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ВСТУПИТЕЛЬНОЕ СЛОВО 
Д. И. Блохинцев 

Объединенный институт ядерных исследований, Дубна 

Со времени последнего совещания по "Нелокальной квантовой 
теории поля" прошло три года. Рискуя быть, в некоторой мере, не­
понятыми, мы сохранили это традиционное название "Совещание", ко­
торое является уже четвертым по счету. 

Как вы знаете, уже на прошлых совещаниях круг рассматри­
ваемых вопросов был значительно шире, нежели это указано в наз­
вании. 

На самом деле мы рассматривали ранее и хотели бы рассмот­
реть теперь самые острые и злободневные вопросы современной тео­
рии квантовых полей, 

Я повторяюсь,и тем не менее подчеркну, что традиционное нгз-
вание нашего совещания призвано отметить нашу готовность серьез­
но обсудить и те направления в теории поля, которые выходят за 
рамки общепринятых. 

Более конкретно я мог бы сказать, что мы готовы доброжела­
тельно выслушать и тех теоретиков, которые выражают сомнение в 
том, что основное соотношение локальной квантовой теории поля 

[У*», 4(Vl.-0 , (*-%)г* О (I) 
должно почитаться священным. 

Мы готовы выслушать и тех, кто предлагает пересмотреть са­
мую основу основ современной теории - геометрию микромира. Геомзт-
рию, которая в ее теперешней форме повторяет геометрию макромира. 

Особое внимание на этот раз будет уделено тем направлениям 
в разработке методов квантовой теории поля, которые выходят за 
рамки теории возмущений, - будем называть такого рода методы в тео­
рии поля существенно нелинейными. 
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В основе толерантного подхода, характеризующего самый дух 
нашего совещания, лежит глубокое убеждение в том, что в конечных 
системах, каковыми являются элементарные частицы, не должно бы 
появляться расходящихся, бесконечных величин. Однако они появляют­
ся, и притом самым настойчивым образом. 

Насколько я ivory судить, в этом вопросе существует некоторое 
расхождение взглядов мегщу физиками самого старшего и современно­
го поколений. 

Так, П.А.М. Дирак исключил из своей монографии метод бес­
конечных перенормировок полей, считая этот метод временным, пре­
ходящим приемом вычислений. Р. Фейнман подчеркивал, что перенор­
мировка -"не что иное,как способ замести мусор под ковер"... 

Однако действительное положение сейчас таково, что без пе­
ренормировки не сделаешь и шагу. По этой причине активно работаю­
щие молодые теоретики не столь беспокоятся о расходимостях, как 
это свойственно старшим, и отлично оперируют методами перенорми­
ровок. 

Не говоря уже о том, что многие важные успехи теории были 
достигнуты на совсем ином пути,- на пути применения феноменоло­
гических методов. Среди достижений этого направления следует отме­
тить такой важный подход,как "счет кварков", приведший к доказа­
тельству сложной структуры элементарных частиц- адронов. 

Возвращаясь к теории поля и настаивая на том, что"Карфаген 
расходикостей"должен быть уничтожен, я думаю, что мы находимся 
перед дилеммой, которая вдет своего прояснения: расходимости мо­
гут быть ликвидированы на пути глубокого изучения вакуума как сре-
ды,не отделимой от элементарных частиц, на пути построения мето­
дов обращения с существенно нелинейными теориями, выходящими за 
рамки теории возмущений. 

Работы, проведенные у нас еще в 50-х годах и посвященные 
сильно взаимодействующим и существенно нелинейным полям, основаны 
на представлении поля в виде 

где сильное поле Ф(х) может рассматриваться как среднее по 
вакууму или по одночастичному состоянию, а поле <f(x) описывает 
малые квантовые флуктуации поля и указывав!' на существование эф­
фектов, не допустимых компетенции теории возмущений. Например, 
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волна поля с массой, равной нулю, может обращаться вокруг заря­
да, квантовое поле может проникать через барьеры в функциональном 
пространстве и многие другие нелинейные эффекты. 

В последнее время получили развитие существенно нелинейные 
модели частиц, известные ныне под названием солитонов - уединен­
ных частицеподобных образований из поля. 

Если верить КВВЯТОЕОЙ теории поля, то такие образования, 
видимо, могли бы обуславливаться сильной поляризацией вакуума. 
Обсуждению этих важных и крайне интересных работ, посвященных ме­
тодам расчета таких моделей, будет уделено большое внимание на 
нашем совещании. 

Другое направление - ето построение нелокальной теории поля, 
т.е. такой теории, в которой соотношение (I) обобщается тем или 
иным способом. 

В этой связи можно отметить два подхода к проблеме: 
а) формальный, основанный на введении нелокальных формфакторов 
(Г.В. Ефимов) и 6} более глубокий и радикальный, основанный на 
идее изменения геометрии в микромире, на перех:лг.г к стохастичес­
кой геометрии, в которой координаты точечного события *Р(х) рас­
сматриваются как некоммутирупцие операторы ' .'« : 

Знак - указывает на две возможности, из которых первая ведет к 
, Г - геометрии, вторая, значительно более изученная (В.Г. Када­
шевский), исходит из идеи кривого импульсного пространства. 

На нашем совещании мы услышим об успехах, сделанных и в 
том и в другом направлениях. 

Большая часть программы настоящего совещания будет посвяще­
на выяснению той важной роли, которую играет учет динамических 
симметрии при построении квантовой теории поля. Изучение такого 
рода симметрии позволило в последние 10-15 лет достигнуть боль­
ших успехов в самых различных областях квантовой теории поля. 
Здесь прежде всего следует отметить известные достижения в пост­
роении единых калибровочных теорий сильного, слабого и алектро-
магнитного взаимодействий влементарных частиц, изучение супер­
симметричных моделей и успешное описание низковнергетической 
адронной фивики с использованием алгебры токов, & -моделей и 
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квантовой киральной теории поля. Тесно связаны с изучением и уче­
том динамических симметрии и вопросы,касающиеся построения лагран­
жианов,приводящих к устойчивым изолированным решениям - сольтонам; 
построения ряда дуально-резонансных моделей (например,модель Нг-
вию-Щварца);и,наконец,плодотворное совместное использование идеи 
киральной симметрии и модели кварков для описания различного рода 
распадов адронных резонансов. 

Ваше совещание, в существенном,- совещание теоретиков. 
Это обязывает нас особенно основательно учитывать тот ог­

ромный прогресс, который произошел за последние три года в облас­
ти экспериментальной физики. 

Идея о сложной структуре элементарных частиц имеет уже боль-
шу.а историю, начинавшуюся со времени классических работ Э. $ ер-
ми и, особенно, С. (Закаты. Однако только теперь эта идея стала 
убеждением всех физиков. 

Открытие глубоконеупругих процессов принесло доказательство 
существования внутри элементарных частиц точечных объектов -
кварков. Каковы бы ни были сейчас взгляды теоретиков на эти новые 
структурные элементы - в частности, считать ли их субэлементарны­
ми частицами или возбуждениями адронов,не существующими вне ад-
ронной материи,- эти объекты являются теперь неотъемлемой частью 
физической реальности. 

Среди физиков,пожалуй, именно С. Саката особенно настойчиво 
настаивал на том, что в учении о строении материи прогресс всегда 
был связан с открытием новых структурных элементов. 

Эта идея в ее наиболее примитивной форме наводит на мысль 
об уподоблении частиц известной русской игрушке "матрёшке" или 
вырезным китайским шарикам один ч у три другого. 

Отсюда один г яг до представления о том, что мы и в дальней­
шем будем встречаться с новыми точечными объектами. 

Ясно, что при этом расходимости, свойственные локальной тео­
рии, перемещались бы на все более глубокие и глубокие слои мате­
рии, переходя в область все меньших и меньших пространственно-
- временных масштабов. И так без конца. 
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С чисто методологической точки зрения такая концепция не 
дает оснований для требования немедленного устранения бесконеч­
ностей. Так, никто не нервничает по поводу того, что мы не знаем, 
что творится на границах Вселенной. 

Однако история развития физики учит, что переход на другой 
уровень строе шя материи обычно сопровождался и изменением зако­
нов движения. 

М.А. Марко.з обратил внимание на то, что в области крайне ма­
лых масштабов, порядка 

Д = т * - ~ / ( ? - г 

гравитационное взаимодействие должно ограничитьвс.—-дай рост масс 
с^бчастиц массой гравитационного "максимона" 

Работы, посвященные квантовой теории гравитации и учету ее воз­
можной роли в мире элементарных частиц, составляют одну главу 
программы нашего совещания. 

Представляется весьма интересным то, что удалось применить 
методы игральной теории поля, первоначально развитые для тон­
ной низкоэнергетической физики, к квантованию гравитационных по­
лей. 

Имеются определенные успехи и в квантовании полей в искрив­
ленных пространствах. 

Можно ожидать, что ограничения на массу субчастиц наступят 
ранее, нежели это оценивается из гравитации. Ияенно ограничение 
на массу субчастиц z возможное изменение геометрии в малом мож­
но связать с предположением о существовании "слабого максимона" 
с массой П р , определяемой характерной для слабого взаимо­
действия длиной А р : 

% 41WV м,-± -22 

Лг~Щ)=«> - - " ' - f c - * 0 -
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Вытекающие из такой идеи геометрическая концепция и возможные ее 
следствия будут предметом обсуждения на этом совещании. 

Если ранее можно было лишь теоретически предполагать, что 
слабое взаимодействие может стать сильным (сравниться с электро­
магнитным) , то теперь рост сечений слабого взаимодействия экспе­
риментально доказан. Доказано также существование нейтральных то­
ков, что существенно дополняет картину слабых взаимодействий. 
Есть указание на существование тяжелого лептона t (масса 1,8 
ГэИ), распадающегося по каналу с —*• £+/ . 

Однако по-прежнему проблема различия масс электрона и мюо-
на остается вызовом теоретикам. 

В теоретическом аспекте эта проблема получила обещающее раз­
витие в концепции калибровочной теории с учетом спонтанного рас­
щепления вакуума (работы Вейнберга, Салама и др.). 

В направлении объединения полей в единое поле развивается 
концепция суперсимметрии, объединяющая в едином суперполе спинор-
ные и бозонные поля. 

Мы будем обсуждать здесь развитие этих направлений. 
Несмотря на все остроумие и привлекательность этих идей, 

было бы, видимо, преждевременным утверждать, что они бесспорно 
решают существенные задачи: проблему объединения полей в единой 
концепции и „ М - е " - проблему. 

М - мезон есть частица нестабильная. Не является ли это 
намёком на то, что она должна быть частицей сложной, на то, что 
внутри нее должно иметь место некоторое движение, дающее повод 
для ее распада? 

Другая сторона дела заключается в том, что мир адронов и 
мир лептонов продолжают оставаться не соединенными между собою, 
причем наличие субэлементарных объектов - кварков,как будто не 
помогает избежать этой обособленности. 

В настоящее время интересы теоретиков, кажется,более сосре­
доточиваются на проблемах, структуры адронов,нежели лептонов. 
Этот интерес был особенно стимулирован открытием семейства Ц/-
-частиц. Специальное обсуждение этих новых членов семейства мезо­
нов не входит в программу нашего совещания. 

Два дня отводится для обсуждения дуально-резонансных моде-
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лей адронов, тесно связанных с теорией любопытного объекта -
релятивистской струны, и кварковых моделей протяженных частиц. 
И то и другое получило своё начало в ранних работах дубненских 
теоретиков: теория релятивистской струны восходит к ранним рабо­
там Н.А. Черникова и Б.М. Барбашова, простейшая кварковая модель 
нуклона- к работе Н.Н. Боголюбова. 

В этом же разделе совещания будет также обсуждаться проблела 
"мешка" для кварков. Как известно, такое название получили моде­
ли элементарных частиц,претендующие на объяснение невозмокности су­
ществования свободных кварков. Эта проблема будет рассмотрена 
как с точки зрения моделей, так и на основе теории поля. 

