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Abstract
Atomic defects in semiconductors have been studied as promising platforms for quan-
tum technological applications in the solid state. The electron and nuclear spins of
single substitutional group-V donor atoms in silicon are of particular interest due to
their long quantum coherence times and potential ease of integration with already
well established microelectronics fabrication technology. The donor electrons, when
bound to group-V donor nuclei at low temperature, have not only quantised intrin-
sic spin but quantised orbital angular momentum. For donors in silicon, transitions
between the allowed orbital states are accessible via THz excitation and the extent
of the excited orbital wave function is large inspiring their use to gate interaction be-
tween neighbouring spin qubits. This body of work seeks to investigate the electrical
detection of the orbital excitation dynamics of scaled down silicon devices whereby
orbital excitation is of few defects.

Prior to fabrication of electrical devices that will require deterministic and precise
placement of single donor atoms, it is worth checking that gated qubit interactions
can’t be realised in a system that might be far easier to fabricate e.g. one where
dopants exist homogeneously in the bulk or are broad area ion implanted. A partic-
ular gating scheme whereby qubit entanglement is dependant on the orbital state of
an intermediary donor has been proposed historically. In this thesis the viability of
an even simpler system of orbitally gated interaction being achieved by a number of
broad area ion implantations is investigated using point process statistics and the
need for higher positional determinism in dopant placement realised.

The next investigation is of isolated donors present at a background concentra-
tion level in highly purified silicon wafer. Though not deterministically placed, the
quantum coherence dynamics of these donors can be probed electrically via contact-
less photocurrent detection. The coherent dynamics of the donor ensemble subjected
to a large external magnetic field was measured using Ramsey spectroscopy. Ex-
ternal magnetic fields are typically used in spin qubit systems to lift the energy
degeneracy of spin-up and spin-down states of the electron.

Finally, resistive photoconductance spectroscopy was performed on a bismuth
ion implanted silicon-on-insulator (SOI) device containing <1 million defects in the
optically active region of the device. The high electric fields that are more eas-
ily accessible in short channel devices is shown to introduce additional ionisation
mechanisms that could aid in characterising donor orbital state transition dynam-
ics at lower temperatures. The significant inhomogeneous broadening seen in the
measured device photocurrent spectrum was attributed to the high density of active
bismuth donors.
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Chapter 1

Introduction

Silicon based electronics has been at the forefront of the electronics industry since

the early 20th century. The technological advances to lithographically fabricate

electronic circuits on high purity semiconducting materials has allowed integrated

circuits to reduce in size in accordance with the predictions of Gordon Moore in

1965 and 1975. Initially it was predicted that the number of components possible in

an integrated circuit of a given size would double every year [1]. This projection was

then reevaluated a decade later to be half as rapid as initially predicted [2]. This

later prediction of doubling every two years held true for the remainder of the 20th

century and became known as Moore’s law.

Solid state transistors are one of the most critical components in modern elec-

tronics. Their use as voltage controlled switches with high power efficiency and

small physical size in digital electronics revolutionised computational speed and ef-

ficiency. The metal-on-silicon field effect transistor (MOSFET), invented in 1959,

was the first transistor design that could be mass produced using what have since

become industry standard lithographic techniques. One of the many challenges in

packing larger numbers of transistors in integrated circuits is in defining channels

with shorter gate lengths [3]. A gate terminal that is used to induce an electric field

in the channel controls the flow of current between a source and drain terminal. Be-
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low channel lengths of around 10 nm it becomes increasingly difficult to switch that

current off. This is because at these length scales quantum mechanical tunnelling

of electrons directly from the source to the drain electrodes becomes increasingly

probable regardless of the potential barrier height in the channel separating them.

Advances in transistor designs such as the tri-gate geometry of FinFETs [4] whereby

the gate electrode wraps around the channel, increasing the area of contact between

the channel and gate by touching three sides of the channel rather than one. This

has helped to further reduce the transistor channel length to 10 nm but a limit

is reached where feature sizes approach the length scales of silicon-silicon bonds

by which point conventional field effect transistor (FET) behaviour is not to be

expected.

The quantum nature of nanoscale semiconducting devices has been embraced

by the scientific community due to the opportunities such devices present for novel

paradigms in electronics such as quantum computing, sensors and technologies that

rely on state entanglement, superpositions of states or tunnelling effects.

1.1 Quantum computing in the solid state

Some basic concepts of quantum computing were first mentioned in a lecture given

by Richard Feynman in 1959 [5] stating with regards to miniaturising computer cir-

cuitry, “We can use, not just circuits, but do some system involving the quantized

energy levels, or the interactions of quantized spins”. There have been, and still are,

many ideas for what states could be used and in what systems for quantum informa-

tion processing. The general principles required for successful implementation for a

quantum computer were outlined by DiVincenzo [6] in 2000. To physically imple-

ment a functional quantum computer which outperforms a classical computer in the

ways predicted has proved to be a great engineering difficulty. In a quantum com-

puter, information is stored in the form of superposition states of quantised energy
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levels, for two states this is referred to as a quantum bit or ‘qubit’ of information

in analogy with classical, binary information stored as ‘bits’. With their ability to

represent more than one state at a point in time, a suitable system of entangled

qubits could solve problems that would take a classical computer an unreasonable

amount of time to complete. Typical examples include Shor’s algorithm for integer

factorisation [7] and Grovers algorithm for fast database search [8]. There are many

investigated physical qubit implementations. These include: photon polarisation [9],

charge flux in superconducting resonators [10,11], atomic spins in optically trapped

atoms [12] and charge state of quantum dots [13,14].

There are many different qubit systems being studied which satisfy the Di-

Vincenzo criteria. State-of-the-art systems of particular interest include: photonic

qubits which are potentially free from decoherence but difficult to make entangle [15],

superconducting qubits which are relatively simple to manufacture but prone to de-

coherence from electronic noise [10], topological qubits that are potentially very

resistant to noise but are yet to be experimentally confirmed [16], and (free space)

atomic qubits which [12] which have very long coherence times but are difficult to

scale to systems of many qubits. The atomic qubits systems of interest in this the-

sis are those of solid state trapped atom qubits, specifically substitutional group-V

donor atoms trapped in a silicon lattice. Even with this specific a system there are

many options for qubit manifestations. The spin states of donor nuclei [17] and spins

of donor bound electrons [18] are popular choices due to their long coherence times.

Other options are the orbital states of the bound electrons or the charge states of

quantum dots defined with gate electrodes [14] or single donors [19,20]. Silicon as

a host for fabricating quantum devices is a convenient one because of the amount

of research and advances made in improving classical computing hardware power

via the miniaturisation of transistors. Many of the processing techniques used for

making classical computers on a commercial scale are appropriate for fabricating at

least parts of the circuitry involved in quantum processing.
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Crystalline silicon is an indirect band gap semiconductor with a diamond cubic

lattice whereby the four valence electrons of each atom are covalently bonded to

four nearest neighbours silicon atoms in a tetrahedral arrangement. Replacing a

silicon atom in this structure with an atom with five valence electrons results in one

electron not used for bonding to the neighbouring silicon atoms. There remains a

Coulomb attraction between the extra electron and the donor nucleus however the

4 electrons involved in the covalent bonding ‘screen’ the additional electron from

all but one of the five protons. Provided the lattice temperature is low enough, the

excess donor electron remains bound to the donor nucleus, trapped in the Coulomb

potential well surrounding a single lattice site. This looks very similar to a hydrogen

atom, only fixed in place in the silicon lattice.

Silicon provides a convenient substrate for solid state quantum information pro-

cessing due to its low concentration of nuclear spins. Atoms in a substrate that have

non-zero nuclear spin can interact with qubit spin states via the magnetic dipole-

dipole interaction and have the effect of reducing the coherence time of a prepared

superposition state thus limiting the available time in which one can complete a

quantum computation. While the radioactively stable silicon isotopes 28Si and 30Si

have the desired property of no nuclear spin, 29Si has non-zero nuclear spin, I = 1/2,

is also a stable isotope and comprises 4.67 % of naturally occurring silicon on Earth.

For this reason it helps to produce isotopically enriched silicon, reducing the content

of 29Si, in preparation for its use in quantum technologies involving preserved spin

superpositions. [21]

1.1.1 The Kane architecture

One of the most well known proposals for a Silicon-based quantum computer is the

Kane quantum computer [17]. In this system an array of phosphorus donors (with

nuclear spins I = 1/2) is placed in isotopically pure 28Si and subjected to an external

magnetic field to lift the degeneracy of donor nuclear and donor electron spin states.
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The polarisation of nuclear and electron spins of the phosphorus donor are involved

in this architecture. The well isolated nuclear spins store the qubit information with

a coherence time measured to be greater than half an hour [22]. This state can be

manipulated using RF electromagnetic pulses. The electrons are used to entangle

the states of nearby nuclei. The so-called hyperfine interaction that couples the

donor nuclear spin state to that of the electron is controlled by a gate electrode in

the proximity of each donor. These gates are also critical for addressing individual

nuclei to be in resonance with applied RF pulses that prepare their initial state.

With the qubit now encoded in the electron spin, quantum entanglement can occur

between neighbouring electron spins by enabling a spin-exchange interaction between

them. Such an interaction is dependent on the distance between the spins. This is

controlled by another gate located between the two phosphorus atoms. The time in

which this must take place is now limited by the coherence time of the electron spin

state which is reported to be as high as 10 s [23]. The information is then restored in

the nuclear spin. Eventually, at the end of a quantum computation, when readout of

a nuclear spin state is required, the polarisation is transferred again to the electron

whose spin state can be measured from a spin-to-charge readout technique e.g. spin

dependent tunnelling into a nearby quantum dot [24].

There is clearly a great engineering barrier to overcome in this architecture. This

device requires the deterministic placement of phosphorus donors roughly 10 nm

deep into an isotopically pure silicon sample. This depth must be deep enough that

the bound electrons are isolated from the silicon surface but not so deep that surface

patterned electrodes cannot address individual qubits. The metal gate electrodes

must be placed in alignment with those donors with dimensions and separations

also on the order of 10 nm. Individually, these criteria are achievable with modern

fabrication techniques however none that are currently scalable to systems of many

entangled qubits. Examples of techniques to introduce deterministically positioned

single donors are hydrogen resist lithography and single ion implantation, both de-
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scribed later in this section. Each of these techniques presents their own difficulties

but in principle positioning donors with sub-10 nm accuracy is possible.

In Si, the precise positioning of neighbouring donor qubits is made even more

strict by the inter-valley interference causing the donor bound electron wave function

to oscillate in magnitude with a periodicity comparable to the lattice spacing [25].

This interference effect arises due to the location of the conduction band minima in

the silicon electronic band structure. The six, energy degenerate, conduction band

minima exist 85% of the way between the central Γ point and the X point boundaries

of the Brillouin zone. This effect is less apparent for adjacent donor electron orbitals

in Ge as the conduction band minima are located at the L points of the Brillouin

zone boundary.

The placement of correctly aligned gates on the silicon surface is also challeng-

ing even given cutting edge electron beam lithography (EBL) [26] and helium ion

beam lithography (HIBL) [27] techniques to create exceedingly small features in

lithographic masks prior to metal deposition and lift-off. Isotopic enrichment of

silicon has been achieved by chemical vapour deposition of 28Si followed by float

zone (FZ) recrystallisation [28]. Since only the silicon close to the surface needs to

be isotopically pure, other techniques to form 28Si using readily available natural

silicon wafers are also being explored. [29,30]

1.1.2 A gating scheme using silicon donor orbital states

Another proposed method of implementing entangled donor qubits in silicon is the

Stoneham Fisher Greenland (SFG) scheme [31]. In this scheme, electron spin en-

tanglement is gated not with an intermediate electrode but by orbital excitation of

an intermediate donor impurity. Such an excitation increases the electron orbital

radius and therefore increases the amount its wave function overlaps with those of

the two neighbouring qubits whose spins are desired to be entangled. A schematic

of this arrangement is depicted in fig. 1.1. This is possible because not only does the
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electron bound to the donor nucleus have intrinsic spin, but because the centre is

hydrogenic, it has orbital states and a Lyman series of atomic transitions analogous

to those of atomic hydrogen with caveats arising due to the surrounding Si lattice.

Figure 1.1: The proposed optical gating of spin entaglement as shown in [31]. A
control impurity, C when in its excited orbital state, enables entanglement between
neighbouring qubits A and B.

Silicon is an indirect band gap semiconductor with a conduction band minimum

that is sixfold degenerate due to six equivalent valleys close to the X-points of

its Brillouin zone. A substitutional donor in this crystal environment has a 1s

ground state orbital that would be spherically symmetric if it were not perturbed

by the surrounding lattice. Valley-orbit coupling occurs due to the disturbance the

defect ion has on the cubic symmetry of the tetrahedral lattice and results in the

ground state splitting into 3 distinct energy states 1s(A1, T2, E) (singlet, triplet and

doublet states respectively). For donors in silicon, the 1s(A1) state is the most

tightly bound. [32] It is also the state whose binding energy is most affected by
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the particular group-V donor species since it has a large charge density near the

donor site where the reduced charge screening of the nucleus by the donor inner

shell electrons makes it appear less like a simple point charge at the donor lattice

cite.

The radii of the donor-bound electron orbitals are much larger than those of

atomic hydrogen in vacuum due to the smaller effective mass of the electron and the

increased electric permittivity. From the Bohr model of atomic hydrogen, the radius

of the ground state, a0 ∝ ϵ0/me so with an electric permittivity roughly ten times

that of vacuum and an effective mass a fifth of that in vacuum, the electron orbital

states of a hydrogenic donor in silicon extend 50× further away from the nucleus

than they would in atomic hydrogen. This means the Bohr radius of a hydrogenic

donor is on the order of nanometres rather than 10s of picometres. The excited

state radii scale with the square of the principle quantum number resulting in radii

comparable to the resolution of modern semiconductor fabrication technology. As

mentioned in the previous section, inter-valley interference also occurs particularly

for donors in bulk silicon.

These caveats: that the electron orbitals are large, and that the orbital transition

energies from the ground, 1s(A1) state are species dependent are both exploited in

the SFG scheme. The intermediate, ‘control’ donor species can be optically excited

leaving the neighbouring ‘memory’ donors unaffected. Since the intermediary donor

excited orbital states extend far, the spacing of the multi-species cluster can also

be larger thus relaxing the neighbouring distance constraints. A high order excited

state of the control donor can overlap with two well separated memory qubits and

increase the exchange energy between them to cause a spin entanglement. In the

original article [31] it is also claimed that the control elements may also be used for

all-optical readout further simplifying the engineering requirements.

In both the Kane and SFG architecture implemented with donors in silicon,

absolute control of the electron spin entanglement requires atomic positioning of the
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donors due to inter-valley interference. Despite this inconvenience, test-bed devices

fabricated with coarser control of donor placement remain useful to try to produce

such that other features of such a quantum device may be optimised. For example

the time that a gating donor orbital remains in its excited state will determine how

long neighbouring spins can interact. If such an interaction time can be made very

long it may not matter that two qubits were not positioned with absolute accuracy

as the intermediate gating orbital can be kept in its excited state for longer to

compensate for such errors.

1.2 Motivation for deterministic shallow dopant

incorporation into silicon

The ability to introduce a controlled density of extrinsic dopants into high purity

silicon wafer is critical to the microelectronics industry even for classical electronics

applications. On a single piece of silicon, regions doped with a controlled density of

group-V donors and group-III acceptors can be defined to form well characterised

circuitry at a length scale and power efficiency impossible using previous, thermionic

valve technology. Silicon is therefore an extremely convenient platform for commer-

cial quantum technologies due to the vast infrastructure for growing and doping very

high purity silicon.

There are two commonly used methods to grow single crystals of silicon. The

most economical of the two involves dipping a seed crystal of known crystallographic

orientation into a crucible of molten silicon and slowly extracting it. This process,

capable of growing large boules of single crystal silicon is called the Czochralski

(CZ) method. During the growth of CZ silicon, donor and/or acceptor defects can be

introduced via their addition to the crucible of liquid silicon to control the electronic

properties of the final wafers. One possible downside with this growth method

for quantum information applications is that oxygen and carbon defects are easily
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introduced into the crystal through contact with the crucible. These impurities can

interact with the donor qubits and reduce coherence times. The common alternative

growth method, is the FZ method. In this method a single crystal is produced by

inductively melting the cross-section of a high purity polycrystalline rod, dipping

the seed crystal into that and dragging the molten zone along the length of the

rod. In the wake of the molten zone, the silicon recrystallises in a single orientation.

By avoiding contact with a crucible and since impurities are dragged away by the

moving molten zone, a high purity crystalline silicon boule can be grown free of

dissolved defects such as oxygen.

Introducing substitutional dopants in the wafer bulk at the time of boule growth

undoubtedly yields the best quality of doped silicon in terms of vacancy (unoc-

cupied lattice sites) and interstitial (atom trapped in space between lattice sites)

defect concentration. There is, however, no control over where the dopants exist as

substitutional defects in the lattice; a homogeneously random dopant concentration

(where the probability of finding a donor at any particular lattice site is uniform)

over the entire wafer volume is achieved. To fabricate devices for single donor qubit

applications such as the Kane quantum computer or SFG scheme, one must start

with a dopant free silicon crystal and have control over the position of donors to

control their separations. The simplest method worth exploring, only slightly more

deterministic than bulk doping, is broad area ion implantation. By accelerating a

beam of ions of the desired species towards a high purity silicon wafer a layer of

that species is incorporated with a concentration profile centred at a mean depth.

Due to random collisions with the lattice on entry and depending on the implant

energy, the distribution of the dopant density can be very broad in depth. Beam

acceleration energies used are typically in the range of 10 keV to 1000 keV to control

the depth of an implanted layer. The final concentration of implanted species is con-

trolled by the exposure time. This process, depending on the ion mass and kinetic

energy, can significantly damage and even fully amorphize the crystal surface. To
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repair this damage and substitutionally incorporate the implanted atoms, annealing

is required. Though this method provides some control over the dopant density in

one dimension, it still results in homogeneous random doping in the other two.

Single ion implantation (SII) is a technique that addresses the lack of control over

donor placement in broad area ion implantation. Positional accuracy is achieved in

various ways. Some possibilities are: implanting onto the exposed windows of a

hard mask [33] or by focussing the ion beam into a small spot size on the target

surface. [34] The latter example is advantageous as it does not rely on the additional

processing to define an implant mask. Despite a finite spot size limiting positional

accuracy in the latter example, implant straggle also causes the ion to deviate from

the initial position due to collisions with the lattice. Although not accurate to the

exact lattice site, SII can provide good control (on the order of 10 nm) of dopant

placement in all three dimensions.

For SII to be deterministic also in regards to the number of ions implanted one

must improve upon the Poisson statistics describing the average number of ions in a

beam over a given exposure time. If a target is exposed to an ion beam containing

on average one ion there is a significant probability of implanting no or more than

one ions making it difficult to define a pattern of many single ions. To overcome

this, a successful implantation event can be detected to determine when to stop

implanting into a particular location. [34,35] It is also possible to count and blank

ions in the beam prior to collision with the target [36]. Implant event detection could

be done by detecting secondary electrons ejected from the surface upon impact or

even implanting into a device sensitive to the free charge carriers and/or damage

created during an ion impact. [37,38] To reliably prevent more than one ion being

implanted low current beams are used. The ion beam may be pulsed such that when

eventually a pulse contains a non zero number of ions it is highly unlikely that it

contained more than one. Using this method it is possible to create clusters and

arrays of many accurately positioned single dopants of a vast selection of species.
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In principle, any species that can be broad area implanted can be used in a single

ion implanter although critical factors such as the positional accuracy will depend

on the ion species and target material.

The method which achieves the highest spatial accuracy and precision of dopant

impurities in semiconductors is hydrogen lithography. [39,40] Hydrogen lithography

relies on the selective removal of hydrogen atoms from a target surface such that

dopants existing in a precursor gas may incorporate at the exposed dangling bonds.

The spatial precision of hydrogen lithography is limited by the ability to remove

single hydrogen atoms with a scanning tunnelling microscope (STM) tip, and also by

the number of dangling bonds required to remove for the surface chemistry dictating

successful incorporation to work (usually more than one dangling bond must be

exposed as is the case for phosphorus [40] and arsenic [41] on a <100> silicon

surface). An encapsulating layer of the substrate material can then be grown over

the doped layer to achieve the required depth. This incorporation method is non-

destructive to the underlying substrate unlike the comparably violent process of ion

implantation however there are currently very few species that can be incorporated

with this method.

