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use of Machine Learning (ML) in Cosmology is motivated, and on Chapter 10 there is a
description on a particular ML technique used throughout this thesis known as the Ge-
netic Algorithms. Then Chapters 11-18 are based on original work where the main topic
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It is not knowledge, but the act of learning,
not possession but the act of getting there,

which grants the greatest enjoyment.
Carl Friedrich Gauss

Abstract
As a branch of physical sciences, the field of Cosmology is rather peculiar; contrary

to condensed-matter physics, quantum chemistry, or particle physics, Cosmology does not
allow us to build controlled experiments on the object under study. We can only see what
the Universe allows us to see, and attempt to correctly interpret its messages.

The detection of the accelerating expansion of the Universe lays out the most pro-
found puzzle in contemporary physics. It insinuates that either the Universe is dominated
by a component, dubbed Dark Energy (DE) that turns the pull of gravity into a repulsive
force, or that General Relativity (GR), our currently best description of gravity breaks
down at cosmological scales. Either way, it strongly challenges our knowledge of the basic
laws of nature. Characterizing and understanding the origin and nature of the accelerated
expansion is a truly broad and interdisciplinary venture.

Currently, the standard cosmological constant Λ cold dark matter model (ΛCDM ) is
our best phenomenological description of the data [1,2]. However, since the first detection
of DE, several alternatives to the ΛCDMmodel have also been developed, which roughly fall
under the umbrella of two main categories. First, there are the so-called Modified Gravity
(MG) models [3], which assume that GR is covariantly modified on large scales, the so-
called Infrared (IR) modifications, in order to accommodate current observations [4]. These
are well-motivated by high energy physics (Quantum Gravity and String Theory) and have
diverse features from GR, e.g. a Newton’s constant that can depend on time and scale, a
different evolution of the matter density perturbations or distinct patterns in the emission of
gravitational waves. The second category of theories that are serious contenders to ΛCDM
are DE models with as yet unobserved scalar fields that dominate over the other matter
species at late times which provide the pressure conditions to accelerate the Universe [5].
These DE models also exhibit perturbations, which will affect the large scale structure
(LSS) of the Universe. As a result, in order to constrain the cosmological parameters to a
percent level and discriminate between the various theories, DE perturbations should be
well understood as they are expected to play an important role in the near future [6].

In this regard we could say that the purpose of this thesis resembles that of the
Gordian Knot legend. There seems to be an intractable problem (untying an impossibly
tangled knot or in this case unveiling the nature of DE) thus to solve the mystery different
approaches and ways of thinking are needed. In this thesis the origin of DE in the form
of MG theories is explored directly through the cosmological observations by applying
Machine Learning (ML) algorithms which can remove biases due to a priori chosen models.
Although the idea of cutting the Gordian Knot (following the analogy) has no yet been
realised, we have made important progress in both directions.

In view of the plethora of DE and MG models, there has been an effort to provide
a unified framework which encloses several of them like the Effective Field Theory (EFT)
approach [7, 8] or the Effective Fluid approach (EFA) [9–11]. In this dissertation we have



focused on the latter which has the advantage that only a handful of variables are needed
to compute, i.e. an equation of state w(a), a pressure perturbation δP (k, a), and an
anisotropic stress σ(k, a). In particular it will be shown that with simple modifications
to the latest Cosmic Linear Anisotropy Solving System (CLASS) code, which we called
EFCLASS, we provide competitive results in a much simpler and less error-prone approach
in including the effects of modified gravity models.

A viable alternative that has been also explored in the quest to probe the nature of
DE is more related to observations and statistics, which is the use of Machine Learning al-
gorithms to perform model independent reconstruction of both the background expansion
of the Universe but also the perturbations of matter on large scales with methods such
as the Genetic Algorithms (GA), which can be best described as a stochastic search ap-
proach. The originality of our analysis is that we use a totally agnostic and non-parametric
approach based on Machine Learning to explore the nature of dark energy and reconstruct
its properties in a model independent fashion, which is much broader than traditional
statistical inference and model selection. Our approach thus demonstrates that synergies
between theory and machine learning can provide a deeper understanding of gravitation
at large scales and identify possible hints of new physics in the form of modifications of
gravity. Given the plethora and complexity of data coming from upcoming surveys in the
near future, this will indubitably be a very rewarding approach.

Outline

The layout of this thesis is divided in three main parts: Foundations, Modified Gravity
Theories and Machine Learning.

The first part deals with some fundamental aspects of Cosmology. In Chapter 1 we
present an overview of the Standard Cosmological Model (ΛCDM ) which is at present
the concordance scenario and explains with high accuracy almost all observations, even
though there are some tensions. We also describe some basic equations related to cosmo-
logical perturbation theory needed for subsequent chapters on Sec. 1.2 and then we point
out some tensions or discrepancies that are currently under discussion concerning the suc-
cessful ΛCDM paradigm, see Sec. 1.3. Since we will be using a plethora of cosmological
observations throughout this thesis, we have devoted Chapter 2 to describe in great detail
the observational probes used, both at the background and at the perturbation level.

The second part is related to Modified Gravity and Dark Energy models. In Chapter
3 we provide some motivation as to why this path is worthwhile. Chapters 4-8 are based
on original work. In Chapters 4 and 5 we describe a mechanism to encompass and study
a plethora of Dark Energy (DE) and Modified Gravity (MG) theories under the same
footing through an effective fluid approach. This method allows for the correct background
expansion in the models, all without sacrificing the accuracy of the results. In a nutshell,
the Effective Fluid Approach works by rewriting the field equations of the MG model as
GR and a DE fluid with an equation of state w(a), a pressure perturbation δP (k, a) and
an anisotropic stress σ(k, a). Especially the latter is crucial as sometimes it is ignored in
analyses of MG models [12], something which might bias the results. In specific we show
how this method works for f(R) and Horndeski’s theory of gravity and show how it can be
implemented straightforwardly in a Boltzmann code, which solves the linear evolution of
cosmological perturbations. We find that our simple modifications to the vanilla code are
accurate to the level of ∼ 0.1% with respect to the more complicated hi_CLASS code, see



Fig. 5.5. Then in Chapter 6 we perform a rigorous cosmological analysis on MG models
using a Markov Chain Monte Carlo analyses and our effective fluid approach. In Chapter
7 we explore the possibility that dark energy might have a nonadiabatic component and
we examine how it would affect several key cosmological observables. Finally, in Chapter
8 we provide exact analytic expressions for the density, pressure, average number density
and pseudo-pressure for massive neutrinos and generic dark matter particles, both fermions
and bosons and we compare our analytic expressions with the numerical implementation
in a Boltzmann code.

The final part is focused on Machine Learning (ML) applied to Cosmology which is
attracting attention due to its many applications. In Chapter 9 we motivate the importance
and need to use these techniques and in Chapter 10 we present the Genetic Algorithms,
a particular ML method which specialize in unsupervised symbolic regression of data and
which would be used in the subsequent chapters. Chapters 11-18 are based on original
work. In essence, in Chapter 11 we explore what can ML tell us about the background
expansion of the Universe by estimating the deceleration parameter q(z), a measure of
the acceleration of the Universe, and we make a ∼ 4.5σ model independent detection of
the accelerated expansion, but we also place constraints on the transition redshift of the
acceleration phase (ztr = 0.662 ± 0.027). We also find a deviation from ΛCDM at high
redshifts, albeit within the errors, hinting toward the recently alleged tension between the
SnIa/quasar data and the cosmological constant ΛCDM model at high redshifts (z & 1.5).
In Chapter 12 we extend our ML reconstruction analysis by including also cosmological
data at the perturbation level, where we apply the Genetic Algorithms to explore the
nature of DE in a model independent fashion by reconstructing quantities such as the
growth index of matter density perturbations γ(z), the linear DE anisotropic stress ηDE(z)
and the adiabatic sound speed c2

s,DE(z) of DE perturbations. We find a ∼ 2σ deviation of
the equation of state w(z) from -1 at high redshifts, the adiabatic sound speed is negative at
the ∼ 2.5σ level at z = 0.1 and a ∼ 2σ deviation of the anisotropic stress from unity at low
redshifts and ∼ 4σ at high redshifts. Thus, we provide mild hints at possible deviations
from the ΛCDM model through either the presence of an non-adiabatic component in
the DE sound speed or the presence of DE anisotropic stress. In Chapter 13 we present
a model independent and non-parametric reconstruction of the redshift evolution of the
Cosmic Microwave Background (CMB) temperature to place constraints on the cosmic
distance duality relation and a temporal varying fine structure constant and in Chapter 14
we also explore the duality parameter with strongly lensed gravitational wave events and
ML forecasts. In Chapter 15 we present reconstructions of quintessence and the Swampland
conjectures using both ML and cosmography. Chapters 16 and 17 deal with novel null tests
for the spatial curvature and homogeneity of the Universe and the Copernican principle
via Noether’s Theorem respectively and their ML reconstructions. Finally, in Chapter 18
we present ML improved fits of the sound horizon at the baryon drag epoch and show
that they can strongly bias the derived constraints on the cosmological parameters using
baryonic acoustic oscillations (BAO) data.



Introducción
Como rama de las ciencias físicas, el campo de la cosmología es bastante peculiar;

contrariamente a la física de la materia condensada, la química cuántica o la física de
partículas, la cosmología no nos permite construir experimentos controlados en el objeto
en estudio. Solo podemos ver lo que el Universo nos permite ver e intentar interpretar
correctamente sus mensajes.

La detección de la expansión acelerada del Universo plantea el rompecabezas más
profundo de la física contemporánea. Insinúa que el Universo está dominado por un compo-
nente, denominado Energía Oscura (DE) que convierte la atracción de la gravedad en una
fuerza repulsiva, o que la Relatividad General (GR), nuestra mejor descripción actual de la
gravedad, se descompone a escalas cosmológicas. De cualquier manera, desafía fuertemente
nuestro conocimiento de las leyes básicas de la naturaleza. Caracterizar y comprender el
origen y la naturaleza de la expansión acelerada es una empresa verdaderamente amplia e
interdisciplinaria.

Actualmente, la constante cosmológica estándar Λ modelo de materia oscura fría
(ΛCDM ) es nuestra mejor descripción fenomenológica de los datos [1, 2]. Sin embargo,
desde la primera detección de DE, también se han desarrollado varias alternativas al mod-
elo ΛCDM, que aproximadamente caen bajo el paraguas de dos categorías principales. En
primer lugar, están los llamados modelos de gravedad modificada (MG) [3], que asumen
que GR se modifica covariantemente a gran escala, las llamadas modificaciones de infrar-
rojos (IR), para adaptarse a las observaciones actuales [4]. Estos están bien motivados por
la física de altas energías (gravedad cuántica y teoría de cuerdas) y tienen diversas carac-
terísticas de GR, por ejemplo, una constante de Newton que puede depender del tiempo
y la escala, una evolución diferente de las perturbaciones de la densidad de la materia o
patrones distintos en la emisión de ondas gravitacionales. La segunda categoría de teorías
que son serios contendientes de ΛCDM son los modelos DE con campos escalares aún no
observados que dominan sobre las otras especies de materia en tiempos tardíos que propor-
cionan las condiciones de presión para acelerar el Universo [5]. Estos modelos DE también
exhiben perturbaciones, que afectarán la estructura a gran escala (LSS) del Universo.

Como resultado, para restringir los parámetros cosmológicos a un nivel porcentual
y discriminar entre las diversas teorías, las perturbaciones DE deben entenderse bien, ya
que se espera que jueguen un papel importante en el futuro cercano [6].

En este sentido podríamos decir que el propósito de esta tesis se asemeja al de la
leyenda del nudo gordiano. Parece haber un problema insoluble (desatar un nudo im-
posiblemente enredado o, en este caso, desvelar la naturaleza de la ED), por lo que para
resolver el misterio se necesitan diferentes enfoques y formas de pensar. En esta tesis, el
origen de la energía oscura en forma de teorías de gravedad modificada se explora directa-
mente a través de las observaciones cosmológicas mediante la aplicación de algoritmos de
aprendizaje automático (ML) que pueden eliminar los sesgos debidos a modelos elegidos
a priori. Aunque la idea de cortar el nudo gordiano (siguiendo la analogía) aún no se ha
realizado, hemos logrado importantes avances en ambas direcciones.

En vista de la plétora de modelos DE y MG, se ha hecho un esfuerzo por proporcionar
un marco unificado que incluya varios de ellos, como el enfoque Effective Field Theory
(EFT) [7, 8] o el enfoque Effective Fluid approach (EFA) [9–11]. En esta disertación nos
hemos centrado en el último que tiene la ventaja de que solo se necesitan un puñado



de variables para calcular, es decir, una ecuación de estado w(a), una perturbación de
presión δP (k, a), y una tensión anisotrópica σ(k, a). En particular, se mostrará que con
modificaciones simples al último código Cosmic Linear Anisotropy Solving System (CLASS),
que llamamos EFCLASS, proporcionamos resultados competitivos en un enfoque mucho más
simple y menos propenso a errores en la inclusión de los efectos de los modelos gravitatorios
modificados.

Una alternativa viable que también se ha explorado en la búsqueda de sondear la
naturaleza de la DE está más relacionada con las observaciones y la estadística, que es el uso
de algoritmos de aprendizaje automático para realizar una reconstrucción independiente
del modelo tanto de la expansión de fondo del Universo como de las perturbaciones de
materia a gran escala con métodos como los algoritmos genéticos (GA), que se pueden
describir mejor como un enfoque de búsqueda estocástica. La originalidad de nuestro
análisis es que utilizamos un enfoque totalmente agnóstico y no paramétrico basado en el
aprendizaje automático para explorar la naturaleza de la energía oscura y reconstruir sus
propiedades de una manera independiente del modelo, que es mucho más amplia que la
inferencia estadística tradicional y la selección de modelos. Por lo tanto, nuestro enfoque
demuestra que las sinergias entre la teoría y el aprendizaje automático pueden proporcionar
una comprensión más profunda de la gravitación a gran escala e identificar posibles indicios
de nueva física en forma de modificaciones de la gravedad. Dada la plétora y la complejidad
de los datos provenientes de las próximas encuestas en un futuro cercano, este será sin duda
un enfoque muy gratificante.

Esquema

El diseño de esta tesis se divide en tres partes principales: Fundamentos, Teorías de la
gravedad modificada y Aprendizaje automático.

La primera parte trata sobre algunos aspectos fundamentales de la cosmología. En
el Capítulo 1 presentamos una descripción general del Modelo Cosmológico Estándar
(ΛCDM) que es actualmente el escenario de concordancia y explica con alta precisión
casi todas las observaciones, aunque existen algunas tensiones. También describimos algu-
nas ecuaciones básicas relacionadas con la teoría de la perturbación cosmológica necesarias
para los capítulos posteriores de la Sec. 1.2 y luego señalamos algunas tensiones o dis-
crepancias que se están discutiendo actualmente con respecto al paradigma exitoso de
ΛCDM, ver Sec. 1.3. Dado que utilizaremos una plétora de observaciones cosmológicas a
lo largo de esta tesis, hemos dedicado el capítulo 2 a describir con gran detalle las sondas
de observación utilizadas, tanto en el fondo como en el nivel de perturbación.

La segunda parte está relacionada con los modelos de Gravedad Modificada y En-
ergía Oscura. En el Capítulo 3 proporcionamos alguna motivación sobre por qué vale la
pena este camino. Los capítulos 4-8 se basan en trabajo original. En los Capítulos 4 y
5 describimos un mecanismo para abarcar y estudiar una plétora de teorías de Energía
Oscura (DE) y Gravedad Modificada (MG) bajo la misma base a través de un enfoque
de fluido efectivo. Este método permite la expansión de fondo correcta en los modelos,
todo sin sacrificar la precisión de los resultados. En pocas palabras, el Enfoque Fluido
Efectivo funciona reescribiendo las ecuaciones de campo del modelo MG como GR y un
fluido DE con una ecuación de estado w(a), una perturbación de presión δP (k, a) y una
tensión anisotrópica σ(k, a). Especialmente este último es crucial, ya que a veces se ig-
nora en análisis de modelos MG [12], algo que podría sesgar los resultados. En concreto,



mostramos cómo funciona este método para f(R) y la teoría de la gravedad de Horndeski
y mostramos cómo se puede implementar directamente en un código de Boltzmann, que
resuelve la evolución lineal de las perturbaciones cosmológicas. Encontramos que nues-
tras modificaciones simples al código vanilla son precisas al nivel de ∼ 0.1% con respecto
al código hi_CLASS más complicado, ver la Fig. 5.5. Luego, en el Capítulo 6 realizamos
un análisis cosmológico riguroso en modelos MG utilizando un análisis de Monte Carlo
de la Cadena de Markov y nuestro enfoque de fluidos efectivo. En el capítulo 7 explo-
ramos la posibilidad de que la energía oscura pueda tener un componente no adiabático y
examinamos cómo afectaría a varios observables cosmológicos clave. Finalmente, en el capí-
tulo 8 proporcionamos expresiones analíticas exactas para la densidad, presión, densidad
numérica promedio y pseudopresión para neutrinos masivos y partículas genéricas de ma-
teria oscura, tanto fermiones como bosones, y comparamos nuestras expresiones analíticas
con la implementación numérica en un código de Boltzmann.

La parte final se centra en el aprendizaje automático (ML) aplicado a la cosmología
que está llamando la atención por sus múltiples aplicaciones. En el Capítulo 9 motivamos
la importancia y la necesidad de usar estas técnicas y en el Capítulo 10 presentamos los
Algoritmos Genéticos, un método ML particular que se especializa en la regresión simbólica
no supervisada de datos y que se utilizará en los capítulos siguientes. Los capítulos 11-18
se basan en el trabajo original. En esencia, en el Capítulo 11 exploramos lo que ML puede
decirnos sobre la expansión de fondo del Universo al estimar el parámetro de desaceleración
q(z), una medida de la aceleración del Universo, y hacemos una detección independiente
del modelo ∼ 4.5σ de la expansión acelerada, pero también colocamos restricciones en la
transición al corrimiento al rojo de la fase de aceleración (ztr = 0.662 ± 0.027). También
encontramos una desviación de ΛCDM en corrimientos al rojo altos, aunque dentro de los
errores, lo que sugiere la tensión supuesta recientemente entre los datos de SnIa / cuásar
y el modelo de constante cosmológica ΛCDM en corrimientos al rojo altos (z & 1.5). En
el capítulo 12 ampliamos nuestro análisis de reconstrucción de ML incluyendo también
datos cosmológicos a nivel de perturbación, donde aplicamos los algoritmos genéticos para
explorar la naturaleza de DE de una manera independiente del modelo reconstruyendo
cantidades como el índice de crecimiento de perturbaciones de densidad de materia γ(z),
la tensión anisotrópica DE lineal ηDE(z) y la velocidad del sonido adiabático c2

s,DE(z)
de las perturbaciones DE. Encontramos una desviación ∼ 2σ de la ecuación del estado
w(z) de -1 a altos corrimientos al rojo, la velocidad del sonido adiabático es negativa
en el nivel ∼ 2.5σ en z = 0.1 y una desviación ∼ 2σ de la tensión anisotrópica de la
unidad en corrimientos al rojo bajos y ∼ 4σ en corrimientos al rojo altos. Por lo tanto,
proporcionamos indicios leves sobre posibles desviaciones del modelo Λ CDM a través de
la presencia de un componente no adiabático en la velocidad del sonido DE o la presencia
de estrés anisotrópico DE. En el Capítulo 13 presentamos un modelo de reconstrucción
independiente y no paramétrica de la evolución del corrimiento al rojo de la temperatura del
Fondo Cósmico de Microondas (CMB) para imponer restricciones a la relación de dualidad
distancia cósmica y una constante de estructura fina variable temporal y en En el capítulo
14 también exploramos el parámetro de dualidad con eventos de ondas gravitacionales con
lentes fuertes y pronósticos de ML. En el capítulo 15 presentamos reconstrucciones de la
quintaesencia y las conjeturas de Swampland utilizando tanto ML como cosmografía. Los
capítulos 16 y 17 tratan de nuevas pruebas nulas para la curvatura espacial y homogeneidad
del Universo y el principio copernicano a través del Teorema de Noether respectivamente y
sus reconstrucciones ML. Finalmente, en el Capítulo 18 presentamos ML ajustes mejorados



del horizonte sonoro en la época de arrastre bariónico y mostramos que pueden sesgar
fuertemente las restricciones derivadas sobre los parámetros cosmológicos usando datos de
oscilaciones acústicas bariónicas (BAO).
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1
The Standard Cosmological Model

Einstein: What I most admire about your art, is your universality. You don’t say a word,
yet the world understands you!

Chaplin: True. But your glory is even greater! The whole world admires you, even though
they don’t understand a word of what you say.

1.1 Overview

Columbus was once at dinner with some dignitaries. It was after the first voyage to
America, and somebody said, "It was not such a great thing after all. The ship did it
easily enough; anybody could have done it." Columbus did not say anything, but later
on he said, "Can any of you here make an egg stand on end?". Well, everybody tried
it and could not do it at all. Columbus took the egg, gave it a light tap, and stood it
on its end. They said, "Well, of course, anybody can do it that way". He said, "Yes,
and anybody can do it when somebody shows them how it is done". There was nothing
said about the egg could not be cooked or the shell had to be unbroken, or anything like
that. Just, could you make the egg stand up. But the point with Columbus was that after
somebody has done it, it is the easiest thing in the world and no great show at all. We as
scientists should remember that we are doing science, as Stephen Hawking would say "in
the shoulder of giants" and it is after countless hours of hard work that we get to master
a certain subject and only then one could say it is "easy", and because of the efforts of
thousands of researchers we now have an elegant mathematical description concerning the
world around us.

In 1905 Albert Einstein published two papers that changed the course of physics of
the twentieth century. The ideas conveyed led to two major revolutions in our understand-
ing of the physical world, relativity and quantum mechanics [13]. They provide us with a
picture about the relation between space and time and concerning the nature of matter and
radiation. Later, in 1915 Albert Einstein published his theory of General Relativity (GR),
which generalizes special relativity and describes a metric theory of gravity. It is one of
the most well-tested theories that we have and surprisingly, it remains almost unchanged
after more than one century. As applied to cosmology, the field equations of GR are used
to describe the expansion of the Universe, the propagation of gravitational waves (which
have recently been detected [14]), and the formation of Large Scale Structure (LSS) in the
Universe, such as clusters of galaxies and super-clusters [15].

A striking aspect of GR is its prediction about the origin and evolution of the Uni-
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Chapter 1. The Standard Cosmological Model

verse, which can be understood with simple physical laws. One of its most interesting
applications is Cosmology, which is the science that studies the Universe as a whole and
tries to answer questions such as: How old is the Universe? What is the size and the
geometry of the Universe? What is its composition? How did the Universe begin and
how will it end? How did the matter and the structures that we observe in the Universe
originate?

The field of Cosmology has transformed in what had previously been an assembly
of largely untested speculation into an exact science, based on accurate astrophysical data
and theoretical developments [16]. The best accepted physical model of our Universe is
the Standard Cosmological Model (SCM) supplemented by an inflation mechanism through
a scalar field named the inflaton [17]. Lately, the abundance with increasing precision of
cosmological observations strongly indicates the existence of non-baryonic cold dark matter
(CDM), and that the present Universe is in an epoch of accelerated expansion at redshifts
z . 1 [18–20].

The SCM is also referenced as the Λ-Cold-Dark-Matter (ΛCDM) model and is so far
the best explanation to describe the dynamical evolution of the late-time Universe [21].
However the ΛCDM model leaves many questions unanswered from the theoretical point of
view, since it has to assume that ∼95% of the total component of the Universe is unknown.
For this reason, the accelerating expansion of the Universe and the dark matter component
still remain one of the biggest puzzles to solve in modern Cosmology.

Theoretical physicists have brought forward a plethora of possible origins of the
cosmic acceleration, but all have challenges or objections. The most well known explanation
is the cosmological constant, which can be traced back to Albert Einstein. In this theory,
space is intrinsically filled with a very small level of vacuum energy, resulting from a slight
missed cancellation in the quantum mechanics of elementary particles. But we do not know
why the value of the cosmological constant has such a small value and yet nonzero [22,23],
nor can we derive it from our elementary particle theories.

The standard model of cosmology is a theoretical framework that accurately describes
a large diversity of cosmological observables, ranging from the temperature anisotropies of
the cosmic microwave background to the spatial distribution of galaxies. This model has a
few free parameters representing fundamental quantities, like the geometry and expansion
rate of the Universe, the amount and nature of dark energy and dark matter, and the sum
of neutrino masses. Inferring the value of these parameters will expand our knowledge
on the fundamental constituents and laws governing our Universe. Hence, one of most
important goals of modern cosmology is to constrain the value of these parameters with
the highest accuracy.

The SCM is built on five robust pillars [24]: i) The General Theory of Relativity,
which provides the frame for the cosmological models and represents the most general
theory describing a single metric that in four dimensions has field equations with at most
second-order derivatives [25]. ii) The Cosmological Principle, which states that the spatial
distribution of matter in the Universe is homogeneous and isotropic at large scales [26].
iii) The Hubble law, which proves to be the first observational basis for the expansion of
the Universe [27]. iv) The Cosmic Microwave Background (CMB), whose uniformity in its
temperature radiation is the best evidence for the isotropy of the observed Universe and
whose small anisotropies (smaller than about one part in 105) provides strong constraints on
the cosmological parameters [28]. v) The Big Bang Nucleosynthesis (BBN), that predicts
the correct abundances for the light elements 1H, 2D, 3He, 4He, and 7Li [29].
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Chapter 1. The Standard Cosmological Model

The theory of GR, described by a massless spin-2 field and formulated by A. Einstein
in 1915-1916, is strongly based on four assumptions [30,31] that the Physics of Gravitation
has to satisfy:

• The Principle of Relativity, which states that all the laws of Physics take the same
form in any inertial reference.

• The Principle of Equivalence, which is equivalent to saying that the effects of the
gravitational field can be cancelled by the acceleration of the reference frame.

• The Principle of General Covariance, which requires all the laws of Physics to be
covariant (form-invariant) under general transformations of coordinates, i.e they have
the same form in all reference frames for all observers. It is well known that the
simplest way to construct laws of Physics (equations) satisfying invariance principles
is to construct invariant actions.

• The Principle of Causality, i.e. that each point of space-time should admit a univer-
sally valid notion of past, present and future).

We will now mention the conventions and definitions that we will use throughout
this thesis. Our convention for the metric signature is (−+ ++) the Riemann and Ricci
tensors are given respectively by Vb;cd − Vb;dc = VaR

a
bcd and Rab = Rsasb. We will use the

Greek alphabet to write space-time indices and the Latin alphabet for the space indices.
In the standard cosmological model one assumes the Einstein-Hilbert action

S =

∫
d4x
√
−g
[

1

2κ
R+ Lm

]
, (1.1)

where g is the determinant of the metric gµν , R is the Ricci scalar, κ ≡ 8πGN
c4

and Lm is
the Lagrangian for matter fields. Applying the principle of least action to Eq. (1.1) one
obtains the field equations

Gµν = κT (m)
µν , (1.2)

where Gµν is the Einstein tensor and T
(m)
µν is the energy-momentum tensor for matter

fields. For the Riemann and Einstein curvature tensors we will use the conventions of
Misner, Thorne and Wheeler [32]:

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα, (1.3)

Gµν = Rµν −
1

2
gµνR, (1.4)

where Rµν = Rαµαν is the Ricci curvature tensor and R = Rαα is the scalar curvature. The
stress-energy tensor is defined with respect to the Lagrangian density for the matter fields
as

T (m)
µν = − 2√

−g
δ (
√
−gLm)

δgµν
. (1.5)

5



Chapter 1. The Standard Cosmological Model

The ΛCDM model includes the Einstein Field Equations from GR

Rµν −
1

2
gµνR = κTµν + Λgµν , (1.6)

where Λ is the Cosmological Constant, κ = 8πGN
c4

and GN is the bare Newton’s constant.
In what follows we will set c = 1. The Bianchi identities imply the conservation of the
energy momentum tensor

∇µGµν = 0 −→ ∇µTµν = 0. (1.7)

Finally, let us assume that the Universe can be described at the background level by a flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, i.e

ds2 = −dt2 + a2(t)δijdx
idxj , (1.8)

then there are only two sets of non vanishing components of the Ricci tensor

R00 = −3
ä

a
= −R/2 + 3H2, (1.9)

Rij = δij
[
2ȧ2 + aä

]
, (1.10)

which can be computed using the values for the Christoffel symbols

Γ0
00 = Γ0

0i = Γ0
i0 = 0, Γ0

ij = δij ȧa, Γi0j = Γij0 = δij
ȧ

a
, (1.11)

where the over-dots indicate derivatives with respect to time and all other Γiαβ is zero. For
the Ricci scalar we have

R = 6

[
ä

a
+

(
ȧ

a

)2
]

= 12H2 + 6Ḣ. (1.12)

The evolution of the scale factor is obtained considering the 00 component of the Einstein
equations

R00 −
1

2
g00R = 8πGT00. (1.13)

Since the 00 component of the energy-momentum tensor is the energy density ρ we can
conclude that (

ȧ

a

)2

=
8πG

3
ρ, (1.14)

which can also be written as

H2

H2
0

=
ρ

ρcrit
, (1.15)

where ρcrit ≡ 3H2
0/8πG and H ≡ ȧ/a is known as the Hubble rate and characterizes the
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Chapter 1. The Standard Cosmological Model

expansion rate of the Universe, whose value today is denoted by H0.

1.2 Cosmological Perturbation Theory

Perturbation theory is an essential instrument for making predictions for a variety of cos-
mological observations and is is also necessary to understand the formation and evolution
of large-scale structures [15].

Let us assume that the Universe can be described at the background level, on large
scales on the order of ∼100Mpc and more, by a flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, then in order to study the perturbations of various cosmological models,
we consider the perturbed FLRW metric, which in the Newtonian gauge1 and including
only the scalar perturbations can be written as:

ds2 = −(1 + 2Ψ(~x, t))dt2 + a2(t)(1− 2Φ(~x, t))δijdx
idxj , (1.16)

One of the motivations to choose this gauge is that the metric potentials Φ and Ψ
are actually cosmological observables [35]. This metric can also be written as

g00(~x, t) = − (1 + 2Ψ) ,

g0i(~x, t) = 0,

gij(~x, t) = a(t)2(1− 2Φ(~x, t)). (1.17)

Since the metric (1.16) is diagonal, it is simple to invert it and at first order is given
by

g00(~x, t) = − 1

1 + 2Ψ
' −1 + 2Ψ,

g0i(~x, t) = 0,

gij(~x, t) =
1

a(t)2(1− 2Φ(~x, t))
δij ' 1

a(t)2
(1 + 2Φ) δij . (1.18)

In the absence of the potentials Ψ and Φ, Eq. (1.16) is the FLRW metric of the
zero-order homogeneous, flat cosmology. Also, in the absence of expansion (a = 1) this
metric describes a weak gravitational field. The Newtonian potential Ψ corresponds to the
temporal perturbations to the metric, and Φ to the perturbation to the spatial curvature.
In the derivation of the Christoffel symbols, the Ricci tensor and the Ricci scalar, we will
treat Ψ and Φ as small quantities, since the perturbations in the Universe are small at the
times and scales of interest, hence we will drop all terms quadratic in them.

It is worth noting that one can split the perturbations into those acting as scalars,
vectors and tensors by performing a scalar-vector-tensor (SVT) decomposition, see for
example [34]. What makes very useful the SVT decomposition is the fact that the Einstein
equations for scalars, vectors and tensors do not mix at linear order and can then be

1Concerning the choice of a gauge, there is freedom in the variables one chooses to describe the fluc-
tuations. In order to compare our results with [33, 34] we are working in the Newtonian gauge, since it is
well known that the physical and measurable quantities must be gauge invariant.
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Chapter 1. The Standard Cosmological Model

treated separately. [36]. Eq. (1.16) contains only scalar perturbations since it is what
dominates at large scales and contains the corresponding density perturbations. Notice
that scalar perturbations formally means that the perturbations in Ψ(~x, t) and Φ(~x, t)
transforms as scalars as ~x → ~x′; i.e they remain unchanged under a spatial coordinate
transformation. Also they are the only ones that couple to matter perturbations and are
the most important that couple to photon perturbation also [37]. We are not interested in
vector perturbations at the moment since they are not produced by scalar field inflation [38].
Tensor perturbations are an important prediction of inflation and necessary for the study
of the stochastic gravitational wave (GW) background.

In our derivation for the scalar perturbations we will follow Ref. [33]. Although we
have computed by hand all the Einstein equations perturbatively around the zero-order
homogeneous solution, we will not write down explicitly all the steps of the derivation since
this calculation is completely straightforward, however a bit lengthy.

To derive the Einstein field equations, we first need to compute the perturbed con-
nection coefficients. Recall that we are keeping those terms that are linear in Ψ and/or
Φ,

Γβµν =
1

2
gβα [gαµ,ν + gαν,µ − gµν,α] . (1.19)

Substituting Eqs. (1.17) and (1.18) into Eq. (1.19) gives

Γ0
00 = Ψ,0, (1.20)

Γ0
0i = Γ0

i0 = Ψ,i = ikiΨ, (1.21)

Γ0
ij = δija

2 [H − 2H (Φ + Ψ)− Φ,0] , (1.22)

Γi00 =
iki

a2
Ψ, (1.23)

Γij0 = Γi0j = δij (H − Φ,0) , (1.24)

Γijk = −iΦ [δikkj + δijkk − δjkki] , (1.25)

where Ψ,0 and Φ,0 means derivative with respect to time. In Fourier space the spatial
derivative i is replaced by i ki. Notice also that both δij and the 3-vector ki are in
Euclidean space, so we can freely interchange their upper and lower indices. In order to
compute the 00 component of the Ricci tensor

R00 = Γα00,α − Γα0α,0 + ΓαβαΓβ00 − Γαβ0Γβ0α, (1.26)

we need to use the fact that

Γi00,i = −k
2

a2
Ψ, (1.27)

−Γi0i,0 = −3

(
ä

a
−H2 − Φ,00

)
, (1.28)

ΓiiβΓβ00 = −Γii0Γ0
00 = 3HΨ,0, (1.29)

−Γiβ0Γβ0i = −Γij0Γj0i = −3
(
H2 − 2HΦ,0

)
. (1.30)
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Using the above expressions we find that

R00 = −3
ä

a
− k2

a2
Ψ + 3Ψ,00 + 3H (Ψ,0 + 2Φ,0) , (1.31)

where its zero-order agrees with Eq. (1.9). Similarly, the spatial part of the Ricci tensor is

Rij = δij
[(

2a2H2 + aä
)

(1− 2Φ− 2Ψ) + a2H (−6Φ,0 −Ψ,0)− a2Φ,00 − k2Φ
]

+ kikj (Ψ− Φ) . (1.32)

Contracting the indices on the Ricci tensor we find the Ricci scalar

R = g00R00 + gijRij ,

= [−1 + 2Ψ]

[
−3

ä

a
− k2

a2
Ψ + 3Φ,00 + 3H (Ψ,0 + 2Φ,0)

]
+

1 + 2Φ

a2

[
3
{(

2a2H2 + aä
)

(1− 2Φ− 2Ψ) + a2H (−6Φ,0 −Ψ,0)− a2Φ,00 − k2Φ
}

+ k2 (Ψ− Φ)
]
,

(1.33)

it’s zero-order agrees with Eq. (1.12). Considering small perturbations of the Ricci scalar

R = R̄+ δR, (1.34)

where R̄ represents the zero-order and δR the first order perturbation, if we subtract the zero-order
from Eq. (1.33) and keep only the first order in Ψ and Φ we find

δR = 2
k2

a2
Ψ− 4

k2

a2
Φ− 6H (Ψ,0 + 4Φ,0)− 6Φ,00 − 12ḢΨ− 24H2Ψ. (1.35)

Finally we need to compute the Einstein tensor, which at first order the 00 component is

G0
0 = g00

[
R00 −

1

2
g00R

]
= (−1 + 2Φ)R00 −

R

2
, (1.36)

δG0
0 = 6HΦ,0 + 6ΨH2 + 2

k2

a2
Φ. (1.37)

The spatial part of Gµν gives

Gij = gik
[
Rkj −

gkj
2
R
]

=
δik (1 + 2Φ)

a2
Rkj −

δij
2
R. (1.38)

Using the expression for the Ricci scalar and the Ricci tensor we find

Gij = Aδij +
kikj (Ψ− Φ)

a2
, (1.39)

where A has more than a dozen terms which we will not write down explicitly but on the GitHub
repository https://github.com/RubenArjona we have a code written with Mathematica that shows
all those derived terms. This code is based on the Riemann Geometry & Tensor Calculus (RGTC)
package, see http://www-old.inp.demokritos.gr/sbonano/public_html/ for more details.

1.3 Tensions in the Concordance Model

Through the observations of distant Type Ia supernovae at the turn of the previous century, it was
discovered that the Universe is undergoing a phase of accelerated expansion on very large scales,
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Chapter 1. The Standard Cosmological Model

apparently caused by a repulsive force, usually attributed to the cosmological constant [39, 40].
Since matter with positive pressure generates decelerated expansion, cosmologists suggested that
the late-time acceleration of the Universe is sourced by an exotic energy component with negative
pressure, known as dark energy (DE) [41, 42]. One of the simplest and earliest candidate of
DE is the cosmological constant Λ. Further observations and theoretical developments led to a
unified description for the formation and evolution of the Universe within the framework of General
Relativity (GR), known as the standard Λ cold dark matter model (ΛCDM), that contains only six
free parameters describing the matter and dark energy (DE) content of the Universe. This model
is so far the best phenomenological fit to the data [1]. Even though this model fits very well the
cosmological observations, it suffers from a few drawbacks, like the fine tuning and coincidence
problem [43]. The first one, known as the cosmological constant problem, is associated with the large
deviation between the theoretical value of Λ predicted by quantum field theories and its observed
value [23]. The coincidence problem asks the question, “Why are the densities of non relativistic
matter and vacuum of the same order precisely today?”, even though they evolve differently [44].
These problems have led to increased interest in models where GR is modified in a way to ease the
aforementioned problems and produce the observed late time acceleration without creating new
downsides [45].

While this framework is very successful, there also remain some tensions to resolve, such
as the nature of the dominant cold dark matter component or the hotly debated Hubble constant
tension, where the determination of H0 deduced from physics of the early universe, i.e. the Cosmic
Microwave Background (CMB) observations [1], is lower that the local determination of H0 based
on Cepheid variable-calibrated Type Ia supernovae (SnIa) [46] at the 4.4σ confidence level. Also,
as mentioned in Ref. [47], results from other surveys such as DES [48], the SPT Collaboration [49]
or the H0LiCOW collaboration [50], with few observational systematics between them, add to the
idea that the tension is due more to the physics of the cosmological setting rather than experimental
systematics, see Refs. [51–53] and references there in for a recent discussion. However, recent re-
analyses have shown that the main bulk of the tension which remains between the CMB and local
universe measurements is mainly due to the Cepheids [54].

Other tensions have also appeared [55]. Using quasars in high redshifts up to z ' 7.5, it
was shown in Ref. [56] that a ∼ 4σ deviation of the dark energy equation of state w(z) from the
ΛCDM model exists, suggesting a time evolution of the DE equation of state at high redshifts. On
the other hand, in Refs. [57,58] it is mentioned that an enhanced lensing amplitude still present in
the Planck 2018 CMB data can be explained by a positive curvature Universe, thus violating the
underlying assumptions of the flat ΛCDM model. Also, the ΛCDM prediction of the amplitude of
matter fluctuations defined as S8 ≡ σ8 (Ωm/0.3))

0.5, where σ8 is the root mean square of matter
fluctuations on a 8h−1Mpc scale, coming from the Planck CMB data (once calibrated) is about
2− 3σ higher than the direct estimation coming from cosmic shear measurements [59].

As explained on Refs. [60, 61] there are some anomalies at 2 − 3σ on analysis of the CMB
anisotropy which include a lack of power on large angular scales, differences on the best fit val-
ues of cosmological parameters, preference for odd parity correlations, the phenomena of cosmic
birefringence, cold spot anomaly etc. It is worth also to mention the Lithium problem where it is
observed five times less lithium than that the BBN predicts from measurements of old, metal-poor
starts in the halo of the Milky Way. Finally, there are some issues in characterizing structures
at small scales within the framework of the ΛCDM model such as the core-cusp problem, missing
satellite problem, too big to fail problem etc. See Refs. [62, 63] for a review.

These issues have motivated several analyses trying to reassess the level of tensions and
deviations from the ΛCDM model [64–70] or to resolve it with new physics [3]. The latter approach
postulates that GR is only accurate on small scales and modifications at larger scales are needed.
In Chapter 3 we will develop more on this related topic.
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2
Observational Probes of Cosmology

Cosmology is standing on a golden age with the advent of current and upcoming observations of
percent level precision. In this Chapter we present a thorough description of the cosmological data
we will use in the subsequent chapters.

2.1 Background expansion

2.1.1 The H(z) data

The Hubble expansion data are obtained in two complementary ways: by the clustering of galaxies
or quasars and by the differential age method. The former approach is connected to the clustering
of quasars or galaxies and is a direct probe of the Hubble expansion by determining the BAO
peak in the radial direction [71]. The latter is connected to the redshift drift of distant objects
over long time periods, usually a decade or longer, as in metric theories assuming the Friedmann-
Lemaitre-Robertson-Walker metric, the Hubble parameter can also be expressed in terms of the
time derivative of the redshift as H(z) = − 1

1+z
dz
dt [72]. In specific, the H(z) data measured via the

differential age method are obtained by following the differential evolution of Dn4000, a spectral
feature of very massive and passive galaxies. The main source of systematics is the astrophysical
modelling of the stellar metallicity, namely via the M11 and BC03 models discussed in Ref. [73].
However, by implementing strict selection criteria it was shown in Ref. [73] that it is possible to
keep the systematics under control. Furthermore, the H(z) data are independent of any cosmology-
based constraint, i.e. a fiducial cosmological model, they are assumed to be uncorrelated with each
other and share no correlations with the SnIa data [73]. In this analysis we use the 36 points of the
compilation from Ref. [9], which spans over a redshift range of 0.07 ≤ z ≤ 2.34. The data are in
the form (zi, Hi, σHi) and are explicitly shown in Table 2.1. For the likelihood for the H(z) data
we use a standard χ2, given by

χ2
H =

N∑
i=1

(
Hi −Hth(zi)

σi

)2

, (2.1)

where th stands for the theoretical cosmological model under consideration. Since Eq. (2.1) has a
quadratic form, we can then minimize the χ2 analytically over H0 and the result is

χ2
H = A− B2

Γ
, (2.2)

H0 =
B

Γ
, (2.3)

where the parameters A, B and Γ are defined as

A =

NH∑
i

(
Hi

σHi

)2

, (2.4)
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Table 2.1: TheH(z) data used in our analysis (in units of km s−1Mpc−1). This compilation,
which was presented in Ref. [9], is partly based on those of Refs. [73] and [75].

z H(z) σH Ref.
0.07 69.0 19.6 [76]
0.09 69.0 12.0 [77]
0.12 68.6 26.2 [76]
0.17 83.0 8.0 [77]
0.179 75.0 4.0 [78]
0.199 75.0 5.0 [78]
0.2 72.9 29.6 [76]
0.27 77.0 14.0 [77]
0.28 88.8 36.6 [76]
0.35 82.7 8.4 [79]
0.352 83.0 14.0 [78]
0.3802 83.0 13.5 [73]

0.4 95.0 17.0 [77]
0.4004 77.0 10.2 [73]
0.4247 87.1 11.2 [73]
0.44 82.6 7.8 [80]

0.44497 92.8 12.9 [73]
0.4783 80.9 9.0 [73]

z H(z) σH Ref.
0.48 97.0 62.0 [77]
0.57 96.8 3.4 [81]
0.593 104.0 13.0 [78]
0.60 87.9 6.1 [80]
0.68 92.0 8.0 [78]
0.73 97.3 7.0 [80]
0.781 105.0 12.0 [78]
0.875 125.0 17.0 [78]
0.88 90.0 40.0 [77]
0.9 117.0 23.0 [77]

1.037 154.0 20.0 [78]
1.3 168.0 17.0 [77]

1.363 160.0 33.6 [82]
1.43 177.0 18.0 [77]
1.53 140.0 14.0 [77]
1.75 202.0 40.0 [77]
1.965 186.5 50.4 [82]
2.34 222.0 7.0 [83]

B =

NH∑
i

Hi E
th(zi)

σ2
Hi

, (2.5)

Γ =

NH∑
i

(
Eth(zi)

σHi

)2

, (2.6)

where we denote the theoretical value of the Hubble parameter as Eth(z) = Hth(z)/H0 and we set
NH = 36. The aforementioned data can be used to measure the Hubble constant H0, to determine
the deceleration transition redshift, to constrain the spatial curvature of the Universe along with
distance redshift data, but also constrain the non-relativistic matter and DE parameters, as shown
in [74]. The Hubble constant H0 has been the focus of an extended discussion in the literature, in
light of a tension between local and high-redshift measurements of the parameter, see Ref. [51,52]
and references there in for a recent discussion.

2.1.2 The type Ia supernovae data

A type Ia supernovae is referred to a type of supernovae that occurs in a binary system of starts,
where one of them is a white dwarf. The other star can be anything from a giant star to an even
smaller white dwarf1. It is believed that Type Ia Supernovae (SNe Ia) are thermonuclear explosions
in low mass stars, e.g. activated when the mass of a white dwarf is steer by the accretion of material
from a companion above the maximum that can be supported by electron degeneracy pressure,
which occurs at a critical mass, the Chandrasekhar limit of ∼ 1.4M� [84]. Since empirically SNe Ia
follow photometric and spectroscopic sequences with regard to a consistent peak luminosity, these
explosions can be used as standard candles to measure the distance to their host galaxies [85]. In

1https://en.wikipedia.org/wiki/Type_Ia_supernova
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other words, Sne Ia exhibit an empirical relationship between their peak luminosity, and their light
curve width (or “stretch”) and color. This luminosity correction for the two parameters is the most
common technique for standardising a compilation of SNe Ia. By fitting a light curve model to
time-series photometry of SNe Ia it is possible to recover the supernovae parameters and infer their
distances [86]. In fact, this process lead the way to the discovery of the accelerating expansion of
the Universe [87]. Some empirical techniques used for this fitting the light curves are for example
the Multi Colour Lightcurve Shape (MLCS) strategy [39] and SALT2 (Spectral Adaptive Light Curve
Template) where the later is used in most modern SN Ia analyses [86].

We use the Pantheon SnIa compilation of Ref. [88] of 1048 Supernovae Ia points in the
redshift range 0.01 < z < 2.26 along with their covariances. The apparent magnitude mB is

mB = 5 log10

(
dL(z)

1Mpc

)
+ 25 +MB , (2.7)

where dL(z) is the luminosity distance and MB the absolute magnitude. We then marginalize over
the nuisance parameter MB , as shown in the Appendix C of Ref. [89]. Then our final expression
for the χ2 is

χ2
SnIa = A− B2

E
+ ln

(
E

2π

)
, (2.8)

where A = ∆~m ·C−1 ·∆~m, B = ∆~m ·C−1 ·∆~I and E = ~I ·C−1 · ~I, while C is the SnIa covariance
matrix, ~I = (1, 1, · · · , 1) and ∆m ≡ mB,i −mth(zi).

2.1.3 The baryon acoustic oscillations

The different BAO data used in our analysis comes from 6dFGS [90], SDDS [81], BOSS CMASS [91],
WiggleZ [80], MGS [92] and BOSS DR12 [93], DES [94], Lya [95], DR - 14 LRG [96] and quasars [97].
The following functions that we will present now are used to describe the data. First, we define
the ratio of the sound horizon at the drag redshift to the so called dilation scale:

dz ≡
rs(zd)

DV (z)
, (2.9)

where the comoving sound horizon is rs(zd) =
∫∞
zd

cs(z)
H(z)dz and zd is the redshift at the dragging

epoch, see Eq. (4) of [98]. In the ΛCDM model the sound horizon can be approximated as

rs(zd) '
44.5 log

(
9.83

Ωm,0h2

)
√

1 + 10(Ωb,0h2)3/4
Mpc, (2.10)

while the dilation scale is given by

DV (z) =

[
(1 + z)2dA(z)2 cz

H(z)

]1/3

, (2.11)

where we have defined the Hubble distance

DH(z) = c/H(z). (2.12)

Then, the 6dFGs and WiggleZ BAO data are specified as

z dz σdz
0.106 0.336 0.015
0.44 0.073 0.031
0.6 0.0726 0.0164
0.73 0.0592 0.0185

(2.13)
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where their inverse covariance matrix is

C−1
ij =


1

0.0152 0 0 0
0 1040.3 −807.5 336.8
0 −807.5 3720.3 −1551.9
0 336.8 −1551.9 2914.9

 (2.14)

with the χ2 given by
χ2
6dFS,Wig = V iC−1

ij V
j , (2.15)

and V i = dz,i − dz(zi,Ωm,0). The BAO measurements for MGS and SDSS (LowZ and CMASS)
are given by DV /rs = 1/dz via

z 1/dz σ1/dz

0.15 4.46567 0.168135
0.32 8.62 0.15
0.57 13.7 0.12

(2.16)

and the

χ2
MGS,SDSS =

∑(
1/dz,i − 1/dz(zi,Ωm,0)

σ1/dz,i

)2

. (2.17)

At this point we should stress that these aforementioned data points were provided by their re-
spective collaborations, 6dFGs and WiggleZ for the ones in Eq. (2.15) and MGS and SDSS for
Eq. (2.17) in that exact form as this is how they are extracted from the raw data. Hence, we have
not made any assumptions from our part at this stage.

The BAO data from DES are of the form dA(z)/rs with (z, dA(z)/rs, σ) = (0.81, 10.75, 0.43)
and the χ2 given by

χ2
DES =

∑(
dA(z, i)/rs − dA(zi,Ωm,0)/rs

σdA(z,i)/rs

)2

. (2.18)

We also include the BAO data from Lya, which are of the form fBAO = ((1 + z)dA/rs, DH/rs) and
are given by

z fBAO σfBAO

2.35 36.3 1.8
2.35 9.2 0.36

(2.19)

with the χ2 given by

χ2
Lya =

∑(
fBAO,i − fBAO(zi,Ωm,0)

σfBAO

)2

. (2.20)

Finally, the DR-14 LRG and quasars BAO data make the assumption of rs,fid = 147.78 Mpc/h
and are given by DV /rs = 1/dz

z 1/dz σ1/dz

0.72 2353
rs,fid

62
rs,fid

1.52 3843
rs,fid

147
rs,fid

(2.21)

and the χ2 given by

χ2
LRG,Q =

∑(
1/dz,i − 1/dz(zi,Ωm,0)

σ1/dz,i

)2

. (2.22)

The total χ2 is then given by

χ2
tot = χ2

6dFS,Wig + χ2
MGS,SDSS + χ2

DES + χ2
Lya + χ2

LRG,Q. (2.23)

Note that the previous equation carries the assumption that the data are independent, hence we
can just add the χ2 together. As some of the data points are from the same survey, there must
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Chapter 2. Observational Probes of Cosmology

be galaxies in common between the overlapping datasets, and therefore some potentially strong
covariances, something which poses an important limitation of our analysis.

In the particular cases, e.g. the WiggleZ data, where the correlations between the points,
quantified in terms of a covariance matrix Cij , are known, we have then included the Cij in our
analysis. However, in most cases the full correlations are in practice not publicly available or it
is impossible to correctly estimate a covariance matrix, even if a few attempts have been made in
the literature, e.g. for a similar discussion for the fσ8 data see Ref. [99].

One way to resolve this important issue was proposed in Ref. [99], where the authors approxi-
mated the overall covariance matrix of the fσ8 measurements as the percent fraction of overlapping
volume between the surveys to the total volume of the two surveys combined. However, clearly
this approach cannot take into account any negative correlations between the data as in general,
the effect of the correlations can also be due to instrument systematics etc. Thus, approximating
the covariance matrix with the percent overlap can potentially lead to a strongly biased covariance
matrix.

On a related note, another limitation of this compilation of the BAO data is that some of
the data points, e.g. those coming from 6dFGs and WiggleZ, are given in terms of the variable
dz(z), while some other points, e.g. from MGS and SDSS, are given in terms of 1/dz(z). This
poses a problem as we have to make an implicit assumption about how the errors in those data
points are distributed. For example, we always assume symmetric error bars, but if the errors are
symmetric in 1/dz(z), they will not be symmetric in dz(z) and vice versa. This further complicates
the analysis as dz(z) and 1/dz(z) are not raw data that can be reexpressed in a more consistent
form, but they are derived data products which makes it impossible to rewrite them in the same
form, without making further assumptions.

Finally, the BAO χ2 terms in Eq. (2.23) depend on the sound horizon at the drag redshift
rd = rs(zd) through Eq. (2.9), which is complicated to estimate model independently. In order to
not assume a value for H0, when we reconstruct this data set model independently on Chapters 11-
17, when we fit the BAO data we have minimized the χ2 over the quantity rsh = rs ·h, where rs is
the sound horizon at the drag redshift and h is the Hubble parameter. Hence, we avoid any bias
of the results due to specifying a value of H0.

2.1.4 Transversal and Radial BAO data

The 6 data points for the radial BAO ∆z are taken from Table III of the SDSS-IV spectroscopic
survey [100] coming from SDSS, SDSS-II, BOSS and eBOSS. As we did with the BAO data, to
do not assume a value for H0 in our reconstruction when we fit the radial BAO data we have
minimized the χ2 over the quantity rsh = rs · h.

The angular BAO, also known as the transversal BAO scale data have been taken from
Table I of Ref. [101] where 15 measurements of θ(z) are given and where the data have been derived
without assuming a fiducial cosmology, following the approach of Ref. [102]. For convenience of
the reader we also present the data points on Table 2.2. In particular, the compilation of the
angular BAO data comes from luminous red galaxies, blue galaxies, quasar catalogs and from
diverse releases of the Sloan Digital Sky Survey (SDSS), see Refs. [103–106]. For the fit of the
transverse BAO we have also minimized the χ2 over the quantity rsh = rs · h.

2.1.5 Background CMB Temperature T (z)

In our analysis we use 37 points and the compilation can be found in Table 2.3. The main advantage
of our compilation is that it spans over a wide redshift range of 0 ≤ z ≤ 3.025. The compilation of
the data is assumed to be uncorrelated since there is no public access to any correlation matrix.
The background temperature of the CMB can be measured at both high and low redshifts. For the
former, it can be recovered through fine-structure transitions of atomic or molecular species in cool
absorption-line systems along the line of sight to high redshift quasars [107]. For low redshifts it can
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Table 2.2: Angular BAO data taken from Table I of Ref. [101]

Catalog z θ(z) σθ(a) Ref.
SDSS-DR7 0.235 9.06 0.23 [106]
SDSS-DR7 0.365 6.33 0.22 [106]
SDSS-DR10 0.450 4.77 0.17 [105]
SDSS-DR10 0.470 5.02 0.25 [105]
SDSS-DR10 0.490 4.99 0.21 [105]
SDSS-DR10 0.510 4.81 0.17 [105]
SDSS-DR10 0.530 4.29 0.30 [105]
SDSS-DR10 0.550 4.25 0.25 [105]
SDSS-DR11 0.570 4.59 0.36 [104]
SDSS-DR11 0.590 4.39 0.33 [104]
SDSS-DR11 0.610 3.85 0.31 [104]
SDSS-DR11 0.630 3.90 0.43 [104]
SDSS-DR11 0.650 3.55 0.16 [104]
SDSS-DR12Q 2.225 1.77 0.31 [103]

be obtained from Sunyaev-Zel’dovich (SZ) effect in clusters of galaxies. The existing measurements
at high redshifts still have large error bars and the majority of the points can be only treated as
upper limits. However, in the near future, with high resolution spectroscopy with larger telescopes,
the precision of these measurements can be competitive with local interstellar data. For the last
data point of Table 2.3 we compute the error as

σT (z = 3.025) =

√
σ2
u + σ2

d

2
= 2.562, (2.24)

where σi is the error on the temperature estimates and N is the number of the observational data
used.

Since our χ2 has a quadratic form

χ2
T =

NT∑
i

(
Ti − T th(zi)

σTi

)2

, (2.25)

where Tth(z) = T0T̃(z) and T̃(z) is the dimensionless temperature, we can minimize the χ2

analytically over T0 finding

χ2
T = A− B2

Γ
, (2.26)

T0 =
B

Γ
, (2.27)

where the parameters A, B and Γ are defined as

A =

NT∑
i

(
Ti
σTi

)2

, (2.28)

B =

NT∑
i

Ti T̃(zi)

σ2
Ti

, (2.29)

Γ =

NT∑
i

(
T̃(zi)

σTi

)2

. (2.30)
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Table 2.3: Compilation of the CMB temperature-redshift relation T(z) measurements used
in this analysis and related references. We used 37 data points.

z T(K) Ref.
0.000 2.72548 ± 0.00057 [108]
0.023 2.72 ± 0.10 [109]
0.152 2.90 ± 0.17 [109]
0.183 2.95 ± 0.27 [109]
0.200 2.74 ± 0.28 [109]
0.202 3.36 ± 0.20 [109]
0.216 3.85 ± 0.64 [109]
0.232 3.51 ± 0.25 [109]
0.252 3.39 ± 0.26 [109]
0.282 3.22 ± 0.26 [109]
0.291 4.05 ± 0.66 [109]
0.451 3.97 ± 0.19 [109]
0.546 3.69 ± 0.37 [109]
0.550 4.59 ± 0.36 [109]
2.418 9.15 ± 0.72 [110]
1.777 7.20 ± 0.80 [111]
1.973 7.9 ± 1 [112]
2.338 10 ± 4 [113]
0.037 2.888 ± 0.039 [114]

z T(K) Ref.
0.072 2.931 ± 0.017 [114]
0.125 3.059 ± 0.032 [114]
0.171 3.197 ± 0.030 [114]
0.220 3.288 ± 0.032 [114]
0.273 3.416 ± 0.038 [114]
0.322 3.562 ± 0.050 [114]
0.377 3.717 ± 0.063 [114]
0.428 3.971 ± 0.071 [114]
0.471 3.943 ± 0.112 [114]
0.525 4.380 ± 0.119 [114]
0.565 4.075 ± 0.156 [114]
0.618 4.404 ± 0.194 [114]
0.676 4.779 ± 0.278 [114]
0.718 4.933 ± 0.371 [114]
0.777 4.515 ± 0.621 [114]
0.870 5.356 ± 0.617 [114]
0.972 5.813 ± 1.025 [114]
3.025 12.1+1.7

−3.2 [115]

2.2 Large Scale Structure

2.2.1 The growth-rate data

The growth-rate fσ8 compilation used in our analysis is given in Table I of Ref. [116], where the
authors analyzed different subsets in the data and implemented Bayesian model comparison to
test the internal robustness of the dataset. For convenience this compilation can also be found in
Table 2.4. These data are obtained via the redshift-space distortions and in fact determine the
combination fσ8(a) ≡ f(a) · σ(a), which is a product of the growth rate f(a) = dlnδ

dlna and the
redshift-dependent rms fluctuations σ(a) = σ8,0

δ(a)
δ(1) of the linear density field within spheres of

radius R = 8h−1Mpc. In this notation the parameter σ8,0 is the value of the rms fluctuations
today and is a direct measure of the amplitude of fluctuations in linear scales. The value of fσ8(a)
can be directly determined from the ratio of the monopole to the quadrupole of the redshift-
space power spectrum P (k), which depends on the parameter β = f/b0, where b0 is the galaxy
bias [117–119] and f is the growth rate assuming linear theory [117–119]. It can be shown that
fσ8(a) is independent of the bias, as the latter completely cancels out from the previous expression.

Moreover, fσ8(a) has been shown to be a good discriminator of DE models [118]. For
more details on the covariance matrix of the data and how to correct for the Alcock-Paczynski
effect see Refs. [116], [120] and [121]. The advantage of using the combination fσ8, instead of just
the growth-rate f(z), is that the former is directly associated to the power spectrum of peculiar
velocities of galaxies [122].

To be more specific, the growth rate data set is constructed on the Gold-2017 compendium
from [120] which has 18 independent measurements of fσ8(z), derived from redshift space distortion
measurements from several surveys. Among these surveys, we note that the three WiggleZ [80]
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Table 2.4: Compilation of the fσ8(z) data points used in the analysis along with the
reference matter density parameter Ωm0 which is needed for the growth correction.

z fσ8(z) σfσ8(z) Ωref
m,0 Ref.

0.02 0.428 0.0465 0.3 [124]
0.02 0.398 0.065 0.3 [125], [126]
0.02 0.314 0.048 0.266 [127], [126]
0.10 0.370 0.130 0.3 [128]
0.15 0.490 0.145 0.31 [129]
0.17 0.510 0.060 0.3 [118]
0.18 0.360 0.090 0.27 [130]
0.38 0.440 0.060 0.27 [130]
0.25 0.3512 0.0583 0.25 [131]
0.37 0.4602 0.0378 0.25 [131]
0.32 0.384 0.095 0.274 [132]
0.59 0.488 0.060 0.307115 [133]
0.44 0.413 0.080 0.27 [80]
0.60 0.390 0.063 0.27 [80]
0.73 0.437 0.072 0.27 [80]
0.60 0.550 0.120 0.3 [134]
0.86 0.400 0.110 0.3 [134]
1.40 0.482 0.116 0.27 [135]
0.978 0.379 0.176 0.31 [136]
1.23 0.385 0.099 0.31 [136]
1.526 0.342 0.070 0.31 [136]
1.944 0.364 0.106 0.31 [136]

measurements are correlated, and their covariance matrix is given by

CWiggleZ = 10−3

 6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 . (2.31)

We also include four measurements from SDSS [123]. These points have a covariance matrix given
by

CSDSS-IV = 10−2


3.098 0.892 0.329 −0.021
0.892 0.980 0.436 0.076
0.329 0.436 0.490 0.350
−0.021 0.076 0.350 1.124

 . (2.32)

Hence our data set has N = 22 data points. This compilation was also used in Ref. [137], to place
constraints on the dark-matter pressure, sound speed and viscosity. Some other compilations also
exist in the literature (see Refs. [121,138,139]) but these contain duplicate points coming from the
same surveys but in different years, as the goal of their analysis was to study the evolution of the
fσ8 tension over time. Here we will only focus on the compilation given in Table 2.4, as these
points are unique and their statistical robustness has already been confirmed [116]. In Table 2.4
the RSD data points are given in different redshifts as fσobs,i8 =

(
fσobs8 (z1), . . . , fσobs8 (zn)

)
, while

the theoretical prediction is given by fσth8 (θp) =
(
fσth8 (z1), . . . , fσth8 (zn)

)
, which depends on the
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Table 2.5: The Eg data used in this analysis as compiled by Refs. [145] and [139]. Note
that some of the points in the previous references were duplicates as they come from the
same surveys, albeit with combinations of different external probes, so we use only one of
the measurements to avoid strong correlations. Here we only show the points we used in
the analysis.

z Eg σEg

0.267 0.43 0.13
0.270 0.40 0.05
0.305 0.27 0.08
0.320 0.40 0.09
0.554 0.26 0.07
0.570 0.30 0.07
0.600 0.16 0.09
0.860 0.09 0.07

cosmological model and the parameters θp. Note however, that some of the points are correlated
with each other, and they also assume a fiducial cosmology that has to be corrected for due to the
Alcock-Paczynski effect; see Refs. [116, 120, 121], and for earlier analyses see Refs. [140–142]. We
give the values of the Ωm0 parameter for the fiducial flat ΛCDM model used in the fourth column
of Table. 2.4.

2.2.2 The Eg data

The flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which can describe accurately
the geometry of the Universe, reads ds2 = −(1 + 2Ψ)dt2 + a(t)2(1 − 2Φ)dx2, where a is the scale
factor and Ψ and Φ are the two scalar gravitational potentials. Then the gravitational slip, can be
defined as the ratio of the gravitational potentials ηDE = Φ

Ψ , which in GR is equal to unity. These
potentials satisfy the two Poisson equations in Fourier space:

−k
2

a2
(Φ + Ψ) = 4πGNΣ(k, a)ρmδm, (2.33)

−k
2

a2
Ψ = 4πGNµ(k, a)ρmδm, (2.34)

where GN is the bare Newton’s constant, while Σ and µ parameterize deviations in GR. In the
case of GR these parameters have the value Σ = 2 and µ = 1.

In order to test the aforementioned relations, the Eg statistic was created, aiming for it to
be bias independent at linear order [143, 144]. The Eg test can be expressed as the expectation
value of the ratio of lensing and galaxy clustering observables at a scale k as follows

Eg =

〈
a∇2(Ψ + Φ)

3H2
0fδm

〉
. (2.35)

To derive the gravitational slip in a model independent way, which it would be of interest to
us on Chapter 12, we reconstruct two quantities through the Eg and fσ8 data. The first quantity
is P2(z) which is defined as P2 =

Ωm,0Σ
f and depends on the lensing potential and the growth rate.

In GR this reduces to P2 =
2Ωm,0
f , which implies that in GR we have Eg =

Ωm,0
f . In general, Eg

can be related to the P2 statistic of Ref. [145] via P2 = 2Eg. The second quantity is P3, expressed
as P3 = (fσ8(z))′

fσ8(z) , where the prime is the derivative with respect to ln a. Then, the gravitational
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slip can be derived in a model independent way as [145]

ηDE(z) =
3P2(z)(1 + z)3

2E(z)2
(
P3(z) + 2 + E′(z)

E(z)

) − 1, (2.36)

where E(z) ≡ H(z)/H0. The exact data points we used are given in Table 2.5 for completeness.
Note that in our reconstruction we will use directly E(z) so for this particular expression no value
for H0 is needed.
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3
Motivation: The Need to Go Beyond

Once we accept our limits, we go beyond them.
Albert Einstein

General Relativity (GR) is one of the most elegant and well-tested theories that we have
and surprisingly, it remains almost unchanged after more than one century. The need of Modi-
fied Gravity (MG) theories, as a substitute to GR is motivated by both theoretical fundamental
physics and cosmological observations [146]. From the theoretical point of view a quantum the-
ory of gravity that describes space-time is still absent. For instance, it is well known that the
Einstein-Hilbert (EH) action is not renormalizable at more than 2 loops and therefore cannot be
conventionally quantized. In fact, this action needs to be supplemented by higher order terms in
order for the resultant theory to be one-loop renormalizable [147,148]. It has been shown [149–151]
that when quantum loop corrections in field theory or higher order corrections in the low energy
string dynamics are considered, the effective low energy gravitational action includes higher order
curvature invariants. For example, when renormalizing GR to first loop order the Ricci scalar is
modified as [149]

R −→ a0(gµν)R+ a1(gµν) + a2(gµν), (3.1)

where

a0(gµν) = 1, (3.2)

a1(gµν) =

(
1

6
− ξ
)
R, (3.3)

a2(gµν) =
1

180
Rαβ;δR

αβ;δ − 1

180
RαβRαβ −

1

6

(
1

5
− ξ
)
2R+

1

2

(
1

6
− ξ
)2

R2. (3.4)

The function a1(gµν) is related to the conformal coupling and a2(gµν) represents the Gauss Bonnet
term and higher order correction to GR, which only contains terms with up to second derivatives
of the metric. Hence, from the theoretical point of view, modifications of gravity are naturally
expected when one tries to normalize GR as a perturbative field theory.

From the observational cosmological side, GR supplemented with the standard model of
particle physics cannot account for the primordial accelerated expansion of the Universe necessary
to solve the horizon and flatness problems. Also at large scales, there exists an undergoing phase
of accelerated expansion caused by a repulsive force which GR itself cannot explain. The simplest
explanation is the inclusion of a cosmological constant leading to a unified description for the
formation and evolution of the Universe within the framework of GR, known as the standard Λ
cold dark matter model (ΛCDM), that contains only six free parameters describing the matter
and dark energy (DE) content of the Universe and could alleviate several problems in the Cold
Dark Matter (CDM) scenario [152]. This model is so far the best phenomenological fit to the
data [1,153,154], yet there exists also plenty of other models that could account for the accelerated
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expanding Universe without the need of a cosmological constant Λ, whose nature still remains
unknown.

The yet unsolved cosmological constant problem has driven an effort towards alternative
explanations for the late-time accelerating phase of the Universe. In general, it is considered that
there are two main approaches [155] to provide a physical description for the problem of dark
matter and dark energy. One option is to keep GR and consider the existence of new fields in
nature in order to describe the observations [156]. A more physical explanation could be that
GR is not a good approximation to the effects of gravity at large scales; on scales larger than
that of galaxy clusters (∼ 10Mpc). This has led to the study of modified gravity models, see
for example [157]. These are covariant geometric theories that account the observed accelerated
expansion of the Universe to higher order curvature invariants that turn gravity into a repulsive
interaction in the later times of the Universe age, but have undetectable effects at scales of the solar
system (few AUs). They are usually formulated as covariant modifications to Einstein’s theory of
general relativity and provide a more credible and realistic alternative to ad-hoc models of dark
energy and dark matter, as they can be motivated from high energy physics, see Refs. [158–163].
These modifications of GR are however not easily achieved as several tests carried out up to
extragalactic scales are in very good agreement with GR [164,165].

On the other hand, there exist Dark Energy (DE) models [5] where yet unobserved scalar
fields would dominate the energy content at late times, avoiding fine-tuning issues as well as
accelerating the Universe [166, 167]. Hence, in the case of modification with a scalar field, the
common description to consider dark energy and modified gravity together is called scalar-tensor
theory, been the Horndeski’s theory an example. Both DE and MG models provide plausible,
alternative scenarios for explaining the late-time acceleration of the Universe. It is known that
both kinds of models can fit background astrophysical observations, as well as the standard model
ΛCDM. These models are therefore degenerated at the background level despite several efforts to
disentangle them with model independent approaches [168,169]. Although the recent discovery of
gravitational waves by the LIGO Collaboration [170] allows us to rule out some families of MG
models [171–180] (e.g., from the so-called Horndeski theories1 [182]), there remains a degeneracy
between the two leading approaches.

Current and upcoming surveys will require sub-percent agreement in theoretical accuracy
to test the different cosmological and gravity scenarios. Given the plethora of gravity models, it is
crucial to have a standardized unified way to describe all of them and take them into account in
Boltzmann solvers, i.e. codes that solve the linear evolution of cosmological perturbations, or in
other words, the linearized Einstein and Boltzmann equations on an expanding background [183]. A
critical aspect of this attempt is to be able to accurately compute a wide range of observables from
the cosmological models, where current and coming surveys such as Euclid 2, LSST 3, WFIRST 4,
SKA 5, and Stage 4 CMB 6 experiments will require sub-percent agreement in theoretical accuracy
to test these different scenarios. The dynamics of cosmological perturbations, which have been
extensively studied [184, 185], are governed by the coupled Boltzmann equations for radiative
and matter species and Einstein equations for the metric. There exists already publicly-available
Boltzmann codes that compute the CMB polarization, temperature, and matter power spectra,
e.g., the Code for Anisotropies in the Microwave Background (CAMB) [186], and the Cosmic
Linear Anisotropy Solving System (CLASS) [187] which are tested over a large range of cosmological
parameters and are considered to be accurate to the sub-percent level. Among others, these codes
are capable to probe different gravitational theories and their cosmological consequences, test
models with current data and can help in the establishment of future experiments [188]. However,

1However, a recent work claims that the reduction of viable MG models is not as severe as previously
announced [181].

2https://www.euclid-ec.org/
3https://www.lsst.org/
4https://wfirst.gsfc.nasa.gov/
5http://skatelescope.org/
6https://cmb-s4.org/
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Chapter 3. Motivation: The Need to Go Beyond

it is very difficult to take into account all the wide range of gravity models at a technical level
and introduce them in an Boltzmann code since each model has its own structure, equations and
parameters.

On Chapters 4 and 5 we fill this gap and present the effective fluid approach, see also
Refs. [9, 10], which allows to map any modified gravity model as an effective dark energy fluid
and then we show how to implement it in the Boltzmann solver code CLASS in a simple and
straightforward way finding competitive results in a much simpler and less error-prone approach.
This method has also the advantage that only a handful of variables are needed to compute
to describe the fluid [189], i.e the equation of state w(a) at the background level, the pressure
perturbation δP (a, k) or equivalently the sound speed c2s(a, k), and the anisotropic stress σ(a, k)
at the linear perturbation. Let us recall that for the ΛCDM model (w(a) = −1, σ(a, k) = 0).
This fluid approach makes easy the identification with well known single-field DE models like
quintessence (w(a) ≥ −1, c2s = 1, σ(a, k) = 0) and K-essence (w(a), c2s(a), σ(a, k) = 0), where
deviations from a non-zero anisotropic stress, which could be detected from weak-lensing [190],
would exclude all standard DE models with a single field and would imply deviations from GR or
if neglected, it could bias the cosmological parameters inferred from the data [191].

As we will see in the following chapters, although DE and MG models are certainly stim-
ulated by different underlying physics, it is possible to study both kind of models on the same
footing. In an effective fluid approach deviations from GR can be understood as an effective
fluid contribution in such a way that comparison with DE models might become relatively sim-
ple [192–196]. Since both DE and MG models predict different behavior for these three functions,
in an effective fluid approach different models can be, to a certain degree, distinguished.

The main idea of the effective fluid approach is to map any MG model to an effective DE
fluid by rewriting the MG theory as GR plus an effective dark energy fluid. In order to do that
one must write down the equations of motion of the MG model of interest, extract the Einstein
tensor Gµν and other matter components and what remains is defined as an effective dark energy
fluid through the energy momentum tensor as

κT (DE)
µν = Gµν − κT (m)

µν , (3.5)

where κ = 8πGN is a constant with GN being the bare Newton’s constant and T (m)
µν is the energy-

momentum tensor for the matter fields. The main advantages of the effective fluid approach are
that it makes it easier to include in Boltzmann codes, since they are written as GR plus a dark
energy fluid, and it provides better physical intuition as one may compute compute dark energy
perturbation quantities both at the background and at the linear perturbation level. In what follows
we will apply the effective fluid approach to f(R) theories (see Chapter 4) and a surviving class of
Horndeski models (see Chapter 5) where we will also present the designer Horndeski (HDES) which
has a background exactly equal to the standard cosmological model ΛCDM but at the perturbation
level it has different signatures.
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4
Unraveling the effective fluid approach for f (R)

models in the subhorizon approximation

The original content of this chapter is based on Ref. [9]. We provide explicit formulas for the
effective fluid approach of f(R) theories, such as the Hu & Sawicki and the designer models. Using
the latter and simple modifications to the CLASS code, which we call EFCLASS, in conjunction
with very accurate analytic approximations for the background evolution, we obtain competitive
results in a much simpler and less error-prone approach. We also derive the initial conditions in
matter domination and we find they differ from those already found in the literature for a constant
w model. A clear example is the designer model that behaves as ΛCDM in the background,
but has nonetheless dark energy perturbations. We then use the aforementioned models to derive
constraints from the latest cosmological data, including supernovae, BAO, CMB, H(z) and growth-
rate data, and find they are statistically consistent to the ΛCDM model. Finally, we show that
the viscosity parameter c2vis in realistic models is not constant as commonly assumed, but rather
evolves significantly over several orders of magnitude, something which could affect forecasts of
upcoming surveys.

4.1 Introduction

As discussed previously In Chapter 3, among the remaining MG models one finds an important
class: f(R) models [197–200]. Even though this kind of model might be fully degenerated at the
background level (e.g., the so-called designer f(R) models which can exactly mimic the background
dynamics of a dark energy model with equation of state w(z) [201–204]), the linear order pertur-
bations could in principle be distinguishable from ΛCDM [205]. This is relevant as in general the
DE perturbations can have a strong effect in the determination of the growth-index γ [206], even
though with current growth data it is not possible to draw definite conclusions in favor of any f(R)
model [207,208].

The study of perturbations in MG models is thus of great importance and one can find
different approaches in the literature (e.g., [192, 193, 202, 203, 205, 209–224]). In Ref. [225] the
authors restricted themselves to background histories consistent with a flat ΛCDM model and
parameterized changes in both Poisson and anisotropy equations via two functions µ(a, k) and
γ(a, k); these two functions take into account possible deviations from GR in the relation between
the Newtonian potentials as well as the relation between the potentials and matter perturbations.
The parametric functions were implemented in a modified version of the code CAMB1 [186] dubbed
MGCAMB.2 Since these parameterizations are only valid at late times, in Ref. [226] the authors
modified MGCAMB to introduce new parameterizations which are valid at all times. A drawback in
this approach to perturbations in MG models is that it fixes the background to ΛCDM while it is
known that viable f(R) models might differ from ΛCDM at the background level (e.g., Hu-Sawicki

1https://camb.info/
2http://aliojjati.github.io/MGCAMB/home.html
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model [209]).
A different approach to study perturbations in MGmodels was carried out in Ref. [227] where

the author studied perturbations in f(R) models which exactly mimic the ΛCDM background by
using the full set of covariant cosmological perturbation equations; the author modified the publicly
available code CAMB, implemented this approach, and released a code called FRCAMB. 3 In Ref. [228]
the author extended FRCAMB to take into account f(R) models with a background different from
ΛCDM; the code has not been released.

