denote an orthonormal basis for the state of the rounds before (after) l, we can explicitly
write the trace operator in equation (B4) to find

ρ̂
l|O(l−1)

ABT · p(l) =
∑
i

Tr̄l

[
P̂
(
Ô(l−1)

ABT Ê(i)BT |Φ〉ABT
)]

=
∑
i

∑
x⃗<l

∑
x⃗>l

〈⃗x<l| 〈⃗x>l|P̂
(
Ô(l−1)

ABT Ê(i)BT |Φ〉ABT
)
|⃗x<l〉 |⃗x>l〉ABT

=
∑
i

∑
x⃗<l ,⃗x>l

P̂
(
Â(⃗x<l ,⃗x>l)

i;BT|O(l−1)

∣∣∣φ(l)
〉
ABT

)

=
∑
i

∑
x⃗<l ,⃗x>l

P̂

(∑
c

√
pc |c〉A Â

(⃗x<l ,⃗x>l)

i;BT|O(l−1)

∣∣∣ϕ(c)〉
B
|0〉T

)
, (B5)

where we have defined

Â(⃗x<l ,⃗x>l)

i;BT|O(l−1) := 〈⃗x<l|
〈⃗
x>l

∣∣∣Ô(l−1)
ABT Ê(i)BT

∣∣∣φ(<l)
〉
ABT

∣∣∣φ(>l)
〉
ABT

. (B6)

This operator acts jointly on the systems B and T at round l and can be decomposed as

Â(⃗x<l ,⃗x>l)

i;BT|O(l−1) =
∑
k

Â(⃗x<l ,⃗x>l)

i,k;B|O(l−1) ⊗ Â(⃗x<l ,⃗x>l)

i,k;T|O(l−1) (B7)
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over the two systems. For further reference, we define the (unnormalised) action of the element Â(⃗x<l ,⃗x>l)

i,k;T|O(l−1)

on the system T as ∣∣∣γ(l,i,k)〉
T
:= Â(⃗x<l ,⃗x>l)

i,k;T|O(l−1) |0〉T , (B8)

such that from equation (B5) it follows

ρ̂
l|O(l−1)

ABT =
1

p(l)

∑
i

∑
x⃗<l ,⃗x>l

P̂

∑
c,k

√
pc |c〉A Â

(⃗x<l ,⃗x>l)

i,k;B|O(l−1)

∣∣∣ϕ(c)〉
B

∣∣∣γ(l,i,k)〉
T

 . (B9)

We are interested in computing the joint probabilities PsX,c|O(l−1) of Bob obtaining outcome sX at round l

by measuring the system B in the X basis and Alice sending the cth state
∣∣ϕ(c)〉

B
, conditioned on all the

previous results. For the actual states measured in the X basis (that is, when c ∈ {3,4,5}), we have that

PsX,c|O(l−1) = Tr
[(
|c〉〈c|A ⊗ M̂sX

BT

)
ρ̂
l|O(l−1)

ABT

]
=

pc
p(l)

∑
i

∑
x⃗<l ,⃗x>l

Tr

[
M̂sX

BTP̂

(∑
k

Â(⃗x<l ,⃗x>l)

i,k;B|O(l−1)

∣∣∣ϕ(c)〉
B

∣∣∣γ(l,i,k)〉
T

)]

=
pc
p(l)

∑
i,k,k ′

∑
x⃗<l ,⃗x>l

〈
γ(l,i,k

′)
∣∣∣F̂s†F̂s∣∣∣γ(l,i,k)〉

T

×Tr
[
Â(⃗x<l ,⃗x>l)†
i,k ′;B|O(l−1) |sX〉〈sX|B Â

(⃗x<l ,⃗x>l)

i,k;B|O(l−1) P̂
(∣∣∣ϕ(c)〉

B

)]
= pcTr

[
D̂sX|O(l−1) P̂

(∣∣∣ϕ(c)〉
B

)]
, (B10)

where we have defined

D̂sX|O(l−1) :=
1

p(l)

∑
i,k,k ′

∑
x⃗<l ,⃗x>l

〈
γ(l,i,k

′)
∣∣∣F̂s†F̂s∣∣∣γ(l,i,k)〉

T
Â(⃗x<l ,⃗x>l)†
i,k ′;B|O(l−1) |sX〉〈sX|B Â

(⃗x<l ,⃗x>l)

i,k;B|O(l−1) . (B11)

