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Abstract

This thesis deals with neural networks that respect symmetries and presents
the advantages in applying them to lattice field theory problems. The con-
cept of equivariance is explained, together with the reason why such a prop-
erty is crucial for the network to preserve the desired symmetry. The benefits
of choosing equivariant networks are first illustrated for translational sym-
metry on a complex scalar field toy model. The discussion is then extended
to gauge theories, for which Lattice Gauge Equivariant Convolutional Neural
Networks (L-CNNs) are specifically designed ad hoc. Regressions of phys-
ical observables such as Wilson loops are successfully solved by L-CNNs,
whereas traditional architectures which are not gauge symmetric perform
significantly worse. Finally, we introduce the technique of neural gradient
flow, which is an ordinary differential equation solved by neural networks,
and propose it as a method to generate lattice gauge configurations.
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Zusammenfassung

Diese Arbeit befasst sich mit neuronalen Netzen, die Symmetrien respek-
tieren, und stellt die Vorteile ihrer Anwendung auf gitterfeldtheoretische
Probleme dar. Das Konzept der Äquivarianz wird erklärt, zusammen mit
der Begründung, warum eine solche Eigenschaft für das Netz entscheidend
ist, um die gewünschte Symmetrie zu erhalten. Die Vorteile der Wahl
äquivarianter Netze werden zunächst für die Translationssymmetrie eines
komplexen Skalarfeld-Spielzeugmodells erläutert. Die Diskussion wird dann
auf Eichtheorien ausgedehnt, für die Lattice Gauge Equivariant Convolu-
tional Neural Networks (L-CNNs) speziell entworfen werden. Regressio-
nen von physikalischen Observablen wie Wilson-Schleifen werden von L-
CNNs erfolgreich gelöst, während traditionelle Architekturen, die nicht eich-
symmetrisch sind, deutlich schlechter abschneiden. Schließlich stellen wir
die Technik des neuronalen Gradientenflusses vor, bei der es sich um eine
gewöhnliche Differentialgleichung handelt, die von neuronalen Netzen gelöst
wird, und schlagen sie als eine Methode zur Generierung von Gittereichkon-
figurationen vor.
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Chapter 1

Introduction

In the past century, quantum field theory has established itself as the appro-
priate mathematical framework to describe the fundamental constituents of
nature. The Standard Model of particles [4, 5] is the most successful the-
ory based on such a framework, in that it reproduces all the experimental
results found at particle colliders within a 5σ confidence level. Tensions
between this theory and experiments do exist, for example for the value of
the anomalous magnetic dipole moment [6, 7], and, even more importantly,
some crucial questions are left unaddressed, such as neutrino oscillations and
dark matter. Precise predictions are paramount to reveal deviations from
experiments and to identify promising candidate theories to explain physics
beyond the Standard Model. Perturbative calculations are possible, but
other approaches have been developed. One of the most prominent is lattice
field theory, a discretization of quantum field theory on a fictitious grid. Its
great appeal lies in the possibility of treating non-perturbative problems,
arising for example in the low-energy regime of quantum chromodynamics
(QCD), and, moreover, it enables to run simulations on a computer. These
are typically performed with Monte Carlo methods [8], which are very ef-
fective but run into issues such as critical slowing down [9] and the sign
problem [10,11].

The scientific community has witnessed a deep surge of interest in ar-
tificial intelligence in the last decade, with a large variety of applications
in many fields, such as image recognition [12], natural language process-
ing [13], games like chess [14], protein folding [15] and cancer detection [16].
A very successful subfield of artificial intelligence is machine learning, which
is an umbrella term for programs capable of gradually improving their per-
formance on a given task without explicit instructions. This resembles the
human way of learning from experience, and the brain structure has indeed
inspired the main machine learning algorithm in use nowadays: artificial
neural networks. The elementary unit of such models is an artificial neuron
(also called unit, node or simply neuron), and is linked to other neurons
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2 CHAPTER 1. INTRODUCTION

via edges, mimicking how biological neurons are connected to each other
via synapses in the brain. Artificial neurons receive input signals, which are
typically real numbers, multiply each of them by a weight, and output the
sum of the result. Usually, neurons are followed by an activation function
which introduces some non-linearity [17].

The perceptron [18, 19], an architecture comprising of just one neuron
and an activation function, was proposed in 1957 for binary classification
and represents one of the very first machine learning models to be imple-
mented. In a multi-layer perceptron (MLP), also referred to as dense net-
work, neurons are interconnected and organized in layers, with a visible
layer representing the input that is then processed by a sequence of hidden
layers leading to the output. The larger the number of hidden layers, the
deeper the network is said to be, hence the name deep learning [20]. Stacking
many layers one after the other allows the network to identify relevant pieces
of information and patterns, starting from simple concepts and combining
them to achieve higher levels of abstraction. MLPs are feed-forward neural
networks, that is, the flow of information only goes from the input to the
output. Therefore, no backward connections between neurons are present.

One of the strategies to deal with data is supervised learning, in which
a network is provided with a dataset containing some input and the cor-
responding output data, also called labels. The parameters of the network
(i.e. the aforementioned weights multiplying the input of each neuron) are
usually randomly initialized and, consequently, the network’s outputs are
in general very distant from the labels. The distance is encoded in a loss
function. It is common practice to split the dataset into training, validation
and test set. The training samples are used to minimize the loss function
by updating the network’s weights using some form of gradient descent [21].
The validation set helps to avoid a phenomenon called overfitting [22], which
causes the network to memorize the samples without truly extracting useful
information. The test set reports on the ability of the network to generalize
to unseen data. Given this procedure, a neural network serves as the best
approximating function of the true underlying map between the input and
the corresponding labels present in the dataset. If the true function is con-
tinuous, it is always possible to approximate it with arbitrary accuracy for
a sufficiently wide or deep dense network with at least one hidden layer and
an activation function, as guaranteed by various versions of the universal
approximation theorem [23,24].

Neural networks have recently garnered the attention of the physics com-
munity, with successful applications in many fields. In lattice field theory,
a pioneering work in phase classification was conducted in [25], followed by
applications to φ4 scalar field theory, lattice QCD, Ising, XY, Potts and
Yukawa models, where neural networks were applied to classical [26] and
topological [27] phase transitions, to universality classes [28], and to infer
order parameters [29], action parameters [30] and thermodynamic proper-
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ties [31]. Several efforts have been made to alleviate the sign problem with
the aid of neural-network-based algorithms [32–35]. Fruitful applications
have been reported in the context of the renormalization group [36,37] and
also vice versa renormalization group transformations have been used to
interpret machine learning models [38]. A thriving field is represented by
generative models, in particular normalizing flows [39], although another op-
tion is represented by diffusion models [40]. A strong relationship between
stochastic normalizing flows [41] and Jarzynski’s equality was found [42],
which helped to mitigate topological freezing with out-of-equilibrium simu-
lations [43] and sampling the lattice Nambu-Goto string [44].

Since Noether published her theorem [45] more than a hundred years
ago, the role of symmetries in physics has become pivotal, especially in field
theories. For instance, the Standard Model describes the three fundamental
interactions between elementary particles as gauge theories. Even though
symmetry-agnostic neural networks have been proven to be a powerful tool
also in lattice field theory, constraining them to respect the underlying sym-
metries can facilitate the learning process. This acknowledgement had an
impact also in computer vision. Images are typically characterized by global
translational equivariance, which induces convolutions [46]. These constitute
the basis of convolutional neural networks (CNNs). A convolution is defined
as the sum of the element-wise product of a kernel (or filter) with an equally-
sized patch of the image. This operation is repeated over the whole input,
such that the output is a new image rather than a single output. Since the
parameters of the kernel do not change while being applied at each pixel, the
convolution has the property of weight sharing, which is essential for trans-
lational symmetry. Also, a compact kernel enables the network to scan the
image in search of local features. Many kernels with different weights can
be applied and their outputs are organized in separate channels, and several
convolutional layers can be stacked, usually interposing activation functions
and pooling layers. These are usually employed for downsampling. Forms of
the universal approximation theorem exist also for CNNs [47,48]. The main
ingredients of CNNs were introduced with the Neocognitron [49] in 1979,
and more recently the advantages of CNNs became apparent. For instance,
they played a major role in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [12], a competition held yearly from 2010 to 2017, with
AlexNet [50] becoming the first CNN to win it in 2012. Despite the success,
most of the CNN architectures used in ILSVRC do not preserve symmetry
under translations. For example, a flattening layer completely breaks the
symmetry. This can be avoided by substituting it with a global average
pooling (GAP) [51], which is a feature of ResNet [52], the winning CNN ar-
chitecture of ILSVRC in 2015. In lattice field theory too, CNNs that are not
translationally invariant have been employed even though translational sym-
metry was a property of the system under consideration [26,28,29,38,53–55].
In Chapter 2, we will extensively discuss the symmetry properties of CNNs
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and show the benefits of applying a symmetry-respecting network in the
context of a complex scalar field theory.

Available a priori knowledge about specific problems has prompted re-
searchers to design ad-hoc neural networks, as in the case of physics-informed
neural networks [56], Hamiltonian neural networks [57] and Lagrangian neu-
ral networks [58, 59]. The commitment to incorporate symmetries stands
out, and has given rise to a very active field, with a focus on global sym-
metries, with group equivariant convolutional networks [60–78] and on local
ones, with gauge equivariant convolutional networks [2, 79–86] and equiv-
ariant transformers [87, 88]. Chapter 3 is devoted to the design of a neural
network able to preserve gauge symmetry on the lattice.

In the context of configuration sampling, a particularly active field is rep-
resented by gauge equivariant normalizing flows [31,89–93]. In Chapter 4, we
propose a possible alternative method to generate gauge link configurations,
similar to the one proposed in [94].

Finally, we summarize our findings in the Conclusion chapter 5 and
present further details in the Appendix.



Chapter 2

Translationally-symmetric
neural networks in scalar
field theory

The numerous successful applications of neural networks in scientific con-
texts represent an empirical demonstration that they are a powerful and
reliable tool. This is also supported from a theoretical standpoint, in that
neural networks can learn to approximate any function. In practice, though,
there can be many obstacles preventing a neural network from an effec-
tive learning procedure. For instance, a limited amount of samples in the
dataset, the training phase requiring too many iterations, the optimization
procedure getting stuck in unsatisfactory local minima of the loss function.
An approach that aims at facilitating learning is to take into account the
symmetries of the problem under examination and to design the network
in a way that preserves these symmetries. In physics, and in particular in
field theories, systems are often invariant under translations. An example
is a complex scalar field theory, which is the focus of this Chapter. We first
describe such a theory and discretize it on the lattice. Then we explain
how a non-zero chemical potential gives rise to a sign problem and how it
can be circumvented with the use of a duality transformation. After that,
individual layers of CNNs are presented and their translational symmetry
properties are discussed. Three architecture types are proposed and their
performance is evaluated on three different tasks. For each task, we show
how the incorporation of translational symmetry proves to be beneficial for
the network’s performance.

5



6 CHAPTER 2. TRANSLATIONAL SYMMETRY

2.1 Dual formulation of a complex scalar field

The Lagrangian density of a complex scalar field φ(xµ) subject to the po-
tential V (φ∗φ) can be written as

L(∂µφ, ∂µφ∗, φ, φ∗) = ∂µφ
∗(x)∂µφ(x)− V (φ∗(x)φ(x)), (2.1.1)

with µ ∈ {0, 1, ..., d− 1} running over the d spacetime indices and the con-
vention used for the metric is ηµν = diag(+,−, . . . ,−). The action

S =

�
ddxL (2.1.2)

is then invariant under translations in time and space x′µ = xµ + aµ. The
field transforms as

φ′(x′µ) = φ(xµ), (2.1.3)

while derivatives remain unchanged:

∂′
µ =

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
=

∂(x′ ν − aν)

∂x′µ
∂

∂xν
= δνµ

∂

∂xν
=

∂

∂xµ
= ∂µ. (2.1.4)

In the action of the field φ′

S′ =
�
ddx′

�
∂′
µφ

′ ∗(x′) ∂′µφ′(x′)− V (φ′ ∗(x′)φ′(x′))
�
, (2.1.5)

the integration measure is not modified by a translation, nor are the kinetic
term and the interacting term, as one can see from Eqs. (2.1.3) and (2.1.4).
This proves that the action is invariant under translations. As a remark, if
the Lagrangian density explicitly depends on the position xµ the action is
manifestly not translationally invariant.

As stated in Noether’s first theorem [45], finite continuous symmetries of
the action are associated with the existence of conserved quantities, which
in the case of invariance under spacetime translations are represented by the
energy-momentum tensor.

The action (2.1.2) also exhibits a global U(1) symmetry under the trans-
formation φ → eiαφ, which implies the presence of another conserved charge.
In this context, a chemical potential can be introduced with a modification
of the time derivative given by D0 = ∂0 − iµ [95]. The action then becomes

S =

�
dx0 d

d−1x
�|D0φ|2 − |∂iφ|2 − V (|φ|)� , (2.1.6)

where i ∈ {1, 2, . . . , d− 1} runs over the space indices. In the following, we
will focus on a complex scalar field with quartic interaction subject to the
potential

V (|φ|) = m2|φ|2 + λ|φ|4, (2.1.7)
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where m is the mass and λ the coupling constant. The action takes the form

S =

�
dx0 d

D−1x
�|D0φ|2 − |∂iφ|2 −m2|φ|2 − λ|φ|4�. (2.1.8)

It is possible to introduce an imaginary time coordinate by performing the
Wick rotation

x0 = ixd, xd ∈ R. (2.1.9)

We explicitly write the effect of this transformation on the time covariant
derivative:

|D0φ|2 = D0φ (D0φ)
† = (∂0 − iµ)φ (∂0 + iµ)φ∗ = −(∂d + µ)φ (∂d − µ)φ∗,

(2.1.10)
where we used the fact that ∂0 = −i∂d. We can define the Euclidean action
SE as follows:

SE = iS =

�
ddx

�|∂iφ|2+ (∂d + µ)φ (∂d − µ)φ∗+m2|φ|2+ λ|φ|4�. (2.1.11)

We now proceed to the discretization of the theory. The points that
define the lattice are located at the positions xµ = anµ, with nµ ∈ R and
a = ai ∀i ∈ {1, . . . , d}, thus assuming the lattice to be equally spaced in
every dimension. The integration over spacetime is replaced by a sum over
all lattice sites, �

ddx → ad
�
x

. (2.1.12)

Derivatives cannot be taken on the lattice because of its discontinuous na-
ture, therefore a natural substitute is the difference quotient

∂µφ(x) → φx+aµ̂ − φx

a
, (2.1.13)

which, in the a → 0 limit, coincides with the definition of the derivative.
The notation µ̂ refers to the unit vector pointing in the µ direction. It is
possible to reformulate the two terms involving the chemical potential in
Eq. (2.1.11) as follows:

±µ = −∂d
�
e∓µxd

�
e±µxd → e∓µ(xd+a) − e∓µxd

a
e±µxd =

e∓µa − 1

a
, (2.1.14)

thus yielding

(∂d + µ)φ → φx+ad̂ − e−µaφx

a
(2.1.15)

(∂d − µ)φ∗ →
φ∗
x+ad̂

− eµaφ∗
x

a
. (2.1.16)
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The discretized version of the Euclidean action can be reworked in the fol-
lowing way:

SE → ad
�
x



d−1�
ν=1

�
φx+aν̂ − φx

a

φ∗
x+aν̂ − φ∗

x

a

�

+
φx+ad̂ − e−µaφx

a

φ∗
x+ad̂

− eµaφ∗
x

a
+m2|φx|2 + λ|φx|4

�
=

= ad−2
�
x


�
2d+ (am)2

� |φx|2 + a2λ|φx|4

−
2�

ν=1

�
eaµδν,2φ∗

x φx+ν̂ + e−aµδν,2φ∗
x φx−ν̂

��
,

(2.1.17)

where δν,2 denotes the Kronecker delta and we made use of the observation
that �

x

d�
ν=1

φx+aν̂ φ
∗
x+aν̂ =

�
x

d�
ν=1

φx φ
∗
x = d

�
x

|φx|2. (2.1.18)

Dimensionless physical parameters are introduced by

m′ = am,

η = 2d+m′ 2,
µ′ = aµ,

λ′ = a2λ. (2.1.19)

We restrict our interest to a 1+1 dimensional system with extension L in the
space direction and the inverse of the temperature 1/T in the imaginary time
coordinate. The lattice is equipped with periodic boundary conditions and
we set a = 1. These assumptions lead to the simplification of Eq. (2.1.17)
given below:

Slat =
�
x



η|φx|2 + λ|φx|4 −

2�
ν=1

�
eµδν,2φ∗

x φx+ν̂ + e−µδν,2φ∗
x φx−ν̂

��
.

(2.1.20)
The statistical-mechanical interpretation of the path integral allows to

write the partition function

Z =

�
Dφ e−Slat (2.1.21)

and treat the term e−Slat as a probability distribution, which enables Monte
Carlo sampling. This is possible only if the action Slat is real, which is due to
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the fact that complex weights cannot be interpreted in a probabilistic man-
ner, ruling out Monte Carlo simulations as a tool to study the physics of the
system. One often refers to systems exhibiting this type of behavior as suf-
fering a sign problem. As apparent in (2.1.20), non-zero chemical potentials
give rise to complex terms. Many approaches have been tried in order to
get rid of the sign problem or at least alleviate it [10,11], recently involving
also machine learning techniques [32–35]. For the theory under examination,
it can be completely removed by means of a duality transformation, that
replaces the complex field φ with two integer fields kx,ν and lx,ν , with one
component per each direction ν = 1, 2 and the index x ∈ {1, 2, . . . , N} is a
label for the lattice site. This dual formulation is also called flux represen-
tation and the details of the derivation can be found in [96]. The partition
function obtained with these new fields is

Z =
�
{k,l}

��
x,ν

1

(|kx,ν |+ lx,ν)!lx,ν !

���
x

eµkx,2W (fx)

�

×
��

x

δ

��
ν

(kx,ν − kx−ν̂,ν)

��
, (2.1.22)

where the summation is intended to run over all possible values of kx,ν and
lx,ν at all lattice sites:

�
{k,l}

=
�
x,ν

∞�
kx,ν=−∞

∞�
lx,ν=0

=

∞�
k1,1=−∞

∞�
l1,1=0

∞�
k1,2=−∞

∞�
l1,2=0

· · ·
∞�

kN,2=−∞

∞�
lN,2=0

. (2.1.23)

As can be seen in the sum, the field k takes values in Z, while l is a non-
negative integer. The third term in Eq. (2.1.22) imposes that the flux con-
servation �

ν

(kx,ν − kx−ν̂,ν) = 0 (2.1.24)

has to be respected, otherwise the Kronecker delta yields zero, meaning
that configurations of k and l fields for which Eq. (2.1.24) is not satisfied
do not contribute to the partition function and can therefore be considered
unphysical. The function W (fx) has the expression

W (fx) =

� ∞

0
dt tfx+1e−ηt2−λt4 , (2.1.25)

and its non-negative integer-valued argument is given by

fx =
�
ν

[|kx,ν |+ |kx−ν̂,ν |+ 2(lx,ν + lx−ν̂,ν)]. (2.1.26)
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This quantity has the following useful properties:

∂W

∂η
= −W (fx + 2), (2.1.27)

∂W

∂λ
= −W (fx + 4). (2.1.28)

As in statistical mechanics, taking derivatives of the partition function
with respect to physical parameters gives us observables that can be com-
puted. For the system under examination, by making use of Eqs. (2.1.27)
and (2.1.28) it is possible to compute their ensemble averages with

⟨n⟩ = T

V

∂ lnZ

∂µ
=

1

NxNt

��
x

kx,2

�
, (2.1.29)

⟨|φ|2⟩ = −T

V

∂ lnZ

∂η
=

1

NxNt

��
x

W (fx + 2)

W (fx)

�
, (2.1.30)

⟨|φ|4⟩ = −T

V

∂ lnZ

∂λ
=

1

NxNt

��
x

W (fx + 4)

W (fx)

�
, (2.1.31)

where Nx is the number of lattice sites in the space dimension and Nt refers
to the extension in time. In the upcoming studies, the first two quantities
will be used, namely the particle number density n and the squared absolute
value of the field |φ|2.

For our purpose, it is crucial to notice that the observables in Eqs. (2.1.29),
(2.1.30) and (2.1.31) are invariant under spacetime translations, thus the
dual formulation inherits the same symmetry that was present at the level
of the action in (2.1.2). The global U(1) symmetry mentioned before is in-
stead reflected in the flux conservation (2.1.24). Here, our focus of interest
is translational invariance and in the next section we are going to explain
how it is implemented into neural networks.

2.2 Symmetry properties of neural network layers

The physical system discussed so far is an ideal situation where neural
networks can be applied. We can associate with a certain configuration
{kx,µ, lx,µ} the values of n and |φ|2 as given by Eqs. (2.1.29) and (2.1.30),
which resembles a typical regression task in image processing, such as age
prediction from two-dimensional pictures of faces [97]. There are two main
differences worth to be noted, though: first, an image is characterized by
one real value per pixel in the grayscale case or three in an RGB image,
while here the lattice is defined by four integer values per site; second, the
configurations that will be used are equipped with periodic boundary con-
ditions, a property that pictures normally do not possess and is necessary
for the system to by translationally invariant.
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Neural networks are an excellent tool to approximate any functions, and
the universal approximation theorem [23,24] supports this with a solid math-
ematical foundation. Given the ability of these networks to learn relevant
features, it may be expected that also symmetries can be identified as an im-
portant aspect of a problem, but in general they cannot be learned exactly,
only approximately. The core of this work is the following: if a network
respects a certain symmetry by construction, it is expected to perform bet-
ter than a network that has a similar structure but internally breaks the
symmetry. We want to verify this statement focusing first on the aforemen-
tioned translational symmetry of the complex scalar field presented so far,
and extend the discussion to gauge symmetry in the next chapter. The type
of network that will be used here is a CNN. Requiring that such networks
respect translational symmetry, formally corresponds to impose that their
output is invariant under translations. This translates into a more general
concept when discussing individual layers, and as a matter of fact the suf-
ficient condition for a network to be invariant under translations is that its
layers are equivariant under translations, which gives the network a higher
degree of expressivity. Equivariance of a layer Φ can be defined generally
for any symmetry group G as

Φ(Lg x) = L ′
g Φ(x), (2.2.1)

where Lg is a group transformation and g is a group element. For situations
in which Lg = L′

g, equivariance corresponds to the commutative property of
the layer with a group transformation. Moreover, invariance is the special
case for which L′

g = 1.

A network that respects invariance under a global symmetry group is
called Group Convolutional Neural Network (G-CNN), as defined in [60] and
on which the following discussion is based. If the group G is the translation
group T, the G-CNN structure coincides with one of a conventional CNN.

We will now analyze individual layers and their symmetry properties one
by one.

2.2.1 Convolutional layers

The definition of a convolution on a two-dimensional lattice is given by [60]

[f ⋆ ψ](x) =
�
y∈Z2

f(y)ψ(y − x) =
�
y∈Z2

f(x+ y)ψ(y), (2.2.2)

where the feature map f and the kernel (or filter) ψ are real-valued functions:

f : Z2 → R, (2.2.3)

ψ : Z2 → R. (2.2.4)
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The definition (2.2.2) is typically used in the machine learning community,
and may differ in other fields, e.g. in mathematics, where the argument of ψ
has the opposite sign. Since the kernel’s weights are optimized independently
of the orientation of the kernel, the two definitions are equivalent from the
point of view of the learning process. We also note that in Eq. (2.2.2) a
bias term b can be added, but it does not affect the discussion about layer
symmetry.

Usually, the kernel is localized, therefore there is only a small subset
of Z2 that is non-zero, but for simplicity we keep the sum running over
the whole Z2 space. The domain of the feature map f is a finite subset
F ⊂ Z2 equipped with periodic boundary conditions. We avoid writing them
explicitly by assuming that the feature map repeats periodically outside F .
A convenient way of realizing such boundary conditions is by customizing
an appropriate padding. In PyTorch [98], it is already implemented and is
called circular padding. It is worth noticing that periodicity guarantees that
the output of the convolution Eq. (2.2.2) has the same size as the feature
map f .

We define a translation of the feature map as

[Ltf ](x) = f(x− t), (2.2.5)

where t is an element of the translation group T, which can be identified
with an element of Z2. Equivariance under translations can be proved for
the convolution with the following sequence of equalities:

[Ltf ⋆ ψ](x) =
�
y∈Z2

f(y − t)ψ(y − x)

=
�
y′∈Z2

f(y′)ψ(y′ − (x− t))

= [f ⋆ ψ](x− t)

= [Lt[f ⋆ ψ]](x). (2.2.6)

What has been implied in the definition in Eq. (2.2.2) is that the con-
volution has a stride s of one. The stride of a convolution is the distance
between the points where the kernel is applied.

More generally,

[f ⋆ ψ]s(x) =
�
y∈Z2

f(y)ψ(y − sx) (2.2.7)

can be used as a definition for convolutions with any stride s ≥ 1, which
coincides with the previous one in Eq. (2.2.2) if s = 1. In the case s ≥ 2,
we will call the convolutions strided, and we highlight two relevant features:
the size of the convolution output is smaller than the feature map, and
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translational equivariance is broken in general. The latter can be shown by
considering a translation t ∈ T with its components t1 and t2 satisfying both
|t1| < s and |t2| < s. For instance, if we choose t = (1, 0), its action on the
feature map results in

[Ltf ⋆ ψ]s(x) =
�
y∈Z2

f(y − t)ψ(y − sx)

=
�
y′∈Z2

f(y′)ψ(y′ − sx+ t)

=
�
y′∈Z2

f(y′)ψ(y′ − s(x− t/s)). (2.2.8)

If equivariance was respected, it would be possible to rewrite the formula
above in terms of a shifted position x′ = x− t/s ∈ Z2, but this is impossible
since t/s /∈ Z2. However, strided convolutions are equivariant if we restrict
ourselves to the subgroup Ts ⊂ T, whose elements are translations which
are multiples of s. In such a situation, t1/s ∈ Z and t2/s ∈ Z, and we can
write the following:

[Ltf ⋆ ψ]s(x) =
�
y∈Z2

f(y − t)ψ(y − sx)

=
�
y′∈Z2

f(y′)ψ(y′ − s(x− t/s))

=
�
y′∈Z2

f(y′)ψ(y′ − sx′)

= [Lt′ [f ⋆ ψ]s](x), (2.2.9)

with t′ = t/s ∈ T. To summarize, a convolutional layer with a given stride is
equivariant only under translations which are multiples of that stride. It is
possible to achieve equivariance under any translation only in the case s = 1.
The generalization to more than one feature map, which corresponds to
having multiple channels, can be accommodated easily. It is worth noting
that a strided convolution is equivalent to a convolution with s = 1 followed
by a subsampling step, meaning that the input size gets reduced.

2.2.2 Spatial pooling layers

Typically, spatial pooling layers are employed as subsamplers, since the most
common choice is a stride s ≥ 2. Here, however, we will break down spatial
pooling into two distinct steps: a pooling step and a subsampling step. For
the former, we can start considering average pooling. It can be viewed as
a special case of convolution for which the weights of the kernel ψ are all
set to the same value, i.e. the reciprocal of the number of points in the
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kernel, 1/Nψ. This does not affect the equivariance property of the layer,
which is instead broken by the subsequent subsampling, except for the subset
of translations multiple of the stride, as described previously.

This does not only apply to average pooling, but remains true for any
kind of spatial pooling P , as can be shown by examining its action on the
feature map f :

Pf(x) = P
y∈Ux

f(y), (2.2.10)

where Ux are subsets of the feature map domain F and the index x denotes
how the kernel moves through the feature map. If we now apply a translation
to the feature map, then

PLtf(x) = P
y∈Ux

f(y − t)

= P
y′∈Ux−t

f(y′)

= LtPf(x), (2.2.11)

which proves that equivariance as defined in Eq. (2.2.1) is preserved. There-
fore, as it was for convolutions, also for spatial pooling layers we pinpointed
that the symmetry-breaking aspect is the stride, not the layer structure
itself.

It is important to emphasize that spatial pooling layers with s = 1 do
respect translational equivariance and can be included in an architecture
if one wishes this property to be incorporated, even though they do not
perform subsampling as typically expected.

Flattening and global pooling

A widely spread practice in visual computing is to flatten the output of the
convolutional part of the network and process it further with a fully con-
nected linear part. A translation of the input is reflected into a permutation
at the level of the flattening layer output, while the weights in the dense lay-
ers do not change their position, hence leading in general to a different final
output and breaking translational symmetry. This can be avoided by means
of a global pooling layer between the last layer in the convolutional part
and the first linear layer, an example of which is the GAP, first introduced
in [51]. There, a feature map was created for each class, and the average of
each feature map was directly fed into a softmax layer. While this method
effectively preserves translational symmetry, a more general approach is the
insertion of dense layers between global pooling and the softmax operation
in order to provide the network with a higher level of expressivity.
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Input

Convolutions/pooling

(stride = 1) ✓

Global

pooling ✓

Dense

network

Output

(a) Equivariant architecture (EQ)

Input
Convolutions/pooling

(stride > 1) ✗

Global

pooling ✓

Dense

network

Output

(b) Strided architecture (ST)

Input
Convolutions/pooling

(stride > 1) ✗

Flattening ✗

Dense

network

Output

(c) Flattening architecture (FL)

Figure 2.1: The three different architecture types chosen for the compari-
son. Operations preserving translational symmetry are indicated by a check
mark (✓), while those violating it are marked with a cross (✗). A convolu-
tional or pooling layer with a stride greater than one or a flattening layer
are responsible for breaking the symmetry. A global pooling layer allows for
the application of the same network to different lattice sizes. The number of
channels in each layer (not shown) does not impact the translational sym-
metry properties. Image from [1].

