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Abstract

In this thesis we explore (1,0) supersymmetric theories in six dimensions. The first
part of the thesis focuses on the investigation of supersymmetric solutions of (1,0)
six dimensional supergravity theory coupled to any number of tensor, vector and
scalar multiplets. The methodology used to solve the Killing spinor equations will be
based on the spinorial geometry technique. Therefore, we begin by giving details of
the spinorial geometry approach in the first chapter. In the chapter that follows six
dimensional supergravity coupled to tensor, vector and scalar multiplets is described.
Once we have given details of the theory under consideration the solutions to the
Killing spinor equations are discussed in some detail. In particular, we find that there
are backgrounds preserving 1, 2, 3, 4 and 8 supersymmetries broadly falling into two
cases; those with Killing spinors that have compact isotropy groups and those with
non-compact isotropy groups. We then discuss the integrability conditions of the
Killing spinor equations.

In the fourth chapter we analyse the supersymmetric near horizon geometries of
(1,0) six dimensional supergravity coupled to arbitrary number of tensor and scalar
multiplets. In order to do this we make use of Gaussian null coordinates as well as
the solutions of the Killing spinor equations. We find that there are two classes of
near horizon geometries. One class is isometric to R x S, where S is a suitable
4-manifold, and the other class is isometric to AdSs; x X3, where 32 is a homology
3-sphere.

In the final chapter we investigate a more recent development, namely (1,0)
superconformal theories in six dimensions. In particular we find the BPS solu-
tions of (1,0) superconformal theory in all cases. In addition, we analyse the half-
supersymmetric solutions to some specific models in detail and give examples of

string and 3-brane solutions.
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Introduction

There are four known fundamental forces of nature; gravity, electromagnetism, the
weak nuclear force and the strong nuclear force. At low energies these forces de-
scribe the different types of interactions experienced by particles that exists in the
universe. However, at high energies it is believed that our knowledge is incomplete.
Additionally, there are objects within the universe for which the physics is not well
understood, a good example being black holes. The unification of these fundamen-
tal forces has therefore been one of the driving forces behind research in theoretical
physics.

In fact this started some time ago with the work of James Clerk Maxwell who
unified electricity and magnetism to the single theory of electromagnetism. This
was a significant achievement, bringing together what was previously thought of
as two different phenomenon into one. The theory of electromagnetism was later
combined with that of the weak nuclear force to obtain the mathematical framework
of the electroweak force. This was primarily due to the works of Sheldon Glashow,
Abdus Salam and Steven Weinberg. The Standard Model of particle physics then
incorporated the strong, weak and electromagnetic forces into a single successful
theory describing three of the fundamental forces.

The fourth known force, gravity, is described by Einstein’s General Theory of
Relativity. It is the “dominant” force experienced by objects over large distances.
A lot of effort and time has been put into formulating a single theory capable of
successfully describing all the fundamental forces of nature, including gravity.

String/M-theory has been proposed as one of the most promising candidates for
the unification of all four fundamental forces of nature. However, it has not been
easy to reconcile string/M-theory with the four dimensional spacetime which we are
familiar with. These theories are formulated in ten/eleven dimensions and in order
to arrive at a four dimensional spacetime six/seven of the dimensions have to be
compactified so that they are invisible to the naked eye but are present at every
point in spacetime. In addition, in four dimensions we think of the constituents of
matter as some fundamental particles, but in these extra-dimensional theories the
fundamental objects are generalised to p-branes, which are p-spatial dimensional
objects traversing ten/eleven spacetime dimensions. For example, a point particle
corresponds to a 0-brane, a 1-brane describes a string, a 2-brane describes a mem-
brane and so on. Although the first features of string theory were introduced in the
late 1960’s, it was not initially aimed for the unification of the forces but to develop
a better understanding of the strong nuclear force. However, after the development
of an alternative theory, quantum chromodynamics (QCD), to explain the strong
nuclear force very little attention was paid to string theory until the 1980’s.

In the 1970’s there was another new development which would become an integral

part of modern day string/M-theory, supersymmetry. This was the idea of a new
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symmetry relating the two types particles that exist in the universe, namely bosons
with integer spin and fermions with half-integer spins. In the 1980’s string theory
saw a rapid development with the inclusion of supersymmetry. This led to the
discovery of five different but consistent types of superstring theories. These are
referred to as the type I, type IIA, type IIB, heterotic Eg x Eg and the heterotic
SO(32) superstring theories, see for example [1].

However, the aim of unification is to have a single theory describing all the
fundamental forces; so which one of the superstring theories, if any, is this desired
theory? It turns out that all these theories are related by a web of dualities, and
moreover, they point to a single theory in eleven dimensions called M-theory [2,
3]. Onme key thing known about this eleven dimensional M-theory is that its low
energy approximation is eleven dimensional supergravity [4]. Further investigations
of eleven dimensional supergravity led to the discovery of the electric 2-brane [5]
called the M2 brane and its magnetic dual 5-brane called the M5 brane [6]. These
are believed to be two important ingredients of M-theory and a lot of research has
focused on developing a better understanding of these objects.

Supergravity theories were themselves introduced in the 1970’s after incorporat-
ing supersymmetry into the framework of General Relativity. In addition to eleven
dimensional supergravity, each of the superstring theories have their own low energy
limits corresponding to a supergravity theory. These have played very important
roles in our understanding of string/M-theory. Since we will primarily focus on

supergravities let us briefly mention what some these theories are:

e Eleven Dimensional Supergravity: This is the low energy limit of M-
theory and consists of a Majorana spinor gravitino v,,, the metric gy and
a 3-form gauge potential Hy;yp, where M, N, P are the spacetime indices

running over the spacetime dimensions.

e Type I Supergravity: This is a N/ = (1,0) theory in ten dimensions and so
corresponds to a theory with 16 supersymmetries. We consider the low energy
limit of the type I string theory coupled to super Yang-Mills and the two
heterotic string theories. The field contents are a metric g/, a real scalar ¢,
a 2-form gauge potential B,y and a 1-form gauge potential Ay, along with the
following fermions: a Majorana-Weyl gravitino ¢,;, a Majorana-Weyl gaugino

x and a Majorana-Weyl dilatino \.

e Type ITA Supergravity: This is a N' = (1,1) theory, i.e. a non-chiral
theory with 32 supersymmetries. It contains two Majorana-Weyl spinors of
opposite chirality and two Majorana-Weyl dilatinos of opposite chirality. On
the bosonic side it consists of the metric gy;n, a real scalar ¢, a 1-form, a
2-form and a 3-form gauge potential. Type ITA supergravity can be obtained

from eleven dimensional supergravity by dimensional reduction.
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e Type IIB Supergravity: This is a A = (2,0) theory, i.e. a chiral theory
with 32 supersymmetries. It contains two Majorana-Weyl spinors of the same
chirality and two Majorana-Weyl dilatinos of the same chirality. The bosonic
part comes in two groups; the NS-NS section consists of the metric gy, a
2-form gauge potential By,y and a real scalar ¢, the R-R sector contains a

0-form, 2-form and 4-form gauge potential with self-dual 5-form field strength.

These particular supergravity theories are important because of their direct link
to string/M-theory, but supergravity theories can be formulated in other dimensions
or can be obtained by dimensional reduction of the ones we have mentioned above,
see for example [1, 7, 8, 9].

Eleven dimensional supergravity formulated by Cremmer, Julia and Scherk [4]
is the unique supergravity theory in eleven dimensions. The reason for eleven be-
ing the largest dimension in which a consistent supergravity is formulated is due
to supersymmetry. In four dimensional supergravity theories the supersymmetry
parameter is a Majorana spinor and so has four real components, i.e. there are four
real supercharges. It is believed that there are no consistent supergravity theories
containing particles with spin greater than two. This means N = 8 theories are
the most supersymmetric theories that can be constructed in four dimensions that
contain particles with spin < 2, this corresponds to 32 supersymmetries in total.
Majorana spinors have 2[°/2 real components where D is the spacetime dimension.
In eleven dimensions this corresponds to a total of 32 supersymmetries. If D > 12
then the total number of supersymmetries for an A/ = 1 theory is more than 32, so
upon dimensional reduction to four dimensions this will lead to the appearance of
particles with spin greater than two. Therefore, eleven dimensions is the maximum
dimension in which this does not happen.

One of the aims of supergravity theories was to tackle the ultraviolet divergences
in gravity, see for example [10]. In addition, there was the prospect that they
could lead to a quantum theory of gravity. After the initial flurry of activity on
supergravity in the late 1970’s and early 1980’s interest on them was superseded by
the developments in string theory. However, supergravity continues to play a crucial
role in our understanding of string/M-theory by providing an effective low energy
description of these theories.

One of the main applications of supergravities in string/M-theory has been via
the investigation of supersymmetric supergravity solutions. These are solutions of
supergravity theories which in addition to solving the field equations also solve a
set of first order but non-linear equations called the Killing spinor equations. The
Killing spinor equations arise from the supersymmetry transformations that leave
the theory invariant. We will discuss the basics of supersymmetric solutions in more
detail in the first chapter. These classes of solutions have now been prominently ex-

amined for a number of years and have given us a better insight into string/M-theory.
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In particular, they have been useful in understanding string/M-theory compactifica-
tions, branes, string/M-theory dualities, the AdS/CFT correspondence, and in the

investigation of black holes, see for example [11] for a review.

Outline

The focus of this thesis will be on the N' = (1,0) supergravity in six dimensions.
These have eight real supercharges, and so backgrounds preserve a maximum of
eight supersymmetries. In particular, we will solve the Killing spinor equations of
this theory with the most general couplings possible. This is the NV = (1,0) su-
pergravity coupled to an arbitrary number of tensor, vector and scalar multiplets.
In addition to solving the Killing spinor equations (KSEs), we will make use of the
solutions to investigate the near horizon geometries of black holes in (1,0) super-
gravity. Furthermore, we will make use of the same techniques to investigate the
KSEs of the (1,0) superconformal theories in six dimensions. This will allow us to
obtain the BPS conditions in all cases.

This thesis is primarily based on the three papers published in [12, 13, 14],

written in collaboration with my supervisor:

e M. Akyol and G. Papadopoulos, “Spinorial geometry and Killing spinor equa-
tions of 6-D Supergravity,” Class. Quant. Grav. 28 (2011) 105001, [arXiv:
1010.2632 [hep-th]].

e M. Akyol and G. Papadopoulos, “Topology and geometry of 6-dimensional
(1,0) supergravity black hole horizons,” Class. Quantum Grav. 29 (2012)
055002, [arXiv: 1109.4254 [hep-th]].

e M. Akyol and G. Papadopoulos, “(1,0) superconformal theories in six dimen-
sions and Killing spinor equations,” JHEP 1207 (2012) 070 , [arXiv: 1204.2167
[hep-th]].

The outline of the thesis will take the following format:

e Chapter One: In the first chapter we mainly focus on giving technical details
that will be required in the rest of the thesis. We will begin by reviewing
the classification programme for supersymmetric supergravity solutions. This
will involve briefly discussing the different approaches to the classification of
supersymmetric solutions. We will in addition talk about black holes and the
uniqueness problems. A detailed exposition to the spinorial geometry method
of solving the KSEs will also be given. We will conclude the chapter with an

example of how the spinorial geometry method is used in ten dimensions.
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e Chapter Two: The second chapter is mainly based on [12]. In this chapter
we will introduce six dimensional (1,0) supergravity coupled to any number of
tensor, vector and scalar multiplets, giving details of the KSEs and how we go
about solving them. We then solve the KSEs and give details of the conditions
on the fluxes and discuss the geometry of the backgrounds. In particular, we
find that there are backgrounds preserving 1, 2, 3, 4 and 8 supersymmetries.

The conditions imposed on the fields in each case are given.

e Chapter Three: In this chapter we give a detailed derivation of the integra-

bility conditions of the Killing spinor equations.

e Chapter Four: The fourth chapter will follow the paper in [13]. We begin
this chapter by giving some general details on near horizon geometries and
the use of Gaussian null coordinates. This will be followed with the analysis
of all possible near horizon geometries admitted by (1,0) supergravity coupled
to any number of tensor and scalar multiplets. To do this we make use of
the results coming from the KSE in the second chapter as well as the field

equations that arise from the integrability conditions.

e Chapter Five: The fifth chapter is based on the work done in [14]. This
investigates (1,0) superconformal theories in six dimensions and KSEs, which
have been the focus of more recent research. We will begin by discussing the
construction of the (1,0) superconformal models. Then the KSEs are solved in
all cases to obtain the BPS conditions. Following this we investigate the half
supersymmetric solutions of a number of models in more detail aiming to give

an M-theoretic interpretation to these solutions.

e Chapter Six: In the final chapter we give our conclusions. We will give
a summary and discuss the main conclusions of the thesis. Furthermore we
outline some open problems for (1,0) supersymmetric theories in six dimensions

and discuss the possibilities of further work.

e Appendices A and B: In appendix A we give details of numerous identities
used in the derivation of the integrability conditions of (1,0) supergravity. In
appendix B we derive the field equations of (1,0) superconformal theory from
the KSEs and the Bianchi identities.
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Chapter 1

Preliminaries

1.1 Introduction

The aim of this chapter is to give details of the methods and techniques that we
will use extensively in the chapters that are to follow. It will also provide a good
opportunity to present the conventions and notations we follow.

We will begin with a general discussion of supersymmetric supergravity solutions
explaining some of the key terminology and reviewing some of the literature. As
we will be discussing the near horizon geometries of black holes later, it is also
appropriate to briefly give an introduction and discuss some aspects of black holes
in higher dimensions and searches for black hole uniqueness theorems.

The main focus of this chapter, however, is to introduce the spinorial geometry
method [15]. This method has proved to be an effective tool in the investigation of
supersymmetric supergravity solutions, and it will be the approach we take in order
to solve the Killing spinor equations of six dimensional supergravity.

To introduce this we will mainly follow the discussion of the spinorial geometry
method used in the investigation of ten and eleven dimensional supergravities in
[16, 15] but our results will be generalised to arbitrary Lorentzian signatures, a
similar analysis in the case of Euclidean signatures can be found in [17]. Further
mathematical expositions can be found in [18, 19, 20]. As an explicit example we
will discuss the ten dimensional case in more detail. The results of this example will
be needed in the next chapter when we discuss the KSEs of (1,0) six dimensional

supergravity.

1.2 Supersymmetric Supergravity Solutions

We begin this section with a general discussion of supersymmetric supergravity solu-
tions. Supergravity theories have been formulated and studied in diverse dimensions
since the 1970s, for some introductory texts on supersymmetry and supergravity see

for example [7, 21, 22, 23]. As we mentioned in the introduction they were initially
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investigated in their own rights but with progress in the development of string the-
ory and later M-theory supergravity naturally arose as the low-energy limit to these
theories, and since, they have been studied to build a better understanding of these

theories.

1.2.1 Killing Spinor Equations

One aspect of the study in supergravity theories has focused on the investigation
of supersymmetric solutions. The reason they are called supergravity theories is
because they incorporate supersymmetry and this in turn means they are invariant
under a set of supersymmetry transformations. In other words, the fermions in the
theory transform into some bosonic configuration and similarly the bosons trans-
form into some fermionic configuration. Schematically this can be expressed in the

following abstract way

0F = Be,
0B = €F, (1.1)

where B and F' denote the bosons and fermions, respectively, in the theory and € is
the local supersymmetry parameter.

When searching for supersymmetric solutions one looks for non-trivial € such that
the supersymmetry transformations vanish. As these are classical bosonic solutions
the fermions in the theory vanish, which means the supersymmetry transformation
of the bosons, the second equation in (1.1), are automatically zero and so we need
not worry further about these.

However, we now need to consider the supersymmetry variations of the fermions

in more detail. To find supersymmetric solutions we impose that
0F =Be=0, (1.2)

these equations are called Killing spinor equations and each spinor € that satisfies
these equations are called Killing spinors.

All supergravity theories have a supergravity multiplet which contains the gravi-
ton and at least one gravitino, in addition it may contain other fields. Depending
on the theory there could be possible couplings to vector, tensor, and scalar multi-
plets. There will be a corresponding Killing spinor equation (KSE) for each fermion
that appears in the theory. For supergravity theories the most important one is the
gravitino KSE, which is a first order differential equation and it is the KSE corre-
sponding to the supersymmetry transformation of the gravitinos, taking the general

form,
De=0, (1.3)
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where D is the supercovariant derivative, which in addition to the standard Levi-
Civita connection contains terms that depend on the matter content of the theory.
The KSEs for the other fermions in the theory are algebraic expressions, which we

collectively denote as
Ae=0. (1.4)

Solving these gives us constraints on the fields as well as information about the
background geometry that the theory lives on.

In addition to the constraints arising from the KSEs we have to consider the field
equations of the theory. The aim is then to impose the constraints from the KSEs
and analyse further the field equations. Usually a number of the field equations are
implied from the KSEs, however, those that are not implied give further restrictions
and these are all used altogether to determine the type of supersymmetric solutions

the theory admits.

1.2.2 Six Dimensional Supergravity in Context

We will now give a brief summary of some key results that have been obtained in
the context of supersymmetric solutions and outline how the investigation in six
dimensions fits into this picture.

This began with the work of Tod, who in 1983 was able to classify the supersym-
metric solutions of N' = 2 D=4 supergravity [24], this was followed by further work
on D=4 by Tod in [25]. Since then there has been gradual progress towards the
classification of supersymmetric supergravity solutions and several methods have
been developed for this purpose.

One such method is the use of G-structures and Killing spinor bilinears see for ex-
ample [26, 27, 28, 29]. This was initially used in the classification of supersymmetric
solutions for minimal supergravity in five dimensions [28] and for eleven dimensional
supergravity [29], but it has in general been effective in finding solutions preserving
low numbers of supersymmetries. It is based on the assumption that there is at least
one Killing spinor, which is used to construct differential forms using spinor bilin-
ears. These are then used to investigate the geometries admitted by the supergravity
theory in question. This method has been used in the classification of supergravity
solutions in a diverse range of dimensions [30, 28, 31, 32, 33, 34, 35, 36, 37, 29, 38|,
and includes both gauged and ungauged supersymmetric supergravity solutions. A
review of the use of this method in the classification of supergravity solutions can
be found in [39].

The maximally supersymmetric solutions of ten and eleven dimensional super-
gravities have also been classified [40], see also [41, 42, 43|, which in particular makes

use of the integrability conditions of the Killing spinor equations.
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However, the classification of supersymmetric solutions preserving all possible
fractions of supersymmetry remains a difficult task. An approach to tackling this
problem was proposed in [15], called the spinorial geometry method. We will discuss
this technique in more detail below and will be making use of this method throughout
this thesis in order to solve the KSEs. In brief, this technique makes use of the
realisation of spinors in terms of differential forms and, in particular, an oscillator
basis can be used in the space of spinors. Furthermore, the gauge group which leaves
the KSEs invariant is used to simplify the form the Killing spinors take which in
turn leads to considerable simplification of calculations.

This method has been used to investigate the supersymmetric solutions of ten
and eleven dimensional supergravities. One of the most significant achievements of
this was in the classification of all supersymmetric type I and heterotic supergrav-
ities backgrounds [44, 45, 46]. It has also been used to investigate supersymmetric
solutions of type IIB supergravity admitting one Killing spinor [16, 47]. The analysis
in [47] also looks into the supersymmetric solutions with extended supersymmetry.
In addition, the spinorial geometry technique has been used to investigate near
maximally supersymmetric backgrounds, see for example [48, 49, 50, 51, 52].

The progress of the last twenty years or so shows that there has been much de-
velopment in the classification of supersymmetric solutions in the lower and higher
dimensional supergravity theories. Although the initial works involved the classifi-
cation of ungauged theories or minimal gauging many further works incorporated
couplings to vector, tensor and scalar multiplets. In the first part of the thesis we
aim to add to this list of classifications by solving the KSEs of the most general
(1,0) supergravity in six dimensions.

We will focus on (1,0) supergravity in six dimensions coupled to arbitrary num-
bers of tensor, vector and scalar multiplets. This theory was constructed successively
in [53, 54, 55, 56, 57]. We will give details of the theory in chapter two. The KSEs
of six dimensional (1,0) supergravity have previously been solved in various special
cases. In particular, the KSEs of minimal (1,0) supergravity have been solved in
[34], and the maximally supersymmetric backgrounds have been classified in [34, 58].
The method followed in [34] is that of G-structures and spinor bilinears, whereas
[58] makes use of the integrability conditions and uses a Lie algebra approach. The
KSEs of the (1,0) theory coupled to a tensor multiplet and some vector multiplets
have been solved in [59] for backgrounds preserving one supersymmetry. The KSEs
of (1,0) supergravity coupled to a tensor, some vector and hypermultiplets have been
solved for backgrounds preserving one supersymmetry in [60], see also [61].

We extend these works by solving the KSEs of (1,0) supergravity coupled to
any number of tensor, vector and scalar multiplets for backgrounds preserving any

number of supersymmetries.
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1.3 Black Holes and Uniqueness Theorems

One application of supersymmetric supergravity solutions has been in the investi-
gation of supersymmetric black hole horizons. We will be pursuing this in a later
chapter for the case of six dimensional supergravity, but first let us give a general
introduction to this topic.

Ever since the conception of General Relativity the prediction of black holes and
their study has been one of the most interesting and researched areas of gravity.
The main focus has been on the black hole solutions in four dimensions and they
have been extensively studied. In particular, the first static solution to the vacuum
Einstein equations gave rise to the discovery of the Schwarzschild solution which
was soon generalised to the Reisner-Nordstorm solution via the coupling to electro-
magnetic fields. These were discovered very soon after the introduction of General
Relativity, see for example [62, 63] for more details. The Kerr solution which gen-
eralises the Schwarzschild solution by allowing the black hole to have some angular
momentum was discovered in 1963 and further generalised to the Kerr-Newman
solution with the coupling to electromagnetism.

In the 1960’s and 70’s work was done to prove the uniqueness of these solutions,
which was established in [64, 65, 66, 67, 68, 69], see also [70]. However, these
results do not extend to five and higher dimensions. The four dimensional black
hole solutions have spherical near horizon topologies. The five dimensional black
holes, for example, in addition to the spherical horizon topologies [71, 72] also admit
near horizon topologies of S' x S?. the black rings [73, 74]. It is also expected
that in dimensions higher than five there may exist black holes with exotic horizon
topologies [75, 76, 77, 78, 79, 80], for a detailed review see [81].

We are more interested in black holes in the context of supergravities. In par-
ticular, we are interested in supersymmetric black holes, i.e. black hole solutions
that preserve some degree of supersymmetry. Finding explicit black hole solutions
in higher dimensions is a significant challenge. It is easier to identify all near horizon
geometries and then to find ways to see if these correspond to particular black hole
solutions, this approach was for example taken in the identification of supersym-
metric black holes in five dimensions [82, 83, 84, 85, 86|. Although finding black
hole solutions in higher dimensions remains a difficult challenge there has been
some progress towards the classification of all near horizon black hole geometries.
Following the approach in [82] investigation of near horizon geometries in lower
dimensions [87, 88, 34] and more recently in higher, ten and eleven, dimensions
(89, 90, 91, 92, 93, 94] have been carried out.

Another tool which has been used to investigate black holes in the context of
string theory has been the attractor mechanism, which was discovered in [95, 96].
We will not use this and so do not require any further details on this, the interested
reader is referred to [95, 96, 1, 7].
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In this context, we investigate the near horizon geometries of six dimensional

supergravity coupled to tensor and scalar multiplets in chapter 4.

1.4 Spinorial Geometry

For most supersymmetric theories the Killing spinor equations can be very difficult
to solve. It is even more challenging to get a complete classification of solutions.
This involves analysing all possible backgrounds that may arise by the admission of
different numbers of Killing spinors, where the number of Killing spinors corresponds
to the number of supersymmetries preserved. One way of tackling this challenge has
been via the spinorial geometry method. We will now discuss this technique in some
detail.

The spinorial geometry method is a procedure that makes use of the fact that
spinors can be written in terms of differential forms, and in particular one can use an
oscillator basis, in the space of spinors, to carry out calculations in a straightforward
way when searching for supersymmetric solutions. The calculations that need to be
made are further simplified by making use of the gauge group that leaves the Killing
spinor equations invariant to choose an expression for the Killing spinors. Next, we
will give an outline of this method.

Let us begin with a theory covariant under the Spin group Spin(2n — 1, 1); note
that this is even dimensional and of Lorentzian signature. However, the method can
be easily generalised to odd dimensions, which will be discussed later. We will also
be working with a mostly plus metric, which is the convention we adopt throughout.
Now, we consider the real vector space V = R?*~1L1 which naturally comes with a
Lorentzian inner product. On this vector space we introduce an orthonormal basis
€9, €1, - .., €2,_1, Where eg denotes the time direction. The Lorentzian inner product,
(—,—), is then defined by

(wq, 20ey) = Z w2 Nap (1.5)

where 1y, = diag(—1,+1,...,+1).

To construct the Dirac representation of Spin(2n—1,1) we take the complexified
space U = C(ey, . .., e,), we then denote the space of Dirac spinors by A, = A*(U),
where A*(U) denotes the space of differential forms. A basis for the Dirac spinor is

given by

L,
€1, €2,..., €n ,

€12, €13,--- 5, €(n-1)(n) »
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€123..n 5 (1.6)

which corresponds to a total of 2" elements. We have used the short hand notation
€ijk = €; A €; A €L , (17)

where A is the wedge product. More explicitly, this means that a general Dirac

spinor xy € A. can be written as
x =al +be; + cijez-j +.. +d" ey, (1.8)

where the coefficients a, b, ¢, d € C. Therefore it is easy to see that a Dirac spinor of
Spin(2n—1, 1) has 2" complex components. The number of independent components
of a spinor can be reduced by imposing Weyl and Majorana conditions leading to
Weyl and Majorana spinors, and we will discuss these in a bit more detail later.
However we first point out that the space of Dirac spinors naturally decomposes

into two chiral subspaces, i.e. the Weyl representations,
A=A+ A7, (1.9)

where A} denotes the positive chiral space, generated by even degree differential
forms, and A_ denotes the negative chiral space, generated by odd degree differential
forms.

The Clifford algebra gamma matrices can also be constructed using these basis

elements and are defined in the following way,

'y = —e, A + epa, I'o=e, N + e,J,
Fi = € N+ €1, Fi—i—n = i@i A i@iJ s
i = 1,...n—1, (1.10)

where J denotes the adjoint operation to A. In particular it satisfies the property
eiJ(ej A\ Gk) == 5ijek — 5ik€j . (111)

It is straightforward to verify that the gamma matrices constructed here satisfy the
Clifford algebra

{FAarB}:FAFB"i‘FBFA:QnAB , (112)
where A, B = 0,1,...,2n — 1 and nap = diag(—1,+1,...,4+1). An extensive dis-

cussion of spinors and Clifford algebras in general can be found in [97].

The Lorentzian inner product defined in (1.5) can be extended to a Hermitian
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inner product on the space of Dirac spinors, defined by

n

(weq, 2Pey) = Z (w*)*2* | (1.13)

a=1

*

where (w®)* is the complex conjugate of w®. In addition, note that I'y is anti-

Hermitian and I';, for ¢ = 1,...,2n — 1, are Hermitian. In regards to the inner

product in (1.13) this means

(Ton,0) = —(n.Tob) ,
(Tin,0) = (n,1:0) , (1.14)

where n and 0 are two spinors.
We now give some further definitions that will be needed later. Firstly, we define

the Dirac inner product as [15]
D(n,0) = (Ton, 0) , (1.15)

which, unlike the Hermitian inner product in (1.13), is Spin(2n — 1,1) invariant.

This means
D(FABn7 9) + D(W, 1—‘ABQ) =0 ) (116)

where I'yp € Spin(2n —1,1) and I'yp = T'iul'p) = %(FAFB —TI'gl'4). In general we

use this notation to denote antisymmetrisation in the lower indices

Tayn, =T Tay .- T (1.17)

n}'

In addition to the Dirac inner product we can define two Majorana inner prod-
ucts, which is the case since we are considering an even dimensional space. These
correspond to the two Majorana conjugates which can be defined in even dimensions,

see for example [8]. The first one is defined as

Mi(n,0) = (A(n)",0) , (1.18)
and the second one is

M>(n,0) = (B(n)",0) , (1.19)
where the two maps A and B are defined as

A = Fl?...na
B = Tomin)...2n-1) » (1.20)
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and are related to the two charge conjugation matrices that one finds in even di-

mensions. Both M; 5 are Spin(2n — 1,1) invariant, i.e.
M o(Tapn, 0) + Myo(n,Lapt) =0 . (1.21)

When considering higher dimensional theories one aims to work with the simplest
representation of fermions. This depends on the dimension in which the theory is
formulated in, but the most general spinor that one can consider is the Dirac spinor,
which has 2[P/? complex components, where D is the dimension we are working in.
In even dimensions one can impose a chirality condition that halves the number of
degrees of freedom. Omne can also generally impose a reality condition called the
Majorana condition which also halves the number of degrees of freedom. In some
dimensions one can impose both of these condition to obtain Majorana-Weyl spinors
which have one quarter of the degrees of freedom of the original Dirac spinor. In
certain special cases when the Majorana condition cannot be imposed an alternative
“symplectic Majorana” condition can be applied, as a result one obtains symplectic
Majorana spinors. This notably happens in six dimensions and we will discuss this
in more detail further on. We now give details on how these conditions are imposed
in the formulation we have been describing.

The standard way to impose the Majorana condition is to equate the Majorana
conjugate of a spinor with the Dirac conjugate. To do this in the spinorial language
that we have been describing thus far we first introduce the following two anti-linear

maps [16]

Ly = Y IyAx
L. = % TyBx

: (1.22)
, (1.23)

where A and B are the maps defined in (1.20), ¢ are arbitrary phases chosen such
that the final expression is simplified and when acting on a spinor the * takes the
complex conjugate of the spinor, see the next subsection. The Majorana condition

is defined as

Li(n)=n, (1.24)

for a spinor 7). In the next subsection we shall explicitly show how these maps act on
spinors in order to get the general expressions for the charge conjugation matrices.

