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Abstract: We consider fermion models in 3D- and 5D-space-time with an Aharonov-Bohm potential
and a domain wall. Induced current is calculated, which is due to vacuum effects in the topologically
nontrivial space-time. Violation of chiral symmetry and appearance of induced current is demon-
strated in a simple example of quantum mechanical violation of symmetry in a model of a massless
Dirac fermion moving in a background vector field and domain walls as barriers for the electron
propagation. The effective Dirac equation for massless electrons modeling monolayer graphene is
used. One of the solutions to the problem of describing domain walls in planar systems is reduced
to finding exact analytic solutions. In this paper, we consider appearance of induced current in
two-fermion model with a compact dimension as a result of vacuum polarization in the field of the
external gauge field in the 4 + 1 and the 2 + 1 dimensional models with one type of fermions and with
two types of fermions living in the brane and in the bulk. Two different approaches (Kaluza—Klein
and Aharonov-Bohm) to the problem of induced current are used. Production of an induced current

in a planar model with a thin solenoid is also studied.
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1. Introduction

Since the fundamental works of Kaluza and Klein [1,2], the idea of compactification
of extra dimensions has been extensively developed: we mention here the idea of brane
world [3,4]; the two-fermion model with additional dimension [5-7] was studied; and the
idea of Yukawa unification, extended to the so-called “Hosotani mechanism” [8], explained
Higgs particle appearance due to extra dimensional gauge field A5 which plays the role of
the Higgs field[9]. In this way, we also mention development of low-dimensional models in
field theory and their realization in condensed-matter physics, such as a condensed-matter
simulation of 3-dimensional anomaly [10], graphene [11-13] with simulation of anomalous
Hall effect, where Dirac equation is effectively used to describe the behavior of the model.

The role of electromagnetic fields in low-dimensional models with nontrivial topology
was discussed in the graphene model [14], fullerenes and carbon nanotubes [15-20], as well
as the influence of an external magnetic field on the fermion mass generation was studied
like in the Aharonov-Bohm problem in [21].

In these low-dimensional systems, studies of symmetry properties such as break-
ing of chiral symmetry [22], as well as of problems with fermion mass generation [23],
were performed.

Nontrivial topological properties of space-time/gauge field lead to appearance of
fermion zero modes [24]. In turn, this may cause induced vacuum fermion current [8,25-28].
Recently, in [25], the effect of vacuum polarization in the field of a solenoid at distances
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much larger than its radius was investigated. The induced current was calculated as finite
periodical function of the magnetic flux. As an application of their result, they considered
the graphene in the field of solenoid perpendicular to the plane of a sample.

Two-dimensional tight-binding quantum systems can be effectively described in the
continuum approximation by the Dirac equation in (2 + 1)-dimensional space-time. This
equation is obtained by linearizing the energy as a function of a momentum near Dirac
points. The topological properties in this framework were accounted for in [27,29,30].

Clearly, more new important applications of low-dimensional structures can be re-
alized when the transport problems in them are well understood. For instance, very
interesting results were obtained in studying graphene under the influence of an Aharonov-
Bohm flux and a constant magnetic field [31], where induced vacuum current, as well
as an electric current were shown to arise (see also in [32], where induced current and
transmission through the barrier in the four-fermion model in 2 + 1 dimensions were
considered). We mention here yet another publication in this direction [33], where vacuum
current induced by an axial-vector condensate and electron anomalous magnetic moment
in a magnetic field was studied.

The aims of this paper is to study violation of chiral symmetry as a fundamental phe-
nomenon (a simple example of quantum mechanical violation of symmetry is considered in
a model of a massless Dirac fermion moving in a background vector field (Section 2)) and
domain walls (Section 3) as barriers for the electron propagation [34] by using the effective
Dirac equation for massless electrons in (monolayer) graphene [35-38]. In this way, the
problem of describing domain walls in planar systems is reduced to finding exact analytic
solutions in a simple way. Note, in particular, that the pseudopotentials (for definition of
pseudopotential in graphene structures, see, e.g., in [39]) in the form of kink-type barriers
with Pauli-matrix coefficients, mimicking the pseudospin and valley structure of the barrier,
may be considered as limiting cases of induced gauge fields arising due to perturbations in
the hopping parameters [38,40,41]. Therefore, we consider appearance of induced current
in two-fermion model with a compact dimension (Section 4), and in Section 5, we also
study the induced current originating as a result of vacuum polarization in the field of the
gauge field component As in the 4 + 1 and A3 in the 2 + 1 dimensional models [7] with
one type of fermions and with two types of fermions living in the brane and in the bulk.
It should be mentioned that two different approaches (Kaluza-Klein and Aharonov-Bohm)
to the problem of induced current appearance are used in these Sections. In Section 6, the
induced current in a planar model with a thin solenoid is studied. Here, in particular, the
effect of vanishing induced current at the half-integer values of the ratio of the magnetic
flux and the elementary magnetic flux is demonstrated in accordance with the result of
R.Jackiw et al. [25].

2. Violation of Chiral Symmetry

As was demonstrated in [26] for the appearance of the induced current in the chiral
magnetic effect, two violations of symmetries are necessary, i.e., violation of axial current
conservation due to topological properties of the background gauge field (the axial anomaly
of QCD), and violation of symmetry in QED (electromagnetic anomaly). The QCD anomaly
provides the chirality, the electromagnetic anomaly the current.