Я заканчиваю свой вводный доклад в надежде, что он поможет 
ориентироваться участникам совещания в большой программе, подле­
жащей обсуждению в эти немногие дни совместных дискуссий. 
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I. 

Конструктивная и нелокальная теории поля 
CONSTRUCTIVE AND NONLOCAL 

QUANTUM FIELD THEORIES 



НЕЛОКАЛЬНАЯ КВАНТОВАЯ ТЕОРИЯ ПОЛЯ 
Г.В.Ефимов 

Объединенный институт ядерных исследований, Дубна 

За время, прошедшее с Ш Международного совещания в Алуш­
те в 1973 году, в теории, описывающей нелокальные взаимодействия 
квантованных полей, получены следующие результаты: 

(1) оказалось, что ^-матрица, описывающая нелокальные 
взаимодействия, удовлетворяет условию микропричинности' '; 

(2) в рамках теории возмущений завершено построение 
нелокальной спинорной электродинамики' '; 

(3) доказано, что для определенного класса лагранжианов 
взаимодействия ряды теории возмущений сходятся в евклидовой об­
ласти' 6' 7'; 

(4) оказалось, что методы, развитые в нелокальной теории, 
могут быть использованы для полевого описания кварков'8'. 

Таким образом, к настоящему времени полностью заверше­
но построение в рамках теории возмущений S -матрицы, описыва­
пцей фактически произвольные нелокальные взаимодействия скаляр­
ных полей, спинорную электродинамику, а также предложен метод, 
позволяющий изучать электромагнитные взаимодействия с высшими 
спинами. 

Прежде всего кратко остановимся на основных идеях постро­
ения теории нелокальных взаимодействий скалярного однокомпонент-
ного поля (р(°с) ' '. Предполагается, что скалярные частицы 
описываются лагранжианом некоторого общего вица: 

(I) 

где 

-*'& = J Wy{"j) • (3) 
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Лагранжиан gB 0х) , описывающий невзаимодействующее поле, 
является обычным, так что невзаимодействуидие частицы описывают­
ся стандартными методами фоковского пространства. 

В лагранжиане взаимодействия функция U(u) аналогична 
в точке К —О ,а в остальной - достаточно произвольная, 
например: JJ(u)~ #^ %*, U3e~*'t —У— t &3— и т.д. 

Идея введения нелокального взаимодействия состоит в том, 
чтобы в лагранжиан взаимодействия (3) вместо поля (Р(<х) ввести 
"размазанное" с помощью некоторого формфактора К(эс-х') поле 
ФС*): 

lf(x) =» ф(*) = fa'К(х-х<)<р(*') , ( 4 ) 

так что 

aU(<f(*))^><jU(<t>(*)). 
(4») 

Однако, если в качестве формфакторов выбирать функции вида 
и т.д., *r«v= ^-[Ир?]'] 

то в теории с таким формфактовом оказывается ряд серьезных 
трудностей (см., например/ °'), практически закрывающих та­
кой способ ее модификации. 

Наш метод построения теории нелокальных взаимодействий 
опирается на два основных пункта: 

1) формфакторы /С(а:-х') должны быть выбраны из класса 
аналитических функционалов; 

2) формфактор должен быть прокван?ован. 
№ выбираем формфактор /С(х-х') из класса, для кото­

рого справедливо представление 
W, К(х-х')= К(£гп)£ (*-*'), (5) 
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где К(£) '• 
I) целая аналитическая функция в комплексной 2 -плоско­

сти некоторого порядка роста (конечного или бесконечного); 

з) (К(г)Г~ KfeV; 
4) / f ' ( h n k / ) •=• / — условие нормировки. 

Такой выбор формфактора соответствует следующей интуитив­
ной физической картине. Рассмотрим потенциал взаимодействия двух 
точечных покоящихся частиц, расстояние между которыми равно Z . 
Взли этот потенциал обусловлен обменом какгоммибо физическими 
частицами (фотонами, 3f-мезонами и т . д . ) , то такой потенциал 
убывает при £ -* -со не быстрее, чем линейная экспонента, а 
фурье-образ его имеет особенность в импульсном простран­
стве. Так, например. 

/?г 

1 
п,г+*г 

J -/W2 
(6) 

тг-А-9*+/ег 

Наш выбор класса формфакторов соответствует тому, что мы вводим 
потенциалы, убывающие быстрее любой линейной экспоненты. Таким 
образом, они не могут быть обусловлены обменом ка­
ких-либо физических частиц. Математическим выражением этого ут­
верждения является то, что фурье-образ потенциала является целой 
функцией в импульсном пространстве. Например, 

/г| г -г-» г релятивистский вУ^а^ 
ё Т ) = * <? случай . / Г С - Ч о 

Для функционала КСХ) • удовлетворяющего перечислен­
ным выше условиям, справедливо представление 
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гце интегрирование в последнем интеграле проводится по евклидову 
пространству Р"~ ft. •*$ • Наиболее существенным обстоятельст­
вом является то, что определение функционала требует выхода в 
комплексную плоскость по времени зс„~* Sf^-t-г'Х^ 

Под квантованием формфактора /((ZK.-X'J, понимается 
следующее' *'. Вместо "размазанного" поля *Р(Х) в (4) мы 
вводим систему полей 

Ф(Х) ^ Ф%)=Z(-f/j&$ (-). ( 8 ) 

где д - некоторый параметр регуляризации. Поле фиктивных 
квантов (р(х) (S- f,2,2>--) является скалярным полем с массой 

rf(0 = n*(/+f) (j*W.-.)t (9) 

где €Г- некоторое число, зависящее от порядка роста формфактора 
и удовлетворяющее перестановочным соотношениям с индефинитной 
метрикой: 

fy*.*), %: (**)]_ ' Щ'№^>. ш 

При Ь-*-0 tfyffj-* о о , это означает, что если мы всегда рас­
сматриваем состояния с фиксированным значением энергии £~ , 
то для любого фиксированного t: всегда найдется такое 
малое о>0, что данное состояние не будет содержать ни одного 
фиктивного кванта. 

Коэффициенты А:($/ подобраны таким образом, что 
О 
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o O 

' <* (II) 

—* ^ f r V ^ ; . 
Введение таких фиктивных полей позволяэт в интегралах, 

определяющих любые матричные элементы о -матрицы, перейди 
к евклидовой метрике по всем внутренним интегрированиям, так 
что в пределе S - > 0 сходимость интегралов будет обеспечена, 
поскольку формфактор убывает в евклидовом направлении. 

Изложенный подход позволяет построить S-матрицу, конеч­
ную и унитарную в каддом порядке теории возмущений, как предел 

S — &^ S (12) 
Об этом говорилось на предыдущем совещании' 9 ', и мы не будем на 
этом более останавливаться. 

Микропричинность 

Остановимся подробнее на условии причинности. Это условие 
призвано ооеспечить такую ситуацию, при которой всякое событие, 
происшедшее в системе, могло бы оказывать влияние на ход раз­
вития системы лишь в будущем, но ни в коем случае не влиять 
на. прошлое.- Следует заметить, что если бы в квантовой 
теории поля . уравнение Уредингера в представлении взаимо­
действия или уравнения Томонага-и1вингера 

г!-
S&(x) L J О J " (и) 

:SM~j%(*>sk«] 
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имело математический смысл, то условие причинности было бы 
автоматически выполнено как непосредственное свойство этих 
уравнений. 

Однако в силу известках трудностей теории (теорема Хаага 
и существование представления взаимодействия, ультрафиолетовые 
расходимости),мы не моэсен быгь уверены,что после регуляризация 
различного рода сингулярных выражений в матричных элементах 
S -матрицы полученнаяS-матрица будет автоматически удовлетворять 
всем необходимым условиям. 

Математически условие причинности наиболее четко было 
сформулировано Боголюбовым (см., например/ 1 2 ' ) и записывается 

Sfrtf-SfyWfi], (14) 

если S«f>f>9t 3 ? Wffifa • 
Здесь предполагается, что константа связи а в (13) заменяется 
Функцией $(ж) > которая может быть выбрана отличной от 
нуля в любой четырехмерной области пространства-времени IR • 

Условие (14) можно записать в дифференциальной форме 

^'-Щ/)-° при ОС ̂ = у , (15) 7 
Для проверки условий причинности (14) или (15) необходимо знать, 
каков характер обобщенных функций 

<<*1РС*>з)1р>> (к) 
где \oty и \ру - некоторые произвольные физические состояния. 

В случае используемых нами формфакторов (5) обобщен­
ные функции (16) определены только на пространствах целых анали­
тических функций, как видно из простейшего представления (7). 
функция включения взаимодействия $(ж) в (14) также должна 
принадлежать пространству основных функций, является целой и 
не может быть отличной от нуля чи/шсо на некотором ограниченном 
в |R V носителе. Поэтому условия (14) или (15) в нашем случае 
непосредственно проверить нельзя. 
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Наше определение условия причинности основано на следую­
щей идее. В случае локальной теории , построенной в ршлках обоб­
щенных функций умеренного роста, каждый матричный элемент (16) 
имеет своим носителем конус будущего (i = o): 

\/+=[х: ос^О,осг^о\ (17) 

В случае формфакторов, удовлетворяющих перечисленным выше усло­
виям, оказывается, что аналитические функционалы 

заданные на пространствах целых аналитических функции f(z) , 
могут быть расширены на пространства функций, аналитических 
на множестве 

V++ifc с(Г\ (19) 

Другими словами, область интегрирования в (18) в коммексном 
пространстве (£ может быть расположена таким образом, что 
ее проекцией на вещественное пространство / Р является конус 
будущего V* • 

Поэтому о -матрицу, матричные элементы которой удовлет­
воряют этому условию, также можно считать микропричинной. 

В работе^ ' показано, что это условие может быть сформу­
лировано на языке так называемых проектирующих последовательно­
стей, основные свойства которых следующие. Последовательность це­
лых функций I L f ? ) ! называется проектирующей, если 

I) ^ъ\Ы) - Целая в €* при Х>07 

ь+о /*-*v os \fb(x-*i*).xeGcR Нх-*ц)> где ф(&) - некоторая достаточно произвольная функция, анали­
тическая в (?-t-i/R 
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Тогда условие микропричинности о -матрицы, матричные 
элементы которой являются аналитическими функционалами, называ­
ется микропричинной, если 

(20) 

для любых проектирующих последовательностей, для которых 

В работе' *' показано, что О -матрица, построенная об­
суждаемым методом, удовлетворяет сформулированному условию микро-
причиннсюти. Следует, оцнако, подчеркнуть, что сформулированное 
условие в какой-то мере является формальным. Вопрос о причинности 
может быть недвусмысленно решен лишь в теории, где математический 
аппарат допускает корректную постановку задачи Коши. В нашем 
случае мм, возможно, имеем обобщение уравнения Щредингера в фор­
ме * 

-г 
которое допускает причинное развитие волновой функции г ft) 
во времени. Однако реальной операторной реализации уравнения (21) 
пока найти не удалось. 

Во всяком случае, полученная нами о -матрица удовлетво­
ряет всем условиям какропричинности, известным вплоть до настоя­
щего времени. 

Спинорная электродинамика 

Обычно лагранжиан спинорного поля Ч^(х) > взаимо­
действующего с электромагнитным Ам(х) , выбирается из требо­
вания градиентной инвариантности, согласно которому он должен 
быть инвариантен относительно группы градиентных преобразований 
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-7f/(x) (22) 

^(x) ^ f(X)e r ; ( 2 2 ) 

где €. обозначает заряд поля y Y * ^ . В этом скысле заряд € 
является единственной электромагнитной характеристикой спинор-
ного поля, которая не может быть вычислена в теории. 

Наше нелокальное обобщение теории электромагнитных взаимо­
действий состоит в следующем. № вводим вместо (22) группу: 

где формфактор ^(X-JC'J удовлетворяет условиям (5) при /77=0. 
Таким образом, в (23), кроме заряда €? , поле электронов 
характеризует функция \({х.-х'), которая непосредственно связана 
с некоторым заданным извне распределением заряда электрона. 
Действительно, если считать, что у(х) не зависит от эса , 
го тогда 
]*>*'№•*№)= K(?a)f&)= К (&№*)= 

= ftn'#(2-£')ffr'), < 2 4 > 
где Kfty) , JyS * '?*#(*?) 