In addition, we will discuss some further details of the spinorial geometry method.
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1.4.1 The Majorana Condition

Let us now demonstrate what the condition in (1.24) implies. The anti-linear map

acts in the following way

n = Li(n),
= €i¢+F0A(77)*7
= €i¢+F0F12...n77*7 (1.25)
rearranging this we find
0= (12" g (1.26)
where we have chosen the phase so that e+ = —1. This is the more familiar

Majorana condition that we know
n=Cn, (1.27)
where we identify
Cy = (=1)2"™ Dy, (1.28)

with the charge conjugation matrix.

An analogues calculation for the L_ map gives
7= (=12 DO e (1.29)
therefore, the alternative charge conjugation matrix is
Co= (=120 ) ) (1.30)

In even dimensions either condition can be used to impose the Majorana condition.
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1.4.2 Oscillator Basis

An alternative formulation of the gamma matrices given in (1.10) is in terms of an
oscillator basis, related to those in (1.10) by [15, 16]

r. = %(FR—FO) = V2en A,
r, = % (T +To) = V2e,1,
I, = %(Fa — iTatn) = V20 A,
I, = % (To 4 iTarn) = V2e0_ , (1.31)
where o = 1,...,n — 1. The Clifford algebra now becomes
Lal'p +T'pl'a = 2945 , (1.32)
where gap is non-zero in the case when g,5 = 0,5 and g, = 1. Note that this

means a lowered (raised) + index becomes — raised (lowered) index, and similarly
a lowered (raised) o becomes & when raised (lowered).

This basis is often referred to as the creation/annihilation basis because of the
action of the gamma matrices on the space of spinors. Acting with I'_ or I, increases
the degree of the forms by one whereas acting with I'y, or I'y reduces the degree of
the forms by one. Therefore, starting with a vacuum state 1, a generic spinor can
be written as [15, 16]

i
L

X%, a1y a=—, . (1.33)

>
I

Eond

Il

o

=| =

1.4.3 Topiy

In even dimensions we can construct the chirality operator in the usual way
F2n+1 = CF()Pl N F2n—1 s (134)

where ¢ € C and is fixed by requiring (I's,;1)? = 1. For the group Spin(2n — 1,1)
this is

F2n+1 - (—1)%("71)F0F1 N F2n71 . (135)

In addition to squaring to one, this operator, by construction, also anti-commutes
with all the elements of the Clifford algebra I"4

{F2n+17 FA} - O . (136)
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This means the formalism that we have described can naturally be extended to odd
dimensions by taking I's, .1 as the additional gamma matrix of the Clifford algebra.
However, a consequence of extending the Clifford algebra to odd dimensions is that
there no longer exists a chirality operator and hence there are no Weyl spinors in

odd dimensions.

1.4.4 Spacetime Form Bilinears
The spacetime form bilinears can be calculated using [15, 16]

1
a(n,0) = HMz(n,FAL,,AkH)eAl AL NeMr k=0,1,...,2n—1, (1.37)

where « corresponds to a k-form. Using this expression one can calculate all the
spacetime form bilinears associated with the spinors 7 and 6. The Hodge duality
means the bilinear forms for k > n are related to those for k& < n and, therefore, it
is enough to determine the bilinear forms upto k = n.

This completes our analysis of writing spinors in terms of forms, and it will a

play crucial role in the investigation that is to follow in later chapters.

1.5 Spinorial Geometry Method in 10D

In this section the spinorial geometry method introduced in the previous part will be
adapted to the ten dimensional case. This will allow us to provide an explicit exam-
ple of how this method works, but more importantly, the discussion of this example
will demonstrate one of the crucial ingredients needed in the next chapter. A more
thorough discussion of what follows can be found in [16, 44], where supersymmetric
supergravity solutions in ten dimensions were investigated.

We begin by setting n = 5 and investigating the spinors of Spin(9,1). First we
consider the real vector space V = R%! and choose an orthonormal basis on this
space given by eg, €1, ...,e9. In order to formulate the Dirac spinors of Spin(9,1)
we take the complexified subspace U = C{ey,...,e5). We can now write a general

Dirac spinor y € A, = A*(U) as
x=al+0be + Cijeij + dijkeijk + fijkleijkl + gei12345 , (1.38)

where 7,7 = 1,...,5 and the coefficients before each basis a, b, ¢, d, f,g € C.
The gamma matrices of the Clifford algebra, Clif(R%!), are obtained by setting
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n=>51in (1.10) and are given by

FO — —€5 A €51, F5 = €5 N+ €51 ,
Fi = € N+ €1, Fi+n == 2'61' N — ieiJ s
i = 1,...,4. (1.39)

The Dirac inner product and the two Majorana inner products are as in (1.15),
(1.18) and (1.19) respectively. The map A in (1.18) and B in (1.19) become

A = F123457
B = F06789- (140)

The corresponding Majorana condition is given by

n=Cyn, (1.41)
where

Cy = —Toios4s ,

c. = F6789- (142)

We are free to choose the Majorana inner product, and thus the map A or B, we
want to work with. Following the convention in [16, 44] we will work with the
second Majorana inner product involving the map B. The corresponding Majorana

condition is

n" = Derson - (1.43)
The gamma matrices of the oscillator basis are

. = \/565/\ s F+:\/§€5J,
I, = V2, A s = V2, , (1.44)

where @ = 1, 2, 3,4. Observe how much simpler the gamma operations have become
in this basis, the calculations also become correspondingly more straightforward.

For completeness we give the chirality operator in ten dimensions

Ty =Dl ... Ty . (1.45)
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1.5.1 The Real Spinors

Where possible one tends to work with real spinors, and this is obtained by enforcing
the Majorana condition. In this section we outline how the Majorana condition is
used to determine real spinors in terms of forms. The Majorana condition is given
in (1.43). This condition illustrates the action of the charge conjugation matrix. For

example, given the basis 1 the charge conjugation matrix changes it to ejs34 since

F6F7F8F91 = F6F7F8(i64 A —i€4J)1 = iF6F7F8€4
= —Tel'7es

= —iF66234 = €19234 - (146)
Similarly the basis e1934 changes to 1. Therefore, lets consider the following spinor
n = al + b61234 s (147)

where a,b € C, this spinor is also a Weyl spinor since it is composed of even degree
forms, n € A" and can be checked using the chirality operator in (1.45). We now
apply the Majorana condition to reduce this to its real parts. The left hand side of

(1.43) uses the standard complex conjugate and so
n=a"'l+0beisa , (1.48)
whereas the right hand side of the Majorana condition gives
L7897 = ae1234 + b1 . (1.49)
Comparing these two expressions we find
a="b", (1.50)
and so
n=al+a’eiss . (1.51)
This means the two real spinors are
m=1+e34, ne = i(1 — e134) - (1.52)

These are two of the basis spinors for the space of Majorana-Weyl spinors in ten
dimensions. In a similar fashion to the procedure outlined above the remaining basis

spinors can be found, see for example [44, 16].

29



1.5.2 Spinor Forms and KSEs

Once an explicit basis for the spinors has been established gauge transformation that
leave the KSEs invariant can be used to obtain simple expressions for Killing spinors.
These Killing spinors, written in terms of forms, are substituted directly into the
KSEs. Since the gamma matrices are also expressed in terms of form operators one
is able to directly solve the KSEs to obtain purely algebraic relations on the field
content of the theory, which can then be translated to conditions on the geometry.
This procedure can be repeated for more Killing spinors and the aim is to obtain a
full classification of the solutions to the KSEs. In the case of heterotic supergravity
[44, 45, 46] and six dimensional (1,0) supergravity a classification of the solutions
to the KSEs was achieved according to the isotropy group of the Killing spinors.
However, this is not always possible, for example this has not been done for the 11B

supergravity.

1.5.3 Ten Dimensional Super Yang-Mills

In this section we give a simple example to demonstrate how one uses the machinery
introduced above to solve the KSE of ten dimensional super Yang-Mills to find its

supersymmetric solutions. The KSE for this theory is
Fupl*Be =0, (1.53)

where € is a Majorana-Weyl spinor of Spin(9, 1) and Fy4p is the gauge field strength.
This group has one type of orbit with stability subgroup Spin(7) x R®, see [98, 99].

A representative spinor can be chosen as [44, 16]
e=1+ €1234 - (154)

Substituting this spinor into the above KSE and expanding the repeated indices we
find,

(2F_ I 4 2F T 4+ 2F T + 2F ;T + 2F, T4+
Fopl®P +2F, 50 + FsT%) (1 + €1234) = 0. (1.55)

The gamma matrices are given in (1.39), these are used to find

D™ (14 em031) = (L+emsa) , T +e1230) =0, T %(1+e2) =0,
D1+ ero3a) = —2e2315 ,  TH(1+ €134) = 2€1305

TH(1+4 e1934) = —2e1245 , [T+ e1031) = €135 ,

(1 4 e1931) = 2651, TP2(1 4 e1934) = 2es

F+3(1 + e1234) = 2es3 FM(l + e1234) = 2es4

T (1 + e1931) = 2ea . TP(1 + e1931) = 6°°(1 — e1931) |
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TP(1 + e1934) = —€*%e.5 , (1.56)

1234

where €'°°* = 1. Substituting these in and equating the coefficients before each basis

to zero we find

o 1
F_+:5 BFaB:F-Fa:F-‘rO_é:O? F—B:§€&’76F’Y§ . (157)
In addition, the F_, and F_5; components are not constrained apart from being
hermitian conjugates of each other. Therefore, we can use this to write the gauge

field strength as
F=F_ e Ne' + Fye' nel | (1.58)

where the Fj; components are constrained according to (1.57), i.e. it is contained
in Spin(7) and this group is fixed as we have chosen the positive chiral spinor in
(1.54), i are the transverse directions to the light-cone. This represents the form that
solutions which preserve one supersymmetry must take. This is a simple example
which we have given to demonstrate how the spinorial geometry method can be

used, the equations that we come across will be a lot more involved.

1.6 Summary

In this first chapter we have discussed the basic aspects of supersymmetric super-
gravity solutions and what we mean by terms like Killing spinors and Killing spinor
equations. In addition, an overview of some of the relevant literature was given in
which the six dimensional theory was put into context.

However, the main part of the chapter was to introduce the spinorial geometry
approach to solving the KSEs. In particular, we discussed how spinors can be written
in terms of forms and also detailed some technical tools used in the manipulations
of spinors in the language of spinorial geometry. Furthermore, we demonstrated
how this method works in ten dimensions giving the specific example of finding a
supersymmetric solution of ten dimensional super Yang-Mills theory.

Throughout the remainder of the thesis this technique will be used in the analysis
of different aspects of (1,0)-supersymmetric theories in six dimensions. In the next
chapter we will describe (1,0) supergravity in six dimensions and use this method
to solve the KSEs for this theory.
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Chapter 2

Six Dimensional Supergravity and

Killing Spinor Equations

2.1 Introduction

In this chapter we will solve the Killing spinor equations of six dimensional (1,0)
supergravity coupled to any number of tensor, vector and scalar multiplets in all
cases. As we mentioned in the previous chapter the supersymmetric solutions of
(1,0) six dimensional supergravity have been considered before but these were re-
stricted in their couplings to matter fields and solutions considered preserved only
one supersymmetry or maximal supersymmetry, see [34, 58, 59, 60]. We will solve
the KSEs of the most general theory and for all possible fractions of supersymmetry
preserved. In each case we will give the constraints imposed on the matter content
of the theory and discuss the restrictions on the geometry of spacetime. To do this
we will make use of the spinorial geometry method and we will use the analogy that
exists between the KSEs of heterotic supergravity and those of six dimensional (1,0)
supergravity. This was one of the reasons why we used the example in section 1.5.

We shall begin the chapter by introducing the (1,0) six dimensional supergravity,
discussing the field content and the KSEs that we focus on. Then we will discuss
spinors and the techniques we use to solve the KSEs. In particular, we will outline
the relation between heterotic supergravity and the theory under consideration, and
furthermore, discuss how this is used to rewrite the KSEs of the theory.

As a next step, we investigate the isotropy groups of the different number of
Killing spinors admitted, and in each case we determine the corresponding repre-
sentative spinors. This analysis will also allow us to look for descendant solutions;
these are solutions which have less Killing spinors than parallel spinors, i.e. some
of the parallel spinors may not necessarily be solutions to the other KSEs. This
analysis will demonstrate that the solutions of the KSEs can be classified uniquely
according to the isotropy group of the Killing spinors in Spin(5,1) - Sp(1), which

corresponds to the holonomy of the supercovariant connection of a generic back-
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ground. This is true except in one case, which becomes clear when the existence of
descendants is investigated. The dot in this group and in the groups which we will
use later denote a mod Zg, i.e. for two groups, GG; and G5 we have G -Gy = %.

The isotropy group of the Killing spinors are found to be

Sp(1)-Sp(1) x H (1), U(1)-Sp(1) x H (2), Sp(l)xH (3,4);
Sp(1) (2), U@) 4), {1} (8), (2.1)

where in parenthesis we indicate the number of Killing spinors that are left invariant.
The representative spinors which are left invariant under these subgroups will be
discussed later.

In the sections that follow this analysis we consider each of the isotropy groups
and the corresponding Killing spinors separately. In each case we solve the KSEs
and discuss the implications of the solutions on the fields and the geometry, giving

a detailed description of the backgrounds that arise.

2.2 (1,0) Supergravity

In this section we give details of the theory.

2.2.1 Fields and KSEs

In six dimensions there are four types of (1,0)-supersymmetry multiplets; the grav-
itational, tensor, vector and scalar’ multiplets. The theory that we shall consider is
(1,0) supergravity coupled to nr tensor, ny vector and ny scalar multiplets. We are
interested in the bosonic fields of the theory and so we shall focus on the bosonic
components of each multiplet, however, the construction of this theory including
a description of the fermions can be found in [55, 57]. We will mainly follow the
construction in [57]. The gravitational multiplet apart from the graviton has a 2-
form gauge potential; each tensor multiplet contains a 2-form gauge potential and a
real scalar; the vector multiplet has a vector and each scalar multiplet contains four
real scalars. The bosonic fields of the scalar multiplet take values in a Quaternionic
Kéahler manifold which has real dimension 4ny.

The spinors in six dimensions can be described by symplectic Majorana spinors.
Therefore, before proceeding to describe the KSEs, we give the symplectic Majorana
condition satisfied by the fermions that appear in (1,0) supergravity. This condi-
tion utilises the invariant Sp(1) and Sp(ng) forms to impose a reality condition.
Let us suppose that the Dirac or Weyl spinors A and x transform under the funda-

mental representations of Sp(1) and Sp(ng) respectively. The symplectic Majorana

!Note that we will also refer to scalar multiplets as hypermultiplets, these terms will be used
interchangeably throughout.
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condition is given by
M= eAfBC’XE , Xt=e€2Cx; (2.2)

where C is the charge conjugation matrix and A2 and €2 are the symplectic invari-
ant forms of Sp(1) and Sp(ny), respectively, and A, B=1,2 and a,b=1,...,2ny.
The supersymmetry transformations of the fermions evaluated at the bosonic

fields are

1
§U4 = Vet — 8HM7W’6 +CApeE

5XM7A - §Tli\4’y A — ﬁH%p’preA
ot = 1y eAVM
/ 1 1 /
ONA = T FU A (V) ARl (2.3)

oo

where W is the gravitino, x are the tensorini, 1) are the hyperini and A are the
gaugini, € is the supersymmetry parameter and the index a' = 1,...,ny. The
remaining coefficients that appear in the supersymmetry transformations depend on
the fundamental fields of the theory. This in turn means their explicit expressions
depend on the formulation of the theory. The structure of the supersymmetry
transformations that we have stated above includes all known formulations. As a
result, most of the analysis on the solutions of the KSEs that follows is independent
on the precise expression of the supersymmetry transformations in terms of the
fields. Because of this, the conditions that arise from the KSEs will be given in
generality. We will also state explicitly where the expressions of the KSEs in terms
of the fields is used. In what follows, we shall always assume that V is the spin
connection of the spacetime and C is a Sp(1) connection.

In order to give an example of how the supersymmetry transformations, (2.3),
depend on the fundamental fields of the theory, we use the formulation proposed in
[57]. However, we use a different normalization? for some of the fields from that in
[57]. The formulation in [57] organises the fields in the following way. The theory
has ny 4+ 1 2-form gauge potentials denoted as B- where r = 0,1,...,np. One of
these 2-form potentials comes from the gravitational multiplet and the remaining
np are associated to the tensor multiplets. We denote the corresponding 3-form
field strengths with G*. The precise relation between B and G* as well as the
duality conditions on G* will be given later. The ny scalars of the tensor multiplets
parametrise the coset space SO(1,n7)/SO(nr). A convenient way to describe this

coset space was introduced in [100], where the scalars are described by an SO(1,nr)

20ur normalization is similar to that of heterotic supergravity.
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matrix

Uy
S:($M> , M=1,...np. (2.4)

Since the matrix S € SO(1,nr), one has STnS = n where 7 is the Lorentzian metric

in (1, ny)-dimensions. In particular, the components of the matrix S satisfy

r M, M T .M
vt =1, v — E Ty =1, VT =0 (2.5)
M

The canonical SO(nr) connection of the coset is ) 22 dzi.
On the other hand, the scalars of the hypermultiplet parametrise a Quaternionic
Kéhler manifold which has holonomy Sp(ng) - Sp(1). This manifold admits a frame

FE such that the metric can be written as

grj = E%E%G@E@ , (26)
where I = 1,...,4ng and, €4 and e4p are the invariant Sp(ng) and Sp(1) 2-forms,

respectively. The associated spin connection has holonomy Sp(ng) - Sp(1) and so
decomposes as (.A%Q, ALAQ). For general details on geometry and holonomy see for
example [101, 102, 103], we will tend not to give specific details but discuss only
what is required to continue without affecting the discussion.

In [57] to include vector multiplets with (non-abelian) gauge potential AZ’, one as-
sumes that the quaternionic Ké&hler manifold of the hypermultiplet is Sp(1, ng)/Sp(1) x
Sp(ny) and gauges the maximal compact isometry subgroup Sp(1) x Sp(ng). So
the gauge group of the theory is H = Sp(1) x Sp(ny) x K, where K is a product of
semi-simple groups which does not act on the scalars. Let &, and £, be the vector
fields generated on Sp(1,ny)/Sp(1) x Sp(ng) by the action of Sp(1) and Sp(ng),
respectively. Under these assumptions, one has the following

Hyp = UzGﬁup ) H/%p = $£MGin ) CMAE = Du(blALAE )
TH = M9 0m, VA =EPD, ¢, Fo =0,AY — 9,A7 + [y AL AT

’ 1 U /7 1 ’ /
(Mal)éﬁ - vl Aléﬁglal ) (M%)AE = v CKQ‘ALAEflaQ ) (M%)AE =0, (27)

where the gauge index a} ranges over the gauge subgroup K, ¢L are the scalars of

the hypermultiplet,

1
VMGA = aueé + ZQM,mnvm"eA ,
D¢t = 9.0t —Ave, (2.8)

respectively, and (2 is the frame connection of spacetime. It is also understood that
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{w, = 0 as K does not act on the scalars of the hypermultiplet. Furthermore, F o
are the field strengths of the gauge potentials A% and f are the structure constants
of the gauge group H.
We now define the field strengths G*. These are given by [57]
Gt = 30y,BE, + 1 CS(A%PW),,, + 2CS(ASPn)) o+ K OS(AR) ., , (2.9)

pvp vp)

where ¢*’s are constants, one for each copy of the gauge group, and CS(A)’s are
the Chern-Simons 3-forms. Note also that the constants ¢! and ¢ appear in the
definition of u’s in (2.7).

The duality condition on G is given by

1 120 21%
CEGiIHZUB - §EN1N2M3 e 3GKV1V2V3 ) (2'10)
where
Gos = vp0s + »_ atall (2.11)
M

Note that the duality conditions for H and H™ are opposite. In our conventions,

H is anti-self-dual while H is self-dual. More explicitly, in terms of H and H* we

have
H _ _i vivov3 H
M43 T 3|6 M2 U3 5T V1V2V3
1 !
M I 4 21 7} M
HH1M2M3 - 3]6 H1H2H3Hl/1u21/3 : (212)

The definition of the fields in (2.7) can be used to interpret the components
appearing in the supersymmetry transformations in (2.3) in terms of physical fields.
We will be using these expressions when we want to discuss the solutions of the
KSEs in terms of the physical fields

2.2.2 Spinors

To make effective use of the spinorial geometry method in solving the Killing spinor
equations we need to express the spinors in terms of forms. In the case of the
above theory in six dimensions we need to find a way to impose the symplectic
Majorana condition on the spinors. This is where the relation between six dimen-
sional supergravity and heterotic supergravity plays an important role. Firstly, we
identify the symplectic Majorana-Weyl Spin(5,1) spinors with the SU(2)-invariant
Majorana-Weyl Spin(9,1) spinors. Under this identification the symplectic Majo-
rana condition of Spin(5,1) spinors is replaced by the Majorana condition on the

Spin(9,1) spinors, which we described in section 1.5. We will now demonstrate
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this more explicitly. Recall that the Dirac spinors of Spin(9,1) are identified with
A*(C?), and the positive and negative chirality spinors are the even and odd degree
forms, respectively. The gamma matrices of Clif(R%!) are as in (1.39), which we

give here again for ease of reference

FO = —e5 N\ +esa s F5 =e5 N\ +e5 s
Fi = e; N\N+e; s Fi+5 = z(ez A —ei_l) s 1= 1, 2, 3,4 s (213)
where we recall that e; for i = 1,...,5, is a Hermitian basis in C°. Now, we identify

the gamma matrices of Clif(R>!) in the following way
Yo=Tp, p=012; v ="o, p=3,45. (2.14)

Therefore, the positive chirality Weyl spinors of Spin(5,1) = SL(2,H) are A®¥(C(eq, €2, €5)) =
H?2. Furthermore, we identify the symplectic Majorana-Weyl condition of Spin(5,1)
with the Majorana-Weyl condition of Spin(9,1) spinors, i.e.

€ = F67F89€ y (215)

where € € A®C(ey,e,e5) ® A*C(ess). In particular, a basis for the symplectic

Majorana-Weyl spinors is

14+e1231, (1 —eqosa), e2—eza, ilera+ess),

€15 + €as34 , i(e15 — €a534) , €25 — €1534 , (€25 + €1534) - (2.16)

Observe that the above basis selects the diagonal of two copies of the Weyl repre-
sentation of Spin(5, 1), where the first copy is in A®V(C{ey, €2, e5)) while the second
copy includes the auxiliary direction e3q. The SU(2) acting on the auxiliary direc-
tions ez and e, leaves the basis invariant. These basis spinors are derived in the
same way that the Majorana-Weyl spinors in ten dimensions are obtained, which
we demonstrated when discussing real spinors in section 1.5, but the spinors in
(2.16) correspond only to a subset of these spinors, specifically the SU(2)-invariant
Spin(9, 1) spinors, see [44].

2.2.3 KSEs Revisited

We now rewrite the KSEs of six dimensional supergravity in terms of the ten dimen-
sional notation we have introduced above. To do this we first define p’, ' = 1,2, 3,
such that

1 1 1
pl = §(P3s +ly), p°= §(F89 —Ty) ., p’= §(F39 —I'ss) (2.17)
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which satisfy

[pr”ps’] _ 2€r’s/t/pt’ 7 (218)

where €¢'?3 = 1. Note that these are the generators of the Lie algebra Sp(1) as it
acts on the basis (2.16). Using this we can rewrite the KSEs as

1 o
De= (V, — St +C, pr)e = 0,
i M i M v .
(éTP« - ﬂH}Ep’yu p> € = 0,
Z")/“EAV;*A = 0 s
1 o v 1 a
ZFWV ot e = 0, (2.19)
where we have made use of the fact that

Cilpe? =Cp(py) pe? (1) pel = (u™)" (pr)  pe? . (2.20)

In the hyperini KSE, it should be understood that

€1 = —62 s €g = F3461 s (221)
where €' and €2 are the components of € in the two copies of the Weyl representation

used to construct the symplectic-Majorana representation.

2.3 Parallel and Killing Spinors

2.3.1 Parallel Spinors

The gravitino KSE is
D,e=0, (2.22)

and we say that any spinor € that solves this equation is a parallel spinor with respect
to the supercovariant derivative D. The (reduced) holonomy?® of six dimensional
supergravity supercovariant connection D, (2.19), is contained in Spin(5,1) - Sp(1).
This is also the same as the gauge group of the theory. Therefore, there are two
general possibilities for the isotropy group of parallel spinors. Either the parallel
spinors have a trivial isotropy group in Spin(5,1)-Sp(1) or the parallel spinors have

a non-trivial isotropy group in Spin(5,1) - Sp(1). To investigate these two case we

3We assume that the backgrounds are simply connected or equivalently we consider the universal
cover.
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first consider the integrability condition of the gravitino Killing spinor equation,

D, D)e=0, (2.23)
which in turn gives
1. . ,
ZRyy,p07 €+ f;ypr’e =0 , (224)
where
F, = 0,C — 0,Cl, +2€" ypCiCl (2.25)

and R is the curvature of the connection, @, with skew-symmetric torsion H defined
as

A 1
V,Y' =V, Y" + EH'/,MYA : (2.26)

Trivial Isotropy Group

Now, if the isotropy group of the parallel spinors is the trivial group {1}, the inte-
grability condition in (2.24) means that

R=0, F=0. (2.27)

The spacetime is parallelisable with respect to a connection with skew-symmetric
torsion and admits eight parallel spinors. Moreover, the torsion is anti-self-dual.
All such spacetimes are group manifolds with anti-self-dual structure constants. We

will discuss these backgrounds in more detail in section 2.9.

Non-Trivial Isotropy Group

We will now consider the case where the parallel spinors have a non-trivial isotropy
group in Spin(5,1) - Sp(1). There are two ways to tackle this problem which are
based on the approaches in [98] and [99]. The different possible spinor orbits of
Spin(5,1) have been discussed in [98]. In this section we will consider the possible
isotropy groups as well as the representative spinors in Spin(5,1) - Sp(1). First,
we note that Spin(5,1) = SL(2,H) and that the action of Spin(5,1) - Sp(1) on
the symplectic Majorana-Weyl spinors can be described in terms of quaternions. In
particular, the symplectic Majorana-Weyl spinors can be identified with H? where
Spin(b,1) =2 SL(2,H) acts from the left with quaternionic matrix multiplication
while Sp(1) acts on the right with the conjugate quaternionic multiplication. Let

us give some further details before discussing the isotropy groups. An element
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S € SL(2,H) can be represented by

b
S:(a ) . abedeH. (2.28)
c d

Each element of the quaternions can be written as a = u; + usi + ugj + usk where
u € R and

= =k=—-1, ij=—ji=k, jk=-kj=i, ki=—ik=j. (2.29)

An element of Sp(1) say f € Sp(1) satisfies ff = 1 where f is the quaternionic
conjugate of f, i.e. if f = vy 4 vai + v3]j 4+ vak then f = vy — voi — v3j — v4k and the
v’s take values in R. Furthermore, the space of symplectic Majorana-Weyl spinors
spans the space H ¢ H, the first H is spanned by the basis spinors in the first line
of (2.16) and the second H is spanned by basis spinors in the second line of (2.16).
The action of the group Spin(5,1) - Sp(1) on this space is

a b X\ -
6y

where X takes values in the first copy of H and Y takes values in the second copy
of H. Using this we find that there is a single non-trivial orbit of Spin(5,1) - Sp(1)
on the symplectic Majorana-Weyl spinors with isotropy group Sp(1) - Sp(1) x H. A
representative symplectic Majorana-Weyl spinor can be chosen as 1 + €1934.

The alternative way of deriving this isotropy group is by making use of the

method in [99] where one needs to solve the infinitesimal equation
My A"™ (1 + er34) + Arfprl(l +e1234) =0 . (2.31)

In this equation M, parametrise the infinitesimal Spin(5,1) transformations and
A, parametrise the infinitesimal Sp(1) transformations. Solving this equation we

find the following constraints

M_+:M+QIM+&:07 Maa—FiAg:O,
Mz — Mz +ihy =0, M+ M+ M =0, (2.32)

and the components M_, and M_5 are not constrained apart from being Hermitian
conjugates of each other. From these constraints one can infer that the spinor
1 + e1934 is left invariant by the Lie algebra su(2) x su(2) & H. Furthermore, this
highlights the possible isotropy groups of the spinor under consideration; using this
result, with verification from the previous method, we conclude that the isotropy
group of one spinor is Sp(1) - Sp(1) x H.

To continue we have to determine the action of Sp(1)-Sp(1) x H on H?. Decom-
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posing H? = R @ ImH @ H, where R is chosen to be along the first invariant spinor,
we find that the action of the isotropy group is

ImH & H — eIlmHa & bHa (2.33)

where (a,b) € Sp(1) - Sp(1) and a is the quaternionic conjugate of a € Sp(1).
Now, there are two possibilities; either the second invariant spinor lies in ImH or
in H. It cannot lie in both because if it does then there is a H transformation in
Sp(1) - Sp(1) x H such that the component in ImH can be set to zero. Now, if the
second spinor is in ImH then it can be arranged so that a representative is given by
i(1 — eq934). This is because Sp(1) - Sp(1) C Sp(1) - Sp(1) x H acts on ImH with
the three dimensional representation and so can rotate any spinor to a particular
direction. The isotropy group of the two spinors reduces to U(1)-Sp(1) x H. On the
other hand, if the non-trivial component lies in H then a representative spinor can
be chosen as ej5 + ea345 as Sp(1) - Sp(1) C Sp(1) - Sp(1) x H acts on H with left and
right quaternionic multiplication allowing any spinor to be rotated to a particular
direction. The isotropy group in this case is Sp(1).