1.3 Manipulation and readout of group-V donor

orbital states

No matter which method is used to incorporate the donors, it is critical to assess the

quality of donor incorporation to determine its suitability in a proposed quantum

computation scheme such as the Kane architecture or SFG scheme as introduced

here. For the SFG scheme, not only must the spin states of the so called memory

donors be well characterised but also the orbital states of the control donor. These

orbital states are characteristic of electrically active neutral donors in a pristine

crystalline environment.
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For shallow donors in silicon to rest in their ground state the lattice temperature

must be low enough that electrons are not thermally excited into higher energy

orbitals. This is typically achieved at temperatures below 20 K requiring the use of

liquid helium cooling. This upper temperature limit is such that the thermal energy

kBT is no greater than the lowest energy transition. Whereas atomic hydrogen has a

Lyman series accessible in the ultraviolet spectral region, the analogous transitions

for hydrogenic donor centres in silicon exist in the far infrared region within the

so-called ‘THz gap’ as depicted in fig. 1.2. So called because of the limited choice of

light sources that emit with high power in this range.
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Figure 1.2: Orbital binding energies of phosphorus and bismuth donors in silicon.
Ellipses denote where some states have been omitted from this illustration.

To detect the excitation from ground to excited orbital state for hydrogenic

donors in silicon the transmission of light through the sample can be observed, sim-

ply whether or not photons of a particular wavelength are absorbed by the material
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is sufficient to determine whether or not an allowed optical transition exists. Mea-

suring the amount of light able to transmit through the sample requires the use of a

photodetector sensitive in this energy range down-stream of the absorbing sample.

For samples containing a low number of absorbers relative to the number of photons

in the beam, low signal to noise becomes an issue and the difference between the

amount of transmitted light on and off-resonance is exceedingly small.

To achieve a higher signal to noise measurement of few absorbers one can fab-

ricate a detector out of the sample containing the absorbers in a known location

and measure a change in electrical properties of that region under illumination. In

this measurement photons that don’t interact with absorbers are not detected in the

electrical signal making it background free. For the orbital states of donors in silicon

the present most sensitive method, capable of detecting transitions from the lowest

density of donors, is photo-thermal ionisation spectroscopy (PTIS) for which a full

description is found in chapter 2. This technique relies on the preferential ionisation

of excited orbital state electrons after photo-excitation causing an increase in the

density of free carriers thus changing the electrical resistance of a sample. Due to

their potential use in silicon quantum technologies, measurement and characterisa-

tion of orbital transitions of single donors in a device is desired but has yet to be

demonstrated. Characterisation of donor orbital transitions in bulk doped samples

containing a low density of dopants have however been extensively studied.

The dynamics of donor orbital excitation are also critical to their use in gating

an interaction between neighbouring spin qubits. Precisely how long an excited elec-

tron stays in this state is clearly important. For full control of the superpostition

of a donor orbital ground and excited state one requires a pulsed, high intensity,

coherent light source. Currently the only viable option to do this is with a pulsed

THz free electron laser (FEL). Other available sources of THz are either the wrong

wavelength, too low intensity or too spectrally broad. With pulses of coherent light,

an arbitrary superposition state of a two level system with a well defined phase

14



can be achieved. Using pulsed spectroscopy methods e.g. Ramsey spectroscopy

the relaxation and dephasing times of a two level system can be measured. Again,

this has been studied predominantly in samples containing a low bulk concentration

of donors. By moving towards samples containing fewer donors though, dephasing

effects that arise due to an ensemble of oscillators (i.e. inhomogeneous broadening

effects) are removed. Inhomogeneous broadening has been shown to be the dom-

inant decoherence mechanism for donor orbital transitions. [42] By removing the

distribution of resonant frequencies for a particular transition which causes this line

broadening by having only one oscillator in the system would be ideal. This also

has not been demonstrated in a doped silicon sample.

1.4 Thesis summary and outline

In this chapter, the field of solid state quantum computing has been introduced with

particular emphasis on systems of donors in silicon whereby donor spin entanglement

is gated by orbital excitation. Some methods of doping silicon with increasing

control of donor placement are introduced as it is this control that determines the

probability of finding suitable multi-species clusters in a doped sample. The need to

characterise the orbital state time dynamics of systems of fewer donors is introduced

as ultimately these systems of few donors are those required to build a trapped atom

quantum computer in the solid state. The time dynamics of orbital transitions in an

ensemble of donors can be very different due to inhomogeneous broadening effects.

Chapter 2 contains a detailed description of the experimental techniques used in

this thesis (in chapters 4 and 5) to assess the incorporation of donors in a doped

device and the methods by which donor orbital transitions have been measured and

characterised here.

Chapter 3 is a non-experimental chapter containing the theory of Poisson point

process statistics used to describe the distribution of nearest neighbour separations
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between donors in randomly doped samples. This is explored here to assess the po-

tential of finding multi-species donor clusters occurring by chance in randomly doped

samples. If this is possible, such samples may provide a useful, easy to fabricate

test-bed sample for characterising gated spin interactions using orbital excitations

such as in the system proposed in the SFG scheme. Although the analytical re-

sults for the distribution of neighbour separations in a system of randomly doped

n-dimensional space is well reported in the literature, the result shown here for a

inhomogeneous concentration profile along one of the three dimensions is not. The

analytical solution found when the inhomogeneous concentration profile is Gaussian

is also novel. The theory is then extended to describe the probability of finding

clusters of two species that meet a more complex set of separation conditions per-

taining to those useful in a SFG cluster. Improvement of this probability over the

optimum for bulk doping in both two or three dimensions is observed for a system

of two species each with doping concentrations that are Gaussian in depth.

Chapter 4 begins by deriving the optical Bloch equations used to model the

time dynamics of coherent orbital excitation of a two-level atom including leakage

into the continuum out of the excited state. This model is then used to extract

dynamics information from experimental Ramsey spectroscopy results of a dilute,

bulk doped Si:P sample. These measurements were made using pulsed FEL radiation

and contactless PTIS as the detection mechanism. Dynamics measurements for

particular transitions were taken over a large magnetic field range. The consequential

detuning of these transition due to the magnetic field is useful to avoid potential

water vapour IR absorption resonances and also phonon resonances present as a

bulk property of the lattice. The coherence times of this system under such high

field conditions were previously unreported. Potential pitfalls that arise when using

PTIS signal as an indirect measure of the excited state probability are identified

along with critical considerations that must be made of the laser pulse intensity.

Chapter 5 reports electrically contacted ionisation spectroscopy of a silicon-on-

16



insulator (SOI) device implanted with bismuth to assess the viability of on-chip

characterisation of donor orbital states demonstrating the detection of orbital tran-

sition from the fewest implanted donors in a device. The activation of the annealed

bismuth implant is measured using spreading resistance profiling. Electrical mea-

surements of the device in the dark revealed that the high electric fields accessible

under low voltage bias can cause impact ionisation of the donor ground state. It is

shown that this could provide a viable alternative mechanism for preferential ion-

isation of the excited state as opposed to use of a phonon in PTIS which require

the sample to be at a high enough temperature. Opening the possibility of orbital

state characterisation at much lower temperatures that one would typically require

for donor electron spin polarisation.

Finally, chapter 6 provides a summary of the conclusions found in chapters 3

to 5 and suggests continuations and improvements for future work.
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Chapter 2

Experimental techniques

Throughout chapters 4 and 5, a number of techniques have been used for the fabrica-

tion and characterisation of doped silicon devices. In this chapter these experimental

methods are described.

The external company, Solecon Laboratories provided spreading resistance anal-

ysis (SRA) measurements of the implanted and annealed silicon-on-insulator (SOI)

material used in chapter 5. Photoconductive measurements made using a THz free

electron laser (FEL) were carried out at the FELIX and HFML Laboratory based

at Radboud University in the Netherlands with the assistance of Dr Nils Dessmann,

Dr Vikroria Eless and Dr Hans Engelkamp.

2.1 Spreading resistance analysis

After implanting a sample with dopants it is important to measure the fraction

of those that are successfully incorporated as substitutional defects and to identify

the amount of diffusion that has taken place. SRA (also called spreading resis-

tance profiling) is a technique used to determine the active concentration of dopants

in semiconductors. This is in contrast to techniques like secondry ion mass spec-

troscopy (SIMS) in which the concentration of elements sputtered from the sample
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and detected includes all dopants regardless of whether they were sputtered from

electrically active lattice sites.

θ

A

Figure 2.1: Illustration of spreading resistance analysis technique. A bevel angle, Θ
is polished into the wafer and two probe resistivity measurements are taken along
the bevelled surface and converted to an active carrier concentration.

Like SIMS, SRA is however a destructive method, to measure concentration as a

function of depth a bevel is polished into the surface of a piece of wafer with a well

known angle. Along this bevelled surface, electrical probes are placed a small fixed

distance apart. The high mechanical pressure of probes on the surface cause a phase

change in the silicon that results in an ohmic contact between the probe tips and

the silicon. As depicted in fig. 2.1, two terminal resistivity measurements are taken

along the bevelled surface and are converted to a majority carrier concentration, N

using:

ρ = 1
Neµ

(2.1)

where e is the electron charge and µ the electron mobility. Prior knowledge of

the mobility may be avoided by comparing the measured resistivity of an unknown

sample to the measured resistivities of calibration standards with known n and p-

type carrier concentration measured by other means e.g. Hall effect.
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These resistance measurements are taken at room temperature whereby shallow

extrinsic donors and acceptors are assumed to be completely thermally ionised. The

density of electrons in the conduction band is therefore equivalent to the density of

extrinsic donors since, in this thesis the density of extrinsic donors in any sample

far outweighs the density of background acceptors one need not worry about com-

pensation effects masking the true density of donors. The SRA results presented in

this thesis used an ultra-shallow bevel (0.002 74 rad angle and a 3µm step size to

achieve the 10 nm depth resolution shown.

2.2 Coherent THz excitation using a free electron

laser

The Lyman series for hydrogenic donor centres in silicon exist in the THz frequency

range and intense sources of coherent light in this part of the spectrum are un-

common. [43] High intensity, coherent light is required to have full control over the

orbital state of a neutral donor in silicon. A FEL is one of few monochromatic,

coherent emitters of high intensity light in the 1 THz to 20 THz range (4 meV to

80 meV or 33 cm−1 to 670 cm−1). Other sources include quantum cascade lasers [44],

exotic non-linear optics sources [45] and even stimulated emission from donors in

silicon themselves [46]. These alternatives are either not as powerful or as widely

tunable. The specific frequency range required spans the donor with the largest

binding energy and that with the smallest Lyman series transition. Bismuth is the

most tightly bound donor with a binding energy close to 17 THz. The smallest or-

bital transition from a donor ground state is the 1s(A1) → 2p0 for Si:Sb at 7.5 THz.

In this work the FEL facility free electron laser for infrared experiments (FELIX)

is used which is capable of provide pulsed, coherent THz pulses over this entire fre-

quency range and more to accommodate the detuning of transitions in chapters 4

and 5.
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Figure 2.2: Illustration depicting FEL operating principle. Electrons travelling close
to the speed of light are guided into an array of alternating magnetic fields to produce
light. Light produced in phase with light in the cavity is amplified and guided to
the user station at the facility.

FELs are sources of laser light whereby electrons are not bound to atoms as they

are in the more ubiquitous atomic, molecular and solid state lasers. Instead, a beam

of electrons is accelerated to relativistic speeds and directed into a periodic series of

magnets with alternating pole arrangement called an undulator. The poles of the

magnets in the undulator are arranged perpendicular to the electron beam direc-

tion causing the electrons to be deflected in a sinusoidal path while moving through

it. This acceleration of charge generates synchrotron radiation at the wavelength

dictated by the spacing of the magnets. This radiation is significantly up-shifted

due to the Doppler effect and due to a length contraction of the undulator into the

electron rest frame. The relativistic speed of the electron beam means that a 65 mm

undulator period results in emitted infra-red (IR) light. The emitted radiation has

an electric field component parallel to the deflection direction of the electrons in the

undulator giving rise to the so called ‘pondermotive force’. This allows energy to be

exchanged between the electrons and radiation field which amplifies the intensity

of the radiation and causes a modulation in the longitudinal velocity of electrons

causing them to bunch together. As the electrons bunch together more the radi-

ation that is emitted becomes coherent and there is an exponential growth in the
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radiation power. The resulting pulses of light emitted from the undulator mimics

the microbunched nature of the electrons within the cavity. At the FELIX facility,

light is directed from the source to the user station along with a trigger signal to

synchronise measurements to the low duty-cycle macropulse waveform containing

this bust of light pulses.

A FELIX macropulse comprises 10 ps long micropulses of light at a rate of 25 MHz

lasting 10µs. Macropulses arrive at a rate of 10 Hz. This low duty cycle of 1×10−4 %

makes lock-in methods for photo-detection unfeasible so instead, a boxcar averaging

is done of the detected signal immediately prior to the arrival of a macropulse which

is subtracted from that during a macropulse. In this work both ‘one pulse’ and

‘two-pulse’ measurements were carried out. For a one pulse measurement, FELIX

macropulses are simply guided and focussed from the beam port and onto the sample

with mirrors and focused onto the sample inside a cryostat with a parabolic mirror.

For the two pulse, Ramsey spectroscopy study, each individual micropulse needed

to be separated into two exact phase copies. One copy was delayed in time requiring

the use of delay stage optics.

2.2.1 Ramsey spectroscopy setup

In the two-pulse, Ramsey study presented here, a sample of high resistivity bulk

doped Si(P) was mounted into a sample holder sandwiched between two copper

plates with 2 mm holes such that THz light could pass through the stack. The

stack was held in place mechanically with a wad of PTFE tape gently wedged in

place between the top capacitor plate and the brass sample tray holder as depicted

in fig. 2.3. A capacitive readout of the sample conductivity is advantageous for

a large, uniformly doped sample as one need not contend with the difficulties of

fabricating ohmic contacts. The sample holder is inserted into the cryostat insert

and enclosed in an evacuated jacket back filled with a low pressure of helium gas.

This is submerged into the liquid helium bath cryostat in the bore of a 33 T Bitter
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magnet. The helium gas in the jacket acts to exchange heat from the sample to the

liquid helium bath surrounding the jacket.

Sample tray insert

Sample tray insert

in sample stick

Cernox

Capacitor

Heater coil

FELIX

Figure 2.3: Sample geometry inside the high field magnet laboratory (HFML) bitter
magnet cryostat. The sample-capacitor stack is held in a plastic tray to electrically
insulate it from the stick. Heater and temperature sensor are mounted to the bottom
capacitor plate for good thermal contact with the sample. The sample tray insert
is placed in a universal brass insert that fits the cryostat stick.

A Cernox thin film temperature sensor and heater were placed next to the sample

on the copper tray giving full control of the sample temperature down to 4.2 K. This

was achieved by using a Lakesure temperature controller capable of calibrated four

terminal resistivity measurement of the temperature sensor alongside supplying vari-

able power to the heater allowing for dynamic, closed loop temperature control. The

leads electrically connected to the copper capacitor plates were shielded throughout

the length of the sample stick as well as outside of it in order to minimise noise.

One capacitor plate was connected to an arbitrary waveform generator (AWG) to

provide a voltage bias across the plates. The other capacitor terminal, to an SR570

transimpedance amplifier for current to voltage conversion to be logged by a NI PXI

oscilloscope.

The optical setup consisted of an optical breakout board attached to the scaffold

surrounding the top of the Bitter magnet. The FELIX beam line directed the beam
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down coaxial with the top of the cryostat. The convergent beam exiting the beam

line needed to be collimated (usually the beam is focussed to the bottom of the

sample stick without including the length of open air optics) and reflected onto the

breadboard where pulses were delayed by a Michaelson interferometer as shown in

fig. 2.4 before being guided back down into the cryostat.

FELIX

Bitter

magnet

Collimation

Delay optics

Collimated beam

after periscopeTo sample

Attenuators

Figure 2.4: Optical path in FELIX/HFML Ramsey setup. FEL radiation is colli-
mated and reflected with cage optics attached to the FELIX beam port. The pulse
train passes through a Michaelson interferometer acting as a delay stage and atten-
uated by neutral density filters before being directed into the magnet cryostat insert
where the sample is held.

The Michaelson interferometer divided incoming micropulses into two copies with

the same carrier envelope phase i.e. the lights electric field is not simply amplitude

modulated. The delay between the pulse copies was controlled by the motorised

mount of one of the interferometer arms which, with a 200 mm throw, was positioned

to be able to delay one pulse up to ±650 ps relative to the other. The intensity of

both pulses were coarsely adjustable with the use of fixed value attenuators.

A purely DC voltage bias resulted in a circuit that was not sensitive to changes

in the population of the conduction band. This problem was overcome by bias-

ing such that the DC voltage across the capacitor plates switched polarity a short
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Figure 2.5: Contactless photo-thermal ionisation spectroscopy (PTIS) response in
time. At t = 0 the polarity of the applied bias to the capacitor plates was switched
from −0.5 V to 0.5 V resulting in a transient current as the capacitor is charged.
100µs after switching the bias polarity the FELIX macropulse arrives at the sam-
ple generating free carriers resulting in 60 nA of photocurrent. This particular
macropulse was on resonant with the 1s(A1) → 2p± transition at zero magnetic
field using the maximum available attenuation (38 dB) and with one of the inter-
ferometer arms blocked (single pulse). The noise burst observed at 90µs correlates
with the trigger received at the user station used to synchronise data acquisition
with the arrival of macropulses. Individual macropulses are not resolved due to the
circuit bandwidth.
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time, 100µs, prior to the arrival of each macropulse resulting in an immediate tran-

sient current followed by the photocurrent generated when light arrives as shown

in fig. 2.5. The polarity is then switched back at t = 1 ms. This scheme allows

any accumulated charge traps in the sample to be neutralised immediately before

illumination.

2.2.2 Single pulse FEL spectroscopy setup

The setup used in chapter 5 for FEL spectroscopy of a SOI device implanted with

bismuth donors is very similar in principle as that used for Ramsey spectroscopy

but without the delay stage optics and not having the sample in a magnetic field.

The sample is mounted in this instance to a PCB attached to a cold finger cryostat.

Instead of being surrounded by helium exchange gas, the sample is cooled by being

in indirect thermal contact with the copper end of the insert which has a constant

flow of liquid helium through it.

For this device, aluminium leads were wire bonded to deposited aluminium pads

on the sample surface. Conductivity in the region of the implanted bismuth centres

was measured resistively. In this case a purely DC voltage was applied to two adja-

cent terminals of the 4-terminal Van der Pauw (VdP) device structure. The current

was amplified outside the cryostat at room temperature by a SR570 transimpedance

amplifier and monitored with an NI PXI oscilloscope. Also monitored in this setup

was the potential at the two remaining leads of the device (at the corners along the

opposite edge). The potential drop sensed between these leads is due only to the

resistance of the sample material between them (with a geometrical factor due to

the VdP structure) and does not include contact resistances since no current flows

through them. Upon scanning the FELIX wavelength both the current through the

device and sensed voltage were logged by the oscilloscope.
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2.3 Electrically detected photon-assisted ionisa-

tion spectroscopy

In both donor orbital spectroscopy measurements presented in this thesis, electrical

readout of the transition was done in favour of a transmissive detection. This was

due to low density of donors in chapter 4 and the low absolute number of donors

in chapter 5. To electrically detect whether a donor is in its excited state or not,

an electrical property of the material must change in relation to this. It may not

be immediately clear how this is possible since both the ground and excited states

are both bound so the electron is not available to conduct. However, due to the

difference in binding energy of the ground and excited states possible detection

mechanisms could involve imparting energy into the donor that is enough to ionise

it when in the less tightly bound excited state while leaving it bound when in the

ground states. There are some options for the source of this additional energy and

these are illustrated in fig. 2.6

Figure 2.6 presents three mechanisms by which a resonantly excited donor is

ionised and populates the conduction band. After initial optical excitation (1), an

acoustic phonon can scatter with the electron and thermally ionise it. The presence

of phonons in the appropriate energy range to ionise the excited state but not the

ground state is clearly then temperature dependant and this technique for detection

is therefore called PTIS. The mechanism labelled (2) appears similar to that of (1)

however instead of scattering with a phonon, this mechanism relies on the presence of

high velocity, free electrons in the conduction band. To promote the bound electron

into the conduction band and leave the donor site ionised the incident electron must

have an excess kinetic energy greater than the binding energy of bound electron.

This process is therefore called impact ionisation (II). A third mechanism is also

possible, in the excited atom can absorb another photon to be directly ionised by
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Figure 2.6: Mechanisms that populate the conduction band mediated by a resonant
orbital transition. (1) Thermal ionisation of the excited state, (2) Impact ionisation
of the excited state, and (3) multiphoton absorption.
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a multiphoton absorption. Such mechanisms have been demonstrated to have an

effect for donors in silicon [47]. No inclusion of this third mechanism is attempted

in this work as much lower FEL intensities were use here where the cross sections

for multiphoton absorption is low.