имеет смысл функции распределения заряда. 
Параметр £ в /({{Д)же является "элементарной дли­

ной", под которой обычно понимается некоторая новая фундаменталь­
ная постоянная размерности длины, одинаковая для всех полей и 
процессов. В нашем подходе каждое поле заряженных частиц может 
характеризоваться своими параметрами е* , с и /С(х - х ' ) , 
поскольку, вообще говоря, каждая частица может иметь свой собст-
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венный заряд и его пространственное распределение, отличающиеся 
от других частиц. 

В случае спинорной электродинамики полный лагранжиан спи-
норного и электромагнитного полей, инвариантный относительно 
группы (23), имеет вид: 

где 

Используя методы, развитые в теории скалярного поля, т.е. 
должным образом квантуя п о л е ^ , ^ а г ^ = ^ > ^ С^,*) • получаем 

Г т с ,л »S, S = TtxpJieJofocJ^ (oc)j (26) 

При изложенной модификации электродинамики в ряду теории возму­
щений меняется лишь пропагатор фотона 

JEL =? Je-Ik(K*t)f= 9,<У(-*гО 
K*+il KZ+itL / j

 K 2 H l - • (27) 
Поэтому будут сходиться интегралы, соответствующие всем тем 
диаграммам Фейнмана, гце в каждый цикл интегрирования будет вхо­
дить,по крайней мере, один пропагатор фотона. Единственной расхо­
дящейся диаграммой будет лишь поляризация вакуума, показанная 
на рис. I. 
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Рис. I. 

Для ее регуляризации монно воспользоваться различными методами. 
Нам кажется наиболее предпочтительной регуляризация Паули-Вил-
ларса по циклу с дополнительными условиями. В принципе, можно 
ввести фиктивные заряженные поля, при помощи которых можно ма­
тематически реализовать эту регуляризационную процедуру на языке 
операторов. 

Таким образом, в рамках сформулированных правил сходятся 
все интегралы, соответствующие любым диаграммам Фейниана в спи-
норной электродинамике. 

В рамках построенной нелокальной электродинамики ш об­
судим следующие вопросы: 

1) собственная энергия электрона и принцип соответствия 
(классический предел при А - > О ); 

2) форифактор, его выбор и однозначность; 
3) величина элементарной длины г: 

а) теоретические оценки, 
б) экспериментальные оценки. 

Вплоть до настоящего времени в литературе (ск. например, 
) утверждалось, что собственная энергия электрона в класси­

ческой и квантовой теории поля имеет различную природу. Обычно к 
такому выводу приходят при сравнении выражения для собственной 
массы электрона во втором порядае квантовой электродинамики: 

2 

с классической собственной энергией электрона 

2Сг?а ' (29) 
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где Z0 - Радиус обрезания, а V- безразмерный параметр, 
учитывающий распределение заряда электроно. 

Из сравнения (2Н) и (29) видно, что переход 1\->0 в 
выражении (28), соответствующий переходу к классическому пределу, 
приводит к явно бессмысленному результату, поэтому говорить о 
принципе соответствия в данном случае не имеет смысла. 

Основой трудностей в этой проблеме является то обстоя­
тельство, что современная как классическая, так и квантовая 
электродинамика имеет дело лишь с локальными взаимодействиями, 
где параметр ? 0 принципиально отсутствует. Поэтому собствен­
ная энергия электрона бесконечна как в классическом, так и в кван­
товом случаях и следовательно, сама постановка вопроса о вы­
полнении принципа соответствия является бессмысленной. Перенор­
мированная квантовая электродинамика этот вопрос фактически об­
ходит, так как имеет дело лишь с наблюдаемыми массой и зарядом 
электрона. Поэтому справедливость принципа соответствия в пробле­
ме собственной массы электрона может быть установлена лишь в 
нелокальной теории, где параметр 10 может быть введен непроти­
воречивым образом. Или же т должны выйти за рамки чистой 
электродинамики, ввоця в рассмотрение новые поля типа гравитацион­
ного и т .д . Ниже ки будем обсуждать только первую возможность. 

В связи с этими выводами возникает вопрос: откуда появи­
лась формула (28) и какие предположения лежат в ее основе? 

Обычно формула (28) получается в рамках регуляризации 
Паули-Вилларса, которая состоит в том, что свободный пропагатор 
фотона заменяется выражением 

/ / / I 2 

fcz+ii к\ц AZ-K2-U ' (зо) 

Здесь / I - импульс обрезания, связанный с радиусом обрезания 
£„ соотношением 

Замена (30) означает, что теория становится нелокальной. Однако, 
если мы хотим рассматривать теорию при конечных / \ , то при 
энергиях, превышающих А • унитарность о -матрицы нарушается, 
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В заключение отметим важность трансформационных 
свойств / 1 9 / , / 2 0 / , полученных нами для двухвременных 
функций Грина. Нетрудно видеть, что аналогичными свой­
ствами обладают квазипотенциалы, амплитуды рассеяния 
вне массовой поверхности, а также волновые функции 
связанных состояний. Используя их, можно значительно 
упростить задачу определения ядер трехчастичных урав­
нений в приближении парных взаимодействий. В частнос­
ти, с этой целью рассмотрение $4 достаточно проводить 
в системе, где полный поперечный импульс двух частиц 
равен нулю, несмотря на то, что в трехчастичных урав­
нениях он произволен. 

Авторы выражают глубокую благодарность Н.Н.Бо­
голюбову, А.А.Логунову, а также В.Г.Кадышевскому, 
P.M.Мир-Касимову, А.Н.Сисакяну, Л.А.Слепченко за пло­
дотворные обсуждения. 
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Поправка к массе во втором порядке теории возмущений, соответст­
вующая диаграмме Фейнмана, показанной на рис.2, определяется ин­
тегралом, где уже проведен переход к евклидовой метрике и выпол-

Рис. 2. 
нены интегрирования по евклидовым углам 

,2 
Sm- -& • £ / * ЦН$*)п(«>, 

(34) 

М(")=2к + (<-ги){^1 

Взли воспользоваться представлениями (27) и (24), то интеграл 
в (34) можно представить в форме 

= £ fife 6&Мм)№), №> 

где ^ 

**>-£?№"мер)-
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Отсюда немедленно следует, что 

Stfl, — < (37) 
е\ (и?л $Ш1)_ е* ТАМ; 7', 

Таким образом, формула (34)(или (35)) имеет пределы (28) и (29) 
соответственно в квантовом (с4£%) и классическом (t~» %) 
пределах. 

В высших порядках теории возмущений в (33) оказалось, 
что 

\Ht1\ к Ш j^> о(Щ 
для всех / 7 ^ 2 » т а к ч т о 

&* £» « £. /̂ //У/i. L WX 2
( 3 8) 

Итак, принцип соответствия выполнен в рассматриваемой нами кван­
товой электродинамике с нелокальным взаимодействием. 

Обсудим теперь вопрос о том, существуют ли какие-либо 
принципы физического или математического характера, которые 
позволили бы выбрать формфактор У(-кг?г)—1К(кгег)] однознач­
но. Оказывается, что такие принципы существуют. Выше мы видели, 
что в классическом пределе полная поправка к массе (37) опреде­
ляется линейным функционалом от формфактора V(t>() • 

J L J 2(2ffc4 J ^ • <39) 
О 

Физически естественно поставить задачу: найти такие формфакторы 
]/(-*гС } , для которых поправка к массе (39) принимает наимень­
шее возможное значение при заданном С . 
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Математически следующая задача имеет решение: среди целых 
функций l/fz) порядка роста О — g- и типа & , удовлет­
воряющих условиям: 

(а) V(0)=/, 

(б) \/(х) — /1{(-х)1 н а вещественной полуоси 04Х**0, 

(в) f&rf*)* °°' 
о 

найти функцию, минимизирующую функционал (39). 
Решение этой задачи дается функцией 

или при ^~2. <л К0~0 

К(-гг?г) = Sin №г£г 

.Г^гТг • (41) 

Этот формфактор описывает равномерно заряженную сферу радиуса 

¥' • 
Таким образом, сформулированный принцип позволяет выб­

рать формфактор однозначно. 
Остановимся теперь на проблеме: какова величина параметра 

с — размера распределения электрического заряда электрона. Сна­
чала обсудим, какие теоретические соображения могут быть исполь­
зованы для определения этого параметра теории. Поскольку мы 
рассматриваем только спинорную электродинамику, то естественно 
считать, что как математическая модель спинорная электродина­
мика должна быть внутренне математически замкнута, т.е. ее сле­
дует рассматривать изолированно от существования .других полей и 
частиц. Тогда параметры, определяющие электромагнитные взаимо­
действия €, т я с должны быть как-то связаны между со­
бой. В этом подходе естественно предположить, что масса электрона 
имеет чисто электромагнитное происхождение, т.е. 

а т =•/?? (42) 
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Воспользуемся формулами (33) и (37) и предположим, что по поряцку 
величины 

гп ^ от, г= /п — <* £п J-
** те ' (43) 

Математически это предположение не вполне корректно, поскольку мы 
выходим за границу применимости теории возмущений, однако ничего 
другого в настоящее время предположить не можем. Все известные 
способы суммирования расходящегося ряда приводят к соотноиению 
типа (43). Поэтому можно считать, что 

а. 

*-£'=~М<°-~+#'т), (44) 

где О. - некоторая постоянная, не очень отличающаяся от единицы. 
Полученное число столь мало, что даже возникает чисто философская 
проблемаi а могут ли вообще существовать такие числа? Поэтому 
к полученному значению величины £ можно относиться по-разному. 
Вс-первых, можно ожидать, что спинорная электродинамика как 
замкнутая теория является локальной теорией. Во-вторых, получен­
ное значение с (44) явно указывает на то, что спинорная электро­
динамика не может быть физически "тмкнутой теорией, т.е. касса 
электрона должна иметь неэлект магнитное происхождение. _ 

Остановимся теперь на оценках величины параметра с , 
которые следуют из эксперимента. К настоящему времени еще не 
обнаружено ни одного экспериментального эффекта, который не опи­
сывался бы локальной квантовой электродинамикой. Поэтому в 
настоящее время можно установить лишь верхнюю границу на вели­
чину с , предполагая, что возможная добавка, происходящая за 
очет нелокальности взаимодействия, не превышает экспериментальных 
ошибок. 

При проверке локальности квантовой электродинамики в 
экспериментах атомной физики для обнаружения каких-либо откло­
нений на субядерных расстояниях необходима очень высокая точность 
измерений. Такая точность достигается при измерении аномальных 
магнитных моментов электрона и /И -мезона, а также при определеьии 
лэмбовского сдвига уровней водородоподобных атомов. 
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Вклад в аномальный магнитный момент за счет нелокального 
взаимодействия дается формулой 

А^М1-гт'1')- (45) 

Экспериментальные значения аномального магнитного момента для 
электрона и № -мезона даются выражениями 

Л / С =£ - 0,32М&) +(&*±&*)(р) ̂  
(46) 

Afi!L = # +qKsnfcf+(u±2s)(£f 
и полностью объясняются локальной квантовой электродинамикой''1'6' 
Сравнивая формулу (45) с экспериментальной ошибкой в (46), полу­
чим; 

Рассмотрим теперь поправку к лэмбовскому сдвигу водородо-
подобных атомов за счет нелокальности электрона. Расчет для 
разности энергий уровней 2s,, и 2/ty для водорода дает 

, 3_ , 2/>г. 