An Effective Field Theory (EFT) approach [7] to DE and MG models was pursued in Ref. [8]
where authors had into account a fairly general theory with unbroken symmetries and implemented
it in a code called EFTCAMB4 (i.e., a modified version of CAMB). Although this approach does not
use any quasi-static approximation and evolves the full dynamics of perturbations on linear scales,
the mapping of specific models into an EFT formalism might be cumbersome.

The Planck Collaboration used MGCAMB and EFTCAMB in Ref. [229] to study cosmological
constraints in both DE and MG models. Although the results depend on which data sets are
regarded as well as on some assumptions (e.g., the equation of state w(a), the sound speed c2s(a, k),
the anisotropic stress σ(a, k)), the authors did not find conclusive evidence for extensions to the
standard model of cosmology.5

In Ref. [231] authors proposed the so-called Equation of State (EOS) approach for pertur-
bations. In this approach f(R) models can be expressed as a dark energy fluid at background and
linearized perturbation order [192, 193], see also [194–196]. The authors used an elegant gauge-
invariant formalism, without the sub-horizon approximation, where the modifications to GR are
expressed as equation of state w(a), entropy perturbation Γ(a, k), and anisotropic stress Π(a, k).
The EOS approach was implemented in a modified version of the code CLASS6 [232] in Ref. [233]
where good agreement with previous studies and codes was found. In spite of addressing the
problem of perturbations in f(R) models in an elegant way, the EOS approach is not physically
very intuitive: the interpretation of results and the perturbation variables in this formalism is not
straightforward.

In this chapter we will also express f(R) models as a dark energy fluid, but differently to the
EOS approach in [231], as we will utilize the equation of state w(a), the sound speed c2s(a, k) and
the anisotropic stress σ(a, k) as variables describing the fluid [189]. This makes the comparison
with popular DE models such as quintessence (w(a) ≥ −1, c2s = 1, σ(a, k) = 0) and K-essence
(w(a), c2s(a), σ(a, k) = 0) relatively easy. This is of paramount importance in the case of the
anisotropic stress because in f(R) models generically one has σ(a, k) 6= 0 whereas in standard
single-field DE models π(a, k) = 0, so that any convincing evidence of anisotropic stress would rule
out all standard single-field DE models [189, 234]. Likewise, non-detection of anisotropic stress
would get several classes of MG models into tensions with observations.

Since current galaxy surveys do not reach scales comparable to the cosmological horizon,
one frequently uses a quasi-static approximation for the perturbation equations. The quasi-static
approximation roughly amounts to neglecting time derivatives in the linearized Einstein equations
while only keeping spatial derivatives; in addition one only takes into account modes whose wave-
length is shorter than the cosmological horizon. Some previous studies and implementations (i.e.
FRCAMB, EFTCAMB, CLASS_EOS_FR) did not apply the sub-horizon approximation to the perturbation
equations. Nevertheless, the quasi-static approximation has been investigated in the context of MG
theories in Refs. [12, 213] and has been implemented in MGCAMB. On the one hand, in Ref. [213]
authors argue that general f(R) models do not satisfy the quasi-static approximation; however,
the sub-horizon approximation can be safely used in f(R) models describing the current phase of
accelerating expansion and fulfilling solar system tests.

3http://darklight.fisica.unimi.it/cosmonews/frcamb/
4http://eftcamb.org/
5However, in Ref. [230] authors found evidence for deviations of GR (& 3σ) using various astronomical

observations, including data from Planck.
6http://class-code.net/
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On the other hand, in Ref. [12] authors argue that the quasi-static approximation breaks
down outside the DE sound-horizon k � kJ , where kJ(z) ≡ H(z)

(1+z)cs
is the physical Jeans scale,

rather than outside the cosmological horizon; the authors disregarded the anisotropic stress in their
analysis and also consider a constant DE sound speed c2s, both assumptions being not realistic for
viable MG models. In this Chapter we will work out solutions to the perturbations equations in
f(R) models under the sub-horizon approximation. We will derive analytical solutions for DE
perturbations and test them numerically showing that the quasi-static approximation actually
performs quite well for this kind of MG model.

By placing MG and DE models on the same framework one is, in principle, able to disentan-
gle the two kinds of models through different predictions for the equation of state w(a), the sound
speed c2s(a, k), and the anisotropic stress σ(a, k). Both DE sound speed and DE anisotropic stress
are particularly important because they are closely related to the growth of structures and, there-
fore, might leave detectable traces in observables such as anisotropies in the Cosmic Microwave
Background radiation (CMB) and Galaxy Counts (GC) [205,235]. Although DE and Dark Matter
(DM) perturbations are invisible, they affect both the CMB and the GC via, for instance, the
integrated Sachs-Wolfe (ISW) effect and the lensing potential [192]. While the presence of DE
anisotropic stress can enhance and stabilize the growth of matter perturbations [234–238], the DE
sound speed might alter the level of clustering and the evolution of matter perturbations [239–241].
These properties are very important because one can use them to break background level degen-
eracies among different models [242,243].

The most recent CMB data from the Planck satellite7 as well as data from the Dark
Energy Survey8 are in good agreement with the standard cosmological model ΛCDM [1, 154],
but this situation could potentially change by combining different probes and from upcoming
galaxy surveys, stage IV CMB experiments, and gravitational wave observations (see, for instance,
Refs. [48,178,244–250,250–263]). Despite the success of the ΛCDMmodel when fitting current data
sets, its Bayesian evidence9 is not extremely different from extended models [2,266]. Furthermore,
there remain unexplained issues with other data sets such as direct Hubble constant measurements,
weak lensing data, and cluster counts where dynamically DE models or MG models could play a
part (see, for instance, Refs. [2, 235,267–275]).

This Chapter is organized as follows. In Sec. 4.2 we discuss the standard equations for
perturbations in a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. First, in Subsection
4.2.1, we explain how f(R) models can be mapped into a DE fluid and give analytical solutions
for DE perturbations in general f(R) models under the sub-horizon approximation. Secondly, we
present results for some viable f(R) models in Subsection 4.2.2. In Sec. 4.3 we show that our
analytical solutions derived using the sub-horizon are in very good agreement with a full numerical
evolution of the perturbation equations. Furthermore, we compare our implementation in the
CLASS code with available codes such as MGCAMB, CLASS_EOS_FR, and FRCAMB. In Sec. 4.4 we clarify
and discuss some points about viscosity in viable f(R) models. Then, in Sec. 4.5 we present
cosmological constraints for a few MG models within our methodology by using a Monte Carlo
Markov Chain (MCMC) approach. We conclude in Sec. 4.6 and give details about our analytical
computations and CLASS implementation in Appendices A.1 and A.2, respectively.

4.2 Theoretical framework

Let us assume that the Universe can be described at the background level by a FLRW metric,
then in order to study the perturbations of various cosmological models, we consider the perturbed
FLRW metric, which in the conformal Newtonian gauge can be written as:

ds2 = a(τ)2
[
−(1 + 2Ψ(~x, τ))dτ2 + (1− 2Φ(~x, τ))d~x2

]
, (4.1)

7http://sci.esa.int/planck/
8https://www.darkenergysurvey.org/
9See, for instance, Refs. [264,265] for a discussion about Bayesian evidence in cosmology.
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where τ is the conformal time defined via dτ = dt/a(t) and we will follow the notation of
Ref. [185].10 At this point we can assume an ideal fluid with an energy momentum tensor

Tµν = Pδµν + (ρ+ P )UµUν , (4.2)

where ρ, P are the fluid density and pressure, while Uµ = dxµ√
−ds2 is its velocity four-vector given

to first order by Uµ = 1
a(τ) (1−Ψ, ~u), which as can easily be seen satisfies UµUµ = −1. Further-

more, ~u = ~̇x, where ḟ ≡ df
dτ , and the elements of the energy momentum tensor to first order of

perturbations are given by:

T 0
0 = −(ρ̄+ δρ), (4.3)

T 0
i = (ρ̄+ P̄ )ui, (4.4)

T ij = (P̄ + δP )δij + Σij , (4.5)

where ρ̄, P̄ are defined on the background and are functions of time only, while the perturbations
δρ, δP are functions of (~x, τ) and Σij ≡ T ij − δijT kk /3 is an anisotropic stress tensor.

Then, assuming GR we find that the perturbed Einstein equations in the conformal Newto-
nian gauge are given by [185]:

k2Φ + 3
ȧ

a

(
Φ̇ +

ȧ

a
Ψ

)
= 4πGNa

2δT 0
0 , (4.6)

k2

(
Φ̇ +

ȧ

a
Ψ

)
= 4πGNa

2(ρ̄+ P̄ )θ, (4.7)

Φ̈ +
ȧ

a
(Ψ̇ + 2Φ̇) +

(
2
ä

a
− ȧ2

a2

)
Ψ +

k2

3
(Φ−Ψ) =

4π

3
GNa

2δT ii , (4.8)

k2(Φ−Ψ) = 12πGNa
2(ρ̄+ P̄ )σ, (4.9)

where we have defined the velocity θ ≡ ikjuj , the anisotropic stress (ρ̄+ P̄ )σ ≡ −(k̂ik̂j − 1
3δij)Σ

ij .
We also need the evolution equations for the perturbations, given by the energy-momentum con-
servation Tµν;ν = 0 as:

δ̇ = −(1 + w)(θ − 3Φ̇)− 3
ȧ

a

(
c2s − w

)
δ, (4.10)

θ̇ = − ȧ
a

(1− 3w)θ − ẇ

1 + w
θ +

c2s
1 + w

k2δ − k2σ + k2Ψ, (4.11)

where we define the equation of state parameter w ≡ P̄
ρ̄ and the rest-frame sound speed of the fluid

c2s ≡ δP
δρ . Following Ref. [235], we eliminate θ from Eqs. (4.10) and (4.11), resulting in a second

order equation for δ:

δ̈ + (· · · )δ̇ + (· · · )δ = −k2
(
(1 + w)Ψ + c2sδ − (1 + w)σ

)
+ · · ·

= −k2

(
(1 + w)Ψ + c2sδ −

2

3
π

)
+ · · · , (4.12)

where the (· · · ) indicates the presence of complicated expressions and we have defined the anisotropic
stress parameter of the fluid as π ≡ 3

2 (1 +w)σ. As also discussed in Ref. [235] the k2 term will act
as a source, driving the perturbations. However, since the potential scales as Ψ ∼ 1/k2 in relevant

10In more detail, our conventions are: (-+++) for the metric signature, the Riemann and Ricci tensors
are given by Vb;cd − Vb;dc = VaR

a
bcd and Rab = Rsasb, while the Einstein equations are Gµν = +κTµν for

κ = 8πGN
c4

and GN is the bare Newton’s constant. In what follows we will set the speed of light c = 1.
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scales, the only terms that matter are the sound speed and the anisotropic stress. Therefore, we
can define an effective sound speed as

c2s,eff = c2s −
2

3
π/δ, (4.13)

that characterizes the propagation of perturbations as well as the clustering properties on sub-
horizon scales. We should also note that in principle the sound speed c2s can be both time and
scale dependent, i.e., c2s = c2s(τ, k). For example, as noted in Ref. [276], the sound speed for a
scalar field φ in the conformal Newtonian gauge for small scales is c2s,φ ' k2

4a2m2
φ
, where mφ is the

mass of the scalar field. On the other hand, c2s is equal to one only in the scalar field’s rest-frame
(see Chapter 11.2 of Ref. [276] for a quick derivation). Of course, one has the same situation in
f(R) theories because in practice they only contain a scalar degree of freedom11 [12]. Therefore,
we expect the sound speed to be scale dependent in modified gravity models, when we are not in
the rest frame of the equivalent DE fluid.

Finally, in what follows we will use the scalar velocity perturbation V ≡ ikjT j0 /ρ = (1 +w)θ
instead of the velocity θ. The former has the advantage that it can remain finite when the equation
of state w of the fluid crosses −1 (see also Ref. [278]). With this new variable the evolution
equations, Eqs. (4.10)-(4.11), become

δ′ = 3(1 + w)Φ′ − V

a2H
− 3

a

(
δP

ρ̄
− wδ

)
, (4.14)

V ′ = −(1− 3w)
V

a
+

k2

a2H

δP

ρ̄
+ (1 + w)

k2

a2H
Ψ− 2

3

k2

a2H
π, (4.15)

where the prime ′ is a derivative with respect to the scale factor a and H(t) = da/dt
a is the Hubble

parameter.

4.2.1 The f(R) models and the effective fluid approach

In this set up we can study a plethora of MG models either directly as in Ref. [205] or as an effective
DE fluid [231]. For example, in the case of the f(R) models, the modified Einstein-Hilbert action
reads:

S =

∫
d4x
√
−g
[

1

2κ
f (R) + Lm

]
, (4.16)

where Lm is the Lagrangian of matter and κ = 8πGN is a constant with GN being the bare
Newton’s constant. Varying the action with respect to the metric, following the metric variational
approach, we arrive at the following field equations [205]:

FGµν −
1

2
(f(R)−R F )gµν + (gµν2−∇µ∇ν)F = κT (m)

µν , (4.17)

where F = f ′(R), Gµν is the Einstein tensor and T
(m)
µν is the energy-momentum tensor for the

matter fields. By adding and subtracting the Einstein tensor on the left hand side of Eq. (4.17)
and moving everything to the right hand side we can rewrite the equations of motion as the usual
Einstein equations plus an effective DE fluid, along with the usual matter fields [193]:

Gµν = κ
(
T (m)
µν + T (DE)

µν

)
, (4.18)

where

κT (DE)
µν = (1− F )Gµν +

1

2
(f(R)−R F )gµν − (gµν2−∇µ∇ν)F. (4.19)

11f(R) theories can be viewed as a non-minimally coupled scalar field in the Einstein frame. See, for
instance, Ref. [277].
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Due to the diffeomorphism invariance of the theory, it is very easy to show that the effective energy
momentum tensor given by Eq. (4.19), indeed satisfies the usual conservation equation:

∇µT (DE)
µν = 0. (4.20)

Clearly, the background equations are the same as in GR [185]:

H2 =
κ

3
a2 (ρ̄m + ρ̄DE) , (4.21)

Ḣ = −κ
6
a2
((
ρ̄m + 3P̄m

)
+
(
ρ̄DE + 3P̄DE

))
. (4.22)

While we assume that matter is pressureless (P̄m = 0), the effective DE density and pressure are
given by:

κP̄DE =
f

2
−H2/a2 − 2FH2/a2 +HḞ /a2 − 2Ḣ/a2 − F Ḣ/a2 + F̈ /a2, (4.23)

κρ̄DE = −f
2

+ 3H2/a2 − 3HḞ /a2 + 3F Ḣ/a2, (4.24)

where H = ȧ
a is the conformal Hubble parameter.12 Using Eqs. (4.23) and (4.24) we see that the

DE equation of state for the f(R) models in the effective fluid description is given by:

wDE =
−a2f + 2

(
(1 + 2F )H2 −HḞ + (2 + F )Ḣ − F̈

)
a2f − 6(H2 −HḞ + F Ḣ)

, (4.25)

which is in agreement with the expression found in Ref. [205]. Thus it becomes clear that by
working in the effective fluid approach, we can assign a density, pressure, velocity and anisotropic
stress to the effective energy momentum tensor as in the general case of Eqs. (4.3)-(4.5). Then,
we can find the effective quantities for the f(R) model using the tensor of Eq. (4.19). As a result,
the effective pressure, density and velocity perturbations are given by:

δPDE
ρ̄DE

= (...)δR+ (...) ˙δR+ (...)δ̈R+ (...)Ψ + (...)Ψ̇ + (...)Φ + (...)Φ̇, (4.26)

δDE = (...)δR+ (...) ˙δR+ (...)Ψ + (...)Φ + (...)Φ̇, (4.27)

VDE ≡ (1 + wDE)θDE

= (...)δR+ (...) ˙δR+ (...)Ψ + (...)Φ + (...)Φ̇. (4.28)

Moreover, in these models it is easy to see from the field equations that the difference of the
potentials Φ and Ψ is given by

Φ−Ψ =
F,R
F
δR, (4.29)

which implies that the anisotropic stress can be written as [185]

ρ̄DEπDE = −3

2
(k̂ik̂j −

1

3
δij)Σ

ij

=
1

κ

k2

a2
(F,RδR+ (1− F )(Φ−Ψ)) . (4.30)

In Appendix A.1 we give some other useful expressions related to the effective fluid variables.

12In what follows we denote the usual Hubble parameter as H(t) = da/dt
a

and the conformal one as
H(τ) = da/dτ

a
. The two are related via H(τ) = aH(t).
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Sub-horizon approximation

Expressions in Eqs. (4.26)-(4.30) for DE perturbations might be cumbersome. Therefore, it is very
convenient to work in the sub-horizon approximation, i.e., with modes deep in the Hubble radius
(k2 � a2H2), where we find that terms with time-derivatives are negligible compared to the ones
scaling as k2. For example, the perturbation in the Ricci scalar is

δR = −12(H2 + Ḣ)

a2
Ψ− 4k2

a2
Φ +

2k2

a2
Ψ− 18H

a2
Φ̇− 6H

a2
Ψ̇− 6Φ̈

a2
, (4.31)

' −4k2

a2
Φ +

2k2

a2
Ψ, (4.32)

where the last line follows from the sub-horizon approximation. Then, using the equations of
motion we find that the potentials can be written as:

Ψ = −4πGN
a2

k2

Geff
GN

ρ̄mδm, (4.33)

Φ = −4πGN
a2

k2
Qeff ρ̄mδm, (4.34)

where the effective Newton’s constant Geff and Qeff are given by [205]:

Geff/GN =
1

F

1 + 4k
2

a2

F,R
F

1 + 3k
2

a2

F,R
F

, (4.35)

Qeff =
1

F

1 + 2k
2

a2

F,R
F

1 + 3k
2

a2

F,R
F

, (4.36)

where F = df(R)
dR , F,R = d2f(R)

dR2 . Note however, that in the effective fluid approach we have to
introduce the DE density ρDE , which then means that from the Poisson equation for Φ we have:

−k
2

a2
Φ = 4πGN (ρ̄mδm + ρ̄DEδDE)

= 4πGNQeff ρ̄mδm, (4.37)

or that
ρ̄mδm =

1

Qeff − 1
ρ̄DEδDE , (4.38)

which can be used to find the evolution of the DE density perturbation in this regime. The
previous expressions are also useful as in the sub-horizon approximation one can derive a second
order differential equation for the matter density contrast in terms of Geff [205]:

δ′′m(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′m(a)− 3

2

Ωm0Geff/GN
a5H(a)2/H2

0

δm(a) = 0, (4.39)

where in this case primes ′ denote derivatives with respect to the scale factor a. Finally, we can
also define the anisotropic parameters η ≡ Ψ−Φ

Φ and γ ≡ Φ
Ψ for which we then have,

η =
2k

2

a2

F,R
F

1 + 2k
2

a2

F,R
F

, (4.40)

γ =
1 + 2k

2

a2

F,R
F

1 + 4k
2

a2

F,R
F

. (4.41)

We can now apply the sub-horizon approximation and derive relatively simple expressions
for all the effective DE perturbations in Eqs. (4.26)-(4.30). In practice, we have found that the
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results depend on the way the approximation is applied and this is one of the main results of our
Chapter.

Since δR in Eq. (4.31) has up to second order derivatives of Φ and Eq. (4.26) contains
up to second order derivatives of δR, this means that the pressure perturbation has up to fourth
order derivatives of the metric perturbation Φ. Eliminating all of the higher order perturbations
via the sub-horizon approximation can cause significant deviations and instabilities in the system
of effective fluid equations. We found that a better approach is to use Eq. (4.26) and repeatedly
apply Eq. (4.29), thus reducing the number of higher order derivative terms and increasing the
accuracy of the solutions.

Following this prescription and using the Poisson equations for the potentials, we find that
the effective density, pressure and velocity perturbations are given by:

δPDE
ρ̄DE

' 1

3F

2k
2

a2

F,R
F + 3(1 + 5k

2

a2

F,R
F )F̈ k−2

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm,

(4.42)

δDE ' 1

F

1− F + k2

a2 (2− 3F )
F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm, (4.43)

VDE ≡ (1 + wDE)θDE

' Ḟ

2F

1 + 6k
2

a2

F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm. (4.44)

Finally, the DE anisotropic stress parameter πDE is given by

πDE =
k2

a2 (Φ−Ψ)

κ ρ̄DE

' 1

F

k2

a2

F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm =
k2

a2

F,R
F

1− F + k2

a2 (2− 3F )
F,R
F

δDE . (4.45)

Note that the DE anisotropic stress in Eq. (4.45) can also be written as

πDE(a) =
k2

a2 f1(a)

1 + k2

a2 f2(a)
δDE(a), (4.46)

where f1(a) =
F,R

F (1−F ) and f2(a) =
(2−3F )F,R
F (1−F ) , which is reminiscent of Model 2 in Ref. [235], but

with different functions in the numerator and the denominator. This is interesting as it seems that
many popular ansatze for the DE anisotropic stress do not capture exactly all of the features of
the f(R) models.

On the other hand, using Eqs. (4.42) and (4.43), we see that the DE sound speed is given
by

c2s,DE '
1

3

2k
2

a2

F,R
F + 3(1 + 5k

2

a2

F,R
F )F̈ k−2

1− F + k2

a2 (2− 3F )
F,R
F

, (4.47)

which implies that the DE effective sound speed is

c2s,eff ≡ c2s,DE −
2

3
πDE/δDE

'
(1 + 5k

2

a2

F,R
F )F̈ k−2

1− F + k2

a2 (2− 3F )
F,R
F

. (4.48)

As we will see later on, the effective sound-speed at late times tends to go to zero due to the
fact that the F̈ term not only is suppressed by k2, which in the sub-horizon approximation is
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Figure 4.1: The DE equation of state wDE(z) for the HS model for Ωm0 = 0.3, n = 1 and for a
variety of values of the parameter b, with b ∈ [0, 0.05]. As can be seen, the equation of state crosses
wDE = −1 at approximately the same redshift z ∼ 1.65. At early times, we have 1 + wDE < 0
thus violating the SEC.

much larger than the Hubble parameter or related quantities, but also because for viable models
F in general is a slowly varying function. This implies that for these models there is no effective
sound speed driving the DE perturbations, thus we expect that on large k and at late times the
perturbations should become flat, in agreement with Ref. [235].

It is clear that for the ΛCDM model, i.e., f(R) = R − 2Λ, we have F = 1 and F,R = 0
which implies that wDE = −1 and (δPDE , δρDE , πDE) = (0, 0, 0) as expected. When the equation
of state wDE for an f(R) model, e.g., the Hu & Sawicki (HS, hereafter) model, crosses the so-
called phantom divide line (wDE(a) = −1), problems could arise due to the presence of the 1 + w
term in the denominator in Eq. (4.11) [119]. However, we see that in our case the perturbations
remain finite despite the presence of the 1 + w term in the denominator in Eq. (4.11) as we can
absorb the 1 + w term by introducing VDE = (1 + wDE)θDE as mentioned earlier. Furthermore,
the combination (1 + wDE)θDE always remains finite for viable f(R) models as can be seen in
Eq. (4.44). The simple analytical expressions given by Eqs. (4.42)-(4.44) are one of our main
results.

Finally, for our effective DE fluid in Eq. (4.19) the most common energy conditions [279]
can be written in terms of the effective DE density and pressure:

NEC =⇒ ρ̄DE + P̄DE ≥ 0,

WEC =⇒ ρ̄DE ≥ 0 and ρ̄DE + P̄DE ≥ 0,

DEC =⇒ ρ̄DE ≥ 0 and ρ̄DE ≥
∣∣P̄DE∣∣ ,

SEC =⇒ ρ̄DE + 3P̄DE ≥ 0 and ρ̄DE + P̄DE ≥ 0,

where NEC, WEC, DEC and SEC correspond respectively to the null, weak, dominant and strong
energy conditions. As expected for an accelerating universe [280, 281], we have checked that the
SEC is violated. Since the condition ρ̄DE ≥ 0 holds, we find that the NEC, WEC and DEC can
be translated into the following constraint for the DE equation of state wDE ≥ −1. As can be
seen in Fig. 4.1 for the HS model, the NEC, WEC and DEC are violated for redshifts z & 1.65 for
reasonable values of the parameter b (see Eq. (4.56) in the next section), for b ∈ [0, 0.05].
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4.2.2 Results for specific f(R) models

So far, our analysis has been quite general and here we work out a couple of examples. In this
section we will present our results for two specific models, namely, the HS model and the so-called
designer (DES) model which has an expansion history equal to the ΛCDMmodel. These models are
interesting because they satisfy solar system tests and give a proper matter era. Note, however,
that in the literature one finds other f(R) models sharing these properties (see, for instance,
Refs. [215, 282, 283]), but to simplify our presentation we only focus on the two aforementioned
models.

Since modifications to GR are expected to become important at late times, we consider a
universe only containing matter and an effective DE fluid.13 The system of differential equations
that we are interested in is, hence, given by Eqs. (4.6), (4.9), (4.14), (4.15):

δ′m = 3Φ′ − Vm
a2H

, (4.49)

V ′m = −Vm
a

+
k2

a2H
Ψ, (4.50)

δ′DE = 3(1 + wDE)Φ′ − VDE
a2H

− 3

a

(
δPDE
ρ̄DE

− wDEδDE
)
, (4.51)

V ′DE = −(1− 3wDE)
VDE
a

+
k2

a2H

δPDE
ρ̄DE

+ (1 + wDE)
k2

a2H
Ψ− 2

3

k2

a2H
πDE , (4.52)

k2

a2
Φ = −3

2
(Ωmδm + ΩDEδDE)− 3H2(aΦ′ + Ψ), (4.53)

k2

a2
(Φ−Ψ) = 3ΩDEπDE , (4.54)

where the prime ′ denotes a derivative with respect to scale factor a, we have assumed that
the matter component is cold (wm ' 0) and pressureless (c2s,m ' 0), Ωm = Ωm0a

−3, ΩDE =
H2 − Ωm, and finally that the effective DE density, pressure and velocity perturbations are given
by Eqs. (4.42),(4.43) and (4.44), respectively.

The HS model

The HS model [209] has a lagrangian14 given by

f(R) = R−m2 c1(R/m2)n

1 + c2(R/m2)n
, (4.55)

where c1, c2 are two free parameters, m2 ' Ωm0H
2
0 is of the order of the Ricci scalar R0, H0 is

the Hubble constant, Ωm0 is the dimensionless matter density today; and m and n are positive
constants with n usually taking positive integer values i.e., n = 1, 2, · · · . In the rest of our Chapter
we assume n = 1.

After simple algebraic manipulations Eq. (4.55) can also be written as [286]

f(R) = R− m2c1
c2

+
m2c1/c2

1 + c2(R/m2)n

13In this Chapter we focus on the late-time evolution of the Universe, but it is possible that MG theories
play a part in earlier stages as well, namely, the inflationary period. There exist f(R) models that give a
unified description of early- and late-time accelerating phases of the Universe [284, 285] and our effective
fluid approach could in principle also be applied in these scenarios.

14The Starobinsky model [215] has a lagrangian f(R) = R− c1 m2
[
1−

(
1 +R2/m4

)−n] and the results
we obtain are very similar to those for the HS model. To keep our presentation simple we will only present
results for the HS model.
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= R− 2Λ

(
1− 1

1 + (R/(b Λ)n

)
= R− 2Λ

1 +
(
bΛ
R

)n , (4.56)

where Λ = m2c1
2c2

and b =
2c

1−1/n
2

c1
. In this form it is clear that this model can be arbitrarily close

to ΛCDM, depending on the parameters b and n. Moreover, for n > 0 it has the limits [286]:

lim
b→0

f(R) = R− 2Λ,

lim
b→∞

f(R) = R. (4.57)

Since the HS model tends to ΛCDM for b→ 0, it can be considered as a small perturbation around
the ΛCDM model. Therefore, it should come as no surprise that the HS model can successfully
pass the solar system tests.

Furthermore, in Ref. [286] it was shown that for small values of the parameter b one is always
able to find an analytic approximation to the Hubble parameter that works to a level of accuracy
better than ∼ 10−5% when the parameter b is of the order of b ∼ [0.001 − 0.1], thus making the
approximations very useful. Then, the Hubble parameter H(t) = da/dt

a can be well approximated
by

HHS(a)2 = HΛ(a)2 + b δH1(a)2 + b2 δH2(a)2 + · · · , (4.58)

where the functions δH1(a) and δH2(a) are given in the Appendix of [286].
From Eqs. (4.25),(4.56),(4.58) and considering a universe only containing matter and DE,

we can calculate the DE equation of state as a series expansion in terms of b

wDE(a) ' −1−
12
(
a3(Ωm0 − 1)Ωm0

(
a3(Ωm0 − 1)− Ωm0

) (
8a3(Ωm0 − 1) + Ωm0

))
(Ωm0 − 4a3(Ωm0 − 1))

4 b+· · · , (4.59)

while the DE anisotropic stress will be given by

πDE(a) =
1

F

k2

a2

F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm

'

(
k2

a2

1

H2
0

4a9(1− Ωm0)2

3 (Ωm0 + 4a3(1− Ωm0))
3 b+ · · ·

)
ρ̄m
ρ̄DE

δm. (4.60)

From the system of differential equations (4.49)-(4.54) and the DE perturbations (4.42)-
(4.45) we can derive approximate solutions in a matter dominated regime (H(a)2/H2

0 ' Ωm0a
−3):

wDE(a) ' −1− 12a3b(1− Ωm0)

Ωm0
+ · · · , (4.61)

δPDE(a)

ρ̄DE(a)
' b(1− Ωm0)2

(
8a7k2

9Ω3
m0H

2
0

− 66a5H2
0

k2Ωm0
+ · · ·

)
Ωm(a)

ΩDE(a)
δm, (4.62)

πDE ' b

(
4a7k2(1− Ωm0)2

3Ω3
m0H

2
0

+ · · ·
)

Ωm(a)

ΩDE(a)
δm, (4.63)

δm(a) ' δ0

(
a+

3Ωm0H
2
0

k2

)
, (4.64)

Vm(a) ' −δ0
√
aΩm0 + · · · , (4.65)

δDE(a) ' −δ0 b (1− Ωm0)

(
a5k2

3Ω2
m0H

2
0

+
8a4

35Ωm0
− 495a3H2

0

13k2
− · · ·

)
, (4.66)
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VDE(a) ' δ0 b (1− Ωm0)

(
−396 a5/2H2

0

√
Ωm0

13k2
− 32a7/2

5
√

Ωm0

+ · · ·
)
, (4.67)

Φ(a) ' −3

2
δ0

Ωm0H
2
0

k2
+ · · · , (4.68)

where Ωm(a) = Ωm0a
−3 and in this limit ΩDE(a) ' 1−Ωm0. Also, as can be seen from the above

expressions, the dominant contributions in the sub-horizon limit and in the matter-dominated
regime are δDE ∝ k2a5 and VDE ∝ a7/2. When numerically solving the system of differential
equations (4.49)-(4.54), we will use the above solutions as initial conditions.

The DES model

The DES model [201, 202, 204], which has a background exactly that of the ΛCDM model, has a
lagrangian given by

f(R) = R− 2Λ + α H2
0

(
Λ

R− 3Λ

)c0
2F1

(
c0,

3

2
+ c0,

13

6
+ 2c0,

Λ

R− 3Λ

)
, (4.69)

where c0 = 1
12

(
−7 +

√
73
)
and α is a free dimensionless parameter.

While for the DES model the background is much simpler than for the HS model (in the
DES model the expansion history matches that of the ΛCDM model, i.e., H2

DES(a) = H2
ΛCDM (a),

Eq. (4.69) makes more complicated the expressions for all the effective DE quantities. We have
found an approximation around a ' 0 that works very well in the range a ∈ [0, 1]; it reads

F (a) ' 1 + fR,0
Ω−c0−1
m0

2F1

(
c0 + 1, c0 + 3

2 ; 2c0 + 13
6 ; 1− Ωm0

)a3(1+c0) +O(a3(2+c0)), (4.70)

where fR,0 ≡ F (a = 1)− 1. For viable models, the parameter fR,0 has typical values on the order
fR,0 ∼ −10−4 (see, for instance, Ref. [203]).15

Following the same approach as for the HS model we have found approximate solutions in
a matter dominated regime

wDE(a) = −1, (4.71)

δPDE
ρ̄DE

'
(
−2(c0 + 1)fR,0k

2a3c0+4Ω−c0−2
m0

9 g0
+ · · ·

)
Ωm(a)

ΩDE(a)
δm, (4.72)

πDE '
(
− (c0 + 1)fR,0k

2a3c0+4Ω−c0−2
m0

3 g0
+ · · ·

)
Ωm(a)

ΩDE(a)
δm, (4.73)

δm(a) ' δ0

(
a+

3Ωm0H
2
0

k2

)
, (4.74)

Vm(a) ' −δ0
√
aΩm0 + · · · , (4.75)

δDE(a) '
δ0fR,0a

1+3c0Ω−1−c0
m0

(
a(1 + 2c0)k2 + 36c0Ωm0

)
9 g0 (1− Ωm0)

+ · · · , (4.76)

VDE(a) ' 0 + · · · , (4.77)

Φ(a) ' −3

2
δ0

Ωm0H
2
0

k2
+ · · · , (4.78)

where g0 = 2F1

(
1 + c0,

3
2 + c0,

13
6 + 2c0, 1− Ωm0

)
. In the next section, we will use these approxi-

mations as initial conditions for the numerical evolution in the effective fluid approach.

15For illustration purposes we note that the right-hand side of Eq. (4.70) evolves roughly as F (a) ≈
1 + 0.85 fR,0 Ω−0.57

m0 a3.386. We however do not use this expression in our computations.

38



Chapter 4. Unraveling the effective fluid approach for f(R) models in the subhorizon
approximation

DES

HS

0.001 0.005 0.010 0.050 0.100 0.500 1

-0.672

-0.671

-0.670

-0.669

-0.668

-0.667

a

c
s

2
(a
)

fR0=-10
-4

DES

HS

0.001 0.005 0.010 0.050 0.100 0.500 1

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

a

c
s
,e
ff
2
(a
)

fR0=-10
-4

Figure 4.2: The DE fluid sound speed c2s,DE (left) and the DE effective sound speed c2s,eff (right)
given by Eqs. (4.47) and (4.48) for both the HS (dotted line) and DES (dashed lines) models for
Ωm0 = 0.3, k = 300H0 and fR,0 = −10−4. As can be seen, for both models the DE sound speed
remains close to c2s,DE ∼ − 2

3 while the DE effective sound speed is close to c2s,eff ∼ 0+.

Note that in Ref. [278] the authors derived approximations to the evolution of the DE
density contrast δDE ' δ0(1 + w)

(
a

1−3w + 3H02Ωm0

k2

)
and velocity perturbation VDE ' −δ0(1 +

w)H0

√
Ωm0a

1/2. Clearly, in both cases when w = −1, as is the case for the DES model, we would
have that (δDE , VDE) = (0, 0) as expected. However, we have seen that the DE perturbations in
the DES model (despite having wDE = −1) have in general a dependence on the scale factor a
which is quite different. Therefore, care should be used when applying the expressions of Ref. [278]
as initial conditions and instead one should derive again the correct expressions as we have done.

4.3 Numerical solution of the evolution equations

4.3.1 Evolution of perturbations

Here we present the results of the numerical solution of the evolution equations (4.49)-(4.54). In
all cases we will assume Ωm0 = 0.3, k = 300H0, fR0 = −10−4 and σ8,0 = 0.8, where fR,0 = F (a =
1) − 1, unless otherwise specified. We set the initial conditions well inside the matter dominated
regime at a = 10−3. The reason we choose the specific value of k = 300H0 ∼ 0.1 h/Mpc for the
wave-number is that it corresponds to the largest value of k we can choose without entering the
non-linear regime.

Before we proceed with the discussion of our results, it is instructive to show the evolution of
the DE sound speed c2s,DE and the DE effective sound speed c2s,eff given by Eqs. (4.47) and (4.48),
respectively, for both the HS and DES models. The plots are shown in Fig. 4.2, where we show
c2s,DE (left) and c2s,eff (right) for both the HS (dotted line) and DES (dashed lines) models. As
can be seen, for both models the DE sound speed remains close to c2s,DE ∼ − 2

3 while the effective
sound speed is close to c2s,eff ∼ 0+. On the one hand, this behavior implies that at early times
while the DE effective sound speed is positive, the DE perturbations are expected to grow. On
the other hand, at late times as the DE effective sound speed goes to zero asymptotically the DE
perturbations are expected to reach a plateau and stop growing.

In Figs. 4.3 and 4.4 we present our results for the perturbation variables (δm, Vm, δDE , VDE)
and the potentials (Φ,Ψ), respectively. As noted before, the DE perturbations reach a plateau
and then flatten out for both models, as expected from the fact that the DE effective sound speed
goes to zero at late times (see Fig. 4.2). Also, in all cases, the DE velocity perturbation remains
significantly suppressed with respect to the rest of the variables. Furthermore, the potentials
remain approximately equal until a ∼ 0.1, which as seen in Fig. 4.2 corresponds to the epoch
when roughly c2s,eff ∼ 0, and then diverge from each other significantly due to the presence of the
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Figure 4.3: The evolution of the matter and effective DE perturbation variables (δm, Vm, δDE , VDE)
for the HS (left) and the DES (right) models for Ωm0 = 0.3, k = 300H0, δ0 = 1, and fR,0 = −10−4.
As described in the text, the DE perturbations reach a plateau and then flatten out for both models,
as expected from the fact that the DE effective sound speed given by Eq. (4.48) goes to zero at
late times (see Fig. 4.2). Also, in all cases, the DE velocity perturbation remains significantly
suppressed with respect to the rest of the variables.
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Figure 4.4: The evolution of the potentials Φ and Ψ for the HS (left) and the DES (right) models
for Ωm0 = 0.3, k = 300H0, δ0 = 1, and fR,0 = −10−4. Due to a non-vanishing DE anisotropic
stress the potentials diverge from each other at late times.

anisotropic stress.

4.3.2 Growth rate of matter perturbations

Next we will also present our results for the growth rate of matter perturbations parameter
fσ8(a) ≡ f(a) · σ(a), where f(a) = dlnδ

dlna is the growth rate and σ(a) = σ8,0
δ(a)
δ(1) is the redshift-

dependent root mean square (rms) fluctuations of the linear density field within spheres of radius
R = 8h−1Mpc, while the parameter σ8,0 is its value today. This parameter is important as it can be
shown to be not only independent of the bias b0, but also a good discriminator of DE models [118].

In this section we will also compare our results with those of Ref. [203] that follow a direct
brute-force solution of the differential equations of the f(R) model, dubbed “Full f(R)" from now
on. There is of course also the equation of state approach of Ref. [231] and we have explicitly
checked that our results are in excellent agreement with it; thus, to avoid an overload in both
the presentation and the plots, in what follows we will only present the comparison with the “Full
f(R)” approach.

Both aforementioned approaches are exact, in the sense of having no approximations, how-
ever the one of Ref. [203] suffers from the problem that the relevant equations are extremely stiff
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Figure 4.5: The evolution of the fσ8(z) parameter for the HS model for Ωm0 = 0.3, k = 300H0,
fR,0 = −10−4 and σ8,0 = 0.8 versus the fσ8 data compilation from Ref. [116]. On the left panel we
show the theoretical curves for the “Full f(R)" brute-force solution based on Ref. [203] (magenta
line), our effective fluid approach which we call “Eff. Fluid" (blue dashed line), the ΛCDM model
(black line) and the numerical solution of Eq. (4.39) dubbed “ODEGeff ” (dotted blue line). On the
right panel we show the difference of the aforementioned theoretical curves with respect to that of
the ΛCDM model. As can be seen, the agreement with all approaches is excellent.
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Figure 4.6: The evolution of the fσ8(z) parameter for the DES model for Ωm0 = 0.3, k = 300H0,
fR,0 = −10−4 and σ8,0 = 0.8 versus the fσ8 data compilation from Ref. [116]. On the left panel we
show the theoretical curves for the “Full f(R)" brute-force solution based on Ref. [203] (magenta
line), our effective fluid approach which we call “Eff. Fluid" (blue dashed line), the ΛCDM model
(black line) and the numerical solution of Eq. (4.39) dubbed “ODEGeff ” (dotted blue line). On the
right panel we show the difference of the aforementioned theoretical curves with respect to that of
the ΛCDM model. As can be seen, the agreement with all approaches is excellent.

numerically, while in the one of Ref. [231] the fluid equations are written in terms of a gauge-
invariant entropy perturbation which cannot be easily translated to simple analytic expressions for
the effective pressure, density contrast and velocity perturbations such as Eqs. (4.42), (4.43) and
(4.44) presented here.

In Figs. 4.5 and 4.6 we show the evolution of the fσ8(z) parameter for the HS and DES
models respectively, for Ωm0 = 0.3, k = 300H0, fR,0 = −10−4 and σ8,0 = 0.8 versus the fσ8 data
compilation from Ref. [116]. On the left panel we show the theoretical curves for the “Full f(R)"
brute-force solution based on Ref. [203] (magenta line), our effective fluid approach which we call
“Eff. Fluid" (blue dashed line), the ΛCDM model (black line) and the numerical solution of Eq.
(4.39) dubbed “ODEGeff ” (dotted blue line). On the right panel we show the difference of the
aforementioned theoretical curves with respect to that of the ΛCDM model. As can be seen, the
agreement with all approaches is excellent.
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Figure 4.7: The low multipoles of the unlensed CMB TT power spectrum for the HS model (left
panel) and the DES model (right panel). We compare several codes: our own modifications to
CLASS which we call EFCLASS, the codes MGCAMB and FRCAMB for the HS model and the codes
CLASS_EOS_FR and EFTCAMB for the DES model. We find that in the case of the DES model all
approaches are in very good agreement, but in the case of the HS model, which also requires
modifying the background evolution, there is significant disagreement at l ∈ [2, 5] as the codes
MGCAMB and FRCAMB do not take into account the change of the background properly. For these
plots we assume (ns, As) = (1, 2.3 × 10−9), fR,0 = −10−1 for the HS model and B0 = 1, which
corresponds to fR,0 ' −0.159285 for the DES model for Ωm0 = 0.3, while the rest of the parameters
are as in the previous plots.

4.3.3 CMB power spectrum

We now also present the results for the CMB power spectra for both models and we compare
our predictions with those of several other codes. As we show in Appendix A.2, our implemen-
tation of the effective fluid approach in the CLASS code [232], while much simpler, also gives
results in excellent agreement with other codes, such as EFTCAMB [8], MGCAMB [225], FRCAMB [227],
CLASS_EOS_FR [233]. In all cases, we took extreme care in order to match the various cosmological
parameters between the codes and we explicitly tested that in the limit of the ΛCDM model, all
codes agree with each other within the numerical errors. The fact that our implementation is
consistent with that of Ref. [233], which is exact, shows the sub-horizon approximation can be
safely applied in the models we discussed (see Fig. 4.7). This agrees with results in Ref. [213]: for
f(R) models that predict an accelerated expansion of the Universe and satisfy the local gravity
constraints, the sub-horizon approximation is accurate.

In order to check with other results for the DES model in the literature, we find it advan-
tageous to introduce the B0 parameter defined as

B0 =
F,R
F

R′(a)

aH ′(a)/H(a)
|a=1. (4.79)

The main reason for this choice is that the effects of the modified gravity models on the ISW would
be small for fR,0 = −10−4 that we used in the previous plots. Thus in order to make the effect
more visible and still be able to compare with other analyses, we will choose the value B0 = 1,
which corresponds to fR,0 ' −0.159285 for the DES model for Ωm0 = 0.3. For the HS model we
will use fR,0 = −10−1 and in both cases the rest of the parameters are as in the previous plots.

We also fix the spectral index ns and amplitude As to (ns, As) = (1, 2.3× 10−9), so that we
can isolate the effects of the f(R) models from the effects of a non-flat primordial spectrum. As
we have mentioned in previous sections, for large values of the parameter b the HS model behaves
as a matter dominated model and we actually expect the CMB spectrum at low multipoles to be
nearly completely flat (also due to our choice of ns = 1).

In Fig. 4.7 we present the low multipoles of the CMB TT power spectrum for the HS model
(left panel) and the DES model (right panel). We compare several codes: our own modifications
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Figure 4.8: A comparison of the low multipoles of the unlensed CMB TT power spectrum (l ∈ [2, 5])
for the HS and ΛCDM models between our own modifications to CLASS (EFCLASS) and a direct
theoretical calculation using the expressions for the ISW effect given in Appendix A.1. We find that
in both cases there is excellent agreement. For this plot again we assume (ns, As) = (1, 2.3×10−9)
and fR,0 = −10−1, while the rest of the parameters are as in the previous plots.

to CLASS which we call EFCLASS, the codes MGCAMB and FRCAMB for the HS model and the codes
CLASS_EOS_FR and EFTCAMB for the DES model. We find that in the case of the DES model all
approaches are in very good agreement, but in the case of the HS model, which also requires
modifying the background evolution, there is significant disagreement at l ∈ [2, 5] as the codes
MGCAMB and FRCAMB do not take into account the change of the background properly.

Although disagreement between the codes for the HS model can be explained by the fact that
the other codes do not treat the background properly, we also compare our results with a direct
theoretical calculation of the ISW effect, see Fig. 4.8. The relevant formulas for the theoretical
calculation of the ISW effect are given for completeness in Appendix A.1. In Fig. 4.8 we show
the comparison of the low multipoles of the CMB TT power spectrum (l ∈ [2, 5]) for the HS
and ΛCDM models between our own modifications to CLASS (EFCLASS) and a direct theoretical
calculation. We find that in both cases there is excellent agreement. For this plot again we assume
(ns, As) = (1, 2.3 × 10−9), fR,0 = −10−1, while the rest of the parameters are as in the previous
plots. We find that in the case of the HS model, the agreement between the direct theoretical
calculation and our CLASS modifications (green and cyan lines respectively) is well below ∼ 2%.

4.4 Evolution of the viscosity parameter

In principle the anisotropic stress parameter is the lowest multipole in the Boltzmann hierarchy
after the density and velocity perturbations. As a result, it should also follow an evolution equation.
Since the properties of DE are currently unknown, one can assign a viscosity parameter c2vis and
a phenomenological evolution equation as in Ref. [239]:

σ̇ + 3Hc
2
a

w
σ =

8

3

c2vis
1 + w

θ

=
8

3

c2vis
(1 + w)2

VDE , (4.80)

whereas in previous sections we have introduced the parameter VDE = (1 +w)θ and the adiabatic
sound speed is c2a = w− ẇ

3H(1+w) = w− aw′

3(1+w) where dots are conformal time derivatives and primes
scale factor derivatives. Also, note that there is a difference in the definition of the anisotropic
stress compared to Ref. [239]. Since we follow the notation of Ref. [185] we have πDE = wΠWH,
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Figure 4.9: The evolution of the viscosity c2vis(a) parameter for the HS model for Ωm0 = 0.3,
fR,0 = −10−4 and values of the wavenumber k/H0 = [50, 100, 300]. As can be seen, the parameter
changes by more than 7 orders of magnitude over the range a ∈ [10−3, 1].

where πDE = 3
2 (1 +w)σ is the anisotropic stress in this Chapter and ΠWH is the anisotropic stress

parameter of Ref. [239].
The parameterization of Eq. (4.80) is also useful if one wants to explore the properties of a

generalized dark matter fluid, as was done in Ref. [287] or place constraints in imperfect fluids [237].
In our case we actually know the underlying DE model, which is our f(R) effective fluid, so using
Eq. (4.80) we can reconstruct the viscosity parameter, something which would be of great interest
for forecasts for upcoming surveys.

After changing variables from conformal time to scale factor in Eq. (4.80) we can solve for
the viscosity parameter as:

c2vis =
aH(1 + w)

4VDEw

(
3c2a(1 + w)πDE + w(aπ′DE − 3wπDE)

)
. (4.81)

In the case of the HS model it can easily be seen from the previous equation that at early
times, in matter domination in particular, the viscosity parameter scales as

c2vis '
14

3

1− Ωm0

Ω2
m0

b k2 a4. (4.82)

In the case of the DES model, we have that while c2vis → 0 there is clearly anisotropic stress in
this model as in the RHS of Eq. (4.80) the term (1 + w) in the denominator cancels out with c2vis
to give a non-zero result.

In Fig. 4.9 we show the evolution of the viscosity parameter c2vis given by Eq. (4.81) as a
function of scale factor a for the HS model for Ωm0 = 0.3, fR,0 = −10−4 and values of the wave
number k/H0 = [50, 100, 300]. As can be seen, the parameter changes by more than 7 orders of
magnitude over the range a ∈ [10−3, 1] which means that in realistic models, like the HS f(R)
model, c2vis clearly cannot be considered as a constant parameter, as is the usual assumption when
performing forecasts for future surveys like Euclid [248].

4.5 Cosmological constraints

4.5.1 Data

Here we present the results of our analysis from fitting the latest cosmological observations including
the supernovae type Ia (SnIa), Baryon Acoustic Oscillations (BAO), CMB, the Hubble expansion
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H(z) and growth fσ8 data. In particular, we use the Pantheon SnIa data of Ref. [88], the BAO
points from 6dFGS [90], SDDS [81], BOSS CMASS [91], WiggleZ [80], MGS [92] and BOSS DR12
[93]. We also use the CMB shift parameters based on the Planck 2015 release [267], as derived by
Ref. [288].16 For more details regarding the data used see Chapter 2.

4.5.2 Methodology

Our total likelihood function Ltot can be given as the product of the various likelihoods as

Ltot = LSnIa × LBAO × LH(z) × Lcmb × Lgrowth,

which can also be translated to the total χ2 via χ2
tot = −2 logLtot or

χ2
tot = χ2

SnIa + χ2
BAO + χ2

H(z) + χ2
cmb + χ2

growth. (4.83)

In order to study the statistical significance of our constraints we will use the well known
Akaike Information Criterion (AIC) [289]. Assuming Gaussian errors the AIC estimator is given
by

AIC = −2 lnLmax + 2kp +
2kp(kp + 1)

Ndat − kp − 1
, (4.84)

where Ndat and kp indicate the total number of data points and the number of free parameters (see
also [290]) of our models, respectively. In our case we have 1048 data points from the Pantheon
set, 3 CMB shift parameters, 9 BAO points, 22 growth-rate data and 36 H(z) points for a total of
Ndat = 1118.

The usual interpretation of the AIC estimator is that a smaller value implies a better fit to the
data. However, in order to compare different models, we need to use the pair difference which can be
written as ∆AIC = AICmodel−AICmin. This relative difference can be interpreted with the Jeffreys’
scale as follows: 4 < ∆AIC < 7 indicate a positive evidence against the model with higher value of
AICmodel and ∆AIC ≥ 10 suggests strong evidence. Finally, when we have that ∆AIC ≤ 2 then this
is interpreted as an indication of the consistency of the two models. However, note that the Jeffreys’
scale in general has been shown to lead to misleading conclusions, thus it has to be interpreted
with care [291]. To summarize, our χ2 is given by Eq. (4.83) and the parameter vectors (assuming
a flat Universe) are given by: pΛCDM =

(
Ωm0, 100Ωbh

2, h, σ8,0

)
for the ΛCDM ; and pf(R) =(

Ωm0, 100Ωbh
2, α, h, σ8,0

)
for the f(R) models (when studying the DES model α = fR,0 whereas

for the HS model α = b). Then, the best-fit parameters and their uncertainties were obtained via
the MCMC method based on a Metropolis-Hastings algorithm. The MCMC code for Mathematica
used in the analysis is freely available at http://members.ift.uam-csic.es/savvas.nesseris/.
Moreover, we assumed priors for the parameters given by Ωm0 ∈ [0.1, 0.5], Ωbh

2 ∈ [0.001, 0.08],
α = (−fR,0, b) ∈ [0, 1], h ∈ [0.4, 1], σ8,0 ∈ [0.1, 1.8] and obtained approximately ∼ 105 points for
each of the three models.

4.5.3 Results

In Figs. 4.10, 4.11 and 4.12 we show the 68.3%, 95.4% and 99.7% confidence contours for the
ΛCDM, the DES and the HS models, respectively, along with the one-dimensional marginalized
likelihoods for various parameter combinations. In these plots we also highlight, with either a red
point or a black dashed line, the Planck 2015 concordance cosmology. The latter is based on the
TT,TE,EE+lowP spectra, a flat ΛCDM model and the values are shown in Table 4.1. In all cases
we find the best-fit σ8,0 parameter is roughly ∼ 2.5σ away from the Planck 2015 best-fit, thus
reaffirming the mild tension between low redshift probes and Planck [120]. However, it should be

16When this work was written the likelihoods of the Planck 2018 data release were not publicly available.
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Table 4.1: ΛCDM parameters with 68% limits based on TT,TE,EE+lowP and a flat ΛCDM
model (middle column) or a wCDM model (right column); see Table 4 of Ref. [267] and
the Planck chains archive.

Parameter Value (ΛCDM) Value (wCDM)
Ωbh

2 0.02225± 0.00016 0.02229± 0.00016
Ωch

2 0.1198± 0.0015 0.1196± 0.0015
ns 0.9645± 0.0049 0.9649± 0.0048
H0 67.27± 0.66 > 81.3

Ωm 0.3156± 0.0091 0.203+0.022
−0.065

w −1 −1.55+0.19
−0.38

σ8 0.831± 0.013 0.983+0.100
−0.055

Table 4.2: The best-fit (top row) and mean (bottom row) parameters for the ΛCDM, the
DES and the HS models respectively. Note that α = (−fR,0, b).

Model Ωm0 100Ωbh
2 log10(α) h σ8,0

Best-fit values
ΛCDM 0.313± 0.006 2.226± 0.013 − 0.674± 0.004 0.760± 0.029
DES 0.314± 0.006 2.226± 0.014 −8.821± 1.946 0.674± 0.005 0.753± 0.043
HS 0.315± 0.006 2.224± 0.014 −8.186± 1.510 0.674± 0.005 0.757± 0.036

Mean values
ΛCDM 0.314± 0.006 2.224± 0.014 − 0.674± 0.004 0.760± 0.029
DES 0.314± 0.006 2.225± 0.014 −6.391± 1.916 0.674± 0.005 0.738± 0.043
HS 0.314± 0.006 2.225± 0.014 −6.176± 1.567 0.674± 0.005 0.750± 0.035

Table 4.3: The χ2 and AIC parameters for the ΛCDM, the DES and the HS models
respectively.

Model χ2 AIC ∆AIC
ΛCDM 1086.62 1094.660 0

DES 1086.63 1096.684 2.028

HS 1086.61 1096.664 2.008

mentioned that there exist several minima in the likelihood with respect to the modified gravity
parameters fR,0 and b due to the presence of degeneracies in the growth factor, something which
has already been studied in standard GR DE models in Ref. [292].

Furthermore, we find that a mild tension between Planck and low redshift probes remains
even in the case of the f(R) models since in general these cannot predict a decreasing Geff which
is required by the growth data, in agreement with Refs. [120], [293]. It should be stressed though,
that the first year results from the Dark Energy Survey, whose precision is now comparable to that
of Planck [154], hints that the tension might be decreasing. Although the central values measured
by the Dark Energy Survey for σ8,0 and Ωm0 are a bit lower compared to those of Planck, it was
shown in Ref. [154] that the corresponding Bayes factor are similar; thus, the two datasets are
becoming more consistent.

In Tables 4.2 and 4.3 we show the best-fit, mean values of the model parameter, and also
the values for the χ2 and AIC parameters for the ΛCDM, the DES and the HS models respectively.
As can be seen from Tables 4.2 and 4.3, we find that as the difference in the AIC parameters is
roughly ∼ 2, then all three models seem to be statistically consistent with each other.
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Figure4.10: The68.3%,95.4% and99.7% confidencecontours(top)andtheone-dimensional
marginalizedlikelihoods(bottom)forvariousparametercombinationsfortheΛCDMmodel.The
redpointandblackdashedlinescorrespondtotheconcordancePlanck2015ΛCDMparameters
giveninTable4.1.TheblackpointindicatesthemeanvaluefromtheMCMCanalysis.

4.6 Conclusions

Inthischapter,wediscussedin-depththeeffectivefluidapproachandperturbationtheoryinthe
contextoff(R)theories. Wepresentedseveralnewresults,inparticularregardingtheeffective
DEfluidcomponentsoftheenergymomentumtensor,theeffectivevelocityofthefluidVDE given
byEq.(4.44),theeffectivepressureandsoundspeedgivenbyEqs.(4.42)and(4.48). Weused
theseexpressionsinourmodificationsofthepopularCLASScode,whichwecallEFCLASS.They
provideamuchsimplerandlesserror-proneapproachinincludingtheeffectsofmodifiedgravity
models.

Wethenconsideredspecificf(R)models:thewellknowndesignerf(R)model(DES),which
mimicsexactlyΛCDMatthebackgroundlevel,andtheHu-Sawicki(HS)modelwhichcanevade
solarsystemtests. Forthesemodels,wecalculatedthesolutionsoftheDEfluidinthematter
dominatedera,whichwelaterusedasinitialconditionsforthenumericalsolutionofthesystem.
Inthisregard,weanticipatedtheevolutionofthenumericalsolutionsbystudyingthebehaviorof
theDEeffectivesoundspeedatbothearlyandlatetimes.Asshown,theDEeffectivesoundspeed
ispositiveatearlytimes,butthenquicklyitgoestozeroatlatetimesandasaresult,theDE
perturbationsfirstgrowquickly,butthenatlatetimesflattenoutandreachaplateau. Wealso
foundthatthenumericalsolutionsofthematterperturbationsareingoodagreementwiththe
fσ8dataandwelateronusedtheminourMCMCanalysis.Finally,wealsoconfirmedthatfor
thesemodelstheStrongEnergyCondition(SEC)isviolated,inagreementwiththeexpectation
foranacceleratingUniverse.

Withtheseathand,wethenpresented EFCLASS,namelyourmodificationsoftheCLASS
code,andcompareditwithothercodesintheliterature,suchasEFTCAMB,CLASS_EOS_FRand
FRCAMB.Thedifferencesbetweenourmodifications,discussedinAppendixA.2,aretwofold.First,
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Figure4.11: The68.3%,95.4% and99.7% confidencecontours(top)andtheone-dimensional
marginalizedlikelihoods(bottom)forvariousparametercombinationsfortheDESmodel. The
redpointandblackdashedlinescorrespondtotheconcordancePlanck2015ΛCDMparameters
giveninTable4.1.TheblackpointindicatesthemeanvaluefromtheMCMCanalysis.

incontrasttoothercodeswetreatthebackgroundofthef(R)modelsproperlybyincluding
thecorrectevolutionoftheHubbleparameter.Inparticular,inthecaseoftheHSmodelwe
implementveryaccurate(betterthan<10−5%)secondorderanalyticapproximationsforthe
HubbleparameterH(z).Second,ourmodificationsareoverallmuchsimplerandlesserror-prone
thantheonesfoundinothercodes,asweusetheeffectivefluidapproachvariables,namelythe
effectivevelocityofthefluidVDEgivenbyEq.(4.44)andtheanisotropicstressgivenbyEqs.(4.45).
Asaresult,sincewealsoproperlymodifythebackgroundinthecaseoff(R)model,weclearly
gobeyondthesimplecomparisonofBoltzmanncodesaswasdoneinRef.[294]. Whileforthe
DESmodelwefindthatourresultsareingoodagreementwithexpectationsandothercodes,we
findabigdifferenceinthecaseoftheHSmodel,astheothercodescurrentlyignorethenecessary
modificationstothebackground.

Animportantandrelatedissueisalsothattheviscosityparameterc2visactuallyisnot
constantascommonlyassumed,butratherevolvessignificantly,asshowninFig.4.9wherewecan
seetheparameterchangebymorethan7ordersofmagnitudeovertherangea∈[10−3,1].This
meansthatinrealisticmodels,liketheHu-Sawickif(R)model,c2visclearlycannotbeconsidered
asaconstantparameter,asistheusualassumptionwhenperformingforecastsforfuturesurveys,
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Figure4.12: The68.3%,95.4% and99.7% confidencecontours(top)andtheone-dimensional
marginalizedlikelihoods(bottom)forvariousparametercombinationsfortheHSmodel.Thered
pointandblackdashedlinescorrespondtotheconcordancePlanck2015ΛCDMparametersgiven
inTable4.1.TheblackpointindicatesthemeanvaluefromtheMCMCanalysis.

somethingwhichinthefutureshouldbetakenintoaccount.

Finally,wealsopresentedresultsfromour MCMCanalysisusingthelatestcosmological
probesincludingSnIa,BAO,CMB,H(z)andgrowthfσ8data. Wepresentedacompleteanalysis
andaBayesiancomparisonoftheΛCDM,DESandHSmodels. Theconfidencecontoursand
one-dimensionalmarginalizedlikelihoodsfromtheMCMCanalysiswereshowninFigs.4.10,4.11
and4.12,whileinTables4.2and4.3weshowedthebest-fit,meanvaluesofthemodelparameters,
butalsothevaluesfortheχ2andAICparametersfortheΛCDM,theDESandtheHSmodels
respectively. WefoundthatasthedifferenceintheAICparametersisroughly∼2,thenallthree
modelscanbeassumedtobestatisticallyconsistentwitheachother.

Tosummarize,weshowedthatbyusingournewexpressionsfortheDEeffectivefluid
descriptionofthef(R)modelsasdescribedearlierandthesimplemodificationstotheCLASScode
inconjunctiontotheveryaccurateanalyticapproximationsforthebackgroundevolution,wecan
obtaincompetitiveresultsinamuchsimplerandlesserror-proneapproach.Inparticular,the
correcttreatmentofthebackgroundevolutionisveryimportant,asinthenearfuturewewill
haveaccesstocosmologicaldatathatconstrainthebackgroundtolessthan1percent,thusour
theoreticalpredictionsmustalsobeatleastasaccurate.
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5
Designing Horndeski and the effective fluid

approach

The original content of this chapter is based on Ref. [10]. We present a family of designer Horndeski
models, i.e. models that have a background exactly equal to that of the ΛCDM model but pertur-
bations given by the Horndeski theory. Then, we extend the effective fluid approach to Horndeski
theories, providing simple analytic formulae for the equivalent dark energy effective fluid pressure,
density and velocity. We implement the dark energy effective fluid formulae in our code EFCLASS,
a modified version of the widely used Boltzmann solver CLASS, and compare the solution of the
perturbation equations with those of the code hi_CLASS which already includes Horndeski models.
We find that our simple modifications to the vanilla code are accurate to the level of ∼ 0.1% with
respect to the more complicated hi_CLASS code. Furthermore, we study the kinetic braiding model
both on and off the attractor and we find that even though the full case has a proper ΛCDM limit
for large n, it is not appropriately smooth, thus causing the quasistatic approximation to break
down. Finally, we focus on our designer model (HDES), which has both a smooth ΛCDM limit
and well-behaved perturbations, and we use it to perform Markov Chain Monte Carlo analyses to
constrain its parameters with the latest cosmological data. We find that our HDES model can also
alleviate the soft 2σ tension between the growth data and Planck 18 due to a degeneracy between
σ8 and one of its model parameters that indicates the deviation from the ΛCDM model.

5.1 Introduction

As we have previously mentioned, given the wide range of both DE and MG models it is useful
to have a unified framework which encompasses several of them. It turns out that such a theory
exists since 1974 when Horndeski found the most general Lorentz-invariant extension of GR in
four dimensions [182]. This theory can be obtained by using a single scalar field and restricting
the equations of motion to being second order in time derivatives. The Horndeski Lagrangian
comprehends theories such as Kinetic Gravity Braiding, Brans-Dicke and scalar tensor gravity,
single field quintessence and K-essence theories, as well as f(R) theories in their scalar-tensor
formulation [295]. Although the range of models encompassed by the Horndeski Lagrangian was
severely reduced (see, for instance, [171–181, 296, 297]) with the recent discovery of gravitational
waves by the LIGO Collaboration [170], an interesting remaining subclass of models (including
f(R) theories [197–200] and Kinetic Gravity Braiding [298]) is well worth an investigation.

In Chapter 4 we employed an effective fluid approach to study f(R) theories [9]. Even
though it is not easy to obtain expressions for quantities describing perturbations (e.g., pressure
perturbation δP ) in MG models [6], by using the quasistatic and subhorizon approximations we
found analytical expressions for the effective DE perturbations as well as the quantities describing
the effective DE fluid, namely, w(a), c2s(a, k), and σ(a, k). We implemented our approach in the
code CLASS1 [232] and found excellent agreement with the so-called Equation of State (EOS)

1http://class-code.net/
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approach [231, 233], which does not use any approximation. In this Chapter we extend our work
to the remaining part of the Horndeski Lagrangian which contains f(R) theories as a special case.
Horndeski theories have been implemented in the code hi_CLASS [299] which solves the full set
of dynamical equations without using the quasistatic approximation. In our approach we find
analytical expressions for the effective DE perturbations that give us a better understanding of the
underlying physics and also allow us to compare with our numerical implementation. Moreover,
we show that it is possible to find ‘designer Horndeski theories’ matching a given background
evolution. We implement one such a model in the hi_CLASS code and show there is good agreement
with our approach, namely, our effective fluid approach assuming both quasistatic and subhorizon
approximations performs quite well.

The Chapter is organized as follows. In Sec. 5.2 we discuss the equations for perturbations in
a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric and set our notation. Then, we introduce
the Horndeski Lagrangian and discuss both background and perturbation equations in Sec. 5.3.
In Sec. 5.4 we study the remaining subclass of Horndeski theories by utilizing the effective fluid
approach, we discuss the subhorizon and quasistatic approximations and present analytical results
for two classes of models, those in which we have dark energy anisotropic stress and those in which
we do not. In Sec. 5.5 we show analytical results for a family of models named ‘designer Horndeski’
which mimic the ΛCDM background and in Sec. 5.6 we compare our analytical solutions for DE
perturbations with a fully numerical solution of the system of differential equations and show they
are in very good agreement. We then constrain the parameter space for a viable designer Horndeski
model in Sec. 5.7 and in Sec. 5.8 we present our conclusions. In Appendices B.1 and B.2 we give
details about our analytical computations.

5.2 Theoretical framework

As a reminder and to set out our notation for this Chapter, in the standard cosmological model
one assumes the Einstein-Hilbert action

S =

∫
d4x
√
−g
[

1

2κ
R+ Lm

]
, (5.1)

where g is the determinant of the metric gµν , R is the Ricci scalar, κ ≡ 8πGN
c4 and Lm is the

Lagrangian for matter fields.2 Applying the principle of least action to Eq. (5.1) one obtains the
field equations

Gµν = κT (m)
µν , (5.2)

where Gµν ≡ Rµν − 1
2gµνR is the Einstein tensor and T

(m)
µν is the energy-momentum tensor for

matter fields. At this point one needs to make assumptions about the geometrical properties and
the matter content in the Universe. First, since observations indicate the Universe on large scales
is statistically homogeneous and isotropic [300, 301] (also having tiny inhomogeneities which can
be treated within linear perturbation theory), one further assumes a perturbed FLRW metric.

In this Chapter we are working with a slightly different definition of the metric to that of
Chapter 4 (see Eq. (4.1)) since in the literature, specially when working with Horndeski’s theory
it is common to work with the cosmic time t and with a positive sign in front of the Newtonian
potential Φ, where in Eq. (4.1) we previously had placed a minus sign. Hence, we will repeat part
of the analysis derived in Chapter 4 but with the considerations mentioned before. To start we
will assume the following perturbed FLRW metric

ds2 = − (1 + 2Ψ(~x, t)) dt2 + a(t)2(1 + 2Φ(~x, t))d~x2, (5.3)

2Throughout this Chapter we set the speed of light c = 1 and κ = 8πGN with GN being the bare
Newton’s constant. Our conventions are: (− + ++) for the metric signature, the Riemann and Ricci
tensors are given respectively by Vb;cd − Vb;dc = VaR

a
bcd and Rab = Rsasb.
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where a is the scale factor, ~x represents spatial coordinates, t is the cosmic time and Ψ and Φ are
the gravitational potentials in the Newtonian gauge. Second, one can suppose the matter fields
are ideal fluids (with small perturbations) having an energy-momentum tensor given by

Tµν = Pδµν + (ρ+ P )UµUν , (5.4)

where P is the pressure, ρ is the energy density, and Uµ =
(

1−Ψ, ~u
a(t)

)
is the velocity four-vector.

As a result, the elements of the energy-momentum tensor up to first order are given by :

T 0
0 = −(ρ̄+ δρ), (5.5)

T 0
i = (ρ̄+ P̄ )a(t)ui, (5.6)

T ij = (P̄ + δP )δij + Σij , (5.7)

where ρ̄ is the background energy density, P̄ is the background pressure, ui = a(t)ẋi, Σij(~x, τ) ≡
T ij − δijT kk /3 is an anisotropic stress tensor, and δρ(~x, τ) and δP (~x, τ) are the density and pressure
perturbations, respectively.3

5.2.1 Background

If one only considers zero order quantities in the Einstein field equations (5.2), then there are two
independent Friedmann equations describing the background evolution of the Universe:

H2 =
κ

3
ρ̄, (5.8)

H2 + Ḣ = −κ
6

(
ρ̄+ 3P̄

)
, (5.9)

where H ≡ ȧ
a is the cosmic Hubble parameter.4

5.2.2 Linear perturbations

Considering just the first order perturbations in the Einstein field equations (5.2) we obtain

− k2

a2
Φ + 3

ȧ

a

(
ȧ

a
Ψ− Φ̇

)
=
κ

2
δT 0

0 , (5.10)

k2

(
ȧ

a
Ψ− Φ̇

)
=
κ

2
a(ρ̄+ P̄ )θ, (5.11)

− k2

3a2
(Φ + Ψ) +

(
2
ä

a
+
ȧ2

a2

)
Ψ +

ȧ

a

(
Ψ̇− 3Φ̇

)
− Φ̈ =

κ

6
δT ii , (5.12)

− k2(Φ + Ψ) =
3κ

2
a2(ρ̄+ P̄ )σ, (5.13)

where we defined the velocity θ ≡ ikjuj and wrote the anisotropic stress as (ρ̄+ P̄ )σ ≡ −(k̂ik̂j −
1
3δij)Σ

ij .
From the conservation of the energy-momentum tensor Tµν;ν = 0 one obtains the equations for

the evolution of perturbations. Defining the equation of state parameter as w ≡ P̄
ρ̄ and the sound

speed c2s ≡ δP
δρ we find the equations governing the evolution of density and pressure perturbations

are given by

δ̇ = −(1 + w)(
θ

a
+ 3Φ̇)− 3

ȧ

a

(
c2s − w

)
δ, (5.14)

3In our notation, a dot over a function f denotes the derivative with respect to the cosmic time : ḟ ≡ df
dt
.

In addition, Greek indices run from 0 to 3 whereas Latin indices take on values from 1 to 3.
4The conformal Hubble parameter H and the Hubble parameter H are related via H = aH.
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θ̇ = − ȧ
a

(1− 3w)θ − ẇ

1 + w
θ +

c2s
1 + w

k2

a
δ − k2

a
σ +

k2

a
Ψ, (5.15)

The system of differential equations (5.14)-(5.15) presents problems when the equation of
state crosses −1 because there is a singularity. However, a simple change of variable turns out
to be helpful in solving this inconvenience. We will use the scalar velocity perturbation V ≡
ikjT

j
0 /ρ = (1 +w)θ instead of the velocity θ. In terms of this new variable the evolution equations

(5.14)-(5.15) become

δ′ = −3(1 + w)Φ′ − V

a2H
− 3

a

(
δP

ρ̄
− wδ

)
, (5.16)

V ′ = −(1− 3w)
V

a
+

k2

a2H

δP

ρ̄
+ (1 + w)

k2

a2H
Ψ− 2

3

k2

a2H
π, (5.17)

where a prime ′ denotes a derivative with respect to the scale factor and we defined the anisotropic
stress parameter π ≡ 3

2 (1 + w)σ.

5.3 Horndeski

Horndeski theory constitutes the most general Lorentz-invariant extension of GR in four dimensions
and encompasses several DE and MG models. Although in its most general form the Horndeski
Lagrangian has several free functions, the recent discovery of gravitational waves by the LIGO
Collaboration significantly constrained the allowed models. In particular, it has been shown that
the constraint on the speed of Gravitational Waves (GWs) must satisfy [173]

−3 · 10−15 ≤ cg/c− 1 ≤ 7 · 10−16, (5.18)

which for Horndeski theories implies that

G4X ≈ 0, G5 ≈ const., (5.19)

as can be seen from the sound speed formula for tensor perturbations [302]

c2T =
G4 −XG5φ −XG5X φ̈

G4 − 2XG4X −X
(
G5X φ̇H −G5φ

) . (5.20)

In this section we will derive evolution equations for the remaining parts of the Horndeski
Lagrangian, namely,

S[gµν , φ] =

∫
d4x
√
−g

[
4∑
i=2

Li [gµν , φ] + Lm

]
, (5.21)

where

L2 = G2 (φ,X) ≡ K (φ,X) , (5.22)

L3 = −G3 (φ,X)2φ, (5.23)

L4 = G4 (φ)R. (5.24)

Here φ is a scalar field, X ≡ − 1
2∂µφ∂

µφ is a kinetic term, and 2φ ≡ gµν∇µ∇νφ; K, G3 and
G4 are free functions of φ and X.5 Since we are mainly interested in the late-time dynamics
of the Universe, hereafter we will further assume Lm is the Lagrangian of a CDM component.
As has been mentioned in [177], although the functions K, G3 and G4 are able to modify the
background with a general dependence on X and φ, this does not hold at the perturbations level.

5From now on we define Gi ≡ Gi (φ,X), Gi,X ≡ GiX ≡ ∂Gi
∂X

and Gi,φ ≡ Giφ ≡ ∂Gi
∂φ

where i = 2, 3, 4.
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For instance, K(φ,X) encloses the k-essence and quintessence theory and is partly responsible for
the background and the perturbations, however K(φ) does not contribute to the perturbations.

The term G3(φ,X) includes the kinetic gravity braiding with G3X 6= 0 being in charge of
combining the kinetic term of the scalar and the metric, but the term G3(φ) only modifies the
background as a dynamical dark energy. Finally, G4 is the only function that is able to modify
the non-minimal coupling of the scalar to the Ricci curvature.

Among the theories embedded in the action (5.21) one finds, for example:

• f(R) theories. When interpreted as a non-minimal coupled scalar field, these theories can
be written using [303]

K = −Rf,R − f
2κ

, G4 =
φ

2
√
κ
, (5.25)

where φ ≡ f,R√
κ
has units of mass and f,R ≡

df

dR
.

• Brans-Dicke theories. In our notation we have

K =
ωBDX

φ
√
κ
− V (φ), G4 =

φ

2
√
κ
, (5.26)

where V (φ) is the field potential and ωBD is the Brans-Dicke parameter [304].

• Kinetic gravity braiding. This kind of scalar-tensor models exhibit mixing of scalar and
tensor kinetic terms [298] and can be written as

K = K(X), G3 = G3(X), G4 =
1

2κ
. (5.27)

• Non-minimal coupling (NMC) model [305]. In our notation and for a coupling constant
ζ

K = ω(φ)X − V (φ), G4 =

(
1

2κ
− ζφ2

2

)
, G3 = 0. (5.28)

In the context of inflation, a Higgs-like inflation model corresponds to ω(φ) = 1, V (φ) =

λ
(
φ2 − ν2

)2
/4.

• Cubic Galileon [305]. The simplest case is when

K = −X, G3 ∝ X, G4 =
1

2κ
, (5.29)

• 4-dimensional static and spherical symmetric solution of Black Hole with scalar
hair [306].

