
Monitoring of large-scale federated data storage:

XRootD and beyond.

J Andreeva1, A Beche1, S Belov2, D Diguez Arias1 , D Giordano1, D
Oleynik2, A Petrosyan2, P Saiz1, M Tadel3, D Tuckett1 and I Vukotic4

1 CERN (European Organization for Nuclear Research)
2 JINR (Joint Institute for Nuclear Research)
3 UCSD (University of California, San Diego)
4 U. Chicago (University of Chicago)

Abstract. The computing models of the LHC experiments are gradually moving from
hierarchical data models with centrally managed data pre-placement towards federated storage
which provides seamless access to data files independently of their location and dramatically
improve recovery due to fail-over mechanisms. Construction of the data federations and
understanding the impact of the new approach to data management on user analysis requires
complete and detailed monitoring. Monitoring functionality should cover the status of all
components of the federated storage, measuring data traffic and data access performance, as well
as being able to detect any kind of inefficiencies and to provide hints for resource optimization
and effective data distribution policy. Data mining of the collected monitoring data provides a
deep insight into new usage patterns. In the WLCG context, there are several federations
currently based on the XRootD technology. This paper will focus on monitoring for the
ATLAS and CMS XRootD federations implemented in the Experiment Dashboard monitoring
framework. Both federations consist of many dozens of sites accessed by many hundreds of
clients and they continue to grow in size. Handling of the monitoring flow generated by these
systems has to be well optimized in order to achieve the required performance. Furthermore,
this paper demonstrates the XRootD monitoring architecture is sufficiently generic to be easily
adapted for other technologies, such as HTTP/WebDAV dynamic federations.

1. Introduction
The computing models of the LHC experiments are gradually moving toward federated storage
such as XRootD [1]. A federation can be seen as an aggregation of storage of any kind into
a global namespace using a single access protocol (both to query meta-data and to access
data) to provide read-only access to world-wide replicated data via virtual entry points named
redirectors. Today, the two main implementations of this federation are AAA [2] (Any data,
Any time, Anywhere) for CMS and FAX [3] (Federated ATLAS XRootD) for ATLAS. The AAA
federation is used daily by more than 600 distinct users accessing hundreds of thousands of files
geographically distributed across 750 servers. Identifying access patterns and estimating data
traffic is becoming more and more important to understand the dataflow and be able to propose
optimal data placement strategies. For this goal to be achieved, the monitoring functionality
of the federation should cover the status of all components. In addition, statistics mined in
the collected monitoring data have to be well presented to provide a deep insight into new
usage patterns of the storage resources. This paper will first cover the monitoring flow and the

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032004 doi:10.1088/1742-6596/513/3/032004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



challenges it brings. Then the modular architecture of the monitoring chain will be described,
explaining how it can scale and meet future expectations. Finally, a closer look will be taken at
the current implementation of the XRootD Dashboards.

2. Monitoring dataflow
Monitoring a system at the scale of an XRootD federation is a challenge because of the
complexity introduced by the large number of data-servers (O(1000)) distributed across the
Internet. Furthermore, on the server level, monitoring should only impose a limited overhead and
be non-intrusive. Limited overhead implies that the network resources dedicated to monitoring
should not exceed a few percent while non-intrusive means that the monitoring activity should
not block the system. The first section will demonstrate how the overhead on the system is
limited thanks to the use of monitoring streams. The second will expose the effect on the
reliability of monitoring data when a non-intrusive approach is used.

2.1. Monitoring streams
Many metrics on a data server can be monitored : user authentication failures, redirection
rates, file accesses, etc. To group these metrics by category, XRootD introduces the concept of
monitoring streams [4]. Depending on the quantity of data generated by a stream, the format
will not be the same. Human-readable formats such as XML will be preferred for low event rate
summary data while a much more concise binary encoded data format will be required for high
event rate detailed streams. For the needs of our application - monitoring file accesses - detailed
data-streams are required. Within these streams, every single UNIX IO operation is reported
(open, read, write, ...) with the user mapping for an approximate maximum overhead of 3% [5].
All together the average incoming traffic is about 120kB/s for all the data-streams.