2.3 Architecture types

In order to study how significant symmetry is for the performance of neural
networks, we make a comparison between architectures which respect it
and others which break it. Here, we consider three types of architectures.
The first one is translationally equivariant, and will be labeled as EQ. The
other two do not preserve translational symmetry: a strided architecture,
indicated by ST, contains spatial pooling layers with a stride larger than
one, and the FL architecture, which uses a flattening step and spatial pooling
layers with stride larger than one. After the global pooling or flattening step,
it is possible to append a dense network without affecting the symmetry
properties of the architecture. The three CNN types are shown in Fig. 2.1.

The FL type is vastly employed on image data, but is affected by a
drawback which in lattice field theory contexts is highly relevant: this kind
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of architecture is limited to the size of the configurations used for training,
while the EQ and ST types can be applied to different sizes.

Lattice studies are typically conducted as approximations of field the-
ories, where spacetime is continuous and infinite. It is important to find
a balance between lattice size and computation time. This is because on
one side lattice calculations need to yield results as close as possible to the
physical case, while on the other larger lattices require longer simulations.
For this reason, an advantageous strategy is to train on rather small con-
figurations first and then use the optimized model on larger configurations,
since training is the more time-consuming part. If the application on differ-
ent lattice sizes is not possible, transfer learning [99] can be of assistance,
though at the cost of additional training, as is the case for FL architectures.

Let us now examine the architectures in more detail. Input configura-
tions are fed to a convolutional layer, whose stride is one for all architecture
types. The kernel size can be odd or even, and the use of circular padding
ensures that the output maintains the same size as the input and that trans-
lational equivariance is respected also at the boundaries. Next, an activation
function such as ReLU is used to introduce non-linearity. This does not un-
dermine equivariance, since activation functions act pointwise. This pair
of layers constitutes the main core of a CNN and is consecutively repeated
multiple times, meaning that the network becomes deeper and thus becomes
more expressive. Non-equivariant architectures also feature the presence of
a spatial pooling layer with stride larger than one between at least one of
the activation function layers and the following convolution. In the EQ and
the ST types, the convolutional part is concluded by a global pooling, while
FL architectures end in a flattening layer. Global pooling removes position
dependence, so any translational symmetry still existent is inherited by the
output, while this is not the case for flattening. Afterwards, an MLP can
be used to process the result even further before leading to the output.

There are a few more comments to be made about the architectures. It
is possible to include longer-range correlations by the introduction of dilated
convolutions [100]. If their stride is one, equivariance is preserved, as can
be shown considering that dilated convolutions are equivalent to standard
convolutions with a larger kernel in which some of the weights are set to
zero.

As mentioned previously, spatial pooling layers with a stride of one do not
break translational symmetry, but do not perform any subsampling either.
If one is interested in subsampling respecting symmetries, coset pooling [61]
meets the requirements. The problems we are tackling in this chapter only
involve local quantities, while coset pooling is a non-local operation, hence
it is not expected to be an effective choice here.

In the tasks that the CNNs will be given, different types of observables
have to be predicted. Depending on whether such observables are extensive
or intensive, there can be a fitting choice of global pooling that allows the
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network to generalize better across different lattice sizes. In a 2D prob-
lem, extensive variables scale with the area, whereas intensive ones remain
constant under area changes. This means that in a regression task on an
extensive quantity, a global sum pooling is the most suitable option, while
a global average pooling factors out the area dependence, which is ideal for
an intensive observable. Classification tasks are connected to the prediction
of decision boundaries between different categories, therefore the previous
discussion is not applicable and in general it is not trivial to identify a priori
an optimal global pooling layer.

A strategy that has been used in visual computing to overcome the lim-
itations of a network that breaks a certain symmetry is data augmentation.
There, a specific input is passed to the network multiple times after having
undergone different group transformations. This is intended to teach the
network the invariance under such transformations, effectively learning the
underlying symmetry present in the data. We will test this approach for ST
and FL architectures in the upcoming task. It has to be stressed though
that this does not lead to an exactly invariant neural network, and also that
it is not guaranteed to approximate the symmetry well enough on the test
set.

2.4 Task I: predicting physical observables

This section deals with a regression task that has already been anticipated
and revisits the study performed in [26]. From the ensemble averages in
Eqs. (2.1.29) and (2.1.30), we can associate each configuration {kx,µ, lx,µ}
with two values

n =
1

NxNt

�
x

kx,2 , (2.4.1)

|φ|2 = 1

NxNt

�
x

W (fx + 2)

W (fx)
. (2.4.2)

A configuration represents the input of the neural network whereas the out-
put are two real numbers which approximate the true labels n and |φ|2.
While n only depends linearly on one component of the fields and is therefore
expected to be easy to learn, |φ|2 depends on a ratio of the highly non-linear
function W (fx), given in Eq. (2.1.25), which depends on the fields through
fx in Eq. (2.1.26).

2.4.1 Physical parameters and lattice sizes

The physics of the system is governed by three parameters, namely λ, η and
µ. In the experiments run for this task, we will use specific values of these
parameters: the coupling constant and the mass are kept fixed at values λ =
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1 and η = 4+m2 = 4.01, while the chemical potential µ ranges in the interval
[0.91, 1.05] with steps of Δµ = 0.005 and in the interval [1.1, 1.5] with values
separated by Δµ = 0.1. The combination of physical parameters with µ ∈
{0.91, . . . , 1.5} is analogous to the one employed in [26] to create the dataset.
There, the authors trained neural networks on configurations generated with
the endpoints of such a range of the chemical potential, i.e. µ = {0.91, 1.05},
while the whole interval was utilized for the test set. This is a standard
approach in phase classification tasks, as pioneered in [25], and shows the
ability of the network to extract information from configurations pertaining
to values of the physical parameters not used during training. We argue
though that for this system it is sufficient to train on configurations produced
at only one of the two chemical potentials, specifically µ = 1.05, in order to
endow the networks with good generalization properties. Moreover, we want
to check if these properties hold not only for lower µ, but also as the chemical
potential is increased, which is the reason for creating the additional dataset
with µ ∈ {1.1, . . . , 1.5}.

There is another parameter that needs to be chosen, namely the lattice
size. In [26], it remained fixed to 200× 10 throughout the study, which was
convenient since an architecture of type FL was employed, while here it is
possible to create differently sized configurations, train on a given lattice
size, and, in the case of EQ and ST architectures, test the generalization
capabilities to different lattice sizes without retraining. The lattice sizes we
use are the following: 50×2, 60×4, 100×5, 125×8 and 200×10, where the
first number refers to the time extension Nt = 1/T and the second one to the
spatial one, Nx = L. A different Nt corresponds to a different temperature
T , which influences the properties of the phase transition.

2.4.2 Data generation and worm algorithm

The flux representation described in section 2.1 is characterized by the inte-
ger field k and the non-negative integer field l constrained by Eq. (2.1.24).
Notice how this conservation law only involves the link variable k. The
method we intend to use to generate configurations is a standard Monte
Carlo algorithm, which is suitable for l. In fact, we can propose a Metropo-
lis step

lx,ν → lx,ν ± 1 (2.4.3)

for each site and direction independently and compute its Metropolis ac-
ceptance probability as a ratio of Boltzmann weights of the action (2.1.20).
On the other hand, applying the same approach to k would disrupt the flux
conservation (2.1.24), which would not be easy to restore afterwards. This is
where an algorithm originally proposed by Prokof’ev and Svistunov in [101]
comes into play. It performs a sequence of local Metropolis update steps
each at an adjacent position with respect to the previous site. Concretely,
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a random site x and a direction ν ∈ {±1,±2} are selected at the beginning,
and the update

kx,ν → kx,ν + sign(ν)ξ (2.4.4)

is proposed, with ξ = ±1. Acceptance probabilities are calculated like in
standard Monte Carlo as ratios of Boltzmann weights of the dual action,
and if the step is accepted the proposal (2.4.4) is made at x′ = x+ν keeping
the same ξ, but randomly choosing a new ν. This is repeated until x′ rejoins
the initial site x. What we have described follows the prescriptions given
in [96]. The resemblance to the movement of a worm led to this algorithm
being known as worm algorithm and the paths formed by it as worms, where
x′ represents the head and x the tail. When the head meets the tail, the
worm is said to be closed, otherwise, it is called open. For an open worm,
the flux conservation is locally violated at its endpoints, while it is restored
at all sites once the worm closes. In order to provide a clear understanding
of the worm algorithm mechanism, a possible worm journey is portrayed in
Fig. 2.2.

The two algorithms for updating l and k are run alternately starting
from a configuration where every field value is set to zero at each lattice
point. Initially, the system experiences a thermalization phase that we are
not interested in. Configurations and their labels at equilibrium form the
dataset, with the caveat that autocorrelated data have to be avoided as much
as possible, in particular because networks can learn autocorrelation instead
of physical information. For this reason, we keep autocorrelation below a
certain threshold by performing a sufficient number of sweeps between each
data saving.

2.4.3 Dataset

The whole training set comprises a total of Ntrain = 20 000 samples, and the
entire validation set consists of Nval = 2000 data points, both generated at
µ = 1.05 with a lattice size of 60×4. The test set contains 4 000 samples for
every µ and lattice size that have been mentioned in 2.4.1, amounting to a
total of 6.8× 105 samples. We will refer to the test set pertaining to chemical
potentials µ ∈ {0.91, . . . , 1.05} as test set A, while test set B encompasses
the values µ ∈ {1.1, . . . , 1.5}. This distinction is introduced because test set
A can be used to make a direct comparison with [26], since the chemical
potentials used are the same, while test set B informs about the general-
ization capabilities of the networks to µ higher than the one used during
training. Thermalization effects are eliminated by discarding data gener-
ated in the first 1 000 sweeps, after which configurations and corresponding
observables are saved every five sweeps. For a few combinations of chemical
potential and lattice size, a high autocorrelation is observed. In these cases,
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(a) We start from a physically allowed
open path configuration, i.e. the flux is
conserved at every site. All links are
intended to be pointing in the positive
directions of space (horizontal axis) and
time (vertical axis). The head and tail
of the worm are randomly selected.

(b) The movement of the head of the
worm upwards with the sign ξ = +1 is
proposed and accepted, like all the next
shifts. Links that have been just modi-
fied are highlighted with a greater thick-
ness.

(c) The head is shifted to the left, there-
fore sign(ν) = −1 and the link is decreased
according to Eq. (2.4.4). It is important to
stress that the value of ξ remains equal un-
til the worm is closed.

(d) This upward movement illustrates the
worm algorithm mechanism on a lattice
equipped with periodic boundary condi-
tions.
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(e) The head is pushed back to the pre-
vious site, effectively undoing the pre-
vious movement. This highlights that
the direction ν is always chosen ran-
domly, hence these back-and-forth steps
are possible.

(f) Another downward movement is de-
picted, with the link value decreased
by 1.

(g) The head shifts to the right rejoining
the tail. The worm is closed, and, before
starting a new one from a randomly cho-
sen lattice site, a standard Monte Carlo
update of the field lx,ν is executed.

���ν = +�
���ν = +�
���ν = �
���ν = -�
���ν = -�
����

�	�


(h) Legend of the previous pictures,
clarifying the worm movements and the
link values kx,ν .

Figure 2.2: The pictures above illustrate six possible consecutive movements
of the worm in a two-dimensional lattice with size Nt = Nx = 4.
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the number of sweeps is increased to 50, such that autocorrelation becomes
negligible.

We now take a closer look at the distributions of kx,2 and fx. These
two quantities are crucial for the computation of the observables n and
|φ|2 respectively, hence checking their distributions can provide a better
understanding of the dataset properties and can also shed more light on the
possible reasons behind the success or failure of a model. Let us remind
again that kx,2 is an integer number, while fx can be either 0 or a positive
even number, as can be checked by making use of its definition (2.1.26) and
the flux conservation (2.1.24). In the rest of the section, we drop the lattice
index x and adjust the notation as follows: kx,1 → kx, kx,2 → kt, fx → f .

In Fig. 2.3, we report the distribution of kt for the training and testing
phase. Specifically, the upper histogram displays the distribution of the
training set, while the second and the third show the distributions of test
sets A and B, respectively. The range of kt in the training set and test set
A is almost identical, meaning that values used for testing have also been
encountered by the networks during training, but the distributions are fairly
dissimilar, which makes this task non-trivial. For what concerns test set B,
the domain includes higher values, making this test in fact an analysis on
the ability of the networks to extrapolate to entirely unseen data. Similar
considerations can be made also for f , whose distributions are shown in
Fig.2.4.

2.4.4 Architecture search

In machine learning applications to physics, it is advisable to exploit any
available knowledge about the system under examination to build a net-
work, as learning can be facilitated and performance enhanced. Here, if we
assume no prior knowledge of the exact expressions for n and |φ|2, two key
considerations can guide us in designing an appropriate architecture to deal
with the present task.

The first one deals with the fact that the partition function in Eq. (2.1.22)
contains products over all spacetime points, and observables are calculated
as derivatives of lnZ, which means that a general expression for observables
involves sums over lattice sites. If the observable does not scale with the
volume, therefore its definition contains a factor 1/(NxNt) on a 1+1D lattice,
it is intensive and global average pooling is the appropriate layer, while if the
observable does scale with the volume, it is extensive and global sum pooling
is the suitable operation. Given Eqs. (2.1.29) and (2.1.30), the observables
studied in this task are intensive, therefore we use a GAP. The dense part
after this layer does not affect the intensive nature of the prediction.

The second point is about the translational symmetry of the action,
which implies invariance under translations of the observables, as already
discussed in section 2.1. This dictates some restrictions in the architecture



2.4. TASK I: PREDICTING PHYSICAL OBSERVABLES 23

0

0.2

0.4

N
/N

to
t

60 × 4

0

0.2

0.4

0.6

0.8

N
/N

to
t

50 × 2

60 × 4

100 × 5

125 × 8

200 × 10

−2−1 0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

kt

N
/N

to
t

50 × 2

60 × 4

100 × 5

125 × 8

200 × 10

Figure 2.3: Distributions of the field component kt. These histograms illus-
trate the distributions of kt in the training set (top), test set A (middle) and
test set B (bottom). The test sets noticeably maintain a consistent distribu-
tion across the different lattice sizes. The training set and test set A feature
mostly the same values of kt, although with largely different distributions.
Test set B is characterized by a less peaked distribution, where higher values
of kt are reached. Densities below 10−4 are not shown. Image from [1].
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Figure 2.4: Distributions of f and ratio of W (f). The histograms depict
the distributions of f in the training set (top histogram), test set A (middle
histogram), and test set B (bottom histogram). Similar remarks can be made
for the distribution of f in Fig. 2.3. The last plot shows W (f + 2)/W (f)
with η = 4.01 and λ = 1. The markers highlight even integer values of f ,
which directly enter the calculation of |φ|2. Weights lower than 10−4 are not
shown. Image from [1].
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Table 2.1: Search spaces for EQ architectures. This table lists the possible
number of convolutional (conv, s = 1) and linear layers (lin), kernel sizes,
the number of channels of the convolutional layers and the number of units
in the linear layers. The insertion of spatial pooling layers with s = 1 has
been avoided in these search spaces as it appears to degrade predictions.
Table from [1]

conv lin kernel size channels/nodes
run 1 [2, 3] [0, 1] {(1×1), (2×2)} {4, 8, 16, 24, 32, 48, 64, 80}
run 2 [2, 4] 1 {(1×1), (2×2)} {4, 8, 16, 24, 32, 48, 64, 80}
extended
search

[2, 4] [0, 3] {(1×1), (2×2)} {4, 8, 16, 24, 32, 48, 64, 80}

that lead to a preference of the EQ type. Whether such a preference is justi-
fied, is the subject of this chapter and will be empirically evaluated by testing
the performance of the three architecture types presented in section 2.3.

A comparison can be made, for example, by searching for a very good EQ
model, then add at least one spatial pooling layer to form its ST counterpart,
and finally replace the global pooling layer with a flattening step to obtain
the corresponding FL model. However, it is not guaranteed that the non-
equivariant counterparts realized with this approach are representative of
well-performing models of the same type, and the analysis could be biased
towards equivariant models. In order to carry out a more meaningful and fair
study, we define a set of possible hyperparameters and use an optimization
strategy to identify the most promising models. The search space for each
type can be found in table 2.1 for EQ architectures, table 2.2 for ST and
table 2.3 for FL. In a preliminary phase, hyperparameters are tried out
manually, which served to establish the search space in the first run. Its
results are used to partially reduce the search space in the second run.
In both these searches, 50 different combinations of hyperparameters are
selected and the models are trained on each of the training sets that will be
specified in section 2.4.5. The extended search is intended to explore a larger
hyperparameter space with 100 trials, also here with unique combinations of
hyperparameters, to check if a better architecture was overlooked because
of a too restricted search space. This search is exclusive to the largest
training set. Not shown in the tables is the fact that an activation function
is employed after every convolution and after every linear layer, except right
before the prediction is made. In the first run, different activation functions
are tested:ReLU, tanh, PReLU and LeakyReLU [17]. Due to the better
performances obtained, the latter is the only one employed in the second
run and in the extended search. An advantage of LeakyReLU over ReLU
lies in the prevention of the well-known problem of dead neurons, which are
not active after initialization or become inactive during training.

The difference between ST architectures and EQ is the presence of spatial
pooling layers with s = 2 in the convolutional part. The kernel of these layers
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Table 2.2: Search spaces for ST architectures. Here are presented the pos-
sible number of convolutional (s = 1) and linear layers (abbreviated as in
table 2.1), kernel sizes, the number of channels for the convolutional layers,
the number of neurons in the dense part, the number of spatial pooling lay-
ers (SPL, s = 2) and the spatial pooling mode (SPM). Table from [1]

conv lin kernel size channels/nodes SPL SPM
run 1 [2, 4] [0, 3] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} {1, 2} {avg,max}
run 2 [2, 4] [0, 2] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} {1, 2} avg
extended
search

[2, 4] [0, 3] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} {1, 2} {avg,max}

Table 2.3: Search spaces for FL architectures. This table displays the pos-
sible number of convolutional (s = 1) and linear layers, kernel sizes, the
number of channels of the convolutional layers, the number of nodes in the
linear layers, the number of spatial pooling layers (s = 2) and the spatial
pooling mode. The amount of convolutions is not selected directly, but is
conditioned on how many 1 × 1 convolutional layers are chosen by optuna.
Two 2× 2 convolutions and their respective spatial pooling layer are always
present. It is possible to additionally insert 1 × 1 convolutions before each
2×2 convolutional layer or between each of them and the subsequent spatial
pooling. These restrictions in the position of each convolution are signaled
with an asterisk next to “kernel size”. Abbreviations are intended as in
table 2.2. Table from [1]

conv lin kernel size∗ channels/nodes SPL SPM
run 1 [2, 6] [1, 3] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} 2 {avg,max}
run 2 [2, 6] [1, 3] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} 2 avg
extended
search

[2, 6] [1, 3] {(1× 1), (2× 2)} {4, 8, 16, 24, 32, 48, 64, 80} 2 {avg,max}
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is fixed to 2×2, and each of them can be either a max pooling or an average
pooling. The number and the position of these layers is part of the search
space, but some limitations are applied. For instance, a spatial pooling
has to be inserted between an activation function and a convolutional layer,
meaning that it is not allowed to apply it directly to the input or immediately
before global pooling. Also, if the number of convolutions is two, i.e. the
minimum permitted in the search space, the only choice is to interpose one
spatial pooling layer between them.

We design FL architectures drawing inspiration from traditional CNNs
used for similar machine learning problems. The building block is formed by
a 2×2 convolution followed by a spatial pooling layer with a stride s = 2. The
architecture consists of two of these building blocks one after the other, with
the optional insertion of a 1×1 convolution before each 2×2 convolution and
between each of them and the following spatial pooling, with a maximum
of six convolutions in total. Activation functions are inserted after each
convolutional layer except before flattening.

For the hyperparameter optimization, we choose an automatized opti-
mizer called optuna [102]. The metric that has to be minimized is the
validation loss averaged over three different parameter initializations. This
averaging mitigates statistical fluctuations introduced by random parameter
initializations, which is crucial because optuna dynamically adjusts its search
space, with early results influencing the probability distributions guiding
later hyperparameter value selections. This whole procedure is repeated
separately for every training set, since for small training set sizes simpler
models may perform better, while more complicated ones are likely to be
favored for larger sizes.

Once the optuna runs are completed, the architectures scoring the lowest
average validation loss are selected and ten new instances for each of them
are trained from scratch, with the scope of further reducing the influence
of random initializations. The best-performing architectures are reported
for each type in table 2.4. These architectures can be considered as repre-
sentatives of their type, because many of the architectures that have been
retrained exhibit similar performance, which is the case independently of
the training set size. The notation Conv(K ×K, Nin, Nout) refers to a two-
dimensional convolution with equal kernel size K for both directions, Nin

input channels and Nout output channels. Circular padding is applied be-
fore every convolutional operation to ensure periodic boundary conditions,
and a stride of one is chosen for each convolution. Average pooling layers
with kernel size K and stride s are denoted as AvgPool(K ×K, s), and
dense layers are written as Linear(Nin, Nout) with Nin input nodes and Nout

output nodes.
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Table 2.4: Best architectures for the prediction of n and |φ|2 for each archi-
tecture type. This table presents the most promising architectures obtained
with the optuna searches. The network inputs consist of field configurations
kt,x, lt,x provided in the form of tensors with dimensions (Nt, Nx, 4). The
output is formed by two nodes which approximate the observable values.
The last row specifies the amount of trainable parameters for each architec-
ture. Table from [1].

EQ ST FL
Conv(1× 1, 4, 64) Conv(1× 1, 4, 80) Conv(1× 1, 4, 64)
LeakyReLU LeakyReLU LeakyReLU
Conv(1× 1, 64, 48) Conv(1× 1, 80, 80) Conv(2× 2, 64, 80)
LeakyReLU LeakyReLU LeakyReLU
Conv(1× 1, 48, 80) Conv(1× 1, 80, 48) AvgPool(2× 2, 2)
LeakyReLU LeakyReLU Conv(1× 1, 80, 48)
Conv(2× 2, 80, 80) AvgPool(2× 2, 2) LeakyReLU
LeakyReLU Conv(2× 2, 48, 80) Conv(2× 2, 48, 64)
GlobalAvgPool LeakyReLU LeakyReLU
Linear(80, 2) GlobalAvgPool AvgPool(2× 2, 2)

Linear(80, 2) Conv(1× 1, 64, 24)
Flatten
Linear(360, 24)
LeakyReLU
Linear(24, 2)

33202 26370 47394

2.4.5 Training and testing

In subsection 2.4.3, the dataset has been introduced and its main charac-
teristics have been discussed. In this section, we give the details of how the
data are used during training and testing.

The training phase is repeated for each architecture in Table 2.4 with
different training set sizes. The mean squared error (MSE) is used as loss
function, averaging over the contribution of the two observables:

L =
1

2Ndata

Ndata�
i=1

�
(ni,true − ni,pred)

2 + (|φ|2i,true − |φ|2i,pred)2
�
. (2.4.5)

Optimization is performed using the AMSGrad [103] variant of the AdamW
optimizer [104] without weight decay. The reason for running the exper-
iment with different training sets is to acquire information about sample
efficiency. The utility of studying examples with fewer training samples
is connected to real situations where generating configurations is highly
time-consuming, e.g. in large-scale simulations. The training set size ranges
from 100 to 20 000, with larger step sizes for a larger number of samples, as
follows:

Ndata = {100, 150, 200, 250, 500, 750, 1 000, 1 500, 2 000, 2 500, 3 000, 4 000,
5 000, 6 000, 7 000, 8 000, 9 000, 10 000, 11 000, 12 000, 13 000, 14 000,

15 000, 16 000, 17 000, 18 000, 19 000, 20 000}. (2.4.6)
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Table 2.5: Loss, optimizer and early stopping settings for PyTorch. Table
from [1].
loss size avg reduce reduction
MSELoss None None ‘mean’
optimizer lr betas eps weight decay amsgrad
AdamW 0.001 (0.9, 0.999) 10−8 0 True

monitor min delta patience mode
EarlyStopping ‘val loss’ 0 25 ‘min’

The validation sets used in combination with each training set contain a
number of samples amounting to 1/10 of the training set size Eq. (2.4.6). In
order to avoid being too close to a batch training situation, the batch size is
set to 50 for training set sizes smaller than 500 and 100 for bigger ones. We
employ early stopping (see e.g. Section 7.8 of [105]) monitoring the valida-
tion loss with a patience of 25 to determine the number of epochs, which has
a minimum and maximum threshold of 100 and 1 000 respectively. Patience
refers to the number of epochs the training process is allowed to continue
without improvement in a chosen metric before stopping. The model pa-
rameters are checkpointed when the lowest validation loss is reached. An
overview of the settings used in this procedure is given in table 2.5.

Given the large number of maximum epochs and the early stopping cri-
terion based on validation loss, the models are essentially trained until con-
vergence to a very good minimum in the parameter space. As previously
mentioned, we train on 60× 4 configurations generated with a chemical po-
tential µ = 1.05. The impact of data augmentation in learning translational
symmetry and improving the performance is checked for both ST and FL ar-
chitectures. These are trained with and without data augmentation, which
is accomplished by random shifts of the input data that depend on the ar-
chitecture type. ST architectures include a maximum of two spatial pooling
layers with a 2× 2 kernel and a stride of 2, as reported in table 2.2. The
discussion in Subsec. 2.2 implies that ST architectures feature translational
equivariance under shifts that are multiples of 4, therefore data augmenta-
tion is achieved by means of shifts of [0, 3] in both dimensions. At the same
time, it brings to the conclusion that FL architectures do not incorporate
translational equivariance no matter what the applied shift to the input is,
meaning that the possible shifts are [0, 59] in the time direction and [0, 3] in
the space direction, where the limits come from the lattice extension.

Other than the distinction of test set A and test set B mentioned in
Sec. 2.4.3, the models are evaluated both on the whole test set and on the
subset that includes only 60× 4 configurations in the attempt to check the
generalization ability to other lattice sizes and chemical potential separately.
Because of the FL architectures being restricted to one lattice size, the
second test can only be performed for the EQ and ST types.
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Let us point out that the winning ST architecture can be applied to
the 50 × 2 lattice because it features only one spatial pooling layer with a
2× 2 kernel and a stride s = 2 (see table 2.4).

2.4.6 Results

In the following subsections, the details of various test results are discussed.
The architectures are initially evaluated on the subset of test set A con-
taining solely 60× 4 configurations, later inspecting the performance on all
lattice sizes. An analysis of the Silver Blaze phase transition is also carried
out for various lattice sizes. At last, we will evaluate the models on test set
B first on the 60× 4 lattice then on all lattice sizes, exactly like with test
set A, to study the extrapolation to chemical potential larger than the one
used while training.

Results on the same lattice size as training

The same loss used for training in Eq. (2.4.5) is employed as a metric for the
test set. Its values are plotted against the training set sizes listed in (2.4.6)
in Fig. 2.5. The different amount of training samples shows how the three
architecture types behave under limited information for smaller training set
sizes and the extent of the performance improvement as the information is
increased. The top plot indicates that the EQ models achieve a better test
loss when the size of the training set becomes larger, as one would expect.
On the other hand, the two non-equivariant architectures surprisingly do not
benefit from having access to a greater number of samples in the training set.
The center and bottom plots report on another noteworthy finding: data
augmentation does not help the non-equivariant architectures to improve
their results. If we only take into consideration the median of the test loss,
we may come to the conclusion that the ST and the FL architectures are not
able to reach a precision in the predictions as their equivariant counterpart.
A non-equivariant model that has already converged to a very good local
minimum in the loss function landscape is not going to benefit from the
addition of more training samples, regardless of whether they are generated
by Monte Carlo sampling or by data augmentation. The downward spikes
in the bands of the ST architecture, though, hint that it is possible for some
models to achieve a good approximation of the observables and even compete
with the EQ models. Therefore, we conclude that although possible, it is
less likely for the ST and FL models than for the EQ models to learn a
satisfactory approximation of n and |φ|2.

At this point, we select the best EQ model according to the test loss,
and evaluate it separately at all the chemical potentials present in test set
A. In Fig. 2.6, we plot the predictions of the observables averaged over the
configuration ensemble that pertains to each µ, together with the exact en-
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Figure 2.5: Test loss on the test set of all 60× 4 configurations as a function
of the samples used to train. The top plot displays the results of the three
architecture types trained without data augmentation. In the middle and
bottom plot, the impact of training with data augmentation is shown re-
spectively for ST and FL models. In each plot, the solid lines represent the
best and worst loss, the dashed lines denote the average over the ten models
that have been initialized independently, and the shaded regions indicate
the 20% quantiles. The symbols signal the median and are connected by
a continuous line to guide the eye. The conventions just discussed will be
used in similar plots later on. Image from [1].
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Figure 2.6: Predicted and true values for the ensemble averages ⟨n⟩ and�|φ|2� as functions of the chemical potential µ on a 60 × 4 lattice. The
predictions shown are generated by the EQ model which achieved the small-
est test loss. Notably, the model has been trained solely on configurations
generated at µ = 1.05 but exhibits remarkable generalization capabilities to
other values of µ. The training point is highlighted by a rectangle in this
and subsequent plots. Image from [1].

semble average. The figure illustrates that the network can generalize to all
the chemical potentials in the given range, despite being trained uniquely
on samples generated with µ = 1.05. This remarkable generalization ability
is explained by the fact that the model is not really generalizing from one
value of the chemical potential to all the others, but rather from the training
samples to other samples, each consisting of a configuration and the corre-
sponding value of the observables. The samples present in the training set
feature a range of values for n and |φ|2 which is sufficiently large to cover
most of the observable values in the test set. A similar observation has been
made about the input distributions in subsection 2.4.3, where kt and fx span
the same range in the training set and test set.

