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Abstract

Using data taken by the LHCb detector at /s = 7TeV during 2011 the normalised double
differential production cross-sections of D°, D**, D*, D{ and L} are presented in bins
of rapidity and transverse momentum. Comparisons are also made to the previous
LHCb measurement at /s = 7 TeV[1] and, where available, to theoretical predictions
obtained using the FONLL model[2]. This analysis has been developed for the start of
LHC Run 2 where the LHCb collaboration will repeat this measurement at /s = 13 TeV.
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Introduction

This thesis will outline the progress that has been made toward measuring the
production cross-sections of D°, D**, D*, Dfand A}in bins of transverse momentum
and rapidity at /s = 7TeV using data taken in 2011 by the LHCb detector. The
measurement has been previously performed using LHCb data taken in 2010[1] and this
analysis serves to cross-check the 2010 measurement as well as validating the new
analysis strategy that will be used for a measurement at /s = 13 TeV during the initial
weeks of LHC Run 2. Preliminary results for the normalised, bin integrated,
cross-sections are presented with comparisons to the previous LHCb results. In
addition comparisons are made to theoretical predictions calculated using the FONLL
model where available.

Chapter 3 begins with a discussion of the motivation for these measurements and
presents a selection of ways in which the previous result has been used. This is followed
by a summary of the methodology used for calculating the results with a description the
the dataset. The hadron selections, yield extraction and efficiency determination are
then described in Chapter 5, 6 and 7 respectively. Penultimately the status of the
ongoing evaluation of the uncertainties associated with these measurements are shown

before presenting the preliminary results in Chapter 9.






The LHCDb detector

The Large Hadron Collider (LHC) is a 27 km synchrotron at CERN in Geneva,
Switzerland, which primarily produces proton-proton collisions for the fundamental
physics research conducted by the ATLAS, CMS, LHCb and ALICE collaborations.

A series of older accelerators from the CERN accelerator complex (Figure 2.0.1) are
used as pre-accelerators to the LHC. Initially protons are produced using a
duoplasmatron and are subsequently accelerated by LINAC2 to 50 MeV. The Proton
Synchrotron Booster (PBS) then accelerates the protons to 1.4 GeV before injecting
them into the Proton Synchrotron (PS) where they are accelerated to 26 GeV. Finally the
protons are accelerated to 450 GeV using the Super Proton Synchrotron (SPS) and
injected into the Large Hadron Collider which has a design energy of 14 TeV.! The beam
of the LHC is made up of 2,808 bunches each containing approximately 1.15 x 10!
protons which corresponds to a bunch spacing of 25 ns around the ring.?

The Large Hadron Collider beauty (LHCb) experiment is situated approximately
100 m underground at point 8 of the Large Hadron Collider and unlike the general
purpose detectors which aim for the highest integrated luminosities possible LHCb is
designed for lower luminosities as is clear from Figure 2.0.2. This lower luminosity is
achieved by fixing the mean number of visible proton-proton interactions® in each
bunch crossing, u, through a feedback loop which varies the transverse distance
between the beams in order to maintain a constant instantaneous luminosity as shown

in Figure 2.0.3.

ITo date the centre of mass collision energies used have been 7 TeV and 8 TeV in 2011 and 2012 respec-
tively, the first 13 TeV collisions are expected to occur in May 2015.

2While the design bunch spacing is 25ns the 2010-2012 data taking periods used reduced number of
bunches and a 50 ns bunch spacing. The first data that will be used for physics with 25ns bunch spacing
will be taken in 2015.

3«visible” is used to describe the collisions which result in interactions rather than scattering and is gen-
erally taken to be 69.9 % of the total number of proton-proton interactions.
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2.1 The LHCb detector

The LHCD detector is a single armed forward spectrometer, covering the
pseudorapidity? range 2 < < 5 (15 to 300 mrad)[10], which is designed to perform
precision measurements of beauty and charm quarks which are favourably produced
near to the beam pipe as shown in Figure 2.0.4. The forward design also allows the
majority of the detector to be made in flat planes perpendicular to the beam pipe with
the majority of readout electronics and physical support structures being kept outside
the acceptance of the detector. This reduces the amount of passive material that
particles must pass though in order to be detected and allows LHCb to have excellent
momentum resolution. In addition, LHCb is designed to efficiently provide the flavour
tagging of particles therefore opening a wide range of opportunities, particularly in the
measurement of CP violation.

The detector itself is made up of a vertex locator, five tracking stations, two ring
imaging Cherenkov detectors, an electromagnetic calorimeter, a hadronic calorimeter

and five muon detectors arranged as in Figure 2.0.5.

2.2 Vertex Locator

The LHCb detector’s vertex locator (VELO) is unique at the LHC as it can be moved
between a distance of 35 mm and 7 mm from the beam of the LHC. This movement is
necessary to protect the VELO during the initial injection of protons when the beam is
unstable and may deviate from its nominal path. After each fill of the LHC, the position
of the beam is measured and the VELO is manoeuvred into position prior to the start of
data taking.

The VELQ itself is made up of 42 modules of silicon strip detectors with a pitch of
38 um to 102 um which varies linearly from the beam edge. Each module provides a
measurement of the r and ¢ coordinates and are arranged as shown in Figure 2.2.1 to
optimise the reconstruction performance.

The close proximity of the VELO to the LHC beam allows for an excellent primary
vertex (PV) resolution of 13 um in the transverse plane and 71 pum in the axis parallel to
the beam[11]. In addition, thanks to its close proximity to the interaction point, the
VELQ is also able to directly observe tracks from B-mesons, which have a typical
lifetime of 10~!2 s, opening up opportunities for precision lifetime measurements and

the study of processes such as B? mixing[12].

4See Equation 5.1 for a definition of pseudorapidity.
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2.2.1 Silicon Tracker

The Silicon Tracker is comprised of two parts; the Tracking Turicensis (TT) and the
Inner Tracker (IT). Both parts are comprised of four vertical silicon microstrip detectors
with a strip pitch of around 200 um in a x-u-v-x layout of where the inner two layers, u
and v, are rotated by —5° and 5° respectively. The TT is located upstream of the magnet
and covers the full acceptance of the detector. In contrast, the IT is placed downstream
of the magnet and only covers the innermost region of the acceptance where the
occupancy is greatest. The remainder of the acceptance is measured using the Outer
Tracker as described in the following section. In all elements of the Silicon Tracker the
length of the silicon strips is varied to minimise the occupancy expected in any given

strip while reducing the number of required readout channels.

2.2.2 Outer Tracker

The Outer Tracker (OT) is a drift-time detector and is comprised of around 55,000
hollow tubes containing a gas mixture and a thin wire in the centre. When a charged
particle enters the tube the gas mixture is ionised resulting in the delocalisation of
electrons which are then attracted towards the charged wire in the centre. As the
electron drifts a phenomena known as Townsend discharge occurs increasing the
number of electrons to a level at where they can be detected by electronics at the end of
the wire. Rather than being limited to the spacial spacing of the straws, the resolution

can be improved by measuring the time since the last beam crossing to establish the



distance from the wire at which the particle travelled. The gas mixture is chosen such

that the maximum drift time is 50 ns to minimise spillover from other bunch crossings.’

2.3 Particle Identification

Particle Identification (PID) is used for distinguishing between long lived particles
which have similar characteristics in the detector such as; protons, pions and kaons or
neutral pions and photons. The main elements of LHCb for distinguishing these
charged hadrons are the calorimeters and the two ring-imaging Cherenkov detectors
named RICH 1 and RICH 2.

2.3.1 RingImaging Cherenkov Detectors

RICH detectors contain a medium with refractive index (n) slightly greater than 1
therefore when charged particles pass through the detector Cherenkov radiation is
emitted at an angle, 6., given in Equation 2.1. As this is related to the velocity of the
particle, v, this can be combined with a momentum measurement to give a mass
hypothesis. Plotting track momentum against Cherenkov angle (Figure 2.3.1) shows the
formation of bands, each of which corresponds to a different species of particle.

cos(0,) = n_cv 2.1)

As pions are the most commonly produced particle at the LHC a log-likelihood
algorithm is used to perform a ratio likelihood test of whether a candidate is an electron,
kaon, muon or proton against the likelihood that the candidate is a pion. Below
threshold (9.3 GeV for kaons and 17.8 GeV for protons in RICH 1) the refractive indices of
the RICH detectors are too small to produce Cherenkov radiation and the log-likelihood
must instead be calculated in veto mode, i.e. the likelihood that this track is not a pion.
The likelihood produced by the RICH is combined with the likelihoods provided by

the other PID subdetectors in LHCb to provide delta-log-likelihood (DLL) variables
which can be used as particle identification discriminant. A more advanced set of
variables, ProbNN, are also provided by the LHCb collaboration which are produced by
training a neural network with the log-likelihood variables calculated from each
subdetector with track properties, such as p, pr, and various quality variables. This
results in a more powerful discriminant with the added advantage that it defines a

normalised Bayesian probability for each hypothesis.

5For 25 ns data taking the hits in the OT from the previous and following bunch crossing are used during
reconstruction due to the drift time having some potential overlap.
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Figure 2.3.1: Plot of Cherenkov angle against momentum for 2% of the real data taken at
V/s=7TeV in the C4Fyq radiator of RICH 1[7].

2.3.2 Calorimeters

In addition to Particle Identification, calorimetry is used to measure the energy and
position of electrons, photons and hadrons as well as providing signal for them at the
lowest level of the LHCD trigger, prior to any tracking considerations. All calorimeters
follow the principle that scintillation light, that is light that is emitted due to the
presence of ionising radiation, is measured by photon detectors. In LHCb wavelength
shifting fibres are used to convert these photons into the spectral range of multianode
photomultiplier tubes. The first layer of the LHCb calorimeter is the Scintillator Pad
Detector and is used to distinguish between charged and neutral particles as they enter
the calorimeter and is then followed by the PreShower which distinguishes between
electrons, photons and pions. These are both primarily used to provide a signal for the
trigger. The Electromagnetic Calorimeter measures the transverse energy of electrons,
photons and neutral pions and is used in the reconstruction of such particles, whereas,
the Hadronic Calorimeter is mostly used to provide a transverse energy measurement

for triggering purposes.[13]

2.4 Simulation

For evaluation of efficiencies Monte Carlo events are generated using Pythia 8[14] with a
specific LHCb configuration[15]. The decays of hadronic states are then simulated using
EvtGen[16] and final state radiation is modelled using PHOTOS[17]. Detector effects

and interactions are implemented using GEANT4[18] as described in Reference [19].
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Motivation

Production cross-sections form a group of essential measurements that must be
performed by all collider based experiments early in their running in order to assist in
the analysis of the remainder of their datasets. For example they are used to tune Monte
Carlo generators and to understand the properties of standard model backgrounds in
searches for new physics. This section will describe some of the ways in which the

previous measurement by LHCb has been used.

3.1 Comparison with theoretical models

The measurement of open charm production provides an interesting test of QCD
dynamics particularly in the forward region and at high transverse momenta. A
selection of theoretical models exists including the “Fixed Order + Next-to-Leading Log”
(FONLL) framework by Cacciari et al.[2] and the “General-Mass
Variable-Flavour-Number Scheme” (GMVFNS) by Kniehl et al.[20] both of which have
produced predictions for the previous LHCb measurement. In general, predictions in
the charm sector prove challenging for theorists and for cross-section measurements
the production of charm with low transverse momentum is plagued with large errors as
assumptions regarding the charm quark mass fail. On the other hand increasing
transverse momentum results in large logarithms which require resummation and
challenges experimentalists with exponential reduction of the cross-section limiting the
statistical confidence that can be obtained. Despite this the high luminosities and
energies available at the LHC allows for precise tests of theory as was shown by the
previous measurement (Figure 3.1.1) where predictions were provided for both the
FONLL and GMVENS models.

3.2 Parton distribution functions

Parton distribution functions (PDFs) describe the complex internal structure of protons

by calculating the probability that a specific species of parton, that is a quark or a gluon,

11
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Figure 3.1.1: Differential cross-sections in pr of the specified charm hadron presented along
side predictions from the FONLL and GMVFNS models[1]. Note the use of m as a scaling fac-
tor to separate the results for each rapidity range.
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Figure 3.2.1: Plot showing the kinematic range of x probed by various datasets.[25]

will exist with a specified fraction of the proton’s momentum, x, at a given energy scale.
Several PDFs have been produced by the phenomenological community such as
HERAPDF[21], CTEQI[22], MSTW|23] and NNPDF[23] and all of these rely upon data to
constrain the parameters that exist in each approach.