We can now proceed to decompose P̂
(∣∣ϕ(c)〉

B

)
in the Pauli basis. Let

(σ̂1, σ̂X, σ̂Y, σ̂Z) =
(
1̂, X̂, Ŷ, Ẑ

)
(B12)

be the set of identity and Pauli matrices for system B. Then:

P̂
(∣∣∣ϕ(c)〉

B

)
=

1

2

∑
ω∈Ω

W(c)
ω σ̂ω, (B13)

where Ω= {1,X,Y,Z} andWWW(c) :=
(
1,V(c)

X ,V(c)
Y ,V(c)

Z

)T
, being V(c)

t for t ∈ {X,Y,Z} the entries of the Bloch

vector of the state
∣∣ϕ(c)〉

B
. Here,W(c)

1 = 1. Also, note that we have V(c)
Y = 0 ∀c, as from Assumption (A1) all

flawed states lay on the XZ-plane of the Bloch sphere. Substituting equation (B13) in equation (B10), one
finds

PsX,c|O(l−1) = pc
∑
ω∈Ω

W(c)
ω qsX,ω|O(l−1) , (B14)

with

qsX,ω|O(l−1) :=
1

2
Tr
[
D̂sX|O(l−1) σ̂ω

]
. (B15)

By means of Kato’s inequalities [70], we have that the sum of the probabilities in equation (B14) over all
N rounds is asymptotically close to the number of occurrences of the corresponding events in the protocol,
that is

N∑
l=1

PsX,c|O(l−1) = pc
∑
ω∈Ω

W(c)
ω

N∑
l=1

qsX,ω|O(l−1)
N→∞−−−−→ NsX,c, (B16)
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where NsX,c is the number of times Alice sends the state
∣∣ϕ(c)〉

B
and Bob obtains the result sX. From the idea

of the LT protocol, as long as the vectors {W⃗(c)}c∈{3,4,5} of the flawed quantum states are linearly
independent, inverting the set of equations provided by equation (B16) for c ∈ {3,4,5} allows to estimate the
values of the terms

∑N
l=1 qsX,ω|O(l−1) for ω ∈ {1,X,Z} from the experimental data [49]. This corresponds to

the result in equation (8), where ∀ω we define

q̃sX,ω := lim
N→∞

1

N

N∑
l=1

qsX,ω|O(l−1) , (B17)

and consider in the asymptotic limit

psX,c := lim
N→∞

NsX,c

N
. (B18)

B.2. Security analysis of the virtual states
In the complementarity framework, the phase-error rate can be computed once we find the errors that Bob
encounters in predicting Alice’s virtual X outcomes for the states they use to produce the sifted key. Crucially,
due to the DEM, the probability of successful detection in the Z or X basis for Bob is not the same. Therefore,
to balance statistics, at round l we must consider the state going through the Z basis filter in equation (A8),
namely

Q̂Zρ̂
l|O(l−1)

ABT Q̂†
Z. (B19)

See figure 9 for reference.
To predict Alice’s virtual X outcomes, Bob is allowed to apply any virtual filter ĜBT on the above states.

The goal is to design a virtual filter that allows him to rely on the information available from the
experimental data. Ideally, the best option would be a virtual filter satisfying ĜBTQ̂Z = Q̂X. This would imply
that for all events for which a conclusive outcome can be asserted in the Z basis, we can obtain a virtual X
measurement conclusive event as well, which we can relate to the actual statistics in the X basis that Bob
observes in his experiment. Crucially, due to the DEM this is not possible.

In this paper we adopt the filter proposed in [37], which is given by

ĜBT = |0Z〉〈0Z|B ⊗ ĈF̂−1
0 + |1Z〉〈1Z|B ⊗ ĈF̂−1

1 , (B20)

followed by a projective measurement on |sX〉〈sX|B ⊗ 1̂T. This corresponds to the definition of the following
virtual POVMs acting on the state incoming from the channel

M̂sX,virt
BT = Q̂†

ZĜ
†
BT

(
|sX〉〈sX|B ⊗ 1̂T

)
ĜBTQ̂Z. (B21)

Importantly, the Ĉmatrix is chosen so to guarantee that ĜBT is a valid filtering operation. Moreover, note
that

ĜBTQ̂Z = 1̂B ⊗ Ĉ. (B22)

This measurement scheme is depicted in figure 10.
At round l, if the virtual filtering is successful, the joint probability of Alice sending the virtual state∣∣ϕ(c)〉