Let us consider as an example of quantum mechanical violation of chiral symmetry by
a massless Dirac fermion moving in a vector field A;. The problem derives from the second
quantization procedure, as was demonstrated in [42]. Setting A to zero, we can find the
eigenmodes of the Hamiltonian in the vector field A. We then fill the negative energy
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modes and leave the modes of positive energy empty. This is the way to define the model
of the second quantized vacuum. Following the work in [42], we let A be constant and
we suppose A to be adiabatically changing A — A + A, which can arise due to nearest
neighbor hopping.

According to our model of graphene we consider 2D Dirac equation for massless
electrons in a zero energy mode. Assume that A is directed along x—axis (Ay = A), then
the divergence of the axial current is proportional to €"'F,;, « d;A. The eigenmodes of the
zero mode satisfy a Dirac equation,

where Ay = A is constant. They are given by

¥, (x) = <e;) M

0
Ya(x) = <eipxx> 2
for E = py — A.

The second quantized model corresponds to the filled Dirac energy sea, E < 0.

for E = —px + A, and

With zero vector potential A = 0, branches with p, > 0 and py < 0 correspond to
different chirality and only the negative energy states are filled. With A — JA right-handed
antiparticles and left-handed particles are produced. Thus, the sum of right and left charges
is conserved, while they are not conserved separately. One should see that the change
of A = 0to A = A means gauge transformation, and this leads to particle production.
One may conclude that the filled Dirac negative energy sea leads to non-conservation of
chirality, while dynamics demonstrates chiral invariance.

3. Model with a Domain Wall
3.1. Dirac Equation in the Model with a Domain Wall

Monolayer graphene can be modeled by Dirac equation in D = 2 41 spacetime.
Various physical mechanisms that are due to defects in graphene can lead to interaction
terms in the effective Dirac equation. (see, e.g., in [41,43] and the references therein).

Let us start with a field theoretical statement of the problem. The Euclidean action of
a 3-d Gross—Neveu model has the form

Fy)?|, 3)

_ _ — G
S[‘P/ T] = /d3x |:‘Y’YV8}11F + ‘Y')’?,ag,‘Y — ﬁ(

where y = 1,2, y1 = iy, y2 = i02, 75 = 3 = 03, and an additional 3-d direction is a space
direction. The action of the model in addition to U(N) has also Z(2)-symmetry

— 1
Prul) =P, @

1+
Pri(x) = —y(x),

accompanied by space inversion in the 3d direction

Y (x1,x2,x3) = £ (x1, %0, —x3), Y1(x1, %2, x3)" = £ (x1, %2, —x3),

Yr(x1,x2,x3) = F¥R(x1, %2, —x3), YRr(%1, %2, x3)" = F¥R(x1, X2, —X3). )
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Consider therefore the Dirac equation fora D = (2 + 1) system
HY =i0;Y, 6)
where the Dirac Hamiltonian operator
H = 0»(010x + 030; — m(z)) = —io3dy + i019; — 0om(z) (7)

includes a domain wall described by pseudopotential oo (z) formed by the kink [44,45]
m(z) = mg tanh(mgz). 8)

This potential, as demonstrated in [45], can be self-consistently reproduced by com-
plete set of solutions of Equations (6) and (7) summed over filled Dirac sea of negative

energy states
%W(z)‘l’(z) =m(z).
The equation

[—i030y + i070; — oom(2)|¥(z) = E¥(2),

written explicitly
i(0: +m(2))¥2 = (E — ke)¥1,

(E + kx)qu = l(az — M(Z)‘Yl

[ Y1(2)\ ikox—iEe
Y= <T2(2)> e . 9)

has stationary solutions

There is a localized solution

¥, =0, EO = —k,

[ Mg 0 ikyx—iEt
T — — enr , 10
2 <cosh1(moz)> 10

which is a normalized zero mode for left-moving electrons with k, < 0 for E 0 > o.
The zero mode for right-moving electrons with k, > 0 for E > 0 is obtained for

Y, =0, E=ky,

which gives

¥ — % <coshémoz)> ek —iEt (1)

and it is not localized on the wall and not normalizable.

3.2. Vacuum Energy and Induced Current

Consider the Dirac Hamiltonian with an additional term with a chiral chemical poten-
tial ps. To this end, the term ps03 is added to the Dirac Hamiltonian

H = —io30x +i010; — 0om(z) + us0s. (12)
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This equation describes an asymmetry between the number of right- and left-handed
quarks due to the axial anomaly. The energy spectrum for the free massless Dirac electron
with a chiral chemical potential in the zero mode for left-moving electrons with k, < 0
looks like

¥, =0, EO = —k, — 5.

Therefore, according to the Atiyah-Singer theorem [24], we have only one normaliz-
able fermion zero mode for the motion in the field with topological number equal unity.
The vacuum energy for fermions is defined through equation

Evac = —Y_EO.

In our problem, we consider the contribution of zero modes

L +A
Evac = _2 / dkx
7T J—-A

E(O)‘

Let ky — ky — eAy, where after calculations the vector potential Ay — 0. Then,

J _ ,d :
as ga- = e the induced current

. aEvac
I = 3A,

Ax—0

In this way, we obtain

. el A d
Jx = ﬂ[AdkxTh‘_kx — s,
where the cutoff A — . As a result, we have

el el

Jx = E[Aﬂ%— (A —ps)] = s

In the case of an antikink the result for the induced current changes sign. The co-
efficient 1 in front of %]45 is the topological number of the kink (8) or the index of a 2D
Dirac Hamiltonian in the presence of a kink with a nontrivial topology (see similar dis-
cussion of this point in the problem of CME [26]). The corresponding transverse (with
respect to motion through the wall) zero modes may be not degenerate. Let N be the
number of transverse zero modes with eigenvalues 0y equal to 1. Then, the index of a
two-dimensional Dirac Hamiltonian is equal to the difference Ny — N_ in the presence of
a domain wall (for the case with a magnetic field, see in [26]).