HERAFitter[24] is an open-source fitting framework for PDFs and is produced at
DESY for the PDF set, HERAPDE This primarily uses the cross-section measurements of
deep inelastic lepton-proton scattering (DIS) processes by the ZEUS and H1
collaborations as the input data, however, this dataset is limited to the region
107* < x <107, The PROSA collaboration have therefore investigated the potential of
the LHCD dataset for extending this region, motivated by the the leading order
approximation in Equation 3.1. This describes the scale of x probed by calculating the
cross-section of a heavy quark with mass, m, in proton-proton collisions each with a

beam energy, E;, in a region of transverse momentum, pr, and rapidity, y.

2 2

x=e*Y # (3.1)
P
As shown in Figure 3.2.1, the LHCb dataset compliments the existing HERA data in

part thanks to the acceptance of the LHCb detector being particularly suited to

extending the range of PDFs by exploiting the exponential increase in reach that comes

with increasing rapidity. The effect of using normalised and absolute cross-sections on

the fitted PDFs is shown in Figure 3.2.2 and demonstrates a significant improvement in

the PDF uncertainties, particularly when using normalised cross-sections.

3.3 Atmospheric backgrounds in neutrino experiments

Recent advancements in neutrino detectors have allowed for the first observations of
neutrinos with energies in the PeV range. With experiments such as IceCube

investigating extraterrestrial sources of neutrinos[26] there is a need to understand and
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Figure 3.2.2: Results provided by PROSA showing the improvement the LHCb dataset has
when included in the HERAFitter input for the; gluon (top left), sea-quark (top right), up-
valence quark (bottom left) and down-valence quark (bottom right).[25]

quantify the atmospheric backgrounds that are present at these high energies. These
arise from interactions between cosmic rays and atmospheric nuclei with ~PeV
neutrinos corresponding to an incident energy of ~30 PeV. Such energies are
unreachable to modern fixed target experiments however the LHC, with a centre of
mass energy of 7 TeV, is equivalent to a incoming cosmic ray of 26 PeV. Therefore LHC
cross-sections prove useful in improving the constrains on these backgrounds as
demonstrated by Bhattacharya et al.[27]
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Methodology

4.1 Calculation

There exists a variety of options for reporting the open production cross-section of
charm hadrons from proton-proton collisions, all of which require the yield, N;, to be
extracted from the dataset. The simplest of these is to measure is the total integrated
cross-section of a specified hadron within a region of transverse momentum and
rapidity as shown in Equation 4.1 where H, is the hadron under study, f represents the
final state decay products and c.c. shows that the charge conjugation of the process is

also included.

| ) N;(H;— f+c.c)
T ey e ey R

The extracted yield must be corrected to account for any events which have been lost

4.1)

due to inefficiencies as described in Chapter 7. This factor is denoted by €t and
represents the combination of many effects from both the physical detector and the
analysis techniques used. Another correction must then be applied to the yield to
obtain the total number of hadrons of the specified species that have been produced,
rather than the number which are undergo a specific decay. This factor is known as the
branching ratio, %8, and is taken from the Particle Data Group’s (PDG) review of particle
physics[28], an annual publication which congregates and averages the results obtained
by all relevant experiments in a single freely accessible document.

Once the other terms have been calculated the cross-section is obtained using the
measured total integrated luminosity that the dataset corresponds to, Zin. From the
total integrated cross-section an estimation can be made for the double differential
cross-section at any point within a region of phase space, i, by dividing the integrated
cross-section by the size of the region in both transverse momentum and rapidity, as in

Equation 4.2.

620,- (HC) N (o] (HC)
Opr0y |, AprAy

(4.2)
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At the time of writing a measurement for the total integrated luminosity of the
available 2011 dataset is not available and therefore absolute cross-sections cannot be
measured. Despite this the groups mentioned in Section 3.1 have stated that
measurements involving ratios dramatically reduce the theoretical uncertainty of their
predictions, thus allowing for higher precision comparisons. Ratios also result in a
cancellation of the luminosity dependence and therefore the preliminary results

presented here are of cross-sections normalised to single phase space bin.

4.2 Data

The dataset used for this analysis was collected in 2011 during LHC Run 1 at a centre of
mass energy of 7 TeV with an average of 1.4 inelastic collisions per bunch crossing. This
lower than design energy was used due to concerns for the safety of the machine
following the accident in 2008[29]. In addition the LHC ran at a reduced bunch spacing
of 50 ns corresponding to a 20 MHz rate of data collection. A pass-though trigger was
used for this measurement which stores a random sample of events to disk with no
selections applied. This trigger was chosen to prevent the difficulties which arise when
calculating the absolute efficiency of the LOHadron trigger.

To allow for cross checks of the analysis the dataset was split by the polarity of the
magnet to obtain two approximately equal subsets which are referred to as MagUp and
MagDown. This not only allows for two statistically independent datasets to be
compared but also provides a test of detector asymmetries which may bias the result.
Simulated data is produced for both magnet polarities therefore each dataset can be
analysed in isolation to each other. All results presented in his document are from the

MagDown dataset unless explicitly stated.

4.3 Decay channels

The decay channels used for this measurement are selected in order to maximise the
number of fully selected events and as such channels with large branching ratios are
favoured. In addition, the efficiency by which the decays can be selected is important,
therefore, the measurement cross-sections typically favour decays involving muons as
has been used in the previous LHCb measurements, such as the J/y cross-section[30].
Leptonic decays are however impractical for the measurement of other charm hadrons
due to the extremely small Leptonic branching ratio. Table 4.3.1 lists the modes used for
this measurement alongside their branching ratios taken from the 2014 edition of the
PDG review of particle physics[28]. In all cases both the stated channel and the charge

conjugation have been combined for this measurement.
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Hadron Decaychannel Branching Ratio

D° K nmt (3.88+0.05) x 1072
D° K natnnt (8.08+0.21) x 1072
D** Dn* 0.677 +0.005

D* K ntn* (9.13+0.19) x 1072
D* K K*tn* (9.54+0.26) x 1073
D} K K*n* (5.39+0.21) x 1072

Table 4.3.1: Hadrons included in this measurement with the decay modes and respective
branching ratio.
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Event Selection

In order to obtain candidates for the decay which is to be studied the data collected
must have selections applied to reduce the background which is present in the dataset.
The most common background which is present in almost all modern HEP experiments
at hadron colliders is combinatoric background. This is when the reconstruction
algorithm has incorrectly combined the tracks which have been found by the tracking
algorithm into candidates and is generally formed a of a smooth linear background
which prior to any selections being applied dramatically reduces the statistical

significance of any true candidates, as shown in Figure 5.1.1.

5.1 Strategy

Initially the effectiveness of two differing selection strategies was evaluated using

D° — K~ m*the first of which used the rectangular cuts from the previous LHCb open
charm cross-section measurement. The alternative strategy which was investigated was
to use multivariate techniques where a classifier is trained using a two samples one of
which is known to be signal and the other which is representative of the background
which is to be removed. The classifier can then be used to obtain a variable, like in
Figure 5.1.2, which is proportional to the confidence the classifier has that a particular
event displays signal-like characteristics. This variable can then be cut upon to provide
a particular signal and background efficiency as is shown by the ROC curve in Figure
5.1.3.

The first decision that must be made when using multivariate techniques is to decide
upon signal and background samples for the classifier to be trained with. One option is
to use a signal sample generated using Monte Carlo techniques and a background
sample of the events from the mass distribution that exist outside the region containing
the peak. This option has the benefit of being easy to implement and provides good
description of combinational backgrounds whose characteristics typically have very
little dependence on the reconstructed mass, however, the quality of the signal sample

is dependent upon having high quality Monte Carlo generators.
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Figure 5.1.1: Plot of the D° mass for D® — K~ n"showing that background is dominant de-
spite being a high yield mode and having some preselection applied.
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Figure 5.1.2: Normalised histogram of the classifier response to the training datasets where
red is used to represented the signal events and blue is used to represent background events.
The shaded region and points show the response of the BDT to the training and testing sam-
ples respectively and demonstrate there is no evidence for overtraining in the classifier.
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The main alternative source for a training data is to use a technique known as
sPlot[31] for which real events are fitted to obtain an estimated signal yield. Each event
is given a weight which describes to what extent the MVA training should “trust” the
features of that event. This method has the advantage of being data driven and therefore
should perfectly describe the data which is to be selected however it requires that am
estimated yield can be obtained by fitting the mass distribution of the mother hadron.

The Monte Carlo signal/data side-band background option was chosen for the
training dataset as the mass distributions for most of the decay modes in this study peak
in the mass distribution small in comparison to the background weakening the sPlot
method. In addition simulated events are used for evaluating the efficiency of the
selection and therefore any variables which aren’t well described by the Monte Carlo
generators are undesirable for inclusion in the training even if they are well described
by the training dataset.

Due to the vast of background produced by the reconstruction algorithm and the
limited computing resources available, it is necessary to preform a preselection of
rectangular cuts on the events prior to the BDT. This selection was developed by
examining the cuts used in the previous analysis and loosening the cuts which had the
worst efficiency or those that caused a shaping in the efficiency in the rapidity and
transverse momentum of the mother particle. This is undesirable as it introduces a
systematic uncertainty as described in Section 10.

For the classifier the selection of multivariate algorithms (MVAs) available in
TMVA[32] were each evaluated and it was found that a binary decision tree (BDT)

produced the optimal separation between signal and background. To find variables
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Figure 5.1.4: Comparison between the cut based selection used in 2010 (a) and a preliminary
BDT based selection (b).

which could potentially provide discriminatory power the normalised distributions
were plotted for the signal and background samples so they could be inspected for
differences which might be exploitable by the BDT. The result of this study was then
used to train a preliminary classifier from which variables were iteratively removed until
only those which provided significant improvement remained.

The result from the two strategies is presented in Figure 5.1.4 and shows that the BDT

provides significant improvements over traditional cut based selection.

5.2 Choice of variables

The cuts applied during the selection of candidates fall into two categories, some are
used to account for physical properties or limitations of the detector while the majority
are used for their ability to discriminate between signal and background. Here the

meaning of variables and the motivation for their use is discussed.

Child transverse momentum pr
Transverse momentum corresponds to the vector sum of the x and y components
of the track’s momentum where the z axis is defined as being along the beam.
This discriminates upon the property that any child from the decay of a charm

hadron will typically have a larger transverse momentum than a child produced
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Figure 5.2.1: Graphic showing the meaning of the impact parameter with PV referring to the
primary vertex.

directly at the primary vertex.

Child momentum, p
Any track for which PID cuts are applied must be constrained to the range
2GeV < p <100GeV due to the limited calibration samples available for
calculating the efficiency of the aforementioned PID cut as discussed in Section
7.4.

Child pseudorapidity,
The pseudorapidity of a track is a measure of the angle, 0, of a track relative to the
beam axis and is defined by Equation 5.1. A pseudorapidity of zero is
perpendicular to the beam, increasing to infinity which corresponds to the beam
axis itself. The motivation for constraining pseudorapidity to the range 2 <n <5 is

due to the acceptance of the LHCb detector.

n=-In tan(g) :—ln(—p+pL (6.1)
2 p-pL

Child impact parameter y>
The impact parameter corresponds to the closest distance a track makes to the
primary vertex when extrapolated backwards as shown in Figure 5.2.1. In addition
a y? test is a statistical measure which can be used to assess the quality of a fitted
quantity as described in [33]. The impact parameter y? is then the difference in
the fit quality of the primary vertex when the track is either included or excluded.

The daughters of charm decays are typically produced far from the primary vertex
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and therefore result in a much reduced quality of fit, i.e. a large impact parameter
2

x°-

Child DLL variables, DLLx_,
The delta log likelihood (DLL) variables describe the likelihood that the track is of
one species relative to another, in the above case the likelihood that the track is a
kaon relative to being a pion. These variables are born of the particle
identification system described in Section 2.3.1 with further detail available in
Reference [34]. DLL variables were chosen over their ProbNN counterparts as this
analysis will be repeated early in LHC Run 2 with the selection applied in the
trigger, as part of the new Turbo stream(35], where ProbNN variables will not
initially be available.