K = X, G3 = −α log(−X)√
κ

, G4 =
1

2κ
. (5.30)

As previously done for the Einstein-Hilbert action (5.1), here we apply the principle of least action
to (5.21) in order to find evolution equations for both the gravitational field and the scalar field.
Varying Eq. (5.21) with respect to the metric and the scalar field one finds6 [302]

δ

(
√
−g

4∑
i=2

Li

)
=
√
−g

[
4∑
i=2

Giµνδgµν +
4∑
i=2

(
P iφ −∇µJ iµ

)
δφ

]
+ total derivative, (5.31)

6See Appendix B.1 for a derivation of the field equations.
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which allows us to find the field equations. First, the gravitational field equation is given by

4∑
i=2

Giµν =
1

2
T (m)
µν , (5.32)

where we have defined

G2
µν = −1

2
KX∇µφ∇νφ−

1

2
Kgµν (5.33)

G3
µν =

1

2
G3X2φ∇µφ∇νφ+∇(µG3∇ν)φ−

1

2
gµν∇λG3∇λφ (5.34)

G4
µν = G4Gµν + gµν (G4φ2φ− 2XG4φφ)−G4φ∇µ∇νφ−G4φφ∇µφ∇νφ, (5.35)

and T
(m)
µν is the energy-momentum tensor of a CDM component. Note that from Eq. (5.32) we

retrieve the GR field equations (5.2) if we set K = G3 = 0 and G4 = 1
2κ . Second, the scalar field

equation reads

∇µ
(

4∑
i=2

J iµ

)
=

4∑
i=2

P iφ, (5.36)

where

P 2
φ = Kφ, P 3

φ = ∇µG3φ∇µφ, P 4
φ = G4φR, (5.37)

J2
µ = −L2X∇µφ, J3

µ = −L3X∇µφ+G3X∇µX + 2G3φ∇µφ, J4
µ = 0. (5.38)

As it is mentioned in Ref. [302], one could think ∇µJ iµ leads to higher than second-order
derivatives. However, this is not the case since commutations of higher derivatives can be substi-
tuted by the curvature tensor and are hence canceled. In particular, one can prove that

∇µ (2φ∇µφ+∇µX) = (2φ)
2 − (∇α∇βφ)

2 −Rµν∇µφ∇νφ, (5.39)

which will be of paramount importance when we will discuss perturbation equations.
It is possible to find a relatively simple expression for the scalar field equation (5.36) if we

consider the case i = 3, namely,

0 = 2G3φ2φ+∇µG3φ∇µφ+∇µφ∇µG3X2φ+∇µ (G3X∇µX) +G3X (2φ)
2

+G3X∇µφ∇µ2φ︸ ︷︷ ︸ .(5.40)
The terms on top of the brace in Eq. (5.40) can be expanded as

∇µG3X∇µX +G3X2X +G3X (2φ)
2

+G3X∇µφ∇µ2φ︸ ︷︷ ︸ = 0, (5.41)

and the terms on top of the brace in Eq. (5.41) can in turn be written as

G3X

[
∇µφ∇µ2φ+ (2φ)

2
+ 2X

]
= G3X [∇µ (2φ∇µφ+∇µX)] . (5.42)

Using Eq. (5.39) in Eq. (5.42) we find

G3X

[
∇µφ∇µ2φ+ (2φ)

2
+ 2X

]
= G3X

[
(2φ)

2 − (∇α∇βφ)
2 −Rµν∇µφ∇νφ

]
, (5.43)

and the scalar field equation (5.36) can be written as

− ∇µKX∇µφ−KX2φ−Kφ + 2G3φ2φ+∇µG3φ∇µφ+∇µG3X2φ∇µφ+∇µG3X∇µX

+ G3X

[
(2φ)

2 − (∇α∇βφ)
2 −Rµν∇µφ∇νφ

]
−G4φR = 0. (5.44)

In what follows, in order to simplify the notation we will denote the kinetic term of the
scalar field evaluated at the background simply by X and its linear order perturbation as δX.
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5.3.1 Background

Thus far the discussion of the field equations has been quite general. Now, as previously done
in Sec. 5.2, we assume a perturbed FLRW as given in Eq. (5.3). If we consider only zero order
quantities in the gravitational field equation (5.32), we obtain

E ≡
4∑
i=2

Ei = −ρm, (5.45)

P ≡
4∑
i=2

Pi = 0, (5.46)

where

E2 ≡ 2XKX −K, E3 ≡ 6Xφ̇HG3X − 2XG3φ, E4 ≡ −6H2G4 − 6Hφ̇G4φ, (5.47)

P2 ≡ K, P3 ≡ −2X
(
G3φ + φ̈G3X

)
, P4 ≡ 2

(
3H2 + 2Ḣ

)
G4 + 2

(
φ̈+ 2Hφ̇

)
G4φ + 2φ̇2G4φφ.

(5.48)

Eqs. (5.45)-(5.46) are the modified Friedmann equations describing the background evolution of
the Universe. Collecting terms they respectively read

2XKX −K + 6Xφ̇HG3X − 2XG3φ − 6H2G4 − 6Hφ̇G4φ + ρm = 0, (5.49)

K − 2X
(
G3φ + φ̈G3X

)
+ 2

(
3H2 + 2Ḣ

)
G4 + 2

(
φ̈+ 2Hφ̇

)
G4φ + 2φ̇2G4φφ = 0. (5.50)

Note that from Eqs. (5.49)-(5.50) we respectively retrieve the Friedmann equations (5.8)-(5.9) if we
set K = G3 = 0 and G4 = 1

2κ . Rearranging terms in Eqs. (5.49)-(5.50) we can define an effective
DE density

ρ̄DE = φ̇2KX −K + 3φ̇3HG3X − φ̇2G3φ + 3H2

(
1

κ
− 2G4

)
− 6Hφ̇G4φ, (5.51)

and an effective DE pressure

P̄DE = K − φ̇2
(
G3φ + φ̈G3X

)
+ 2φ̇2G4φφ + 2

(
φ̈+ 2Hφ̇

)
G4φ −

(
3H2 + 2Ḣ

)( 1

κ
− 2G4

)
, (5.52)

in such a way that we can write the modified Friedmann equations Eqs. (5.49)-(5.50) as

3H2 = κ (ρ̄DE + ρm) (5.53)

−
(

2Ḣ + 3H2
)

= κP̄DE , (5.54)

where we are assuming that matter is pressureless P̄m = 0 as indicated by current constraints [307].
The effective DE density and pressure in Eqs. (5.51)-(5.52) allow us to define an effective DE
equation of state as

wDE =
K − φ̇2

(
G3φ + φ̈G3X

)
−
(

3H2 + 2Ḣ
) (

1
κ − 2G4

)
+ 2

(
φ̈+ 2Hφ̇

)
G4φ + 2φ̇2G4φφ

φ̇2KX −K + 3φ̇3HG3X − φ̇2G3φ + 3H2
(

1
κ − 2G4

)
− 6Hφ̇G4φ

.

(5.55)
Let us now consider the scalar field equation (5.44) and only keep zero order quantities, that

is to say,

Kφ − (KX − 2G3φ)
(
φ̈+ 3Hφ̇

)
−KφX φ̇

2 −KXX φ̈φ̇
2 +G3φφφ̇

2 +G3φX φ̇
2
(
φ̈− 3Hφ̇

)
−
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3G3X

(
2Hφ̇φ̈+ 3H2φ̇2 + Ḣφ̇2

)
− 3G3XXHφ̇

3φ̈+ 6G4φ

(
2H2 + Ḣ

)
= 0, (5.56)

which fully agrees with [308]. Note that defining

Jµ ≡
4∑
i=2

J iµ, (5.57)

Pφ ≡
4∑
i=2

P iφ, (5.58)

we can write the scalar field equation (5.36) as

∇µJµ = Pφ, (5.59)

and it becomes clear that there exists a Noether current for Lagrangians invariant under constant
shifts of the field φ→ φ+ c [298], namely,

Jµ = (L2X + L3X − 2G3φ)∇µφ−G3X∇µX. (5.60)

Taking into consideration that X = 1
2 φ̇

2, the charge density of the Noether current can be written
as

J ≡ J0 = φ̇
(
KX − 2G3φ + 3Hφ̇G3X

)
, (5.61)

so that the scalar field equation is given by the simple expression

J̇ + 3HJ = Pφ. (5.62)

When Pφ = 0 then it is easy to see that the solution to the previous equation is

J =
Jc
a3
, (5.63)

where Jc is a constant. When Jc = 0, then the system is on the attractor solution, but when Jc 6= 0
then the system is not on the attractor and as we will see in Sec. 5.4.2 interesting dynamics may
arise.

5.3.2 Linear perturbations

Considering only first order quantities in the gravitational field equations (5.32) one obtains [309,
310]

A1Φ̇ +A2
˙δφ+A3

k2

a2
Φ +A4Ψ +

(
A6

k2

a2
− µ

)
δφ− ρmδm = 0, (5.64)

C1Φ̇ + C2
˙δφ+ C3Ψ + C4δφ−

aρmVm
k2

= 0, (5.65)

B1Φ̈ +B2δ̈φ+B3Φ̇ +B4
˙δφ+B5Ψ̇ +B6

k2

a2
Φ +

(
B7

k2

a2
+ 3ν

)
δφ (5.66)

+

(
B8

k2

a2
+B9

)
Ψ = 0,

G4 (Ψ + Φ) +G4φδφ = 0. (5.67)

Note that when K = G3 = 0 and G4 = 1
2κ , Eqs. (5.64)-(5.67) respectively correspond to the GR

limit given by Eqs. (5.10)-(5.13) with σm = 0.
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If we now consider the scalar field equation (5.44) and take into account only first order
quantities we find

D1Φ̈ +D2δ̈φ+D3Φ̇ +D4
˙δφ+D5Ψ̇ +

(
D7

k2

a2
+D8

)
Φ

+

(
D9

k2

a2
−M2

)
δφ+

(
D10

k2

a2
+D11

)
Ψ = 0. (5.68)

Expressions for the coefficients Ai, µ, ν, Bi, Ci and Di can be found in Appendix B.2 and are in
agreement with those found in [309, 310], except for D8 which is actually equal to zero as can be
seen by using the expression found in [310] and using the background equations of motion for the
scalar field.

5.4 The effective fluid approach

We have seen in the previous section that the gravitational field equations for the Horndeski
Lagrangian can be written in such a way that they resemble those found in Sec. 5.2 where we
assumed GR and a perfect fluid. Indeed, defining an effective DE density and pressure given by
Eqs. (5.51)-(5.52) makes it possible to obtain an effective DE equation of state (see Eq. (5.55)).
As mentioned in Sec. 5.1, a fluid can be described by its equation of state, sound speed, and
anisotropic stress, so in what follows we will explicitly derive those quantities.

In this section we will present relatively simple expressions for the effective DE sound speed
and anisotropic stress under the subhorizon and quasistatic approximations. Actually, by defining
an effective DE fluid we are considering a DE effective energy-momentum tensor TDEµν obtained
via the gravitational field equations (5.32) and defined explicitly as follows:

Gµν = κ
(
T (m)
µν + T (DE)

µν

)
,

κT (DE)
µν = Gµν − 2κ

4∑
i=2

Giµν . (5.69)

Since we are taking into consideration expressions up to linear order, TDEµν also contains small
perturbations which allow us to define quantities such as DE effective perturbations in the pressure,
density, and velocity. These can be extracted from the DE effective energy-momentum tensor TDEµν

by considering the decomposition of the tensor into its components, given by Eqs. (5.5)-(5.7).
Qualitatively, these expressions have the following structure which resembles to that of the f(R)
case (see Chapter 4):

δPDE
ρ̄DE

= (...)δφ+ (...) ˙δφ+ (...)δ̈φ+ (...)Ψ + (...)Ψ̇ + (...)Φ + (...)Φ̇ + (...)Φ̈, (5.70)

δDE = (...)δφ+ (...) ˙δφ+ (...)Ψ + (...)Φ + (...)Φ̇, (5.71)

VDE = (...)δφ+ (...) ˙δφ+ (...)Ψ + (...)Φ + (...)Φ̇. (5.72)

where (...) indicates expressions which might be cumbersome. It is therefore very helpful to work
out these expressions under the subhorizon and quasistatic approximations in order to gain a better
understanding.

We have explained in great detail the way we carry out the subhorizon and quasistatic
approximations in Chapter 4, but in a nutshell, the former refers to only considering modes deep in
the Hubble radius, i.e. those for which k2 � a2H2, while the latter refers to neglecting derivatives
of the potentials during matter domination as they are roughly constant but also terms of similar
order as ∂η ∼ 1/η ∼ aH(a). For example, the perturbation in the Ricci scalar is

δR = −12(H2 + Ḣ)

a2
Ψ− 4k2

a2
Φ +

2k2

a2
Ψ− 18H

a2
Φ̇− 6H

a2
Ψ̇− 6Φ̈

a2
,
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' −4k2

a2
Φ +

2k2

a2
Ψ.

Following the same procedure and applying the subhorizon approximation to the linearized grav-
itational field equations (5.64),(5.67), and to the linearized scalar field equation (5.68), one finds,
respectively,

A3
k2

a2
Φ +A6

k2

a2
δφ− κρmδm ' 0, (5.73)

B6
k2

a2
Φ +B8

k2

a2
Ψ +B7

k2

a2
δφ ' 0, (5.74)

D7
k2

a2
Φ +

(
D9

k2

a2
−M2

)
δφ+D10

k2

a2
Ψ ' 0. (5.75)

Note that since B7 = 4G4φ and B6 = B8 (see Appendix B.2), Eq. (5.74) leads to no anisotropic
stress Φ = −Ψ when G4 is a constant.

Solving Eqs. (5.73)-(5.75) for Φ, Ψ and δφ one finds

k2

a2
Ψ = −κ

2

Geff

GN
ρ̄mδ, (5.76)

k2

a2
Φ =

κ

2
Qeffρ̄mδ, (5.77)

δφ =
(A6B6 −B6B7) ρmδm

(A2
6B6 − 2A6B6B7 +B2

6D9) k
2

a2 −B2
6M

2
, (5.78)

where Geff and Qeff are Newton’s effective constant

Geff

GN
=

2
[(
B6D9 −B2

7

)
k2

a2 −B6M
2
]

(A2
6B6 +B2

6D9 − 2A6B7B6) k
2

a2 −B2
6M

2
, (5.79)

Qeff =
2
[
(A6B7 −B6D9) k

2

a2 +B6M
2
]

(A2
6B6 +B2

6D9 − 2A6B7B6) k
2

a2 −B2
6M

2
, (5.80)

and we make use of the following correspondence A3 = B6 = B8, D7 = B7 and D10 = A6 (see
Appendix B.2). One can also define the following anisotropic stress parameters

η ≡ Ψ + Φ

Φ
=

(A6 −B7)B7
k2

a2

(A6B7 −B6D9) k
2

a2 +B6M2
, (5.81)

γ ≡ −Φ

Ψ
=

(A6B7 −B6D9) k
2

a2 +B6M
2

(B2
7 −B6D9) k

2

a2 +B6M2
. (5.82)

The aforementioned expressions for Newton’s effective constant and the anisotropic stress param-
eters are in agreement with the ones in Ref. [309].

The subhorizon approximation is also useful as the evolution equations for the growth of
matter perturbations δm given by Eqs. (5.16)-(5.17) can be reduced to a single differential equation
(which we have already seen), where the variable Geff plays a primary role:

δ′′m(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′m(a)− 3

2

Ωm,0Geff/GN
a5H(a)2/H2

0

δm(a) = 0, (5.83)

with Geff given by Eq. (5.79) and initial conditions δm(ai) = ai and δ′m(ai) = 1 for an initial value
for the scale factor ai deep in the matter era.

In what follows, we will present the effective DE perturbations under the subhorizon and
quasistatic approximations for two classes of models: those in which there is DE anisotropic stress
and those where DE anisotropic stress vanishes.
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5.4.1 Horndeski models with DE anisotropic stress

We now apply the subhorizon and quasistatic approximations in Eqs. (5.70)-(5.72) using the same
prescription as in Ref. [9]. We also found, in agreement with Ref. [308], that the quasistatic
approximation breaks down for this model due to the rapid oscillations of the scalar field, so if we
eliminate the scalar field, then this can slightly increase the accuracy of the numerical solutions of
the effective fluid equations. To eliminate δφ and its derivatives, we use Eq. (5.67) and insert the
resulting equations in Eqs. (5.70)-(5.72).

Then, by keeping the dominant k2 terms (the subhorizon approximation) and dropping time
derivatives of the potentials (the quasistatic approximation) in Eqs. (5.70)-(5.72) we find

δPDE
ρ̄DE

' 1

3F4

k4

a4F1 + k2

a2F2 + F3

k4

a4F5 + k2

a2F6

ρ̄m
ρ̄DE

δm, (5.84)

δDE '
k4

a4F7 + k2

a2F8 + F9

k4

a4F5 + k2

a2F6

ρ̄m
ρ̄DE

δm, (5.85)

VDE ' a
k2

a2F10 + F11

k2

a2F5 + F6

ρ̄m
ρ̄DE

δm, (5.86)

for the effective DE pressure perturbation, effective DE density perturbation, and effective DE ve-
locity perturbation, respectively (the interested reader can find the expressions for Fi in Appendix
B.2). It is now also possible to obtain an expression for the effective DE anisotropic stress under
the subhorizon approximation

πDE =
k2

a2 (Φ + Ψ)

κ ρ̄DE
'

k2

a2F2
4B7 (B7 −A6)
k2

a2F5 + F6

ρ̄m
ρ̄DE

δm

'
k4

a4F2
4B7 (B7 −A6)

k4

a4F7 + k2

a2F8 + F9

δDE . (5.87)

Having found expressions for the effective DE equation of state (see Eq. (5.55)) and the
effective DE anisotropic stress (Eq. (5.87)), the only missing ingredient for an effective fluid
description of the Horndeski Lagrangian is the sound speed. This quantity can easily be found
using our equations for the effective DE pressure perturbation (5.84) and the effective DE density
perturbation (5.85). The DE sound speed reads

c2s,DE ≡ δPDE
δρDE

=
1

3

k4

a4F1 + k2

a2F2 + F3

k4

a4F7 + k2

a2F8 + F9

. (5.88)

Due to the presence of anisotropic stress, perturbations on subhorizon scales in the effective DE
fluid are not driven by the sound speed (5.88), but by an effective DE sound speed defined as [9,235]

c2s,eff ≡ c2s,DE −
2

3
πDE/δDE (5.89)

=
1

3

k4

a4

(
F1 − 2F2

4B7 (B7 −A6)
)

+ k2

a2F2 + F3

k4

a4F7 + k2

a2F8 + F9

.

Finally, it is clear that for the cosmological constant model, i.e. L2 = −Λ
κ , L3 = 0, L4 = 1

2κR,
L5 = 0, we have K = −Λ

κ , G3 = 0, G4 = 1
2κ and G5 = 0, which implies that wDE = −1 and

(δPDE , δρDE , πDE) = (0, 0, 0) as expected.
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f(R) models

Thus far we have kept the discussion quite general, that is to say, we did not specify any function
in the Horndeski Lagrangian (5.21). To mention an example, we will present the results for f(R)
models. With the definitions in Eqs. (5.25) and using units where κ = 1, one obtains

B7 = 2A6 = 2, B6 = B8 = 2φ, D9 = 0, F1 = F4 = −1/2, F2 = −15F̈

4
,

F3 = −2FF̈

4F,R
, F5 = −3F

2
, F6 = − F 2

2F,R
, F7 = −1 +

3F

2
, F8 =

(F − 1)F

2F,R
,

F9 = 0, F10 = −3Ḟ

2
, F11 = − FḞ

4F,R
, M2 = −Kφφ =

1

2fRR
, (5.90)

where

Kφ =
dK

dφ
=
dK

dR

dR

dφ
=

1

2f,RR
(Rf,RR) = −R

2
, (5.91)

Kφφ =
d

dφ

(
dK

dφ
= −R

2

)
=

1

f,RR

d

dR

(
−R

2

)
= − 1

2fRR
, (5.92)

and F = f,R, F,R = f,RR. Then, the effective DE fluid quantities read

δPDE
ρ̄DE

' 1

3F

2k
2

a2

F,R
F + 3(1 + 5k

2

a2

F,R
F )F̈ k−2

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm, (5.93)

δDE ' 1

F

1− F + k2

a2 (2− 3F )
F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm, (5.94)

VDE ' aḞ

2F

1 + 6k
2

a2

F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm, (5.95)

πDE ' 1

F

k2

a2

F,R
F

1 + 3k
2

a2

F,R
F

ρ̄m
ρ̄DE

δm

'
k2

a2

F,R
F

1− F + k2

a2 (2− 3F )
F,R
F

δDE , (5.96)

c2s,DE ' 1

3

2k
2

a2

F,R
F + 3(1 + 5k

2

a2

F,R
F )F̈ k−2

1− F + k2

a2 (2− 3F )
F,R
F

, (5.97)

c2s,eff '
(1 + 5k

2

a2

F,R
F )F̈ k−2

1− F + k2

a2 (2− 3F )
F,R
F

. (5.98)

These results are in perfect agreement with the expressions derived in Chapter 4, see Eqs. (4.42)-
(4.48).

5.4.2 Horndeski models with no dark energy anisotropic stress

With the same approach that we followed in (5.4.1) we compute the DE perturbations for models
where the is no DE anisotropic stress, i.e Φ = −Ψ. With this restriction it is easy to see from
Eq. (5.67) that G4φ = 0. Then applying this condition under the subhorizon approximation in
Eqs. (5.70)-(5.72) leads to

δPDE
ρ̄DE

' 1

3

k2

a2 F̂2 + F̂3

k4

a4 F̂5 + k2

a2 F̂6

ρ̄m
ρ̄DE

δm, (5.99)
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δDE '
k4

a4 F̂7 + k2

a2 F̂8 + F̂9

k4

a4 F̂5 + k2

a2 F̂6

ρ̄m
ρ̄DE

δm, (5.100)

VDE ' a
k2

a2 F̂10 + F̂11

k2

a2 F̂5 + F̂6

ρ̄m
ρ̄DE

δm, (5.101)

and since Φ = −Ψ the anisotropic parameters read

η ≡ Ψ + Φ

Φ
= 0, (5.102)

γ ≡ −Φ

Ψ
= 1, (5.103)

as expected, while the DE anisotropic stress parameter is zero πDE = 0. Our general expression
for the DE sound speed (5.88) reduces in this case to

c2s,DE =
k2

a2 F̂2 + F̂3

k4

a4 F̂7 + k2

a2 F̂8 + F̂9

, (5.104)

which is equal to the DE effective sound speed since πDE = 0. Here we will show results for a few
specific models embedded in the Horndeski Lagrangian.

Quintessence

We can recover the Lagrangian of Quintessence by choosing the following functions

K = X − V (φ), G4 =
1

2κ
(5.105)

where φ is the scalar field, X is the kinetic term defined as X = − 1
2g
µν∂µφ∂νφ and V (φ) is the

potential. Using a variational approach one finds that the effective pressure, density and velocity
perturbations for Quintessence theories are given by

δPDE =
(
φ̇ ˙δφ−Ψφ̇2

)
− Vφδφ,

ρDEδDE =
(
φ̇ ˙δφ−Ψφ̇2

)
+ Vφδφ, (5.106)

VDE =
k2

a
φ̇δφ, (5.107)

and these expressions are in agreement with [276]. Also, the DE anisotropic stress parameter πDE
is zero since for Quintessence Ψ = −Φ. We find that under the subhorizon approximation

A6 = 0, B6 = −2, D9 = −KX , M2 = −Kφφ, (5.108)

so that the effective pressure, density and velocity perturbations for Quintessence theories are given
by

δPDE
ρ̄DE

' φ̇2

2k2/a2

ρ̄m
ρ̄DE

δm, (5.109)

δDE ' φ̇2

2k2/a2

ρ̄m
ρ̄DE

δm, (5.110)

VDE ' 0. (5.111)

It is thus straightforward, using Eqs. (5.109) and (5.110), to see that the DE sound speed is given
by

c2s,DE = 1. (5.112)
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Moreover, we also find that in the subhorizon approximation

δφ ' 0,

Ψ ' − ρ̄mδma
2

2k2
, (5.113)

K-essence

In our notation the Lagrangian of K-essence theories is specified by the functions [311,312]

K (φ,X) = P (φ,X) , G4 =
1

2κ
, (5.114)

and as usual through the variation of the action it is possible to find expressions for the pressure,
density, and velocity perturbations

δPDE = Pφδφ+ PX

(
φ̇ ˙δφ− φ̇2Ψ

)
, (5.115)

ρDEδDE = δφ
(
PXφφ̇

2 − Pφ
)
− φ̇

(
PX + PXX φ̇

2
)(

φ̇Ψ− ˙δφ
)
, (5.116)

VDE =
k2

a
PX φ̇δφ. (5.117)

Since for K-essence Ψ = −Φ the DE anisotropic stress parameter πDE vanishes. We find that
under the subhorizon approximation

A6 = 0, B6 = −2, D9 = −PX , M2 = −Pφφ, (5.118)

and therefore the DE perturbations for K-essence theories are given by

δPDE
ρ̄DE

' PX φ̇
2

2k2/a2

ρ̄m
ρ̄DE

δm, (5.119)

δDE '
φ̇2
(
PX + PXX φ̇

2
)

2k2/a2

ρ̄m
ρ̄DE

δm, (5.120)

VDE ' 0, (5.121)

and the DE sound speed reads

c2s,DE =
PX

PX + 2XPXX
, (5.122)

in agreement with Refs. [311, 312]. The perturbations of the scalar field and the gravitational
potential are respectively given by

δφ ' 0,

Ψ ' − ρ̄mδma
2

2k2
. (5.123)

Kinetic gravity braiding

An interesting DE model is the kinetic gravity braiding (KGB) which is characterized by the
following Lagrangian

K = K(X), G3 = G3(X), G4 =
1

2κ
. (5.124)

Since G4 is constant it is easily shown from Eq. (5.74) that the KGB model has no DE anisotropic
stress and therefore the anisotropic parameters

η ≡ Ψ + Φ

Φ
= 0, (5.125)
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γ ≡ −Φ

Ψ
= 1. (5.126)

Furthermore, it follows that the effective Newton’s constant Geff/GN is given by

Geff/GN =
M2 −D9

k2

a2

M2 − (D9 +A2
6/2) k

2

a2

. (5.127)

The effective DE density and pressure ρ̄DE and P̄DE read, respectively,

κρ̄DE = −K + φ̇2
(
−G3φ +KX + 3G3XHφ̇

)
, (5.128)

κP̄DE = K − φ̇2
(
G3φ +G3X φ̈

)
, (5.129)

and therefore the DE equation of state is given by

wDE =
K − φ̇2

(
G3φ +G3X φ̈

)
−K + φ̇2

(
−G3φ +KX + 3G3XHφ̇

) . (5.130)

We also find that the scalar field equation at the background level is

Kφ − (KX − 2G3φ)
(
φ̈+ 3Hφ̇

)
−KXφφ̇

2 −KXX φ̈φ̇
2 +G3φφφ̇

2 +G3Xφφ̇
2
(
φ̈− 3Hφ̇

)
−3G3X

(
2Hφ̈φ̇+ 3H2φ̇2 + Ḣφ̇2

)
− 3G3XXHφ̈φ̇

3 = 0. (5.131)

As a specific example we now discuss the KGB model of Ref. [308] defined by

K(X) = −X (5.132)

G3(X) =
1√
κ

(
κr2
cX
)n

= αXn, (5.133)

where n and α are parameters in the model. A number of reasons make the KGB an attractive
model. First, it passes the recent observational constraints from gravitational waves. Second, it
is known that this model connects the original Galileon model [298] and the ΛCDM model by the
parameter n, at least for the background and first order perturbations: linear perturbations of the
KGB model reduce to those of ΛCDM (original Galileon) for n =∞ (n = 1) [308].

The charge density of the Noether current Eq. (5.61) is in this case

J0 = φ̇
(

3φ̇G3XH − 1
)
, (5.134)

and satisfies the differential equation

J̇0 + 3HJ0 = 0, (5.135)

whose solution reads
J0 =

Jc
a3
, (5.136)

with Jc a constant. It is therefore clear that J0 approaches zero as the Universe expands. The
simplest attractor solution is located at J0 = 0 and has two branches, namely,

φ̇ = 0, (5.137)

and
φ̇ =

1

3G3XH
. (5.138)
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Because the first case has ghostly perturbations, as it is shown in [308], we will focus on the
attractor solution Eq. (5.138). Using Eqs. (5.53) and (5.134) we find that the modified Friedmann
equation is given by (

H

H0

)2

= (1− Ωm,0)

(
H

H0

)− 2
2n−1

+ Ωm,0a
−3, (5.139)

where we have neglected radiation. The background equation of the KGB model reduces to that
of ΛCDM for n = ∞ as can be seen from Eq. (5.139). Also, one can easily find an expression for
the parameter α by using Eq. (5.139) at the present epoch

α =

(
2n−1

3n

)(
1

6 (1− Ωm,0)

) 2n−1
2

. (5.140)

The DE equation of state becomes

wDE =
P̄DE
ρ̄DE

=
2Ḣ

3 (2n− 1)
− 1, (5.141)

and through Eq. (5.138) it is also possible to find an analytical expression for the kinetic term

X =
1

2
a2H2φ′(a)2

= 3H2
0 (1− Ωm,0)

(
H

H0

) 2n
1−2n

, (5.142)

where the prime stands for the derivative with respect to the scale factor.
To derive the ΛCDM limit for the perturbations in this model we rewrite Eqs. (5.67) and

(5.68) in terms of the kinetic term perturbation δX = φ̇ ˙δφ − φ̇2Ψ. Then, for n → ∞ the former
equation reduces to δX

(
− 2
a −

H′(a)
H(a) +O(1/n)

)
, while the latter equation gives

˙δX + 3HδX = 0, (5.143)

which implies that the kinetic term perturbation decays as δX ∼ 1/a3 and thus can be ignored
at late time. Since DE perturbations in the KGB model are proportional to δX for large n, then
they reduce to zero as expected for the ΛCDM model.

Finally, it should be noted that a standard hydrodynamical description of the KGB in terms
of an effective fluid, has been studied in Ref. [313]. There, it was shown that the KGB model can
also be described in terms of an imperfect fluid with a chemical potential, in which the equations
of motion reduce to the standard diffusion equation. However, in our current analysis we will only
focus on the ideal fluid approach, which is totally equivalent, as we are interested in finding simple
analytic solutions and with comparing with our previous work.

5.5 Designer Horndeski

In this section we will address the shortcomings found in the KGB model defined by Eqs. (5.132)-
(5.133). We will show that it is possible, starting from the Lagrangian (5.124), to find a model
corresponding to a given background but yet having different perturbations. Using the modified
Friedmann equation and the scalar field conservation equation, we can find specific designer models
such that the background is always that of the ΛCDM model, namely, having wDE = −1. This is
particularly useful in detecting deviations from ΛCDM at the perturbations level and is a natural
expansion of our earlier work [9, 204]. We start with the modified Friedmann equation, which can
be written as

−H(a)2 − K(X)

3
+H2

0 Ωm(a) + 2
√

2X3/2H(a)G3X +
2

3
XKX = 0. (5.144)
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while the scalar field conservation equation can be written as

Jc
a3
− 6XH(a)G3X −

√
2
√
XKX = 0, (5.145)

where Jc is a constant which quantifies our deviation from the attractor, as in the case of the
KGB model [308]. We now have two equations given by (5.144) and (5.145), but three unknown
functions (G3X(X),K(X), H(a)) thus the system is undetermined. Therefore, we need to specify
one of the three unknown functions (G3X(X),K(X), H(a)) and determine the other two using
Eqs. (5.144) and (5.145). To facilitate this, we express the Hubble parameter as a function of the
kinetic term X, ie H = H(X) and then solve the previous equations to find (G3X(X),K(X)).
Doing so yields:

K(X) = −3H2
0 ΩΛ,0 +

Jc
√

2XH(X)2

H2
0 Ωm,0

− Jc
√

2XΩΛ,0

Ωm,0
,

G3X(X) = −2JcH
′(X)

3H2
0 Ωm,0

. (5.146)

With Eqs. (5.146) we can make a whole family of designer models that behave as ΛCDM at the
background level but have different perturbations. We now proceed to specify some examples using
our formalism.

5.5.1 Example 1

Choosing K(X) = 0 and solving Eqs. (5.146) we find

K(X) = 0,

G3(X) = −

√
2Jc

√
ΩΛ,0

(
2Jc
√
X + 3

√
2H2

0 Ωm,0

)
3H0X1/4Ωm,0

, (5.147)

and the derivative of the scalar field φ′(a) is

φ′(a) =
3a2H2

0 ΩΛ,0

JcH(a)
, (5.148)

where the prime is the derivative with respect to the scale factor. However, this model has the
problem that it does not have a smooth limit to ΛCDM when Jc = 0.

5.5.2 Example 2

On the other hand, specifying G3(X) leads to another interesting designer model, defined as

G3(X) = G30X,

K(X) = −3H2
0 ΩΛ,0 +

9H2
0 (X −X0)2G2

30

√
XΩm,0

2
√

2Jc
−
√

2Jc
√
XΩΛ,0

Ωm,0
(5.149)

where the kinetic term is defined as

X =
3G30H0X0Ωm,0 − 2JcH(a)

3G30H2
0 Ωm,0

, (5.150)

and X0 is an integration constant. However, this model has the problem that at early times the
perturbations do not go to zero and we do not recover GR, since the kinetic term goes to infinity
as it grows as X ∼ H(a).
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5.5.3 Example 3 (HDES)

To solve the previous shortcomings we follow a different approach. First, we demand that the
kinetic term behaves as X = c0

H(a)n , where c0 > 0 and n > 0. Then, from Eqs. (5.145) and (5.144)
we find:

G3(X) = −2Jcc
1/n
0 X−1/n

3H2
0 Ωm,0

, (5.151)

K(X) =

√
2Jcc

2/n
0 X

1
2−

2
n

H2
0 Ωm,0

− 3H2
0 ΩΛ,0 −

√
2Jc
√
XΩΛ,0

Ωm,0
.

This specific model solves both previous problems, i.e., it has a smooth limit to ΛCDM and it also
recovers GR when Jc ∼ 0, thus we will designate this model as HDES and focus on it in what
follows.

5.5.4 Comparison with the α parameters

To facilitate comparisons with the literature we also provide the expressions for our designer HDES
model in terms of the αi functions, where i = M,K,B, T . The functions Gi(φ,X) and αi are
connected in the following manner [299]:

M2
∗ ≡ 2

(
G4 − 2XG4X − φ̇HXG5X +XG5φ

)
,

αM ≡ d lnM2
∗

d ln a
,

H2M2
∗αK ≡ 2X (G2X + 2XG2XX − 2G3φ − 2XG3φX)

+ 12Hφ̇X
[
G3X +XG3XX − 3G4φX − 2XG4φXX

]
+ 12H2X

[
G4X −G5φ +X (8G4XX − 5G5φX)

+ 2X2 (2G4XXX −G5φXX)
]

+ 4H3φ̇X
(
3G5X + 7XG5XX + 2X2G5XXX

)
,

H2M2
∗αB ≡ 2φ̇ (XG3X −G4φ − 2XG4φX)

+ 8HX
(
G4X + 2XG4XX −G5φ −XG5φX

)
+

2H2φ′X

a
(3G5X + 2XG5XX) ,

M2
∗αT ≡ 4X (G4X −G5φ)− 2X

(
φ̈− 2Hφ̇

)
G5X , (5.152)

where the dot is the derivative with respect to the cosmic time, M2
∗ (τ) is the cosmological strength

of gravity, αT is the tensor speed excess, αB is called the braiding and αK is referred to as
the kineticity. For more information on these αi functions see [314]. At all times we require
D = αK + 3

2α
2
B > 0 so that there are no ghostly instabilities and that αM,K,B,T ' 0 at early times,

so as to recover GR.
For our HDES designer model given by Eqs. (5.151), we have that the αi functions of

Eq. (5.152) are given by

M2
∗ ≡ 1, (5.153)

αM ≡ d lnM2
∗

d ln a
= 0, (5.154)

αK ≡ −
4
√

2
√
c0Jc(n− 2)H(a)−

n
2

H2
0n

2Ωm,0
, (5.155)
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αB ≡
4
√
2
√
c0JcH(a)

−n2

3H20nΩm,0
, (5.156)

αT ≡ 0. (5.157)

SinceinEqs.(5.155)-(5.156)wehaveadegeneracywiththecoefficientsc0andJc,theyappear
togetheras

√
c0Jc,wecanchoosetoabsorbc0inthedefinitionofJc.Finally,itisstraightforward

toseethatourαifunctionsaredimensionlesssincethroughdimensionalanalysiswefoundthat
[c0]=H

n+2
0 ,[Jc]=H0,thekineticterm[X]=H

2
0,[K]=H

2
0and[G3X]=H

−2
0 .

Noticethatnotalldesigner modelssatisfytheaboveconditions,soinwhatfollowswe
consideronlyHDES,givenbyEq.(5.151).Then,thestabilityconditionD=αK +

3
2α
2
B >0for

ourmodelEq.(5.151)gives

J̃c 4̃Jc−3
√
2(n−2)Ωm,0

H(a)

H0

n/2

>0, (5.158)

wherewehavesetJ̃c=Jc/H0andc̃0=c0/H
n+2
0 =1.

Then,inequality(5.158)impliesthatinorderforthesystemtobestablewemusthave
eitherJ̃c>0for0<n≤2oracomplicatedsetofexpressionsthatcanhoweverbeeasilyderived
fromEq.(5.158)withalgebraicmanipulations.Forn=2theinequalityisautomaticallysatisfied
foranyvalueof̃JcasαK =0ascanbeseenfromEq.(5.155). Weshowthecomplicatedparameter
spacethatisallowedforn=1andn=3asafunctionofscalefactorabutalsoasafunctionof
nfora=1,inFig.5.1.

5.5.5 Analyticsolutionsforthegrowth

Furthermore,inthiscasewecanalsofindapproximatesolutionstothegrowthequationEq.(5.83)
inmatterdominationforn=2.Todothis,wefirstdoaseriesexpansionarounda=0totheGeff
ofEq.(5.79),whichgives:

Geff/GN =1+

√
2̃Jc

3Ωm,0H(a)/H0
, (5.159)

whichwecanusetosolveEq.(5.83)inmatterdomination,whereH(a)/H0 Ωm,0a−3.Then,
weget

δm(a)=
35/3Ω

5/4
m,0Γ

8
3

25/4J̃
5/6
c

a−1/4I5
3

27/4 J̃c

3Ω
3/4
m,0

a3/4 , (5.160)

whereIn(z)isthemodifiedBesselfunctionofthefirstkindandΓ(n)istheusualGammafunction.
UsingEq.(5.160)andthedefinitionofthegrowthratefσ8(a)≡f(a)·σ(a)=σ8aδm(a)/δm(a=1),
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we can calculate the latter exactly. However, it is instructive to perform a series expansion around
a = 1, which gives:

fσ8(a) ' σ8

(
1

2

(
5α1

α2
− 3

)
+

1

4

(
−5α1

α2
+

2
√

2J̃c

Ω
3/2
m,0

+ 9

)
(a− 1) + · · ·

)
, (5.161)

where we have defined the parameters

α1 = 0F1

(
5

3
;

2
√

2J̃c

9Ω
3/2
m,0

)
, (5.162)

α2 = 0F1

(
8

3
;

2
√

2J̃c

9Ω
3/2
m,0

)
, (5.163)

where 0F1(c1, z) is a hypergeometric function.
As can be seen from Eq. (5.161) there is a strong degeneracy between J̃c and σ8, which can

also be demonstrated by doing a series expansion of fσ8(a = 1) for small J̃c, which gives

fσ8(a = 1) ' σ8

(
1 +

J̃c

4
√

2Ω
3/2
m,0

+ · · ·

)
. (5.164)

which implies that if we keep the growth today given constant, i.e., fσ8(a = 1) = C0 = const. then
σ8 will scale roughly as

σ8 ' C0

(
1− J̃c

4
√

2Ω
3/2
m,0

+ · · ·

)
. (5.165)

Since Ωm,0 is strongly constrained from Planck, we expect that the low redshift fσ8 data will
exhibit a degeneracy between J̃c and σ8. More specifically, by inspecting Eq. (5.165) we expect a
strong negative correlation between the two parameters and this is exactly what we see from the
actual Markov Chain Monte Carlo (MCMC) that we present in later sections. This degeneracy
is interesting as it can potentially alleviate the soft 2σ tension between the growth rate data
(σ8 = 0.88) and Planck (σ8 = 0.831), which has been extensively discussed in the literature, see
Ref. [116,120] and references therein.

5.6 Numerical solutions

Here we present the numerical solutions of the two models, the KGB and HDES, that we described
in the previous section.

5.6.1 The KGB model

The attractor

To explore the possibility of working outside the attractor we only need to use Eqs. (5.53) and
(5.134), as these constrain Jc and α with H(a = 1) = H0. To parameterize the deviation from the
attractor we will use the parameter Jc. An illustrative example is found in Fig. 5.2 where we plot
the dark energy density ΩDE with respect to the scale factor for several values of n (left) and Jc
(right). The values of values for Jc were chosen so as to highlight the differences of these models
with respect to GR.

In the KGB model the DE density can be written via Eq. (5.51) as

ΩDE =
ρDE
ρc

, (5.166)
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Figure 5.2: The DE density for the KGB model for various values of n (left) and for the KGB
model (n=1) for the attractor and three general cases outside the attractor given by different values
of Jc, chosen so as to highlight the differences of these models with respect to GR. The left panel
clearly shows that as n grows the DE density approaches that of the ΛCDM model.
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Figure 5.3: Left: The evolution of the matter and effective DE perturbation variables
(δm, Vm, δDE , VDE) for the KGB with n = 2. Right: The evolution of the fσ8(z) parameter
for the KGB model with n = 2 and σ8,0 = 0.8 versus the fσ8 data compilation from Ref. [116].
Here we show the theoretical curves for the "Full KGB" brute-force solution, the effective fluid
approach, the ΛCDM model and the numerical solution of the Geff equation. As can be seen, the
agreement with all approaches is excellent.

ρDE = −K +KX φ̇
2 −G3φφ̇

2 + 3G3XHφ̇
3. (5.167)

From Fig. 5.2 we can see that working outside the attractor for the KGB model (n = 1) we might
find new parts of the parameter space and new phenomenology. In the right panel of Fig. 5.2, we
see that the orange line can be ruled out because it predicts a very high value for the DE density
at early times. The red and green lines, although outside the attractor solution, are plausible
solutions that are interesting to analyze in more depth.

Numerical solution

In this section we present the results of the numerical solution of the evolution equations. In all
cases we will assume Ωm,0 = 0.3, k = 300H0 and σ8,0 = 0.8, unless otherwise specified. The reason
we choose the specific value of k = 300H0 ∼ 0.1 h/Mpc for the wave-number is that it corresponds
to the largest value of k we can choose without entering the non-linear regime. Finally, we set the
initial conditions for the DE variables to zero at ai = 10−3, when we are well inside the matter
dominated regime.

Next we will also present our results for the growth rate of matter perturbations parameter
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fσ8(a) ≡ f(a) · σ(a), where f(a) = dlnδ
dlna is the growth rate and σ(a) = σ8,0

δ(a)
δ(1) is the redshift-

dependent rms fluctuations of the linear density field within spheres of radius R = 8h−1Mpc, while
the parameter σ8,0 is its value today. The fσ8(a) parameter is important as it can be shown to be
not only independent of the bias b1, but also a good discriminator of DE models. The reason for
this is that in linear theory the quadrupole contribution to the galaxy power spectrum in redshift
space is sensitive only to the combination fσ8(a).

Specifically, here we will compare the numerical solutions for the following cases:

• The numerical solution of the full system of equations given by Eqs. (5.64)-(5.67), which
however we rewrite in terms of δX = φ̇ ˙δφ− φ̇2Ψ as the system is more stable this way. We
call this case "Full KGB".

• The numerical solution of the effective fluid approach given by Eqs. (5.16)-(5.17). We call
this case "Eff. Fluid".

• The numerical solution of the growth factor equation (5.83). We call this case "ODE-Geff".

• The ΛCDM model.

In the left panel of Fig. 5.3 we show the evolution of the matter and effective DE perturbation
variables (δm, Vm, δDE , VDE) for the KGB for n = 2. In the right panel we show the evolution of
the fσ8(z) parameter for the KGB model for n = 2 and σ8,0 = 0.8 versus the fσ8 data compilation
from Ref. [116]. We show the theoretical curves for the "Full KGB" brute-force solution, the
effective fluid approach, the ΛCDM model and the numerical solution of the Geff equation. As can
be seen, the agreement with all approaches is excellent.

An interesting thing to note in Fig. 5.3 is that VDE > δDE and VDE ∼ Vm at intermediate
redshift. The reason for this is that in the effective fluid approach the DE velocity perturbations
are not always subdominant, as it would be expected in a general DE fluid. This can be seen
by remembering that the velocity perturbations are actually a component of the effective energy
momentum tensor, namely the T 0

i part, thus they contain some of the main contributions of the
Modified Gravity (MoG) theory and can be in some cases rather large. See, for example, Eqs. (5.6)
and (5.17) for the definition of VDE and Eqs. (5.65) and (5.72) for all of the extra terms that are
rewritten as VDE .

As an example, also consider the case of quintessence and k-essense, where VDE is propor-
tional to the scalar field perturbations, see Eqs. (5.107) and (5.117) respectively. In the case of
f(R), VDE is given by (5.95) and is proportional to Ḟ /F , which parameterizes the deviations from
GR, so it is a proxy for the f(R) modified gravity perturbations.

However, in the case of the KGB model the subhorizon approximation fails when the pa-
rameter n is large. This can easily be seen by calculating the large n limit of the Geff parameter
via Eq. (5.79):

Geff/GN ' 1 +
2a3(1− Ωm,0)

5Ωm,0
, (5.168)

which at a = 1 tends to Geff/GN ' 3
5 + 2

5Ωm,0
, which is different from unity as expected at this

limit. However, in general deviations of Geff/GN from unity on such scales are not problematic
as screening mechanisms play an important role. In any case, our finding is in agreement with
what was previously found in Ref. [308], namely: the quasistatic approximation breaks down for
the model due to the rapid oscillations of the scalar field. As a result, in what follows we will only
focus on our new designer model, which does not suffer from this issue.

5.6.2 Designer Model

We now focus on our designer model HDES, given by Eq. (5.151). Again, we will consider the
numerical solutions for the following cases:
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Figure 5.4: Left: We show the evolution of the fσ8(z) parameter for the HDES model with n = 2,
J̃c = 5 · 10−2 and σ8,0 = 0.8 versus the fσ8 data compilation from Ref. [116]. The values of
values for J̃c were chosen so as to highlight the differences of these models with respect to GR.
Here we show the theoretical curves for the HDES model for the "Full-DES" brute-force numerical
solution, the effective fluid approach, the ΛCDM model and the numerical solution of the Geff
equation. As can be seen, the agreement with all approaches is excellent. Right: The percent
difference between the "Full-DES" brute-force numerical solution and the effective fluid approach
(magenta dot dashed line) and the numerical solution of the growth factor equation (5.83) (green
dotted line).

• The numerical solution of the full system of equations given by Eqs. (5.64)-(5.67), which
however we rewrite in terms of δX = φ̇ ˙δφ− φ̇2Ψ as the system is more stable this way. We
call this case "Full-DES".

• The numerical solution of the effective fluid approach given by Eqs. (5.16)-(5.17). We call
this case "Eff. Fluid".

• The numerical solution of the growth factor equation (5.83). We call this case "ODE-Geff".

• The ΛCDM model.

As mentioned in the previous sections, we can absorb the constant c0 in that of Jc, so we
will only vary the latter, i.e., we set c̃0 = 1. Furthermore, since the model is stable for all values of
Jc when n = 2, we will consider this case when studying cosmological constraints. Again, we use
Ωm,0 = 0.3, k = 300H0 and σ8,0 = 0.8, unless otherwise specified.

In the left panel of Fig. 5.4 we show the evolution of the fσ8(z) parameter for the HDES
model with n = 2, J̃c = 5 · 10−2 and σ8,0 = 0.8. The values of values for J̃c were chosen so as to
highlight the differences of these models with respect to GR. We show the theoretical curves for the
HDES model for the "Full-DES" brute-force numerical solution, the effective fluid approach, the
ΛCDM model and the numerical solution of the Geff equation. As can be seen, the agreement with
all approaches is excellent. In the right panel of the same figure we show the percent difference
between the "Full-DES" brute-force numerical solution and the effective fluid approach (magenta
dot dashed line) and the numerical solution of the growth factor equation (5.83) (green dotted
line).

5.6.3 Modifications to CLASS and the ISW effect.

Here we will present our modifications to the CLASS Boltzmann code, which we call EFCLASS. We
will compare the outcome with the hi_CLASS code, which solves the full set of dynamical equations
but at the cost of significantly more complicated modifications. At the same time, we will also
compare with a brute force calculation of the integrated sachs wolfe (ISW) effect as in our previous
work with f(R).
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In order to modify the CLASS code in our effective fluid approach we only need two functions,
the DE velocity and the anisotropic stress [9]. In the case of the HDES model, the anisotropic
stress πDE is zero, as can be seen from Eq. (5.67), since G4φ = 0. Therefore, we only need the DE
velocity which we can easily be obtained from Eq. (5.101), however we found that this approach
is not very stable numerically. Hence, in order to have a consistent solution, we solve Eq. (5.17)
for VDE and since wDE = −1, the only variable we need is the effective pressure δPDE given by
Eq. (5.99). The expressions are rather cumbersome, but for n = 1 we have

VDE '

(
−14
√

2

3
Ω
−3/4
m,0 J̃c H0 a

1/4

)
ρ̄m
ρ̄DE

δm. (5.169)

In the left panel of Fig. 5.5 we show the low-` multipoles of the TT CMB spectrum for a flat
universe with Ωm,0 = 0.3, ns = 1, As = 2.3 · 10−9, h = 0.7 and (c̃0, J̃c, n) = (1, 2 · 10−3, 1). Our
EFCLASS code is denoted by the green line, hi_CLASS by the orange line and for reference the
ΛCDM with a blue line. On the right panel of Fig. 5.5 we show the percent difference of our code
with hi_CLASS as a reference7. As can be seen, our simple modification achieves roughly ∼ 0.1%
accuracy across all multipoles.

We also compare our results with a brute force calculation of the Integrated Sachs-Wolfe
(ISW) effect. In this case the power spectrum is given by [315]:

CISW
` = 4π

∫
dk

k
IISW` (k)2 9

25

k3Pζ
2π2

, (5.170)

where IISW` (k) is a kernel that depends on the line of sight integral of the growth and a bessel
function and Pζ is the power spectrum (see Ref. [315] and Appendix A of Ref. [9]), and is given
by the primordial power spectrum times a transfer function

k3Pζ
2π2

= As

(
k

k0

)ns−1

T (k)2, (5.171)

where As is the primordial amplitude, k0 is the pivot scale and T (k) is the usual matter-radiation
Bardeen, Bond, Kaiser and Szalay (BBKS) transfer function (see Eq. (7.71) in Ref. [316]).

In Fig. 5.6 we present the results for the calculation of the ISW effect and a comparison with
CLASS/hi_CLASS for the ΛCDM model (left) and the HDES model (right), for the same parameters
as in Fig. 5.5. We see that there is excellent agreement for all multipoles, except ` = 2. The reason
for this is that we have used the BBKS formula for the transfer function T (k) which is very accurate
at small scales, but only at the level of 10% on large scales, i.e., small multipoles.

5.7 Cosmological constraints

Here we present the cosmological constraints for the n = 2 HDES and ΛCDM models discussed
in previous sections. We use the latest cosmological observations including the supernovae type Ia
(SnIa), Baryon Acoustic Oscillations (BAO), CMB and the Hubble expansion H(z) data. Specifi-
cally, we use the Pantheon SnIa compilation of Ref. [88], the BAO measurements from 6dFGS [90],
SDDS [81], BOSS CMASS [91], WiggleZ [80], MGS [92], BOSS DR12 [93] and DES Y1 [94]. For
the CMB we use the shift parameters (R, la) based on the Planck 2018 release [1] and as derived
by Ref. [317]. We assume the existence of three families of neutrinos with Neff = 3.046. For more
details regarding the data used see Chapter 2.

With these in mind, our total likelihood function Ltot can be given as the product of the
separate likelihoods of the data (we assume they are statistically independent) as follows:

Ltot = LSnIa × LBAO × LH(z) × LCMB × Lgrowth,

7In this case we did not use n = 2 as we found that in this case hi_CLASS crashes and we cannot
compare with that code.
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Figure 5.5: Left: The low-`multipoles of the TT CMB spectrum for a flat universe with Ωm,0 = 0.3,
ns = 1, As = 2.3 · 10−9, h = 0.7 and (c̃0, J̃c, n) = (1, 2 · 10−3, 1). The values of values for J̃c were
chosen so as to highlight the differences of these models with respect to GR. Our EFCLASS code is
denoted by the green line, hi_CLASS by the orange line and for reference the ΛCDM with a blue
line. Right: The percent difference of our code with hi_CLASS as a reference. As can be seen, our
simple modification achieves roughly ∼ 0.1% accuracy across all multipoles.
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Figure 5.6: The ISW effect and a comparison with CLASS/hi_CLASS for the ΛCDM model (left)
and the HDES model (right), for the same parameters as in Fig. 5.5. We see that there is excellent
agreement for all multipoles, except ` = 2 due to the use of the BBKS transfer function which is
accurate only up to 10% at large scales.

which is related to the total χ2 via χ2
tot = −2 logLtot or

χ2
tot = χ2

SnIa + χ2
BAO + χ2

H(z) + χ2
cmb + χ2

growth. (5.172)

Calculating the best-fit is not enough, but we also need to study the statistical significance
of our constraints. To achieve this we make use of the well known Akaike Information Criterion
(AIC) [289] previously used in Chapter 4, see Eq. (4.84). For other similar statistical tools see
also Ref. [290]. In this analysis we have 1048 data points from the Pantheon set, 3 from the CMB
shift parameters, 10 from the BAO measurements, 22 from the growth measurements and finally
36 H(z) points, for a total of Ndat = 1118.

Finally, our total χ2 is given by Eq. (5.172) while the parameter vectors (assuming a spa-
tially flat Universe) are given by: pΛCDM =

(
Ωm,0, 100Ωbh

2, h, σ8

)
for the ΛCDM and pHDES =(

Ωm,0, 100Ωbh
2, h, J̃c, σ8

)
for the HDES model. Using the aforementioned cosmological data and

methodology, we can obtain the best-fit parameters and their uncertainties via the MCMC method
based on a Metropolis-Hastings algorithm. The MCMC code for Mathematica used in the anal-
ysis is freely available at http://members.ift.uam-csic.es/savvas.nesseris/. The priors we
assumed for the parameters are given by Ωm,0 ∈ [0.1, 0.5], Ωbh

2 ∈ [0.001, 0.08], J̃c ∈ [−1, 12],
h ∈ [0.4, 1], σ8 ∈ [0, 2] and we sample ∼ 105 MCMC points for each of the two models.
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Table 5.1: ΛCDM parameters with 68% limits based on TT,TE,EE+lowP and a flat ΛCDM
model (middle column) or a wCDMmodel (right column); see Ref. [1] and the Planck chains
archive.

Parameter Value (ΛCDM) Value (wCDM)
Ωbh

2 0.02225± 0.00016 0.02229± 0.00016
Ωch

2 0.1198± 0.0015 0.1196± 0.0015
ns 0.9645± 0.0049 0.9649± 0.0048
H0 67.27± 0.66 > 81.3

Ωm 0.3156± 0.0091 0.203+0.022
−0.065

w −1 −1.55+0.19
−0.38

σ8 0.831± 0.013 0.983+0.100
−0.055

Table 5.2: The best-fit parameters for the ΛCDM and the HDES (n = 2) models respec-
tively.

Model Ωm,0 100Ωbh
2 J̃c h σ8

Best-fit values
ΛCDM 0.311± 0.006 2.243± 0.014 0 0.680± 0.004 0.758± 0.025
HDES 0.313± 0.006 2.240± 0.014 −0.309± 0.244 0.678± 0.004 0.911± 0.068

Table 5.3: The χ2 and AIC parameters for the ΛCDM and the HDES models respectively.

Model χ2 AIC ∆AIC
ΛCDM 1087.64 1095.68 0

HDES 1086.30 1096.35 0.678

5.7.1 Results

In Figs. 5.7 and 5.8 we show the 68.3%, 95.4% and 99.7% confidence contours for the ΛCDM and
the HDES models, respectively, along with the one-dimensional (1D) marginalized likelihoods for
all parameter combinations in the familiar triangle plot. We also highlight with a black point the
mean MCMC values and with a red point the Planck 2018 concordance cosmology. The latter is
based on the TT,TE,EE+lowP spectra, a flat ΛCDM model and the values are shown in Table
5.1.

In Tables 5.2 and 5.3 we show the best-fit values of the model parameters and the values for
the χ2 and AIC parameters for the ΛCDM and the HDES model respectively. As can be seen from
Tables 5.2 and 5.3, we find that as the difference in the AIC parameters is roughly ∼ 0.68, then
both models seem to be statistically equivalent with each other. Furthermore, as seen in Fig. 5.8,
there is a clear negative correlation between J̃c and σ8 as we saw in Sec. 5.5.5 and Eq. (5.165) due
to the strong degeneracy between the parameters. This degeneracy is useful as it can potentially
alleviate and relax the tension that has been recently observed, see Refs. [116,120]. In particular,
in Fig 5.9 we show the 68.3%, 95.4% and 99.7% confidence contours for the ΛCDM (left) and the
HDES (n = 2) (right) models respectively in the (Ωm,0, σ8) plane. As can be seen, for the HDES
model, the best-fit in the (Ωm,0, σ8) plane moves toward higher values of σ8, closer to those of
Planck.
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Figure 5.7: The 68.3%, 95.4% and 99.7% confidence contours for the ΛCDM model, along with the
1D marginalized likelihoods for all parameter combinations. We also highlight with a black point
the mean MCMC values and with a red point or dashed vertical line the Planck 2018 concordance
cosmology. The latter is based on the TT,TE,EE+lowP spectra, a flat ΛCDM model and the
values are shown in Table 5.1.

5.8 Conclusions

The recent discovery of gravitational waves emission from a binary neutron star merger with an
optical counterpart, signified a major breakthrough in astrophysics and cosmology as it provided
a direct measurement of the speed of propagation of gravitational waves. This observation not
only represented an important advance for astronomy, but it also served to greatly reduce the
number of alternative models aiming at explaining the current accelerating phase of the Universe.
In particular, since the constraint on the speed of propagation of gravitational waves is extremely
close to the speed of light, the Horndeski Lagrangian simplified to only three functions. Although
this means a notable progress in constraining cosmological models, degeneracies with the ΛCDM
model remain and must be further investigated.

In this Chapter we used an effective fluid approach to study the remaining Horndeski La-
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Figure 5.8: The 68.3%, 95.4% and 99.7% confidence contours for the HDES (n = 2) model, along
with the 1D marginalized likelihoods for all parameter combinations. We also highlight with a
black point the mean MCMC values and with a red point or dashed vertical line the Planck 2018
concordance cosmology. The latter is based on the TT,TE,EE+lowP spectra, a flat ΛCDM model
and the values are shown in Table 5.1.

grangian. This formalism makes it possible to compare models with different underlying physics
(e.g., DE and MG models) in a relatively easy way: each model is mapped to three functions de-
scribing the effective fluid, namely, the equation of state w, the sound speed c2s, and the anisotropic
stress π. Even though the remaining Horndeski Lagrangian is now simpler than its original ver-
sion, finding exact analytical solutions can be quite laborious. Nevertheless, the subhorizon and
quasistatic approximations are pretty helpful at overcoming this difficulty.

One of our main results is the set of Eqs. (5.84)-(5.89). These equations along with the
equation of state Eq. (5.55) describe the remaining Horndeski Lagrangian in an effective fluid
approach under the subhorizon and quasistatic approximations. In this Chapter, we provide explicit
expressions for the effective fluid description of several DE and MG models.

In order to exemplify our results and since we focused on explanations to the late-time
accelerating universe, we carried out an analysis where only DM and an effective DE fluid are
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Figure5.9:The68.3%,95.4%and99.7%confidencecontoursfortheΛCDM(left)andtheHDES
(n=2)(right)modelsrespectivelyinthe(Ωm,0,σ8)plane. Wealsohighlightwithablackpoint
themeanMCMCvaluesandwitharedpointordashedverticallinethePlanck2018concordance
cosmology. ThelatterisbasedontheTT,TE,EE+lowPspectra,aflatΛCDMmodelandthe
valuesareshowninTable5.1.

takenintoconsideration. Aparticularlyinterestingmodelalsoincludedinourformalismisthe
KGBmodel.InSec.5.6weshowouranalyticalsolutionsagreeprettywellwithafullnumerical
solutionofthesystemofdifferentialequationsdescribingtheDMandeffectiveDEperturbations.
WealsoconfirmthatthesubhorizonapproximationbreaksdownfortheKGBmodelduetothe
rapidoscillationsofthescalarfieldinthelargenlimit,inagreementwithRef.[308].Also,forthe
KGBmodelthebackgroundequationfortheexpansionhistoryH(a)canonlybefoundnumerically
forn>1,thusslowingdownthecodessignificantly.

Duetotheseproblems,weproposeacompletelynewclassofHorndeskimodelsbasedon
thedesigningprinciple,i.e.,fixingthebackgroundtoaspecificmodel,usuallythatoftheΛCDM
andthendeterminingtheLagrangian.Giventhefreedominspecifyingtheremainingfunctionsof
theHorndeskiLagrangian,weproposeawaytofindfamiliesofmodelswhichmatchaparticular
backgroundexpansion,i.e.,theequationofstatewDE.Sincecurrentobservationsareingood
agreementwiththestandardΛCDMatthebackgroundlevel,weprovideequationsspecifyinga
wDE =−1designerHorndeskimodel(seeEqs.(5.151)),whichwecallHDES.Furthermore,forthis
modelweareabletofindexactsolutionsforthegrowthδm(a)inthematterdominationepochby
solvingEq.(5.83).ThesolutionswefoundaregivenbyEq.(5.161)andtheyimplyadegeneracy
betweenσ8andtheparameteroftheHDESmodelJ̃c,whichcanapproximatelybedescribedvia
Eq.(5.165).

AlthoughfixingthebackgroundtoΛCDMisacommonpractice,thetreatmentoftheper-
turbationsmightnotberigorousenoughincurrentstudies.Publiccodessolvingtheperturbation
equationsfortheHorndeskiLagrangian(e.g.,hi_CLASS)useadhocparametrizationsfortheαi
functionswhichdiffersignificantlyfromourfindingsthatapproximatearealisticmodel(seeEqs.
(5.153)-(5.157)),seeforexampleRefs.[318–320].

WeimplementedtheparametrizedversionfortheDEeffectivefluidofour wDE = −1
designerHorndeskiHDESmodelinthepubliccodeCLASS,whichwecallEFCLASS,byfollowing
thestraightforwardimplementationexplainedinChapter4. Forthesakeofcomparisonandin
ordertocheckthevalidityofoureffectivefluidapproach,wecomparedresultsfromourcode
EFCLASSwiththepubliccodehi_CLASS,whichsolvesnumericallythefullperturbationequations.
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In Fig. 5.5 we show the CMB angular power spectrum computed with both codes and
as can be seen in the right panel of Fig. 5.5, the agreement is remarkable and on average on
the order of ∼ 0.1%. Since the hi_CLASS code does not utilize either the subhorizon or the
quasistatic approximation, but our EFCLASS does it, we conclude our effective fluid approach is quite
accurate and powerful. Furthermore, the main advantage of our method is that while hi_CLASS
requires significant and non-trivial modifications, our EFCLASS code practically only requires the
implementation of Eq. (5.169), which is trivial.

We further investigated our wDE = −1 designer Horndeski HDES model by computing cos-
mological constraints with recent data sets using an MCMC analysis. The results of our MCMC
analysis are shown in Tables 5.2 and 5.3, where we present the best-fit values of the model parame-
ters and the values for the χ2 and AIC parameters for the ΛCDM and the HDES model respectively.
We find that as the difference in the AIC parameters is roughly ∼ 0.68, then both models seem
to be statistically equivalent with each other. Furthermore, as seen in Fig. 5.8, there is a clear
negative correlation between J̃c and σ8. This can be understood, as we saw in Sec. 5.5.5, due to
the strong degeneracy between the parameters described by Eq. (5.165). This degeneracy is useful
as it can potentially alleviate the σ8 tension that has been recently observed, see Ref. [116,120].
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6
Cosmological constraints with the Effective Fluid

approach for Modified Gravity

The original content of this chapter is based on Ref. [321]. Cosmological constraints of Modified
Gravity (MG) models are seldom carried out rigorously. First, even though general MG models
evolve differently (i.e., background and perturbations) to the standard cosmological model, it is
usual to assume a ΛCDM background. This treatment is not correct and in the era of precision
cosmology could induce undesired biases in cosmological parameters. Second, neutrino mass is
usually held fixed in the analyses which could obscure its relation to MG parameters. In Chapters 4
and 5 we showed that by using the Effective Fluid Approach we can accurately compute observables
in fairly general MG models. An appealing advantage of our approach is that it allows for a
pretty easy implementation of this kinds of models in Boltzmann solvers (i.e., less error–prone)
while having a useful analytical description of the effective fluid to understand the underlying
physics. This Chapter illustrates how the effective fluid approach can be used to carry out proper
analyses of cosmological constraints in MG models. We investigated three MG models including
the sum of neutrino masses as a varying parameter in our Markov Chain Monte Carlo analyses.
Two models (i.e., Designer f(R) [DES-fR] and Designer Horndeski [HDES]) have a background
matching ΛCDM, while in a third model (i.e., Hu & Sawicki f(R) model [HS]) the background
differs from the standard model. In this way we estimate how relevant the background is when
constraining MG parameters along with neutrinos’ masses. We implement the models in the
popular Boltzmann solver CLASS and use recent, available data (i.e., Planck 2018, CMB lensing,
BAO, SNIa Pantheon compilation, H0 from SHOES, and RSD Gold-18 compilation) to compute
tight cosmological constraints in the MG parameters that account for deviation from the ΛCDM
model. For both the DES-fR and the HS model we obtain log10 b < −8 at 68% confidence when all
data are included. In the case of the HDES model we find a somewhat weaker value of log10 Jc > −5
at 68% confidence. We also find that constraints on MG parameters are a bit weakened when
compared to the case where neutrinos’ masses are held fixed in the analysis.

6.1 Introduction

As the available parameter space has shrank remarkably via the measurement of the speed of propa-
gation of the gravitational waves by the event GW170817 and its optical counterpart GRB170817A
[171,173,322], there are a few remaining models which deserve attention as well as proper analyses.
Nevertheless, many analyses of the remaining models, especially the ones where the background
expansion differs significantly from the ΛCDM model, do not consider the background expansion
properly and just fix it to either the ΛCDM or a constant w model, as was observed in Refs. [9,10].
This obviously biases the results as it introduces biases in the cosmological parameters and spurious
tensions with the data. However, some recent analyses have also acknowledged this discrepancy
and newer versions of the Boltzmann solvers now have support for the correct backgrounds in some
cases [323].
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On the other hand, the so-called Effective Fluid Approach presented in Chapters 4 and 5 has
the advantage that it provides a unified approach to analyse all models under the same umbrella,
allows for the correct background expansion in the models, all without sacrificing the accuracy of
the results [9–11]. In a nutshell and as a reminder, the Effective Fluid Approach works by rewriting
the field equations of the MG model as GR and a DE fluid with an equation of state w, a pressure
perturbation δP and an anisotropic stress σ. Especially the latter is crucial as sometimes it is
ignored in analyses of MG models [12], something which might bias the results [191]. Moreover,
through a joint Machine Learning analysis applied to the latest cosmological data hints of dark
energy anisotropic stress were found [324] as we will also discuss on Chapter 12.

In the Effective Fluid Approach we also assume that in the relevant scales, where linear the-
ory applies, the sub-horizon and quasi-static approximations hold. With these, general analytical
expressions for the equation of state, the pressure perturbation, and the anisotropic stress were
found in in Chapters 4 and 5. With the latter, one may then just solve numerically the evolution
equations for the perturbations, found for example in Ref. [185].

Thus, the main advantage of the Effective fluid approach is that once one has the expressions
for the variables w, δP and σ, it is very straightforward to also implement them in standard
Boltzmann codes, such as CLASS, with very minimal modifications. We have already shown how
his is done with the EFCLASS code, which implements the aforementioned approach, where it finding
that EFCLASS and hi_CLASS [299], a modification of CLASS that solves numerically the whole set
of perturbation equations for Horndeski, agree to better than 0.1%, see Fig. 5.5.

Recently, a comparison of different approaches to the quasi-static approximation in Horn-
deski models was made by Ref. [325], by applying this approximation to either the field equations,
as done in the Effective fluid approach, or the equations for the two metric potentials Φ and Ψ and
finally, the use of the attractor solution derived within the Equation of State approach [231]. It was
found that all three approaches agree exactly on small scales and that in general, this approach is
valuable in future model selections analyses for models beyond the ΛCDM model.

In this analysis we use the Effective Fluid approach and our EFCLASS code, for the back-
ground and first order perturbations, to obtain cosmological constraints with the latest cosmological
data sets: we include the Pantheon SNe compilation [88], the Planck 2018 CMB data [1], the H0

Riess measurement [46], various BAO points [90, 92, 326], and a new redshift space distortions
(RSD) likelihood (see Ref. [327] for the “Gold 2018" compilation of Ref. [116]). An important as-
pect of our investigation is that we take into consideration neutrino mass as a varying parameter.
Neutrino mass is usually held fixed in analyses which could obscure its relation to MG parameters.
The role of massive neutrinos in modified gravity was first investigated in [328] by considering f(R)
gravity. The implementation in Boltzmann solvers of f(R) gravity including neutrino mass as a
varying parameter was carried out in [329,330], where cosmological constraints were also computed.

The chapter is organised as follows. In Sec. 6.2 we present the models we consider and the
results of our MCMC analysis with EFCLASS, in Sec. 6.3 we conclude and lastly, in Appendix C we
present some details on our RSD likelihood.

6.2 Cosmological Constraints

In our MCMC analysis with EFCLASS we will consider the f(R) Designer model and the Hu &
Sawicki model defined in Eqs. (4.69) and (4.56) of Chapter 4 respectively and the Horndeski
Designer model (HDES) defined in Eq. (5.151) of Chapter 5.

6.2.1 Methodology

In order to compute cosmological constraints we use the following data sets. Firstly, we utilise the
2018 release by the Planck Collaboration including temperature and polarisation anisotropies of
the CMB (TTTEEE) as well as CMB lensing (lensing) [1]. Secondly, we include measurements of
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Parameter Range
log10 bπ [−10, 0]
log10 bhs [−10,−1]
log10 Jc [−10, 0]

Table 6.1: Flat prior bounds used in the MCMC analyses. Prior range for other parameters
is set as in Table 1 of Ref. [331]

Baryon Acoustic Oscillations (BAO) from Refs. [90, 92, 326]. Thirdly, Pantheon supernovae (SNe)
from [88] were also incorporated in the analysis. Fourthly, we employed local Hubble measurement
(H0) from Ref. [46] as a Gaussian prior. Finally, we coded a new likelihood for a compilation of
Redshift-Space-Distortions (RSD) measurements (see Appendix C and Ref. [327]).

The cosmological models previously discussed in Section 6.2 were implemented in our Boltz-
mann solver EFCLASS. For a given cosmological model and a set of cosmological parameters we
can compute the solution for both background and linear perturbations, that is, we can predict
observables such as the matter power spectrum and the CMB angular power spectrum. Since the
parameter space not only includes cosmological parameters, but also several nuissance parameters,
it becomes hard to find the best fit model as well as the relevant statistical information. The usual
approach is to use Markov Chain Monte Carlo (MCMC) techniques [242,332] and we will do so.

We explore the parameter space of the cosmological models with the code Montepython
[333,334] which works along with EFCLASS: theoretical predictions are computed and compared to
observations through likelihood functions ∼ 105 times. The MCMC procedure allows us not only
to find the best fit model parameters, but also to obtain the relevant countours confidence. In our
analysis we use the set of flat priors in Table 6.1.

6.2.2 Results

DES-fR model

In Fig. 6.1 we show the 68% and 95% confidence contours for the DES-fR model. Vertical dashed
and horizontal dotted lines indicate the values obtained by the Planck Collaboration in their
analyses for the standard cosmological model ΛCDM (last column in Table 2 of Ref. [1]). The
relevant statistical information (i.e., mean values and 68% confidence limits) is shown in Table
6.2. We see there is good agreement for common parameters in both DES-fR and ΛCDM models.
Although error on neutrino masses get significantly reduced as we add more data, we can only set
an upper limit when combining all data sets. In the case of the MG parameter bπ we do not observe
any degeneracy with other parameters in the model. It is interesting that the constraints on MG,
although still prior dominated, present different tendencies according to the combination of data
sets: i) RSD push the MG constraints towards GR, while the H0 tension remains unresolved; ii) if
we exclude RSD from the data sets, we notice a preference for a MG scenario, but still hitting the
prior bound on the right and not solving the problem with H0; iii) a similar situation occurs when
we exclude supernovae, H0, and RSD from the data sets, because there is a preference for MG (prior
dominated though) while obtaining a H0 value that agrees very well with Planck Collaboration
results for ΛCDM . Finally, we note that our derived value for the parameter

σ8 = 0.815+0.009
−0.007 (68%), (6.1)

when including the whole data set, agrees very well with the value found by DES Collaboration
σ8 = 0.807+0.062

−0.041 for the ΛCDM model [154].
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Parameter Planck {. . . }+lensing {. . . }+BAO {. . . }+SNe {. . . }+H0 {. . . }+RSD
ωb 0.02234−0.00017

+0.00015 0.02235−0.00016
+0.00015 0.02252−0.00012

+0.00013 0.02246−0.00013
+0.00014 0.02250± 0.00013 0.02255−0.00017

+0.00011

ωcdm 0.1204± 0.0014 0.1204−0.0014
+0.0012 0.1191−0.0009

+0.0010 0.1192−0.0009
+0.0010 0.1188−0.0009

+0.0008 0.1185−0.0009
+0.0010

H0 66.64−0.78
+1.63 66.70−0.80

+1.48 67.96± 0.57 67.91−0.47
+0.55 68.18−0.39

+0.49 68.42−0.47
+0.41

ln 1010As 3.047−0.016
+0.014 3.047−0.016

0.015 3.051± 0.011 3.047± 0.015 3.032± 0.009 3.051−0.018
+0.014

ns 0.9643−0.0047
+0.0049 0.9646−0.0040

+0.0047 0.9679± 0.0037 0.9676−0.0041
+0.0033 0.9694−0.0038

+0.0046 0.9693−0.0039
+0.0036

τreio 0.0548−0.0080
+0.0072 0.0545−0.0082

+0.0071 0.0580−0.0058
+0.0060 0.0560−0.0071

+0.0075 0.0492−0.0051
+0.0048 0.0584−0.0092

0.0068

Σmν < 0.171 < 0.158 < 0.064 < 0.058 < 0.054 < 0.043

log10 bπ [−10, 0] [−10, 0] −4−1
+3 [−10, 0] −1.1−0.6

+0.8 < −8

Table 6.2: Mean values and 68% confidence limits on cosmological parameters for the
DES-fR model. Here {. . . } stands for the inclusion of data from column on the left.

Parameter Planck {. . . }+lensing {. . . }+BAO {. . . }+SNe {. . . }+H0 {. . . }+RSD
ωb 0.02233−0.00015

+0.00018 0.02238± 0.00016 0.02247± 0.00013 0.02247−0.00016
+0.00013 0.02257−0.00015

+0.00016 0.02256−0.00012
+0.00013

ωcdm 0.1205−0.0014
+0.0013 0.1201−0.0013

+0.0012 0.1191± 0.0010 0.1191−0.0009
+0.0011 0.1184−0.0008

+0.0007 0.1182± 0.0008

H0 66.38−0.72
+1.89 66.68−0.81

+1.70 67.90−0.49
+0.59 67.91−0.59

+0.52 68.57−0.38
+0.40 68.59−0.33

+0.43

ln 1010As 3.046± 0.016 3.044± 0.014 3.046± 0.014 3.044± 0.015 3.039−0.010
+0.011 3.050−0.016

+0.013

ns 0.9638−0.0043
+0.0051 0.9650−0.0045

+0.0047 0.9684−0.0040
+0.0037 0.9680−0.0043

+0.0035 0.9694−0.0031
+0.0029 0.9702−0.0035

+0.0037

τreio 0.0535−0.0079
+0.0077 0.0536−0.0072

+0.0074 0.0557−0.0069
+0.0073 0.0544−0.0082

+0.0073 0.0519−0.0055
+0.0053 0.0584−0.0083

0.0066

Σmν < 0.151 < 0.143 < 0.064 < 0.061 < 0.026 < 0.032
log10 bhs [−10,−1] > −3 > −6 > −4 > −4 < −7

Table 6.3: Mean values and 68% confidence limits on cosmological parameters for the HS
model. Here {. . . } stands for the inclusion of data from column on the left.