The cross-section for the two step, photo-thermal ionisation process for a partic-

ular transition can be expressed as

σI(ωn) = σ(ωn)I(n) (2.2)

where σI(ωn) is the cross-section for absorption for the transition between the ground

and n-th excited state with resonant frequency, ωn. I(n) is then the probability that

the excited state is thermally ionised. I(n) has the form,

I(n) ∝ exp(− En

kBT
) (2.3)

where En is the binding energy of the excited state. [48] It is clear that this proba-

bility increases exponentially with temperature and decreasing binding energy.

In an electrically contacted device such as that presented in chapter 5. A dilute

region of doped silicon can be defined between metallic leads using conventional UV-

photolithography processing. In this work, the contacted sample in chapter 5 uses a

SOI substrate, reactive ion etching (RIE) etching and broad area ion implantation

to define a small region of optically active bismuth donors. High density n-type

doping away from this region defines metallic leads that meet the dilutely doped

channel to form n+nn+ structures. At low temperatures the donors in the dilutely

doped channel freeze out making the device insulating.

The heavily doped nature of the leads means they remain metallic at tempera-

tures where a dilute concentration would freeze out. This is because at such high

densities the orbital states of the individual donors overlap forming a band of states.

In the leads, the Fermi level, EF lies within this band which could even be at an
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Figure 2.7: Band structure through n+nn+ resistor. At equilibrium the Fermi energy
in the dilute region aligns with that of the leads forming a potential energy barrier
into the channel. Under bias electrons may tunnel into the channel.

30



energy above the conduction band edge. In the dilutely doped region where the car-

riers remain frozen out EF lies between the conduction band edge and the binding

energy of the donors. At equilibrium, the Fermi level must be constant everywhere

throughout the device else the device is not at equilibrium and charge will continue

to move until a electrochemical potential minimum is achieved. This situation is

depicted in the upper panel in fig. 2.7.

A voltage bias applied between the two n+ regions will cause a current to flow

through the device provided electrons are able to populate the conduction band in

the dilutely doped channel. This condition is not necessarily met at low temperature.

An electron, free to move within the impurity band at the heavily doped lead must

overcome a barrier potential to pass into the conduction band in the frozen-out

dilute region by thermionic emission analogous to a diode under reverse bias. This

situation is depicted in the lower panel in fig. 2.7. If even this isn’t possible due

to the low temperature, an electron has a finite probability of tunnelling through

the barrier into the channel region at high enough bias. At increasingly high bias

the approximated triangular shape of the potential barrier becomes shorter and the

probability of tunnelling increases.

Impact ionisation spectroscopy (IIS) however does not rely on thermal ionisation

of the excited state and instead takes advantage of hot carriers in the conduction

band to impact ionise the excited state donors with a higher probability than those

in the ground state. Higher state electron orbitals have lower binding energy and

a spatially larger orbital therefore a larger II cross-section given the energy dis-

tribution of conduction band electrons. At temperatures too low for electrons to

thermionically pass the barrier potential at the lead they must tunnel through it.

Following the analysis of Dierickx et al. [49], the electric field required to activate

shallow level impact ionisation is again dependent on the binding energy, En of the

bound electron state being ionised. The details of impact ionisation will be presented

in further detail in chapter 5.
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For large samples of bulk material it is unnecessary to fabricate ohmic electrical

contacts to detect a change in current to determine a change in conductivity. In

chapter 4, the sample was placed between two metal plates to form a parallel plate

capacitor. The wafer was thick enough that the electric field across the plates

was too small to cause impact ionisation so PTIS is considered the only ionisation

mechanism present. A small, 2 mm diameter hole in the plates allows for optical

access to the sample such that when free carriers are generated photo-thermally a

transient current flowed in the electric field generated by the charged capacitor.
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Chapter 3

Multi-species donor cluster

configuration statistics

Systems of multiple species of donor impurity atoms in semiconductors have been

proposed to realise qubit gates in silicon [31]. In the system proposed in [31], donor

spin qubits are entangled by exciting a spatially intermediary donor into a higher

energy and therefore larger orbital state such that its wave function overlaps with

those of the two qubits. Although methods exist to place atoms with high precision

into semiconductor lattices, namely scanning tunnelling microscope (STM) hydrogen

lithography and single ion implantation, these methods are direct write techniques

and it is challenging to scale from fabricating single device to a wafers containing

billions of devices.

In this chapter the feasibility of non-deterministic methods of dopant incorpora-

tion is explored. To begin with, the statistics relevant for finding the probabilities of

dopant-dopant separations is outlined. This is then generalised to non-homogeneous

systems of dopants, specifically those whose densities are described by Gaussian

functions of depth which is a good approximation for the dopant distribution after

broad area ion implantation. From there the nearest neighbour cluster definition is

extended to allow for more complicated clusters necessary for optically gated qubit
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operations. The exact integral required to calculate the probability of finding such

complex clusters is presented. Finally, the doping density profiles are optimised

numerically to maximise this probability using a useful approximation/heuristic to

accelerate the computation.

The optimised useful cluster probabilities found for multispecies Gaussian dop-

ing profiles are found to be higher then those for optimised homogeneous doping.

Despite this, the probability of finding a useful cluster remains low and this result

provides important impetus for the development of deterministic doping techniques

such as single ion implantation (SII).

3.1 Nearest neighbours in a point process

If a distribution of events is non-homogeneous in space the density n(x) and the

expected number of events δN = n(x)δx in an infinitesimal volume δx varies with

location, x. If δN is so small that the probability of more than one event is negligible

the probability of an event in δx is equal to δN . The probability that there are no

events within a larger volume V may be found by dividing it up into elemental

volumes. The expected number of events in V is then simply

N(V ) =
∑

xi ∈ V

δNi =
∫

x ∈ V

n(x) dx . (3.1)

Assuming n(x) is well-behaved, one may choose the size of the ithelement (δxi)

so that the product n(xi)δxi is a constant. The probability of an event within δxi

is then the same for every element, and it follows that the probability of m events

enclosed in the larger volume V is given by the probability mass function for a

Poisson distribution

P (m,N(V )) = [N(V )]m exp(−N(V ))
m! . (3.2)
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Previously, clusters of impurities with homogeneous density have been discussed

in terms of the distribution of neighbour-neighbour distance [50]. In order to put this

discussion into this context the non-homogeneous case is presented, which follows

immediately from equation eq. (3.2). The notation, px→Ai
(r)δr is the probability

that a point in 3D Euclidean space, x = (x, y, z) has its ithnearest event of species A

at a radial distance between r → r + δr from it. px→Ai
(r) will be referred to as the

nearest neighbour probability density function (NNPDF). In previous literature the

NNPDF is the precursor to the “void nearest neighbour distribution function” [51]

which is simply the cumulative distribution of the NNPDF defined here. The term

“void” is used since there is no event specified at the point x whose neighbour is

being found.

To calculate the NNPDF, consider the sphere Vsphere(r; x) centred on x of radius

r, and the infinitesimal shell of thickness δr around it. The probability of finding

the first nearest A event within the shell is then

px→A1(r)δr = P (0, NA(Vsphere(r; x))) · δNA (3.3)

and may be understood as the product of the independent probabilities of having

no A events within the sphere and one within the shell. The probability of an event

occurring in the shell is δNA = δr d
dr
NA(Vsphere(r; x)). Generalising for the ithnearest

neighbour gives

px→Ai
(r) = P (i− 1, NA(Vsphere(r; x))) · d

drNA(Vsphere(r; x)) (3.4)

The distribution around a void can be made specific to the distribution of neighbours

around an event by considering the density of events in the infinitesimal volume δx

at x. From here on only spherical finite volumes will be discussed unless specified

otherwise. It therefore makes sense to simplify the notation, N(Vsphere(r; x)) →

N(r,x).
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3.1.1 Homogeneous point process
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Figure 3.1: Solid blue lines show the expected nearest neighbour separation for
homogeneously random systems of events in 1D, 2D and 3D as functions of their
respective density units. The standard deviation in the nearest neighbour separation
is also outlined by the shaded region. The black, dashed line shows the separation
between events in a perfectly uniform distribution (1/ m

√
n)is also shown as a dashed

line and always over estimates the nearest neighbour distance between randomly
placed events.

The homogeneous results in the common bulk doped or delta-doped layers in

semiconductors can be recovered from this generalisation. For example, in uniformly

doped 3D nA(x) → n3D
A and so NA(r) → 4

3πr
3n3D

A , and dNA(r)
dr

→ 4πr2n3D
A . Hence

all terms in equations eq. (3.2) and eq. (3.4) are independent of x and the well
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established [52] homogeneous neighbour-neighbour distributions are obtained.

p1D
x→A1(r) = 2n1D

A exp
(
−2rn1D

A

)
(3.5a)

p2D
x→A1(r) = 2πrn2D

A exp
(
−πr2n2D

A

)
(3.5b)

p3D
x→A1(r) = 4πr2n3D

A exp
(

−4
3πr

3n3D
A

)
(3.5c)

The first two moments (expected radius and standard deviation) of the probabil-

ity distributions stated in eq. (3.5) are analytically solvable and are plotted in fig. 3.1

as functions of event density. The units used are typical for densities of impurities

and their separation in semiconductors. It is also useful to point out that the ap-

proximation ⟨r⟩ ≈ n
−1/d
A , where d is the dimensionality of the event space, is always

an overestimate as also shown in fig. 3.1 as a dashed line. Random displacement of

events on a square grid decreases the mean nearest neighbour separation.

3.1.2 Non-homogeneous variation in 1D

The particular class of event distributions of interest are those whose density is

homogeneous in two dimensions but varies in depth only e.g. broad area ion im-

plantation (BAII). The expected number of events per unit area in the infinitesimal

slice through z → z + δz is nA(z)δz and the total areal density (equivalent to im-

plant dose in BAII) is n2D
A =

∫∞
−∞ nA(x) dz. The expected number of events in a

sphere Vsphere(r; z) of radius r now has a dependence only on the depth at which it

is centred x = (0, 0, z) such that

N(r, z) =
∫

z′ ∈ Vsphere(r; z)

nA(z′)π
[
r2 − (z′ − z)2

]
dz′ (3.6)
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and,
dN(r, z)

dr = 2πr
∫

z′ ∈ Vsphere(r; z)

nA(z′) dz′ (3.7)

3.1.3 Gaussian variation in 1D
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Figure 3.2: Example of a system of two event species whose densities are distributed
as Gaussian functions of depth separated by two units of length. Species A has unit
integrated density and unit width while species B has an integrated density half
that of A and is spread out in depth with a width twice that of A.

A reasonable approximation for the distribution of dopants introduced by typical

mono-energetic implants is one whose density varies as a Gaussian function of depth

i.e. nA(z) = n2D
A

dA
√

π
exp

(
− (z−µA)2

d2
A

)
where, dA/

√
2 is the standard deviation of the

density profile centred at µA. dA will be referred to as the width of the Gaussian

event distribution. When the density of events is described by a Gaussian, both

NA(r, z) and its derivative in r have analytical solutions and therefore so does the

resulting NNPDF.

NA(r, z) = n2D
A

√
π

4
(
−2d2

AE + S
√
π
(
d2

A − 2r2 + 2(z − µA)2
))

(3.8a)

dNA(r, z)
dr = n2D

A πSr (3.8b)

pz→Ai
(r) = NA(r, z)i exp(NA(r, z))

i!
dNA

dr (3.8c)
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where,

S = erf(ζ+) + erf(ζ−) (3.9a)

E = ζ+e
−ζ− + ζ−e

−ζ+ (3.9b)

ζ± = r ± (z − µA)
dA

(3.9c)

are defined for convenience.
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Figure 3.3: Normalised ithnearest neighbour density surface (NNDS) for the system
of two event species as shown in fig. 3.2. The heat maps show the full distribution
for the particular case when i = 1. The red contours are drawn at a value of
nX→Yi

(z, r)/n2D
X = 0.2 to show how distribution changes for larger ithneighbours.
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Consider the system of two species of events depicted in fig. 3.2 the mutual

separation between all combinations of events of different species using eq. (3.8c)

can be investigated. The density of X events at a particular depth that have an

ithnearest Y neighbour at a particular separation distance follows immediately as

nX→Yi
(r, z)δrδz = pz→Yi

(r)δr × nX(z)δz. (3.10)

Both sides of eq. (3.10) have units of density in one fewer spatial dimensions than

nX(z). In this case nX(z) is a volume density and therefore nX→Yi
(r, z)δrδz has

units of areal density. nX→Yi
(r, z) will be referred to as the NNDS and is normalised

easily since
∞∫

z=−∞

∞∫
r=0

pz→Yi
(r)nX(z) dr dz =

∞∫
z = −∞

nX(z) dz = n2D
X . (3.11)

This allows for discussion of the fractional number of events of an entire distribution

at a particular depth range with an ithnearest neighbour existing within a particular

radial range. This fractional quantity will be a useful figure of merit when it comes

to optimising density distributions in favour of specific configurations.

The expected nearest neighbour distance may be calculated and plotted for Gaus-

sian non-homogeneous point process in much the same way as done for homogeneous

processes in fig. 3.1. The difference in this case is that ⟨r⟩ is now a function of two

variables as plotted in fig. 3.4 for typical values encountered in BAII. The dop-

ing configuration whose NNDS is shown in fig. 3.4 has a Gaussian profile whose

width (10 nm) is larger than its expected nearest neighbour separation given the

profiles integrated density, 1014 cm−2 (1.7 nm). This condition leads to counterintu-

itive observations e.g. the expected nearest neighbour separation for an impurity at

z = 20 nm is much smaller than 20 nm (the distance from that event to the depth

of peak impurity concentration).
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Figure 3.4: The expected nearest (same-species) neighbour of an impurity from a
typical 1D Gaussian non-homogeneous distribution with n2D

A = 1014 cm−2 and dA =
10 nm can be found from its NNDS (left). By integrating this function over depth
a NNPDF is found whose first moment is ⟨rA→A1⟩. The expected nearest neighbour
distance is a function of n2D

A and dA (right). This panel demonstrates that the
nearest neighbour characteristics of Gaussian non-homogeneous layers transitions
to that for 2D homogeneously random layers when dA ≤ ⟨rA→A1⟩ for a particular
n2D

A . The expected nearest neighbour separation for the NNDS in the left panel is
marked by a cross.
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3.2 Density of specific cluster configurations

So far only clusters of events in their most basic sense have been investigated i.e. a

cluster that is defined by an event about which i− 1 events exist in close proximity

up until an ithevent at a particular radius. In this section the same thought process

will be used to quantify the number of instances of more involved definitions of a

‘viable cluster’. The involved cluster definition explored here is one whose viability

relies on higher order nearest neighbours i.e. the nearest neighbours of a central

events nearest neighbour. It is useful to continue with the assertion that a viable

cluster is always centred around an event that is part of that cluster.

The total number of viable clusters, Nviable is found in a similar way to eq. (3.1).

The expected number of viable clusters in the elemental volume δx about x is

the expected number of ‘central events’ in the elemental volume multiplied by the

probability that an event in that elemental volume is part of a viable cluster. Letting

the central event be of species A, the total number of viable clusters is then

Nviable =
∫
x

PAx{viable}nA(x) dx . (3.12)

PAx{viable} has been used as a shorthand here for the conditional probability

that a viable cluster exists about x given that an A event exists at point x. When

a viable cluster consists of events of multiple species it should not matter which

species is used as the central event about which the cluster is described. In the case

of A and B events in 3D with 1D non-homogeneous density variation along z and a

viable cluster contains the same number of A’s as B’s, the number of useful clusters

(per unit area) is

N2D
viable =

∫
z

PAz{viable}nA(z) dz =
∫
z

PBz{viable}nB(z) dz . (3.13)
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3.2.1 A qubit gate cluster probability

In the interest of multi-species clusters that have specifications on the separations,

consider a pair of substitutional donor qubits that carry quantum information in

their electron spin. The gate operation is performed by controlling the entanglement

between the two impurity electrons. By performing an orbital excitation of one of

the species with a resonant π-pulse the radial extent of the electrons wave function

is greater. This change in size of a control qubit, A increases the probability of

entanglement with a nearby target qubit, B.

To facilitate a controlled interaction between the two qubits that make up this

cluster definition they must be separated by an appropriate radial distance. This dis-

tance must be large enough to prevent uncontrolled entanglement but small enough

that entanglement does occur when the control qubit is in the excited orbital state.

If these were the only two conditions that defined the cluster, eq. (3.10) can be

integrated over all depth and between the relevant radius range to find the density

of viable clusters. Here an assumption is made that the shapes of both orbital states

of the donors are spherical.

There are two considerations not accounted for here. If a control qubit is too close

to another A donor then when in their excited orbital state their mutual interaction

will interfere with the intended interaction between the control and its nearest B.

Also, if there is a B close enough to the control qubits nearest B interference will

be introduced for the same reason. The cluster optimised for will maximise the

wanted wave function overlap but minimise the overlapping that would introduce

decoherence processes.

The requirements for this viable donor cluster can be listed in terms of the nearest

neighbour distance limitations for a central control (A) atom:

1. its nearest A neighbour exists outside a radius rA1 > rmin
A→A1 , i.e. in the region

labelled ‘1’ on fig. 3.5. This minimum ensures that when all A’s are in their
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Figure 3.5: Viable two species cluster for orbital transition gated interaction
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larger, excited orbitals, they do not interact with each other.

2. its nearest B neighbour exists within the range rmin
A→B1 < rB1 < rmax

A→B1 , i.e. in

the region labelled ‘3’ on fig. 3.5. This ensures that there is a target atom

within range of the control atom when, and only when, the control atom is in

its excited state.

3. its second nearest B exists outside the range rB2 > rmax
A→B1 + rmin

B→B′
1
, i.e. in the

regions labelled ‘1’ or ‘2’ in fig. 3.5 ensuring that A and its corresponding B1

cannot interact with any other B’s

Continuing with a cluster definition in terms of distances as listed here is problematic

due to regions of space contained in multiple requirements overlapping. For the

above definition, the viable locations for A’s second nearest B is dependent on

where A’s nearest B exists. Instead it is easier to write out the requirements in

terms of non-overlapping regions of space in which the Poisson probability of i, X

events P (i, NX) can be calculated using eq. (3.2).

1. There are no A’s within the complement of region ‘1’ denoted V A
Ax to indicate

the volume around the A control atom at x from which other A’s are excluded.

The number of A’s expected to exist within this region is denoted NA(V A
Ax)

2. Region ‘3’, denoted V target
Ax is the volume around the A at x in which there is

exactly one B. The expected number of B’s in this volume is NB(V target
Ax )

3. Regions ‘4’and ‘5’contain no B’s. It is convenient to combine these regions

with region ‘3’ into the volume V B′
Ax (x′) that encompasses the total region of

space in which there are conditions on the number of B’s. NB(V B′
Ax (x′)) is the

expected number of B’s in this region.

From these criteria a viable cluster may be stated as: Given an A at x and B at

x′, it is required that no A’s exist in V A
Ax and there are no B’s in V B′

Ax (x′). Since a
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useful cluster having its B at x′ is mutually exclusive with a useful cluster having its

B at x′′ (where x′ and x′′ are locations in V target
Ax ) their probabilities may be summed

i.e. integrate over the allowed range of x′.

In the case of the 1D non-homogeneous problem, the probability of a B in an ele-

mental ring at the cylindrical coordinates z′ and r′
c (from the vertical axis containing

the central A atom) is 2πr′
cnB(z′) dr′

c dz′ and so,

PAz{viable} = exp
(
−NA(V A

Az)
)

×∫∫
z′, r′

C ∈ V target
Az

2πr′
CnB(z′) exp

(
−NB

(
V B′

Az (z′, r′
C)
))

dr′
C dz′ (3.14)

where the expected number of B’s within the region V B′
Az (z′, r′

c) around an A at z

and a B at z′, r′
c is,

NB

(
V B′

Az (z′, r′
C)
)

=
∫

z′′ ∈ V B′
Az (z′, r′

C)

S
(
V B′

Az (z′, r′
C), z′′

)
nB(z′′) dz′′ (3.15)

and S(V, z) is the area of a horizontal slice at height z through V .

The area S
(
V B′

Az (z′, r′
C), z′′

)
is a slice through the intersection of two spheres,

which can be written analytically as

S =2πr2 + 2πR2 −
[
r2 acos

(
r′

C
2 + r2 −R2

2r′
Cr

)
+R2 acos

(
r′

C
2 + r2 −R2

2r′
CR

)
−

1
2
√

(−r′
C + r +R)(r′

C + r −R)(r′
C − r +R)(r′

C + r +R)
] (3.16)

where r and R are the radii of the intersecting circles dependant on the height

through the volume of intersecting spheres. Despite this convenience eq. (3.14) is still

a nested triple integral with complicated bounds. In cases where many calculations

of Pz(Good cluster) are required, such as in this problem of optimising the species

density profiles, it is helpful to produce a heuristic method that accelerates the

numerical calculation of this probability.
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3.2.2 Heuristic method to approximate cluster probability

So long as it is given that there is only B1 within the region V target
Az , then the prob-

ability of finding B1 between z′ → z′ + δz′ is proportional to n(z′)S(V target
Az , z′)δz′.