Mother mass constraint, mpDG(DO) -mK nt)
Due to the finite resolution of the detector the reconstructed invariant mass from
any child particles is not exactly equal to the known mass in the PDG.! As a result
a mass window must be used to keep the useful two body combinations. This
range is also set to contain enough candidates outside the mass peak to allow for

fitting of the combinatoric background as described in Chapter 6.

Mother vertex fit y°
The child tracks of a candidate mother can never exactly intersect to give a vertex
at which the mother decayed therefore a y test is performed on the fit of this
vertex. Large values corresponds to tracks which are unlikely to originate from the

same vertex.

Mother direction angle
The angle between the sum of the child track momenta and the vector that
intersects both the primary vertex and the reconstructed mother vertex. If both
the child tracks have been correctly associated and fitted this angle should be

zZero.

Mother vertex displacement
The ground state of excited hadrons typically decay though weak interactions and
as such have observably long lifetimes. Two parameters are used to discriminate
on the lifetime, one is to use the proper lifetime (7) directly, the other is to

perform a y? as described for the child impact parameter y2.

I This effect can also be observed in the case of very short lived particles having poorly defined masses
from the uncertainty principle however this effect is not observable in any of these measurements.
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Decay axis angle, cos (6)
The cosine of the angle between the momentum of the pion in the D°rest frame
and the momentum of the D’meson in the lab frame. In D — K~z " this value is
seen to peak towards |cos (6;)] = 1 in background candidates while remaining

isotropic for signal.

Distance of closest approach
This refers to the largest distance of closest approach (DOCA) measured out of all
combinations of the parent’s daughter tracks and clearly likely candidates are

expected to minimise this quantity.

5.3 Selection tables

Tables 5.3.1 to 5.3.5 shows the selections that were found for use in this analysis. A
different preselection and BDT was used for each decay mode with exception of
D*where individual selections were shown to give a statistically insignificant
improvement, likely due to the the BDT’s input variables lack of daughter dependence.
As aresult a single selection was used with the BDT being trained using

D* — K~ K" n*signal and background.

Particle Variable Cut value BDT Input
pr > 250 MeV v
K-t p 3<p<100GeV -
’ n 2<n<5 v
Impact parameter y? >4 -
nt DLLx_, <3 -
K DLLk_ >5 -
mppG(D%) — m(K~ ) < 80MeV -
Vertex fit y? <25 v
DO Direction angle < 35mrad v
Vertex displacement VDy?>16 OR 7 > 0.150ps -
Proper time - v
cos (0x) - v
BDT discriminant >0.2 -
D+ m(K‘n*ngoft)— mK ) < 160MeV -
Vertex fit y? <25 -

Table 5.3.1: Selections used for D® — K~z
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Particle Variable Cut value BDT Input

pT > 200, 300, 350, 400 MeV v

ot K- p 3<p<100GeV -
’ n 2<n<5 v
Impact parameter y> >4 -

nt DLLk_y <3

K~ DLLk—y >5 -
mppg(D®) —m((K - n*n~n") <80MeV -

DOCA <0.5mm v

Do Vertex fit y? <25 v
Direction angle < 35mrad v

Vertex displacement VDy?>16 OR T > 0.150ps -
Proper time - v
cos (6x) - v

BDT discriminant >0.1 -

Table 5.3.2: Selections used for D° — K~ n*n n*where “A, B, C, D" requires at least one
child track to pass the strongest selection, two to pass the second strongest selection etc.

Particle Variable Cut value BDT Input
pr > 200, 400, 400 MeV -
ot K p 3< p<100GeV -
’ n 2<n<5 -
Impact parameter y> > 4,10, 50 -
n* DLLx_, <3 -
K* DLLk—y >5 -
m(h~h*h*) 1790 < m <1940 MeV -
DOCA <0.5mm v
Dt Vertex fit y? <25 v
Direction angle < 35mrad v

Vertex displacement ~ VDy?>16 OR 7 > 0.150 ps
Vertex displacement y? -
Proper time -
Flight distance -

BDT discriminant >0.15 -

SNENEN

Table 5.3.3: Selections used for D¥ — K~ K*ntand D* — K~ ntn*where “A, B, C" requires
at least one child track to pass the strongest selection, two to pass the second strongest selec-
tion etc.
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Particle Variable Cut value BDT Input

pr > 200MeV max, min
Tt K- p 3< p<100GeV -
n 2<n<5 -
Impact parameter y> >4 -
nt DLLg_, <3 -
K~ DLLk-» >5 -
¢ mppg(¢p) — m(K~K™) <20MeV ;
m(¢pnr™) 1900 < m < 2050 MeV -
DOCA - v
DY Vertex fit y? <25 v
Direction angle < 35mrad v
Vertex displacement VDy?>250R T >0.150ps -
Vertex displacement y? - v
Proper time - v
Flight distance - v
BDT discriminant >0.05 -

Table 5.3.4: Selections used for D} — (¢ — K~ K*)n*where “A, B, C" requires at least one
child track to pass the strongest selection, two to pass the second strongest selection etc.

Particle Variable Cut value BDT Input
pr > 200, 400, 1000 MeV max, min
3< p<100GeV -
K, p P p ©
n 2<n<5 -
Impact parameter )(2 >4,4,6 -
nt DLLk_y <3 -
K- DLLg_, >5 -
DLL, . >10 -
P DLL, x >5 :
mppG(AL) —m(pK n™) < 90MeV -
DOCA <0.5mm -
At Vertex fit y? <25 v
¢ Direction angle < 35mrad v
cos (0x) - v

Vertex displacement ~ VDy? >4 OR T > 0.075ps
Vertex displacement y? -
Proper time -

BDT discriminant >0.1 -

NN

Table 5.3.5: Selections used for A} — pK~n"where “A, B, C" requires at least one child
track to pass the strongest selection, two to pass the second strongest selection etc.
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5.4 Selected mass distributions
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Figure 5.4.1: Fully selected mass distributions for the 2011 MagDown dataset.
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Yield Extraction

Once selected candidates have been obtained a signal yield must be extracted by
performing a fit to the data. From this fit three yields are extracted, including the
number of candidates that are classified as both signal events and as combinatorial
background. The last parameter that is extracted is the fraction of secondariness in the
signal yield, where a candidate is defined as secondary if was produced by the decay of a
b quark as opposed to being prompt and produced directly at the primary vertex from
the proton-proton interaction.

First, to extract these quantities a series of four prefits are used to obtain values for
parameters of the probability density function (PDF) that are fixed in across the full
transverse momentum/rapidity phase space, as shown in Figure 6.1.1. These fits are

performed to candidates from across the entire LHCb acceptance.

Mass shape
This fit is performed to the mass distribution of real data and is used to contain

any parameters in the signal mass probability density function.

Prompt signal IP y? shape
This fit is performed to the impact parameter y? shape of prompt signal Monte
Carlo events that have pass the selection that has been applied to the data, less
any particle identification cuts. A parent hadron is classified as prompt if the total

lifetime of any ancestor particles is less than 0.1 fs.

Secondary signal IP y? shape
This fit is performed to the impact parameter y? shape of secondary selected
signal Monte Carlo events where an event is secondary if it fails the

aforementioned ancestor lifetime cut.

Combinatorial background IP y? shape
This fit is performed to the impact parameter y> shape of fully selected data
candidates that exist outside the signal peak of the mass distribution and are

therefore known to be background.
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Mass In (IP )(2) sm
Hadron Decaychannel Sig Bkg Sig Sec Bkg Sig Bkg

D° K n* SGS FOP AGE AGE BGS
D° Kntnnat SGS FOP AGE AGE AGE
D* K ntn* SGS FOP AGE BGS BGS
D* K K*n* SGS FOP AGE BGS BGS
D} on* SGS FOP AGE BGS BGS
D**  DOg* SGS FOP AGE BGS BGS SCB DST
A pK-n* SGS FOP AGE BGS BGS

Table 6.0.1: Table of the PDF components used for each decay channel where the three digit
codes and method for combining the components are explained in Section 6.1.

After performing the prefits a simultaneous unbinned 2D fit is performed across all
bins where the unbinned refers to the fact that the distributions of the fit variables are
not placed into histograms and are instead fitted directly.

In the case of D**a 3 dimensional fit is used to allow the slow pion background to be
measured. The additional fit parameter used is the delta mass, 6m = m (D**) -m (D*O),
where these masses correspond to the reconstructed invariant mass of the child tracks
rather than the known PDG values. The motivation for using §m as opposed to m (D**)
is due to this distribution peaking more sharply therefore typically proving easier for
numeric minimisation techniques. In addition the 6 m distribution is less strongly

correlated with m (DO) further assisting in the fitting of the distributions.

6.1 Probability density functions

The probability density function used for each hadron and mode has been determined
heuristically to provide a good description of the observed distributions in both real and
simulated candidates. There is also no reason to expect the distributions to be identical
for all hadrons and decay channels and these differences are present in the PDFs that
have been used in the fitting procedure. The PDF used for each component of the fits

are in Table 6.0.1 where the three digit codes refer to:

SGS Gaussian

A normal distribution with mean, i, and standard deviation, o.

(x-n)?

fses (v ,0) =€ 272 6.1)
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FOP First order polynomial

A linear polynomial with gradient a and y-intercept b.

frop (x;a,b) = ax+b (6.2)

AGE Gaussian with asymmetric exponential tails
A modified Gaussian PDF with exponential tails of strength p; and pr either side

of the mean p and an asymmetrical width o governed by e.

P -

e PrTas x<p-(pr-o-(1-e),

()

e \Vzouo ﬂ_(pL.g.(l—e))Sx<ll,
x-u )2

(\/i»a~(1+€))

face(x; 1, 0,€,01, PR) = 3 (6.3)

e U<x<p+(pr-o-(1+e),

é_ i
e? PR Toe xzp+(pr-o-(1+e€)

BGS Bifurcated Gaussian
A modified Gaussian PDF with an asymmetrical width o and oy either side of

the mean p.

fees(x; 1, 01,0R) = (e (6.4)

SCB Single crystal ball
A Crystal Ball function, that is Gaussian with an n’h order power-law tail on the

left hand side starting ao before the central value.

_ G-w? _
e 202 — > —Q,

no_la? X—fly— x—
R A

fse(x; 1, 0,a,n) = (6.5)

DST Empirical 6 m background shape
A commonly used shape for 6 m distributions with free parameters; A, B and C

and a cut off 6§ my below which the PDF evaluates to zero.

x \4 _ x=0mg X
fDST(x;6m0,A,B,C)=(5—mO) -(1-e "¢ )+B-(6—mo—l) (6.6)
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The total PDF for the 2D fit with observables; m and IPy?, is:

F(m, log(IPy?) = Nig- fuig(m) - fuig(ogIPy?)
+ Ngec * fsig(m) : fsec (logIsz)
+ Nokg * fokg(M) - fokglogIPY?),

and the total PDF for the 3D fit with observables; m, IP XZ and 6 m is:

f(m, 1og(IPx?), 8m) = Nsig- frig(m) - frig(Om) - frig(logIPx?)
+ Nsec - frig(m) - frig(@m) - foecl0gIPY?)
+ Nind, - fiig(m) - fokg @ m) - feig(logIPy*)
+ Nsec, * fsig(m) - fokg(m) - freclogIPy*)

+ Nokg " fokg (M) - fokg(Em) - fokglogIPY?).
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Figure 6.1.1: Each stage of the fitting procedure for D** — (DO - K‘n+)ﬂ+in the 2011
MagDown dataset.