To illustrate this point, we employ ST models that have been trained
on 18 000 samples. In figure 2.7, the test results are reported in the form of
a scatter plot of true values versus the predicted ones of both observables,
which is done for the best and the worst performing (according to the test
loss) ST model respectively in the top and middle plot. The bottom plot
displays the performance of the worst ST model on the training data. In
these scatter plots the model’s predictions for each sample are drawn, not
just the average over the ensemble. Both networks can predict the larger
values of both observables, but the worst one largely mispredicts the smaller
values, because they are not present in the training set. Therefore, we can
conclude that the better ST models are able to generalize to configurations
and ranges of the two labels that were missing in the training phase, while
the worse ones do not possess this ability. The relatively large values of the
median in Fig. 2.5 suggest that the instances of the ST architecture have a
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Figure 2.7: True versus predicted observables for the best and the worst ST
network, both trained on 18 000 samples. The two top plots illustrate that
the best instance of the ST architecture accurately estimates the observable
values over the their whole range. Conversely, the middle plots demonstrate
that the worst instance fails to predict correctly the smaller values of n
and |φ|2. The noticeable discrepancy between ground truth and prediction
arises from the training set including only larger values of the observables,
as shown in the bottom plot, and the worst model struggling to generalize
beyond that range. The top and middle plots show 1% of the test data,
while the bottom plots display 4% of the training data. Image from [1].
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Figure 2.8: Overall test loss (top) and its contributions coming from each
observable (middle and bottom) on various lattice sizes. Training was exe-
cuted on 60× 4 configurations. On average, the EQ type consistently out-
performs the non-equivariant counterpart. The performance does not deteri-
orate when testing on lattice sizes that were not used for training for neither
of the two types, with the only exception of the ST architecture (depicted
in blue) when tested on the 100× 5 lattice. What spoils the generalization
capabilities of the models is the stride of the spatial pooling layer present in
the ST architecture, which allows the use of the first four rows but not of
the fifth one, consequently discarding 20% of the information which results
in a higher loss. Image from [1].

low probability of achieving good generalization. Concerning the FL models,
their behavior is similar to the ST models, but overall the predictions are
less accurate.

Results on different lattice sizes

Different lattice sizes are not suitable for the same FL architecture that was
used in the previous tests, therefore the comparison here is made between the
EQ and ST type. Since data augmentation does not change the performance
of the ST architecture significantly, the test is run only for models trained
without data augmentation. Additionally, we will set the training set size
to 20 000 training samples for this comparison.
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In Fig. 2.8 the total test loss in Eq. (2.4.5) is shown, while the losses
of each observable are portrayed in the middle and bottom plot. Despite
the ST architecture maintaining a worse performance for all lattice sizes
with respect to the EQ architecture, both types display a remarkable gen-
eralization ability. The only exception is found for the ST networks on the
100× 5 lattice, where a kink in the blue curve is present in the prediction of
both observables, an anomaly that does not manifest itself for EQ architec-
ture. This issue arises from the odd number in the lattice dimension, which
in combination with the ST architecture leads to an information loss. Let us
review the effect of the ST architecture in Table 2.4 on configurations with
such a lattice size: the first three convolutions do not affect the input size
because of the application of circular padding. Then, the 100× 5 feature
maps are passed to a spatial pooling layer with a 2 × 2 kernel and a stride
of 2. This layer operates on the first four rows and discards the last one,
effectively wasting 20% of the information, and outputs a feature map with
size 50× 2. For this reason, the ST networks cannot use all of the data to
make predictions, resulting in a less accurate test loss. An analogous ob-
servation can be made for the 125× 8 lattice, but in that case the missing
information only amounts to 1/125 of the total available, whose effect is not
visible in Fig. 2.8.

Silver Blaze phase transition

The Silver Blaze [106] phenomenon is a second-order phase transition oc-
curring at zero temperature T , for which thermodynamical quantities are
independent of the chemical potential µ below a critical value µc [96]. Specif-
ically, the observables ⟨n⟩ and ⟨|φ|2⟩ remain constant when µ < µc, and they
start increasing once the chemical potential goes above the µc threshold. The
particle density ⟨n⟩ serves as an order parameter for the Silver Blaze phase
transition. Due to the finite size of the lattices, the temperature cannot van-
ish completely, hence the transition is not guaranteed to be sharp. Given
that the networks are trained to approximate two observables that are rele-
vant to study this phenomenon, their predictions are expected to reproduce
the Silver Blaze phase transition.

In Figure 2.9 are illustrated the predictions of the EQ model that has
been trained on 20 000 training samples and has achieved the lowest val-
idation loss along with the true values. The symbols correspond to the
ensemble average of each observable for every chemical potential in test set
A on the 100× 5, 125× 8 and 200× 10 lattices respectively in the top, mid-
dle and bottom plot. On the larger lattices, the phase transition is visible,
while on the smaller ones no phase transition is detected within the range
of µ under examination. The reason for this is that the critical value µc

decreases with increasing temperature.

The phase transition is accurately predicted also by the ST models that
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Figure 2.9: Predicted and true ensemble averages of the physical observables
at each µ on the larger lattices. The EQ model trained on 20 000 samples
with the best performance on the test set has been selected to provide the
predictions shown in the plot. Training was executed only at µ = 1.05.
Notably, the kinks in the curves offer an estimate of the Silver Blaze phase
transition, highlighted by the color gradient from the shaded region to the
white background. The kinks become more evident as the lattice size in-
creases. Image from [1].
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are able to generalize to smaller values of the observables, such as the one
that was used in Fig. 2.7, but this is not the case for all the ST models.

Extrapolation to larger chemical potentials

The results obtained by the EQ architecture and some ST models on test
set A have demonstrated their ability to generalize to different chemical
potentials and lattice sizes. As we have argued, in such a test set the fields
and the observables span values that are also found in the training set,
which allows some networks to generalize well. We are now interested in
investigating the behavior of the models when we increase the value of the
chemical potential, reaching field and observable values that were not present
while training. Test set B, as described in subsection 2.4.3, serves this scope,
therefore we evaluate the models on it without retraining.

Figure 2.10 shows scatter plots of the true values against the predicted
ones for both observables on the 60× 4 lattice. Each row displays the out-
come respectively for the best EQ, ST and FL type, according to the val-
idation loss. All three architectures struggle with the prediction of higher
values of |φ|2 more than with the prediction of higher n. This can be un-
derstood considering the simple linear dependence on kt in Eq. (2.4.1) and
the non-linear dependence on all fields in Eq. (2.4.2), as pointed out at the
beginning of this section. However, the predictions made by the best EQ
model exhibit a closer alignment with the optimal results represented by the
identity line compared to the predictions generated by the non-equivariant
counterparts, of which the FL architecture displays a more pronounced de-
viation from the ground truth. This leads to a noticeable discrepancy in
the ensemble averages of the observables only for µ = 1.5, and this trend
is also consistent across all considered lattice sizes for EQ and ST archi-
tectures. The selection criterion for the best architecture is based on the
validation loss and should not involve test results, but we point out that
there exist some models for each architecture that extrapolated better than
the respective ones used in Fig. 2.10.

In Fig. 2.11 the total and individual test losses on 60× 4 configurations
are plotted against the chemical potential. As expected, the predictions
become worse for all the architectures as µ increases, but while for µ <
µc the difference between equivariant and non-equivariant architectures is
considerable, for µ > µc the loss grows more similarly for the three types,
although maintaining the same ranking, with EQ models achieving the best
results, followed by ST and then FL networks. For instance, at µ = 1.5 the
mean and median losses scored by the EQ architecture are lower than those
of the non-equivariant ones, but the lowest loss is reached by the ST best
model. A similar behavior is observed on the other lattice sizes when testing
the EQ and the ST architectures, apart from the 100× 5 lattice, where the
ST models encounter the same problem shown in Fig. 2.8. We note that
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Figure 2.10: Scatter plot of predicted versus true observable values for the
model achieving the lowest validation loss for each architecture type, eval-
uated on 60× 4 configurations generated with µ ∈ [1.1, 1.5]. The particle
number density is predicted with good accuracy also for values larger than
the ones used during training by all three models, while for |φ|2 the gen-
eralization capability deteriorates as the values lie further away from those
belonging to the training set. In the plots, 6.25% of the test data has been
employed. Image from [1].
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Figure 2.11: Total test loss and its contributions given by the physical ob-
servables n and |φ|2 as functions of the chemical potential on the 60× 4
lattice. For each architecture type, the test results of an ensemble of the
best architecture trained on 20 000 training samples are illustrated. To-
gether with Fig. 2.5, these plots confirm a substantial difference in the ac-
curacy of the predictions for µ ≤ 1.05. For larger chemical potentials, the
loss seems to increase in a more similar way for each type, although in the
range 1.2 ≤ µ ≤ 1.5 the separation between the average of the total test loss
of EQ and ST models is approximately one order of magnitude, just as is
between the average loss of ST and EQ models. Image from [1].

Fig. 2.10 visualizes the results of the model with the lowest validation loss
associated with each individual architecture. For the EQ type, it is a model
of the ensemble that has been trained with 20 000 samples, while for the ST
and the FL types, it is a model that has been trained with 18 000 samples.
On the other hand, in Fig. 2.11 we used the ensemble of models trained on
20 000 samples for every architecture.

Results summary

To summarize, the best translationally equivariant architecture outperforms
the respective best model of the two non-equivariant types on the lattice size
they have been trained on. Only a part of the ST networks are found to gen-
eralize beyond values of observables they have been shown during training,
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while no EQ network has exhibited limitations. The behavior of FL models
is analogous to the behavior of ST networks, but their predictions are less
accurate overall. The tests on different lattice sizes are not directly possible
for FL architectures, and are thus executed only for the EQ and the ST
types. These are both capable of generalizing to different lattice sizes, al-
though the ST models score the higher average test loss on the 60× 4 lattice,
which can be explained by their lack of generalization to observable values
absent in the training set. Another restriction is that ST architectures are
not suited to make predictions on any arbitrary lattice size: depending on
the lattice dimension and the stride of the spatial pooling layers in the net-
work, parts of the information can be lost. In contrast, EQ architectures
have no such restriction. Despite being trained solely on µ = 1.05 on the
60× 4 lattice, many models effectively predict the Silver Blaze phase transi-
tion on a different lattice size, with µc ≪ 1.05. The EQ models accomplish
this result remarkably well. Data augmentation does not provide significant
benefits in training ST and FL architectures, which is why this approach is
not employed in the next two tasks.

As a last important consideration, the results found on test set A can be
compared with the ones in [26], where this regression task was performed on
a test set generated with the same physical parameters. The architecture
employed there belongs to the FL category, and can therefore only be applied
to the lattice size used for training, which in that case was chosen to be
200 × 10. Training was performed on configurations pertaining to µ =
0.91 in addition to µ = 1.05, thus providing information from both phases.
Furthermore, the number of trainable parameters of the architecture in [26]
has an order of magnitude of 107, much more than our best model needs,
which is about 3× 104. Other well-performing models we found contain
about an order of magnitude fewer parameters than our best one. The test
loss achieved by the architecture in [26] is of the order of 10−6, while the
best EQ model achieves a loss of about an order of magnitude smaller.

2.5 Task II: detecting flux violations

The first task was successfully tackled by relatively simple CNN models,
which were favored by the hyperparameter optimizer optuna. This is not
surprising if we consider that the observable n can be reproduced exactly by
an equivariant linear model with a single 1×1 convolution. Since information
from next-neighboring sites is required for an exact representation of |φ|2,
it is impossible for a simple 1 × 1 convolution to perfectly reproduce this
observable, however we empirically observed that architectures featuring
only 1× 1 convolutions were able to satisfactorily approximate it.

In this section, we would like to extend our architecture comparison
to a task where a trivial 1 × 1 convolutional layer cannot be trained to
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(b) Feature maps of convolutional network in best EQ and ST
models

Figure 2.12: Visualization of an open worm field configuration and of one of
the best models’ feature maps. (a) A field configuration illustrating an open
worm (depicted in brown) created with movements like the ones in Fig. 2.2,
and the corresponding flux violation computed with Eq. (2.5.1). The viola-
tions are located at the two open ends of the worm, marked with crosses in
the upper plot. (b) First four channels out of 32 and 16 respectively for the
best EQ (top, green) and ST (bottom, blue) models in one of the feature
maps of the convolutional part. In some of the channels one of the two flux
violations is detected (e.g., channels 2 and 3 for EQ and 1 and 3 for ST),
while for others (e.g., 0 and 1 for EQ and 0 and 2 for ST) the output is not
straightforwardly interpretable. Image from [1].
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provide almost perfect predictions and information from multiple lattice sites
is simultaneously required. The quantity we identified as a good candidate
is the local flux

Fx ≡
D�

ν=1

(kx,ν − kx−ν̂,ν) ∈ Z. (2.5.1)

This is also a local quantity, but unlike |φ|2 it requires field values from
nearest neighbors, which means that a 1× 1 convolution is not sufficient for
a good approximation.

We tackle a classification task where the map between a given field con-
figuration X = {kx,µ, lx,µ} and its label y(X):

y(X) =

�
0 Fx = 0, ∀x,
1 else

(2.5.2)

has to be found. The worm algorithm delineated in subsection 2.4.2 gen-
erates physical field configurations, for which the flux constraint Fx = 0,
∀x is respected. Relaxing this condition and allowing the existence of open
worms, hence flux violations, is achieved by a modification of the original
worm algorithm. This is done after an initial thermalization performed with
the alternate update of the fields l and k. On top of the resulting configu-
ration, a new worm is started and the configuration with the open worm is
saved. The worm moves on the lattice and the new configuration replaces
the previous one with probability 1/ℓ, where ℓ is the current worm length,
until the worm closes. With this method, each open worm configuration has
equal probability of being picked. 1 As also visible in Fig. 2.12, the flux con-
servation is violated at the two ends of the open worm. In this work, open
worms will serve as labels in the tasks the neural networks deal with, but
they have physical relevance on their own, since they enter the calculation
of n-point functions of φ [107,108].

2.5.1 Physical parameters, lattice sizes and dataset

The dataset consists of two classes, closed worm and open worm config-
urations. The first is obtained with the original worm algorithm, while
the second one results from a distinct run with the modified version de-
scribed earlier. Both datasets are characterized by the same values of the

1This can be proven by induction. Starting from a closed worm configuration, the head
of the worm moves and the corresponding configuration is saved. After the next accepted
movement (provided the worm stays open) the resulting configuration is stored with a
probability of 1/2, hence the previous configuration remains stored with a probability of
1/2. After a third movement, the new configuration replaces the old one with a probability
of 1/3. The other two have a probability of (1 − 1/3) = 2/3 of remaining saved. Since
they had the same probability before the last step, they will equally share the probability
of 2/3, meaning that each of the three possible configurations has the same probability of
being stored. This can be generalized to an arbitrary number of movements.
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physical parameters and lattice dimensions, specifically the coupling con-
stant is fixed to λ = 1, the mass m can take three values corresponding
to η = 4 + m2 ∈ {4.01, 4.04, 4.25}, the chemical potential can be set to
µ ∈ {1, 1.25, 1.5}, and the lattices are square, with Nt = Nx ∈ {8, 16, 32, 64}.
Only a subset of these possible values is used for the training set, namely
the two combinations (η, µ) ∈ {(4.01, 1.5), (4.25, 1)} and the smallest lattice
size, i.e. 8× 8, with a total number of Ntrain = 4000 instances equally dis-
tributed among each class and parameter combination. The validation set
is structured in the same way, but contains Nval = 400 samples. All com-
binations of parameters and lattice sizes are employed to generate the test
set, and for each of them 100 samples pertain to closed worm configurations
and another 100 pertain to open worm configurations, with a total of 7 200
data. The thermalization phase is taken care of by discarding data in the
first 2 000 sweeps, after which measurements are saved every 100 sweeps.
As in subsection 2.4.3, we checked the distribution of the input fields. The
findings are very similar to what will be shown in the next task, where they
are also discussed.

2.5.2 Architecture search, training and testing

We compare the performance of the three different architecture types re-
ported in Fig. 2.1 on this task. To ensure a fair comparison, we again rely
on optuna to perform a search for promising architectures based on valida-
tion loss, which is chosen to be the binary cross entropy loss

L = − 1

Ndata

Ndata�
i=1

[yi log p(yi) + (1− yi) log(1− p(yi)] , (2.5.3)

where yi denotes the class (closed or open worm) and p the probability
of belonging to such a class. For every type, the maximum number of
convolutions is Nconv,max = 3, all with a maximum kernel size of K = 3,
Nch ∈ {4, 8, 16, 32} possible channels and equipped with circular padding.
After each convolutional layer a LeakyReLU activation function is applied.
Furthermore, every convolution except the last one can be followed by a
pooling layer (average or max pooling) with a stride s = 1 in the case of
EQ architectures and s = 2 in the case of ST and FL architectures. Non-
equivariant architectures need to feature at least one pooling layer with
s = 2. At the end of the convolutional part of the network, a global max
pooling layer is used for EQ and ST architectures, while a flattening step
characterizes the FL ones. Other global pooling layers can be employed,
like average pooling or sum pooling, but given that the task deals with
the detection of local defects, global max pooling is a more natural choice.
Another option that is investigated in the search is to explicitly set the bias
terms to zero in every convolutional layer. The resulting output is further
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Table 2.6: Best architectures for the detection of flux violations. This table
reports the architectures for each type resulting from the optuna searches.
The input of every model are configurations reshaped as (Nt, Nx, 4) tensors.
The output is a binary classification probability. The row at the end indi-
cates the number of learnable parameters for each architecture. The asterisk
(*) signals layers where no bias is used. Table from [1].

EQ ST FL
Conv(2× 2, 4, 32) Conv∗(2× 2, 4, 16) Conv∗(3× 3, 4, 8)
LeakyReLU LeakyReLU LeakyReLU
Conv(1× 1, 32, 32) MaxPool(2× 2, 2) MaxPool(2× 2, 2)
LeakyReLU Conv(1× 1, 16, 16) Conv(2× 2, 8, 32)
GlobalMaxPool LeakyReLU LeakyReLU
Linear(32, 32) Conv(1× 1, 16, 8) AvgPool(2× 2, 2)
LeakyReLU LeakyReLU Conv(2× 2, 32, 32)
Linear∗(32, 1) GlobalMaxPool LeakyReLU
Sigmoid Linear∗(8, 32) Flatten

Linear(32, 1) Linear∗(128, 1)
Sigmoid Sigmoid

2657 953 5600

processed by a dense network with up to Ndense,max = 2 layers, each with
Nnodes ∈ {4, 8, 16, 32} possible nodes. Similarly to the convolutional part,
also in the dense part of the architecture LeakyReLU follows each linear
layer. A final linear layer leads to a single node, followed by a sigmoid
activation function. The bias in each linear layer can be set to zero in the
search.

For each architecture type, we conduct two optuna runs with 400 trials
each. The combinations of hyperparameters that are picked are trained
starting from five random initializations of the weights, in order to reduce
the impact of random fluctuations in the hyperparameter search. The best-
performing architecture of the two runs according to the validation loss
is selected and trained 50 times with different parameter initializations to
provide an ensemble of models.

The training process follows a similar prescription to the regression task
in section 2.4. We employ the AMSGrad variant of the AdamW optimizer
without weight decay, the learning rate is chosen to be λlr = 10−3, the batch
size 100 and the epochs are set to 200. Early stopping based on validation
loss is used with a patience of 50.

In Table 2.6, the best architectures resulting from the optuna search for
each type are displayed.

2.5.3 Results

The main test results are depicted in Figs. 2.13 and 2.14. In Fig. 2.13, we
provide a comparison of the three architecture types evaluated on 8 × 8
lattices showing the dependence on the chemical potential. On average,
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Figure 2.13: Test loss (top) and test accuracy (bottom) of the best EQ
(green), ST (blue) and FL (red) architecture types over the chemical poten-
tial µ on the 8 × 8 lattice for the detection of flux violations. The training
phase was carried out using data generated at µ = 1 and 1.5 exclusively.
The shaded regions indicate where the ensemble of all 50 randomly initial-
ized models ranges, while the conventions for quantiles, symbols and lines
are identical to the ones in Fig. 2.8. According to both metrics, the EQ
and ST architectures achieve comparable performances and outclass the FL
architecture. Image from [1].
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Figure 2.14: Test loss (top) and test accuracy (bottom) of the best EQ
(green) and ST (blue) architecture types as functions of lattice size for the
detection of flux violations. Training took place only on the 8 × 8 lattice.
The colored bands and the solid and dashed lines have the same meaning as
in Fig. 2.13. Both types of architecture demonstrate robust generalization
across different lattice sizes, with a slightly reduced variance in the perfor-
mance of the EQ models. Image from [1].
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the EQ and ST models exhibit an excellent accuracy and a remarkable test
loss, while the ensemble of FL models contains statistical outliers which
contribute to worsen the average performance. Similar results are found
when the test loss is plotted as a function of η. The comparison over all
lattice sizes between EQ and ST types is plotted in Fig. 2.14, and shows
that both architectures are able to effectively generalize to larger lattices,
as well as to other physical parameters. FL models are excluded from this
test, because no retraining has been run and therefore they could be applied
to 8×8 lattices, where training happened. While the FL architecture scores
worse results on average than the other two, the EQ and ST networks achieve
a comparable performance, in contrast to the previous task. The breaking
of translational symmetry caused by pooling layers with stride s > 1 does
not ruin the performance of ST models in distinguishing closed from open
worm configurations.

The results in Figs. 2.13 and 2.14 can be analyzed in more detail trying
to understand and interpret how the EQ and ST models can reach such a
high degree of accuracy. In order to do this, we inspect the feature maps
of already trained EQ and ST models that appear in the convolutional part
of the network, some examples of which are shown in Fig. 2.12 (b). We
observe that in some of the channels of these feature maps flux violations in
the proximity of one of the open ends of the worm are highlighted, as visible
in Fig. 2.12 (a). Interestingly, it is sufficient for the network to detect a single
defect to accurately predict the right class. This is reasonable if we consider
that the networks did not have direct access to the local flux in Eq. (2.5.1)
during training, but were provided with global information about whether
a configuration features a flux violation.

Finally, we highlight that the number of weights of the best architec-
tures found with optuna have an order of magnitude of 103, as reported in
Table 2.6, which is rather small compared to the neural networks typically
used.

2.6 Task III: counting flux violations

The task tackled in the previous section is generalized here to include more
than one open worm, so that the networks need to solve the regression
problem of finding a map between field configurations and the number of
open worms present in it.

As discussed earlier, when an open worm is added, its endpoints show a
flux violation, such that the flux in Eq. (2.5.1) is Fx = ±1. If the algorithm
for generating a new open worm is run on top of an open worm configura-
tion, the second worm might cross the flux violations already present, where
the Metropolis acceptance probability cannot be defined. Therefore, we re-
alize a traffic-light system which forbids every new worm to move into a flux
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violation. With this caveat, the algorithm for generating an open worm is
repeated until the desired number of open worms is reached, then the result-
ing configuration is saved. Afterwards, we go back to the last configuration
without open worms and perform 100 waiting sweeps before adding open
worms again.

Since lattice sites that are characterized by a flux violation are not ac-
cessible to new open worms, the flux can take three values: 0, +1 and −1.
This implies that a configuration with Nworms open worms features 2Nworms

points where Fx = ±1. Therefore, the function that needs to be approxi-
mated can be expressed as

y(X) =
1

2

�
x

|Fx| , (2.6.1)

where X is a lattice configuration {kx,µ, lx,µ}. It is worth mentioning that
this task can be viewed as a counting problem, such as crowd counting [109],
although in a simplified version.

2.6.1 Physical parameters, lattice sizes and dataset

We keep using the same set of physical parameters and lattice sizes of the
previous section, with the addition of a number of open worms Nworms ∈
{0, 1, . . . , 10}. In order to investigate the generalization capabilities of the
neural networks as in the other tasks, the training set consists of data gen-
erated at a small subset of all the possible combinations, namely (η, µ) ∈
{(4.01, 1.5), (4.25, 1)}, the lattice size 8× 8 (the same that were used in the
classification problem), and a number of worms Nworms ∈ {0, 5}. The train-
ing samples are Ntrain = 20 000 and are distributed equally between two
different numbers of open worms and physical parameters. The validation
set is structured analogously but consists of Nval = Ntrain/10 = 2 000 sam-
ples. Every parameter combination is employed for the test set generation,
with 100 samples each, leading to a total of 39 600 instances.

We now drop the lattice index x to use the notation kt and kx for the
two fields that are involved in the computation of the flux, as indicated
by Eq. (2.1.24). The distributions of such fields are illustrated in Figs. 2.15
and 2.16, respectively. We notice that for kt the distribution is visibly differ-
ent for training and testing configurations, even though the range of possible
values is the same. The selection of the two (η, µ) pairs used for training is
specifically designed to encompass the lower and higher values of kt. This
choice ensures that the domain covered is the same for training and testing.
Each of the two peaks in the kt training distribution in the top histogram in
Fig. 2.15 is associated with one of the two (η, µ) pairs. The behavior of kt
is related to its coupling with the chemical potential, whereas kx lacks this
feature and in fact does not exhibit large differences between training and
testing distributions.
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Figure 2.15: Distributions of the link field kt. These two histograms feature
the distributions of kt in the training set (top) and in the test set (bottom).
Image from [1].

2.6.2 Architecture search, training and testing

An initial exploration phase is conducted to examine trends with differ-
ent hyperparameter choices, alongside an empirical check that a global sum
pooling is the most favorable layer after the convolutional part of the net-
works. This is because the quantity that needs to be predicted is extensive,
as discussed in Section 2.3. The insights gained during this preliminary
stage are used to define the architecture search space of each of the three
architecture types depicted in Fig. 2.1. To reduce bias in favor of a particu-
lar architecture type as much as possible, the search spaces are designed to
be similar.

The search space for the EQ architecture involves Nconv ∈ {2, 3, 4} con-
volutional layers with a kernel size K ∈ {1, 2, 3}, followed by a global sum
pooling layer leading to a dense network consisting of Ndense ∈ {0, 1, 2} lay-
ers. For the ST architecture, the search space is the same except for the
insertion of Npool ∈ {1, 2} spatial pooling layers with a stride of 2. Given
that training takes place on 8× 8 lattices, we limit the spatial pooling lay-
ers to a maximum of two, ensuring that the lattice is not reduced to only
one site, as would happen with three spatial pooling layers, preserving the
effectiveness of global sum pooling. The search space of the FL architecture
type includes two mandatory convolutions with a kernel size K ∈ {2, 3},
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Figure 2.16: Distributions of the link field kx. These two histograms feature
the distributions of kx in the training set (top) and in the test set (bottom).
Image from [1].

and features a spatial pooling layer after each of them. An optional 1 × 1
convolution is inserted before and after each mandatory convolution, result-
ing in N

′
conv ∈ {2, 3, 4, 5, 6} convolutions in total. The convolutional part

is followed by a flattening step and a dense network with N
′
dense ∈ {1, 2, 3}

layers. The maximum number of layers is increased compared to the other
two architecture types to compensate for the potential absence of 1× 1 con-
volutions. For all search spaces, the channels in the convolutions and the
nodes in the dense layers take the following values: Nch/nodes ∈ {4, 8, 16, 32}.

Other hyperparameter choices are not part of the search space and are
fixed based on the indications provided by the exploratory phase, with an
outcome very similar to the other tasks. Circular padding is employed in
all convolutions to take care of the periodicity of the lattice. We choose
LeakyReLU as activation function throughout the network, and apply it
after every convolution and every linear layer except the last one. The
convolutions and the linear layers do not have a bias term.

It is worth mentioning that another optuna search was carried out for the
EQ type with the same structure we have described for ST apart from having
a stride s = 1 instead of s = 2. However, none of the models suggested in
this run outperform the EQ models found in the initial search.

In order to evaluate the network performances, we make use of two met-
rics similarly to the previous task, the MSE loss and the accuracy. For the
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Table 2.7: Best architectures for counting flux violations. This table reports
the three most promising architectures obtained with an optuna search,
ordered according to the average validation loss over 20 instances trained
from scratch. As in the previous tasks, the input tensor shape is (Nt, Nx, 4),
while the output is a real number that approximates the amount of open
worms in the configuration. The final row informs about the number of
learnable parameters for each architecture. Table from [1].