This can be used to find the location of B1 within V target
Az with the most important

contribution to Pz{Good cluster}. Let the coordinates of this location be labelled

Z ′
Az and R′

Az, and let the regions ‘3’-‘5’ in fig. 3.5 around this particular configura-

tion be V Bave′
Az (R′

Az, Z
′
Az) (as usual the subscript indicates it is given that there is an

A control atom at z). An approximate version of eq. (3.14) can be written:

PAz{Good cluster} ≈ NB(V target
Az ) exp

[
−NA(V A

Az) −NB(V Bave′

Az (R′
Az, Z

′
Az))

]
(3.17)

There are a number of reasonable but different choices for calculating the most

important location of the target Z ′
Az and R′

Az for use in eq. (3.17). Here the expec-

tation radius was found using eq. (3.8c)

R′
Az = ⟨r′⟩Az =

∫
r′∈V target

Az

r′pz→B1(r′)dr′

∫
r′∈V target

Az

pz→B1(r′)dr′ (3.18)

and the expectation depth given this spherical radius

Z ′
Az = ⟨z′⟩Az =

z+R′
Az∫

z−R′
Az

z′ nA(z′)
n2D

A
C(z′)dz′

z+R′
Az∫

z−R′
Az

nA(z′)
n2D

A
C(z′)dz′

(3.19)

where C(z′) is the circumference of the small circle of the sphere R′
Az through z′.

An approximate solution to this probability which is less computationally inten-

sive accelerates the process of numerically optimising that probability. The closer

the approximate solution is to the optimum found using the vigorous method, the

more efficiently one can converge to an optimum Gaussian doping profile.
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3.2.3 Results of optimising cluster probability

Here a numerical example of the cluster optimization is presented in the context of

a silicon donor qubit gate using separation tolerance scales comparable to those es-

timated in literature. Such tolerances are calculated by comparing the energy scales

corresponding to that of the donor excited state lifetime and the strength of ex-

change interactions between neighbouring elements [53]. The necessary separations

required will be dependent on the donor and host semiconductor species. In this

section, the separation range for the control to target donor is from rmin
A→B1 = 15 nm

to rmax
A→B1 = 28 nm. The exclusion radius for control to control is rmin

A→A1 = 60 nm,

and for target to target is rmin
B1→B′

1
= 15 nm. It must be stressed that aside from

being host/donor species dependent, the donor electron orbitals are also not neces-

sarily spherically symmetric nor smoothly decaying with radius due to inter-valley

interference. This computation serves to show how little chance there is of form-

ing a simple cluster with conventional doping techniques such as broad area ion

implantation where there is no control over individual defect position.

To optimise the number of good clusters four independent parameters for the

Gaussian density profiles are allowed: the two areal densities n2D
A and n2D

B , the

width of both density profiles dA = dB = d, and the separation of the two layers

µ. Here the assumption is made that both profiles can be implanted at different

depths with the same width. In practise, independent control of layer depth and

width is not achievable with ion implantation and the depth profile for a particular

implant species and target depends principally on the implant energy. It has been

presented in this thesis that Bi implanted into silicon-on-insulator (SOI) material

can be annealed to a high enough quality to observe signal from isolated donor

orbital transitions. It has also been shown previously that Bi implanted into bulk

silicon can be sufficiently electrically activated that the donor electron spin states are

measurable via donor bound exciton spectroscopy [54]. The following optimisation
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can be used to determine a best case implant profile if the final donor profiles can

be approximated as Gaussian in depth. If the final active donor profile can be

measured, it may be used directly with eqs. (3.13) and (3.14) to determine the final

viable cluster yield.

First the total density of good clusters, N2D
good was maximised for a given combi-

nation of width and separation using the heuristic as detailed in the previous section.

This is shown in fig. 3.6a, in which the values of n2D
A,B were varied (the resulting op-

timum values of n2D
A,B are not shown in this figure) for various combination of µ and

d to find the optimum good cluster density N2D
good.

Figure 3.6: a) The optimal areal density of good clusters for two different species
A,B implanted at different average depths, i.e. the layers were separated by µ
shown in the legend. The density profiles of each was a Gaussian of the same width
dA = dB = d, but differing total integrated areal density, n2D

A,B, which were optimized
using the heuristic procedure described in the text (finding R′

Az first). The values
of n2D

A,B that produce the optimum (not shown) vary as a function of both d and
µ. b) The proportion of A donors involved in a good cluster i.e. N2D

good/n
2D
A after

optimizing for N2D
good as graphed in fig. 3.6a

For sufficiently large layer widths layer separation clearly has no effect on either

N2D
good or N2D

good/n
2D
A . In this limit the optimum values of n2D

A dA = n2D
B dB tend to the

optimum homogeneous bulk densities [53]. Here it is seen that for layers spaced far

apart the density of viable clusters tends to zero as the layer width is reduced, as

expected as it becomes increasingly difficult to obtain an A → B distance within the

allowed range. For very narrow layers, there is an obvious optimum layer separation
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of 15 nm. This distance is the same as the minimum separation of control from

target. For intermediate layer widths of around 10 nm the lines cross, and the

optimum is now obtained for layers of zero separation, i.e. the target and control

layers should be at the same depths to maximise the density of viable clusters.

The areal density N2D
good is not necessarily the most useful optimization objective

function. Even with a small density, the total number of good clusters may be

increased simply by increasing the sample size. The ratio of signal to background in

an experiment might be improved if instead the fraction of donors that are involved

in a good cluster is maximised. For example, an experiment is imagined where the

effects of the interaction are detected by measuring the effect on the spin of the A’s

after orbitally exciting the A’s (which produces an effect only for those A’s that are

part of a good cluster). In the cluster of interest depicted in fig. 3.5 there is only one

A per cluster, so the number of A’s involved in a good cluster is equal to the number

of good clusters, and the signal-to-background will be optimized by maximising the

fraction N2D
good/n

2D
A . By simply maximising this fraction, the optimum occurs when

n2D
A is as small as possible. In this limit the condition on the control’s nearest A

(rA→A1 > 60nm) becomes guaranteed, and the only conditions that needs to be

satisfied are the ones on the nearest and next-nearest B’s. Alternatively, a different

experiment where the effect of the interaction in detected by measuring the effect

on the spin of the B’s after exciting the A’s, and therefore optimising the fraction

N2D
good/n

2D
B is desired, which occurs when n2D

B is as small as possible for a similar

argument. To avoid these cases where the optimum density of a species tends to

zero, the absolute number of good clusters which optimises the total signal (fig. 3.6a)

was found, and subsequently the corresponding fraction N2D
good/n

2D
A describing the

ratio of signal to background shown in fig. 3.6b was found.

fig. 3.6b shows that if one were able to fabricate atomically flat layers separated

in depth then this fraction is optimised when such layers are separated by 15nm. An

interesting situation arises if there is a lower limit on the possible width of the density
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profiles. This is the case when ion implanting species into a lattice. Depending on

the implantation specifics, it is difficult to make very thin layers due to ion straggle

and diffusion. fig. 3.6 shows that if the layers cannot be fabricated with widths less

than 10nm, the optimum configuration is to have the two species co-planar (µ = 0)

with widths of ≈ 15nm (not to be as thin as possible) achieving a reasonable 10%.

The fractions in both of these cases are an improvement over the optimised, bulk

dope case achieving a good cluster fraction of 9%. The results of three doping

configurations were simulated using a brute force (Monte Carlo) approach (filled

squares with error) confirming the densities as calculated by eq. (3.13).

Figure 3.7: In the co-planar (µ = 0) configuration the heuristic method agrees very
well with the optimum found using the full integral result for the density of viable
clusters. Both methods are shown to be in agreement with a brute force approach
(filled squares with error). The error in the brute force result was minimised through
repeated simulation. Like the full solution, optimising using the brute force approach
is considerably more impractical than the solution found using a suitable heuristic.

The quality of the optimization is shown in fig. 3.7, in which the solutions are

compared with optimization using the full solution of eqs. (3.14) and (3.15), and also

using a brute force (Monte Carlo) method. Agreement is excellent for cases examined

here where the two species profiles overlap in depth. The heuristic method becomes

less reliable when the layers are thinner than the separation between layers as shown

in fig. 3.8. Under these circumstances the optimum B density can differ by as much

as two orders of magnitude.
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Figure 3.8: The density of viable clusters plotted as a function of the areal density of
B donors. The same optimum B is found using either the heuristic (dashed lines) of
full solution (solid lines). These methods where compared for different layer widths
(coloured lines) and different layer separations (separate subplots). The discrepancy
between methods is only apparent for layers whose profile width is smaller than their
separation.

3.3 Conclusion

In this chapter, Poisson process statistics has been introduced to describe the distri-

bution of dopant-dopant separations in extrinsic semiconductors. When the dopant

density is homogeneous, solutions to the nearest neighbour separation distribution

are textbook results. This is however, not the case for the analytical solution found

here (eq. (3.8c)) for a non-homogeneous process where the density has been allowed

to vary as a Gaussian function in one dimension. This situation of non-homogeneous

doping is a good approximation for the dopant density distribution in depth after

broad area ion implantation.

It is easy to extend this formalism to systems of more than one dopant species,

both described by 1D density variation whose interspecies separation is of inter-

est. The nearest neighbour cluster definition (size of sphere around a dopant which

contains no other dopants of a particular species) was extended to a more compli-

cated cluster definition where there are limits on ‘A’s nearest A and B’ and also

‘A’s nearest B’s nearest B’. Although the integral to compute the probability of an

A being at the centre of such a cluster can be written down it is time consuming
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to compute especially when repeated calculation is required i.e. optimisation. To

accelerate calculation of the most optimum Gaussian density profile parameters in

favour of the complicated cluster definition studied here a heuristic can be used to

make assumptions on the most likely location of ‘A’s nearest B’. The limitations of

such a heuristic is found through comparison with the full solution which may also

be verified via brute force i.e. populating a space and finding cluster by computing

the distances in a Monte Carlo fashion.

It is observed that there is little improvement in the optimum density of clusters

(those studied here) when separating the two species into two Gaussian layers above

simply homogeneously doping in the bulk or plane. Interestingly, separated layers

becomes better than co-planar layers when the width of the layer approaches that

of the ideal interspecies distance.
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Chapter 4

Contactless detection of Si:P

orbital dynamics in magnetic field

In this chapter, the magnetic field dependence of orbital state coherence times are

investigated. Coherence times are extracted from an electrically detected Ramsey

measurement using a coherent pulsed free electron laser (FEL). This chapter begins

with an introduction to the theory of coherent light-matter interaction. This back-

ground is critical to understand the experimental spectra taken later. The ordinary

differential equations (ODEs) required to model the time dynamics of qubit state

probabilities, namely the optical Bloch equations [55], are derived and used to sim-

ulate photo-thermal ionisation spectroscopy (PTIS) of a qubit system interacting

with pulsed coherent light. By fitting experimental data with this model, the relax-

ation and dephasing coherence times of the Si:P 1s(A1) → 2p+ and 1s(A1) → 3p+

transitions were found. The coherent dynamics of these transitions were evaluated

at different magnetic field strengths. This was possible as the FEL could be tuned

to be in resonance with the atoms. Evaluating the coherent dynamics of donor or-

bital transitions under field is useful since a variable external field gives control on

both the orbital and spin state energy spectrum. A magnetic field is required in

the Stoneham Fisher Greenland (SFG) scheme to lift the degeneracy of the qubit
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donor spin states. There therefore may be an optimum field to choose which aids

in the qubit gate operation mediated by the orbital transition of the intermediary

donor in the SFG scheme. This freedom to choose a resonant frequency of an or-

bital transition also allows one to avoid resonant absorbers external to the sample

such as water vapour and also phonon resonances in the sample that may enhance

relaxation.

4.1 Coherent light-qubit interaction

An electron bound to a group-V donor in silicon in its ground state can be optically

excited into a mixed state such that there is a finite probability of it being in both

the ground and higher energy eigenstate. These probabilities are not necessarily

constant in time. To model the time evolution of a hydrogenic system with coherent

light pulses it is helpful to begin by writing the time-dependent Schrödinger equation

ĤΨ(t, r) = iℏ
dΨ(t, r)

dt (4.1)

The time-independent Hamiltonian, H0, associated with the potential and kinetic

energies of an isolated atom can be shown to give solutions of Ψ(t, r) in the form

Ψn(t, r) = exp(−iEnt/ℏ)ψn(r) (4.2)

where the real parts of the eigenstates are stationary (only dependent on position)

but which have a complex phase that oscillates in time. One may consider only

two atomic eigenstates, Ψ1 and Ψ2, between which a transition is made, as a good

approximation for the whole system when the light is close to resonance with that

particular transition. The total wave function of the donor-bound electron is then
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written as a mixed state of only two wave functions.

Ψ(t, r) = c1(t)Ψ1(t, r) + c2(t)Ψ2(t, r) (4.3)

where c1 and c2 are complex numbers that can change with time and describe the

mixed state composition while preserving the certainty of measuring the electron in

either of the two states. The absolute squared values of these coefficients are the

probabilities of measuring the system in each state and the sum of these probabilities

must be 1 for all moments in time.

4.1.1 Interaction with light

It is standard to write the Hamiltonian of a two level system interacting with light

as the sum of the unperturbed Hamiltonian with an interaction Hamiltonian

H(t) = H0 +H ′(t) (4.4)

The interaction Hamiltonian of the atom with light depends on both time and space

due to nature of propagating light. However, the spacial variation can be neglected

when the wavelength of light is much greater than the size of the electron wave

function. This is true for donor orbital states ( 10 nm) and infrared light in the THz

region ( 10µm).

Substituting the total system wave function and perturbed Hamiltonian into the

time dependent Schrödinger equation leads to

H ′(c1Ψ1 + c2Ψ2) = iℏ(Ψ1
dc1

dt + Ψ2
dc2

dt ) (4.5)

This equation, when pre-multiplied by Ψ∗
1 or Ψ∗

2 and integrated over all space, obtains
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a set of two coupled differential equations for c1 and c2, namely

c1

∫
ψ∗

1H
′ψ1dV + c2 exp(−iω0t)

∫
ψ∗

1H
′ψ2dV = iℏ

dc1

dt (4.6a)

c2

∫
ψ∗

2H
′ψ2dV + c1 exp(iω0t)

∫
ψ∗

2H
′ψ1dV = iℏ

dc2

dt (4.6b)

Where ω0 is the resonant frequency (E2 − E1)/ℏ. It is convenient to introduce the

shorthand

ℏIij =
∫
ψ∗

iH
′ψjdV (4.7)

such that

c1I11 + c2 exp(−iω0t)I12 = i
dc1

dt (4.8a)

c2I22 + c1 exp(iω0t)I21 = i
dc2

dt (4.8b)

The interaction Hamiltonian can include many terms however the most impor-

tant for the case of orbital excitation of atoms is the electric dipole interaction.

H ′ = eD · E0 cos(ωt) (4.9)

where −eD is the total electric dipole moment of the atom and D is the vector sum

of the Z electron positions relative to the atomic nucleus.

D =
Z∑

j=1
rj (4.10)

Since the interaction Hamiltonian is both real and has odd parity under inversion

about the nucleus (H ′(−r) = −H ′(r)) the diagonal terms of I must be 0.

If the incident light is linearly polarised, only the dipole moment induced along

the polarisation axis e.g. D = Dx is required. The matrix element Iij becomes,

Iij = (eE0Xij/ℏ)exp(iωt) + exp(−iωt)
2 (4.11)
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where

Xij =
∫
ψ∗

iDxψjdV (4.12)

These numerical pre-factors can be grouped together such that

Iij = I∗
ji = Ωexp(iωt) + exp(−iωt)

2 (4.13)

Substituting these interaction terms into eq. (4.8) ad after some rearrangement

leads to,

dc1

dt = − i

2c2Ω(exp(i∆t) + exp(−i(ω + ω0)t)) (4.14a)
dc2

dt = − i

2c1Ω∗(exp(−i∆t) + exp(i(ω + ω0)t)) (4.14b)

Where ∆ = ω − ω0 is the detuning of the laser relative to the transition. The

rapidly oscillating terms (exp(±i(ω + ω0)t) may be omitted as when integrating over

time scales of interest they average to 0 when the light is close to resonance and

the intensity is low. At low intensity the Rabi frequency, Ω is much lower than the

transition frequency. Removing the rapidly oscillating terms from the optical Bloch

equations like this is known as the rotating wave approximation.

4.1.2 Density matrix master equation

It is convenient to write the equations of motion for this system in density matrix

form for systems containing an ensemble of individual two level atoms. These sys-

tems contain many individual two-level qubits whose mean state probabilities are

the experimentally measurable observables.

ρ =

c1

c2

(c∗
1 c∗

2

)
=

c1c
∗
1 c1c

∗
2

c2c
∗
1 c2c

∗
2

 =

ρ11 ρ12

ρ21 ρ22

 (4.15)
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The rate equations for these probabilities are then calculated using the product rule

of differentiation from eq. (4.14). Within this master equation, time derivative have

been denoted with dots rather than d
dt

’s to save space.

ρ̇ =

ċ1c
∗
1 + c1ċ∗

1 ċ1c
∗
2 + c1ċ∗

2

ċ2c
∗
1 + c2ċ∗

1 ċ2c
∗
2 + c2ċ∗

2

 =

 ˙ρ11 ˙ρ12

˙ρ21 ˙ρ22

 =

− ˙ρ22 ˙ρ12

˙ρ12
∗ ˙ρ22

 (4.16)


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

0 iΩ∗(t)
2 exp(−i∆t) − iΩ(t)

2 exp(i∆t) 0

iΩ(t)
2 exp(i∆t) 0 0 − iΩ(t)

2 exp(i∆t)

− iΩ∗(t)
2 exp(−i∆t) 0 0 iΩ∗(t)

2 exp(−i∆t)

0 − iΩ∗(t)
2 exp(−i∆t) iΩ(t)

2 exp(i∆t) 0





ρ11

ρ12

ρ21

ρ22


(4.17)

Note that in eq. (4.17), Ω has been written as a function of time, this is to say that

E0 in eq. (4.11) is a function of time and allows pulses of light to be modelled.

Equation (4.14) states that the coefficients c1 and c2 do not change when there

is no light interacting with the system i.e. when Ω = 0. In reality, spontaneous

emission occurs during the dark to relax the system back to the ground state. A

relaxation rate, γ21 is introduced such that in the dark, the probability of finding an

electron in the excited state decays as ρ22(t) = ρ22(0) exp(−γ21t). To achieve this,

eq. (4.14b) is amended such that

dc2

dt = − i

2c1Ω∗ exp(−i∆t) − γ21

2 c2 (4.18)
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and eq. (4.17) becomes



˙ρ11

˙ρ12

˙ρ21

˙ρ22


=



0 iΩ∗(t)
2 exp(−i∆t) − iΩ(t)

2 exp(i∆t) γ21

iΩ(t)
2 exp(i∆t) −γ21

2 0 − iΩ(t)
2 exp(i∆t)

− iΩ∗(t)
2 exp(−i∆t) 0 −γ21

2
iΩ∗(t)

2 exp(−i∆t)

0 − iΩ∗(t)
2 exp(−i∆t) iΩ(t)

2 exp(i∆t) −γ21
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

ρ11

ρ12

ρ21

ρ22
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(4.19)

The oscillating terms can also be removed by changing to a rotating reference

frame where ρ̃12 = ρ12 exp(−i∆t) and ρ̃21 = ρ21 exp(i∆t)



˙ρ11

˙̃ρ12

˙̃ρ21

˙ρ22


=



0 iΩ∗(t)
2 − iΩ(t)

2 γ21

iΩ(t)
2 −γ21

2 − i∆ 0 − iΩ(t)
2

− iΩ∗(t)
2 0 −γ21

2 − i∆ iΩ∗(t)
2

0 − iΩ∗(t)
2

iΩ(t)
2 −γ21





ρ11

ρ̃12

ρ̃21

ρ22


(4.20)

Spontaneous emission is not the only mechanism by which phase is lost. Elastic

scattering events can cause the phase of a superposition state to be randomised

while preserving probability. This pure dephasing rate is denoted Γ and must be

added to eq. (4.20) alongside the dephasing caused by relaxation.

In the system of interest the qubit states are two, bound donor electron orbitals.