B
for c ∈ {1,2} and Bob obtaining sX (in the virtual scheme) for rounds where he actually measured in

the Z basis, conditioned on all the previous results, is given by

PvirtsX,c|O(l−1) = Tr
[(

|c〉〈c|A ⊗ M̂sX,virt
BT

)
ρ̂
l|O(l−1)

ABT

]
= Tr

[(
|c〉〈c|A ⊗ |sX〉〈sX|B ⊗ Ĉ†Ĉ

)
ρ̂
l|O(l−1)

ABT

]
= pcTr

[
D̂virt
sX|O(l−1) P̂

(∣∣∣ϕ(c)〉
B

)]
= pc

∑
ω∈Ω

W(c)
ω qvirtsX,ω|O(l−1) , (B23)

where we have defined

D̂virt
sX|O(l−1) :=

1

p(l)

∑
i,k,k ′

∑
x⃗<l ,⃗x>l

〈
γ(l,i,k

′)
∣∣∣Ĉ†

Ĉ
∣∣∣γ(l,i,k)〉

T
Â(⃗x<l ,⃗x>l)†
i,k ′;B|O(l−1) |sX〉〈sX|B Â

(⃗x<l ,⃗x>l)

i,k;B|O(l−1) , (B24)
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Figure 10. Bob’s scheme for a successful measurement in the virtual scheme. Bob is allowed to perform any virtual operation on
the incoming states in order to maximise his ability to guess Alice’s virtual X outcome. Here, this corresponds to apply the filter
Q̂Z to make sure the total number of detections in the Z basis for the virtual and actual protocols are the same, and then an
additional filter ĜBT, followed by projective measurements. A failed measurement in the virtual protocol is equivalently described

by the POVM element 1̂− M̂0X,virt
BT − M̂1X,virt

BT or, equivalently, the total filter ĜBTQ̂Z not succeeding.

and

qvirtsX,ω|O(l−1) =
1

2
Tr
[
D̂virt
sX|O(l−1) σ̂ω

]
. (B25)

As shown in appendix C, once we consider the sum over all rounds we can rewrite these terms in a more
convenient form given by

N∑
l=1

PvirtsX,c|O(l−1) = pc
∑
ω∈Ω

W(c)
ω

N∑
l=1

qvirtsX,ω|O(l−1) =
pc
2

∑
ω∈Ω

W(c)
ω Tr

[
ρ̂E

(
T̂sX,ω ⊗ Ĉ

†
Ĉ
)]
, (B26)

where ρ̂E is a quantum state under full control of Eve that encodes all the information of her attack (i.e. the

terms Â(⃗x<l ,⃗x>l)

i;BT|O(l−1) in equation (B6)) and, as such, its size depends on the number of rounds N. On the other

hand, T̂sX,ω is a 4× 4 matrix whose analytic form is reported in equations (C9)–(C11). In appendix C we also
discuss how for the terms qsX,ω|O(l−1) in equation (B15) it holds the similar relation

N∑
l=1

qsX,ω|O(l−1) =
1

2
Tr
[
ρ̂E

(
T̂sX,ω ⊗ F̂s

†
F̂s
)]
. (B27)

The combination of the results in equations (B26) and (B27) allows to bound the statistics of the virtual X

measurement in the virtual protocol, given knowledge of the generalised efficiency operators F̂s
†
F̂s and the

terms qsX,ω|O(l−1) learned from the LT approach. This step is illustrated in section B.4.
For application in the next section and for better clarity, let us define from equation (B23)

P(l)svX,0vX := PvirtsX,c=1|O(l−1) , P(l)svX,1vX := PvirtsX,c=2|O(l−1) , (B28)

such that P(l)svX,avX denotes the joint probability at round l of Bob and Alice respectively obtaining an outcome s
and a in the virtual measurement scheme, conditioned on all the previous results.

B.3. Computing the SKR
Formally, in the asymptotic limit, the probability of being in a sifted key round and the probability of having
a bit error in the Z basis are respectively given by

psiftZ = lim
N→∞

1

N

1∑
a,s=0

NsZ,aZ , perrZ := lim
N→∞

1

N

∑
a̸=s

NsZ,aZ , (B29)

where NsZ,aZ indicates the number of occurrences in which Bob obtains a Z measurement outcome s and
Alice prepares the state |ϕaZ〉B. Note that both quantities are directly estimated by Alice in the protocol (see
section 3), and that the bit error rate can be directly computed from their ratio as indicated in equation (15).