1st EQ 2nd EQ 3rd EQ
Conv(1× 1, 4, 32) Conv(2× 2, 4, 8) Conv(1× 1, 4, 4)
LeakyReLU LeakyReLU LeakyReLU
Conv(2× 2, 32, 8) Conv(2× 2, 8, 8) Conv(2× 2, 4, 8)
LeakyReLU LeakyReLU LeakyReLU
Conv(2× 2, 8, 16) Conv(1× 1, 8, 4) Conv(2× 2, 8, 4)
LeakyReLU LeakyReLU LeakyReLU
Conv(1× 1, 16, 8) Conv(1× 1, 4, 8) Conv(3× 3, 4, 1)
LeakyReLU LeakyReLU LeakyReLU
GlobalSumPool GlobalSumPool GlobalSumPool
Linear(8, 1) Linear(8, 1)
1800 456 308

1st ST 2nd ST 3rd ST
Conv(2× 2, 4, 16) Conv(2× 2, 4, 4) Conv(2× 2, 4, 4)
LeakyReLU LeakyReLU LeakyReLU
Conv(1× 1, 16, 32) MaxPool(2× 2, 2) AvgPool(2× 2, 2)
LeakyReLU Conv(2× 2, 4, 4) Conv(3× 3, 4, 16)
Conv(1× 1, 32, 32) LeakyReLU LeakyReLU
LeakyReLU GlobalSumPool GlobalSumPool
AvgPool(2× 2, 2) Linear(4, 1) Linear(16, 32)
Conv(1× 1, 32, 8) LeakyReLU
LeakyReLU Linear(32, 1)
GlobalSumPool
Linear(8, 32)
LeakyReLU
Linear(32, 1)
2336 132 1184

1st FL 2nd FL 3rd FL
Conv(2× 2, 4, 4) Conv(2× 2, 4, 8) Conv(2× 2, 4, 32)
LeakyReLU LeakyReLU LeakyReLU
AvgPool(2× 2, 2) AvgPool(2× 2, 2) AvgPool(2× 2, 2)
Conv(3× 3, 4, 8) Conv(3× 3, 8, 4) Conv(3× 3, 32, 4)
LeakyReLU LeakyReLU LeakyReLU
AvgPool(2× 2, 2) AvgPool(2× 2, 2) AvgPool(2× 2, 2)
Flattening Flattening Flattening
Linear(8, 4) Linear(4, 4) Linear(4, 32)
LeakyReLU LeakyReLU LeakyReLU
Linear(4, 32) Linear(4, 32) Linear(32, 16)
LeakyReLU LeakyReLU LeakyReLU
Linear(32, 1) Linear(32, 1) Linear(16, 1)
640 640 2704
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latter, the predictions are rounded to the closest integer. During the opti-
mization process, the monitored metric is the validation loss. Two optuna
runs are executed with the aim of mitigating the risk of overlooking promis-
ing combinations of hyperparameters. For each of these, three models are
trained for 200 epochs without early stopping to reduce the impact of ran-
dom initializations. We used a batch size of 16, a learning rate λlr = 10−3

and the AMSGrad variant of the AdamW optimizer with zero weight decay.

From the set of 100 different architectures resulting from the two optuna
searches, we identify the top three for each architecture type based on the
average validation loss across their three initializations. We train these
architectures from 20 different random initializations using the same training
and validation sets, and keeping the same hyperparameters, except for the
amount of epochs which is increased to 500. We keep track of the validation
loss and checkpoint the weight values of the best model. For each type, the
architectures are sorted according to the average of the validation loss over
the ensemble of models. The results are detailed in Table 2.7.

2.6.3 Results

We divide the results in a test performed on the subset containing 8 × 8
configurations and another which includes the whole test set. The former
test is executed for all the architecture types and its results are shown in
Fig. 2.17, while the FL architecture is excluded from the latter, whose results
are depicted in Fig. 2.18.

The plots indicate that the EQ architecture consistently outperforms
its non-equivariant counterparts. An interesting observation comes from
Fig. 2.17, where ST and even more so FL models struggle particularly with
the prediction of one, two and three of open worms. The reason for this can
be associated to the fact that the training set includes samples with only
Nworms ∈ {0, 5}, therefore the same architectures have also been trained
on a dataset that features Nworms ∈ {0, 1, 5}. Surprisingly, the outcome is
similar to the one reported in Fig. 2.17, suggesting that the problem for
non-equivariant architectures is not simply a lack of sufficient information
about the problem.

In table 2.8 the mean and median losses of the model ensemble on the
validation and test sets are displayed for the three types. The best archi-
tecture for each metric and type is highlighted in bold. We notice that
depending on whether we choose the mean or the median of the validation
loss to select the best architecture we get a different outcome. An even
more relevant observation is related to the generalization capabilities of the
networks, specifically to the fact that performing well on the validation set
does not guarantee that the networks achieve good results when testing. For
this reason, we analyze the relationship between the validation and the test
losses for every individual model of each type in Figs. 2.19 and 2.20.
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Figure 2.17: Test loss (top) and test accuracy (bottom) of the architectures
which scored the lowest mean of the validation loss, evaluated on 8 × 8
configurations given as functions of the number of open worms. Training
and validation are executed with Nworms = 0 and Nworms = 5, while the
test set comprises a number of open worms in the interval Nworms ∈ [0, 10].
Conventions for shaded regions, quantiles, symbols, solid and dashed lines
are the same as in Fig. 2.8 except that the number of instances used to
create a model ensemble is 20. While the accuracy of every EQ model is
perfect and its loss increases slightly with the number of open worms, the
non-equivariant models fail to accurately predict a small number of flux
violations. Image from [1].

Table 2.8: Metrics of the best architectures for counting flux violations.
For each type and metric, the result of the best architecture is highlighted
in bold. Table from [1].

validation loss on 8 × 8 test loss on 8 × 8 test loss up to 64 × 64
mean median mean median mean median

1st EQ 4.676 × 10−54.676 × 10−54.676 × 10−5 4.137 × 10−5 2.108 × 10−42.108 × 10−42.108 × 10−4 1.483 × 10−4 1.008 × 10−31.008 × 10−31.008 × 10−3 8.308 × 10−4

2nd EQ 1.042 × 10−4 2.440 × 10−52.440 × 10−52.440 × 10−5 3.525 × 10−4 8.783 × 10−58.783 × 10−58.783 × 10−5 1.807 × 10−3 7.936 × 10−47.936 × 10−47.936 × 10−4

3rd EQ 8.992 × 10−3 3.072 × 10−4 2.105 × 10−2 9.163 × 10−4 1.925 4.031 × 10−2

1st ST 2.331 × 10−52.331 × 10−52.331 × 10−5 2.173 × 10−5 9.438 × 10−3 3.576 × 10−3 4.446 3.026

2nd ST 8.479 × 10−5 4.372 × 10−5 2.545 × 10−42.545 × 10−42.545 × 10−4 9.340 × 10−59.340 × 10−59.340 × 10−5 3.738 × 10−33.738 × 10−33.738 × 10−3 1.171 × 10−31.171 × 10−31.171 × 10−3

3rd ST 2.869 × 10−4 2.171 × 10−52.171 × 10−52.171 × 10−5 1.676 × 10−2 1.381 × 10−3 2.943 9.580 × 10−1

1st FL 2.602 × 10−52.602 × 10−52.602 × 10−5 1.787 × 10−5 7.837 × 10−2 3.817 × 10−2 - -

2nd FL 4.004 × 10−5 1.117 × 10−5 5.300 × 10−25.300 × 10−25.300 × 10−2 1.285 × 10−31.285 × 10−31.285 × 10−3 - -

3rd FL 5.805 × 10−5 1.031 × 10−51.031 × 10−51.031 × 10−5 6.382 × 10−2 3.556 × 10−2 - -
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Figure 2.18: Test loss (top) and test accuracy (bottom) of the architectures
which scored the lowest mean of the validation loss, evaluated on any number
of worms in the range Nworms ∈ [0, 10] given as functions of the lattice
size. Training and validation are executed on the smallest lattice (8 × 8),
while testing takes place on all lattice sizes. Except for a few ST models
accomplishing good results on 8 × 8 configurations, the EQ architecture
outperforms its non-equivariant counterpart across all lattice sizes. Image
from [1].
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Figure 2.19: Test loss on the 8 × 8 lattice versus validation loss for every
instance of each architecture. The test loss is shown for all 20 instances of
the winning architectures displayed in table 2.7. Training and validation
were executed with Nworms ∈ {0, 5} and (η, µ) ∈ {(4.01, 1.5), (4.25, 1)} on
8× 8 configurations. The test set included other physical parameter values:
Nworms ∈ [0, 10], µ ∈ {1.0, 1.25, 1.5}, η ∈ {4.01, 4.04, 4.25}. The diagonal
black line denotes where test loss and validation loss are equal. If a model
has good generalization properties, the test loss has to be comparable with
the validation loss, and therefore has to lie close to the black line, which
happens for most of the EQ models (green circles). Image from [1].
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Figure 2.20: Test loss over the whole test set versus validation loss of every
instance for EQ and ST architectures. We analyze our models in a similar
fashion to Fig. 2.19, extending the study to lattice sizes up to 64× 64. EQ
models (green circles) tend to be closer to the black line where test loss and
validation loss are the same, showing their ability of generalizing to different
lattice sizes and physical parameters. Image from [1].
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Most ST and FL models are scattered vertically, meaning that for many
of them the test loss is much worse than the validation loss, which is a sign of
generalization issues. EQ models, on the other hand, are distributed closer
to the black line, where test and validation loss would match. These results
suggest that if an EQ architecture scores a low validation loss we can expect
that the test loss is also low, which means that it generalized more reliably
than the non-equivariant counterparts.

Remarkably, a non-equivariant architecture also exhibits this behavior,
namely the 2nd ST architecture. Its best two instances even achieve results
better by almost an order of magnitude compared to the best EQ models
both when validating and testing. One factor that may have contributed to
its success is the presence of a spatial max pooling layer, which can be useful
for detecting local defects, as mentioned also in the previous task. Another
possible reason is the very small number of parameters compared to all
the architectures in table 2.7, given the relative simplicity of this counting
problem. This is confirmed also by the fact that optuna favors in general
small architectures for this task, as happened for the previous ones, with a
number of weights between ∼ 100 and ∼ 3 000.



Chapter 3

Gauge-symmetric neural
networks in lattice gauge
theory

The results found in the previous Chapter have shown that incorporating
translational symmetry in a CNN architecture gives a boost to the perfor-
mance in a problem symmetric under translations. This serves as an addi-
tional motivation for the scope of this Chapter: designing neural networks
that respect gauge symmetries by construction. After initially reviewing
Yang-Mills theory and its discretization on the lattice, we define equivari-
ance for lattice gauge theory. Layers such as convolutions, that are readily
available in common frameworks, break gauge equivariance, therefore we in-
troduce appropriate layers that possess such a property. The architectures
resulting from stacking these layers respect gauge symmetry by construc-
tion, and they can in principle predict arbitrarily sized Wilson or Polyakov
loops, making these networks capable of approximating any function on the
lattice. We then show how these neural networks perform on regression
tasks involving e.g. Wilson loops of various sizes in 1+1D and in 3+1D. In
the former case, we compare their results with standard CNNs that do not
respect gauge symmetry.

3.1 Yang-Mills theory and lattice gauge theory

In this section, we introduce Yang-Mills theory and lattice gauge theory
with particular focus on gauge symmetry. A broader introduction can be
found in standard textbooks [110,111].

Let us consider the SU(Nc) Yang-Mills theory at finite temperature T in
D + 1 dimensions. The expectation value of an observables O is calculated

57
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by means of the path integral

⟨O⟩ = 1

Z
�

D[A]O(Aµ)e
−SE[Aµ], (3.1.1)

with the partition function

Z =

�
D[A] e−SE[Aµ] (3.1.2)

acting as a normalization constant, and the Euclidean Yang-Mills action

SE[Aµ] =
1

2g2

β�
0

dτ

�
dDxTr [Fµν(x)Fµν(x)] . (3.1.3)

The inverse temperature of the system is β = T−1 and g ∈ R is the Yang-
Mills coupling constant. The non-Abelian field strength tensor reads

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (3.1.4)

where Aµ(x) is a gauge field living in the algebra su(Nc). We write the
(D+1)-dimensional spacetime point as x = (τ,x). TheD spatial dimensions
spanned by x are real, while the imaginary time dimension τ extends from
0 to the inverse temperature, τ ∈ [0, β). The metric on the spacetime
is Euclidean: ηµν = diag(+,+, . . . ,+). The gauge fields satisfy periodic
boundary conditions along τ , i.e. Aµ(τ + β,x) = Aµ(τ,x).

A characteristic property of a gauge theory is gauge invariance, which
refers to the fact that observables are invariant under local symmetry trans-
formations. For Yang-Mills theory, a gauge transformation TΩ applied to
the gauge field Aµ(x) can be written as

TΩAµ(x) = Ω(x) (Aµ(x)− i∂µ) Ω
†(x), (3.1.5)

where Ω(x) is an element of the SU(Nc) group, hence it is unitary and has
unit determinant:

Ω(x)Ω†(x) = 1, (3.1.6)

detΩ(x) = 1. (3.1.7)

The application of this transformation to the field strength tensor yields

TΩFµν(x) = Ω(x)Fµν(x) Ω
†(x), (3.1.8)

where extra terms coming from the derivatives of the gauge field simplify
exactly with the extra terms coming from the commutator. Given the
cyclic property of the trace, the integrand in Eq. (3.1.3) is invariant under
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gauge transformations, thus making the Yang-Mills action itself invariant
under (3.1.5):

SE[TΩAµ] = SE[Aµ]. (3.1.9)

As a consequence, the set of gauge fields {TΩAµ} that are related via ar-
bitrary gauge transformations forms a class of physically equivalent fields.
Moreover, any physical observable O(Aµ) must be invariant under gauge
transformations, which guarantees that also its expectation value Eq. (3.1.1)
has the same property.

Apart from perturbation theory, where the coupling constant g is small,
an infinite dimensional functional integral of the form of Eq. (3.1.1) is gener-
ally intractable. As in the scalar field theory case, we can tackle the problem
by approximating the continuous spacetime with a lattice

Λ =

�
x =

D�
µ=0

aµnµµ̂ |nµ ∈ Z
�
, (3.1.10)

where aµ are the spacings between the lattice sites in the direction µ̂. In
the following, we set the lattice constant aµ to unity for every direction.
A naive discretization of the gauge fields fails to respect gauge symmetry.
The regularization on the lattice circumvents this problem by replacing the
gauge fields Aµ(x) with

Ux,µ = P exp

�
ig

� y

x
dzνAν(z)

�
∈ SU(Nc), (3.1.11)

where P indicates the path ordering scheme. These quantities are defined
along the edges of the lattice Λ that connect the lattice site x and its neigh-
bor y = x + µ̂, hence the name gauge links. The definition above can
be formally expressed by dividing the path into N infinitesimal segments
(zn, zn + dzn), n ∈ {0, 1, . . . , N − 1} in the following way:

Ux,µ = lim
N→∞

exp



−i

� y

zN−1

dzνN−1Aν(z)

�
. . . exp

�
−i

� zn+1

zn

dzνnAν(z)

�
. . . exp

�
−i

� z1

x
dzν0Aν(z)

�
= lim

N→∞
[1− i dzν0Aν(z0)] . . . [1− i dzνN−1Aν(zN−1)] +O(dz2), (3.1.12)

where z0 = x and zN = y. If we apply the transformation Eq. (3.1.5) at the
point zn, we find

1− i dzνnA
′
ν(zn) = Ω(zn)Ω

†(zn)− idzνnΩ(zn)
�
Aν(zn)Ω

†(zn) + i ∂νΩ
†(zn)

�
= Ω(zn) [1− i dzνnAν(zn)] Ω

†(zn+1) +O(dz2). (3.1.13)



60 CHAPTER 3. GAUGE SYMMETRY

The derivative of Ω is defined as in Eq. (2.1.13). Using this transformation
rule for each zn, the terms involving Ω(zn) simplify except at the endpoints,
thus yielding the gauge transformation of the link

TΩUx,µ = ΩxUx,µΩ
†
x+µ, (3.1.14)

where Ωx indicates the transformation at lattice site x and x+µ is a short-
hand for x + µ̂. In terms of these new variables, the Yang-Mills action can
be approximated by the Wilson action

SW [U ] =
2

g2

�
x∈Λ

�
µ<ν

Tr [1− Ux,µν ] , (3.1.15)

where the so-called plaquette variables

Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν = (3.1.16)

are 1×1 Wilson loops on the lattice. We made use of the definition of a link
pointing in the negative direction −ρ as Uy,−ρ = U−1

y−ρ,ρ = U †
y−ρ,ρ. Here-

after, Wilson loops are intended to be untraced matrices, unless specified
otherwise. The plaquette variables transform locally at x under the effect
of Eq. (3.1.14), i.e.

TΩUx,µν = ΩxUx,µνΩ
†
x, (3.1.17)

which implies that the Wilson action is invariant:

SW [TΩU ] = SW [U ]. (3.1.18)

From the Wilson action (3.1.15), it is possible to recover the Yang-Mills
action (3.1.3) by expanding Ux,µ in powers of Aµ(x) with lattice artifacts
of order O(a2), where a denotes the lattice spacing. Lattice gauge theory
therefore represents the appropriate formalism to describe gauge fields on a
lattice while respecting gauge symmetry. Similarly to the continuum case,
expectation values are given by

⟨O⟩ = 1

Z

�
D[U ]O[U ] e−SW [U ], (3.1.19)

Z =

�
D[U ] e−SW [U ], (3.1.20)

where D[U ] is the Haar measure and Z is the partition function of the new
degrees of freedom. With the lattice formalism, the infinite-dimensional
functional integrals are substituted by finite (although high) dimensional
integrals. Furthermore, we restrict the lattice to a finite sublattice charac-
terized by a number of

Nlat = Nt ·ND
s (3.1.21)
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lattice sites, with Nt cells in the imaginary time direction and Ns cells in
the spatial directions. The lattice is also equipped with periodic boundary
conditions in every dimension. This enables the computation of expectation
values via Monte Carlo method, i.e. we generate a series of configurations
U (n) according to the probability density P [U ] ∝ exp (−SW [U ]), and ap-
proximate the expectation value by

⟨O⟩ ≈ 1

Nconf

Nconf�
n=1

O[U (n)]. (3.1.22)

Gauge field configurations can be generated for example with the Metropolis
algorithm [112], which is discussed in Appendix A for the SU(2) case, or
using the heat bath method [113].

Physical observables are typically expressed in terms of (traced) Wil-
son loops. The simplest quantity is the Wilson action (3.1.15), which is a
function of 1 × 1 loops. It is possible to improve the approximation of the
continuum action by including larger loops [114–118]. Notably, the poten-
tial of a static quark pair can be determined from the expectation value of
a Wilson loop with a large extent in the temporal direction [119,120].

A local observable that is typically studied is the topological charge
density [121]. In the continuum, its definition is

q(x) =
1

32π2
ϵµνρσTr [Fµν(x)Fρσ(x)] , (3.1.23)

which on the lattice can be approximated by products of Wilson loops. The
plaquette approximation of Eq. (3.1.23) reads

qplaqx =
ϵµνρσ
32π2

Tr



Ux,µν−U †

x,µν

2i

Ux,ρσ−U †
x,ρσ

2i

�
. (3.1.24)

The discretization errors of the plaquette approximation can be reduced
with the inclusion of appropriate larger loops in the discretization of the
field strength tensor [122]. Other observables, such as the energy momentum
tensor [123], can be formulated as (non-linear) combinations of arbitrarily-
sized Wilson loops.

There exist also non-local observables, which can be written in terms of
Polyakov loops [124], that wrap around the periodic boundary of the lattice.
The trace of the Polyakov loop can serve as an order parameter for quark
confinement in a pure gauge theory at nonzero temperature, and correlators
of the traced Polyakov loop are related to the static quark potential [125,
126]. Wilson loops and Polyakov loops are two topologically distinct objects,
as can be seen for example by noticing that the former can be contracted to
a single point, while the latter cannot.

In summary, all the aforementioned observables are in general non-linear
functions either of Wilson or Polyakov loops. In the following section, we
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will introduce new layers of artificial neural networks capable of expressing
such functions while preserving gauge symmetry on the lattice.

In the next section, we will introduce new layers of artificial neural net-
works that can express such lattice gauge equivariant functions and respect
gauge symmetry on the lattice.

3.2 Gauge equivariant layers

Lattice gauge equivariant convolutional neural networks (L-CNNs) can ap-
proximate a large class of gauge equivariant functions while preserving the
symmetry properties of the underlying theory. Similar to how we introduced
CNNs in the first chapter, we split L-CNNs into more elementary layers and
discuss each of them in this section.

3.2.1 Input data

The input data of each layer is a tuple (U ,W), consisting of non-locally
transforming gauge link variables U and locally transforming objects W. A
natural choice for the first part of the tuple is the set of gauge link vari-
ables U = {Ux,µ}, whose transformation rule we remind to be Eq. (3.1.14).
Concretely, we choose the fundamental representation of SU(Nc), in which
links are treated as complex special unitary Nc × Nc matrices. The sec-
ond part is a set of variables W = {Wx,i} with Wx,i ∈ CNc×Nc and index
i ∈ {1, 2, . . . , Nch}, which can be interpreted as channels. The requirement
for these input variables is to respect the following transformation rule:

TΩWx,i = ΩxWx,iΩ
†
x. (3.2.1)

We emphasize that these objects transform locally. A possible choice for W
is the set of the Wilson loops Ux,µν with positive orientation, i.e. µ < ν.

We specify that in practice we represent both U andW as N×N complex
matrices, even though the links can be described with less degrees of freedom
since they are constrained by the unitarity and specialness conditions.

3.2.2 Gauge equivariance

Having established what the input data for L-CNNs is, we can now define
what we mean exactly by gauge equivariance and gauge invariance. A func-
tion f taking as input the tuple (U ,W) is gauge equivariant (or covariant)
if

f(TΩ U , TΩW) = T ′
Ωf(U ,W), (3.2.2)

for a generic Ω ∈ SU(Nc), with T ′
Ωf denoting the effect of the gauge trans-

formation on the function f . As for the other definition, a function f of the
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tuple (U ,W) is gauge invariant if

f(TΩ U , TΩW) = f(U ,W). (3.2.3)

This can be viewed as a special case of equivariance with T ′
Ω = 1.

An L-CNN can be either an equivariant function as in Eq. (3.2.2) or
an invariant function as in Eq. (3.2.3). This means that such networks
are suited to approximate these types of functions, which notably include
physical observables, that are gauge invariant.

3.2.3 Lattice gauge equivariant convolutions

A fundamental component of neural networks is represented by linear layers.
A possible realization of such a layer for lattice gauge theory applications is

Lx(W) =
�
y∈Λ

ωx,yWy, (3.2.4)

where ωx,y are complex weights and x and y are lattice sites in Λ. No bias
term has been included and the channel index in W has been dropped to
simplify the notation.

This layer does not meet our requirements to be part of an L-CNN, as it
does not respect gauge equivariance. In fact, objects that transform locally
at different lattice sites are added up, therefore Lx(W) does not transform
according to Eq. (3.2.1) under arbitrary gauge transformations:

Lx(TΩW) =
�
y

ωx,y ΩyWyΩ
†
y ̸= ΩxLx(W)Ω†

x.

In order to maintain a similar structure to a conventional linear layer and
concurrently enabling the right transformation, we can modify Eq. (3.2.4)
introducing the parallel transporter Ux→y in the following way:

L′
x(U ,W) =

�
y

ωx,y Ux→yWyU
†
x→y. (3.2.5)

The parallel transporter transforms according to

TΩUx→y = ΩxUx→yΩ
†
y, (3.2.6)

which guarantees that the definition of the linear layer in Eq. (3.2.5) is
equivariant:

L′
x(TΩ U , TΩW) = ΩxL

′
x(U ,W)Ω†

x = TΩL
′
x(U ,W). (3.2.7)

The parallel transporter can be built by taking the product of the se-
quence of links connecting x and y. However, no particular path has been
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specified, which makes the gauge equivariant linear layer path dependent in
general. A natural choice that can be made in the continuum is to set the
path to be the geodesic (that is the shortest path) between x and y, rem-
iniscent of the formulation of gauge equivariant neural networks on mani-
folds [79]. On the lattice, a unique geodesic cannot be introduced unless two
points lie on the same lattice axis, therefore we restrict the path to straight
lines along the lattice axes. This practical solution corresponds to imposing
ωx,y = 0 if x and y cannot be linked moving along a single axis.

Lattice gauge theory is also symmetric under spacetime translations,
since they leave the Wilson action (3.1.15) unaltered. Given the results of the
study in Chapter 2, we equip the equivariant linear layers in Eq. (3.2.5) with
translational equivariance by requiring the weights to satisfy translational
invariance, i.e.

ωx+s,y+s = ωx,y, (3.2.8)

where s denotes a translation on the lattice. The gauge equivariant lin-
ear layer becomes a gauge equivariant convolution. As a consequence of
Eq. (3.2.8), convolutions are equivariant under translations. We define the
shifted input for an arbitrary element and call t the element of the transla-
tion group corresponding to the shift vector s. Its action on links and loops
is

tWx ≡ Wx+s, (3.2.9)

tUx,µ ≡ Ux+s,µ. (3.2.10)

Translational symmetry is preserved, as can be shown with the following:

L′
x(tU , tW) =

�
y∈Λ

ωx,yUx+s→y+sWy+sU
†
x+s→y+s

=
�
y′∈Λ

ωx+s,y′Ux+s→y′Wy′U
†
x+s→y′

= L′
x+s(U ,W) = tL′

x(U ,W), (3.2.11)

where we made use of Eq. (3.2.8) in the second equality. A linear layer with
the property of translational equivariance is called convolution, therefore we
define a gauge equivariant convolutional layer as

Cx(U ,W) =
�
s

ωs Ux→x+sWx+sU
†
x→x+s, (3.2.12)

where we adopted a more compact notation with weight parameters ωs ∈
C. In this form, it is more manifest that this operation is translational
equivariant.

For general applications, it is necessary to take into account a general-
ization of such a convolutional layer to an arbitrary number of input and
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output channels. We name it lattice gauge equivariant convolution (L-Conv)
and write it as

Cx,i(U ,W) =
�
j,µ,k

ωi,j,µ,kUx,k·µWx+k·µ,jU
†
x,k·µ, (3.2.13)

where ωi,j,µ,k are the complex learnable parameters of the convolution, and
the indices run in the following intervals: 1 ≤ i ≤ Nch,out, 1 ≤ j ≤ Nch,in,
0 ≤ µ ≤ D and −K ≤ k ≤ K, with K being the kernel size. Note that
with this choice the range of values for k is such that the convolution is
symmetric around the center of the kernel. In our experiments, we restrict
ourselves to positive shifts along the lattice axes, therefore 0 ≤ k ≤ K.

The unique parallel transporters along the lattice axes read

Ux,k·µ =

�
Ux,µUx+µ,µ · · ·Ux+(k−1)µ,µ, k > 0,

Ux,−µUx−µ,−µ · · ·Ux−(k−1)µ,−µ, k < 0.
(3.2.14)

With the same arguments used for the equivariant linear layers, we can
show that the convolution (3.2.13) is gauge equivariant

Cx,i(TΩ U , TΩW) = ΩxCx,i(U ,W)Ω†
x = TΩ Cx,i(U ,W) (3.2.15)

and transforms locally at x. Focusing on the effect on the data (U ,W), the
L-Conv operation modifies the W variables while the links remain the same:

C : (U ,W) → (U ,W ′) (3.2.16)

with

W ′ =
�
W ′

x,i = Cx,i(U ,W), 1 ≤ i ≤ Nch,out, x ∈ Λ

�
. (3.2.17)

We initially disregarded the bias term for the linear layer (3.2.4) for
simplicity, but it is possible to include it to provide an even more general
version of L-Conv. The addition of a bias ω0 ∈ C as in

Cx,i(U ,W) =
�
j,µ,k

ωi,j,µ,kUx,k·µWx+k·µ,jU
†
x,k·µ + ωi,01 (3.2.18)

is fully compatible with the equivariance properties of the L-Conv layer. It is
also worth noticing that the L-Conv operation is a linear map in the second
argument W, i.e.

Cx,i(U , λ1W1 + λ2W2) = λ1Cx,i(U ,W1) + λ2Cx,i(U ,W2), (3.2.19)

for arbitrary complex parameters λ1 and λ2, provided that no bias term is
used, i.e. ω0 = 0.

To conclude, we mention that dilated convolutions [100] are covered by
the definition (3.2.13), since these types of convolutions are a subset of
standard convolutions.
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3.2.4 Lattice gauge equivariant bilinear layers

A particularly relevant operation for our applications, especially in combi-
nation with L-Conv, is represented by bilinear functions. This infrequently-
used layer can be adapted to satisfy gauge equivariance. A lattice gauge
equivariant bilinear layer (L-Bilin) takes as input two tuples (U ,W) and
(U ,W ′) and combines them in the following way:

Bx,i(U ,W,W ′) =
�
j,k

αi,j,kWx,jW
′
x,k. (3.2.20)

The complex parameters αi,j,k are learnable and the indices take values as
follows: 1 ≤ i ≤ Nout, 1 ≤ j ≤ Nin,1 and 1 ≤ k ≤ Nin,2.

Eq. (3.2.20) features a product of locally transforming variables, guar-
anteeing that gauge equivariance (3.2.2) is respected:

Bx,i(TΩ U , TΩW, TΩW ′) =
�
j,k

αi,j,k

�
ΩxWx,jΩ

†
x

��
ΩxW

′
x,kΩ

†
x

�
= Ωx

�
j,k

αi,j,kWx,jW
′
x,kΩ

†
x

= TΩBx,i(U ,W,W ′). (3.2.21)

The bilinear operation can be extended by allowingW andW ′ to also include
the unit element 1 and the Hermitian conjugates of W and W ′, meaning
that W is replaced by W̃ = {W̃x,l} with Ñch = 2Nch + 1 channels:

W̃x,l =

��
Wx,l, 1 ≤ l ≤ Nch,

W †
x,l−Nch

, Nch < l ≤ 2Nch

1, l = 2Nch + 1,

(3.2.22)

With this enlarged set, the L-Bilin layer can act as a residual module [127]
and includes a bias term associated with the parameter αi,0,0.