By experimental design, there is enough thermal energy in the system capable of

ionising excited state electrons into the conduction band with rate G. This effect is

included in an ad hoc manner as previously reported [42] to the master equation to

behave similarly to γ21. In the case of thermal ionisation however. The probability

is transferred from the excited state out of the two level system instead of down to
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Figure 4.1: Solution to the density matrix differential equations for an on resonant,
Gaussian pulse of light with

∫
Ω(t) dt = π. No decoherence terms are included so

the resulting excited state probability persists in the dark after the pulse of light.
The diagonal components of ρ are purely real as expected but the off-diagonal ones
are complex.
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the ground state so no +Gρ11 appears in the equation for ˙ρ11.


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˙ρ12

˙ρ21

˙ρ22


=


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2

− iΩ∗(t)
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2

iΩ∗(t)
2
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2

iΩ(t)
2 −γ21 −G
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ρ11

ρ12

ρ21

ρ22
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(4.21)

Throughout this chapter eq. (4.21) is solved numerically for various Ω(t), Γ, γ21,

G and ∆ as exemlified in fig. 4.1 for Gaussian Ω(t) and Γ = γ21 = G = 0. If multi-

ple pulse envelopes are present in Ω(t) they are modelled to be exact phase copies

of eachother i.e. they have the same phase relative to their respective Gaussian

envelope. This phase relation between pulses mimics how the pulse sequences are

produced in the particular experimental setup used here. The ordinary differential

equation solver was written using the Python module SciPy which contains a wrap-

per function to the Fortran ODEPACK routine ‘zvode’ which solves complex-valued

variable-coefficient ordinary differential equations such as eq. (4.21). The agreement

of the numerical solution with textbook results verifies the simulators reliability. In

fig. 4.1 probabilities are inverted for an on-resonant π-pulse as expected. In fig. 4.3

Ramsey fringes are observed at the expected frequency and decay envelope for the

chosen decay constants.

4.1.3 The Bloch sphere

A useful representation of the density matrix vector ρ is the Bloch sphere. A 3D

vector is defined with coordinates,

x = 2 Re[ρ12]

y = 2 Im[ρ21]

z = ρ22 − ρ11

(4.22)
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such that the poles, z = −1 and z = 1 represent the system with 100% certainty

of being in either the ground or excited state respectively. The cylindrically radial

component of the Bloch vector represents the coherence of the system with pure

states existing at the surface of the unit sphere. A Bloch vector with a length less

< 1 describes a mixed state due to the statistical ensemble of qubits. Rotations of

the Bloch vector about this space are achieved with coherent pulses of light. The

angle is determined by the time integral of Ω(t) such that a 90◦ rotation of the Bloch

vector about a vector that is in the equatorial plane is achieved with an on-resonance

pulse area of π/2. Such a pulse is therefore called a π/2-pulse. If the light is off

resonance, a pulse with the same area does a different rotation angle about an axis

out of the x-y plane.

In the Bloch sphere representation, the effect of dephasing mechanisms can be

abstractly described as a shortening of the cylindrical component of the Bloch vector

about the z axis. Relaxation mechanisms on the other hand, cause the z compo-

nent of the Bloch vector to decrease in time indicating the reduced probability of

finding the donor in its excited state. There are different labelling conventions used

in different scientific disciplines when discussing the time scales associated with de-

coherence mechanisms of two level systems. So to be explicit here: T1 = 1/γ21 is

the relaxation time, and T ′
2 = 1/Γ is the pure dephasing time. As seen in eq. (4.21),

the rate of dephasing caused by relaxation happens at half the rate at which the

probability changes so that the total homogeneous dephasing rate is given by

1
T2

= γ21

2 + Γ (4.23)

Figure 4.2 shows a simulation of a two level atom interacting with two sequential

Gaussian π/2-pulses of, the second of which is a carrier envelope phase copy of the

first delayed in time. Although the input pulse areas are both π/2, decoherence

occurring during the pulses causes the full 90◦ rotation not to be achieved and an
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Figure 4.2: The effect of two, finite width Gaussian, π
2 -pulses separated in time by

30 ps on the Bloch vector describing an ensemble of two level atoms. In this example
the oscillators are effected by relaxation and pure dephasing broadening with rates
γ21 = Γ = 0.01 ps−1. A much slower leakage into the continuum is also included
G = 10−6 ps−1. The south and north poles of the Bloch sphere represent the ground
and excited states respectively. The path marked out within the y-z plane of the
Bloch sphere shows how the Bloch vector moves in time. For this pulse delay and
detuning (on-resonance) the second pulse interferes constructively with the evolving
transition; the probability of being in the excited state is enhanced and therefore so
is the rate of leakage in the conduction band immediately after the sequence.
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equal superposition state is not achieved after the first pulse. In the time after the

first pulse the conduction band starts to populate alongside relaxation (decrease in

ρ22) and dephasing (change in the coherence ρ terms). In this reference frame there

is no precession of the vector about the z axis since there is no detuning ∆ = 0.

The second pulse, in this example, has a phase such that it interferes constructively

with the evolving superposition and enhances the probability of finding atoms in

the excited state. The increase in excited state probability causes a faster rate of

thermal ionisation and further increases the conduction band population. The rate

of increase of the conduction band population eventually slows down as the excited

state is depleted and the system relaxes leaving a final density of electrons in the

conduction band.

The two decoherence mechanisms described so far are both homogeneous mech-

anisms i.e. the same for all oscillators in the system. Inhomogeneous broadening

is a general term which describes the effect of decoherence mechanisms arising due

to a statistical distribution of resonant frequencies which causes an additional de-

phasing to the system. The total dephasing rate width of a transition including

inhomogeneous dephasing is then

1
T ∗

2
= 1
T2

+W (4.24)

where W is the full width at half maximum (FWHM) of the resonant frequency

distribution. eq. (4.24) describes the decay of ρ21 (and ρ12) and works phenomeno-

logically in the limit that 1/T2 ≫ W or W ≫ 1/T2. When W is large, the decay is

not exponential but Gaussian instead. In the context of the Bloch sphere represen-

tation, inhomogeneous broadening can be pictured as the smooth fanning out of a

collection of individual qubit Bloch vectors (on the sphere surface at a constant z)

in time. This is different to pure dephasing, whereby individual qubit Bloch vectors

change phase (azimuthal angle) randomly. Both effects cause a shortening of the
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Bloch vector. To include inhomogeneous broadening in the model, a convolution

of the homogeneous line shape is done with the inhomogeneous line shape. In this

case the spectral line shape of the conduction band population at the end of the

sequence, n(∆) is t therefore,

n(∆) =
∞∫

−∞

[1 − ρ11(∆′, tf ) − ρ22(∆′, tf )]g(∆ − ∆′,W ) d∆′ (4.25)

4.2 Ramsey spectroscopy

To observe how the superposition state created by a pulse of coherent light evolves

in time one can wait some time after exciting with a first pulse and observe how the

state probabilities redistribute after a second pulse. Whether or not the second pulse

is in phase with the superposition state upon arrival, a different final state is expected

if the superposition state has retained a coherent phase. As the phase difference

between the state and the light is swept, the oscillations in signal strength due to

the oscillation in final state probabilities are called Ramsey fringes. This effect is

named after Norman Ramsey who used this technique of separated oscillatory fields

to measure the atomic transitions of particles in molecular beams with improved

accuracy [56].

To cause the change in phase between light pulses and the superposition state,

the simplest thing to do (when you have envelope phase pulse copies) can be to

change the time delay between the two light pulses as demonstrated in fig. 4.3.

The ratio between the final exited state probability after two, in phase, pulses rel-

ative to that after one pulse, R clearly depends on the pulse area, A. Geometrically

this ratio R can be written as:

R = 1 − cos 2A
1 − cosA (4.26)
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Figure 4.3: The effect of the second pulse in a Ramsey sequence on the resulting
excited state probability a short time after the second pulse depending on pulse
area of both pulses and delay of the second pulse. A clear dependence of the fringe
envelope with pulse area is seen.
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when decoherence can be ignored. This ratio is maximised for exceedingly small

pulse areas such that,

lim
A→0

1 − cos 2A
1 − cosA = lim

A→0
2(1 + cosA) = 4 (4.27)

and R is minimised to 0 when A is an odd integer multiple of π i.e. the second

pulse results in 0% probability of finding the atom in its excited state. Although

R is maximised for small pulse areas, the biggest difference in signal between the

second pulse arriving in phase versus out of phase (largest fringe contrast) is found

when the pulse areas are odd integer multiples of π/2; the first pulse puts the atom

in equal probability of being found in the ground or excited state and the second

changes the excited state probability to either 0 or 100% depending on its phase.

As phase information is lost due to the system decohering over time, the amplitude

of the Ramsey fringes decreases due to the shortening of the Bloch vector.

The fringes within the delay scan fringe envelope have a period equal to that of

the two level resonance. The time constant of the exponential decay of the fringe

amplitude is the total dephasing time, T ∗
2 as defined previously.

4.2.1 Extracting decoherence terms from PTIS data

The optical Bloch equations as defined here with the modifications to account for

leakage from the two-level system into the conduction band assume that there is

negligible recombination of ionised electrons during the two pulse sequence. In

reality free electrons are able to recombine with ionised donors and repopulate the

ground state at any time. Here it is assumed that complete recombination happens

in the 40 ns time between successive two-pulse sequences in the free electron laser for

infrared experiments (FELIX) macropulse. This is a convenient assumption because

it means that the average conduction band population throughout the macropulse

is effectively modelled by only a single two-pulse sequence thus limiting the time
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span over which the ODEs must be solved numerically.

0 10 20 30
Delay [ps]

n 
[A

U]

A=0.20pi
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A=0.50pi

0 10 20 30

A=0.80pi

Figure 4.4: Modelled Ramsey fringes in the time domain whereby measured signal is
the resulting conduction band density after the two pulse sequence. Three different
pulse areas are modelled demonstrating the differences in the fringe envelope shape
to that is the excited state probability were directly measured (as in fig. 4.3).

Using eqs. (4.20) and (4.25) the resulting conduction band population after a

single two pulse sequence can be computed as a function of the pulse delay. In

fig. 4.4 delay scans are again modelled for the same system shown in fig. 4.3 only

this time with final conduction band population shown on the y-axis. Clearly there is

stark contrast in the shape of equivalent pulse area fringe envelopes when detecting

conduction band density rather than the excited state population directly. The most

symmetric fringe envelope is achieved at low pulse area for PTIS but at A = π/2 if

the probability is directly measured. In both methods maximum fringe contrast is

achieved with π/2-pulses.

To acquire unaliased Ramsey oscillations in the time domain to be able to mea-

sure their amplitude reliably, the pulse delay must be sampled with a step size of

at most, half the transition period. With the donor orbital transition frequencies

of interest here being of the order 10 THz, the required delay step size is on the

order of 0.05 ps. To cause such a small delay the Michelson interferometer arm

must move in steps of <10µm. Although such resolution is possible and has been

demonstrated [42,57], the number of data points from such fine scans over broad

delay ranges (T ∗
2 ≈ 30 ps) required to see decoherence are excessive for fitting a

simple exponential decay. To efficiently measure coherence times over a wide range
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of experimental conditions in limited beam and magnet time, it is convenient in

this instance to instead scan in the frequency domain for a small selection of pulse

delays.

In time domain Ramsey spectroscopy, signal oscillates with a period equal to the

transition resonance. In this setup, the moving interferometer arm would have to

move in increments smaller than 1/2 the wavelength ( 6µm) to avoid aliasing and

over a large distance ( 1 cm) to fully capture the decay. There are adjustments that

could be made to improve the data collection speed of time domain measurements

such as collecting high time resolution scans not over the whole decay envelope but

a few sections.

In the frequency domain it is possible to generate Ramsey fringes by sweeping

the transition energy of the two level system through the laser frequency for a fixed

subset of delays between the two pulses. In this domain, the oscillation period

depends on the time delay between the pulses and the sweep rate of the variable

magnet allowed efficient capture of Ramsey fringes for a selection of time delays.

Ramsey fringes do not appear if the laser frequency is swept through a fixed tran-

sition frequency, only when the transition is swept through a fixed laser frequency.

The origin of this asymmetry is that there is not only a phase difference between

the second pulse and the evolving atom but also between the second pulse and the

initial laser pulse when the pulses are exact phase copies. These two phase differ-

ences act such that the second pulse always arrives in phase. In the situation when

the atom frequency is varied there is only the phase difference between the evolving

atom and the second laser pulse to consider. As the transition frequency deviates

from resonance with the laser, the Bloch vector begins to precesses at the difference

in frequencies either advancing it clockwise or anticlockwise about the equator. This

phase evolution gives rise to Ramsey fringes due to the effect of the second pulse,

this time in the frequency domain. Measuring in the frequency domain has the

added benefit that one need not worry about the possibility that the laser is not
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perfectly tuned to the transition since the transition is swept through resonance. In

these spectra, a line shape is observed peaking when on resonance with the laser.

The width of that peak is limited by the Fourier transform of the micropulse time

profile when the pulses are shorter than T ∗
2 . Within this line shape are oscillations

due to the Ramsey interference. The periodicity of these oscillations is now related

to the pulse delay instead of a property of the two-level atom. By using this method,

multiple spectra can be taken for a few different steps in delay to assess the rate at

which the Ramsey fringes decay in time.

Figure 4.5: Modelled Ramsey spectroscopy detected by PTIS for different pulse
areas and delay configurations. All two pulse spectra are normalised to the hight of
the single pulse spectrum. Spectra drawn with dashed lines indicate that twice the
single pulse spectrum has also been subtracted from the two pulse spectrum. With
small pulse areas (blue lines), the high frequency peaks in the Fourier transforms
are stronger at small delay than the same peak at large pulse area making it easy
to observe decay with delay. There is comparatively smaller absolute change in the
DC signal with delay when the pulse areas are small. At larger pulse areas this is
different, the peak at DC changes height with delay relatively more than the peak
at high frequency making the decay of the DC peak more apparent. The pulse area
does not change the decay rate but will affect the ability to observe the two decay
rates in the Fourier transforms.

Examples of modelled detuning scans are shown in fig. 4.5. In these modelled

spectra, the two level system has a T ∗
2 time of 50 ps which is made with equal
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parts pure dephasing and dephasing due to relaxation (Γ = γ21/2 = 0.01 ps−1).

In this case no inhomogeneous broadening was included (W = 0). The detuning

spectrum for only a single light pulse is smooth with a maximum when the transition

is resonant with the light as expected. With the inclusion of a second pulse of

light, Ramsey fringes appear which decay with increasing delay. When the delay

is so long that the atomic state has fully relaxed in the time between the pulses,

the second pulse promotes the same number of electrons into the conduction band

(provided the pulse areas are small and few electrons leak out). This means the

final conduction band density is simply double that after the first and the two pulse

spectrum approaches twice that of the one pulse spectrum for long delays. It is

therefore useful to subtract double the single pulse spectrum from each two pulse

spectra such that any remaining signal is due only to non-linear effects caused by

retained phase or ionisation of the atom. The magnitude of the Fourier transforms of

the modelled spectra in fig. 4.5 show that the amplitude of high frequency Ramsey

fringes is not lost in this subtraction. There is only an amplitude offset in DC

components causing a decay from a finite amplitude to zero as opposed to a finite

value towards twice the DC component of the single pulse spectra.

The amplitude of both principle components of the Fourier transformed, sub-

tracted signals when viewed as a function of delay show exponential decay. The

time constant of these two decays (gradients in fig. 4.6) match with the input relax-

ation and pure dephasing terms: T1 = 50 ps and T2 = 100 ps. These time constants

are not dependent on pulse area, as they shouldn’t be since these are properties

of the two-level system. The initial amplitude of these components at zero delay

however does depend on pulse area. From fig. 4.6 it is clear that with different pulse

areas the initial amplitude of DC and high frequency components change. With

small pulse areas decay in the high frequency component will be easier to observe

than for that in the DC one. The error in a measured T ∗
2 relative to that for T1 for

small pulse areas is expected to be smaller. This statement is then swapped around
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Figure 4.6: Modelled intensity decrease of the principle components of frequencies
present in PTIS detected Ramsey spectroscopy. Dashed lines are guides to the eye
with simple exponential decays demonstrating constant 1/T1 in the case of the DC
peak and 1/T ∗

2 decay rate in the case of the finite frequency peak, independent of
pulse area.
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for large pulse areas where the error in fit T1 is expected to be smaller.

Figure 4.7: Deviation of the fitted decoherence times from known input. Accurate
fit to T ∗

2 when relaxation is a lot less important than dephasing is difficult regardless
of pulse area. Fitting to T1 seems only difficult in the similar situation when the
pulse area is low. When γ21 is small numerical error in T 2

2 for reasons postulated in
the text.

The systematic error in the extracted T1 and T ∗
2 is determined by fitting an

exponential to the Fourier transform peak amplitudes in fig. 4.6 and comparing the

decay constant to the input decoherence times. These times are plotted for each of

the three pulse areas in fig. 4.7 as a function of the fraction of total dephasing due

to relaxation. This figure shows that for small pulse areas and low rate of relaxation

relative to pure dephasing, T1 is overestimated using this method. Under these

circumstances, the number of electrons promoted into the conduction band by the
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second pulse regardless of delay is always very close to double that after the first

so the DC component of the FT starts close to zero and stays close to zero with

increasing delay. The time constant of the exponential decay that describes this

trend could then be a wide range of values and still achieve a good fit. In contrast

all of the fit T ∗
2 times in this example where within 1 % of the actual value. A small

deviation exists regardless of pulse area when γ21 is small. This deviation is an

artefact from the computation of the conduction band population at the end of the

pulse sequence. It is assumed that the rate of thermal ionisation from the excited

state is much slower than the rate of relaxation. When γ21 is small the system has

not fully relaxed by the time a maximum time limit is reached in the computation

and the pulse sequence is stopped before the system has reached equilibrium via via

thermal ionisation or relaxation.

4.2.2 Tuning donor orbital states with a magnetic field

Two methods have been used to implement uniform detuning of the orbital states

of all donors in a silicon sample. One of which is to apply a uniaxial stress to

the crystal. [58,59]. The other one that is used in this experiment is with a static

magnetic field via the Zeeman effect. [60]. To obtain the following experimental data

in this chapter, a tunable 33 T bitter magnet at the high field magnet laboratory

(HFML) facility was used in conjunction with the neighbouring FELIX facility to

detune and excite the resonant frequency transitions of interest at various magnetic

field values.

The Zeeman effect splits and shifts donor orbital states in a way that is anal-

ogous to the Zeeman effect in atomic hydrogen. [61] Atomic states with non-zero

magnetic quantum numbers ml ̸= 0 have a non-zero magnetic moments causing loss

of degeneracy when interacting with an external magnetic field. The external mag-

netic field perturbs the atomic Hamiltonian for these states shifting them with an

energy proportional to the field magnitude and in a direction dictated by the sign of
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ml. The Si:P 2p± state splits into the 2p− state which becomes more tightly bound

and the 2p+ which becomes less tightly bound.

Fourier transform infrared (FTIR) spectroscopy of Si:P under external magnetic

field in the 0 T to 30 T range has been published previously [60] and plotted with

permission in fig. 4.8. In that experiment, incoherent, broadband light illuminated

along the [100] direction of the sample in the Faraday geometry (external magnetic

field parallel to the light’s Poynting vector). Absorption was measured by a liquid

helium cooled Si-composite bolometer down-stream of the sample. Since the light

source in that experiment was continuous wave, the line widths measured are limited

by T ∗
2 and not the limited bandwidth of a pulsed source however, it is impossible

to separate the total dephasing measurement into relaxation, pure dephasing and

inhomogeneous dephasing times.

Instead of measuring absorption through the sample, where expected signal to

noise would be low due to the dilute doping density, here orbital transitions are

measured electrically using PTIS. This mechanism has some important distinctions

to absorption spectroscopy that must be considered:

• A higher lattice temperature must be used such that thermal excitation out

of the excited state is possible.

• The energy of the excited state shifts with magnetic field so the probability of

thermal ionisation varies throughout a detuning scan.

• The position of the conduction band edge also changes with increasing mag-

netic field due to the cyclotron energy, Bℏe/m∗.

The second two of these conditions are important to be able to define a field de-

pendent relative thermal ionisation rate with which to normalise collected spectra

of particular transitions. The theoretical positions of the orbital transitions [60] are

plotted in fig. 4.8. These, along with the shift in the conduction band edge by the

cyclotron energy define an amended ionisation energy of the excited state. Using
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Figure 4.8: The grey-scale heat-map is of published [60] absorption FTIR data
of Si:P orbital transitions over a wide field range. The green and orange curves
show the theoretical spectral positions of the 1s(A1) → 2p+ and 1s(A1) → 3p+
transitions also published in the same article. The black area depicts transitions
into the conduction band from the ground state. Dashed lines and dots mark the
6 field sweep locations and the position of observed peaks in this work. The green
and red lines depict the 1s(A1) → 2p+&3p+ transitions offset by the frequency of
g (green) and f (red) intravalley phonons. These phonons can relax the excited
electron into other orbitals with the same valley components.
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eq. (2.3) the relative change in PTIS signal intensity from that at zero field is plotted

in fig. 4.8 for the 2p+ and 3p+ transitions.