As discussed in appendix A.2, the rounds with a detection in the Z basis are the ones for which the filter
Q̂Z in equation (A8) is successful. For these rounds, in the virtual protocol Bob applies the virtual filter ĜBT

provided in equation (B20). The average of the probabilities of Bob’s virtual X measurement being successful
(which are conditional on Alice and Bob’s measurement outcomes in the previous rounds of the virtual
protocol and include the probability of being in a sifted key round) is given by

pvirtX := lim
N→∞

1

N

1∑
a,s=0

NsvX,a
v
X
, (B30)
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where NsvX,a
v
X
indicates the number of occurrences in which Bob obtains a virtual X measurement outcome s

and Alice prepares the state
∣∣ϕvirtaX

〉
B
. Crucially, this is an average probability because Bob’s virtual X

measurement consist of filtering operations, whose success probability is, in all generality, different at every
round, since it depends on the specific states that the filter acts on.

With similar reasoning, the average probability of having a bit error in Bob’s virtual X measurement is
given by

perrXvirt := lim
N→∞

1

N

∑
a̸=s

NsvX,a
v
X
. (B31)

We note that the terms on the right-hand side of equations (B30) and (B31) can be estimated as the sum

over the round index l of the quantities P(l)svX,avX in equation (B28) for N→∞, thanks to Kato’s inequality [70].
As a result, we can define in the asymptotic regime the fraction of sifted key rounds in which Bob’s virtual X
measurement is successful as

rvirtX :=
pvirtX

psiftZ

=
1

psiftZ

lim
N→∞

1

N

[
N∑
l=1

(
P(l)0vX,0vX + P(l)1vX,0vX + P(l)0vX,1vX + P(l)1vX,1vX

)]
. (B32)

Finally, we compute the phase-error rate ep, which is the probability of Bob making an error in the guess
of Alice’s virtual X outcome for the sifted rounds. Following the same argument of equation (B32), in the
asymptotic limit we have that

ep :=
perrXvirt

pvirtX

=
limN→∞

1
N

∑N
l=1

(
P(l)0vX,1vX + P(l)1vX,0vX

)
limN→∞

1
N

∑N
l=1

(
P(l)0vX,0vX + P(l)1vX,0vX + P(l)0vX,1vX + P(l)1vX,1vX

) . (B33)

According to Koashi’s security proof [62], these quantities allow Alice and Bob to compute how many
sifted bits they must sacrifice for the sake of privacy amplification. In detail, to remove any residual
information shared with Eve, Alice and Bob must perform hashing on their sifted keys for all the rounds in
which Bob’s virtual filter ĜBT was not successful (note that the average probability of the virtual filter failing
is given by psiftZ − pvirtX ), plus additional rounds to counteract the erroneous estimates of Bob. Over N rounds
of the protocol, this last term is given by NpvirtX h2

(
ep
)
, where h2 (x) denotes the binary entropy, and the total

number of hashing rounds required for privacy amplification is given by

MPA = NpsiftZ

(
1− rvirtX

)
+NpsiftZ rvirtX h2

(
ep
)
. (B34)

Moreover, Alice and Bob must sacrifice additional

MEC = fNpsiftZ h2 (eb) (B35)

sifted key bits to perform error correction (EC), with an EC code of efficiency f. Putting all considerations
together, the asymptotic SKR per signal sent can be retrieved to be

R⩾ lim
N→∞

1

N

(
NpsiftZ −MPA −MEC

)
(B36)

= psiftZ

[
rvirtX

(
1− h2

(
ep
))

− fh2 (eb)
]
. (B37)

By considering a lower bound on rvirtX and an upper bound on ep, equation (13) follows naturally.

Crucially, the terms P(l)svX,avX in equations (B32) and (B33) depend on the choice of the operator Ĉ in the

definition of the virtual filter. As the optimal choice of Ĉmight be subject to the specifics of the channel, in
this work we consider for simplicity the operator Ĉ originally proposed in [37], which has been obtained
optimising the noiseless case (that is, without SPFs and attacks on the B system). In the following section we
show how this choice for Ĉ allows to directly bound the phase-error rate given the experimental data and a
characterisation of the devices efficiency operators.
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B.4. Bounding the phase-error rate
As illustrated in figure 9, to relate the phase-error rate to the statistics of the actual X basis measurements we

must find lower and upper bounds on the operator Ĉ
†
Ĉ in the form given by equation (12). One viable

option to do so is to employ semidefinite programming, as discussed in section 4. Alternatively, here we
compute the analytical bounds provided by equation (20).