HS model

In Fig. 6.2 we depict 68% and 95% confidence contours for the HS model using a number of data sets.
Dashed-vertical and dotted-horizontal lines are the parameter values that the Planck Collaboration
reported for its analysis using ΛCDM model (last column in Table 2 of Ref. [1]). Table 6.3 contains
relevant statistical information for our analysis: we show mean values and 68% limits for the HS
model. Again, cosmological parameters which are common to both ΛCDM and HS models are in
good agreement with Planck Collaboration’s results. As in the case for the DES-fR model we can
only find an upper limit for the neutrino masses which is slightly smaller for the HS model. Also
in this case MG constraints are prior dominated and we observe a preference for departure from
GR in most probe combination, the exception being the case including RSD. The latter again goes
towards GR while not solving the H0 discrepancy with the local value. Interestingly, in Ref. [335]
the authors analyzed galaxy morphology and placed the following constraint for the HS model
fR0 < 1.4× 10−8. By using the whole data set we find

σ8 = 0.816+0.008
−0.007 (68%), (6.2)

which perfectly agrees with the value found for the DES-fR model.

HDES model

Fig. 6.3 shows confidence contours for the cosmological parameters in the HDES model. We
see good agreement in parameters that also play a part in ΛCDM model; the values found by
the Planck Collaboration (last column in Table 2 of Ref. [1]) are depicted as vertical-dashed and
horizontal-dotted lines in Fig. 6.3. As for the DES-fR and HS models, in this case the neutrino
masses remain unconstrained in our analysis and we can only set an upper limit. Concerning the
MG parameter we observe that results are not decisive since posteriors are mostly affected by the
prior distribution. Although there exist preference for departure from GR when including H0 and
RSD in the data set, the constraints hit the prior bound on the right. Interesting in this case RSD
push the constraints far from GR, whereas in the case of DES-fR and HS models the whole data
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Parameter Planck {. . . }+lensing {. . . }+BAO {. . . }+SNe {. . . }+H0 {. . . }+RSD
ωb 0.02233−0.00015

+0.00017 0.02236−0.00016
+0.00017 0.02242± 0.00013 0.02238−0.00020

+0.00014 0.02257−0.00015
+0.00014 0.02257−0.00017

+0.00013

ωcdm 0.1205± 0.0014 0.1204± 0.0013 0.1195± 0.0009 0.1197−0.0010
+0.0014 0.1180± 0.0009 0.1182± 0.0009

H0 66.67−0.76
+1.52 66.95−0.73

+1.36 67.78± 0.50 67.81−0.72
+0.54 68.68−0.46

+0.44 68.60−0.49
+0.47

ln 1010As 3.046−0.018
+0.016 3.049−0.017

+0.015 3.045± 0.013 3.048−0.011
+0.014 3.049−0.018

+0.010 3.046−0.018
+0.014

ns 0.9640−0.0045
+0.0049 0.9646−0.0044

+0.0043 0.9671−0.0037
+0.0035 0.9658−0.0065

+0.0069 0.9716−0.0032
+0.0030 0.9700−0.0037

+0.0038

τreio 0.0539−0.0086
+0.0075 0.0552−0.0084

+0.0074 0.0544−0.0063
+0.0062 0.0554−0.0052

+0.0064 0.0583−0.0094
+0.0059 0.0560−0.0087

0.0056

Σmν < 0.134 < 0.115 < 0.056 < 0.043 < 0.038 < 0.037

log10 Jc [−10, 0] [−10, 0] < −0.3 < −9 −1.−0.2
+0.5 > −5

Table 6.4: Mean values and 68% confidence limits on cosmological parameters for the
HDES model. Here {. . . } stands for the inclusion of data from column on the left.

set prefer the GR limit. Finally we note that our derived

σ8 = 0.814+0.009
−0.007 (68%), (6.3)

taking into consideration the full data set agrees well with values found for DES-fR and HS models.
In Table 6.4 we show mean values and 68% confidence bounds for the cosmological param-

eters in the HDES model.

6.3 Conclusions

Over the past decades several cosmological models have emerged as a plausible explanation for
the late-time accelerating expansion of the Universe. In this Chapter we investigated three MG
models which satisfy solar system tests and also fulfil constraints on the speed of propagation of
GWs, namely: DES-fR, HS, and the HDES models.

It is possible to interpret MG models as an effective fluid and we followed this approach
in this work. We implemented DES-fR, HS, and HDES models in the Boltzmann solver EFCLASS
which uses sub-horizon and quasi-static approximations when solving the perturbation equations.
We showed in Chapters 4 and 5 that the observables are accurately computed (i.e., better than
0.1% as compared to outputs from codes which do not use any approximation, see Fig. 5.5) while
having the advantage of analytical expressions describing MG as an effective fluid.

When constraining the parameter space for the HS model is usual to assume a ΛCDM
background. This is however incorrect as the background for the HS model is in general different
from the ΛCDM model. In this Chapter we dropped this assumption and solved the perturbations
equations taking into consideration the background evolution too. We found constraints which are
in good agreement with results by the Planck Collaboration when the parameter spaces overlap. We
also note that the constraints on the MG parameter are dominated by the prior hence unconstrained
by current data sets. As the HS model has an additional parameter than the ΛCDM model, the
former will be severely penalized in any Bayesian model comparison.

Since data indicate a preference for the standard model it is interesting to study models which
exactly match the ΛCDM background. These models might rely on new physics while also behaving
differently at the perturbations level with respect to the ΛCDMmodel. By investigating these kinds
of models we can also reveal whether or not current data sets can discriminate alternative models
from the concordance model. In this Chapter we investigated two models, namely, a designer f(R)
(DES-fR) and a designer Horndeski model (HDES).

When considering common cosmological parameters, constraints for the DES-fR model do
not exhibit significant discrepancies with results by the Planck Collaboration for the standard
model. Concerning the MG parameter we note the results depend on the probe combination.
Most cases are dominated by the prior and hence unconstrained. The full data set however, prefers
the GR limit. One reason for this might be the strong constraints from the RSD likelihood. As
the surveys that make the RSD measurements assume a ΛCDM model in their analysis, the data
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themselves maybe a bit biased. While this in general can be corrected, up to a point, with the
AP correction as mentioned in the Appendix, some residual bias may remain. While this is an
important point, it is however outside the scope of our present analysis, thus we leave it for future
work.

Regarding the constraints for the HDES model we also find good agreement with parameters
also appearing in the ΛCDM model. Here constraints on MG are also inconclusive as the posteriors
are prior dominated. Interestingly, in this case the full data set shows a slight preference for a
departure from GR.

In summary, our results do not conclusively indicate the presence of modifications to GR.
Since our MG constraints are prior dominated we conclude ΛCDM is still the preferred model.
Where data sets overlap, our results fully agree with the investigation carried out by the Planck
Collaboration [229].
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Figure6.1:1Dmarginalisedlikelihoodsaswellasconfidencecontours(i.e.,68%and95%)for
theDES-fRmodel. Thedashedverticalandhorizontaldottedlinescorrespondtotheresults
obtainedbythePlanckCollaborationfortheΛCDMparameters(lastcolumninTable2ofRef.[1]).
TTTEEEstandsforCMBtemperatureandE-modepolarisationanisotropiescorrelationsand
cross-correlations,lensingstandsforCMBlensing,BAOstandsforBaryonicAcousticOscillations,
SNestandsforsupernovae,H0standsfortheHubbleconstant,andRSDstandsforredshiftspace
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Figure6.2:1Dmarginalisedlikelihoodsaswellasconfidencecontours(i.e.,68%and95%)for
theHS model. Thedashedverticalandhorizontaldottedlinescorrespondtotheresultsob-
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Figure6.3:1Dmarginalisedlikelihoodsaswellasconfidencecontours(i.e.,68%and95%)for
theHDESmodel. Thedashedverticalandhorizontaldottedlinescorrespondtotheresultsob-
tainedbythePlanckCollaborationfortheΛCDMparameters(lastcolumninTable2ofRef.[1]).
TTTEEEstandsforCMBtemperatureandE-modepolarisationanisotropiescorrelationsand
cross-correlations,lensingstandsforCMBlensing,BAOstandsforBaryonicAcousticOscillations,
SNestandsforsupernovae,H0standsfortheHubbleconstant,andRSDstandsforredshiftspace
distortions.
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7
Cosmological constraints on non-adiabatic dark

energy perturbations

The original content of this chapter is based on Ref. [327]. The exact nature of dark energy is
currently unknown and its cosmological perturbations, when dark energy is assumed not to be
the cosmological constant, are usually modeled as adiabatic. Here we explore the possibility that
dark energy might have a nonadiabatic component and we examine how it would affect several key
cosmological observables. We present analytical solutions for the growth rate and growth index of
matter density perturbations and compare them to both numerical solutions of the fluid equations
and an implementation in the Boltzmann code CLASS, finding that they all agree to well below
one percent. We also perform a Monte Carlo analysis to derive constraints on the parameters of
the nonadiabatic component using the latest cosmological data, including the temperature and
polarization spectra of the Cosmic Microwave Background as observed by Planck, the Baryon
Acoustic Oscillations, the Pantheon type Ia supernovae compilation and lastly, measurements of
Redshift Space Distortions (RSD) of the growth rate of matter perturbations. We find that the
amplitude of the nonadiabatic pressure perturbation is consistent with zero within 1σ. Finally, we
also present a new, publicly available, RSD likelihood for MontePython based on the “Gold 2018”
growth rate data compilation, see Appendix C for more details.

7.1 Introduction

As we have been discussing extensively in Chapters 4, 5 and 6, although Dark Energy (DE) and
Modified Gravity (MG) models seem at a first glance quite dissimilar, however it is possible to unify
them within the same framework. One way to do this is to map the MG models, to linear order,
to some DE fluid via the effective fluid approach. Then, MG models can be interpreted as DE
fluids described by an equation of state w(a), a pressure perturbation δP (k, a), and an anisotropic
stress σ(k, a) [9,10,192–196]. Hence, the evolution of the background is determined by w(a), while
the evolution of the perturbations is governed by δP (k, a) and σ(k, a), both of which are time and
scale-dependent. In this case however, the effective fluid DE pressure perturbation δP (k, a) could
also be interpreted as containing both an adiabatic and a nonadiabatic contribution, as we will see
later on in Sec. 7.2.

On the other hand, the presence of DE anisotropic stress has the interesting side-effect that
the DE sound speed c2s,DE can in general be negative, without sacrificing the overall stability of
the perturbations. This is true as long as the effective sound speed, which is the sum of the DE
sound speed and the anisotropic stress, is always positive [235]. Moreover, it can be shown that a
varying adiabatic sound speed of DE perturbations can mimic anisotropic stresses [236,237].

In this Chapter we will consider a holistic approach and also consider nonadiabatic DE
perturbations, motivated by the following reasons. First, in Ref. [324], and we will cover it also
on Chapter 12, it was shown with a machine learning approach, based on the Genetic Algorithms,
that current data seem to give hints for the existence of DE anisotropic stress, thus going beyond
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simple DE models within GR. This could also leave open the possibility for a nonadiabatic DE
component, as then the DE component could originate from a higher energy model, usually of the
MG type. Second, the previous observation is crucial since, as mentioned earlier and will be seen
in detail in the following sections, when MG models are described by the effective fluid approach,
equivalently they can also be modeled as a DE fluid with a nonadiabatic component. Hence, we
conclude that a nonadiabatic DE component could arise naturally in a wide class of models.

Finally, Primordial Black Holes (PBH) can be a significant component of Dark Matter [336]
and give rise to entropy perturbations at early times on very small scales. They grow like isocur-
vature energy density perturbations and may eventually generate a significant component on large
scales [337]. Note that PBH as dark matter behaves as an adiabatic component on very large
scales, since it follows the large scale curvature perturbations just like baryons and photons. It
is only on small scales that it has an isocurvature component, which is also highly non-Gaussian
and can grow to become relevant at late times, around vacuum energy domination. While the
PBH entropy perturbations happen on very different scales from those of DE, this clearly provides
another mechanism for giving rise to a nonadiabatic component in the dark sector.

Here we consider the effects of the nonadiabatic DE perturbations on the LSS of the Universe,
as the latter is directly affected by the underlying gravitational theory, something which allows us
to easily search for deviations from GR. A main probe of LSS is the matter density perturbations,
which in linear theory can be parameterized through the growth parameter δm = δρm

ρ̄m
and the

growth rate f ≡ d ln δm
d ln a , which is the former’s logarithmic derivative while ρ̄m is the background

matter density and δρm its perturbation to linear order. The growth rate can also be parameterized
via the growth index γ parameter [338], which in the ΛCDM model is equal to γ ' 6/11, hence
making it easier to look for deviations from GR. The growth index is defined as the exponent of
the growth rate f(z) = Ωγm(z) and, as in the ΛCDM model the growth rate is scale-invariant on
large scales, this makes γ a useful discriminator of DE models [339].

One of the main advantages of the growth rate is that it encodes information about how
gravity affects the LSS, as the latter requires only linear physics, which is well understood. This
means the growth can be a particularly useful probe [340]. Similarly, the growth index can help
discriminate models both between DE and MG (see Ref. [141,208]) and between ΛCDM [207] and
MG models that are fully degenerate at the background level [9,201–204] as we have seen in earlier
Chapters.

Some of the first constraints on the sound speed of DE were reported in Ref. [341] by using
WMAP data. However, given the data at the time, no significant sensitivity on the adiabatic
sound-speed was reported. On the other hand, nonadiabatic perturbations were studied within
the context of a decaying vacuum cosmology in Ref. [342], where they were found to only have
an effect on larger scales. Constraints on nonadiabatic DE models using only growth RSD data
were reported in Ref. [343] which used a particular parameterization for the nonadiabatic DE
perturbations based on a linear combination of the intrinsic and entropy perturbations Γ(a) and
S(a) [343]. Using a conjoined analysis of the fσ8 and H(z) data no deviations from ΛCDM were
found. Another similar analysis with only growth RSD data was done in Ref. [344], which did
not find any deviations from the standard cosmological model. Finally, a related approach in the
search of primordial entropy perturbations was presented in Ref. [345] and was constrained by the
Cosmic Microwave Background (CMB) data in Ref. [346].

In the next sections we will present a broader approach by considering a general ansatz
for the nonadiabatic DE perturbations and we will use the latest cosmological data, including
Planck 18, BAO and RSD measurements to constrain its model parameters. The structure of
our Chapter is as follows. In Sec. 7.2 we present the theoretical background of our analysis and
a realistic parameterization for the nonadiabatic DE pressure perturbations, along with analytic
solutions for the growth of matter density perturbations and the growth index γ, while in Sec. 7.3
we compare our numerical and analytical solutions against an implementation of the nonadiabatic
perturbations in the Boltzmann code CLASS. In Sec. 7.4 we present our results from a Monte Carlo
Markov Chain (MCMC) analysis using the latest cosmological data, while in Sec. 7.5 we discuss our
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conclusions. Finally, in Appendix C we present an implementation of the redshift space distortions
(RSDs) likelihood for MontePython.

7.2 Theory

For the benefit of the reader, following we will repeat a few basic equations covered already on
Chapter 4 to avoid the need to scroll upward and recall some useful expression we will use in our
analysis. We will consider a spatially flat universe and assume that the scalar perturbations of
the metric can be described by the perturbed Friedmann-Lemaitre-Robertson-Walker metric in the
conformal Newtonian gauge

ds2 = a2
[
−(1 + 2ψ)dτ2 + (1− 2φ)dxidx

i
]
, (7.1)

where a = a(τ) = 1
1+z is the scale factor, z is the redshift and dτ = dt/a is the conformal time in

terms of the cosmic time t.
We assume that a DE fluid is responsible for the accelerated expansion of the universe

and that its background evolution can be described by an equation of state w = P̄ /ρ̄, while its
fluctuations can be described by a pressure perturbation δP and anisotropic stress σ. The energy
momentum tensor of the fluid can be written as

Tµν = Pδµν + (ρ+ P )UµUν , (7.2)

where the overhead bar ρ̄ denotes a background quantity, Uµ ≡ dxµ/
√
−ds2 is the four velocity,

given to linear order by Uµ ' 1
a

(
1− ψ, ui

)
for ui = dxi/dτ and the density and pressure include

both background and perturbations, i.e. ρ = ρ̄ + δρ and P = P̄ + δP . The components of the
energy momentum tensor are then given by

T 0
0 = −(ρ̄+ δρ), (7.3)

T 0
i = (ρ̄+ P̄ )ui, (7.4)

T ij = (P̄ + δP )δij + Σij , (7.5)

where Σij is the anisotropic stress tensor, which is traceless Σii = 0 and can also be written via the
σ parameter as (ρ̄+ P̄ )σ ≡ −(k̂ik̂j − 1

3δ
i
j)Σ

j
i .

The evolution equations of the fluid variables δ = δρ
ρ̄ and velocity of the DE fluid θ = ikjuj

can be found by the conservation of the energy momentum tensor Tµν ;ν = 0 and are given by
[185,278]:

δ̇ = −(1 + w)
(
θ − 3φ̇

)
− 3H

(
δP

ρ̄
− wδ

)
, (7.6)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

δP/ρ̄

1 + w
k2 − k2σ + k2ψ, (7.7)

where H ≡ ȧ
a is the conformal Hubble parameter and k is the wavenumber of the Fourier mode of

the perturbations, which in GR are decoupled.
In general, is is most convenient to describe the DE pressure perturbation in the rest frame

ˆδP , denoted here by a hat, which is defined as the frame where the fluid is at rest, i.e. θ̂ = 0.
Then, the pressure perturbation in the rest frame can be expressed in terms of the energy density
ρ and entropy S as P̂ = P̂ (ρ, S) as [347]

ˆδP =
∂̂P

∂ρ

∣∣∣∣∣
S

δ̂ρ+
∂̂P

∂S

∣∣∣∣∣
ρ

δ̂S, (7.8)

93



Chapter 7. Cosmological constraints on non-adiabatic dark energy perturbations

where the DE density and entropy perturbations at the rest frame are given by δ̂ρ and δ̂S re-
spectively. In principle, the nonadiabatic contribution may come from some internal degrees of
freedom, as for example happens in the quintom model [6]. We can straight-forwardly identify the
DE rest frame sound speed as

ĉ2s ≡
∂̂P

∂ρ

∣∣∣∣∣
S

, (7.9)

which is equal to one for quintessence, but is in the range ĉ2s ∈ [0, 1] for k-essence or other models
[276]. For modified gravity models it can even be negative, in which case one would presume that
a negative value would cause instabilities in the perturbations, unless there is anisotropic stress to
stabilize them [235].

We can now decompose the pressure perturbation in terms of the sound speed ĉ2s and a
nonadiabatic part ˆδP nad as

ˆδP = ĉ2sρ̄δ̂ + ˆδP nad, (7.10)

where both quantities are defined in the DE rest frame and the nonadiabatic contribution at the
rest frame can be identified as

ˆδP nad =
∂̂P

∂S

∣∣∣∣∣
ρ

δ̂S. (7.11)

In order to use the aforementioned expressions for the pressure perturbation in any other
frame besides the DE rest frame, we have to change gauge by considering a general coordinate
transformation between the hatted (DE rest frame) and the unhatted (general) frame [6, 185]:

xµ = x̂µ + dµ, (7.12)

where dµ = (α(~x, τ), ~∇β(~x, τ) + ~ε(~x, τ)), for some functions α, β and ε. Then, the perturbation
variables transform as [185]

δ = δ̂ − α
˙̄ρ

ρ̄
, (7.13)

θ = θ̂ − αk2, (7.14)

δP = ˆδP − α ˙̄P, (7.15)

where in the rest frame we have that θ̂ = 0. We can use Eq. (7.14) to eliminate α, as θ̂ = 0, thus
finding from Eq. (7.15)

δP = ˆδP − 3Hc2aρ̄
(1 + w)θ

k2
, (7.16)

where c2a =
˙̄P
˙̄ρ

= w − ẇ
3H(1+w) is the so-called adiabatic sound speed and we have used the

background conservation equation

˙̄ρ+ 3H(1 + w)ρ̄ = 0. (7.17)

Using Eqs. (7.10), (7.13) and (7.17) in Eq. (7.16) we can write the pressure perturbation in any
gauge as

δP = ĉ2sρ̄δ + ˆδP nad + 3H
(
ĉ2s − c2a

)
ρ̄

(1 + w)θ

k2
, (7.18)

which is in agreement with Ref. [6]. Thus, our final expressions for the evolution equations for the
DE perturbations in the conformal Newtonian gauge are given by

δ̇DE = −(1 + w)
(
θDE − 3φ̇

)
− 3H

(
ĉ2s − w

)
δDE

− 9H2
(
ĉ2s − c2a

) (1 + w)θDE

k2
− 3H

ˆδP nad

ρ̄
, (7.19)
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θ̇DE = −H(1− 3ĉ2s)θDE +
k2ĉ2s

1 + w
δDE − k2σ + k2ψ +

ˆδP nad/ρ̄

1 + w
k2. (7.20)

Compared to Refs. [185] and [278], the last terms in Eqs. (7.19) and (7.20) are new. The latter,
ignoring any nonadiabatic contributions, are commonly used in the Boltzmann codes to model the
behavior of the DE perturbations. In order to include them in the aforementioned codes, we will
henceforth assume that the DE fluid in the rest frame also has a nonadiabatic component ˆδP nad.

This extra component however, can in principle destabilize the perturbations. To demon-
strate this, we follow Ref. [235] and we eliminate θ from Eqs. (7.19)-(7.20), resulting in a second
order equation for the growth of DE perturbations δDE:

δ̈DE + (· · · )δ̇DE + (· · · )δDE =

= −k2

(
(1 + w)ψ + ĉ2sδDE + ˆδP nad/ρ̄−

2

3
π

)
+ · · · ,

(7.21)

where the dots (· · · ) indicate the presence of complicated expressions and we have redefined the
anisotropic stress parameter of the DE fluid as π ≡ 3

2 (1 + w)σ. Here we focus solely on the last
k2 term, which as discussed in Ref. [6], it will act as a source driving the perturbations. However,
since the potential scales as ψ ∼ 1/k2 in matter domination, the only terms that matter are the
sound speed, the nonadiabatic perturbation and the anisotropic stress. Therefore, we can define
an effective sound speed as

c2s,eff = ĉ2s +
ˆδP nad

ρ̄ δDE
− 2

3
π/δDE, (7.22)

which has to be positive for the perturbations to be stable at all scales.
In order to solve Eqs. (7.19) and (7.20), we need to choose a parameterization for the DE

nonadiabatic pressure perturbations, something which is non-trivial in general without using an
underlying model. Hence, in order to keep our results general enough, in what follows we will
attempt to motivate an ansatz for the evolution of the pressure perturbations, by using a realistic
f(R) to determine the behavior of δP at early and late times. As dark energy is only expected
to dominate at late times, the initial conditions will not affect our results, but we will still discuss
them for completeness. In particular, here we will consider a case which is motivated by the
effective fluid approach of Refs. [9,10] and as an example we will consider the designer f(R) model,
see Ref. [9], which is constructed so that the background expansion corresponds exactly to ΛCDM
but to linear order, it can have perturbations [204]. This implies that w = −1 and from Eq. (7.18)
we have that for the designer f(R) model

ˆδP nad,des

ρ̄
=
δP

ρ̄
− ĉ2sδDE − 3H

(
ĉ2s − c2a

) VDE

k2
, (7.23)

where δP
ρ̄ and δDE are given by Eqs. (42) and (43) of Ref. [9], VDE = (1 +w)θDE, while ĉ2s = 1 for

f(R). Note that for this model, in general we have VDE 6= 0 even if w = −1 [9].
We plot this function for the designer f(R) model for Ωm0 = 0.3, fR0 = −10−4 and w = −1

in Fig. 7.1, where we see that at both early and late times, the nonadiabatic component evolves as
a power law of the form ˆδP nad/ρ̄ ' c0ank2/H2

0 . Specifically, we find that [9]

n =
9

4
+

√
73

4
' 4.386, (7.24)

c0 = −5 +
√

73

36
g(Ωm0)fR0, (7.25)

where

g(Ωm0) ' Ω
− 17

12−
√

73
12

m0

2F1

[√
73+5
12 ,

√
73+11
12 ;

√
73+6
6 ; 1− Ωm0

] . (7.26)
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Figure 7.1: The evolution of δ̂Pnad
ρ̄ for the designer f(R) model obtained using the effective fluid

approach of Ref. [9], for Ωm0 = 0.3, fR0 = −10−4, k = 300H0 and w = −1. As seen, at different
times the nonadiabatic component evolves as a power law of the form δ̂Pnad

ρ̄ ∼ c0a
nk2. The solid

black line corresponds to the prediction from the designer f(R) model, while the dashed and
dot-dashed lines correspond to the asymptotic limits at early and late times respectively.

Inspired by this functional form, in what follows we will assume the rather general ansatz

ˆδP nad

ρ̄
= c0 a

nk2/H2
0 , (7.27)

where (c0, n) are parameters to be determined; however the exponent n has to be positive so as
to ensure the nonadiabatic DE perturbation vanishes at early times, and thus we will assume the
prior n ∈ (0,∞). In the next sections we will present constraints on the parameters (c0, n) in the
case of w =const and of no DE anisotropic stress (σ = 0).

7.2.1 The initial conditions

Here will now discuss the initial conditions for the DE perturbations in both gauges and in two
different regimes, in matter and radiation domination. First, we consider the initial conditions
in the conformal Newtonian gauge in matter domination, for which we follow Ref. [278]. In a
similar vein we consider two regimes: 1) the DE perturbations are larger than the sound horizon,
k � aH/ĉs or equivalently that ĉ2s = 0; 2) the small scales solutions k � aH/ĉs, which implies
that the terms scaling as k2 dominate of over the rest.

In any case, the initial conditions for matter and the potential (assuming no anisotropic
stress) in matter domination are unchanged and given by [278]

δm(a) = δ0

(
a+

3H2
0 Ωm0

k2

)
, (7.28)

Vm(a) = −δ0H0

√
Ωm0 a

1/2, (7.29)

φ = −3

2
δ0
H2

0 Ωm0

k2
, (7.30)

where δ0 is a normalization set at early times from inflation, while Vi ≡ (1 + wi)θi.
In the first case (k � aH/ĉs) we find that the initial conditions for the DE density and

velocity perturbations are given by

δDE(a) = δ0(1 + w)

(
a

1− 3w
+

3H2
0 Ωm0

k2

)
−
c0k

2an
(

6 + 9
n+3w −

2ak2/H2
0

nΩm0−3Ωm0w+Ωm0

)
H2

0 (2n+ 3)
,(7.31)

96



Chapter 7. Cosmological constraints on non-adiabatic dark energy perturbations

VDE(a) = −δ0(1 + w)H0

√
Ωm0 a

1/2 +
c0k

4an+ 1
2

H3
0

(
n+ 3

2

)√
Ωm0

. (7.32)

In the second case (k � aH/ĉs) we find that the initial conditions for the DE density and
velocity perturbations are given by

δDE(a) =
3

2
(1 + w)δ0

H2
0 Ωm0

ĉ2sk
2
− c0k

2an

ĉ2sH
2
0

, (7.33)

VDE(a) = −9

2
(1 + w)(ĉ2s − w)

H3
0 Ω

3/2
m0

ĉ2s k
2
a−1/2 +

c0k
2
√

Ωm0a
n− 1

2 (n− 3w)

ĉ2sH0

[
1− 9H2

0 Ωm0(ĉ2s − w)

ak2

+
81H4

0 Ω2
m0(ĉ2s − w)2

a2k4

]
. (7.34)

Note that in the previous sets of equations, the dark energy perturbations have non-vanishing
values, even for w = −1. This is clearly a smoking gun signal for modified gravity, as the usual
dark energy perturbations within GR exactly vanish for the cosmological constant (w = −1).
Finally, we find that in both cases the last terms containing c0, are new compared to Ref. [278]
and correspond to the contribution of the nonadiabatic term.

For the simpler case of a constant adiabatic DE sound-speed ĉ2s, the initial conditions in the
synchronous gauge in radiation domination where first derived in Ref. [348] as a series expansion
in terms of kτ . Here we generalize this approach by also considering the nonadiabatic pressure
perturbation and we follow Refs. [185, 348]. Since we have to expand in terms of kτ we find that
in this case it is more convenient to consider the different regimes for the index n of the power law
of our ansatz given by Eq. (7.27). Specifically, as we have already mentioned, n has to be positive
in order for the nonadiabatic pressure perturbation to vanish at early times, so we will consider
the regimes n ∈ (0, 1), n ∈ [1, 2), n ∈ [2, 3) and n ≥ 3, since then the scalar factor dominates
differently at early times.

Then, by expanding the Einstein and fluid equations in terms of kτ , following Refs. [185,348],
we find the initial conditions for the DE density δDE and velocity θDE perturbations for n ∈ (0, 1)

δDE(a) =
δ0(3ĉ2s − 4)(kτ)2(w + 1)

6ĉ2s − 12w + 8
+

c0k
2

4H2
0 (3ĉ2s − 6w + 4)(ĉ2s − w)

·
[
4
(
w
(
(kτ)2 − 9w + 12

)
− 4
)
− 3ĉ2s

((
(kτ)2 − 6

)
w + 4

) ]
, (7.35)

θDE(a) = − δ0ĉ
2
sk(kτ)3

6ĉ2s − 12w + 8
+
c0k

3(kτ)w
(
ĉ2s
(
(kτ)2 − 6

)
+ 12w − 8

)
4H2

0 (w + 1)(3ĉ2s − 6w + 4)(ĉ2s − w)
. (7.36)

For n ∈ [1, 2) we have that

δDE(a) =
δ0(3ĉ2s − 4)(kτ)2(w + 1)

6ĉ2s − 12w + 8
+

3ac0k
2(w − 1)

H2
0 (2ĉ2s − 3w + 1)

, (7.37)

θDE(a) = − δ0ĉ
2
sk(kτ)3

6ĉ2s − 12w + 8
+

ac0k
3(kτ)(3w − 1)

3H2
0 (w + 1)(−2ĉ2s + 3w − 1)

. (7.38)

For n ∈ [2, 3) we have that

δDE(a) =
δ0(3ĉ2s − 4)(kτ)2(w + 1)

6ĉ2s − 12w + 8
+

3a2c0k
2(3w − 4)

H2
0 (6ĉ2s − 12w + 8)

, (7.39)

θDE(a) = − δ0ĉ
2
sk(kτ)3

6ĉ2s − 12w + 8
+

a2c0k
3(kτ)(3w − 2)

2H2
0 (w + 1)(−3ĉ2s + 6w − 4)

, (7.40)

while for n ≥ 3 the contribution from the nonadiabatic pressure perturbation of Eq. (7.27) is
subdominant and we recover the results of Ref. [348].
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7.2.2 Approximate solutions and the growth index

Here we present analytic solutions to the evolution equations (7.19) and (7.20), as well as analytic
expressions for the growth index γ at late times. We note that the forthcoming approximations
are only used to gain insight and intuition on the effects of the nonadiabatic term on the growth
and the LSS and are not used in CLASS or the MCMC analysis later on, for which we solve the
corresponding equations numerically.

One way to determine how the nonadiabatic DE pressure perturbation, and DE in general,
affects the growth of matter density perturbation δm ≡ δρm

ρ̄m
, is to rewrite the fluid equations for

matter and DE as a second order differential equation for δm. To do so, we assume homogeneity,
isotropy and neglect neutrinos, which is a viable approximation since in such small scales our
data is not affected by them. Then, the growth of matter can be followed with the second order
differential equation [244,349–351]

δ′′m(a) +

[
3

a
+
H ′(a)

H(a)

]
δ′m(a)− 3Ωm0

H2
0 Geff(a)

2a5H(a)2GN
δm(a) = 0, (7.41)

where the effects of DE or a modified gravity theory, such as f(R), at the perturbations level can
be taken into account by the effective Newtonian constant Geff(a).

To find the effects of the nonadiabatic pressure perturbation we follow Ref. [278], where
it was shown that for a DE fluid with constant equation of state w during matter domination
Q ≡ Geff(a)/GN is given by

Q− 1 =

(
1− Ωm

Ωm

)(
1 + w

1− 3w

)
a−3w ≡ Q0a

−3w. (7.42)

To find a similar expression of Q during dark energy domination, which is a solution on small scales
k � aH/ĉs, that takes into account the nonadiabatic component ˆδP nad/ρ̄ we do the following.
Defining the scalar velocity perturbation as V ≡ ikjT

j
0 /ρ = (1 + w)θ, Eqs. (7.19) and (7.20) can

be rewritten, in the conformal Newtonian gauge, as

δ′DE = − VDE

Ha2

(
1 +

9a2H2
(
ĉ2s − c2a

)
k2

)
− 3

a

(
ĉ2s − w

)
δDE + 3(1 + w)φ′ − 3

a

ˆδP nad

ρ̄
, (7.43)

V ′DE = −(1− 3ĉ2s)
VDE

a
+

k2

Ha2
ĉ2sδDE + (1 + w)

k2

Ha2
ψ +

ˆδP nad

ρ̄

k2

Ha2
− (1 + w)k2

Ha2
σ, (7.44)

where the prime ′ is the derivative with respect to the scale factor a and we are assuming there
is no DE anisotropic stress, i.e σ = 0, and hence φ = ψ. In Eq. (7.44), in order to not have large
velocity perturbations it is expected that the terms that scale as k2 cancel out, hence

δDE =
3

2
(1 + w)

H2
0 Ωm
ĉ2sk

2
δ0 −

ˆδP nad/ρ̄

ĉ2s
, (7.45)

where we have used that k2φ = − 3
2δ0H

2
0 Ωm which is the solution for the perturbation equations

in matter domination [278]. Then using Eqs. (7.43) and (7.45) we find

VDE = −3Ha(ĉ2s − w)δ − 3Ha
ˆδP nad

ρ̄
. (7.46)

Now we can compute Q in the dark energy domination regime as

Q− 1 =
ρDE∆DE

ρm∆m
, (7.47)

where ∆ ≡ δ + 3aHV
k2 is the gauge invariant density perturbation. In matter domination we have

that ∆m = δ0a, while for DE we have that

∆DE '
3

2
(1 + w)

H2
0 Ωm
ĉ2sk

2
δ0 −

ˆδP nad/ρ̄

ĉ2s
, (7.48)
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which is similar to the initial condition given by Eq. (7.33). From Eq. (7.48) we see that the
dominant term comes from the contribution of the nonadiabatic part, as the latter scales as k2,
see Eq. (7.27), hence Q can be expressed as

Q− 1 ' −1− Ωm
Ωm

ˆδP nad/ρ̄

δ0ĉ2s
a−1−3w. (7.49)

Analytic solutions for the growth

Modeling the nonadiabatic pressure perturbation as in Eq. (7.27), Q can be written as

Q(k, a) = 1− 1− Ωm
Ωm

c0k
2

δ0ĉ2sH
2
0

an−1−3w. (7.50)

In order to solve Eq. (7.41) with Q ≡ Geff(k, a)/GN given by Eq. (7.50) we need to make an
approximation due to the appearance of the term an−1, which makes it difficult to find analytic
solutions. As we expect that n ∼ O(1) at late times (see Fig. 7.1), then we make a series expansion
of the term an−1 around n = 1 of the form

an−1 ' 1 + (n− 1) ln a+ · · ·
' 1− (n− 1) ln (1 + z) + · · · , (7.51)

where in the second step we used that a = 1
1+z . Since we are interested in the evolution of the

growth at low redshifts, we replace the term ln (1 + z) with an average b0 = 〈ln (1 + z)〉, which
in the range z ∈ [0, 2] is approximately b0 ' 0.6479. Hence, under this approximation Newton’s
constant becomes

Q(k, a) ' 1− 1− Ωm
Ωm

c0k
2

δ0ĉ2sH
2
0

(1− b0 (n− 1)) a−3w. (7.52)

Then, by making the change of variables a−3w ≡ x and inserting Eq. (7.49) into Eq. (7.41) we find

δm(a) = a2F1

[
1

4
− 5

12w
+B,

1

4
− 5

12w
−B, 1− 5

6w
;−1− Ωm0

Ωm0

a−3w

]
, (7.53)

where

B = − 1

12w

√
(1− 3w)2 + 24δB, (7.54)

δB = − c0k
2

δ0ĉ2sH
2
0

(1− b0 (n− 1)) . (7.55)

To compare our analytical results with the full numerical solution from the evolution equa-
tions (7.19)-(7.20) in the next sections we will use the combination fσ8(a) which is a measurable
quantity and is defined as

fσ8(a) ≡ f(a) · σ(a)

=
σ8,0

δm(1)
aδ′m(a), (7.56)

where σ(a) = σ8,0
δm(a)
δm(1) is the redshift-dependent rms fluctuations of the linear density field at

R = 8h−1Mpc while the parameter σ8,0 is its value today. Since in order to derive the solution of
Eq. (7.53) we have neglected radiation, neutrinos and baryons, we note that the solution is only
valid at late times.
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The growth rate index γ

Finally, we briefly discuss the growth index γ in the presence of DE perturbations. The latter
affect the evolution of the matter density contrast δm ≡ δρm

ρm
and its growth rate f(a) ≡ d ln δm

d ln a .
When we ignore DE perturbations, the latter can be approximated as [206,338,352]

f(a) = Ωm(a)γ(a), (7.57)

where the growth index γ is given by

γ(a) = γm(a)

=
ln f(a)

ln Ωm(a)

' 3(1− w)

5− 6w
+ · · · , (7.58)

which for ΛCDM reduces to γ ∼ 6
11 and by γm we denote the contribution to the growth index

coming from the CDM and the background evolution only. When we include the DE perturbations
assuming they are sourced from an anisotropic stress, the growth index picks up a correction [206]

γ = γm + γDE, (7.59)

where the contribution coming from the DE perturbations is given by

γDE ' −
3(1 + w)

18w2 − 21w + 5
+ · · · . (7.60)

From now on we will refer to Ωm(a) as Ω as a shorthand. If we include DE perturbations the
growth index for the matter can be written to first order as

γ =
ln(f(Ω))

ln(Ω)

=
3(δB + w − 1)

6w − 5
− 3(Ω− 1)((δB + w − 1)(9δB(4w − 3)− 3w + 2))

2 ((5− 6w)2(12w − 5))
+ · · · ,

(7.61)

We can split the growth index into two parts: the contribution from the CDM component and
the background expansion denoted as γm, and the contribution from the nonadiabatic component,
denoted as γDE. Then we have

γ = γm + γDE, (7.62)

and we find from Eq. (7.61) that

γm =
3(w − 1)

6w − 5
+

3(3w − 2)(w − 1)(Ω− 1)

2(5− 6w)2(12w − 5)
+ · · · , (7.63)

γDE =
3δB

6w − 5
+ (Ω− 1)

(
−3δB(6w(6w − 11) + 29)

2 ((5− 6w)2(12w − 5))
− 27δB2(4w − 3)

2 ((5− 6w)2(12w − 5))

)
+ · · · ,(7.64)

where δB is given by Eq. (7.55). These expressions are similar to those when DE perturbations
are included, originally derived in Ref. [206], but now the extra contribution comes instead from
the nonadiabatic pressure perturbation.

7.2.3 Discussion on the scale-dependent growth

Large scale structure surveys measure the growth rate fσ8(z) by using the values from the mul-
tipoles of the redshift-space galaxy two-point correlation function at late times, see for example
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Figure 7.2: Left panel: the evolution of the scale-dependent growth rate fσ8(k, z) for various values

of c0 and n = 0.5. In this case the growth was calculated with CLASS via δ(k, z) ≡
√

P (k,z)
P (k,0) for

k = 0.1h/Mpc. The points correspond to the “Gold 2018" growth rate fσ8 compilation shown in
Table 2.4. Right panel: the matter power spectrum P (k, z) at z = 0, for various values of c0 and
n = 0.5. In both cases we assumed Ωm0 = 0.3, w = −0.8, h = 0.67.

Ref. [353]. This requires modeling the multipoles at the redshift z either by assuming a fiducial
cosmological model, so as to compute the shape of the real-space power spectrum, or by assuming
the growth is scale-independent from the onset of some early redshift and then assuming another
fiducial model at early times. Both approaches can in principle be problematic if dark energy
causes the growth to be strongly scale-dependent, so it would be ideal to directly model the multi-
poles in the particular scale-dependent cosmology at hand and do the parameter inference at the
multipole level. However, this approach is computationally extremely prohibitive for doing Monte
Carlo analyses, so we do not consider it here opting instead to examine how the scale-dependence
of the growth affects our results.

One way to examine this dependence would be to create mock fσ8(z) data using an N-
body simulation of the nonadiabatic dark energy model and then check whether the input fiducial
cosmology can be recovered, as was done for example in Ref. [354]. In particular, the authors
of Ref. [354] found that this scale-dependence of the growth can significantly bias the parameter
constraints. However, such an analysis is beyond the scope of our thesis, so instead in the next
section we will extensively study how strong this scale-dependence is by comparing the analytical
and Mathematica numerical solutions to those of CLASS, as well as by studying the scale-dependence
of the growth as a function of the wave-number k.

7.3 Comparison with CLASS and numerical solutions

Here we present in detail how the nonadiabatic DE pressure perturbation, given by the ansatz of
Eq. (7.27), affects several key cosmological quantities, such as the scale-dependent growth fσ8(k, z),
the matter power spectrum P (k, z) and the CMB TT power spectrum CTT

` .
To do this, we implemented the nonadiabatic pressure perturbation as given by Eq. (7.27),

along with the initial conditions in radiation domination in the synchronous gauge, given by
Eqs. (7.35)-(7.40), in the Boltzmann code CLASS [187, 232]. To test our modifications, we also
compare the numerical results from CLASS with the numerical solution in Mathematica of the fluid
equations (7.19) and (7.20), but also with the analytical solutions of Sec. 7.2.2.

We should note that there is a difference between the normalization used in CLASS, which
uses units of Mpc and thus affects the initial values of the perturbations δ0, and in the numerical
solution of the evolution equations (7.19) and (7.20) in Mathematica, where we set δ0 = 1, so that
δm(a) ∼ a in matter domination, and k is expressed in units of H0. For example, a wavenumber
of k = 0.1Mpc−1 in CLASS corresponds to k = 0.1 3000

h H0 = 300
h H0 in our notation1. Then,

the coefficient c0 is rescaled by a factor of c0,CLASS → c0,Math
(

3000
h

)2 δ0,CLASS
δ0,Math

between the two

1Similarly, a wavenumber of k = 0.1hMpc−1 is equivalent to k = 0.1 · 3000H0 = 300H0.
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Figure 7.3: Left panel: The absolute percentage difference of fσ8(z) between the numerical so-
lution from the evolution equations Eq. (7.20) (green line, denoted “ODE") and the analytical
approximation of Eq. (7.53) (denoted “Approx.”) with respect to the numerical solution from our
CLASS implementation for c0 = 2 ·10−7. Right panel: same as the left panel, but for c0 = −2 ·10−7.
For both plots we assume Ωm = 0.3, w = −0.8, ĉ2s = 1, h = 0.67, k = 0.1h/Mpc and σ8 = 0.8.

frameworks. In what follows, we will express all values of c0 in the dimensionless picture, i.e.
c0 = c0,Math, as that is easier to test numerically with any ordinary differential equation solver,
not only CLASS. In what follows we will assume a fiducial cosmology with Ωm = 0.3, w = −0.8,
ĉ2s = 1, h = 0.67, k = 0.1h/Mpc and σ8 = 0.8, unless otherwise specified.

First, in Fig. 7.2 we show the dependence of the growth rate fσ8(k, z) and the matter power
spectrum P (k, z) on the parameter c0 keeping n fixed. In the left panel we show the evolution of
the scale-dependent growth rate fσ8(k, z) for various values of c0 and n = 0.5. In this case the

growth was calculated with CLASS via δ(k, z) ≡
√

P (k,z)
P (k,0) for k = 0.1h/Mpc. As can be seen, the

amplitude of the pressure perturbation ansatz c0 has a strong effect on the growth rate fσ8(k, z)
at late times z < 1, and thus we expect it to be tightly constrained in the MCMC analysis in the
next section.

We also tested our codes by calculating the growth for w = −1 and as expected, we find
that the main effect indeed comes from the nonadiabatic perturbations. This test is important as
the usual dark energy perturbations within GR exactly vanish for the cosmological constant model
(w = −1), so any difference of the growth from its expected ΛCDM value would be a smoking gun
signal for modified gravity.

On the other hand, in the right panel of Fig. 7.2 we show the matter power spectrum P (k, z)
at z = 0, for various values of c0 and n = 0.5. As can be seen, the effect of the nonadiabatic
perturbations in this case is to suppress or enhance power, depending on the sign of c0, an effect
similar to that observed in Ref. [355] for a mixed DE-DM model and in Ref. [356] for a similar
ansatz. Note that in general the matter power spectrum P (k, z) at scales k ∼ 0.1− 10 h/Mpc can
be constrained by Lyman alpha data [357], however as those observations are beyond the scope of
this work we do not consider them in this analysis.

Next, we compare the results for the growth rate between CLASS, Mathematica and the
analytical approximation to the growth equation. In Fig. 7.3 we show the absolute percentage
difference of fσ8(z) between the numerical solution from the evolution equations (7.20) (green
line, denoted “ODE") and the analytical approximation of Eq. (7.53) (denoted “Approx.”) with
respect to the numerical solution from CLASS for c0 = 2 ·10−7. In the right panel we show the same
functions as in the left one, but for c0 = −2 · 10−7. As seen in Fig. 7.3, with the approximation
we have sub-percent agreement between the analytic approximation and the numerical one at late
times. Note however, that neither the analytical solutions in Mathematica (denoted “ODE") nor
the analytical solutions of Eq. (7.53) (denoted “Approx.”) include radiation, neutrinos or baryons,
and hence their range of validity in terms of the wavenumber k is limited to k ≥ keq. Here we only
consider them in order to gain physical insight on the behavior of this model.

In Fig. 7.4 we show the scale-dependence of the growth rate and a comparison with the so-
lution from CLASS. In particular, in the left panel we show the present value of the scale-dependent
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Figure 7.4: Left: The present value of the scale-dependent growth fσ8(k, z = 0) as a function of the
wavenumber k. The dashed black line is the scale independent growth in GR (neglecting radiation,
neutrinos and baryons) given by the solution to Eq. (7.7), the vertical dotted line corresponds
to the scale of equality keq ' 0.073 Ωm,0h

2/Mpc, while the grey region denotes the non-linear
regime [358]. The vertical magenta and orange lines correspond to the effective wavenumber for
SDSS and WiggleZ, while the colored lines correspond to various values of c0. Right: The scale-
dependence of the absolute percent difference of the approximate solution for c0 = 0 (blue line)
and c0 = 2 ·10−7 (blue dashed line) and the Mathematica numerical solution for c0 = 0 (green line)
and c0 = 2 · 10−7 (green dashed line) against the solution from CLASS. In both cases we assumed
Ωm0 = 0.3, w = −0.8, h = 0.67.

growth fσ8(k, z = 0) as a function of the wavenumber k. The dashed black line is the scale indepen-
dent growth in GR (neglecting radiation, neutrinos and baryons) given by the solution to Eq. (7.7),
the vertical dotted line corresponds to the scale of equality keq ' 0.073 Ωm,0h

2/Mpc, while the
grey region denotes the non-linear regime [358]. The vertical magenta and orange lines correspond
to the effective wavenumber for SDSS and WiggleZ of k = 0.1h/Mpc and k = 0.15h/Mpc respec-
tively, while the colored lines correspond to various values of c0. At k ∼ keq (vertical dotted line)
the dashed black and solid black lines agree perfectly, while the deviations at small k are due to
radiation, neutrinos etc included in CLASS.

In the right panel of Fig. 7.4 we show the scale-dependence of the absolute percent difference
of the approximate solution for c0 = 0 (blue line) and c0 = 2 · 10−7 (blue dashed line) and the
Mathematica numerical solution for c0 = 0 (green line) and c0 = 2 · 10−7 (green dashed line)
against the solution from CLASS. As can be seen, especially close to the scales where the data
are, i.e. 0.1 < k (Mpc/h) < 0.15, the agreement is below 1%. At higher k the difference rises
somewhat above 1%, but we then quickly enter the non-linear regime where, as mentioned earlier,
our calculations are not valid.

In Fig. 7.5 we also compare the predictions for the growth index γ as a function of redshift
for c0 = 2 · 10−7 and n = 0.5 for five different cases: γ = 3(w−1)

6w−5 (dashed green line), the analytical
expression when inverting Eq. (7.57) for the wCDM model (solid green line), the analytical ap-
proximation to first order of Eq. (7.61) (dashed blue line), the analytical expression when inverting
Eq. (7.57) with the growth given by Eq. (7.53) for the nonadiabatic model model (dot-dashed blue
line) and the numerical solution of the fluid equation for the nonadiabatic model model (solid blue
line). As can be seen, in all cases the agreement between the exact numerical result (solid blue
line) and the two approximations is on average of the order of a percent.

Finally, in Fig. 7.6 we show the effect of the nonadiabatic pressure perturbation, given by
Eq. (7.27), on the TT CMB spectrum (left) and its low multipoles (right). Overall, the effect is
either to enhance or suppress power on large scales, i.e. small multipoles, with the rest of the TT
spectrum remaining unchanged. Thus, in our MCMC analysis in the next section, we expect the
main constraint from the Planck 18 data to come from the integrate Sachs-Wolfe (ISW) part of
the TT CMB spectrum.
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or suppress power on small multipoles, with the rest of the TT spectrum remaining unchanged. In
both cases we assumed Ωm0 = 0.3, w = −0.8, h = 0.67.

7.4 MCMC results

Here we discuss how MontePython [333,334] was used to place constraints via an MCMC approach
on the parameters of the ansatz for the nonadiabatic pressure perturbation given by Eq. (7.27).
We used the Planck 2018 CMB data and in particular we add the “Planck_highl_TTTEEE",
“Planck_lowl_EE", “Planck_lowl_TT" temperature and polarization likelihoods (collectively called
CMB later on), as well as the CMB lensing “Planck_lensing" likelihood [1].

We also add the BOSS DR-12 data [326], the 6dF BAO points from Ref. [90], the MGS BAO
points from [92] and the Pantheon SnIa compilation of Ref. [88]. Finally, we also include an RSD
likelihood for MontePython, presented here for the first time, based on the “Gold 2018" growth
rate fσ8 compilation given in Table I of Ref. [116]. We discuss the new likelihood in detail in the
Appendix.

As seen in the previous section, the nonadiabatic DE pressure perturbation, as given by
Eq. (7.27), may affect the clustering of objects, by either suppressing or enhancing it. The non-
linear regime in Boltzmann codes like CLASS is taken into account with routines like Halofit [358],
which is calibrated with ΛCDM N-body simulations in order to emulate the effects of non-linearities
on small scales [0.1 < k (Mpc/h) . 10] for a range of ΛCDM parameters. Halofit should not be
expected to work well, if at all, in models that deviate significantly from this scenario. Indeed,
simulations of Warm Dark Matter (WDM) models demonstrate that Halofit overestimates the
power spectrum at small scales [359]. Hence, one should be careful when using Halofit, especially
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when the model under consideration induces scale-dependent corrections to the matter power
spectrum, as in our case here. As a result, we have decided to turn off Halofit in our analysis.

We then ran MCMC chains for the wCDM model and the nonadiabatic model for two
data combinations each: CMB+BAO+SnIa and CMB+BAO+SnIa+RSD in order to assess the
constraining power of the new RSD likelihood. For the wCDM model we ran four chains with
roughly 200,000 points, while for the nonadiabatic model we ran 19 chains with roughly 2,000,000
points in total in order to make sure all the parameters, described below, were well converged.

Specifically, for the MCMC runs of the wCDM model we consider the following parameters:
the DE equation of state parameter w, assuming it is constant, the baryon and cold dark matter
density parameters Ωb,0h

2 and Ωc,0h
2 respectively, the angular scale of the acoustic oscillations

θ, the optical depth to Thomson scattering from reionization τ and the two parameters of the
primordial power spectrum As and ns. In a nutshell, our parameter vector for the wCDM model
is then pwCDM =

(
w,Ωb,0h

2,Ωc,0h
2, θ, As, ns

)
. On the other hand, for the MCMC runs of the

nonadiabatic model, we include the parameters of the wCDM model, along with the two nonadia-
batic parameters c0 and n of Eq. (7.27). Then, our parameter vector for the nonadiabatic model
is pnon-ad =

(
w,Ωb,0h

2,Ωc,0h
2, θ, As, ns, c0, n

)
.

In Fig. 7.7 we show the confidence contours for wCDM using CMB+Lensing+BAO+SnIa
(green contours) and the CMB+Lensing+BAO+SnIa+RSD (blue contours), while in Tables 7.1-
7.2 we present the 68% mean values and 95% confidence regions, for some of the parameters of
the model. As can be seen, the contours are a bit shifted to higher values of σ8,0 and w when the
RSD data included. This is consistent with the well-known tension for σ8 between low and high
redshift probes [120].

Next, in Fig. 7.8 we present the constraints for the nonadiabatic model. In particular we
show the confidence contours using CMB, Lensing, BAO and SnIa (green contours) and the CMB,
Lensing, BAO, SnIa and RSD (blue contours), while in Tables 7.3-7.4 we present the 68% mean
values and 95% confidence regions, for some of the parameters of the model. As can be seen,
the amplitude of the nonadiabatic perturbation c0 is consistent with zero, while n is very close to
n ∼ 1/2 as expected from the toy model based on the f(R) designer model.

7.5 Conclusions

In this Chapter we have explored the effects of a nonadiabatic DE pressure perturbation on the
CMB and LSS. First, we derived the extra contribution of this nonadiabatic component on the
DE perturbation equations, given by the last terms in Eqs. (7.19) and (7.20). Since currently it
is unknown if DE has a nonadiabatic component and, even if it does, the behavior of δ̂Pnad

ρ̄ is
unknown, we took advantage of the effective fluid approach of Refs. [9]- [10] in order to construct
a realistic ansatz.

Param best-fit mean±σ 95% lower 95% upper
ns 0.9622 0.965+0.0039

−0.0041 0.9571 0.973

w −1.024 −1.03+0.033
−0.032 −1.095 −0.9673

Ωm,0 0.3109 0.3058+0.0076
−0.0082 0.2903 0.3215

10+9As 2.086 2.104+0.03
−0.033 2.041 2.169

σ8,0 0.8152 0.8191+0.011
−0.011 0.7973 0.8412

Table 7.1: The best-fit, mean, 1σ errors and 95% confidence limits for the wCDM model
for the data combination CMB+Lensing+BAO+SnIa. In this case the minimum was found
for χ2 = 3810.
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Param best-fit mean±σ 95% lower 95% upper
ns 0.9692 0.9663+0.0039

−0.004 0.9584 0.9742

w −1.005 −1.013+0.029
−0.028 −1.07 −0.9554

Ωm,0 0.3061 0.3064+0.0071
−0.0082 0.2917 0.3217

10+9As 2.112 2.101+0.03
−0.032 2.037 2.164

σ8,0 0.8114 0.8115+0.01
−0.0099 0.7911 0.8314

Table 7.2: The best-fit, mean, 1σ errors and 95% confidence limits for the wCDM model
for the data combination CMB+Lensing+BAO+SnIa+RSD. In this case the minimum was
found for χ2 = 3826.

Param best-fit mean±σ 95% lower 95% upper
ns 0.966 0.9651+0.0038

−0.004 0.9571 0.973

w −0.9978 −1.027+0.033
−0.027 −1.086 −0.9743

10+7c0 −0.3492 −0.2056+0.400
−0.400 −1.000 1.000

n 0.4127 0.5019+0.083
−0.12 0.200 0.800

Ωm,0 0.3083 0.3063+0.0074
−0.0074 0.2914 0.3211

10+9As 2.098 2.104+0.029
−0.032 2.041 2.168

σ8,0 0.8078 0.819+0.01
−0.011 0.7983 0.8402

Table 7.3: The best-fit, mean, 1σ errors and 95% confidence limits for the nonadiabatic
model for the data combination CMB+Lensing+BAO+SnIa. In this case the minimum
was found for χ2 = 3809.

Param best-fit mean±σ 95% lower 95% upper
ns 0.9638 0.9662+0.004

−0.0041 0.9582 0.9742

w −1.023 −1.016+0.031
−0.027 −1.071 −0.9608

10+7c0 −0.08274 0.001678+0.36
−0.28 −0.7133 0.7427

n 0.5417 0.4843+0.12
−0.11 0.200 0.800

Ωm,0 0.3041 0.3059+0.0076
−0.0074 0.291 0.3206

10+9As 2.097 2.099+0.029
−0.031 2.037 2.162

σ8,0 0.8136 0.8122+0.0097
−0.01 0.7925 0.832

Table 7.4: The best-fit, mean, 1σ errors and 95% confidence limits for the nonadiabatic
model for the data combination CMB+Lensing+BAO+SnIa+RSD. In this case the mini-
mum was found for χ2 = 3827.

In particular, using the designer f(R) model, we derived the expected behavior of this
nonadiabatic component both at early and late times, finding that in either era it can be modeled
as a power law. Inspired by this, we then assumed the ansatz given by Eq. (7.27), where from the
f(R) model we expect n ∼ 0.5. We then solved the fluid equations and implemented it into the
Boltzmann code CLASS. Moreover, using an approach similar to that of Ref. [206], we were able to
find analytical approximations to the growth rate of matter perturbations fσ8(z) of better than
0.5% when compared with our numerical implementation in CLASS.

Since we expect the DE perturbations to have an effect, if at all, at late times when they
are growing, we anticipate the nonadiabatic component will affect the CMB only at late times
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andonlargescales.Equivalently,thisimpliesthatitaffectsthelowmultipolesviatheISWeffect
andusingourimplementationinCLASS,weconfirmedthis. Furthermore,availingourselvesof
themodificationsinCLASS,wealsoperformedMCMCanalysesusingthelatestcosmologicaldata.
Here,weusedCMB,BAOandSnIadata,aswellasanewRSDlikelihoodforMontePython,which
wepresentedinthisworkforthefirsttime.Bydoingthisanalysiswefoundthattheparameterc0
isconsistentwithzeroat1σ,whilen∼0.5isinagreementwiththeexpectationfromthedesigner
f(R)model.

Inconclusion,wehaveshownthatanonadiabaticDEpressureperturbationcouldhave
measurableeffectsontheCMBandotherkeycosmologicalobservablessuchasthegrowthrate
ofmatterdensityperturbationsandthematterpowerspectrum. Usingthelatestcosmological
data,includingRSDs,andassumingapower-lawforthenonadiabaticDEcomponentgivenby
Eq.(7.27),weconstraineditsamplitudeandfounditisconsistentwithzeroandGRat1σ.
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8
Analytic expressions for the background evolution

of massive neutrinos and dark matter particles

The original content of this chapter is based on Ref. [360]. We provide exact analytic expressions
for the density, pressure, average number density and pseudo-pressure for massive neutrinos and
generic dark matter particles, both fermions and bosons. We then focus on massive neutrinos and
we compare our analytic expressions with the numerical implementation in the CLASS Boltzmann
code. We find that our modifications including the exact analytic expressions are in agreement to
better than 10−4% with the default CLASS implementation in the estimation of the CMB power
spectrum; our modifications do not have an impact on the performance of the code. We also
provide several specific limits of our expressions at the relativistic regime, but also at late times
for the neutrino equation of state.

8.1 Introduction

Over the past decades Dark Matter (DM) has become a fundamental ingredient in the standard
model of cosmology [361]. Although we know relatively little about its nature, it is clear that
taking into consideration DM when modelling the Universe makes it possible to explain a wide
variety of astrophysical observations [1,154,267,362]. Nowadays, it is commonly believed that DM
comprises beyond Standard Model particles which move slowly with respect to the speed of light
and whose interaction with other particles does not go beyond gravity: the so-called Cold Dark
Matter (CDM). However, in the Standard Model of particle physics there exist candidates with
similar properties which can account for a fraction of the DM in the Universe. Neutrinos weakly
interact with other particles and their speed of propagation is different at late- and early-times
in the cosmic evolution: in the beginning their speed of propagation is very close to the speed of
light and recently they became non-relativistic. This sort of DM is usually dubbed non-Cold Dark
Matter (nCDM).

Even though there is compelling evidence for flavour neutrino oscillations which implies
that neutrinos are massive particles [363–368], current constraints do not fully determine their
absolute mass scale [369–371]. Nevertheless, this situation is expected to change with upcoming
galaxy surveys which will be able to measure the galaxy distribution on scales comparable to the
horizon [372]. Since massive neutrinos suppress power on small scales [373], accurate measurements
of the matter power spectrum will lead to a detection of their absolute mass scale thus reducing
our ignorance of the abundance of DM in the Universe [372,374,375]. Furthermore, measurement
of neutrino masses could give hints about new fundamental theories having the Standard model of
particle physics as a low-energy limit.

Due to their weakly interacting nature, neutrinos obey a collisionless Boltzmann equation.
However, since neutrinos are massive particles the evolution of their phase-space distribution func-
tion is not trivial [185]. In order to find the unperturbed density and pressure for neutrinos current
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implementations in Boltzmann solvers, such as CAMB1 [186] and CLASS2 [376, 377], employ nu-
merical methods. Shortcomings of the numerical approach include non-trivial weighting scheme
to carry out the numerical integration, possible limited precision, increase of computing time, but
more importantly hindering the understanding of the underlying physics. In this Chapter we show
that a careful analytical treatment of the integrals makes it possible to overcome these difficulties.
We provide explicit analytical solutions for the neutrino’s unperturbed density, pressure, number
density, and pseudo-pressure. Our expressions agree with previous phenomenological attempts of
analytical approximations3 and also with the fully numerical implementation of the code CLASS. We
have implemented our solutions in CLASS and verified that the fully numerical approach (current
implementation in CLASS) and the fully analytical approach are in very good agreement. These
changes in the code leave precision and computing time unchanged.

This Chapter is organized as follows. Firstly, in Section 8.2 we derive our main results,
namely, analytical expressions for the background evolution of massive fermions and bosons that
are either relativistic or non-relativistic at decoupling. Secondly, in order to compare with previous
phenomenological attempts of analytical approximations we provide asymptotic expansions at late
times for the quantities governing the neutrino background evolution in Section 8.3. Thirdly, in
Section 8.4 we implement our analytical expressions for massive neutrinos in the code CLASS and
compare with the current numerical implementation in the code. Finally, we conclude in Section
8.5.

8.2 Theoretical framework

In this section we will derive simple analytic expressions for several key quantities that are relevant
for the background evolution of massive particles, such as the average number density n(a), the
density ρ(a) and pressure P (a) of a particle given its phase-space distribution. For the implementa-
tion in Boltzmann codes, it is also useful to calculate the derivative of the so-called pseudo-pressure,
which we denote by psP (a). All of these quantities are given by the following expressions:4

n(a) =

∫
d3pf0(p), (8.1)

ρ(a) =

∫
d3pE(p)f0(p), (8.2)

P (a) =

∫
d3p

p2

3E(p)
f0(p), (8.3)

psP (a) =

∫
d3p

p4

3E(p)3
f0(p), (8.4)

where p is the physical momentum of the particles, a is the scale factor, E is the energy, while the
distribution f0(p) is given by

f0(p) =
gs

e
E(p)
T ± 1

, (8.5)

where gs is the degeneracy of the species, T is the temperature of the particles and the ± corre-
sponds to fermions/bosons respectively.5

As the Universe expands and cools down, the temperature will reach the decoupling tem-
perature TD and all interactions will freeze out, so that the phase space distribution of Eq. (8.5)

1https://camb.info/
2http://class-code.net/
3See, for instance, Ref. [287].
4Note that here and in what follows, we will use natural units in which c = ~ = kB = 1.
5We ignore the chemical potential µ in our analysis as in all realistic particles, it is much smaller than

the temperature. Moreover, current bounds on the common value of the neutrino degeneracy parameter
indicate that a neutrino chemical potential can be safely neglected [378–385].
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of a particle with mass M will remain frozen [368,386]

f0(p) = feq

(
p
a(η)

a(ηD)
, TD

)
=

gs

e

√
p2a2/a2

D
+M2

TD
+1

. (8.6)

Here η is the conformal time, feq is the distribution at thermal equilibrium, the subscript D
denotes decoupling, aD ≡ a(ηD), and a ≡ a(η). Thus, we will consider two separate cases for the
distribution f0(p) at the decoupling temperature TD:

1. The particles are relativistic, with energy E(p) ∼ p;

2. The particles are non-relativistic, with energy E(p) =
√
p2 +M2.

Note that this will only affect the distribution f0(p) and not the energy in the integrand, which
can be allowed to be time-dependent. Following, we will present the analytical expressions for the
thermodynamic quantities for both fermions and bosons that are relativistic and non-relativistic
in Section 8.2.1 and Section 8.2.2 respectively.

8.2.1 Relativistic fermions and bosons at decoupling

In this section we are mainly interested in massive neutrinos and we will specifically focus on them,
but our results are readily applicable to other massive relics that are relativistic at decoupling.
Neutrino decoupling happened at TD ∼ 1MeV or z ∼ 1010, so at that point neutrinos are still
relativistic and their distribution can be written as

f0(p) =
gs

e
p

Tν (a) + 1
. (8.7)

Taking into account the expansion of the Universe, we see that the physical momentum p will
be redshifted and can be written in terms of the comoving momentum Q as p = Q/a, where
a = 1

1+z is the scale factor and z is the redshift. After neutrino decoupling the temperature

scales as Tν(a) = Tν,0/a and Tν,0 '
(

4
11

)1/3
Tcmb is the neutrino temperature today with a value

Tν,0 ∼ 1.68 · 10−4 eV. Therefore, the combination Q/Tν,0 will be constant and does not depend on
the redshift, thus the distribution is frozen.

Defining Tν,0 as Tν,0 = T̃ , the previous equations for the evolution variables can be written
as

n(a) =
4πgs
a3

∫ ∞
0

dQ Q2 1

e
Q

T̃ + 1
, (8.8)

ρ(a) =
4πgs
a4

∫ ∞
0

dQ Q2

(
Q2 + a2M2

)1/2
e
Q

T̃ + 1
, (8.9)

P (a) =
4πgs
3a4

∫ ∞
0

dQ Q4

(
Q2 + a2M2

)−1/2

e
Q

T̃ + 1
, (8.10)

psP (a) =
4πgs
3a4

∫ ∞
0

dQ Q6

(
Q2 + a2M2

)−3/2

e
Q

T̃ + 1
, (8.11)

In the previous equations all the integrals are of the form

In,k ≡
∫ ∞

0

dQ Qn
(
Q2 + a2M2

)k/2
e
Q

T̃ + 1
, (8.12)

where (n, k) are integers. In order to calculate In,k analytically, we multiply the numerator and
denominator with the term e

−Q
T̃ and then we use the expansion x

1+x =
∑∞
β=1(−1)β+1xβ for x ≤ 1,
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which in our case is possible as e
−Q
T̃ ≤ 1 for all Q ∈ [0,∞), thus our series will always converge.

Then, we have

In,k =

∫ ∞
0

dQ Qn
e
−Q
T̃

(
Q2 + a2M2

)k/2
e
−Q
T̃ + 1

=
∞∑
β=1

(−1)β+1

∫ ∞
0

dQ Qn
(
Q2 + a2M2

)k/2
e
−βQ
T̃ . (8.13)

To solve the previous integral we use Eq. (3.389.2) from Ref. [387]∫ ∞
0

z2ν−1
(
u2 + z2

)α−1
e−µzdz =

u2ν+2α−2

2
√
πΓ(1− α)

G3,1
1,3

(
1− ν

1− α− ν, 0, 1
2

∣∣∣∣µ2u2

4

)
, (8.14)

where Re µ > 0, Re ν > 0, |argu < π
2 | and Gm,np,q

(
a1, . . . , an an+1, . . . , ap
b1, . . . , bm bm+1, . . . , bq

∣∣∣∣z) is the Meijer-G

function. With this expression we find that

In,k =

∞∑
i=1

(−1)i+1 (aM)1+k+n

2
√
πΓ(−k/2)

G3,1
1,3

(
1−n

2
− 1

2 (1 + k + n), 0, 1
2

∣∣∣∣x2
i

4

)
, (8.15)

where for convenience we have set xi = iaM

T̃
. Next we will provide the explicit expressions for each

of the key background quantities mentioned earlier.

Average number density

The average number density n(a) corresponds to the parameters (n, k) = (2, 0), so combining
Eqs. (8.8) and (8.15) gives the well known result:

n(a) =
6πgsζ(3)

a3
T̃ 3. (8.16)

The density

The density corresponds to the parameters (n, k) = (2, 1) and the final result can be found to be

ρ(a) = gsM
4
∞∑
i=1

(−1)
i
G3,1

1,3

(
− 1

2
−2, 0, 1

2

∣∣∣∣x2
i

4

)

= 2π2gsM
4
∞∑
i=1

(−1)
i 1

x3
i

(
− 2

π
x2
i + 3xiK0(xi) +

(
x2
i − 6

)
K1(xi)

)
, (8.17)

where Kν(x) = Hν(x)− Yν(x) is the Struve K function, Hν(x) is the Struve H function and Yν(x)
the usual Bessel Y function of the second kind [388]. In the relativistic limit, where M = 0, we
find

ρ(a) =
7π5gs
30a4

T̃ 4. (8.18)

The derivative dρ
dM (a), which is also useful in calculations in Boltzmann solvers, corresponds to

(n, k) = (2,−1) and is given by

dρ(a)

dM
= 2gsM

3
∞∑
i=1

(−1)
i+1

G3,1
1,3

(
− 1

2
−1, 0, 1

2

∣∣∣∣x2
i

4

)
,

= 2π2gsM
3
∞∑
i=1

(−1)
i 1

xi
[xiK0(xi)−K1(xi)] . (8.19)
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Pressure

The pressure corresponds to the set of parameters (n, k) = (4,−1) and as a result we have

P (a) =
2gsM

4

3

∞∑
i=1

(−1)
i+1

G3,1
1,3

(
− 3

2
−2, 0, 1

2

∣∣∣∣x2
i

4

)
,

=
2gsπ

2M4

3

∞∑
i=1

(−1)
i (3− x2

i )

x3
i

(
− 2x2

i

(3− x2
i )π

+ xi K0(xi)− 2K1(xi)

)
. (8.20)

In the relativistic limit, where M = 0, we find

P (a) =
7π5gs
90a4

T̃ 4 =
ρ(a)

3
, (8.21)

as expected for relativistic particles.

Pseudo pressure

The pseudo-pressure corresponds to the set of parameters (n, k) = (6,−3)

psP (a) =
4gsM

4

3

∞∑
i=1

(−1)
i+1

G3,1
1,3

(
− 5

2
−2, 0, 1

2

∣∣∣∣x2
i

4

)
,

=
2π2gsM

4

3

∞∑
i=1

(−1)
i 1

x3
i

(
− 2

π
(x2
i + x4

i )− 3xi(x
2
i − 1)K0(xi) + (x4

i + 3x2
i − 6)K1(xi)

)
.

(8.22)

In the relativistic limit, where M = 0, we find

psP (a) =
7π5gs
90a4

T̃ 4 ≡ P (a) =
ρ(a)

3
. (8.23)

Results for massive bosons

In the case of bosons, the analytical expressions for the background are very similar to the ones
found for fermions. The only difference is the factor (−1)i that appears in the sum which has to
be replaced by (−1). Hence, the density and pressure are

ρ(a) = 2π2gsM
4
∞∑
i=1

1

x3
i

(
2

π
x2
i − 3xiK0(xi)−

(
x2
i − 6

)
K1(xi)

)
, (8.24)

P (a) =
2π2gsM

4

3

∞∑
i=1

(3− x2
i )

x3
i

(
2x2

i

(3− x2
i )π
− xi K0(xi) + 2K1(xi)

)
, (8.25)

and for the average number density we obtain the well known result

n(a) =
8πgs
a3

T̃ 3. (8.26)

In the relativistic limit where M = 0, we find

P (a) =
4π5

45a4
gsT̃

4 =
ρ(a)

3
. (8.27)
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Free-streaming length

Similarly, we can also calculate the free-streaming length, i.e., the typical distance particles travel
between interactions, which is defined via [389,390]:

kFT (t) =

(
4πGρ̄(t)a(t)2

v2
th(t)

)1/2

, (8.28)

λFT (t) = 2π
a(t)

kFT (t)
= 2π

√
2

3

vth
H(t)

, (8.29)

where vth ≡ 〈p〉m is the thermal velocity and 〈p〉 the average particle momentum. After the particles
become non-relativistic we can calculate the average momentum, by using the results in the previous
sections for non-relativistic massive particles, as follows

〈p〉 =

∫
d3p p f0(p)∫
d3p f0(p)

(8.30)

=
7π4

180ζ(3)
Tν(a) (8.31)

' 3.15137
Tν,0
a
. (8.32)

Finally, we have that the free-streaming length is

λFT (t) = 2π

√
2

3

7π4

180ζ(3)

Tν,0
maH

' 8.14996
1

aH(t)/H0

(
eV
m

)
h−1Mpc, (8.33)

which is in good agreement with the result of Ref. [389,390].

8.2.2 Non-relativistic fermions and bosons at decoupling

When we have massive fermions that are non-relativistic at decoupling (MX � TD) their distri-
bution function after the freeze out or decoupling can be written as [386]

fX(p) = feq

(
p
a(η)

a(ηD)
, TD

)
=

gs

e

√
p2a2/a2

D
+M2

TD
+1

, (8.34)

where the subscript D denotes decoupling and aD ≡ a(ηD), a ≡ a(η). Defining T̃ = T0, the
comoving momentum Q as p = Q/a and the temperature parameter T0 ≡ Ta ≡ TDaD, following
a similar approach as in Section 8.2.1 we can compute the average number density, the energy
density and pressure as

n(a) =
4πgs
a3

∫ ∞
0

dQ Q2 1

e

√
Q2+a2

D
M2

T̃ + 1

, (8.35)

ρ(a) =
4πgs
a4

∫ ∞
0

dQ Q2

(
Q2 + a2M2

)1/2
e

√
Q2+a2

D
M2

T̃ + 1

, (8.36)

P (a) =
4πgs
3a4

∫ ∞
0

dQ Q4

(
Q2 + a2M2

)−1/2

e

√
Q2+a2

D
M2

T̃ + 1

. (8.37)
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Average number density

To solve Eq. (8.35) we first perform a change of variables to hyperbolic functions. Then, using
Eq. (3.547.2) from Ref. [387] we find

n(a) =
4π

a3
gsa

3
DM

3
∞∑
i=1

(−1)
i+1 K2(yi)

yi
, (8.38)

where Kn(z) is the modified Bessel function of the second kind and yi = iaDM
T̃

.

The density

Using Eq. (7.6.1) from Ref. [391] we find after some algebraic manipulations that the density can
be written as

ρ(a) =
4πgs
a4

∞∑
n=0

∞∑
i=1

(−1)
i+n Γ (n− 1/2) Γ (n+ 3/2)

πΓ (n+ 1)

2nan+2
D M3−nT̃n+1

a2n−1in+1
Kn+2 (yi) , (8.39)

where Kn(z) is the modified Bessel function of the second kind and yi = iaDM
T̃

.

The pressure

Following the same procedure as with the density, we find that the pressure can be written as

P (a) =
4πgs
3a4

∞∑
n=0

∞∑
i=1

(−1)
i+1 Γ (n+ 5/2)

Γ (1/2− n) Γ (n+ 1)

aDM

(aM)
2n+1

(
2aDMT̃

i

)n+2

Kn+3 (yi) , (8.40)

where again Kn(z) is the modified Bessel function of the second kind and yi = iaDM
T̃

.

Numerical results

We compared the analytical expressions for the average number density, density and pressure
Eqs. (8.38)-(8.40), with the numerical integration of Eqs. (8.35)-(8.37) for some realistic values of
WIMP particles like neutralinos [392, 393] zD ∼ 1013,mX ∼ 25GeV, TD ∼ 1GeV and found that
the agreement is better than 10−18% for only 4 iterations.

Results for massive bosons

In the case of bosons, the analytical expressions for the background are very similar to the ones
found for fermions, the only difference being the factor (−1)i+1 that appears in the sum which has
to be replaced by 1. Hence

n(a) =
4π

a3
gsa

3
DM

3
∞∑
i=1

K2(yi)

yi
, (8.41)

ρ(a) =
4πgs
a4

∞∑
n=0

∞∑
i=1

(−1)
n+1

Γ (n− 1/2) Γ (n+ 3/2)

πΓ (n+ 1)

2nan+2
D M3−nT̃n+1

a2n−1in+1
Kn+2 (yi) , (8.42)

P (a) =
4πgs
3a4

∞∑
n=0

∞∑
i=1

Γ (n+ 5/2)

Γ (1/2− n) Γ (n+ 1)

aDM

(aM)
2n+1

(
2aDMT̃

i

)n+2

Kn+3 (yi) .