There are two possible routes to take from here, depending on which of the two
isotropy groups we decompose the space H? with respect to. In both cases we will
find that if there are three invariant spinors, then there always exist an additional
invariant spinor. Let us first consider the case when the two invariant spinors have
isotropy group U(1) - Sp(1) x H. Then the space of spinors decomposes under
the action of this group as R? @ R? @ H where the first R? is spanned by the two
invariant spinors we have already mentioned. Therefore, the third invariant spinor
lies in R? @ H. Again there are two options; either the third invariant spinor is in
R? or in H. It cannot be in both because if it does then there is a H transformation
in U(1) - Sp(1) x H such that the component in R? can be set to zero. Now, if the
third spinor is in R? then we can always use the U(1) C U(1) - Sp(1) x H to arrange
so that a representative for this is given by e;s — e34, but this means that we get an
additional singlet in the decomposition of spinors for free. Therefore, we find in this
case that there are four invariant spinors with isotropy group Sp(1) x H and with
representative spinors given by the first line in (2.16).

On the other hand, if we choose the first two invariant spinors to have isotropy
group Sp(1) the space of spinors decomposes as R @ ImH@® R & ImH under the action
of this group. The subspace R & R is spanned by the first two invariant spinors.
In this case, the third invariant spinor lies in ImH @ ImH, however, we find that
this also leads to two additional singlets, and therefore, four linearly independent
invariant spinors in total, with isotropy group U(1). The representative spinors for
the additional singlets can be chosen as i(1 — ej234) and i(e15 — €2345).

The isotropy group of more than four linearly independent spinors is {1}. The

results of this section have been summarised in table 2.1.
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] N \ Isotropy Groups \ Spinors ‘
1| Sp(l)-Sp(l) x H 1+ e1934
2 1 (UQ)-Sp(l)) x H 1+ e1934 , (1 — €1934)
4 Sp(1) x H 1+ eqa3s , 1(1 —e€1931) , €12 — €34, (€12 + €34)
2 Sp(1) 1+ e1934 , €15+ €2345
4 U(l) 1+ eqa34 , 1(1 —€1234) , €15 + €a3a5 , 1(€15 — €2345)

Table 2.1: The first column gives the number of invariant spinors, the second column the
associated isotropy groups and the third representatives of the invariant spinors. Observe
that if 3 spinors are invariant, then there is a fourth one. Moreover the isotropy group of
more than 4 spinors is the identity.

2.3.2 Descendants

From the analysis we have carried out above one can see that the gravitino KSE
has solutions that leave 1, 2, 4 and 8 spinors invariant, see table 2.1. These are
the parallel spinors and in each case the holonomy of the supercovariant derivative
reduces to one that is contained in the isotropy group of the invariant spinors.
Supersymmetric backgrounds where all the parallel spinors, given in table 2.1, also
solve the remaining Killing spinor equations are referred to as Killing, and this set
of solutions form a particularly distinguished class of solutions. This is because it
is not necessarily the case that solutions of the gravitino KSE are also solutions
of the other three KSEs. Typically, only some or a particular linear combination
of the parallel spinors are Killing. Backgrounds where there are less Killing than
parallel spinors will be called descendant backgrounds. Normally the identification of
such backgrounds requires an extensive analysis as was the case in the investigation
of the descendant solutions of heterotic supergravity in [45]. The analysis of the
descendant solutions of six dimensional supergravity is less involved. Although we
will aim to give a thorough and self contained analysis of the descendant solutions
for six dimensional supergravity we will avoid specific details, see [45] for full specific
details of the investigation of descendants.

We will see that there are many descendants but in most cases the Killing spinors
of the descendants are given in terms of the parallel spinors of table 2.1. Such de-
scendant backgrounds are special cases of solutions for which all parallel spinors are
Killing. Our aim in these sections will be to see if there are background which have
Killing spinors that differ from those given in table 2.1. If they exist, such back-
grounds will be called independent descendant solutions or simply “independent”.

We first note that in all cases if a solution has just one Killing spinor, irrespective
of the number of parallel spinors, it is always possible to rotate it so that it is
identified with 1 + ej934. Therefore, such descendant backgrounds are included in
those for which 1 + eq934 is both a parallel and Killing spinor and so they are not
independent. Using this, the cases we have to examine are those with two or more

Killing and with four or more parallel spinors.
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2.3.3 Descendants of four parallel spinors

There are two cases to consider depending on whether the isotropy group of the four

parallel spinors is Sp(1) x H or U(1). We will consider them in turn.

Sp(l) x H

In order to identify descendant solutions we need to determine the sigma group
[45]. The sigma group is the group which can act non-trivially on the space of
parallel spinors and preserves the subspace spanned by them. For the purpose of
the spinorial geometry method it plays the same role as the gauge group when
investigating descendant solutions, see [45] for a detailed discussion.

If the isotropy group of the four parallel spinors is Sp(1) x H, then the sigma
group [45] is Spin(1,1) x Sp(1) - Sp(1). This is the group which leaves these four
parallel spinors invariant and will play the same role as the gauge group for the
purpose of the spinorial geometry method, see [45]. The Spin(1,1) is generated by
v+, one of the Sp(1) are generated by the generators in (2.17) and the other Sp(1)
group is generated in a similar way to (2.17) but with the gamma matrices in the
directions 1, 2,6, 7.

First we consider the case where there are four parallel spinors but only two
Killing spinors. The subgroup Sp(1) - Sp(1) = SO(4) acts with the vector represen-
tation on the four parallel spinors. In such a case, it is always possible to arrange

so that the first two Killing spinors are
L4 eo3s, (1 —ei234) - (2.34)

Therefore such solutions are special cases of backgrounds with two supersymmetries
associated with two parallel spinors with isotropy group U(1) - Sp(1)) x H, and so
are not independent.

Next we consider the possibility of a solution with three Killing spinors. Once
again the subgroup Sp(1) - Sp(1) of the sigma group acts with the vector represen-

tation allowing the three Killing spinors to be chosen as

1461931, (1 —e1234) , €12 —e€34 - (2.35)

We will see that if the gravitino, tensorini and gaugini KSEs admit (2.35) as a
solution, then they also admit i(e;o — e34) as a solution. So all the parallel spinors
of this case solve three out of the four KSEs. It then remains to investigate the
hyperini KSE. We shall see that the conditions that arise from the hyperini KSE
evaluated on (2.35) are in fact different from those that one finds when the same
KSE is evaluated on all four Sp(1) x H-invariant spinors. As a result, the KSEs

allow for backgrounds that preserve three supersymmetries. However, the existence
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of such backgrounds depends also on the field equations.

U(1)

We now move on to investigate the case for which the four parallel spinors have
isotropy group U(1). The sigma group [45] in this case is Spin(3,1) x U(1). One
way to see this is to treat the directions 2,3 and 4 in the U(1)-invariant spinors
in table 2.1 as auxiliary and suppress them. Then the spinors can be identified
with the Majorana spinors of Spin(3,1). The U(1) subgroup of the sigma group is
generated by the spin transformations along the auxiliary directions. The analysis
of the orbits of the sigma group is then identical to that of the gauge group of four
dimensional supergravity in [104]. In this case there are two different cases where
descendants with two supersymmetries arise. However, one can arrange such that
the Killing spinors of the two cases are identical to the parallel spinors of table
2.1 with isotropy groups U(1) - Sp(1) x H and Sp(1), respectively. Therefore, both
cases are special cases of other backgrounds with less parallel spinors and so are not
independent.

The other case we consider are backgrounds with three Killing spinors. The
existence of such backgrounds depends on the details of the KSEs. Without going
into detail, see [45, 104, 48] for details, the sigma group can be used to choose the

three Killing spinors as
1+ eqa34 , 1(1 —e€1234) , €15 + €2345 - (2.36)

Once again it is easy to check that if (2.36) solves the gravitino, tensorini and gaugini
KSEs, then i(e;5 — e2345) is also a solution. Therefore, all four U(1)-invariant spinors
once more solve three out of the four KSEs. It now remains to examine the hyperini
KSE. However, unlike the previous case, the hyperini KSE evaluated on (2.36) gives
the same conditions as those obtained for all four U(1)-invariant spinors. Thus, in

this case there are no descendants that preserve three supersymmetries.

2.3.4 Descendants of Eight Parallel Spinors

Finally we examine the descendants of backgrounds with eight parallel spinors. To

do this it is most convenient to consider the KSEs in the following order
gravitino — gaugini — tensorini — hyperini . (2.37)

We have already stated that the gravitino KSE admits eight parallel spinors. Thus,

it remains to investigate the other three KSEs.
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Gaugini

The solutions of the gaugini KSE are spinors which are invariant under some sub-
group of Spin(5,1) - Sp(1). This is because the gauge field and moment maps, fi,,
can be viewed as maps from spin(5, 1) @ sp(1) to the Lie algebra of the gauge group,
where spin(5,1) = A?(R>!). But all such spinors and their isotropy groups have
been tabulated in table 2.1. Therefore, the gaugini KSE can preserve 1, 2 (2), 4 (2)
and 8 out of the total of eight parallel spinors, where the number in the parenthesis
states the multiplicity of each case.

Having established that the gaugino KSE has solutions given by the spinors
in table 2.1, we are left to investigate the remaining two KSEs. If the gaugini
KSE has up to four solutions, the investigation of the descendants for the tensorini
and hyperini KSE follow the same argument as that presented in section 2.3.3. In
particular, there is one descendant with three supersymmetries which arises in the
case of four Killing spinors with isotropy group Sp(1) x H. The three Killing spinors
are given in (2.35), but this case can be thought of as a special case of backgrounds
with four parallel spinors and Killing spinors as in (2.35). Since we have dealt with
all descendants of the gaugini KSE from now on we shall take that the gaugini KSE

preserves all eight parallel spinors.

Tensorini

Assuming that the gravitino and gaugini KSEs admit eight Killing spinors we con-
tinue now by discussing the solutions of the tensorini KSE. First we note that the
tensorini KSE commutes with all three of the p operations given in (2.17). This
means that it preserves either four or eight supersymmetries. In addition, when
it preserves four supersymmetries the Killing spinors can be given in terms of the
Sp(1) x H-invariant spinors of table 2.1. We can then use this to solve the hyper-
ini KSE to find backgrounds that preserve 1, 2, 3 and 4 supersymmetries. All of
these are special cases of the solutions that we have already investigated above. In
particular, if the solutions preserve one supersymmetry, then it is a special case of
backgrounds with one parallel spinor which is also Killing. If the background pre-
serves two supersymmetries then they are special cases of solutions with two parallel
spinors which are also Killing and have isotropy group U(1) - Sp(1) x H. For three
supersymmetries the backgrounds are special cases of those with Sp(1) x H-invariant
parallel spinors and the three Killing spinors are given in (2.35). The case of four
supersymmetries is included in that for which the four Sp(1) x H-invariant paral-
lel spinors are also Killing. This concludes the analysis of the descendants of the
tensorini KSE and from now we shall assume that the tensorini KSE admits eight

Killing spinors.
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Hyperini

Let us now assume that the gravitino, gaugini and tensorini KSEs admit eight
Killing spinors. We finally need to investigate solutions of the hyperini KSE. In
order to do this we need to identify the orbits of the sigma group, which in this
case is Spin(5,1) - Sp(1), on the space of spinors. The descendants preserving one
supersymmetry have already been considered. In this case the Killing spinor can be
identified with 1+ ejo34. To investigate the case with two supersymmetries, we first
recall that the sigma group Spin(5, 1)-Sp(1) has one orbit in the space of symplectic-
Majorana spinors with isotropy group Sp(1)-Sp(1) x H, and the representative can
be chosen as 1 + ej934. The action of the isotropy group on the space of spinors
is given in (2.33). This isotropy group has two non-trivial orbits on the space of
spinors and the representatives can be chosen as either i(1 — ej934) or €15 + €934,
as was discussed before. From this we can see that solutions with Killing spinors
1+ eq934 and i(1 — e1934) Or 1+ e1234 and e15 + e2345 are not independent descendants.
Thus, there are no independent descendants with two supersymmetries.

We now consider the case with three supersymmetries. There are two cases to
investigate. Firstly, we consider the case where the first two spinors have isotropy
group U(1)-Sp(1) x H. This group has two different orbits on the rest of the spinors
where the representatives can be chosen as ejs — e34 and eq5 + €345, respectively.
However, these two cases are not new as the Killing spinors are identical to those
found in (2.35) and (2.36), respectively. In addition, one can show that if the hyperini
KSE admits (2.36) as Killing spinors, then it preserves four supersymmetries with
Killing spinors the U(1)-invariant spinors of table 2.1.

The second case is when the isotropy of the first two Killing spinors is Sp(1).
It can be seen from (2.33) that Sp(1) acts with two copies of the 3-dimensional
representation on the remaining six spinors. As a result it can be arranged such

that the third spinor can be chosen in such a way that the three Killing spinors are

1+ei34, €15+ €345, c10(1— e1934) 4 ica(ers — €a3a5) + c3(e25 — €1345) ,(2.38)

where ¢’s are constants. If ¢; = 0, then the third spinor can be simplified further by
choosing c3 = 0. As we will see, this does not give rise to a new descendant. The
hyperini KSE evaluated on the above spinors implies that either it preserves four
supersymmetries with Killing spinors as the U(1)-invariant spinors of table 2.1 or
it preserves all eight supersymmetries. This depends on the coefficients ¢, which we
discuss further in section 2.9.

It remains to investigate descendants with four supersymmetries. First suppose
that the first three Killing spinors are chosen as in (2.35), which have isotropy
group Sp(1) x H. This has two orbits on the remaining spinors. In one case the

representatives can be chosen such that the four Killing spinors are given by the four
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Sp(1) x H-invariant spinors of table 2.1 and in the other case they can be chosen as

14+ €131, (1 —eqass), €12—€31, €15+ €345 . (2.39)

This can potentially be a new descendant. However, it turns out that if the hyperini
KSE preserves the above four spinors, then it preserves all eight supersymmetries.

Next suppose that the first three Killing spinors are given in (2.36), these have
isotropy group U(1). Then, the fourth spinor can be chosen as

c1(er2 — esq) + coi(ers — eaza5) + c3(€25 — €1345) + cai(eas + €1345) - (2.40)

It turns out that depending on the choice of the coefficients ¢ the hyperini KSE pre-
serves either four supersymmetries with Killing spinors given by the U(1)-invariant
spinors of table 2.1 or all eight supersymmetries. So again there are no new descen-
dants. A similar conclusion also holds for the case when the third Killing spinor is
chosen as in (2.38).

To conclude, if the isotropy group of parallel spinors is {1} then there are descen-
dant backgrounds which preserve 1, 2, 3 and 4 supersymmetries. However, these
are not independent. All of them appear as special cases of backgrounds that admit
less parallel spinors. The results for all possible descendants have been tabulated in
table 2.2.

T hol(D) ] N |
Sp(1)-Sp(1) x H 1
U(1)-Sp(1) x H *, 2

Sp(l) x H x, %, 3,4
Sp(1) *, 2
U(1) *, %, —, 4
{1} *ox ok, ok —, —, —, 8

Table 2.2: In the columns are the holonomy groups that arise from the solution of the
gravitino KSE and the number N of supersymmetries, respectively. * entries denote the
cases that occur but are special cases of others with the same number of supersymmetries
but with less parallel spinors. The — entries denote cases which do not occur. The Killing
spinors for N = 1,2, 4 are the same as those given in table 2.1 while for N = 3 in (2.35).

2.4 N=1 Backgrounds

In the next couple of sections we will consider the possible backgrounds that can
arise in some detail. In particular, we will solve all four of the KSEs equations and
discuss what the constraints coming from these mean for the matter content of the

theory and the geometry of spacetime. In each case we will start by outlining the
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constraints imposed by each of the KSEs and then move onto discuss the spacetime

geometry. We begin here with backgrounds preserving one supersymmetry.

2.4.1 Gravitino KSE

As the gauge group of the theory is the same as the holonomy of the supercovariant
connection of generic backgrounds, the Killing spinor of N = 1 backgrounds can be
chosen as € = 1 + e1934, more details can be found in [44, 45]. The gravitino KSE
requires that this spinor is parallel. As a result the holonomy of D reduces to a

subgroup of the isotropy group Sp(1) - Sp(1) x H of the parallel spinor, i.e.
hol(D) C Sp(1) - Sp(1) x H . (2.41)

This is the full content of the gravitino KSE. The restrictions that this imposes on

the geometry will be examined later.

2.4.2 Gaugini KSE

Recall that the gaugini KSE is
1 ’ v 1 i 7,/
<—F“ Y+ g p ) e = 0. (2.42)

To solve this for the N = 1 case we substitute in the spinor € = 1 + e1934 and sum
over the repeated indices. After that we determine the action of the gamma matrices
and the p operators on the spinor. This calculation is most easily done using the
oscillator basis for the gamma matrices described in section 1.4.2. We are then
left with an algebraic equation. In this algebraic equation we set the coefficients
before each spinor basis to zero in order to find the constraints on the components
of F,, and p,.. After applying this technique we find the conditions arising from
the gaugini KSE are

Fi=F{ =0, Fi*+ip'=0, 2F4+p’—ip*=0. (2.43)

Note that the gauge field strength vanishes along one of the light-cone directions,

/ .
and F'%, are not constrained.

2.4.3 Tensorini KSE

The tensorini KSE is given by

i i ,
<§T/ﬁ”7“ - ﬁH%pw f’) e = 0, (2.44)
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substituting the spinor € = 1 4 ej234 and repeating the procedure that was done for

the gaugini KSE above one obtains the following constraints

TH =0, H"=Hy,=0,
T5 — iﬂj_& — §H67ﬁﬁ =0. (2.45)

As we have already mentioned, the tensorini KSE commutes with the Clifford algebra
operations p” in (2.17). As a result, if the tensorini KSE admits a solution ¢, then

p" € also solve the tensorini KSE. This means the four spinors
I+ e1234 5 pr,(l + e1234) r'=1,2,3, (2.46)

are all solutions to the tensorini KSE with the same constraints as in (2.45). More-
over, the 3-form field strengths H are further restricted by the self-duality condi-

tion given in (2.12), which we discuss later.

2.4.4 Hyperini KSE
The hyperini KSE is given by
ifeaVt = 0. (2.47)

To understand the hyperini KSE, one has to identify the €4 components of the
Killing spinor in the context of spinorial geometry. In our notation ¢! = 1 and
€2 = e1o34 and since €; = —€? and €3 = I'sue’, one has €, = —ej934 and € = eg4.
Substituting these into the KSE, one finds the conditions

VE =0, SVEVE =0, V=0, (2.48)

Expressing the coefficients of the KSEs in terms of the fundamental fields as in (2.7),
it is clear from the first condition in (2.48) that

Dy¢t=0. (2.49)

2.4.5 Geometry
Form Spinor Bilinears

In order to investigate the geometry of spacetime further, one has to compute the
form spinor bilinears. The form spinor bilinears of two spinors in six dimensions are

given by

1
T = HB<€1,’}/H1W“,€€2) et ANt (2.50)
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where 7 is a k-form and B is the Majorana inner product as for the heterotic
supergravity [44] in ten dimensions. We have discussed this in section 1.4, where we
denoted this inner product with M, as in equation (1.37). Assuming that €; and €

satisfy the gravitino KSE, it is easy to see that
V,7=0. (2.51)

The form 7 is covariantly constant with respect to V and the Sp(1) connection C”’
does not contribute in the parallel transport equation.

On the other hand, one may also consider the sp(1)-valued form bilinears

!/ 1 !
7= EB(EI,%L_MpT €g) €M N Nttt (2.52)

Assuming again that €; and e, satisfy the gravitino KSE, one finds that
@VTTI + 2C§/€T,S/t/7't/ =0. (253)

Observe that the sp(1)-valued form bilinears are twisted with respect to the Sp(1)
connection C”. So V,7" are not forms but rather vector bundle valued forms.

However, for simplicity in what follows, we shall refer to both 7 and 7 as forms.

Example

As an example let us calculate the bilinear 1-form associated to € = 1+ ej934, which
will be needed in the investigation of backgrounds that are to follow. Using (2.50)

we have
T = B(e, y,€) €', (2.54)
expanding this we find

7 = Ble,y_€) e + B(e,vre) et + Ble, 11€) €'

B, 7€) € + Ble,yi€) € + Ble,ye) €2 (2.55)
Recall that the inner product is defined as

Bler, €2) = (Logrso(€1)", €2) (2.56)

and

Losrso (1 + €1234) = — (€5 + €12345) - (2.57)
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Using this and the action of v, on € we find only the first term in (2.55) to be

non-vanishing and it gives

T = (—(es+ e1a35), V2(e5 + e1235)) €
_ oV3e (2.58)

Therefore, we find that there is a 1-form which is given by
e . (2.59)

The same method can be used to calculate the remaining form bilinears in addition to

the twisted bilinear forms. One more thing we mention before discussing the N =1

backgrounds is the relation between the frames e, e!,... e’ and e7,e™,e?, e,
e” = i(—60 +e¥), et = L(eo +e)
s V2
1 1, .4 2 2, .5
e = —(e +1e’), e =——(e" +1e),
e
el = —(e' —ie'), e?=—(—ie”), (2.60)

S
S

which we often use. Note also that we will often use a tilde on top of the real
directions, i.e. those on the rhs, to distinguish them from the complex ones, this

will be clearer when we discuss it later.

Spacetime Geometry of N=1 Backgrounds

In this case we have to find the bilinears associated with the spinor 1+e;934. Putting
this into (2.50) and (2.52) and following the example given above we find the al-
gebraic independent bilinears of backgrounds preserving one supersymmetry to be

given by

e, e ANwr, e Awy, € ANwg, (2.61)

where e~ is a null one-form and

wr = —10,5€" N e, wi=—e' A —e' AN, wir=i(e' Aed—e Aed) (2.62)

The three 2-forms wy,w; and wg are Hermitian forms in the directions transverse
to the light-cone. In what follows, we also set w! = w;, w? = w; and W? = wg.
The conditions that the gravitino KSE imposes on the spacetime geometry can

be rewritten as

~ ~

Ve =0, V(e A wrl) + QCZ/e’"ISIt/(e’ A wt/) =0. (2.63)
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Therefore, we can see the 1-form is parallel with respect to V, whereas the 3-forms
are twisted with respect to the Sp(1) connection. The integrability conditions to

these parallel transport equations are

~ ~

k i L. S
Rmmﬁ-v =0, - Rulltz, W kgt (]72) + 2‘7:/“#2

¢ gpwl; =0 . (2.64)

In addition to this, the torsion H has to be anti-self-dual in six dimensions as
we pointed out in (2.12). The conditions that come from the anti-self-duality can

be written as
Hiop=H " =0, H ,o+Hy’ =0, H_;1—H =0, H_5=0,,265)

where €_ 1795 = €p13245 = —1. Notice also that from the four dimensional perspective
H,;; is an anti-self-dual while H_;; is a self-dual 2-form, respectively. Using (2.12)

we can demonstrate this explicitly for H,;; where we have

1
Hy;j = §€+ij—kle_kl : (2.66)

which in turn gives
1
Hy; = _§€ijle+k:l : (2.67)

where we have used €_ 1 = €51, similarly

1
Hfij = §€ijlefkl . (268)

To specify the spacetime geometry, we have to solve (2.63) subject to (2.65). For
this we adapt a frame basis on the spacetime such that one of the light-cone frames

is the parallel 1-form e7, i.e. the metric is written as
ds® = 2e” et + §e'el . (2.69)

The first condition in (2.63) then implies that the dual vector field X to e~ is Killing

and
de” =ixH . (2.70)
Using these we can write the torsion 3-form as
+ . N 3 | I I
H=¢c" Ade +§H,i]’€ Ne /\€j+H s Hngijke ANel Ne” . (271)

Moreover, the anti-self-duality of H can be used to relate the H component to de™.
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In particular, we find that
H= ——(de™)_y ezijk e Nel Neb . (2.72)

This solves the first condition in (2.63). To solve the remaining three condi-
tions, we consider the parallel transport equation in (2.63) first along the light-cone

directions. Since H,,; is anti-self-dual, one can show that
D+Wr/ = V+Wr/ + 2Ci€rlsltlwt/ = O . (273)

This condition can be used to express C; in terms of the geometry of spacetime.

Next we consider the — light-cone direction to find

'D_u);-; = v_u):]/ — H—k[iw‘;}/k + 2Ci/€rls/t/wl?/. = 0 . (274)

v

Since H_;; is self-dual, this implies that it can be written as

H—ij = w,,/uﬂ"/ (275)

ij

. / . .
for some functions w,s, and w" act as a constant basis of self-dual 2-forms in R*.

Substituting this expression into (2.74) we find
V_owl +w e gpwl; +2C " gpwl; =0, (2.76)

where we have made use of the fact that

Wi = S (I (2.77)

v

where I"" are three almost complex structures associated to the three Hermitian

forms which satisfy the algebra of the imaginary quaternions
(I") (1), = =67 6% + e (1) (2.78)

The condition in (2.76) can be interpreted as a condition which relates C* to the
H_;; components of the torsion. As a result, it can be solved to express H_;; in
terms of other fields and the geometry of spacetime. In particular, after solving for

w! we find
4 1 r! s'kl t/ t!
wh = —g(wklv,w vy’ +2C1) (2.79)
which in turn means

]. ’ ’ / /
Hfij — _g(wglviws kle,,/s/t + 2Ct_)wt/ij . (280)
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To determine the conditions imposed on the geometry from the gravitino KSE in
the directions transverse to the light-cone, we first observe that a generic metric con-
nection in four dimensions has holonomy contained in Sp(1) - Sp(1). Therefore, the
only condition required is the identification of the Sp(1) part of the metric spacetime
connection with the Sp(1) part of the induced connection from the Quaternionic
Kahler manifold of the hyper-multiplets. This also follows from the integrability
conditions (2.64).

To summarise, we have found that the spacetime admits a null Killing vector
field X whose rotation in the directions transverse to the light-cone is anti-self-dual.
The geometry is restricted by (2.73). Furthermore, (2.76) relates the self-dual H_,;
component of the torsion to a component of the induced Sp(1) connection from the
Quaternionic Kéhler manifold of the hypermultiplets as in (2.80). The metric and

torsion of the spacetime can be written as

ds? = 2e e’ —|—5ijeiej ,
1 / / ’ ! . .
H = e"Nde — (1—6w,:lv_w5 e, b + Ct_) wpij e Ne' Ne?
1 . A
- g(de_)_g ip e Nl Net (2.81)

The remaining conditions that come from the KSEs are restrictions on the matter
content of the theory. We begin with the gaugino KSE. To analyse the conditions

further, one can choose the gauge
A, =0. (2.82)

Therefore, using the first two conditions in (2.43), Fi’u = 0, we find that the com-
ponents of the gauge connections do not depend on the coordinate adapted to the
Killing vector field X = 9,. The components FE; are not restricted by the KSE.
The components of the field strength in the directions transverse to the light-cone,
Er

7., can be decomposed into the self-dual (sd) and anti-self-dual (asd) parts using

s [l/ 1 a/ 1 a/
(F)y = 5 (Fz‘j +§€klz‘ijz) ,
asdya’ 1 a’ 1 a’
(F d)ij =3 (F” - §€kliijl> . (2.83)

From the restrictions coming from the KSE we find that the self-dual part of Fz‘;' is
given in terms of the moment maps, y,», while the anti-self-dual part is not restricted.

So we can write
a’ a’  — 7 1 r! asd\a’
F* =F%e Ne' + g’ + (F*9)* . (2.84)

Now let us consider the tensorini KSE. In the gauge (2.82), we can see from the
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first condition in (2.45) that the tensorini scalars are invariant under the isometries
of the spacetime, i.e. they do not depend on the coordinate u. The 3-form field
strengths, HX, are self-dual in six dimensions (2.12). This implies that
M _ Mo _ M Mp _ M M M

Combining these conditions with those coming from the tensorini KSE, (2.45), we
find that

HY. =0. (2.86)
We also note that H%j is anti-self-dual in the directions transverse to the light-
cone and the remaining components are determined in terms of T2, Putting these
together we therefore have

1 ' ' 1 A A
HM — —H%j e Ne' Ne —i—TiMe_ ANet Ne' — ZMEEW e nel NeF (2.87)

2 3!
where we have used the self-duality of HX to relate the HZ.]Mfk component to the A _MH
component.

We can use the definitions of the fundamental fields in (2.7) to obtain some
further simplifications. In particular, (2.49) implies that C7 = 0 and so (2.73) leads

to the geometric conditions
Vo' =0, =1,23. (2.88)

In addition, T = 22 9;v". Substituting this in (2.87) we see that most of the com-
ponents of H are determined in terms of the scalars. Furthermore, the conditions
of the hyperini KSE in the gauge (2.82) imply that the scalars of the multiplet are

invariant under the action of isometries generated by X, i.e.
D¢t =0,01=0. (2.89)

The remaining restrictions coming from the hyperini KSE give a holomorphicity-like

condition for the imbedding scalars.

2.5 N=2 Non-Compact Backgrounds

There are two cases with N = 2 supersymmetry, each distinguished by the isotropy
group of the Killing spinors. The title of this section and the ones that follow refer to

the compact and non-compact nature of the isotropy groups. If the isotropy group
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is non-compact U(1) - SU(2) x H, the two Killing spinors are
€1 = 1 + €1234 , €y — Z(]. - 61234) - p1€1 . (290)

Therefore, the additional conditions on the fields which arise from the second Killing
spinor can be expressed as the requirement that the KSEs commute with the Clifford

algebra operation p'.

2.5.1 Gravitino KSE
The gravitino KSE commutes with p!, if and only if,
C*=C"=0. (2.91)

Equivalently, the gravitino KSE implies that the holonomy of the supercovariant
connection is included in U(1)-Sp(1) x H, hol(D) C U(1)-Sp(1) x H. The restrictions

that this imposes on the geometry will be investigated later.

2.5.2 Gaugini KSE
The gaugini KSE commutes with p!, iff
po=p3=0. (2.92)

These restrictions are in addition to the conditions given in (2.43). When combined

these become
F=F' =0, F°4ig'=0, F3=0. (2.93)

Once again the F ‘_1;- components are not restricted.

2.5.3 Tensorini KSE

A direct substitution of the second Killing spinor, €3 = i(1 —ej234), into the tensorini
KSE reveals that there are in fact no additional conditions on top of the ones given
in (2.45). This agrees with what we have already mentioned; that the tensorini KSE

commutes with all the p operators. Hence, if €, = 1 4 e1234 is a solution then so is

_ 1
€2 = P7€7.