6.2 Yield tables!

y

pr[MeV/c] [2,2.5] [2.5,3] (3,3.5( [3.5,4[ (4,4.5(
[0,1000] 3309+22.6 823.8+34.8 733.0+33.1 408.9+25.7 91.8+12.4
[1000,2000[ | 720.1+29.8 1803.5+48.0 1600.8+46.0 1041.6+37.7 276.1+19.5
[2000,3000[ | 765.7+29.7 1763.7+47.2 1564.2+45.2 1012.7+36.3 287.0+19.0
[3000,4000[ | 619.9+26.6 1176.5+38.0 1087.4+36.4 663.9+28.1 112.2+11.8
[4000,5000[ | 373.5+20.6 636.5+27.5 565.2+25.7 302.0+18.6 253+54
[5000,6000[ | 252.5+16.9 322.4+19.4  265.2+174  127.7+£12.0 3.0£1.7
[6000,7000[ | 163.7+13.7 174.8+14.4 141.0+12.6 31.2+6.2 0.0+0.0
[7000,8000[ | 75.4+9.6 117.7+11.4 70.5+£9.0 7.0+3.0 0.0£0.0

Table 6.2.1: Raw signal yields extracted using a 2 dimensional fit for D — K=7" decays.

IHere right half-open interval notation is used such that p € [0,1000[ and 0 < p < 1000 are equivalent.



y
pr(MeV/c] [2,2.5] [2.5,3] [3,3.5( [3.5,4( (4,4.5(
[0,1000] 0.0+0.0 00+£0.0 00+£00 0.0£00 0.0+0.0
(1000,2000[ | 0.0£0.0 64+3.1 54+29 2.0+1.6 0.0+£0.0
(2000,3000[ | 43+1.9 348+63 408+7.0 157+4.0 43+22
[3000,4000[ | 9.6+3.0 63.5+84 522+8.0 42.0+7.2 29+2.0
(4000,5000[ | 10.0+3.0 54.8+74 57.7+87 335+58 55+2.8
[5000,6000[ | 9.6+3.0 448+7.0 351+63 24.7+53 34+1.8
[(6000,7000[ | 125+3.6 28.5+56 209+4.6 159+4.2 0.0+0.0
[7000,8000[ | 11.9+3.2 154+4.1 139+£3.8 55427 0.0+£0.0

Table 6.2.2: Raw signal yields extracted using a 2 dimensional fit for D° — K=n*7~ 7" de-
cays.

y

prMeV/c] (2,2.5] [2.5,3] (3,3.5( [3.5,4[ [4,4.5]

[0,1000] 0.0+0.0 0.0+0.0 22.7+10.2 17.8+9.0 4.0+£3.5
[1000,2000[ | 0.0+0.0 28.0+7.2 134.2+16.6 95.8+149 22.1+7.3
[2000,3000[ | 5.9+2.7 124.7+12.7 254.6+18.6 1852+16.7 43.4+8.1
[3000,4000[ | 18.2+4.7 138.5+12.8 219.7+16.3 111.4+125 32.8+6.3
[4000,5000[ | 25.6+5.4 121.8+11.6 1223+12.0 56.4+8.3 7.0£2.9
[5000,6000[ | 24.7+5.2 67.0+8.5 75.7+9.1 38.4+6.6 23+1.6
[6000,7000[ | 13.4+3.9 43.1+6.8 38.6+6.5 10.9£3.7 0.0+0.0
[7000,8000[ | 8.3+3.0 33.5+5.9 13.8+3.9 59+25 0.0+0.0

Table 6.2.3: Raw signal yields extracted using a 3 dimensional fit for D** — (DO - K’n*)ﬂJr
decays.

y
pr(MeV/c] [2,2.5] [2.5,3] (3,3.5( [3.5,4( (4,4.5]
[0,1000] 0.0+0.0 14+1.7 00+£00 27+22 0.0+0.0
(1000,2000[ | 0.0£0.0 21.7+£55 23.3+6.0 13.5+4.1 3.1%+1.9
[2000,3000[ | 15.0+4.0 63.2+89 603+9.0 329+6.7 5.8+24
[3000,4000[ | 19.8+4.6 60.3+8.7 7294+9.6 24.2+59 9.7+£3.2
(4000,5000[ | 18.7+5.0 44.1+76 476+75 11.1+£3.7 19+14
[5000,6000[ | 8.8+3.3 154+4.5 278+55 12.1+3.8 0.0+£0.0
(6000,7000[ | 11.8+3.5 10.5+3.7 14.6+45 4.1+£2.6 0.0+0.0
[7000,8000[ | 5.1+2.7 28+22 102+34 15+1.7 0.0+£0.0

Table 6.2.4: Raw signal yields extracted using a 2 dimensional fit for D¥ — K~ K*zn* decays.
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y

priMeV/c] (2,2.5] [2.5,3] (3,3.5( [3.5,4[ [4,4.5]
[0,1000] 6.1+0.2 1546+1.3 274.8+1.8 2045+16 56.1+0.9
[1000,2000[ | 58.8+0.7 602.9+24 901.2+3.1 646.5+2.7 173.3+1.3
[2000,3000[ | 174.0+1.2 855.0+2.8 1123.9+3.3 689.5+2.7 200.1+1.4
[3000,4000[ | 224.5+1.4 762.1+2.6 8423+2.8 4749+2.1 116.7+1.1
[4000,5000[ | 158.6+1.2 505.9%+2.1 479.4+2.1 2946+1.7 63.3+£0.8
[5000,6000[ | 130.6+1.1 2859+1.6 253.2+1.5 140.5+1.1 12.6+0.3
[6000,7000[ | 79.8+0.8 173.6+1.2 121.5+1.0 54.8+0.7 3.7+£0.2
[7000,8000[ | 43.6+0.6 92.6+0.9 79.7+0.8 26.2+0.5 0.0+0.0

Table 6.2.5: Raw signal yields extracted using a 2 dimensional fit for D* — K-z 7" decays.

y
pr(MeV/c] [2,2.5] [2.5,3] [3,3.5( [3.5,4( (4,4.5]
[0,1000] 0.0+0.0 24+2.0 49+32 00+00 13%+1.3
(1000,2000[ | 59+2.3 17.8+4.5 25.7+£55 123+4.1 0.0£0.0
[(2000,3000[ | 7.7+2.7 46.7+6.9 475+7.1 357463 6.7+2.6
[3000,4000[ | 23.1+4.7 472+6.8 73.5+85 26.0+£52 8.3%29
[4000,5000[ | 18.7+4.2 255450 33.3+58 10.1+34 4.1+25
[5000,6000[ | 9.1+2.9 18.5+43 13.7+3.7 10.4+3.3 0.0+£0.0
(6000,7000[ | 7.8+2.8 12.1+34 149+38 33+£1.8 0.0+0.0
[7000,8000[ | 9.4+29 7.7+£27 6.0+£29 4.1+21 0.0£0.0

Table 6.2.6: Raw signal yields extracted using a 2 dimensional fit for Df — (¢ — K K*)a*

decays.

y

prMeV/c] 2,4.5]
[2000,3000] | 102.5+15.2
[3000,4000[ | 150.3 +18.0
[4000,5000[ | 110.3 +15.1
[5000,6000[ | 58.8+11.0
[6000,7000[ | 21.2+7.5
[7000,8000 | 12.4+5.5

Table 6.2.7: Raw signal yields extracted using a 2 dimensional fit for A — pK~n* decays.
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6.3 Binned fits
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Figure 6.3.1: Fitted distribution of m (K~ %) in D® - K #*
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Figure 6.3.2: Fitted distribution of m(K~n*) in D° - K- n*n n*
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Figure 6.3.5: Fitted distribution of m(K~K*zn*) in D* — K n*n*
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Efficiencies

The absolute efficiency by which candidates are obtained is comprised of several
components as listed in Equation 7.1 where, for simplicity, the notation stating that
each efficiency is dependent on those prior to it has been dropped. With exception of
the PID efficiency, described in Section 7.4, each of these components are evaluated by
applying each stage of the analysis to events which have been simulated using the

production system provided by LHCb and summarised in Section 2.4.

€Total = €Acceptance X €Reconstruction X €Preselection X €BDT X €PID (7.1)

7.1 Detector acceptance

NDau htersInLHCb|Generated
£ (7.2)

€Acceptance = NG o
enerate

To reduce the computing resource overhead of the production of simulated events, a
selection is applied after producing Monte Carlo particles but prior to simulating the
effects of the detector. This is known as DaughtersInLHCb cut and requires all tracks of
the decay that is being simulated to be within the pseudorapidity range 2 < < 5. While
a counter of the number of events passing and failing this cut is kept, allowing the
efficiency of be known, it is unsuitable for this measurement as this only shows the
efficiency between the integrated LHCb acceptance and the 47 solid angle. Instead

specialised production must be used to obtain the efficiency given by Equation 7.2.

7.2 Reconstruction

N Reconstructed|DaughtersInLHCb
€Reconstruction = (7.3)
N DaughtersInLHCb|Generated

The reconstruction efficiency is a single value representing two separate efficiencies.
One is the due to the imperfect nature of the detector elements resulting in not all tracks
producing hits in the detector. This modelled by a description of the detector being

used by GEANT4 to simulate the material interactions that cause this inefficiency. The
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other component is due to the time constraints when executing the reconstruction
algorithm necessitating the use of approximations and pattern recognition instead of
comparing all possible combinations of detector hits. This effect is simulated by
applying the reconstruction to the simulated detector hits, however, it is known that the
efficiencies produced by this process are not representative of real data. As a result the
LHCD collaboration’s tracking group provides a series tables that give the ratio of the
true efficiency to the simulated efficiency as a function of track kinematics and various
detector properties, such as the number of hits in any particular sub-detector. These
have been combined to a give a single table of ratios in Figure 7.2.1 which represent the
individual track corrections, Pracking, ;- T0 Obtain a total correction for a particular bin
the correction for each event, pryacking, must be calculated using Equation 7.4. Tables of

the tracking correction for each decay channel are available in Appendix C.

€Tracking correction = H PTracking = H ( H PTracking,i) (7.4)

events events \ tracks

1.07
1.06
1.05
1.04
!1.03

1.02

1.01

0.99
10

lg_(GeV/c)

Figure 7.2.1: Table of the combined ratios for the tracking efficiency corrections in bins of
transverse momentum and rapidity taken from Reference [36].

7.3 Selection

_ N Preselected|Reconstructed _ N BDT|Preselected
€Preselection = €BDT = (7.5)
N Reconstructed|DaughtersInLHCb N Preselected|Reconstructed

The selection efficiency, excluding PID cuts, is separated into two components, given
by Equation 7.5 and each of these components are found by applying the selection to
the previously accepted Monte Carlo events from the reconstruction and the

preselection respectively. These stages of the efficiency chain assume the simulation

48



accurately describes the real data and the validity of this assumption is discussed in

Section 10.

7.4 Particle Identification

For the calculation of the efficiency of particle identification cuts, it is known that the
efficiencies obtained from simulated events are unphysical when compared to real data
and, as a result, a more data driven technique must be used. The method used in this
analysis requires samples of the final state particles to be obtained from real data. These
samples must have a very high signal purity and, in addition, their selection cannot use
any variable which is derived from the particle identification system. Fortunately the
particle ID group of the LHCDb collaboration provides calibration samples of pions and
kaons that have been selected from decays of D**mesons and of protons from decays of
A baryons, from which efficiencies can be derived by applying the PID cuts used for this
analysis. This process is further complicated by the efficiency of PID cuts being
dependent upon the momentum and pseudorapidity of the given track, and the
occupancy’ of the detector as a whole. As a result, a weighting procedure must be
employed to find the efficiency of the cuts when applied to tracks with differing
distributions in these variables.

In order to reweight the calibration samples into the distribution of the studied
process a binning scheme must be employed. Ideally each bin should be small to
prevent any efficiency variation across the bin, however, this is not possible due to the
finite nature of the calibration samples introducing statistical uncertainty in the
efficiency of any applied cut in that bin. The binning schemes used for kaons and pions
are respectively shown in Figure 7.4.1 and 7.4.2 and are optimised to balance the two

contradicting effects using the following algorithm for each dependent variable:

1. Find the integrated efficiency across the entire variable range.

2. Subdivide every bin into 10 smaller bins with equal population, or equivalently
equal statistical uncertainty, and perform a y? test between the efficiency of
smaller bins and the larger bin. Any bin with a summed result of less than 0.001 is
further subdivided.

3. If the bin is to be divided, calculate the y? between the integrated bin and the
efficiency of 20 equal population bins. Then split the bin at the boundary which
minimises the sum of these y? values provided both new bins contain at least
2000 events.