4. Two-Fermion Model with a Compact Dimension

A 5-dimensional fermion model assumes an existence of 5D bulk fermions ¥ in
interaction with fermions L on the 4D brane, which resides at a fixed point of the extra
dimension, and a bulk gauge field Ays. The four-fermion effective interactions among these
fermions may be provided by the exchange of the Kaluza—Klein excited modes of the bulk
graviton [46]. We suppose that the charged bulk fermion interacts with the bulk abelian
gauge field Ay, and the fermion L is neutral. The dynamical mass generation arising from
the four-fermion interaction [6,7] (The 3D fermion model with the same interaction of two
types of fermions was considered in [7]. We shall not give the details of computations of our
problem for this case, rather we shall give the final results parallel to the 5D conclusions.) is
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influenced by the constant potential As. Suppose that the vacuum averages (A;) = 0, while
(As) = As = const. With the 1/ N expansion technique, fermions may be considered as
multiplets of a flavor O(Ny) group with N¢ flavor components. Accordingly, the model
can be considered as an extension of the Lagrangian considered in [5] (The notations in [5]
and those in [6]will be mainly adopted.):

L5 = HirMDyy + [Lin#d,L — %Z(IPTML)(HMIP)WE/)/ (13)
f

where M = u, 5; u = 0,1,2,3, TM = {4#,i7} and Dy; = 9p — ieAy; is the covariant
derivative with Ajs being a bulk abelian gauge field (Note that for 5 (odd) dimensions
no standard chiral symmetry exists, as no s-type matrix anticommuting with all other «y
matrices can be defined. An irreducible representation of a 5-d fermion field is realized by
a 4-component field, and the fifth component of the y matrix for 5-d fermion field is just
i7s in 4 dimensions). The fifth coordinate x> = y varies in the interval [0,27TR].

Clearly, in the absence of the gauge field Ay the Lagrangian is invariant under the
Z, discrete “chiral” symmetry: y — —y, ¥(y) — v°¢(—y), L(y) — ¥’L(—y). The discrete
symmetry thus prevents a mass term of the form L. To preserve this symmetry, the
field Ay should transform as A, (y) — Au(—y) and As(y) — —As(—y). Therefore, the
presence of the constant potential A5 spontaneously breaks the chiral symmetry. In our
previous paper, we considered the influence of a constant A5 on the dynamical mass
generation of fermions. In this paper, we study generation of induced current due to
vacuum effects under the influence of the gauge field As. We shall briefly repeat some
steps of our former calculations in [6]. Making Hubbard-Stratonovich transformation, we
include an auxiliary field o, and in the mean field approximation we put < 0, >= 0,
(05) = 05 = —0.

Compactify the third dimension in a circle with radius R and set an additional pa-
rameter, the phase shift «. Then, the bulk fermion field can be decomposed into the
Kaluza-Klein modes

¥(x,y) =N i wn(x)ei%("”), (14)

n=-—oo

where we chose N = 1/+/27tR to obtain the properly normalized kinetic term. The effective
27R

4-d Lagrangian is obtained through integration over coordinate y LW = Ik dyE(S). After
0
going over to matrix representation for fermion fields ¥
("P)T = (L/‘YO/\PL‘F—LTZI‘Y*Z/'") (15)

the Lagrangian takes the form

L) = Fi g% + TMY — |o]*. (16)
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Jina =

where the mass matrix has the form

0 m* m* m* m*
m x—a 0 0 0
m 0 "‘Tﬂ—a 0
M=|m 0 a0 (17)
m 0 0 0 2 g

and eAs =a, m = Ngo.
We put m = Ng < ¢ > with a non-vanishing vacuum expectation value of ¢. The
masses of 4-dimensional fermions are the eigenvalues of matrix M.

4.1. Effective Potential of the Model

With the use of the functional integration formalism we define the generating func-
tional of our system

Z = /[D‘I’][D‘Y][DU][DU*}eif dhec® _ /[DU][DU*]e_if dVegi(0) (18)

The effective potential for ¢ is found by integrating over the fermion fields ¥ and is
represented by integrating over the Euclidean momentum kg. After the 1/ Ny expansion,
in the leading order we have

d*ke 1
Vig = |02 / (2ﬂ§4§1ndet(M2+lk%). (19)

After some calculations (see in [6]) we obtain

1 /A
Veg(o,a) = |o]* — 2 /0 dx x3{ln<x2[cosh27'cRx — cos(27tRa)] + 27t Rx|m|? sinh 27t Rx

+  (7tR|m|?)*[cosh 2rRx + cos(ZHRa)]) —In (xz [cosh2mRx — 1)] 4 27wRx|m|? sinh 27t Rx

+  (7R|m|?)?[cosh27tRx + 1)]) } (20)

[e)

%ER sin(27tv) / x
0

where A is the cut-off parameter, and we subtracted the result for A5 = 0 and put for
simplicity & = 0.
This integral at the critical point m = 0 can be transformed to the following expression,

cosh27tRx — cos(27tRa)
cosh27mRx — 1 '

1 A
Vegt(c =0,a) = _H/o dx x*1In (21)

4.2. Induced Current

Let us find the effect of vacuum polarization resulting in the possibility of appearance

of induced current. The induced current ;g = aa‘jf;f can be found from Equation (20):

(m*?R? — x?)