2.5.4 Hyperini KSE

Using €3 = i(1 — e1234) in the hyperini KSE leads to the following restrictions,

V_ﬁAZO, Wﬂ+‘/§@207 ‘/éa—l_‘/'iafz:()_ (294)
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Combining these conditions with those in (2.48) obtained for the first Killing spinor

gives

vel—o, vil=0, VZ2=90. (2.95)

2.5.5 Geometry

The form spinor bilinears are given in (2.63). The only difference now is that the

full content of the gravitino KSE can be expressed as

~

Ve =0, V(e Aw)=0,

Ve Aw?) —2Ce  Aw?=0,V(e  Aw®) +2Ce Aw?=0, (2.96)
where we have imposed the additional conditions coming from the gravitino KSE,
C? = (% = 0. We have also set w = w! and C = C!, and so we find that the form
e~ Aw is covariantly constant with respect to the connection with skew-symmetric
torsion only.

The discussion of the geometry here follows along the same lines as in section
2.4.5 for N = 1 backgrounds. In particular, it is clear from the first condition in
(2.96) that the spacetime admits a null Killing vector field X, which is the dual of
the 1-form e~, and that (2.70) is valid. The metric and torsion 3-form can again be
written as in (2.69) and (2.71), respectively.

Next we consider the other three parallel transport equations in (2.96). As in
the previous N = 1 case, the parallel transport equations along the + light-cone
direction leads to (2.73) but with C? = C® = 0. These become

Viw; =0, Viw)—2Cw);=0, Viw)+2Cw;=0. (2.97)
The first condition is a restriction on the geometry. The second can be solved for

C, to give
Lo g 2

The third equation in (2.97) is automatically satisfied. The — component of the

second equation in (2.96) gives

V_wij =V wyj—H Fwp =0, (2.99)

which we can use along with the fact that H_;; is self-dual (2.75) to obtain
H_jj=-V_wyI" . (2.100)

The two remaining conditions along the — light-cone direction can be used to express
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C_ in terms of the geometry and give some additional restrictions on the geometry
of spacetime. To do this we start by writing these equations in component form to

obtain

V_ w —H* Wi — 2C_ w =0,
V_ w —H* [iw k+26_wij =0, (2.101)

working with these and using the expression in (2.100) we find

1 .
C_= gv,w%w?’” ,
1
V CU V wk[l(‘[3> } — Zv Wkewskgw,?j = 0 y
1
V_w}; + V_wy (1) 5 + V- wigw ™ W =0 . (2.102)

The second condition in (2.96) along the transverse to the light-cone directions gives

H=—ijdw | (2.103)

where d is the exterior derivative projected in the directions transverse to the light-
cone. This together with the anti-self-duality condition for H turn (2.72) into a

condition on the geometry of spacetime
(de™ )i = (irdw)g - (2.104)

The remaining two parallel transport equations are automatically satisfied provided
that the U(1) part of the curvature tensor of the spacetime connection with torsion
is identified with the curvature of U(1) connection C. To see this note that the

integrability conditions of the gravitino KSE can be written as

~

Ru1u2,+l/ = O ) R
Ry i (12" +

A

Hip 2,ki]kj - R w1 p2,kj [k =0,
Ry i (1) = 2F iy = 0. (2.105)

The second condition implies that the holonomy of the V connection in the directions
transverse to the light-cone is contained in U(2) = U(1) - Sp(1). The last condition
identifies the U(1) part of the curvature with the curvature of C.

In summary, the gravitino KSE implies that the metric and torsion can be written

as

ds®> = 2e et + 6ijeiej ,
H = e"ANde” —V_wi ij e" Ne' Nel — §(d6_>_z eeijk e' A el A ef(2.106)

As with the N = 1 case, the spacetime admits a null Killing vector field X which

also determines components of H and the geometric condition (2.73) is satisfied.
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Furthermore, one has to impose the geometric conditions (2.102), (2.104) and the
restrictions implied by (2.105).

We now move onto the restrictions imposed on the matter content by the other
KSEs. As we have mentioned, the tensorini KSE does not impose any new conditions
on the matter field. As a result, the restrictions are summarised in (2.45) and the
fields are expressed as in (2.87).

The gaugino KSE gives the condition in (2.93). So in the gauge A, = 0, one has

/ ’ ; ]_ /
F¢ :Ffie’/\e’+§uw+(Fan)“ , W=t =0, (2.107)

where p = pt.

The hypernini KSE imposes a restriction on the + light-cone direction. The
other conditions are Cauchy-Riemann type of equations on the scalars.

As in the N =1 case, by expressing the KSEs in terms of the fundamental fields
(2.7), we can improve somewhat on the solutions to the KSEs. In particular, the
hyperini KSE condition D, ¢ = 0, (2.49), implies that C, = 0. Then (2.97) gives

rise to the geometric conditions
Viw, =Viwl =V, =0. (2.108)

Writing X = 0, and taking the gauge A, = 0, we can again conclude that ¢ are
independent from u, (2.89).

2.6 N=2 Compact Backgrounds

The other case where two supersymmetries are preserved is when the two Killing
spinors have isotropy group Sp(1). The two Killing spinors in this can be chosen as,
table 2.1,

€1 =1+e€131, € =e15+ €345 - (2.109)

We now give the conditions arising from each of the KSEs.

2.6.1 Gravitino KSE

The full content of the gravitino KSE can be summarised as
hol(D) C Sp(1) . (2.110)

The implications of this condition on the spacetime geometry will be investigated

later.
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2.6.2 Gaugini KSE
Evaluating the gaugini KSE on €5 = €5 + €345, we find

!

OFS P it =0, —FY 4+ FY i)' =0, F%=0. (2111)

—1

Combining the above conditions with those coming from €; given in (2.43), we get

FiL=Fi=F4 =0, Fi=0, Fh+i(u’) =0,
Foy — FS(u)? =0, Fy+Fs+u')?=0, (2.112)

To write this in a more compact notation we change to real coordinates to obtain

F% =0, FY=0, FY=—euu™", a=—+1, (2.113)

v]

where i = 4,2,5 and €345 = —1. Each of the indices a and 7 label 3 real directions,
note that we have also used 1 and 2 to distinguish the real directions from the
complex directions 1 and 2 which naturally appear in the various conditions coming
from the KSEs. In addition, the ' = 1,2,3 index of p has been replaced with
k = 4,25 after an appropriate adjustment of the ranges and identification of the
components of . In particular, p = p?, 42 = 42, and p3 = p°. We can express

these as

' 1
F* = —éeijk,u“k Z/\e‘j . (2114)

2.6.3 Tensorini KSE

A direct substitution of the second Killing spinor, €3 = e15 + e2345, into the tensorini
KSE gives
M M M
™ (1) H G ;—H =0, H 5;=0,

1
T 2H,+a + 2H&55 =0. (2.115)

Combining these conditions with those we derived for ¢, = 1 4 e1934 in (2.45) and
using the self-duality of H given in (2.85), we find

T =0, HE =0. (2.116)

pvp

This means the tensorini KSE vanishes identically. As a result all eight supersym-
metries are preserved. In turn using the expression of TM and HY in terms of the
physical fields (2.7), we find the scalars to be constant and the 3-form field strengths

of the tensor multiplet to vanish.
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2.6.4 Hyperini KSE

Evaluating the hyperini KSE on €5 = e15 + €2345, we find the conditions

VA =0, —VE+VE=0, VE4VE=0, (2.117)

Combining these conditions with those coming from the first Killing spinor given in
(2.48), we get

Vil =0, a=—,+1, (2.118)

where again we have converted back to real coordinates to derive these conditions.
The remaining conditions can be derived by substituting (2.118) in either (2.48) or
(2.117).

Expressing the KSE in terms of the physical fields as in (2.7), one finds that
(2.118) implies

Dpt=0, a=—+,1. (2.119)

Therefore, the hypermultiplet scalars do not depend on three spacetime directions.

2.6.5 Geometry

Firstly, we have to determine the algebraic independent form bilinears. To do this
we use the spinors € = 1 4 ej934 and €3 = €15 + eg345 in (2.50) and (2.52). Doing

this we find that the independent form bilinears are given by
e, a=—,+,1; €, i=425, (2.120)

where e and €’ are 1-forms. The e’ are twisted with respect to the Sp(1) connection.
This means the conditions implied by the gravitino Killing spinor equation can be

rewritten as

@Me“ =0,
Ve +2¢ 3.Cle =0, (2.121)

where as in the gaugini KSE case the indices ', s’ and ¢ have been replaced with
1,7 and k, the ranges have been adjusted, and the components of C have been
appropriately identified. It is clear that the spacetime admits a 3 4+ 3 “split”. In

particular, the tangent space, T'M, of spacetime decomposes as

TM=I&¢, (2.122)
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where [ is a topologically trivial vector bundle spanned by the vector fields associated
to the three 1-forms e®.
The 1-forms e® and €’ can be used as a spacetime frame and so we can choose

to write the metric as
ds® = ngete’ + 6ijei€j . (2.123)

We now focus on the first equation in (2.121). These imply that the associated
vector fields to e are Killing. In addition, using the anti-self-duality of H, all of
the components of H can be determined in terms of e® and its first derivatives. In

particular, we have
de® = n™i,H | (2.124)
where 7% = g(e®, €®), and so this gives
Heapas = 77a1bd622a3 , Hyjayi = nalbdezﬂ . Hyy = nabdefj . (2.125)
Therefore, using the anti-self-duality condition of H we get
Hyapa,€1% = Hijkeijk y "M Hy gy = —eiijbjk , (2.126)

where €p13 = €945 = 1. This in turn means H can be rewritten as

1 1 .
H=K-xK, K= §Ha1a2a3ea1 A e N e + 3 iara€ N e N e® | (2.127)
subject to the geometric condition
(d€a1)a2i1€ala2a3 = _€i1i2i3<d6a3)i2i3 . (2'128)

We now return to the second equation in (2.121), decomposing this equation

along the two types of spacetime directions, a and ¢, we find it is equivalent to
i Lo i ok
Vbej — §H bj + 2¢ ijb =0 >
i Lo i s
Vjek - §H gk + 2¢ sij =0. (2129)

The first condition again expresses a component of H in terms of the geometry and

C. Substituting the expression we have for H%; in (2.125), we find
i i gk 1 b ski
Vi€ + 2¢ j Cle® = —5ab dey; 0™ . (2.130)

The last condition in (2.129) identifies the spin connection Q of the spacetime in

the directions transverse to the Killing with the induced Sp(1) connection of the
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scalars. Another way to see this is by looking at the integrability conditions of the

gravitino KSE. In particular, we get

~ ~

Ry =0, Rujijy = —2F 3 €hjujo (2.131)

which is obtained by taking the integrability conditions of (2.121) on e* and e,
respectively.

As before, we can express the KSEs in terms of the physical fields in (2.7) and
use the restrictions coming from the gaugini and hyperini KSEs to further simplify

things, particularly we find that

A

Rau,uluz =0. (2132)
Also using (2.118) we find
Cl=0, (2.133)

and this therefore means (2.130) turns into a condition on the geometry. It is clear
that the only non-trivial components of the curvature with torsion are those along
the transverse to the Killing vector directions and these are specified in terms of the
curvature of C.

Finally let us summarise; the spacetime admits three Killing vector fields and
the torsion H is completely determined in terms of these and their first derivatives.

In particular, we have

ds® = nabeaeb +d;5e'e’

1 1 .
H=K-xK, K= 511[@(12%6“1 A e N\ e + éHmmel A e A e2.134)

In addition, the spacetime geometry is restricted by (2.128), (2.130) and the last
condition in (2.129) or equivalently (2.131).

Examples

The spacetime geometry can be further analysed under some additional conditions.
We will not go into specific details but briefly mention how this can be achieved, for
details see [44, 105, 12]. As we mentioned, the spacetime admits three Killing vector
fields e,, a = 4, —, 1, the commutator of these vector fields does not necessarily close
under the Lie bracket. However, if one imposes the requirement that the algebra
of the vector fields closes under the Lie bracket then it can be shown, in analogy
with the results of [44], that the spacetime can be described in terms of principle

bundles, where one also needs to make use of the classification of Lorentzian Lie
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algebras [106, 107, 108]. In addition, the closure of the algebra requires

Hyi =0, (2.135)
and in turn the anti-self-duality of H requires

Hgi;=0. (2.136)

These then have further implications, see [12, 105]. In particular, the spacetime
can be locally identified as G x %, where G is either R*! or SL(2,R) and X is

3-dimensional Riemannian manifold [12].

2.7 N=4 Non-Compact Backgrounds

There are two cases where the background preserves four supersymmetries. The
first case we consider is when the Killing spinors have isotropy group Sp(1) x H with

the invariant spinors given as in table 2.1. These spinors can be written as

T+emsa, p(1+ems), p°(1+emss), p2(1+eis) . (2.137)

For these to be solutions to the KSEs, we require the KSEs to commute with the
Clifford algebra operations p”". We shall use this together with the conditions im-
posed on backgrounds preserving one supersymmetry to derive all the conditions
implied by the KSEs in this case.

2.7.1 Gravitino KSE

The gravitino KSE commutes with the p” operations iff
C=0. (2.138)

As a result the curvature of C must vanish, 7 = 0. The full content of the gravitino

KSE can be expressed as hol(V) C Sp(1) x H. The restrictions that this condition

imposes on the spacetime geometry will be examined later.

2.7.2 Gaugini KSE

The gaugini KSE commutes with p"’, iff

These are of course in addition to the conditions in (2.43). The same conditions can

derived by explicitly substituting in the four Killing spinors into the gaugini KSE.
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This in turn means we have
F = F% e Nl + (F*9)7 (2.140)

where we have just imposed the conditions in (2.139) on the expression in (2.84).

2.7.3 Tensorini KSE

As mentioned previously, the tensorini KSE commutes with the Clifford algebra
operations p”. Thus, there are no additional conditions on top of those given in
(2.45).

2.7.4 Hyperini KSE

Substituting the Killing spinors in (2.137) into the hyperini KSE we find, in addition
to the conditions in (2.95), that

V=0, V=0, (2.141)
This means the only non-vanishing component is

Ve (2.142)

Imposing the conditions of the hyperini KSE on the physical fields using (2.7),

we find that the only non-vanishing derivative on the scalars is
D_¢t . (2.143)

This means that the scalars depend only on one light-cone direction.

2.7.5 Geometry

The spacetime form bilinears associated to the spinors in this case are the same as
those of the N = 2 non-compact case. However, the important difference here is

that C = 0 and so the conditions imposed by the gravitino KSE can be rewritten as

A~ ~

Ve =0, V(e Aw')=0, (2.144)

i.e. there are no twists with respect to the Sp(1) connection since this vanishes.
The analysis of the solution to these conditions is similar to that of the non-compact
N = 2. Following the N = 1 and N = 2 non-compact cases but in addition imposing

the condition C = 0 means we can write
ds® = 2e et + dije'e’
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_ 1 / / / _ . .
H = et Ade — Tﬁw;lv_ws e ot wpij e Ne' Ne?
1

3'(de_)_g eeijk e Ned Nel . (2.145)

We have used the anti-self-duality of H to relate the H component to de™ as in
(2.72).

We now discuss the geometric conditions imposed on the spacetime. We have
already dealt with the first condition in (2.144). To solve the last three conditions
in (2.144), we first consider the + light-cone direction which gives

Viw =V =0. (2.146)
This is a condition on the geometry. From the — component we find
V_wj; — H Fwh, =0 (2.147)

This together with the self-duality of H_;; can be used to express H_;; in terms of
the geometry as in (2.145), and was discussed in detail for the N = 1 backgrounds.
There are no conditions on the geometry along this light-cone direction.

Next, considering the conditions along the transverse to light-cone directions we

find
H=—i,»dw” , (nor summation) . (2.148)

These appear as three independent conditions but actually they are not. One of

them implies the other two. In turn, this condition together with (2.72) imply
de”; iinis = (i dw™ )iyinis » (N0 1" summation) . (2.149)

This is another condition on the geometry. The restrictions on the fields imposed

by the other three KSEs have already been explained.

2.7.6 N=3 Descendant

Unlike in all the other cases, the N = 4 backgrounds with Sp(1)x H-invariant parallel
spinors exhibit an independent descendant with three supersymmetries. This was
discussed earlier when descendants of four parallel spinors was analysed in section
2.3.3. We noted then that the conditions on the fields arising from the gravitino,
gaugini and tensorini KSEs remain the same as those for backgrounds with four
Killing spinors (2.137). However, when the hyperini KSE is considered different
conditions appear for backgrounds admitting three and four Killing spinors.

The three Killing spinors were given in (2.35). Substituting these spinors into

66



the hyperini KSE gives us the constraints

Vet =0, VE=VZ=0, VE-V2=0, V+V2=0.(2150)

These are indeed different from the conditions that we found for the four Sp(1) x H-
invariant Killing spinors given in (2.95) and (2.141). We can express these conditions
in terms of the physical fields using (2.7). The first condition, for example, can be
written as in (2.89). However, note that the analysis of the geometry of spacetime
given in the previous section does not change. The difference here is in the conditions
the scalars of the hypermultiplets satisfy compared to backgrounds that preserve four

supersymmetries.

2.8 N=4 Compact Backgrounds

The other case of N = 4 backgrounds is when the four Killing spinors are chosen as
the U(1)-invariant spinors of table 2.1. These can be written in the following way

using the ,01 operator

14 €131, e15+ems, p(l+ens), ples+emss) . (2.151)

The conditions imposed on the fields by the KSEs evaluated on these spinors can be
calculated from the conditions we found for the Sp(1)-invariant Killing spinors and
by the additional requirement that the KSEs commute with the p! Clifford algebra

operator.

2.8.1 Gravitino KSE
For the gravitino KSE to commute with the Clifford algebra operation p* we require
C*=C*=0. (2.152)

The full content of the gravitino KSE can be expressed as the requirement that

hol(D C U(1). We will examine the implications on the geometry later.

2.8.2 Gaugini KSE

The gaugini KSE commutes with p! iff u2> = p® = 0. Combining this with the

conditions coming from the N = 2 case in (2.113), we find

/7

FS 4 iu” =0, (2.153)

where after suppressing the gauge index we set = u'.
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2.8.3 Tensorini KSE

The tensorini KSE commutes with all the Clifford algebra p"" operators. Since both
14-e1934 and ey5+e9345 are Killing spinors, we conclude that all eight supersymmetries
are preserved. Therefore, T = HA = ( as in (2.116) for the N = 2 compact case.
In turn, this means the tensor multiplet scalars are constant and the 3-form field

strengths, H, vanish.

2.8.4 Hyperini KSE

To find the conditions arising from the hyperini KSE we have to evaluate it on the
four spinors given in (2.151), which is equivalent to simultaneously imposing (2.117)
and (2.95). This gives

Vil =0, a=— +1,1, (2.154)
and
Vi =VE2=0. (2.155)

In other words, the only non-vanishing components are V;*l and V;*Q

Using the physical fields in (2.7) these conditions can be expressed as

Dyt =0, a=—+1,1, (2.156)
and
Dyt Ef' = D¢t EP? =0, (2.157)

respectively. So we find the scalar fields not to depend on four spacetime directions.
The last two conditions are Cauchy-Riemann type of equations along the remaining

two directions.

2.8.5 Geometry

Using the four Killing spinors that we have in this case, we find that a basis for the

algebraically independent spacetime form bilinears is spanned by the 1-forms

e, a=—,+11, €&, i=22. (2.158)

The gravitino KSE can then be rewritten as

A

Vel =0, Ve —2Ceéel =0, (2.159)
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where we have set C = C!, and note e’ are the twisted bilinears.
As in the cases we have already investigated, the first equation implies that the

vector fields X, associated to the 1-forms e® are Killing and
ioH = napde’ . (2.160)

In this case we find that the spacetime admits a 4 + 2 split. In particular, this
means the tangent space T'M = I & £, where now [ is a rank 4 trivial vector bundle
spanned by the four Killing vectors X,.

The second equation in (2.159) can decomposed in terms of equations along the

two types of spacetime directions = a,7 to give

. 1 . .
(Vaez)j — §Hzaj - QCa €zj =0 s
(Ve —2Cie'x =0 . (2.161)

In turn, the first condition in (2.161) gives
i i 1 by ki
(Vae )j - QCQE j = —§ﬁab(d€ )kjé s (2162)

since we can use (2.160) to write H',; = —nu(de);;6F. We also know that H is

anti-self-dual and this implies

1

1 ,
b1b2b, b1 b
Haij - 562] €q 12 3Hb1b2b3 ) Halagi - §€a1a2 ! ZEiJHblbgj ) (2163)

where €55 = 7 and €_ ;7 = ¢. All the components of H are determined in terms
of e* and its first derivative, and this leads to more restrictions on the spacetime
geometry. Using (2.160) and (2.163) these can be expressed as

abibs

1
bs
—€ij € bdeys,, »  de

a 1 a j
=g L= e, el del? (2.164)

a1 2 b1j

de

One thing to note here is that the rhs of the first equation depends on the structure
constants of the algebra of the four Killing vector fields.

The last condition in (2.161) identifies the spacetime connection along the direc-
tions transverse to the Killing with a U(1) component of the induced Sp(1) quater-
nionic Kahler connection. This can also be seen from the integrability conditions of
(2.159). In particular, we find that

A

Rmm,au =0, R,ul/,jljz = —2-7:;w €172 - (2.165)

The derivation of these conditions is similar to that of the Sp(1) holonomy case
investigated for the N = 2 compact backgrounds.

If we use (2.7) to express the above conditions in terms of the physical fields we
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find that there are some additional simplifications. In particular, using the hypernini
and gaugini KSEs, we find that apart from (2.165)

A

Ra,u,qufg =0. (2166)

Similarly using (2.156) we find C, = 0 and so (2.162) becomes a condition on the

geometry of spacetime.

Examples

Once again examples can be constructed following a similar argument to that given
in the N = 2 compact case. In this case we have four Killing vector fields and

imposing the closure of the algebra requires
Hu =0 (2.167)

Furthermore, the Lie algebra of the Killing vector fields is isomorphic [106, 107, 108]

to one of the following

R* | sl(2,R)@u(l), RPsu(2), coy. (2.168)

We have not discussed these examples in any detail, but have mentioned them

to indicate some of the possibilities available for further investigation, see [12].

2.9 Trivial Isotropy Group

Backgrounds with parallel spinors which have a trivial isotropy group admit eight
parallel spinors. These are maximally supersymmetric backgrounds. The spacetime
is a Lorentzian Lie group with anti-self-dual structure constants. They have been
classified in a similar context in [58]. In particular, the spacetime is locally isometric
to

R>Y | AdS; x S®, CWg, (2.169)

where the radii of AdSs and S® are equal, and the structure constants of CWy are

given by a constant self-dual 2-form on R*. Moreover,
F()=0, (2.170)

which we infer from the integrability condition (2.24). This concludes the conditions
which arise from the gravitino KSE.

The gaugino KSE implies the gauge field strength vanishes and p” = 0. The
tensorini KSE implies that the 3-form field strengths vanish and the tensor multiplet
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scalars are constants. Similarly, the hyperini KSE implies that the scalars of the

hypermultiplet are constant. In turn using (2.7), the latter gives C = 0.

2.9.1 Descendants

The case of trivial isotropy group does give rise to descendants, which we discussed
in some detail in section 2.3.4. In particular, the KSEs allow for backgrounds with
1,2,3 and 4 supersymmetries, but we argued that none of these were independent
from the backgrounds we have discussed and examined thus far. In this section
we will give a proof of this to establish the results of section 2.3.4. We will give
the proof for one of the cases and the rest follow in a similar way. Let us consider
the descendants with three supersymmetries for which the Killing spinors are those
given in (2.38). To show that there are no independent descendants we have to solve
the hyperini KSE for these three spinors and establish the fact that the conditions
are the same as the constraints arising from one of the backgrounds we have already

discussed. The first two Killing spinors give

VER=0, —VEH1E=0, V=0,
V=0, —vtavE—o, EavE-o, (2.171)

which follows from (2.48) and (2.117). Substituting the third Killing spinor in (2.38)
into the hyperini KSE we find

Clm@+01‘/§@:0 s —01‘/2LI+61V¥L2:O s
iV — V3t — eV + eV =0,
iVt sV iV + V2 =0 (2.172)

Now, there are two cases to consider; if ¢; # 0, then the V’s vanish and so the
hyperini KSE preserves all eight supersymmetries. The other case is when ¢; = 0,
this means that we can also always set ¢c3 = 0 which has been argued in section
2.3.4. Setting c¢3 = 0 in the last two conditions in (2.172), we find that

Vel

1

VE =, Wﬂ+%@:0, (2.173)

2

Then comparing this with (2.171), we again find that all V’s vanish. Therefore,
once again the hyperini KSE preserves all supersymmetry and so there is no new

descendant.

2.10 Summary

In this chapter we solved the Killing spinor equations of six dimensional supergravity

with eight real supercharges coupled to any number of vector, tensor and scalar
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multiplets in all cases. To do so we made use of the spinorial geometry method that
we discussed in chapter 1 as well as the similarity of the KSEs of six dimensional
supergravity with those of heterotic supergravity.

We began the chapter by briefly discussing the (1,0) supergravity and its coupling
to arbitrary numbers of vector, tensor and scalar multiplets. In particular, we gave
the gravitino, gaugini, tensorini and hyperini KSEs arising from the supersymmetry
variations of the fermions in the theory. To continue, the symplectic Majorana-
Weyl spinors of Spin(5, 1) were identified with the SU(2)-invariant Majorana-Weyl
spinors of Spin(9,1). The gamma matrices of Clif(R*') were identified from a subset
of Clif(R%!) and the remaining four gamma matrices were used to define p’ which
generate an SU(2) algebra and play an important role in the analysis of the KSEs.

We found, apart from one case, that the solutions can be uniquely characterised
by the isotropy group of the Killing spinors in Spin(5,1) - Sp(1), these are given in
table 2.1. The one case where an independent descendant arises is with three Killing
spinors and it is when the isotropy group of the four parallel spinors is Sp(1) x H.
The difference is due to the conditions that come from the hyperini KSE.

The geometry of the solutions fall into two groups; those where the isotropy
group of the Killing spinors is compact and those where it is non-compact. In the
non-compact case the spacetime always admits a parallel null 1-form with respect to
the connection with skew-symmetric torsion given by the 3-form of the gravitational
multiplet. In this case there are backgrounds which preserve 1,2, 3 and 4 supersym-
metries. Each of these were considered in turn and the conditions imposed on the
geometry of spacetime were discussed. In addition, the constraints imposed on the
fields by the KSE were given in all cases.

On the other hand, when the isotropy group of the Killing spinors is compact
we found the solutions to preserve 2,4 and 8 supersymmetries. In the case of two
supersymmetries the spacetime admits a 3 + 3 split where the first three directions
are spanned by the three parallel vector fields with respect to the connection with
the skew-symmetric torsion given by the 3-form of the gravitational multiplet. There
is a natural frame on the spacetime given by six 1-form spinor bilinears. Similarly,
when four supersymmetries are preserved the spacetime allows a 4 + 2 split where
the four directions are spanned by the four parallel vectors with respect to the
connection with skew-symmetric torsion. Once again there is a natural frame for
the spacetime. Backgrounds that preserve eight supersymmetries admit spacetimes
that are locally isometric to R>!, AdS; x S3 and C'W.

This concludes our analysis of the KSEs of six dimensional supergravity cou-
pled to arbitrary numbers of vector, tensor and scalar multiplets. In one of the
chapters that follows we make use of the results of this chapter to investigate near
horizon geometries arising in six dimensional supergravity. In a later chapter we will

use the techniques and results discussed here to investigate the BPS conditions of
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(1,0) superconformal models in six dimensions. Next, we focus on the integrability
conditions of the KSEs.
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Chapter 3

Integrability Conditions

3.1 Introduction

Integrability conditions have played an important role in finding supersymmetric so-
lutions; they were, for example, used in determining the maximally supersymmetric
solutions of supergravities in ten and eleven dimensions [40]. As we have mentioned,
supersymmetric supergravity solutions are obtained after solving the KSEs as well
as imposing the field equations of the theory. The integrability conditions can be
used to determine which of the field equations are implied by the solutions of the
KSEs. Once this is done the supergravity solutions are obtained by imposing the
components of the field equations that are not implied by the KSEs. In addition,
deriving the integrability conditions provides an important consistency check for the
theory in question and are also needed for the consistency of the KSEs.

In this chapter we give a detailed derivation of the integrability conditions arising
from the four Killing spinor equations discussed in the previous chapter. This will
be a technical chapter and involve a lot of detailed calculations. Where possible
we emphasise on the most important parts. In what follows we first give a general
outline of the approach we take in finding the integrability conditions. Then we
consider the integrability condition of each KSE in turn and derive the field equations
from them. The field equations derived in this chapter will be required for the

analysis of near horizon geometries that follow in chapter 4.

3.2 The Integrability Conditions

The integrability conditions are obtained by taking the commutator of the gravitino

KSE with itself and the other KSE equations. This means we need to evaluate the

following
[DM,'DV}E -0,
1
[P T = HEA e = 0,
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[DWV”VVLA]% = 0,

[DM, %Ff;ﬁ”p + uﬁ:}e = 0, (3.1)
The KSEs can also be used to derive various algebraic identities. These identities
can in turn be used to rewrite some of the terms appearing in the calculation of the
integrability conditions.

We have primarily been following the construction presented in [57] for the cou-
pling of (1,0) six dimensional supergravity to ny vector, ny tensor and ny hyper-
multiplets. The bosonic sector of the Lagrangian for this theory [57], after imposing

our normalisation conventions, is given by

1 1 1 1 ro
-1 _ T s pv T TFe e ry
e L = _Z_llR + 4_8§EGIWIJG mp — Zlauv auvﬁ + gviﬁFuuF :
_@euupaé'rBﬁycﬁFg;Fé{; + ngDu&DM&
]_ A B a/ a/
— o AL AT e (3.2)

Note that we have ignored the subtlety arising from the (anti-)self-duality of the
3-form gauge field strengths when writing a term for these in the Lagrangian. One
has to of course keep in mind that the (anti-)self-duality of the 3-form gauge field
strengths has to be imposed after the equations of motions are derived.