From equations (9)–(11), we define Dmin (Dmax) as the minimum (maximum) eigenvalue of D̂. It follows

that the minimum (maximum) eigenvalue of Ĉ1
†
Ĉ1 is ηmin :=min

(
D−1
max,1

)
(ηmax :=min

(
D−1
min,1

)
).

Therefore, we have that

ηmin1̂+ Ĉ ′ = Ĉ1
†
Ĉ1 = ηmax1̂− Ĉ ′ ′, (B38)

where Ĉ ′ and Ĉ ′ ′ are positive semi-definite diagonal matrices. Therefore

Ĉ
†
Ĉ= F̂†0ÛĈ1

†
Ĉ1Û

†F̂0

= ηminF̂0
†
F̂0 + F̂†0ÛĈ

′Û†F̂0

⩾ ηminF̂0
†
F̂0, (B39)

where the inequality holds because the term F̂†0ÛĈ
′Û†F̂0 is positive semi-definite. Similarly, one finds

Ĉ
†
Ĉ⩽ ηmaxF̂0

†
F̂0. (B40)

Moreover, from equation (9) we have that

F̂1
†
F̂1 = F̂†0ÛD̂

−1Û†F̂0, (B41)

which is in the same form as the first line of equation (B39), with the substitutions Ĉ
†
Ĉ→ F̂1

†
F̂1 and

Ĉ1
†
Ĉ1 → D̂−1. By applying the same reasoning, we obtain

1

Dmax
F̂0

†
F̂0 ⩽ F̂1

†
F̂1 ⩽

1

Dmin
F̂0

†
F̂0, (B42)

which can be inverted to find bounds on F̂0
†
F̂0 in terms of F̂1

†
F̂1. The combination of the results of

equations (B39), (B40) and (B42) yields the analytical bounds in equation (20).

Now, bounds in equation (12) are defined for the operator Ĉ
†
Ĉ ∈HT acting on the T system.

Nevertheless, it is straightforward to generalise them to operators in the form

Π̂⊗ Ĉ
†
Ĉ ∈H4 ⊗HT, (B43)

where Π̂ is a 4× 4 projector. As expectation values for projective measurements are bounded in [0,1], one
finds

λ−s

(
Π̂⊗ F̂s

†
F̂s
)
⩽
(
Π̂⊗ Ĉ

†
Ĉ
)
⩽ λ+s

(
Π̂⊗ F̂s

†
F̂s
)
. (B44)

This is particularly relevant since the terms T̂sX,ω in equation (B26) are a linear combination of
projectors, as we show in appendix C. By paying attention to the sign these projectors come with in the
definition of T̂sX,ω , one can conveniently apply upper and lower bounds. For example, consider the operator

T̂0X,X = X̃++ − X̃−+, (B45)

where X̃++ and X̃−+ are projectors (see equation (C6)). It is possible to upper bound T̂0X,X by upper
bounding its positive component and lower bounding its negative component as

T̂0X,X̂
⊗ Ĉ

†
Ĉ= X̃++ ⊗ Ĉ

†
Ĉ− X̃−+ ⊗ Ĉ

†
Ĉ

⩽ λ+0

(
X̃++ ⊗ F̂0

†
F̂0
)
−λ−0

(
X̃−+ ⊗ F̂0

†
F̂0
)
. (B46)
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From equation (B46), one directly finds

N∑
l=1

qvirt0X,X|O(l−1) =
1

2
Tr
[
ρ̂E

(
T̂0X,X ⊗ Ĉ

†
Ĉ
)]

⩽ λ+0
2
Tr
[
ρ̂E

(
X̃++ ⊗ F̂0

†
F̂0
)]

− λ−0
2
Tr
[
ρ̂E

(
X̃−+ ⊗ F̂0

†
F̂0
)]

=
λ+0
2
Tr

[
ρ̂E

(
T̂0X,1 + T̂0X,X

2
⊗ F̂0

†
F̂0

)]

− λ−0
2
Tr

[
ρ̂E

(
T̂0X,1 − T̂0X,X

2
⊗ F̂0

†
F̂0

)]

=
λ+0 +λ−0

4
Tr
[
ρ̂E

(
T̂0X,X ⊗ F̂0

†
F̂0
)]

+
λ+0 −λ−0

4
Tr
[
ρ̂E

(
T̂0X,1 ⊗ F̂0

†
F̂0
)]