где Rtf~ ~zT ~ постоянная Ридберга. Экспериментальное зна­
чение лэмбовского сдвига, согласно данным, приведенным v ' , 

Mot 

ЛЭ1 
равно 

A£(2sJi-2/^i) =(1057,912 + 0,011) ИГц/с (49) 

и полностью объясняется локальной теорией. Отсюда легко получить, 
используя (48) и экспериментальную ошибку в (49), что 

£ ^ 2,3 • 10Г13см. (50) 
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=[î vvj- л/^v; 

Полученные оценки (47) - (50) говорят о том, что преце-
зионные измерения в атомной физике еще недостаточны, чтобы по­
чувствовать размер электрона порядка Ю - 1 5 + П Р ™ см. 

Более жесткие ограничения на величину размера электрона 
могут быть получены из экспериментов по рассеянию электронов 
при больших энергиях. Поскольку электромагнитные процессы типа 
е'е~—* е~е~ t е^е - -» -е*е~ , е +е~ —*•/•'*/*' 

даже при высоких энергиях, достижимых в настоящее время, описы­
ваются низшими порядками теории возмущений, то отношение сечений, 
подсчитанных в локальной и нелокальной теории, будет даваться 
формулой 

<э>ч I " ' " ' /j ' J ' ' " ' (51) 

где - полная энергия в системе центра масс. 
Наиболее жесткая оценка получается из экспериментов по рассеянию 
е*е~^*€+е~ при Й/^ООО Mai/ 1 6 ' , откуда следует 

/ О ; i • 10Г 1 5 см. (52) 
е 

В заключение можно сказать, что спинорная электродинамика 
с нелокальным взаимодействием не содержит ультрафиолетовых рас-
ходимостей и удовлетворяет всем требованиям квантовой теории поля 
и в этом смысле математически более последовательна , чем ее 
локальный вариант. 

Сходимость рядов теории возмущений 

Рассмотрим модели, описывающие нелокальное самодействие 
скалярного поля, для которых в лагранжиане взаимодействия (3) 
функция U(у-) определена при всех — <=-=<#<: <̂=> и убывает 
при ^ - » ± - с о так,что 

< с , ° • (53) 

Пусть нелокальность вводится во взаимодействие,как описано выше 
(см. формулы (4) и (4*)), а формфактор в (II) выбран таким об­
разом, что в евклидовом пространстве 
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7)(o) = -L (JklMlt 
(54) 

Тогда оказывается, что в евклидовой области сумма всех связных 
диаграмм Фейнмана, соответствующих любому матричному элементу 
.S -матрицы, сходится в некотором круге сходимости Я ^Якрчтич) 

где Q K D H P J M зависит от формфактора ff(-k^fk) и вица 
функции взаимодействия U~(v) 

Доказательство этого утверждения впервые проведено 
в работе ' 6 ' , где были применены методы статистической физики. 

Другое доказательство было дано в работе^ ' на основе 
полученного неравенства на сумвд всевозможных связных диаграмм 
в П. -ом порядке теории возмущений. 

Дальнейшая задача состоит в том, чтобы посмотреть , 
что происходит с амплитудами физических процессов при продолже­
нии в физическую область. Два факта - ряд теории возмущений, 
во-первых, сходится в евклидовой области и, во-вторых, в физичес­
кой области S" -матрща унитарна в каждом порядке теории возмуще­
ний - вселяют надежду, что, возможно, на этом пути удастся 
получить первую нетривиальную модель релятивистски инвариантной 
квантовой теории поля, удовлетворяющую всем необходимым аксиомам 
квантовой теории поля. 

К в а р к и 

В рамках изложенных выше методов квантовой теории с нело­
кальным взаимодействием можно довольно естественно решить 
основную проблему теории кварков: как в рамках квантовой теории 
поля запретить рождение кварков в процессах сильных взаимодейст­
вий. Действительно,пусть поле свободного кварка &(*•) описывается 
уравнением Дирака 

(р-/*)£(*)= О, (55) 
где М - масса кварка, знак О. пробегает значение 1,2,3, если 
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мы предположим, например, симметрию S(/(3/ сильных взаимодейст­
вий. Взаимодействие мезонного октета Mag(*) с полем кварков 

<?л(х) может быть записана, например, в форме 

ffa(*)(f*M/rfiO*)). (56) 

Такое взаимодействие, естественно, приведет к рождению кварков 
во взаимодействиях мезонов. 

Предположим теперь, что в (56) пола кварков взаимодейст­
вуют с полем мезонов Пс,#(-^нелокальным образом, т.е. 

f*(*)=> QJ*)= №*)£(*), (57) 

где формфактор п{2) удовлетворяет всем условиям (5), кроме ус­
ловия нормировки, а в точке Кг —/Ч он обращается в нуль как 

к(кЧХ)^(^-М1)^ **-М\ (58) 
Взаимодействие тогда примет вид 

/*./(*)(&(*)/*<№). (59) 
Это взаимодействие (59) не может привести к рождению кварков, 
поскольку на массовой поверхности 

<2 С')=tffoJjL Гч - *№%(*) = О. (60) 

Пропагатор кварков будет иметь вид типа 

где ] / ( 2 ? ) - целая функция. 
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Взаимодействие мезонов и барионов при энергиях, превы­
шающих массу кварка М , будет как-то определяться внутренней 
нелокальной структурой, связанной с наличием пропагаторов квар­
ков в промежуточных состояниях. 

В работе' ' рассмотрена с изложенной точки зрения модель, 
описывающая частицы (условно называемые кварками), в которой, 
во-первых, удовлетворены все аксиомы квантовой теории поля, 
во-вторых, кварки не рождаются, и,в третьих, скеилинговое пове­
дение амплитуд инклюзивных процессов проявляется уже в низших 
порядках теории возмущений. Лагранжиан взаимодействия, описывающий 
модель, имеет вид 

(62) 

Здесь Л~(х.) , / 4 W и €£*.) - скалярные поля, которые являются 
аналогами полей сильновзаимодействующих частиц (мезонов и барио­
нов), электромагнитного поля и поля электронов в реальном 
инклюзивном -рассеянии. 

Воли определить пропагатор поля кварков ОС*-) как (61), 
то это приведет к тому, что матричные элементы инклюзивного 
процесса в скейлинговом пределе будут расти в каждом порядке 
теории возмущений, и поэтому необходимо выйти за рамки теории 
возмущений, чтобы найти истинное поведение сечения при больших 
энергиях. Чтобы получить убывание в низшем порядке теории возму­
щений, необходимо считать, что поле кварков Q(x) состоит из 
двух типов кварков 

Q+(*)Q(*)^ О^ыО^Ы-ь Q*(*)QT(*>t { 6 8 ) 

причем поле и £ « ( х ) является бозонным, a 6L,(*)- фермионным 
полем. Предположим, что пропагаторы полей d?^ и От задаются 
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5Го; = v%n (64) 

и выберем 
-Г' 

*w:J&*r • (65) 

где (X - параметр теории. 
В рамках этой модели рассмотрим сечение процесса, соот­

ветствующего диаграмме Фейнмана, показанной па рис. 3(6). 
е е е 

< j r ^ * -

* Vi » . . . . 
п 

T u i i 

(а) (б) 

Рис. 3. 
Введем обычные скейлинговые переменные 

Тогда сечение процесса определяется формулами: 

< / б " •/ -—» / л 2 ] 

В пределе б?-» &о и "Ы", близких к I,получено для F^(Q, Ьз) 
следупцее асимптотическое поведение 

(66) 

(67) 
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Зп-S-

r* l ц > * " / — /Лг)гл ' ( 6 8 ) 

Скейлинговый предел определяется параметром f , поскольку форму­
ла (68) получена при &2?г»/ , т . е . Q должно быть много 
больше "массы" кварка. Динамика инклюзивного процесса опреде­
ляется параметром С\ в (64), т . е . степенью убывания пропагатора 
кварка в физической области. В этом пределе поведение амплитуд 
слабо зависит от формы функции \/ в (64). Зависимость /^(tpfuj 
от 1чГ при 1vT-> / совпадает с поведением фазового объема и. 
нерелятивистских частиц массы гп , когда их полная энергия Е^ 
удовлетворяет условию £^, - пм« тп . В этой интерпретации 

Построенная модель кварков, конечно,является первым шаток 
к использованию методов нелокальной теории в динамике силь­
ных взаимодействий. Однако мы считаем, что эти идеи заслуживают 
дальнейшего изучения. 

В заключение можно сказать, что в рамках квантовой теории 
поля с нелокальным взаимодействием можно строить о -матрицы для 
достаточно широкого круга лагранжианов взаимодействия, для которых 
метода локальной теории бессильны. 
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ВЗАИМОДЕЙСТВИЕ ЧАСТИЦ НА МАЛЫХ РАССТОЯНИЯХ 
И ОУНДАИЕНТАЛЬНАЯ ДЛИНА 

А.Д.Донков*^, В.Г.Кадашевский, М.Д.Матеев, Р.М.Мир-Касимов 

Объединенный институт ядерных исследований, Дубна 

§ I . В В Е Д Е Н И Е 

Нелокальная квантовая теория поля уже много десятилетий 
сопутствует локальной теории, развиваясь и углубляясь вместе 
с неж/ * '. Нередко отдельные исследования по нелокальной теории 
казались столь многообещающими, что попадали в фокус внимания 
многих физиков. Бывало и так, что шансы на успех нелокального 
подхода оценивались очень невысоко, и интерес к нему почти уга­
сал. 

Однако в последние годы появилось большое количество иссле­
дований, в которых была сформулирована новая точка зрения на 
проблемы нелокальной теории поля. Выяснилось, что ряд трудностей, 
казавшихся непреодолимыми, носит иллюзорный характер, и их можно 
обойти, уточняя математическую формулировку теории. 

Вообще говоря, различают два класса нелокальных теорий 
поля. К первому классу ' относятся такие схемы, которые пре­
следуют лишь одну цель: избавить квантовую теорию поля от ультра­
фиолетовых расходимостей, являющихся бичом локальной квантовой 
теории поля на протяжении вот ухе полувека. В данном подходе пред­
полагается, то частицы взаимодействуют не локально, а в некото­
рой области, имеющей конечную пространственно-временную протя­
женность. Линейные размеры этой области определяются новой по­
стоянной ьс , назызаемой фундаментальной длиной. Обычной тео­
рии формально соответствует предельный переход £ 0 -> 0 • 

Софийский университет им. Климента Охридского . 
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Несмотря на то, что в рассьатриваемом подходе взаимо­
действие носит нелокальный характер, геометрические свойства 
пространства-времени в любых масштабах, в том числе на расстояни­
ях £, 10 , здесь остаются обычными, псевдоевклидовыки. Соответствен­
но, все физические принципы, ледащие в основе локальной теории, 
переносятся в новую схему без каких-либо изменений. Поэтому не­
локальные теории первого, класса в определенном смысле являются 
феноменологическими, ибо конкретный вид нелокального взаимо­
действия должен определяться только из опытных данных. 

Нелокалыше теории второго класса более претенциозны. Сто­
ронники этого направления считают, что характер взаимодействия 
элементарных частиц на малых пространственно-временных расстояни­
ях (порядка "фундаментальной длины" 1, ) меняется потому, что 
на этих расстояниях модифицируется сама геометрия пространства-
времени '". Следовательно, роль, которую предстоит играть по­
стоянной * 0 в теории, можно сравнить лишь с ролью универсаль­
ных констант с или 1v 

Пространственно-временные области с размерами ~ 6 0 

доступны только частицам с де бройлевской длиной волны ~ Ь а . Та­
ким образом, нелокалыше теории второго класса связаны со стрем­
лением выработать новый взгляд на природу физических процессов 
в области сверхвысоких энергий £, j - . 

В настоящем обзоре будут резюмированы некоторые результаты 
исследований, представляющих собой попытку построить теорию с 
фувдшлентальной длиной в духе второго, радикального подхода. Речь 
идет о квантовой теории поля с импульсным пространством постоян­
ной кривизны' . 

Изложим кратко исходную идею. Согласно существующей кван­
товой теории поля, переносчиком взаимодействия между элементарны­
ми частицами являются виртуальные кванты, т.е. частицы, лежащие 
вне массовой поверхности (м.п.): 

^-'м'.О. ( 1 ) 

В диаграммной технике виртуалшым частицам сопоставляется про-
пагатор . 