3
d ,
* [cosh 27tRx — cos(27tv)]x2 + 27tRx|m|? sinh 27tR + [cosh 27t Rx + cos(27tv)] (7t R|m|?)?

(22)
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where v = aR = eAsR. It should be noted that the integral converges and we may extend the upper
limit to infinity. It is clear that the current is explicitly periodic in v = eAsR and vanishes for v = n/2,
n=0%1,%2,...,ie, fored/2m = n/2, where & = 2R A5 is the flux of the gauge field A3.

The integral (26) at the critical point with m = 0 according to (35) simplifies to

1 , T x3dx
Jina = _EeR sin(27v) / cosh27tRx — cos(27v) @3
For spacetime with dimension D = 3, instead of (20) we have
v — o= L /" axxdin(<[cosh2nR 27Ra)] + 27tRx|m|? sinh 27TR
i (0,a) = o]t — I Jy ¥ n(x [cosh27tRx — cos(27tRa)] + 27tRx|m|” sinh 27t Rx
+  (mR|m|?)?[cosh27tRx + cos(27rRa)]> —In (xz [cosh27tRx — 1)] 4 27rRx|m|? sinh 27t Rx
+ (nR|m[?)2[cosh27Rx + 1)]) } (24)
and at the critical point m = 0
1 A cosh 27tRx — cos(27tRa)
\V = = dx x1 . 2
efi(7=0,0) 41 /0 ram cosh27Rx — 1 (5)
. and for the induced current
o = / dx x JeRsin(2rtv) (m*m?R? — x?) 26)
ind = / [cosh27tRx — cos(27tv)]x2 4 27t Rx|m|? sinh 27tRx + [cosh 27tRx + cos(27tv)] (7R |m|2)2”

For values of v = eA3R such that the quantity 7 (7 =v —nforv > 0and ¥ = v +nforv <0
with 1 as a maximal integer number less than |v|) takes small values we have
cosh 27tRx — cos(27tRa) 2

1 A _ 4
i (0=0,a) = _E/O dx xIn “osh o Re =1 = —Wln(m/) +O>"). (27)

This result can be obtained in the following way,

1 A 2sin? 7tRa 72 1dx 72
v (o = :—7/11 Inf14 SR ) Vo [ar m2 2
et (7= 0,4) an fo MM osh2nRy -1 R )y x ~ sare MU 28

The above Formulas (45) and (46) are in agreement with the result of [47] Vp;,y, obtained for
gluons in the field of central vortices, with the evident modification
3)

1
Ve — —5 X 27R Vi,

where minus stands for the fermions and 27tR for the circumference length. The current in this case
looks like -
ev ~

5. Induced Current in a Model with a Compact Dimension

In this section, we shall study a fermion model in D = (d + 1)-dimensional spacetime with one
compactified spatial dimension (cylinder): M = M? x S!, where M? is a D-dimensional Minkowski
space and sl a space-like extra dimension, is a circle with a circumference L = 277R. Ourd + 1
fermion model assumes an existence of a bulk gauge field A ;. Extra dimensions are real and physical,
ie,d+1=>5and d+ 1 = 3, though the results may be easily generalized for any dimensionality.
Contrary to the approach of the previous section, where Kaluza-Klein method was used, we here
used the Hosotani mechanism and the Aharonov—-Bohm picture.
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Let us further suppose that fermion ¥ is charged and thus may interact with the abelian gauge
field Ap;. The presence of the constant potential A;,q = const may provide the dynamical mass
generation due to Hosotani mechanism [8]).

5.1. Model in (4 + 1)-Dimensional Spacetime

Let us consider the model in D = 5 with the vacuum averages (A;,) = 0, while

(As) = As = const. Moreover, for applying the 1/ Ny expansion technique, fermions are assumed to

be multiplets of a flavor O(Ny) group and thus to have Ny flavor components. The Lagrangian has
the form

£5) = HirtMD . (30)

where M = 4, 5, 1 =0,1,2,3, ™ — {7",1’75} and Djy; = dpy — ieAp, is the covariant derivative
with Ay being an abelian gauge field. The fifth coordinate x> = y varies in the interval [0,27R].

Clearly, in the absence of the gauge field A, the Lagrangian is invariant under the Z, discrete
“chiral” symmetry: y — —y, ¥(y) — 1°¢¥(—y), L(y) — 7°L(—y). The discrete symmetry thus
prevents a mass term of the form L. To preserve this symmetry, the field Aps should transform
as Ay(y) = Au(—y) and As(y) — —As(—y). Therefore, the presence of the constant potential As
spontaneously breaks the chiral symmetry. In [6], we considered the influence of a constant As on
the dynamical mass generation of fermions. In this paper we study generation of induced current
due to vacuum effects under the influence of the gauge field As.