=
λ+0 +λ−0

2

N∑
l=1

q0X,X|O(l−1) +
λ+0 −λ−0

2

N∑
l=1

q0X,1|O(l−1) . (B47)

Reasoning in a similar way, we obtain that for s ∈ {0,1} it holds

λ−s

N∑
l=1

qsX,1|O(l−1) ⩽
N∑
l=1

qvirtsX,1|O(l−1) ⩽ λ+s

N∑
l=1

qsX,1|O(l−1) , (B48)

and

λ+s +λ−s
2

N∑
l=1

qsX,X|O(l−1) −
λ+s −λ−s

2

N∑
l=1

qsX,1|O(l−1)

⩽
N∑
l=1

qvirtsX,X|O(l−1) ⩽
λ+s +λ−s

2

N∑
l=1

qsX,X|O(l−1) +
λ+s −λ−s

2

N∑
l=1

qsX,1|O(l−1) . (B49)

Note that for detectors with equal efficiencies, F̂0
†
F̂0 = F̂1

†
F̂1 =⇒ D̂= 1̂, hence λ±s = 1 and the sum

over the virtual terms qvirt
sX,ω|O(l−1) is the same as in the actual X measurement. As a result, we are back to the

scenario of the original LT protocol and the phase-error rate is zero, as expected [49]. Moreover, in the general
case the phase-error rate given by equation (B33) can be directly upper bounded in a LT fashion, given the
results of equations (B48) and (B49). In fact, recalling the values of p1 and p2 from table 2, we have that

N∑
l=1

(
P(l)0vX,1vX + P(l)1vX,0vX

)
= p1virtX

pZApZB

N∑
l=1

(
qvirt
0X,1̂|O(l−1) − qvirt0X,X|O(l−1)

)
+ p0virtX

pZApZB

N∑
l=1

(
qvirt
1X,1̂|O(l−1) + qvirt1X,X|O(l−1)

)
⩽ p1virtX

pZApZB

N∑
l=1

(
3λ+0 −λ−0

2
q0X,1̂|O(l−1) −

λ+0 +λ−0
2

q0X,X|O(l−1)

)

+ p0virtX
pZApZB

N∑
l=1

(
3λ+1 −λ−1

2
q1X,1̂|O(l−1) +

λ+1 +λ−1
2

q1X,X|O(l−1)

)
. (B50)

Similarly, we have that

N∑
l=1

(
P(l)0vX,1vX + P(l)1vX,1vX + P(l)0vX,0vX + P(l)1vX,0vX

)
= p1virtX

pZApZB

N∑
l=1

(
qvirt
0X,1̂|O(l−1) − qvirt0X,X|O(l−1) + qvirt

1X,1̂|O(l−1) − qvirt1X,X|O(l−1)

)
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+ p0virtX
pZApZB

N∑
l=1

(
qvirt
0X,1̂|O(l−1) + qvirt0X,X|O(l−1) + qvirt

1X,1̂|O(l−1) + qvirt1X,X|O(l−1)

)
⩾ p1virtX

pZApZB

N∑
l=1

(
−λ

+
0 − 3λ−0

2
q0X,1̂|O(l−1) −

λ+0 +λ−0
2

q0X,X|O(l−1)

)

+ p1virtX
pZApZB

N∑
l=1

(
−λ

+
1 − 3λ−1

2
q1X,1̂|O(l−1) −

λ+1 +λ−1
2

q1X,X|O(l−1)

)

+ p0virtX
pZApZB

N∑
l=1

(
−λ

+
0 − 3λ−0

2
q0X,1̂|O(l−1) +

λ+0 +λ−0
2

q0X,X|O(l−1)

)
,

+ p0virtX
pZApZB

N∑
l=1

(
−λ

+
1 − 3λ−1

2
q1X,1̂|O(l−1) +

λ+1 +λ−1
2

q1X,X|O(l−1)

)
,

= pZApZB

N∑
l=1

[
−λ

+
0 − 3λ−0

2
q0X,1̂|O(l−1) −

λ+1 − 3λ−1
2

q1X,1̂|O(l−1)+

+〈ϕ0Z |ϕ1Z〉
(
λ+0 +λ−0

2
q0X,X|O(l−1) +

λ+1 +λ−1
2

q1X,X|O(l−1)

)]
. (B51)

Note that in the last passage we retrieved the explicit form of the probability of sending the virtual states in
equation (A6).