As in the case of the L-Conv, the L-Bilin operation is seen as only mod-
ifying the W variables, while keeping the set of gauge links U unaltered:

B : (U ,W,W ′) → (U ,W ′′), (3.2.23)

with

W ′′ =
�
W ′′

x,i = Bx,i(U ,W,W ′), 1 ≤ i ≤ Nout, x ∈ Λ

�
. (3.2.24)

In practice, the two layers introduced so far, L-Conv and L-Bilin, are
combined into a single module, called L-CB, in the implementation of L-
CNNs. In said layer, the terms contributing to the convolution are first
appropriately parallel transported,

W ′
x+kµ,j = Ux,kµWx+kµ,jU

†
x,kµ, (3.2.25)
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and afterwards the outcome is multiplied by the local terms Wx,j with the
bilinear operation just described, such that the resulting locally transforming
variables are

Wx,i →
�

j,j′,k,µ

αi,j,j′,k,µWx,jW
′
x+kµ,j′ . (3.2.26)

The L-CB operation is equivalent to stacking an L-Conv and an L-Bilin
layer, except that learnable weights are parameterized differently.

3.2.5 Gauge equivariant activation functions

Another fundamental building block of neural networks which has to be
generalized to satisfy gauge equivariance are non-linear activation functions.
Even though the L-Conv and the L-Bilin operations can lead to non-linear
terms, more general functions can be expressed with the addition of a lattice
gauge equivariant activation function (L-Act). We can define it as being
applied to each lattice site via

ax,i(U ,W) = gx,i(U ,W)Wx,i, (3.2.27)

where the function g respects

gx,i(TΩ U , TΩW) = gx,i(U ,W), (3.2.28)

hence is gauge invariant.
The function a is gauge equivariant:

ax,i(TΩ U , TΩW) = Ωxgx,i(U ,W)Wx,iΩ
†
x

= TΩax,i(U ,W). (3.2.29)

The expression in Eq. (3.2.27) is very general. Usually, activation functions
only depend on local quantities, which here corresponds to gx,i depending
solely on the set of local objects {Wx,i}. For example, a widely-employed
activation function in traditional neural networks is the rectified linear unit
(ReLU)

ReLU(x) = θ(x)x (3.2.30)

with x ∈ R and θ(x) denoting the Heaviside step function. An analogous
function that respects gauge equivariance has the form

gx,i(U ,W) = θ(ReTr [Wx,i]). (3.2.31)

If we now take the real part of the trace of ax,i we obtain

ReTr [ax,i(U ,W)] = θ(ReTr [Wx,i])ReTr [Wx,i]

= ReLU(ReTr [Wx,i]), (3.2.32)
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which is the behavior we wanted to recreate. Like L-Conv and L-Bilin, L-Act
only modifies W variables, i.e.

a : (U ,W) → (U ,W ′), (3.2.33)

with

W ′ =
�
W ′

x,i = ax,i(U ,W), 1 ≤ i ≤ Nch, x ∈ Λ

�
. (3.2.34)

The scalar function in Eq. (3.2.28) can also depend on variables evalu-
ated at any lattice site and, moreover, on trainable parameters, such as
in PReLU [52].

3.2.6 Exponentiation layers

The L-CNN layers that have been discussed up to this point only alter the
locally transforming objects W and leave the gauge links U unchanged. A
gauge equivariant operation

E : (U ,W) → (U ′,W) (3.2.35)

needs to modify the gauge links guaranteeing that they retain their gauge
transformation behavior

TΩU
′
x,µ = ΩxU

′
x,µΩ

†
x+µ, (3.2.36)

and concurrently preserve the unitarity and determinant constraints

U ′†
x,µU

′
x,µ = 1, (3.2.37)

detU ′
x,µ = 1, (3.2.38)

for all the links in the set U ′ = {U ′
x,µ}.

The function E satisfies these properties if it acts on the links according
to

U ′
x,µ = Ex,µUx,µ, (3.2.39)

and Ex,µ is an SU(Nc) group element which transforms locally:

TΩEx,µ = ΩxEx,µΩ†
x. (3.2.40)

A possible way of constructing Ex,µ as a function of W objects is by means
of the exponential map (L-Exp)

Ex,µ(W) = exp

�
i
�
i

βµ,i [Wx,i]ah

�
, (3.2.41)



3.2. GAUGE EQUIVARIANT LAYERS 69

where βµ,i are real trainable weights with indices 0 ≤ µ ≤ D and 1 ≤ i ≤
Nch. The notation [Wx,i]ah indicates the anti-Hermitian traceless part of
locally transforming objects, which for a generic matrix X can be written
as

[X]ah =
1

2i

�
X−X†

�
− 1

2iNc
1Tr

�
X−X†

�
. (3.2.42)

The L-Exp layer (3.2.41) has local gauge transformation behaviour:

Ex,µ(TΩW) = exp

�
i
�
i

βµ,kΩx [Wx,i]ahΩ
†
x

�

=
∞�
n=0

1

n!

�
i
�
i

βµ,kΩx [Wx,i]ahΩ
†
x

�n

= Ωx

∞�
n=0

1

n!

�
i
�
i

βµ,k [Wx,i]ah

�n

Ω†
x

= Ωx exp

�
i
�
i

βµ,k [Wx,i]ah

�
Ω†
x

= TΩEx,µ(W), (3.2.43)

where we used the series expansion of the exponential map and the unitarity
of Ωx. The L-Exp operation also conserves the unitarity and determinant
constraints: ��

i

βµ,i [Wx,i]ah

�†
=

�
i

βµ,i [Wx,i]ah , (3.2.44)

Tr [Wx,i]ah = 0. (3.2.45)

The determinant constraint is a consequence of the renowned relationship
between the trace and the determinant: det eA = eTrA.

This layer therefore updates the link configuration in a way that is con-
sistent with gauge symmetry.

3.2.7 Trace layers

In the case an L-CNN is required to predict physical observables, it is conve-
nient to build a layer that automatically integrates out the group structure
and outputs a gauge invariant quantity. This can be realized by computing
the trace of the W objects and neglecting the set of gauge links. The trace
layer (Trace) is defined as

Tx,i(U ,W) = Tr [Wx,i] , (3.2.46)
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which is trivially gauge invariant

Tx,i(TΩU , TΩW) = Tr
�
ΩxWx,iΩ

†
x

�
= Tx,i(U ,W). (3.2.47)

The output of Trace are NlatNch complex numbers, which correspond to
2NlatNch real numbers:

T : (U ,W) → y ∈ R2NlatNch , (3.2.48)

which can be further processed by a CNN if the lattice structure is main-
tained, otherwise by a dense network, without ruining gauge symmetry.

3.2.8 Plaquette layers

In the tuple (U ,W) introduced in Subsection 3.2.1, the link configuration U
is the result of a Monte Carlo algorithm, as already mentioned, while the W
variables need to be computed from the gauge links. The layers presented
in this subsection and the next are used to calculate two common types of
locally transforming objects. As opposed to the layers described so far, this
type of operations is not characterized by trainable parameters and as such
can be viewed as a preprocessing step.

Here, we introduce a layer

P : (U) → (U ,W), (3.2.49)

called Plaq that computes the plaquettes (3.1.16) given the set of links U as
follows

Px,µν(U) = Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν , (3.2.50)

thus yielding W = {Px,µν}. In order to avoid redundancy, it is possible
to restrict the calculation to plaquettes with positive orientation, i.e. Ux,µν

with µ < ν.

3.2.9 Polyakov layers

Another type of loop that has already been mentioned in Section 3.1 is
the Polyakov loop, a Wilson loop that wraps around the lattice periodic
boundary. Analogously to Plaq, we define the Poly layer

L : (U) → (U ,W), (3.2.51)

as the function that computes Polyakov loops at each lattice site from the
set of gauge links U with the following operation

Lx,µ(U) =
�
k

Ux+k·µ,µ = Ux,µUx+µ,µ . . . Ux−µ,µ. (3.2.52)
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The set of locally transforming objects is therefore W = {Lx,µν}. We point
out that Polyakov loops transform locally at the starting site x because of
the periodicity of the lattice. As shown in the next Section, plaquettes and
Polyakov loops form a minimal basis to construct every possible Wilson loop
on the lattice.

3.3 Lattice gauge equivariant convolutional neural
networks

We list all the layers that have been introduced in the previous Section and
can be combined using function composition to form a gauge equivariant
neural network:

1. Gauge equivariant convolutional layer (L-Conv)

2. Gauge equivariant bilinear layer (L-Bilin)

3. Gauge equivariant activation function (L-Act)

4. Exponentiation layer (L-Exp)

5. Trace layer (Trace)

We also defined the preprocessing layers

1. Plaquette layer (Plaq)

2. Polyakov layer (Poly)

We now focus on how these layers can be assembled together into an archi-
tecture that is applicable to problems in lattice gauge theory.

A prototypical study is the prediction of physical observables, which are
gauge invariant functions of Wilson loops, as discussed in section 3.1. L-
CNNs should be able to tackle this task, which means that it should be
possible for them to realize arbitrary Wilson loops by taking the set of
gauge links U as input. This can be accomplished if we choose the initial
W variables to be the set of plaquettes. Processing the initial tuple (U ,W),
L-CNN architectures are indeed able to grow Wilson loops of any shape and
size. We illustrate the mechanism in 1+1D by considering a simple L-CNN
architecture which computes a 2× 1 Wilson loop from the set of gauge links
U :

U → Plaq → L-Conv → L-Bilin → (U ,W ′). (3.3.1)

With the first layer, the plaquettes Ux,01, the only ones available in 1+1D,
are computed at each lattice size. The tuple (U ,W = {Ux,01}) is passed
to an L-Conv layer with Nch,in = 1 input channels and Nch,out = 2 output
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channels. The learnable parameters can be adjusted to reproduce in one
channel the original plaquettes Ux,01 and in the other the plaquettes parallel
transported from x to x+ 1̂. Then, the final bilinear layer combines the two
channels into a single output channel multiplying the two plaquettes and
giving as a result a 2× 1 Wilson loop at each lattice site x.

The L-Conv+L-Bilin combination as detailed above can be used as a
building block in deeper L-CNN architectures to compute Wilson loops of
arbitrary size from elementary 1 × 1 loops. The number of times such a
combination is repeated determines the maximum loop size that can be
reached. For example, an L-Conv+L-Bilin combination with an appropriate
kernel size in the convolution can double the area of a loop, such that two
L-Conv+L-Bilin layers are required for 2 × 2 loops, three L-Conv+L-Bilin
layers can realize 2 × 4 or 4 × 2 loops and four L-Conv+L-Bilin layers are
necessary for 4× 4 loops.

Although the method described above can be extended to the compu-
tation of arbitrarily large Wilson loops, not all loops can be realized this
way. Polyakov loops, for example, are an exception, and the reason lies in
their different topology: Wilson loops can be contracted to a single point,
while Polyakov loops cannot. This issue can be conveniently circumvented
by using as input W variables Polyakov loops, precomputed with the Poly
layer.

In addition to taking care of the loop shape and size, L-CNNs are also
able to provide non-linearity through the use of gauge equivariant activa-
tion functions in a similar fashion to how non-linear functions can be ap-
proximated in traditional neural networks. By analogy, the layer sequence
L-Conv+L-Bilin+L-Act allows to express a wide range of gauge equivariant
non-linear functions in lattice gauge theory.

An L-CNN architecture that can approximate a gauge invariant observ-
able O[U ] is given by

U → Plaq → (L-Conv → L-Bilin → L-Act)n

→ Trace → CNN → O[U ], (3.3.2)

where CNN indicates a traditional convolutional neural network and (. . . )n

denotes the composition of n L-Conv+L-Bilin+L-Act blocks stacked one
after the other. The Trace layer makes the data gauge invariant before it
enters the CNN. If translational symmetry is relevant for the prediction of
the observable, we recommend using a translationally equivariant CNN as
described in Chapter 2, otherwise the CNN could even be replaced by a
generic dense network without destroying gauge symmetry. An example of
such an L-CNN architecture is shown in Fig. 3.1.

In contexts such as classical time evolution [128] or gradient flow [129],
the set of gauge links U are required to undergo modifications, which is
possible via the application of L-Exp. The W variable can be updated
accordingly in the following Plaq or Poly layer.
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Plaq, Poly

U
gauge links

(input)

(U ,W)

L-Conv

L-Bilin

L-Conv

L-Bilin

L-Act, (L-Exp)

Trace

gauge inv. output

CNN

predictions
(output)

Figure 3.1: An example of L-CNN architecture. Using gauge links U , locally
transforming objects W are computed via the Plaq and Poly layers. The
tuple (U ,W) is the input of the L-CNN. A gauge-preserving convolutional
operation is performed by L-Conv using parallel transporters to connect
nearby W objects (green dots) along the coordinate axes to a specific lat-
tice site (red dot). The output of such a layer (blue) is combined with the
original one (red) by L-Bilin, which multiplies locally transforming objects
in a gauge-equivariant manner. The stacked configuration sheets signal that
L-Bilin can act on a preset number of channels. Non-linearity can be intro-
duced via L-Act, while modifications of U are performed by L-Exp, both in
a gauge-equivariant way (green layer). The group structure is integrated out
with a Trace layer, and its gauge invariant output can be further processed
by a traditional CNN. The image displays 1+1D configurations but there is
no restriction to the number of dimensions. Image from [2].
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(a)

=

(b)

×
(c)

Figure 3.2: Sketch of the proof that L-CNNs can generate arbitrarily sized
Wilson loops. An arbitrary Wilson loop (a) can be viewed as the boundary
of a surface that can be tessellated into n tiles, each of which has a 1× 1
unit lattice area. The initial point of the loop is indicated by a blue dot.
This untraced Wilson loop can be decomposed into another one with n− 1
tiles (b) and the loop surrounding the removed tile connected to the starting
point via an appropriate path (c). This path has to run along the loop (b)
and can be generated by consecutive L-Conv layers. Image from [2].

We need to point out that depending on the problem, other gauge equiv-
ariant layers can be introduced. For example, in [89] and [90] the coupling
layer of a normalizing flow is made gauge equivariant by imposing it to be
dependent on gauge invariant objects, specifically traced plaquettes made up
by links that are not being updated by said coupling layer. An adaptation of
the L-Conv operation has also been used in [84] and [85] for the application
of gauge equivariant neural networks to multigrid preconditioners for the
Dirac operator [130], together with gauge equivariant pooling and unpool-
ing layers that are combined with subsampling such that gauge symmetry
is respected. A generalization of L-CNN layers (also including pooling op-
erations) to preserve global symmetries as in the G-CNN construction [60]
is given in [83].

3.4 Proof for generation of arbitrary Wilson loops

We provide a sketch of a proof by induction that L-CNNs can generate
arbitrary Wilson loops, which is displayed in Fig. 3.2.

By virtue of the non-Abelian version of Stokes’ theorem [131], it is possi-
ble to associate a contractible Wilson loop with its enclosing surface, which
can be tessellated into area units, i.e. plaquettes. Such a surface is not unique
in higher dimensions, hence a Wilson loop can be equivalently described by
different tessellations. In order to be able to represent any Wilson loop, on
topologies that are not simply connected it is necessary to include in the set
of W loops that can not be contracted to a point, such as Polyakov loops.

An arbitrary Wilson loop can be decomposed into the same Wilson loop
with a missing tile and another one, such that their product is the original
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Wilson loop. By means of the iterated application of L-Convs, it is always
possible to generate the path that connects the origin (marked with a blue
dot in Fig. 3.2) with the removed plaquette, which can be computed via a
Plaq layer. The Wilson loop obtained this way can be multiplied by the
Wilson loop with the missing tile in a L-Bilin layer. This argument is valid
for any starting Wilson loop larger than a plaquette. This guarantees that L-
CNNs can in principle construct arbitrarily sized Wilson loops. In L-CNNs,
generic Wilson loops are combined more efficiently by taking products of
two larger sub-loops, instead of always multiplying with a loop of unit area.

The possibility of generating any closed loop enables the reconstruction
of the complete gauge connection up to gauge transformations [132, 133].
With the usage of an L-Act layer that depends on the trace of loops, an
L-CNN is therefore able in principle to approximate arbitrary non-linear
functions of Wilson loops. Recalling the universality of CNNs [47, 48], L-
CNNs can be seen as universal approximators of functions on the lattice.

3.5 Computational experiments

With an approach similar to the one in Chapter 2, we want to demonstrate
the advantage of designing neural networks that preserve gauge symmetry
to tackle problems in lattice gauge theory. Specifically, we compare the
performance of L-CNNs with traditional CNN models on regression tasks
consisting in the prediction of local gauge invariant observables Ox. An
observable that we consider is the real value of traced Wilson loops, given
by

W (m×n)
x,µν =

1

Nc
ReTr

�
U (m×n)
x,µν

�
(3.5.1)

where U
(m×n)
x,µν refers to an m× n Wilson loop in the µν plane:

U (m×n)
x,µν = Ux,m·µUx+m·µ,n·νU

†
x+n·ν,m·µU

†
x,n·ν . (3.5.2)

The concatenation of gauge links Ux,n·µ is expressed in Eq. (3.2.14). These
observables are defined at every lattice site and are gauge invariant. The
rationale for these experiments is that relevant observables in lattice gauge
theory can be represented by non-linear functions of Wilson loops of arbi-
trary size.

Another observable that we focus on is the topological charge density qx.
The definition used here is the plaquette discretization given by Eq. (3.1.24).

3.5.1 Datasets

This section provides detailed information about the datasets to which the
neural networks have access. The experiments are conducted on data gen-
erated in 1+1D and 3+1D with various lattice sizes and coupling constants
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Table 3.1: Datasets for regression tasks in 1+1D and 3+1D. The coupling
constant β ranges from βmin = 0.1 to βmax = 6.0, with intermediate values
separated by constant steps of Δβ = (βmax−βmin)/Nβ , with Nβ = 10. Table
from [2].

1+1D

Training Validation Test

Lattice
Nt ×Ns

8×8 8×8 8×8, 16×16,
32×32, 64×64

Examples 104 103 103 per lattice

Labels W
(1×1)
x,01 , W

(1×2)
x,01 , W

(2×2)
x,01 , W

(4×4)
x,01

Coupling β ∈ {0.1, . . . , 6.0}
3+1D

Training Validation Test

Lattice
Nt ×N3

s

4×83 4×83 4×83, 6×83,
6×123, 8×163

Examples 104 103 103 per lattice

Labels W
(2×2)
x,12 , W

(4×4)
x,12 , qplaqx

Coupling β ∈ {0.1, . . . , 6.0}

β using an SU(2) Markov chain Monte Carlo (MCMC) code, detailed in
Appendix A. The coupling β is related to the Yang-Mills coupling g in the
continuum by

β

2Nc
=

1

g2
. (3.5.3)

In order to achieve a higher computational efficiency, the set of 1 × 1
loops was precomputed and chosen as the locally transforming variables
W = {Ux,µν} that is part of the input tuple (U ,W) for the networks. In
the following regression problems, such tuples have to be mapped to the

following gauge invariant observables: W
(1×1)
x,µν , W

(1×2)
x,µν , W

(2×2)
x,µν , W

(4×4)
x,µν ,

and topological charge qplaqx . The indices µν take specific values: in 1+1D

all loops lie in the tx plane, therefore we compute W
(m×n)
x,01 . In 3+1D we

choose the xy plane for all loops, thus W
(m×n)
x,12 . Furthermore, the definition

of the topological charge in the form of Eq. (3.1.24) is only valid in 3+1D
and is therefore only included in the 3+1D datasets.

In order to create the datasets, lattice configurations are randomly ini-
tialized and then undergo 2×103 sweeps such that the system reaches equilib-
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rium. The tuple (U ,W) is then saved together with the desired observables
{Oi} every 102 sweeps. In both the 1+1D and the 3+1D case, the training
set consists of 104 samples and the validation set of 103 samples, which are
generated only for the smallest lattice size. The larger lattice sizes are used
only for the test sets, while the 10 different values of the coupling constant
β are employed both during training and testing. All details are reported in
Table 3.1.

In the next two sections we discuss the hyperparameter choices made for
the comparison between L-CNN architectures and traditional CNNs, which
are used as baseline models that do not respect gauge symmetry by design.

3.5.2 L-CNN networks

The fully detailed composition of L-CNN architectures is contained in Ta-
bles B.1 and B.2 in Appendix B. In this section, we will go over their most
relevant characteristics.

As mentioned in subsection 3.2.4, L-Conv and L-Bilin layers are com-
bined into the L-CB operation. The architectures feature up to four L-CB
layers stacked one after another, followed by a Trace layer and a single lin-
ear layer applied individually at each lattice site (corresponding to a 1 × 1
convolution [134]), with a total number of weights of varying from ≈ 100 to
≈ 40 000. More specifically, we employed only one L-CB layer for the small-
est Wilson loop, W (1×1). The prediction of larger Wilson loops requires an
increasing number of L-CB operations. Given that an L-CB layer doubles
the maximum possible loop area, the repetition of n L-CB layers that take
plaquettes as initial input allows to predict loops of area 2n. In order to
generate loops with a size different from powers of 2, it is possible to store
loops of different sizes in different channels. As an illustration, construct-
ing 3 × 3 loops can be done by combining loops in the following sequence:
1× 1 → (1× 1, 1× 2) → (1× 1, 1× 2, 2× 2) → (1× 3, 2× 3) → 3× 3, where
(. . . , . . . ) indicates multiple channels. Compared to the general structure
proposed in (3.3.2), L-Act layers are superfluous for the observables fea-
tured here. The L-CNN output is defined at every lattice site, allowing a
pointwise comparison with the ground truth. We have observed that leaving
out the lattice average, i.e. a GAP layer, leads to much easier convergence of
the networks during training. The inclusion of a GAP makes training much
harder, often leading to models that do not converge.

3.5.3 Baseline networks

The baseline models are CNNs that break gauge symmetry, whose details are
displayed in Tables C.1, C.2 and C.3 in Appendix C. These networks consist
of stacks of two-dimensional convolutional layers followed by an activation
function, a GAP at the end of the convolutional part and a dense part leading
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to the predictions. With the aim of comparing the architectures fairly, the
number of trainable parameters of the CNNs is chosen similar to L-CNN
architectures, such that their size and their ability to make predictions is
in principle comparable. The amount of convolutions ranges from one or
two up to six, and the number of trainable parameters varies from ≈ 300 to
≈ 100 000. Like the L-CNN networks, the CNN models are translationally
equivariant, which is achieved by choosing a stride of one in all convolutions,
as discussed extensively in Section 2.2. Also, periodic boundary conditions
are satisfied imposing circular padding. This choice is justified by recalling
that lattice gauge theory is symmetric under translations. We also note that
both architecture types can be applied to different lattice sizes.

Another aspect we considered in order to ensure a fair comparison con-
cerns the input of the CNNs. While in principle providing the networks only
with gauge links U is sufficient, one might argue that L-CNNs are favored
because they have also access to plaquettes in the input layer. For this rea-
son, the input of the baseline networks also includes plaquettes. Empirically,
the input tuple for these architectures that leads to the best performances
is (U ,W,W†), which is the one assumed to be used for all the experiments
with baseline models.

We observed that CNNs without a GAP layer performed much worse, in
contrast to the results found for L-CNNs. In order to enable a comparison,
we take the lattice average over the final output layer of the L-CNN models.

3.5.4 Training details

For both architecture types, we reduce the impact of random initializations
by training ten models with different initial random weights. In all tasks,
we use the AdamW optimizer with no weight decay and early stopping. In
1+1D, the choices for the learning rate, the maximum number of epochs
and the patience are chosen to be respectively 3 × 10−2, 100 and 25, while
for L-CNNs these number are different across the various tasks: for the
prediction of 1× 1 and 1× 2 Wilson loops, the learning rate, the maximum
number of epochs and the patience are respectively equal to 3 × 10−3, 20
and 5; for 2 × 2 and 4 × 4, these hyperparameters are set to 1 × 10−3, 100
and 25 respectively.

Given the higher computational cost in 3+1D, training is run only for
five models of the architecture reported in table B.2. For the prediction of
W (2×2) and W (4×4), the learning rate is set to 3× 10−3, while it is equal to
3× 10−4 for the topological charge QP .

For all architectures in 1+1D, the batch size is always set to 50, and it
is reduced to 10 in 3+1D because of memory limits.
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Figure 3.3: Scatter plot showing predictions versus ground truth of best
L-CNN and CNN models for traced Wilson loops of various sizes tested on
8 × 8 lattices. The dashed line represents points where perfect predictions
lie. The performance of the traditional CNN model strongly deteriorates as
the loop size increases, to the point where predictions of 4× 4 loops mostly
lie close to the average of the training set, signaling that the CNNs did not
learn any meaningful physical information. On the contrary, the L-CNN
model scores a very low MSE (shown at the top left of each plot) for every
loop size. Image from [2].

3.5.5 Traced Wilson loops in 1+1D

The first task we investigate is almost trivial: predicting the real value of
the traced 1× 1 Wilson loop as in Eq. (3.5.1). Since part of the input data
consists of all possible 1 × 1 Wilson loops, the only required computations
are first to perform the trace operation and then to take its real part.

Scatter plots comparing predictions to true values on 8× 8 and 64× 64
are shown in the top left plot of Figs. 3.3 and 3.4 respectively. The models
chosen for these plots are the best models based on validation loss on 8× 8
lattices. It is clear that both the L-CNN and the CNN models can perform
the task of computingW (1×1), although the L-CNN performs better by a few
orders of magnitudes in terms of MSE. This should not come as a surprise,
considering that the L-CNN architecture includes a Trace layer, whereas the
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Figure 3.4: Scatter plot showing predictions versus ground truth of best
L-CNN and CNN models for traced Wilson loops of various sizes tested on
64 × 64 lattices. This is the same comparison made in Fig. 3.3, but on the
larger lattice size available in the test set. Similar conclusions to the previous
scatter plot can be drawn. Each cluster visible in the plots is related to a
specific value that the coupling constant β takes. Image from [2].
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baseline model has to learn this operation during training. It should also be
stressed that both architectures generalize well across different lattice sizes,
even though training has only been performed on the smallest lattice size. As
in Chapter 2, our models do not need to be retrained when tested on larger
lattices, and this applies to all tasks analyzed in this section. More details
about the results obtained by the different architectures in the prediction of
W (1×1) are provided in Appendix D in Table D.1.

Traced Wilson loops of sizes 1×2, 2×2 and 4×4 offer more sophisticated
regression tasks. In this case, we try different L-CNN architectures that are
small, medium and large in terms of number of parameters for each task (see
Table B.1). Analogously to W (1×1), we display a comparison for these larger
loops in the top right and bottom plots of Figs. 3.3 and 3.4, where CNNs
clearly do not solve adequately the more complicated task of computing
larger Wilson loops. Conversely, all three L-CNN architectures perform well
on the 1 × 2 and 2 × 2 tasks, and larger L-CNN models perform generally
better in the 4×4 regression task. In some cases, the models do not converge
during training, which shows why it is essential to repeat the training process
multiple times with different random initializations of the weights. Another
noteworthy observation is that baseline models struggle to predict negative
values of traced Wilson loops, as can be seen in the top right and bottom
left plots of Fig. 3.3 for W (1×2) and W (2×2). In the case of W (4×4), the
CNN seems to collapse and its predictions lie very close to the training set
average. This shows that the baseline architecture is unable to learn any
meaningful connection between the input and output data.

We report the performance of the different architectures used for the
regression tasks with Wilson loops in Appendix D in Tables D.1, D.2, D.3
and D.4.

3.5.6 Traced Wilson loops in 3+1D

The Wilson loop regression task is further complicated by moving from
1+1D to 3+1D lattices. In the previous section we have already demon-
strated that traditional CNNs are not able to satisfactorily learn even mod-
erately sized Wilson loops in 1+1D. Furthermore, four-dimensional convo-
lutional layers are currently not built-in modules in PyTorch, leading to
a suboptimal formulation of traditional CNN architectures in 3+1D. We
therefore focus only on testing L-CNN models in this section.

The regression task is very similar to the one in 1+1D: we train models
to predict the value of traced 2× 2 and 4× 4 Wilson loops. One immediate
complication that arises when going from 1+1D to 3+1D lattices is that
memory requirements grow quickly. If we consider a D + 1-dimensional
lattice with Ns lattice sites for each spatial coordinate and Nt lattice sites
in the temporal one, the amount of real numbers in the input layer is (the
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first summand coming from the links, the second from the loops)

Ninput = 2N2
c NtN

D
s

�
(D + 1) + (D + 1)

D

2

�
, (3.5.4)

and we see that a single sample of the 4 · 83 training set is larger by two
orders of magnitude compared to a sample of the 8 · 8 training set. As
a result, training a large L-CNN architecture takes longer, which is why
the batch size, the total number of epochs and the number of differently
initialized instances are reduced compared to the 1+1D case. Test results
are summarized in Appendix D in Table D.5. Interestingly, smaller archi-
tectures seem to perform better in 3+1D compared to larger architectures.
Overall, it is clear that L-CNNs are generally able to represent traced Wil-
son loops in higher dimensions. We also observe that successfully trained
models generalize across different lattice sizes in 3+1D.