When the integrability conditions are used to derive the field equations it is not
always easy to know which terms appear in which of the field equations. Therefore,
as a point reference we will calculate the field equations obtained from varying the
Lagrangian with respect to the different fields appearing in the theory. This will
help us to group terms that belong together. Firstly, varying the Lagrangian with

respect to g"” gives rise to the Einstein equation, which is given by

1 1 B s 1 ,
E,LW = —?R”u + ggﬁG;« ﬁG;Otﬂ — éau’l]ay;_)r
+§U£cﬁF5/A %+ g1y D, ¢tD,¢f — E%CﬂF@’aﬁFg;gw
1 r A a/ a
_ZvﬂﬁAnggégl fl Juv = 0. (33)

Varying the Lagrangian with respect to v, we find

1 1 I
(Bo)' = VFO" + co, GG, + S E F
e

HC C§>2Af§,4§ AETET =0, (3.4)

This corresponds to the equation of motion for the scalars of the tensor multiplet.

To find the equation of motion of the hypermultiplet scalars we vary the Lagrangian
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with respect to ¢L to find

1
(E)x = gagggDmLD“ ¢? =V, (91 D' ¢")
2 / / !
— 915D, ¢t A" Ok €L + Ty At =0, (3.5)

(e

where 97 = 9/0¢L. In the case of the gauge field A, to find the covariant equation

of motion we need to evaluate

oL
— _ fE =
5 . 0, (36)

where f# is a contribution that needs to be included due to the supersymmetry
anomaly, i.e. the anomaly that arise from the variation of the Lagrangian with
respect to the supersymmetry transformations of the theory, further details of this

can be found in [56, 109], and this contribution is given by

]. / 1 / / /
f’u _ —ﬂC£C£€#VpgéTFsp(OS>U§T 4 @CzCie'uVPUBTAz F;)O'F(gT ) (37)

Taking this into account we find the vector gauge field equation to be

/ / 1 /
EF)"* = V, (" F") 4+ —s"GEPHEY
T 9 af

—v, e Y PV AS + 295, DPGIET = 0 (3.8)

Finally, we note that the second order equation of motion for the 2-form gauge

potentials By, is given by

[

1 / /
(BG) = Vi (sesG) + e ey = 0. (3.9)

We shall now consider each of the integrability conditions in turn and derive the
field equations from the KSEs.

3.3 Integrability of the Gravitino KSE

We begin with the first condition in (3.1) which has already been discussed in the
previous chapter and is given in equation (2.24). We now contract this equation

with ~”
v v 1 po !
Y [DMDV] € =7 <1Ruu,p07 €+F;1/107'/6> =0. (310)
Writing these in terms of the fundamental fields of (2.7) we find

1 1 1
/VV [D/m Du] € = gv)\H)\pag/w’prae + ( - éRMV + gHuapHEpV> 'VVG
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1
__VJHJ;W'YVE ga'-AI ol Prr€
+DH¢1D OLF; A pre =0, (3.11)

where
1y = 00y — 0] + 2 A AS (312

and the other terms have been defined in (2.7). Note that we have already started to
group terms according to their symmetry properties as well as the rank of gamma
matrices they appear with. To rewrite some of these terms we make use of the
algebraic identities that one can obtain from the KSEs. In particular, multiplying
the gaugini KSE with v.c"F}j, @ N e obtain one expression, multiplying it with
F“ Y we get another and multlplylng it with (3F ﬁy’YW 5 L9 ") gives another,
expressions for these along with various other identities can be found in appendix

A. Using a combination of these expressions we rewrite the fifth term appearing in

(3.11) as

r v 1 ra’ a’ _po v 1 a’ € vpo
—Fo e AT pye = — g Ve Fpo i M e+ 51 Fas s F e g
1 1
+2UT6F F“ Ave — 1—6UT&F“BF“ O"gguyw €
oA AL g e (3.13)

and once this is substituted into (3.11) we find

1 1 1 o

<_ §R“V+ 8HH59H€ V+§U£C£ S)\F;l)‘

UTﬁF Fa aﬁguv 2 /Azgla’gla’glw),yue
1

8 <VAH>\pU + 8UT6F Fa aﬂé’ng) g,uy,pro'e

1 o
(o

1
16

1
gvr&F“ FMGP"(S7 )7”6
+ D, 6D, F " proe

I
o

(3.14)

To continue we make use of an identity that comes from multiplying the tensorini
KSE with HZ v, Y"?, which is given by

1 1 1
—5@%&,1}57”6 — Z—lvﬁv,\ (xTMHM)‘W) Ve + gvﬁv,\ (%MHM/\M) Y "€

1 1
8HWH M e+ 1 6HWHMA e =0, (3.15)

in writing this we have also used

x%@,\vﬁHM’\W = —v™V, (xKMHM’\W) ) (3.16)
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Note also that the last term in (3.15) vanishes because the duality of the 3-form

implies

M
H Y 0y = 0. (3.17)
Using these and
VaHY 0 = 0"V (G ) — 0"V (a2 HM,,) (3.18)

the integrability condition now becomes

1 1 1, 1 ,
( - =R, — §8uv£8,,v£ + -G, G%“ﬁ + —UECKFSAFE A

27 g e nal 2
_EvﬂciFs/ﬁFalaﬁguu _'_ AlTlAgglalglalg‘uV) ’}/Vﬁ
1 |
+§UE(V>\ (6rsG* ) + gcngﬂFgfﬁaﬁMm) G €
1 1 o
—Z—lvﬂ (V,\ (gﬁG§)‘#y) + gcﬁF;UFg‘vep”MW) ve
D, ¢'D, ¢ F]  poe = 0. (3.19)

2vu,ct

For the final step we need to find a way to rewrite the last term. To do so we make
use of a number of relations that the vielbeins E}LA on the Quaternionic Kéhler

manifold satisfy in order for them to be covariantly constant, these are [55, 57]

E‘fiAEbliBgQ = €ABE€ab ;
1
E(fAEM + EfAEM = n_gﬂ(gg :
aA A —g™0,
B B8+ B ERP = gMoy (3.20)

We also note that ]:iTB can be written in terms of EE*A as [b5, 57

Frsas = EraaB% + ErapFy (3.21)
Using these expressions we find

Friag = QEMEig — J1JEAB » (3.22)

and this in turn means

D¢ D, ¢ F] 7 pre = 911Dyt Dyt € + 2E144 ES5 D¢ Dy ¢y el | (3.23)
but the last term here vanishes due to the hyperini KSE and so we find
D, ¢ D, ¢ F; )y pre = gry D¢ Dy¢?y e . (3.24)
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Therefore, the integrability condition in (3.19) becomes

]. 1 ! !
(— 5o — a 0,0, 0" + 8gmGWﬁG§°‘5 + SUCFAF + 91Dyt D,
5 CgAlT/ATllflalflalg#y) Ve

UE&F&,F“ aﬂgu,, +
1 a’ ad o vpo
gcﬁFa F5 € ﬂ&ypU)guV’V P7e

1 r s
—ZU*(V)\ (gﬁGf)\,u,y) +

16

1 r s
+§'U7(V)\ (gﬁGiApO’> +

1
gch“ F“ p”‘ww)v”e =325)

In the short hand notation introduced in the previous section we can write this as

174 Uﬁ v
V' [Dp, D] e = Ejun’e + (EG)JJUQMV7 Z(EG)zulﬁ e=0. (3.26)

8

3.4 Integrability of the Tensorini KSE

Next, we derive the scalar field equation of the tensor multiplets using the integra-

bility condition. For this we consider

1
7| D Ty = —HM | = 0. (3.27)

12

When evaluated using the fundamental fields in (2.7) this becomes

(8%%8#112 + x%V“@uvf) €
1
(8 xME) v+ X M7 00" — QHW’\x,,M((),\v£

1
——VA L ——g A”H*) Ve = 0. (3.28)

Qv 9 Aov

To continue, we need to make use of some identities coming from the KSEs. Firstly,

note that multiplying the tensorini KSE with H,s,7*?" allows us to write the last

term as
1 HMozﬁ Ny _ M TH/\ Ny 1 MGs;prr
—5 papll, = "y e = .Z'?V)\ ( MV) Y+ 6’05 wp (329)
and multiplying the tensorini KSE with a:M 0, X~1 means
1
— 0,2 O,V e — 9, O v e — §x§ﬂx£ﬂ&\xﬂ(¥i)‘,uﬁ“”e =0. (3.30)
In addition multiplying the gaugini KSE with z2¢r(3F, ,ﬁ’“’ — p% ") gives
1 M rad a _pod v 1 a’ ha’ Ve
— &, ¢ F Fg €% e+ —x (fF e
16 4
295McE ! e Ja!
AIT/Arf aeddc — (3.31)

(U§C )
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Using these three identities allows us to write the integrability condition as

1 2ct
o (V90" + e Fi P + USGJWpG:wp . C) App A2 )
1 1 o
5ol (V5 (PGh) + SOy 7)1 =0, (3.32)
where we have also used
1 M TSI A 1 M rITA 1 N A
3% Va ("G w) = —-v Hy., + 5%—%( “H ) — 595 O\ M G, (3.33)

Using the compact notation, the integrability condition in (3.32) can be written as

1
o [Dw TM v H pgy”p”] e = o2 (Ev)’e + QxT(EG)WVWG =0. (3.34)

3.5 Integrability of the Hyperini KSE
To derive the integrability condition of the hyperini KSE we consider

| Py Vit ea = 0, (3.35)
which, when evaluated using the physical fields becomes

(D 6" D 0, B + AL €50, DI 6" + BV, D6t ) ea
+(Dud DL 0L + AL €S0, 7D, 0"
a 1 a.
+ BV, D, — S Hy B Dag! ) — 0. (3.36)

Note that by expanding and using the antisymmetry in the spacetime indices we

can write the fifth and sixth terms that appear in the above expression as
! a a v 1 a a v
(A €h0u B Dug" + BV D, ) en = =SB Fiughntea . (3.37)
Multiplying the hyperini KSE with H,,,v*"* we find
B H,, Dygry™es =0, (3.38)

which means the last term in (3.36) vanishes. We also have

ELOEY + 0,65 E =0 (3.39)
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Using the above three expressions the integrability condition in (3.36) can be written

as
(D" Dy’ or 5" — Ay 0 B D" + BV, Do e
H 1~y uYISq g I M A
1 /

+(Dud DL 0BT — SEFFLEL )1 es = 0. (3.40)

The fact that the vielbeins E(iA are covariantly constant means
VIES = 0B — T EE + AREY + A pESY =0, (3.41)

where
1

Iy = QQQ@LQQ + 01911 — OLg1s) (3.42)

is the Christoffel connection of the Quaternionic Kahler manifold parametrised by

the hypermultiplets. We can use this to rewrite (3.40) as

B (T D16 D" — Dol A7 01¢S + 9, D6 ) ey
1

—§EE—AF5;55,W6A = 0. (3.43)

The gaugini KSE together with the identities in (3.20) and (3.21) can be used to

show

1 a a’ v
§EL7AFW€§”W €A =

2 a ! a/ al
B g L Fy At e ey (3.44)

(e

this means the integrability condition becomes

T

— FA(E¢)Kes=0. (3.45)

2 a ,’,,/ al a/
FVLDI — = BAGEF A€ e e

Note that this agrees with the expression for the field equation in (3.5). To see this
expand the second term in (3.5) and rearrange so that (3.42) is used to write the
equation in (3.5) as in the lhs of (3.45).

3.6 Integrability of the Gaugini KSE

Lastly, we consider the integrability condition of the gaugini KSE. This is given by
1D, ey yt]e = 0 (3.46)
’Y '3} 2 Vp’y :ur’ € = ) .
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evaluating this and using the physical fields we find

1. / / 1
§V#Fl‘fp7“l’pe + VAF** e + §H fpa ﬂfy €

2 (8 UT) ct | i o
_'_M—izAléai/pr s QDuQ}If ifor’ry#e

( Uﬁcé)

yAY fE e = 0. (3.47)

To continue, we make use of two identities derived from the gaugini KSE. These
(9Hvsc

identities are obtained by multiplying the gaugini KSE with “=—~* and with
f“'b'C/Azlv“, see appendix A for the explicit expressions. This then allows us to

write the fourth and sixth terms in (3.47) as

2(0 1 Ur  ra ! ealb el
¥Aélm LAY FY e pnte =
vyes)?
(a UT) b pa’b'd c uvp
2( (U§C§) +A / T
(3’\UT) ct A ra'b' e /
—F“ + A fEYCFY Fe . 4
+ < (U§C ) f Ap Te (3 8)

Furthermore, multiplying the tensorini KSE with z~ Mes pra @ ’yaﬁ and simplifying we
find

(vpct) 27"

(akvi) > a’ 1 «

S50 G ) e

(0 US) 2 o 1 el a’ v
N (_mFI/p + mgﬁ&GJ\”pFM e = 0. (3.49)

Now, we can use this along with (3.48) to write the integrability condition in (3.47)

as
(v Fa + Ab fa b ! Fe ) ,y,ul/p€
’ 2 8)\1}5 c2 ’ AV / 1 ’
+ (V)\Fa )\M + ( Cr) F)(\lu + A)\b fab c F)?p, + v §EC£G§O”8MF£[3
T ict

D¢ puyte =0 . (3.50)

T IS a’

In a similar way to deriving the expression in (3.24) we find that the last term can

be written as

2 / 2
S FLDu P e = g1 Dyt e (3.51)

T~ r
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In addition, taking the commutator between the tensorini and gaugini KSEs and

multiplying the result with z3¢* we find

i 1 i
(crawTF“ o+ Z%cﬁG%me) =0, (3.52)
where we have also used
Hy FO2 THPe = 0 (3.53)

coming as a consequence of the duality relations. Using (3.51) and (3.52) means
(3.50) becomes

1 ' ! / / 130 0 /
Y D;u §F5P’Y”P + Mz/i| € = (V)\ (UKCiF;LZ )\> . UﬁcﬁA)\c fa b'c F)Z\)“

1 / /
=Gl G F 4 201, Dl i) e

2
1 / AN~ /
+§vﬁcﬂ (0 + 1< Al Fe,) v
1 1%
= (EF), "yre + Jurc” (BF)Wﬂ“ Pe=0. (3.54)
where (BF)® twp 18 the Bianchi identity of F*. This concludes our analysis of the

integrability conditions.

3.7 Summary

In this chapter the integrability conditions of the KSEs were derived, these provide
an important consistency check for the theory. In order to obtain the integrability
conditions a detailed analysis of the KSEs was carried out to determine various

identities. The integrability conditions can be summarised as

5 o
Y [DWDV] € = E,7" + 3 (EG)MQW’Y P7e — _<EG)W7 e=0,

1 vpo 1 v
[DM,TV 12]—] o) ] = x%(Ev) e+ er(EG)Wy” e=0,
M [Du, V—A} ea = BB Ees=0,
1 a v a’ 1 v
(D, SFa + pile = (BF)iyte+ SUC(BF)f, "7 =0, (3.55)

where E,,,, (Ev)t, (E¢)L, (EF)% and (EG)%, have been defined in (3.3), (3.4), (3.5),
(3.8) and (3.9) respectively. These field equations will play an important role in the
next chapter when we analyse the near horizon geometries of (1,0) supergravity

black holes.
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Chapter 4

Near Horizon Geometries of Six

Dimensional (1,0) Supergravity

4.1 Introduction

In this chapter we focus on the investigation of the topology and geometry of six
dimensional (1,0) supergravity black hole horizons. It is primarily based on the paper
[13] and forms a natural extension of the work described in the previous chapters.
In particular, we make use of the solutions to the KSEs to analyse near horizon
geometries (NHG) in six dimensions. We focus on (1,0) supergravity coupled to any
number of tensor and scalar multiplets. Therefore, we consider horizons for which
the vector multiplets can be consistently set to zero. The reason for setting the
vector multiplets to zero is due to the fact that in the presence of active vectors the
field equations of the theory cannot be put into a form that allows the application
of the maximum principle.

We will begin by discussing the method that is used. This will involve a discus-
sion of Gaussian null coordinates [110] and how these are used to characterise the
near horizon geometries [82, 89] of black holes. Using regularity arguments we will
also determine the general form that the other fields of the theory have to take. Us-
ing this data we will solve the Killing spinor equations along with the field equations
of the theory to determine the near horizon geometries. In particular, we will show
that there are two classes of near horizon geometries; the first class of geometries
that we discuss are locally AdSs x 33, where we find X2 to be diffeomorphic! to S3.
Furthermore, we show that this class of geometries preserve 2, 4 or 8 supersymme-
tries and the amount of supersymmetry preserved depends on the properties of the
geometry of X3, The hypermultiplet scalars are also accordingly constrained.

The second class of near horizon geometries that we will discuss are RY x
S, where the horizon section S is a 4-manifold whose geometry depends on the

hypermultiplet scalars. We will show the tensor multiplet scalars are constant and

!Throughout we use S™ to denote the n-sphere with the standard “round” metric
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all 3-form field strengths, including that of the gravitational multiplet, vanishes.
This class of geometries preserve 1, 2 and 4 supersymmetries. These are the only
two classes of near horizon geometries we find.

As a general note, when we discuss aspects of NHG the specific details of differ-
ential geometry are not given. However, we aim to be self-contained and try to give
details that are required in order to continue the discussion. More details can be
found for example in [62, 63, 101].

4.2 Gaussian Null Coordinates and NHG

4.2.1 Gaussian Null Coordinates

The investigation of NHGs can be carried out by adapting to Gaussian null coordi-
nates. These are similar to Gaussian normal coordinates [62, 63] but adapted to the
case of null hypersurfaces. Therefore let us start with an introduction to Gaussian
normal coordinates, we mainly follow the discussion in [62, 63]. We begin with the
spacetime (M, g,,,), where M is an n-dimensional manifold, the hypersurface ¥ is
defined to be an (n — 1)-dimensional submanifold. Now, consider the tangent space
at a point p € X and denote this with 7%, this space can also be considered as a
subspace of the tangent space of TM,, of M. This means that for all such vector
spaces one can find a n, in T'M,, which is orthogonal to all the elements of T'3,,.
To define Gaussian normal coordinates one constructs geodesics which pass through
p € ¥ with n, tangent to these. In particular, to parametrise a small region of
space in M one can choose some coordinates y* = {y',...,4" '} on 3 and then
each point, say ¢, in the neighbourhood of this part of X lies on the unique geodesic
constructed with coordinates given by y* = {t,y',...,y" '}, where t is the affine
parameter of the geodesic that has been defined at each point p € ¥ with coordinate
y'. This coordinate system is only well defined in the small region around 3 [62, 63].

Since the geodesics that have been defined at each point are unique they may
eventually cross over, but until that happens Gaussian normal coordinates hold [62].
This is true because of the fact that the geodesics are orthogonal to all hypersurfaces,
parametrised by X, with ¢ = constant, see [62, 63] for details. To demonstrate this,
we first note that on the hypersurface ;- we have n,n* = £1 and n,Y* = 0 by
construction, where Y* denote a set of basis vector fields. One now needs to show
the directional derivative of nMY(%, where Y(’;) are the basis vectors of the tangent
space at Y;, vanishes; this will mean the inner product nHY(’Z.‘) is preserved and so

nuY(’;) = 0 for the hypersurface ;. To start with
n*V,(nY5) = n'Vun Y +nfn, V.Y (4.1)

where we have used the Leibniz rule. Then using the fact n*V,n, = 0 and
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VY =Y Vn" gives [63]

IR G) = n G
= SV V(). (4.2)

and this vanishes since n,n" is a constant. Note that due to the construction of the
coordinate system g, = g(9,9;) = £1 and g; = 0 and so the metric can be written

as
ds® = +dt* + y;dy'dy’ | (4.3)

where the 4 in the first term depends on whether we have a timelike or a spacelike
normal vector and v;;(t,y) = ¢(0;, 0;).

We now move onto discuss the construction of Gaussian null coordinates [110].
In particular, it can be adapted to the case where there exist a time-like Killing
vector field k, which becomes null on the horizon of a stationary black hole [82].
To do so we begin by taking an (n — 1)-dimensional hypersurface, ¥, where the
normal vector to it, n,, is a null vector n,n* = 0. Also note that in the case of
null hypersurfaces one finds the integral curves of the null vector field to correspond
to null geodesics, called the generators of the hypersurface, and the union of these
correspond to the null hypersurface itself [62, 63]. Next we consider an (n — 2)-
dimensional hypersurface, denoted with =, that is embedded in ¥. Following the
same argument as in the discussion of Gaussian normal coordinates we consider the
tangent space T'=, that is a subset of 7%, which in turn is contained in T'M,,. For
all elements of T'=, one can find a normal vector field £k, whose integral curves are
the null geodesics which generate =. On a particular chart of = one can then choose
the coordinates y* = {y',...,y" 2} so that in a small neighbourhood of this region
the geodesics with tangent k,, and affine parameter u allow the coordinates of this
region of ¥, denoted as 3, to be given by {u,y',...,y" 2} [110, 82].

Now, at each point p € 3 there is a null vector field n, such that n,k* =1 and
n,Y* = 0 for all Y, that is tangent to 3, and that satisfies Y#V,u = 0. For all
points (u,y*) in > we can find geodesics with tangent n, and with affine parameter
r so that in this small region of M the coordinates of the space can be written as
y* = {r,u,y',...,y" %}, where the values of (u,y’) are kept constant along these
geodesics. These are referred to as Gaussian null coordinates, see [110, 82] for more
details.

On %, by definition we have k* = (9/du)* and the other coordinates have been
defined so that n* = (9/0r)* and ¢, = ¢(0,,0,) = 0, in addition the components
Gru> Gr3, - - -, grn are all independent of r. The condition n,k* = 1 gives g, = 1
and n,Y* = 0 means g,; = 0 where I = 3,...,n. On the hypersurface 3, which

could be thought of as the surface where r = 0, one has g,, = 0 and g,; = 0. This

86



means there are functions f and h; on M such that when evaluated on ¥ we get
fls = (0guu/Or)|r=0 and hr|s = 0gur/0r|,—o [110]. Putting these together means

the metric can be written as
ds? = rfdu® + 2drdu + 2rhidudy’ + v dy’ dy” | (4.4)

note that the vector field k, = 0, is the Killing vector field and the components f,
h; and ;7 depend on r and y! [110, 82].

4.2.2 Near Horizon Limit

By construction we have chosen so that the horizon is located at » = 0. The metric
vrs is the metric on M™ 2 which is defined by u = constant and r = 0. The
requirement of regularity at the horizon means the metric needs to be well behaved
at r = 0. We assume the metric is analytic in r and this means we can expand the

different components of the metric [89] as follows

(o) Tn

f(7”> y) = Z ﬁaff’rzo )
n=0
(o) Tn

halry) = 3 0l
n=0

o0 T’n N
Y (r,y) = E ﬁ@fﬂﬂr:o. (4.5)
n=0

To determine the near horizon geometry we first perform the following coordinate

transformation

and then take the limit ¢ — 0 [82]. This means the metric in (4.4) becomes
ds® = r*F(y)du® 4 2drdu + 2rh;(y)dudy” + v7;(y)dy' dy’ (4.7)

where F(y) = 0,f|.—o and all the components are independent of r. In addition,
regularity requires f(0,y) = 0. To obtain this expression for the metric we have
made use of the field expansions in (4.5). This is the near horizon limit for extreme
black holes.

The six dimensional supergravity which we are considering has other fields like
the 3-form gauge field strengths. We can also define a near horizon limit for these

fields, which will be discussed in the next section.
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4.3 Supersymmetric Horizons

4.3.1 Fields and KSEs of Six dimensional Supergravity

In this section we briefly recap the fields and the KSEs of six dimensional supergrav-
ity but in the absence of vector multiplets, i.e. coupled only to tensor and scalar

multiplets. In the absence of vector multiplets the KSEs of the theory become
1 vp T,
D,e = (Vu — gHWﬂ +C, pT/)e = 0,
i M i M v _
<—T H— —H*Vp")/“ p>€ = 0 y

27 24+
ifeaVEt = 0, (4.8)

where the first equation is the gravitino KSE, the second is the tensorini and the
third is the hyperini KSE. In addition, the physical fields defined in (2.7) reduce to

T M M ~r
Hy, = vG) H., =z G

pvps pvp pvp

C.tp = 0.0" A5

TH = Mgt VA = BFO.0t . (4.9)

The nr + 1 3-form field strengths of the supergravity theory still satisfy the duality

relation given in (2.10) but are now defined as

Gt =30uB-,, r=0,... nr, (4.10)

prp vp]

since the Chern-Simons terms vanish after setting the vector multiplets to zero. The

rest of the theory is defined as in chapter 2.

4.3.2 Near Horizon Geometry

The form the spacetime metric has to take near the horizon is given in (4.7). We

will now derive the form the remaining fields of the theory take in this limit. The

null coordinates {r,u,y',...,y" 2} defined in the previous section allow us to write
the 2-form gauge potentials, Bj, as
B = bdu A dr + bidu A dy' + cidr A dy' + b7 ,dy’ A dy' (4.11)

where all the coefficients are functions of r and y. Then assuming analyticity of
these components in the r coordinate allows us to write these components in a

similar way to the components of the metric in (4.5). Using this and the coordinate
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transformation in (4.6) we find
o
Z €" 8”b’"du Adr + Z €O i A dy'
+ Z i1l o arcrdr A dy' + Z € —G”br Sdy" A dy" (4.12)

Next taking the near horizon limit € — 0 we find
BE = b(y)du A dr + rd,b3(y)du A dy" + b5, (y)dy" A dy” . (4.13)

Note that we have also used the regularity condition b7(0,y) = 0. This in turn can

be written more conveniently [89] as
B =rdu A N* + S"du A (dr + rhydy") + W* (4.14)

where ST are scalars, h, N* are 1-forms and W™ are 2-forms on the horizon section
and depend only on y. Moreover, in the near horizon limit the scalars of the hy-
permultiplet and those of the tensor multiplet only depend on y. The black hole
horizon section S has been defined as the surface given by » = v = 0. In addition,
it is assumed to be compact, connected and without boundary. Since G* = dB*, we

take the exterior derivative of (4.14) and collect the other near horizon data to find

ds®* = 2ete” +§;e'e
Gt = et he A (dSﬁ— NT — Sﬁh)
+ret A (hANE— dN™— S=dh) + dW*"
ot = oMy), w=9y), (4.15)

where
e =du, e =dr+rh+r*F(y)du, € = edy", (4.16)

¢! are the scalars of the hypermultiplet and ¢ are the scalars of the tensor multiplet,
and €' is a frame on S that depends only on y.

To find the supersymmetric horizons of six dimensional (1,0) supergravity, one
needs to solve the field and KSEs of the theory for the data given in (4.15). We will
first consider the solutions of KSEs.

4.3.3 Solution of KSEs

To continue, we substitute (4.15) into the KSEs (4.8) and assume that backgrounds
preserve at least one supersymmetry. Moreover, we identify the stationary Killing

vector field 0, of the near horizon geometry with the Killing vector constructed as
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a Killing spinor bilinear. We now discuss this in some detail.

Light-cone Integrability of KSEs

As we will identify the Killing vector field of the black hole 0, with the Killing
vector constructed from the Killing spinor bilinears, and since this is null it means
F(y) =01in (4.15). As a result, we find the non-vanishing components of the frame

connection associated to the Levi-Civita connection of the spacetime to be given by

1 1 1
Qi = _§hi v Q= —§T‘(dh)ij , Q= —5}%‘ ;

1 1
Q- = Shis Qgy=—gr(dh)iy . Qe =Qije (4.17)
where Qi,jk is the connection associated to the horizon section. For later use, we

note the anti-self duality of H implies

1 ikl
H, ; = §€+—ijle] )

1 ;
= §6+,ijkﬂ)ﬂdwmkl . (418)

We now use these, as well as the components of H,,,, to integrate the gravitino
KSE along the two light-cone directions. For this we first decompose the Killing

spinor € as
e=¢ey+e_, Yrex =0 . (4.19)
The — component of the gravitino KSE is
1 v 1 vp T,
0_e+ ZQ_’”’ﬁ €— gH—upV e+C pre=0, (4.20)
and this becomes
1 .
0_€— Z(vﬁdS£ —N—-(S+1)h),I"T'_e;, =0, (4.21)

where we have used the expression for the frame connection stated above, the ex-
pression for the fields in (4.15) and the fact C" = 8_¢LA§ = 0 since the scalars
do not depend on (u,r) in the near horizon limit. We have also set N = v, N* and

S =v,5". Noting that 0_ = 0, and 04 = 0,, upon integration we find

€+ = ¢+7

1 |
e« = ¢+ (v dSt =N = (S+Dh)iy'r-d+ (4.22)

where ¢ are independent of r.
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Similarly, the + component of the gravitino KSE gives

1 .
Jy€+ Z(UﬂdSﬁ — N —(S—=1)h)iy'vye
1 .
—gr(h AN —vdN* — (S —1)dh);j7%e = 0. (4.23)

Substituting in (4.22) into the 4+ component of the gravitino KSE, we get

0. (6-+ r(udSt— N — (S + D)y 6. )
+i (%dS£ N (S— 1)h> R <¢, n ir(wdS” N (S+ l)h)jfyjfyq§+)

—er (WA N —wdNE = (5 = 1)dn) 59 (94 r(v,dST— N~ (S + 1)R) A6,
=0. (4.24)

v

This equation is valid in every order in r. As a result the O(r?) order term gives

]_ .
0+ + 7 (%dSﬁ ~N— (S~ 1)h> Y +p- =0, (4.25)

which can be solved to find

1 .
oy = Ny — ZU(%dsﬁ - N—(5- 1)h)iv’7+77_ :
- = n-, (4.26)

where 74 is independent of r and u. Substituting these into (4.22) means the ey

component of the Killing spinor can be written in terms of 7. as

€y = My — %%vrds’” —(S=1h )'yi%n- 7
€. = n_+ ir(vrdSr —N—-(S+1)h > Yly_ng
+éur <v£d5’£ - (S+1) h) (vEdS£ —N—(S— 1)h> Ayin_ (4.27)
J

The remaining conditions implied by (4.24) are algebraic which will be considerably

simplified after the analysis of the next section. These are

By e + XgyIne = 0, (4.28)
By e = 0, (4.29)
By v — Ny in. = 0, (4.30)
iy YV - + Aoy iy - = 0, (4.31)
Aijﬁk&lVij’Yk’Vln— = 0, (4.32)

91



where

B = (0,dST— N —(S+1)h); (4.34)

These are in fact the same constraints as those found for the heterotic horizons in
[89].