Generating functional of our system is as follows,

z = [IDI[Dyle! [ 37 = e=iN Vs, (31)

where after integrating over the fermion fields ¢, { we introduced the effective potential in the form
of an integral over the Euclidean momentum pg, in the leading order of the 1/N expansion

. . s dp .
Ve(é) = —iTrys In(iv"9, + 175(185 —eAs)) = — / W’crs In(—y"py — 175(;75 —eAs)), (32)

where x and s indices of Tr operator correspond to integrating over spacetime and taking trace over
spinor indices respectively. Compactify the fifth dimension in a circle with radius R and set an
additional parameter, the phase shift a. Then, we obtain the decomposition of the fermion field into
the Kaluza-Klein modes .
Y(x,y) =N Z wn(x)ei%(”"""), (33)
n=-—oo

and Equation (32) takes the form

[e9]

5 dp 1 2, 2 2, o 27 2
Ve :—2/ (Zn)qn;mln{m+P2+P3+P4+(f) (n+a—v)*|, (34)

where v = aR = eAsR.
This integral can be transformed to the following expression,

cosh(27tRx) — cos(27tRa + «)
cosh(27tRx) —1 ’

where we introduced subtraction at the point 27tRa + « = 0 (Although the integral converges with

1 A
Véf‘?((r:O,a) = 7@/0 dx x°In (35)

subtraction, introduction of the cut-off A is convenient for further numerical estimations of the
results, while the final results prove to be independent of A). In what follows, we put for simplicity
« = 0, which corresponds for periodic condition for the ¥ field. The induced current | = %ﬁéf can be

found from Equation (35)

A

3
6) _ _ 1 Rsin(2 / Xdx
i 2t sin m/)o cosh(27tRx) — cos(27mtv)’

(36)
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It is clear that the current is explicitly periodic in v = eAsR and vanishes for v = n/2,
n=0,%1,%2,...,ie, fore®/2m = n/2, where & = 2rR A5 is the flux of the gauge field As.

5.2. Model in (2 + 1)-Dimensional Spacetime

In particular case of the 3D fermion model with N fermion flavors, the action is
5= / Pxipy (10, — eAy )y, 37)

where Ay, is a vector potential Summation over flavors will not be written explicitly and $Oy should
be understood as Z 9,0y

We will use rank 4 (reducible) representation of the y-matrices

1 2 ;
0 o 0 1 io 0 2 i3 0
= , = ’ = 7 38
i <0 —al> i (0 —i02> i (0 —io® 9

where ¢ are the Pauli matrices.
The generating functional of our system is

z= / [DF][Dylet [ LY = g=iN [ dxVer (39)

where after integrating over the fermion fields ¢, { we introduced the effective potential in the form
of an integral over the Euclidean momentum pg, in the leading order of the 1/ N expansion V.

Let us now suppose that spacetime topology is given by M = M? x S!, where M? is a 2-
dimensional Minkowski space and Sl a space-like extra dimension, which is a circle with a circum-
ference L = 27tR. As Sl isnota simply-connected space, boundary conditions must be specified
for the theory. Physical observables must be single-valued on M? x S!. Spatial compactification of
one dimension in the circle 0 < x, < 27R, is realized through Fourier expansion due to periodicity
condition for fermions ¢|y,—g = P|x,—27R,

resulting in the following expression,

2 2 00
<3>_‘L_/d1ﬂ1 2T 5 5
vy = 2 AR Z In p1+p3+(L n)s+o

The Aharonov-Bohm phase v = 5> A¢ is introduced through the asimuthal component of the
vector potential Ay. This can be done by assumption that at the axis of the cylinder there exists along
it an infinitely thin solenoid with finite magnetic flux ® = 271RA; and magnetic field

D
H: = Zn(s( ).

Then, the resulting effective potential takes the form

G _9 L[ dp1 ¢ 25
Vi =262 et L m|p A (T2 (40)

On the mass shell p? + p2 + (2%)2(n —v)? = 0 the energy of a fermion E = ipj is evidently related
to longitudinal momentum p; and transversal modes pp = 27t(n — v) /L by the dispersion relation

E2 (V)= p? 4+ (27(n—v)/L)%

Note that for v =n =1,2,... the contribution of the asimuthal (Aharonov-Bohm) potential Ay is
absorbed by n and we have for the energy the typical zero mode expression for the transversal motion

Enp (v=mn) =pi.
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The appearance of zero modes for quantized flux v = n = 1,2,... is the consequence of
Aharonov-Bohm effect and is due to nontrivial topology of the model.

For the model with the four-fermion interaction we can transform the effective potential (40) to
obtain the following form,

Ve(f3f) (0,a) = / dxxIn Coi};SL}fL;CfSlLa (41)
Now, we make use Ozf the formula [48] for integration over Euclidean momenta:
/ él;)%ﬁ ”im In |p% + (” ; V> = _(27_[2;()%233/2 fp(2v) + (v—independent terms), (42)
- where
fol2r) = 1 BT = fp(2042) = fo(-20) L fol0) = Ex(D) , foll) = ~(1-2"P) (x(D) 3)
e

Here, {r(z) is the Riemann’s zeta function. In our case, D = 3, R = L/27. This formula gives

the result )
D 2r'(;D) )
Ve(ff> = ZW fp(2v) + (v—independent terms),
and forD =3
3 2r(3) & cos 2mmy )
Ve(ff) =2 (2n R)327'(3 72l + (v—independent terms).
m=

The induced current can be found by the formula

](3) _ ave(ff>
$ - 0Ap

which with the help of Equation (42), (43) gives

@) sm(27'cm1/)
Jp" = an mZ:1 m?2

The induced current is evidently periodicinv — v+n (n = £1,4+2,43,...),as m X n is also
an integer. Here, it should be mentioned that Hosotani in his early paper [8], where he studied
dynamical mass generation by compact extra dimensions in 4D Minkowski spacetime, also found a
nonvanishing fermion condensate that may be considered as a current in an extra dimension