We conclude by mentioning that it may seem trivial for L-CNNs to
solve regression tasks involving Wilson loops, since they are intrinsically
constructed to form arbitrarily sized loops. As extensively discussed in the
supplementary material of [2], the number of possible loops grows exponen-
tially with their perimeter, therefore problems where the contribution from
different Wilson loop shapes is unknown are challenging. An example is
given by the so-called improved actions, which have been conceived to alle-
viate the influence of discretization effects through the inclusion of variously
sized Wilson loops [135–137]. In particular, for fixed-point actions the renor-
malization group is used to remove lattice artifacts to obtain, for example,
on-shell quantities [138]. The application of L-CNNs to a fixed-point action
in SU(3) has improved the previously existing state-of-the-art results [86].
Another situation in which the contribution of various Wilson loops has
to be determined is represented by trivializing maps, which map a theory
to its strong-coupling limit, reducing critical slowing down. The approach
suggested by Lüscher in [139] can be extended order by order identifying
the relevant loops and computing their coefficient, an approach that can be
systematized as proposed in [94]. In principle, L-CNNs can be used in this
approach, as we will describe in Chapter 4.

3.5.7 Topological charge in 3+1D

The final observable we consider is the topological charge density qplaqx in
the plaquette approximation (see Eq. (3.1.24)). Since the numerical values
of this observable are rather small, it is reasonable to rescale the dataset by
means of a constant factor, i.e.

q̃plaqx = Cqplaqx , C > 0, (3.5.5)

in order to facilitate training. For this experiment, we employ C = 100. In
the following, QP will denote the topological charge, which is equal to the
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sum over the lattice of the charge density

QP =
�
x

qplaqx . (3.5.6)

The topological charge density is rather simple to describe in compar-
ison to larger Wilson loops: it can be written as a linear combination of
multiplications of two 1×1 Wilson loops. This regression task can be solved
by relatively shallow L-CNN models. The architecture employed is reported
in Table B.2, and its results are shown in Table D.5. Only one of the five
randomly initialized models did not converge during training. In all other
cases, we observed convergence to solutions which can predict the topolog-
ical charge to a high degree of accuracy. These results are in line with the
MSEs exhibited by L-CNN architectures in the two-dimensional tasks.

Having at our disposal the topological charge enables us to perform an-
other more elaborated test than just a performance check with the MSE.
A typical lattice study is the evolution of QP under Wilson flow or more
generally gradient flow [121, 129]. In the continuum limit, the topological
charge takes integer values due to restrictions that arise from the topology.
We design a Wilson flow starting from configurations Ux,µ obtained from
the MCMC simulation in Appendix A and then moderately smeared, such
that the initial condition for the Wilson flow is

Ux,µ(τ = 0) = Ux,µ, (3.5.7)

with τ denoting the auxiliary Wilson flow time. The update procedure
employed to realize Wilson flow is

Ux,µ(τ +Δτ) = exp
�
iΔτ ωx,µ(τ)

�
Ux,µ(τ), (3.5.8)

where ω is an algebra element given by

ωx,µ(τ) = −
�
|ν|

[Ux,µν(τ)]ah , (3.5.9)

with the sum
 

|ν| running over the positive and the negative direction of the
axis ν and the anti-Hermitian is computed as in Eq. (3.2.42). The steps Δτ
are chosen to be small, leading to a gradual decrease of the Wilson action:

SW [U(τ +Δτ)] < SW [U(τ)], Δτ ≪ 1. (3.5.10)

Using Δτ = 0.005 and training uniquely on the un-flowed configurations
Ux,µ with a lattice size of 4× 83, the L-CNN models reach a high degree of
accuracy on 8× 243 lattices, as can be seen in Fig. 3.5.

We notice that as the configurations are flowed the values of the topo-
logical charge get closer to integers, which is the expected behavior, whose
details are related to the lattice size and the initial condition at τ = 0.
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Figure 3.5: Predictions of the best L-CNN model for the topological charge
on an 8× 243 configuration at 2/g2 = 0.2 evolved with Wilson flow. MC
indicates the Wilson flow obtained with Monte Carlo updates. Image from
[2].



Chapter 4

Neural gradient flow

In this chapter, we design a method for generating configurations distributed
according to a given action starting from a set of random configurations. We
describe how the mapping between the initial and the final configurations
can be approximated by solving a differential equation with neural networks,
specifically with L-CNNs in the context of gauge theories. Since the initial
configurations are random, the mapping amounts to a trivializing flow, as
introduced by Lüscher in [139]. The advantage of this framework is that
sampling new configurations is very cheap once the neural network has been
successfully trained. The differential equation that is solved is equivalent
to a gradient flow [121, 129] type of equation, which is why we call this
technique neural gradient flow. We check the ability of a neural network
to solve such an equation on a toy model consisting of single-link configu-
rations in SU(2). We employ a simple network that mimics the behavior
of L-CNNs and test it initially on the same interval of gradient flow time
used during training, then we extend the test to much later times. Finally,
we discuss the adjoint sensitivity method, which avoids memory saturation
when performing backpropagation, and give our derivation in SU(N).

4.1 Adaptation of NODEs to lattice gauge theory

The starting point of this chapter is a technique that was proposed in [140].
It aims to solve the first order ordinary differential equation for the time-
dependent vector x(t) ∈ RD

dx

dt
= f(x(t), θ, t), (4.1.1)

where the function f(x(t), θ, t) is not known a priori, hence its parameters
θ have to be optimized to describe the dynamics of the vector. A neural
network can be used to represent f , which is why this setup takes the name
neural ordinary differential equation (NODE). It is possible to interpret

85
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NODEs as a special case of residual networks [127] in the limit of the discrete
step between each layer going to zero, becoming the continuous time t in
Eq. (4.1.1). Given an input state x0 = x(t0) as initial condition at t = t0,
we can formally solve the NODE integrating Eq. (4.1.1):

x(T ) = x0 +

� T

t0

dt f(x(t), θ, t). (4.1.2)

Common ODE solvers such as Euler and Runge-Kutta (see e.g. Appendix
A.7.1 of [141]) can be employed to get the prediction x(T ) at the final time T .
In order to be able to train the network, we can provide a dataset containing
Nsamples initial states xi

0 = xi(t0) and target final states x̃i
T , then use the

MSE (cf. with Eq. (2.4.5))

L(θ) = 1

Nsamples

Nsamples�
i=1

(x̃i
T − xi(T ))2 (4.1.3)

as loss function to optimize the weights θ. If other intermediate states of
the actual dynamics x̃i

j at time tj are known, it is possible to include in the
MSE also the discrepancies between them and the predictions the network
yields, thus leading to

L(θ) = 1

Nsamples

Nsamples�
i=1

n�
j=1

(x̃i
j − xi(tj))

2, (4.1.4)

with tn = T . Resorting exclusively to the final state using the loss in
Eq. (4.1.3) requires that the dataset provides sufficient information for a
successful reconstruction of the underlying dynamics.

Another option is to treat Eq. (4.1.1) as a continuous normalizing flow [140],
where the goal is the approximation of a probability distribution that can
be achieved for example using the Kullback-Leibler (KL) divergence

KL(q(x) || p(x)) =
�

dx p(x) log
p(x)

q(x)
(4.1.5)

between the target distribution p(x) and the probability distribution of the
model q(x).

As already mentioned in Chapter 3, in lattice gauge theory expectation
values of observables are calculated via the path integral

⟨O⟩ = 1

Z

�
D[U ]O(U)e−S[U ], (4.1.6)

with Z being the partition function

Z =

�
D[U ]e−S[U ]. (4.1.7)



4.1. ADAPTATION OF NODES TO LATTICE GAUGE THEORY 87

If the links are redefined as U = F(V ), the formula for the expectation value
becomes

⟨O⟩ = 1

Z

�
D[V ]O(F(V ))e−SF [V ], (4.1.8)

where the action SF [V ] incorporates the change of measure:

SF [V ] = S(F (V ))− log det J(F), (4.1.9)

with J(F) indicating the Jacobian. The transformation F is said to be a
trivializing map if SF [V ] is equal to a real-valued constant. In fact, the
probability distribution for the redefined action is given by

p(V ) =
1

Z
e−SF [V ], (4.1.10)

which is also constant, therefore it is possible to compute expectation values
via (4.1.8) sampling from a uniform distribution. A model that approxi-
mates the transformation F(V ) is characterized by a probability distribu-
tion q(V ) and can learn to reproduce a uniform distribution using the KL
divergence (4.1.5), which is the approach used in [94] to find trivializing
maps.

In order to find trivializing maps, Lüscher proposed to solve an equiv-
ariant gradient flow equation that can be written as

dUx,µ(τ)

dτ
= iHµ[Ux,µ(τ), τ ]Ux,µ(τ), (4.1.11)

where Ux,µ is a configuration of SU(Nc) gauge links and τ is the gradient
flow time. It is natural to parameterize Hµ as the gradient of the flow action
S̃ (hence the name gradient flow), i.e.

iHµ[Ux,µ(τ), τ ] = −∂x,µS̃[U(τ)], (4.1.12)

where we introduced the group derivative

∂x,µf(U) = ta
df(eϵt

a
Ux,µ)

dϵ

!!!!
ϵ=0

, (4.1.13)

with ta being the group generators. The action can be written as a linear
combination of Wilson loops

S̃[U, τ ] =
�
i

ci(τ)Wi(U), (4.1.14)

where the coefficients ci have to be determined. In [139], this action was
expanded as

S̃[U, τ ] =

∞�
n=0

τnS̃(n) (4.1.15)
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in the flow time τ ∈ [0, 1], and the leading order S̃(0) and its first correction
S̃(1) were calculated analytically. In [94], using a predetermined set of loops,
the coefficients ci were machine-learned as a function of the flow time. The
ability of L-CNNs to generate in principle any Wilson loop allows even more
flexibility in tackling this problem. We therefore intend to solve the following
flow equation

dUx,µ(τ)

dτ
= iHµ[Ux,µ(τ), θ, τ ]Ux,µ(τ), (4.1.16)

where Hµ[U(τ), θ, τ ] is an L-CNN parametrized by the learnable parameters
θ. We can show that H needs to be traceless and Hermitian. This derives
from the requirement that the links remain in the group during the flow.
The unitarity constraint

U(τ)U †(τ) = 1 (4.1.17)

needs to be preserved at every flow time τ . We dropped the indices x and µ
for simplicity. Taking the derivative of both sides of the equation, we obtain

d

dτ
(UU †) =

dU

dτ
U † + U

dU †

dτ
= 0, (4.1.18)

where the dependence on time is implied. The Hermitian of Eq. (4.1.16) is

dU †

dτ
= −iU †H†. (4.1.19)

When inserted in Eq. (4.1.18), we obtain

iHUU † − iUU †H† = 0, (4.1.20)

which can be simplified using Eq. (4.1.17), bringing us to the Hermiticity of
H, i.e.

H = H†. (4.1.21)

The other property that has to be maintained under neural gradient flow is
that the links must be represented by special matrices:

detU(τ) = 1. (4.1.22)

We can recall Jacobi’s formula, which relates the determinant of a square
matrix A(t) dependent on a real variable t with its trace as follows:

d

dt
(detA(t)) = detA(t) Tr

�
A−1(t)

dA(t)

dt

�
. (4.1.23)

Jacobi’s formula for the link variable U(τ) gives

d

dτ
(detU(τ)) = detU(τ) Tr

�
U−1(τ)

dU(τ)

dτ

�
. (4.1.24)
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Using the specialness of U(τ) (4.1.22) and Eq. (4.1.16), we find that

0 = 1 · Tr �U−1(iHU)
�
, (4.1.25)

where we imply the dependence on time. Since the trace is cyclic, U and
U−1 simplify and we are left with the tracelessness of H:

TrH = 0. (4.1.26)

We can also derive the transformation property of H during gradient flow.
Let us consider the formal solution of Eq. (4.1.16):

Ux,µ(τ) = Ux,µ(τ0) +

� τ

τ0

dτ ′
�
iHµ(τ

′)Ux,µ(τ
′)
�
. (4.1.27)

We can apply a time-independent left transformation Ωx ∈ SU(Nc) and a

time-independent right transformation Ω†
x to both sides obtaining

ΩxUx,µ(τ) Ω
†
x+µ =ΩxUx,µ(τ0) Ω

†
x+µ

+ i

� τ

τ0

dτ ′
�
ΩxHµ(τ

′) Ω†
xΩx Ux,µ(τ

′) Ω†
x+µ

�
, (4.1.28)

where we inserted the product Ω†
xΩx = 1 between H and U . This expres-

sion informs us that if we want the transformation property of the links in
Eq. (3.1.14) to hold for every τ , H has to be a locally transforming object,
meaning that it transforms according to

TΩH = ΩxH Ω†
x. (4.1.29)

Given the properties just discussed, H can be modeled with an L-CNN,
in particular by taking from the output tuple (U ′,W ′) the objects of typeW ′,
since they follow the same gauge transformation of H, namely Eq. (3.2.1).
The approach we propose to train such an L-CNN is to generate a dataset
with initial gauge link configurations U i

x,µ,0 = U i
x,µ(τ0) and target output

configurations Ũ i
x,µ,T , and then make use of the loss function

L(θ) = 1

Nsamples

�
x,µ,i

∥Ũx,µ,T − U i
x,µ(T )∥2, (4.1.30)

to minimize the distance between the target configurations and the predicted
configurations U i

x,µ(T ). We use the Frobenius norm to compute matrix
distances. For a matrix A ∈ Cn×n with elements alm it is defined as

∥A∥2 =
n�

l,m=1

|alm|2. (4.1.31)
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In order to perform the evolution of the links, we need to solve the
integral in Eq. (4.1.27). Standard ODE integrators are not suited to compute
trajectories on the SU(Nc) manifold. Instead, we resort to the exponential
map, which we apply iteratively according to

U i
x,µ(τj+1) = exp

�
iHµ[U

i(τj), θ, τj ]Δτ
�
U i
x,µ(τj). (4.1.32)

Since H is traceless and Hermitian, we can view it as an su(Nc) algebra el-
ement, which the exponential map projects onto SU(Nc), thus guaranteeing
that the links are flowed on the SU(Nc) manifold.

4.2 Single SU(2) link toy model

We test the framework delineated in the previous section on a toy model
consisting of one SU(2) link governed by the action

S[U ] = −ReTr(U2). (4.2.1)

The input configurations are randomly distributed in such a way that the
SU(2) manifold is sufficiently well covered, as shown in the left plot of
Fig. 4.1. In order to get the target configurations, we flow the initial condi-
tions according to the action. This can be done introducing an infinitesimal
variation of the link

δU = iδAU, (4.2.2)

and calculating the corresponding variation of the action

S[U + δU ] = −ReTr((U + δU)2)

= −ReTr(U2 + δU U + UδU) +O(δU2)

= −ReTr(U2 + 2δU U) +O(δU2)

= S[U ] + δS[U, δU ] +O(δU2), (4.2.3)

which can be written explicitly as

δS[U, δU ] = −2ReTr(δU U)

= −2ReTr(iδAU2). (4.2.4)

Given the three Lie algebra generators ta = σa/2 and Pauli matrices σa

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�
, (4.2.5)

we can write δA = δAa ta and rework the variation of the action as

δS[U, δA] = −2Re
�
δAaTr(ita U

2)
�

= 2δAa Im
�
Tr(ta U

2)
�
, (4.2.6)
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where repeated indices are intended to be summed over and we also used
Re(iw) = −Imw for a complex number w. We have thus obtained the
variation of the action in terms of the infinitesimal coefficients δAa

δS[U ]

δAa
= 2Im

�
Tr(ta U

2)
�
. (4.2.7)

This term can be interpreted as the force, and, analogously to Lüscher’s
setup provided by Eqs. (4.1.11) and (4.1.12), we can write the flow as

dU

dτ
= ita

δS[U ]

δAa
U(τ). (4.2.8)

This differential equation can be solved analogously to Eq. (4.1.32) as

U(τj+1) = exp

�
ita

δS[U ]

δAa
Δτ

�
U(τj) (4.2.9)

in the limit of Δτ → 0.

Summarizing, the input of the network is a set of approximately uni-
formly distributed SU(2) matrices U i

0 and the target is the set of flowed ma-
trices Ũ i

T . The action (4.2.1) is characterized by two minima, i.e. ±1, which
are the elements towards which Eq. (4.2.9) flows the initial links. More pre-
cisely, the link flows towards +1, which we call north pole, if TrU > 0, while
if TrU < 0 the dynamics pushes the link closer to the south pole −1. Links
with TrU = 0 are unstable stationary states. L-CNNs can reconstruct the
dynamics of the links via Eq. (4.1.32), and given its similarity to Eq. (4.2.9),
it is clear that the objective of the network is to learn the force.

A visualization of a dataset SU(2) is not immediate, but we adopt a
projection onto the three-dimensional unit sphere with the following steps.
First, we rewrite the matrix U as a linear combination of the identity and
the Pauli matrices:

U = u01+ iσaua. (4.2.10)

Since the Pauli matrices are traceless and satisfy the anticommutation rela-
tion

{σi, σj} = 2δij1, (4.2.11)

the coefficients uk, with k ∈ {0, 1, 2, 3} can be found by

u0 =
1

2
Tr (U), ui =

1

2i
Tr (Uσi), i ∈ {1, 2, 3}. (4.2.12)

The group SU(2) is characterized by three degrees of freedom, which suggests
that these coefficients are subject to a constraint. Indeed, the matrix U can
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be rewritten via the exponential map and its power series as

U = exp (iAata)

=
∞�
n=0

(iAata)
n

n!

=
∞�
n=0

(−1)n(Aata)
2n

2n!
+ i

∞�
n=0

(−1)n(Abtb)
2n

(2n+ 1)!
Actc

=

∞�
n=0

(−1)n(A2 )
2n

2n!
1+ i

∞�
n=0

(−1)n(A2 )
2n+1

(2n+ 1)!
eaσa

= cos

�
A

2

�
1+ i sin

�
A

2

�
eaσa, (4.2.13)

where we have introduced A =
√
AaAa and ea = Aa/A (see derivation e.g.

in Appendix C of [142]). Most of the generators were simplified by the
property 4t2a = 1. We can now equate this result with the coefficients above,
obtaining

u0 = cos

�
A

2

�
, ua = sin

�
A

2

�
ea, a ∈ {1, 2, 3}. (4.2.14)

Summing over the square of the coefficients, it follows the group constraint

u20 + uaua = 1. (4.2.15)

Moreover, we can see that each parameter is bounded:

−1 ≤ uk ≤ 1 k ∈ {0, 1, 2, 3}. (4.2.16)

We now slightly modify the parametrization by normalizing u0, u1 and u2:

ũj = uj/
�

u20 + u21 + u22, j ∈ {0, 1, 2}. (4.2.17)

With this choice, the triple {ũ0, ũ1, ũ2} lies on the three-dimensional unit
sphere, and the remaining parameter u3 is associated with a color map,
as shown in Fig. 4.1. In the left plot, a subset of the initial matrices is
visualized, and on the right plot we see the outcome under the effect of
Eq. (4.1.32). Choosing ũ0 as the vertical axis, allows to identify U = +1
with the north pole and U = −1 with the south pole, while matrices for
which TrU = 0 lie on the equator.

Since for this problem configurations contain only one link, it is not
clear how to define locally transforming objects that represent the input of
an L-CNN. For this reason, we design a network which guarantees that the
flowed matrices stay on the SU(2) manifold. The first step to realize it is
the separation of U into its real and imaginary parts, which represent the
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Figure 4.1: Projection on the 3D unit sphere of 1 000 matrices taken from the
dataset. Left: visualization of the initial conditions U i

0. Right: visualization
of the target matrices Ũ i

T , resulting from the application of gradient flow
to the initial conditions according to the action S[U ] = ReTr (U2) up to
T = 1. Image from [3].

input of a dense network with real weights. Its output consists of eight real
numbers that are assembled to form a complex matrix. This matrix is in
general neither special nor unitary, so some kind of projection is needed. We
make use of Eq. (3.2.42), which projects it onto the su(2) Lie algebra. In
order to get a group element, we finally apply the exponential map. This
whole construction makes sure that the evolution stays on the SU(2) group.
Let us point out that the action (4.2.1) is invariant under the transforma-
tion U → ΩUΩ† with Ω ∈ SU(2), however this symmetry property is not
implemented in the network just described and is ignored in the following
for simplicity.

We provide now the details of our experiment. We choose the steps in
gradient flow time to be sufficiently small for the discretized path (4.2.9)
with the continuous flow (4.2.8), namely Δτ = 0.01, and the final gradient
flow time T = 1. The training set is made up by 50 000 samples and the
batch size is 100. We train for 100 epochs using a learning rate of 10−3.
The best dense network found consists of four hidden layers with 16, 64,
32 and 16 nodes respectively, each with a learnable bias term and followed
by a tanh(x) activation function, with the exception of the last linear layer.
Once the learning process ends, a test on 4 000 samples is run within the
same window of gradient flow time, e.g. τ ∈ [0, 1]. Fig. 4.2 displays the
outcome of this test. In the left plot, we show the projections on the three-
dimensional unit sphere of the true trajectories obtained with Eq. (4.2.9),
marked with blue, and of the predicted trajectories given by the NODE,
in red. The two types of trajectories are visually indistinguishable, and
indeed the MSE values reported as a function of flow time on the right plot
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(a) True versus predicted trajectories

(b) Loss as a function of flow time

Figure 4.2: Test results. (a) Evolution of 30 samples projected on the 3D
unit sphere. The true trajectories and the predicted ones are so close that
the predictions cover the ground truth values. (b) Frobenius norm over the
dataset as a function of flow time. Image from [3].

confirm how accurate the predictions are. On the other hand, the increase
of the Frobenius norm raises the question of how the network performs if
the final flow time is chosen outside the training interval. To answer this,
an additional test is run on the same 4 000 samples flowed up to τ = 10
without retraining the model. The results are shown in Fig. 4.3.

We observe a clear deterioration in the model’s performance with a drop
of roughly three orders of magnitude for the loss compared to the test run
in the range τ ∈ [0, 1]. A closer inspection of the test results leads us to the
identification of two sources of the loss increase. One can be attributed to
a specific sample, for which the predicted direction is wrong, as reported in
Fig. 4.4. Provided that for τ → ∞ all matrices have flowed to one of the
minima, the contribution of such mispredictions to the Frobenius norm L is
given by

lim
τ→∞ΔL =

Nmispred

Nsamples
∥ ± 1− (∓1)∥2 = 8

Nmispred

Nsamples
. (4.2.18)

In our case, ΔL would be 2 ·10−3, which is approximately the gain at τ = 10
if we discard the problematic sample. The other significant contribution to
the loss comes from samples for which the predictions overshoot the ground
truth. The interpretation we give is that the learnt force is too high, which
makes these samples flow faster than required towards a minimum. Both
effects are associated with samples whose initial condition lies within a thin
neighborhood of the equator, i.e. TrU ≈ 0. For these samples, the force at
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(a) True versus predicted trajectories

(b) Loss as a function of flow time

Figure 4.3: Test results for final flow time τ = 10 based on training up
to τ = 1. (a) Extrapolated evolution of 30 samples projected on the 3D
unit sphere. The true and predicted trajectories lie too close to each other
to be able to tell them apart. (b) Frobenius norm as a function of flow
time. The loss increases significantly at larger times, by up to three orders
of magnitude compared to the higher values reached in the original interval
τ ∈ [0, 1]. Image from [3].

the initial flow times can be very small, which is why the network struggles
in determining the correct dynamics. Despite these flaws, the results are en-
couraging, considering that we employed a simple dense network which does
not incorporate, for example, the symmetry of the dynamics with respect to
the plane TrU = 0. More generally, the results can be improved with the
use of a network that preserves the aforementioned symmetry of the system
U → ΩUΩ† with Ω ∈ SU(2).

4.3 Adjoint sensitivity method

A technical aspect of NODEs that still needs to be addressed is backprop-
agation. In machine learning contexts, it refers to the computation of the
gradient of the loss function with respect to the model parameters. Back-
propagation is a highly efficient implementation of the chain rule, but for
NODEs it would require to store in memory the whole evolution of the
system. To see this explicitly, we can consider the NODE for x ∈ R

dx

dt
= f(x(t), θ) (4.3.1)
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(a) True versus predicted trajectory

(b) Loss as a function of flow time

Figure 4.4: Mispredictions and their effect on the results. (a) We show that
for one sample, the predicted trajectory goes in the opposite direction of the
true trajectory, thus leading to an increase in the loss. (b) The Frobenius
norm calculated on all other samples in the test set increases similarly to
Fig. 4.3(b), but its value at the final flow time is smaller by about an order
of magnitude.

with initial condition x0 = x(t0). Formally, it is possible to solve it by

x(T ) = x0 +

� T

t0

f(x(t), θ) dt. (4.3.2)

We can choose the loss function to be the MSE between the target final
state x̃T and the predicted final state x(T )

L(x(T )) = (x̃T − x(T ))2. (4.3.3)

The gradients are given by

dL
dθ

=
∂L

∂x(T )

dx(T )

dθ
, (4.3.4)

but the term

dx(t)

dθ
=

� T

t0

dt′
�
∂f(x(t′), θ)

∂θ
+

∂f(x(t′), θ)
∂x(t′)

dx(t′)
dθ

�
. (4.3.5)

requires to store the whole evolution of the system in memory, which can
quickly be saturated if the network’s depth is increased. We have used the
fact that x(t) = x(t, θ) for t0 < t < T , therefore its derivative is

df

dθ
=

∂f

∂θ
+

∂f

∂x

dx

dθ
. (4.3.6)
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In programs which incur memory saturation issues, it is common prac-
tice to trade off memory with computation. Here, the adjoint sensitiv-
ity method [140] serves the scope perfectly, as it computes the evolution
backwards rather than saving it in memory. Historically, this method has
encountered various applications ranging from meteorology [143] to geo-
physics [144].

We can formulate the adjoint sensitivity method as a constrained opti-
mization problem using Lagrange multipliers [145]. We can rewrite Eq. (4.3.1)
in the form of a constraint:

ẋ− f(x(t), θ) = F (ẋ(t), x(t), θ) = 0. (4.3.7)

We introduced the notation ẋ as an equivalent form of dx/dt. Our goal is to
find argminθ L(x(T )) such that the constraint (4.3.7) remains satisfied. This
can be fulfilled introducing the Lagrange multiplier λ(t) and the modified
loss function

ψ = L(x(T ))−
� T

t0

λ(t)F (ẋ(t), x(t), θ)dt. (4.3.8)

Since F = 0, the gradients of the original loss function coincide with the
gradients of the modified loss function:

dψ

dθ
=

dL(x(T ))
dθ

. (4.3.9)

Therefore, we can compute the gradients dL/dθ by taking the derivative of
Eq. (4.3.8), obtaining

dψ

dθ
=

∂L
dx(T )

dx(T )

dθ
− d

dθ

� T

t0

λFdt. (4.3.10)

We focus on the second term and rework it as follows:

d

dθ

� T

t0

λF dt =
d

dθ

� T

t0

λ(ẋ− f) dt

=
d

dθ

�
λ(T )x(T )− λ(t0)x(t0)−

� T

t0

(λ̇x+ λf) dt

�
= λ(T )

dx(T )

dθ
−

� T

t0

�
λ̇+ λ

∂f

∂x

�
dx

dθ
dt−

� T

t0

λ
∂f

∂θ
dt,

(4.3.11)

where we integrated by parts in the second equality and used Eq. (4.3.6) to
get to the third equality. We stress that λ does not depend on the network’s
parameters θ and that

dx(t0)

dθ
=

dx0
dθ

= 0. (4.3.12)
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The result for the gradients reads

dψ

dθ
=

�
∂L

dx(T )
− λ(T )

�
dx(T )

dθ
+

� T

t0

�
λ̇+ λ

∂f

∂x

�
dx

dθ
dt+

� T

t0

λ
∂f

∂θ
dt.

(4.3.13)

In order to get rid of the dependence on dx/dθ, we impose the following
equations ������

λ(T ) =
∂L

∂x(T )
,

λ̇(t) = −λ(t)
∂f(x(t), θ)

∂x(t)
,

(4.3.14)

(4.3.15)

which define respectively the initial condition and the equation of motion
for the adjoint λ. The remaining term in Eq. (4.3.13) yields the gradients
we were looking for, i.e.

dL(x(T ))
dθ

= −
� t0

T
λ(t)

∂f(x(t), θ)

∂θ
dt, (4.3.16)

without any dependence on dx/dθ. We point out that in case the function
f also depends explicitly on the flow time t, the derivation and the results
would be identical.

In light of the above results, the implementation of the adjoint sensitivity
method consists of the following steps. First, the NODE (4.3.1) is solved
with the forward pass by using an ODE integrator such as the one given
in Eq. (4.1.32). At t = T , we evaluate the initial condition of the adjoint
in Eq. (4.3.14), ∂L/∂x(T ). With a standard ODE solver such as Runge-
Kutta, we integrate Eqs. (4.3.1) and (4.3.15) backwards from T to t0. In
this way, we obtain the terms λ(t) and ∂f(x(t), θ)/∂θ that contribute to
the gradients in Eq. (4.3.16) without the need of using backpropagation and
storing in memory the whole evolution of the system.