Л. 
" п 1 - ? * - ^ (2) 
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Нам хотелось бы особо подчеркнуть, что величина (2) играет фун­
даментально ванную роль в аппарате современной квантовой теории 
поля. 

Проиагатор является релятивистским обобщением юкавского 
потенциала взаимодействия. В конфигурационном представлении дан­
ная величина имеет сингулярность на световом конусе 

* * = о . (3) 

В тех катричных элементах теории, где возникают гяюгократные произ­
ведения пропагаторов, из-за этих сингулярностеи появляются ультра­
фиолетовые расходимости. 

Пропагатор часто называют причинной функцией Грина. Это 
тесно связано с тем, что величина Т> может быть выражена через 
вакуумное ожидание от хронологического произведения свободных 
нолевых операторов: 

T> c(v**) * i <̂ Т V0O*0O>e . ( 4 ) 

Возможность использования Т -произведения в локальной 
квантовой теории поля связана с тем известным обстоятельством, 
что знак врег/.ени 

*tTV = j j j (5) 
(т§м = (Х|-&)«") является релятивистским инвариантом во 
времениподоСной области ^ 2 > 0 . 

Обычно, однако, упускают из виду тот факт, что величина 
есть дополнительный знаковый инвариант группы движе­

ний четырехмерного импульсного пространства в тех унитарных 
представлениях, где оператор Казимира этой группы Ц поло­
жителен. Следовательно, к хронологическому произведению, про-
пагатору и т.п. можно прийти, изучая группу движения импульсного 
пространства (группу Пуанкаре): 

Wl£! 
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f<"- A<\f • kf. (6) 

Иди,по-другому: локальная квантовая теория поля основана на ис­
пользовании пропагатора (4), структура которого обусловлена груп­
пой движений (6) четырехмерного псевдоевклидового импульсного 
пространства. 

возникает вопрос: является ли выбор псевцоевклидовой гео­
метрии в импульсном пространстве прям™ следствием эксперимен­
тальных данных, или мы здесь имеем дело с удобной гипотезой 
математического характера, безусловно, оправданной в области не 
слишком высоких энергий, но не адекватной физике при продвижении 
в сторону больших энергий? Проанализировав этот вопрос' . 1 3 { 
мы пришли к заключению, что псевдоевклидовость импульсного про­
странства при построении квантовой теории поля вовсе не является 
догмой. В качестве альтернативы была предложена формулировка теории 
поля с импульсным пространством де Ситтера, тлеющим радиус кри­
визны, равный * / { , *' . Геометрия этого пространства лишь в 
области малых 4-импульсов 

f' l0 (7) 
совпадает с плоской псевдоевклидовой геометрией. 

Конкретно мы рассматривали импульсное пространство де 
Ситтера с положительной кривизной, реализующееся на поверхности 

fc\\ (8) 

*' Пространство де Ситтера является примером т.н. 
пространств постоянной кривизны. 
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в вещественном пятимерном пространстве С f • > ? >'Р1') • 
Группой движений нового пространства служит десятипарамет-

рическая группа пятимерных "вращений" SO (2,3): 

f U ' = A l " M t M , L , M . 0,1.2,5,1*. О) 

Введем в рассмотрение оператор Кязимира этой группы 

С 4 = ^ М ^ Н " 1 - > к,1_=о,1д,зл. ц о ) 

( И к с - генераторы So (2,3)), который в плоском пределе 
переходит в оператор квадрата интервала 

' к *f?j • (ID 
Напомним, что спектр ̂  , отвечающий унитарным представлениям груп­
пы Пуанкаре (6), имеет вид: 

^ > о _ вреиениподобная область 
£ г = 0 - световой конус (12) 
у* <j О ~ пространственно-подобная 7 область. 

В аналогичных унитарных представлениях группы SO (2,3) 
спектр оператора С 4 выглядит следующим образом: 

!•{№) L =-1,0,1,... - "вреиениподобная" 
область (13) 

С='.' 
' в А* А с Гл оо") - "пространственно-подобная" - "Ц""'» > v> s область 

*' Далее будет использоваться система единиц, в которой 
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Заметим, что аналога конуса в спектре (13) нет. 
Введем на поверхности (С) ортогональные координаты (&>,lpj 

^о = \|l + f* **'•"" , М ^ з г . ( I 4 ) 

В этих координатах инвариантный элемент объема Jb -пространства 
де Ситтера принимает вид 

<ц,= 2SCfi-i)A*^» 4u>«if. 
(15) 

Поворотам в плоскости А*»,р«/) • очевидно, отвечает 
генератор 

«СО ( 1 6 ) 

В любой лореыцовской системе отсчета спектр оператора (16) дискре­
тен: 

1ИСО I'Viui 

М о „ * = one , п . О ( 4 1 > ± 2 л . . . ( 1 ? ) 

В новой схеме величина п играет роль времени (в плоском пределе, 
как легко видеть, М а 1 | _, _^ 2_ ) . 

Принципиально важно, что во времениподобной L -области 
(см.(13} ) , величина 

s i r "г - Si ( I 8 ) 

.«"ищется дополнительным инвариантом группы движений SO(l,3) 
(ср. с (5)). Поэтому в развиваемом подходе сохраняется возможность 
построения хронологического произведения с упорядочением по 
дискретному времени flfe . Вели теперь, следуя стандартной процедуре, 
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построить 1^, -произведение свободных полей и ваять от него ва-
Kyyj/ное ожидание, то мы причем к следующему результату: 

где 1̂,». " полный набор из четырех переменных (включая дискрет­
ное время т/ ), задающий новое конфигурационное представление; 

^ц\4>) - собственные функции оператора Казимира С 4 t ана­
логи плоских волн в нашем подходе. 

Следовательно, мы должны осмыслить функцию 

20,-wi,-i£) (20) 

как пропагатор свободной частицы. Таким образом, распространение 
виртуальных квантов в новом подходе описывается функцией (20). 
В плоском пределе *>*•" 1 , <\плгг* L имеем, очевидно: 

При больших виртуальных импульсах выражения (20) и (2) существенно 
отличаются дауг от друга. Слецователыго, механизм взашлодействия 
элементарных частиц в области больших импульсов (малых расстоя­
ний) оказывается совершенно новым. 

Положим для простоты ifL= о и подсчитаем интеграл 

ъ'Фч&^ш^и»^ 
в пространственно-поцобной Д -области (см. (13)). В результате 
будем иметь: 

^ ) = 1 Г А**-̂  • (2D 
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Это выражение не является сингулярным в допустимой области зна­
чений Д . 

Заметим, что аналогичный вид для фотонного пропагатора 
использовался в варианте нелокальной теории, развивавшейся М.А.Мар­
ковым в работах '. 

Реальным частицам отвечает полюс пропагатора, задававши 
равенством 

/^ - ппч = о . (22) 

Вместе с основным уравнением (8) оно эквивалентно массовой по­
верхности (I). 

Заметим, однако, что /р -пространство де Ситтера (8) ин­
вариантно относительно преобразования инверсии (в дальнейшем 

£ -преобразование) 

%ч — - >?ц • (23) 

Ясно, что S -преобразование не имеет плоского аналога. Если 
потребовать, чтобы квантовая теория поля била £> -инвариантна, 
то наряду с пропагатором (20) мы должны рассютривать пропагатор 

А'Ор) - -
2 0 v t f t + i t ; ) . «4) 

Функция (24) имеет полюс на поверхности /£«,= - т п ч , которая 
в силу (8) снова эквивалентна массовой поверхности ( I ) . Таким 
образом, если имеет место симметрия относительно b -преобразова­
ния (23), то у каждой частицы должен существовать двойник, пред­
ставляющий собой частицу той же массы и отвечающий отрицательным 
значениям /рч ( S -частицы). 

Рассмотрим взаимодействие, вызванное обменом S -частицей. 
Что соответствует этому взаимодействию в плоском пределе? Ясно, 
что при /рг*< 1, >т,гг< I 

ДеСр>~ - f 
Н (25) 
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(в обычных единицах — ?. /Ц )• Следовательно, в области малых 
импульсов обмен jS -частицей эквивачентен контактному взаимо­
действию с интенсивностью, пропорциональной квадрату фундамен­
тальной длины. 

Здесь мы не будем обсуждать вопросов, касающихся реаль­
ного существования & -частиц и условий, в которых они могут 
наблюдаться. Весьма заманчиво, однако, предположить, что слабое 
четырехфермионное взаимодействие является статическим пределом 
взаимодействия, связанного с обменом S -частицей. Тогда ферми-
евская константа i>F = \[&г должна выражаться через фундамен­
тальную длину. Ъ-с 

В заключение этого параграфа укажем, что пропагаторы (20) 
и (24) являются функциями Грина уравнений движения свободных 
полей 

ICfr-'mJ)^ - О , (26а) 

2С^+^Ч)-ф - О . ( 2 6 б ) 

§ 2. ПРОБЛЕМА ШШОЧИСЛШЮСТИ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА 

Общность развиваемого подхода позволяет надеяться, что 
в новой схеме будут разрешены хотя бы некоторые из тех проблем, 
которые стоят перед обычной локальной квантовой теорией поля. 
Одной из этих проблем является проблема теоретического объяс­
нения целочисленности электрического заряда: 

Q - A l e , (27) 

где Q - электрический заряд любой из известных элементарных 
частиц, а С - заряд электрона. 

Было замечено, что целочисленность заряда Q возникает 
в тех теориях, в которых группа калибровочных преобразований 
компактна. Примером такой схемы служит, в частности, теория поля 
в решетчатом проетранстве-времен1г ^ . 

44 



Покажем, что аналогичное квантование электрического заряда 
имеет место и в развиваемой теории ' . 

Пусть уравнение (26а) описывает свободную бесспиновую час­
тицу с электрическим зарядом Q . В координатах (14) оно имеет 
вид: 

(2 с*4бо\|Г̂  _ 2™J) У(ш,&) » О (28) 
1*1 «О 

Переходя с помощью собственных функций О- (см. (17)) к сме­
шанному (лч^) -представлению, будем иметь вместо (28): 

Далее подвергнем функцию т (*» >р) преобразованию 

(29) 

(30) 

Уравнение движения для можно сделать инвариантным отно­
сительно (30), если ввести "компенсирующее" поле Ч1 (•"•") со сле­
дующим законом преобразования: 

Vf(«.) - » l?(W) +A) iC« . ) , (31) 

где Д ХС"-) = ЛСп-» i) - \(уС) -конечно-разностная "производная" 
калибровочной функции ХС*) . Само уравнение при этом выглядит 
так: 

«^(е^е* + ё1^УМ)--2гп^(п,?Х (32) 

В плоском пределе оно превращается в знакомое дифференциальное 
уравнение: 
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(ясвда ясно, что функция f ( « ) в (3^) играет роль скалярного 
потенциала электромагнитного поля. 

Легко видеть, что уравнение (32) остается неизменным при 
преобразовании 

Qy __> Q<f + 2.W-, W - целое . (33) 

Следовательно, величина V*f имеет угловой характер, подобно 
переменной СО . 

Ясли w положим 
(СЖ^ЗГ, (34) 

то область определения потенциала Т окажется неуниверсальной, 
т. к-, будет зависеть от величины заряда Ц̂  -поля. Единственный 
выход из этого затруднения - предположить, что л;е электрические 
заряды Q есть целые кратные одного и того ае минимального за­
ряда е . Ото приводит нас к формуле (27). Теперь вместо (34) 
будем иметь: 

\t4\ йж (35) 

в полной аналогии с определение!1,; параметра бО в (14). Продолжая 
эту аналогию, полоним: 

е А. = \|Т+ё 1Я 1 *-и«^ 

где (Ao,AJ - четырехмерный вектор-потенциал электромагнитного 
поля. Таким образом, данная величина, подобно 4-импульсу, при­
надлежит пространству де Ситтера (со. (8)) : 

- 1 А. -в 1 А г

+ А, 1 - - 1 
(37) 
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Обычная теория, в которой фундаментальная длина и вместе с ней 
кривизна пространства це Ситтера равны нулю, имеет дело с малыми 
полями: 

А^Ч" , Ан*1 . (38) 

Вели же поле велико, то взаимодействие с ним существенно нелинейно 
(см. уравнение (32)) и содержит как параметр фундаментальную длину. 