2.2. Reliability
While monitoring is extremely important, this is not the main goal of the data server and should
not impact it (or within a reasonable limit). At the same time, the aim of monitoring is to show
the global picture of the system; a small monitoring data loss is then tolerated. In other words,
it is not the responsibility of a data server to make sure that the monitoring data are correctly
consumed, and the act of monitoring must not block a data server. These two conditions allow
the UDP protocol to be used upstream of the UDP collector. Downstream of the UDP collector,
a reliable protocol can be used without impact on the data server so no data loss is tolerated
and all data sent by the UDP collector should reach the database within a reasonable time. To
ensure this reliability, the stateful TCP protocol is used in addition to some acknowledgement
methods between components along the chain.

3. Components of the monitoring chain
The monitoring chain is highly modular and relies on well-defined interfaces between each of
its components. This architecture allows the scaling challenges to be met by adopting different
strategies depending on the layer. In addition, it facilitates the technology watch in order
to benefit from the latest advances. For example, investigation has started in the messaging
layer with Apollo to replace ActiveMQ and in the storage layer with the Hadoop ecosystem or
ElasticSearch to replace Oracle. The following schema (figure 1) shows the interaction between
the components and this section describes each component.

3.1. GLED collector
As described previously, the monitoring system is based on streams. For our purpose, two data-
streams are used: one reporting every single UNIX IO operation and one keeping track of the

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032004 doi:10.1088/1742-6596/513/3/032004

2



Figure 1. Workflow of monitoring data

user mapping to these operations. Individually, they are not understandable and the role of the
GLED collector [6, 7] is to contextualize them. Because a simple read of a file could potentially
generate a huge number of events (an open, many reads and a close), the GLED collector also
needs to keep track of all IO events belonging to a single file operation. As an output, the GLED
collector sends a JSON object containing the full details of the file operation. Example : User
A has read file B on server C from site D, 10 GB of data have been read (out of 15 GB) using
1000 vector reads.

3.2. Transport Layer: ActiveMQ
From the GLED collector to the storage layer, data are transported using the ActiveMQ
messaging technology. Monitoring data are transported asynchronously using the STOMP
protocol over TCP, allowing for the producer and the consumer to be independent. When
running smoothly, almost no delay is imposed by the messaging layer: data are transported in
near real-time. On the contrary, the messaging layer can act as a buffer if a problem occurs
downstream of it by saving all the incoming messages and keeping them until acknowledgement
by the consumer.

3.3. Storage layer
The primary goal of the storage layer is to store the raw data and aggregate them into
various kinds of statistics to speed-up the rendering on the user interface. The Oracle RDMBS
used computes aggregations locally through PL/SQL procedures avoiding network activity and
potential overhead. Different conservation policies are applied to the recorded data. As the
primary goal of the raw data is to be aggregated and not accessed by the end user, keeping them
for 3 months is enough while the statistics should be kept indefinitely.

3.4. RESTful API
In this design, there is no direct access to the database from the user interface, all accesses must
go through a well defined RESTful API. This API is provided by a Python application running
on top of an Apache web server. Its main role is to trigger all the SQL queries to the database,
enhance the results by adding meta-data such as topology (site name, country, VOs naming
convention), and apply complex filtering and grouping. Then the API is able to return results
in different human-readable standard formats such as JSON or XML.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032004 doi:10.1088/1742-6596/513/3/032004

3



3.5. Visualisation interface
The XRootD monitoring data are finally displayed within a web browser using the latest
JavaScript technologies: jQuery [8] and Highcharts [9] connected together by Dashboard in-
house MVC µ-framework [10] (xbrowse).

4. Benefits of the architecture
4.1. Scalability
All together, the traffic of the AAA and FAX federations generate roughly 5 million monitoring
events per day. All these events have to be recorded in the database and they represent 1.6GB
per day, each event having an average size of 350 bytes. This activity will constantly grow
together with the federations until the end of their full deployment. However, the presented
system is ready to meet this scaling challenge. Upstream of the database, GLED collectors
can be instantiated per region (or with a finer granularity) and the ActiveMQ servers scale
horizontally. At the database level, traffic can be split into different objects and mined using
different procedures (load-balanced over the whole cluster).