By dividing by N and taking the limit N→∞ of equations (B50) and (B51), and combining with the
results of equation (B17) and equations (B30) and (B31), we can find the bounds on pvirtX and perrXvirt reported

in equations (16)–(18). From here, the bounds rvirt,LX and eUp in equations (17) and (18) follow. Importantly,
all quantities involved are known and include SPFs (〈ϕ0Z |ϕ1Z〉 6= 0), DEM (in the values of the parameters λ±s
for s ∈ {0,1}) and the action of the channel (in the terms qsX,ω|O(l−1)).

Appendix C. Derivation of equation (B26)

Consider the following expansions of operators on the system B in terms of the Pauli basis. We have

|sX〉〈sX|B =
1

2

(
1̂+(−1)s X̂

)
, (C1)

Â(⃗x<l ,⃗x>l)
i,k;B|Ol−1

= a(l,i,k)0 1̂+ a(l,i,k)1 X̂+ ia(l,i,k)2 Ŷ+ a(l,i,k)3 Ẑ, (C2)

Â(⃗x<l ,⃗x>l)†
i,k ′;B|Ol−1

= a
(l,i,k ′)∗
0 1̂+ a

(l,i,k ′)∗
1 X̂− ia

(l,i,k ′)∗
2 Ŷ+ a

(l,i,k ′)∗
3 Ẑ. (C3)

In the following, let a(l,i,k)t ≡ at and a
(l,i,k ′)∗
t ≡ a ′∗

t with t ∈ {0,1,2,3} for ease of notation.
By exploiting the properties of the trace of the product of Pauli matrices, with the notation introduced in

equation (B12) we notice that

Tr
[
Â(⃗x<l ,⃗x>l)†
i,k ′;B|Ol−1

|sX〉〈sX|B Â
(⃗x<l ,⃗x>l)
i,k;B|Ol−1

σ̂ω

]
= E

(l,i,k,k ′)
1,ω +(−1)sE

(l,i,k,k ′)
X,ω , (C4)

where ω ∈ {1,X,Z} and

E
(l,i,k,k ′)
1,1 = a ′∗

0a0 + a ′∗
1a1 + a ′∗

2a2 + a ′∗
3a3,

E
(l,i,k,k ′)
1,X = a ′∗

1a0 + a ′∗
0a1 + a ′∗

2a3 + a ′∗
3a2,

E
(l,i,k,k ′)
1,Z = a ′∗

3a0 + a ′∗
0a3 − a ′∗

1a2 − a ′∗
2a1,

E
(l,i,k,k ′)
X,1 = a ′∗

1a0 + a ′∗
0a1 − a ′∗

3a2 − a ′∗
2a3,

E
(l,i,k,k ′)
X,X = a ′∗

0a0 + a ′∗
1a1 − a ′∗

2a2 − a ′∗
3a3,

E
(l,i,k,k ′)
X,Z = a ′∗

3a1 + a ′∗
1a3 − a ′∗

0a2 − a ′∗
2a0.

(C5)
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Now, let

Z̃00 := P̂
(
[1,0,0,1]†

)
/2,

Z̃10 := P̂
(
[0,1,1,0]†

)
/2,

X̃++ := P̂
(
[1,1,0,0]†

)
/2,

X̃−+ := P̂
(
[0,0,−1,1]†

)
/2,

Ỹ++ := P̂([1,0,1,0])/2,

Ỹ−+ := P̂([0,−1,0,1])/2,

Z̃01 := P̂
(
[0,1,−1,0]†

)
/2,

Z̃11 := P̂
(
[1,0,0,−1]†

)
/2,

X̃+− := P̂
(
[0,0,1,1]†

)
/2,

X̃−− := P̂
(
[1,−1,0,0]†

)
/2,

Ỹ+− := P̂([0,1,0,1])/2,

Ỹ−− := P̂([1,0,−1,0])/2.

(C6)

We notice that

E
(l,i,k,k ′)
1,1 + E

(l,i,k,k ′)
X,1 = a ′∗

0a0 + a ′∗
1a1 + a ′∗

1a0 + a ′∗
0a1 + a ′∗

2a2 + a ′∗
3a3 − a ′∗

3a2 − a ′∗
2a3

=
(
a ′
0
∗
+ a ′

1
∗)

(a0 + a1)+
(
−a ′

2
∗
+ a ′

3
∗)

(−a2 + a3)