§ 3 . ПРОБЛЕМА ДВУХ ТЕД 

Ноше геометрические свойства h -пространства в полной 
мере проявляются в задаче о взаимодействии двух релятивистских 
частиц, к рассмотрению которой да переходил. 

Цусть дана волновая функция системы двух свободных скаляр­
ных частиц с одинаковыми массами -m: J( (ф±, р . ) . По каждому из 
аргументов она удовлетворяет уравнению типа (28): 

2. ( ^ 4 + ^ с*э со, - -кп^ / (44,4?,) = О 
— (39) 

2- (\Jl4 ft C * i W , - 1 i l , ) ] ( (V» ,Д»,) = О . 

Перейдем теперь в систему центра масс, полагая одновременно: 

to, = ш-д- _Q. 

со г = - to + i L ( 

где угол SL связан с вспомогательным вектором V , принадле-
яащим пространству де Ситтера (0): 
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Подсгавляя (40) в систему (39) и беря сумму и разность получающих­
ся уравнений, придем к эквивалентной системе: 

4 *v»w «,Д VM** /ft», и)-о ( 4 2 a ) 

1(ипи>«ъП^-^(у,Л7)-_0 • ( 4 2 б ) 

В силу (42а) решение данной системы монет быть записано в виде: 

/ ~ «(*) ф,0Ю , (43) 
где ф ч^р) - волновая функция свободного относительного движения, 
удовлетворяющая уравнению: 

(2 иг*а&Ир- 2-м.Л ф,(£) = о. 
(44) 

На основании (41) это уравнение равносильно следующему: 

(45) 
Залетим, что относительный 3-импульс to является трехмерной 
частью 5-вектора 

?е ( ° >?>?*) = (°>$><^Т) . (46) 

который с исходными 5-векторами (ft)fi2)ii (f'i"V*v) связан де 
ситтеровскими вращениями (40). 

В силу (46) мы вправе рассматривать величину Зр как век­
тор, принадлежащий 3-мерному пространству Лобачевского 

^ - ^ * = 1 , ^ > 0 . (47) 
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Группу движений гиперболоида (47) образуют "лоренцевские" преоб­
разования SO (3,1) , входящие как подгруппа в группу де Ситтепа 
SO (3,2) . Сопоставляя подученный результат с обычной локальной 

теорией, можно заметить, что там аналогичные рассуждения^ ' при­
водят к евклидову 3-пространству относительных импульсов. 

Таким образом, наш способ введения фундаментальной длины 
6» в квантовую теорию поля в задаче о взаимодействии двух частиц 

эквивалентен переходу от плоского 3-пространства относ ителышх 
импульсов к 3-пространству Лобачевского с радиусом кривизны 4/ia , 

Построению квантово-механической (квазинотенциальной) 
теории взаимодействия двух частиц в ^5 -пространстве Лобачевского 
был посвящен целый ряд работ' *"'. Следуя'* ' , перейдем к сопря­
женному конфигурационлоиу <" -пространству при помощи интегрально­
го преобразования Шапиро' *' 

\(г)-± \<Щ>^(?)^ 
(2tf ' f ' < 4 8 > 

с ядром 

л*? ( 4 9 ) 

/рч 

Совершая преобразование (48) над уравнением (45), приходим к 
свободному уравнению типа Шредингера в конфигурационном представ­
лении 

где 

H..2«ii ±.nUU i-b,«±z ~9 (5D 
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Пользуясь аналогией уравнения (50) с уравнением Шредингера, пред­
положим, что взаиглодействие описывается локальным квазипотенциалом 
V- (г*) и постулируем следующее уравнение для относительного 

движения цвух взаимодействующих частиц: 

[u.+^v^]H,(?;u2N[wf %&. ( 5 3 ) 

V,CP) Квазипотенциал является комплексной величиной, зависящей 
от полной энергии цвух частиц (ср.' ' ) . 

В импульсном представлении уравнение (53) принимает вид: 

№-^-)Ф,(р)-(4?\Ч(?л)4,,й«к. ( 5 1 ) 

Амплитуда рассеяния A l P j ^ ) , связанная с ty\(r) соотношением: 

удовлетворяет уравнению типа Липпмана-^шингера: 

2 ( 2 1 0 Ц\^-Щг + И 

§ 4. БОРНОВСКОЕ ПРИБЛИЖЕНИЕ 

При высоких энергиях борновский член является достаточно 
хорошигл приближенный зыраяением цля амплитуда рассеяния. В силу 
(56): 
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03ЛИ - сферически-симметричная функция, т о / 1 9 / : 

(57) 

80RIO 

где 

<i / n = *XP*X,-^Vk*i a' aS 

(50) 

(59) 

расстояние мевду точками >Р и я, пространства Лобачевского (47). 
Пусть R. - эффективный радиус действия потенциала V«jW . 

При больших анергиях А будет заметно отлична от нуля лишь 
при: 

' РЧ ~ 1Г ( 6 0 ) 

Отсюда для ширины дифракционного пика получаем оценку (в едини­
цах "fc = С е 1 ) 

д ** 4 ^ — • 
<^«. 2R (61) 

Бели К > > "о , то (61) совпадает с обичиым квантово-механи-
ческиы выражением: 

В том случае, когда меяцу частицами действуют силы с иалык эф­
фективным радиусои; ( R «-?е) , 
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Полученное аномальное увеличение ширины дифракционного пика (62) 
является одним из предсказаний новой схеш. 

§ 5. РАССЕЯНИЕ I1A БОЛЬШЕ УГЛЫ В КВАЗШСЛАССИЧВСКОМ ПРИБЛИШИИ 

В настоящее время особое внимание в физике высоких энергий 
уделяется процессам с большими передачами импульса, поскольку они 
дают информацию о структуре элементарных частиц в малых масштабах. 
При этом подразумевается, что характерный переданный импульс (к) 
и характерное расстояние (г) связаны в .духе соотношений неопре­
деленностей следующим образом: 

»"-£• ш 
Принципиально важным моментом в развиваемой теории являет­

ся изменение геометрического сшсла таких понятии, как относитель­
ный импульс и относительная координата. В результате характерный 
переданный импульс (к) и характерное относительное расстояние(г) 
теперь связаны соотношением: 

г~ Т* ' ( 6 5 ) 

где 4+ •£ в ^ / к • Если %^« i , то К « / к и мы 
приходим к равенству (64). При этом-, згметим, Г » £ . Если 
же ) ( R » 1 , то JfK ~ 2'$* к и , соответственно, 

Из последнего равенства следует, что фундаментальная .длина t 0 

практически является пределом расстояния, до которого молно 
"прощупать" структуру элементарных частиц даже при сверхбольших 
передачах импульса. 
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Соотношение (66) можно осшслить также как следующее 
мнемоническое правило: в области больших передач импульса для по­
лучения "правильных" формул из форкул обычной теории нужно заме­
нить передачу импульса на ее логарифм. Тогда, например, вместо 
экспоненциального падения дифференциального сечения с ростом 
передачи ш должны иметь степенное убывание*'. 

Последовательные выкладки подтверждают справедливость 
этих эвристических соображений. Вычислим, например, выраяение 
для дифференциального сечения упругого рассеяния в области больших 
передач в квэзиклассическом приближении, отправляясь от уравне­
ний (53). 

Производя в этом уравнении разложение по степеням Tv , 
мояно показать, что кваэиклассическая радиальная волновая функция 
представляется в виде: ^ 

X \ 4*(«ЦЮ±few - ±£')**-

где 

* . ( 6 8 ) 

a VJ, - точка поворота, определяемая равенством: 

sW(n,)« -)=-• (69) 
'о 

С помощью (67) нетрудно найти выражение для амплитуды рассеяния в 
рассматриваемом квазиклассическом приближении: 

*' Соотношения типа (65) играют важную роль в модели высо— 
коэнергетического рассеяния .разработанной Мавродиевым /23/. 
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_v«ve 

*«1» • ^ t o (70) 

где 

Далее стандартным образом получается уравнение траектории 
классического движения, которое мы здесь выписывать не будем. 
Вслед за авторами работы' 2^ рассмотрим рассеяние на большие углы 
как движение в области "классически запрещенных углов? Тогда для 
дифференциального сечения упругого рассеяния получаем 

•2v> 

где Vs 2МЭ*лГ. , М = i / l e . Если фундаментальная масса И 
бесконечно велика, то полученная степенная формула превращается 
в экспоненциальную формулу из работы' ^ . 

§ 6. З а к л ю ч е н и е 

В 1940 году М. Л.Марков' ' выдвинул идею о том,что в последо­
вательной квантовой теории поля должны быть приняты во внимание 
дополнительные ограничения на измеримость поля, возникающие 
из-за неточечности пробных тел. В той же работе был развит ма­
тематический аппарат, реализующий эту идею. В основу его был 
положен постулат о существовании новых перестановочных соот­
ношений меацу компонентами поля У и ^-координатой пробной 
частицы: 

[ * Г Д З = ^ v f , (73) 

54 



где ¥1 - 4-вектор, имеющий размерность длины и характеризующий 
пространственно-временную протяженность частицы. 

Построенная на основе (73) теория била свободна от труд­
ностей с бесконечной собственной энергией и являлась, по сущест­
ву, нелокальной схемой, хотя сам термин "нелокальность" в то время, 
по-видимому, еще не употреблялся. 

Мы хотели бы отметить, что между нашим подходом и теорией 
Маркова существует интересная параллель. Чтобы увидеть это, осг.нс-
лим соотношение (73) с теоретико-групповой точки зрения. 

Величины х* ((<= 0,1,2,») , как известно, являются генера­
торами сдвигов в псевдоевклидовом импульсном пространстве. Следо­
вательно, коммутационное соотношение типа (73) можно интерпрети­
ровать как инфинитезималъную форму закона преобразования поля Y 
при этих сдвигах. Поскольку в локальной теории, очевидно,ftp^MJ'O, 
то мы вправе утверждать, что в ' используются поля, обладающие 
новыми трансформационными свойствами относительно сдвигов /р -
пространства. 

В нашей схеме модифицируются сами сдвиги импульсного про­
странства. Роль таких преобразований теперь выполняют повороты 
в (f*4) -плоскостях. Соответствующими генераторами (аналогами Хр ) 
служат операторы Ъ\Н(, , не коммутирующие между собой. В резуль­
тате коммутатор [Мц_ ( Ч] оказывается не равным нулю, как 
и в ' 2 ' . 
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СОВРЕМЕННОЕ СОСТОЯНИЕ АКСИОМАТИЧЕСКОЙ КВАНТОВОЙ ТЕОРИИ 
ПОЛЯ НЕПОЛИНОМИАЛЬНОГО РОСТА 
И.А.Соловьев, B.;-i. ^аИноерг 

Физический институт им. П.Н.Лебедева АН СССР, Иоскиа 
В данной статье будут рассматриваться поля, обладающие непо­

линомиальным ростом в импульсном предетавлзнии, или,что то же с а ­
мое, порядок сингулярности которых в координатном представлении 
бесконечен. Интерес к таким полям обусловлен двумя причинами. З о -
первых, они естественным образом возникают в различных моделях не-
перенормируемых взаимодействий. Во-вторых, переход к высокосингу­
лярным полям является наиболее последовательным способом введения 
нзлокальности в теорию. Обзор работ в этом направлении по 1970 г . 
можно найти в докладе К.Хеппа [ i ] . Ключевыми являются работы ;.ie;i-
мана [ 2 ] и ДжаЭДе [ з ] , где впервые был поставлен и исследован 
вопрос о предельной степени сингулярности поля, соответствующей 
микропричикности. Отметим также работы ЛЬимова и Фрадкина по с у ­
щественно-нелинейным взаимодействиям [ 4 ] . В работах Ио|& и &айн-
берга £5-2J были изучены нелокализуемые поля с экспоненциальным 
ростом в импульсном представлении. Очень эффективно внеокосингу-
лярные обобщенные функции были использованы .Займовым [ lO, I I j при 
развитии лагранжева подхода к нелокализуемим взаимодействиям. По­
лям неполиномиального роста посвящены также работы Константинеску 
[12] , Тейлора [ l 3 , 14] , Ломсадзе [ io ] . 