(8.43)
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In the non relativistic limit MX � TD, we can find semi-analytical expressions valid for
fermions and bosons for the average number density (8.35), density (8.36) and pressure (8.37) in
the following way

n(a) =
4πgs
a3

e−M/TD

∫ ∞
0

dQ Q2e
− Q2

2Ma2
D
TD =

(aD
a

)3

(2πgsMTD)
3/2

e−M/TD , (8.44)

ρ(a) =
4πgs
a4

e−M/TD

∫ ∞
0

dQ Q2
(
Q2 + a2M2

)1/2
e
− Q2

2Ma2
D
TD

= 2πgs

(aD
a

)2

M3TDe
β−M/TDK1(z), (8.45)

P (a) =
4πgs
3a4

e−M/TD

∫ ∞
0

dQ
Q4e

− Q2

2Ma2
D
TD

(Q2 + a2M2)
1/2

=
πgsM

3eβ−M/TD

3

[
MK0(z) + (2

(aD
a

)2

TD −M)K1(z)

]
, (8.46)

where we have to consider the series expansion
√
Q2 + a2

DM
2 ∼ aDM + Q2

2aDM
+ O(Q)4 in the

exponential and also assume that e

√
Q2+a2

D
M2

T̃ � 1. Again Kn(β) is the modified Bessel function
of the second kind and β = a2M

4a2
DTD

.

8.3 Asymptotic expansions at late times

The Struve K function Kν(z) is a particular solution of the inhomogeneous Bessel differential
equation

d2w

dz2
+

1

z

dw

dz
+

(
1− ν2

z2

)
w =

(z/2)
ν−1

√
πΓ
(
ν + 1

2

) (8.47)

and it admits the following asymptotic expansion for large values of the argument z with fixed
ν [388]:

Kν(z) ∼ 1

π

∞∑
k=0

Γ(k + 1
2 )

Γ(ν + 1
2 − k)

(z
2

)ν−2k−1

, (8.48)

which can be used to obtain asymptotic expansions for the quantities in the previous section.
Specifically, we find

ρ(a) =
6πgsT̃

3M

a3

(
ζ(3) +

15T̃ 2ζ(5)

2a2M2
· · ·

)
, (8.49)

dρ(a)

dM
=

6πgsT̃
3

a3

(
ζ(3)− 15T̃ 2ζ(5)

2a2M2
· · ·

)
, (8.50)

P (a) =
30πgsT̃

5

Ma5

(
ζ(5)− 63T̃ 2ζ(7)

32a2M2
· · ·

)
, (8.51)

psP (a) =
945πgsT̃

7

M3a7

(
ζ(7)− 85T̃ 2ζ(9)

a2M2
· · ·

)
. (8.52)

Keeping the zero-order terms for the density and the pressure gives an approximation at late times
for the equation of state w ≡ P

ρ as

w(a) =
5ζ(5)

ζ(3)

T̃ 2

M2
a−2, (8.53)
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Figure 8.1: The percent difference of the implementation in the CEPHES library vs. the arbitrary
precision code of Mathematica for K0(x) (solid black line) and K1(x) (dashed black line) for
x ∈ [10−3, 106].

which is accurate to a few percent at late times z < 10. This expression is also in excellent
agreement with the ansatz of Ref. [287] that at late times the equation of state scales as w(a) ∼
1/a2. Moreover, Eq. (8.53) also provides us with the exact numerical coefficient 5ζ(5)

ζ(3)
T̃ 2

M2 .

8.4 Numerical results and implementation in CLASS

Here we present numerical comparisons between our analytic results for massive neutrinos, see
Sec. 8.2.1, and numerical calculations of the quantities based on double precision calculations from
CLASS, arbitrary precision calculations in Mathematica and the CEPHES library6 that we used to
implement the Struve K functions in C.

A lower limit on the neutrino mass of approximately mν ∼ 0.06eV is settled by the existence
of three-flavour oscillations (Refs. [365–367]), independently of their nature (Dirac or Majorana)
and this is the value that we will use in what follows.

First, we compare the implementation of the Struve K functions in CEPHES with Math-
ematica’s arbitrary precision calculations. The results of this comparison are shown in Fig. 8.1,
where we present the percent difference of the implementation in the CEPHES library vs. the arbi-
trary precision code of Mathematica for K0(x) (solid black line) and K1(x) (dashed black line) for
x ∈ [10−3, 106]. We find that in both cases, on average the agreement between the two codes is on
the order of ∼ 10−12% for both functions, thus we are confident in our numerical implementation
in what follows.

Next, we compare our numerical implementation of the analytical expressions for the neu-
trino density and pressure given by Eqs. (8.17) and (8.20), with the numerical integration done in
CLASS. For this comparison we assumed no relativistic species and only 1 massive neutrino of mass
mν = 0.06 eV, while keeping all other parameters in CLASS in their default values. The results of
the comparison are shown in Fig. 8.2, where we present the percent difference between the default
version of CLASS and our analytical expressions for the density (left) and the pressure (right) for
10, 50 and 100 terms (black, green and blue lines) of the analytical expressions given by Eqs. (8.17)
and (8.20). We find that keeping 50 terms in the expansion yields an accuracy of 10−4% on average
for the density and pressure, without affecting the computational performance.

Then we also compare the results of the CMB power spectrum for our implementation and
that of the default version of CLASS. The results of the comparison are shown in Fig. 8.3, where

6https://www.netlib.org/cephes/index.html
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Figure 8.2: The percent difference between the default version of CLASS and our analytical expres-
sions for the density (left) and the pressure (right) for 10, 50 and 100 terms (black, green and blue
lines). We find that keeping 50 terms in the expansion yields an accuracy of 10−4% on average for
the density and pressure, without affecting the performance of the code.
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Figure 8.3: The percent difference in the CMB power spectrum for 10 terms in the expansion
(black line), 50 terms (green line) and 100 iterations (blue line). We find that keeping 50 terms in
the expansion yields an accuracy of 10−4% on average for the CMB spectrum, without having an
impact on the performance of the code. We have smoothed the data a bit to remove the oscillatory
behavior at high multipoles, but this does not affect our conclusions.

we present the percent difference in the CMB power spectrum for 10 terms in the expansion (black
line), 50 terms (green line) and 100 iterations (blue line). We find that keeping 50 terms in the
expansion yields an accuracy of 10−4% on average for the CTT` of the CMB spectrum, without
having an impact on the performance of the code.

We also test the approximation for the equation of state w(z) of the neutrinos at late times,
given by Eq. (8.53). The comparison for one massive neutrino of mass mν = 0.06 eV is shown
in Fig. 8.4, where we present the percent difference in the equation of state w(a) between the
numerical results (solid black line) and the approximation of Eq. (8.53) (dashed line), for which
w(a) ∼ a−2. As can be seen in the inset plot, at late times (z < 10) the agreement is better that
1%, thus validating the ansatz of Ref. [287]. Finally, we have also checked and confirmed that
using a slightly larger neutrino mass, such as mν = 0.15− 0.30 eV, does not affect the precision of
our comparison with CLASS.
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Figure 8.4: The percent difference in the equation of state w(a) between the numerical results
and the approximation of w(a) ∼ a−2 given by Eq. (8.53), for which at late times (z < 10), the
agreement is better that 1%.

8.5 Conclusions

In this Chapter we presented simple but exact analytical expressions for the background evolution
of the density ρ(a), the pressure P (a) and the average number density n(a) for massive particles,
both fermions and bosons. In both cases we considered the case when the particles are either
relativistic or non-relativistic at the time of decoupling. We find that for non-relativistic massive
particles the expressions are somewhat more cumbersome due to the presence of a double sum
but in principle these results could be useful in future studies of dark matter candidates, such as
WIMPs or any of the hypothetical superpartners of the leptons (sneutrino, etc.).

We also specifically tested our expressions, given by Eqs. (8.17) and (8.20) for the density
and pressure respectively, in the case of massive neutrinos that are still relativistic at decoupling
(z ∼ 1010), assuming one neutrino with mass of mν = 0.06 eV. We implemented our analytical
expressions in the Boltzmann code CLASS and found that by keeping 50 terms in the sum, e.g., in
Eqs. (8.17) and (8.20), it is possible to achieve better than 10−4% accuracy with respect to the
default implementation in CLASS. Our modifications in the code do not have an impact in the com-
putational performance and avoid the involved quadrature integration scheme at the background
level. Our analytical expressions provide validation for the current numerical implementations
in public Boltzmann codes. By comparing CMB angular power spectra, we find the agreement
between our analytical approach and the current numerical implementation is better than 10−4%.

The main advantage of our approach is that our expressions are both exact and analytic,
thus they can also provide useful intuition about the behavior of the background quantities for
massive particles and how they affect the CMB. Moreover, our analytical expressions allow us to
compute quantities such as the entropy density s = (ρ+ P ) /T or the conserved number Y = n/s.
For instance, it is possible to derive the exact behavior of the neutrino equation of state w(a) at
late times (z < 10) and show it behaves as w ∼ a−2 to better than 1%, in agreement with the
ansatz of Ref. [287], thus demonstrating how fast massive neutrinos can become non-relativistic.
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Motivation: What can Machine Learning tell us
about the background expansion and large scale

structure of the Universe?

That there exists rules to be checked at all is some sort of miracle.
Richard Feynman

Cosmology has now reached a level of precision allowing it to become a complementary
probe of particle and fundamental physics. Observations of current and future surveys such as
LSST [394], DES [154], eBOSS [395], J-PAS [396], DESI [397], SKA [398] and 21-cm data [399]
will allow us to probe the whole epoch from recombination to now and provide a vast amount of
data for a broad span of redshifts with hundreds of thousands of supernovas type Ia, along with
millions of galaxies and quasars. Clearly, the acquisition of such vast amounts of data means that
traditional statistical inference is impractical, as the dimensionality of the data will also increase
exponentially, a phenomenon known as ‘curse of dimensionality” [400]. This makes it an excellent
testing ground for Machine Learning (ML) methods as the latter are ideal in cases where traditional
fitting methods give poor results or completely fail, such as in the case of big data, but also when
the parameter space is very large, too complex or not well enough understood, as is the case of
Dark Energy (DE). Let us recall that ML is a subset of artificial intelligence that aims to build
mathematica models that describe a given set of data. It can also be defined as the study of
computer algorithms that improve automatically through experience and by the use of data 1. ML
approaches have been proven to be successful at processing and extracting essential information
from large amounts of data and can get rid of the problem of model bias [401], while also being
very effective in testing the consistency of the dataset model independently and also for searching
tensions or systematics. As a result, machine learning will play a big role in testing accurately the
standard model of cosmology, but will also help in the search for new physics and tensions in the
data by placing tighter constraints on cosmological parameters [402–404].

As we discussed in Chapter 1, the standard cosmological model is at the moment the best
candidate to explain the accelerated expansion of the Universe as it is in excellent agreement with
all of the current data [1]. However, there is a plethora of other models as well, many of which
are included in the pipelines of upcoming surveys, such as Euclid [405]. These models range from
canonical scalar fields [166, 406, 407], scalar fields with a generalized kinetic terms [167, 408] or a
nonminimal couplings [409–411] in addition to general relativity (GR), coupled DE models [412],
modifications of the Einstein-Hilbert action [413], the Chaplygin gas [414] or extra dimensions [415].
For further reviews see [197–200,276,349,405,416].

This huge landscape of DE models makes the interpretation of the cosmological observations
difficult as the results, e.g. the value of the matter content of the Universe Ωm0, depend on the
particular model chosen. For example, the Planck mission provides an accurate value for the

1see https://en.wikipedia.org/wiki/Machine_learning
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matter density parameter today Ωm0 = 0.315± 0.007, see Ref. [1], however this value is specific to
the ΛCDM model as it was obtained assuming the ΛCDM model, hence is model dependent. To
remove biases due to choosing an a priori defined model, it is important to use machine learning
reconstruction techniques and model independent approaches, see for example [168]. These offer
several advantages of traditional fitting and reconstruction methods.

First, the results derived from model independent methods are general, reflecting the under-
lying physics in an unbiased way as described by the data themselves. The results do not depend
on our prior choices and assumptions for what the underlying theory might be. A key example
is the reconstruction of the luminosity distance of the Type Ia supernovae, see [417], where no
assumptions were made regarding the curvature of the Universe or by imposing an underlying
model for DE. Still, the reconstruction can describe the data equally well or even better than the
cosmological model and without any free parameters. This method can be applied to other data,
not only related to the expansion of the Universe, but also its matter perturbations that cause
the large scale structure, thus a main goal of this thesis is to combine all the possible available
cosmological observations to provide unbiased results for the key parameters that describe the
Universe.

Secondly, while a central goal of modern ML research is to learn and extract important
features directly from data [418], ML methods have also been applied to reconstruct null tests of
ΛCDM, i.e. quantities that are supposed to be exactly constant for all redshifts [168, 419–424].
Some of these algorithms have been applied to tests that are model independent, i.e. a function
that only depends on observed quantities and does not rely on the model. These null tests are
useful to check for possible tensions or systematics in the data, or could hint towards new physics.
Some of the advantages are that any deviations at any redshift from the expected value imply the
failure of any assumptions made [425]. Null tests have been already applied for the concordance
ΛCDM model [168,426,427], interacting DE models [428], the growth-rate data [404,425,429], the
cosmic curvature [424,430–432], to probe the scale-independence of the growth of structure in the
linear regime [339] and the homogeneity of the Universe [433].

A third advantage of ML algorithms is that they can capture features of whole classes of
theories, without the need to limit the analysis on a specific model, allowing to discriminate among
the plethora of Modified Gravity (MG) theories and search for hints of new physics. In MG models
it is well known that Newton’s constant is time and scale dependent. This means that in order
to constrain its evolution we have to use a specific model, for example the f(R) theories presented
in Chapter 4. However, using machine learning methods, it is possible to constrain it successfully
and even identify deviations from GR, see Ref. [417]. In this regard one could also find constraints
on the Etherington relation, that is a relation between the angular diameter distance and the
luminosity distance that holds for any metric theory of gravity when the number of photons is
conserved. Any deviations from the expected value can be due to either new physics or couplings
of the photons to the axions. As we will see in the subsequent Chapters these algorithms may
provide hints to yet undiscovered physics and are ideal for poorly understood phenomena like dark
energy or modifications of gravity.

Finally, ML has already lead to many contributions in cosmology [401]. ML methods have
been used to reduce the scatter in cluster mass estimates [434], to distinguish between standard and
modified gravity theories from statistically similar weak lensing maps [260], and have been found to
be useful for the next generation CMB experiments [435], N-body simulations [436], cosmological
parameters inference [437], dark energy model comparison [438], supernova classification [439]
and strong lensing probes [440]. In the context of GW physics, ML can be a useful tool since
it can tackle challenges that upcoming GW astronomy is fronting [441, 442] such as a fast and
systematic method to characterize properly the signal and the detector, accurate reconstructions
of GW signals and a correct estimate of their statistical and systematic errors, and can help to
improve and be more sensitive to different searching techniques such as matched-filtering [443],
cross-correlation methods [444] and time-coincident detection of coherent excess power between
several detectors [445]. ML algorithms have been used to improve the sensitivity of ground-based
GW detectors, to reduce and characterize non-astrophysical detector noise and also it has been
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applied for fast determinations of parameter estimation [446, 447]. See Ref. [448] for a review on
several ML methods. ML is able to process GW signals on real-time, for example the algorithm
named Deep Filtering [449] based on neural networks has been created for parameter estimation,
reaching a similar performance compared to matched-filtering but faster. In the last few years ML
techniques have also been applied with success for glitch classification [450], earthquake prediction
[451] and to supplement existing Bayesian methods [452]. It is worth also mentioning the recent
progress of neural networks in producing in a fast manner one and two dimensional marginalised
Bayesian posteriors [453] for GW parameter estimation, showing how ML can give results very
similar to Bayesian statistics [454]. Neural Networks (NN) have been also tested on open data, for
example in Ref. [455] the authors searched for a gravitational wave signal from an isolated neutron
star from a remnant of GW170817. NN were applied as well in continuous gravitational waves
from unknown spinning neutron stars [456] and for gravitational-wave transients associated with
gamma-ray bursts [457]. Other applications, general reports and reviews for the use of GW data
analysis with ML can be found in Refs. [402,458–463].

In what follows, see Chapter 10, we will describe a particular class of ML methods, the
Genetic Algorithms (GA), which specialize in unsupervised symbolic regression of data and we
use them to perform our analysis. This means that the GA can reconstruct an analytic function
that describes the data, using one or more variables. One of the advantages of the GA against
other symbolic regression methods, such as Neural Networks, is that the GA provides analytical
functions that describe the data provided. Then, in the coming Chapters (11-18) we present a
unified ML analysis of all the currently available cosmological data in order to reconstruct several
key background and perturbations variables in a model-independent manner in order to explore
the nature of DE.
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10
The Genetic Algorithms

10.0.1 Mathematical formalism

In this Section we will now discuss the theoretical background and the particular implementation
of the Genetic Algorithms (GA) used in our analysis. The GA are a particular class of stochastic
optimization ML methods that specialize in unsupervised symbolic regression of data by recon-
structing analytically, using one or more variables, a function that describes the data. This is
achieved by mimicking the theory of evolution via the notion of natural selection, as expressed by
the genetic operations of mutation and crossover. In a nutshell, a set of test functions evolves over
long periods of time under the influence of the stochastic operators of crossover, i.e. the joining of
two individuals to make an offspring, and mutation, i.e. a random alteration of an individual.

Mathematically, these operations can be described via an example as follows. Assuming we
have two functions f1(x) = 1+x+x2 and f2(x) = sin(x)+cos(x), then the mutation operation will
stochastically, i.e. randomly, modify the coefficients, the exponents but also the various functions
present in the expressions. For example, after the mutation operation is applied the functions
might be changed to f1(x) = 1 + 2x + x2 and f2(x) = sin(x2) + cos(x), where in the first case
the coefficient of the second term changed from one to two and in the second case, x = x1 was
changed to x2. On the other hand the crossover operation randomly combines the two functions
to produce two more, e.g. in the aforementioned example the GA might combine the terms 1 + 2x
from f1 and cos(x) to make f̃1(x) = 1 + 2x + cos(x), while the remaining parts will combine to
f̃2(x) = x2 + sin(x2).

As the GA is a stochastic approach by nature, the probability that a population of functions
will produce offspring is frequently assumed to be proportional to its fitness to the data, this being
a χ2 statistic in our whole analysis. Specifically, we choose the N best-fitting functions, where
N = sel × pop, sel is the selection percentage (usually sel ∼ 10%) and pop is the population
size (usually pop = 100), so that the mutation and crossover stochastic operators are applied to
these chosen functions. The stochastic nature of the mutation operator in this case means that a
function is changed randomly, with the various coefficients and exponents drawn from a uniform
random distribution X ∼ U(−9, 9), while the crossover is applied upon two uniform randomly
chosen functions, from the whole set of best-fitting GA functions. For example, if there are 10
best-fitting GA functions, the GA will randomly choose for the crossover two out of the ten and
proceed to apply the crossover operation as described in the previous paragraph. This is done
by choosing a uniformly distributed random number in the range between one and the length of
the expression, such that the two functions can be intermixed. Finally, the mutation will also
be applied randomly, as described before, only if a uniformly random drawn number X ∼ U [0, 1]
does not exceed the mutation rate, typically set to 0.3. For further details on the GA and some
applications to cosmology see Refs. [169,464].

The reconstruction procedure then proceeds as follows, see also Fig. 10.1 for a flowchart
of the list of steps of a usual GA. First, we select a set of analytic functions, commonly called
the “grammar”, with which we set up the first generation. In this first step we also impose any
necessary priors dictated either by physical or mathematical reasons. For example, we may impose
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Table 10.1: The grammars used in the GA analysis, which include polynomials, expo-
nentials, fractions, constants, trigonometric functions, logarithms etc. More complicated
forms are automatically created by the mutation and crossover operations as described in
the text.

Grammar type functions
Polynomials c, x, 1 + x
Fractions x

1+x

Trigonometric sin(x), cos(x), tan(x)
Exponentials ex, xx, (1 + x)1+x

Logarithms log(x), log(1 + x)

that the value of the luminosity distance at z = 0 is zero, i.e. dL(z = 0) = 0 or that the Hubble
parameter today is H(z = 0) = H0. Hence, we make no assumptions on the curvature of the
Universe or on any modified gravity model.

Note that we do not only use grammars including simple polynomials, but we also include
several other functions, see Table 10.1 for a complete list. More complicated forms like ef(z) and
f(z)g(z) are then automatically created by the mutation and crossover operations as described
earlier. Also, it should be stressed that the choice of the grammar and the population size has
already been tested in Ref. [464]1. Similarly, the seed numbers are also crucial as they are used to
create the initial population of functions used later on by the GA. This is clearly analogous to the
initialization of weights in a neural network.

After we have constructed this initial population of functions, the fitness of each member is
determined by a χ2 statistic using the data and the best-fitting functions in every generation are
selected via a tournament selection, see Ref. [464] for more details. Afterwards, the two stochastic
operations of the mutation and the crossover are consecutively applied and the whole process is
repeated several thousands of times so as to ensure convergence. In an analogy to traditional
Monte Carlo approaches, we also reran the GA with a plethora of different random seeds, so as to
explore the functional space.

10.0.2 Error analysis

After the GA has converged, the final output is a set of differentiable and continuous functions
of the redshift z. In order to obtain an estimate of the errors in the reconstructed functions we
follow the path integral approach of Refs. [169, 417]. We approximate the errors using the path
integral approach expanded, for a limited set of functions, around the best fit GA. Whilst this may
not be representative of the true errors, we find they agree well with Fisher matrix and bootstrap
Monte-Carlo analyses [169].

Then, given a function f(x) which is reconstructed by the GA, the “path integral” approach
of Ref. [169] can provide us with the 1σ error δf(x). Moreover, in principle the GA may in fact
consider any possible function as it is exploring the functional space and even though possibly poor
fits may be discarded, they can indeed contribute in the total probability when integrating over
the likelihood and as a result, they have to be taken into account in the error calculations.

This approach has been well-tested by comparing the GA errors against Fisher and Bootstrap
MCMC analyses, and in Ref. [169] (see Fig. 2) it was demonstrated that the “path integral”
approach gives robust and reliable errors, not affected by the error reconstruction method. For the
“path integral” approach employed here, we assume the errors correspond to 1σ, which is equal
to one standard deviation of a normal deviation around the GA best-fit. This is similar to error

1See for example Fig. 2 of Ref. [464] for the effect of the population size on the convergence and a
discussion in page 5 for the effects of the grammar.
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propagation assuming that the error in a quantity is given by σf = f ′(p)δp, where p in this case is
a parameter. Having extensively tested the GA against Fisher matrix and Bootstrap MCMCs in
Ref. [169], where the GA was confirmed to give robust error estimates, we find this assumption of
the error propagation to be appropriate for the data used here. Then, we can treat the values of
the function f as random variables described by a normal distribution

L(f) =
e
− (f−fGA)2

2δf2

√
2πδf

. (10.1)

This assumption is justified in the context of the “path integral” approach, thus to good approxi-
mation the GA error can in fact be taken to be Gaussian, see also Eqs. (2.5) and (2.6) in Ref. [169].

Then, the error propagated to any quantity formed by the function f , eg g = g(f) can be
estimated by using the definition of the standard deviation δg2 = 〈g2〉 − 〈g〉2 and the expectation
value 〈g〉 =

∫ +∞
−∞ g(f) L(f)df . For example, we demonstrate this approach for the simple example

of g(f) = f2, where we would expect the error of g to be δg = 2fGAδf + · · · . Indeed, we find

〈g2〉 = 3δf4 + f4
GA + 6δf2f2

GA

〈g〉2 =
(
δf2 + f2

GA
)2
, (10.2)

which gives

δg =
√

2δf4 + 4δf2f2
GA

' 2fGAδf + · · · , (10.3)

in agreement with the expected value.

10.0.3 General considerations

Even though with the GA we do not make assumptions on a particular DE model, such as the
ΛCDM, it may happen that the data contain some model assumptions. A notorious such example is
the JLA SnIa compilation [465], where the cosmological parameters have to fitted simultaneously
with variables of astrophysical origin, such as the light-curve parameters. In a similar vein, in
the Pantheon compilation [88], some model dependence still remains, even though the light-curve
parameters have already been marginalized over. This is due to the fact that the SnIa surveys have
to include in the analysis particular peculiar velocity corrections, assuming the ΛCDM model and
linear theory [466]. Furthermore, in order to derive the covariance matrix, frequently a fiducial
model is assumed [88]. As we will see on Chapter 11, the best-fit is close to the ΛCDM model in
our analysis, hence we can safely assume that these effects do not affect the reconstruction process.

Also, there exist other non-parametric approaches such as Gaussian processes (GP). These
assume the data can be described by a stochastic Gaussian process, where one can later on map
to any cosmological function of interest [145, 467–469]. Even though the GP necessitate choosing
both a kernel and a fiducial model for the mean value, in Ref. [467] it has been shown that these
assumptions do not affect the results of the reconstruction. However, the GA have the advantage
over the GP that they do not need a physical model with prior assumptions, for example of a
flat Universe or a DE model, other than the choice of the grammar and this only affects the
convergence rate [464]. By comparing plots of the same reconstructed parameter we can see that
both reconstruction methods give similar errors, see for example the plot of H(z) in Fig. 2 of
Ref. [145] with that of the left panel of Fig. 2 of Ref. [419].

Finally, we should stress that it has been demonstrated with the use of mock data sets
that the GA can successfully recover the underlying physical model. For example, in the case of
generic, i.e. non-physically motivated, mock data this was done in Ref. [169] (see Fig. 2), where as
it can be seen the GA matches both the underlying fiducial model and also gives error estimates
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that are similar with other approaches (Fisher and MCMC). Similarly, in the case of cosmological
data the ability of the GA to recover the fiducial model was tested in Ref. [470] (see Fig. 6)
and Ref. [471] (see Figs. 7-9) with a variety of mock cosmological data, while using several quite
different fiducial models such as the ΛCDM and modified gravity theories, but also models that
violate the distance duality relation. For other successful symbolic regression methods applied in
physics and cosmology see [472–479].

The evolution starts from a population of
randomly generated individuals

Mutation &
Crossover

Best fit
function

Terminate?

Next Generation
Individual solutions are

selected through a fitness
calculation process

The process is repeated until a termination
condition has been reached

Improve the solution by repeating the
operation of the mutation, crossover and

selection

Start Initial population

Fitness
calculation

Selection

Yes

No

Flowchart of a GA

Figure 10.1: Flowchart of the list of steps of a usual Genetic Algorithm.
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11
The Background Expansion of the Universe

The original content of this chapter is based on Ref. [419]. Machine learning (ML) algorithms
have revolutionized the way we interpret data in astronomy, particle physics, biology and even
economics, since they can remove biases due to a priori chosen models. Here we apply a particular
ML method, the genetic algorithms (GA), to cosmological data that describes the background
expansion of the Universe, namely the Pantheon Type Ia supernovae and the Hubble expansion
history H(z) datasets. We obtain model independent and nonparametric reconstructions of the
luminosity distance dL(z) and Hubble parameter H(z) without assuming any dark energy model or
a flat Universe. We then estimate the deceleration parameter q(z), a measure of the acceleration of
the Universe, and we make a ∼ 4.5σ model independent detection of the accelerated expansion, but
we also place constraints on the transition redshift of the acceleration phase (ztr = 0.662± 0.027).
We also find a deviation from ΛCDM at high redshifts, albeit within the errors, hinting toward
the recently alleged tension between the SnIa/quasar data and the cosmological constant ΛCDM
model at high redshifts (z & 1.5). Finally, we show the GA can be used in complementary null
tests of the ΛCDM via reconstructions of the Hubble parameter and the luminosity distance.

11.1 Introduction

As we have been discussing, Cosmology has reached a stage of near percent level precision ans has a
wide range of theoretical models that describe rigorous and accurate measurements. However, the
explanation as to why the Universe is undergoing a period of accelerated expansion still remains
an open question and the cause of this phenomenon is usually attributed to a dark energy (DE)
component [5].

In this Chapter we will apply a particular ML method, the genetic algorithms (GA) to
cosmological data that describes the background expansion of the Universe, namely the Pantheon
Type Ia supernovae and the Hubble rateH(z) datasets. The GA have been used in many disciplines
ranging from astrophysics, e.g. to determine the photometric redshift [480], to find the optimum
parameters for cosmic ray injection and propagation [481], to fit dusty galaxies [482], to perform
galaxy classification [483], in particle physics to constrain the MSSM [484, 485] or resonances in
Lambda reactions [486], but also in finance [487, 488] and biology [489]. More recently, they have
also been applied to cosmology for data reconstruction [168, 169, 324, 403, 417, 420, 464, 490, 491].
One of the most effective use of these methods is the reconstruction of null tests, i.e. pass/fail test
made of variables of a theory that should always be constant for all values of the parameters, and
can be used to test theories in a model independent way. In light of the near future experiments
that will gather a vast amount of data, such as Euclid and LSST, it is necessary to perform model
independent tests to check for possible tensions that could be due to systematics or new physics.

The structure of our Chapter is as follows. In Sec. 11.2 we present the theoretical background
of the GA approach we use in our analysis, in Sec. 11.3 we present our reconstructions and the
results on the deceleration parameter, the transition redshift and the two null tests based on the
Hubble parameter and luminosity distance. Finally, in Sec. 11.4 summarize our results and present
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our conclusions.

11.2 The Genetic Algorithms

Here we present the theoretical background of the implementation of the GA in our analysis. In this
chapter we consider the Pantheon Type Ia Supernovae (SnIa) and H(z) data sets (see Chapter 2
for more details), so in practice, the procedure to reconstruct them, proceeds as follows. First, we
choose an orthogonal basis of functions, traditionally called the “grammar”, with which an initial
population of functions is constructed. These function are randomly picked so that every member
of the population codifies an initial guess for both the luminosity distance dL(z) and the Hubble
parameter H(z). While this choice for the grammar might seem crucial for the symbolic regression,
it has been shown in Ref. [464] that it only affects the rate of convergence of the GA.

In this first step one may also impose any necessary physical priors, for example that the
value of the Hubble parameter today is H(z = 0) = H0 or that the luminosity distance at z = 0
is zero, i.e. dL(z = 0) = 0. This step is important as we want to avoid any unphysical functions
that could unnecessarily delay the convergence of our GA code. We also demand that all functions
reconstructed by the GA are continuous and differentiable, without any singularities in the redshift
range covered by the data, so as to avoid overfitting or any spurious reconstructions. These are the
only physical assumptions we do and we make no assumption on any particular DE or modified
gravity model or even on the curvature of the Universe.

After the initial population has been constructed, the fitness of each member is estimated by
a χ2 statistic, using as input the SnIa and H(z) data. Afterwards, using a tournament selection,
see Ref. [464] for more details, the best-fitting functions in every generation are chosen and the two
stochastic operations of the crossover and the mutation are applied. In order to ensure convergence
this procedure is then repeated hundreds of times and with various random seeds, so as to properly
explore the functional space.

The final output of the GA code is a couple of two continuous and differentiable functions
of the redshift z that describe the Hubble parameter H(z) and the luminosity distance dL(z)
respectively. However, the GA on its own does not provide any estimate of the errors of the
reconstructed functions, something which is necessary for the statistical interpretation of the data.
To do so, we implement the path integral approach of Refs. [169,417], explained also in Sec. 10.0.2,
where the errors are estimated by calculating analytically a path integral over all functions that
may be surveyed by the GA. This error reconstruction method has been exhaustively examined
and compared against a bootstrap Monte-Carlo by Ref. [169].

At this point it should be noted that while no assumptions on a particular cosmological
model, such as the ΛCDM were made, sometimes the data themselves may not be completely
model-independent. As explained in Sec. 10.0.3, some model dependence may still remain since
the SnIa surveys have to take into account specific corrections regarding the peculiar velocities,
assuming linear theory and the ΛCDM model [466]. Moreover, a fiducial background model is
typically assumed in order to derive the covariance matrix of the data [88]. In our case we can
safely assume that these effects have a very small effect on the reconstruction process as the best-fit
is close to the ΛCDM model.

11.3 Analysis and results

11.3.1 The data

The null tests we will consider here are the Om(z) statistic [426, 427] and a new null test derived
from the luminosity distance, that we present here for the first time. We thus propose applying ML
methods, in particular the GA, to fit to the Pantheon Type Ia supernovae (SnIa) data compilation
[88] and the H(z) data compilation of Ref. [9] to obtain a model independent reconstruction of the
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luminosity distance dL(z) and of the Hubble parameter H(t) ≡ ȧ
a , where a(t) is the scale factor in

the Robertson-Walker metric, and the dot stands for a derivative with respect to the cosmic time
t.

In our analysis we use 1048 data points in the range z ∈ [0, 2.26], along with their covariances,
from the Pantheon set [88], and 36 points in the range z ∈ [0, 2.34] from the H(z) compilation,
presented in Table 2.1. On the other hand, we make no assumptions for H0 and derive it directly
from the H(z) data, as we will see later on. Finally, for the likelihood for the H(z) data we use a
standard χ2, given by

χ2
H =

N∑
i=1

(
Hi −HGA(zi)

σi

)2

, (11.1)

while for the SnIa data we use the expressions found in Appendix C of Ref. [89]. Note that in our
analysis we use the two data sets in the following manner: we use the H(z) data for the deceleration
parameter q(z) and the OmH null test, while for the OmdL null test we will use the SnIa data.

11.3.2 The reconstructions

We reconstruct the Hubble parameter by applying the GA to the H(z) data, while the value of the
Hubble parameter H0 was derived through minimizing the χ2 analytically as the χ2 is quadratic
in H0, see Sec. 2.1.1 and also Ref. [140]. For the SnIa, due to the degeneracy between the absolute
magnitude M and the Hubble parameter H0, we used the value extracted from the H(z) data,
given below. In both cases, no assumptions such as a flat Universe or a specific DE model were
made, hence our results are almost completely model independent.

Note that sometimes the data are themselves model dependent, with an infamous example
being the SnIa, as one must optimize parameters in the lightcurve function simultaneously with
those of the assumed model. Furthermore, a covariance matrix is typically inferred based on an
assumed background model, usually ΛCDM. However, since in our case the best-fit is close to
ΛCDM and the errors are much larger than the effects of the model-bias in the covariance, we can
safely assume for now that these effects have a minimal effect to the minimization.

In order to make sure we are not biasing our analysis due to the specific value of the
random seed we have performed several simulations with different random seed numbers. We
have also demanded that all functions, along with their derivatives, are continuous and have no
singularities in the range covered by the data. As an example, the genetic evolution of several
different initializations of the GA code with different seed random numbers for the SnIa data as a
function of the generation number can be seen in Fig. 11.1. In most cases, the GA has converged
very quickly in the evolutionary history and in the majority of cases, the obtained χ2 is smaller
than that of the ΛCDM model.

Following this approach and taking into account the constraints mentioned earlier, we find
the best-fit GA functions to be

H0 = (69.27± 12.00) km/s/Mpc, (11.2)

H(z) = H0

(
1 + z

(
0.652 + 0.228z − 0.017z3

)2)
, (11.3)

dL(z) =
c

H0
z
(

1 + z
(
−0.054z − 0.146e0.347z + 0.999

)2)
, (11.4)

where c is the speed of light and the constraint on H0 was derived directly from the H(z) data.
The best-fit χ2 for the GA and ΛCDM models are given in Table 11.1, while plots of the Hubble
parameter and the distance modulus µ(z) = 5 log10 (dL(z)/Mpc) + 25 versus ΛCDM and the data
are given in Fig. 11.2. The agreement with the best-fit ΛCDM model (Ωm0 = 0.299 ± 0.022) for
the distance modulus µ(z) is at a subpercent level with ΛCDM until z ∼ 1.5, but then it deviates
similarly, albeit within the errors, to the reconstruction of Refs. [56,492] that used SnIa and quasar
data.
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Figure 11.1: The genetic evolution of several different initializations of the GA code with different
seed random numbers for the SnIa data as a function of the generation number. In most cases the
GA has converged very quickly in the evolutionary history and reaches a lower χ2 than ΛCDM
does.

Table 11.1: The χ2 for ΛCDM and GA using the Pantheon SnIa and H(z) data.

SnIa H(z)

χ2
ΛCDM 1034.73 19.476
χ2
GA 1034.30 17.683

In order to make sure that the observed deviation from ΛCDM is not affected by the choice
of the particular dataset, we removed the last two points at high redshifts (at z = 1.914 and
z = 2.26) of the Pantheon SnIa compilation in order to test the robustness of our results. We
found that the GA fit is actually unaffected, with the χ2 values being respectively χ2 = 1033.2 for
the ΛCDM and χ2 = 1032.94 for the GA best-fit, where the latter in this case was found to be

dL(z) =
c

H0
z
(
1 + z(0.871− 0.131z − 0.001z4)2

)
. (11.5)

Specifically, we find that for the original dataset the difference of the distance moduli at z = 2.305
is µGA − µΛCDM = −0.200284, while after removing the last two points we have µGA − µΛCDM =
−0.246619. In order to verify that our analysis is indeed robust, we extended it by repeated
removing two random points, at any redshift this time, and then ran the reduced data set over the
GA pipeline. In all cases we found that the behavior of the GA best-fit remains unchanged.

Therefore, since the residuals in the reduced dataset are clearly consistent with the ones of
the complete set, as shown in the right panel of Fig. 11.2, we are confident our analysis is robust
and is not affected by the choice of the specific dataset. Thus, having determined the functional
forms of H(z) and the luminosity distance, we can now use them to place model independent tests
on the background expansion of the Universe and reconstruct null tests of the ΛCDM model.

The most critical parameter in determining whether the Universe is accelerating or not, is
the deceleration parameter which is given by

q(z) = − äa
ȧ2

= −1 + (1 + z)
H ′(z)

H(z)
, (11.6)

where dots stand for derivatives with respect to the cosmic time t, while primes for derivatives with
respect to the redshift z, where a(t) = 1

1+z . The advantage of this parameter over the DE equation
of state w(z) is that the former only requires the knowledge of H(z) and not that of cosmological
parameters such as Ωm0 [168].
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Figure11.2:Left:TheH(z)datacompilationalongwiththeΛCDMbest-fit(dashedline)andthe
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Figure11.3:ThedecelerationparametergivenbyEq.(11.6)asreconstructedbyusingEq.(11.3).
Theshadedregioncorrespondstothe1σerrors,whilethetransitionredshiftztrcorrespondsto
thepointwhereq(z)crosseszero.

FortheUniversetoacceleratetoday,werequire(duetohistoricalreasons)thatq0<0,
e.g.fortheΛCDMmodelwehaveq0,ΛCDM =−1+3Ωm0/2 −0.528±0.011forthePlanck
best-fitΩm0=0.315[1]andq0,ΛCDM=−0.613±0.043fortheΛCDMbest-fittotheH(z)dataof
Ωm0=0.258±0.029.UsingtheGAreconstructionoftheHubbleparametergivenbyEq.(11.3)
wecancalculatethedecelerationparametergivenbyEq.(11.6)andtheresultisgiveninFig.11.3.
Thepresentvalueofthedecelerationparameterisfoundtobeq0≡q(z=0)=−0.575±0.132,a
∼4.5σdetectionoftheacceleratedexpansionoftheUniverseinamodel-independentway.

Wecanalsoestimatethevalueofthetransitionredshift,i.e.theredshiftwherethede-
celerationparameterchangessign,seeRefs[74,493–497]foralistofrecentestimates.Fromthe
GAreconstructionwefindthatztr=0.662±0.027,whilefortheΛCDMthelatterisequalto

ztr,ΛCDM=−1+2
1/3 Ω−1m0−1

1/3
=0.632±0.018forPlanckandztr,ΛCDM=0.791±0.091forthe

H(z)ΛCDMbest-fit. WhiletheprecisionofthesemeasurementsseemsworsethanthatofΛCDM,
inourcasewehavemadeveryminimalassumptionsandhavenotassumedanyDEmodel.
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Figure11.4:ThereconstructionoftheOmH(z)(left)andOmdL(z)(right)statisticsrespectively,
alongwiththe1σerrors(grayregions).BothcasesareconsistentwiththeΛCDMmodel(dashed
line).

11.3.3 Thenulltests

NextwefocusonthereconstructionofthenulltestsfortheΛCDMmodel. Thefirstnulltest
wewillconsideristheOm(z)statisticofRef.[426],whichonlyrequiresknowledgeoftheHubble
parameterH(z)andallowsustodiscriminateΛCDMfromotherDEmodels,seeRefs[168].Itis
definedas1

OmH(z)≡
H(z)2/H20−1

(1+z)3−1
. (11.7)

Herewealsopresentadifferent,butatthesametimecomplementary,nulltestofthe
ΛCDMbyextractingthematterdensityΩm0fromtheluminositydistanceinsteadoftheHubble
parameter.Todothis,weusetheLagrangeinversiontheoremwhichstatesthatgivenananalytic
function,wecanestimatetheTaylorseriesexpansionoftheinversefunction,i.e.giventhefunction
y=f(x),wherefisanalyticatapointpandf(p)=0thetheoremallowsustosolvetheequation
forxandwriteitasapowerseriesx=g(y),see[388].

WenowapplytheLagrangeinversiontheoremtotheluminositydistance dL(z,Ωm0)and
fromnowonwewillrestrictourselvesatlatetimes,whenDEdominatesovertheothercomponents,
suchasradiationandneutrinos.Then,theanalyticalexpressionoftheluminositydistanceforthe
ΛCDMmodel,assumingaflatUniversebutneglectingradiationandneutrinos,isgivenby

dL(z,Ωm0) =
c

H0
(1+z)

z

0

1

H(x)
dx

=
c

H0

2(1+z)
√
Ωm0




2F1

1

6
,
1

2
,
7

6
,
Ωm0−1

Ωm0
−
2F1

1
6,
1
2,
7
6,

Ωm0−1
Ωm0(1+z)3

√
1+z



.(11.8)

ToderivetheOmdL(z)testwefirstdoaseriesexpansiononEq.(11.8)aroundΩm0=1andkeep
thefirst10termsinordertoobtainareliableunbiasedestimationandavoidtheoreticalsystematic
errors.Then,weapplytheLagrangeinversiontheoremtoinverttheseriesandtowritethematter
densityΩm0asafunctionoftheluminositydistancedL,i.eOmdL=OmdL(z,dL).Forexample,
thefirsttwotermsoftheexpansionare

OmdL(a,dL)=1−
7a H0

cdL−
2−2

√
a

a

6+
√
a(a3−7)

+···, (11.9)

1WeusethenotationOmH withthesubscriptHtodiscriminatethisnulltestfromtheonewewill
introducelateronandwhichisbasedontheluminositydistancedL(z).
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where the scale factor a is related to the redshift z as a = 1
1+z . This null test has the main

advantage that it does not require taking derivatives of the data as we use the luminosity distance
directly.

The reconstruction of both null tests of the ΛCDM model is shown in Fig. 11.4, in the left
panel for the OmH and the right panel for the OmdL respectively. We find that both null tests are
in agreement with ΛCDM at the 1σ level. While the errors of the distance modulus µ(z) and the
OmdL test, shown in Figs. 11.2 and 11.4 respectively, seem somewhat larger compared to those
in Refs. [168,169], the latter used the Union 2.1 set but did not include the systematic errors, thus
underestimating the errors regions. On the other hand, the Pantheon compilation both statistical
and systematic errors are included in the publicly available data 2. As a result, even though the
Pantheon set has roughly twice as many points than the Union 2.1, the inclusion of the systematic
errors of the Pantheon in the analysis, brings the error estimates for µ(z) and OmdL to the same
level as those in Refs. [168,169].

11.4 Conclusions

In summary, ML methods are revolutionizing the way we interpret data since they can help to
remove biases due to choosing a priori a specific defined model. This is more important than ever
as the endeavor to explain the accelerated expansion of the Universe has led to a plethora of DE
models, which make the interpretation of the data difficult as the results are model dependent.
This can lead to model bias, thus affecting the conclusions drawn about fundamental physics.

We have shown that applying the GA to the SnIa and H(z) data can be used to reconstruct
the expansion history of the Universe and help determine the current deceleration parameter and
transition redshift in a model independent fashion. The datasets we use are the Pantheon Type
Ia Supernovae compilation of Ref. [88] and the H(z) based on the differential age method and
the clustering of galaxies or quasars by Moresco et al. (shown in Table 2.1 of Sec. 2.1.1), both
being state-of-the-art at the moment. Given that we only have one realization of “real” data at the
moment, one could possibly use mock datasets to test the GA approach as a reconstruction method.
This however, has already been done, see for example [169,420]. By considering subsamples of the
Pantheon dataset at high redshifts we also confirmed that our results are robust.

We also find a ∼ 4.5σ detection of the accelerated expansion, contrary to recent claims by
Ref. [498, 499], where the authors claimed that there is little to no evidence for acceleration. The
main differences between our work and that of Ref. [498], is that in the latter the authors used
the (now outdated) Joint Lightcurve Analysis (JLA) catalogue by Ref. [465], while here we use the
much more recent Pantheon sample by Ref. [88]. The Pantheon sample was created by analyzing
together recent observations of SnIa from the Pan-STARRS1 survey and from other previously
available low redshift subsamples from other surveys, in order to create a uniform dataset that
would have the same quality cuts and systematics.

Besides the choice of the SnIa data, our Chapter and that of Ref. [498], also differ in the fact
that while our approach is completely nonparametric and model-independent, Ref. [498] assumes
Gaussian priors for the absolute magnitude M , the stretch x and the color c, as seen in Eq. (4) in
their paper, each with a mean value and a standard deviation. Then, these six new parameters are
fitted along with the cosmological parameters. However, as was pointed out in [500], the observed
distributions of these parameters are far from redshift-independent, thus biasing their results.

Furthermore, our method has several advantages compared to other methods found in the
literature like the GP. In particular, while the GP requires the choice of a kernel function and
a fiducial model, usually taken to be a Gaussian and ΛCDM respectively, our approach assumes

2The systematic errors are included in the “sys_full_long.txt" file, which is publicly available
from the Pantheon GitHub page https://github.com/dscolnic/Pantheon. For the SnIa likelihood in
our analysis, we use the following free and publicly available code, see https://members.ift.uam-
csic.es/savvas.nesseris/codes.html.
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neither and is completely theory agnostic. Also, compared to the approach of Ref. [498], our
approach is completely nonparametric.

In summary, we showed how the GA can be used to reconstruct complementary null tests of
the ΛCDM model via reconstructions of both the Hubble parameter and the luminosity distance
and we found that both are consistent with ΛCDM within the errors.
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12
Hints of dark energy anisotropic stress using

Machine Learning

The original content of this chapter is based on Ref. [324]. Recent analyses of the Planck data
and quasars at high redshifts have suggested possible deviations from the flat Λ cold dark matter
model (ΛCDM), where Λ is the cosmological constant. Here we use machine learning methods
to investigate any possible deviations from ΛCDM at both low and high redshifts by using the
latest cosmological data. Specifically, we apply the Genetic Algorithms to explore the nature of
dark energy (DE) in a model independent fashion by reconstructing its equation of state w(z), the
growth index of matter density perturbations γ(z), the linear DE anisotropic stress ηDE(z) and
the adiabatic sound speed c2s,DE(z) of DE perturbations. We find a ∼ 2σ deviation of w(z) from -1
at high redshifts, the adiabatic sound speed is negative at the ∼ 2.5σ level at z = 0.1 and a ∼ 2σ
deviation of the anisotropic stress from unity at low redshifts and ∼ 4σ at high redshifts. These
results hint towards either the presence of an non-adiabatic component in the DE sound speed or
the presence of DE anisotropic stress, thus hinting at possible deviations from the ΛCDM model.

12.1 Introduction

In Sec. 1.3 we discussed about the tensions in the ΛCDM model. These issues have motivated
several analyses trying to reassess the level of deviations from the ΛCDM model [64–70] or to
resolve it with new physics [3]. The latter approach postulates that GR is only accurate on small
scales and modifications at larger scales are needed. One side-effect of this deviation from GR is
that the Newtonian potentials Φ and Ψ are now in general not equal, thus resulting to an anisotropic
stress which could be detected from weak-lensing [190]. The anisotropic stress is usually modeled
via the parameter ηDE ≡ Φ

Ψ , where Φ and Ψ are the Newtonian potentials, taken to be equal in GR
in the absence of anisotropic stresses from other sources such as neutrinos. Thus, any deviation
of ηDE from unity would point to modified gravity or if neglected, it could bias the cosmological
parameters inferred from the data [191].

If this modification of gravity is interpreted via the effective fluid approach [9, 10], then
the presence of anisotropic stress also implies that the sound speed of propagation of the DE
perturbations c2s,DE can be negative. However, the perturbations can still remain stable if the
effective sound speed, defined as the sum of the DE sound speed and the anisotropic stress, is
positive [235]. Therefore, if direct measurements of c2s,DE find that it is negative, this would be
a smoking gun signature for the existence of an anisotropic stress and possible modifications of
gravity. Furthermore, it has been shown that the effects of the anisotropic stress can be mimicked
by a varying adiabatic sound speed of DE perturbations [236, 237]. A related quantity is also the
F (z) test of Ref. [501], which is proportional to the DE sound speed and is supposed to be equal
to zero for the ΛCDM model. As both F (z) and c2s,DE are related, here we will only consider the
latter.

The large scale structure (LSS) of the Universe provides a natural testbed to search for
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Figure12.1:Aflowchartofthefittingprocessusingthemachinelearningapproach.Theorange
blocksrepresentprimaryquantitiesreconstructeddirectlyfromthedata,i.e.the MLbest-fits,
theblueblocksrepresentquantitiesreconstructedfromthelatter,suchasw(z),andthegreen
blocksstandforthederived(secondary)parameters.Theflowchartshowstheinterplaybetween
thedifferentdataandderivedparameters,somethingwhichisreflectedinouranalysis.

deviationsfromGR,sinceitisverysensitivetotheunderlyinggravitationaltheorywhichdirectly
affectstheevolutionofmatterdensityperturbations.Inlineartheorytheseareparameterizedvia
thegrowthparameterδm =

δρm
ρ̄m
anditslogarithmicderivativef≡dlnδm

dlna calledthegrowth-rate,
whereρ̄m isthebackgroundmatterdensityandδρm itsperturbationtolinearorder.Thegrowth-
ratecanalsobeexpressedintermsoftheγparameter,whichisusefulwhenlookingfordeviations
fromGR,asintheΛCDMmodelγ 6/11andisdefinedviaf(z)=Ωγm(z).IntheΛCDMmodel
thefactthatthegrowthrateisscale-invariantonlargescalesmakesitakeydiscriminator[339].

Themainadvantageofthegrowthisthatovertimeitcanprovideinformationaboutgravity
andDEandhowbothcanbeevolvingastheUniverseexpands.ThereasonforthisisthatLSS
observationsincosmologyhavetheadvantageofrequiringonlylinearphysics,whichmakesthem
anespeciallycleanandhighlysuccessfulprobe[340].Theycanhelpinunderstandingwhatisthe
expansionrateoftheUniverseandhowdostructuresformwithinthecosmologicalbackground.At
theperturbationslevel,thegrowthofmatterperturbationsprovidesausefultooltoinvestigatethe
matterdistributionintheUniverse,and,moreimportantly,itcanbemeasuredfromobservations.
Themeasurementofthegrowthindexprovidesanefficientwaytodiscriminatebetweenmodified
gravitymodelsandDEmodelswhicharedevelopedinthecontextofGR[141]. Theeffectof
DEonthegrowthofperturbationsisthereforeanimportanttoolindiscriminatingmodelsfrom
ΛCDM[207]andmodelsthatarefullydegenerateatthebackgroundlevel[9,201–204].

AswehavediscussedinChapter9,MachineLearning(ML)willplayabigroleintesting
accuratelythestandardmodelofcosmology,butwillalsohelpinthesearchfornewphysicsand
tensionsinthedatabyplacingtighterconstraintsoncosmologicalparameters[402–404]. While
acentralgoalofmodern MLresearchistolearnandextractimportantfeaturesdirectlyfrom
data[418],MLmethodshavealsobeenappliedtoreconstructnulltestsofΛCDM,i.e.quantities
thataresupposedtobeexactlyconstantforallredshifts[168,419–424].Inthispaperwepresenta
unifiedMLanalysisofallthecurrentlyavailablecosmologicaldatainordertoreconstructseveral
keybackgroundandperturbationsvariablesinamodel-independentmannerinordertoexplorethe
natureofDE.Forexample,suchvariablesincludetheDEequationofstateandtheDEanisotropic
stress,whichwethenusetotestfordeviationsfromΛCDM.

Thestructureofourpaperisasfollows:InSection12.2wepresentthetheoreticalback-
groundofourworkandournotation,inSection12.3wedescribeindetailthecosmologicaldata
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we used in our analysis, in Section 12.4 we present the details of our implementation of the ML
approach, while in Section 12.5 we present our methodology and the minimal assumptions we
made for the reconstruction of the data. Then, in Section 12.6 we present the exact fits of the
reconstruction and our main results, while in Section 12.7 we present our Conclusions.

12.2 Theory

Here we present some theoretical material regarding the quantities we reconstruct in what follows.
The DE equation of state w(z) ≡ P

ρ and the deceleration parameter q(z) ≡ − ä
aH(a)2 can be written

as [490]

w(z) = −1 +
1

3
(1 + z)

d ln (ΩDE(z))

dz
, (12.1)

q(z) = −1 + (1 + z)
d ln (H(z))

dz
, (12.2)

where ΩDE(z) ≡ H(z)2/H2
0 −Ωm,0(1 + z)3 is the DE energy density. When w(z) = −1 we recover

the ΛCDM model, for which q0 = q(z = 0) = −1 + 3Ωm0

2 . Here and in what follows we will neglect
radiation as it is negligible at late times when we perform our reconstructions. We also constrain
the DE adiabatic sound speed c2s,DE(z), which can be written in terms of the DE equation of state
w(z) as

c2s,DE(z) =
δPDE

δρDE

' w(z) +
1 + z

3

w′(z)

1 + w(z)
. (12.3)

We also consider the number counts of luminous sources, which are given by [502]

n(z) =
4πN0dL(z)2

H(z)(1 + z)2
, (12.4)

where N0 ≡
∫∞

0
N0(L)dL is the total number of sources per proper volume integrated over all

luminosities. Next we also present the variables related to the matter density perturbations, in
particular the growth index γ(a), which is defined via [338]

f(a) = Ωm(a)γ(a), (12.5)

where f(a) = d ln δm
d ln a is the logarithmic derivative of the growth of matter perturbations δm(a) ≡

δρm
ρm

, the matter density is given by Ωm(a) =
Ωm,0a

−3

H(a)2/H2
0
and H(a) ≡ ȧ

a , is the Hubble parameter as
a function of the dimensionless scale factor a = 1

1+z that describes the expansion of the universe.
Solving for the growth index we find that it can be expressed as

γ(a) =
ln (f(a))

ln (Ωm(a))
=

ln (f(a))

ln
(

Ωm,0a−3

H(a)2/H2
0

) . (12.6)

We can now proceed to re express the various quantities contained in Eq. (12.6) with ones that
can be reconstructed directly from the data. Assuming a homogeneous and isotropic universe in
GR, with no DE perturbations and neglecting neutrinos, then the growth factor δm(a) satisfies the
differential equation:

δ′′m(a) +

(
3

a
+
H ′(a)

H(a)

)
δ′m(a)− 3

2

Ωm,0

a5H(a)2/H2
0

δm(a) = 0. (12.7)
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At this point it should be noted that while here we neglect neutrinos in order to streamline the
analysis, in general they can have a large effect on the amplitude and slope at LSS scales. Regarding
the growth, what is measurable is not exactly the growth δm(a), but the combination

fσ8(a) ≡ f(a) · σ(a)

=
σ8

δm(1)
a δ′m(a), (12.8)

where f(a) is the growth rate and σ(a) = σ8
δm(a)
δm(1) is the redshift-dependent rms fluctuations of the

linear density field at R = 8h−1Mpc while the parameter σ8 is its value today. The combination
of fσ8(a) is bias-free as both f(a) and σ8(a) have a dependence on bias which is the inverse of
the other, thus cancels out, and it has been shown to be a good discriminator of DE models [118].
Performing direct manipulations of the definition of fσ8 of Eq. (12.7) and Eq. (12.8) one can show,
see also Ref. [292], that

δm(a)

δm(1)
=

1

σ8

∫ a

0

fσ8(x)

x
dx (12.9)

H(a)2/H2
0 =

3Ωm,0
a4fσ8(a)2

∫ a

0

dxfσ8(x)

∫ x

0

dy
fσ8(y)

y
, (12.10)

but also the useful relations:

σ8 =

∫ 1

0

fσ8(x)

x
dx (12.11)

Ωm,0 =
1

3
∫ 1

0
dx fσ8(x)

fσ8(1)

∫ x
0
dy 1

y
fσ8(y)
fσ8(1)

. (12.12)

Combining Eqs. (12.6) and (12.9)-(12.10), we obtain our main result for the growth index:

γ(a) =

ln

(
fσ8(a)∫ a

0

fσ8(x)
x dx

)
ln

(
afσ8(a)2

3
∫ a
0
dxfσ8(x)

∫ x
0
dy

fσ8(y)
y

) . (12.13)

The main advantages of Eq. (12.13) are that it only requires knowledge of fσ8(a) and does not
depend on Ωm0 or H(a), σ8 or any other parameter. Finally, exploiting the Noether symmetries
of Eq. (12.7) we can define a conserved charge that has to be constant at all times and redshifts,
thus is an ideal null test. Following this procedure, in Ref. [429] it was shown that a null test for
the growth can be written as

O(z) = a2E(a)
fσ8(a)

fσ8(1)
eI(z), (12.14)

I(z) = −3

2
Ωm0

∫ a

1

σ80
+
∫ x

1
fσ8(y)
y dy

x4E(x)2fσ8(x)
dx, (12.15)

where we define σ80
≡ σ8(a = 1) for simplicity and we have set E(a) ≡ H(a)

H0
. It is clear that

Eq. (12.15) has to be constant for all redshifts z and moreover, O(z) has to be equal to 1 as
any deviation from unity might hint towards a deviation from the FLRW metric, non zero DE
perturbations, a deviation from GR or a tension between the H(z) and fσ8 data.

12.3 The data

The data used in this analysis is explained in detailed in Chapter 2. In specific we have used the
Hubble expansion data H(z), the supernovae type Ia data, the baryon acoustic oscillations data,
the growth-rate data and the Eg data.
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12.4 The Genetic Algorithms

A full description on how the Genetic Algorithms operate can be found in Chapter 10. There we
have also discussed the error analysis treatment and now we will expand that part to accommodate
it to the expressions we are seeing in this Chapter. One can derive for example the error of the Om
statistic, which can be reconstructed using the GA best-fit HGA(z), see Chapter 11 and Ref. [419].
The Om statistic is a null test, i.e. a true/false statement or equivalently a consistency test, that
has to be true at all redshifts if the ΛCDM is the real underlying physical model. It is derived by
solving the Friedmann equation [168,426]

H(z)2/H2
0 = Ωm,0(1 + z)3 + 1− Ωm,0, (12.16)

for Ωm,0 using simple algebraic manipulations, so its value should be equal to that of Ωm,0 if and
only if the ΛCDM is the true model. Thus, using a model-independent approach to reconstruct the
Hubble parameter H(z) we can probe for deviations from ΛCDM in a straight-forward manner.
Noting that the Om statistic is defined as

Om(z) =
H(z)2/H2

0 − 1

(1 + z)3 − 1
, (12.17)

then, using the aforementioned approach we find the error on the Om statistic is

δOm(z) =
2HGA(z)δH(z)/H2

0

(1 + z)3 − 1
, (12.18)

as expected for traditional error propagation as well.
Similarly, one can derive the error propagation of a quantity that depends on two recon-

structed quantities by the GA. The procedure is exactly the same as before and we now consider
the example of the DE energy density parameter ΩDE = H(z)2

H2
0
−Ωm,0(1+z)3, where we assume the

two reconstructed quantities are H(z) and Ωm,0, each being described by a normal distribution.
In this case the error on ΩDE can be found to be:

δΩDE(z)2 ' 4
H(z)2

H2
0

δH(z)2

H2
0

+ (1 + z)6δΩ2
m,0 + · · · , (12.19)

again in agreement with the expected value from standard error propagation.
We also have to calculate quantities that contain derivatives, such as the DE equation of

state or the deceleration parameter. In this case we will assume that we can model the error
propagation as a variation of the functions during the evolution of the functional space of the GA,
i.e. δf = δ(f). This is in agreement with the previous approach as if we assume g = f2 then
we have δg = 2fδf as expected. We can further assume that the variational δ commutes with
derivatives, i.e. δ( dfdx ) = d

dx (δf(x)). The reason for this is that we can always assume that at
any point x functions f that are close to the best-fit, can be written as f ' fGA + δf , so that
df
dx '

dfGA
dx + dδf

dx , which implies δ( dfdx ) ' df
dx −

dfGA
dx '

dδf
dx as mentioned before. For example, in the

case of the deceleration parameter we have:

qGA(z) = −1 + (1 + z)
d lnHGA

dz
, (12.20)

which implies that the error is

δq(z) = (1 + z)δ

[
d lnH

dz

]
= (1 + z)

d

dz
[δ lnH] = (1 + z)

d

dz

[
δH

HGA

]
. (12.21)

Similarly, we will assume that the variational δ commutes with integrals, an assumption commonly
made in variational calculus, so that for example for the σ8 parameter we have:

σ8,GA =

∫ 1

0

fσ8,GA(x)

x
dx (12.22)
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and the corresponding error on the derived GA best-fit is

δσ8 =

∫ 1

0

δfσ8(x)

x
dx. (12.23)

Then, for the matter density parameter Ωm0 we also have

Ωm,0GA =
1

3
∫ 1

0
dx fσ8GA(x)

fσ8GA(1)

∫ x
0
dy 1

y
fσ8GA(y)
fσ8GA(1)

=
1

3
∫ 1

0
dxF (x)

∫ x
0
dy 1

yF (y)
, (12.24)

where F (x) = fσ8GA(x)
fσ8GA(1) . Then, the error is

δΩm,0
3Ω2

m,0

=

∣∣∣∣∫ 1

0

dx

[
δF (x)

∫ x

0

dy
F (y)

y
+ F (x)

∫ x

0

dy
δF (y)

y

]∣∣∣∣ ,
(12.25)

where we have set

δF (a) = δ

(
fσ8(a)

fσ8(1)

)
=

δfσ8(a)

fσ8GA(1)
− fσ8GA(a)

fσ8GA(1)2
δfσ8(1). (12.26)

12.5 Methodology

We will now describe how to reconstruct using the GA the Hubble parameter H(z) from the
Hubble expansion history H(z) data, the luminosity distance dL(z) from the Pantheon Type Ia
supernovae (SnIa) data, the angular diameter distance dA(z) from Baryon Acoustic Oscillations
(BAO), fσ8(z) from the growth-rate data obtained via the redshift-space distortions (RSD) and
P2(z) from the Eg data.

These functions will in turn be used to reconstruct the DE anisotropic stress ηDE(z) (see
Sec. 2.2.2 for a more detailed explanation), the growth index γ(z), the DE equation of state w(z)
and the DE adiabatic sound speed c2s,DE(z). Furthermore, we will also reconstruct the growth rate
null test O(z) presented in Ref. [429] as a consistency test of the ΛCDM model and the number
counts of luminous sources n(z). We also derive the matter density Ωm,0 and the root mean square
(rms) density fluctuation σ8 from the fσ8 data, the value of the Hubble constant H0 and the sound
horizon at the drag epoch rd from the BAO data.

As mentioned in the previous section, in order to reconstruct the data we will only make
very few minimal physical or mathematical assumptions, but we will make no assumption of a DE
model or that the spatial curvature of the Universe is zero, i.e. flatness. However, we will assume
homogeneity, isotropy and the Friedmann-Robertson-Walker (FRW) metric. Specifically we have
assumed:

1. The Hubble parameter today is given by the Hubble constant H(z = 0) = H0. Then, H0 is
estimated directly from the H(z) data.

2. We assume the Hubble law at low redshifts dL(z ' 0) ' c
H0
z. We use the Hubble constant

H0 from the H(z) fit to break the degeneracies with the absolute SnIa magnitude.

3. Similarly, at low redshifts we assume dA(z ' 0) ' c
H0
z due to the Hubble law. We make no

assumptions for the sound horizon at drag redshift rd, which is minimized over.

4. The Universe at early times went through a phase of matter domination (z ' 100), so the
linear growth behaves as δm(a) ' a at high redshifts.

We also note that the growth rate data has a dependence on the fiducial model which
can be corrected by rescaling the measurements by the ratios of H(z)DA(z) as it is explained in
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Ref. [120]. Finally, the SnIa contain some model dependence, as one must optimize parameters
in the lightcurve function simultaneously with those of the assumed model. This mainly affects
the covariance matrix, which is typically inferred based on an fiducial background model, usually
ΛCDM. However, since in our case the best-fit is close to ΛCDM and the errors are much larger
than the effects of the model-bias in the covariance, we can safely assume for now that these effects
have a minimal effect on the minimization.

For illustration purposes we also present in Fig. 12.1 a flowchart of the whole fitting process.
To estimate the errors on these reconstructed quantities we use the Path Integral approach devel-
oped by Refs. [169,417], where one calculates analytically a path integral over the whole functional
space that can be scanned by the GA. Then this error is propagated onto the various derived
quantities with the error propagation approach described in detail in Sec. 10.0.2.

12.6 Results

Here we present the results of our analysis by considering all data separately. Specifically we show
the reconstructions of all relevant quantities including the DE equation of state wDE(z), the DE
adiabatic sound speed c2s,DE(z), the growth index γ(z), the O(z) test, the DE anisotropic stress
ηDE(z), the number counts of luminous sources n(z) and σ8.

First, we fit the BAO data without assuming the value of H0 given by the H(z) recon-
struction. To perform the reconstruction of the BAO data we minimize the χ2 over the quantity
rsh = rs · h, where rs is the sound horizon at the drag redshift and h is the Hubble parameter,
thus avoiding any bias of the results due to a specific value of H0. This reconstruction will affect
the growth-rate fσ8, and thereby the growth index γ and the O(z) test, but also the secondary
parameters: Ωm,0 and σ8. This in turn affects the equation of state w(z) and the dark energy sound
speed c2s,DE since they depend on the value of Ωm,0, see Eq. (12.1). Finally, the DE anisotropic
stress also depends on the fσ8 reconstruction.

In particular, the plots of the reconstructed quantities are shown in Fig. 12.2 for the SnIa
and H(z) data, while in Fig. 12.3 for the fσ8 and Eg data. In both cases, we show both the ΛCDM
best-fit (blue line) and the GA best-fit (red line), while the red and grey shaded region correspond
to the 1σ confidence region for the GA and ΛCDM respectively and the actual data are shown as
grey points in the background. The best-fit functions are then as follows:

H(z)/H0 =
(

1 + z
(
−0.676− 0.221z + 0.018z3

)2)
, (12.27)

dL(z) =
c

H0
z
(

1 + z
(
0.872− 0.133z − 0.002z2

)2)
, (12.28)

H0

c
dA(z) = DA(z) =

z

(1 + z)2

(
1 + z

(
0.885− 0.175z + 0.025z2 − 0.00003z5

)2)
, (12.29)

fσ8(a) = f0

(
a− a4

(
−1.675 + 0.870a+ 0.001a2

)2)
, (12.30)

P2(a) =
(
−0.434a− 0.414ae0.666a − 0.011a2.060

)2
, (12.31)

where f0 = 1.06477, while we also find the following derived parameters

σ8 = 0.805± 0.246, (12.32)

Ωm,0 = 0.254± 0.025, (12.33)

γ0 = 0.5549± 0.0003, (12.34)

rsh = 101.873± 2.078 Mpc/h, (12.35)

wGA,0 = −0.932± 0.177. (12.36)
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Figure12.2:Left:TheH(z)datacompilationalongwiththeΛCDMbest-fit(blueline)andthe
GAbest-fit(redline). Right: ThedifferencebetweentheGAbest-fitdistancemodulusofthe
PantheonSnIadata(redline)andthatoftheΛCDMmodel(blueline).Inbothcasestheredand
greyshadedregionscorrespondtothe1σconfidenceregionfortheGAandΛ
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Figure12.3:Left:Thefσ8datacompilationalongwiththeΛCDMbest-fit(blueline)andthe
GAbest-fit(redline).TheGAreconstructionfollowsboththedataandtheΛCDMmodelclosely.
Right:TheP2parameterofRef.[145]alongwiththeEgdatagiveninTable2.5.Inbothcases
theredandgreyshadedregionscorrespondtothe1σconfidenceregionfortheGAandΛCDM
respectively,andtheactualdataareshownasgreypointsinthebackground.

NotethatE(z)=H(z)/H0isreconstructeddirectlyfromtheH(z)data,withoutassuming
avalueofH0.However,usingEq.(2.3)ofChapter2wecanderiveavalueforH0aswell,while
fromtheH(z)datawealsoget

qGA,0 = −0.543±0.118, (12.37)

zGA,tr = 0.641±0.023, (12.38)

whereztristhevalueofthetransitionredshift,i.e.theredshiftatwhichthedecelerationparameter
changessign.

InFig.12.4weshowtheDEequationofstatew(z)givenbyEq.(12.1)(leftpanel)and
theadiabaticsoundspeedc2s,DE(rightpanel),wherethelatterisgivenbyEq.(12.3).Ascanbe
seen,theequationofstatew(z)isconsistentwithΛCDMatlowredshifts,butshowsamild2σ
tensionatz∼1,thushintingthatdeviationsfromtheΛCDMcouldhappenathigherredshiftsas
claimedinRef.[56].Inthecaseoftheadiabaticsoundspeedwefocusonsmallredshiftsasthe
earliestwecanreconstructitfromtheHubbledataisatz>0.07. Aswecansee,theadiabatic
soundspeedisevolvingandisnegativeatthe∼2.5σlevelatz=0.1,whichimpliesthatDEeither
hasadominantnon-adiabaticcomponentatsmallredshiftsoritshouldhaveanisotropicstress,as
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Figure12.4:Left:TheDEequationofstatew(z)givenbyEq.(12.1),usingtheGAreconstruction
oftheHubbledataandthevalueofΩm,0 foundfromthegrowthdata. Wefindthatathigh
redshifts(z 0.8)thereisamild∼1.5σdeviationfromtheΛCDMmodel. Thedashedline
correspondstothetheoreticalpredictionoftheΛCDMmodel,whilethesolidblacklineandthe
greyregiontotheGAbest-fitandthe1σerrors.Right:TheadiabaticDEsoundspeedc2s,DEgiven

byEq.(12.3).ThedashedlinecorrespondstoclusteringDEwithc2s=0,whilethesolidblackline
andthegreyregiontotheGAbest-fitandthe1σerrors.

otherwisethematterdensityperturbationswouldbeunstable[235].

IntheleftpanelofFig.12.5weshowtheO(z)testofRefs.[420,429]givenbyEq.(12.15).
ThedashedlinecorrespondstothetheoreticalpredictionoftheΛCDMmodel,whilethesolidblack
lineandthegreyregiontotheGAbest-fitandthe1σerrors. Wefindthatthetestisconsistent
withΛCDMwithintheerrors.IntherightpanelofFig.12.5weshowtheanisotropicstress
parameterηDE(z)givenbyEq.(2.36).Thedashedlinecorrespondstothetheoreticalprediction
oftheΛCDMmodel(noDEanisotropicstress),whilethesolidblacklineandthegreyregionto
theGAbest-fitandthe1σerrors. Wefindthattherearedeviationspresentatbothlowandhigh
redshiftsatthe∼2σand∼4σlevelrespectively.

IntheleftpanelofFig.12.6weshowthenumbercountsofluminoussourcesgivenby
Eq.(12.4).ThedashedlinecorrespondstothetheoreticalpredictionoftheΛCDMmodel,while
thesolidblacklineandthegreyregiontotheGAbest-fitandthe1σerrors. Wefindthatthe
reconstructionsagreewiththetheoreticalpredictionoftheΛCDMmodelwithintheerrors.Inthe
rightpanelofFig.12.6weshowthegrowthindexofthematterdensityperturbationsγ(z),which
isgivenbyEq.(12.13)andwhichwefindtobeconsistentwithintheerrorswiththetheoretical
predictionsoftheΛCDMmodel.

ThedeviationsfoundintheDEanisotropicstressreconstructedfromtheEgdataandthe
DEequationofstatew(z)usingtheH(z)datamayhinteithertounaccountedforsystematics,
possiblynon-negligibleradiativeprocessesornewphysics.Forexample,apotentialsourceofthe
deviationsobservedwiththeEgdatamaybeduetothelensingmagnification.InRefs.[503,504]it
wasshownthatlensingmagnificationmodifiesboththegalaxy-galaxylensingcorrelationsandthe
galaxy-galaxycorrelations. Asaresult,lensingmagnificationbothintroducessystematicerrors
inthedeterminationofEgand makesitbiasdependent. Fora morein-depthdiscussofthe
systematicsseealsoRef.[139].

Weshouldnotethattraditionallyonewouldcomparethe χ2perdegreeoffreedom(dof),
wherethelatteristraditionallydefinedasthenumberofpoints(36H(z)+1048SnIa+(4+3
+2+2+1)BAO+22growth+8Eg=1126pointsinouranalysis)minusthenumberoffree
parametersofthemodelinquestion.AstheGAhavenofreeparameters,wecannotcomparethe
dofbetweentheGAandtheΛCDMmodel.
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Figure12.5:Left: TheO(z)testofRefs.[420,429]givenbyEq.(12.15). Thedashedlinecor-
respondstothetheoreticalpredictionoftheΛCDMmodel(noDEanisotropicstress),whilethe
solidblacklineandthegreyregiontotheGAbest-fitandthe1σerrors. Wefindthatthetestis
consistentwithΛCDMwithintheerrors. Right:TheanisotropicstressparameterηDE(z)given
byEq.(2.36).ThedashedlinecorrespondstothetheoreticalpredictionoftheΛCDMmodel(no
DEanisotropicstress),whilethesolidblacklineandthegreyregiontotheGAbest-fitandthe
1σerrors. Wefindthattherearedeviationspresentatbothlowandhighredshiftsatthe∼2σ
and∼4σ
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Figure12.6:Left:ThenumbercountsofluminoussourcesgivenbyEq.(12.4).Thedashedline
correspondstothetheoreticalpredictionoftheΛCDMmodel,whilethesolidblacklineandthe
greyregiontotheGAbest-fitandthe1σerrors. Right: Thegrowthindexγ(z)ofthematter
densityperturbationsgivenbyEq.(12.13).ThedashedlinecorrespondstotheΛCDMmodel,the
dottedlinetotheroughestimateγ∼ 6

11,whilethesolidblacklineandthegreyregiontothe
GAbest-fitandthe1σerrors. WefindthatbothreconstructionsareconsistentwiththeΛCDM
model.

12.7 Conclusions

Insummary,weusetheGeneticAlgorithms(GA),aspecificmachinelearningmethod,torecon-
structtheevolutionofthebackgroundhistoryoftheUniverseandthematterdensityperturbations,
basedonaplethoraofcosmologicaldataincludingSnIa,BAO,H(z),Egandgrowthratedata.
TheGAcanprovideanothermethodtoprobeunderlyingphysicalmodels,whilstalsogivingerror
estimatesinagreementwithapproachessuchasFisherandMCMC[169].Inparticularthishas
beenshowntobethecasewithcosmologicaldatabasedonseveraldifferentfiducialmodelssuch
astheΛCDMmodelandmodifiedgravitytheories[471],butalsomodelsthatviolatethedistance
dualityrelation[470].

UsingthentheGAandthecosmologicaldatadescribedinSec.12.3,wefindthatthereisa
∼2σdeviationofw(z)from-1athighredshifts,theadiabaticsoundspeedc2s,DEisevolvingand
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is negative at the ∼ 2.5σ level at z = 0.1, while using the Eg data we find a ∼ 2σ deviation of the
anisotropic stress ηDE(z) from unity at low redshifts and ∼ 4σ at high redshifts, thus suggesting the
presence of significant deviations from the ΛCDM model. The reconstructions of these quantities
in terms of the redshift z, along with the 1σ error regions, is shown in Figs. 12.4 and 12.5.

As mentioned earlier, our approach has been validated via the use of mocks, see Refs. [470,
471], so clearly then the aforementioned deviations from the ΛCDM model present a problem as
they hint towards two possibilities, either the presence of unaccounted for systematics and possibly
non-negligible radiative processes, as might be the case for the Eg data, or new physics in the form
of modifications of gravity. The latter case is quite plausible, as the deviations come from very
different data sets with very different systematics, i.e. the equation of state w(z) and c2s,DE from
the H(z) data, the growth index from the growth data coming from the RSD measurements and
the ηDE(z) from the Eg data.

Specifically, the fact that the adiabatic sound speed c2s,DE is both evolving and negative,
implies that the DE perturbations would be unstable unless there exists either a strong anisotropic
stress, coming for example from some modification of gravity, so that the total effective sound speed
is positive, as shown in Ref. [235] or a non-adiabatic DE component [327]. In particular, using the
effective fluid approach it can be shown that in f(R) models, like the Hu-Sawicki or the designer
model, the sound speed of the effective DE fluid is negative and the matter perturbations are stable
due to the anisotropic stress [9], hence lending more support to modified gravity scenarios.