4.2. Common solution
Some applications such as XRootD monitoring and XRootD popularity may need to extract
statistics for different purposes from the same raw data. Instead of relying on two different
workflows as in the past, a unified approach is now used. This solution presents many advantages,
no duplication at the raw data level releasing messaging and storage resources, but also ensuring
the statistics are extracted from exactly the same data. Not only the workflow is shared but
also the development effort between the applications. The level of customization for the two
main experiments is very low allowing feedback from one to benefit the other.

5. AAA and FAX Dashboards
AAA and FAX Dashboards [11, 12] have been designed to cover a wide range of monitoring use
cases. First, to have a global view of the federation as shown by the matrix or the map views
in figures 2 and 3.

Figure 2. Matrix representation of the
transfers in the federation in a given time
window.

Figure 3. Map representation of
the transfers in the federation in a
given time window.

The second goal of this application is to allow site administrators to make deep analyses.
Many federation characteristics can be understood such as site access patterns, user behaviour
and data locality optimisation. From figure 4, a site administrator is able to understand which
remote users are mainly accessing his site, while figure 5 would allow him to understand which
are the most read files from his site. The application now consists of 7 distinct views with
associated filters and different plotting options.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032004 doi:10.1088/1742-6596/513/3/032004

4



Figure 4. User accessing FNAL. Figure 5. File accessed by Florida
users.

6. Beyond XRootD federations
While XRootD is today the most used federated storage technology, other technologies such
as the HTTP/WebDAV dynamic federation [13] will be used in the future. Monitoring this
new technology will be a hot topic in the future. The monitoring tool described throughout
this paper is built using common building blocks and distinct layers communicating through
well-defined APIs. This generic design greatly simplifies the implementation of monitoring in
different contexts: for example, FTS and ATLAS DDM monitoring are based on exactly the
same framework. Thanks to this experience, monitoring the future HTTP/WebDAV federation
will be relatively fast and easy to implement as soon as the system is correctly instrumented
and monitoring use-cases understood.

7. Conclusion
The AAA and FAX federations are currently actively used and growing quickly. All together,
about 5 million monitoring events are recorded and mined daily and the visualization interfaces
are used by an increasing number of users. The various monitoring views in the application
cover a wide-range of use cases allowing both in-depth analysis as well as a global overview
of the federation. By design, the application is ready to meet the challenges imposed by the
exponential growth of federation usage, following horizontal scaling strategies where applicable
and analysing new technologies.

References
[1] XRootD project page: http://www.xrootd.org/
[2] AAA project page: https://twiki.cern.ch/twiki/bin/view/Main/CmsXrootdArchitecture
[3] FAX project page: https://twiki.cern.ch/twiki/bin/view/AtlasComputing/AtlasXrootdSystems
[4] Xrootd system monitoring documentation: http://xrootd.slac.stanford.edu/doc/prod/xrd monitoring.htm
[5] Hanushevsky A, Presentation on High Performance Monitoring, 2013

https://indico.cern.ch/getFile.py/access?contribId=0&resId=1&materialId=slides&confId=220304
[6] Gled web page: http://www.gled.org/cgi-bin/twiki/view/Main/XrdMon
[7] Tadel M, Gled - an Implementation of a hierarchic Server-client Model, 2004 Nova Science Publishers Vol. 16

1-59454-174-4
[8] JQuery web page: http://http://jquery.com/
[9] Highcharts web page: http://www.highcharts.com/
[10] Andreeva J et al, Designing and developing portable large-scale JavaScript web applications within the

Experiment Dashboard framework, 2012 J. Phys.: Conf. Ser. 396 052069
[11] AAA Dashboard: http://dashb-cms-xrootd-transfers.cern.ch
[12] FAX Dashboard: http://dashb-atlas-xrootd-transfers.cern.ch
[13] Furano F, Brito da Rocha R, Devresse A, Keeble O, Alvarez Ayllon A and Fuhrmann P, The Dynamic

Federations: Federate Storage on the fly using HTTP/WebDAV and DMLite, 2013 The International
Symposium on Grids and Clouds

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 032004 doi:10.1088/1742-6596/513/3/032004

5