The PTIS intensities of the 2p+ and 3p+ excited states are expected to vary

by orders of magnitude over the entire 0 T to 30 T magnetic field range due to the

changes in binding energy of those states. Over the small magnetic field ranges used

to observe individual transitions around a particular laser frequencies the variation

in binding energy of the excited state is expected to be small. The expected relative

PTIS strength would vary by a maximum of a factor of 2 at the wavelengths and

magnetic field ranges chosen. The binding energy of these excited states vary the

least as they shift in energy at a similar rate as the conduction band which shifts

with the cyclotron energy [62].

Since PTIS relies on thermal ionisation of the electron the sample must be at

elevated (though still cryogenic) temperature. This means there will still be a density

of phonons present that may assist the relaxation of excited state orbitals into

lower energy states resonantly. In fig. 4.8, additional green and red lines are drawn

below the 2p+ and 3p+ states spaced at the energy of the intravalley g and f -

phonons in silicon. Where these lines cross lower energy states (provided similar

valley composition in both states) we would expect to see a significant reduction in

T1 provided these phonons are present at this temperature. A thorough empirical

investigation of this particular relaxation mechanism as a resonant effect is not

explored in this body of work but is mentioned as a potential cause for the observed

reduced coherence times at higher magnetic field where there are more lower energy

states for the excited state to relax into at energies similar to those of g and f

phonons.

4.2.3 THz spectroscopy of Si:P orbital transitions

The temperature of the sample as set up in chapter 2 was fixed at 17 K. This

temperature is where the PTIS signal was found to be maximised experimentally
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for the Si:P 1sA1–2p± transition at zero magnetic field with a highly attenuated

FEL beam to avoid additional heating with the beam. This temperature was kept

constant and not re-optimised for transitions detuned at different magnetic fields

ranges.
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Figure 4.9: PTIS spectrum obtained by sweeping the line centre of FELIX through
Si:P orbital resonances at zero magnetic field.

fig. 4.9 shows a one pulse spectrum at zero-field obtained by scanning the FEL

undulator wavelength and logging the transient photocurrent that passes through

the capacitor stack upon illumination. Orbital transitions up to the 5p± are clearly

resolved at their expected frequencies for isolated phosphorus donors. [63] An offset

is observed between the measured peaks and their expected positions. This is likely

due to a latency in the movement of the undulator magnets when their spacing is

scanned. The set wavelength is swept at a constant rate and an observed offset of

0.3µm was seen that was constant over the wavelength range scanned over. As well
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as resonant increases in photo-signal, resonant reductions are observed at particular

wavelengths, particular present in the conduction band in fig. 4.9. These are due

to resonant absorption of the light by atmospheric water vapour [64] modulating

the power of FEL light reaching the sample. These are present because the space

between the FELIX beam line exit and the cryostat entrance was open to ambient

air. This is of little concern for this experiment as the magnetic field gave flexibility

to place the transition of interest at frequencies where water vapour absorption

resonances do not exist.

4.2.4 Field dependence of Si:P orbital dynamics

The 1s(A1) → 2p+ line shape was detuned to three different resonant frequencies

spanning the broad magnetic field range accessible with the bitter magnet. Spectra

of these line shapes are plotted in fig. 4.10 for different pulse delays and FEL fre-

quencies. For each three resonant frequencies investigated, detuning spectra were

taken for five different pulse configurations: The first, with one of the interferometer

arms blocked and then four two-beam spectra with different fixed pulse delays.

Clear Ramsey oscillations appear in all two-pulse spectra whose fringe ampli-

tudes decays with increasing pulse delay. The blue data points in fig. 4.10 show

the raw photocurrent signal after being divided by the expected variation in PTIS

intensity and then normalised to the peak height of the single pulse spectrum at

that frequency. Red data points show the two-pulse spectra with the corresponding

single pulse spectrum twice subtracted. The frequency offset of the peak locations

from zero detuning arises due to the mismatch between the theoretically predicted

Zeeman spectrum from the actual spectrum. This difference is also evident in the

FTIR data [60] presented in fig. 4.8.

Gaussian line shapes are fit to the peaks in the Fourier transforms at t = 0

and at the time corresponding to the pulse delay in all of the two pulse spectra at a

particular FEL frequency. The decay of the peak amplitudes with pulse delay reveals

80



Figure 4.10: Frequency domain Ramsey spectra for the Si:P 1s(A1) → 2p+ transition
over a broad range in external magnetic field. Blue points mark the photocurrent
detected on arrival of the FELIX macropulse divided by the expected PTIS inten-
sity variation due to a change in the excited state binding energy with magnetic
field. Red data points are the same spectra after subtracting twice the single pulse
spectrum. Black curves are the modelled spectra resulting by fitting to the Fourier
transforms of the red subtracted data. In this case no inhomogeneous broadening
was included and all pure dephasing mechanisms were controlled by Γ.

Figure 4.11: Fourier transform magnitude of the subtracted spectra in fig. 4.10 (red
points) and that of the model fit (black curve).
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the transition’s coherent dynamics. The width of Gaussian used for each particular

laser frequency was fixed to the micropulse duration as determined by the inverse of

the measured FEL spectral linewidth. The location of the fitted Gaussian was also

fixed to the set time delay of the two pulses in each particular configuration.

Laser freq. [THz] 9.94 11.38 11.15
Field range [T] 4.5-5.5 15-17 27-29
w [ps] 6.96 4.11 4.59
A [π] 0.002(*) 0.38 0.20
T1 [ps] 8.7 ± 5.8 31.1 ± 28.5 9.3 ± 7.3
T ∗

2 [ps] 14.32 ± 0.95 9.8 ± 1.8 8.5 ± 1.1

Table 4.1: Decoherence times for the 1s(A1) → 2p+ inferred from fits to the detuning
spectra’s Fourier transforms. The fixed micropulse lengths, w and pulse area, A
are also shown. The four delay times and deviation from zero detuning are not
tabulated here but are shown to give good fit as seen in fig. 4.11. Only homogeneous
decoherence mechanisms were fit in this optimisation.

The errors in the fit decoherence terms were extracted from the covariance matrix

evaluated at the optimum T1 and T ∗
s values. The total dephasing time, T ∗

2 decreases

significantly when the transition is detuned from its resonance at 5 T to that at 16 T.

For each three field ranges the amount of attenuation in the beam was kept constant

using 38 dB nutral density filters. Therefore, the sudden change in pulse area tuning

the transition from 9.94 THz to 11.38 THz is surprising. From the spectra it is clear

that the pulse area at 5 T is much lower than a π-pulse due to the greater than

2× increase in signal when changing from a one pulse configuration to two (closely

separated) pulses when the second pulse constructively interferes with the evolving

atom. There are two strong water absorption lines near this frequency [64] one

at 9.83 THz and the other at 10.05 THz. Given the laser line width of 0.1 THz to

0.2 THz it is possible that air could be absorbing in this small window. It is therefore

expected that a good measurement of T1 may not be possible at this frequency.

The relaxation time, T1 is difficult to extract from this dataset with high precision

as evidenced by the large errors in the values deemed to optimise the fits. A low

DC peak signal is predicted when the pulse areas are exceedingly small as shown in
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fig. 4.6 and this is likely the reason for the poor signal to noise in this range of the

spectra’s Fourier transforms. On the other hand, at low pulse area, T ∗
2 is expected

to be easier to measure due to large relative difference in signal between the peaks

and valleys of the Ramsey fringes. T ∗
2 however quite clearly decreases from 14 ps to

10 ps from 5 T to 16 T and again to 9 ps at 28 T.

Results for T ∗
2 were checked by comparing their values found with magnetic field

scans, to those found by fitting to the more conventional yet slower to acquire, delay

scans at different fixed magnetic fields. The values for T ∗
2 measured in fig. 4.12 for the

Figure 4.12: On-resonant, two pulse delay scans of the 1s(A1) → 2p+ transition at
three different magnetic fields. The fit T ∗

2 for each in increasing magnetic field are:
(20.16 ± 0.06) ps, (13.23 ± 0.06) ps and (17.2 ± 0.2) ps
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2p+ transition at 0, 5, and 10 T are of comparable order to those measured by fitting

to the Fourier transforms of the frequency domain spectra. Slow undulations are

visible in the delay scans that indicate aliasing is present. There is also asymmetry

in the envelope shape that could be due to a drift in the FEL power or wavelength

over time.

Similar spectra were also taken of the 1s(A1) → 3p+ transition with spectra

shown in fig. 4.13. Ramsey fringes were observed in all but the highest magnetic

field range. At this high a magnetic field, the 3p+ excited state begins to merge with

the conduction band. Light at this wavelength simply photo-ionises the ground state

and flat spectral response in this magnetic field range is to be expected.

Figure 4.13: Spectra of the 1s(A1) → 3p± transition tuned to three frequencies in
different magnetic field ranges. No transition is seen in at the highest field here as
the excited state has merged with the conduction band and the THz light simply
photoionises the ground state directly.

The total decoherence times, T ∗
2 range between 3.68 ps to 14.3 ps. These times

are comparable to the duration of individual FELIX micropulses in this wavelength

range. This is undesirable in terms of signal to noise. A π/2-pulse exciting the state

over a long period whereby the state loses significant coherence during the time the

pulse is acting on the state means that the Bloch vector will not end up close to the
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Laser freq. [THz] 12.22 13.28 14.33
Field range [T] 11.5-13.5 18-19 22-25
w [ps] 2.99 9.37 -
A [π] 0.269 0.494 -
T1 [ps] 23.7 ± 2.7 - -
T ∗

2 [ps] 14.5 ± 18 11.7 ± 1.4 -

Table 4.2: Decoherence times for the 1s(A1) → 3p+ not including dephasing due to
inhomogeneous broadening. No resonance is seen in the highest field range here due
to the excited state overlapping with the conduction band.

equator when the light is off.

Previous measurements of donor orbital dynamics [65] showed that the higher

orbital states have longer T1 times >150 ps for the 3p± and 4p± but whose T ∗
2

coherence times become increasingly limited by inhomogeneous broadening rather.

The comparison done in that publication of pump-probe measurements to determine

T1 and FTIR to determine T ∗
2 showed that all of the dephasing occurring on the 2p±

state can be explained by the dephasing caused by relaxation. There is no reason

to expect additional pure dephasing effects. The larger orbitals experience more of

their surrounding environment so larger variation can occur in the binding energy of

these states for an ensemble of donors. For a single defect it wouldn’t make sense to

talk about inhomogeneous broadening so the total dephasing times measured for a

single donor would only be limited by T1 effects which are shown to be longer lived.

4.3 Conclusions

In this chapter the background theory for coherent light matter interaction relevant

for Ramsey spectroscopy of a two level system is introduced. An amendment is

made to the optical Bloch equations to allow for photo-thermal ionisation of the

donor orbital. The expected time and frequency domain Ramsey fringe signals are

modelled and it is demonstrated how one may extract both relaxation and dephasing

effects from frequency domain Ramsey spectra.

The Si:P 1s(A1) → 2p+/3p+ transitions are measured over a large magnetic field
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range in a two-pulse Ramsey PTIS set-up. The magnetic field allows the transition

energy to be detuned in order to produce frequency domain Ramsey fringes. The

high field range of the bitter magnet made it possible to investigate the orbital

dynamics of these transitions in extreme magnetic field conditions where previously,

coherent dynamics information was unknown.

The significant decrease in measured coherence times in this experiment com-

pared to those measured previously is likely due to the higher sample temperature

used to maximise signal for the PTIS ionisation mechanism to work effectively. In

the next chapter another electrical readout mechanism is introduced that could make

measurements of orbital coherence times at temperature much lower than those re-

quired for PTIS possible.
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Chapter 5

Orbital transitions in a Bi

impanted SOI device

The orbital states of donor qubits in silicon have been studied extensively, predom-

inantly via absorption Fourier transform infrared (FTIR) spectroscopy. Samples

studied are typically wafers of bulk float zone (FZ) silicon crystal with a resid-

ual, dilute concentration of the dopant species of interest in the crystal bulk. This

method of doping provides a very pure, undamaged crystalline environment for the

substitutional dopants resulting in sharp spectral features.

To be able to measure the absorption spectra of the frozen-out donors optically a

large enough density of dopants must be illuminated to achieve a significant change

in light intensity transmitted through the sample. For samples whereby sensitivity

to the orbital change of single atoms is desired this presents a significant hurdle

and a move towards electrical detection is required. This chapter presents results

of performing ionisation spectroscopy on a broad area ion implanted Si:Bi device

containing fewer than 106 donors in the optically active region. Evidence for shallow

level impact ionisation is observed and the potential for its use as an alternative to

photo-thermal ionisation spectroscopy (PTIS) for excited state ionisation mechanism

is explored.
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5.1 Sample preparation

The sample studied in this chapter was fabricated using high resistivity silicon-on-

insulator (SOI) wafer prepared by the ’Smart Cut‘ method [66]. The advantage SOI

has over bulk silicon with regards to electrical detection of orbital transitions is that

in SOI current can not pass through the substrate handle. By forcing current to

pass through a particular region where few donors can exist, background currents are

suppressed improving signal to noise. The SOI wafer used in this study has a 450 nm

thick device layer sitting on top of a 1 µm thick SiO2 buried oxide (BOX) insulating

the device from the handle. Both the device and handle silicon in this material had

a dilute background p-type (most likely boron) concentration of 1012 cm−3.

The pristine wafer began by being ion implanted with bismuth to form a 100 nm

thick layer of n-type dopants starting 50 nm below the surface with a peak concen-

tration of 1017 cm−3 as shown in fig. 5.2. Such a high donor density was chosen

due to the limited literature presenting successful annealing of implanted bismuth

in silicon. to activate implanted bismuth at this energy in a SOI substrate.

To achieve a bismuth doped layer this thick with a flat-top concentration profile

so close to the surface, a series of two different implant energies was required: one

at 800 keV and another at 400 keV. To incorporate the implanted bismuth as sub-

stitutional defects, an rapid thermal anneal (RTA) was performed. Previous studies

of bismuth implanted into bulk silicon [54] gave an indication of the optimum an-

nealing conditions. To confirm the effectiveness of prior annealing recipes, a small

variety of annealing temperatures were tested. The one with highest electrical ac-

tivation was used for the sample studied in this chapter. To determine the active

concentration, spreading resistance analysis (SRA) was done by an external com-

pany (SOLECON ltd.) capable of polishing the required shallow bevel angle and

perform four-point probe resistivity measurements along the resulting slope with

high resolution. Details of this technique are outlined in chapter 2
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Figure 5.1: Fabrication scheme for VdP devices starting from SOI implanted with
bismuth and annealed. 1) RIE to define isolated mesas. 2) RIE followed by phospho-
rus ion implant and anneal to define metallic leads. 3) RIE followed by aluminium
evaporation and forming for ohmic contacts that remain metallic at liquid helium
temperatures.
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From annealed implanted wafer, standard UV-photolithography techniques were

used to etch four-terminal, Van der Pauw (VdP) mesas into the SOI device layer.

The leads were then selectively etched and doped with a low energy, high dose

phosphorus implant. Heavily n-type leads close to the surface and within the Bi

layer have the effect of reducing the width of the metal-semiconductor Schottky

barrier that forms at the aluminium contacts and minimising the potential barrier

between the n+n interface. Electrical activation of the heavily doped leads was

achieved by another RTA. To contact the device, aluminium pads were deposited

via e-beam evaporation and subsequently heat treated in a dry nitrogen atmosphere

at 300 ◦C for 45 min on a hotplate. This long heat treatment in an inert atmosphere

causes the aluminium to ‘spike’ into the Si:P lead while preventing oxidation. For a

graphical outline of the fabrication process and sample geometry see fig. 5.1.

5.1.1 Spreading resistance profiling

SRA (as outlined in chapter 2) shown in fig. 5.2 revealed that the electrical activation

of the bismuth in this sample was 65 % after being annealed at 950 ◦C for 1 min. This

yield was calculated by integrating the SRA concentration in depth (1.01×1012 cm−2)

and comparing that to the requested implant dose (1.55 × 1012 cm−2). The peak

concentration activation yield was also calculated to be 62 % by comparing the peak

concentration in the SRA data to a Monte-Carlo simulation of the implant using the

software package stopping and range of ions in matter (SRIM). SRIM was used to

determine the target dose to achieve the desired peak concentration for the implant

energy. The difference in these two activation yields shows that diffusion of the

bismuth has occurred.

The SRA shows that a preferential diffusion of the implanted bismuth towards

the surface has happened. This is to be expected as most of the lattice damage

caused by the high energy implant will be located nearer to the substrate surface.

During annealing, bismuth undergoes vacancy enhanced diffusion as the dominant
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Figure 5.2: Spreading resistance analysis of the annealed bismuth implant along with
the expected distribution prior to annealing modelled using SRIM. The junction
between the majority n-type bismuth doped region and the p-type background is
visible along with the insulating BOX of the SOI substrate.
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diffusion mechanism in silicon. [67] Diffusion deeper into the bulk of the SOI device

layer is not a problem for this sample as here the donors become more isolated and

their orbital spectra remain sharp. Diffusion toward the surface achieves this drop

in concentration too however, proximity to the silicon surface will affect its orbital

binding energy introducing inhomogeneous broadening. Lattice inhomogeneities

close to the surface due to residual damage post anneal will also contribute to this

broadening.
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Figure 5.3: The nearest neighbour density surface (NNDS) for the implanted bis-
muth calculated from the active concentration profile given by SRA. The expected
Bi-Bi separation for the total distribution is marked by the solid black line along
with the minimum separation required for non-overlapping 2p± excited orbital states
shown by the dashed black line.

Using the donor concentration profile, the NNDS as defined in chapter 3 can

be computed. Previously the NNDS was calculated analytically for Gaussian con-

centration profiles in depth. Here we have a donor concentration profile sampled
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at discrete depths so numerically compute the required integrals and derivatives in

eq. (3.10). The NNDS for this implant is shown in fig. 5.3. To achieve the resolution

in the donor separation axis, interpolation of the concentration profile was required.

On this plot, the overall expected bismuth separation is shown as a solid horizontal

line. Also shown is a dashed line at the separation below which 2p± orbitals start

overlapping. The radial extent of a donor 2p± state in silicon is 13.54 nm [68] however

this state is not spherically symmetric (the same reference calculates the transverse

and longitudinal radii as 9.18 nm and 3.85 nm such that r =
√

2(9.182) + 3.85). The

severity of wave function overlap can be expected to increase between donor separa-

tions 27.08 nm to 7.7 nm and the distribution of bismuth donor separations in this

sample spans this range.

5.2 DC electrical characterisation

The sample was wire-bonded to a ceramic chip carrier and mounted in a helium

gas cryostat with a base temperature of <4.2 K. Two-terminal and four-terminal

current-voltage I − V measurements were taken using a Keysight B1500A Semi-

conductor Device Parameter Analyzer. The optical access windows to the mounted

sample could, in this setup, be closed to prevent ambient room light illuminating

the sample and ionising the neutral bismuth donors. These shutters were however

at room temperature so some black body radiation was still present.

The two terminal measurements taken of this device simply consist of a forced

current If measured over a range of forced voltages, Vf applied over two adjacent

terminals of the VdP structure. The term ‘forced’ is used here to describe a circuit

that passes current through the device and to distinguish the ‘sensed’ voltage which

describes a voltage drop measured across terminals through which no net current

flows. If (Vf ) was observed to be non-linear indicating that regions in the circuit

were not ohmic. The total resistance in this setup is the sum of the resistance of
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Figure 5.4: a) Two terminal I-V’s of the device over a large bias range at different
sample temperatures. The onset of impact ionisation of frozen-out bismuth at the
injecting contact is seen at Vf = 400 mV (dotted line). b) Four terminal I-V curves
measured in the VdP geometry show that the sensed voltage remains approximately
linear with forced current over the majority of the current range measured. Deviation
from linearity is seen at low temperatures for sensed voltages greater than 400 mV.
c) At force voltages above 1.8 V (dashed line) the potential drop in the bulk of
the channel becomes greater than 400 mV, enough for impact ionisation to occur
away from the injecting contact. d) A series of sketches depicting the change in
the conduction band edge profile between the forcing contacts for increasing force
bias with numbering corresponding to labels in panel a): 1, no current flows and a
potential barrier exists at the lead/channel interface; 2, a small current is limited by
the number of electrons hot enough to pass over the barrier or tunnel through it; 3,
critical bias for impact ionisation of shallow donors near the injecting contact. Space
charge is formed and a higher current can tunnel into the channel; 4, injected current
saturates due to the limited density of neutral channel donors close to the contact;
5, current into the channel is space charge limited and Mott-Gurney transport takes
over.
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the channel and all contact resistances between the channel and the source measure

unit (SMU).