A possible caveat in our analysis is that there is some overlap between the BAO and H(z)
data, which could induce spurious correlations between the two data sets. Since unfortunately, we
do not have access to the covariance matrices, we are not able to take this covariance into account,
thus possibly underestimating the errors in our analysis, hence we analyze them separately. This is
also the case for the Eg and the growth rate data, which come from overlapping surveys, however
again we do not have the covariance matrices.

However, our approach is completely agnostic as we made no assumptions about the nature
of DE or the spatial curvature of the Universe during the fitting of our data. This is one of the
main advantages of our ML approach compared to other traditional or non-parametric methods
such as cosmography which suffers from convergence issues at high redshifts or Gaussian processes
that assume a fiducial model. As the GA can provide model-independent reconstructions of key
parameters that describe DE, then if indeed there are no systematics in the data, the observed
model-independent deviations from ΛCDM could point to the existence of new physics. The
possibility of such an exciting prospect could be further strengthened by the upcoming cosmological
surveys like LSST [394].
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13
Machine Learning meets the redshift evolution of

the CMB Temperature

The original content of this chapter is based on Ref. [403]. We present a model independent
and non-parametric reconstruction with a Machine Learning algorithm of the redshift evolution
of the Cosmic Microwave Background (CMB) temperature from a wide redshift range z ∈ [0, 3]
without assuming any dark energy model, an adiabatic universe or photon number conservation.
In particular we use the Genetic Algorithms (GA) which avoid the dependency on an initial prior
or a cosmological fiducial model. Through our reconstruction we constrain new physics at late
times. We provide novel and updated estimates on the β parameter from the parametrisation
T(z) = T0(1+z)1−β , the duality relation η(z) and the cosmic opacity parameter τ(z). Furthermore
we place constraints on a temporal varying fine structure constant α, which would have signatures
in a broad spectrum of physical phenomena such as the CMB anisotropies. Overall we find no
evidence of deviations within the 1σ region from the well established ΛCDMmodel, thus confirming
its predictive potential.

13.1 Introduction

Our current knowledge for the evolution of the Universe as a whole from the first fraction of a
second to our present day, about 13.6 billion years later, rests upon the successful hot Big Bang
cosmological model [505]. It is built on the robust theoretical framework of General Relativity
(GR) and based on well tested observations such as the expansion of the Universe [506], the
relative abundance of light elements [507] and the cosmic microwave background (CMB) [508].
The presence of the latter is considered to be the best indication for a primordial expanding state
of the Universe originating from an initial high density state to become an almost perfect isotropic
blackbody radiation at a temperature of about 3K and whose emission we receive around 380, 000
years after the Big Bang.

The hot Big Bang model predicts that the CMB photon energy is redshifted with the cos-
mic expansion. In other words, the Universe has a hot and dense past and cools as it expands
adiabatically according to the linear average temperature-redshift relation (TRR) of the CMB,
TCMB(z) = T0(1 + z) where T0 = (2.72548 ± 0.00057)K is the local measurement of the CMB
temperature today i.e. at z = 0 [108] and TCMB(z) represents the temperature measured by an
observer at redshift z. This relation is not confined to a specific metric theory, holding in the
framework of GR and the electromagnetic theory of Maxwell under the assumption that photons
are massless, the CMB is thermal radiation, the first law of thermodynamics is true and that
the expansion of space is isotropic [509]. Although this linear temperature relation is well estab-
lished [113] and departures from it would require important distortions in the Planck spectrum
of the CMB [510], it can be modified for example [511] by adding extra components such as a
decaying vacuum energy density or some process of quantum gravitational origin that could affect
the adiabatic photon production (or destruction), due to late inflationary models induced by a
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scalar field, in string theory models where axions and photons could be mixed [512] or theories
with deviations from homogeneity and isotropy.

To constrain deviations from adiabatic evolution, the following power-law TCMB(z) = T0(1+
z)1−β is commonly used, where β is the parameter of the theory and β > 0 or β < 0 would be
compatible with net photon production or destruction respectively [510]. It is also of great interest
models where some fundamental constants are not space-time invariant, such as the fine structure
constant α. This effect can be found for example in theories with extra compact dimensions (aiming
to unify gravity and other fundamental forces), where the cosmic evolution of the scale factor will
have a time dependence on the coupling constants [513]. A different possibility is the inclusion of
a new scalar field with couplings to the Maxwell scale factor FabF ab whose evolution involves a
variation of α [514].

One of the first convincing evidence for a cosmic expansion came in 1998 as a result of an
unanticipated dimming through the observed light of type Ia supernovae (SNIa) [87]. Although the
cosmic acceleration has been asserted through other independent probes like the CMB [515], baryon
acoustic oscillations (BAO) [80] or the Hubble parameter [1], the presence of some cosmic opacity
that can contribute to astronomical photometric measurements of distant SNe Ia is still an open
possibility [516]. As mentioned in Ref. [517], opacity sources could come from the non-conservation
of the photon number density, which in turns changes the temperature-redshift and the distance
duality relation, or from MG theories with non-minimal couplings between the electromagnetic
Lagrangian and a new scalar field [518]. If there is some extra dimming contribution, this would
have an imprint in the cosmological parameters and the expansion rate inferred from SNe Ia
measurements. Hence, testing the cosmic opacity parameter denoted as τ(z) and in turn the
duality relation η(z) where both are related through the parametrization eτ(z)/2 = η(z) [517] is of
great interest.

Machine Learning algorithms are successful at processing and extracting crucial information
from large amounts of data and can remove the problem of model bias [401]. They are also very
useful to test the consistency of the dataset in a model independent approach and also to search for
tensions or systematics. In this Chapter we will use a particular Machine Learning (ML) algorithm,
the genetic algorithms (GA). The robustness of the GA resides in the fact that is a non-parametric
method and does not require an initial prior or a cosmological fiducial model [169, 464]. Even
though the temperature-redshift relation (TRR) appears to be well established, measurements of
the connection between the redshift and the CMB temperature serves as an important cosmological
probe. Among others, it can help to confirm the assumption of photon number conservation, the
CMB is thermal radiation, entropy conservation and that the expansion of space is isotropic.
It provides also a way to discriminate alternative cosmologies [519, 520]. Measurements of the
TRR can be also used to measure the local expansion rate H0 through the time evolution of the
background TCMB(z) [509].

In this Chapter we implement the GA which is a model independent and non-parametric al-
gorithm to reconstruct the evolution of the CMB temperature from a wide redshift range z ∈ [0, 3]
without assuming any dark energy model, an adiabatic universe or photon number conservation.
We then provide novel and updated estimates on the β parameter from the parametrisation
TCMB(z) = T0(1 + z)1−β , the duality relation η(z) and the cosmic opacity τ(z). Furthermore
we place constraints on temporal variations fine structure constant α, which could affect among
others the CMB anisotropies [521, 522]. We want to stress that our constraints are not indepen-
dent of each other since all of them parameterize in diverse ways potential deviations from the
temperature-redshift relation.

This Chapter is organized as follows. In Section 13.2 we present the notation and method-
ology of our analysis with the minimal assumptions made for the reconstruction of the data. In
Section 13.3 we compare our error analysis of the GA with the Fisher matrix approach and in
Section 13.4 we describe the data used and our implementation for the error analysis. Finally, in
Section 13.5 we present our constraints and results and in Section 13.6 we present our Conclusions.
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13.2 Analysis

In this section we apply the GA to reconstruct the background temperature of the CMB TCMB(z)
given in Table 2.3. Hereafter we will express T(z) ≡ TCMB(z). In our analysis we use 37 points of
the compilation from Table 2.3 which spans over a wide redshift range of 0 ≤ z ≤ 3.025. The data
is in the form (zi, Ti, σTi). Since our χ2 has a quadratic form

χ2
T =

NT∑
i

(
Ti − T th(zi)

σTi

)2

, (13.1)

where Tth(z) = T0T̃(z) and T̃(z) is the dimensionless temperature, we can minimize the χ2

analytically over T0 finding

χ2
T = A− B2

Γ
, (13.2)

T0 =
B

Γ
, (13.3)

where the parameters A, B and Γ are defined as

A =

NT∑
i

(
Ti
σTi

)2

, (13.4)

B =

NT∑
i

Ti T̃(zi)

σ2
Ti

, (13.5)

Γ =

NT∑
i

(
T̃(zi)

σTi

)2

, (13.6)

and we denote the theoretical value Tth(z) of the background temperature of the CMB obtained
from the GA as Tth(z) = TGA(z). Then T̃(z) = TGA(z)/T0 and we set NT = 37. Our best-fit
function found is

TGA(z) = T0

(
1 + z

(
e0.00123z2

− 0.03581z + 0.00678z2
))

, (13.7)

and our own assumption is that the value of the background temperature of the CMB T(z) today
is given by T(z = 0) = T0 where T0 is obtained directly from Eq. (13.3). The best-fit χ2 for the
GA is χ2 = 28.816, which is smaller than that of the ΛCDM model with a χ2 of χ2 = 29.176
or that with the Fisher matrix approach with χ2 = 28.892, see Sec. 13.3. In the left panel of
Fig. 13.1 we present the T(z) data compilation shown as grey points along with the ΛCDM best-fit
(dashed line) and the GA best-fit (solid black line). The shaded gray regions corresponds to the
1σ errors of the GA. For the evaluation of the GA errors on the reconstructed quantities we make
use of the path integral approach, first derived in [169, 417], where one calculates analytically a
path integral over the functional space that can be scanned by the GA. We have also tested our
GA approach leaving free the function fGA(z) as TGA(z) = T0(1 + z)1−fGA(z) finding a similar
χ2 with Eq. (13.7). We want to clarify that although the GA provide a smooth and differentiable
function at all redshifts they are a non-parametric algorithm, hence the traditional statistical
comparison based on Bayesian inference is ambiguous. Then the use of quantitative criterion such
as the Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC) or Evidence
Ratio cannot be used in this case to make a fair and consistent comparison. For this reason we
compare the best-fit χ2 for the GA and ΛCDM as can be seen in Table (13.1).

In what follows, we present some theoretical context for the remaining derived quantities
we will reconstruct and in Fig. 13.2 we present a flowchart of our fitting process for illustration
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Table13.1:Theχ2forΛCDMandGAusingtheT(z)data.

T(z)

χ2ΛCDM 29.176

χ2GA 28.816
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Figure13.1:Left:TheT(z)datacompilationshownasgreypointsalongwiththeΛCDMbest-fit
(dashedline)andtheGAbest-fit(solidblackline).Theshadedgrayregionscorrespondstothe
1σerrorsoftheGA.Right:Thereconstructionoftheβparameter.Bothcasesareconsistentwith
theΛCDMmodel.

purposes. WestressthattherobustnessoftheGAapproachresidesinthefactthatisanon-
parametricmethodanddoesnotrequireaninitialpriororacosmologicalfiducialmodel,obtaining
constraintsinamodelindependentapproach. Wealsomakeareminderthattheseconstraints
arenotindependentofeachothersinceallofthemparameterizepotentialdeviationsfromthe
backgroundtemperaturerelationoftheCMB.

13.2.1 βparameter

IfweassumethattheexpansionoftheUniverseisadiabatic,thenthehotBigBangmodelpre-
dictsthattheCMBtemperatureevolvesproportionalto(1+z). Onecanparameterizepossible
deviationstothislinearlawas

T(z)=T0(1+z)
1−β, (13.8)

whereβisaparameterthatwouldaccountforadiabaticphotonproductionβ>0ordestruction
β<0. Thisphenomenacanoccurforexampleindecayingdarkenergymodels[523]whereDE
interactswithmatterbythecreationofphotons,affectinginturntheCMBspectrum[524].From
Eq.(13.8)wefindthatwecanwriteβasthelogarithmicderivativeofT(z)

β(z)=1−(1+z)
dln(T(z)/T0)

dz
, (13.9)

whereT(z)representsourbest-fitreconstructedfunction,Eq.(13.7),andT0ourderivedparameter,
Eq.(13.3).IntherightpanelofFig.13.1wepresentourreconstructionoftheβparameterwhere
thedashedlineisthepredictionfromΛCDMandtheGAbest-fitisthesolidblackline. The
shadedgrayregionscorrespondstothe1σerrorsoftheGA. Wefindthatourmodelindependent
approachisconsistentwithanadiabaticuniverseandtheconservationofphotonnumber.
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13.2.2 Duality relation and the cosmic opacity

The distance duality relation (DDR) defines a connection between the luminosity distance dL and
the angular diameter distance dA in the following way

η(z) ≡ dL
(1 + z)2dA

= 1, (13.10)

where any deviations from η(z) 6= 1 would be a hint for new physics, e.g. that the Universe is
opaque. This relation is valid under the condition of the conservation of photon number in cosmic
evolution, gravity must be described by a metric theory and the travel of photons along null
geodesics [525] holding true for all curved space-times. The DDR has been tested from different
datasets ranging from radio galaxies and ultra compact radio sources [526], The CMB [527–529],
Baryon Acoustic Oscillations (BAO) [530, 531], H 21cm signal from disk galaxies [532], Gamma
Ray Bursts [533] and high redshift quasars [534] among others. If we assume the temperature-
redshift relation of the CMB from the ΛCDM model, i.e. T(z) = T0(1 + z), then the factor 1 + z
can be written as 1 + z = T(z)/T0. Inserting this relation into the rhs of Eq. (13.10) we find that

dL
dA

= (1 + z)2 =

(
T (z)

T0

)2

. (13.11)

Substituting the ratio dL
dA

=
(
T(z)
T0

)2

from Eq. (13.11) in Eq. (13.10) we see that the DDR can also
be written in terms of the redshift temperature relation of the CMB as(

T (z)

T0(1 + z)

)2

≡ η(z), (13.12)

as it is also shown in Ref. [535] and which should be equal to unity in the ΛCDM model. The
above relation is directly connected to the cosmic opacity τ(z) as we will show below and therefore
we can use our GA reconstruction on η(z) and τ(z) to constrain the transparency of the universe.

If we have an opaque universe, the photon flux collected by the observers is lowered by a
factor e−τ(z), and the observed luminosity distance dL,obs can be expressed as [517]

dL,obs(z) = dL,true(z)e
τ(z)/2, (13.13)

where τ(z) denotes the opacity parameter between an observer at z = 0 and a source at z, and
physically it gives us information about how transparent is the universe or in other words it connotes
the optical depth associated to the cosmic absorption. This parameter can mimic a dark energy
behaviour [533] and reconstructions for the parameter τ(z) have been done in the past [536–538]
and recently it has been tested from Gravitational Waves mock data from the third generation of
the Einstein Telescope and using Gaussian Processes [517]. From Eq. (13.10) and Eq. (13.13) we
can see that

eτ(z)/2 = η(z), (13.14)

then using Eq. (13.12) we see that τ(z) and our reconstruction for T(z) are connected in the
following way

τ(z) = 4 ln

(
T (z)/T0

(1 + z)

)
. (13.15)

13.2.3 Fine structure constant

Fundamental constants, which we assume to be constant over space-time, are described opera-
tionally, meaning that nature does not force it to be constant. They are not given by the theory and
must be obtained experimentally. For a review on the variation of fundamental constants see [539].
Here we will probe the interesting case where the fine structure constant α = e2

~c is not invariant
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Figure13.2:AflowchartofthereconstructedfunctionsusingourMachineLearningalgorithmfor
theT(z)data.

andwewillexpressitsrelativevariationas∆α/α.Ifthereareeventuallysignaturesofavariation
itwouldhaveimprintsindifferentphysicalmechanismssuchastheCMBanisotropies[522].Con-
straintsonthisvariation,bothtemporalandspatial,havebeenperformedalready[514,540–545],
andthisvariationcanbeproducedforexamplethroughanevolvingscalarfieldwhichiscoupled
totheelectromagneticLagrangian[514]producingviolationsinthephotonnumberconservation.
Thiswillgiverisetoboth,variationsofthefinestructureconstantandviolationsofthestandard
TCMB(z)law. AclassofmodelswherethisoccursistheBekenstein-Sanvik-Barrow-Magueijo
(BSBM)model[546],wheretheelectricchargeisallowedtovary.Althoughsuchtheoriespreserve
thelocalgaugeandLorentzinvariance,thefinestructureconstantwillvaryduringthematter
dominatedera.Thecorrespondingactionis

S= d4x
√
−gLg+Lm−

ω

2
∂µψ∂

µψ−e−2ψLem , (13.16)

whereLg=
1

16πGRistheHilbert-EinsteinLagrangianplusthematterfieldsLm,thethirdtermis
thekinetictermforthescalarfieldψand,finally,thelasttermcouplesthescalarfieldwiththe

standardelectromagneticLagrangianLem=
FµνFµν
4 . Thenthegoverningevolutionequationof

theradiationenergyreads
ρ̇γ+4Hργ=2ψ̇ργ, (13.17)

with
α

α0
=exp2(ψ−ψ0). (13.18)

Forthistypeofmodels,assumingadiabaticity,therelationbetweentheevolutionoftheCMB
temperatureT(z)andthevariationofthefinestructureconstantisexpressedas[547]

T(z)/T0∼(1+z)1+
1

4

∆α

α
. (13.19)

Since∆α/αisexpectedtobesmallexperimentally,amoregeneralphenomenologicalrelation
thatcanbetestedobservationallyandcanbeseenasagoodapproximationforawiderrangeof
couplingsisexpressedas[540]

T(z)/T0∼(1+z)1+ε
∆α

α
, (13.20)

orinstead
∆TCMB
T

=
TCMB(z)−TCMB,std(z)

TCMB,std(z)
∼ε
∆α

α
, (13.21)

whereTCMB,std(z)representstheevolutionoftheCMBtemperatureintheΛCDMmodel,i.e
TCMB,std(z)=T0(1+z).Thecoefficientεdependsonthespecificmodelunderconsiderationand
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it is commonly assumed to be of order unity [541], hence we will consider as a test case ε = 1.
Writing ∆α

α as a function of T(z) we find

∆α

α
∼ − (1 + z)− T (z)/T0

ε (1 + z)
. (13.22)

This relation Eq. (13.22), can be tested for both, time and/or spatial variations of α [547]. To
test for spatial variations of the fine structure, we would have to resolve the CMB temperature at
the cluster location using multi-frequency measurements of the thermal Sunyaev Zel’dovich effect
(TSZ). This has already been performed in [514, 541] and we plan to do a similar study using the
GA but such analysis is left for a future work. In this Chapter we will limit to constrain how the
fine structure constant α changes with distance, or in other words, test its temporal evolution using
the CMB temperature at redshift between 0 and 3, with the data compilation found in Table 2.3
which comes from SZ observations at low redshifts and from observations of spectral lines at high
redshift. To the best of our knowledge, this is the first time that temporal variations on the fine-
structure constant ∆α

α are constrained in a model independent and non parametric approach using
the GA.

13.3 Fisher matrix approach

To evaluate the rigor of the path integral approach for the error analysis of the GA we compare
it numerically with the Fisher matrix approach. We chose the following function which could be
used to test deviations from the ΛCDM model

f(z; a, b) = T0(1 + z)1+ax+bx2

, (13.23)

where z is the redshift and a and b are constant numbers. Then we fitted the model f(z; a, b) of
Eq (13.23) by minimizing the χ2

χ2(a, b) =
∑
i

(
yi − f(zi; a, b)

σyi

)2

. (13.24)

The best-fit value is given by (a, b)min = (a = −0.0264± 0.0502, b = 0.0106± 0.0231) with a
χ2
min = 28.892. The shaded gray region from Fig. 13.3 is the 1σ error following a Fisher Ma-

trix approach [169]. The error of our best-fitted function f(z; a, b) is obtained from

σf (z)2 =
∑
i,j

Cij∂if(z; a, b)∂jf(z; a, b) |min, (13.25)

which is evaluated at the best fit [548] and the dummy variables (i, j) correspond to our parameters
(a, b). The covariance matrix Cij is obtained from the inverse of the Fisher matrix Cij = F−1

ij

where
Fij =

1

2
∂ijχ

2(a, b) |min, (13.26)

evaluated at the best-fit. Comparing the shaded gray regions from the Fisher matrix method see
Fig. 13.3 and the GA approach, see Fig. 13.1 we see that the path integral approach [169, 417] is
robust.

13.4 Data compilation and error analysis

In our analysis we use 37 points and the compilation can be found in Table 2.3 of Chapter 2. The
main advantage of our compilation is that it spans over a wide redshift range of 0 ≤ z ≤ 3.025,
thus testing the β parameter, the duality relation η(z), the cosmic opacity parameter τ(z) and
temporal variations on the fine structure constant ∆α

α up to high redshifts.
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Figure13.3: TheT(z)datacompilationshownasgreypointsalongwiththeΛCDMbest-fit
(dashedline)andtheFishermatrixmethodbest-fit(solidblackline). Theshadedgrayregions
correspondstothe1σerrorsoftheFishermatrixmethodandisconsistentwiththeGAapproach,
seeFig.13.1.

The1σerrorsofβ,η(z),τ(z)and∆αα werecomputedfollowingthetraditionalerrorprop-
agation,sinceithasbeenshown[324]thatisinagreementwiththeerrorsobtainedusingthe
definitionofthestandarddeviationδg2= g2 − g2,wheregisaquantityformedbyafunction
f.Fortheβparameter,sinceitisdefinedas

β(z)=1−(1+z)
dln(T(z)/T0)

dz
, (13.27)

followingtheaforementionedapproachwefindthattheerrorofβ,e.g.δβis

δβ(z)=−(1+z)
d(δT(z)/T(z))

dz
, (13.28)

whereT(z)isourbest-fitfunctiongivenbytheGAandits1σerrorobtainedthroughthepath
integralapproachisδT(z).Similarlywecanderivetherestoftheerrors.Forthedualityrelation
η(z)wehavethat

η(z)=
T(z)/T0
(1+z)

2

, (13.29)

then

δη(z)=
2T(z)δT(z)

T20(1+z)
2
. (13.30)

Forthecosmicopacityparameterdefinedas

τ(z)=4ln
T(z)/T0
(1+z)

, (13.31)

wehave

δτ(z)=
4

T(z)/T0
ln(δT(z)/T0), (13.32)

andfinallyforthevariationofthefinestructureconstant

∆α

α
=−
(1+z)−T(z)/T0

ε(1+z)
, (13.33)

wefoundthefollowing

δ
∆α

α
=

1

(1+z)ε

δT(z)

T0
. (13.34)
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Figure13.4:Left:Thereconstructionofthedualityrelationη(z). Right:Thereconstructionof
thecosmicopacityτ(z).InbothcasestheΛCDMbest-fitcorrespondstothedashedlineandthe
GAbest-fittothesolidblacklinealongwiththe1σerrors(grayregions).Bothcasesareconsistent
withtheΛCDMmodel.

13.5 Results

InthisSectionwepresentourbest-fitreconstructionsfortheparameterβ,thedualityrelationη(z),
theopacityparameterτ(z)andtemporalvariationsonthefinestructureconstant∆αα.Inserting
ourreconstructedT(z)functionEq.(13.7)inEqs.(13.9),(13.12),(13.15)and(13.22)wederived
thefollowingconstraintsatredshiftz=0

β(z=0) = 0.0000±0.0224, (13.35)

η(z=0) = 1.0000±0.0002, (13.36)

τ(z=0) = 0.0000±0.0004, (13.37)

∆α

α
(z=0,ε=1) = 0.0000±0.0001, (13.38)

andatredshiftz=3.025wherewehaveourlastdatapoint

β(z=3.025) = −0.0309±0.1475, (13.39)

η(z=3.025) = 0.9483±0.1986, (13.40)

τ(z=3.025) = −0.1062±0.4188, (13.41)

∆α

α
(z=3.025,ε=1) = −0.0262±0.1020. (13.42)

Fromthenumbersgivenabove,wecanseethatbothatlowandhighredshiftsourconstraintsare
consistentwiththeΛCDMmodel.IntheleftandrightpanelofFig.13.4weshowthereconstruction
ofthedualityrelationη(z)andthecosmicopacityparameterτ(z)respectively.Inbothcases
theexpectedvaluefromΛCDMcorrespondstothedashedlineandtheGAbest-fittothesolid
blacklinealongwiththe1σerrors(grayregions).Bothcasesareconsistentwithphotonnumber
conservationandatransparentuniverseandhencewiththeΛCDMmodel.Finally,inFig.13.5we
showourreconstructionofthevariationofthefinestructureconstantforε=1whichisconsistent
withanonvaryingconstantwithinthe1σregion.Overall,forallourreconstructionswefindno
evidenceofdeviationswithinthe1σregionfromthewellestablishedΛCDMmodel.

13.6 Conclusions

Wehavepresentedamodelindependentandnon-parametricreconstructionofdatacomingfrom
theredshiftevolutionoftheCMBtemperaturewhichspansoveraredshiftrangeof0≤z≤3.025
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Figure13.5: Thereconstructionofthetemporalvariationofthefinestructureconstant∆α
α for

ε=1. ThedashedlinecorrespondstoanonvaryingconstantandtheGAbest-fittothesolid
blacklinealongwiththe1σerrors(grayregions). Wefoundthatourreconstructionisconsistent
withafinestructureconstantthatisnottemporallyvarying.

withaMachineLearningalgorithmwithoutassuminganydarkenergymodel,anadiabaticuniverse
orphotonnumberconservation.InparticularweusedtheGAwhichavoidsthedependency
onaninitialpriororacosmologicalfiducialmodel. Fromourreconstructionwehaveprovided
constraintsandupdatedestimatesinanovelapproachontheβparameterfromtheparametrisation
T(z)=T0(1+z)

1−β,thedualityrelationη(z)andthecosmicopacityparameterτ(z).Furthermore
weplaceconstraintsonatemporalvaryingfinestructureconstantα,whichwouldhavesignatures
inabroadspectrumofphysicalphenomenasuchastheCMBanisotropies.Itisimportanttonotice
thatourconstraintsarenotindependentofeachothersinceallofthemparameterizeindiverse
wayspotentialdeviationsfromthetemperature-redshiftrelation. Withinuncertainties,ourmodel
independentapproachisconsistentwiththestandardviewofT∝(1+z)havingfoundnostrong
discrepancieswithinthe1σregionwiththeΛCDMmodel.Finally,ourresultsdemonstratethata
transparentuniverseispreferredat1σ.
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14
Machine learning forecasts of the cosmic distance
duality relation with strongly lensed gravitational

wave events

The original content of this chapter is based on Ref. [549]. We use simulated strongly lensed grav-
itational wave events from the Einstein Telescope to demonstrate how the luminosity and angular
diameter distances, dL(z) and dA(z) respectively, can be combined to test in a model independent
manner for deviations from the cosmic distance duality relation and the standard cosmological
model. In particular, we use two machine learning approaches, the Genetic Algorithms and Gaus-
sian Processes, to reconstruct the mock data and we show that both approaches are capable of
correctly recovering the underlying fiducial model and can provide percent-level constraints at
intermediate redshifts when applied to future Einstein Telescope data.

14.1 Introduction

The first detection of gravitational waves (GWs) by the LIGO/Virgo collaboration was not just
limited to the discovery of new astrophysical objects, but it was also instrumental in furthering
our understanding of the fundamental properties of gravity and cosmology, by providing tests of
gravity in the strong field regime. These observations from black hole and neutron star mergers
have, figuratively speaking, shone a light on the population of compact objects in the Universe
and the mechanism by which they are formed [550], given some of the most rigorous direct tests
to date of General Relativity (GR) [551,552] and provided the first measurement of a cosmological
parameter, the Hubble constant H0, using GW sources [553].

Moreover, the observation of the binary neutron star merger GW170817 availed us of the
opportunity to test gravity both in the strong regime and at large scales, as it was followed by the
nearly simultaneous detection of its optical counterpart and allowed us to strongly constrain the
GW propagation speed to |cg − c| . O

(
10−15

)
[554], thus challenging a wide range of modified

gravity scenarios which are candidates to explain the current acceleration of the Universe [171–
174,180,555]. The impact of GW observations will be further extended by third generation ground
based detectors like the Einstein Telescope (ET) [556] and the space-based interferometer LISA
[557].

Similarly to photons, GWs can be gravitationally lensed by the presence of galaxies and
clusters of galaxies, producing a deflection in their trajectories, thus generating multiple detection
events. This phenomenon is quite intriguing because the clustered matter that lies in between the
GW source and the observer can enhance the observed signal [558]. This in turn can cause the
luminosity distance to the source and therefore its redshift, if combined with the Hubble parameter
H0 constraints [559], to be underestimated. Sequentially, this would lead to an overestimation of
the chirp mass [560].

With the upgraded sensitivity of the third generation of GW detectors, such as the Einstein
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Telescope (ET), the detection sensitivity of the GW events would be accordingly improved. Thus,
with the sufficiently large number of detectable events foreseen [561,562], it is expected that some
of these events could be gravitationally lensed, thus allowing the creation of a considerably large
catalogue of strongly lensed GWs event within a few years of operation. For an extensive analysis
on how GW lensing is enriched with concrete signatures and features and can be used to search
for deviations of GR see Ref. [563].

As the GW passes through near massive astrophysical objects, its path would be modified
producing gravitational lensing [564–566]. Since its first proposal [567], efforts have been placed
to search for signatures of gravitational lensing in binary black hole events from current detectors
such as LIGO and Virgo [568] but with no strong evidence of this effect [569]. However, as the
sensitivity of the detectors improve further, it is plausible to observe lensing effects with future
detectors such as aLIGO, the ET [570] and the space-based detector LISA [571]. In Ref. [572]
the authors improved previous analysis of GW lensing events by including effects created by the
ellipticity of lensing galaxies, lens environments and magnification bias. Indeed, these observations
could lead to new applications in astrophysics, cosmology and fundamental physics [573–579].

One of the advantages of strongly lensed GW events comes from their ability to provide
simultaneous measurements of both the luminosity and angular diameter distance, i.e dL(z) and
dA(z) respectively, which in turn could be used to probe fundamental properties of the standard
cosmological model. One such example of a possible probe is the cosmic distance duality relation
(DDR), also known as the Etherington relation, which relates the luminosity distance to the angular
diameter distance at any redshift z via [580]

dL(z) = (1 + z)2dA(z), (14.1)

which is valid for any metric theory of gravity like GR and under the condition that the number
of gravitons or photons, depending in which context it is applied, is conserved and that they travel
along null geodesics in a pseudo-Riemannian spacetime [526]. At this point we can introduce the
duality parameter

η(z) ≡ dL(z)

(1 + z)2dA(z)

≡ (1 + z)ε(z) (14.2)

where η(z) is a function that accounts for possible deviations from unity and is equal to unity
when the DDR holds, while in the last line we have introduced a phenomenological parameter
ε(z), usually assumed to be constant, i.e. ε(z) ' ε0 =constant. Notice that on Chapter 13 we have
already constrained the duality relation but with the redshift evolution of the CMB Temperature.

As we have seen, any violation of the DDR relation at any redshift, i.e η(z) 6= 1 or ε0 6=
0, would be a hint of new physics, which in the case of photons could be caused by different
mechanisms, such as the annihilation of photons by the intergalactic dust [581], the coupling of
photons with other particles like axions [582] and the variation of fundamental constants [529]. In
fact several works have been devoted to test the DDR relation [403,470,471,526–528,530–534,583–
587].

As mentioned earlier, in our analysis ε0 is a phenomenological parameter that parameterizes
deviations from the standard DDR, i.e. any values that are different from zero imply a deviation
from the standard model. Clearly, any such deviations will be small, as otherwise they would be
immediately obvious in a plethora of observations, including strong and weak lensing. Indeed, in
Ref. [470] it was shown that current Type Ia supernovae (SnIa) and Baryon Acoustic Oscillations
(BAO) data constrain the parameter to be ε0 = 0.013± 0.029 and that there is no evidence for a
redshift evolution of ε(z). The latter was shown by splitting the data in two bins, in 0 < z < 0.9
and z ≥ 0.9, and testing if both bins give consistent results for the reconstruction of the parameter
ε0 in each bin. In particular, it was found that the values of ε0 in both bins were the same, note
however that this analysis was made using data in small redshifts (z < 1.5), so deviations might
be present at higher redshifts.
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Furthermore, in Ref. [470] it was found that future large scale structure surveys like Euclid
will be able to improve upon the the constraints on ε0 from currently available BAO and type Ia
supernovae (SnIa) by a factor of six. In particular, current BAO and SnIa data provide a constraint
of ε0 = 0.013 ± 0.029, while Euclid will improve this to ε0 = −0.0008 ± 0.0049, which is a tighter
constraint on ε0 by a factor of six [470].

Since ε(z) relates two geometric variables, i.e. the luminosity and angular diameter distances,
then strong lensing (either with light or GWs) is ideally suited to constrain it, while in the case of
weak lensing the effect is less clear, but as was shown in Ref. [470], the bulk of the constraining
power will come from improving the bounds on Ωm, thus breaking the degeneracies between Ωm
and ε.

In this Chapter we show how to reconstruct the DDR relation using mock datasets of strongly
lensed GWs, as they allow us to measure both the angular diameter and luminosity distance is
complementary to the approach of Ref. [588], where η(z) was constrained using mocks of strongly
lensed SnIa, based on the Large Synoptic Survey Telescope (LSST) survey. Both methods have
the advantage of allowing for measurements of the duality parameter without relying on multiple
datasets, hence it is competitive with other more traditional tests of the DDR relation where the
latter is constrained through the combination of SnIa and BAO observations, as for example it has
been forecast for future surveys [470].

In Ref. [589] the authors proposed a novel method to test the cosmic distance duality re-
lation using the strongly lensed GWs from the Einstein Telescope and in Ref. [590] mock data
points were generated for this ground-based detector, while a parameterized approach was used to
constrain the DDR relation. Here we present a broader analysis by presenting a slightly different
methodology which allows us to directly make robust η(z) mocks, based on the mocks of dL and dA
and then we use Genetic Algorithms (GA) and Gaussian Processes (GP), two non-parametric and
symbolic regression subclasses of machine learning methods, to reconstruct η(z) directly without
any underlying model.

The parametric and non-parametric methods, like the GA, were extensively compared using
mock data in Ref. [470], where it was shown that the two approaches are consistent with each
other, albeit the errors in the reconstructed quantities are slightly larger for the GA due to its
non-parametric nature. On the other hand, a model for the duality parameter η, based on axion
physics was studied in Ref. [471]. Since axions couple to the standard model and photons, it is
expected that some of the axions will be converted to photons and vice versa, thus leading to
a surplus or deficit of photons. Since the DDR assumes the photon number conservation, this
implies axions lead to a violation of the DDR and an duality parameter which is different from
unity. Using mock data it was shown in Ref. [471], that both the GA and the GP can consistently
reconstruct the cosmological distances and the duality parameter η in agreement with each other
and the fiducial model, within the errors, thus we are confident for our reconstruction methods.

Here we follow the approach of Ref. [471], especially as we also use mock GW events, albeit
we assume that they can be lensed so that we also extract the angular diameter distance. Using
the mock data, where we know the fiducial cosmology, allows us to assess the quality of the fit and
determine whether the GA and the GP can successfully determine the underlying model.

Our Chapter is organized as follows: In Sec. 14.2 we describe the methodology to generate
the ET mock data points and the machine learning (ML) implementation. In Sec. 14.3 we present
our reconstructions for the GP and GA, while in Sec. 14.4 we perform a comparative analysis.
Finally in Sec. 14.5 we summarize our conclusions.
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14.2 Methodology

14.2.1 StronglylensedGWevents

TheangulardiameterdistancedAfromstronglensing

HerewewillnowconsiderthecasewhenaGWemissionisstronglylensedbyaforegroundgalaxy,
whosemassprofilecanbemodeledbythesingularisothermalsphere(SIS)model[591]. Wewill
assumehoweverthatGWspropagatefollowinggeometricoptics1,i.e.weneglectwaveeffects,see
Ref.[566]formoredetails. Withthissetupthenweassumethetwoimageswillappearatangular
positionsθ1andθ2withrespecttothelensinggalaxy.SeeFig.14.1thegeometricalillustration
ofthelensingsystem.Thus,theEinsteinradiusθE=|θ1−θ2|/2willbegivenby[591]

θE=
4πσ2SISdA(zl,zs)

c2dA(zs)
, (14.3)

wherethevelocitydispersionofthelensgalaxyisgivenbyσSIS,theangulardiameterdistances
fromtheobservertothesourceandfromthelenstothesourcearegivenbydA(zs)anddA(zl,zs)
respectively,zlandzsaretheredshiftsofthelensandsourcerespectively. Wecanrearrange
Eq.(14.3)toobtainthedistanceratio,whichwillbegivenby

RA≡
dA(zl,zs)

dA(zs)
=
c2θE
4πσ2SIS

. (14.4)

Iftheangularpositionsandthevelocitydispersionarewellmeasured,whichwouldrequireaprecise
localizationoftheGWsourcesthatshouldbeachievablewithanetworkofinterferometers2,then
wecanobtainthedistanceratioRAfromEq.(14.4).

Figure14.1:Thegeometryofgravitationallensing.Thesource(S)atredshiftzsisstronglylensed
byaforegroundgalaxy(L)atredshiftzl.Theobserver(O)seestwoimages(S1andS2)atangular
positionsθ1andθ2,respectively. Theactualangularpositionofthesourcewithrespecttothe
line-of-sightfromobservertolensisβ.

1ThefrequencyofagravitationalwaveproducedbythemergerofNeutronStar-BlackHole(NS-BH)
orNeutronStar-NeutronStar(NS-NS)binary,isaboutseveralhundredHertzandthecorresponding
wavelength(∼106m)ismuchsmallerthanthescaleoflensgalaxy(∼kpc).Hence,itisunnecessaryto
considerthewaveeffect.

2Theangularseparationbetweentheimagesinatypicalstronglylensingsystemisaboutseveralarc-
seconds[592].Inordertoidentifytheimages,theangularresolutionofGWdetectorsshouldbebetter
thanarcseconds.Alargernetworkofinterferometersisnecessaryinordertoreachsuchahighaccuracy.
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As the two images propagating along different paths will take different amounts of time to
reach Earth, then the time delay between the images will be given by [591]

∆t =
(1 + zl)

c

dA(zl)dA(zs)

dA(zl, zs)
∆φ, (14.5)

where

∆φ =
(θ1 − β)2

2
−Ψ(θ1)− (θ2 − β)2

2
+ Ψ(θ2), (14.6)

is the Fermat potential difference between two paths, β is the actual angular position of the source,
and Ψ(θ) is the rescaled projected gravitational potential of the lens galaxy. From equation (14.5)
we can thus obtain the time-delay distance

D∆t ≡
dA(zl)dA(zs)

dA(zl, zs)
=

c

1 + zl

∆t

∆φ
. (14.7)

If the gravitational potential of the lens galaxy can be measured from photometric and spectroscopic
observations, and if the time delay between two images can be well measured, we can obtain the
time-delay distance D∆t according to Eq. (14.7).

In a spatially flat universe, the angular diameter distance from lens to source, dA(zl, zs), can
be expressed in terms of dA(zs) and dA(zl) as [589]

dA(zl, zs) = dA(zs)−
1 + zl
1 + zs

dA(zl). (14.8)

Equation (14.8), together with equations (14.4) and (14.7) allow us to uniquely solve for dA(zs),
which reads

dA(zs) =
1 + zl
1 + zs

RAD∆t

1−RA
, (14.9)

where RA and D∆t are given by equations (14.4) and (14.7), respectively. The error on dA(zs)
propagates from the errors on RA and D∆t. Using the standard error propagating formula, and
assuming that RA and D∆t are uncorrelated, we obtain,

δdA(zs)

dA(zs)
=

√(
δRA

RA(1−RA)

)2

+

(
δD∆t

D∆t

)2

, (14.10)

where
δRA
RA

=

√(
δθE
θE

)2

+ 4

(
δσSIS

σSIS

)2

, (14.11)

and
δD∆t

D∆t
=

√(
δ∆t

∆t

)2

+

(
δ∆φ

∆φ

)2

. (14.12)

In order for our method to work, we must independently measure the following observables:
(zl, zs, ∆t, ∆φ, θE , σSIS). If a GW event is accompanied by electromagnetic counterparts, the
redshifts of the lens and source can be measured spectrometrically with negligible uncertainty, just
as in the strongly lensed quasar or galaxy case [593,594]. The time delay between two images can
be measured by comparing the light curves of two images at percentage level [595]. Especially, in
the strongly lensed GW case, due to the transient property of GW signal, the time delay can be
measured with negligible uncertainty. The difference of Fermat potentials ∆φ, and the velocity
dispersion of lens galaxy σSIS, can be measured through photometric and spectroscopic observations
of the lens galaxy [594,596]. The Einstein radius, θE = |θ1 − θ2|/2, can be obtained by measuring
the image positions θ1 and θ2. The measurements of the latter three observables, however, may
be uncertain. Following Ref. [597], we assume 0.6%, 1.0% and 5.0% uncertainties on ∆φ, θE , σSIS,
respectively. Having obtained all the observables, dA(zs) and its uncertainty can be derived from
Eqs. (14.9)–(14.12). We see that the uncertainty on dA(zs) mainly comes from the uncertainty on
σSIS. The uncertainties on the rest observables will not strongly affect our results. To improve the
accuracy, more accurate determinations of the velocity dispersion are required.
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The luminosity distance dL from GW signals

We now consider an unlensed GW source. In this case the luminosity distance to the source can be
directly obtained by matching the GW signals to the GW templates. GW detectors based on the
interferometers, such as ET, measure the change of difference of two optical paths caused by the
pass of GW signals. In general, the response of a GW detector on GW signals will depend on the
spacetime strain, which is the linear combination of the two polarization states h+(t) and h×(t)

h(t) = F+(θ, ϕ, ψ)h+(t) + F×(θ, ϕ, ψ)h×(t), (14.13)

where the beam-pattern functions F+(θ, ϕ, ψ) and F×(θ, ϕ, ψ) do not only depend on the config-
uration of the detector, but they also depend on the position of the GW source (θ, ϕ) and the
polarization angle ψ. For example, in the case of the ET, the beam-pattern functions can be found
in Ref. [598].

In the post-Newtonian and stationary phase approximation, the strain h(t) can be written
in the the Fourier space by [598,599]

H(f) = Af−7/6 exp[i(2πft0 − π/4 + 2ψ(f/2)− ϕ(2,0))], (14.14)

where f is the GW frequency, t0 is the time of merger. The explicit expressions of the phase terms
ψ(f/2) and ϕ(2,0) can be found in Ref. [600], but they are unimportant in our study here. The
Fourier amplitude in Eq. (14.14) is given by

A =
1

dL

√
F 2

+(1 + cos2 ι)2 + 4F 2
× cos2 ι

√
5π

96
π−7/6M5/6

c ,

where ι is the inclination angle, dL is the luminosity distance, Mc = Mη3/5 is the chirp mass,
M = m1 +m2 is the total mass, η = m1m2/M

2 is the symmetric mass ratio, m1 and m2 are the
component masses of the binary in the comoving frame. Here and after, we work in the natural
units, so c = G = 1. In the case of a GW source at redshift z,Mc in equation (14.15) should be
interpreted as the chirp mass in the observer frame, which can be related to that of the comoving
frame via Mc,obs = (1 + z)Mc,com. Finally, it should be noted that the exponential term on the
right-hand side of Eq. (14.14) is just a phase term, which is unimportant in our analysis.

The signal-to-noise ratio (SNR) of the detector’s response to a GW signal is given by [599]

ρi =
√
〈H,H〉, (14.15)

where the inner product may be defined as

〈a, b〉 = 4

∫ fupper

flower

ã(f)b̃∗(f) + ã∗(f)b̃(f)

2

df

Sh(f)
, (14.16)

and in the latter equation, ã and a∗ stand for the Fourier transformation and complex conjugation
of a, respectively, while Sh(f) is the one-side noise power spectral density (PSD) of ET, flower = 1
Hz and fupper = 2fLSO are the lower and upper cutoffs of the frequency, fLSO = 1/(63/22πMobs)
is the orbit frequency at the last stable orbit, Mobs = (1 + z)(m1 + m2) is the total mass in the
observer frame. Finally, the PSD for ET is given by [601]

Sh(f) = 10−50(2.39× 10−27x−15.64 + 0.349x−2.145 + 1.76x−0.12 + 0.409x1.1)2 Hz−1,

where x is the GW frequency in unit of 100Hz, i.e., x = f/100Hz. For the ET, three arms interfere
with each other in pairs, hence the combined SNR is given by

ρ =

[
3∑
i=1

ρ2
i

]1/2

. (14.17)
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In general, there is degeneracy between the luminosity distance dL and inclination angle
ι, so the uncertainty on dL may be large. However, if the GW event is accompanied by a short
gamma-ray burst (GRB), we can assume that the inclination angle is small, since GRB is expected
to be produced in a narrow beam. In this case the degeneracy between dL and ι breaks, and the
uncertainty on dL can be estimated as

δdL =

√(
2dL
ρ

)2

+ (0.05zdL)2 , (14.18)

where the 0.05z term represents the uncertainty arising from weak lensing effect caused by the
intergalactic medium along the line-of-sight.

The above discussion is applicable for unlensed GW events. However, the situation is subtle
for strongly lensed GW events. Due to the magnification effect of lensing, the luminosity distance
determined from the strongly lensed GW signals is not the true distance. Since the amplitude of
GW signal A is magnified by the lensing effect by a factor of√µ± [602], and the luminosity distance
dL is inversely proportional to A, the true luminosity distance should be dtrue

L =
√
µ±d

obs
L . If the

magnification factor √µ± can be independently determined through photometric observations, we
can obtain the true distance dtrue

L . The uncertainty of µ± will also propagate to dL. Therefore,
the total uncertainty on dL(zs) is given by

δdtotal
L

dL
=

√(
2

ρ

)2

+ (0.05zs)2 +
1

4

(
δµ±
µ±

)2

. (14.19)

Due to the contamination of the image flux by the foreground lensing galaxy, the magnification
factor is highly uncertain. Here we follow Ref. [597] and assume a 20% uncertainty on µ±.

Theoretically, only the merger of NS-NS or NS-BH binaries may be accompanied by a short
GRB, while the merger of BH-BH binary is expected to have no electromagnetic counterpart. Our
method requires the direct measurement of source redshift, which is achievable only for NS-NS
or NS-BH mergers. Unfortunately, according to numerical simulations [570], most of the lensed
GW events are produced by the BH-BH merger. Without the redshift for the BH-BH events,
they cannot be directly used to test DDR. If, however, the GW event can be precisely localized,
it is possible to infer the redshift of GW source statistically [603], but will introduce additional
uncertainty.

14.2.2 The mock DDR data points

The fiducial cosmological distances

In order to forecast direct measurements of the duality parameter η(z) from the ET, we use mock
distance data points based on individual measurements of the luminosity and angular diameter
distances dL(z) and dA(z) respectively, as described previously. To join the two measurements and
derive the η(z) data points, we follow the pioneering work of Ref. [588] using a Markov Chain-Monte
Carlo (MCMC) approach to create mock samples.

In an nutshell we can summarize this approach as follows. First, we assume a fiducial cos-
mology based on the cosmological constant Λ and Cold Dark Matter (ΛCDM) model with a Hubble
constant H0 = 70 km s−1 Mpc−1, a matter density parameter Ωm,0 = 0.3 and assuming flatness
(Ωk = 0). Then, based on the redshift distribution of sources, see Fig. 1 in Ref. [590] and Fig. 2 in
Ref. [570] for either NS-NS or NS-BH, we calculate at every point in redshift the corresponding an-
gular diameter distance dA(z) and the luminosity distance dL(z) via the methodology of Ref. [590]
as described earlier. At this point, we also introduce a modification of the luminosity distance so
that the observed luminosity distance would be proportional to the “bare" one as:

dL,obs(z) = (1 + z)ε(z)dL,bare(z), (14.20)
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such that it corresponds to a duality parameter η(z) = (1+z)ε(z), which should be equal to unity if
no deviations are present, i.e. ε(z)→ 0 in the ΛCDM model and η(z) = 1. In particular, we assume
that to lowest order, any deviations are small enough that we can assume a constant ε(z) = ε0.
In general, any such deviations on the GW sector could be due to modifications of gravity, see for
example Ref. [471]. Specifically, in what follows we will assume four specific scenarios: the vanilla
ΛCDM case for ε0 = 0 and three more cases with one mild and two stronger deviations of the
duality relation with ε0 = (0.01, 0.05, 0.1).

As mentioned earlier, current supernovae and BAO data constrain the parameter to be
ε0 = 0.013± 0.029 and there is no evidence for a redshift evolution of ε(z), while that Euclid will
be able to improve the constraints by a factor of six [470]. Thus, our choices of the ε0 are realistic
at the lower end (ε0 ∼ 0.01) and high enough to sufficiently test our methodology at the higher
end (ε0 ∼ 0.1). In any case the constant ε(z) = ε0 is the simplest ansatz used to test for deviations
from the duality relation and it does not really affect our analysis or our conclusions.

The mock samples of η(z)

After we have calculated the fiducial values of the cosmological distances, we can then make mock
samples of the duality parameter η(z) directly via the following procedure: First, at each redshift
we create mock distances dA(zs) and dL(zs) based on a Gaussian distribution using the fiducial
values and 1σ errors based on the methodology of Ref. [588], such that for the mock we have

(Di,mock, σi,mock)→ N (Di,fid, σi,fid), (14.21)

where i = 1 . . . Nlens, Di represents either dA or dL, while σi,fid are the errors and N (µ, σ) stands
for a normal distribution with mean µ and standard deviation σ. Then, to make a mock sample of
η(zi) values we can use Eq. (14.2) and finally, we employ an MCMC-like approach to obtain the
mean values and the errors of the data points as follows:

1. Using the mock distances at each redshift Di,mock we draw 10,000 random samples from the
assumed distribution for Di,mock.

2. We then estimate η(zi) at each redshift zi for each of the 10,000 random points using
Eq. (14.2) to obtain 10,000 realisations of the distribution of η(zi).

3. We estimate the mean and standard deviation of log10 η(zi) at each redshift point to create
our final mock sample.

The main advantage of this MCMC-like approach is that it does not depend on error propagation for
the various quantities, which could be highly non-trivial for complicated modified gravity models,
but it also preserves the statistical properties of the samples. This allows us to obtain our results
without any further dependence on the cosmological model and in Ref. [471] it was shown that this
approach allows for the creation of mocks that have minimal external biases, theoretical, statistical
or otherwise. For example, this means that we no longer have to assume that the distributions of
the log10 η(zi) data points are sufficiently Gaussian, as implied by standard error propagation and
which may bias the results by introducing artificial deviations from the fiducial model.

Finally, we should note that we chose to make mocks of log10 η(zi) instead of simply
η(zi), as we found that the distribution of the latter is somewhat non-gaussian, while on the
other hand, log10 η(zi) is very close to being normally distributed around zero, i.e. log10 η(zi) ∼
N (0, σlog10 η(zi)). Then, having created the log10 η(zi) samples, we consider a likelihood L of the
form [588]:

− 2 lnL =

Nlens∑
i=1

(
log10 η(zi)− log10 η

th(zi)

σlog10 η(zi)

)2

(14.22)

where ηth(zi) is the theoretical value of η(zi). In our actual analysis we will consider the somewhat
optimistic case of Nlens = 100 as an optimistic case for the possible number of events that could
be detected in the coming decades.
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14.2.3 Machine learning

Machine learning (ML) is a subset of artificial intelligence designed to model a given dataset. ML
approaches have been proven to be successful at processing and extracting essential information
from large amounts of data and can get rid of the problem of model bias [401], while also being
very effective in testing the consistency of the dataset model independently and also for searching
tensions or systematics. See Chapter 9 for a more lengthy motivation and the use of ML algorithms
applied to GW physics.

In what follows we will describe two particular classes of ML methods, the Genetic Algo-
rithms (GA) and the Gaussian Processes (GP) which we use to perform our analysis. One of the
advantages of the GA against other symbolic regression methods, such as Neural Networks, is that
the GA provides analytical functions that describe the data provided. In our Chapter we have
also used the GP to compare our results with the GA, but it is beyond the scope of this work to
compare all of the different symbolic regression ML approaches.

The Genetic Algorithms

The theoretical background of the implementation of the GA in our analysis can be found on
Chapter 10.

Select 
input data

Start

Final
reconstruction

Do the fit

(Optionally optimize
the hyperparameters)

Select the kernel

Figure 14.2: Flowchart of the list of steps of a usual Gaussian Process.

In this analysis we reconstruct the DDR parameter log10 η(zi) directly from the data, and
the procedure to its reconstruction proceeded as follows. First, our predefined grammar consisted
on the following orthogonal basis of functions: exp, log, polynomials etc. and a set of operations
+,−,×,÷, see Table 10.1 for a complete list.

We also imposed a prior motivated by physical reasons. The only assumption made is that
η(z) is equal to 1; at out present time z = 0. This is natural to expect since mechanisms where the
DDR is violated are cumulative, as photons interact with interceding constituents along the line
of sight. Hence, such an event does not have time to occur at vanishing redshifts. This can also be
seen by taking the limit for z = 0 at Eq. (14.2) and assuming the Hubble law, i.e. limz→0 η(z) = 1.
Finally, we make no assumptions on the curvature of the Universe or any modified gravity or dark
energy model.

We also required that all functions reconstructed by the GA are continuous and differ-
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entiable, without any singularities in the redshift probed by the data, avoiding in this manner
overfitting or any spurious reconstructions.

Once the initial population has been constructed, the fitness of each member is evaluated
by a χ2 statistic, using the η(z) data points directly as input. Afterwards, using a tournament
selection, see Ref. [464] for more details, the best-fitting functions in each generation are chosen and
the two stochastic operations (crossover and mutation) are used. In order to assure convergence,
the GA process is then repeated thousands of times and with various random seeds, so as to
properly explore the functional space. Then the final output of the code is a function of η(z) that
describes the evolution of the DDR.

Finally, the error estimates of the reconstructed function are determined via the path inte-
gral approach, which was originally implemented in Refs. [169, 417] and is explained in detail on
Sec. 10.0.2.

The Gaussian Processes

We also use the Gaussian Processes approach in order to provide an alternative to the GA recon-
struction and minimize any potential biases due to the reconstruction approach. Traditionally, a
Gaussian process (GP) is defined as an ensemble of random variables that have a joint Gaussian
distribution [604]. The GP in general is determined by the mean, usually assumed to be zero or
some fiducial model, and the covariance. In our case the GP random variables stand for the duality
parameter log10 η(zi).

On the other hand, the covariance function, also known as a kernel, is denoted by k(x, x̃)
and encodes the correlations of two different GP random variables denoted by x and x̃, which in
our case correspond to the values of the duality parameter η(z) at different values of z, i.e. two
different data points of the data set. In summary then, the kernel is used to join up the data points
in order to build a function. In practice, the kernel is related to the input data as it is used as
a measure of the similarity between points, i.e. a covariance function, and is used to predict the
value for an unseen point from training data.

Lately the GPs have been used in the reconstruction of a plethora of cosmological datasets,
see e.g. [404, 467, 605–612], while the proper choice of the kernel remains a hotly debated issue in
the literature, as it can strongly affect the GP reconstruction. In Ref. [613] it was found that a
kernel that works quite well for cosmological datasets is the so-called Matérn class of kernels, given
by [604]:

k(x, x̃) = σ2
M

21−ν

Γ(ν)

(√
2ν(x− x̃)

`

)ν
Kν

(√
2ν(x− x̃)

`

)
,

where Kν is a modified Bessel function, ν determines the shape of the covariance function, which
asymptotes to the Gaussian limit as ν →∞, while Γ(ν) is the gamma function.

Furthermore, the parameter ` describes the length scales over which the function varies,
while the parameter σM corresponds to the magnitude of these variations. The parameter ν is
further chosen to be a half-integer to minimize the dependence on the Bessel function [613]. High
values of ν make the GP smoother but for ν ≥ 7/2 the results are practically indistinguishable
from each other, so we make the choice ν = 5/2. Overall, we find that altering either the GP
kernels or ν does not impact the performance of the GP. In our analysis we use the GP Python
package george [614] to reconstruct of log10 η(z) with the kernel as described above. Also note
that in the GP the log-likelihood given by Eq. (14.22) is used, by maximising it, to optimise the
value of any hyperparameters in the kernel.

Finally, similarly to the GA case described in the previous section, we have also imposed
a prior on the GP reconstructions which is motivated by physical reasons. Specifically, we again
demand that η(z) is equal to unity at out present time z = 0, i.e. η(z = 0) = 1. Again, this is
necessary to ensure our reconstructions are physical, while at the same time keeping our analysis
general enough.
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Figure 14.3: The η(z) mocks along with the fiducial model given by Eq. (14.2) (black dashed
line), the case of log10 η = 0 (dashed green line), the corresponding best-fit (solid colored line) for
the GA for ε = (0, 0.01, 0.05, 0.10) in the top left, top right, bottom left and bottom right panels
respectively. In all cases the η(z) data points are shown in the background as gray points with
their 1σ errorbars and the shaded band corresponds to the 1σ confidence region for the GA (red
band).

14.3 Results

We will now present the results of the reconstruction for both the GA and GP approaches.3 Note
that in both cases the input data are the values of log10 ηi in the form of sets of points given by
(z, log10 ηi, σlog10 ηi), which are the inputs to the GP and GA and can be used to create a likelihood,
as discussed in the previous point. In the case of the GA the data enter only via the likelihood of
Eq. (14.22), while on the other hand the GP builds a function that essentially joins up the data
points according to the GP kernel, but also uses the data (via the likelihood) to optimise the value
of any hyperparameters.

In Figs. 14.3 and 14.4 we show a particular realization of the log10 η(zi) mocks for Nlens =
100, along with the fiducial model (dashed black line), the case of log10 η = 0 (dashed green line),
and the corresponding best-fit (solid colored line) for the GA and the GP for ε = (0, 0.01, 0.05, 0.10)
in the top left, top right, bottom left and bottom right panels respectively. The data points are
shown in the background as gray points with their 1σ errorbars and the shaded band corresponds
to the 1σ confidence region for the GA (red band) and the GP (magenta band) in the two plots.

Note that for the different values of ε for the mocks, we keep the same random seed number so
that our analysis is not complicated by statistical fluctuations and the interpretation of our results
is more straightforward. The apparent lack of events at high redshifts is due to the expected redshift
distribution of the BH-NS and NS-NS events, see Fig. 1 in Ref. [590] and Fig. 2 in Ref. [570], which

3Both codes are very efficient and it takes a few seconds for the GA and less than a second for the GP
to converge, which is comparable to other traditional parametric approaches.

171



Chapter14. Machinelearningforecastsofthecosmicdistancedualityrelationwith
stronglylensedgravitationalwaveevents

0 1 2 3 4 5

z

1.0

0.5

0.0

0.5

1.0

lo
g 1
0
η(
z)

=0

GP Fiducial Zero

0 1 2 3 4 5

z

1.0

0.5

0.0

0.5

1.0

lo
g 1
0
η(
z)

=0.01

GP Fiducial Zero

0 1 2 3 4 5

z

1.0

0.5

0.0

0.5

1.0

lo
g 1
0
η(
z)

=0.05

GP Fiducial Zero

0 1 2 3 4 5

z

1.0

0.5

0.0

0.5

1.0

lo
g 1
0
η(
z)

=0.10

GP Fiducial Zero

Figure14.4: Theη(z)mocksalongwiththefiducialmodelgivenbyEq.(14.2)(blackdashed
line),thecaseoflog10η=0(dashedgreenline),thecorrespondingbest-fit(solidcoloredline)for
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alsohastheside-effectofincreasingtheerrorsofthereconstructionsandmakingthefitsincrease
withredshiftathighz.Theexpectedprobabilitydensityofeventsasafunctionofredshift,i.e.the
redshiftdistributionoftheBH-NSandNS-NSeventsfortheET,wasdeterminedinRef.[570]by
usingtheintrinsicmergerratesoftheseobjectswiththehelpofapopulationsynthesisevolutionary
code.

Theonlyphysicalpriorusedinthereconstructionwastheassumptionthatlimz→0η(z)→1,
whichfollowsnaturallyfromthedefinitionofη(z)viaEq.(14.2)andthefactthat,atzeroredshift
thecausesofanydeviation(forexampleeitheraxionsforlightormodifiedgravityfortheGW)
havehadnotimetoyetact,whichisnecessarytoensurethatourresultsarephysical.

AscanbeseeninFigs.14.3and14.4,inallcasesboththeGAandtheGPcapturethe
behaviorofthedatapointsaccuratelyandremainclosetothefiducialmodel,wellwithinthe1σ
region.Inparticular,onaveragethedifferencebetweentheGAorGPbest-fitandthefiducial
modelremainsclosetoapercentlevelinallreconstructions.Furthermore,forbothMLapproaches
wefindthatthereconstructederrorsareconsistentwitheachother,thusweareconfidentinour
reconstructionastheGAandtheGPareinprincipleratherdifferentreconstructionmethods.In
particular,weseeinboththeGAandGPcasesthatwhen =(0.05,0.10)bothMLapproaches
findacleardeviationfromthenullhypothesis,i.e.log10η=0(dashedgreenline)for0≤z≤3.5.
Forhigherredshifts,duetothelackofpointstheerrorsofthereconstructionbecomelargerand
thestatisticalsignificanceofthedetectiondiminishes4.

4As aconsistencytestofourapproach, wealsofittheparameterizationη(z) =(1+z)0, with

0=cosntant,tothemockdataandwediscussourresultsinAppendix14.4.
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Figure 14.5: The η(z) mocks along with the fiducial model given by Eq. (14.2) (black dashed line),
the case of log10 η = 0 (dashed green line), the corresponding best-fit (solid colored line) for the
GA for (ε = 0.10, δµ/µ = 0.1, N = 100), (ε = 0.10, δµ/µ = 0.2, N = 100) (ε = 0.10, δµ/µ =
0.5, N = 100), (ε = 0.10, δµ/µ = 0.2, N = 50), (ε = 0.10, δµ/µ = 0.2, N = 100), (ε = 0.10, δµ/µ =
0.2, N = 200) in the top left, top center, top right, bottom left, bottom center and bottom right
panels respectively. In all cases the η(z) data points are shown in the background as gray points
with their 1σ errorbars and the shaded band corresponds to the 1σ confidence region for the GA
(red band).

Finally, we also vary two key parameters of our analysis, the amplification error δµ/µ and the
number of events N . Using the GA, we reconstruct η(z) with the amplification error δµ/µ taking
the values [0.1, 0.2, 0.5] and then we do the same with the number of lenses with N = [50, 100, 200]
events for the case of ε = 0.1. We show the results in Fig. 14.5 and we find that as expected,
increasing the amplification error (top row of plots in Fig. 14.5) has no obvious effect when δµ/µ
changes from 0.1 to 0.2. As can be seen in Eq. (14.19) when ρ = 16, which is the critical value for
which we assume to claim the detection of GW signal, then the 2/ρ term is about 0.1, the 0.05z
term is also about 0.1 for z ∼ 2 and is even larger for z > 2. Since there is a factor 1/4 before
the term δµ/µ, changing δµ/µ from 0.1 to 0.2 does not affect significantly the total error on the
luminosity distance dL(z). On the other hand, when δµ/µ = 0.5, then the last term in Eq. (14.19)
dominates and this results in larger errors, by roughly ∼ 20%, for the GA reconstruction of η(z),
compared to when δµ/µ is 0.1 or 0.2.

On the other hand, the effect of varying the number of lenses is more subtle. As can be
seen in the bottom row of Fig. 14.5, for 50 lenses we have a deviation at ∼ 1σ below z ∼ 4, while
in the case of 100 lenses the errors of the GA reconstruction become smaller for z < 4 raising the
deviation to slightly more than 1σ but at z > 4 surprisingly become larger again. This tightening
of the errors at intermediate redshifts (z < 4) and enlarging at z > 4 as we increase the points from
50 to 100 is due to the redshift distribution of the points (for 100 points more events are located at
z < 3.5). When we increase the number of events to 200, we see the error at high redshifts is now
more uniform, even though the reconstructions start to get dominated by the systematic errors.
In summary, the number of events necessary to obtain a statistically significant deviation depends
both on the value of ε and the number of events, so for example with N = 50 we can have a 1σ
deviation up to z ∼ 4 while to go to higher redshifts (z ∼ 5) we require N = 200.
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14.4 Comparative analysis

Here we present a reconstruction of the duality parameter η(z) using the mock data presented in
Sec. 14.2 by fitting them to the parametrization of Eq. (14.2) with ε(z) = ε0 =constant. This
allows us to compare our GA and GP reconstructions to the standard parametric approach used
widely in the literature.

In particular, in Fig. 14.6 we present the different fiducial mocks for ε = {0, 0.01, 0.05, 0.1}
along with the best-fit parameterizations and their respective errors (blue line and blue shaded
region). Comparing these against the reconstructions of Fig. 14.3 we find that they are in good
agreement, albeit the parametric approach has somewhat smaller errors compared to the GA,
due to its parametric nature, something which was also observed in Ref. [470]. As all three
reconstructions, that of the GA, the GP and the parametric ones are in good agreement, we are
confident in our methodology.
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Figure 14.6: The η(z) mocks along with the fiducial model given by Eq. (14.2) (blue line) for
ε = (0, 0.01, 0.05, 0.10) in the top left, top right, bottom left and bottom right panels respectively
and the case of log10 η = 0 (dashed green line). In all cases the η(z) data points are shown in
the background as gray points with their 1σ errorbars and the shaded band corresponds to the 1σ
confidence region for the best-fit fiducial model (blue band).

14.5 Conclusions

With the advent of GW observations an exciting new window has opened into the Universe.
Moreover, a possible detection of strong GW lensing will allow for the testing of fundamental
hypotheses of the standard cosmological model as it will provide a test of gravity in the strong
field regime, but will also allow for tests of the DDR, similar to that proposed in Ref. [588] for
strongly lensed SnIa systems. This exciting possibility was first proposed in Ref. [590], where
parametric constraints of the DDR variable η(z), given by Eq. (14.2) were presented.
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Here, we extended the work of Ref. [590] in two crucial ways. First, we presented a method-
ology which allows for the direct creation of η(z) mocks, similar to that of Ref. [588]. We showed
an example of this approach using mock ET measurements of dL and dA from strongly lensed GW
events, which were then combined to create mock η(z) data points with an MCMC-like approach,
as described in Sec. 14.2.2. It is important to stress that given the raw measurements of dL and
dA, the measurements of η(z) can be derived without using any dark energy model or beyond the
standard model (BSM) theory.

Second, instead of using parametric models for η(z), which may carry theoretical bias or
miss important features in the data, here we used two specific ML approaches. In particular,
we employed the Genetic Algorithms and the Gaussian Processes, which are two non-parametric
and symbolic regression subclasses of ML methods, to reconstruct η(z) directly without using any
underlying model.

Following our methodology, we created a realization of mock η(z) data points for ε =
(0, 0.01, 0.05, 0.10), assuming the ET specifications, and then used the GA and the GP to di-
rectly reconstruct η(z). The reconstructions are shown in Figs. 14.3 and 14.4 where as can be seen,
both the GA and the GP capture the behavior of the data points accurately and remain close to
the fiducial model, well within the 1σ region for all values of the duality parameter ε. In particular,
on average the difference between the GA or GP best-fit and the fiducial model remains close to a
percent level in all reconstructions. Furthermore, in the two most extreme cases of ε = (0.05, 0.10)
both the GA and the GP find deviations from zero in the redshift range 0 ≤ z ≤ 3.5.

We also determined the number of GW lensed events necessary to determine whether a
deviation from the null hypothesis is present in the data. We find that the number of events
necessary to find a deviation depends both on the value of ε and the number of events, so for
example with N = 50 we can probe for deviations from the null hypothesis (ε = 0) up to z ∼ 4,
while to go to higher redshifts we require N = 200.

We thus find that both machine learning approaches are capable of correctly recovering
the underlying fiducial model and providing percent-level constraints when comparing the fiducial
model and the reconstructions at intermediate redshifts, when applied to future Einstein Tele-
scope data, thus opening the door to direct tests of the fundamental principles of the standard
cosmological model in the coming decades.

Numerical Analysis Files: For the Gaussian process analysis we use the publicly available
python package george found at https://github.com/dfm/george.
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15
Machine Learning and cosmographic

reconstructions of quintessence and the
Swampland conjectures

The original content of this chapter is based on Ref. [615]. We present model independent recon-
structions of quintessence and the Swampland conjectures (SC) using both Machine Learning (ML)
and cosmography. In particular, we demonstrate how the synergies between theoretical analyses
and ML can provide key insights on the nature of dark energy and modified gravity. Using the
Hubble parameter H(z) data from the cosmic chronometers we find that the ML and cosmography
reconstructions of the SC are compatible with observations at low redshifts. Finally, including
the growth rate data fσ8(z) we perform a model independent test of modified gravity cosmologies
through two phase diagrams, namely H−fσ8 and η−fσ8, where the anisotropic stress parameter η
is obtained via the Eg statistics, which is related to gravitational lensing data. While the first dia-
gram is consistent within the errors with the ΛCDM model, the second one has a ∼ 2σ deviation of
the anisotropic stress from unity at z ∼ 0.3 and a ∼ 4σ deviation at z ∼ 0.9, thus pointing toward
mild deviations from General Relativity, which could be further tested with upcoming large-scale
structure surveys.

15.1 Introduction

One of the more well known candidates for DE is quintessence, which is described by a slowly
rolling scalar field leading to an accelerated expansion [276]. Thus, the scalar field can control the
fate of the early and late Universe by dominating its energy density and posing as a source of DE
respectively, see for example Ref. [616] for a review. For about a century theoretical physicists have
been on the quest to develop a theory of quantum gravity which could encompass the assumptions
of Einstein’s theory of GR with those of quantum field theory. Although GR has demonstrated to
have a very high predictive power below the Planck scale, its quantization its troublesome since it
is renormalizable only at one loop [617], thus, it is believed that GR could be the low energy limit
of the more fundamental higher energy theory as we have also discussed on Chapter 3.

There is an ongoing search to distinguish effective quantum field theories that can potentially
arise within UV-complete quantum gravity theories (the Landscape) from those that cannot (the
Swampland). In this regard, although not rigorously proven in string theory, some conjectures
have been considered to discern the Swampland from the landscape. The two proposed Swampland
criteria that we will consider (which we will define as SC1 and SC2) refer to the constraints on the
field range of a scalar field φ defined by an effective field theory and to the slope of the potential
of such fields respectively. In reduced Planck units these conjectures are defined as
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• SC1: The scalar field net excursion has to satisfy |∆φ|Mpl
< ∆ ∼ O(1) [618].

• SC2: There is a lower bound for the gradient of the scalar field potential Mpl |∇φV | /V >
c ∼ O(1) in any consistent theory of gravity when V > 0 [619],

where ∆ and c are positive constants of order one and the reduced Planck mass is Mpl = 1/
√

8πG.
The second Swampland criterion is violated in the ΛCDM model, since a positive cosmological
constant or being at the minimum of a potential with positive energy density violates the bound
[620], thus a rolling scalar field potential, i.e a quintessence model would be required. Hence, if the
data supports the second Swampland criterion, it would imply hints for deviations of the ΛCDM
model.

The Swampland criteria aim to find constructions that are compatible with a quantum
theory of gravity and it has been found that specific quintessence models can satisfy the Swampland
criteria at late times [620]. In Ref. [621] the authors used Gaussian Processes to reconstruct the
form of the potential from the H(z) data, finding hints of invalidating the Swampland criteria,
while a similar analysis was performed in [622]. In Refs. [623, 624] it was found that quintessence
models and current data prefer a lower value of H0 than the ΛCDM model, thus providing robust
test of the Swampland conjectures. Other analyses on the other hand, have found that string-
inspired quintessence models with exponential potentials are ruled out by observations and that
Swampland conjectures are in tension with viable single-field quintessence models [625, 626]. It
was also proposed though that this issue might be resolved with multi-field models [627,628]. See
also Ref. [629] for the implications of the swampland conjectures on dark energy.

On the other hand, our motivation for using cosmography and Machine Learning (ML), both
being model independent techniques, is because choosing a specific model can lead to model bias,
which in turn would affect the conclusions drawn about fundamental physics. ML algorithms can
help to remove biases due to choosing a priori a specific defined model and they are also ideal for
events that are not well understood such as dark energy, dark matter or modifications of gravity.
Another advantage is that we reconstruct the data without making assumptions on flatness or a
dark energy model.

Here we use a particular ML method known as the genetic algorithms (GA), which can be
defined as a stochastic search approach. However, in our analysis we will use both cosmography
and the GA so as to compare the two methods and examine which one provides better constraints
given the current data. In particular, we will focus on quintessence as an example of our approach
and using the latest compilation of the Hubble parameter H(z) and the growth rate data fσ8(z)
we analyze the cosmological implications on two Swampland criteria providing constraints both via
Machine Learning and cosmography. For the former approach, we reconstruct the Hubble function
H(z) and fσ8(z) using the GA, while with the later method we can express the Swampland
conjectures solely via the cosmographic parameters.

Finally, in order to test and search for deviations from GR we use our ML reconstructions
to analyze two phase diagrams, H − fσ8 and η− fσ8, where η is the anisotropic stress parameter.
This conjoined diagrams have the asset of helping to break degeneracies between observations that
are geometrical against those that come from gravitational effects and makes clearer even visually
which redshift ranges should be the target of future surveys to discriminate among the plethora
of DE and MG models. This approach has been used for different comparison of models, see for
example Refs. [137,141,630–632].

This Chapter is organized as follows: In Sec. 15.2 we present the theoretical framework
including the quintessence reconstruction and the cosmographic expansion. In Sec. 15.3 we describe
the data used in our analysis and in Sec. 15.4 we outline our ML method, the Genetic Algorithms
(GA). Then in Sec. 15.5 we set out our results and in Sec. 15.6 we provide two phase diagrams
derived through our ML reconstructions. Finally in Sec. 15.7 we describe our error analysis and in
Sec. 15.8 we present our conclusions.
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15.2 Theory

Here we present some theoretical aspects of our analysis related to the reconstruction of quintessence
and the cosmographic expansion.

15.2.1 Quintessence reconstruction

At late times, the Friedmann equations including quintessence can be written as

H2 =
8πG

3

(
ρm +

1

2
φ̇2 + V (φ)

)
, (15.1)

Ḣ = −4πG
(
ρm + φ̇2

)
, (15.2)

where H ≡ ȧ
a , for a = 1

1+z and after setting x ≡ 1 + z they can be solve for the potential and the
kinetic terms and be rewritten as [633]

8πG

3H2
0

V (x) =
H(x)2

H2
0

− x

6H2
0

d(H(x)2)

dx
− 1

2
Ωm,0x

3, (15.3)

8πG

3H2
0

(
dφ

dx

)2

=
2

3H2
0x

d lnH

dx
− Ωm,0x

H2
. (15.4)

It is more convenient to rescale all variables and use dimensionless quantities, which can be done
for example by introducing the Planck mass Mpl ≡

√
~c

8πG =
√

1
8πG in natural units (~ = c = 1)

and the fact that the critical density is ρc =
3H2

0

8πG . Then we can make the redefinitions

E(z) ≡ H(z)/H0,

φ̃(z) ≡ φ(z)√
3Mpl

,

Ṽ (z) ≡ V (z)

ρc
, (15.5)

and rewrite the reconstruction equations for the scalar field as

Ṽ (x) = E(x)2 − x

6

d(E(x)2)

dx
− 1

2
Ωm,0x

3, (15.6)(
dφ̃

dx

)2

=
2

3x

d lnE

dx
− Ωm,0x

E(x)2
. (15.7)

To reconstruct the potential we then integrate Eq. (15.7) to determine φ̃(x) up to a constant,
then we write x as a function of φ̃ i.e x(φ̃) and insert it in Eq. (15.6) to find the potential in terms
in the scalar field Ṽ (φ̃). For the ML approach the function H(x) and the parameters H0 and
Ωm,0 will be given by the GA fits to the data, as described in Section 15.3, while in the case of
cosmography we will determine the function H(x) from the cosmographic reconstruction and we
will assume a Planck 2018 prior on Ωm,0.

Note that using the aforementioned equations one may try to reconstruct any DE model,
e.g. the constant equation of state w=const model or other parameterized w(z) models [634].