10ccupancy refers to the number of tracks that are present in the detector for any given event and is
henceforth referred to as nTracks.
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Figure 7.4.1: Plots showing the binning scheme and dependence of the PID efficiency on mo-
mentum, pseudorapidity and nTracks for pions and kaons in the PID calibration sample, with
the distributions present in D® — K~m*shown for reference.
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Figure 7.4.2: Plots showing the binning scheme and dependence of the PID efficiency on mo-
mentum, pseudorapidity and nTracks for protons in the PID calibration sample, with the dis-
tributions present in A} — pK~x*shown for reference.

4. Repeat steps 2 and 3 until all bins either pass the y? test or there exists no valid

subdivision due to the minimum required number of events.

5. Finally if the efficiency of neighbouring bins agrees to within 3o of the statistical

error on each bin, merge them.

The three one dimensional binning schemes produced are then combined to
produce a single three dimensional binning scheme in nTracks, p and 7). A concern for
generating the bin boundaries in this method is that any correlations that may affect the
optimal choice are ignored, however, despite the variables being strongly correlated
across the full ranges the correlation within a single bin produced with this method is
negligible.

The other requirement to perform the weighting procedure is to obtain a reference
sample with representative distributions for dependent variables of the PID cut. In
contrast to the BDT training samples it was decided to use sWeights produced from the

final fit as the detector occupancy is known to be poorly described in the simulation.
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To calculate the total efficiency of a specified PID cut the efficiency of each reweighed
bin must be known and is given by Equation 7.6 where C; is the total number of
candidates in a calibration bin, i and C; is the number of candidates passing the
specified PID cut.

C
€i=— (7.6)
G
In addition a weight must be calculated for each bin using Equation 7.7 where a; is the
sWeight of the j™ candidate in the i bin of the reference sample, R is the total number

of candidates in the reference sample and C is the total number of events in the

2. dij
Iz 7.7)

C; R

calibration sample.

w;=

All calibration bins can then be summed over, as in Equation 7.8, to give the total
efficiency of a PID cut on a single track and these can then be combined, with Equation

7.9, to give the total efficiency for multiple PID cuts.

Y wiCie; ). aije;

iebins iebins
€track = = =5 Z a;j€q (7.8)
Y. wC Y aij R
iebins iebins
€pPID = 1_[ €track (7.9)
tracks

Currently the method outlined here produces regions with unphysically large
statistical errors in some regions, particularly for modes with low yields such as
D* — K~ K*x™". This effect is believed to be a result of the sP1lot procure producing

regions with negative weights and is currently under investigation.

7.5 Efficiency tables

See Appendix E
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Statistical uncertainties

Statistical uncertainty arises from the desire to measure the true value of any given
quantity using a finite sized dataset. This differs from the systematic uncertainties
discussed in Chapter 10 which are typically defined as being errors which cannot be
reduced through the use of a enlarged dataset.! This section describes the method used

to calculate the statistical uncertainties that have been given in Chapter 6 and 7.

8.1 Binomial uncertainty

When calculating the acceptance, reconstruction and selection efficiencies (with
exception of PID which is independently discussed in Section 7.4) each simulated
candidate has two possible outcomes, it can pass or fail the selection, and as such, these
can be thought of as a Bernoulli trial. When multiple Bernoulli trials are performed, a
binomial distribution, Equation 8.1, arises where f (k) is the probability of observing k

events from n trials if the probability of any individual event passing is p.
ny n-k
f(k:nyp)=(k)l7 (1-p) 8.1)

While this provides an accurate description of the distribution of f (k) the distribution
of interest is actually f (p) given k passes have been observed from  trials. In the limit
of large n this can be approximated by the normal distribution, however, in the case of
large numbers of events, high efficiencies or low efficiencies this approximation yields
unphysical uncertainties. Various alternative methods for the calculation of confidence
intervals exist, such as Wilson or Clopper-Pearson intervals, however, for these

measurements Agresti-Coull[37] intervals are used.

IWhile this is typically the case, many systematics can often be studied in greater detail through the
addition of more data or are dependent upon other data taken alongside the main dataset, such as the PID
calibration samples.
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8.2 Tracking efficiency correction

The statistical error of the tracking efficiency correction on a single track is provided by
the LHCb tracking efficiency group. These can then be propagated using Gaussian error
propagation as show in Equation 8.2 where a is the total number of tracks and a; is the
number of tracks in a bin, i.

2

1

a
A(’:tracking, stat — Z ; (Aei)z (8.2)

pen

8.3 Fityield

The fitting procedure is performed by RooFit which is in turn based upon MINUIT. The
statistical error is calculated by MINUIT using the techniques described in

Reference [38].

8.4 ParticleID

The calculation of the statistical error of the particle identification cuts starts with the
calculation of the binomial uncertainty of the efficiency in each bin of the calibration
sample, A€ f(e), using the procedure described in Section 8.1. These can then be
propagated using Gaussian error propagation to give the total error on a hadron with n
PID cuts applied.

Neo=cey| T ¥ 8y m 0 2 83)
pEnken €fpe)  €file)
As the efficiency is fully correlated in the case of multiple PID cuts being applied to
tracks of the same species that fall in the same calibration bin the Kronecker delta, 6 pk>
is used to account for these correlations. The per bin errors can then be combined to
give the total error using the estimated error on the sample mean with Bessel’s

correction applied as given in Equation 8.4.

1
A€pp, stat = \/R(— Z (€e - 6)2 ae (8.4)

R- 1) ecevents
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Results

In this chapter the currently available results are presented in the follow forms:

Normalised cross-section ratio
Here each result is normalised to the specified region to show the variation of the
cross-section across transverse momentum and rapidity. The errors are stated in
the form n + stat + sys where n is the nominal value, stat is the combination of
the statistical errors listed in Chapter 8 combined using Gaussian error
propagation and sys is the systematic error from the finite size of the PID

calibration sample, calculated using the technique described in Section 10.

Deviation from the previous LHCb measurement
For comparisons to be made between the previous LHCb result the analysis
performed here, the previous LHCDb result must first be normalised. As the
dominant source of systematic uncertainty in the previous measurement arose
from the luminosity measurement, which can be reasonably assumed to be
correlated between all parts of the previous measurement, only the statistical

uncertainty was considered when propagating the errors through the

02011 , norm
02010, norm

this ratio is 1 the tables presented here are in units of the standard deviation, as

normalisation. The ratio is then calculated. As the expectation value of

defined in Equation 9.1 where Z is the ratio in the given bin with an error AZ.
1-2%
—_— 9.1
AR

Deviation from the theory
For D°, D**and D™ the obtained result is compared to theoretical prediction from
the FONLL model. The method of obtaining the prediction is described in
Appendix B. As with the comparison to the previous LHCb result, the comparison
is presented in units of standard deviation with the exception that all errors in the

prediction are assumed to be uncorrelated across the whole pr-y space.
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These show a significant deviation from previous results in the upper and lower
rapidity regions and the cause of this deviation is currently unknown. One cause that
has been considered is the particle identification efficiency producing unrealistic
efficiencies as mentioned in Section 7.4, however, this efficiency is too high to account
for the observed discrepancy. Another possible cause is the reconstruction efficiency
which shows significant degradation in the effected region and studies into this effect

are ongoing.
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Figure 9.0.1: Plot of the D° cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y <3.5 from D® — K~ 7" decays. Any regions with a greater than 100 % statis-
tical error have been removed.

[2.0,2.5]

[2.5,3.0]

[3.0,3.5]

[3.5,4.0]

[4.0,4.5]

[0.0,1000.0[

(1000.0,2000.0[
[2000.0,3000.0(
[3000.0,4000.0[
(4000.0,5000.0(
[5000.0,6000.0(
[(6000.0,7000.0[
[7000.0,8000.0(

2.23+0.18+£0.42
3.54+0.20+0.67
2.1940.12+0.41
1.09+0.06 £0.21
0.46+0.03+0.09
0.25+0.02+0.05
0.14+0.01+0.03

1.68+£0.10+0.34
2.36+0.10+3.01
1.25+0.06+0.28
0.55+0.03+0.10
0.24+0.01+0.05
0.11+0.01+0.02
0.06+0.01+0.01

1.57+0.09£0.30
1.95+0.09 +£3.71
0.46+0.02+0.09
0.20+0.01+0.04
0.09+0.01+0.02
0.05+0.00+0.01

1.44+0.11 £0.27
1.64+0.08 £0.33
0.85+0.04+0.36
0.39+0.02+0.08
0.16+0.01+£0.03
0.08+0.01+0.01
0.02+0.01+0.00

0.06+0.01+0.01

0.04+0.00+0.01

0.03+£0.00+0.01

0.02+0.01+0.00

2.23+0.34+0.42
1.73+0.15+0.33
1.07+£0.09 £0.20
0.38+0.05+0.07
0.16+0.04+0.03
0.05+0.03+0.01

Table 9.0.1: Table of the D° cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0< y<3.5 from D° — K~z decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

2.60 2.20 1.90
5.20 1.50 0.50
590 0.70 -

5.60 1.00 0.20
4.50 0.20 0.40
410 1.90 0.1c
3.40 0.80 0.30
1.90 0.30 1.50

1.90 3.40
0.00 2.80
0.1c 410
2.00 2.60
1.00 1.60
0.70 0.1c
1.80 -

0.20 -

Table 9.0.2: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D® normalised to the measured
result in 2GeV < pr <3GeV and 3.0< y<3.5 from D° — K=" decays.
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Figure 9.0.2: Plot of the D° cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y < 3.5 from D° — K~ n*7n~ 7" decays. Any regions with a greater than 100 %
statistical error have been removed.

[2.0,2.5]

[2.5,3.0]

[3.0,3.5]

[3.5,4.0]

(4.0,4.5]

0.0,1000.0[

1000.0,2000.0[
2000.0,3000.0[
3000.0,4000.0[
4000.0,5000.0[
5000.0,6000.0[
6000.0,7000.0[
7000.0,8000.0[

12.10+7.80+£0.05
1.33+0.51+£0.00
0.43+0.16+0.00
0.24+0.09+0.00
0.17+0.06 +0.00
0.10£0.03+0.00

2.08+1.12+0.01
1.73+0.46 £0.01
0.72+0.16+0.00
0.31+0.07+0.00
0.15+0.04+0.00
0.07+0.02+0.00
0.03+0.01+0.00

1.36+0.82 £ 0.01
0.37+0.09+0.00
0.23+0.05+0.00
0.09+0.02+0.00
0.04+0.01+0.00
0.02+0.01+0.00

1.12+2.20 £ 0.02
0.62+0.20+0.00
0.45+0.12+0.00
0.16+0.04+0.00
0.08+0.02+0.00
0.05+0.02+0.00
0.02+0.01+0.00

1.17+0.69 £0.02
0.194+0.14+0.00
0.12+0.07+0.00
0.06+0.04+0.00

Table 9.0.3: Table of the D° cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0< y<3.5 from D° — K~ atn 7" decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

- 0.00
l.40 l.1o
l.40 1.20
1.00 1.00
l.1o0 0.60
1.60 0.50
1.70 0.50

0.60 0.20 -
- 1.1 0.80
1.00 1.00 0.30
0.30 0.40 0.50
0.00 0.50 0.30
0.40 0.70 -
0.50 0.40 -

Table 9.0.4: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D® normalised to the measured
result in 2GeV < pr <3GeV and 3.0< y<3.5 from D — K~ n*7~ 7+ decays.
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Figure 9.0.3: Plot of the D** cross-section normalised to the measured result for 2GeV <
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pr <3GeV and 3.0< y < 3.5 from D** — (DO - K‘n*)f’ decays. Any regions with a greater
than 100 % statistical error have been removed.