= B(l,i)
k′

† [
X̃++ + X̃−+

]
B(l,i)
k

= B(l,i)
k′

†
T̂0X,1̂

B(l,i)
k , (C7)

where we defined

B(l,i)
k :=

(
a(l,i,k)0 a(l,i,k)1 a(l,i,k)2 a(l,i,k)3

)T
, (C8)

and

T̂0X,1 := X̃++ + X̃−+. (C9)

We can proceed similarly for all terms in the form of equation (C4) to find

E
(l,i,k,k ′)
1,ω +(−1)sE

(l,i,k,k ′)
X,ω = B(l,i)

k′
†
T̂sX,ωB

(l,i)
k , (C10)

with

T̂1X,1 = X̃−− + X̃+−,

T̂0X,X = X̃++ − X̃−+,

T̂1X,X =−X̃−− + X̃+−,

T̂0X,Z = Z̃00 + Z̃01 − Ỹ−+ − Ỹ++,

T̂1X,Z =−Z̃11 − Z̃10 + Ỹ−+ + Ỹ++.

Let now

B̂(l,i) =


a(l,i,0)0 a(l,i,1)0 . . .

a(l,i,0)1 a(l,i,1)1 . . .

a(l,i,0)2 a(l,i,1)2 . . .

a(l,i,0)3 a(l,i,1)3 . . .

=

B(l,i)
0 B(l,i)

1 . . .

, (C11)

and

∣∣∣Γ(l,i)
〉
=


∣∣γ(l,i,0)〉∣∣γ(l,i,1)〉

...

. (C12)

One can easily check that

B(l,i)
k′

†
T̂sX,ωB

(l,i)
k =

(
B̂
(l,i)†

T̂sX,ωB̂
(l,i)
)
k′k
, (C13)
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and consequently, from equation (B25) we have that

qvirt,(l)sX,ω =
1

2

∑
i,k,k ′

〈
γ(l,i,k

′)
∣∣∣Ĉ†

Ĉ
∣∣∣γ(l,i,k)〉

T
Tr
[
Â(⃗x<l ,⃗x>l)†
i,k ′;B|Ol−1

|sX〉〈sX|B Â
(⃗x<l ,⃗x>l)
i,k;B|Ol−1

σ̂ω

]
=

1

2

∑
i,k,k ′

〈
γ(l,i,k

′)
∣∣∣Ĉ†

Ĉ
∣∣∣γ(l,i,k)〉

T

(
B̂
(l,i)†

T̂sX,ωB̂
(l,i)
)
k′k

=
1

2

∑
i

〈
Γ(l,i)

∣∣∣[B̂(l,i)†
T̂sX,ωB̂

(l,i) ⊗ Ĉ
†
Ĉ
]∣∣∣Γ(l,i)

〉
=

1

2

∑
i

〈
Φ(l,i)

∣∣∣T̂sX,ω ⊗ Ĉ
†
Ĉ
∣∣∣Φ(l,i)

〉
, (C14)

where we have defined (recall equation (B8))

∣∣∣Φ(l,i)
〉
:=
(
B̂(l,i) ⊗ 1̂T

)∣∣∣Γ(l,i)
〉
=


a(l,i,0)0 Â(⃗x<l ,⃗x>l)

i,0;B|Ol−1
a(l,i,1)0 Â(⃗x<l ,⃗x>l)

i,1;B|Ol−1
. . .

a(l,i,0)1 Â(⃗x<l ,⃗x>l)
i,0;B|Ol−1

a(l,i,1)1 Â(⃗x<l ,⃗x>l)
i,1;B|Ol−1

. . .

a(l,i,0)2 Â(⃗x<l ,⃗x>l)
i,0;B|Ol−1

a(l,i,1)2 Â(⃗x<l ,⃗x>l)
i,1;B|Ol−1

. . .

a(l,i,0)3 Â(⃗x<l ,⃗x>l)
i,0;B|Ol−1

a(l,i,1)3 Â(⃗x<l ,⃗x>l)
i,1;B|Ol−1

. . .


|0〉T

...
|0〉T

. (C15)

By taking the sum over l of equation (C14) and letting

ρ̂E :=
∑
l,i

∣∣∣Φ(l,i)
〉〈

Φ(l,i)
∣∣∣ , (C16)

one obtains the result in equation (B26). Finally, by comparing equations (B11)–(B15) and equations (B24)
and (B25), we observe that a formulation equivalent to the one leading to equation (C14) can be done for the

terms qsX,ω|O(l−1) in equation (B15) with the substitution Ĉ
†
Ĉ 7→ F̂s

†
F̂s, for s ∈ {0,1}, which yields the result

in equation (B27).
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