15.2.2 Cosmography

Cosmography is a model independent series expansion in terms of the redshift z that relates
the cosmological quantities, such as the Hubble parameter and luminosity distance, to a set of
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cosmographic coefficients defined as the nth derivative of the scale factor [635–638]:

H ≡ 1

a

da

dt
, q ≡ − 1

aH2

d2a

dt2
, (15.8)

j ≡ 1

aH3

d3a

dt3
, s ≡ 1

aH4

d4a

dt4
, (15.9)

l ≡ 1

aH5

d5a

dt5
, m ≡ 1

aH6

d6a

dt6
. (15.10)

With simple algebra we can relate these quantities, evaluated today, i.e. at z = 0, to the series
expansions of the Hubble parameter and the luminosity distance. For example, following Ref. [635]
we find that the luminosity distance in a flat Universe (Ωk = 0) can be written up to fifth order in
redshift as:

dL(z) =
c

H0

[
z +

1

2
(1− q0)z2 +

1

6
(−1− j0 + q0 + 3q2

0)z3

+
1

24
(2 + 5j0(1 + 2q0)− q0(2 + 15q0(1 + q0)) + s0)z4

+
1

120

(
(−6 + 10j2

0 − l0 − j0(27 + 5q0(22 + 21q0))

+ 3q0(2 + q0(27 + 5q0(11 + 7q0))− 5s0)− 11s0)
)
z5 +O(z6)

]
, (15.11)

while by inverting the equation of the luminosity distance that relates it to the Hubble parameter
for a flat Universe, i.e. dL(z) = c

H0
(1 + z)

∫ z
0

1
H(u)/H0

du, and solving for H(z) we find

H(z)/H0 = 1 + (1 + q0)z +
1

2
(j0 − q2

0)z2

+
1

6

(
3q2

0(1 + q0)− j0(3 + 4q0)− s0

)
z3

+
1

24

(
− 4j2

0 + l0 − 3q2
0(4 + q0(8 + 5q0))

+ j0(12 + q0(32 + 25q0)) + (8 + 7q0)s0

)
z4 +O(z5). (15.12)

Note that going from the luminosity distance given by Eq. (15.11) to the Hubble parameter
given by Eq. (15.12), implies the use of differentiation and the presence of a term 1 + z, both of
which reduce the order of the polynomial from fifth order to only fourth. This reduction of the
polynomial will also be observed later on, when we derive the potential as a function of the scalar
field and the cosmographic parameters.

Furthermore, it should be noted that there is an issue related to the convergence of the
truncation order of the cosmographic series and the redshift range of the data. In Refs. [639–641]
it has been suggested that the variable y = z

1+z avoids the aforementioned convergence issues and
is more suitable for parameterizing cosmological distances, where now y lays in the redshift interval
[0, 1] which encloses the range of all possible observations.

Using Eq. (15.12) we can now use the quintessence reconstruction set of equations given by
Eqs. (15.6)-(15.7) to relate the cosmographic parameters to the potential V (φ), which after some
simple algebra can be written in terms of the redshift z as

Ṽ (z) =
1

6
(4− 2q0 − 3Ωm,0) +

1

6
(8− 2j0 + 6q0 − 9Ωm,0) z

+
1

6
(4 + 8q0 + j0(4 + q0) + s0 − 9Ωm,0) z2

+
1

18
(j2

0 − l0 − 9Ωm,0 − j0q0(7 + 3q0)− 7s0 − 3q0s0)z3 +O(z4), (15.13)
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and the derivative of the scalar field
(
dφ̃′

dz

)2

as

φ̃′(z)2 =
2(1 + q0)

3
− Ωm,0 +

1

3

(
− 4 + 2j0 − 4q2

0

+ 6q0(Ωm,0 − 1) + 3Ωm,0

)
z +

1

3

(
6− s0 − 3Ωm,0

+ j0(−8− 7q0 + 3Ωm,0) + 4q0(3 + 4q0 + 2q2
0

− 3(1 + q0)Ωm,0)
)
z2 +O(z3). (15.14)

Solving for φ̃ by integrating the kinetic term over the redshift, will give two branches as

φ̃(z) = φ̃0 + ε

∫ z

0

√
φ̃′(u)2du, (15.15)

where ε = ±1. We can then express the potential in terms of the cosmographic parameters and
the scalar field φ̃ as

Ṽ (φ̃) = Ṽ0 + Ṽ1(φ̃− φ̃0) + Ṽ2(φ̃− φ̃0)2 + Ṽ3(φ̃− φ̃0)3 +O(φ̃4), (15.16)

where we have set

Ṽ0 =
1

6
(4− 2q0 − 3Ωm,0) , (15.17)

Ṽ1 = ε−1 8− 2j0 + 6q0 − 9Ωm,0

2
√

6 + 6q0 − 9Ωm,0

, (15.18)

Ṽ2 =
1

8

(
15 + 6q0 +

4(j0 − 1)2

(2 + 2q0 − 3Ωm,0)
2 +

4(2j0 + 3q0 + s0)

2 + 2q0 − 3Ωm,0

)
,

Ṽ3 = · · · , (15.19)

where we do not show the term Ṽ3 as it is too long and complicated, but can be easily derived
from the previous expressions.

We can now also calculate the effective mass of the scalar field as:

m2
φ =

d2V

dφ2

=
d2Ṽ

dφ2
H2

0

= 2Ṽ2 + 6Ṽ3(φ̃− φ̃0) + · · · , (15.20)

where the coefficients V2 and V3 were given earlier. Then, the second Swampland conjecture (SC2)
can be written as in terms of the cosmographic parameters as

Mpl
|V ′(φ)|
V

=
Ṽ ′(φ̃)√
3Ṽ (φ̃)

= S0 + S1(φ̃− φ̃0) + S2(φ̃− φ̃0)2 + · · · , (15.21)

where the coefficients S0, S1 and S2 are given by

S0 =
Ṽ1√
3Ṽ0

, (15.22)

S1 = − Ṽ
2
1 − 2Ṽ0Ṽ2√

3Ṽ 2
0

, (15.23)
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S2 = − Ṽ
3
1 − 3Ṽ0Ṽ1Ṽ2 + 3Ṽ 2

0 Ṽ3√
3Ṽ 3

0

. (15.24)

Note that in the case of the cosmological constant model, we have that φ̃′(z) = 0 and
φ̃(z) = φ̃0, which implies that Ṽ (φ̃) = Ṽ0 =constant, hence that m2

φ = 0 and S0 = 0 as expected.
Note also that one has to take the limit to w → −1 before differentiating, as the limit and the
derivatives do not commute in this case.

We will present the results from the fits to the data and the cosmographic reconstructions
of the conjectures in Sec.15.5.

15.3 Data

In this Chapter we will use the following cosmological data which is described in detail in Chapter 2:
The Hubble rate H(z) data, the growth-rate data and the Eg data.

15.4 Genetic Algorithms

A complete description on the Genetic Algorithms (GA) can be found at Chapter 10. Although
it has already been covered on Sec.12.5, for completeness and for the benefit of the reader we will
outline how to reconstruct the Hubble parameter H(z) from the Hubble expansion history H(z)
data, fσ8(z) from the growth-rate data derived via the redshift-space distortions (RSD) and P2(z)
from the Eg data. The reconstruction of H(z), along with that of H0, is needed for Eqs. (15.6)
and (15.7), while our reconstruction for fσ8(z) is used to infer model independently the value of
Ωm,0 by means of Eq. (12.12) taken from Chapter 12. Our reconstruction of P2(z) from the Eg
data is used at a latter stage in Sec. 15.6.

The outline to perform the reconstructions proceeds as follows. An initial population of
functions is randomly selected so that every member of the population holds initial guesses for
H(z), fσ8(z) and P2(z). We also impose reasonable physical priors, e.g. the Hubble parameter
today is given by the Hubble constant H(z = 0) = H0, which then allows us to estimate H0 directly
from the H(z) data. For the fσ8(z) reconstruction we assume that the Universe at early times
went through a phase of matter domination (z ' 100), then the linear growth acts as δm(a) ' a
at high redshifts. However we make no assumption of a DE model or on the curvature of the
Universe.

Next, the fitness of each member is computed through a χ2 statistic, using as input theH(z),
growth and Eg data. Afterwards, the mutation and crossover operators are applied stochastically
to the best-fitting functions in each generation, selected via the tournament selection method.
This process is then repeated with different random seeds thousands of times in order to ensure
convergence and not to bias the results due to a specific choice of the random seed. After the GA
code has converged, the final output is a reconstruction of H(z), fσ8(z) and P2(z).

For the estimation of the errors on the reconstructed functions we implement an analytical
approach developed by Refs. [169, 417], where the errors are derived via a path integral over the
whole functional space that can be scanned by the GA. See Chapter 10 for more details.

To sum up, with the GA we can reconstruct any cosmological function, for example the
H(z), fσ8(z) and P2(z) that we consider here, by applying the algorithm to any dataset of interest.
There are no requirements on the specific cosmological model or assumptions on DE, hence our
results are model independent. Besides executing a large number of GA runs with different random
seed numbers, in order to avoid spurious reconstructions and overfitting we have imposed that all
reconstructed functions, as well as their derivatives, are continuous in the range of redshifts we
consider.
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Model H(z) fσ8 P2

χ2
ΛCDM 19.476 12.238 10.516
χ2
GA 17.670 12.220 5.422

Table 15.1: The χ2 for ΛCDM and GA using the growth fσ8, the Hubble rate H(z) and
the Eg statistics.

15.5 Results

15.5.1 Genetic Algorithm reconstructions

In this section we will now discuss our ML fits to the data and the corresponding reconstructions
of the Swampland conjectures. First, we show in Table 15.1 the best-fit χ2 for the GA functions
for the ΛCDM model. As can be seen, in all cases the GA out-performs the ΛCDM model in terms
of the best-fit χ2.

Then, in the left panel of Fig. 15.1 we present our GA reconstruction of the scalar field
potential as a function of the scalar field for the redshift range z ∈ [0, 1.92]. We can see a parabolic
shape of the potential, thus pointing toward some deviations from the ΛCDM model since for the
latter the potential should be flat. The black solid line corresponds with the GA best-fit and the
different colours represent the errors for our reconstructions at different redshifts. In the right
panel of Fig. 15.1 we see that the reconstructed kinetic term is positive from z = 0 to z ∼ 1.9,
hence our reconstructions of the Swampland conjectures within that redshift range should be free
from ghosts and instabilities in this redshift range. The blue solid line corresponds to the GA
best-fit and the grey region to the 1σ errors.

Note that the fact that at some redshift the kinetic term of the quintessence scalar field is
negative, is actually a common issue of such reconstruction methods. This happens not only for
quintessence models, but even for scalar tensor theories, where one naively may expect that due
to the extra degree of freedom this would not happen1. This simply means that at some redshift
the reconstruction breaks down, as obviously the kinetic term has to be both real and positive.
However, due to the larger errors this is not a big problem per se, it just limits our ability to use
this particular model at all redshifts.

In Fig. 15.2 we present our GA reconstructions of the first and second Swampland conjectures
on the left and right panels respectively. In both cases the blue solid line and the grey region
corresponds to the GA best-fit and the 1σ error respectively. As can be seen, from z = 0.8 onward
the errors become so large that we can only draw some conclusions at low redshifts with the current
available data. In specific we can see how both reconstructions are consistent with the conjectures,
being both order unity, although at the same time being consistent with the ΛCDM model at the
1σ level.

15.5.2 Cosmographic reconstructions

We now present the cosmographic reconstructions of the potentials and the first and second Swamp-
land conjectures. We find that the standard quintessence reconstruction via cosmography suffers
from two issues: first, it is only valid when the square of the kinetic term given via Eq. (15.4) is
positive. Second, a value of the matter density Ωm,0 from an external source is required, as the
H(z) cannot provide it since Eq. (15.12) only depends on the cosmographic parameters and not at
all on Ωm,0.

We address the first issue by performing the reconstruction only in the redshift range where
the kinetic term is positive, while for the value of the matter density parameter we will assume in
what follows the Planck prior Ωm = 0.315± 0.007 [1].

1See for example Fig. 5 in Ref. [642], where a similar phenomenon is also observed.
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Figure 15.1: The GA reconstruction of the scalar field potential (left) and the kinetic term (right)
for the redshift range z ∈ [0, 1.92]. The left panel suggests a parabolic shape of the potential, thus
pointing toward some deviations from the ΛCDM model since for the latter the potential should
be constant. The black solid line corresponds with the GA best-fit, the different colors represent
the errors for our reconstructions at different redshifts and that ∆φ̃ = φ̃(z) − φ̃0. In the right
panel we see that the reconstructed kinetic term is positive from z = 0 to z ∼ 1.9, hence our
reconstructions of the Swampland conjectures within that redshift range should be free from ghosts
and instabilities. The blue solid line corresponds to the GA best-fit and the grey region to the
1σ errors. Note that in the right panel we truncate the error in the unphysical region where the
kinetic term changes sign.
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Figure 15.2: The GA reconstruction of the first and second Swampland conjectures on the left
and right panels respectively. As can be seen, from z = 0.8 onward the errors become so large
that we can only draw some conclusions at low redshifts with the current available data. Both
reconstructions are consistent with the conjectures and the ΛCDM model at the 1σ level. Notice
that ∆φ = φ(z)− φ0 and that we truncate the error in the unphysical region where the quantities
would change sign (as we take the absolute values).

Next, in Table 15.2 we show the best-fit parameters of the cosmographic parameters for the
H(z) data and their χ2 values for various orders of the series expansion. We also give the values
of the corrected AIC and BIC tools, which are defined as [290]:

AIC = χ2
min + 2k, (15.25)

AICc = AIC +
2k(k + 1)

N − k − 1
, (15.26)

BIC = χ2
min + k lnN, (15.27)

where k is the number of free parameters and N the number of data points, which for the Hubble
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Order/param. q0 j0 s0 l0 h χ2 |∆AICc| |∆BIC|
2nd 0.144± 0.093 − − − 0.586± 0.023 24.772 5.302 5.302
3rd −0.347± 0.195 0.432± 0.247 − − 0.662± 0.040 19.172 2.088 3.286
4th −0.851± 0.373 2.222± 1.412 2.326± 4.029 − 0.718± 0.057 17.301 2.758 4.998
5th −0.824± 0.727 2.133± 3.951 2.091± 12.525 9.661± 34.294 0.714± 0.075 17.304 5.470 8.585

Table 15.2: The best fit parameters of the cosmographic expansions. For comparison
the ΛCDM model has best-fit parameters (Ωm,0, h) = (0.259 ± 0.029, 0.704 ± 0.023) with
χ2 = 19.470, while the GA has χ2 = 17.670. The values of the differences for the AIC and
BIC, are given with respect to those of the ΛCDM model.
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Figure 15.3: Left: Reconstruction of the kinetic term of the scalar field for various orders of the
cosmographic expansion for the Planck prior Ωm = 0.315 ± 0.007 [1]. As can be seen the third
order expansion is positive in the range z ∈ [0, 0.3], while in the other cases the reconstruction
breaks down as the field is complex. Right: the third order cosmographic reconstruction on the
scalar field potential, where ∆φ̃ = φ̃(z)− φ̃0. We only plot the quantities in the regions where the
scalar field kinetic term is positive, which in this case is in the range z ∈ [0, 0.3]. As can be seen,
in the aforementioned redshift range the cosmographic and the GA reconstructions are consistent.
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Figure 15.4: The third order cosmographic reconstruction on the scalar field potential (left) and
the Swampland conjectures SC1 (center) and SC2 (right), where ∆φ̃ = φ̃(z) − φ̃0. We only plot
the quantities in the regions where the scalar field kinetic term is positive, which in this case is
in the range z ∈ [0, 0.3]. As can be seen, in the aforementioned redshift range the cosmographic
and the GA reconstructions of the Swampland conjectures are consistent. Note that we truncate
the error in the unphysical region where the quantities would change sign (as we take the absolute
values).

data is equal to N = 36, while χ2
min is the value of the χ2 at the minimum.

In Table 15.2 the values of the differences of the AICc and BIC are given with respect to those
of the ΛCDM model. In either case, the condition ∆AICc ≤ 2 implies the consistency between the
models, while the inequalities 2 < ∆AICc ≤ 4 and 4 < ∆AICc ≤ 7 indicate a mild and positive
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evidence against the model with higher value of AIC. On the other hand, when ∆AICc ≥ 10
suggests strong evidence. The same applies to the BIC test [291]. As can be seen, in all cases the
ΛCDMmodel seems to be favored by the data, which is also consistent with previous analyses [140].
Note that we cannot apply either of the criteria to the GA as it is a non-parametric approach.

Going back to the scalar field, the aforementioned issue with the kinetic term is also shown
in Fig. 15.3 where in the left panel we show a reconstruction of the kinetic term of the scalar field
for various orders of the cosmographic expansion for the Planck prior Ωm = 0.315± 0.007 [1]. As
can be seen the third order expansion is positive in the range z ∈ [0, 0.3], while in the other cases
the reconstruction breaks down as the field is complex. Thus, out of all cases only the second and
third order expansions have a positive kinetic term at small redshifts and from these two, only the
third order expansion has non-trivial phenomenology, hence we focus on this in what follows.

In the right panel of Fig. 15.3 we show the third order cosmographic reconstruction on the
scalar field potential. We note that we only plot the quantities in the regions where the scalar
field kinetic term is positive, which in this case is in the range z ∈ [0, 0.3]. As can be seen, in the
aforementioned redshift range the cosmographic and the GA reconstructions are consistent.

Finally, we show the results for the Swampland conjecture reconstructions in Fig. 15.4. As
can be seen both cases are in good agreement in the range z ∈ [0, 0.3] within the errors with the
corresponding GA reconstructions. However, given that the reconstructions are limited in range,
this also significantly reduces their appeal.

15.6 Phase Diagrams

As we have seen on Chapters 4 and 5, in MG theories it is frequently assumed that the back-
ground level behaves as the ΛCDM model and its perturbations evolve differently, see for example
Ref. [643]. This happens in well known DE and MG models such as the so-called designer f(R)
models [9, 201–204] or the designer Horndeski family of models (HDES) [10] whose background
is exactly that of the ΛCDM model. However, in general, MG models can have departures from
ΛCDM both at the background and at the perturbation level, as is for example the case for the
Hu-Sawicki f(R) gravity model [209] or the Kinetic Gravity Braiding (KGB) theory [308].

In this section we search for potential deviations from ΛCDM at the background and at the
perturbation level by applying our Machine Learning reconstructions to cosmological observations.
In specific we use H(z) expansion rate data, the growth-rate fσ8(z) compilation and the Eg
statistics to present two phase diagrams, H − fσ8 and η − fσ8, where η is a parameter which
defines the departure of gravity from GR and can be explored by gravitational lensing.

The anisotropic stress η is conventionally modeled through the parameter η = Φ
Ψ , where Φ

and Ψ are the Newtonian potentials and are considered equal in GR in the absence of anisotropic
stresses from other sources like neutrinos. Then, any departure of η from unity would hint to
modified gravity or if neglected, it could bias the cosmological parameters inferred from the data
[360].

With our GA reconstructions we demonstrate how deviations from the ΛCDMmodel appears
in the η−fσ8 diagram. In specific, in the left panel of Fig. 15.5, we plot theH−fσ8 diagram for the
redshift range of z ∈ [0, 1.9] using the H(z) and fσ8 data. The theoretical prediction of the ΛCDM
model would correspond to a point at (1, 1), something which the GA best-fit reconstructions
confirm within the errors. The different colors represent our reconstructions for several redshifts
with their respective errors.

In the right panel of Fig. 15.5 we have the η − fσ8 diagram for the redshift range of z ∈
[0.27, 0.86] using the Eg and fσ8 data. The theoretical prediction of the ΛCDM model would
correspond to a point at (1, 1). The different colors represent our reconstructions for several
redshifts with their respective errors. With our GA best-fit reconstructions we find a∼ 2σ deviation
of the anisotropic stress from unity at z ∼ 0.3 and a ∼ 4σ at z ∼ 0.9, thus hinting toward some
deviations from GR, something which was also seen in Ref. [324].
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Figure 15.5: Left: H−fσ8 diagram for the redshift range of z ∈ [0, 1.9] using theH(z) and fσ8 data.
The theoretical prediction of the ΛCDM model would correspond to a point at (1, 1), something
which the GA best-fit reconstructions confirm within the errors. The different colors represent our
reconstructions for several redshifts with their respective errors. Right: η − fσ8 diagram for the
redshift range of z ∈ [0.27, 0.86] using the Eg and fσ8 data. The theoretical prediction of the ΛCDM
model would correspond to a point at (1, 1). The different colours represent our reconstructions
for several redshifts with their respective errors. With our GA best-fit reconstructions we find a
∼ 2σ deviation of the anisotropic stress from unity at z ∼ 0.3 and a ∼ 4σ at z ∼ 0.9.
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Figure 15.6: Plot for σ8 against Ωm from our ML reconstructions on the growth rate fσ8 data
(gray point), the Planck 2018 TT,TE,EE+lowE+lensing values (blue point) and the DES Y1 2018
results (orange point).

These deviations could be due to new physics or for the presence of unaccounted systematics
and perhaps non-negligible radiative processes, as could be the case for the Eg data. The diagrams
presented will be useful for future large-scale structure observations to rule out some of the modified
gravity models.

Finally, we also report our results from our ML reconstruction through Eqs. (12.12) and
(12.11), seen on Sec. 12.2, for the quantity S8, quantified as S8 = σ8

√
Ωm/0.3. This parameter is

in tension between Planck and cosmic shear measurements such as Kids-1000 and DES Y1 above
the 2σ level, where the latter have a preference for a lower value, see for example Fig. 1 of [59] where
the tension can be visualized in the σ8 − Ωm,0 diagram. With the GA we find S8 = 0.733± 0.275
and in Fig. 15.6 we also provide a similar diagram, being our results more in agreement with DES
Y1. Overall, these results are consistent with Ref. [59] and the analysis of [644] from the DES Y1
release, where the authors split the matter density into a “geometric” and “growth” Ωm,0. They are
in mild tension with the Planck 2018 results though, something that has been noted repeatedly in
the literature, see for example Ref. [120] and references there in. Note that the errors with the GA
approach are considerably larger than those from DES Y1 and the Planck 2018 results being one
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of the reasons the fact that with our reconstructions we are not making assumptions on flatness
or a dark energy model, hence more agnostic.

15.7 Error analysis

In Eqs. (15.6) and (15.7) we have rewritten the reconstruction equations for the scalar field in
terms of dimensionless variables. Then, by standard error propagation we find that the error for
the potential and the kinetic term can be expressed as

δṼ = 2EδE − x

6

d

dx
(2EδE)− 1

2
δΩm,0x

3, (15.28)

δ

(
dφ̃

dx

)2

=
2

3x

d

dx

(δE
E

)
+

2Ωm,0xδE

E3
− xδΩm,0

E2
. (15.29)

Since the Swampland conjecture 2 (SC2) is defined as

SC2 =
|V,φ|
V
≡ |(dV/dz)/(dφ/dz)|

V
=
|V ′/φ′|
V

, (15.30)

then the error will be given by

δSC2 =

∣∣∣( δV ′φ′−δφ′V ′φ′2

)∣∣∣V − δV |V ′/φ′|
V 2

, (15.31)

where the prime is the derivative with respect to the redshift z.

15.8 Conclusions

Through a plethora of cosmological probes it has been established that the Universe is expanding
in an accelerated way, being one of the biggest findings in modern cosmology and implying that
70% of the mass-energy density is made of an unknown content, usually referred to as dark energy
(DE), spreading uniformly over the Universe. The cosmological constant Λ represents one of the
simplest contenders of DE, however some of it caveats is that the observed energy scale of DE
is much smaller than the energy scale predicted by a vacuum energy in particle physics [645].
Other viable alternatives come from the inclusion of slowly rolling scalar fields which control the
accelerated expansion of the Universe at late times, being Quintessence an example of these type
of models.

In the framework of string phenomenology, at present we should necessarily be in an epoch
of quintessence and in the continuous search for a theory of quantum gravity there has been
some Swampland conjectures proposed, which refer to some criteria that must be hold in order
to have effective field theories consistent with quantum gravity [646]. Some of these conjectures
have important implications in cosmology as is the case of the Swampland criteria that we have
analyzed in this Chapter.

In our analysis we have presented two model independent reconstructions of the Swampland
conjectures with ML and cosmography placing constraints on the first and second Swampland
conjectures, finding that at low redshifts both approaches give consistent results and that, neither
conjecture is ruled out by the data at a statistically significant level.

However, while the swampland bounds seem to be satisfied by the low redshift data, their
reconstructed scalar potential, see Fig. 15.1, has a shape similar to a parabola. Thus, while these
reconstructions may be superficially consistent with the swampland bounds, it should be noted
that exponential potentials are what naturally emerges in UV complete settings.
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Chapter 15. Machine Learning and cosmographic reconstructions of quintessence and the
Swampland conjectures

Comparing both of our approaches, the ML algorithm seems a more robust approach for
the following reasons: First, in cosmography we are assuming flatness and a Planck 2018 prior on
Ωm,0, while with the GA we do not make assumptions on flatness, Ωm,0 or on a dark energy model.
Second, our ML reconstructions allow us to place constraints at higher redshifts where the kinetic
term reconstructed goes up to z ∼ 1.9. while for cosmography only extends up to z ∼ 0.3, as the
scalar field kinetic term becomes negative beyond that.

Finally, using the growth rate data fσ8(z) we perform a model independent probe of modified
gravity cosmologies through two phase diagrams, H−fσ8 and η−fσ8 where the anisotropic stress
parameter η is reconstructed through the Eg statistics, related to gravitational lensing data. We
see that the first diagram H − fσ8 is consistent within the errors with the ΛCDM model, while
the second diagram η − fσ8 has a ∼ 2σ deviation of the anisotropic stress from unity at z ∼ 0.3
and a ∼ 4σ at z ∼ 0.9, thus pointing toward mild deviations from GR, which could be the future
target of upcoming large-scale structure surveys.
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16
Novel null tests for the spatial curvature and

homogeneity of the Universe and their machine
learning reconstructions

.
The original content of this chapter is based on Ref. [433]. A plethora of observational data

obtained over the last couple of decades has allowed cosmology to enter into a precision era and
has led to the foundation of the standard cosmological constant and cold dark matter paradigm,
known as the ΛCDM model. Given the many possible extensions of this concordance model,
we present here several novel consistency tests which could be used to probe for deviations from
ΛCDM. First, we derive a joint consistency test for the spatial curvature Ωk,0 and the matter
density Ωm,0 parameters, constructed using only the Hubble rate H(z), which can be determined
directly from observations. Second, we present a new test of possible deviations from homogeneity
using the combination of two datasets, either the baryon acoustic oscillation (BAO) and H(z) data
or the transversal and radial BAO data, while we also introduce two consistency tests for ΛCDM
which could be reconstructed via the transversal and radial BAO data. We then reconstruct the
aforementioned tests using the currently available data in a model independent manner using a
particular machine learning approach, namely the Genetic Algorithms. Finally, we also report on
a ∼ 4σ tension on the transition redshift as determined by the H(z) and radial BAO data.

16.1 Introduction

Great efforts are made to provide accurate constraints on the spatial curvature of the Universe, as
measured by the parameter Ωk,0, since any statistically significant deviation from flatness would
provide insights to the primordial inflation paradigm, aid to test physics of the early universe and
also help pinpoint to high precision the age of the Universe. Moreover, accurately determining the
spatial curvature of the Universe would also help in discriminating evolving dark energy density
models with curvature from a flat ΛCDM model, as in general evolving dark energy and curvature
are degenerate with each other [647]. In this context several consistency tests and analyses have
been proposed [421, 648–655, 655, 656]. Actually, a detection of non-flatness, i.e Ωk,0 6= 0, would
severely constrain the number of inflationary models, see e.g. Ref. [657], and future surveys, such
as DESI and SKA, are targeting tighter measurements of Ωk,0 by breaking parameter degeneracies
[658,659].

Even though the aforementioned discrepancy might be due to unaccounted for systematic
errors, there also exists the plausible possibility of new physics in the form of modified gravity
(MG) or dark energy (DE) models. In fact, the ΛCDM scenario has some caveats as its main
components, namely dark matter (DM) and dark energy (DE) have not yet been detected in the
laboratory and are not well understood [645,660,661], hinting towards the idea that ΛCDM could
be an approximation to a more fundamental theory that remains currently unattainable [662].
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As we have already discussed in previous Chapters, one way to overcome the biases of
choosing a theoretical defined model is to use non-parametric reconstruction methods and model-
independent approaches [168]. In this context, machine learning (ML) algorithms have provided
innovative solutions for extracting information in a theory agnostic manner [401]. These tests are
ideal to check for possible tensions that could arise because of unaccounted for systematics or could
provide hints of new physics. Their main advantage is that any deviations at any redshift from
the expected value imply the breakdown of any assumptions made [425]. Null tests have been
used extensively for the concordance ΛCDM model [168, 426, 427], interacting DE models [428],
the growth-rate data [404, 425, 429], the cosmic curvature [424, 430–432] and also to probe the
scale-independence of the growth of structure in the linear regime [339].

Here we provide a new method to probe the spatial curvature and homogeneity of the
Universe. First, we present a new joint consistency test for the curvature Ωk,0 and the matter
density Ωm,0 parameters, constructed using only the Hubble rateH(z), which is determined directly
from observational data. This null test of the ΛCDM model is an extension of the well-known Om
diagnostic [426], but with the added advantage that now we do not have to assume flatness. Second,
we also present a null test that can be used to check for deviations from homogeneity through the
combination of two datasets, either the Baryon Acoustic Oscillations (BAO) and H(z) data or the
transveral and radial BAO data.

Furthermore, we also introduce two new consistency tests for ΛCDM that could be tested
through the transversal, also known as angular, and radial BAO respectively. The first one is
derived following a similar approach to that of Ref. [419], where now we use the angular BAO scale
relation θ(z) to present a new expression of ΛCDM , which we will refer to as Omθ(z). We show
that this test has the advantage that it does not contain higher derivative terms, which increase the
error when noisy data are used thus providing stringent constraints for the ΛCDM model. Finally,
we use the radial BAO data ∆z(z) to reconstruct the Hubble parameter H(z) and the deceleration
parameter q(z) and constrain the accelerated expansion of the Universe.

In all cases the reconstructions of the cosmological data are performed using the Genetic
Algorithms (GA), which is a stochastic minimization and symbolic regression algorithm. One of its
main advantages is that it is a non parametric method which allows us to make the least number
of assumptions concerning the underlying cosmology and thus avoid the issue of biases.

The outline of this Chapter is as follows: in Sec. 16.2 we introduce our theoretical framework.
In Sec. 16.3 we set out our spatial curvature and homogeneity test and in Sec. 16.4 we outline our
ΛCDM consistency tests. Then, in Sec. 16.5 we describe the data used in our analysis and in
Sec. 16.6 we discuss the Genetic Algorithms used to do the reconstructions. Later, in Sec. 16.7 we
present our results, in Sec. 16.8 we present the results for the complementary joint null test for
(Ωm,Ωk) of Ref. [663] and in Sec. 16.9 we summarize our conclusions.

16.2 Theoretical framework

In this section we review the formalism used in the analysis and the consistency tests. Assuming
that at scales of order∼100Mpc the Universe is homogeneous and isotropic, then it can be described
by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric at the background level, which in
reduced spherical polar coordinates can be written as:

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (16.1)

where t is the cosmic time and the scale factor a(t) is related to the redshift z as a = 1
1+z . The

spatial slices can be interpreted as flat Euclidean space with k = 0, closed hyperspherical space
with k = +1 or open hyperbolic space with k = −1. The spatial curvature of the Universe can be
parameterized as Ωk,0 = − c2

H0
k, thus at late times, when we can neglect radiation since Ωr,0 ∼ 0,
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we find that the Friedmann equation can be written as

H2(z)

H2
0

= Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + (1− Ωm,0 − Ωk,0) exp

[
3

∫ z

0

1 + w (z′)

1 + z′
dz′
]
, (16.2)

where Ωm,0 represents the matter content of the Universe, Ωk,0 its curvature and w the DE equation
of state. Since the cosmological constant has w = −1, then then Eq. (16.2) gives for the ΛCDM
model that

H(z) = H0

√
Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0, (16.3)

where ΩΛ,0 is related to Ωm,0 and Ωk,0 via the consistency relation

Ωm,0 + ΩΛ,0 + Ωk,0 = 1. (16.4)

The comoving distance at some redshift z can be written as [502]

r(z) =
c

H0

1√
−Ωk,0

sin

(√
−Ωk,0

∫ z

0

c

H(z′)/H0
dz′
)
, (16.5)

while the luminosity and angular diameter distances are related via

dL(z) = (1 + z) r(z), (16.6)

dA(z) = (1 + z)−1r(z). (16.7)

The deceleration parameter q(z) is defined as

q(z) = − äa
ȧ2

= −1 + (1 + z)
d ln(H/H0)

dz
, (16.8)

and assuming Eq. (16.3), at the present time (z = 0) it can be expressed as

q0 ≡ q(z = 0)

=
1

2
(−2 + 2Ωk + 3Ωm) . (16.9)

Finally, assuming Eq. (16.3), the transition redshift zt can be defined as the redshift at which the
deceleration parameter changes sign, i.e. q(zt) = 0. This implies that

zt =

(
2ΩΛ,0

Ωm,0

)1/3

− 1 =

(
2 (1− Ωm,0 − Ωk,0)

Ωm,0

)1/3

− 1, (16.10)

which is a prediction of the ΛCDM model.

16.3 The null tests

16.3.1 Test 1: Deviations from flatness

Defining x = 1 + z, from Eq. (16.3) we can write the matter density parameter Ωm,0 in terms of
the Hubble function and the curvature Ωk,0 as

Ωm,0 =
h2(x)− 1 + Ωk,0(1− x2)

x3 − 1
, (16.11)

which reminds us of the Om diagnostic of Ref. [426] when Ωk,0 → 0 and where we have defined
h(x) = H(x)/H0. The problem in this case is that now the curvature parameter, which cannot be
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measured in a model independent fashion, enters in the right hand side of Eq. (16.11). To avoid
this problem, we can use the deceleration parameter evaluated at z = 0 given by Eq. (16.9), as it
can indeed be determined independently from the data, see for example Ref. [419]. Thus, using
Eqs. (16.3) and (16.9) we can simultaneously solve the algebraic system of equations for Ωk,0 and
Ωm,0 to find expressions that depend on only measurements of the Hubble rate H(z). Doing so we
find

Ωm,0 =
2
(
−1 + h2(z)− (1 + q0)z(2 + z)

)
z2 (3 + 2z)

, (16.12)

Ωk,0 =
3− 3h2(z) + 2(1 + q0)z (3 + z(3 + z))

z2 (3 + 2z)
, (16.13)

where h(z) = H(z)/H0.
As can be seen, the joint test of Eqs. (16.12)-(16.13), is an extension of the Om diagnostic

of Ref. [426] as it allows us to distinguish evolving dark energy (DE) models from the cosmolog-
ical constant, without having to assume any value for the curvature parameter. Our expressions
presented here resembles that of Ref. [663], but in our case we do not explicitly have derivatives of
the Hubble rate H(z), albeit only a derivative evaluated at a single point is implicitly contained in
the deceleration parameter q0. As we will see in later sections, this difference allows our approach
to have much smaller error bars in the reconstruction compared to that of Ref. [663].

16.3.2 Test 2: Deviations from homogeneity

Here we expand on tests of homogeneity as proposed in Ref. [664]. Homogeneity implies a consis-
tency relation that holds in FLRW between the angular diameter and comoving distances, given
by dA(z) and r(z) respectively, described by Eq. (16.7). Any violation of Eq. (16.7) implies we live
in a non-FLRW Universe, however, one would still expect variations on the order of ∼ 10−5 due
to perturbations from large-scale structure.

One way we can test this assumption is by reconstructing separately the angular diameter
distance using the BAO data and the comoving distance from the H(z) data. To do so, we make
use of the comoving observed BAO angle, which is given by

θBAO =
rd

(1 + z)dA(z)
, (16.14)

and the same for the H(z) data
θH(z) =

rd
r(z)

, (16.15)

where in both cases rd is the comoving sound horizon at the drag epoch rd ≡ rs(zd), given by

rs(zd) =

∫ ∞
zd

cs(z)

H(z)
dz , (16.16)

with zd the redshift at the drag epoch, see Eq.(4) of Ref. [98], while cs(z) is the sound speed given
by

cs =
c√

3(1 +R)
, (16.17)

where R = 3ρb
4ργ

=
3Ωb,0

4Ωγ,0
a.

Then, we can create the following expressions that can be used to search for deviations from
homogeneity using BAO and H(z) data:

ζ = 1−
θH(z)

θBAO
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= 1− (1 + z)dA(z)

r(z)
, (16.18)

which should be zero at all z for any FLRW model.
In this case we can use BAO measurements andH(z) data to directly reconstruct the angular

diameter distance dA(z) and the comoving distance r(z) respectively. One issue with this though
is that the H(z) cannot constrain the curvature parameter directly, as we reconstruct the data
agnostically with the GA, thus for this test we will assume flatness, i.e. Ωk,0 = 0 in order to
calculate the comoving distance r(z) from the H(z) data. Furthermore, had we used any data that
depend on the conservation of the number of photons to measure the luminosity distance dL(z),
as is for example the case for the type Ia supernovae, then the test of Eq. (16.18) would in fact be
a test of the cosmic distance duality (Etherington) relation dL(z) = (1 + z)2dA(z) instead.

We can also express Eq. (16.18) using alternatively the radial ∆z and angular θ(z) BAO
data, as dA(z) and θ(z) are related via Eq. (16.14), while the radial BAO ∆z and H(z) are related
via the following relation

∆z =
rd ·H(z)

c
, (16.19)

where c is the speed of light. Then, by using Eqs. (16.14) and (16.19) we have also the following
expression

ζ = 1− θH
θBAO

= 1−
(
θBAO(z)

∫ z

0

1

∆z(z′)
dz′
)−1

, (16.20)

which should be zero at all redshifts in the ΛCDM model. This test has the added advantage that
the radial and angular BAO are direct observables and in fact, the sensitivity of the angular BAO
scale is complementary to that of the radial BAO [665].

16.4 Complementary null tests

16.4.1 Test 1: The angular BAO

As mentioned before, the angular BAO can be expressed as

θ(z,Ωm,0) =
rd

(1 + z)dA(z,Ωm,0)
, (16.21)

thus, defining the following quantity

θ̃(z,Ωm,0) =
θ

rd
=

1

(1 + z)dA(z,Ωm,0)
, (16.22)

we can now apply the Lagrange inversion theorem to θ̃(z,Ωm,0) and write Ωm,0 as a function of θ̃(z),
i.e Ωm,0(z, θ̃(z)) via the following steps. First, in the flat ΛCDM model and neglecting radiation,
the angular diameter distance dA(z,Ωm,0) is given by

dA(z,Ωm,0) =
c

H0(1 + z)

∫ z

0

1

H(x)
dx

=
c

H0

2(1 + z)√
Ωm,0


2F1

(
1

6
,

1

2
,

7

6
,

Ωm,0 − 1

Ωm,0

)
−

2F1

(
1
6 ,

1
2 ,

7
6 ,

Ωm,0−1
Ωm,0(1+z)3

)
√

1 + z

 .(16.23)

Then, to derive the angular BAO test we do a series expansion on Eq. (16.22) around Ωm,0 = 1 and
keep the first 10 terms in order to obtain a reliable unbiased estimation, so as to avoid theoretical
systematic errors. We have chosen to keep the first 10 terms so that at high redshifts, in particular
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at z ∼ 2.3 where the last of the data points are, the theoretical systematic errors are well below
∼ 1%.

Then, we apply the Lagrange inversion theorem to invert the series and to write the matter
density Ωm,0 as a function of the angular BAO θ̃. Then, the first two terms of the test are

Omθ = 1 +
28
(
− 1

2−2
√
a
θ̃
)

(
6 + 5

√
a+ 4a+ 3a3/2 + 2a2 + a5/2

) +O(θ̃2), (16.24)

where the scale factor a is related to the redshift z as a = 1
1+z and when θ̃ corresponds to the

ΛCDM model, this should reduce to Ωm,0. This expression has the main advantage that it does
not require taking derivatives of the data as we use the angular BAO directly and the parameter
rd can also be directly obtained from the data, see Sec.16.5 for more details.

16.4.2 Test 2: The radial BAO

In a flat ΛCDM universe, the OmH(z) quantity is constant and equal to the matter energy density
[426]

OmH(z) =
h2(z)− 1

(1 + z)3 − 1
≡ Ωm,0, (16.25)

where h(z) ≡ H(z)/H0. From Eq. (16.19) we have that

h(z) =
c

100rsh
∆z, (16.26)

where the combination rsh = rd · h can be easily determined in a model independent fashion by
fitting the radial BAO with the GA, see Sec. 16.5 for more details. Then given the relation between
the Hubble parameter and the radial BAO, we can also rewrite the aforementioned expression as

Om∆z(z) =
h(z)2 − 1

(1 + z)3 − 1

=

(
c

100rsh

)2

∆z2(z)− 1

(1 + z)3 − 1
, (16.27)

16.4.3 Test 3: The deceleration parameter

The deceleration parameter specified by Eq. (16.8) can also be estimated by using the radial BAO,
see Eq. (16.19). Hence, we can measure the rate of accelerated expansion of the Universe in a model
independent fashion with a different dataset other than H(z) and also constrain the transition
redshift zt of the acceleration phase. In this case, we can write the deceleration parameter as

q(z) = −1 + (1 + z)
d ln(H/H0)

dz
,

= −1 + (1 + z)
∆z′(z)

∆z(z)
, (16.28)

and the transition redshift zt is the value at which q(zt) = 0. The main advantage in this case
is that the radial BAO data have a much smaller error with respect to the H(z) data, hence can
provide stringent constraints on the deceleration parameter q(z).

16.5 Data

The data used in this Chapter is composed of the Hubble rate data H(z), baryon acoustic oscilla-
tions, the radial and angula BAO data, see Chapter 2 for a detailed discussion.
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Figure16.1: TheGAreconstructionoftheΩm(H,q0)(leftpanel)andΩk(H,q0)(rightpanel)
expressionsgivenbyEqs.(16.12)and(16.13)respectivelyandobtainedusingtheH(z)data.In
bothcasestheblacksolidlineandthegreyregioncorrespondstotheGAbest-fitandthe1σ
errorrespectively.Ascanbeseen,bothreconstructionsareconsistentwiththeflatΛCDMmodel
representedbytheblackdashed-lineatthe1σ
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Figure16.2: Theζ=1− θH
θBAO

testwhichaimstofinddeviationsfromhomogeneitythrough
ourreconstructionsfromtheH(z)andBAOdata(leftpanel)andourangularandradialBAO
data(rightpanel).InbothcasestheblacksolidlineandthegreyregioncorrespondstotheGA
best-fitandthe1σerrorrespectively.Ascanbeseen,bothreconstructionsareconsistentwiththe
expectationofnodeviation,representedbytheblackdashed-line,atthe1σlevelintheleftand
atthe∼2σintheright.

16.6 GeneticAlgorithms

ThedatasetusedintheanalysisisdescribedinChapter2,wheretheH(z)compilation,theBAO
dataandtheangularandradialBAOdataareusedtoreconstructtheHubblerateH(z),the
angulardiameterdistancedA(z),theangularBAOθ(z)andtheradialBAO∆z(z)respectively.

Toperformthereconstructionsinouranalysisweimplementedthefollowingapproach.
First,ourgrammarincludedthefollowingorthogonalbasisoffunctions:exp,logandpolynomials
andasetofoperations+,−,×,÷,∧. Wealsospecifiedsomeassumptionsmotivatedbyphysical
reasons.Forinstanceatthepresentdayz=0wehavethatH(z=0)=H0,dA(z=0)=0and
similarlyθ(z=0)∼rsh

z and∆z(z=0)∼
100rsh
c ,butwemakenoassumptionsonthecurvatureof

theUniverseoranyMGorDEmodel. WealsoimposedthatallthefunctionstheGAreconstructs
arecontinuousanddifferentiable,withoutanysingularitiesintheredshiftscannedbythedatato
avoidoverfittingorfakereconstructions.

Thefinaloutputofthecode,thenisasetofsmoothandanalyticfunctionsforH(z),dA(z)
andθ(z),∆z(z)thatdescribethedata.
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Concerningtheerrorsofthereconstructedfunctions,theyareobtainedthroughthepath
integralapproachdescribedinSec.10.0.2of10
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Figure16.3:Leftpanel:ThereconstructionoftheOmθ(z)statisticsobtainedthroughourrecon-
structionoftheangularBAOdatausingtheGA.Rightpanel:ThereconstructionoftheOm∆z(z)
statisticsderivedthroughourGAreconstructionoftheradialBAOdata.Inbothcasestheblack
solidlineandthegreyregioncorrespondstotheGAbest-fitandthe1σerrorrespectively.Both
reconstructionsareconsistentwiththebest-fitflatΛCDMmodelrepresentedbytheblackdashed-
lineatthe1σ
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Figure16.4:ThedecelerationparametergivenbyEq.(16.8)asreconstructedbyusingEq.(16.19).
TheblacksolidlineandthegreyregioncorrespondstotheGAbest-fitandthe1σerrorrespectively.
OurmodelindependentdetectionoftheacceleratedexpansionoftheUniverseisconsistentwith
thebest-fitflatΛCDMmodelrepresentedbytheblackdashed-lineatthe1σlevel.Thetransition
redshiftztrcorrespondstothepointwhereq(z)crosseszero.

16.7 Results

InthissectionwepresentourGAfitstothedataandthecorrespondingconsistencytestsderived
throughourreconstructions.InTable16.1weshowthebest-fitχ2perdegreeoffreedom(dof)or
equivalentlypernumberofpoints,fortheGAfunctionsandthebest-fitΛCDMmodel.Ascanbe
seen,inallcasestheGAout-performstheΛCDMmodelintermsofthebest-fitχ2/dof.

Concerningourprobeforthecurvature,inFig.16.1wepresenttheΩm(H,q0)(leftpanel)and
Ωk(H,q0)(rightpanel)expressionsgivenbyEqs.(16.12)and(16.13)respectively,obtainedthrough
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H(z) BAO θ(z) ∆z(z)

χ2
ΛCDM/dof 0.541 0.911 0.843 0.734
χ2

GA/dof 0.491 0.610 0.831 0.592

Table 16.1: The χ2/dof for ΛCDM and GA using the Hubble rate H(z), the BAO data
and the angular θ(z) and radial ∆z(z) BAO data.

our GA reconstruction of the H(z) data.1 In both cases the black solid line and the grey region
correspond to the GA best-fit and its 1σ error respectively. As can be seen, both reconstructions
are consistent with the best-fit flat ΛCDM model, represented by the black dashed-line, at the 1σ
level.

In Fig. 16.2 we show the ζ = 1− θH
θBAO

test which aims to find deviations from homogeneity
through our reconstructions from the H(z) and BAO data (left panel) and our angular and radial
BAO data (right panel). In both cases the black solid line and the grey region corresponds to the
GA best-fit and the 1σ error respectively. As can be seen, both reconstructions are consistent with
the best-fit flat ΛCDM model, represented by the black dashed-line, at the 1σ level in the left and
at ∼ 2σ in the right panel.

In Fig. 16.3 we show our consistency tests of the ΛCDM model. In particular, in the left
panel we show the reconstruction of the Omθ(z) statistic, obtained through our reconstruction
of the angular BAO data using the GA. On the right panel we have the reconstruction of the
Om∆z(z) statistics derived through our GA reconstruction of the radial BAO data. In both cases
the black solid line and the grey region corresponds to the GA best-fit and the 1σ error respectively.
Both reconstructions are consistent with the best-fit flat ΛCDM model, represented by the black
dashed-line, at the 1σ level. It is worth noting that the best-fit value of the matter density for
the flat ΛCDM model is given by Ωm,0 = 0.396 ± 0.154, which is somewhat higher than the one
found by other observations [1]. A possible explanation for this higher value of the matter density
could be due to the assumptions made on Section 16.3, where we are reducing the complex galaxy
survey data to single values of θ(z).

Furthermore, in Fig. 16.4 we present the deceleration parameter given by Eq. (16.8) as
reconstructed by using Eq. (16.19). The black solid line and the grey region corresponds to the
GA best-fit and the 1σ error respectively. Our model independent detection of the accelerated
expansion of the Universe is consistent with the best-fit flat ΛCDM model, represented by the
black dashed-line, at the 1σ level. The transition redshift ztr corresponds to the point where q(z)
crosses zero, and q(z) is obtained via Eq. (16.28).

Finally, with our GA reconstructions we find the following derived parameters

rs(BAO) = 101.873± 2.078 Mpc/h, (16.29)

rs(transverse BAO) = 103.938± 2.132 Mpc/h, (16.30)

rs(radial BAO) = 103.477± 1.447 Mpc/h, (16.31)

while from the radial BAO we also find

qGA,0 = −0.600± 0.031, (16.32)

zGA,tr = 0.769± 0.050, (16.33)

where ztr is the value of the transition redshift, i.e the moment when the deceleration parameter
changes sign. It should be noted that using H(z) data, Ref. [419] had reported a value for the
deceleration parameter today of q0 = −0.575±0.132 and the transition redshift ztr = 0.662±0.027,
where the latter is ∼ 4σ away from the value reported earlier, thus hinting at a possible tension
between the two datasets.

1In Sec. 16.8 we also present a complementary test for Ωk containing derivatives of H(z).
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Inthiscase,ourconstraintofthetransitionredshiftusingtheH(z)dataandtheradial
BAOdatacomesfromthesamemethod,theGA.Actually,themaincauseofthedifferenceis
duetothelargererrorsoftheH(z)data,andtheassociatedpossiblesystematicsinthecosmic
chronometers,comparedtotheerrorsoftheradialBAO.Thisdifferencecausesasmalldifference
betweenthebest-fitvaluefromΛCDMandtheGAfortheH(z)data,whiletheradialBAOthe
GAandthebest-fitvalueofΛ
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Figure16.5: TheΩk(H,q0)expressionpresentedinthisChapter(leftpanel)comparedtothe
OK(z)expressionfromRef.[663](rightpanel).InbothcasesweuseourGAreconstructionofthe
H(z)data,whiletheblacksolidlineandthegreyshadedregionscorrespondtotheGAbest-fit
andthe1σerrorrespectively.

16.8 Complementarynulltests

Herewebrieflypresentacomplementary(Ωm,0,Ωk,0)jointtestwithasimilaronefromRef.[663],
whichisdefinedas

O(2)m (z) ≡ 2
(1+z)1−h2 +z(2+z)hh

z2(1+z)(3+z)
, (16.34)

OK(z) ≡
3(1+z)2 h2−1−2z3+3z+z2 hh

z2(1+z)(3+z)
, (16.35)

whereh=H(z)/H0andtheprime isaderivativewithrespecttoz.Theprevioustestsinthe
ΛCDMlimitreduceto

O(2)m (z) = Ωm,0, (16.36)

OK(z) = Ωk,0. (16.37)

InFig.16.5weshowthetworeconstructionsforthecurvaturetest,ontheleftpanelforourtest
givenbyEq.(16.13)andintherightpanelforthatofRef.[663]givenbyEq.(16.35).Themain
differenceofthelatterwithourtestcomesathighredshiftsz>1,wheretheestimatederrorsof
theGAaresmallerwithourtestandalsoagreemoreathighredshiftswiththeexpectationfrom
PlanckofanearlyflatUniverse.

16.9 Conclusions

InthisChapterwehavepresentedasetofnewconsistencytestsforthespatialcurvatureand
homogeneityoftheUniverseandtheΛCDMmodel,whichisthetargetofupcominglarge-scale
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structure surveys. These tests will provide us alternative and complementary tests of the validity
of the standard flat ΛCDM paradigm.

In our analysis we prefer to use the GA, compared to other non-parametric approaches, e.g.
various kinds of orthogonal polynomials or Gaussian Processes. The reason is that the Gaussian
Processes still require the choice of a mean function, arbitrarily assumed to be either some constant,
e.g. zero, or the cosmological constant ΛCDM model. In previous works we have shown that the
GA do not suffer from this issue, hence we believe they are quite appropriate for the problem at
hand.

We have presented an extension of the consistency diagnostic of flat ΛCDM of Ref. [426],
by now including both the curvature Ωk,0 and the matter density Ωm,0, see Eqs. (16.12)-(16.13).
We show how the latter can be derived from the Hubble rate H(z) and can be determined directly
from observational data. We should stress that the added advantage of our new null test of the
ΛCDM model presented here is the fact that we do not have to assume a flat Universe.

Secondly, through the combination of the BAO and H(z) data or the angular and radial
BAO data respectively, we also presented a test to search for deviations from homogeneity, see
Eqs. (16.18) and (16.20). Then, with the angular and radial BAO data we also introduce two
new consistency tests for the ΛCDM model. The first one, namely Omθ(z), is derived following a
similar approach as it was shown in Ref. [419] where in this case we use the angular BAO scale
relation θ(z) to reconstruct null tests of the ΛCDM model, with the advantage that this null test
does not contain higher derivative terms, which tend to increase the reconstruction errors when
using noisy data.

Finally, we also used the radial BAO data ∆z(z) to obtain a model independent determi-
nation of the accelerated expansion of the Universe by reconstructing the deceleration parameter
q(z) and we applied our ∆z reconstruction to the Om diagnostic [426]. Overall we find that our
results are consistent with the standard flat ΛCDM scenario, however we also noted a ∼ 4σ tension
on the determination of the transition redshift zt, i.e. the redshift where the Universe transitions
from decelerated to accelerated expansion, between the H(z) and the radial BAO data.

Overall, we find that these new tests of the spatial curvature and homogeneity of the Universe
can be used, in a model-independent fashion, to test some of the fundamental assumptions of the
standard cosmological model. However, our reconstructions are somewhat limited by the current
data, albeit this should be resolved in the near future when high quality BAO data become available
from the next stage surveys.
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17
A complementary consistency test of the

Copernican principle via Noether’s Theorem and
machine learning forecasts

The original content of this chapter is based on Ref. [666]. The Copernican principle (CP), i.e.
the assumption that we are not privileged observers of the universe, is a fundamental tenet of the
standard cosmological model. A violation of this postulate implies the possibility that the apparent
cosmic acceleration could be explained without the need of a cosmological constant, dark energy
or covariant modifications of gravity. In this letter we present a new test of the CP relating the
distance and the expansion rate, derived via Noether’s theorem, which is complementary to other
tests found in the literature. We also simulate fiducial data based on upcoming stage IV galaxy
surveys and use them to reconstruct the Hubble rate H(z) and the angular diameter distance
dA(z) in order to forecast how well our null test can constrain deviations from the cosmological
constant model. We find that our new test can easily rule out several realistic scenarios based on
the Lemaître-Tolman-Bondi void model at confidence of & 3σ at mid to high redshifts (z > 0.5).

17.1 Introduction

The standard cosmological paradigm is based on two fundamental assumptions: first, that the
dynamics of space-time are governed by Einstein’s field equations and second, that the universe is
homogeneous and isotropic at scales larger than ∼100Mpc, a hypothesis normally referred to as the
Cosmological principle, which is considered to be a generalization of the Copernican principle (CP).
The latter is one of the pillars of modern cosmology, stating that we do not occupy a special place
in the Universe, or in other words, that any point in space must be equivalent to any other [648].
This leads to the framework of an homogeneous and isotropic background spacetime governed by
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which describes the geometry of the
universe in terms of the scale factor a(t), which obeys the Friedmann equation [645].

Clearly, any violations of the CP would disprove homogeneity and would provide a plausible
explanation for the observed accelerated expansion of the Universe without the need for a dark
energy component. The latter could in fact have several possible explanations, such as modified
gravity theories, global inhomogeneities such as a void model or novel dark fluid components
currently unobserved in the laboratories [667–669].

Void models are plausible contenders to the standard cosmological model and have the
particularity that they don’t employ any form of dark energy components as the accelerating
expansion of the Universe is interpreted from the fact that we live close to the centre of a large
underdense region. These inhomogeneities can occur locally via back-reaction [670, 671] or either
by having the observer in a special place in the local universe [672].

As of now, the CP has been tested with different observations such as radio-astronomy [673],
time drift of cosmological redshift [674], using Type Ia supernovae [672,675], the integrated Sachs
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Wolfe effect [676], galaxy correlations and the baryon acoustic oscillations [677], the Hubble pa-
rameter [678], machine learning and cosmological distance probes [421], peculiar velocities [679],
gravitational waves [680], the distortion of the Planck spectrum of the cosmic microwave back-
ground (CMB) [681], galaxy surveys [682], the first order anisotropic kinetic Sunyaev Zel’dovich
(kSZ) effect [683,684] and finally with a plethora of cosmological data that can be used to constrain
spatial homogeneity [685].

The simplest inhomogeneous models of the Universe are given by a spherically symmetric
distribution of matter, which is mathematically described by a Lemaître-Tolman-Bondi (LTB)
spacetime [686], which has been shown it can produce a Hubble diagram which until a few years
ago was consistent with observations a few years ago [687], but with more recent data it has been
realized that simple void models cannot be used as alternative to dark energy. Specifically, LTB
models where decaying modes are not present produce a large kSZ signal [683, 688, 689], while
models with large decaying modes, and correspondingly a small kSZ signal, are not viable due
to y-distortions [690]. Specific cases where the void LTB models can be viable require fine-tuned
initial conditions, thus leading to questions about the naturalness of these models.

Since in the near future we are going to have sufficiently good and rich cosmological data
we will use the LTB models as a check for our null test to show how they can be ruled out
with high confidence. Probing for deviations from the cosmological constant model (ΛCDM) is
non-trivial in the absence of guiding principles or laboratory data [649]. Thus, over the years
several consistency tests of the ΛCDM have appeared in the literature. In general these tests
are constructed so that possible deviations from ΛCDM at any redshift are apparent and easy to
quantify in the form of null tests. These are formulated such that they can be computed using
reasonably directly observable quantities at any redshift, thus by computing the consistency test
using data from multiple redshifts, one can examine the validity of the basic assumptions of the
cosmological standard model. If these assumptions hold, the null test should be independent of
redshift.

In this Chapter we present a complementary test to the well-known curvature test of
Ref. [648] that can be used to falsify the CP. This null test depends solely on distance and Hubble
rate observations and is derived with the aid of Noether’s theorem. The advantage of our new test
is that it does not suffer from divergences and provides tighter constraints at high redshifts, as we
will discuss in later sections.

Our Chapter is organized as follows: In Sec. 17.2 we present the theoretical formalism, our
null test named O(z) and a description of the LTB models used to check the consistency test. In
Sec. 17.3 we describe our simulated data based on an optimistic Stage IV galaxy survey and the
Machine Learning (ML) algorithm used to reconstruct the data, namely the Genetic Algorithms.
Finally, in Sec. 17.4 we present our results and in Sec. 17.5 we summarize our conclusions.

17.2 Analysis

Under the assumption of a Friedmann-Lemaître-Robertson-Walker (FLRW) metric, the luminosity
distance can be written as

dL(z) =
c(1 + z)

H0

√
−Ωk

sin

(√
−Ωk

∫ z

0

dz′
H0

H (z′)

)
, (17.1)

where Ωk is the curvature parameter today and H(z) is the expansion rate. The luminosity
distance dL(z) is related to the angular diameter distance dA(z) through the Etherington relation,
i.e. dL(z) = (1 + z)2dA(z). Using the dimensionless comoving distance D(z), defined as D(z) =
(1 + z)dA(z)/(c/H0), we can regroup Eq. (17.1) to solve for the curvature parameter Ωk in terms
of H(z) and D(z) as [648]

Ωk =
[H(z)D′(z)]

2 − 1

[H0D(z)]
2 , (17.2)
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where the prime is a derivative with respect to the redshift ′ = d/dz and we have set c = 1. The
above relation allows us to estimate the spatial curvature parameter from distance and Hubble
rate observations, without having to assume any particular dark energy model or other model
parameters. It also allow us to test the curvature at any single redshift as it has been reconstructed
in several works, see for instance Refs. [421, 648–655, 655, 656]. Since the curvature parameter Ωk
does not depend on redshift, we can differentiate this to obtain a relation that must always equal
zero. This can be expressed as [648]

C(z) = 1 +H2
(
DD′′ −D′2

)
+HH ′DD′, (17.3)

where C(z) has to be zero at all redshifts in any model described by a FLRW metric, as was
originally shown in Ref. [648]. In Sec. 17.4 we will present constraints on this test with an upcoming
Stage IV survey along with a complementary CP test inspired from Noether’s theorem. The
advantage of following Noether’s theorem to make a complementary test is that by taking into
account of the symmetries of the system of equations that describe the expansion of the Universe,
we can reduce the order of the differential equations that appear in the final test. This allows us
to keep the errors of the reconstructions smaller, as higher order derivatives of noise data tend to
make the reconstructions less robust at high redshifts, as we demonstrate in what follows.

17.2.1 Lagrangian formalism and null test

We now present a complementary test of C(z) to probe the CP. Using Eq. (17.2) we can solve for
D′2, which will be given by

D′2 =
1 +D2Ωk

H2
, (17.4)

and inserting this relation into Eq. (17.3) we have

D′′ +
H ′

H
D′ − Ωk

H2
D = 0. (17.5)

To find a null test that involves the distance measure D, we will make use of the Lagrangian
formalism. The first step is to find a Lagrangian for Eq. (17.5) and, with the help of the Noether’s
theorem, to find an associated conserved quantity. For a description of the Noether symmetry
approach and applications for null tests see [420,429].

In a nutshell, if we assume that the Lagrangian can be written as L = L (z,D(z), D′(z)).
Then the Euler-Lagrange equations are:

∂L
∂D
− d

dz

∂L
∂D′

= 0 (17.6)

So, let us assume a Lagrangian of the form

L = T − V (17.7)

T =
1

2
f1(z,H(z))D′(z)2 (17.8)

V =
1

2
f2(z,H(z))D(z)2 (17.9)

where the f1 and f2 are arbitrary functions that need to be determined so that the resulting
equation after implementing the Euler-Lagrange Eq. (17.6) is exactly Eq. (17.5). Therefore, sub-
stituting the former Lagrangian in the Euler-Lagrange Eq. (17.6) and comparing the result with
Eq. (17.5) we are able to get the two functions f1 and f2 and consequently to build the Lagrangian
L of the system:

L =
1

2
HD′2 +

1

2

Ωk
H
D2. (17.10)
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It is easy to see that substituting Eq. (17.10) into Eq. (17.6) results exactly to Eq. (17.5). Now
that we have a Lagrangian we can use Noether’s theorem to find a conserved quantity that will be
later translated to the null test. So, if we have an infinitesimal transformation X with a generator

X = α(D)
∂

∂D
+
dα(D)

dz

∂

∂D′
(17.11)

dα(D)

dz
≡ ∂α

∂D
D′(z) = α′(z) (17.12)

such that for the Lie derivative of the Lagrangian we have LXL = 0, then

Σ = α(z)
∂L
∂D′

(17.13)

is a constant of “motion” for the Lagrangian of Eq. (17.10). From Eq. (17.13) we get that

Σ = α(D)HD′, (17.14)

while from the Lie derivative we also obtain:

α(z) = ce
−

∫ z
1

ΩkD(x)

H2(x)D′(x)
dx
, (17.15)

where c is an integration constant. Then, the constant Σ becomes

Σ =
H(z)D′(z)

H(0)D′(0)
e
−

∫ z
0

ΩkD(x)

H2(x)D′(x)
dx
, (17.16)

where we have redefined Σ to absorb c and we normalized the above equation so that the null test
must be 1 for all values of z.

Finally, to write the above null test only as a function of H(z) and D(z) we substitute Ωk
from Eq. (17.2) into Eq. (17.16), then the null test is given by

O(z) =
H(z)D′(z)

H0 D′(0)
e
−

∫ z
0

H2(x)D′2(x)−1

H2(x)D(x)D′(x)
dx
. (17.17)

17.2.2 LTB model

An alternative explanation, besides the cosmological constant Λ, for the current phase of acceler-
ated expansion of the Universe is the idea of inhomogeneous universe models, where this expansion
can be seen as an effective acceleration induced by our special position as observers residing inside
a huge under-dense region of space. These models violate the CP and a simple toy model which
has been studied extensively in the literature is the spherically symmetric Lemaître-Tolman-Bondi
model [686,691,692] (LTB) which describes a local void. It actually represents a family of models
coming from a spherically symmetric solution of Einstein equations exerted by pressureless matter
and no cosmological constant, as one still needs to provide a matter density profile [674]. The
metric for our model of interest is given by

ds2 = −dt2 +X2(r, t)dr2 +A2(r, t)dΩ2, (17.18)

where dΩ2 = dθ2 + sin2 θdφ2 and the function A(r, t) is analogous to the scale factor of the FRLW
metric, albeit it also has a dependence on both time and the radial coordinate r. One can find
a relation between X(r, t) and A(r, t) through the 0 − r component of the Einstein equations, i.e
X(r, t) = A′(r, t)/

√
1− k(r), where a prime denotes a derivative with respect to the coordinate

r and k(r) represents an arbitrary function, being similar to the role of the spatial curvature
parameter.
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Ωm,in r[Gpc] ∆r[Gpc] LTB models
0.298 1.0 0.30 LTB1
0.197 1.5 0.45 LTB2
0.156 1.8 0.54 LTB3
0.200 2.0 0.60 LTB4

Table 17.1: The parameters for the LTB models, where in all cases Ωm,out = 1 and H0 =
77 km/s/Mpc. Note that the actual value of the Hubble rate today as measured by a
comoving observer at z = 0, depends on the specific profile used. Here we assume the
constrained GBH LTB profile of Ref. [687], given by Eqs. (17.19)-(17.20).

This model can be totally described by the matter density Ωm(r) and the Hubble expansion
rate H(r). We will check our consistency test with a particular LTB model known as the GBH
parametrization [687]. In this case the matter and Hubble parameter profiles are given by

Ωm(r) = Ωout + (Ωin − Ωout )
1− tanh [(r − r0) /2∆r]

1 + tanh [r0/2∆r]
,

(17.19)

H0(r) = H0

(
1

Ωk(r)
− Ωm(r)√

Ωk(r)3
sinh−1

√
Ωk(r)

Ωm(r)

)
, (17.20)

where Ωk(r) = 1 − Ωm(r), Ωout is the value of the matter density at infinity, Ωin is the value of
the matter density at the center of the void, r0 is the size of the void and ∆r represents a scale
that characterises the transition to uniformity. In Table 17.1 we show the four GBH parameters
used in our analysis, which correspond to characteristic voids of sizes of a few Gpc, as suggested
in Ref. [687].

17.3 Reconstructions

We now describe both the mock data used and the Machine Learning process used to reconstruct
the null test, namely the Genetic Algorithms.

17.3.1 Mock data

Our mock Baryon Acoustic Oscillations (BAO) data for the angular diameter distance dA(z) and
the Hubble rate H(z) are based on a future upgrade of Dark Energy Spectroscopic Instrument
(DESI) [397]. DESI is a survey with the goal of probing the expansion rate and large-scale structure
(LSS) of the universe and can complement other future BAO surveys by extending the probed
redshift range [470].

The DESI survey, whose operations started at the end of 2019, is expected to obtain optical
spectra for tens of millions of galaxies and quasars up to redshift z ∼ 4, which will allow for BAO
and redshift-space distortion cosmological analyses. Our forecast data will cover the redshift range
z ∈ [0.05, 3.55], but their precision will also depend on the target population. The blue galaxies
(BGs) will cover the redshift range z ∈ [0.05, 0.45] in five equispaced redshift bins, the luminous red
galaxies (LRGs) and emission line galaxies (ELGs) will focus on z ∈ [0.65, 1.85] with 13 equispaced
redshift bins, while the Ly-α forest quasar survey will cover z ∈ [1.96, 3.55] with 11 equispaced
redshift bins.

To create the mocks we assume the H(z) and dA(z) are uniformly distributed in the range
z ∈ [0, 3.55], divided into 20 equally spaced binds of step dz = 0.2. The H(zi) and dA(zi) function
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Figure17.1:ReconstructionsofthetestsoftheCopernicanprinciple:theO(z)testofEq.(17.17)
(leftpanel)andtheC(z)testofEq.(17.5)(rightpanel).Theblacksolidlinecorrespondstothe
GAbest-fit,thegrayshadedregioncorrespondstothe68.3%confidenceregionsandthecolored
linestothevariousLTBprofilesdescribedinTable17.1.

wasestimatedasitstheoreticalvaluefromthedifferentcosmologicalmodelsplusagaussianerror
(whichcanbeeithernegativeorpositive)andassigninganerrorof0.5%ofitsvaluetoH(z)and
fordA(z)anerrorof0.28%forz<1.1and0.39%forz>1.1,whichisinagreementwithasimilar
setupto[693]. Wefurtherassumethesemeasurementstobeuncorrelated.

17.3.2 GeneticAlgorithms

TheimplementationoftheGeneticAlgorithms(GA)inouranalysisisexplainedinChapter10.

InouranalysiswereconstructtheHubblerateH(z)andtheangulardiameterdistance
dA(z)fromthemockdatacreated,andthecourseofactiontoitsreconstructionisasfollows.
First,ourpredefinedgrammarwasformedonthefollowingfunctions:exp,log,polynomialsetc.
andasetofoperations+,−,×,÷,seeTable10.1forthecompletelist.

AsapriorforourH(z)reconstructionweimposedthatatz=0itgoesasH(z=0)=H0.
SimilarlyforthedA(z)reconstructionweassumedthatdA(z=0)=c/H0atz=0wereboth
priorhaveamotivatedbyphysicalreasons.However,wemakenoassumptionsonthecurvature
oftheUniverseoranymodifiedgravityordarkenergymodel. Furthermore,inordertoavoid
overfittingoranyspuriousreconstructionswerequiredthatallfunctionsreconstructedbytheGA
arecontinuousanddifferentiable,withoutanysingularitiesintheredshiftprobedbythedata.

Oncetheinitialpopulationhasbeenconstructed,thefitnessofeachmemberiscomputed
byaχ2statistic,usingtheH(z)anddA(z)datapointsdirectlyasinput. Thefinaloutputof
thecodeisasetoffunctionsofH(z)anddA(z)thatdescribestheHubblerateandtheangular
diameterdistancerespectively.

Theerrorestimatesofthereconstructedfunctionareobtainedviathepathintegralap-
proach,seeSec.10.0.2formoredetails.

17.4 Results

InthissectionwepresentourGAfitstothesimulateddataandthecorrespondingconsistencytest
obtainedfromourreconstructionsonH(z)anddA(z). Wewanttostressthattheaimofthiswork
isnotsimplytoruleoutLTBvoidmodelsascontendersofdarkenergymodels,whichhasalready
beendoneso,buttopresentacomplementaryconsistencytotestoftheCPinanon-trivialbut
stillrealisticsetting.

InFig.17.1weshowournewnulltestO(z)givenbyEq.(17.17)andtheC(z)testgivenby
Eq.(17.3),bothofwhichcanbeusedtofinddeviationsfromtheCPthroughourreconstructions
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on the Hubble rate H(z) and the angular diameter distance dA(z). In both cases the black solid
line and the grey region correspond to the GA best-fit and its 1σ error respectively. The black
dashed-line represents the best-fit flat ΛCDM model and we see that our reconstructions recover
well the fiducial cosmology. The coloured lines represent the four different LTB models, concretely
defined in Table 17.1.

In the left panel of Fig. 17.1 we show our O(z) test and as can be seen, it is a good
discriminator of all LTB models at high and intermediate redshifts, i.e. z ∼ 0.6 and beyond, as the
errors remain consistently low at all redshifts. On the other hand, in the right panel of Fig. 17.1 we
present the C(z) test which can discriminate the LTB model from ΛCDM at intermediate redshifts
0.5 < z < 1.5 but at low redshifts (z < 0.3) and high redshifts above z ∼ 1.5 the values of C(z) of
the fiducial LTB models asymptote to zero, thus being dominated by the errors.

Therefore, by comparing both panels we may infer that our test manages to detect deviations
from the CP particularly well and consistently at mid to high redshifts, when the traditional C(z)
test does not perform equally well. Hence, our null test presented serves as a complementary
consistency check of the CP and is especially useful at high redshifts.

17.5 Conclusions

In summary, we have presented a new consistency test of the Copernican principle, which is
complementary to the curvature test of Ref. [648]. In particular, we used the Noether’s theorem
approach in order to obtain a conserved quantity that can be written in terms of the Hubble rate
H(z) and the comoving distance D(z).

In order to forecast how well our new test, given by Eq. (17.17), can constrain deviations
from the Copernican principle at large scales, we created mock datasets based on specifications of
the DESI survey and using the ΛCDM model for the fiducial cosmology, for a variety of different
profiles. This approach allows us to quantify any deviations using realistic scenarios.

Then, to reconstruct the O(z) statistic given by Eq. (17.17) from the mock data, we preferred
to use the machine learning approach, namely the GA, as this will allow us to obtain non-parametric
and theory agnostic reconstructions of the data, in the form of H(z) and D(z), that we can in
turn use to reconstruct O(z). With the same functions we also reconstructed the C(z) function of
Ref. [648] given by Eq. (17.5).

Following this approach, we find that the GA with the O(z) statistic can correctly predict
the underlying fiducial cosmology at all redshifts covered by the data, as seen in the left panel
Fig. 17.1 and can easily rule out several realistic LTB scenarios at confidence of & 3σ at mid
to high redshifts (z > 0.5). On the other hand, the C(z) statistic, while it successfully rules
out the same LTB profiles at small redshifts at a confidence of ∼ 8σ at intermediate redshifts
(0.5 < z < 1.0), it does not fare equally well at higher redshifts (z > 1.5) as the errors become
larger and the value of C(z) asymptotes to zero, thus diminishing its predictive power.

To conclude, we find that the O(z) test provides complementary to other tests, information
on possible deviations of homogeneity at different redshift regimes and can help test one of the
fundamental assumptions of the standard cosmological model at high redshifts, something which
is the goal of several current and upcoming surveys in the coming years.
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18
Machine Learning improved fits of the sound

horizon at the baryon drag epoch

The original content of this chapter is based on Ref. [694]. The baryon acoustic oscillations (BAO)
have proven to be an invaluable tool in constraining the expansion history of the Universe at
late times and are characterized by the comoving sound horizon at the baryon drag epoch rs(zd).
The latter quantity can be calculated either numerically using recombination codes or via fitting
functions, such as the one by Eisenstein and Hu (EH), made via grids of parameters of the re-
combination history. Here we quantify the accuracy of these expressions and show that they can
strongly bias the derived constraints on the cosmological parameters using BAO data. Then, using
a machine learning approach, called the genetic algorithms, we proceed to derive new analytic ex-
pressions for rs(zd) which are accurate at the ∼ 0.003% level in a range of 10σ around the Planck
2018 best-fit or ∼ 0.018% in a much broader range, compared to ∼ 2− 4% for the EH expression,
thus obtaining an improvement of two to three orders of magnitude. Moreover, we also provide
fits that include the effects of massive neutrinos and an extension to the concordance cosmological
model assuming variations of the fine structure constant. Finally, we note that our expressions can
be used to ease the computational cost required to compute rs(zd) with a Boltzmann code when
deriving cosmological constraints from current and upcoming surveys.

18.1 Introduction

Some of the strongest constraints on the expansion of the Universe at late times come from baryon
acoustic oscillations (BAO) data. The BAO were formed in the early Universe, while it was very
homogeneous (as probed today by the CMB) except for tiny fluctuations, and the photons and
baryons were tightly coupled [37]. As the Universe expanded, it became cooler and less dense,
while the fluctuations grew due to gravity. Acoustic waves were generated as the photon-baryon
fluid was attracted and fell onto the overdensities producing compressions and rarefactions due to
the gravitational collapse and radiation pressure.

These acoustic waves propagated until the Universe became cool enough for the electrons
and protons to recombine and then the baryons and photons decoupled. The time when the
baryons were “released” from the drag of the photons is known as the drag epoch, zd [26]. From
then on, photons expanded freely while the acoustic waves “freezed in” the baryons in a scale given
by the size of the sound horizon at the drag epoch, dubbed rs(zd). Progressively, baryons fell into
dark matter potential wells but also dark matter was attracted to baryon overdensities. Neutrinos
did not interact, so they streamed away while dark matter responded to gravity and fell onto the
overdensity.

The perturbations were dominated by photons and baryons as they were coupled, resulting
in overdensities and overpressure which tried to equalize with the surrounding resulting in an
expanding sound wave moving at the speed of sound, approximately ∼ 2/3 the speed of light. The
perturbation in photons and baryons was carried outward and the photons and baryons continued
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to expand whereas neutrinos spread out. Dark matter continued to fall into perturbations, which
kept growing.

As the expanding Universe continued to cool down, it reached a point when the electrons
and protons began to combine. Since photons did not scatter as efficiently they started to decouple.
The sound speed dropped and the pressure wave slowed down. The process continued until the
photons where completely decoupled and then the perturbations smoothed out1. In fact, the
sound speed of the baryon perturbation dropped so much that the pressure wave stalled. Thus,
the original dark matter perturbation was left surrounded by a baryon perturbation in a shell. The
two components attracted each other and the perturbations started to mix2.

The BAO provides a characteristic scale that is “frozen” in the galaxy distribution providing
a standard ruler that can be measured as a function of redshift in either the galaxy correlation
function or the galaxy power spectrum. The BAO determination of the geometry of the Universe is
quite robust against systematics and has been measured by several surveys, such as the SDSS [695]
and 2dFGRS [696]. The BAO signature provides a standard ruler that can be used to measure the
geometry of the Universe and it can measure both the angular diameter distance dA(z) and the
expansion rate H(z). Measurements of the BAO only provide the combination of H0 and rs(zd),
which means the two parameters are fully degenerate. As a result, the constraints obtained from
the analysis of the BAO can be influenced significantly on the assumption of rs(zd) [697].