Однако до сих пор локальные свойства высокосингулнрных полей 
изучены далеко не достаточно даже с чисто математической точки 
зрения, что препятствует более плодотворному использованию их при 
построении конкретных моделей взаимодействия. Поэтому в последние 
годы появился целый ряд статей [16—2IJ , в которых предложены раз­
личные обобщения понятия носителя и различные способы описания . 
пространственно-временных свойств нелокализуемых полей. К сожале­
нию, в работах [ is -2l j не исследовалось в достаточной мере, какие 
локальные свойства обычных распределений Шварца сохраняются при 
предлагаемом обобщении. В работе [l8J такой анализ проведен с по­
мощью теории структур. 

В первом разделе настоящей статьи предлагается способ описа­
ния локальных свойств полей произвольной сингулярности, обобщающий 
результаты работ [I6-2IJ . Особое внимание мы обращаем на то, в 
какой степени на нелокализуемые пробные |ункции переносится разло­
жение единицы. Напомним, что в случае обычных распределений Шварца 
метод разложения единицы является основным при изучении локальных 
свойств. Показано, как ослабляются локальные свойства по мере уве-

57 



личения сингулярности. В частности, если пробные функции квазиана-
литичны, то любой рункционал представим в виде предела последова­
тельности функционалов, сосредоточенных в начале координат. 

Во второй разделе статьи полученные результаты применяются 
к вайтмановскшл функциям. Показано, что величина области голоморф­
ности вайтмановских функций и само ее существование непосредствен­
но зависят от локальных свойств теории. Исследуется связь с подхо­
дом, развитым в работах [5-s] . Результаты первого раздела позво­
ляют получить простое и наглядное доказательство теоремы о прост­
ранственно-подобной асимптотике вакуумных средних, справедливое 
как для локализуемых, так и для нелокалиэуемых теорий. 

В третьем раздела теорема о пространственно-подобной асимпто­
тике применяется для доказательства полиномиальной ограниченности 
по энергии амплитуды упругого рассеяния и ее аналитичности по пе­
редаваемому импульсу в эллипсе типа Лемана. 

I . Локальные свойства высокосингуляриых полей. 
3 традиционно! теории поля [22, 23J микропричинность формули­

руется как условие перестановочности полевых операторов А(чр, A(*fp 
всякий раз, когда пробные функции f, t <fz обращаются в нуль вне про­
странственно-подобно отделенных областей 

fA (4> , \A (4^ ]=0 если Ч ' < (к )=ОЛ^М 1 ;Ч ' г (х> = 0 1 х ^ М г ! ( 1 ) 
где М,,М г пространственно-подобно отделены. 
Поля, допускающие такую формулировку, Джаффе назвал строго 

локализуемыми и описал соответствующие пространства пробных функ­
ция [Ь\ . Локальные свойства таких поле"! тождественны локальным 
свойствам распределений Шварца. Однако,если сингулярность поля до­
статочно высока, то определение (.1) становится бессмысленным. На-
пример, если имеются сингулярности вида 2. Я? d <*> , то соответ­
ствующие пробные функции аналитичны и не могут обращаться в нуль 
в открытом множестве. Не только аналитические функции обладают 
этим свойством, но они представляют собой важнейший пример. Поэто­
му пространство называют квазианалитичзским, если в нем не сущест­
вует функций, обращающихся в нуль в открытом множестве. Задачей 
обобщения условия ( I ) на поля, опрэдэленные на квазианалитических 
пространствах пробных функций,мы и будем сейчас заниматься. Из фи­
зических соображений ясно, что достаточно требовать близость к ну­
лю коммутатора полей для любых 4>lt ̂ близких к нулю вне пространст­
венно-подобно отделенных областей 
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[A(f ,1 ,A(4^]~Q если ^ - О виеМ, , % - 0 вне М., , ( 2 ) 

где М, М.пространственно-подобно отделены. 
Математически строгая форму.чгровка этого обобщения подразумевает 
сопоставление каждой области (7сЯч топологии Т (О-) , в смысле ко­
торой и нужно понимать "близость к нулю на I? " . Примеры семейств 
топологий % (О") для конкретных пространств пробных 5ункщ$ можно 
найти в работах IJ6-2I] . Все эти работы имеют в своей основе 
простое соображение (2) и предложенные в них определения отличают­
ся лишь формально. Так, в [ к ] исходным было условие непрерывно­
сти коммутатора по соответствующей топологии,в [20] вместо непре­
рывности использовалось условие ограниченности, а в [l£] требова­
лось существование расашрения коммутатора на пополнение исходного 
пространства. В силу общей теории топологических векторных прост­
ранств [24] все эти требования равносильны. 

Однако переход к топологическому языку - это только первый 
шаг. Очень ваяно понять, насколько сохраняются при этом обобщении 
обычные локальные свойства. С этой целью мы попытаемся перенести 
на квазианалитические пробные |ункции метод разложения единицы, 
который является основпчм при изучзнии локальных свойств в строго 
локализуемом случае. 

Пусть ф -строго локализуемое пространство пробных йгнкций. 
Обозначим через ^ffC^ подпространство ф , состоящее из функций, 
локализованных в области (Т , и запишем разложениэ единицы в са­
мой простой форме 

Х(<гчи&л)=Х(о,) + Х(0л). ( 3 ) 

i-десь &,,(%- любые два открытых мнокзства в R . Конечно, нетриви­
альную часть этого равенства составляет включение 

Z(0-,UO-Z) сХ(0,) + Х(Ол), 
означающее, что любую функцию, сосредоточенную в 6££Л£,моото раз­
ложить на функции; сосредоточенные в Ол и Ог . Ого можно выра­
зить и на двойственном языке, сказав, что для любо:! пары М,?М4 зам­
кнутых множеств в R функция, равная нулю на М^ЛМ^рздставима в 
виде суммы двух функция, равных нулю на М, и Мг соответственно. 
Для того чтобы получить обобщение условия (3) на квазианалитичес­
кие пространства, мы сначала перепишем его в терминах функциона­
лов. 
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Обозначим множество руикционалов, сосредоточенных на замкну­
том множестве M c R \ через Х'(М). Это множество образуют функ­
ционалы, обращающиеся в нуль на функциях, равных н'мо в окрестно­
сти М,т. е. на функциях, локализованных вне М . Поэтому формула 
(3) приводит к следующей формуле для функционалов 

Х'(м,пмг) -х'(м,)П * '(мг\ и) 

где M f ,Mj - любые два замкнутых множества в R 
Перейдем к квазианалитическим пространствам пробных функций. 

Следуя прежним эвристическим рассуждениям, образуем множество 
Х'(М)ъз функционалов, близких к нулю на функциях, "близких к нулю 
в окрестности И". Иными словами, X (М) образуют функционалы, не­
прерывные по каждой топологии Т(С~), где (? -окрестность М . При 
этом топологии t(О) мы будем считать локально выпуклыми. Напом­
ним [24J , что непрерывность функционала по семейству Т0 локаль­
но выпуклых топологий может быть выражена как непрерывность по од­
ной топологии - так называемой точной нижней грани этого семейст­
ва, которую мы будем обозначать/^ Tj . Таким образом, Х.'(М) со­
стоит из функционалов, непрерывных по топологии 

Т(М)=/\ Х(О) 
озн • ( 5 ) 

Множество в прпво.1 части (4) - это функционалы, непрерывные по 
1IM,) и но t (М2). Поэтому соотношение (4) будет обеспечено, 

если 
Т(7И,Л« а)= Т(М,)Л€(М2) 

Полученная формула есть искомое обобщение равенства (3 ) . Чтобы 
увидеть это яснее, запишем нетривиальную часть равенства {&) 

т(м,пмг) >~ т:(м,)Лт(м^ ^ 7 ) 

через базисы участвующих топологий. Согласно общей теории [24J , 
базис окрестностей нуля топологии T(M,)At (^i) образуют мно­
жества вида Ц + £/ г , где Ц пробегает базис окрестностей %(М) 
aUz- базис окрестностей Т(М^). Поэтому (7) означает, что по лю­
бым U, ,Ц найдется такая окрестность \JIZ топологии T f ^ n M j } I 4 T O 

Это можно еще выразить, сказав, что функция, достаточно близкая к 
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нулю на М Д 1 М , , представима в виде суммы двух функций, сколь 
угодно близких к нулю на М1 и Мг соответственно. 

Отметим, что условия (4) и (6) означают, что отображения 
М-^РСС^Ои М-* т (м) являются морфизмами в категории структур 
(см. [18] ) . ь 

Введем теперь несколько опрзделений. Пусть Ф С ) - пространст­
во пробных функций на R и ф' - его сопряженное. Пусть, далее, 
каждому открытому множеству0 е Л" сопоставлена топология T(Cf) в ф . 

Определение I . ^дем называть функционал f 6 ф ассоциирован­
ным (посредством семейства Т (О) ) с замкнутым множеством М с. R t 

если он непрерывен по каждой топологии т(О) , где О^М . Это 
равносильно непрерывности по топологии Т(М) , определяемой форму­
лой (5) . 

Определение 2. Условие (6) на семейство топологий Г(М) будем 
называть условием локальности. 

Отметим одно важное отличие от обычных локальных свойств. Хо­
рошо известно, что в строго локализуемом случае множество Х'(М) 
функционалов, сосредоточенных на фиксированном множестве М , зам­
кнуто (см. например [25] , стр.146). В работах [16, 2l] показано, 
что для квазианалитических пространств пробных функций это уже не 
так. Голее того, если М ииеет непустую внутренность Н , то мно­
жество X (М) в данном случае оказывается всюду плотным в 0 . В 
самом деле, множество X (М) во всяком случае содержит всэ -функцио­
налы f ( x - x ' ) , х 'бЛ/ . Поэтому любая пробная функция Ч'^Ф , за-
нуляющая Х'(М) , тождественно равна нулю на открытом множестве 

N , а значит (квазианалитичность!), тождественно равна нулю и на 
всем R" . Отсюда в силу теорем Хана-Банаха [24] немедленно вытекает, 
что 

х'(м) = Ф: «) 
где черта означает замыкание в слабой топологии пространства Я>. 

Проиллюстрируем теперь зависимость локальных свойств от сингу­
лярности и роль условия (6) на примере пространств типа S . Эти 
пространства пробных функций введены Шиловым [2б] , а в теории по­
ля впервые были использованы в работах [16,2?] и [12] . Напомним 
определение [25] , глЛУ. 

Пространство 5 ( <* >0) состоит из всех бесконечно дифферен­
цируемых функций if(x) , x€R" , удовлетворяющих неравенствам 

|x K DV0O| 4 CK*" , '<j°" } при всех к,с | , (10) 
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гдз постоянные Ск и х зависят от функции ч> . Топология на S* 
вводится следующим образом. Обозначим через 5>°''Х подпространство 
jfiyHKHii'i, удовлетворяющих неравенствам 

где в качестве Л можно взять любую постоянную, большую заданно­
го числа X , и зададим на этом подпространстве систему норм 

^ *£Rn t W t V a I tI2) 

Топология S определяется как топология индуктивного преде­
ла относительно семейства подпространстве • ( \ - I, 2,...). 