_ 4 & sin(nh)
S L
n=

Next, we make use of the formula [49]

00 27ty

Z 27rm1/) = —/ In(2sin E)dx
m=1 0 2
and obtain

G) i /27‘[1/ . E
Iy’ = <2 Jo In(2sin 2)alx. (44)

As follows from our result (44), when v = 1/2, the current is equal to zero, as (see page 540 in [50])

" In(siny))dy = — 2
/0 n(siny))dy = —aan

and consequently

T x /2 T
/0 In(2sin E)dx = 2/0 (In2 + In(siny))dy = 2[ In2-+ (_E an)] =0.
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The induced current was also studied in [25] in the problem with a singular magnetic flux
directed perpendicular to the plane with a moving electron. It is interesting to note that, similar to
our situation, the current in [25] also vanishes atv = 1/2.

The induced current ]i(jgl as a function of the field 2 = eAj is shown in Figures 1 and 2 for
various values of RA, where for convenience of numerical calculations we used dimensionless
variables ]i(ri;/e — ]i(ﬁc)l(eA)*l, a — aA~!and R — RA using the cuoff A (see (35)). In this case,
the quantity v = aR remains dimensionless and independent of A.

The dependence of the induced current ]ifc)l on the mass m is demonstrated in Figures 3 and 4,
dimensionless variables are also used. In Figure 3, we plotted current ]iﬁ as a function of m for
different values of v = aR for constant value of the compactification radius RA = 1. The values of
field aA~! = 0.25 and aA~! = 0.75 are chosen on different sides from the extremum of the potential
(85) v = n/2 (in this picture v = 0.5), so that the derivative of the potential has different signs, and

consequently, current ].(3) — Vi demonstrated various behavior. In Figure 4, the dependence of

ind = 0dA3
current ]i(j()i on mass m is shown at different values of compactification radius RA, but at the same
value of v = aR. For values of v = eA3R such that the quantity 7 (7 =v —nforv > 0and ¥ = v +n
for v < 0 with n as a maximal integer number smaller than |v|) takes small values we have

A -2
3) 1 cosh27tRx — cos(27tRa) ey . "
V< oc=0,a :——/ dx xIn = ——— In(ntv) + O(7%). 45
eff ( ) 4 Jo cosh27Rx —1 4R2 (7) (7) (45)
0.08 T T T T T T T T T
" ”n
0.06 - 7y 1
L /i \
:' 1 RA=1; r
, ! - - =RA=0.1 ;o
' ! 1
I
0.04 Y} 1 1 1
’ 1 /] 1
’ 1 ’ 1
’ ’
’ ! , I
V4 ’
4
0.02 " I'
’ P
i , /
(0] 2|
< y ’ _
= ( . 7
—55 4 "
I' ,'
f L
~0.02 /| ’ i
’ /
/4 1 I4
] ’ 1 ’
i ’ . ’
I ) ’
I}
-0.04 1+ 1 p -
! 1 v
1 .
1 1 /
1
-0.06 v s
0617, e
—008 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
an™

Figure 1. Induced current as a function of a at the critical point m = 0 for various values of the compactification radius R.
Induced current vanishes at aR = n/2.
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0.02

1
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o

-0.02

-0.04

-0.06 [

-0.08
0

Figure 2. Induced current as a function of a at the critical point m = 0 for various values of the compactification radius R.
The induced current vanishes at aR = n/2.

This result can be obtained in the following way,

2 2 1 -2
0) :_L/A (2sinfzRe ) 00 tdy 7
Ve (7= 0,4) 47t Jo dxxln{ 1+ cosh27tRx — 1 47R? Jy x 8mTR? Inv”. (46)

The current in this case looks like

@) . eV

~2
]inCl ~ IR Inv~. (47)

For those values of v = eA3R, at which the quantity 7 is equal to v — (2n+ 1) /2 for v > 0, and
7 =v+ (2n+1)/2 for v < 0, where n is the maximal integer number smaller than 2|v|), takes small
values (these points correspond to the maximum of potential), the current is calculated as

@ . ev
fna ® SN2
which corresponds to the behavior of the current demonstrated in Figure 1.

When values of v = eAyR are such that the quantity 7 (7 = v —nforv > 0and 7 = v +n
for v < 0 with n as a maximal integer number smaller than |v|) takes small values we have for the
effective potential

-2
(3) _ 4mv -
Vi = 3 Inv (48)
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The above formula is in agreement with the result of [47] Vp;,x, obtained for gluons in the field of
central vortices, with the evident modification

3
Ve(ff) = —4Vpjak,

where minus stands for the fermions and 4 for fermion spin and two signs of the energy.
For the same values of v, we have for the induced current

27 v
(3) 2e / 1 Lox 2eV . o
= — n(2sin = )dx ~ — In7*. 49
Io" =2 | (2sin 7)) 2 49)
0.025
0.02 _
0.015| a
RA=1; aA"'=0.75
RA=1; aA"'=0.25
0.01 _
0.005 -
T
D
= of e
2
E

-0.005

-0.01

-0.015

-0.02

-0.025 I I I I I I I I I
-5

mA™!