4.3.1 Calculation for U(1)

In principle, the adjoint sensitivity method just presented can be directly
applied also in the context of groups, but the backward evolution of the
system would not fulfill the group constraints in general, therefore we extend
the derivation of the adjoint sensitivity method such that the constraints
are respected by construction. We do it first for the U(1) group in order to
develop some intuition for the calculation for SU(Nc). We can view a U(1)
element as a complex variable z living on the unit circle in the complex
plane, which in polar coordinates can be written as

z = eiϕ, ϕ ∈ [0, 2π). (4.3.17)
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We define the complex conjugate of z:

z̄ = e−iϕ, (4.3.18)

which acts as the inverse group element of z:

zz̄ = 1. (4.3.19)

We aim to solve the following neural gradient flow equation:

dz

dt
= ig(z(t), z̄(t), θ) z(t), (4.3.20)

where g ∈ R =⇒ g = ḡ, with initial condition z0 = z(t0) and target
final state z̃T . This NODE is very similar to the one used in the real
case, Eq. (4.3.1), except we have provided a more specific expression to
the right hand side. This choice is justified because it guarantees that the
constraint (4.3.19) is satisfied during the flow:

d

dt
(zz̄) = żz̄ + z ˙̄z = (igz)z̄ − z(iḡz̄) = i(g − ḡ) = 0, (4.3.21)

where the complex conjugate of Eq. (4.3.20) is

dz̄

dt
= −iḡz̄. (4.3.22)

The function g can be modeled by a neural network, whose input is the
variable z. In complex analysis, though, g has to be considered as a function
of z̄ as well, which will be crucial when taking derivatives. The loss function
is chosen to be the real-valued MSE

L(z(T ), z̄(T )) = |z(T )− z̃T |2. (4.3.23)

The gradients contain two terms due to the dependence on z and z̄:

dL
dθ

=
∂L

∂z(T )

dz(T )

dθ
+

∂L
∂z̄(T )

dz̄(T )

dθ
. (4.3.24)

The partial derivatives with respect to z and z̄ are called Wirtinger deriva-
tives and are related to partial derivatives with respect to u = Rez and
v = Imz as follows: ��������

∂

∂z
=

1

2

�
∂

∂u
− i

∂

∂v

�
,

∂

∂z̄
=

1

2

�
∂

∂u
+ i

∂

∂v

�
.

(4.3.25)

(4.3.26)

The NODE (4.3.20) is reworked to obtain the constraint

ż − igz = G = 0. (4.3.27)
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As discussed in the real case, what we are trying to solve is a constrained
minimization problem. The Lagrange multiplier technique is adapted to the
complex case by including the complex conjugate in the following way:

ψ = L(z(T ), z̄(T ))−
� T

t0

�
λG+ λ̄Ḡ

�
dt. (4.3.28)

Because of the constraint (4.3.27), the gradients of ψ coincide with the
gradients of L and are given by

dL(z(T ), z̄(T ))
dθ

=
dψ

dθ
=

∂L
∂z(T )

dz(T )

dθ
+

∂L
∂z̄(T )

dz̄(T )

dθ

− d

dθ

� T

t0

�
λG+ λ̄Ḡ

�
dt. (4.3.29)

We notice the following useful property, which is a consequence of Eq. (4.3.19):

d

dθ
(zz̄) = 0 =⇒ z

dz̄

dθ
= −z̄

dz

dθ
. (4.3.30)

A key consideration is that z(t) = z(t, θ), such that the chain rule leads to
a result similar to Eq. (4.3.6):

dg

dθ
=

∂g

∂z

dz

dθ
+

∂g

∂z̄

dz̄

dθ
+

∂g

∂θ
. (4.3.31)

Elaborating the derivative of the integral in (4.3.29), we obtain

d

dθ

� T

t0

λG dt+ c.c. =
d

dθ

� T

t0

λ(ż − igz) dt+ c.c.

=
d

dθ

�
λ(T )z(T )− λ(t0)z(t0)−

� T

t0

(λ̇z + iλgz)dt

�
+ c.c.

= λ(T )
dz(T )

dθ
− d

dθ

� T

t0

(λ̇z + iλgz) dt+ c.c., (4.3.32)

where we performed an integration by parts and indicated with “c.c.” the
complex conjugate of the entire expressions. The derivative of the integrand
in the last line yields

d

dθ
(λ̇z + iλgz) =

�
λ̇+ iλ

�
∂g

∂z
z + g

��
dz

dθ
+ iλ

�
∂g

∂z̄
z
dz̄

dθ
+

∂g

∂θ
z

�
=

�
λ̇+ iλ

�
∂g

∂z
z − ∂g

∂z̄
z̄ + g

��
dz

dθ
+ iλ

∂g

∂θ
z, (4.3.33)
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where we made use of Eq. (4.3.31) and exploited the property in Eq. (4.3.30)
to transform the term with dz/dθ into a term with dz̄/dθ. This result can
be substituted in Eq. (4.3.32), obtaining

d

dθ

� T

t0

λG dt+ c.c. = λ(T )
dz(T )

dθ

−
� T

t0

�
λ̇+ iλ

�
∂g

∂z
z − ∂g

∂z̄
z̄ + g

��
dz

dθ
dt− i

� T

t0

λ
∂g

∂θ
z dt+ c.c. (4.3.34)

The gradients in Eq. (4.3.29) become

dψ

dθ
=

�
∂L

dz(T )
− λ(T )

�
dz(T )

dθ

+

� T

t0

�
λ̇+ iλ

�
∂g

∂z
z − ∂g

∂z̄
z̄ + g

��
dz

dθ
dt

+ i

� T

t0

λ
∂g

∂θ
z dt+ c.c. (4.3.35)

Similarly to the real case, we get rid of the dependence on dz/dθ by
imposing��������

λ(T ) =
∂L

∂z(T )
,

λ̇+ iλg = −iλ

�
∂g

∂z
z − ∂g

∂z̄
z̄

�
= 2λ Im

�
∂g

∂z
z

�
.

(4.3.36)

(4.3.37)

The first equation sets the initial condition for the adjoint, while the second
is the ODE for the adjoint. With these choices, the corresponding com-
plex conjugate also vanish, hence no term involving dz̄/dθ survives. The
remaining term in the last line of Eq. (4.3.35) and its complex conjugate
corresponds to the gradients:

dL(z(T ), z̄(T ))
dθ

= −i

� t0

T

∂g

∂θ
(λz − λ̄z̄) dt = 2

� t0

T

∂g

∂θ
Im(λz) dt. (4.3.38)

The gradients are manifestly real, as they are supposed to be. It is also
possible to write a more compact solution by introducing the quantity w =
λz. Its time derivative is given by

ẇ = λ̇z + λż = λ̇z + λ(igz) = z(λ̇+ iλg). (4.3.39)

Substituting in Eq. (4.3.36), (4.3.37) and (4.3.38), the initial condition and
the equation of motion for this modified adjoint are��������

w(T ) =
∂L

∂z(T )
z(T ),

ẇ = 2w Im

�
∂g

∂z
z

�
,

(4.3.40)

(4.3.41)
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Figure 4.5: Solution of an NODE of a U(1) element with adjoint sensitivity
method. We display the successful reconstruction of the time evolution of a
complex variable constrained on the unit circle using the adjoint sensitivity
method for two samples of our dataset. Since the starting point (blue) and
the end point (green) are separated by a constant phase of π, the solution
of the NODE is a complex variable rotating around the origin at fixed an-
gular momentum. The intermediate flow times are equally spaced, which is
why the predictions at such flow times (orange) are separated by constant
rotations. The final prediction (red) lies close to the ground truth.

and the gradients become

dL(z(T ), z̄(T ))
dθ

= 2

� t0

T

∂g

∂θ
Imw dt. (4.3.42)

The implementation of the adjoint sensitivity method for U(1) is almost
identical to the case with real variables, except for the ODE solver. In
order to stay in the group while integrating backwards, we use a solver that
employs the exponential in a way similar to Eq. (4.1.32)

z(tj) = exp (−ig(z(tj+1), θ)Δt) z(tj+1). (4.3.43)

The exponent is purely imaginary, such that the exponential acts as a rota-
tion of z(tj).

A test of this derivation is run on a simple situation in which each input
zi0 is separated by a constant phase Δϕ = π from the corresponding output
z̃iT . In Fig. 4.5, we show the solution provided by a simple network. Specifi-
cally, the function g is modeled with a dense network with two hidden layers
each featuring 20 nodes and followed by a tanh activation function. The so-
lution of the NODE is a constant motion, such that z rotates at constant
angular momentum around the origin. Given that the flow time steps Δt are



4.3. ADJOINT SENSITIVITY METHOD 103

equal, the predictions at intermediate flow times have to be separated each
by an approximately constant phase, as is the case in Fig. 4.5. We notice
that the network is free to choose a clockwise or anticlockwise rotation for
this problem. This ambiguity can be eliminated by providing intermediate
values of the evolution and adding the MSE of the corresponding predictions
to the loss function.

4.3.2 Calculation for SU(Nc)

Let us now derive the adjoint sensitivity method in SU(Nc). The NODE
we are dealing with is the neural gradient flow (4.1.16), where the indices x
and µ will be dropped for simplicity:

dU

dτ
= iH(U(τ), Ū(τ), θ)U(τ). (4.3.44)

Notice how we define H as explicitly dependent on Ū . This is because we
will treat the elements of each matrix as independent complex numbers, in a
way that resembles the U(1) case. The initial condition of the dynamics are
U0 = U(τ = 0), and the target final state ŨT . We choose as loss function
the Frobenius norm

L(U(T ), Ū(T )) = ∥U(T )− ŨT ∥2, (4.3.45)

defined by Eq. (4.1.31). The gradients depend on U and Ū :

dL
dθ

=
∂L

∂Uij(T )

dUij(T )

dθ
+

∂L
∂Ūij(T )

dŪij(T )

dθ
. (4.3.46)

The partial derivatives can be defined analogously to the Wirtinger deriva-
tives in Eqs. (4.3.25) and (4.3.26). We proceed as in the two cases previously
examined, reworking the NODE in the form of the constraint

U̇ −H(U(t), θ) = H(U̇(t), U(t), θ) = 0. (4.3.47)

In general, H ∈ CNc×Nc . We introduce the Lagrange multiplier Λ ∈ CNc×Nc

and the modified loss function

Ψ = L(U(T ), Ū(T ))−
� T

t0

Tr
�
ΛH+ ΛH�

dτ

= L(U(T ), Ū(T ))−
� T

t0

�
ΛijHji + Λ̄ijH̄ji

�
dτ. (4.3.48)

The trace operation guarantees that the result of the integral is a scalar.
The constraint (4.3.47) gives the following equalities for the gradients:

dL(U(T ), Ū(T ))

dθ
=

dΨ

dθ
=

∂L
∂U(T )

dU(T )

dθ
+

∂L
∂Ū(T )

dŪ(T )

dθ

− d

dθ

� T

t0

�
ΛH+ Λ̄H̄�

dτ. (4.3.49)
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Calculating the derivative of the integral in the last line of the above equa-
tion, we obtain

d

dθ

� T

t0

Tr (ΛH) dt =
d

dθ

� T

t0

Tr
�
Λ(U̇ − iHU)

�
dτ

=
d

dθ

�
Tr (Λ(T )U(T ))− Tr (Λ(t0)U(t0))−

� T

t0

Tr
�
Λ̇U + iΛHU

�
dτ

�
= Λji(T )

dUij(T )

dθ
− d

dθ

� T

t0

Tr
�
Λ̇U + iΛHU

�
dτ, (4.3.50)

and a similar result for the complex conjugate. Noticing that a formula
similar to Eq. (4.3.31) holds also for H, we can write

d

dθ
(Λ̇ijUji + iΛikHkjUji +

˙̄ΛijŪji − iΛ̄ikH̄kjŪji)

= Λ̇ij
dUji

dθ
+ iΛik

�
∂Hkj

∂Ulm

dUlm

dθ
Uji +

∂Hkj

∂Ūlm

dŪlm

dθ
Uji +

∂Hkj

∂θ
Uji +Hkj

dUji

dθ

�
+ ˙̄Λij

dŪji

dθ
− iΛ̄ik

�
∂H̄kj

∂Ulm

dUlm

dθ
Ūji +

∂H̄kj

∂Ūlm

dŪlm

dθ
Ūji +

∂H̄kj

∂θ
Ūji + H̄kj

dŪji

dθ

�
=

�
Λ̇ij + iΛml

∂Hlk

∂Uji
Ukm − iΛ̄ml

∂H̄lk

∂Uji
Ūkm + iΛikHkj

�
dUji

dθ
+ iΛik

∂Hkj

∂θ
Uji

+

�
˙̄Λij − iΛ̄ml

∂H̄lk

∂Ūji
Ūkm + iΛml

∂Hlk

∂Ūji
Ukm − iΛ̄ikH̄kj

�
dŪji

dθ
− iΛ̄ik

∂H̄kj

∂θ
Ūji.

(4.3.51)

In the third equality, we have repositioned some terms and changed indices
in order to be able to factor out the derivatives of U and Ū with respect
to the parameters θ. We can substitute this result in Eq. (4.3.50) and its
complex conjugate, obtaining

d

dθ

� T

t0

Tr (ΛH) dτ + c.c. = Λji(T )
dUij(T )

dθ

−
� T

t0

�
Λ̇ij + iΛikHkj − 2 Im

�
∂Hlk

∂Uji
UkmΛml

��
dUji

dθ
dτ

− i

� T

t0

Tr

�
Λ
∂H

∂θ
U

�
dτ + c.c. (4.3.52)

Finally, we can rewrite the gradients in Eq. (4.3.49) as

dΨ

dθ
=

�
∂L

dUij(T )
− Λji(T )

�
dUij(T )

dθ

+

� T

t0

�
Λ̇ij + iΛikHkj − 2 Im

�
∂Hlk

∂Uji
UkmΛml

��
dUji

dθ
dτ

+ i

� T

t0

Tr

�
Λ
∂H

∂θ
U

�
dτ + c.c. (4.3.53)



4.3. ADJOINT SENSITIVITY METHOD 105

We remove the dependence on dU/dθ and its complex conjugate imposing
the following equations for the adjoint:��������

Λij(T ) =
∂L

∂Uji(T )
,

Λ̇ij + iΛikHkj = 2 Im

�
∂Hlk

∂Uji
UkmΛml

�
,

(4.3.54)

(4.3.55)

which implies that the contribution of the complex conjugates vanishes.
With the terms left, we can compute the gradients:

dL(U(T ), Ū(T ))

dθ
= 2

� t0

T
ImTr

�
∂H

∂θ
UΛ

�
dτ. (4.3.56)

In analogy to U(1), we can introduce the quantity W = UΛ. The initial
condition and the equation of motion of such a combination is��������

Wij(T ) = Uik(T )
∂L

∂Ujk(T )
,

Ẇij + i[W,H]ij = 2UikIm

�
∂Hlm

∂Ujk
Wml

�
,

(4.3.57)

(4.3.58)

and the gradients are easily expressed as

dL(U(T ), Ū(T ))

dθ
= 2

� t0

T
ImTr

�
∂H

∂θ
W

�
dτ. (4.3.59)

The implementation of the above equations is structured similarly to the
real case, the main difference being the solver employed for the backward
integration: in SU(Nc), an appropriate choice is represented by Eq. (4.1.32),
adapted to evolve backwards in time. We have checked that this method
provides approximately the right gradients for the SU(2) toy model by com-
paring the gradients obtained via standard backpropagation with the ones
given by the adjoint sensitivity method, with the highest relative errors of
the order of 10−3. Currently, the backward dynamics is integrated with a
standard Runge-Kutta algorithm, but more precise results can be obtained
with a Runge-Kutta method suited for Lie groups [146]. We finally report
that the adjoint sensitivity method in SU(Nc) has also been solved with a
different approach in [94].
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Chapter 5

Conclusions

In this dissertation, we have shown the benefits of imposing global and local
symmetries on neural network architectures in applications to lattice field
theory. In particular, we have initially dealt with the application of neural
networks to a physical system characterized by translational symmetry. The
discussion has been extended to gauge symmetries, which led to the formula-
tion of neural networks that preserve such symmetries on the lattice. These
networks have then been shown to be applicable to the generation of field
configurations. In the following, we will recapitulate each of these points in
more detail.

First, we have compared the performance of three different CNN archi-
tectures on a 1+1D translationally symmetric complex scalar field theory
with quartic interaction and a non-zero chemical potential. One architec-
ture type was translationally equivariant (EQ), meaning that it respected the
symmetry by construction, using convolutions and spatial pooling layer with
a stride of one and a GAP after the convolutional part. Another type (ST)
was characterized by symmetry-breaking layers, specifically spatial pooling
layers with a stride larger than one. The last type (FL), in addition to
the same non-equivariant layers of the ST type, featured a flattening step
instead of a GAP, which completely destroys the symmetry. The first two
architecture types could be applied to different input sizes without transfer
learning, thanks to the use of GAP, while the flattening step confined the
FL models to a fixed input size. FL has been a popular choice in computer
vision and has been employed in physics too, despite its shortcomings.

The complex scalar field was mapped into two two-dimensional integer
fields by means of a duality transformation, and the datasets were generated
with the worm algorithm. In the first task, the networks were required to
regress the values of two observables, the particle density n and the field
average |φ|2, given the configurations of the two integer fields. In particular,
for the training phase networks had access to data associated with a specific
value of the chemical potential and only one lattice size, while testing was
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conducted on a wide range of the chemical potential and on various lattice
sizes to investigate the generalization capabilities of the architectures. The
most promising architectures for each type have been selected with optuna
to ensure a fair comparison. The EQ architecture outperforms the archi-
tecture of the other two types. Increasing the number of training samples
steadily improved the results of the EQ type, whereas ST and FL remained
almost unaffected. Remarkably, the results of the non-equivariant architec-
tures were not ameliorated even by augmenting the data, in an attempt
to prompt the networks to learn the symmetry during training. Equivari-
ance proved to be relevant also when testing on configurations generated
at chemical potentials higher than the one used for training, effectively ex-
ploring values of n and |φ|2 absent from the training phase. This suggested
that EQ architectures are more resistant to generalization issues than the
non-equivariant counterparts. The extension of the test to different lattice
sizes between EQ and ST resulted again in favor of the former, additionally
revealing that, for lattice sizes that are not a multiple of the stride used in
the spatial pooling layers of ST, part of the input information is lost, further
worsening the score of the ST architectures.

In the other two tasks, flux violations, which are associated with the
presence of open worms, were artificially introduced in the configurations
with a modification of the worm algorithm. The physical appeal of this
study lies in its relationship with the calculation of n-point functions, and
the interest from the machine learning point of view comes from the fact
that networks containing only 1 × 1 convolutions cannot approximate the
true function, since information from next neighbors is necessary to com-
pute the flux. The generalization abilities included different values of the
coupling constant and the mass, in addition to the chemical potential and
the lattice size. The EQ and the ST architectures scored very similar results
when asked to distinguish between configurations with and without open
worms, while FL performed much worse. In the third task, the networks
were required to count the number of open worms from 0 to 10 having been
trained on configurations containing either 0 or 5 open worms. Also in this
case, the equivariant architectures proved to be highly reliable, whereas the
non-equivariant ones struggle to make good predictions, especially for values
of open worms between 1 and 3. In all tasks, we found that the networks
suggested by optuna featured a number of weights much smaller than in
networks typically used in comparable studies in the literature.

As a result of these experiments, it is strongly advisable to employ trans-
lationally equivariant CNNs in problems symmetric under translations. A
considerable performance boost is found when using GAP instead of a flat-
tening step. An ideal scenario that is opened up by such a layer is to cheaply
train a network on a small lattice size and apply it on larger ones without
losing generalization abilities. The subsampling given by operations with a
stride larger than one breaks translational symmetry and can be detrimental
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to the performance, although it seems to be problem-dependent.
The observation that equivariant networks achieve higher accuracy com-

pared to non-equivariant ones in the context of translational symmetry
served as a motivation for embarking on the construction of equivariant
networks in the context of lattice gauge theories. Conventional CNNs break
gauge symmetry because no parallel transporters are used when adding up
contributions from different lattice sites in convolutional layers. Hence, novel
layers had to be designed. The input of a gauge-equivariant network is the
link configuration and a set of conveniently precomputed locally transform-
ing objects, such as the Wilson loops evaluated at each lattice site. A con-
volutional layer with appropriate parallel transport was constructed, and its
output could be combined in a bilinear layer forming larger Wilson loops
without breaking gauge symmetry. A gauge-equivariant activation function
was introduced to provide non-linearity. An exponential layer represented
a gauge-equivariant operation for modifying the links. After a trace op-
eration, the resulting objects can be further processed by a CNN without
spoiling gauge symmetry. A lattice gauge equivariant convolutional neural
network consists of stacks of these layers and can in principle learn an ar-
bitrarily sized Wilson loop. More generally, it can be viewed as a universal
approximator of gauge equivariant or invariant functions on the lattice.

We experimented the potential of this novel type of network testing it on
regressions of Wilson loops of various size, from the trivial 1×1 to the chal-
lenging 4× 4, in 1+1D comparing the performance with that of traditional
CNNs. As the loop size grew, not even the best CNN was able to make ac-
ceptable predictions, while the L-CNNs showed a robust performance, even
when tested on lattice sizes larger than the one used for training. Additional
experiments in 3+1D were conducted on 2× 2 and 4× 4 Wilson loops and
on the topological charge, where L-CNNs showed again a remarkably good
behavior. They were also able to reconstruct Wilson flow of the topological
charge by being trained on uncooled samples alone. These networks are
very flexible, not only because of the freedom of choosing the most appro-
priate sequence of layers, but also for the possibility of picking any locally
transforming object as input, e.g. arbitrarily sized Wilson loops or Polyakov
loops. Moreover, the code has been developed for SU(2) and extended to
SU(3) in [86], and can easily be further extended to an arbitrary SU(Nc).

An application of these networks that we explored in this dissertation
has been the generation of link configurations. The mechanism on which this
proposal was based is the one of neural ordinary differential equations [140].
An adaptation of the original method to the SU(Nc) case led us to a gra-
dient flow type of equation (see also [94]). The procedure is such that the
network is provided with a dataset consisting of some initial configurations
and their corresponding output ones. The starting configurations are chosen
randomly, and are then evolved according to some action. After a successful
training, the network is able to reconstruct the corresponding gradient flow.
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We tested the neural gradient flow approach on an SU(2) toy model with
a single link. In place of an L-CNN, we employed a dense network whose
output was projected onto SU(2), in order to constrain the evolution on the
group. Encouraging results were observed, with networks showing a good
generalization to gradient flow times much larger with respect to the interval
used for training. The memory saturation issues that can originate from
backpropagating through the whole evolution of the system can be overcome
by the adjoint sensitivity method. We thoroughly reported our derivation
of such a method using Lagrange multipliers for real variables, then in U(1)
and SU(Nc). This method will enable the use of L-CNNs without stumbling
into memory saturation problems even for small architectures, and will allow
us to extend the toy model onto the lattice.

A long-term goal and the most natural continuation of the research con-
ducted so far is the generation of configurations for relevant problems in
lattice gauge theories. This may include the addition of fermions in the
construction of L-CNNs, which still needs to be fully addressed. As dis-
cussed, L-CNNs have also been applied to other physical problems such
as the fixed-point action [86], they have been used as preconditioners for
the Dirac operator [84, 85], and have been extended to incorporate global
symmetries [83]. Another exciting application is represented by the con-
struction of a gauge-equivariant version of diffusion models [40] using the
layers that have been designed for L-CNNs, again with the aim of generat-
ing gauge field configurations. The advantage of this approach is given by
the inherent stochasticity of the diffusion models, which in principle allows
the networks to explore topological sectors more efficiently than standard
Monte Carlo algorithms. A very interesting possibility enabled by the gauge
equivariance property of L-CNNs is to train these networks to identify an ob-
servable in a specific gauge and investigate the properties of such a quantity
in other gauges. This can be very useful, for example, in the case of center
vortices, which are usually found in the maximal center gauge. Analyzing
their characteristics in other gauges can lead to a deeper understanding of
the problem of quark confinement. In general, the possibility of customizing
novel layers can inspire future works and the versatility of L-CNNs makes
them a valuable tool that can find an application in several other lattice
gauge theory problems.



Appendix A

Monte Carlo simulation of
pure lattice gauge theory

This is a short review of how to use MCMC for the generation of gauge link
configurations in a pure SU(2) gauge theory on the lattice, largely based
on [110]).

The goal is the generation of a sequence of random configurations dis-
tributed according to the Wilson action SW [U ] in Eq. (3.1.15), whose cor-
responding probability functional is

ρ[U ] ∝ e−SW [U ]. (A.1)

We propose the following random link updates:

U ′
x,µ = V Ux,µ, (A.2)

where V is a random SU(Nc) matrix that lies close to the identity. The
Metropolis acceptance probability is

p[U,U ′] = min
�
1, e−SW [U ′]+SW [U ]

�
. (A.3)

In order to generate the matrices V , we first generate random color vectors
Xa = Aηa with amplitude A > 0 and a ∈ {1, 2, . . . , N2

c − 1}, where ηa

are sampled from a standard normal distribution. The color vectors are
contracted with the generators of the group generators, which for SU(2) are
the Pauli matrices (4.2.5), and the matrix exponential projects the result
onto the gauge group, yielding

V = ei
�

a TaXa ∈ SU(Nc). (A.4)

In a single sweep, each link is updated according to (A.2) multiple times.
In our implementation, we choose A = 0.5 and perform ten consecutive
updates.

111



112 APPENDIX A. MONTE CARLO SIMULATION



Appendix B

L-CNN architectures

Details of the composition of the L-CNN architectures employed Section 3.5
are summarized in Table B.1 and B.2 respectively for the 1+1D and 3+1D
case.

The L-CB operation emerges from the combination of L-Conv and L-
Bilin into a single layer, as explained in subsection 3.2.4. The notation
L-CB(K, Nin, Nout) indicates that such a layer is characterized by a kernel
size K in every direction, Nin input and Nout output channels. Applying
the Trace to a configuration (U ,W) with NW channels for the W objects,
we obtain 2NW real numbers per site. The doubled number of channels is a
consequence of treating real and imaginary parts separately in the linear lay-
ers, indicated by Linear(Nin, Nout), where Nin is the number of input nodes
and Nout the number of output nodes. Such linear layers act individually
at every lattice site, leading to an output that is made up of observables
defined over the whole lattice. Applying the same operation at each lattice
site does not spoil the overall translational invariance of the networks. The
output of the linear layers is not processed by an activation function. Nparam

indicates the number of trainable parameters.
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Table B.1: L-CNN architectures for the prediction of W (1×1), W (1×2),
W (2×2) and W (4×4) in 1+1D. Table from [2].
W (1×1)

Small
L-CB(1, 1, 1)
Trace
Linear(2, 1)

Nparam 12

W (1×2)

Small Medium Large
L-CB(2, 1, 2) L-CB(3, 1, 4) L-CB(4, 1, 8)
Trace Trace Trace
Linear(4, 1) Linear(8, 1) Linear(16, 1)

Nparam 35 117 329

W (2×2)

Small Medium Large
L-CB(2, 1, 2) L-CB(3, 1, 4) L-CB(4, 1, 8)
L-CB(2, 2, 2) L-CB(3, 4, 4) L-CB(4, 8, 8)
Trace Trace Trace
Linear(4, 1) Linear(8, 1) Linear(16, 1)

Nparam 125 1,305 13,521

W (4×4)

Small Medium Large
L-CB(2, 1, 2) L-CB(3, 1, 4) L-CB(4, 1, 8)
L-CB(2, 2, 2) L-CB(3, 4, 4) L-CB(4, 8, 8)
L-CB(3, 2, 2) L-CB(4, 4, 4) L-CB(4, 8, 8)
L-CB(3, 2, 2) L-CB(4, 4, 4) L-CB(4, 8, 8)
Trace Trace Trace
Linear(4, 1) Linear(8, 1) Linear(16, 1)

Nparam 465 4,833 39,905



115

Table B.2: L-CNN architectures for the prediction of W (2×2), W (4×4) and
qplaq in 3+1D. Table from [2].
W (2×2)

Small Medium
L-CB(2, 6, 2) L-CB(3, 6, 4)
L-CB(2, 2, 2) L-CB(3, 4, 4)
Trace Trace
Linear(4, 1) Linear(8, 1)

Nparam 1,801 8,305

W (4×4)

Small Medium
L-CB(2, 6, 2) L-CB(3, 6, 4)
L-CB(2, 2, 2) L-CB(3, 4, 4)
L-CB(3, 2, 2) L-CB(4, 4, 4)
L-CB(3, 2, 2) L-CB(4, 4, 4)
Trace Trace
Linear(4, 1) Linear(8, 1)

Nparam 2,109 14,377

qplaq

Small
L-CB(2, 6, 4)
Trace
Linear(8, 1)

Nparam 3,181



116 APPENDIX B. L-CNN ARCHITECTURES



Appendix C

Baseline networks

Here are reported the tables containing the information about the traditional
CNN architectures used in Section 3.5 for the regressions of Wilson loops in
1+1D.

In order to find traditional architectures able to compete with L-CNNs,
we tried to cover different ranges of some hyperparameters, specifically
the network depth and width. We categorize the architectures into small,
medium, large and wide, and manually select three representative archi-
tectures of comparable size for each category. These architectures consist
of two-dimensional convolutional layers, which in the tables are denoted
by C2D(K,Nin, Nout), with K indicating the size of the kernel (K ×K),
and Nin and Nout representing respectively the number of input and output
channels. As previously introduced, the acronym GAP stands for global
average pooling, which is used for all CNNs, in contrast to L-CNNs where
predictions are made at each lattice site. In the dense part, linear layers
use the same notation as for L-CNNs. We apply non-linear activation func-
tions after every convolution and linear layer, except after the final output
layer. Each architecture has been tried with four different activation func-
tions, i.e. LeakyReLU, ReLU, sigmoid and tanh. We also list the number of
learnable weights Nparam.