Stationary and Spinor Bilinear Vector Fields

The argument presented in this section follows a similar argument made for the
investigation of heterotic horizons given in [89]. As we have mentioned, additional
restrictions on 74 can be derived for horizons preserving one supersymmetry arising
from the identification of stationary black hole Killing vector field 0, with that con-
structed as a Killing spinor bilinear. This identification implies that the components

of the 1-form associated with the latter are
X, =0, X_. =1, X;=0. (4.36)

Furthermore, the 7. spinors can be expanded in the basis of symplectic Majorana-

Weyl spinors as

Ny = a1(1+ e1a34) + a2i(l — eq234) + as(erz — es4) + aqi(ern + €34) ,
n— = bi(e1s + €asa5) + bai(e1s — ea3a5) + bs(€as — €1345) + bai(e1s + €2345)(4.37)

where all components depend on the coordinates y of S. The field data (4.15) are
covariant under local Spin(4) - Sp(1) gauge transformations of S. So these can be

used to choose 74 as

ne = a(y)(1+es),
n- = by)(eis + e2345) - (4.38)

The next step to consider is the spinor bilinear associated to the Killing spinor

Y, e!' = (Be", ye)et (4.39)

where B = Logrs9. In order to satisfy the relations in (4.36), we require the +
component for the spinor bilinear to vanish. This in particular means that Y, |,—o =

0, and as a consequence we find
n-=0. (4.40)
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This then means we can write the spinor in (4.27) as
1 T )
€ = s+ (v dSt = N = (S+Dh)iv'y-ny (4.41)

Since the bilinear components on the horizon are independent of r, the next require-

ment we impose is for the O(r) term in the bilinear to vanish. This means
(B(1 + e1231), 7u(v,dS" = N — (S + 1)h)iv'y-ny) =0, (4.42)
from which we obtain the condition
v,dS"— N —(S+1)h=0. (4.43)
This further simplifies the Killing spinor to
e=ny =a(y)(l+eisq) . (4.44)
Finally, calculating Y_ and comparing this to X_, we find
—2V2d® =1, (4.45)
i.e. a is a constant, which without loss of generality can be set to 1. This means
e=14e1o34 . (4.46)

This choice of Killing spinor for the horizon geometries is the same as that for general
solutions of the KSEs of six dimensional supergravity preserving one supersymmetry,
as discussed in chapter 2. Therefore, this will be used to simplify the analysis of

near horizon geometries.

Further analysis of the Gravitino KSE

Revisiting the + component of the gravitino KSE with € = 1 + €934, we find that
(h AN = v dN* — (S = 1)dh),; "1, = 0. (4.47)

As a consequence all algebraic conditions (4.28-4.32) are also satisfied.
Next we consider the i-component of the gravitino KSE. After separating the

various orders in 7, we have

N 1. .1 . ,
Diny = <8Z- + ZQi,jW]k - g%(dWﬁ)ijk”Y]k +C pw) ny =0. (4.48)
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and
(h AN —v,dN™ — (S + 1)dh);;v'n, =0 . (4.49)
Using . = 1 + ej934 in the last equation, we find that
hAN —v.dN*—(S+1)dh=0. (4.50)
As a result, the 3-form H simplifies to
H=e"Ne Ah+re" Adh+v,dW"- . (4.51)

This completes the analysis of the gravitino KSE, we now consider the tensorini and

hyperini KSEs in turn.

Tensorini KSE

We have already solved the tensorini KSE for the spinor € = n, = 1 + e1934 and the
results are given in (2.45). Comparing the expression for HY in (2.87) and (4.15),
we find

st - NM _ gMp — M A NM _gMaNT _ gMap =0, (4.52)
where NM — xEMN T and SM = x%sﬂ. As a result the 3-form HM can be written as
oY = TMe nef nel +aMawrs. (4.53)

Hyperini KSE

Applying the results of chapter 2, in particular (2.48), and using the fact that the
scalars of the hypermultiplet do not depend on the coordinates (u,r) means the

hyperini KSE implies
a a2 al a2
—VE+VE =0, VE+VE=0, (4.54)
fore=1 + €1234-

Summary

In summary, at the end of this detailed analysis we have found that the Killing

spinor can be chosen as

e=1+ €1234 , (455)
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and the fields can be rewritten as

ds® = 2ete” +4;e'e
1 . .
H = e*/\e*Ah—i—re*/\dh—?hgeeijkel/\ej/\ek s
1 R .
HM — TZ-Me_/\eJrAel——%efijkel/\ej/\ek.

3!

ot = oNy), e=v), (4.56)

where we have used the duality relations of the 3-form field strengths. In particular
hy eﬂ-jk = _UEsz%k: and similarly for H¥. In addition the anti-self duality of H

requires that

1
dhi; = —§eijkldhkl : (4.57)

It is clear that H is entirely determined in terms of h while HL is entirely determined
in terms of the scalars ¢ of the tensor multiplets.
Furthermore, the gravitino KSE along the horizon section directions, (4.48),

requires that

Di(1 + e1234) =0, (4.58)
where
D=V, +C py, (4.59)

and % is the connection on S with skew-symmetric torsion — x4 h, where x4 denotes
the hodge dual in the directions transverse to the light-cone. One can consider the
geometric content of this equation by using the Hermitian 2-forms on S, given in
(2.62), which can be constructed as twisted Killing spinor bilinears, see section 2.4.

In particular, the integrability condition of (4.58) can be expressed as

A

— Ry Fow" i + (4,1) + 2F5 € gpwls = 0, (4.60)
where
Fon = O 067 Fy, . (4.61)

The integrability condition identifies the Sp(1) C Sp(1) - Sp(1) component of the
curvature Z%L of the 4-dimensional manifold S with the pull back with respect to
¢ of the Sp(1) component of the curvature of the Quaternionic Kéhler manifold,
Q. The restriction imposed on the geometry of S by (4.60) depends on the scalars
¢L. In particular, if ¢L are constant, then F,,, = 0 and (4.60) implies that S is a
hyper-Kéahler with torsion manifold [111].
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We will analyse these conditions further in the sections that follow. This will be
done after imposing the restrictions on the fields implied by the field equations of

the theory and the compactness of S.

4.4 Horizons with h #£ 0

There are two classes of horizons to consider depending on whether or not A vanishes.

First, we will consider the case where h # 0.

4.4.1 Holonomy Reduction

If h # 0, we shall demonstrate that, as in the heterotic case, the number of super-
symmetries preserved by the near horizon geometries is always even. For this we
shall use the results we have obtained from the KSEs for horizons preserving one
supersymmetry and the field equations of the theory. The methodology we shall
follow to prove this is to compute V2h?2 and apply the maximum principle utilising
the compactness of S.

There are a number of different formulations of the maximum principle, see for

example [112], but the one that we will need states that if
Via+b'Via >0, (4.62)

where a and b are two smooth functions defined on &, holds true then the compact-
ness of § means the function a must be a constant. In what follows we aim to show
this for the case where a = h?.

The field equations of six dimensional supergravity, which were given in chapter

3, in the absence of vector multiplets are

1 T S T
R, — ZgﬁG,; BG;QB + 0,0 0,0, — 29150,0%0,6F = 0
v)\ (ggG@)\MV) = 0 )
1
VHO, v + évﬁGﬁ“”pGﬁW =0
D"t = 0, (4.63)
where in the last equation it is understood that the Levi-Civita connections of both
the spacetime and the hypermultiplets Quaternionic Kahler manifold metrics have
been used to covariantise the expression, and the covariant derivative is denoted as
D,.
To make use of the maximum principle we start with h?> = h;h* and take the

Laplacian of this to find

V2h? = 2V WiV h; + 2V (dh)ijh? + 2R;h' R 4 20V, VA (4.64)
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where V is the Levi-Civita connection of S with respect to ds*(S) = d;;€'¢/ and R
is the associated Ricci tensor. The proof of this is given in [89]. To proceed, we use
the field equations of the theory to rearrange the above expression in such a way
so that one can apply the maximum principle. Using the Einstein equation and the
fact [113]

. 1
Rij = Rij = Vhy) + Shihy (4.65)
we find

2R W = —h20,0"0" + 40,0067 grsh W — W'V ih? . (4.66)

The puv = +— component of the field equation Vy (qﬁGé’\"”) together with H*"~ =

—ht and HMH— = TM giye
dyuht + v, Vih' + Vd'v, =0 (4.67)
Acting on this expression with v*, we find
Vihi + 0V, 0', = 0 | (4.68)

where we have used v,v" = 1.

The field equation of the scalars of the tensor multiplet gives

v, V;0t =0 | (4.69)
which when combined with (4.68) implies that
Vihi=0. (4.70)
In addition (4.69) and v,v" = 1 give

v, 0" 0" =0 . (4.71)
Thus substituting (4.66) into (4.64) and using (4.70) and (4.71), we find that

V2h2 4 hiVh? = 2V RV by 4 2V (dh)i il + 40;¢10;¢Lgr h' 7 (4.72)

This expression is close to the one required in order to apply the maximum principle.
Next, we need to determine dh. For this, consider the jk-component of the 3-form
field equation to find

Vi (UEHUIC + QZKMH”M]C

= €iju0'vh 4 vpeiu ViRl =0 473
J r r-ig
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multiplying this with v* we find
dh =0, (4.74)
Substituting this into (4.72), we get
V2h2 4 hiVh? = 2V WV b, + 40;610;0L g h'h . (4.75)

Now, applying the maximum principle using the compactness of S, we find that h?

is constant and so the right hand side of (4.75) is equal to zero, which in turn means

@ihj — 0,
ROt = 0. (4.76)

To establish the second equation, we have used the fact that the metric of the hy-
permultiplets Quaternionic Kéhler manifold is positive definite. The first condition
tells us that h is a parallel 1-form on S with respect to the Levi-Civita connection
and the second one implies the scalars of the hypermultiplets are invariant under
the action of hA. Note also that %h =0asiyH =0.

The existence of a parallel 1-form on the horizon section & with respect to the

Levi-Civita connection is a strong restriction. Firstly, it implies that the holonomy
of V is contained in SO(3) € SO(4),

hol(V) € SO(3) . (4.77)

Moreover, S metrically (locally) splits into a product S* x 33, where 33 is a 3-
dimensional manifold. In turn, as we shall see, the near horizon geometry is locally a
product AdS5x ¥3. More elegantly the near horizon geometry allows supersymmetry

enhancement from one supersymmetry to two.

4.4.2 Supersymmetry Enhancement

In order to demonstrate supersymmetry enhancement for backgrounds with A # 0,
let us re-investigate the KSEs for the fields given in (4.56). It is straightforward to
see by substituting (4.56) into the KSEs and following the calculation that we gave
in section 4.3.3 that the general form of a Killing spinor is

U,
€ =14 = Fh - - (4.78)

where 71 depend only on the coordinates of §. In addition, the gravitino KSE

requires that

A

Vie+Cl pre=0, (4.79)
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the tensorini KSE implies that
) 1 .
(1+ )Ty er — —Hr%er =0, (4.80)
and the hyperini KSE gives
i aA
iv'eraVi o =0. (4.81)
Next we shall show that both
€1 = 1+ €1234 , €y = ’}/_hz’}/l(l + 61234) - Uk2(1 + 61234) y (482)

are Killing spinors, where we have set k? = h? for the constant length of . Note that
the second Killing spinor is constructed by setting ny = 0 and n_ = v_h;y"(1+e1234)
in (4.78).

The KSEs have already been solved for €;. Next, observe that ey solves the
gravitino KSE since the Clifford algebra operation h;v'y_ commutes with the su-
percovariant derivative in (4.79) as a consequence of the reduction of holonomy
demonstrated in the previous section. Furthermore, the same Clifford operation
commutes with the hyperini KSE as a result of the second equation in (4.76) and
(4.81).

Now it remains to show that ey solves the tensorini KSE as well. This is
a consequence of the relation in (4.71). This is because the metric induced on
SO(nr,1)/SO(nr) by the algebraic equation n,,v™v® = 1 is the standard hyperbolic

metric and so it has Euclidean signature. Therefore, as a result,

Then we conclude that the scalar fields are constant and the 3-form field strengths,
H2L given in (4.56), of the tensorini multiplet vanish. This agrees with the classifi-
cation results of chapter 2 for solutions of the KSEs of six dimensional supergravity
preserving at least two supersymmetries whose Killing spinors have compact isotropy

group. Some of the results of this section are tabulated in table 4.1.

4.4.3 Geometry

To investigate the geometry of spacetime, we compute the form bilinears associated
with the Killing spinors in (4.82). As in the analysis of the general backgrounds
given in chapter 2, we find that the spacetime admits three @—paraﬂel 1-forms

corresponding to the bilinears a(ey, €1), a(er, €2) and a(eg, €2) and these are given by

Eu’e” —uh, N =k'(h+kue ). (4.84)
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__ Iso(ny)  [hol(D) | N | B |
Sp(1) - Sp(1) x H | Sp(1) | 2 1 + e1234
U(l) . Sp(l) x H U(l) 4 1 + 61234,@(1 — 61234)
Sp(1) x H* {1} 8 | 1+ e1234,i(1 — e1234), €12 — €34, (€12 + €34)

Table 4.1: Some of the geometric data used to solving the gravitino KSE are described. In
the first column, we give the isotropy groups, Iso(n4 ), of {n4} spinors in Spin(5,1)-Sp(1).

In the second column we state the holonomy of the supercovariant connection D of the

horizon section S in each case. The holonomy of V is identical to that of V. In the
third column, we present the number of D-parallel spinors and in the last column we give
representatives of the {74} spinors.

Moreover, the Lie algebra of the associated vector fields closes in s[(2,R), this has

been verified in [89]. Since h is V-parallel, the spacetime is locally metrically a
product SL(2,R) x ¥3, i.e.

ds*> = ds*(SL(2,R)) + ds*(Z?) |
H dvol(SL(2,R)) + dvol(%?) ,
ot = oL(2), (4.85)

where the scalars of the hypermultiplet depend only on the coordinates z of 3.
In addition to the 1-forms given in (4.84), the spacetime admits three more
twisted 1-forms bilinears, compare with the N = 2 compact case of chapter 2. For

the Killing spinors (4.82), these are given by
e = k(1Y€ (4.86)

where I"" are quaternionic structures on S associated to the Quaternionic-Hermitian
2-forms (2.62). As it has been already mentioned, these Quaternionic-Hermitian 2-
forms arise from the construction of twisted spinor bilinears and so rotate to each
other under patching conditions. From (4.86) one can see that the frame e is
orthogonal to h and so the rotation between the frame e’ and (h,e”) is in SO(4).
Therefore (k~'h,e™) is another frame on S with €™ adapted to ¥3. Thus, we can
write ds?(S) = k2h? + ds?(X?) with ds?(X%) = Suge” e

The metric on ¥? is restricted by the Einstein equation (4.63) and the integra-
bility condition (4.60). From the Einstein equation we get

,,,/S/

1
R(3) - §k25r/8/ - 28,,/&68/¢igg =0 s (487)

where 7/, s are the indices of %, and R® is the Ricci tensor of ¥2. This is an
equation which determines the metric on 3? in terms of h and the hypermultiplet
scalars ¢. The integrability condition (4.60) does not give an independent condition

on the metric of 3.
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It now remains to find the restriction imposed by supersymmetry on the scalars
¢ of the hypermultiplet. These scalars only depend on the coordinates of 3, i.e.
they depend only on three of the spacetime directions. A direct observation reveals
that, after an appropriate identification of the frame directions of S with that of the

Pauli matrices oy,

01:<0 1) , 02:<Q _i> : 03:(1 0) (4.88)
10 v 0 0 —1

the supersymmetry conditions coming from the hyperini KSE can be rewritten as
ar/gbl — —Er/S’t/ (JS’)LJ athﬁi , (489)

where we have used that (Jy)4%g, = —i 0y2d%,. This is a natural condition which
constrains the maps ¢ from X2 into the Quaternionic Kihler manifold of the hyper-
multiplets. Constant maps are also solutions.

As mentioned, the geometry on ¥ is determined by (4.87), and depends on the

solutions of (4.89). In the case of constant map solutions of (4.89), we get
® 1
Ry — §k Oy =0, (4.90)

and so X2 is locally isometric to S? equipped with the round metric, and the near
horizon geometry becomes AdSs x S3.

Next, let us suppose that non-trivial solutions exist for the equation in (4.89),
and upon substitution solutions exist for (4.87). Therefore, one would expect the
geometry on X3 to depend on the choice of quaternionic Kihler manifold for the
hypermultiplets and on the choice of a solution of (4.89). However, one finds that
the differential structure on 32 is independent of these choices. This is because the
existence of non-trivial choices ¢ does not affect the fact that the Ricci tensor R
of 33 is strictly positive (4.87). This in turns allows one to determine the topology
of ¥3. To see this note that in three dimensions the Ricci tensor determines the
curvature of a manifold. Also, the strict positivity of the Ricci tensor implies the
(reduced) holonomy of the Levi-Civita connection of ¥* is SO(3). Then a result
of Gallot and Meyer, see [114], implies that 33 is a homology 3-sphere, see [13] for
further details. This along with the Poincaré conjecture [115] allows one to conclude
that the universal cover of ¥? is diffeomorphic to the 3-sphere, see [13]. This result
means that in the simply connected case and for non-constant solutions to (4.89),
the geometry of the round sphere is deformed in such a way that the differential,
and so topological, structure of S is maintained.

The existence of non-trivial solutions to (4.89) is an open problem which may de-
pend on the choice of quaternionic Kéhler manifold of the hypermultiplets. However,

as we will see, horizons that preserve eight supersymmetries require the hyperscalars
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¢ to be constant. This is compatible with the assertion made in the attractor mech-
anism, see [116, 117] for the six dimensional supergravity case, that all the scalars
take constant values at the horizon. However, it is worth noting that the field equa-
tions and the KSEs do not a priori imply that the scalars are constant for near
horizon geometries which preserve a small number of supersymmetries. For this
some further investigation is required which may be case dependent, we will not

pursue this further.

4.5 N=4 and N=8 Horizons

4.5.1 N=4 Horizons

We have shown that if h £ 0, then the near horizon geometries preserve 2, 4 or 8
supersymmetries. The case with two supersymmetries has already been discussed in
some detail above. In addition to the two Killing spinors given in (4.82), the other

two Killing spinors of horizons with four supersymmetries can be chosen as
€3 — Z(l — 61234) s €4 = —zk2u(1 — 61234) =+ th’}/-ﬂ(l — 61234) . (491)

Note that e3 = p'e; and €4, = ple;. This requires that the KSEs commute with p!.
These Killing spinors give rise to an additional V-parallel 1-form, and in this case

we find the 1-form @-parallel spinor bilinears to be given by

1
A o= e, \M=e— ék%ﬂe* —uh, M =kh+kue),
Moo= e (4.92)

where the first three bilinears are those of horizons with two supersymmetries and
e! is given in (4.86). The vector fields associated to these are Killing and their Lie
algebra is s[(2,R) @ u(1) [89].

The spacetime is locally metrically a product AdSs; x X3, as for horizons pre-
serving two supersymmetries. In addition in this case, ¥? is an S! fibration over a
2-dimensional manifold Y2, where the fibre direction is spanned by A\* = e!. There-

fore,
ds*(¥3) = (e')? +ds*(X?) , ds*(S) = k2h* + (e')? + ds*(X?) . (4.93)

Also observe that de! # 0 as e' A de' is proportional to H = dvol(X?), and so the
fibration is twisted.

It now remains to specify the topology of ¥2. For this we first observe that from
the results of chapter 2 section 2.8, the hypermultiplet scalars depend only on the
coordinates of ¥2. To specify the topology of 33, we compute the Ricci tensor R
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of ¥% using the Einstein equation and in particular (4.87) to find

1 ! 1
Rgz/ - §d€%/u/(d€1)t v (5T/s/ — §k25r15/ — 26r/¢L83/¢ng =0 s (4.94)

T 3 2
where now 7/, s, ', are indices in X2, and we have used the result qu,i/ = Rﬁ/i/ -

Ldep, (de)"™' 8,45 [90]. Once again, it is clear that the Ricci tensor of %2 is strictly
positive and so X2 is topologically a sphere irrespective of the properties of the maps
.

We have mentioned that the hypermultiplet scalars ¢ depend only on the coordi-
nates of Y2 as a consequence of the hyperini KSE. Thus they are maps from ¥? into
the quaternionic Kahler manifold of the hypermultiplets. In addition, the hyperini
KSE implies that

V=0, V2=0, (4.95)

2

which is equivalent to (4.89) after additionally requiring the scalars not to depend on
the fibre direction A*. These conditions imply that ¢ are pseudo-holomorphic maps
from Y2 into the quaternionic Kahler manifold of the hypermultiplets. Furthermore,
the analysis we have made for the existence of non-constant solutions to (4.89)

applies to (4.95) as well.

4.5.2 N=8 Horizons

As in the cases with two and four supersymmetries, one can show that the spacetime
is locally AdSs x ¥3. In addition, for horizons with eight supersymmetries, the
hyperini KSE implies that the scalars of the hypermultiplet are constant, see chapter
2. In such a case, the Einstein equation implies that 33 is locally isometric to S3.

Therefore, the only near horizon geometry preserving eight supersymmetries with

h#0is AdSs x S°.

4.6 Horizons with h =0

We shall now consider the second class of near horizon geometries, R"! x S, which

arise when h = 0.

4.6.1 Geometry of N=1 Horizons

When h vanishes we can clearly see from (4.56) that the 3-form field strength of the
gravitational multiplet vanishes H = 0, and the near horizon geometry is a product
RY x S. It now remains to determine the geometry of S.

To begin with we first observe that the tensor multiplet scalars are constant and
the associated 3-form field strengths, H2 in (4.56), vanish. The proof for this is
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similar to that given for the horizons with h # 0. In particular, it utilises the field
equations of the tensor multiplet scalars as described in equations (4.68) and (4.69),
with h = 0, and the argument developed around (4.83).

This then means the Einstein equation in (4.63) becomes
Ry — 2915001067 =0 . (4.96)

Therefore, the Einstein equation expresses the Ricci tensor R of S in terms of the

hypermultiplet scalars as

The hypermultiplet scalars are also restricted by the Killing spinor equations as in

(2.48). In terms of real directions these conditions are the same as

—VE VR V2L VE = 0,
VLY ye oy g (4.98)

which after an appropriate identification of frame directions of & with the matrices

(7") = (1ax2, —ic™), can be written as
(725 0t EZ*B =0. (4.99)

These can equivalently be written in terms of the quaternionic structures J,.. of Q

as
(Kt 09l =0, (4.100)

where (K;) = (Luny xdng s i) and Ly, xan,, is the identity tensor.

If the hypermultiplet scalars are constant, then the rhs of (4.97) vanishes and S
is a hyper-Kéhler manifold. So it is locally isometric to either K3 or T%. As we will
see such horizons exhibit supersymmetry enhancement to at least N = 4.

The existence of horizons with strictly N = 1 supersymmetry depends on the
existence of non-trivial solutions for (4.100) such that the rhs of the Einstein equation
(4.97) does not vanish. This in turn may depend on the choice of the 4-manifold
S and that of the quaternionic Kéahler manifold @Q. We will not explore this any

further here.

4.6.2 Geometry of N=2 and N=4 Horizons

The second Killing spinor of N = 2 horizons with h = 0 can be chosen as
€y — 2(1 — 61234) . (4101)

104



’ N‘ hol(V) ‘ Geometry of S ‘
1 | Sp(1)-Sp(1) Riemann
2 U(2) Kéhler
4 Sp(1) hyper-Kéahler

Table 4.2: Some geometric data of the horizon geometries with A = 0 are described. In
the first column, we give the number of supersymmetries preserved. In the second column,
we present the holonomy groups of the Levi-Civita connection of S, and in the third we
give the geometry of S.

In this case, which is in agreement with the general classification results given in
chapter 2, § is a Kahler manifold. In addition, the hypermultiplet scalars are
holomorphic maps from S into the hypermultiplets quaternionic Kahler manifold.

In particular, the hyperini KSE conditions can be written as
Ot (J3) 2 BEE = I,0;6 B (4.102)

where (J3)3%p, = (—io3)2pé% and I7; = (i6%3, —i6®5). Once again, the existence
of horizons with strictly two supersymmetries depends on the existence of such non-
trivial holomorphic maps.

The two remaining Killing spinors of N = 4 horizons with h = 0 can be chosen

as
€3 — €12 — €34 , €4 = i(€12 + 634) . (4103)

The general classification results of chapter 2 now imply that the hypermultiplet
scalars are constant. Therefore, S is hyper-Kéahler and so locally isometric to either
K3 or T®. 1In the latter case, there is supersymmetry enhancement to N = 8.
Note also that in the general classification results we found there to be a descendant
preserving three supersymmetries. However, the Killing spinors in this case have the
same isotropy group as that for the four Killing spinors we have given above. This
means the holonomy of the Levi-Civita connection of S is contained in Sp(1), i.e. the
geometry of S is hyper-Kéahler. This in turn implies that it must be Ricci flat and
so the hypermultiplet scalars must be constant. As a result we have supersymmetry
enhancement from N = 3 to N = 4.

The Killing spinors we have considered so far are those that are annihilated
by the light-cone projection operator v,. This means they have a non-compact
isotropy group in Spin(5,1) - Sp(1). However, we could demand that the near
horizon geometries RM x S admit Killing spinors with compact isotropy groups.
In this case, the only solution is Rb! x T* which preserves eight supersymmetries.

Some of the results of this section have been tabulated in table 4.2.
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4.7 Summary

In this chapter we investigated the near horizon geometries of six dimensional (1,0)
supergravity coupled to arbitrary numbers of tensor and scalar multiplets, extending
the results of [34]. This was done by first adapting to Gaussian null coordinates,
which we described at the beginning of the chapter. In addition, we made use of
the solutions of the KSEs coming from chapter 2, and the restrictions imposed by
the field equations of the theory.

In particular, we found that there were two classes of near horizon geometries
depending on whether A vanishes or not. The first class of solutions that we looked
at were when h # 0; in this case we found that the near horizon geometries were
locally isometric to AdSs x X3, where X2 is diffeomorphic to S%. In addition, the
tensor multiplet scalars are constants and the associated 3-form field strengths,
HM  vanish. This class of solutions preserved 2, 4 or 8 supersymmetries, and the
increase in supersymmetry further restricted the geometry of ¥3. For horizons which
preserve four supersymmetries we found that Y% was a non-trivial circle fibration
over a topological 2-sphere and for horizons that preserve eight supersymmetries 33
is locally isometric to the 3-sphere, S3. The scalars of the hypermultiplet can be
seen as maps from X2 into the quaternionic Kahler manifold, Q, which are further
constrained for horizons that admit more supersymmetry.

The second class of horizons appear when we set h = 0 and these take the
general form RY' x S, where S is a 4-manifold whose geometry depends on the
hypermultiplet scalars. In this class of solutions we once again find the tensor scalars
to be constants and the 3-form field strengths HL to vanish. In addition, we find the
3-form field strength of the gravitational multiplet H to vanish. In the case when one
supersymmetry is preserved S is a Riemannian manifold, when two supersymmetries
are preserved it is a Kahler manifold and when four supersymmetries are preserved
it is a hyper-Kihler manifold, with near horizon geometry R x K3 or Rb x T4,

the latter case allows supersymmetry enhancement to N=8.
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Chapter 5

(1,0) Superconformal Theories and
KSEs

5.1 Introduction

The focus of this chapter will be on (1,0) superconformal theories in six dimensions
and their Killing spinor equations. Before giving an outline of the aims of this
chapter let us briefly mention a few general things and in particular why there has
recently been interest in understanding superconformal theories in six dimensions.
One of the main reasons for this interest is due to the expectation that the dy-
namics of multiple M5-branes is described by such a superconformal theory in six
dimensions. The evidence for this comes from the fact that the near horizon geom-
etry of the M5-brane supergravity solution [6] is AdS; x S* [118] and so this means
the theory which describes the worldvolume dynamics must exhibit a SO(6,2) sym-
metry. In addition, as AdS; x S* is a maximally supersymmetric solution of eleven
dimensional supergravity [4], the worldvolume theory must have 16 supersymme-
tries. This therefore means one needs a (2,0) theory in six dimensions. In partic-
ular, the dynamics of the multiple M5-brane system is believed to be described by
gauging (2,0) tensor multiplets in six dimensions in analogy to the constructions
made for the M2-brane system in [119, 120]. Some progress has been made in this
direction and such (2,0) theories have been suggested in [121], and a bosonic the-
ory in [122]. However, some of the fields in [121] are required to be independent
of one of the worldvolume directions as a consequence of the closure of the super-
symmetry algebra, making the theory effectively 5-dimensional. The construction
of these (2,0) theories are based on Lorentzian 3-Lie algebras as was used for the
M2-brane case, however, the classification of 3-algebras has led to strict restrictions
for the theory see [123, 124, 125]. As was done by ABJM for M2-branes [126],
one can consider M5-brane systems which preserve less than maximal supersymme-
try. Following this reasoning, Samtleben et al [127, 128] proposed a six dimensional

(1,0)-supersymmetric superconformal theory, see also [129]. The construction used
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is based on gauging (1,0) tensor multiplets and relies on the introduction of appro-
priate Stiickelberg-type couplings. This gives rise to a number of models, some of
which have a Lagrangian description provided one uses a prescription to deal with
the kinetic term of the self-dual 3-form field strengths of the tensor multiplet.

In this chapter we will begin by giving an outline of the construction of (1,0) six
dimensional superconformal theories described in [127, 128]. In particular, we will
set the problem by giving the field content, the supersymmetry transformations and
the KSEs of the models that we will investigate later. We will also describe how the
methodology applied in the first two chapters will be used to solve the KSEs. After
this we will derive all the conditions on the fields in order to obtain a configuration
preserving a fraction of supersymmetry. This will be done for all possible fractions
of supersymmetry admitted by the theory. In particular for the models in [127, 128],
we find that they admit solutions preserving 1, 2, 4 and 8 supersymmetries.