Figure 3. Induced current as a function of m.
For those values of v = eAy R, at which the quantity 7 is equal to v — (2n + 1) /2 for v > 0, and

7 =v+ (2n+1)/2 for v < 0, where n is the maximal integer number smaller than 2|v|), takes small
values (these points correspond to the maximum of potential), the current is calculated to be

3 4ev
]é) =~ ?an.
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Induced current as a function of m for various values of compactifications radius and fixed value of v.

6. Induced Current in a Planar Model with a Thin Solenoid

Diakonov [47] calculated the energy of a Yang—Mills vortex. The quantized Z(2) vortices are
dynamically preferred. The effective action was found to be expressed as

SefflA] = %lndet(ww) —Indet(—Dj). (50)

The Dirac determinant should be added to account for the presence of dynamical fermions in
the fundamental representation:

1 ' _
—Indet(Vy7,) = =5 1ndet(vf, - %[yy%]%t”), Vi =0y — iAnut®. (51)

As det(Wy,) = d - det(—V%) in d full space dimension, D? in the cylindric coordinates can
be found:
1120 1(2,
#opdptop  p2\ ¢

The effective action (50) for slowly varying pAy is

2
f“CbA;,) + 0% +...+ 33 (52)

d Smax ds _
SerflAgl = _(E - 1) /S — Tr exp(sVi) = /dd sz/d2xL V(@ (n), wu=p ApAG, (53)

min

where V(4 (1) is the “vortex potential energy” in d dimensions. Here, Tr denotes the functional and
the color traces.
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As it is convenient for our purpose, following the work in [47], we consider only the SU(2) case.
Three eigenvalues of the covariant Laplacian (52) in polar harmonics exp(im¢), m =integer, look as
a 3 x 3 color matrix:

m?
19 9 1 ’
————— g (mtu)?, (54)
030 30 72 ( ;4)2
(m — )=
For the differential operator ((54), last line)we have the equation for eigenvalues
A 10 0 1
2 _ 2 _ 2
D ]i(mfy)(kp) = {E%P% - pi(m - V) ]i(mfy) (kp) =—k ]i(mfy) (kp)

For a complete functional basis in the transverse plane F,, (¢, 0) = exp(im¢)], m—p| (kp) we have

1
27

m=—00

N 1 / /
E [k Eus. 0B 9 0) = 556 =059 =) oa 2o (55)

and also the ortho-normalization condition

1 /
o [ [ o Fus(9.0)Fi e (0,6) = 100k —K) Sy (56)
Equation (53) can be rewritten as
Trin(—V2) = /d<p/ Z/dm /kdkakln —V2)E,k(¢0p)
1 dp
= g/ml’/p / : /kdkln k2+P3)[I|m u (ko) =T kp /d4>/pde (57)

where V) (y) is the d = 3 potential energy

/dps /: ds/ kdk exp[—s(k2 + p2)]

min

Y 2 (ko) = T2, (ko) | (38)

X —
27T m—

The trace operator in the above formulas

. . . . m=-+4oo
Trlz/dd’zxu/dle/ P3-- pd / kL Z 1

mffoo

is applied to the exponent with the use of the eigen functions
(67 T &) 18y e 1

(eim‘i’ Jim—y) (ko) efi’?”ﬁ”)* eD? eime Jjm—u (kp) e JIPI 4

. JR. * A . JRRr—
(e"mp J i (k) eflx”p”> esD? gime Jim+pl (kp) e ™71,
In the sum over all m the last two lines give identical contribution; one should also subtract the
expression for the free theory

(& i () &) ey ) e

It should be taken into account that the operator acting on its eigenfunction is always replaced
by its eigen-value. We see that only the indices of the Bessel functions include the dependence on the
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flux 1. Moreover, the potential is explicitly periodic in y with period 1. Integration over momenta
can be easily performed using Equation 6.633.2 from in [50], yielding

Swax 1 % 2 0 2 2
VO =-@-2) [ 2 () ew(-5) mgm[1|m—m<%)—1\m\<%ﬂ' 9)

Here, we used formula ([50], p. 724)

T K2 &
/ 12 (pk)k dk = —e % Im(zs)

0

We next sum over m using the integral representation for modified Bessel functions, Equation
8.431.5 of the work in [50]. Change of variables

2 2

t=—; btmin = L; tmax = 57— =~
2s 2Smax 2Sin. s

p? dt ds

and a minus sign appears, so we interchange the integration limits (further we assume y € (0,1))

Emax

+oo
VD () = — 271’p /dtt’_l _t - (I\mfm(t)—l\m\(t))-

tmin

Integral representation of the Infeld functions

T [eS]
/etc"se cos(m6)do — /e’tChX’mx dx.
0 0

In(t) =

A=

For the first integral in the representation of the Infeld functions, we can sum
m=+oco

i (MORS MO)E

m=—

(o) (o)

Sln(|m p|7) /eftchx Im—plx g 4 ST sin |m‘ /eftchxf\mbc dx.
T

m=+-00

m=—oco

o

0

The second term goes to zero for all integer m, the first term is transformed for m > 1, then for
m < —1, and we consider separately the case m = 0

= 51n m V i —tchx—(m—p)x
Z /e dx
0
©

m=1

m=—1

SIH —m+ V /eftchx —mAp)x g

0

m=—o0

[ee]

sm _ _
/e tchx HX gy
0

We make the change in the second term m — —m, and as a result we obtain

m=+00

Y, (-1

m=1

ym sin(

[oe]
/eftchx mx ep.x eny()dx_,'_

oo

7‘[) / e tchx—px dx
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Summing over m,

:i m e Mmx — _ e
=1 1+e*
we have
(o)
sm _tch _ B _
/e ‘ x[l—l—e x(eW7e Hx)Jre Ko ldx =
0
_sin(7p) /eftchx ch(x(n—3))
n a3

0
Thus without the first term of the integral representation of the Infeld function we have

t”lax
)X) [ gy i1 g t(chx 1)

1
2

5' I\J\'—‘

d—2 sin(
v = / dx®

(2mp?)?