R = Vf

If
= Rch + 2Rn+n + 2Rn+Al (5.1)

where the contact resistance between the heavily doped phosphorus leads and alu-

minium contact pads, Rn+Al is minimised even at low temperature due to the highly

doped leads; any potential barrier resulting from a difference between the metal

work function and semiconductor electron affinity will be extremely thin. The most

likely source of non-linearity is between the heavily n-type leads and the dilutely

doped channel. At temperatures below 60 K a sharp decrease in current is observed

at low bias due to the freeze-out of bismuth donors in the device channel. Above a

critical threshold bias of 400 mV a sharp onset of current flows indicative of shallow

level impact ionisation whereby donor electrons bound to bismuth nuclei can be

ionised by free carriers with enough kinetic energy. For all temperatures measured

in fig. 5.4 a plateau is reached in current before Mott Gurney transport takes over.

This transport regime is made apparent by the I ∝ V 2 relation followed by I ∝ V

at very high bias.

For small devices such as this one, relatively low biases are required to achieve

the threshold electric field required for impact ionising the donor in any bound

state. In order to do electrically detected spectroscopy on the neutral donor, it is

important that the ground state is preserved under bias. At the sharp rise in current

seen in fig. 5.4 at 400 mV the rate of impact ionisation, Aii of the donors near the

injecting contact will have become greater than the thermal recapture rate, BT of

free electrons.
dN+

D

dt = nAiiN
0
D − nBTN

+
D (5.2)

In fig. 5.4 the sample is in the dark, therefore the sharp onset of current at 400 mV

must correspond to ionisation of bismuth ground states and not any of the excited

orbital states. The semi-empirical electric field dependence of Aii as found in [49]
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is,

Aii(E) = 3
2

√
1
x

√
2Ei

m∗ σ0I(x)
√

2
π

(5.3)

where the dummy variable x = [(1
2 + α)E2m∗µ2 + kBT ]/Ei and,

I(x) = exp
(

−1
x

)
(x2 + 2x3) − exp

(
−2
x

)
(3x2 + 2x3) (5.4)

are defined for convenience. α ≈ 1 is a shape factor which describes the contribution

of drift kinetic energy relative to lattice temperature to define an effective ‘hot’

electron temperature, Te such that kBTe = kBT + αm∗v2
d, and σ0 is the maximum

cross section for impact ionisation of the particular shallow donor state.

To find the threshold for impact ionisation of a particular bound state, the

thermal recapture rate, BT must also be known as a function of electric field. A

form for this coefficient is also presented in [49] whereby,

BT = β

√
2
π

4π
3
r3

c

λ0

√
2kT
m∗ y

−0.5[1 − exp(−y)(y + 1)] (5.5)

where β is another semi-empirical factor describing the probability of a free carrier

trapping event, λ0 describes a mean free path length, rc is a critical radius for

thermal recapture and,

y = kT

kT + (α + 0.5)m∗µ2E2 . (5.6)

Here rc is the Bohr radius of the neutral bismuth ground state and recapture into

excited states is neglected.

These two rates, plotted in fig. 5.5 as a function of electric field define the thresh-

old fields required to measure a net current due to impact ionisation of different or-

bital states of an isolated Si:Bi centre in a device with this particular doping density

and lattice temperature.
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Figure 5.5: Impact ionisation rate as a function of electric field for the ground state
and first few np± excited states of Si:Bi at 10 K in a device doped to 1 × 1017 cm−3.
The thermal recapture rate under the same conditions is plotted as a dashed line
defining critical fields required for impact ionisation to overcome recapture.
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5.3 DC characterisation under FEL illumination

The optimum bias conditions were also found empirically. By tuning free electron

laser for infrared experiments (FELIX) to the Si:Bi 1sA1 → 2p± transition frequency

and sweeping Vf using a SRS SIM928 voltage source, the voltage bias resulting in

a maximum photocurrent measured with a SR570 is found. For full description of

the electrical setup see chapter 2. In fig. 5.6 a photocurrent signal is observed which

rises with increasing bias until a maximum signal occurs at Vf ≈ 2 V. Beyond this

bias the photo-generated current reduces to 0 A. At such high bias neutral bismuth

centres are constantly being impact ionised such that there are very few extra free

carriers generated which the FELIX pulse arrives.

4 2 0 2 4
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I f[
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Figure 5.6: Photocurrent as a function of bias while illuminating the device with
light at the 1s(A1) → 2p± energy (64 meV). The optimum photocurrent occurs at
slightly different bias voltage depending on the macropulse intensity.

At a force bias Vf ≈ 2 V the voltage dropped in the channel is of the order 400 mV

as measured in fig. 5.4. For a device with a symmetric four-terminal geometry such

as this, this is found by multiplying VS by the VdP factor, π/ ln(2). The electric

field at this bias is the expected threshold for impact ionisation of the bismuth donor
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ground state.

At this high bias (2 V rather than 400 mV), impact ionisation of bismuth donors

close to the injecting contact will have taken place and a space charge will have built

up at the contact as shown in fig. 5.4. Since this space charge screens the rest of the

channel from the force bias, an even large voltage is required to achieve a 400 mV

potential in the channel away from the contact.

5.4 FEL spectroscopy

Spectra were taken of the device photocurrent by sweeping the wavelength of FELIX

(changing the pole spacing in the undulator) for fixed voltage biases above and below

the optimum bias found in fig. 5.6. In all spectra taken, there was negligible change

in the measured voltage, Vs between the two other leads as shown in fig. 5.1 only a

change in the current, If. The change in carrier density can then be written as

∆n = ∆σ
qµ

= ∆I
VSqµ

ln 2
π

(5.7)

The short pulsed structure of the free electron laser (FEL) radiation (5 ps to 10 ps)

results in a laser line width of 1 meV which is broad in comparison to the expected

orbital transition linewidths in dilutely bulk doped silicon samples [63]. From fig. 5.7

it is evident that at the 1s(A1) → 2p± resonance the laser line width is narrower

than the broad spectral peak. To account for the range of resonators excited at a

specific FEL line centre resulting in a change in carrier density, each data point in

fig. 5.7 is divided by the FEL full width at half maximum (FWHM), ∆(ℏω) such

that a definite integral of the spectrum gives the number of photo-generated carriers

in that spectral range. The FEL line width was determined by the laser spectrum

measured concurrently using a grating spectrometer and is shown as an inset in

fig. 5.7 at the 1s(A1) → 2p± energy.

A broadened peak at the 1s(A1) → 2p± transition energy is observed at both
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Figure 5.7: The spectral density of photo-excited carriers recorded for macropulse
energies of 0.034µJ and T = 9.5 K. The measured change in carrier density (using
eq. (5.7)) is divided by the FWHM of the laser line width, ∆(ℏω) such that integrat-
ing the spectrum in a particular spectral range yields the carrier density contributing
to the change in current measured. At bias voltages above 1.5 V the resonant density
of photo-carriers is diminished due to an increased rate of impact ionisation of the
ground state resulting in fewer neutral donors available to photo-excite. The laser
spectrum when tuned on resonance with the 1s(A1) → 2p± transition is shown as
an inset with ∆(ℏω) = 0.6 meV.
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VF = 1.5 V and VF = 2.5 V. In both situations the sample temperature was kept

at a constant 9.5 K and the FEL macropulse energy, 0.034 mJ by inserting 38 dB

of attenuation into the beam. Above the optimum bias, the spectral density of the

transition is diminished due to a reduction in available neutral Bi to photo-excite.

At 1.5 V bias the resulting photo-generated carrier density is higher. The area under

a Gaussian fit to the peak in fig. 5.7 reveals that on average, 4.3×108 cm−3 of neutral

Bi donors are promoted into the conduction band after being excited into their 2p±

state. This density amounts to 0.04 % of the available active bismuth concentration.

There was negligible change in the transition line shape when changing the sam-

ple temperature below 12 K for this same level of beam attenuation suggesting that

PTIS was not the dominant ionisation mechanism out of the excited state in this

device. Were it the dominant mechanism an exponential decrease in signal with

reducing temperature is to be expected.

With increasing laser power while at low bias, a bleaching of the detected orbital

transition was observed as shown in fig. 5.8. These spectra were taken with Vf = 1 V

where donor ground state impact ionisation is negligible for donors away from the

injecting contact. The observed loss of peak contrast indicates that the bismuth

donor ground states are being ionised during the laser macropulse. This could be

due to heating of the SOI substrate generating phonons capable of thermally ionising

the donors directly. It is likely that heat generated by absorption would occur in

the heavily doped Si:P leads or in the silicon below the BOX where a larger number

of phosphorus or background boron centres are available to absorb.

Though the 1s(A1) → 2p± peak is clearly visible in figs. 5.7 and 5.8 it is heav-

ily broadened. The narrowest FWHM measured in this device was 2 meV at low

FEL power (suppressing direct ionisation during the laser pulse) and at low bias

(below the threshold for ground state impact ionisation). The broadening observed

is expected for a high density of implanted bismuth. From the donor separation

probability density function in fig. 5.3 an expected Bi-Bi separation of 15.2 nm is
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found. The average diameter of the 2p± orbital state is reported to be 27.08 nm [68].

There is therefore a 4 % probability that a randomly selected bismuth donor is iso-

lated from its nearest neighbour such that their excited states do not overlap and

hybridise. If the resonant peak fitted to in fig. 5.7 can be attributed only isolated

bismuth centres, the fraction of those centres that are resonantly ionised at any time

during the macropulse is 1 %.

5.5 Conclusions

The electrical detection of isolated bismuth orbital transitions has been demon-

strated in an ion-implanted SOI device for the first time. The observed spectral

linewidth of the 1s(A1) → 2p± transition in the impact ionisation spectroscopy

(IIS) suggests severe broadening has occurred. This is likely due to the high concen-

tration of active bismuth centres in the device. Of the 6×105 active bismuth centres

in the device channel, only 2.4 × 104 have sufficiently non-overlapping 2p± states.

A lower density of implanted bismuth into a comparable SOI substrate would likely

produce transitions that are less inhomogeneously broadened by removing the band

of states formed by the high density doping.

The optimum resonant photocurrent signal was found at a forced voltage bias

where significant space charge is expected to have been built up at the injecting con-

tact. At this bias the remaining voltage drop in the bulk of the channel agrees with

the theoretically predicted threshold for ground state impact ionisation. Previously,

electrically detected orbital transitions had only been reported as being achieved via

PTIS. The results here suggest that orbital state readout can be achieved at tem-

peratures below those required for PTIS via preferential impact ionisation of the

donor excited states, termed here has IIS. This detection mechanism could prove to

be a viable means of measuring the orbital dynamics of far fewer hydrogenic donors

in silicon at low temperatures where the quantum coherence time is expected to be
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longer.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

Systems of few donors placed with high spatial accuracy in silicon devices have been

introduced as a platform with great potential for quantum applications. Throughout

this thesis steps toward the detection and control of the orbital states of fewer donors

in such systems are taken.

In chapter 3, the statistics to compute the probability of suitable multi-species

qubit clusters is derived for systems of hydrogenic dopants introduced by broad area

ion implantation. It is found that, even a simple system whereby the orbital exci-

tation of a dopant of one species modulates an exchange interaction with electron

spins bound to donors of another species, the probability of such clusters occurring

with suitable neighbouring distances is low. There is however an optimum implant

configuration to be found which improves over bulk doping at the ideal concentration

and the method outlined to compute this may be found to be useful in other in-

homogeneous multi-species point process problems whereby inhomogeneity is along

only one axis.

In chapter 4, electrically detected free electron laser (FEL) spectroscopy is per-

formed on a high purity, high resistivity silicon sample whereby the only donors
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present are a background concentration of phosphorus. A transient current is de-

tected through capacitor plates either side of the sample upon exposure to coherent

pulses of THz radiation of a wavelength resonant with orbital transitions of the phos-

phorus bound electrons. The coherent dynamics of two transitions, 1s(A1) → 2p±

and the 1s(A1) → 3p± are measured over a broad high magnetic field range where

such dynamics has not been previously measured. The times measured are smaller

than expected, even at low field. This is likely due to the raised sample temperature

required for photo-thermal ionisation spectroscopy (PTIS) to ionise excited state

donors. At higher magnetic field a further reduction in coherence time is measured.

This could be attributed to enhanced relaxation mechanisms mediated by intra-

valley f and g phonons which have energies resonant between the excited state and

different lower energy states when at high magnetic field.

In the final chapter, a nanoscale, silicon on insulator device is fabricated to

contain less than 1 million electrically active ion implanted bismuth donors in the

optically active region of the device. This, scaled down architecture approaches a

structure that would be possible to dope with single ion implanted donors in the

future. Orbital transitions indicative of isolated bismuth donors were measured us-

ing a similar technique used in chapter 4, only this time with wire-bonded contacts

to heavily phosphorus doped silicon leads that meet the micron scale Si:Bi channel.

The chosen bismuth concentration implanted into the device resulted in an electri-

cally active bismuth concentration after post implant activation anneal that was not

conducive to observing the orbital state transitions of single bismuth donors as the

bismuth donors were too close (13.54 nm) on average to other active bismuth donors.

The concentration was deemed too high due to the broadened spectral linewidths

observed. Using the statistics derived in chapter chapter 3, it is estimated that the

resonant signal observed was due to only 2.4 × 104 of the 6 × 105 bismuth donors

in the device channel. The fact that a spectral response was observed in this study

at the expected isolated 2p± frequency at all, motivates the fabrication of further
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scaled down nanoscale devices of a similar architecture whereby coherent dynamics

measurements can be made of a single donor orbital state transitions. Knowledge of

such dynamics is key for any qubit gating system relying on the orbital excitation

of donor electrons.

Overall, it can be concluded that implanted donors in electrically contacted sili-

con devices can be incorporated with enough such that the orbital state transitions

are measurable with on-chip detection. There is clear room for improvement with

regards to the orbital transition spectrum quality due to a choice implant density too

great for annealing quality achieved. This work could be followed by an annealing

study that need not rely on repeated trips to beam line facilities for characterisation

but could use incoherent spectroscopy such as Fourier transform infrared (FTIR)

(can also be electrically detected also) to determine the presence of isolated donors.

The coherent dynamics of a single donor (free of inhomogeneous broadening) orbital

could be studied at temperatures lower than those required for PTIS using impact

ionisation spectroscopy (IIS) thus demonstrating the longest time it could mediate a

spin exchange in Stoneham Fisher Greenland (SFG)-like spin qubit scheme. There

may even be magnetic fields in which the excited orbital is further shielded from

phonon decay such as the intra-valley phonons investigated in chapter 4. During

the course of this PhD, development of single ion implantation tools has increased

with multiple groups [34,37,69] working to develop tools to controllably implant a

broad range of impurity species with highly deterministic placement and number.

This will undoubtedly accelerate the rate at which single to few impurity solid state

quantum devices can be produced, characterised and optimised.
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6.2 Rapid prototyping of single implanted nanoscale

silicon devices

Aside from studying the coherent dynamics of single donor electron atomic tran-

sitions, there are other nanoscale devices whose function relies on the presence of

deterministically positioned single defects. Single atom transistors much like sin-

gle electron transistors have applications as highly sensitive charge and temperature

sensors as well as applications in quantum information storage, processing and trans-

mission. [20] Arrays of single atoms positioned with high precision are also of great

interest because this is the configuration of donors qubits required for controlled spin

exchange interaction in a solid state quantum computer. Arrays of donors are also

relevant in the field of Hubbard band physics where the metal-insulator transition

is studied. [69] Single ion implantation presents a technique that is highly flexible

in terms of possible ion sources available and in doping geometry due to it being a

direct write technique. No lithographic masking is required. Combining the use of

a low current focused ion beam (FIB) with the ability to detect single ion impacts,

one achieves a relatively high spatial accuracy of donor placement (<20 nm [34])

suitable for test-bed spin qubit devices (where appropriate spacing may be achieved

stochastically) or for solid state qubit schemes such as the flip-flop qubit [70] which

uses longer-range dipole-dipole coupling to entangle qubits. One also reduces the

uncertainty in the number of ions per implant site that would otherwise vary due

to the Poisson statistics describing the number of ions in a particular unblanking

pulse.

On chip detection of single ions would be an excellent way to detect single im-

planted ions in conjunction with external detection techniques to further improve the

counting statistics and confirm that implantation has occurred in the intended re-

gion of space i.e. into a nano-scale resistor/transistor channel. This section presents
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the first step towards realising single donor implant detection in a nano-scale silicon-

on-insulator field effect transistor (SOIFET) device.

Alongside the fabrication of the silicon-on-insulator (SOI) Van der Pauw (VdP)

used in chapter 5, a set of 1µm2 channel, back-gated SOIFET samples were also

prepared to be Bi implanted by single ion implantation (SII) and characterised by

FEL spectroscopy however this experiment was not carried out in the time frame of

this thesis. This SOI material had a much thinner, 200 nm buried oxide (BOX) and

the Si device layer was further thinned using reactive ion etching (RIE) to 30 nm.

Two-terminal mesa structures were etched into the thinned device layer and the

channel was masked prior to a high fluence phosphorus broad area ion implant which

was then annealed. These phosphorus doped leads define the undoped (background

p-type) channel and are electrically contacted with aluminium pads like in chapter 5.

Electrical contact to the handle silicon used as a gate electrode was made via the

conductive silver paint used to stick the sample to a PCB. The field effect transistor

(FET) was loaded into the chamber of an Ionoptika Q-One single ion implanter at

room temperature and connected to two DC voltage supplies to supply a source-gate

and source-drain voltage and with a transimpedance amplifier monitoring the source-

drain current over the course of successive ion implantations into the device channel.

Operation of the single ion implanter was carried out by Dr Nathan Cassidy.

The sensitivity of the SOIFET to the implantation of 50 keV Bi ions was such

that pulses containing as few as 10 ions on average resulted in measurable current

transients through the device as shown in fig. 6.1. With subsequent implants the

channel becomes progressively damaged due to the generation of interstitial-vacancy

pairs in the silicon lattice. The resistivity of the channel increases and the device

becomes less sensitive to further implant events. To achieve deterministic implanta-

tion of a single ion, the average number of ions in the pulse must be much less than

1. This way, when an impact event is detected the probability that more than one

ion was in that pulse becomes negligible.
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Figure 6.1: Current flowing through the SOIFET during four sequential exposures
to ion pulses containing 10 ± 3 Bismuth atoms

Although sensitivity to 1 ion was not demonstrated with this device, as few as

5 ions should have been detectable assuming the transient current amplitude scales

linearly with the number of ions in the pulse. There are many ways that the set-up

could have been improved. If the device current transient is larger than that show in

fig. 6.1 but faster than 5 us, the Stanford research SR5700 transimpedance amplifier

with a 1 MHz bandwidth limits the circuit response to transient rise-times longer

than 1 us. The NI cDAQ analogue input module used to digitise the source-drain

current also had a sample rate limited to 200 kS/s which would make it difficult to

capture device responses faster than 5 us.

This preliminary study demonstrates the viability of on-chip detection and place-

ment of few implanted donors into a nanoscale silicon device. Following the device

study presented in chapter 5 it is entirely reasonable to progress with the charac-

terisation of devices sensitive to the orbital state of fewer/single implanted donors

introduced by single ion implantation.

6.3 Electrically detected 3-pulse orbital dynamics

In chapter 4, two pulse, Ramsey spectroscopy is performed on a high purity bulk sil-

icon sample to measure the coherent dynamics of the background, spatially isolated

phosphorus bound donor electrons. The current response in the contactless electrical
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measurement is that due to the ionisation of an ensemble of two-level systems. The

dynamics of such an ensemble is susceptible to inhomogeneous broadening effects

caused by individual oscillators in the ensemble having different resonant frequen-

cies. i.e:

1
T2 ∗ 2 = 1

T2
+W (6.1)

To discern the homogeneous dephasing time (T2) from inhomogeneous broaden-

ing (W ) the experimental setup could be adapted to produce a sequence of 3 pulses

whereby the middle pulse has a pulse area that undoes the loss in phase coherence

caused by the oscillators in the ensemble having different resonant frequencies. As

the two level systems come back into phase after the so called ‘time reversal’ pulse

they emit radiation know as a Hahn echo. This is the so called Hahn echo pulse

sequence. The third and final pulse in the sequence projects the ensemble, rephased,

Bloch vector onto the z-axis as it does in the 2-pulse experiment, only this time,

without the additional dephasing caused by inhomogeneous broadening.