In order to accurately estimate rs(zd), one may use either recombination codes, such as
RECFAST [698], CosmoRec [699] or HyRec [700, 701], or analytic approximations based on fits of
grids of parameters of the recombination history. A prominent example of the latter approach is
the formula by Eisenstein and Hu [98], hereafter known as EH, which provides a fit of rs(zd) in
terms of the matter and baryon density parameters. This formula has been extensively used in the
literature in analyses of the BAO data, see for example Refs. [90, 317, 470, 702, 703]. However, as
already observed in Ref. [98], this expression is only accurate to the ∼ 2% level and as a result is
not appropriate for deriving cosmological constraints from BAO data in a percent cosmology era
with current and upcoming surveys.

Over the years attempts to improve the EH formula have appeared. For example, the de-
pendence of rs(zd) on various parameters, including massive and massless neutrinos, was examined
in Ref. [704]. On the other hand, fits of rs(zd) including neutrinos and relativistic species were
found in Ref. [705] and in Ref. [81]. Finally, how the fraction of the baryonic mass in Helium YP
and the relativistic degrees of freedom Neff affects the sound horizon and how both are degenerate,
was studied in Ref. [706].

The main limitation of the aforementioned analyses is that some ad-hoc parametrizations
were fitted to grids of parameters and rs(zd), thus being limited from the start on how accurate
they can be. Hence, in our work we use machine learning to provide, in a data driven approach,
extremely accurate fits to the comoving sound horizon at the baryon drag epoch rs(zd). We
then compare these expressions against both the original formula of EH and the exact numerical
estimation of the sound horizon, in order to quantify the amount of bias this expression introduces
in the constraints.

In our analysis we also consider separately the effect of massive neutrinos and a varying
fine structure constant and we find that our fits provide an improvement of a factor of three
compared to other simple parametrizations and can be used in current and upcoming surveys to
derive cosmological constraints so as to ease the computational cost that would be required when
computing rs(zd) via a Boltzmann code.

The structure of this Chapter is as follows: in Sec. 18.2 we present the theoretical background
and main assumptions in our work, while in Sec. 18.3 we present some details on our machine
learning approach used to improve the sound horizon fits. In Sec. 18.4 we present our main results,
while in Sec. 18.5 we present some complementary fits for the redshift at the drag and recombination
epochs. Finally in Sec. 18.6 we summarize our conclusions.

1http://mwhite.berkeley.edu/BAO
2https://lweb.cfa.harvard.edu/∼deisenst/acousticpeak/
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18.2 Theory

The comoving sound horizon at the drag epoch is given by

rs (zd) =
1

H0

∫ ∞
zd

cs(z)

H(z)/H0
dz, (18.1)

where zd is the redshift at the drag epoch, see Eq. (4) of Ref. [98], while cs(z) is the sound speed
in the baryon-photon fluid given by

cs =
c√

3(1 +R)
, (18.2)

where R = 3ρb
4ργ

=
3Ωb,0
4Ωγ,0

a and c is the speed of light in vacuum. By definition, the sound horizon at
the baryon drag epoch is the comoving distance a wave can travel prior to zd and it depends on
the epoch of recombination, the expansion of the Universe and the baryon-to-photon ratio. The
sound horizon is well determined by the Cosmic Microwave Background (CMB) measurements of
the acoustic peaks.

Regarding the neutrinos, neutrino flavour oscillation experiments have shown that they are
massive [707], providing a direct evidence for physics beyond the Standard Model. Cosmology is
a very propitious stage to probe neutrino properties since they leave an imprint in the CMB and
in the distribution of Large-Scale Structure (LSS) in the Universe. The energy density of massive
neutrinos, ρν =

∑
mν,inν,i, corresponds to

Ωνh
2 ∼

∑
mν,i

94eV
, (18.3)

where nν represents number density of neutrinos.
We also consider variations of fundamental constants, which are usually assumed to be

constant over space-time. These constants are defined operationally, meaning that nature by itself
does not force it to be constant. They have to be obtained experimentally since they are not given
by the theory, see for instance Ref. [539] for a review on the variation of fundamental constants.
Here we will probe the interesting case where the fine structure constant, defined as α0 = e2

~c , is
not constant and we will express its relative variation over its standard model value as α/α0.

If there are eventually signatures of a variation it would have imprints in different physical
mechanisms such as the CMB anisotropies [522]. Constraints on this variation, both temporal and
spatial, have been performed already [514,540–545], and this variation can be produced for example
through an evolving scalar field which is coupled to the electromagnetic Lagrangian [514,708–710].
This will give rise to variations of the fine structure constant, a violation of the Weak Equivalence
principle and violations of the standard TCMB(z) law, as the number of photons is no longer
conserved. These kinds of models can in principle be constrained by future large scale structure
surveys using high-resolution spectroscopic data in combination with local astrophysical data,
see Ref. [711] for updated constraints with current data and Ref. [712] for recent forecasts with
upcoming surveys.

Another class of models where this occurs is the Bekenstein-Sanvik-Barrow-Magueijo (BSBM)
model [546], where the electric charge is allowed to vary. Although such theories preserve the local
gauge and Lorentz invariance, the fine structure constant will vary during the matter dominated
era.

18.3 The Genetic Algorithms

A full description concerning the Genetic Algorithms (GA) that will be used in our analysis to im-
prove the sound horizon fits can be found in Chapter 10. In our analysis we reconstruct the rs(zd)
function considering that it depends on the following variables: {Ωmh2,Ωbh

2}, {Ωmh2,Ωbh
2,Ωνh

2}
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and {Ωmh2,Ωbh
2, α/α0} respectively. Our reconstruction procedure is as follows. First, our pre-

defined grammar was constructed on the following functions: exp, log, polynomials etc. and a set
of operations +,−,×,÷, see Table 10.1 for the complete list.

Once the initial population has been constructed, the fitness of each member is computed by
a χ2 statistic, using the rs(zd) data points directly as input. Then, through a tournament selection
process, the best-fitting functions in each generation are chosen and the two stochastic operations
of crossover and mutation are used. The final output of the code is a mathematical function of
rs(zd) that describes the sound horizon at the drag epoch in terms of the various cosmological
parameters of interest.

18.4 Results

In this section we now present our machine learning fits to the sound horizon at the baryon
drag epoch rs(zd). First, we will only include the dependence on the matter and baryon density
parameters {Ωmh2,Ωbh

2}, while later we will also consider the effect of massive neutrinos and
a varying fine structure constant, i.e. the parameter vectors will be {Ωmh2,Ωbh

2,Ωνh
2} and

{Ωmh2,Ωbh
2, α/α0} respectively.

To calculate the sound horizon we use the code CLASS by Ref. [232] and the HYREC-2 re-
combination module Hyrec2020 [700, 701]. We then make grids of parameters and rs(zd) and
fit the values with both traditional minimization approaches and with the genetic algorithms, as
described in Sec. 18.3. To simplify our notation we make the following definitions that will be
used throughout the text: ωb = Ωbh

2, ωm = Ωmh
2 and ων = Ωνh

2. In what follows, we will now
describe our approach in more detail and present the results for the various cases.

18.4.1 Matter and baryons only

First, we consider the standard case of matter and baryons, as was also studied in Ref. [98]
(hereafter denoted as EH). This case was obtained by simulating values for Ωmh

2 ∈ [0.025, 0.5]
and Ωbh

2 ≥ 0.0125 and is given by [98]

rs (zd) '
44.5 ln

(
9.83
ωm

)
√

1 + 10 ω
3/4
b

Mpc, (18.4)

which is accurate up to ∼ 2%. Since now the recombination codes have more improved physics
(for example an improved post-Saha expansion at early phases of hydrogen recombination, see
Refs. [700, 713] for a discussion), we have considered the same parametrization as in EH but with
the coefficients as free parameters. By fitting the parametrization to a grid of values for rs(zd) for
the range Ωmh

2 ∈ [0.13, 0.15] and Ωbh
2 ∈ [0.0214, 0.0234], which is around 10σ from the Planck

best-fit, we find the following improved expression

rs (zd) =
45.5337 ln

(
7.20376
ωm

)
√

1 + 9.98592 ω0.801347
b

Mpc, (18.5)

which is accurate up to ∼ 0.009%. Using the same grid of values with the GA we find the following
fit which is even better

rs(zd) =
1

a1ω
a2

b + a3ω
a4
m + a5ω

a6

b ω
a7
m

Mpc, (18.6)

where

a1 = 0.00785436, a2 = 0.177084, a3 = 0.00912388, a4 = 0.618711, a5 = 11.9611,

a6 = 2.81343, a7 = 0.784719.
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Method Param best-fit mean±σ 95% lower 95% upper
Num. ωm,0 0.1968 0.1641+0.04

−0.051 0.0788 0.251

rs,dh 102.1 101.7+1.9
−1.8 97.91 105.4

EH ωm,0 0.1816 0.1488+0.036
−0.044 0.07544 0.2222

rs,dh 100.3 99.9+2.2
−1.9 95.74 103.9

GA ωm,0 0.1959 0.1645+0.04
−0.054 0.07738 0.2535

rs,dh 102.3 101.7+1.9
−1.8 97.94 105.5

Table 18.1: The best-fit, mean and 95% limits for (ωm,0, rs,dh) as discussed in the text. As
seen, the older EH approach biases the estimated mean values for the parameters by almost
half a σ, even though they share the same value of the χ2 at the minimum χ2

min = 10.95.
The contours are shown in Fig. 18.1.

In this case, our GA improved expression given by Eq. (18.6) is accurate up to ∼ 0.003%.
Next, we also consider a broader range of values for the parameter grid in order to allow for

the fitting function to be used in BAO analyses without compromising its accuracy. In particular,
we consider the range Ωmh

2 ∈ [0.05, 0.25] and Ωbh
2 ∈ [0.016, 0.03] and we find with the GA the

following fit

rs(zd) =
[ 1

a1ω
a2

b + a3ω
a4

b ω
a5
m + a6ω

a7
m
− a8

ωa9
m

]
Mpc, (18.7)

where

a1 = 0.00257366, a2 = 0.05032, a3 = 0.013, a4 = 0.7720642, a5 = 0.24346362,

a6 = 0.00641072, a7 = 0.5350899, a8 = 32.7525, a9 = 0.315473.

which is accurate up to ∼ 0.018%, i.e. a two orders of magnitude improvement from the EH
expression of Eq. (18.4).

In order to quantify the bias introduced in deriving constraints on the cosmological pa-
rameters by using the less accurate expression of Eq. (18.4), we will now present the confidence
contours and parameter constraints obtained via a Markov chain Monte Carlo (MCMC) with the
code MontePython 3 of Ref. [334], using the currently available BAO data as described in Ref. [324]
and the aforementioned rs(zd) expressions. As mentioned earlier, rs(zd) and h ≡ H0/100 are de-
generate, we in what follows we will consider the combination rs,dh = rs(zd)h.

In particular, in Fig. 18.1 we show a comparison of the confidence contours for the EH
expression for the sound horizon given by Eq. (18.4) (blue contour) against the machine learning
improved expression (GA) given by Eq. (18.7) (red contours) and the exact numerical approach
(Num.) calculated via Hyrec2020 (green contour). Furthermore, in Table 18.1 we show the best-
fit, mean and 95% limits for (ωm,0, rs,dh) obtained from the MCMC runs. As can be seen, using
the older and less accurate expression biases strongly the constraints for both ωm,0 and rs(zd)h by
almost half a σ and shifts the best-fit ωm,0 by ∼ 9.3% from its true value, which is obtained using
the full numerical approach.

18.4.2 Matter, baryons and massive neutrinos

Next, we also include massive neutrinos and this time we compare with the expression of Ref. [705],
where the following fit was presented

rs(zd) ≈
55.154 exp

[
−72.3 (ων + 0.0006)

2
]

ω0.25351
m ω0.12807

b

Mpc, (18.8)
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Figure18.1: AcomparisonoftheconfidencecontoursfortheexpressionbyEisenstein-Hu(EH)
forthesoundhorizongivenbyEq.(18.4)(bluecontour)againsttheimprovedexpressionfound
bythemachinelearningapproach(GA)givenbyEq.(18.7)(redcontours)andtheexactnumer-
icalapproach(Num.)calculatedviaHyrec2020(greencontour),usingthecurrentBAOdataas
describedinRef.[324].

whichisaccurateupto0.29%withinourrangeofvaluesconsidered.Noticethatthisexpression
isaccurateupto0.021%ifwelimittotherangewithin3σofvaluesderivedbyPlanckandthat
ων=0.0107( mν/1.0eV).

InourcaseweconsidertheparametersintherangeΩmh
2∈[0.13,0.15],Ωbh

2∈[0.0214,0.0234],
whichisaround10σfromPlanck,andforthemassiveneutrinosintherange0< mν<0.6eV.
Then,withtheGAwefindtheimprovedfitwhichreadsasfollows

rs(zd)=
a1e

a2(a3+ων)
2

a4ω
a5
b +a6ω

a7
m +a8(ωbωm)

a9 Mpc, (18.9)

wherethecoefficientstakethefollowingvalues

a1 = 0.0034917,a2=−19.972694,a3=0.000336186,a4=0.0000305,a5=0.22752,

a6 = 0.00003142567,a7=0.5453798,a8=374.14994,a9=4.022356899, (18.10)

whichisaccurateupto0.0076%,i.e.roughlyafactorofthreeimprovementoverEq.(18.8).

18.4.3 Matter,baryonsandthefinestructureconstant

Finally,wealsoconsidertheeffectsofavaryingfinestructureconstantonthesoundhorizon
atthedragredshift. Thefinestructureconstantisonlyincludedintherecombinationcode
Hyrec2020[700,701],thustheonlymodificationinthecodeinthiscasethatwasneeded,was
passinganextraparametertoCLASS.

Then,wesimulatevaluesofthers(zd)fortherangeΩmh
2∈[0.13,0.15],Ωbh

2∈[0.0214,0.0234]
andα/α0∈[0.98,1.02].Therangeforα/α0mightseemrestrictive,butinRef.[714]itwasshown
thatwithcurrentdataanyvariationsareconstrainedto∆α/α0∼10

−3,whilewithfuturelarge
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scale structure data and local astrophysical measurements the constraints can be further reduced
to ∆α/α0 ∼ 10−6. Following the same procedure as before we find the following fitting formula
using an EH-like parametrization

rs (zd) =
a1 ln

(
a2

ωm

)
√

1 + a3 ωa4
b

(
α/α0

)a5
Mpc, (18.11)

which is accurate up to ∼ 0.026% and the parameters are given by

a1 = 45.504, a2 = 7.15391, a3 = 9.98792, a4 = 0.805083, a5 = −1.34678.

On the other hand, with the GA we have found an improved fit which reads as follows

rs(zd) =
1

a1ω
a2

b ω
a3
m [(α/α0)

a4 + ωa5

b ω
a6
m ] + a7ω

a8
m

Mpc, (18.12)

where the coefficients take the following values

a1 = 0.00759287, a2 = 0.0865956, a3 = 0.104933, a4 = 2.05112, a5 = 0.327626,

a6 = 0.045884, a7 = 0.00723555, a8 = 0.933333, (18.13)

which is accurate up to 0.0062%, which is roughly a factor of four improvement over the EH-like
parametrization of Eq. (18.11).

18.5 Fits for the redshift of the drag epoch and the photon-
decoupling surface

Here we provide some fits for the redshift at the drag epoch zd, which can be used in Eq. (18.1)
as a complementary fit instead of the analytic fit of rs(zd) and also a fit to the redshift at the
photon-decoupling surface z∗.

18.5.1 The drag redshift zd

The fit for the drag redshift from Ref. [98] is given by

zd =
1291 (ωm)

0.251

1 + 0.659 (ωm)
0.828

[
1 + b1 (ωb)

b2
]
, (18.14)

where

b1 = 0.313 (ωm)
−0.419

[
1 + 0.607 (ωm)

0.674
]
,

b2 = 0.238 (ωm)
0.223

,

and which is accurate up to ∼ 3.7%.
To improve this fit, we simulate values for zd in the range Ωmh

2 ∈ [0.13, 0.15] and Ωbh
2 ∈

[0.0214, 0.0234] which is around 10σ from Planck. Then, with the GA we find

zd =
1 + 428.169ω0.256459

b ω0.616388
m + 925.56ω0.751615

m

ω0.714129
m

. (18.15)

which is accurate up to ∼ 0.001%.
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18.5.2 The redshift at recombination z∗

The fit for the redshift to the photon-decoupling surface z∗ from Ref. [715] is given by

z∗ = 1048
[
1 + 0.00124

(
Ωbh

2
)−0.738

] [
1 + g1

(
Ωmh

2
)g2
]
, (18.16)

where

g1 =
0.0783

(
Ωbh

2
)−0.238

1 + 39.5 (Ωbh2)
0.763 ,

g2 =
0.560

1 + 21.1 (Ωbh2)
1.81 ,

and which is accurate up to ∼ 0.3%.
To improve this fit, we simulate values for z∗ for the range Ωmh

2 ∈ [0.13, 0.15] and Ωbh
2 ∈

[0.0214, 0.0234] which is around 10σ from Planck. Then, as before, with the GA we find

z∗ =
391.672ω−0.372296

m + 937.422ω−0.97966
b

ω−0.0192951
m ω−0.93681

b

+ ω−0.731631
m , (18.17)

which is accurate up to ∼ 0.0005%.

18.6 Conclusions

In summary, we have presented extremely accurate machine learning fits to the comoving sound
horizon at the baryon drag epoch rs(zd) as a function of cosmological parameters and we compared
our results with other expressions found in the literature. In particular, we considered the widely
used Eisenstein-Hu fitting formula given by Eq. (18.4), which is accurate to the ∼ 2% level, and
showed how it may strongly bias any constraints on the matter density parameter obtained by
using the current BAO data as described in Ref. [324].

In particular, we found that the confidence contours are biased by roughly half a sigma,
while the matter density parameter ωm,0 is shifted at a ∼ 9.3% level from its correct value, which
is obtained using the full numerical analysis. On the other hand, our machine learning fits given
by Eq. (18.6) do not suffer from this issue, as they are accurate to within ∼ 0.003%. Furthermore,
in our analysis we also considered the effect of massive neutrinos, see Eq. (18.9) and a varying fine
structure constant, see Eq. (18.12), finding that our fits have an improvement of a factor of three
to four compared to other simple EH-like parametrizations.

To conclude, we presented machine learning improved expressions for the sound horizon at
the drag redshift, which are more accurate in some cases even by two orders of magnitude compared
to other similar expressions already found in the literature. The advantage of our approach is that
the new expressions do not bias the parameter constraints obtained from BAO data, thus they
can be used in BAO analyses coming from current and upcoming surveys to derive cosmological
constraints and ease the computational cost that would be required when computing rs(zd) with
a full Boltzmann code.

The expressions of the fits can be found at https://github.com/RubenArjona.
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Conclusions

So much Universe, and so little time.
Terry Pratchett

One of the major challenges in Cosmology is to explain the origin of the accelerated expansion
of the Universe at late times. This phase of accelerated expansion on very large scales has been
confirmed through measurements of distant type Ia supernovae at the turn of the previous century,
baryon acoustic oscillations (BAO) and in analyses of the galaxy clustering. The nature of this
repulsive force that dominates over gravity at cosmological scales remains a mystery, and implies
that a fraction of the Universe must consist of some unknown component, commonly called Dark
Energy (DE), or that General Relativity (GR) breaks down on cosmological scales.

This dissertation is focused in exploring the nature of this phenomena from the theoretical
point of view through modifications of the theory of gravity and in the analysis of cosmological data
in a model independent way through Machine Learning (ML) algorithms, with the goal of testing
dark energy models accurately and probing fundamental properties of gravity. The Standard
Cosmological model is widely used as the de facto theoretical model by current and upcoming
surveys like Euclid and the Dark Energy Survey, hence it should be extensively tested without
using the model itself as a benchmark to avoid the problem of model bias.

Current and upcoming surveys will require sub-percent agreement in theoretical accuracy
to test the different cosmological and gravity scenarios, something which can be performed with
Boltzmann solvers, i.e. codes that solve the linear evolution of cosmological perturbations. Given
the plethora of gravity models, it is crucial to have a standardized unified way to describe all of
them and take them into account in a Boltzmann code like CAMB 1 or CLASS 2. DE and Modified
Gravity (MG) models, although at a first glance quite dissimilar, it is possible to unify them
within the same framework. One way to do this is to map the MG models, to linear order, to
some DE fluid via the effective fluid approach. Then, MG models can be interpreted as DE fluids
described by an equation of state w(a), a pressure perturbation δP (k, a), and an anisotropic stress
σ(k, a). In Chapters 4 and 5 it is shown how to implement this approach in CLASS for f(R) and
Horndeski theories respectively obtaining competitive results at the level of ∼ 0.1% in a much
simpler and less error-prone approach compared to other MG codes like hi_class, see Fig. 5.5 3.
In Chapter 4 we also showed that the viscosity parameter c2vis in realistic models is not constant as
commonly assumed, but rather evolves significantly over several orders of magnitude, something
which could affect forecasts of upcoming surveys. In Chapter 5 we have also presented a family of
designer Horndeski models, i.e. models that have a background exactly equal to that of the ΛCDM
model but perturbations given by the Horndeski theory. By linking the effective fluid approach to
MontePython, a Monte Carlo code for cosmological parameter extraction, in Chapter 6 we derived
rigorous cosmological constraints on three Modified Gravity (MG) models using the recent available
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data (i.e., Planck 2018, CMB lensing, BAO, SNIa Pantheon compilation, H0 from SHOES, and
RSD Gold-18 compilation) and by not fixing the neutrino mass which could obscure its relation
to MG parameters. Two models, the Designer f(R) and Designer Horndeski have a background
matching ΛCDM, while the third model, the Hu & Sawicki f(R) model the background differs
from the standard model. In summary, our results do not conclusively indicate the presence of
modifications to GR. Since our MG constraints are prior dominated we conclude ΛCDM is still
the preferred model.

The exact nature of dark energy is currently unknown and its cosmological perturbations,
when dark energy is assumed not to be the cosmological constant, are usually modeled as adiabatic.
In Chapter 7 we explore the possibility that DE might have a nonadiabatic component and we
examine how it would affect several key cosmological observables. We present analytical solutions
for the growth rate and growth index of matter density perturbations and compare them to both
numerical solutions of the fluid equations and an implementation in the Boltzmann code CLASS,
finding that they all agree to well below one percent. We also perform a Monte Carlo analysis to
derive constraints on the parameters of the nonadiabatic component using the latest cosmological
data and find that the amplitude of the nonadiabatic pressure perturbation is consistent with zero
within 1σ.

Chapter 8 was motivated for the following reason. In order to calculate the unperturbed
density and pressure for neutrinos current implementations in Boltzmann solvers, such as CLASS,
employ numerical methods. Shortcomings of the numerical approach include nontrivial weighting
scheme to carry out the numerical integration, possible limited precision, increase of computing
time, but more importantly hindering the understanding of the underlying physics. We provide
explicit analytical solutions for the neutrino’s unperturbed density, pressure, number density, and
pseudo-pressure. Our expressions agree with the fully numerical implementation of the code CLASS.
We have implemented our solutions in CLASS and verified that the fully numerical approach (the
current implementation) and the fully analytical approach are in very good agreement. These
changes in the code leave precision and computing time unchanged.

Another important part of this dissertation was to lead the process of transforming the
emerging field of model independent reconstruction methods and machine learning (ML) in cos-
mology into a mature scientific discipline and solidify the way to model bias free and sub-percent
measurements in cosmology. In this regard we have developed and coded a particular ML algo-
rithm known as the Genetic Algorithms (GA) which specialize in unsupervised symbolic regression
of data. This means that the GA can reconstruct in an agnostic manner an analytic function
that describes the data, using one or more variables. In fact, one can reconstruct any cosmo-
logical function by applying the GA to any dataset of choice and it has been tested with mock
data, finding that the GA can properly recover the fiducial cosmology. No assumptions on the
specific cosmological model or the behaviour of DE need to be made, hence the results are model
independent. With the GA we have presented a unified ML analysis of all the currently available
cosmological data in order to reconstruct several key background and perturbations variables in a
model independent manner in order to explore the nature of DE.

In Chapter 11 we reconstructed with the GA the Hubble expansion H(z) dataset (see Chap-
ter 2 for more details) and then we made a ∼ 4.5σ model independent detection of the accelerated
expansion by estimating the deceleration parameter q(z). We also place constraints on the tran-
sition redshift of the acceleration phase (ztr = 0.662 ± 0.027) and find a deviation from ΛCDM
at high redshifts, albeit within the errors, hinting toward the recently alleged tension between the
SnIa/quasar data and the cosmological constant ΛCDM model at high redshifts (z & 1.5). Finally,
we showed the GA can be used in complementary null tests of the ΛCDM via reconstructions of
the luminosity distance.

Recently, several high profile analyses, e.g. by Risaliti et al [56] or Di Valentino et al [58],
have claimed the existence of deviations from flat the standard cosmological model. Such deviations
could be due to modifications of gravity on large scales or exotic dark energy models, both of which
in general also exhibit an anisotropic stress, i.e. a difference in the 00 and ij parts of the metric
of space-time, which are known as the Newtonian potentials Φ and Ψ (assumed equal in GR).
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Chapter 12 is a marked improvement over the aforementioned analyses by Risaliti et al and Di
Valentino et al, as instead of using simple cosmographic expansions (which have convergence issues)
or the ΛCDM itself, we use a totally agnostic approach based on Machine Learning to explore the
nature of dark energy and reconstruct its properties in a model independent fashion, which is much
broader than traditional statistical inference and model selection. Using a plethora of observational
data, we find mild evidence for the existence of anisotropic stress, a ∼ 2σ deviation from unity
at low redshifts and ∼ 4σ at high redshifts, based on direct reconstructions of the anisotropic
stress itself, but also reconstructions of the dark energy equation of state w(z) and its speed of
propagation of perturbations, i.e. the “sound speed”, since the latter provides indirect information
on the behavior of dark energy perturbations and we find that it is negative at the ∼ 2.5σ level at
z = 0.1. These results hint towards either the presence of an non-adiabatic component in the DE
sound speed or the presence of DE anisotropic stress, thus hinting at possible deviations from the
ΛCDM model.

Continuing with the reconstruction approach, on Chapter 13 we present a model indepen-
dent and non-parametric reconstruction of data coming from the redshift evolution of the CMB
temperature which allowed us to estimate the cosmic duality relation and place constraints on
a temporal varying fine structure constant. Overall we find that our results are consistent with
ΛCDM within the confidence region. We also constrain in a model independent manner deviations
from the cosmic distance duality relation by simulating strongly lensed gravitational wave events
from the Einstein Telescope on Chapter 14. In particular, we use two machine learning approaches,
the Genetic Algorithms and Gaussian Processes, to reconstruct the mock data and we show that
both approaches are capable of correctly recovering the underlying fiducial model and can provide
percent-level constraints at intermediate redshifts when applied to future Einstein Telescope data,
thus opening the door to direct tests of the fundamental principles of the standard cosmological
model in the coming decades.

There is an ongoing search to distinguish effective quantum field theories that can potentially
arise within UV-complete quantum gravity theories (the Landscape) from those that cannot (the
Swampland). In this regard, although not rigorously proven in string theory, some conjectures have
been considered to discern the Swampland from the landscape. The Swampland criteria aim to
find constructions that are compatible with a quantum theory of gravity and it has been found that
specific quintessence models can satisfy the Swampland criteria at late times. In Chapter 15 we
present model independent reconstructions of quintessence and the Swampland conjectures (SC)
using both Machine Learning (ML) and cosmography. In particular, using the Hubble parameter
H(z) data from the cosmic chronometers we find that the ML and cosmography reconstructions
of the SC are compatible with observations at low redshifts.

Chapters 16 and 17 are concerned in presenting null tests of ΛCDM. These tests are ideal to
check for possible tensions that could arise because of unaccounted for systematics or could provide
hints of new physics. Given the many possible extensions of this concordance model, we present
here several novel consistency tests which could be used to probe for deviations from ΛCDM. In
Chapter 16 we presented an extension of the consistency diagnostic of flat ΛCDM of Ref. [426], by
now including both the curvature Ωk,0 and the matter density Ωm,0. We show how the latter can
be derived from the Hubble rate H(z) and can be determined directly from observational data. We
should stress that the added advantage of our new null test presented here is the fact that we do not
have to assume a flat Universe. Secondly, through the combination of the BAO and H(z) data or
the angular and radial BAO data respectively, we also presented a test to search for deviations from
homogeneity. Then, with the angular and radial BAO data we also introduce two new consistency
tests for the ΛCDM model. The first one, namely Omθ(z), is derived following a similar approach
as it was shown in Ref. [419] where in this case we use the angular BAO scale relation θ(z) to
reconstruct null tests of the ΛCDM model, with the advantage that this null test does not contain
higher derivative terms, which tend to increase the reconstruction errors when using noisy data.
Finally, we also used the radial BAO data ∆z(z) to obtain a model independent determination
of the accelerated expansion of the Universe by reconstructing the deceleration parameter q(z)
and we applied our ∆z reconstruction to the Om diagnostic [426]. We find that our results are
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consistent with the standard flat ΛCDM scenario, however we also noted a ∼ 4σ tension on the
determination of the transition redshift zt, i.e. the redshift where the Universe transitions from
decelerated to accelerated expansion, between the H(z) and the radial BAO data.

Overall, we find that these new tests of the spatial curvature and homogeneity of the Universe
can be used, in a model-independent fashion, to test some of the fundamental assumptions of the
standard cosmological model. However, our reconstructions are somewhat limited by the current
data, albeit this should be resolved in the near future when high quality BAO data become available
from the next stage surveys.

In Chapter 17 we have presented a new consistency test of the Copernican principle, which
is complementary to the curvature test of Ref. [648]. In particular, we used the Noether’s theorem
approach in order to obtain a conserved quantity that can be written in terms of the Hubble rate
H(z) and the comoving distance D(z). In order to forecast how well our new test can constrain
deviations from the Copernican principle at large scales we created mock datasets based on speci-
fications of the DESI survey and using the ΛCDM model for the fiducial cosmology, for a variety of
different profiles. This approach allows us to quantify any deviations using realistic scenarios. We
find that the GA can correctly predict the underlying fiducial cosmology at all redshifts covered
by the data and can easily rule out several realistic LTB scenarios at confidence of & 3σ at mid
to high redshifts (z > 0.5).

Finally, in order to ease the computational cost that would be required when computing
the sound horizon at the drag redshift rs(zd) with a full Boltzmann code, in Chapter 18 we
have presented extremely accurate machine learning fits to rs(zd) as a function of cosmological
parameters. In particular, we considered the widely used Eisenstein-Hu (EH) fitting formula,
which is accurate to the ∼ 2% level, and showed how it may strongly bias any constraints on the
matter density parameter obtained by using the current BAO data as described in Ref. [324].

In particular, we found that the confidence contours are biased by roughly half a sigma,
while the matter density parameter ωm,0 is shifted at a ∼ 9.3% level from its correct value, which
is obtained using the full numerical analysis. In the other hand, our machine learning fits given by
Eq. (18.6) do not suffer from this issue, as they are accurate to within ∼ 0.003%. Furthermore, in
our analysis we also considered the effect of massive neutrinos, see Eq. (18.9) and a varying fine
structure constant, see Eq. (18.12), finding that our fits have an improvement of a factor of three
to four compared to other simple EH-like parametrizations.

To conclude, we presented machine learning improved expressions for the sound horizon at
the drag redshift, which are more accurate in some cases even by two orders of magnitude compared
to other similar expressions already found in the literature. The advantage of our approach is that
the new expressions do not bias the parameter constraints obtained from BAO data, thus they
can be used in BAO analyses coming from current and upcoming surveys to derive cosmological
constraints.

Outlook

The natural goal would be now to explore the nature of Dark Matter with Modified Gravity and
Machine Learning. For example, such possible avenues would be to explore formation mechanisms
of Primordial Black Holes (PBH) in the Early Universe through Modified Gravity theories and in
the Gravitational Wave signatures that they would imprint which opens the possibility to probe
the primordial power spectrum at small-scales. The Machine learning tools developed thus far
can also be used for Gravitational Wave waveform reconstruction for Virgo and Burst template
generation for LISA.

Concerning some extensions of this thesis we present some of the following plans related to
Modified Gravity (MG) theories:

• Extend the effective fluid approach to include more MG models such as non-local gravity
theories, models with higher derivatives or with extra degrees of freedom which are not at
this time included in Boltzmann codes.
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• Derive the effective fluid approach for MG models to second order in perturbation theory.
Then we could calculate useful cosmological quantities such as the bispectrum or non-linear
corrections to the matter power spectrum.

• Determine if it is possible to remove instabilities of the theories containing higher order
invariants with “a la Horndeski” type corrections to keep the equations of motion to second
order.

Related to Machine Learning some possible avenues are:

• Use the upcoming release of surveys like EUCLID, LSST or DESI, where we will reach a high
enough sensitivity to apply ML methods and have a covariance matrix for all data covered
by the surveys like SnIa, BAO, RSD or Weak Lensing, to treat the data properly accounting
for correlations, complement and extend the redshift probed and perform a joint and simul-
taneous analysis to quantify how the ability of present and future surveys can improve the
current cosmological constraints, both at the background and at the perturbation level.

• Reconstruct the Newtonian potentials through synergies between the Genetic Algorithms
(GA) and the effective fluid approach.

• Train Neural Networks (NN) using a plethora of cosmological data such as RSD, BAO or
SnIa to help classify different cosmological scenarios and distinguish between standard and
modified gravity models.
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Conclusiones

Uno de los mayores desafíos de la cosmología es explicar el origen de la expansión acelerada del Uni-
verso en épocas tardías. Esta fase de expansión acelerada a escalas muy grandes se ha confirmado
mediante mediciones de supernovas distantes de tipo Ia a principios del siglo anterior, oscilaciones
acústicas bariónicas (BAO) y en análisis de la agrupación de galaxias. La naturaleza de esta fuerza
repulsiva que domina la gravedad a escalas cosmológicas sigue siendo un misterio, e implica que
una fracción del Universo debe consistir en algún componente desconocido, comúnmente llamado
Energía Oscura (DE), o que la Relatividad General (GR) se descompone en escalas cosmológicas.

Esta disertación está enfocada en explorar la naturaleza de este fenómeno desde el punto
de vista teórico a través de modificaciones de la teoría de la gravedad y en el análisis de datos
cosmológicos de forma independiente del modelo a través de algoritmos de Machine Learning (ML),
con el objetivo de testear dark modelos de energía con precisión y sondeando las propiedades
fundamentales de la gravedad. El modelo cosmológico estándar es ampliamente utilizado como
modelo teórico de facto por encuestas actuales y futuras como Euclid y Dark Energy Survey, por
lo que debe probarse ampliamente sin usar el modelo en sí como punto de referencia para evitar el
problema del sesgo del modelo.

Los estudios actuales y futuros requerirán un acuerdo del sub-porcentaje en la precisión
teórica para probar los diferentes escenarios cosmológicos y gravitacionales, algo que se puede
realizar con los solucionadores de Boltzmann, es decir, códigos que resuelven la evolución lineal
de las perturbaciones cosmológicas. Dada la plétora de modelos de gravedad, es crucial tener
una forma unificada estandarizada de describirlos todos y tenerlos en cuenta en un código de
Boltzmann como CAMB 1 o CLASS 2. Los modelos DE y Modified Gravity (MG), aunque a primera
vista son bastante diferentes, es posible unificarlos dentro de un mismo marco. Una forma de
hacer esto es mapear los modelos MG, en orden lineal, a algún fluido DE a través del enfoque
de fluido efectivo. Entonces, los modelos MG pueden interpretarse como fluidos DE descritos por
una ecuación de estado w(a), una perturbación de presión δP (k, a) y una tensión anisotrópica
σ(k, a). En los Capítulos 4 y 5 se muestra cómo implementar este enfoque en CLASS para las
teorías f(R) y Horndeski respectivamente obteniendo resultados competitivos al nivel de ∼ 0.1%
en un enfoque mucho más simple y menos propenso a errores en comparación con otros códigos
MG como hi_class, ver Fig. 5.5. 3 En el Capítulo 4 también mostramos que el parámetro
de viscosidad c2vis en modelos realistas no es constante como comúnmente asumido, pero más
bien evoluciona significativamente en varios órdenes de magnitud, algo lo que podría afectar las
previsiones de las próximas encuestas. En el capítulo 5 también hemos presentado una familia
de modelos Designer Horndeski, es decir, modelos que tienen un trasfondo exactamente igual al
del modelo ΛCDM pero perturbaciones dadas por la teoría de Horndeski. Al vincular el enfoque
de fluido efectivo a MontePython, un código de Monte Carlo para la extracción de parámetros
cosmológicos, en el Capítulo 6 derivamos restricciones cosmológicas rigurosas en tres modelos de
Gravedad Modificada (MG) utilizando los datos disponibles recientes (es decir, Planck 2018 , CMB
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lensing, BAO, SNIa Pantheon compilation, H0 de SHOES y compilación RSD Gold-18) y no fijando
la masa de neutrinos que podría oscurecer su relación con los parámetros de MG. Dos modelos,
Designer f(R) y Designer Horndeski tienen un fondo que coincide con ΛCDM, mientras que el
tercer modelo, el modelo Hu & Sawicki f(R), el fondo difiere del modelo estándar. En resumen,
nuestros resultados no indican de manera concluyente la presencia de modificaciones en GR. Dado
que nuestras restricciones de MG están dominadas a priori, concluimos que ΛCDM sigue siendo el
preferido modelo.

La naturaleza exacta de la energía oscura se desconoce actualmente y sus perturbaciones
cosmológicas, cuando se supone que la energía oscura no es la constante cosmológica, por lo general
se modela como adiabática. En el capítulo 7 exploramos la posibilidad de que DE pueda tener
un componente no adiabático y examinamos cómo afectaría a varios observables cosmológicos
clave. Presentamos soluciones analíticas para la tasa de crecimiento e índice de crecimiento de las
perturbaciones de la densidad de la materia y compararlos con ambos soluciones de las ecuaciones
de fluidos y una implementación en el código de Boltzmann CLASS, encontrando que todos están
de acuerdo en muy por debajo del uno por ciento. También realizamos un análisis de Monte Carlo
para derivar restricciones. en los parámetros del componente no adiabático utilizando los últimos
datos cosmológicos y encuentre que la amplitud de la perturbación de la presión no adiabática es
consistente con cero dentro de 1σ.

El capítulo 8 fue motivado por la siguiente razón. Para calcular la densidad y la presión
no perturbada de los neutrinos, las implementaciones actuales en los solucionadores de Boltz-
mann, como CLASS, emplean métodos numéricos. Las deficiencias del enfoque numérico incluyen
un esquema de ponderación no trivial para llevar a cabo la integración numérica, posible pre-
cisión limitada, aumento del tiempo de computación, pero lo que es más importante, dificulta
la comprensión de la física subyacente. Ofrecemos soluciones analíticas explícitas para la densi-
dad, la presión, la densidad numérica y la pseudopresión imperturbables del neutrino. Nuestras
expresiones concuerdan con la implementación completamente numérica del código CLASS. Hemos
implementado nuestro soluciones en CLASS y se verificó que el enfoque completamente numérico (la
implementación actual) y el enfoque completamente analítico concuerdan muy bien. Estos cambios
en el código no modifica la precisión ni el tiempo de cálculo.

Otra parte importante de esta disertación fue liderar el proceso de transformación del campo
emergente de los métodos de reconstrucción independientes de modelos y el aprendizaje automático
(ML) en cosmología en una disciplina científica madura y solidificar la forma de modelar mediciones
libres de sesgo y sub-porcentaje en cosmología. En este sentido, hemos desarrollado y codificado un
algoritmo ML particular conocido como Algoritmos Genéticos (GA) que se especializan en regresión
simbólica de datos no supervisada. Esto significa que el GA puede reconstruir de manera agnóstica
una función analítica que describe los datos, utilizando una o más variables. De hecho, se puede
reconstruir cualquier función cosmológica aplicando el GA a cualquier conjunto de datos de elección
y se ha probado con datos simulados, encontrando que el GA puede recuperar correctamente la
cosmología fiducial. No es necesario hacer suposiciones sobre el modelo cosmológico específico o el
comportamiento de DE, por lo que los resultados son independientes del modelo. Con el GA hemos
presentado un análisis ML unificado de todos los datos cosmológicos actualmente disponibles para
reconstruir varias variables clave de antecedentes y perturbaciones de una manera independiente
del modelo para explorar la naturaleza de DE.

En el Capítulo 11 reconstruimos con el GA el conjunto de datos de la expansión H(z) de
Hubble (consultar el Capítulo 2 para obtener más detalles) y luego hicimos una detección de ∼ 4.5σ
independiente del modelo de la expansión acelerada estimando el parámetro de desaceleración q(z).
También colocamos restricciones sobre el corrimiento al rojo de transición de la fase de aceleración
(ztr = 0.662±0.027) y encontramos una desviación de ΛCDM en corrimientos al rojo altos, aunque
dentro de los errores, apuntando hacia la reciente supuesta tensión entre los datos de SnIa / cuásar
y el modelo cosmológico constante ΛCDM a altos desplazamientos al rojo (z & 1.5). Finalmente,
mostramos que los GA se puede usar en pruebas nulas complementarias de ΛCDM mediante
reconstrucciones de la distancia de luminosidad.

Recientemente, varios análisis de alto perfil, p. ej. por Risaliti et al [56] o Di Valentino
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et al [58], han reclamado la existencia de desviaciones del modelo cosmológico estándar plano.
Semejantes desviaciones podrían deberse a modificaciones de la gravedad a gran escala o modelos
exóticos de energía oscura, algunos de los cuales en general también exhiben un estrés anisotrópico,
es decir, una diferencia en las partes de 00 e ij de la métrica del espacio-tiempo, que se conocen
como los potenciales newtonianos Φ y Ψ (asumidos iguales en GR). El capítulo 12 es una mejora
notable con respecto a los análisis antes mencionados de Risaliti et al y Di Valentino et al, donde
en lugar de utilizar expansiones cosmográficas simples (que tienen problemas de convergencia)
o el modelo ΛCDM en sí, utilizamos un enfoque totalmente agnóstico basado en el aprendizaje
automático para explorar la naturaleza de energía oscura y reconstruir sus propiedades de una
manera independiente del modelo, que es mucho más amplia que inferencia estadística tradicional
y selección de modelos. Usando una plétora de datos de observación, encontramos evidencia
leve de la existencia de estrés anisotrópico, una desviación ∼ 2σ de la unidad en corrimientos al
rojo bajos y ∼ 4σ en corrimientos al rojo altos, basada en reconstrucciones directas de la estrés
anisotrópico en sí, pero también reconstrucciones de la ecuación de energía oscura del estado w(z)
y su velocidad de propagación de perturbaciones, es decir, la “velocidad del sonido”, ya que esta
última proporciona información indirecta sobre el comportamiento de las perturbaciones de energía
oscura y encontramos que es negativo en el nivel ∼ 2.5σ en z = 0.1. Estos resultados apuntan
hacia la presencia de un componente no adiabático en la velocidad del sonido DE o la presencia
de estrés anisotrópico DE, lo que sugiere posibles desviaciones del modelo ΛCDM.

Continuando con el enfoque de reconstrucción, en el Capítulo 13 presentamos un modelo de
reconstrucción independiente y no paramétrica de datos que vienen de la evolución del corrimiento
al rojo de la temperatura del CMB que nos permitió estimar la relación de dualidad cósmica y
poner restricciones en una constante de estructura fina variable temporal. En general, encontramos
que nuestros resultados son consistentes con ΛCDM dentro de la región de confianza. También
restringimos de manera independiente del modelo las desviaciones de la relación de dualidad de
distancia cósmica simulando eventos de ondas gravitacionales con lentes fuertes para el Telesco-
pio de Einstein (ET) en el Capítulo 14. En particular, utilizamos dos enfoques de aprendizaje
automático, los algoritmos genéticos y los procesos gaussianos, para reconstruir los datos simula-
dos y mostramos que ambos enfoques son capaces de recuperar correctamente el modelo fiducial
subyacente y pueden proporcionar restricciones de nivel porcentual en desplazamientos al rojo in-
termedios cuando se aplican a datos futuros del telescopio Einstein, lo que abre la puerta a pruebas
directas de los principios fundamentales del modelo cosmológico estándar en las próximas décadas.

Hay una búsqueda continua para distinguir las teorías efectivas de campo cuántico que
pueden surgir potencialmente dentro de las teorías de gravedad cuántica completa UV (the Land-
scape) de aquellas que no pueden (the Swampland). En este sentido, aunque no está rigurosamente
probado en la teoría de cuerdas, se han considerado algunas conjeturas para discernir el Swamp-
land del Landscape. Los criterios de Swampland apuntan a encontrar construcciones que son
compatibles con una teoría cuántica de la gravedad y se ha descubierto que modelos específicos de
quintaesencia pueden satisfacer los criterios de Swampland en épocas tardías. En el capítulo 15
presentamos reconstrucciones independientes de modelos de la quintaesencia y las conjeturas de
Swampland (SC) utilizando tanto aprendizaje automático (ML) como cosmografía. En particular,
usando el parámetro de Hubble H(z) datos de los cronómetros cósmicos, encontramos que las
reconstrucciones ML y cosmografía del SC son compatibles con observaciones a bajos corrimientos
al rojo.

Los capítulos 16 y 17 tratan de presentar pruebas nulas de ΛCDM. Estas pruebas son ideales
para verificar posibles tensiones que podrían surgir debido a errores sistemáticos no contabilizados o
podrían proporcionar indicios de nueva física. Dadas las muchas posibles extensiones de este modelo
de concordancia, presentamos aquí varias pruebas de consistencia novedosas que podrían usarse
para probar desviaciones de ΛCDM. En el capítulo 16 presentamos una extensión del diagnóstico de
consistencia del modelo plano ΛCDM de Ref. [426], que ahora incluye tanto la curvatura Ωk,0 como
la densidad de materia Ωm, 0. Mostramos cómo este último puede derivarse de la tasa de Hubble
H(z) y puede determinarse directamente a partir de datos de observación. Debemos enfatizar que
la ventaja adicional de nuestra nueva prueba nula presentada aquí es el hecho de que no tenemos
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que asumir un Universo plano. En segundo lugar, a través de la combinación de los datos BAO
y H(z) o los datos BAO angulares y radiales respectivamente, también presentamos una prueba
para buscar desviaciones de la homogeneidad. Luego, con los datos BAO angulares y radiales,
también presentamos dos nuevas pruebas de consistencia para el modelo ΛCDM . El primero, a
saber, Omθ(z), se deriva siguiendo un enfoque similar al que se muestra en Ref. [419] donde en
este caso usamos la relación de escala BAO θ(z) para reconstruir pruebas nulas del modelo ΛCDM
, con la ventaja de que esta prueba nula no contiene términos derivados superiores, que tienden a
incrementar los errores de reconstrucción cuando se utilizan datos ruidosos. Finalmente, también
usamos los datos radiales BAO ∆z(z) para obtener una determinación independiente del modelo
de la expansión acelerada del Universo mediante la reconstrucción del parámetro de desaceleración
q(z) y aplicamos nuestra reconstrucción ∆z al diagnóstico Om [426]. Encontramos que nuestros
resultados son consistentes con el escenario estándar CDM plano Λ, sin embargo, también notamos
una tensión∼ 4σ en la determinación del corrimiento al rojo de transición zt, es decir, el corrimiento
al rojo desde donde el Universo hace la transición desacelerado a una expansión acelerada, entre
H(z) y los datos radiales BAO. En general, encontramos que estas nuevas pruebas de la curvatura
espacial y la homogeneidad del Universo pueden usarse, de manera independiente del modelo, para
probar algunas de las suposiciones fundamentales del modelo cosmológico estándar. Sin embargo,
nuestras reconstrucciones están algo limitadas por los datos actuales, aunque esto debería resolverse
en un futuro cercano cuando los datos BAO de alta calidad estén disponibles en los experimentos
de la siguiente etapa.

En el capítulo 17 hemos presentado una nueva prueba de consistencia del principio coper-
nicano, que es complementaria a la prueba de curvatura de Ref. [648]. En particular, utilizamos
el enfoque del teorema de Noether para obtener una cantidad conservada que se puede escribir en
términos de la tasa de Hubble H(z) y la distancia comovil D(z). Para pronosticar qué tan bien
nuestra nuevo test puede limitar las desviaciones del principio copernicano a gran escala, creamos
conjuntos de datos simulados basados en las especificaciones del experimento DESI y utilizando el
modelo ΛCDM para la cosmología fiducial, para una variedad de perfiles diferentes. Este enfoque
nos permite cuantificar cualquier desviación utilizando escenarios realistas. Descubrimos que el
GA puede predecir correctamente la cosmología fiducial subyacente en todos los desplazamientos
al rojo cubiertos por los datos y puede descartar fácilmente varios escenarios LTB realistas con
una confianza de & 3σ en desplazamientos al rojo medios a altos (z > 0, 5).

Finalmente, para aliviar el coste computacional que se requeriría al calcular el horizonte
de sonido en el desplazamiento al rojo de arrastre rs(zd) con un código de Boltzmann completo,
en el Capítulo 18 hemos presentado ajustes de aprendizaje automático extremadamente precisos
para rs(zd) como una función de parámetros cosmológicos. En particular, consideramos la fór-
mula de ajuste de Eisenstein-Hu (EH) ampliamente utilizada, que es precisa al nivel ∼ 2%, y
mostramos cómo puede sesgar fuertemente cualquier restricción en el parámetro de densidad de
materia obtenido al usar los datos actuales de BAO como se describe en Ref. [324]. En particular,
encontramos que los contornos de confianza están sesgados por aproximadamente la mitad de un
sigma, mientras que el parámetro de densidad de materia ωm,0 se desplaza a un nivel de ∼ 9.3% de
su valor correcto, que se obtiene mediante el análisis numérico completo. Por otro lado, nuestros
ajustes de aprendizaje automático dados por la Ec. (18.6) no sufren este problema, ya que tienen
una precisión de ∼ 0.003%. Además, en nuestro análisis también consideramos el efecto de neutri-
nos masivos, ver Ec. (18.9) y una constante de estructura fina variable, ver Ec. (18.12), encontrando
que nuestros ajustes tienen una mejora de un factor de tres a cuatro en comparación con otras
parametrizaciones simples similares a EH. Para concluir, presentamos expresiones mejoradas de
aprendizaje automático para el horizonte de sonido en el desplazamiento al rojo de arrastre, que
son más precisas en algunos casos incluso en dos órdenes de magnitud en comparación con otras
expresiones similares que ya se encuentran en la literatura. La ventaja de nuestro enfoque es que
las nuevas expresiones no sesgan las restricciones de parámetros obtenidas de los datos BAO, por
lo que pueden usarse en análisis BAO provenientes de encuestas actuales y futuras para derivar
restricciones cosmológicas.
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A
The Effective Fluid Approach for f(R)

A.1 Useful formulae and the integrated sachs wolfe effect ef-
fect

In this section we present some useful formulas related to the effective fluid approach and the
integrated sachs wolfe (ISW) effect. Using the definitions of the effective pressure perturbation,
the anisotropic stress and the effective sound speed one can easily obtain the following expressions:

δPDE =
1

3
T, (A.1)

Σij = T ij −
1

3
δijT, (A.2)

(ρ̄+ P̄ )σ = −(k̂ik̂j −
1

3
δij)Σ

ij , (A.3)

πDE =
3

2
(1 + w)σ, (A.4)

c2s,effδρDE = δPDE −
2

3
ρ̄DEπDE , (A.5)

which lead to
ρ̄DEπDE = −3

2

(
k̂ik̂jT

ij − T

3

)
(A.6)

and
c2s,effδρDE = k̂ik̂jT

ij (A.7)

where T = T ii , k̂i is a unit vector in Fourier space and in the above expressions we have only kept
the 1st order parts.

In what follows we present the theoretical expressions used to calculate the low multipoles
for Fig. 4.8. In this regard, we mostly follow Ref. [315]. The contribution of the ISW effect on the
angular CMB power spectrum is given by [315]:

CISW
` = 4π

∫
dk

k
IISW` (k)2 9

25

k3Pζ
2π2

, (A.8)

where we have used the fact the power spectrum Pζ is given in terms of the primordial power
spectrum times a transfer function

k3Pζ
2π2

= As

(
k

k0

)ns−1

T (k)2, (A.9)

where As is the primordial amplitude, k0 is the pivot scale and T (k) is the usual matter-radiation
transfer function (see Eq. (7.71) in Ref. [316]). Furthermore, the kernel IISW` (k) is given by
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IISW` (k) = 2

∫
dz
dG

dz
j`(k r(z)), (A.10)

where jn(x) is the spherical bessel function, r(z) =
∫ z

0
dz/H(z) is the comoving distance and the

function G(z, k) is the scale dependent potential growth rate

G(a, k) =
Φ(a, k) + Ψ(a, k)

Φ(aini, k) + Ψ(aini, k)
. (A.11)

Also, the contribution to the spectrum due to the usual Sachs-Wolfe (SW) effect is given by:

CSW
` =

2π

25
As

Γ
(

3
2

)
Γ
(
1− ns−1

2

)
Γ
(
`+ ns−1

2

)
Γ
(

3
2 −

ns−1
2

)
Γ
(
`+ 2− ns−1

2

) , (A.12)

where Γ(x) is the usual Gamma function. The previous expression for ns = 1 simplifies to the
well-known result for the SW plateau

`(`+ 1)

2π
CSW
` =

As
25
. (A.13)

Finally, the total contribution from the SW and ISW effects will be given by the sum of
Eqs. (A.8) and (A.12), that is,

Ctotal
` = CSW

` + CISW
` . (A.14)

In our analysis we used As = 2.3×10−9, ns = 1, k0 = 0.05h/Mpc, Ωm0 = 0.3 and TCMB = 2.726K.
Note that to convert the result of Eq. (A.14) to µK2, as is the standard in the CMB community,
one needs to multiply the C` with T 2

CMB · 1012.

A.2 CLASS implementation

In this section we present our implementation of the effective fluid approach in the CLASS code
[232], which we call EFCLASS. As shown in the previous sections, even with these minimal changes
our approach gives results in agreement with other codes, such as EFTCAMB, MGCAMB, FRCAMB and
CLASS_EOS_FR.

The only changes we made in the code are in the following two places:

1. In the background.c file we included the correct expansion history for the f(R) models. For
the HS model this is given by Eq. (4.58).

2. In the perturbations.c file we included the proper perturbations for the effective DE fluid
given by Eqs. (4.7) and (4.9).

We found that the most straight-forward and least error-prone way to make these changes
is to modify the ΛCDM model equations in the aforementioned parts of the code, as we can just
increment the background equations of ΛCDM with the one of the HS model (for the DES model,
no change is needed) and in the case of the perturbations, ΛCDM has none so we can just add the
appropriate new terms given by Eqs. (4.7) and (4.9).

In more detail, first we consider the background evolution, where we consider two cases:
that of the DES model, where the background is fixed to that of the ΛCDM model, and that of
the HS model where the Friedman equation is modified. For the DES model we obviously do not
make any change as the Hubble parameter for the ΛCDM is already included in the CLASS code.
For the HS model we introduce the extremely accurate approximations for the Hubble parameter
given by Eq. (4.58). In Ref. [286] is shown that this expression works to a level of accuracy better
than ∼ 10−5% for b ∈ [0, 0.1]. Finally, we also had to include an expression for the equation of
state parameter wDE and effective density ρDE . Both were calculated to second order in b from
Eqs. (4.25) and (4.24) by using Eq. (4.58).
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Regarding the perturbations, we treat both models equally. In this case we found that
the best place to implement the modifications were in the perturb_einstein routine of CLASS,
which solves the Einstein equations in the conformal Newtonian gauge given by Eqs. (4.7) and
(4.9). Then, it is simple to just add in the right-hand-side of the aforementioned equations our
expressions for the effective fluid DE velocity and anisotropic stress given by Eqs. (4.44) and
(4.45).

Our analytic approach has several advantages: First, given that most viable f(R) models
can be written as small perturbations around ΛCDM model, such as the HS model, it is always
possible to derive extremely accurate expressions for the background, as was shown in Ref. [286].
Second, regarding the perturbations our improved subhorizon approximation gives much more
accurate results compared to codes that are based on the default subhorizon approximation. Also,
the accuracy is comparable to codes that treat the perturbations exactly by numerically solving
the relevant equations. However, our approach has a much smaller overhead in terms of new lines
of code and as a result is more straight-forward and less error-prone.
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B
Horndeski’s gravity

B.1 Scalar and Gravitational field equations

For completeness, in this Appendix we show how to compute both the gravitational and the scalar-
field equations derived from the Horndeski action (5.21).

B.1.1 Scalar field equation

For a function of a single variable with higher derivatives, the stationary values of the functional
[716]

I[f ] =

∫ x1

x0

L
(
x, f, f ′, f ′′, · · · , f (k)

)
dx; f ′ ≡ df

dx
,

f ′′ ≡ d2f

dx2
, f (k) ≡ dkf

dxk
, (B.1)

can be obtained from the Euler-Lagrange equation

∂L
∂f
− d

dx

(
∂L
∂f ′

)
+

d2

dx2

(
∂L
∂f ′′

)
− . . . (−1)k

dk

dxk

(
∂L
∂fk

)
= 0. (B.2)

Since our Lagrangian Li functions defined in the Horndeski action (5.21) depend on the scalar field
φ and its first and second derivatives, we can use the Euler-Lagrange equation (B.2) to compute
the scalar field equation for L2, L3 and L4. For L2 we have

L2 (φ, ∂µφ) =
∂L2

∂φ
δφ+

∂L2

∂µφ
δ (∂µφ) =

∂L2

∂φ
δφ− ∂µ

∂L2

∂µφ
δφ,

∂L2

∂φ
− ∂µ

∂L2

∂µφ
= P 2

φ −∇µJ2
µ

= 0. (B.3)

Since L2 = K (φ,X), applying Eq. (B.3) leads to

P 2
φ =

∂L2

∂φ
= Kφ, (B.4)

∇µJ2
µ = ∂µ

∂L2

∂µφ
= ∇µ

(
∂K

∂µφ

)
= ∇µ

(
∂K

∂X

∂X

∂µφ

)
= −∇µ (KX∇µφ) , (B.5)
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where we have replaced the partial derivatives by covariant derivatives and we are using the fact
that X = − 1

2∂µφ∂
µφ. Hence, for L2 the scalar field equation reads

Kφ +∇µ (KX∇µφ) = 0. (B.6)

For the term L3 we follow the same approach

L3 (φ, ∂µφ, ∂µ∂νφ) =
∂L3

∂φ
δφ+

∂L3

∂µφ
δ (∂µφ) +

∂L3

∂µ∂νφ
δ (∂µ∂νφ)

=
∂L3

∂φ
δφ− ∂µ

∂L3

∂µφ
δφ+ ∂µ∂ν

∂L3

∂µ∂νφ
δφ, (B.7)

∂L3

∂φ
− ∂µ

∂L3

∂µφ
+ ∂µ∂ν

∂L3

∂µ∂νφ
= 0. (B.8)

Knowing that L3 = −G3 (φ,X) [2φ = gµν∇µ∇νφ], applying Eq. (B.8) gives

∂L3

∂φ
= −G3φ2φ, (B.9)

∂µ
∂L3

∂µφ
= ∇µ

(
∂G3

∂µφ
2φ
)

= ∇µ
(
∂G3

∂X

∂X

∂µφ
2φ
)

= −∇µ (G3X∇µφ2φ) , (B.10)

∂µ∂ν
∂L3

∂µ∂νφ
= −∇µ (∇νgµνG3)

= −∇µ (G3φ∇µφ+G3X∇µX) , (B.11)

where we have replaced again the partial derivatives by covariant derivatives. We can then conclude
that, for L3 the scalar field equation reads

−G3φ2φ−∇µ (G3X∇µφ2φ)−∇µ (G3φ∇µφ)−∇µ (G3X∇µX) = 0. (B.12)

and we make the following assignment

P 3
φ = ∇µG3φ∇µφ, (B.13)

∇µJ3
µ = ∇µ (−G3X∇µφ+G3X∇µX + 2G3φ∇µφ) . (B.14)

For L4 we have

L4 (φ) =
∂L4

∂φ
δφ, (B.15)

∂L4

∂φ
= P 4

φ = 0. (B.16)

Since L4 = G4 (φ)R, applying Eq. (B.16) leads to

P 4
φ = G4φR. (B.17)

Our result for the scalar field equation considering G4X = 0 and G5 = 0 is in full agreement
with Ref. [302]. Hence, the scalar-field equation can be written as

∇µ
(

4∑
i=2

J iµ

)
=

4∑
i=2

P iφ. (B.18)
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B.1.2 Gravitational field equations

Defining the arbitrary functions Li from the action (5.21) as

L2 = K (φ,X) , (B.19)

L3 = −G3 (φ,X)2φ, (B.20)

L4 = G4(φ)R, (B.21)

we can then vary the action with respect to the metric tensor; using the principle of least action,
this leads to

δS = δS2 + δS3 + δS4 + δ
(√
−gLm

)
= 0. (B.22)

For δS2 we have

δS2 =

∫
d4x

[
δ
√
−gK +

√
−gδK

]
, (B.23)

and using the fact that

δ
√
−g = −1

2

√
−ggµνδgµν , (B.24)

and that the variation of K with respect to the metric can be written as

δK (φ,X) = KXδg
µν

(
−1

2
∇µφ∇νφ

)
, (B.25)

we get

δS2 =

∫
d4x
√
−gδgµν

[
−1

2
Kgµν −

1

2
KX∇µφ∇νφ

]
. (B.26)

For δS3 we have

δS3 =

∫
d4x

[
−δ
√
−gG32φ−

√
−gδ (G32φ)

]
. (B.27)

The variations of G3 with respect to the metric can be written as

δ (G3 (φ,X)2φ) = δG32φ+G3δ (2φ)

= G3Xδg
µν

(
−1

2
∇µφ∇νφ

)
2φ+G3δ (2φ) , (B.28)

hence

δS3 =

∫
d4x
√
−g
[

1

2
gµνδg

µνG32φ+
1

2
δgµνG3X2φ∇µφ∇νφ+G3δ (2φ)

]
. (B.29)

The last term of the above equation can be expanded in the following way

δ2φ = δgab∇a∇bφ+ gabδ (∇a∇bφ) = δgab∇a∇bφ+ 2 (δφ)− gabδΓγab∂γφ, (B.30)

since
∇a∇bφ = ∂a∂bφ− Γγab∂γφ, (B.31)

and
δ (∇a∇bφ) = ∇a∇b (δφ)− δΓγab∂γφ. (B.32)
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Also we have that gabΓγab = . . . = −∇aδgγa + 1
2gabg

γλ∇λδgab, so we get for the last term in
Eq. (B.29):

δSlast-term =

∫
d4x
√
−g (−G3)

(
δgab∇a∇bφ+ 2δφ+

(
∇aδgγa −

1

2
gabg

γλ∇λδgab
)
∂γφ

)
=

∫
d4x
√
−g
[
−δgµν (∇µ∇ν)G3 + δgγa∇a (G3∇γφ)− 1

2
δgabgabg

γλ∇λ (G3∇γφ)

]
=

∫
d4x
√
−g
[
−δgµν (∇µ∇ν)G3 + δgµν∇ν (G3∇µφ)− 1

2
δgµνgµν∇γ (G3∇γφ)

]
=

∫
d4x
√
−gδgµν

[(
∇(µφ

) (
∇ν)G3

)
− 1

2
gµν∇γ (G3∇γφ)

]
. (B.33)

Combining all terms we have

δS3 =

∫
d4x
√
−gδgµν

[
1

2
G3X2φ∇µφ∇νφ+∇(µG3∇ν)φ−

1

2
gµν∇λG3∇λφ

]
. (B.34)

For δS4 we have

δS4 =

∫
d4x

[
δ
√
−gG4R+

√
−gG4δR

]
, (B.35)

where

δR = δ (gµνRµν)

= Rµνδg
µν + gµνδRµν

= Rµνδg
µν + gµν

(
∇ρδΓρνµ −∇νδΓρρµ

)
. (B.36)

Since δΓλµν is the difference of two connections, it should transform as a tensor. Therefore, it can
be written as

δΓλµν =
1

2
gλα (∇µδgαν +∇νδgαµ −∇αδgµν) . (B.37)

Then, substituting Eq. (B.37) into (B.36), we get

δR = Rµνδg
µν + gµν2 (δgµν)−∇µ∇ν (δgµν) , (B.38)

hence

δS4 =

∫
d4x
√
−g
[
−1

2
gµνδg

µνG4R+G4Rµνδg
µν +G4 (gµν2 (δgµν)−∇µ∇ν (δgµν))

]
=

∫
d4x
√
−gδgµν [GµνG4 + gµν2G4 −∇µ∇νG4 + total derivatives]

=

∫
d4x
√
−gδgµν

[
GµνG4 + gµν (G4φ2φ− 2XG4φφ)−G4φ∇µ∇νφ−G4φφ∇µφ∇νφ

+ total derivatives
]

(B.39)

where

−∇µ (∇νG4) = −∇µ (∇νφG4φ)

= −∇µ∇νφG4φ −∇µφ∇νφG4φφ, (B.40)

gµν2G4 = gµν
(
gab∇a∇bG4

)
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= gµν
(
gab∇a (∇bφG4φ)

)
= gµν

(
gab∇a∇bφG4φ + gab∇bφ∇aG4φ

)
= gµν (2φG4φ − 2XG4φφ) . (B.41)

Since the energy-momentum tensor is defined as

T (m)
µν = − 2√

−g
δ (
√
−gLm)

δgµν
, (B.42)

the gravitational field equation can be written

T (m)
µν = −KX∇µφ∇νφ−Kgµν +G3X2φ∇µφ∇νφ+ 2∇(µG3∇ν)φ− gµν∇λG3∇λφ+ 2G4Gµν

+2gµν (G4φ2φ− 2XG4φφ)− 2G4φ∇µ∇νφ
−2G4φφ∇µφ∇νφ. (B.43)

B.2 Coefficients

Here we show the coefficients for the perturbations in the Horndeski theory in Eq. (5.21). They
are given by:

A1 = −3φ̇3G3X + 12HG4 + 6φ̇G4φ, (B.44)

A2 = −φ̇
(
KX + φ̇2KXX

)
+ 2φ̇G3φ − 3Hφ̇2

(
3G3X + φ̇2G3XX

)
+ φ̇3G3φX + 6HG4φ, (B.45)

A3 = 4G4, (B.46)

A4 = φ̇2
(
KX + φ̇2KXX

)
− 2φ̇2G3φ − φ̇4G3φX + 3Hφ̇3

(
4G3X + φ̇2G3XX

)
−12H

(
HG4 + φ̇G4φ

)
, (B.47)

A6 = −φ̇2G3X + 2G4φ, (B.48)

µ = −Kφ + φ̇2KφX − φ̇2G3φφ + 3Hφ̇3G3φX − 6H2G4φ − 6Hφ̇G4φφ, (B.49)

B1 = 12G4, (B.50)

B2 = −3φ̇2G3X + 6G4φ, (B.51)

B3 = 12
(
φ̇G4φ + 3HG4

)
, (B.52)

B4 = 3
[
φ̇KX − 2φ̇G3φ − 2φ̇φ̈G3X − φ̇3

(
G3φX + φ̈G3XX

)
+ 4HG4φ + 4φ̇G4φφ

]
, (B.53)

B5 = 3
(
φ̇3G3X − 4HG4 − 2φ̇G4φ

)
, (B.54)
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B6 = 4G4, B7 = 4G4φ, B8 = 4G4, (B.55)

B9 = −3KX φ̇
2 + 6G3φφ̇

2 + 3G3φX φ̇
4 + 12G3X φ̇

2φ̈+ 3G3XX φ̇
4φ̈− 36G4H

2 − 24G4Ḣ

− 24G4φHφ̇− 12G4φφφ̇
2 − 12G4φφ̈, (B.56)

and using Eq.(5.50) to eliminate G4 in favor of K we can express B9 as

B9 = 3
(

2K − φ̇2KX + 2φ̇2φ̈G3X + φ̇4G3φX + φ̇4φ̈G3XX

)
, (B.57)

ν = Kφ − φ̇2
(
G3φφ + φ̈G3φX

)
+ 2

(
3H2 + 2Ḣ

)
G4φ + 2

(
φ̈+ 2Hφ̇

)
G4φφ

+ 2φ̇2G4φφφ, (B.58)

C1 = 4G4, (B.59)

C2 = −φ̇2G3X + 2G4φ, (B.60)

C3 = φ̇3G3X − 4HG4 − 2φ̇G4φ, (B.61)

C4 = φ̇ (KX − 2G3φ + 2G4φφ) +H
(

3φ̇2G3X − 2G4φ

)
, (B.62)

D1 = −3
(
φ̇2G3X − 2G4φ

)
, (B.63)

D2 = −KX − φ̇2KXX + 2G3φ − 6Hφ̇G3X + φ̇2G3φX − 3Hφ̇3G3XX , (B.64)

D3 = −3
(
φ̇KX − 2φ̇G3φ + 6Hφ̇2G3X + 2φ̇φ̈G3X + φ̇3G3φX + φ̇3φ̈G3XX − 8HG4φ

)
, (B.65)

D4 =
d

dt
D2 + 3HD2

= −3HKX −KφX φ̇−KφXX φ̇
3 −KXXX φ̇

3φ̈− 3KXX

(
Hφ̇2 + φ̇φ̈

)
+ 6HG3φ

+ 2G3φφφ̇− 6G3X

(
3H2φ̇+ Ḣφ̇+Hφ̈

)
+G3φX

(
−3Hφ̇2 + 4φ̇φ̈

)
+G3φφX φ̇

3

− 3G3XX φ̇
2
(

3H2φ̇+ Ḣφ̇+ 5Hφ̈
)

+GφXX

(
Hφ̇3φ̈− 3Hφ̇4

)
− 3G3XXXHφ̇

4φ̈, (B.66)

D5 = φ̇
(
KX + φ̇2

XX − 2G3φ − φ̇2G3φX

)
+ 3H

(
3φ̇2G3X + φ̇4G3XX − 2G4φ

)
, (B.67)

D7 = 4G4φ, (B.68)

D8 = 9Hφ̇−1K + 3Kφ − 3
(
φ̈+ 3Hφ̇

)
KX − 3φ̇2

(
KφX + φ̈KXX

)
+ 3

(
2φ̈+ 3Hφ̇

)
G3φ
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− 9φ̇
(

3Hφ̈+ 3H2φ̇+ Ḣφ̇
)
G3X + 3φ̇2G3φφ + 3φ̇2

(
φ̈− 3Hφ̇

)
G3φX − 9Hφ̇3φ̈G3XX

+ 18Hφ̇−1
(

3H2 + 2Ḣ
)
G4 + 18φ̇−1

(
Hφ̈+ 4H2φ̇+ Ḣφ̇

)
G4φ + 18Hφ̇G4φφ, (B.69)

and using Eqs. (5.50) and (5.56) we find that

D8 = 0, (B.70)

D9 = −KX + 2G3φ − 4Hφ̇G3X − φ̈
(

2G3X + φ̇2G3XX

)
− φ̇2G3φX , (B.71)

D10 = −φ̇2G3X + 2G4φ, (B.72)

D11 = Kφ +
(
φ̈+ 3Hφ̇

)
KX + φ̇2

(
4φ̈+ 3Hφ̇

)
KXX + φ̇4

(
KφXX + φ̈KXXX

)
− 2

(
φ̈+ 3Hφ̇

)
G3φ + 9φ̇

(
2Hφ̈+ 3H2φ̇+ Ḣφ̇

)
G3X − φ̇2G3φφ

− φ̇2
(

5φ̈− 3Hφ̇
)
G3φX − φ̇4G3φφX + 3φ̇3

(
7Hφ̈+ 3H2φ̇+ Ḣφ̇

)
G3XX

− φ̇4
(
φ̈− 3Hφ̇

)
G3φXX + 3Hφ̇5φ̈G3XXX − 6

(
2H2 + Ḣ

)
G4φ, (B.73)

M2 = −Kφφ +
(
φ̈+ 3Hφ̇

)
KφX + φ̇2KφφX + φ̇2φ̈KφXX

− φ̈
[
2G3φφ + φ̇2G3φφX − 3Hφ̇

(
2G3φX + φ̇2G3φXX

)]
− 6Hφ̇G3φφ + 3φ̇2

(
3H2 + Ḣ

)
G3φX − φ̇2G3φφφ

+ 3Hφ̇3G3φφX − 6
(

2H2 + Ḣ
)
G4φφ. (B.74)

For the DE effective perturbation equations we found the following coefficients

F1 = (A6 −B7)B7G4G
2
4φ

(
B7G4 − (B6 − 2)G4φ

)
, (B.75)

F2 = (A6 −B7)B7G4

(
3νG2

4φ + 2B2G
2
4φφφ̇

2

− G4φ

(
B4G4φφφ̇+B2G4φφφφ̇

2 +B2G4φφφ̈
))

+ G2
4φ

(
B2B7 (B7 −A6)G4φφφ̇

2 +G4φ

(
B9

(
B2

7 − 2D9

)
+ (A6 −B7)B7

(
B4φ̇+B2φ̈

)))
, (B.76)

F3 = B6B9M
2G3

4φ, (B.77)

F4 = G4φ, (B.78)

F5 = B6

(
A2

6 − 2A6B7 +B6D9

)
G2

4φ, (B.79)

F6 = −B2
6M

2G2
4φ, (B.80)

F7 = G4φ

(
A6 (A6 −B7)B7G4 + (B6 − 2) (B6D9 −A6B7)G4φ

)
, (B.81)
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F8 =
(
G2

4φ

(
A4

(
B2

7 −B6D9

)
− (B6 − 2)B6M

2

+ 6
(
B2

7 −B6D9

)
H2 +A2 (A6 −B7)B7φ̇

)
− (A6 −B7)B7G4

(
µG4φ +A2G4φφφ̇

))
, (B.82)

F9 = B6M
2G2

4φ

(
A4 + 6H2

)
(B.83)

F10 = G4φ

(
(A6 −B7)B7C4G4

+
(
B2

7 −B6D9

)
G4φ (C3 + 2H)

)
+ (A6 −B7)B7C2

(
G2

4φ −G4G4φφ

)
φ̇, (B.84)

F11 = B6M
2G2

4φ (C3 + 2H) . (B.85)

The coefficients for the KGB DE effective perturbation equations are

F̂2 = −B9D9 + 3A6ν − 6D9

(
3H2 + 2Ḣ

)
, (B.86)

F̂3 = M2
(
B9 + 18H2 + 12Ḣ

)
(B.87)

F̂5 = A2
6 +B6D9, (B.88)

F̂6 = −B6M
2, (B.89)

F̂7 = −A2
6 − (B6 − 2)D9, (B.90)

F̂8 = A4D9 +M2 (B6 − 2) +A6µ+ 6D9H
2, (B.91)

F̂9 = −M2
(
A4 + 6H2

)
, (B.92)

F̂10 = M2 (C3 + 2H) , (B.93)

F̂11 = A6C4 − C3D − 9− 2D9H. (B.94)
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The RSD likelihood

The publicly available RSD Montepython likelihood for the growth rate fσ8 data set, introduced
in this paper for the first time, is based on the compilation shown in Table 2.4 and can be found
at https://github.com/snesseris/RSD-growth.

Here we describe the RSD likelihood we used for the MCMC analysis done in Chapters 6 and
7. In particular, we implement in python a likelihood for the “Gold 2018" growth rate fσ8 compi-
lation with N = 22 data points given in Ref. [116] and shown in Table 2.4 with the corresponding
references of each point. See Chapter 2 for more details.

The redshift correction for the Alcock-Paczynski effect as described in Ref. [120], is given in
terms of a correction factor of

fac(zi) =
H(zi) dA(zi)

Href,i(zi) dref,iA (zi)
, (C.1)

where the label “ref, i” stands for the fiducial cosmology used on each data point at the redshift
zi. As a result, the now corrected growth rate is [717]

fσth,i8 → fσth,i8

fac(zi)
. (C.2)

We can then define the data vector V as:

V = fσobs,i8 − fσth,i8

fac(zi)
, (C.3)

and the chi-squared of our likelihood via

χ2 = xTC−1x . (C.4)

Finally, in CLASS we can obtain the scale-dependent growth δ(k, z) at each redshift via the matter

power spectrum as δ(k, z) =
√

P (k,z)
P (k,0) , where the matter power spectrum P (k, z) is obtained from

the code itself via the function cosmo.pk(k,z). Then, fσ8(k, z) can be obtained with simple cubic
interpolations and direct differentiation from Eq. (7.56).
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