In the second half of the chapter we will focus on solutions which preserve four
supersymmetries, i.e. the half-supersymmetric solutions. In particular, we will
discuss a few specific models and investigate the field equations and the Bianchi
identities to find some explicit string and 3-brane solutions.

Note that in this chapter the notation we use to denote some of the fields is
different from what we have used thus far, and similarly, different indices are used
in the labelling. However, we will try to make this clear as we progress. This chapter

is primarily based on the paper in [14].

5.2 (1,0) Superconformal Theory and KSEs

5.2.1 Fields and Supersymmetry Transformations

The (1,0) superconformal model of [127] has been constructed by gauging an arbi-
trary number of tensor multiplets and the introduction of appropriate higher form
fields which are used in Stiickelberg-type couplings. The field content of the theory
is grouped into two multiplets; the vector and the tensor multiplet. The vector mul-
tiplets consist of (A7, X, Y"), where r labels the different vector multiplets and
i,7 = 1,2 are the Sp(1) R-symmetry indices, A7, are 1-form gauge potentials, A\ are
symplectic Majorana-Weyl spinors and Y are auxiliary fields. The field content of
the tensor multiplets is (¢!, x*, Bfw), where [ labels the different tensor multiplets,
¢! are scalars, x¥ are symplectic Majorana-Weyl spinors, of opposite chirality from
those of the vector multiplets, and Bl{l, are the 2-form gauge potentials. Note that
we have used slightly different notations in labelling the fields here compared to the
previous chapters.

The field strengths associated to the 1- and 2-form gauge potentials of the vector
and tensor multiplet, respectively, are constructed by introducing new coupling con-

stants which allow a general 2- and 3-form field strength to be written. In particular,
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these are given by

F, = 20,4, — f"ALAL + hB), (5.1)
H/]u/p = 3D[MBZ{p] + 6d7{s [,uaVAp] - 2qusd7{s quII;AZ] + g]TCMVPT ) (52)

where f,,' are the structure constants, b7, ¢g'" and d, = d{rs) are Stiickelberg-type

couplings, and C),,,, are three-form gauge potentials. The covariant derivative is

defined as
DN = 0,N° + AL (X,)°A . DN =9, + AL (X)), A (5.3)
where X, are given by
(Xr)ts =—fu"+ dit ? ) (XT)JI = th]dis - glsbJsr : (5-4)

In addition, covariance of the field strengths under the gauge transformations of
gauge potentials requires that
(er dv)s - disdiv)hs 2fr(usd£)s - bJS”‘dingS
(d blut + d bIsu + 2dK sttéJ)hu = frsublut + frtublsu + gJuquerst )

1
f[pqufr}u - u[pfm“] = 0,
hr Is _ 0 ,
frstw} - d}]shf]h? = 0,
G R by — 2h3Rd. = 0,
_fr s It hs It g]thsthT = 0. (55)

In order for a consistent model to exist all of these algebraic constraints need to be
satisfied. We discuss some models later on.

It remains to give the supersymmetry transformations of the fields. As we are
interested in the KSEs, it suffices to state the supersymmetric variations of the

fermions. These are given by

. 1 N 1 :

ONT = SFLAME = Y e+ Zh}"qﬁ’é ; (56)
| 1 . . ‘

(SXZ[ _ 4_8Hiyp,yuupez + ZDMQSI,YMEZ _ idis’yu)‘zré'yu)\s . (57)

These, as well as the remaining supersymmetry transformations, along further de-
tails of the theory can be found in [127, 128].
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5.2.2 Field Equations

The field equations of the minimal system are

1 -

D'"D,¢! = _idﬁs(}"’" FHs — 4YY'V®) — 3d! h5 k07 of (5.8)

g b Y0 = 0, (5.9)
1

gKrbIrsf/,sw(bI - 4'€;LV)\pchgKTH Moot . (5].0)

Observe that generically the theory has a cubic scalar field interaction and so the
potential term is not bounded from below. In addition to these field equations we

have the two Bianchi identities

Dy, Fy, —hTHpr : (5.11)
3 1 £] Ir
D[MHVpU] = 2drs [,uu pa} H,ul/por ) (512)

where Hfﬁ,)pm is the field strength of the 3-form.

5.2.3 KSEs

As we have previously discussed, the KSEs are the vanishing conditions for the
supersymmetry variations of the fermions of the theory evaluated at the locus where

all the fermions vanish. In this case, we find the KSEs to be given by

1
Zf'ry,yuu 1 Yz]r€]+ h ¢I i 0)

—H HVP el +D#¢’7 e = 0. (5.13)

pvpY
The first condition is the vanishing condition of the supersymmetry variation of the
fermions of the vector multiplets while the second is the vanishing condition of the
supersymmetry variation of the fermions of the tensor multiplets. In analogy with
similar variations in six dimensional supergravity which we discussed in chapter 2,
we shall refer to these two equations as the gaugini and tensorini KSEs, respectively.

Note that all the spinors that appear in the theory are symplectic Majorana-
Weyl and the gauge group of the theory is Spin(5,1) - Sp(1). We will now proceed
to writing the KSEs in the formalism that was introduced in chapter 2. Recall
that we identified the symplectic Majorana-Weyl spinors with the Sp(1)-invariant
Spin(9,1) Majorana-Weyl spinors and realised them as forms. In addition, a basis
for the symplectic Majorana-Weyl spinors is given in (2.16). In this formalism we
can make use of the p® SU(2) generators, with a = 1,2, 3, introduced in (2.17) to

rewrite the term involving the Y in the KSEs as
—Ye; = (Y")u(pe)" , (5.14)
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where we have made use of the fact that the Sp(1) indices are raised and lowered by
the antisymmetric tensors £;; and €%, with 7° = €"7;. As a result the KSEs, (5.13),

can be re-expressed as

1 1
1T e+ (Y )ap'e+ Shidle = 0, (5.15)

1
Ewap’y“”pe+ D¢’y = 0. (5.16)

In what follows, we shall solve both KSEs for backgrounds preserving any number
of supersymmetries following the same prescription as that given in chapter 2 for

the case of supergravity backgrounds.

5.3 Killing Spinors

The supersymmetric solutions of this theory can be classified according to the
isotropy group of Killing spinors, just as in the case of the supersymmetric su-
pergravity solutions. Since the gauge group is Spin(5,1) - Sp(1), the methodology
for obtaining the isotropy group of Killing spinors and finding representatives for
these follows the same discussion as in section 2.3 of chapter 2. The results of this
analysis have been summarised in table 2.1.

Let us now briefly recap this and discuss the implications of these as solutions

of the KSEs of the superconformal theory under consideration here.

5.3.1 One Killing Spinor

If the KSEs (5.15) and (5.16) admit a Killing spinor, then the representative Killing
spinor can be identified as 1+ e1234 which has isotropy group Sp(1)-Sp(1) x H. Also
note that if the tensorini KSE (5.16) admits one Killing spinor then it admits four.
This is due to the fact that it commutes with the p operations given in (2.17). A
basis for the four Killing spinors of (5.16) is given by the Sp(1) x H invariant spinors
in table 2.1.

5.3.2 Two Killing Spinors

In this case there are two options. Firstly, the two Killing spinors can have isotropy
group U(1) - Sp(1) x H with representative spinors given by €, = 1 + ej234 and
€2 = (1 — ey234). In the second case the Killing spinors have isotropy group Sp(1)
with representative Killing spinors given by ¢; = 1 + e1934 and €3 = e15 + €9345.
Note that in this case the tensorini KSE preserves all eight supersymmetries since
it commutes with the p operations but now acting on the Sp(1)-invariant Killing

spinors.
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5.3.3 Four Killing Spinors

Once again there are two cases to consider. Firstly, we find that the gaugini KSE
admits €; = 1+e1934, €0 = (1 —e1934), €3 = €12 —e34 and €4 = i(e12+e34) as solutions
with isotropy group Sp(1) X H, these are also the four Killing spinors solution to the
tensorini KSE.

The second set of supersymmetric solutions arise when we choose the U(1)-
invariant spinors given by €; = 1 + €234, €2 = (1 — e1234), €3 = €15 + 2345 and
€4 = i(e15 — e2345), and we already know that the tensorini KSE preserves all eight

supersymmetries.

5.3.4 More than Four Killing Spinors

If a solution admits more than four linearly independent Killing spinors then it is
maximally supersymmetric. The results of this section have been summarised in
table 5.1.

’ Isotropy Groups \ Gaugini \ Tensorini ‘

Sp(l) - Sp() xH| 1 1
UL)-Sp() xH | 2 1
Sp(l) x H 1 1
Sp(1) 2 8

Q) 1 8

{1} 8 8

Table 5.1: In the first column the isotropy groups of the Killing spinors of the gaugini
KSE are given. In the second and third columns the number of Killing spinors of the
gaugini and tensorini KSEs are stated, respectively. The isotropy groups of the Killing
spinors of the tensorini KSE are either Sp(1) x H or {1}. The cases that do not appear
in the table do not occur.

5.4 Solutions of the Killing Spinor Equations

In this section, we shall derive the conditions imposed on the fields by the KSEs. To
do this, one can substitute into the KSEs the representative Killing spinors given
in the previous section and then solve the resulting equations. This can be done
in a straightforward way, and closely follows the analysis made for the KSEs of six

dimensional supergravity in chapter 2.
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5.4.1 N=1 Solutions

The Killing spinor is € = 1 + e1934. Substituting this into the gaugini KSE (5.15),
we find the fields must satisfy

h?[“¢[ =0, ‘/T(Za + 2Z(YT)1 =0,
Fla=0=Fo, Fot{)—iu(Y)s=0, (5.17)

where we have used the oscillator basis discussed in chapter 1 to perform this calcu-
lation in terms of light-cone and complex coordinates on Minkowski spacetime R>!.
Let us briefly recall that in the 10-dimensional description of the spinors we have
adopted the spacetime directions are along 0, 5, 1, 6, 2, 7, whereas 3, 4, 8, 9 are
not used and taken as auxiliary directions. The Minkowski metric on R>! has been

chosen as

ds? = —(da°)* + (d2°)? + (do')? + (d2®)? + (d2?)* + (dz")?
= 2¢ et + g e'e! =2e7 et +20,5¢%" (5.18)

where e, a = 1, 2, are the differentials of complex coordinates constructed from the
pairs (dx', dz%) and (dz?, dx"), respectively, and (e~,e™) are the differentials of the
light-cone coordinates along the directions (dz,dz®). The F", components of the
2-form field strength are not restricted by the gaugini KSE. The same also applies
for the anti-self dual component F*9 of F;;. Moreover, the self-dual component of
F is completely determined in terms of the auxiliary field Y. Note the similarity to
the analysis made in section 2.4 of chapter 2 for N = 1 backgrounds. Combining

the above results we can write the 2-form field strength as

Fro= —hi¢le Net +Fem net —[(Y7)y —i(Y7)sle! A e?
—[(Y")g +i(Y)sler Ae? + (Y7 w + Fodr (5.19)
where w = —id,ze% A eP.

Solving the tensorini KSE (5.16) for 1 + e934 gives
1
Dao" + H_+a §wa5 =0, Hl,;=0, HL>=0, D¢’ =0. (520)

In addition, the 3-form field strengths are restricted to be self-dual

1 oT
H! 3!eAUW,,H“ : (5.21)

pvp

Decomposing this condition in the +, —, o, @ coordinates, one finds

HL o+ HL =0 HL o —HL =0
H{Hl H{ﬂi =0, H= 0 : (5.22)
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Combining these conditions with those from the tensorini KSE, one finds that
I

Hi;;=0. (5.23)
HL ;; 1s anti-self-dual in the directions transverse to the light-cone and the remaining
components are determined in terms of D¢!. As can be seen the analysis here is
almost identical to that of section 2.4. Therefore, putting these together one can
write the 3-form field strength as
1

1 . : .
HI=§H1 e_/\ez/\ej—Did)Ie_/\eJr/\eZ—i-S'

—ij ngbl Ezijk ei AN ej VAN Gk s (524)

where we have used the self-duality of H’ to write
HLy = Dy’ éijy. . (5.25)

In contrast to the gaugini KSE, the tensorini KSE exhibits supersymmetry enhance-
ment. In particular, if it admits one Killing spinor €, it admits a further three Killing
spinors given by ple, p?e and p3c. When € = 1 + e1934 this means all four Killing

spinors are given by the Sp(1) x H invariant spinors of table 2.1.

5.4.2 N=2 Solutions with Non-Compact Isotropy Group

The first Killing spinor is €; = 1 + e1934 as in the N = 1 solutions described above.
The second Killing spinor is €3 = i(1 — ej234), which can also be written as e = ple;.
Therefore, for the solutions to admit two supersymmetries the KSEs must commute
with the p! operation. As we have mentioned, the tensorini KSE commutes with all
the p operations and so €, is also a Killing spinor. The 3-form field strength is given
as in (5.24).

This is not always the case for the gaugini KSE. For the gaugini KSE to commute

with p! we require,
(Y)2=(Y")3=0. (5.26)
The 2-form field strength is given as in (5.19) after imposing (5.26). Thus it becomes
Fr=—hi¢le  Net + F ' e” Nel + Y w + FS (5.27)

where we have also set Y = (Y7);.

5.4.3 N=2 Solutions with Compact Isotropy Group

The first Killing spinor is the same as that of N = 1 solutions, €¢; = 1 4 e1234. The

second Killing spinor is €3 = €15 + €9345. The conditions on the fields imposed by

114



the gaugini KSE (5.15) evaluated on ey are

FL =Rt =0, Fii—Fp —2i(Y")1 =0,
Fo—(Y")e—i(Y)3=0, F,=0, F,;=0. (5.28)

Combining these conditions with those we have found for the first Killing spinor, €1,
in (5.17), we get

Fr,=0, F,=0, F,=0, Fij=0, hj¢p'=0,
Fo+2i(Y)h1 =0, Fo+F3-2i(Y")3=0, Fo—F+2(Y")2=0.(529)

It is convenient to rewrite the these conditions in terms of real coordinates. In

particular, we find

Fe=2(Y")2, 56 = 2(Y" )3 Fza=—=2(Y")1, (5.30)
where again we have used a tilde on the real directions to distinguish them from
the complex ones we have used so far in the analysis of the KSEs in this chapter.
The above conditions on the fields can be expressed more compactly by introducing

a 3+3 split on the spacetime. In particular, we can introduce the coordinates xz¢,

a=—,+,1and ¢, i = 2,6,7. Then using these, (5.30) can be written as
Foy=0, Foi=0, hi¢o' =0, F=-2e")", (5.31)

where e55 = —1 and we have set (Y7)! = (Y7)8, (Y™)2 = (Y")? and (Y")3 = (Y7)7.

This means we have
Fr=—p(Yrened | hjol =0. (5.32)

We now need to solve the tensorini KSE (5.16) evaluated on ;. A straightforward

calculation reveals that

D—¢I =0 y HI_1§ =0 ) H]_ﬁ - HI_QQ
H. 5 —2Dad" + HL,

0,
0. (5.33)

These conditions combined with those we have found for N = 1 solutions in (5.20)
and the self-duality condition (5.22) means that
H,, =0, D,¢"=0. (5.34)

purp T

Clearly in this case, the tensorini KSE preserves all eight supersymmetries. More-
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over, the integrability of the last condition in (5.34) implies that
Fr X" =0, (5.35)
where F, = 20, A}, + Xy A} AL,

5.4.4 N=4 Solutions with Non-Compact Isotropy Group

The Killing spinors are the Sp(1) x H invariant spinors of table 2.1. As mentioned,

these can also be written as
€1 =1+ €934 , €& =pe, e=pea, e=pe. (5.36)

Therefore, if ¢; is a Killing spinor, then the rest are also Killing spinors provided
that the corresponding KSEs commute with the p operations. This is the case for
the tensorini KSE (5.16) and so the 3-form flux is given as in (5.24). Note also that
D ¢! =0.

The gaugini KSE commutes with all the p operations iff all Y’s vanish, i.e.

Yl=y2=v3=0. (5.37)
As a result using (5.19), the KSE implies that the 2-form flux is
Fr=—hi¢le Net +F e Nel + F=0r (5.38)

5.4.5 N=4 Solution with Compact Isotropy Group

In this case the Killing spinors are the U(1) invariant spinors of table 2.1. These

can be written as
1 1
€1 =1+ €234 , €2 = €15 + €345 , €3 =p €, €4 =p €y . (5.39)

Thus, these spinors solve the KSEs iff ¢; and ey are Killing spinors and the KSEs
commute with the p! operation.
We have already shown that if €; and e, solve the tensorini KSE, then all eight

supersymmetries are preserved. In particular, both the 3-form flux and D¢ vanish,
H=Dp=0. (5.40)

On the other hand, for the gaugini KSE to commute with p! we require (Y7), =
(Y")3 = 0. Substituting this into (5.32), we find that

Fr=-2Y"®nNe2, We' =0, (5.41)
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where we have set Y = (Y");.

5.4.6 Maximally Supersymmetric Solutions

As we have mentioned all backgrounds which preserve more than four supersymme-
tries are maximally supersymmetric. It is straightforward to see that the conditions
on the fluxes for maximally supersymmetric backgrounds are

D' =0, hi¢'=0, F,=0, H,=0, YI7=0. (5.42)
Thus, all the scalars ¢! are covariantly constant. In addition, those projected by

h are required to vanish. Similarly the 2-form and 3-form field strengths vanish as

well. The same applies for the auxiliary fields Y.

5.5 Half-Supersymmetric Solutions without Stuckelberg
Couplings

In the three sections that follow we discuss the half-supersymmetric solutions of three
different models. To do this one needs to solve the field equations and the Bianchi
identities in addition to imposing the constraints coming from the KSEs. One also
needs to ensure that all the key algebraic conditions required for the consistency of
the theory outlined in (5.5) are satisfied.

5.5.1 Summary of the Conditions

Before we proceed with the solution of the field equations and Bianchi identities for
half supersymmetric backgrounds, we first summarise the restrictions on the fields
imposed by the KSEs when four supersymmetries are preserved. In particular, we

have found that if the isotropy group of the Killing spinors is non-compact, then

Fr = —h?qﬁle’ Net +F e Net+F>4 Dol =0,
1 ‘ . o1 . ,
H = 57—({“6_ NetNel — Digple” Net Nel + ngefijk el nel NeF | (5.43)

where all the auxiliary fields Y vanish, Y = 0, and H_;; and F*%" are anti-self-dual
in the indices transverse to the light-cone. On the other hand, if the Killing spinors

have compact isotropy group then

H' = 0, D' =0, hie¢'=0,
Fro= —2iY"e* et (5.44)

where (Y?)" = (Y?)" = 0 and Y™ = (Y!)". In what follows we shall take the field
equation (5.10) as the definition of H®.
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5.5.2 The Model

To start with let us consider the model with ¢g” = h} = 0. The algebraic conditions
in (5.5) are all satisfied provided that f are the structure constants of a Lie algebra
g and dfs and by, are invariant symmetric tensors under the action of the adjoint

representation of g. For example, one could set dis = d'g,, and b;,s = brg,s, where
Jrs 1s @ bi-invariant metric on g. Furthermore, in this case the 2-form field strength F
is the standard curvature of a gauge connection. To identify the half-supersymmetric
solutions in this case, one has to solve the field equations in addition to the KSEs.
There are two cases to consider depending on whether the isotropy group of the

Killing spinors is compact or not.

5.5.3 Non-Compact Isotropy Group

The condition F., = 0 can be solved by fixing the gauge A, = 0 which then implies
04 A7, =0,1ie. A, A; do not depend on the light-cone coordinate x*. Similarly the
condition D, ¢! = 0 coming from the KSE equations means the scalars ¢! do not
depend on z*, since the condition D, ¢! = 0 becomes 9, ¢’ = 0. Then the field
equation (5.8) reduces to

000 = Lal

27"5 @

Fus (5.45)

where F/; are anti-self-dual instantons along the directions transverse to the light-
cone. Observe that if g/" = h7 = 0 we find the generators (X")!; = 0, then the scalar
fields are neutral (invariant) under the action of the gauge group and so they are not
gauged, which means D, ¢’ = 9,¢". If dI, = d'g,s and by,s = brg,s, where g, is a
bi-invariant metric on g, then the right hand side of (5.45) can be identified with the
Pontryagin density of instantons [130]. In such a case, this equation can be solved
and similar equations have been solved in the context of heterotic supergravity in
[130]. A more detailed anaylsis will be given in section 5.7 which can be adapted
to this case, and so we do not discuss this any further here. The other two field
equations (5.9) and (5.10) are automatically satisfied.

It remains to solve the Bianchi identity (5.12) for H subject to the restrictions

imposed by the KSEs. The only independent component is
O_0pp" " i, — B0 H = 6dLF 1 F3y (5.46)

which arises from the purvpo = —ijk component. This completes the analysis of the

Bianchi identities.
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String Solutions

Take a string to span the two light-cone directions. Such classes of solutions exhibit
Poincaré invariance along the directions of the string and can be found by setting
Fip = Hip = 0 and requiring all other fields to be independent from the x*
coordinates of the light-cone. This means (5.46) is satisfied and the only non-trivial
equation that remains to be solved is (5.45). This equation has solutions provided
that d!, = d’g,, and by,.s = brg,s with gauge groups that include SU(N) and Sp(N)
and for any instanton number. See section 5.7 for a detailed analysis of an example
based on a similar context.

A more general solution can be found by taking Fy, = 0 and H_;; # 0, and the
fields F and ¢ to be independent of z*. In such a case, the Lorentz invariance on the
string is broken. We know the self-duality of H! implies the component HJI.,% to be
anti-self-dual along the transverse to light-cone directions and the Bianchi identity
(5.46) requires it to be closed. Therefore it can identified with an abelian anti-
self-dual field strength on R* which are determined in terms of harmonic functions.
There are no smooth solutions unless ’H][- _ is taken to be constant. Such a solution

has the interpretation of a string with a wave propagating on it.

5.5.4 Compact Isotropy Group

In this case, the tensorini KSE (5.44) imply that the scalars ¢! are constant and
H = 0. Moreover, the auxiliary fields Y? = Y3 = 0 and the only non-vanishing
component of F is supported on a 2-dimensional subspace of the 4-dimensional
space transverse to the light-cone directions. Furthermore, the KSEs imply both
the field equations and Bianchi identities. Therefore, the only non-trivial field is
Fys and it is related to Y as in (5.41). This solution exhibits a R*! Poincaré

invariance and so it has the interpretation of a 3-brane.

5.6 Half-Supersymmetric Solutions of the Adjoint
Model

5.6.1 The Model

Another way to satisfy the conditions in (5.5) is by taking the number of tensor

multiplets to be the same as the number of vector multiplets and setting

h/s - 0 ) dsrt = dp’l‘tgps ) bprt - fprt 5 (547)

T

where now ¢ is a bi-invariant metric, and d is a totally symmetric bi-invariant
tensor on the Lie algebra g with structure constants f. This model does not admit

a Lagrangian description.
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5.6.2 Non-Compact Isotropy Group

The restrictions coming from the KSEs for the general model have been summarised
in (5.43), so it remains to investigate the field equations and Bianchi identities of the
model. Since h = 0 the 2-form field strength F reduces to the standard curvature of
the gauge connection, as was the case in the previous model. As F, = 0, one can
again choose a gauge A, = 0 to find that all components of the gauge connection
A do not depend on the light-cone coordinate x.

In this case we find that the field equation for the scalars is given by
i T 1 r Sf"t’ij
D;D'¢" = _id st FoFo (5.48)

where we have used 0, ¢" = 0 which arises as a condition of the tensorini KSE. Unlike
in the previous model, it is not apparent that anti-self-duality of F; implies that
the above equation has solutions. The analysis requires details of the Lie algebra
g and so will not considered any further here. The second field equation (5.9) is
automatically satisfied as Y = 0. As mentioned, one can view the last field equation
(5.10) as the definition of H™®. Upon substitution of this into the Bianchi identity
(5.12) and using the solution of the KSE in (5.43), we find that the remaining

independent equations are

D_Dy¢ e i, —3DiHyyy - = 6d" o F  Fiy + €™ [Tt F>
where €_ijm = €, and €_;1799 = —1. This concludes the analysis of the Bianchi

identities of this model.

String Solutions

Solutions to (5.49) can be found by setting F_, = F,, = 0, choosing the gauge
Ax = 0, identifying H7,  with the curvature of an anti-self-dual connection, and
taking all fields to be independent from the light-cone directions.

To find a solution of the theory, it remains to solve the field equations for the
scalars. As mentioned, this depends on the choice of gauge group. However, this
can be circumvented in the special case where we choose the coupling d = 0. This

then means the field equation for the scalars becomes
D;D'¢" =0 . (5.50)

A class of solutions of (5.50) is given by the Green functions of the Laplace operator
in an instanton background. These have been calculated for the adjoint represen-
tation in [131, 132], see also [133]. However in such a case, the scalar equation has

delta function sources.
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Alternatively, one can take the scalars in (5.50) to be neutral under the gauge

group. This, for example, happens if
(XT)pt = _gtsbpsr ) (551)

vanishes on the active scalar fields of the solution. The covariant Laplace equation
above then becomes a standard Laplace equation and ¢" can be expressed in terms
of harmonic functions. For the structure constants (5.51) on the active scalars to
vanish, one may take g = t @ g/, where t is an abelian algebra which commutes
with the subalgebra ¢’, and the ¢’s and H’s are restricted to take values in t. Such
solutions are singular unless ¢ is chosen to be constant.

Next, if Hj,_ = 0, the solutions above exhibit a RY! Poincaré symmetry and
so have an interpretation as strings. On the other hand if H};,  # 0, the Poincaré
symmetry is broken and the solutions have the interpretation as waves propagating

on strings.

5.6.3 Compact Isotropy Group

Let us now consider the compact case. The scalar field equation in (5.8) and the
Bianchi identity (5.11) are satisfied either as a consequence of the conditions on
the field imposed by the KSEs summarised in (5.44) or as a consequence of the
restrictions (5.47) on the coupling constants of the model.

The Bianchi identity of the 3-form field strength (5.12) implies that H* = 0, this
is a consequence of the conditions summarised in (5.44). Then, the field equations

(5.9) and (5.10) require that
[F,¢]=0. (5.52)

As in the non-compact case discussed above, this condition can be solved by taking
g = tdg’, where t commutes with the subalgebra g', with the scalars ¢ taking values
in t while F takes values in g’. The only remaining condition is (5.41) which relates
F to the auxiliary field Y. Such solutions exhibit a R*! Poincaré invariance and so

have the interpretation of 3-branes.

5.7 Half-Supersymmetric Solutions of the SO(5,5)
Model

5.7.1 The Model

We will now investigate models that admit a Lagrangian description, but once again

one has to keep in mind the subtleties arising from the kinetic term of the self-dual
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3-form in the theory when using a Lagrangian formulation. For the existence of a

Lagrangian there must exist a metric n;; such that [127, 128§]

1
h? = nIJgJT ) dis = EnIJbJTS ) nfjdi(ud;)]s) =0. (553)

The reduction of the algebraic conditions (5.5) to this case has been done in [127].
In this section we shall focus on the SO(5,5) model of [127] for which

bis - 77{5 ) frst = _477{;]K'71thg€( ) gIT’VIrs =0 ) (554)

where +/, are the gamma-matrices of SO(5,5), and n is the SO(5,5)-invariant
Minkowski metric. A key property of this model is that the cubic interaction of
the scalars vanishes.

Before we proceed, let us first describe some properties of the spinor representa-
tion of SO(5,5) which we will make use of later, and give an additional restriction
on ¢/ which is required in order for the coupling constants to solve (5.5). To do
this we will make use of the spinorial geometry approach described in chapter 1. In

particular, a basis of the positive chirality SO(5,5) spinors is
1, €ajay » Cajasasas > (5.55)
and the gamma matrices along the light-cone directions act as
Yo =V2 A, Ya=V2e, a=1,23,45. (5.56)
Therefore gamma matrices along the time-like and space-like directions are
Ii=—-eAN+ea, Tis=eAN+ea, i=1,2,3,4,5, (5.57)

respectively. In this realisation, the vector SO(5,5) index decomposes as I = (a, a),
and the Clifford algebra relation is v,7v; + 7,7« = 21,;- The Dirac inner product is
defined as

D(, x) = (T23a5%, X)) (5.58)

and acting on the space of spinors gives
k41
D(ea1...ak7 eak+1...a5) = (_1)[ 2 }+1€a1...a5 . (559)

Observe that the inner product is skew-symmetric in the interchange of pairs. We

can use this to raise and lower spinor indices in the following way

(-

— ai...ag —
wbl...b5,k T w Dal...ak,bl...b5,k - /{}‘

ay...ak
¢ €ay...apb1...bs_y
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Moy - Ty gy 0770 (5.60)

In this realisation, the positive chirality spinor representation decomposes as 1 +
10 + 5 under the subgroup SO(5) C GL(5,R) C SO(5,5) acting on the light-
cone decomposition of the vector representation of SO(5,5) presented above. The
additional restriction on ¢g!” is that its only non vanishing component lies in the 15
representation, i.e. the non-vanishing component is

gab _ _ﬁebbl...mgablmm : gab _ g(ab) (561)

Clearly nr;9'"g”* = 0 as it is required by one of the conditions (5.5) on the couplings.