Measurements of the dynamics of donor orbital states using a Hahn echo pulse

sequences have only been performed in the time domain and optically detecting the

emitted ‘echo’. The use of an appropriate 3-pulse sequence to distinguish between

pure dephasing effects and inhomogeneous broadening should be explored for fre-

quency domain measurements to see if there is a similar efficiency to be gained over

time domain measurement.

111



References

[1] A. M. Stoneham, A. J. Fisher, and P. T. Greenland, “Optically driven silicon-

based quantum gates with potential for high-temperature operation,” Journal

of Physics: Condensed Matter, vol. 15, no. 27, p. L447, 2003.

[2] B. Murdin, J. Li, M. Pang, E. Bowyer, K. Litvinenko, S. Clowes, H. Engelkamp,

C. Pidgeon, I. Galbraith, N. Abrosimov, H. Riemann, S. Pavlov, H.-W. Hübers,

and P. Murdin, “Si:P as a laboratory analogue for hydrogen on high magnetic

field white dwarf stars,” Nature Communications, vol. 4, p. 1469, 2013.

[3] G. M. Moore, “Cramming more components onto integrated circuits With unit

cost,” Electronics, vol. 38, no. 8, p. 114, 1965.

[4] G. E. Moore, “Progress in digital integrated electronics [Technical literaiture,

Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. Interna-

tional Electron Devices Meeting, IEEE, 1975, pp. 11-13.],” IEEE Solid-State

Circuits Society Newsletter, vol. 11, pp. 36–37, sep 2006.

[5] P. S. Peercy, “The drive to miniaturization,” Nature, vol. 406, no. 6799,

pp. 1023–1026, 2000.

[6] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Y. Yang, C. Tabery, C. Ho,

Q. Xiang, T. J. King, J. Bokor, C. Hu, M. R. Lin, and D. Kyser, “FinFET

scaling to 10 nm gate length,” Technical Digest - International Electron Devices

Meeting, pp. 251–254, 2002.

112



[7] R. P. Feynman, “There’s plenty of room at the bottom [data storage],” Journal

of Microelectromechanical Systems, vol. 1, pp. 60–66, mar 1992.

[8] D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,”

Fortschritte der Physik, vol. 48, pp. 771–783, sep 2000.

[9] P. Shor, “Algorithms for quantum computation: discrete logarithms and factor-

ing,” Proceedings 35th Annual Symposium on Foundations of Computer Science,

pp. 124–134, 1994.

[10] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory of computing

- STOC ’96, pp. 212–219, 1996.

[11] S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A

concise review,” Applied Physics Reviews, vol. 6, no. 4, 2019.

[12] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.

Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied

Physics Reviews, vol. 6, jun 2019.

[13] M. H. Devoret and J. M. Martinis, “Implementing Qubits with Superconducting

Integrated Circuits,” Quantum Information Processing, vol. 3, pp. 163–203, oct

2004.

[14] M. Saffman, “Quantum computing with atomic qubits and Rydberg interac-

tions: progress and challenges,” Journal of Physics B: Atomic, Molecular and

Optical Physics, vol. 49, p. 202001, oct 2016.

[15] J. Gorman, D. G. Hasko, and D. A. Williams, “Charge-qubit operation of an

isolated double quantum dot,” Physical Review Letters, vol. 95, no. 9, pp. 1–4,

2005.

113



[16] D. Kim, D. R. Ward, C. B. Simmons, J. K. Gamble, R. Blume-Kohout,

E. Nielsen, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith,

and M. A. Eriksson, “Microwave-driven coherent operation of a semiconductor

quantum dot charge qubit,” Nature Nanotechnology, vol. 10, no. 3, pp. 243–247,

2015.

[17] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J.

Milburn, “Linear optical quantum computing with photonic qubits,” Reviews

of Modern Physics, vol. 79, pp. 135–174, jan 2007.

[18] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-

Abelian anyons and topological quantum computation,” Reviews of Modern

Physics, vol. 80, pp. 1083–1159, sep 2008.

[19] B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature, vol. 393,

no. 6681, pp. 133–137, 1998.

[20] M. T. Ma̧dzik, A. Laucht, F. E. Hudson, A. M. Jakob, B. C. Johnson, D. N.

Jamieson, K. M. Itoh, A. S. Dzurak, and A. Morello, “Conditional quantum op-

eration of two exchange-coupled single-donor spin qubits in a MOS-compatible

silicon device,” Nature Communications, vol. 12, p. 181, jun 2020.

[21] L. C. Hollenberg, A. S. Dzurak, C. Wellard, A. R. Hamilton, D. J. Reilly,

G. J. Milburn, and R. G. Clark, “Charge-based quantum computing using

single donors in semiconductors,” Physical Review B - Condensed Matter and

Materials Physics, vol. 69, no. 11, pp. 2–5, 2004.

[22] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L.

Hollenberg, G. Klimeck, and M. Y. Simmons, “A single-atom transistor,” Na-

ture Nanotechnology, vol. 7, no. 4, pp. 242–246, 2012.

114



[23] D. Karaiskaj, J. A. H. Stotz, T. Meyer, M. L. W. Thewalt, and M. Cardona,

“Impurity Absorption Spectroscopy in Si28: The Importance of Inhomogeneous

Isotope Broadening,” Physical Review Letters, vol. 90, p. 186402, may 2003.

[24] K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosi-

mov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, “Room-

Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors

in Silicon-28,” Science, vol. 342, no. 6160, pp. 830–833, 2013.

[25] A. M. Tyryshkin, S. Tojo, J. J. Morton, H. Riemann, N. V. Abrosimov,

P. Becker, H. J. Pohl, T. Schenkel, M. L. Thewalt, K. M. Itoh, and S. A.

Lyon, “Electron spin coherence exceeding seconds in high-purity silicon,” Na-

ture Materials, vol. 11, no. 2, pp. 143–147, 2012.

[26] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl,

M. Möttönen, C. D. Nugroho, C. Yang, J. A. Van Donkelaar, A. D. Alves,

D. N. Jamieson, C. C. Escott, L. C. Hollenberg, R. G. Clark, and A. S. Dzurak,

“Single-shot readout of an electron spin in silicon,” Nature, vol. 467, no. 7316,

pp. 687–691, 2010.

[27] B. Koiller, X. Hu, S. Das Sarma, and B. Koiller, “Exchange in Silicon-Based

Quantum Computer Architecture,” Physical Review Letters, vol. 88, no. 2, p. 4,

2002.

[28] Y. Chen, “Nanofabrication by electron beam lithography and its applications:

A review,” Microelectronic Engineering, vol. 135, pp. 57–72, 2015.

[29] N. Ravi Kiran, M. Chauhan, S. K. Sharma, S. Ghosh, and K. E. Gonsalves,

“Resists for Helium Ion Beam Lithography: Recent Advances,” ACS Applied

Electronic Materials, vol. 2, no. 12, pp. 3805–3817, 2020.

[30] N. V. Abrosimov, D. G. Aref’Ev, P. Becker, H. Bettin, A. D. Bulanov, M. F.

Churbanov, S. V. Filimonov, V. A. Gavva, O. N. Godisov, A. V. Gusev, T. V.

115



Kotereva, D. Nietzold, M. Peters, A. M. Potapov, H. J. Pohl, A. Pramann,

H. Riemann, P. T. Scheel, R. Stosch, S. Wundrack, and S. Zakel, “A new

generation of 99.999% enriched 28Si single crystals for the determination of

Avogadro’s constant,” Metrologia, vol. 54, no. 4, pp. 599–609, 2017.

[31] D. Holmes, B. C. Johnson, C. Chua, B. Voisin, S. Kocsis, S. Rubanov, S. G.

Robson, J. C. McCallum, D. R. McCamey, S. Rogge, and D. N. Jamieson,

“Isotopic enrichment of silicon by high fluence 28Si- ion implantation,” Physical

Review Materials, vol. 5, no. 1, pp. 1–8, 2021.

[32] K. Tang, H. S. Kim, A. N. Ramanayaka, D. S. Simons, and J. M. Pomeroy,

“Targeted enrichment of 28 Si thin films for quantum computing,” Journal of

Physics Communications, vol. 4, p. 035006, mar 2020.

[33] A. J. Mayur, M. D. Sciacca, A. K. Ramdas, and S. Rodriguez, “Redetermination

of the valley-orbit (chemical) splitting of the 1s ground state of group-V donors

in silicon,” Physical Review B, vol. 48, no. 15, pp. 10893–10898, 1993.

[34] C. Babin, R. Stöhr, N. Morioka, T. Linkewitz, T. Steidl, R. Wörnle,

D. Liu, E. Hesselmeier, V. Vorobyov, A. Denisenko, M. Hentschel, C. Gob-

ert, P. Berwian, G. V. Astakhov, W. Knolle, S. Majety, P. Saha, M. Radu-

laski, N. T. Son, J. Ul-Hassan, F. Kaiser, and J. Wrachtrup, “Fabrication and

nanophotonic waveguide integration of silicon carbide colour centres with pre-

served spin-optical coherence,” Nature Materials, vol. 21, no. 1, pp. 67–73,

2022.

[35] N. Cassidy, P. Blenkinsopp, I. Brown, R. J. Curry, B. N. Murdin, R. Webb,

and D. Cox, “Single Ion Implantation of Bismuth,” physica status solidi (a),

vol. 218, p. 2000237, jan 2021.

[36] T. Schenkel, A. Persaud, S. J. Park, J. Meijer, J. R. Kingsley, J. W. McDon-

ald, J. P. Holder, J. Bokor, and D. H. Schneider, “Single ion implantation

116



for solid state quantum computer development,” Journal of Vacuum Science

and Technology B: Microelectronics and Nanometer Structures, vol. 20, no. 6,

pp. 2819–2823, 2002.

[37] W. Schnitzler, G. Jacob, R. Fickler, F. Schmidt-Kaler, and K. Singer, “Focusing

a deterministic single-ion beam,” New Journal of Physics, vol. 12, pp. 0–14,

2010.

[38] D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer,

M. Mitic, E. Gauja, S. E. Andresen, F. E. Hudson, A. S. Dzurak, and R. G.

Clark, “Controlled shallow single-ion implantation in silicon using an active

substrate for sub- 20-keV ions,” Applied Physics Letters, vol. 86, no. 20, pp. 1–

3, 2005.

[39] T. Shinada, T. Kurosawa, H. Nakayama, Y. Zhu, M. Hori, and I. Ohdomari,

“A reliable method for the counting and control of single ions for single-dopant

controlled devices,” Nanotechnology, vol. 19, p. 345202, aug 2008.

[40] J. Lyding, T.-C. Shen, J. Hubacek, J. Tucker, and G. Abeln, “Nanoscale pat-

terning and oxidation of H-passivated Si(100)-2 x 1 surfaces with an ultra-

high vacuum scanning tunneling microscope,” Applied Physics Letters, vol. 64,

no. 15, pp. 2010–2012, 1994.

[41] O. Warschkow, N. J. Curson, S. R. Schofield, N. A. Marks, H. F. Wilson,

M. W. Radny, P. V. Smith, T. C. Reusch, D. R. McKenzie, and M. Y. Simmons,

“Reaction paths of phosphine dissociation on silicon (001),” Journal of Chemical

Physics, vol. 144, no. 1, 2016.

[42] T. J. Stock, O. Warschkow, P. C. Constantinou, J. Li, S. Fearn, E. Crane,

E. V. Hofmann, A. Kölker, D. R. Mckenzie, S. R. Schofield, and N. J. Cur-

son, “Atomic-Scale Patterning of Arsenic in Silicon by Scanning Tunneling Mi-

croscopy,” ACS Nano, vol. 14, no. 3, pp. 3316–3327, 2020.

117



[43] P. T. Greenland, G. Matmon, B. J. Villis, E. T. Bowyer, J. Li, B. N. Murdin,

A. F. Van Der Meer, B. Redlich, C. R. Pidgeon, and G. Aeppli, “Quantitative

analysis of electrically detected Ramsey fringes in P-doped Si,” Physical Review

B - Condensed Matter and Materials Physics, vol. 92, no. 16, pp. 1–9, 2015.

[44] J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park,

J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,”

IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 54–

75, 2011.

[45] Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature

continuous wave, monolithic tunable THz sources based on highly efficient mid-

infrared quantum cascade lasers,” Scientific Reports, vol. 6, no. February, pp. 1–

7, 2016.

[46] K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct

field-resolved detection of terahertz transients with amplitudes of megavolts per

centimeter,” Optics Letters, vol. 28, no. 6, p. 471, 2003.

[47] S. G. Pavlov, R. K. Zhukavin, E. E. Orlova, V. N. Shastin, A. V. Kirsanov,

H. W. Hübers, K. Auen, and H. Riemann, “Stimulated emission from donor

transitions in silicon,” Physical Review Letters, vol. 84, no. 22, pp. 5220–5223,

2000.

[48] M. A. Van Loon, N. Stavrias, N. H. Le, K. L. Litvinenko, P. T. Greenland, C. R.

Pidgeon, K. Saeedi, B. Redlich, G. Aeppli, and B. N. Murdin, “Giant multi-

photon absorption for THz resonances in silicon hydrogenic donors,” Nature

Photonics, vol. 12, no. 3, pp. 179–184, 2018.

[49] H. W. Jongbloets, M. J. Van De Steeg, J. H. Stoelinga, and P. Wyder, “Tem-

perature dependence of the photothermal conductivity of semiconductors at

118



low temperatures,” Journal of Physics C: Solid State Physics, vol. 13, no. 11,

pp. 2139–2145, 1980.

[50] B. Dierickx, E. Simoen, and G. Declerck, “Transient response of silicon devices

at 4.2 K. I. Theory,” Semiconductor Science and Technology, vol. 6, pp. 896–

904, sep 1991.

[51] U. F. Edgal and J. D. Wiley, “Near-neighbor configuration and impurity-cluster

size distribution in a Poisson ensemble of monovalent impurity atoms in semi-

conductors,” Physical Review B, vol. 27, no. 8, 1983.

[52] S. Torquato, B. Lu, and J. Rubinstein, “Nearest-neighbor distribution functions

in many-body systems,” 1990.

[53] D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks,

vol. 10, pp. 1146–1166, aug 2012.

[54] E. Crane, T. Crane, N. H. Le, A. Schuckert, A. J. Fisher, N. H. Le, K. Stock-

bridge, S. Chick, and A. J. Fisher, “Optically Controlled Entangling Gates in

Randomly Doped Silicon,” Physical Review B, vol. 100, pp. 1–14, feb 2019.

[55] T. Peach, K. Homewood, M. Lourenco, M. Hughes, K. Saeedi, N. Stavrias,

J. Li, S. Chick, B. Murdin, and S. Clowes, “The Effect of Lattice Damage and

Annealing Conditions on the Hyperfine Structure of Ion Implanted Bismuth

Donors in Silicon,” Advanced Quantum Technologies, vol. 0, p. 1800038, jun

2018.

[56] P. Loudon and R. Loudon, The Quantum Theory of Light. Oxford science

publications, Clarendon Press, 1983.

[57] N. F. Ramsey, “A molecular beam resonance method with separated oscillating

fields,” Physical Review, vol. 78, no. 6, pp. 695–699, 1950.

119



[58] K. Litvinenko, E. Bowyer, P. Greenland, N. Stavrias, J. Li, R. Gwilliam, B. Vil-

lis, G. Matmon, M. Pang, B. Redlich, a.F.G. van der Meer, C. Pidgeon, G. Aep-

pli, and B. Murdin, “Coherent creation and destruction of orbital wavepackets

in Si:P with electrical and optical read-out,” Nature Communications, vol. 6,

p. 6549, 2015.

[59] A. K. Ramdas, “Spectroscopy of shallow centers in semiconductors: Progress

since 1960,” Physica B+C, vol. 146, no. 1-2, pp. 6–18, 1987.

[60] R. K. Zhukavin, S. G. Pavlov, N. Stavrias, K. Saeedi, K. A. Kovalevsky, P. J.

Phillips, V. V. Tsyplenkov, N. V. Abrosimov, H. Riemann, N. Deβmann, H. W.

Hübers, and V. N. Shastin, “Influence of uniaxial stress on phonon-assisted

relaxation in bismuth-doped silicon,” Journal of Applied Physics, vol. 127, no. 3,

2020.

[61] A. Thilderkvist, M. Kleverman, G. Grossmann, and H. G. Grimmeiss,

“Quadratic Zeeman effect of shallow donors in silicon,” Physical Review B,

vol. 49, no. 20, pp. 14270–14281, 1994.

[62] G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron Resonance of Elec-

trons and Holes in Silicon and Germanium Crystals,” Physical Review, vol. 98,

pp. 368–384, apr 1955.

[63] B. Pajot, Optical Absorption of Impurities and Defects in SemiconductingCrys-

tals, vol. 158 of Springer Series in Solid-State Sciences. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010.

[64] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F.

Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue,

K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M.

Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges,

D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M.

120



Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. Müller, O. V. Nau-

menko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva,

C. Richard, M. A. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson,

G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular

spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative

Transfer, vol. 130, pp. 4–50, 2013.

[65] N. Stavrias, K. Saeedi, B. Redlich, P. T. Greenland, H. Riemann, N. V. Abrosi-

mov, M. L. Thewalt, C. R. Pidgeon, and B. N. Murdin, “Competition between

homogeneous and inhomogeneous broadening of orbital transitions in Si:Bi,”

Physical Review B, vol. 96, no. 15, pp. 1–8, 2017.

[66] B. Aspar, M. Bruel, H. Moriceau, C. Maleville, T. Poumeyrol, A. M. Pa-

pon, A. Claverie, G. Benassayag, A. J. Auberton-Hervé, and T. Barge, “Basic

mechanisms involved in the Smart-Cut® process,” Microelectronic Engineering,

vol. 36, no. 1-4, pp. 233–240, 1997.

[67] T. Peach, K. Stockbridge, J. Li, K. P. Homewood, M. A. Lourenco, S. Chick,

M. A. Hughes, B. N. Murdin, and S. K. Clowes, “Enhanced diffusion and bound

exciton interactions of high density implanted bismuth donors in silicon,” Ap-

plied Physics Letters, vol. 115, p. 072102, aug 2019.

[68] J. Li, N. H. Le, K. L. Litvinenko, S. K. Clowes, H. Engelkamp, S. G. Pavlov,

H.-W. Hübers, V. B. Shuman, L. Portsel, N. Lodygin, Y. A. Astrov, N. V.

Abrosimov, C. R. Pidgeon, A. Fisher, Z. Zeng, Y.-M. Niquet, and B. N. Murdin,

“Radii of Rydberg states of isolated silicon donors,” Physical Review B, vol. 98,

p. 085423, aug 2018.

[69] T. Shinada, M. Hori, F. Guagliardo, G. Ferrari, A. Komatubara, K. Kumagai,

T. Tanii, T. Endo, Y. Ono, and E. Prati, “Quantum transport in determin-

121



istically implanted single-donors in Si FETs,” Technical Digest - International

Electron Devices Meeting, IEDM, pp. 697–700, 2011.

[70] G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman, G. Klimeck,

and A. Morello, “Silicon quantum processor with robust long-distance qubit

couplings,” Nature Communications, vol. 8, no. 1, pp. 1–11, 2017.

122


	List of Figures
	List of Tables
	Introduction
	Quantum computing in the solid state
	The Kane architecture
	A gating scheme using silicon donor orbital states

	Motivation for deterministic shallow dopant incorporation into silicon
	Manipulation and readout of group-V donor orbital states
	Thesis summary and outline

	Experimental techniques
	Spreading resistance analysis
	Coherent THz excitation using a free electron laser
	Ramsey spectroscopy setup
	Single pulse FEL spectroscopy setup

	Electrically detected photon-assisted ionisation spectroscopy

	Multi-species donor cluster configuration statistics
	Nearest neighbours in a point process
	Homogeneous point process
	Non-homogeneous variation in 1D
	Gaussian variation in 1D

	Density of specific cluster configurations
	A qubit gate cluster probability
	Heuristic method to approximate cluster probability
	Results of optimising cluster probability

	Conclusion

	Contactless detection of Si:P orbital dynamics in magnetic field
	Coherent light-qubit interaction
	Interaction with light
	Density matrix master equation
	The Bloch sphere

	Ramsey spectroscopy
	Extracting decoherence terms from PTIS data
	Tuning donor orbital states with a magnetic field
	THz spectroscopy of Si:P orbital transitions
	Field dependence of Si:P orbital dynamics

	Conclusions

	Orbital transitions in a Bi impanted SOI device
	Sample preparation
	Spreading resistance profiling

	DC electrical characterisation
	DC characterisation under FEL illumination
	FEL spectroscopy
	Conclusions

	Conclusions and Future work
	Conclusions
	Rapid prototyping of single implanted nanoscale silicon devices
	Electrically detected 3-pulse orbital dynamics