[2.0,2.5]

[2.5,3.0(

[3.0,3.5]

[3.5,4.0]

(4.0,4.5]

0.0,1000.0[

1000.0,2000.0[
2000.0,3000.0[
3000.0,4000.0[
4000.0,5000.0[
5000.0,6000.0[
6000.0,7000.0[
7000.0,8000.0[

2.07+£0.98+0.10
0.86+0.23 +0.04
0.45+0.10+£0.02
0.26+0.06 £0.01
0.11+0.03+£0.01
0.05+0.02+0.00

1.66+0.45+0.38

1.40+0.19 £ 236.65

0.58+0.07+0.03
0.30+0.04+0.01
0.13+0.02+0.01
0.07+0.01+0.00
0.06+0.01+0.00

1.17+0.53 £0.06
1.46+0.22 +£0.93
0.53+0.06+0.17
0.23+£0.03+0.01
0.13+0.02+0.01
0.07+0.01+0.00
0.03+0.01+0.00

0.83+0.42+0.04
1.09+0.19+£0.15
0.90+0.11+0.05
0.36+0.05+0.08
0.15+0.03+0.01
0.12+0.02+£0.01
0.05+0.02+0.00
0.05+0.03 £ 0.00

1.51+1.33+£0.07
1.11+0.38 £0.05
0.93+0.19+0.05
0.58+0.13+0.03
0.15+0.07+£0.01
0.18+0.14 +£0.01

Table 9.0.5: Table of the D** cross-section normalised to the measured result for 2GeV <

pr <3GeV and 3.0< y<3.5 from D** — (DO - K_T[+)7T+ decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0 [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

- 1.60

- 0.70
0.80 1.20
0.40 1.00
1.30 0.70
0.30 0.1c
1.00 0.70

0.20 l.40 0.30
2.00 2.20 0.50
- 0.50 0.80
0.40 0.90 2.10
0.50 0.90 0.20
0.40 1.30 -
1.20 0.80 -

Table 9.0.6: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D** normalised to the measured

result in 2GeV < py <3GeV and 3.0< y<3.5 from D** — (DO — K’Jfr)nJr decays.
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Figure 9.0.4: Plot of the D* cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y < 3.5 from DT — K~ K*n* decays. Any regions with a greater than 100 %
statistical error have been removed.
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[3.5,4.0]

(4.0,4.5]

0.0,1000.0[

1000.0,2000.0[
2000.0,3000.0[
3000.0,4000.0[
4000.0,5000.0[
5000.0,6000.0[
6000.0,7000.0[
7000.0,8000.0[

2.53+0.87+£3.25
1.16+0.36 £ 1.48
0.55+0.19+£0.71

1.23+2.76+1.58
2.26+0.75+2.91
1.89+0.63 £15.04
0.67+0.17+0.86
0.32+0.09+0.42

1.31+0.91 +£5.85

0.65+0.16+0.83
0.30+0.08+0.38

2.57+2.31+3.30
1.29+1.43+3.27
0.98+0.29+1.26
0.32+0.10+0.41
0.09£0.04+£0.11

0.194+0.08 +£0.25
0.21+0.08 £0.27
0.06+0.04+0.08

0.10+0.04+0.12
0.05+0.02+0.06
0.02+0.01+0.02

0.14+0.04+0.17
0.07+0.03+0.09
0.05+0.02+0.07

0.09+0.04+0.12
0.03+0.02+0.04
0.02+0.03+£0.02

4.74+3.14+6.09
1.33+0.66 £1.71
0.92+0.36+1.18
0.16+£0.14 £0.21

Table 9.0.7: Table of the D' cross-section normalised to the measured result for 2GeV <

pr <3GeV and 3.0< y<3.5 from D* — K- K*n* decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

- 0.1c

- 0.60
1.70 1.20
1.70 0.70
1.60 0.70
090 0.70
1.80 0.40
0.50 1.30

- 0.70 -
0.50 0.20 1l.1c0

- 0.60 1.20
l.1o 0.30 190
1.20 l.4co 0.60
1.00 0.70 -
0.20 0.30 -
1.30 0.20 -

Table 9.0.8: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D* normalised to the measured

result in 2GeV < pr <3GeV and 3.0< y<3.5 from D™ — K- K*7* decays.
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Figure 9.0.5: Plot of the D* cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y < 3.5 from D* — K n*n* decays. Any regions with a greater than 100 %
statistical error have been removed.

[2.0,2.5]

[2.5,3.0]

[3.0,3.5]

[3.5,4.0]

(4.0,4.5]

0.0,1000.0[

1000.0,2000.0[
2000.0,3000.0[
3000.0,4000.0[
4000.0,5000.0[
5000.0,6000.0[
6000.0,7000.0[
7000.0,8000.0[

2.39+0.57+0.13
3.35+0.23+0.18
2.03+£0.08+£0.11
1.01+0.03 £0.05
0.43+0.02+£0.02
0.23+0.01 £0.01
0.11+0.01£0.01
0.05+0.00+0.00

1.38£0.06 £ 0.07
2.20+0.07+2.40
1.20+0.03£0.13
0.59+0.01+0.18
0.27+0.01+£0.01
0.12+0.00+0.01
0.07+0.00+0.00
0.03+0.00+0.00

1.29+0.06 £0.83
1.87+0.08 £1.40
0.47+0.01+0.03
0.20+0.01+0.08
0.09+0.00+0.00
0.04+0.00+0.00
0.03+0.00+0.00

1.13+0.10+£0.74
1.55+0.06 +£57.87
0.73+0.02+0.06
0.31+0.01+0.14
0.15+0.00+£0.01
0.07+0.00+0.00
0.03+0.00+0.00
0.02+0.00+0.00

1.26+0.09 £0.07
1.60+0.07 +0.08
0.89+0.04+0.05
0.35+0.02+0.02
0.15+0.01 £0.01
0.06+0.01+0.00
0.02+0.01+0.00

Table 9.0.9: Table of the D' cross-section normalised to the measured result for 2GeV <

pr <3GeV and 3.0< y<3.5 from D" — K n*n* decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

- 0.60 l.1o 090 2.30
290 2.60 1.00 0.10 3.00
5.00 l.40 - l.40 4.00
5.60 1.30 0.30 1.70 3.50
4.50 0.60 0.1c 0.40 3.00
4.60 0.20 0.30 0.60 1.90
3.20 1.30 6.10 0.1c -
0.60 0.60 0.40 1.80 -

Table 9.0.10: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D* normalised to the measured

result in 2GeV < pr <3GeV and 3.0< y<3.5 from D" — K~ n*n* decays.
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Figure 9.0.6: Plot of the D} cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y < 3.5 from Df — (¢ — K~ K*)n* decays. Any regions with a greater than
100 % statistical error have been removed.

[2.0,2.5]

[2.5,3.0]

[3.0,3.5]

[3.5,4.0]

(4.0,4.5]

[0.0,1000.0(

[1000.0,2000.0[
[2000.0,3000.0(
[3000.0,4000.0[
[4000.0,5000.0[
[5000.0,6000.0(
[6000.0,7000.0[
[7000.0,8000.0(

4.41+1.96+0.02
1.09+0.42+£0.01
1.31+0.34+£0.01
0.62+0.17+0.00
0.194+0.07+0.00
0.15+0.06 +£0.00
0.11+0.04+0.00

0.52+0.71 £0.06
1.57+0.50 £0.42
1.23+0.27+£0.06
0.59+0.13+0.00
0.21£0.05+0.00
0.11+0.03+0.00
0.07+0.02+0.00
0.04+0.01+0.00

4.99+5.58 £132.77

1.69+0.50+1.30
0.70+£0.15+1.92
0.21+0.05+0.00
0.09+0.03+0.00
0.08+0.02+0.00
0.03+0.01+0.00

0.81+1.57+5.21
1.05+0.25+0.01
0.37+0.09+0.00
0.10£0.04+0.00
0.07+0.03+0.00
0.02+0.01+0.00
0.05+0.03+0.00

5.48+12.49+0.20
1.32+0.59+£0.01
0.66+0.27+0.00
0.20£0.13+0.00

Table 9.0.11: Table of the D} cross-section normalised to the measured result for 2GeV <
pr<3GeV and 3.0 < y<3.5 from D} — (¢ — K K*)n+ decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0(

(1000.0,2000.0{
[2000.0,3000.0[
[3000.0,4000.0(
[4000.0,5000.0(
[5000.0,6000.0[
(6000.0,7000.0{
[7000.0,8000.0[

- - 0.70
090 0.70 0.90
090 1.20 -
1.90 0.30 1.20
1.70 0.00 1.00
1.00 0.10 0.00
1.00 0.50 0.60
1.00 - 0.30

0.20 -
1.00 1.00
0.00 l.1o
1.30 -
0.20 -

Table 9.0.12: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of D normalised to the measured
result in 2GeV < pr <3GeV and 3.0< y <3.5 from D{ — (¢ — K~ K*)n* decays.
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Figure 9.0.7: Plot of the A} cross-section normalised to the measured result for 2GeV < pr <
3GeV and 3.0 < y < 3.5 from A} — pK~n* decays. Any regions with a greater than 100 %
statistical error have been removed.

| [2.0,4.5]

2000.0,3000.0[
3000.0,4000.0[

15.80+24.68 £ 115.47
2.80+1.46+17.71

4000.0,5000.0[

6000.0,7000.0[

0.28+0.20+1.95
0.10£0.08+0.62

[
[
[
[5000.0,6000.0(
[
[

7000.0,8000.0[ 0.03+0.02+0.20

Table 9.0.13: Table of the A cross-section normalised to the measured result for 2GeV <
pr<3GeV and 3.0 < y <3.5 from A} — pK™ 7" decays.

| [2.0,4.5
[2000.0,3000.0[ |  0.50
[3000.0,4000.0[ | 0.30
[4000.0,5000.0[ | -
[5000.0,6000.0[ | 0.40
[6000.0,7000.0[ | 1.20
[7000.0,8000.0[ | 3.10

Table 9.0.14: Variation in units of the standard deviation between the results presented here
and the previous LHCb measurement for the cross-section of Al normalised to the measured
result in 2GeV < pr <3GeV and 3.0< y <3.5 from A} — pK~ 7" decays.
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10

Systematic uncertainties and further studies

The work described in this thesis forms an ongoing analysis in the LHCb collaboration.
As previously discussed in Section 7.4 and Chapter 9, the cause of anomalies in the
particle identification efficiency and the final result remain unknown and are being
actively studied. In addition, this work forms the basis of the strategy that will be used
to measure the open charm hadron production cross-section at /s = 13TeV using data
taken in the initial weeks LHC Run 2. Once the aforementioned discrepancies have
been resolved, the systematic uncertainties associated with the measurement must be

assessed. Some possible causes include:

PID binning scheme
The reweighing of the calibration sample to obtain the efficiency of the PID
selection assumes that the efficiency is constant within any given bin. This

assumption is invalid, as shown in Figure 7.4.2, and must be accounted for.

PID calibration sample size
The size of the calibration sample used for the PID efficiency determination is
limited and has a statistical uncertainty associated with the efficiency of any
selections applied to it. While this uncertainty is statistical in nature, it is taken as
a systematic uncertainty for these measurements as it not strictly dependent on
the size of the dataset used for this analysis.! This is the only systematic
uncertainty listed in Chapter 9 and is calculated by performing toy studies. The
efficiency in each bin of the calibration sample is taken to be a Gaussian
distribution centred at the nominal efficiency with standard deviation equal to
the statistical error. An efficiency is then generated at random for each calibration
bin and the PID efficiency is recalculated. This process is repeated 1000 times and

the standard deviation of these studies is taken as a systematic uncertainty.

10f course the calibration sample size would likely increase with additional data taking as this is taken in
parallel to the data used for this measurement.
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Fit model
The probability distribution functions used to extract the signal yield for this
analysis have been chosen empirically with little physical basis for their shapes.
As such, there is a systematic uncertainty associated with the yield obtained to
account for the difference between the distribution used and the true
distributions present in the data. In addition, there exists an uncertainty on the
proportion of secondary charm production present in the signal sample,
especially as this method of extracting this quantity is reliant on simulated events

to model the distribution of the impact parameter y?.

Monte Carlo-data disagreement
The Monte Carlo generators and subsequent detector simulation does not
provide a perfect description of the physical data and some discrepancies are
known to exist. Any areas of the analysis which are dependent on Monte Carlo
must be checked with reweighing procedures used and/or systematic

uncertainties assigned to account for any discrepancies.

Monte Carlo truth matching
After simulating an event the reconstruction algorithm is applied to Monte Carlo
and associations are made between the generated and reconstructed tracks to
find the number of correctly reconstructed events. The limited computing
resources available prevents an exhaustive search being performed and therefore
the true reconstruction efficiency is marginally larger than the one obtained from

simulation.