5.7.2 Non-Compact Isotropy Group

Using the fact that the cubic scalar interaction term vanishes and taking the condi-
tions imposed on the fields by the KSEs in (5.43), we find the field equation for the
scalars can be rewritten as

D;Di¢! = —§d£sf;fs 4 (5.62)

To expand this in SO(5) representations we need to be able to calculate the rhs and

in order to do this we note that

(Ya)brobp bpssbs = (—1)%1\/56@1)1‘..};4 , k=0,...4
k
(Ya)br.bp brsrbs = (_1)[§]+1k\/§(5(z[b1ebz...bk]bk+1...b6 , k=1,...,5. (5.63)

and also observe the gamma matrices to be symmetric in the interchange of spinor

indices. In addition, a spinor is expanded in the basis (5.55) as

1 1
v = 1/} 14+ iwabeab + Ewalmmealm% ) (564)

Using these we can rewrite the field equation for the scalars in (5.62), for example

taking I = @ and using the fact that df = %%{s we get

w 1
DiD'6" = — R FF

1 @ by...baij 1
_@(7 )1,b1b4‘E]F 1 4 ﬂ

1
— i O BT (5.65)

b1 b b3by,i
( )b1b27b3b4f1 2R 7

then using the expressions in (5.63) and (5.60) we find this can be written as

DiDiﬁba = \/_-7'-@3 Fou 4 22 16 b1b2b3b4fb1b2 Flabaii (5.66)
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Applying the same procedure but this time with I = a we find

, 2 .
D;D'¢" = %fﬂbijfbw. (5.67)

The scalar field equation is now equivalent to these two expressions. The second
field equation (5.9) follows from the KSEs as the latter imply that all auxiliary
fields Y vanish. The third field equation, (5.10), is taken as the definition of H¥

In particular, using the above notation one has

abH(4) - \/§ 148 %] [

- 2 6#1---#4

_gdb¢bFV1V2 + gdb1¢b2}_b1b21/w2] : (568)

pipah
Next, setting py - - - g = ijkl and pq - - - gy = +1jk, and using the expression for F
n (5.43), we find

gPHY HY =0. (5.69)

ab
ijkeb =9 +ijk,b

Moreover, the rest of the components are determined in terms of ¢ and F.
We now turn to the investigation of the Bianchi identities (5.11) and (5.12). In
particular, expanding these in the notation that we have introduced, the Bianchi

identity for F implies that

Dy Frops) = Dy fﬁfus =0, D[leuzus] g meuzus : (5.70)
The first two conditions here give
D.F i=D;F;=0, D,F"=D,F’=0. (5.71)

Similarly using the expressions for the components of H given in (5.43), the last

equation in (5.70) gives
D+f - D+fa == O (572)
and

D_ .7:“ +2Dy; J]_ = gdi)H_ij’b ; 3D[z’-7:fk] = Qab Do, Eéijk . (5.73)

Next let us turn to the Bianchi identity for H (5.12). This decomposes as

D[Hl uz,uau4] = Z’Vrsf[uwzfzaw
a 3 a T S abi...b
Dy popspal Z%S}—[muzfusw 4. 4!9 " 4Hu1 a,b1...ba (5.74)

124



The independent conditions arising from these two equations are

D+Hljk y D+H(1jk =0 y D_ szk SD[ZH k]— B’YTS.FT i ]sk (575)
and
D+H§‘jk = 0, DyH =0,
a ]‘ 102 C1C2
D_ Hl]k [7, k] — - _3\/_[f—[z jk] +f [lf]k 6 bleClchb b Gk ]
V26 9" F o+ g b2¢b1fileb2] : (5.76)

This concludes the analysis of the field equations and Bianchi identities of the theory.

Regular String Solutions

This system has a string solution. Suppose that the string lies along the two light-

cone directions, and take
F=F'=0, fiizo, (5.77)

The latter condition is required because of Lorentz invariance along the worldvolume
directions of the string.

Moreover, we choose the gauge A, = 0 and assume all non-vanishing fields to be
independent of the light-cone coordinates x*. Using these, the field equations and
the Bianchi identities above reduce to
D, D¢ — \1/656 - b4fb1b2f-b3b4,u . DD =0,

gDid" =0, ¢"H DMy =0, (5.78)

—ij, b — )

which are the equation that we focus on now. To proceed, we moreover demand
that

Di¢g" =0, Hi_=0. (5.79)

The latter condition is again required by Lorentz invariance along the string. Fur-

thermore, the integrability condition of the first condition requires that
ab c __
Fii gped® =0 . (5.80)

One solution to this is to take ¢* constant with g,.¢ = 0, but for simplicity, we will

take ¢* = 0. Then the only remaining non-trivial equation is

. 2 . .
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where ]—"l-bjlb2 is an anti-self-dual connection with gauge group SO(5).

To solve (5.81) we choose ¢* to lie along the 5-th direction and ]—"Zle to have
gauge group SO(4) C SO(5) orthogonal to ¢°. Now there are two cases to consider,
depending on the restrictions on F. First, if one restricts .7-"ij1b2 to lie in one of the
su(2) subalgebras of s0(4), s0(4) = su(2) & su(2), then the field equation (5.81) can

be rewritten as

. 2 .
0,0'¢° = i%ﬂj,blbszlbw . bi,by=1,2.3.4, (5.82)

where the sign depends on the choice of su(2) subalgebra, we have also used D;¢® =
8@5 and the duality relations to rewrite the rhs. Such equations have been solved
before in the context of heterotic supergravity [130] and rely on the property that
the Pontryagin density of an SU(2) anti-self-dual connection can be written as the
Laplace operator on a function [134, 135].

In particular, we can choose the minus sign and write the 2-form field strength
as

bibs __ ybiba 1’
Fobr = JhtF

13 )

r=1,2,3, (5.83)
where J,. is a basis of constant anti-self-dual 2-forms in R*, satisfying
(]r/(]s/ = —5,,,/5/ —|— Erls/t/ Jt’ . (584)

Using this, the equation (5.82) can now be rewritten as

i .5 \/5 " s g
0;0'¢° = — 5 0w PG (5.85)

the term on the rhs, specifically,
1 / s/ Z]
— g b FGF (5.86)

is the Pontryagin density that we have mentioned a couple of times before and it
can be written as the Laplace operator on a scalar [134, 135]. As mentioned, this
can be solved for SU(2) instantons, see for example [130] for further details in a
similar context, an explicit solution will be discussed below. First, let us summarise

the non-vanishing fields of the solution
ab _ L ay j 5 5 — + i 1L 5 0 i j k
F :§Eje Nel, H? = —=0;0°e” Ne™ Ne +§8z(b €k e Nel Ne
¢ =’ (x), ab=1,234. (5.87)
Observe that g”H7(~4) = 0.

Now, the explicit solution we consider is the configuration with instanton number
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one and we use the results coming from [130]. The gauge connection A of F and

¢° can, in this case, be written as

2?4+ 2p?

(| + p?)?
hy = le?—xP (5.88)

A= AT Ty e 0F = b0+ AV g

where x are the coordinates in R>! transverse to the light-cone where the string
lies, ¢ is a constant, and p is the instanton modulus. In addition hg is a multi-
centred harmonic function, which for simplicity will be set to zero. The solution then
becomes smooth. In particular, at large ||, which is the case when we are far away
from the string, the scalar ¢ becomes constant since the second term in the solution
vanishes. Also in this limit, the gauge connection becomes a pure gauge. In contrast
as |x| becomes small the modulus of the instanton p # 0 regulates the values of both
the scalar ¢ and the gauge connection A. The solution can be generalised to any
instanton number &k which are also smooth [130].

For all solutions the dyonic string charge, denoted ¢,, can be computed by inte-
grating the 3-form flux H5 on the 3-sphere at infinity. This in turn can be identified

with the instanton number, k,

gs =/S . H =k (5.89)
3¢C

after an appropriate normalisation [130].
We can find a more general solution by allowing F to take values in both su(2)
subalgebras of s0(4). In particular this means we can write F as

b1bo . b1b2 ! b1ba 7!
Fib = i Fr 4 10 F

Z]’

(5.90)

where I, form a basis for the self-dual 2-forms in R* and F" denote the anti-self-
dual fields associated to the second su(2). In addition, /,» satisfy a similar relation
o (5.84), and they commute with J.-. This then means the scalar field equation
becomes

Lk 2 Dot sy g
0,0'¢° = —ga,.,s,(f;jfs U Fr FY (5.91)

The 1-instanton solutions are then modified as follows

Aab - 9 Jr’ ab T ) a’! iy 9 IT'/ ab T ) a’! i
- ( )(7">1J||2 e_'_( )(T’) e,

“z|2 + o2

. 2 2
¢° = ¢0+4\/—(|’x||2+2,0) \/_(||x||2+20)2+h0;
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where o is the modulus of the F instanton, but otherwise the notation is the same
as for the solution above. Once again, setting hy = 0 means the solution is smooth.
However, in this case the calculation for the dyonic string charge is modified and

is given by
q¢=/ Ho =k —k, (5.93)
s3cR*
where k and k are the instanton numbers of F and F, respectively.

5.7.3 Compact Isotropy Group

We now analyse the conditions coming from the field and Killing spinor equations
for the compact case. Let us start with the scalar field equation. Since the cubic
scalar interaction term in this model vanishes, the conditions coming from the KSEs
given in (5.44) imply the field equation for the scalar fields in (5.8). Furthermore,
the Bianchi identity for H (5.12) implies that

g HW =0, (5.94)

and the Bianchi identity for the 2-form field strength F is automatically satisfied.
The remaining conditions on the fields implied by the KSEs and field equations can

be summarised as
Du¢" =0, ¢5bpY°¢' =0, h¢'=0. (5.95)

Note also that H! = 0. The integrability condition of the first restriction was given

in (5.35) and requires
(F¢)' =0, (5.96)

which means the holonomy group of the gauge connection leaves the scalars invari-
ant.

Most of the analysis we have made thus far is independent of a particular model
and applies in general to all solutions preserving four supersymmetries. We now
investigate the conditions in (5.95) further for the particular case of model that is
under consideration here. Firstly, the integrability condition above can be written

as
F X)) 0! =0. (5.97)

This can be solved by taking ¢ = 0 or by taking a reduction of the holonomy group

of the gauge connection to a subgroup of SO(5). Considering the former case first
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means we have
d=H =0, ¢gHY =0, F =-2iy"e?Ae?, (5.98)

as a solution for an arbitrary auxiliary field Y which depends only on the complex
coordinates (z2, z2).

Let us now suppose the holonomy of the connection A% reduces to SO(4). Then
the constant scalar field ¢ = (¢°, ¢5) solves the integrability condition and the first
condition in (5.95). The last condition in (5.95) gives g%¢°> = 0 and so we take
#° = 0. Furthermore, the second condition in (5.95) is automatically satisfied.

Therefore, the solution in this case is given by
o=(0,0°), F =-2Y"Ae’, hol(F®) CSOM4), (5.99)

where the auxiliary fields Y satisfy the holonomy condition and depend on the

complex coordinates (22, z%). This solution is invariant under the R*! Poincaré

group and so has the naive interpretation of 3-branes.

5.8 Summary

In this chapter we have investigated (1,0) superconformal theories in six dimensions.
We firstly introduced the theory and described briefly there constructions [127, 128|.
One of the main results of this chapter were the solutions of the KSEs. In partic-
ular, we determined the conditions imposed on the fields in all cases. Although we
focused on the models presented in [127] our results apply more generally. We found
that these theories admit solutions preserving 1, 2, 4 and 8 supersymmetries. To
achieve this classification we made use of the spinorial geometry method described in
chapter 1 and techniques used in general to solve the KSEs of (1,0) six dimensional
supergravity in chapter 2.

We then moved onto consider the half-supersymmetric solutions, i.e. those pre-
serving four supersymmetries, in more detail. There were two cases to consider
depending on the isotropy group of the Killing spinors. In each case we analysed
the conditions imposed on the fields by the field equations of the theory in addition
to the conditions imposed by the KSEs. In the investigation of these we also gave
some explicit solutions which included string and 3-brane solutions. These can be
given M-theoretic interpretations by using the M-brane intersection rules [136, 137];
which state that M2-branes end on Mb5-branes on a string [136] that appears as
a defect of the MbH-brane worldvolume and similarly two Mb-branes intersect on a
3-brane [137] where the 3-brane is seen as defect on the M5-brane effective theory.

The aim of these superconformal models is to gain a better understanding of

the dynamics of multiple M5-branes, which is believed to be described by a (2,0)
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superconformal theory in six dimensions. The (1,0) superconformal theory has high-
lighted some important features but it is not complete yet. For example, one can
in addition to tensor and vector multiplets have hypermultiplets in (1,0) supersym-
metric theories in six dimensions. Therefore, one will need to include couplings
to hypermultiplets in order to have a complete (1,0) superconformal theory in six
dimensions. Each of the hypermultiplets carry additional four scalars which could
play important roles in allowing one to describe the dynamics of multiple M5-branes

and giving in general an M-theoretic interpretation to some models.
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Chapter 6

Conclusions

6.1 Overall Summary

In this thesis we have investigated different aspects of (1,0)-supersymmetric theories
in six dimensions. In particular, we began by discussing (1,0) supergravity coupled
to any number of tensor, vector and scalar multiplets. We solved the Killing spinor
equations for this theory in all cases and further discussed the restrictions on the
geometry imposed by backgrounds preserving different fractions of supersymmetry.
In order to achieve this classification we made use of the spinorial geometry method,
which we discussed in the first chapter. This technique relies on the ability to
write spinors in terms of differential forms, and in particular, an oscillator basis
in the space of spinors can be used. Moreover, the gauge group that leaves the
KSEs covariant is used to choose the Killing spinors and this allows considerable
simplification of calculations. When this method is used the KSEs reduce to purely
algebraic relations which can be solved to obtain the constraints imposed on the
fluxes of the theory.

Using the spinorial geometry method and the relation between six dimensional
supergravity and heterotic supergravity we were able to solve the KSEs of the theory
in all generality. In our analysis we found backgrounds preserving 1, 2, 3, 4 and 8
supersymmetries. These can uniquely be classified according to the isotropy groups
of the Killing spinors, except in one case where a distinct descendant exists. The
supersymmetric backgrounds fall into two types of categories; those with Killing
spinors that have compact isotropy group and those with non-compact isotropy
group. In the non-compact case we found the isotropy group of the Killing spinors
to be Sp(1)-Sp(1)x H (1), U(1)-Sp(1) x H (2), Sp(1) x H (3,4), and in the compact
case we had Sp(1) (2), U(1) (4), and {1} (8), where the numbers in parenthesis
correspond to the number of supersymmetries preserved. Note that there are two
backgrounds where the holonomy of the supercovariant derivative is contained in
Sp(1) x H, these differ as a consequence of the conditions imposed by the hyperini
KSE.
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In order to investigate the geometry we determined the spacetime form bilinears
that arise in each case. In the non-compact case the spacetime always admitted
one parallel 1-form with respect to the connection with skew-symmetric connection
given by the 3-form of the gravitational multiplet. In addition, there are twisted 3-
form bilinears. These were considered in turn and the implications on the geometry
were determined. In the compact case the backgrounds with two supersymmetries
admitted a spacetime with a 343 split, and backgrounds with four supersymme-
tries allowed a 442 split, where the first three, and respectively four, directions are
spanned by parallel vector fields with respect to the connection with skew-symmetric
torsion given by the 3-form of the gravitational multiplet. In each case there is a
natural frame on the spacetime given by six 1-form spinor bilinears. Finally, we
found backgrounds which preserve eight supersymmetries admit spacetimes that
are locally isometric to R>!, AdS; x S3 and CWs. These results generalise those of
[34, 58], see also [59, 60, 61].

Supersymmetric supergravity solutions are determined after solving the KSEs
and the field equations of the theory under consideration. In the third chapter we
used the Killing spinor equations to determine the field equations of the theory us-
ing the integrability conditions. This was a very technical discussion that involved
the use of numerous identities coming from the KSEs. In addition to highlighting
which components of the field equations are implied by the KSEs, the integrability

conditions provide us with an important consistency check for the theory.

In the fourth chapter we investigated the near horizon geometries of (1,0) six
dimensional supergravity black holes, making particular use of the solutions to the
KSE of (1,0) six dimensional supergravity theory. Firstly, we briefly discussed Gaus-
sian null coordinates and how this is used in the analysis of near horizon geometries
of (1,0) six dimensional supergravity. We focused on near horizon geometries arising
from (1,0) six dimensional supergravity coupled to arbitrary number of tensor and
scalar multiplets, and left out couplings to vector multiplets due to the complications
arising from the inclusion of Chern-Simons term.

Our analysis showed that there were two classes of near horizon geometries that
depended on h, a 1-form on the horizon section. When h # 0 we find the near
horizon geometries to be locally isometric to AdSs x X3, where X3 is diffeomorphic
to S3. We also find the tensor scalars to be constant and the 3-form field strengths
HM to vanish. This class of solutions preserve 2, 4 and 8 supersymmetries. The
geometry of X2 is further restricted as the number of supersymmetries preserved
increases.

The other class of horizons are of the form R xS, where S is a 4-manifold whose

geometry depends on the hypermultiplet scalars. In this case the tensor scalars are
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constant and H* vanishes, but in addition we find the 3-form field strength of the
gravitational multiplet H to vanish. This class of solutions preserve 1, 2 and 4
supersymmetries where S is a Riemannian, Kéhler and hyper-Kahler manifold re-

spectively.

The final part of the thesis was dedicated to the investigation of supersymmetric
solutions to the (1,0) superconformal theories in six dimensions. As we mentioned,
the interest in superconformal theories has arisen due to the understanding that the
worldvolume dynamics of multiple M5-branes is described by a (2,0) superconformal
theory in six dimensions. The particular focus on the (1,0) superconformal theories
comes from an analogy that was made in the investigation of multiple M2-branes
where reducing the number of supersymmetries allowed a more generic formulation
of the theory behind the dynamics of multiple M2-branes to be obtained.

One important aspect of these theories are the BPS conditions. In this context,
we were able to solve the KSEs of the (1,0) superconformal theory, making particular
use of the tools that were developed throughout the thesis. We were able to solve
the KSEs in all cases and gave the conditions imposed on the fields in each case. We
found solutions preserving 1, 2, 4 and 8 supersymmetries. Furthermore, we looked at
the half-supersymmetric solutions of some models in more detail. Once again there
are two cases to consider depending on whether the isotropy group of the Killing
spinors is compact or non-compact. In each case we solved the field equations and
the Bianchi identities in addition to the KSEs to find string and 3-brane solutions,
which can be given M-theoretic interpretations. However, these models do not
include the most general couplings possible, since couplings to hypermultiplets are

missing.

6.2 Future Work

There are a number of avenues for possible future research. In this thesis we have
focused on the (1,0) theory in six dimensions which has eight supercharges, however,
there are other theories in six dimensions with more supercharges. These can also
be investigated in a similar way to what we have done here. In particular, the inves-
tigation of the supersymmetric solutions of the (2,0) six dimensional supergravity
will form a natural extension to the analysis we made in chapter 2. Similarly, the
near horizon analysis we have made for the six dimensional (1,0) supergravity can
be extended to other six dimensional supergravity theories and to supergravity the-
ories in diverse dimensions. Another way of extending the near horizon analysis is
by including the couplings to vector multiplets that has been left out.

A substantial problem lies in the construction of black hole solutions with a

prescribed near horizon geometry. Apart from the supergravity in five dimensions
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this problem remains open. Since there are many near horizon geometries it is ex-
pected that there are many black holes with exotic horizon topologies. The spinorial
geometry method can be used to classify all such black hole solutions.

In regards to superconformal theories there are also a number of further inves-
tigations that can be made. Firstly, we have only discussed a limited number of
models that satisfy the algebraic constraints that arise as a result of consistency
requirements. One could therefore try to investigate the possibility of more generic
models that satisfy these constraints and aim to see if these have better M-theoretic
interpretations. We have also mentioned that couplings to hypermultiplets is miss-
ing, this is likely to play a key role in describing the dynamics of multiple M5-branes.
Therefore, an extension to this work will be to include consistent couplings to hy-
permultiplets, this has been initiated in [127] but is not complete. Once this has
been done one can perform a similar analysis of the KSEs to what we have done
in the absence of hypermultiplets and investigate the consistent models in further

detail aiming to obtain a better M-theoretic interpretation.

The supergravity theories in six dimensions play an important role as an intermedi-
ate dimension between the eleven dimensions in which M-theory is formulated in and
the four dimensional spacetime which we are familiar with. In addition, the (2,0)
superconformal theory in six dimension is believed to describe the dynamics of one of
the key ingredients of M-theory, the M5-branes. We have focused particularly on the
supersymmetric solutions of six dimensional theories. Supersymmetric solutions in
general have been useful in the understanding of string/M-theory compactifications,
branes, dualities and the AdS/CFT correspondence.

String/M-theory is a vast subject which has undergone many developments over
the last forty years. Supergravity theories, which are low-energy approximations to
the various string theories and to M-theory, have played particularly important roles
in some of these developments. Moreover, the investigation of these theories will
continue to help our understanding of what is one of the most promising candidates

for the unification of all the fundamental forces of nature, M-theory.
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Appendix A

Identities from the KSEs

In this appendix we give further details about the tools and identities we used in
chapter 3 when deriving the integrability conditions. As well as using the identities
that come from the KSEs we have made extensive use of relations satisfied by the
gamma matrices. In particular, the gamma matrices in six dimensions satisfy the

following duality relation

(—1)[%1+1 i

ALV e (A1)

where €p12345 = 1 and [g] denotes the integer part of . In addition, we have made
use of various identities that arise from the multiplication of gamma matrices of

different rank, for example

/y,u,,yyl...un _ /y/.wl...yn + ngp,[yl/yz/g...yn] ’
o R 45[/11[”17#2}”2] — 9glm [Vl(;mlw] :
7M1M27V1V2V3 == PYHIMQVlI/QVg - 66““ [ul”YMQ]ugug} - 65[/“ (1 5M2]I/27U3} 5
e a T L gglm [,,17"2“3},,2,,3]

— 186l 1, 012 uﬂ“S]ug] — golm 110", 5#3]%} (A.2)

and similar identities involving the commutator of gamma matrices of different rank,
see for example [1].

Let us now give the identities that come from the KSE which we have found
most useful, in what follows we use T-KSE to denote the tensorini KSE and G-KSE
to denote the gaugini KSE:

M v .
1. HM 4 x T-KSE:

4TMMTVM’)/V€ + 2T/\MHM’\W7”6 — T)\MHMAPUQHV’YVPUE

1
+H,L%UHM/\GV7V€ + §H;LMAVHMAp07Vpa€ = 0. (AB)
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10.

H,,,,/""* x T-KSE:

6TV HA T + Hyyg HMMP 4 3H (g HYPye = 0. (A4)

Ouvr)e” iy G-KSE:

vsCE

(Duvp) & (0 ;)

2 (0yvy) -
— — = % ~AHVP —F A5
9 (U§C§) l/pry €+ (U§C ) )\/,L’y €. ( )

(U§C§) 2

Az & lpr”y#e =

feYe A A x G-KSE:

! / AN, 1 2NN, / / ANV, / !
a’b'c 1 a’'b'c c v a’'bc c
LAZf b Eipmte = §f b AZprv“ Pe 4 fUUE AN Fy e (A.6)

Fo v x T-KSE:

THFS A + 2TVFS A yte + Fog HMP i

1
—|—§F/{luHMAl,p7“”pe = 0. (A.7)
[T-KSE,G-KSE]:
, 1
TR yle — ZHWFQ A HPe =0 . (A.8)

TMAm  T-KSE:

TAMTM)\QW/}/VG — THMTVMV”E — T/\MH M €

1 1
+ TP Hygn "7 — ST HM og,0%e = 0. (A.9)

CAMNT A — S HAL A#P)x T-KSE:

Kvp

1
T TMA g, e — §TAMHMAM§,WW% — T HM e =0.  (A.10)

( F“ A 4 ") x G-KSE:

1 a' a’ _po v 2 r' ¢Ia’ 1a’ v

8FPO’F5’y€p &YNV’}/M €— v CEAL 61 F;u/pr"lyu €

1 74 ! I !
—§F,fZVF“ e — B CT>2AIT/A§£’“ g% = 0. (A.11)

(3F, pv”p — % p" ) x G-KSE:

14

8F;JF“ p”‘s'yuyv“’je—gFﬁyF““” ” C) 5 A AG e =0 (A12)
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11. F%y"xG-KSE:

vpch

4

a’ a _vpo 1 ra a'\ v
Fo e+ §U£GFHAFV e . (A.13)

a' ~la’ pr' v
_ijé‘, Py €= — p

12. Equations (A.12)+(A.11):

1 / / / / 2 / / /
ZFSUF(%EPJ&’YMV,YMVE + F;VFG ey - 05“42 éla FSVpTWWE —0. (A.14)

13. Equations (A.12)-(A.11):

/ ’ ’ 4 ’ ’ ’
A7 S puy e+ ——< A AGENEM e = 0 (A.15)

(vrcr)

14. vﬁcﬂFg;'ya“” x G-KSE:

]. / ’ ]. / / ! /
- r a’ a’ _pody v, = ra o  vpo . ra’ pa A v
4U£C FpUF(S'YE pvY € 21)20 FpUFuy7 € UrC F/L)\FV e

1 ! ! ! ! !
—i—évﬁciFa“ﬂF“ g7 e+ Aj ¢le o guwpeye = (A.16)

15. Equation (A.13)4(A.16)-v*x(A.15):

! / / 1 / / 1 / !
—Fo e AT poyve = _EUE&F;UF;76P057M”6+ évﬁctF/fAFya AV e
—gvﬁcﬁFglﬁF“laﬁguV’y”e
1 r' +Ia’ #Ja’ v
+- CﬁAMAlgl &2 g e (A.17)

16. v.cmypx (A.14) - v*x(A.15):

1 rFa’ Fa’ afBdy vpo 1 rFa’Fa’ pody v
gvﬁ& ap 5’Y€ po G €+ZU£6 po J’ye wY €
4

(e

! ’ / 1 ’ ’
A A g7 e + §v£cﬁFgBFa Fg. e = 0. (A.18)

17. 1x(A.18) + (A.17):

a' +Ia’ gr' v 1 r ra’ pa’ _po v 1 ra a o vpo
—wal T peye = —3—2v£&FpUF576p ‘Hu,/y €+ 6—4v£&FaﬁFMe 567,)09#,,7 p
1 ! ! ]. ! !
+5 U FNES e — 2o 0 F P g e
1 r' ¢#Ia' ¢Ja’ v
+2U cKAlT/Alfl 51 Juw €, (A'19)

In addition we have used
AL p AT 4 = =240 A7 (A.20)
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where to arrive at this we have made use of .ALAQ = Ap(p")Ap. Various other

identities can be determined using the relations in (2.5), for example
vt =1, (A.21)
gives
v,0, 0" =0, (A.22)

and similar relations can be obtained by taking further derivatives.
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Appendix B

The Integrability Condition of the
KSEs

In this appendix we derive the field equations of (1,0) superconformal theory de-
scribed in chapter 5 from the KSEs using the Bianchi identities. In order to do this
we follow a similar discussion to that presented in chapter 3 where the integrability
conditions of the (1,0) six dimensional supergravity theory were derived.

Let us start with the KSEs, which are given by

1 Wwe+(Y’”)ape+ h¢f =0, (B.1)

Ewa,ﬁW”e + D,p'ye = 0. (B.2)

Using these and the identities that arise from it, along with the Bianchi identities of
the theory, we aim to obtain the field equations of the minimal system, which can

be written as

1

D'Dyg = —odp (FL, F"° = YY) = 3di hyhicd'¢" . (B.3)
Krb rsYS¢I = 0 7
1

gKTbIrsfiu(bI = 4'€;Ll/)\pchgKrH /\p(TT . (B5)

Firstly we square the KSE in (B.1) as follows

(4.7:T o (YT up® + h 70 ) < Foo e+ (Y*)pp’e + h so’ e > = 0(B.6)
then multiplying through with dZ, and simplifying we find

Lat T Foe/ "% — —df Fl,Fo e+ 4d. YY" +

4 TS P rSY uv
dfs}";yhjgb‘]v“"e+d,{sh§h§(¢J¢K6 = 0. (B.7)

Furthermore, we make use of the duality that the gamma matrices satisfy in six
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dimensions, (A.1), for the case of n =4 to find

1
,yuupae _ _§ENVPU)\T7>‘T€ , (BS)

which means the equation above becomes

1 1
— A T Ty € P 3N — Sl F FOM e+ AdL Y Y % +

& ST H¥T po 9 rsY p
AL h5e7 e + dL Wi ¢Fe = 0. (B.9)

Now we act on the KSE in (B.2) with v#D,, and this gives
1 vpo 1 1% v
T3 DuHopey™ e+ 3 D"y Pe + DuDyg'y e+ D D"gle =0 (B.10)
The third term in this equation can be written as

1
le,glsbjsﬂbey””e : (B.11)

DuDy' e = dlFp 507" e ~

rsY uv
In addition, the first and second terms in (B.10) can be rewritten using the duality
of the gamma matrices and the self-duality of the 3-form field strength. Combining
the result of that with (B.11) means the equation in (B.10) becomes
1
— 15 Du Moo 0e e 4 dy L 5677 e

vpo rsY uv
1 T S 14
—5%91 byaw®’ e+ D,D'ple = 0. (B.12)
Subtracting this equation from (B.9) we get
1
D, D*¢! + Sd Fp Fo1 — 4d) Y Y5 — dfshrjhi(qﬁjqﬁK} ¢

2T$ §22

1 s v
-5 uugl bJsr¢J7u €

2
1 I 3 I S nvpo AT
D) D#H,jpg—édmfzyfpa Py Te = 0. (B.13)

To proceed we make use of another identity that is obtained when the gaugini KSE
(B.1) is contracted with ¢g"b;,,¢7,

9" s 07V € + 4G by Y0 pte 4 AdL MRS 9Fe = 0 (B.14)
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Adding this to (B.13) gives

rsY pv

1
D D! + Sdy F, F — Ady YY" 3dﬂsh§h§(¢J¢K} €

1
_i_éfﬁyglsbjsr(bJ,YMVE + 4gITbJTSYas¢Jpa€

1 3
— DA, —dffrfS}ewww — 0. (B.15)

l/p0'_2 rsY uvY po

The Bianchi identity for the 3-form field strength is given as

3 1
I I T S Ir 4
ST T o + 19" Hw (B.16)

vpo] — 9 s prpor

Dy, H
using this (B.15) becomes

1
[DMD%I + Sd] F T — Ad YTV + 3d£sh§h§(¢J¢K} €

9 rsY pv
+49" b Y07 ple
1 1
+§ [glsbJer;y¢J - EEprAUTgITH£4)pAUT:| ’)//WG = 0. (Bl?)

The first line on the lhs gives the scalar field equation, the second line the Y™
equations and the third line gives the relation between the 2-form and the 4-form
field strengths.
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