Emin

7T
Now let us show that % [ €059 cos(m6)de gives a zero contribution
0

m=-+o0 1 i 1 f
f/efC059Cos(|m—y|9)d9——/etcosecos(\m|9)d9 .
m=—oo 7'[0 T[()

Then, after separate considerationof m >1,m < —1,and m = 0:

etcose[cos((m —u)0) + cos((m + u)8) — cos(m) — cos(m0)]do+

|

ghs

8

A=
O\:l

T
% [ efe>?lcos(ue) — 1]ae.
0

In the first integral, the first and the third terms are from m > 1, the second and the forth are

from m < 1; the second integral is from m = 0.

m=-+oo 1 7T 1 s
) P /etcose 2 cos(mb)(cos(ud) — 1)do + P /etcose[cos(;ﬁ) —1]d6.
= 0 0

With the use of the formula

SIES

m=+-co m=+-co eime m=+-co efime

Y cos(mf) = ) 7t ) PR

m=1 m=1 m=1

T [N—
(@]

N“
I

o
NS
o

we proved the supposition.
The final expression for the effective potential

tma."(
)X) [ gy 41 g t(chxt)

N\’—‘

V(d)(y) _ d— Zd sin( /dx

(2mp?)?

N\><

Emin

Calculate the integral for t,,;, = 0, tyx = 400, using the expressions for the gamma and

x) = /dt prlet
0
2yT)

B(x+vy,x — :41’x/d*r
( Y Y) J 2 1

beta functions
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make the change f(chx + 1) — f, then
/dtt%—le—f(f’”“) —>/dt prletx— 1 -1 (ﬂ)
5 0 (chx+1)z  (chx+1)2 \2
—och2(*
chx+1=2ch (2>
Then, the effective potential
(me?): T 27 ch?t1(3) \2

d—2 sin(my)  d d d

(an)% T B(§+1 y,§+y)l" 2

d d d
d—2 sin(mp) F<§)F(§ +P‘>r(§ +1- H)

7T rd+1)

(%)’
In the presence of fermions we should add the following term in the effective potential,
1 _
—-In det((aﬂ - z'A‘;,t”)Z)

B

results in the additional multiplier —2. The result for the fermions
d d
r(4+%

then the eigenvalues correspond to the change y — %, and existence of two types of fermion fields
d M
(313

I(d+1)

According to Diakonov [47], we have for the effective potential for the vortex model in two

cases withd =3 and d =4
. d d d _
V(d)(#): d—2 _SIH(T[V) r<2)r<2+y)r(2+l H)
(npz)% 7T F(d+ 1)
ko p—p)2—p|  ford=4,
= (60)
L ) (1 - 42)(3 zy)‘modl for d =3.
The induced current in the planar world, d = 3, is equal to
dv®(u) 1 1 tan(mp) , 4
J= djl —EE = [(Zﬂ_l) _5}
11 )
— = 1-4 3-2 61
T 96 oM o
It can be easily verified that ] = 0 at u = %, in fact
8 8
2(1 — 4p?) = - =0, (62)
pot m(3—p) m(3-p)

tan(7r 4
¢ tan(mt) (—2)+ ——
i cos?(mtu)
which is in agreement with the result of Jackiw et al. [25].
7. Summary and Conclusions
In this paper, we have studied systems with extra dimensions, where induced current may
be produced as a result of vacuum effects. Induced current of fermions appearing in this way is
shown to be due to nontrivial topological structure of the models considered. In an example of
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quantum mechanical violation of chiral symmetry by a massless Dirac fermion moving in a vector
field A;,, we demonstrated that the filled Dirac negative energy sea leads to non-conservation of
chirality, while dynamics demonstrates chiral invariance. The models with a domain wall described
by pseudopotential are studied with the use of the effective Dirac equation in D = (2+ 1) and
D = (4 + 1) spaces. Vacuum energy and induced current are calculated. Induced current is found
and is shown to be proportional to chiral chemical potential. This is in accordance with the Atiyah—
Singer theorem, i.e., we have only one normalizable fermion zero mode for the motion in the field
with topological number equal unity.

A two-fermion model with a compact dimension is considered. The model includes 5D bulk
fermions ¥ in interaction with fermions L on the 4D brane, which resides at a fixed point of the extra
dimension, and a bulk gauge field Ajs. In the Kaluza—Klein formalism, we demonstrated that the
four-fermion effective interaction among these fermions leads to appearance of vacuum energy and
induced current related to “magnetic flux” of the gauge field Aj;. In order to demonstrate another
approach to the problem, we also used the Hosotani mechanism and the Aharonov—Bohm picture
in derivation of the effective potential and the induced current. We finally examined the Diakonov
model of a Yang-Mills vortex to solve the problem of induced current in a planar model with a thin
solenoid. We re-derived his result for the effective potential for different dimensionalities (d = 3 and
d = 4) and found a current induced by the nontrivial topological effect due to a Yang-Mills vortex
modeling a thin solenoid.
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