Table C.1 lists the architectures employed for the prediction of W (1×1)

and W (1×2), while Tables C.2 and C.3 report the architectures used for
W (2×2) and W (4×4) respectively.
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Table C.1: Baseline CNN architectures for the prediction of W (1×1) and
W (1×2). Table adapted from [2].
W (1×1), W (1×2)

Small Architecture 1 Architecture 2 Architecture 3
C2D(2, Nin, 4) C2D(2, Nin, 4) C2D(1, Nin, 8)
C2D(1, 4, 8) C2D(2, 4, 4) C2D(2, 8, 4)
GAP GAP GAP
Linear(8, 4) Linear(4, 4) Linear(4, 1)
Linear(4, 1) Linear(4, 1) -

Nparam 597 609 401

Medium Architecture 1 Architecture 2 Architecture 3
C2D(2, Nin, 8) C2D(2, Nin, 8) C2D(3, Nin, 4)
C2D(2, 8, 8) C2D(2, 8, 8) C2D(2, 4, 8)
C2D(2, 8, 8) - -
GAP GAP GAP
Linear(8, 4) Linear(8, 4) Linear(8, 4)
Linear(4, 1) Linear(4, 1) Linear(4, 1)

Nparam 1,601 1,337 1,333

Large Architecture 1 Architecture 2 Architecture 3
C2D(2, Nin, 16) C2D(3, Nin, 16) C2D(3, Nin, 16)
C2D(2, 16, 16) C2D(3, 16, 8) C2D(1, 16, 8)
C2D(2, 16, 16) - C2D(3, 8, 16)
GAP GAP GAP
Linear(16, 8) Linear(8, 8) Linear(16, 8)
Linear(8, 1) Linear(8, 1) Linear(8, 1)

Nparam 4,289 5,865 6,073

Wide Architecture 1 Architecture 2 Architecture 3
C2D(2, Nin, 128) C2D(2, Nin, 256) C2D(2, Nin, 512)
- C2D(3, 256, 32) -
GAP GAP GAP
Linear(128, 1) Linear(32, 1) Linear(512, 64)
- - Linear(64, 1)

Nparam 16,641 106,817 98,945
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Table C.2: Baseline CNN architectures for the prediction of W (2×2). Table
from [2].
W (2×2)

Small Architecture 1 Architecture 2 Architecture 3
C2D(2, 32, 4) C2D(2, 32, 2) C2D(2, 32, 4)
C2D(2, 4, 4) C2D(1, 2, 4) C2D(2, 4, 2)
GAP GAP GAP
Linear(4, 4) Linear(4, 1) Linear(2, 1)
Linear(4, 1) -

Nparam 609 275 553

Medium Architecture 1 Architecture 2 Architecture 3
C2D(2, 32, 4) C2D(2, 32, 8) C2D(3, 32, 4)
C2D(2, 4, 8) C2D(2, 8, 8) C2D(2, 4, 8)
C2D(2, 8, 8) C2D(2, 8, 8) C2D(3, 8, 8)
C2D(2, 8, 8) C2D(2, 8, 8) C2D(2, 8, 8)
GAP GAP GAP
Linear(8, 16) Linear(8, 8) Linear(8, 4)
Linear(16, 1) Linear(8, 1) Linear(4, 1)

Nparam 1,341 1,905 2,181

Large Architecture 1 Architecture 2 Architecture 3
C2D(2, 32, 8) C2D(2, 32, 8) C2D(3, 32, 8)
C2D(2, 8, 16) C2D(2, 8, 16) C2D(3, 8, 16)
C2D(2, 16, 32) C2D(2, 16, 32) C2D(3, 16, 32)
C2D(2, 32, 64) C2D(2, 32, 64) C2D(3, 32, 16)
- C2D(2, 64, 32) -
GAP GAP GAP
Linear(64, 16) Linear(32, 8) Linear(16, 8)
Linear(16, 1) Linear(8, 1) Linear(8, 1)

Nparam 12,953 20,393 12,889
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Table C.3: Baseline CNN architectures for the prediction of W (4×4). Table
from [2].
W (4×4)

Small Architecture 1 Architecture 2 Architecture 3
C2D(2, 32, 4) C2D(2, 32, 4) C2D(2, 32, 4)
C2D(2, 4, 4) C2D(1, 4, 8) C2D(2, 4, 2)
GAP GAP GAP
Linear(4, 4) Linear(8, 4) Linear(2, 1)
Linear(4, 1) Linear(4, 1) -

Nparam 609 597 553

Medium Architecture 1 Architecture 2 Architecture 3
C2D(3, 32, 16) C2D(2, 32, 16) C2D(3, 32, 8)
C2D(1, 16, 8) C2D(2, 16, 24) C2D(2, 8, 16)
C2D(3, 8, 16) C2D(2, 24, 16) C2D(1, 16, 32)
- - C2D(2, 32, 16)
- - C2D(2, 16, 8)
GAP GAP GAP
Linear(16, 8) Linear(16, 8) Linear(8, 8)
Linear(8, 1) Linear(8, 1) Linear(8, 1)

Nparam 6,073 5,321 6,049

Large Architecture 1 Architecture 2 Architecture 3
C2D(3, 32, 16) C2D(2, 32, 16) C2D(4, 32, 16)
C2D(3, 16, 32) C2D(2, 16, 32) C2D(4, 16, 32)
C2D(3, 32, 64) C2D(2, 32, 64) C2D(4, 32, 32)
C2D(3, 64, 32) C2D(2, 64, 64) C2D(4, 32, 16)
- C2D(2, 64, 32) -
- C2D(2, 32, 16) -
GAP GAP GAP
Linear(32, 16) Linear(16, 16) Linear(16, 8)
Linear(16, 1) Linear(16, 8) Linear(8, 8)
- Linear(8, 1) Linear(8, 1)

Nparam 46,769 39,553 41,273
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Test results

The detailed results of the experiments in Section 3.5 are given in this Ap-
pendix. Tables D.1, D.2, D.3 and D.4 show the test results of both CNNs
and L-CNNs in 1+1D for W (1×1), W (1×2), W (2×2) and W (4×4) respectively.
Table D.5 displays the results of L-CNN architectures for W (2×2), W (4×4)

and the topological charge.

In each table, we report the median MSE of the model ensemble for each
architecture type and each lattice size. The architectures employed for these
experiments can be found in Appendix B and C. The abbreviations are as
follows: S stands for small, M for medium, L for large and W for wide. For
CNN architectures, the number that follows such letters refers to whether
architecture 1, 2 or 3 is used. For CNNs, we additionally specify the type
of activation function used. In the first row, we also provide the variance of
the observables in the test set. The values in boldface highlight which ar-
chitecture type scored the lowest median MSE. The asterisk (∗) signals the
ensembles of CNNs and L-CNNs featuring the best individual models ac-
cording to the validation loss, which are the models used to produce Figs. 3.3
and 3.4.

For W (1×1) in 1+1D, the L-CNN architecture scores the best median
MSE on 8×8 lattices, but interestingly the S1 type beats it when testing on
larger lattices. For larger Wilson loops, the L-CNNs consistently outperform
the traditional architectures. ForW (1×2), the best L-CNN architecture beats
every traditional architecture by at least four orders of magnitude. We
notice that baseline models considerably improve their median MSE as the
lattice size grows, which can be ascribed to the use of a GAP in the final
layer of the baseline architectures, effectively reducing fluctuations in the
predictions. The improvement for L-CNNs is much milder. For W (2×2)

and W (4×4), L-CNNs maintain a low median MSE, with the medium and
large-sized architectures being favored over the small one, which is instead
the better solution for smaller loops. In 3+1D, we did not train traditional
CNNs for a direct comparison, nevertheless we observe that the behavior of
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L-CNNs is similar to the 1+1D case, with comparable values of MSE.



123

Table D.1: Test results of L-CNN and CNN architectures (denoted as
“Base”) for the regression of W (1×1) in 1+1D. The architectures used are
displayed in Tables B.1 and C.1. Table from [2].

8× 8 16× 16 32× 32 64× 64
Variance 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.61× 10−2

L-CNN∗ 2.19× 10−82.19× 10−82.19× 10−8 2.19× 10−8 2.19× 10−8 2.19× 10−8

Base S1 (tanh) 8.82× 10−6 3.43× 10−6 1.98× 10−6 1.53× 10−6

Base S1 (sigm) 5.07× 10−6 1.60× 10−6 7.89× 10−7 5.93× 10−7

Base S1 (leaky) 2.26× 10−8 8.23× 10−9 4.55× 10−9 3.42× 10−9

Base S1 (relu) 3.14× 10−8 6.99× 10−96.99× 10−96.99× 10−9 2.55× 10−92.55× 10−92.55× 10−9 1.20× 10−91.20× 10−91.20× 10−9

Base S2 (tanh) 1.57× 10−5 4.87× 10−6 2.19× 10−6 1.37× 10−6

Base S2 (sigm) 4.74× 10−6 1.84× 10−6 9.49× 10−7 7.83× 10−7

Base S2 (leaky)∗ 2.67× 10−7 3.40× 10−8 1.47× 10−8 9.15× 10−9

Base S2 (relu) 4.82× 10−7 2.21× 10−7 6.37× 10−8 4.23× 10−8

Base S3 (tanh) 1.52× 10−6 5.78× 10−7 3.21× 10−7 2.48× 10−7

Base S3 (sigm) 1.40× 10−6 3.86× 10−7 1.27× 10−7 7.98× 10−8

Base S3 (leaky) 1.10× 10−7 3.78× 10−8 2.47× 10−8 1.83× 10−8

Base S3 (relu) 5.94× 10−7 2.25× 10−7 6.05× 10−8 4.95× 10−8

Base M1 (tanh) 1.39× 10−5 4.35× 10−6 1.62× 10−6 9.62× 10−7

Base M1 (sigm) 9.52× 10−6 3.76× 10−6 2.54× 10−6 2.28× 10−6

Base M1 (leaky) 2.41× 10−7 8.54× 10−8 4.93× 10−8 2.61× 10−8

Base M1 (relu) 5.22× 10−6 1.35× 10−6 6.63× 10−7 4.19× 10−7

Base M2 (tanh) 1.33× 10−5 4.27× 10−6 1.79× 10−6 1.08× 10−6

Base M2 (sigm) 3.86× 10−6 1.38× 10−6 7.22× 10−7 6.32× 10−7

Base M2 (leaky) 7.21× 10−8 1.83× 10−8 8.10× 10−9 4.81× 10−9

Base M2 (relu) 2.24× 10−6 7.41× 10−7 2.03× 10−7 1.25× 10−7

Base M3 (tanh) 7.21× 10−6 3.31× 10−6 2.46× 10−6 1.69× 10−6

Base M3 (sigm) 2.51× 10−6 9.12× 10−7 5.62× 10−7 5.02× 10−7

Base M3 (leaky) 1.17× 10−7 3.39× 10−8 1.23× 10−8 7.25× 10−9

Base M3 (relu) 6.51× 10−7 2.47× 10−7 4.64× 10−8 1.57× 10−8

Base L1 (tanh) 1.12× 10−5 3.71× 10−6 1.73× 10−6 1.04× 10−6

Base L1 (sigm) 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.61× 10−2

Base L1 (leaky) 7.83× 10−7 1.89× 10−7 7.43× 10−8 5.22× 10−8

Base L1 (relu) 4.12× 10−6 9.68× 10−7 2.97× 10−7 1.37× 10−7

Base L2 (tanh) 1.91× 10−5 6.74× 10−6 2.88× 10−6 2.11× 10−6

Base L2 (sigm) 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.61× 10−2

Base L2 (leaky) 3.00× 10−6 1.31× 10−6 9.96× 10−7 9.52× 10−7

Base L2 (relu) 3.21× 10−6 8.96× 10−7 2.86× 10−7 1.83× 10−7

Base L3 (tanh) 1.07× 10−5 3.38× 10−6 1.69× 10−6 1.35× 10−6

Base L3 (sigm) 2.34× 10−5 7.51× 10−6 2.90× 10−6 2.37× 10−6

Base L3 (leaky) 2.90× 10−6 7.75× 10−7 3.34× 10−7 1.73× 10−7

Base L3 (relu) 2.66× 10−6 8.01× 10−7 2.96× 10−7 1.41× 10−7

Base W1 (tanh) 7.26× 10−7 2.31× 10−7 7.88× 10−8 4.09× 10−8

Base W1 (sigm) 2.23× 10−6 6.94× 10−7 2.54× 10−7 1.58× 10−7

Base W1 (leaky) 8.99× 10−7 2.52× 10−7 8.42× 10−8 4.33× 10−8

Base W1 (relu) 1.68× 10−6 4.39× 10−7 1.50× 10−7 5.44× 10−8

Base W2 (tanh) 2.50× 10−4 6.50× 10−5 2.05× 10−5 1.05× 10−5

Base W2 (sigm) 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.61× 10−2

Base W2 (leaky) 6.97× 10−5 1.77× 10−5 4.83× 10−6 1.59× 10−6

Base W2 (relu) 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.61× 10−2

Base W3 (tanh) 2.70× 10−5 7.14× 10−6 3.41× 10−6 2.10× 10−6

Base W3 (sigm) 5.97× 10−2 5.69× 10−2 5.64× 10−2 5.62× 10−2

Base W3 (leaky) 5.03× 10−5 1.50× 10−5 7.16× 10−6 4.95× 10−6

Base W3 (relu) 3.25× 10−6 9.34× 10−7 3.44× 10−7 1.95× 10−7
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Table D.2: Test results of L-CNN and CNN architectures (denoted as
“Base”) for the regression of W (1×2) in 1+1D. The architectures used are
reported in Tables B.1 and C.1. Table from [2].

8× 8 16× 16 32× 32 64× 64
Variance 4.50× 10−2 4.16× 10−2 4.08× 10−2 4.07× 10−2

L-CNN S 7.58× 10−97.58× 10−97.58× 10−9 7.15× 10−97.15× 10−97.15× 10−9 6.99× 10−96.99× 10−96.99× 10−9 6.97× 10−96.97× 10−96.97× 10−9

L-CNN M 1.15× 10−8 1.10× 10−8 1.08× 10−8 1.08× 10−8

L-CNN L∗ 1.66× 10−8 1.60× 10−8 1.57× 10−8 1.57× 10−8

Base S1 (tanh) 2.34× 10−3 6.24× 10−4 1.63× 10−4 6.52× 10−5

Base S1 (sigm) 2.25× 10−3 5.96× 10−4 1.62× 10−4 6.29× 10−5

Base S1 (leaky) 2.20× 10−3 5.59× 10−4 1.45× 10−4 4.59× 10−5

Base S1 (relu) 2.17× 10−3 5.59× 10−4 1.50× 10−4 5.32× 10−5

Base S2 (tanh) 2.32× 10−3 6.05× 10−4 1.65× 10−4 7.00× 10−5

Base S2 (sigm) 2.23× 10−3 5.85× 10−4 1.52× 10−4 5.22× 10−5

Base S2 (leaky) 2.14× 10−3 5.55× 10−4 1.44× 10−4 5.33× 10−5

Base S2 (relu) 2.09× 10−3 5.31× 10−4 1.48× 10−4 5.38× 10−5

Base S3 (tanh) 2.19× 10−3 5.57× 10−4 1.54× 10−4 5.80× 10−5

Base S3 (sigm)∗ 2.07× 10−3 5.26× 10−4 1.32× 10−4 4.29× 10−5

Base S3 (leaky) 2.01× 10−3 5.08× 10−4 1.39× 10−4 4.73× 10−5

Base S3 (relu) 2.03× 10−3 5.14× 10−4 1.38× 10−4 4.81× 10−5

Base M1 (tanh) 2.51× 10−3 6.70× 10−4 1.78× 10−4 7.41× 10−5

Base M1 (sigm) 2.35× 10−3 6.21× 10−4 1.61× 10−4 6.22× 10−5

Base M1 (leaky) 2.18× 10−3 5.63× 10−4 1.46× 10−4 5.39× 10−5

Base M1 (relu) 2.29× 10−3 6.04× 10−4 1.77× 10−4 7.70× 10−5

Base M2 (tanh) 2.51× 10−3 6.84× 10−4 1.83× 10−4 7.66× 10−5

Base M2 (sigm) 2.31× 10−3 6.04× 10−4 1.53× 10−4 5.46× 10−5

Base M2 (leaky) 2.11× 10−3 5.33× 10−4 1.38× 10−4 4.87× 10−5

Base M2 (relu) 2.16× 10−3 5.52× 10−4 1.42× 10−4 5.36× 10−5

Base M3 (tanh) 2.89× 10−3 7.80× 10−4 2.24× 10−4 1.10× 10−4

Base M3 (sigm) 2.43× 10−3 6.39× 10−4 1.76× 10−4 6.92× 10−5

Base M3 (leaky) 2.31× 10−3 6.02× 10−4 1.53× 10−4 5.35× 10−5

Base M3 (relu) 2.43× 10−3 6.39× 10−4 1.77× 10−4 6.40× 10−5

Base L1 (tanh) 2.63× 10−3 7.16× 10−4 2.10× 10−4 9.13× 10−5

Base L1 (sigm) 2.38× 10−3 6.33× 10−4 1.76× 10−4 7.41× 10−5

Base L1 (leaky) 2.30× 10−3 5.93× 10−4 1.55× 10−4 5.49× 10−5

Base L1 (relu) 2.33× 10−3 6.23× 10−4 2.10× 10−4 1.14× 10−4

Base L2 (tanh) 2.83× 10−3 8.03× 10−4 2.60× 10−4 1.42× 10−4

Base L2 (sigm) 2.87× 10−3 7.49× 10−4 2.25× 10−4 1.12× 10−4

Base L2 (leaky) 2.41× 10−3 6.24× 10−4 1.72× 10−4 7.11× 10−5

Base L2 (relu) 2.51× 10−3 6.89× 10−4 2.32× 10−4 1.29× 10−4

Base L3 (tanh) 2.70× 10−3 7.38× 10−4 2.08× 10−4 9.14× 10−5

Base L3 (sigm) 2.53× 10−3 6.70× 10−4 1.87× 10−4 8.39× 10−5

Base L3 (leaky) 2.38× 10−3 6.55× 10−4 1.91× 10−4 8.43× 10−5

Base L3 (relu) 2.36× 10−3 6.38× 10−4 1.81× 10−4 7.93× 10−5

Base W1 (tanh) 3.73× 10−3 1.49× 10−3 8.38× 10−4 6.60× 10−4

Base W1 (sigm) 2.39× 10−3 6.35× 10−4 1.72× 10−4 6.35× 10−5

Base W1 (leaky) 2.14× 10−3 5.69× 10−4 1.78× 10−4 9.01× 10−5

Base W1 (relu) 2.14× 10−3 5.41× 10−4 1.55× 10−4 6.43× 10−5

Base W2 (tanh) 2.76× 10−3 7.59× 10−4 2.09× 10−4 9.09× 10−5

Base W2 (sigm) 4.50× 10−2 4.16× 10−2 4.09× 10−2 4.07× 10−2

Base W2 (leaky) 2.37× 10−3 6.75× 10−4 1.81× 10−4 7.37× 10−5

Base W2 (relu) 4.50× 10−2 4.16× 10−2 4.09× 10−2 4.07× 10−2

Base W3 (tanh) 2.81× 10−3 9.02× 10−4 4.35× 10−4 3.15× 10−4

Base W3 (sigm) 4.50× 10−2 4.16× 10−2 4.09× 10−2 4.07× 10−2

Base W3 (leaky) 2.51× 10−3 6.94× 10−4 2.41× 10−4 1.35× 10−4

Base W3 (relu) 2.12× 10−3 5.55× 10−4 1.78× 10−4 8.62× 10−5
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Table D.3: Test results of L-CNN and CNN architectures (denoted as
“Base”) for the regression of W (2×2) in 1+1D. The architectures used are
reported in Tables B.1 and C.2. Table from [2].

8× 8 16× 16 32× 32 64× 64
Variance 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2

L-CNN S 1.17× 10−7 6.91× 10−8 6.79× 10−8 6.77× 10−8

L-CNN M∗ 3.24× 10−83.24× 10−83.24× 10−8 1.96× 10−81.96× 10−81.96× 10−8 1.68× 10−81.68× 10−81.68× 10−8 1.64× 10−81.64× 10−81.64× 10−8

L-CNN L 6.67× 10−8 3.89× 10−8 3.18× 10−8 3.02× 10−8

Base S1 (tanh) 4.15× 10−3 1.10× 10−3 3.15× 10−4 1.27× 10−4

Base S1 (sigm) 3.88× 10−3 9.98× 10−4 2.81× 10−4 9.60× 10−5

Base S1 (leaky) 3.88× 10−3 1.01× 10−3 2.91× 10−4 1.11× 10−4

Base S1 (relu) 3.93× 10−3 1.01× 10−3 2.96× 10−4 1.09× 10−4

Base S2 (tanh) 3.80× 10−3 9.75× 10−4 2.82× 10−4 1.04× 10−4

Base S2 (sigm) 3.82× 10−3 1.00× 10−3 2.95× 10−4 1.12× 10−4

Base S2 (leaky)∗ 3.71× 10−3 9.54× 10−4 2.61× 10−4 8.63× 10−5

Base S2 (relu) 3.86× 10−3 9.89× 10−4 2.77× 10−4 1.00× 10−4

Base S3 (tanh) 4.15× 10−3 1.11× 10−3 3.20× 10−4 1.26× 10−4

Base S3 (sigm) 3.85× 10−3 9.74× 10−4 2.60× 10−4 8.31× 10−5

Base S3 (leaky) 3.89× 10−3 1.02× 10−3 2.93× 10−4 1.14× 10−4

Base S3 (relu) 3.86× 10−3 1.01× 10−3 2.86× 10−4 1.06× 10−4

Base M1 (tanh) 4.19× 10−3 1.08× 10−3 3.08× 10−4 1.21× 10−4

Base M1 (sigm) 3.98× 10−3 1.04× 10−3 2.93× 10−4 1.04× 10−4

Base M1 (leaky) 3.87× 10−3 9.96× 10−4 2.77× 10−4 1.02× 10−4

Base M1 (relu) 4.13× 10−3 1.11× 10−3 3.42× 10−4 1.66× 10−4

Base M2 (tanh) 4.20× 10−3 1.14× 10−3 3.61× 10−4 1.77× 10−4

Base M2 (sigm) 3.99× 10−3 1.06× 10−3 2.95× 10−4 1.21× 10−4

Base M2 (leaky) 3.94× 10−3 1.02× 10−3 2.83× 10−4 1.01× 10−4

Base M2 (relu) 4.18× 10−3 1.11× 10−3 3.51× 10−4 1.68× 10−4

Base M3 (tanh) 4.57× 10−3 1.19× 10−3 3.72× 10−4 1.82× 10−4

Base M3 (sigm) 4.26× 10−3 1.15× 10−3 3.62× 10−4 1.71× 10−4

Base M3 (leaky) 4.04× 10−3 1.05× 10−3 2.95× 10−4 1.12× 10−4

Base M3 (relu) 4.47× 10−3 1.21× 10−3 4.29× 10−4 2.30× 10−4

Base L1 (tanh) 4.26× 10−3 1.13× 10−3 3.21× 10−4 1.26× 10−4

Base L1 (sigm) 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2

Base L1 (leaky) 4.01× 10−3 1.07× 10−3 3.14× 10−4 1.25× 10−4

Base L1 (relu) 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2

Base L2 (tanh) 4.19× 10−3 1.12× 10−3 3.43× 10−4 1.54× 10−4

Base L2 (sigm) 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2

Base L2 (leaky) 4.07× 10−3 1.07× 10−3 3.32× 10−4 1.54× 10−4

Base L2 (relu) 4.26× 10−3 1.14× 10−3 3.50× 10−4 1.69× 10−4

Base L3 (tanh) 4.34× 10−3 1.17× 10−3 3.60× 10−4 1.70× 10−4

Base L3 (sigm) 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2

Base L3 (leaky) 4.07× 10−3 1.08× 10−3 3.18× 10−4 1.38× 10−4

Base L3 (relu) 1.96× 10−2 1.55× 10−2 1.47× 10−2 1.45× 10−2
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Table D.4: Test results of L-CNN and CNN architectures (denoted as
“Base”) for the regression of W (4×4) in 1+1D. The notation is the same
as in Table D.1. The architectures used are reported in Tables B.1 and C.3.
Table from [2].

8× 8 16× 16 32× 32 64× 64
Variance 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.53× 10−5

L-CNN S∗ 3.34× 10−7 1.51× 10−7 1.17× 10−7 1.06× 10−7

L-CNN M 2.06× 10−72.06× 10−72.06× 10−7 7.15× 10−87.15× 10−87.15× 10−8 4.00× 10−84.00× 10−84.00× 10−8 3.10× 10−83.10× 10−83.10× 10−8

L-CNN L 2.82× 10−7 1.09× 10−7 6.11× 10−8 5.26× 10−8

Base S1 (tanh) 4.80× 10−3 1.15× 10−3 2.95× 10−4 8.52× 10−5

Base S1 (sigm) 4.79× 10−3 1.14× 10−3 2.88× 10−4 7.88× 10−5

Base S1 (leaky) 4.79× 10−3 1.13× 10−3 2.89× 10−4 7.88× 10−5

Base S1 (relu)∗ 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.53× 10−5

Base S2 (tanh) 4.80× 10−3 1.14× 10−3 2.95× 10−4 8.35× 10−5

Base S2 (sigm) 4.80× 10−3 1.13× 10−3 2.89× 10−4 7.97× 10−5

Base S2 (leaky) 4.79× 10−3 1.14× 10−3 2.92× 10−4 8.16× 10−5

Base S2 (relu) 4.79× 10−3 1.14× 10−3 2.92× 10−4 8.09× 10−5

Base S3 (tanh) 4.80× 10−3 1.14× 10−3 2.92× 10−4 8.13× 10−5

Base S3 (sigm) 4.80× 10−3 1.14× 10−3 2.91× 10−4 8.03× 10−5

Base S3 (leaky) 4.80× 10−3 1.14× 10−3 2.94× 10−4 8.28× 10−5

Base S3 (relu) 4.80× 10−3 1.14× 10−3 2.92× 10−4 8.20× 10−5

Base M1 (tanh) 4.81× 10−3 1.15× 10−3 2.93× 10−4 8.22× 10−5

Base M1 (sigm) 4.79× 10−3 1.14× 10−3 2.95× 10−4 8.30× 10−5

Base M1 (leaky) 4.80× 10−3 1.14× 10−3 2.90× 10−4 8.02× 10−5

Base M1 (relu) 4.79× 10−3 1.14× 10−3 2.94× 10−4 8.40× 10−5

Base M2 (tanh) 4.80× 10−3 1.14× 10−3 2.93× 10−4 8.15× 10−5

Base M2 (sigm) 4.79× 10−3 1.14× 10−3 2.96× 10−4 8.33× 10−5

Base M2 (leaky) 4.80× 10−3 1.14× 10−3 2.99× 10−4 8.76× 10−5

Base M2 (relu) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.54× 10−5

Base M3 (tanh) 4.79× 10−3 1.14× 10−3 2.94× 10−4 8.45× 10−5

Base M3 (sigm) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.55× 10−5

Base M3 (leaky) 4.79× 10−3 1.14× 10−3 2.99× 10−4 8.68× 10−5

Base M3 (relu) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.53× 10−5

Base L1 (tanh) 4.83× 10−3 1.14× 10−3 2.99× 10−4 8.74× 10−5

Base L1 (sigm) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.55× 10−5

Base L1 (leaky) 4.79× 10−3 1.13× 10−3 2.92× 10−4 8.16× 10−5

Base L1 (relu) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.54× 10−5

Base L2 (tanh) 4.80× 10−3 1.14× 10−3 2.95× 10−4 8.41× 10−5

Base L2 (sigm) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.54× 10−5

Base L2 (leaky) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.54× 10−5

Base L2 (relu) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.55× 10−5

Base L3 (tanh) 4.81× 10−3 1.15× 10−3 3.00× 10−4 8.86× 10−5

Base L3 (sigm) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.55× 10−5

Base L3 (leaky) 4.79× 10−3 1.14× 10−3 2.89× 10−4 8.20× 10−5

Base L3 (relu) 4.79× 10−3 1.14× 10−3 2.97× 10−4 8.54× 10−5
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Table D.5: Test results of L-CNN architectures for all regression tasks in
3+1D. Architecture details are provided in table B.2. Image from [2].

4× 83 6× 83 6× 123 8× 163

W (2×2)

Variance 7.03× 10−2 7.08× 10−2 7.05× 10−2 7.05× 10−2

L-CNN S 1.64× 10−71.64× 10−71.64× 10−7 1.63× 10−71.63× 10−71.63× 10−7 1.63× 10−71.63× 10−71.63× 10−7 1.63× 10−7

L-CNN M 9.16× 10−7 6.18× 10−7 2.17× 10−7 1.30× 10−71.30× 10−71.30× 10−7

W (4×4)

Variance 2.00× 10−2 2.08× 10−2 2.04× 10−2 2.03× 10−2

L-CNN S 3.77× 10−73.77× 10−73.77× 10−7 3.79× 10−73.79× 10−73.79× 10−7 3.74× 10−73.74× 10−73.74× 10−7 3.74× 10−73.74× 10−73.74× 10−7

L-CNN M 8.26× 10−7 8.16× 10−7 7.99× 10−7 7.99× 10−7

QP

Variance 2.91× 10−7 1.91× 10−7 6.27× 10−8 1.87× 10−8

L-CNN S 3.18× 10−9 3.17× 10−9 3.17× 10−9 3.17× 10−9
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