Tracking
An estimate of the systematic uncertainty associated with the track
reconstruction efficiency is provided by the LHCb collaboration’s tracking group
alongside the ratios used in Section 7.4. For the data shown here, this systematic
uncertainty is 0.4 % per track, i.e. for D* — K~ ¥ n*the systematic uncertainty
associated with the tracking efficiency would be 1.2 %. The techniques used to

obtain this error are explained in Reference [39].

Other external sources
Sources of systematic uncertainty external to the analysis exist from the

luminosity calibration, branching fractions, tracking and other sources.

In addition to the measurement that will be made at /s = 13 TeV, this analysis is also
planned to be repeated with data taken by the LHCb detector in 2012 with /s = 8 TeV.
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Conclusion

In conclusion, the measurement of the open production cross-sections of D°, D**, D,
Dfand A}at /s =7TeV is progressing well and the analysis is expected to be ready in
advance of the availability of LHC Run 2 data. Good agreement in seen with previous
results in the central acceptance of the LHCb detector and the discrepancies in the
outer regions are under active investigation. The evaluation of the systematic
uncertainties associated with this analysis has begun and will follow well established

techniques used for other LHCb measurements.
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Crossing angle correction

In the ideal case, each beam of the LHC would have momentum in only the +z direction
and therefore the centre of mass reference frame would be the same as the laboratory
frame. Unfortunately this is not the case as the LHC is a storage ring and after each
intersection the beams must be recaptured by the LHC and therefore a small crossing
angle is present, as depicted in Figure A.0.1. As a result a Lorentz boost is require to
obtain a value the transverse momentum and rapidity of particles in the centre of mass

frame.

Figure A.0.1: Graphic showing the crossing of two beams in the z-x plane.

To find the required boost we must first find the scalar product between the beam

momentum p and each transverse axis.

px =p-X=|p|cos(ax)
py=p-y=|p|cos(a,)

From these we can then find the z component of the beam momentum.

pz= \/|p|2 —p)zc— pf, :|p| \/1 —cos? ((Xx) —cos? ((Zy)

As the beam energy, Ejp, and proton mass, my, are known the beam momentum is also
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known.

[l =/ E;—m}

The crossing angle is generally defined in terms of 6 rather than a, therefore the
components of the beam momentum are given by:

PLab =

px=sin(0x)/Es - m3

b

py =sin (Gy) E; —m3

pz=1/Es— mf,\/l —sin? (0y) — sin® (Gy)

The laboratory frame of the two beams is then given by pr,p.-

sin (6y) Ei - m3
sin (Hy) Ei - mf, *
E7 —m3,/1—sin®(6,) —sin® (Hy) —\/Es - mf,\/
2E,
2sin (0) /E> — m5,
2sin (Hy) E; —m3
0

Any product of the interaction with 4-momentum, phadron, 1ab, €an then be boosted to
the centre of mass frame using,

where,

Y

—YPx
Phadron, COM =

—YBy

—YPx , -YBy
1+(y—1)ﬁ—)2“ (}f—l)%
ByBx B,
(Y_I)F 1+(Y_1)E
0 0
ﬁx:_pLab,x
:By:_pLab,y
BN
1
Y= 1—,32'

* Phadron, lab




FONLL predictions

Theoretical predictions using the FONLL model were obtained using the online web

calculator available at:
http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html[40]

with the CTEQ6 . 6 PDF set and D meson fragmentation ratios shown in Table B.0.1.

Hadron Fragmentation ratio

DO 0.549
D** 0.235
D* 0.232

Table B.0.1: Fragmentation ratios used in the hadronisation of charm quarks for the
FONNLL predictions, taken from Reference [41].
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Figure B.0.1: Plot of the FONLL prediction for the D° cross-section normalised to the result
for 2GeV< pr <3GeV and 3.0 < y <3.5.
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‘ [2.0,2.5] [2.5,3.0] [3.0,3.5] [3.5,4.0( [4.0,4.5]

[0.0,1000.0[ 1.33+2.94 1.30+£290 1.26+282 1.19+2.68 1.08+2.44
(1000.0,2000.0[ | 2.17+3.86 2.04+3.64 1.87+3.34 1.66+297 1.39%+2.51
(2000.0,3000.0] | 1.26+1.91 1.14+1.74 - 0.83+1.28 0.65%+1.00

(3000.0,4000.0[ | 0.58+0.80 0.51+0.71 0.43+0.60 0.34+0.48 0.25+0.35
(4000.0,5000.0] | 0.27+0.35 0.23+£0.30 0.19+£0.25 0.15£0.19 0.10+0.13
[5000.0,6000.0[ | 0.13+0.17 0.11+0.14 0.09+0.11 0.07+0.08 0.04+0.05
[(6000.0,7000.0[ | 0.07+0.09 0.06+0.07 0.05+0.06 0.03+0.04 0.02+0.02
[7000.0,8000.0[ | 0.04+0.05 0.03+0.04 0.02+0.03 0.02+0.02 0.01+0.01

Table B.0.2: Table of the FONLL prediction for the D cross-section normalised to the result
for 2GeV < pr <3GeV and 3.0 < y <3.5.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0[ 0.20 0.1c 0.10 0.1c 0.20
(1000.0,2000.0( 0.20 0.10 0.00 0.00 0.10
[2000.0,3000.0{ 0.30 0.1c - 0.00 0.30
[3000.0,4000.0( 0.30 0.00 0.00 0.10 0.20
[4000.0,5000.0( 0.30 0.00 0.00 0.10 0.30
[5000.0,6000.0( 0.40 0.00 0.00 0.1c 0.1c
[(6000.0,7000.0[ 0.40 0.00 0.00 0.30 -

[7000.0,8000.0( 0.30 0.10 0.10 0.10 -

Table B.0.3: Variation in units of the standard deviation between the results presented here
and the FONLL prediction for the cross-section of D® normalised to the measured result in
2GeV< pr<3GeV and 3.0< y<3.5 from D° — K=" decays.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0 [4.0,4.5]

[0.0,1000.0( - - - - -
[1000.0,2000.0{ - 0.00 0.20 0.20 -
[2000.0,3000.0[ 0.50 0.20 - 0.20 0.30
[3000.0,4000.0( 0.40 0.20 0.1c 0.20 0.20
[4000.0,5000.0( 0.30 0.20 0.10 0.10 0.10
[5000.0,6000.0( 0.30 0.20 0.00 0.20 0.20
[(6000.0,7000.0( 0.50 0.20 0.10 0.20 -
[7000.0,8000.0( 0.50 0.1c 0.00 0.20 -

Table B.0.4: Variation in units of the standard deviation between the results presented here
and the FONLL prediction for the cross-section of D° normalised to the measured result in
2GeV< pr<3GeV and 3.0< y<3.5 from D° — K™ n*n~n" decays.
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Figure B.0.2: Plot of the FONLL prediction for the D** cross-section normalised to the re-
sult for 2GeV < pr <3GeV and 3.0 <y <3.5.

‘ (2.0,2.5] [2.5,3.0] [3.0,3.5] (3.5,4.0( [4.0,4.5]
[0.0,1000.0[ 1.10+2.50 1.08+2.47 1.05+x241 0.99+230 0.91+2.11
(1000.0,2000.0[ | 1.97+3.60 1.86+3.41 1.71+3.15 1.52+2.81 1.29+2.40
[2000.0,3000.0[ | 1.24+1.96 1.14+1.79 - 0.84+1.33 0.66+1.05

(3000.0,4000.0[ | 0.60+0.86 0.54+0.77 0.46+0.65 0.37+0.52 0.27+0.39
(4000.0,5000.0[ | 0.29+0.39 0.25+0.34 0.21+0.28 0.16£0.22 0.11+0.15
[5000.0,6000.0{ | 0.15+0.19 0.13+£0.16 0.10+0.13 0.07£0.10 0.05+0.06
[(6000.0,7000.0[ | 0.08+0.10 0.07+0.08 0.05+0.06 0.04+0.05 0.02+0.03
[7000.0,8000.0[ | 0.04+0.05 0.04+0.05 0.03+0.03 0.02+0.02 0.01+0.01

Table B.0.5: Table of the FONLL prediction for the D** cross-section normalised to the re-
sult for 2GeV < pr <3GeV and 3.0< y <3.5.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0 [4.0,4.5]

[0.0,1000.0( - - 0.00 0.1o 0.20
[1000.0,2000.0{ - 0.10 0.10 0.20 0.1c
[2000.0,3000.0[ 0.20 0.10 - 0.00 0.20
[3000.0,4000.0( 0.20 0.00 0.1c 0.00 0.40
[4000.0,5000.0( 0.30 0.10 0.10 0.00 0.20
[5000.0,6000.0( 0.30 0.1c 0.20 0.30 0.50
[(6000.0,7000.0{ 0.20 0.10 0.20 0.10 -

[7000.0,8000.0[ 0.00 0.30 0.10 0.50 -

Table B.0.6: Variation in units of the standard deviation between the results presented here
and the FONLL prediction for the cross-section of D** normalised to the measured result in

2GeV < pr<3GeV and 3.0< y<3.5 from D** — (DO - K’ﬂ*)n+ decays.
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Figure B.0.3: Plot of the FONLL prediction for the D* cross-section normalised to the result
for 2GeV < pr <3GeV and 3.0 < y <3.5.

‘ [2.0,2.5] [2.5,3.0( [3.0,3.5] [3.5,4.0] (4.0,4.5]
[0.0,1000.0( 1.33+2.93 1304289 1.26+281 1.18+2.67 1.07+2.44
(1000.0,2000.0[ | 2.14+3.81 2.01+3.60 1.84+3.31 1.63+294 1.37+2.49
[2000.0,3000.0] | 1.25+1.93 1.14+1.76 - 0.84+1.30 0.65%+1.02

(3000.0,4000.0[ | 0.59+0.82 0.52+0.73 0.44+0.62 0.35+0.49 0.26+0.36
(4000.0,5000.0[ | 0.28+0.36 0.24+0.31 0.20+0.26 0.15£0.20 0.10+0.14
[(5000.0,6000.0[ | 0.14+0.17 0.12+0.15 0.09+£0.12 0.07+0.09 0.05+0.06
(6000.0,7000.0[ | 0.07+£0.09 0.06+0.07 0.05+0.06 0.03£0.04 0.02+0.03
[7000.0,8000.0[ | 0.04+0.05 0.03+0.04 0.03+0.03 0.02+0.02 0.01+0.01

Table B.0.7: Table of the FONLL prediction for the D* cross-section normalised to the result
for 2GeV < pr <3GeV and 3.0 < y <3.5.

‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0[ 0.20 0.00 0.00 0.00 0.10
[1000.0,2000.0[ 0.20 0.00 0.00 0.00 0.10
[2000.0,3000.0{ 0.20 0.00 - 0.10 0.20
[3000.0,4000.0( 0.30 0.1o 0.10 0.10 0.20
(4000.0,5000.0( 0.30 0.1o 0.00 0.00 0.20
[5000.0,6000.0[ 0.30 0.00 0.00 0.00 0.20
(6000.0,7000.0( 0.30 0.1c 0.20 0.20 0.10
[7000.0,8000.0( 0.10 0.10 0.00 0.10 -

Table B.0.8: Variation in units of the standard deviation between the results presented here
and the FONLL prediction for the cross-section of D* normalised to the measured result in
2GeV< pr<3GeV and 3.0< y<3.5 from D" — K~ n*n* decays.
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‘[2.0,2.5[ [2.5,3.0[ [3.0,3.5[ [3.5,4.0[ [4.0,4.5]

[0.0,1000.0[ - 0.00 - 0.20 -
[1000.0,2000.0{ - 0.10 0.20 0.10 0.40
[2000.0,3000.0[ 0.30 0.30 - 0.10 0.30
[3000.0,4000.0( 0.30 0.20 0.20 0.10 0.50
[4000.0,5000.0[ 0.40 0.20 0.30 0.50 0.20
[5000.0,6000.0( 0.20 0.20 0.20 0.20 -
[(6000.0,7000.0[ 0.50 0.20 0.20 0.00 -
[7000.0,8000.0( 0.20 0.80 0.40 0.10 -

Table B.0.9: Variation in units of the standard deviation between the results presented here
and the FONLL prediction for the cross-section of D* normalised to the measured result in
2GeV< pr<3GeV and 3.0< y<3.5 from D" — K- K*n" decays.
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Tracking efficiency tables

pt (MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5(

[3.5,4(

(4,4.5(

[7000,8000](
[6000,7000[
[5000,6000]
[4000,5000(
[3000,4000]
[2000,3000]
[1000,2000]
[0,1000]

1.0145 £ 0.0009
1.0179+0.0012
1.0204 +0.0014
1.0241 £ 0.0019
1.0296 + 0.0027
1.0370 £ 0.0039
1.0428 +£0.0043
1.0430 £ 0.0040

1.0119£0.0011
1.0134 £ 0.0012
1.0146 +£0.0014
1.0164 +£0.0017
1.0190 £ 0.0022
1.0236 £ 0.0029
1.0302 + 0.0037
1.0348 £ 0.0036

1.0005 £ 0.0010
1.0012 +£0.0011
1.0023 +0.0012
1.0041 +£0.0014
1.0066 +£0.0018
1.0106 £0.0023
1.0152 +£0.0028
1.0177 £0.0026

0.9933 £ 0.0015
0.9934+0.0012
0.9931 £ 0.0011
0.9945+0.0014
0.9967 +0.0017
1.0003 £ 0.0022
1.0047 +£0.0029
1.0054 £ 0.0028

0.9942 +0.0022
0.9940 +0.0019
0.9941 £0.0017
0.9943 £ 0.0016
0.9949+0.0016
0.9966 + 0.0020
0.9976 + 0.0023
0.9959+0.0018

Table C.0.1: Tracking efficiency correction for D° — K~

't with statistical errors.

pt (MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5(

[3.5,4(

(4,4.5(

[7000,8000](
[6000,7000](
[5000,6000](
[4000,5000]
[3000,4000]
[2000,3000(
[1000,2000]
[0,1000]

1.0247 £0.0019
1.0317 £0.0027
1.0346 £ 0.0030
1.0382 +0.0034
1.0417 +0.0039
1.0445 £+ 0.0046
1.0462 + 0.0054
1.0474 +£0.0063

1.0195+0.0013
1.0243 £ 0.0020
1.0278 £ 0.0027
1.0318 +£0.0034
1.0374 +0.0049
1.0439 £0.0072
1.0504 +£0.0104
1.0544 £0.0129

1.0082 £+ 0.0025
1.0122 +0.0033
1.0158 £0.0043
1.0205 + 0.0055
1.0265 £ 0.0071
1.0349 +0.0099
1.0457+£0.0142
1.0534 £0.0177

0.9979 £ 0.0026
1.0012 +0.0034
1.0045 £ 0.0043
1.0080 +0.0052
1.0141+0.0069
1.0215 +0.0090
1.0314 £0.0125
1.0397 £0.0156

0.9940 +0.0015
0.9958 + 0.0021
0.9974 £0.0026
0.9997 + 0.0032
1.0040 £+ 0.0045
1.0103 £0.0065
1.0175+0.0087
1.0228 +£0.0105

Table C.0.2: Tracking efficiency correction for D — K~n*n~n* with statistical errors.
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pt (MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5]

[3.5,4(

(4,4.5(

[7000,8000]
[6000,7000(
[5000,6000]
[4000,5000]
[3000,4000]
[2000,3000]
[1000,2000]
[0,1000]

1.0235+£0.0018
1.0261 £ 0.0020
1.0280 + 0.0022
1.0303 £0.0025
1.0335+0.0029
1.0369 £ 0.0036
1.0388 +0.0036
1.0420 £0.0040

1.0216 £ 0.0017
1.0230 £ 0.0018
1.0239 £ 0.0019
1.0251 £0.0021
1.0272 £ 0.0027
1.0317 £0.0047
1.0387 £ 0.0090
1.0431+0.0116

1.0150 £ 0.0046
1.0218 £0.0075
1.0231 £0.0081
1.0251 £ 0.0089
1.0277 £ 0.0099
1.0311£0.0112
1.0339+0.0119
1.0352+0.0116

0.9999 + 0.0024
1.0083 £ 0.0058
1.0140 £ 0.0083
1.0193+£0.0104
1.0225+0.0113
1.0251£0.0117
1.0276 £0.0121
1.0281+£0.0120

0.9947 +0.0016
0.9959+0.0016
0.9980 +0.0019
1.0024 +0.0033
1.0094 +0.0061
1.0176 £ 0.0096
1.0221 £ 0.0115
1.0220+0.0114

Table C.0.3: Tracking efficiency correction for D** — (DO - K_JT+)7T+ with statistical errors.

pt [MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5(

(3.5,4[

(4,4.5(

[7000,8000]
[6000,7000][
[5000,6000]
[4000,5000]
[3000,4000](
[2000,3000]
[1000,2000]
[0,1000]

1.0184 £ 0.0012
1.0256 + 0.0020
1.0293 £ 0.0024
1.0337 £0.0029
1.0387 £0.0035
1.0433 £0.0043
1.0465 £ 0.0057
1.0478 £ 0.0067

1.0126 + 0.0008
1.0160 £0.0010
1.0188 +£0.0014
1.0231 £ 0.0020
1.0292 +0.0032
1.0374 £ 0.0056
1.0470 £ 0.0096
1.0541 +£0.0137

1.0001 +0.0009
1.0023 £ 0.0013
1.0044 £ 0.0016
1.0076 £ 0.0022
1.0130 £ 0.0035
1.0217 £0.0061
1.0339£0.0105
1.0447 £0.0152

0.9913 +£0.0010
0.9923 £0.0012
0.9936+0.0014
0.9961 +0.0018
0.9994 £ 0.0023
1.0056 + 0.0037
1.0143 £0.0062
1.0215 £ 0.0087

0.9922 +0.0015
0.9918 £0.0012
0.9916+0.0011
0.9925+0.0013
0.9939+0.0016
0.9972 +0.0024
1.0019 £ 0.0034
1.0046 +0.0039

Table C.0.4: Tracking efficiency correction for D¥ — K~ K*n* with statistical errors.

pT (MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5]

(3.5,4[

(4,4.5(

[7000,8000(
[6000,7000](
[5000,6000(
[4000,5000]
[3000,4000(
[2000,3000]
[1000,2000]
[0,1000]

1.0198 £ 0.0014
1.0256 +£0.0019
1.0292 +0.0023
1.0332 £ 0.0028
1.0384 £ 0.0035
1.0434 +0.0045
1.0459 £ 0.0053
1.0456 + 0.0050

1.0153 £0.0011
1.0192 +0.0016
1.0216 £ 0.0020
1.0248 £ 0.0026
1.0298 £ 0.0038
1.0365 + 0.0055
1.0442 +0.0078
1.0489 + 0.0094

1.0040 £ 0.0015
1.0065 £ 0.0021
1.0086 + 0.0024
1.0124 £ 0.0033
1.0166 +£0.0042
1.0233 £ 0.0058
1.0320 £ 0.0083
1.0392 £ 0.0108

0.9947+£0.0016
0.9962 +0.0020
0.9980 + 0.0024
1.0003 £ 0.0028
1.0045 £ 0.0037
1.0107 £ 0.0052
1.0183 £0.0073
1.0239 £ 0.0091

0.9938+0.0016
0.9945+0.0016
0.9948 £ 0.0017
0.9963 + 0.0022
0.9987 +£0.0029
1.0030 +0.0042
1.0074 £ 0.0054
1.0095 +0.0058

Table C.0.5: Tracking efficiency correction for D¥ — K~ " 2™ with statistical errors.
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pt (MeV/c]

(2,2.5]

[2.5,3]

y
(3,3.5(

[3.5,4(

(4,4.5(

[7000,8000](
[6000,7000](
[5000,6000]
[4000,5000]
[3000,4000]
[2000,3000(
[1000,2000]
[0,1000]

1.0190 £0.0013
1.0257 £ 0.0020
1.0293 + 0.0024
1.0337 +£0.0029
1.0383 +£0.0034
1.0431 +0.0044
1.0464 + 0.0057
1.0476 £ 0.0065

1.0136 £0.0008
1.0171 £ 0.0012
1.0200+0.0015
1.0239 £ 0.0022
1.0292 +0.0033
1.0369 £+ 0.0057
1.0456 +0.0092
1.0520£0.0126

1.0013 £0.0012
1.0039+£0.0016
1.0061 +0.0021
1.0093 +0.0028
1.0147 £0.0042
1.0223 +£0.0063
1.0330+£0.0103
1.0418 £0.0140

0.9928 £ 0.0012
0.9937+0.0014
0.9953 £0.0017
0.9978 + 0.0022
1.0015+0.0030
1.0072 +£0.0044
1.0155+0.0068
1.0211 £+ 0.0087

0.9926 £ 0.0015
0.9925+0.0013
0.9922 £ 0.0012
0.9933+£0.0014
0.9951+0.0019
0.9987 +£0.0027
1.0031 £+ 0.0039
1.0060 £+ 0.0047

Table C.0.6: Tracking efficiency correction for D} — (¢ — K~ K*) " with statistical errors.
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Figure D.0.1: Fitted impact parameter y? distribution of Afin A} — pK~n*
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Figure D.0.2: Fitted impact parameter y? distribution of D® in D® — K~ 7+
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D.0.3: Fitted impact parameter y? distribution of D in D — K=n*n~n*
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Figure D.0.5: Fitted impact parameter y? distribution of D** in D** — (DO —>K’7r+)n+
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Figure D.0.6: Fitted impact parameter y? distribution of D* in D™ — K~ K*n*
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(a) Detector acceptance efficiency of D® — K~ 7" decays
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(c) Candidate preselection efficiency for D® — K~ 7" decays
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(e) Candidate particle identification selection efficiency for D® — K~ 7" decays

Figure E.0.1: Efficiency chain for D° — K~ 7" decays
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(b) Mother reconstruction efficiency for D* — K~n*n~n* decays
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(d) Candidate BDT selection efficiency for D° — K~n*n~n* decays
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(a) Detector acceptance efficiency of D** — (DO - K_JT+)7Z+ decays
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(b) Mother reconstruction efficiency for D** — (DO - K‘n+)n+ decays
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(c) Candidate preselection efficiency for D** — (DO - K‘n*)]ﬁ decays
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(e) Candidate particle identification selection efficiency for D** — (DO - K‘n+) nt decays

Figure E.0.3: Efficiency chain for D** — (DO - K‘n+)n+ decays
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(a) Detector acceptance efficiency of D™ — K" K*n* decays
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(b) Mother reconstruction efficiency for D* — K~ K*n™ decays
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(c) Candidate preselection efficiency for D* — K~ K*n* decays

(d) Candidate BDT selection efficiency for D* — K~ K*n* decays
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(e) Candidate particle identification selection efficiency for D¥ — K~ K"z decays
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Figure E.0.4: Efficiency chain for D* — K~ K"t decays
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(a) Detector acceptance efficiency of D¥ — K~ n*n* decays
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(b) Mother reconstruction efficiency for D* — K~ 7"zt decays
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(c) Candidate preselection efficiency for D™ — K- n*n* decays

106



pt [MeV/c]

pt [(MeV/c]

8000 100

7000 90

80
6000

70
5000 60

4000 50

3000 40

30
2000
20

1000 10

y

(d) Candidate BDT selection efficiency for D* — K~ n*n* decays
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(e) Candidate particle identification selection efficiency for D* — K™ n*n™ decays

Figure E.0.5: Efficiency chain for D™ — K~ #*zn* decays
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(b) Mother reconstruction efficiency for DY — (¢ — K~ K*)n* decays
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(d) Candidate BDT selection efficiency for DY — (¢ — K~ K*)n* decays
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(e) Candidate particle identification selection efficiency for DY — (¢ — K~ K*)n* decays

Figure E.0.6: Efficiency chain for DY — (¢ — K~ K*)n* decays
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(a) Detector acceptance efficiency of A} — pK~n* decays
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(c) Candidate preselection efficiency for A} — pK~n* decays
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Figure E.0.7: Efficiency chain for A} — pK~n* decays
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