Аналогично введем топологии T(t?) . Образуем пространство 
^)°1' ((f), составив его из функций, заданных на открытом множестве 
C^cft", для которых конечны нормы 

ih'ii = ьир _ — - j - - . ( i s ) 
H,i u t / (\+£) <j ' 

и снабдим подпространство топологией, индуцированной 
из S°' ' X(y) • Топологию Т (О) определим как индуктивный предел 
относительно семейства подпространств , S 4 ' ( 0 ) / ) 5 ( А= I , 2 , . . . ) . 
Проще говоря, последовательность Ч'^ <r S считается сходящейся к 
нулю по топологии т (и) , если существует такое Л , что все 

Ч\, fc S"1' (С) и Ч|,--*0 по каждой из норм (13). 
Из определении (10) видно, что чем меньше индекс ы , тем из 

более гладких рункшы состоит пространство 5°* . Соответственно 
тем выше сингулярность определенных на нем функционалов. Например, 
обобщенная функция 21 f'^ $"f7V*) определена но любом прост­
ранстве S с ы<£> . Изменение локальных сволств по мере уменьше­
ния <* характеризует следующая цепочка теорем. 

Теорема I . При <* > 1 пространство S содержит финитные функции, 
ьолее того, его подпространства Х(О) для любых ограниченных 
открытых множеств ОиОг <-Я" удовлетворяют условию (3) . 

Поля, определенные на пространствах S ( ы >1). относятся к 
строго локализуемым полям Джа|с{е [ з ] . 

Теорема 2. Пространство Я^К")состоит из аналитических функ­
ций. Соответствующие топологии г (м) для любых ограниченных зам­
кнутых множеств М1 Мг ^ Rn удовлетворяют условию (6) . 
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Теоремы I , 2 выясняют соотношение между двумя основными подхо­
дами к вопросу о локализуемое™ поля - Меймана [2] и Джаффе [з1 . 
Пространство, указанное Мейманом как соответствующее микропричинно-
сти, отличается от ЗЧ^Олишь поведением функций на бесконечности. 
Обобщения его подхода на многомерный случай рассматривались в рабо­
тах [16, 27] и [12] . Поля,определенные на S 4 # " ) > M b I будем назы­
вать локализуемыми. ( х 

Теорема 3 . В пространстве S ' ^ S соотношения (б) , (7) уже 
не соблюдаются, однако если мы обозначим через М £-окрестность 

М , то при £ > (= < Д е для ограниченных множеств выполняется 
неравенство 

т (м? Л мг

£) > т(м,) А т(ме). ш ) 

Неравенство (14) означает, что разложение единицы в S ' 
соблюдается приблизительно, в масштабах пространства-времени, боль­
ших по сравнению с 1 . Это дает основания считать L "элемен­
тарной длиной" и надеяться, что условие 12), срормулированное с 
помощью такого семейства топологий, имеет смысл макропричинности. 
Зайтмановская теория полей, определенных на пространстве S ; по­
строена в работах [5-s] . В дальнейшем мы будем их называть квази-
локализуемыми. 

Теорема 4. При <к < 1 пространство о состоит из целых функ­
ций. Топологии 1(0), соответствующие ограниченным множествам, в 
этом случае все совпадают друг с другом. 

Однако топологии, соответствующие разным замкнутым конусам, 
всегда различаются между собой, причем справедлива следующая 

Теорема 5. Пусть функционал f определен на пространстве S" 
и ассоциирован с замкнутым конусом K^Rn посредством семейства 
топологии (13). Тогда свертка (*ч> = (f($)l4'($-*))ero с пробной 
функцией <f £ S * принадлежит любому пространству S^CC) , где 

С- открытый конус, компактный в R \К . При этом отображение 
S — > S (С), сопоставляющее элементу V 6 S* функцию -f*<f , 

является непрерывным. 
'Ли видим, что при U < I семейство топологий (13) различает не 

точки, а лишь направления в R" . Ассоциированность функционала 
посредством такого семейства с множеством имеет смысл не сосредото­
ченности, а быстрого убывания при достаточном удалении от этого 
множества, причем в силу теоремы 4 мы принципиально не можем ска-
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зать, при каких расстояниях убывание начинается. Это дает ос­
нования думать, что при Ы, < I условие (2), сформулированное с по­
мощью семейства норм (13), утрачивает смысл причинности. Однако его 
можно рассматривать как простое необходимое условие причинности и 
изучать вытекающие из него следствия. Поля, определенные на прост­
ранствах S * , °<< I, рассматривались Константинеску и Тейлором 
[ 19], Еюымерстедом и Люкке [20, 2l] . И те и другие авторы при 

обобщении локальной коммутативности исходили из семейства норм (13). 
Как основную трудность, связанную с таким обобщением, Воымерстед 
и Люкке отмечали [Zl] неустойчивость относительно операции пре­
дельного перехода.Однако мы видели,что эта неустойчивость имеет 
место уже в случае пространства S' (сг.;.формулу (9)),. а тег.; не ме­
нее определенные на нем поля обладают достаточно хорошгс.я локаль-
нш.д свойства-и. С физической точки зрения более серьезной явля­
ется трудность, выраженная теоремой 4. 

Доказательства теорем 1-5 мы изложим в другом месте [зо] .От­
метим только, что теорема I легко получается обычными приемами тео­
рии обобщенных функций умеренного роста. Теорема 4 в чуть более 
слабой форме доказана в работе [1б] . Теорема 5 является довольно 
очевидным обобщением известного утверждения о том, что финитный 
функционал является свертывателем на случай функционалов, носитель 
которых конусоподобен. Для обобщенных функций умеренного роста та­
кое обобщение хорошо известно [3l] . На теореме 2, которая играет 
главную роль в излагаемой теории, остановился подробнее. 

Аналитичность функций из S1 немедленно вытекает из разложения 
Тейлора и формулы Стирлинга -̂'-«f * e & E < ^ lE^i). Причем, 
если ч>£5 , то ее область аналитичности в С определяется нера­
венствами U m Z j U f j = i;...,n , где 6 = Укч . Таким об­
разом, пространство 5 ' тождественно пространству Лге функций, 
аналитических в указанном брусе и убывающих при |ReZ|»«6ncTpee, 
чем степенным образом. Используя формулу Коши,нетрудно убедиться, 
что эти пространства тождественны также топологически, если ъ&ь 

ввести систему норм 
ци,ц' = sup I z W O O l 
11 *"?.? IJb.zW-9. (15) 

Пространство О , в свою очередь, тождественно индуктивному пре­
делу Л: = Cirn $rt. Аналогичным образом, топология Г (М) совпадает 
с топологией, индуцированной в S из Jh(M) , где А(м)ъ инте­
ресующем нас случае ограниченных М представляет собой пространст-
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во функций, аналитических в окрестности М , с его обычной топо­
логией. Теперь можно использовать результаты теории аналитических 
функций, подобно тому, как это сделано в [28] . Именно, веществен­
ные компакты обладают следующим свойством Кузена: любую функцию, 
аналитическую в окрестности М < Л м г , можно представить в виде сум­
мы двух функций, аналитических в окрестностях М , , М а соответст­
венно. Это свойство можно выразить следующей формулой 

ММ,) +Ж(М2) =Л(М,ПМЛ\ (16) 
Учитывая это равенство, снабдо.; ^(M/IM.,) топологией индуктивно­
го предела относительно подпространств Л(М[), i = 1,2. Ьдзисо;: 
ее окрестностей служат множества вида V, *• \/2 , где V-L пробегает 
базис окрестностей Jltyl Очевидно, эта топология мажорирует исход­
ную топологию Jk(M,ПМг) , поскольку отображенияА(М1)-~$(м,Пмг) 
непрерывны. Однако сравнимость этих топологий влечет их совпадение, 
поскольку рассматриваег.ше пространства относятся к тт,у классу, на 
который Гротендик распространил [29] теорему Банаха об открытом 
отображении. Переходя к следам рассматриваем топологий на S , 
мы получит.! в точности форгулу (6). 

В случае пространства О (теорема 3) топология ^(Л^овпа-
дает с индуцированной из Л г ^ м ) . Попросту говоря, если в случае £> 
сходимость пробных функций по Т(М)означает сходимость их аналити­
ческих продолжений в комплексной окрестности М , сколь угодно 
близкой к М , то в случае S ' сходимость по Т (М)означает схо­
димость в фиксированной окрестности, получаемой покрытием М полу­
кругами радиуса ь . Поэтому формула (6) заменяется неравенством 

Sot £•!.* 

, ot< I и даже о 
топологии Т(М) можно ввести иначе, чем это было сделано выше. 
Наш способ был заимствован из строго локализуемого случая, где он 
определяется однозначно требованием согласованности с обычным 
определением сосредоточенности. Комплексификация при этом играла 
вспомогательную роль. В раде работ (_17, 33, 34J нелокализуекые 
функционалы сразу рассматриваются как аналитические и принимает­
ся, что функционал сосредоточен в R на проекции своего комплекс­
ного носителя. Нетрудно понять, что это соответствует другому вы­
бору топологий Т ( М ) . Именно, сходимость по Г(/И)в S в этом 
случае означает сходимость в компл-ясной окрестности вида 
<Г1={г€С* :Rezea iIJmZj\4.e , jrl,...nj.f г д е а _ веществен-
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ная окрестность М , сколь угодно близкая к М . Роль топологий 
т(м) в построении Ефимова [17] играют введенные им проектирую­
щие последовательности. Отметим, что они представляют собой пер­
вую попытку построить разложение единицы для аналитических пробных 
функций. Однако в определение проектирующих последовательностей 
входит излишке жесткое требование сходимости к нулю не в Ot , а в 

0^ -{zeC* :Rez€(?} . Это обстоятельство приводит к тому, 
что проектирующие последовательности не чувствуют особенности в 
простраястЕенно-подобной области и к ошибочному, на наш взгляд, 
заключению, что соответствующая теория микропричинна. Подробно 
этот вопрос рассмотрен в работе C35J . 

§ Z. Вайтмановские функции, 
функционал Вайтмана, порожденннй вакуумным средним 

<Р,АМ-Ь(*"№), мы обозначим через lt/n+t . Эту же величину, вы­
раженную через относительные координаты h~xj -*j-i, - через v/n . 
Найдем область голоморфности вайтмановских функций в случае прост­
ранства 5 ' , т.е. область значений £ € С , при которых опре­
делена функция 

wn(t) -(Д^е'"**), (17) 

функ-
где и/ - функционал В§йтмана в импульсном^ представлении, за­
данный на пространстве 5 . Пространство 5 ' (К*") состоит из фун) 
ций, удовлетворяющих при любом £ > 0 неравенствам 

где £ = % е и l^-L Ц<у 1 + - +' 4»j' ._ функционал v\/a в_ силу спектра­
льности сосредоточен на множестве V" = {«jeR*'': <j-fe V<- , j = i,..,,nj; 
где V+ - замкнутый верхний световой конус. Поэтому он определен 
на.всех функциях, удовлетворяющих неравенствам (18) в окрестности 
VV . Экспонента б'*' окажется среди таких функций в том слу­

чае, если каждая компонента вектора J/n£ содержится в множестве 
Не={?€й*;<{7> С if * при всех чеК}. 

Итак, функция (17) определена и голоморфна в трубчатой области 
!;-{**<:*•:*.*_, «не , j . l t . . . r t } ( I 9 ) 

Определяэдее И { условие равносильно совокупности восьми неравенств 
4(4-611) >О .где и - (1, c,,(Jj,c,) и dj = + I. Отсюда вид­

но, что Н е представлязт собой пересечение сдвинутых конусов &**$•• 
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Отметим, что в этом пересечении целиком содержится множество 
Ч >1/?1| + l ( i * < f s ) . Поэтому при t-*o область (18) превраща­
ется в трубу будущего Т. 
Таким образом, область голоморфности V\/(£)B случае пространства 
S = & m S ' совпадает с обычной. Это означает, что свойства ана­

литичности^ локализуемой (по Мейману) и строго локализуемой (по 
Джаффе) теории по существу одинаковы. Отличие заключается в пове­
дении функции w Y t ) при Л п £ = ̂ - * ° . Напомни/.:, что для обычной 
теории |22, 23] характерен полиномиальный рост ~1||?|Г'П с некото­
рым т . Увеличению порядка сингулярности функционалов ^ соот­
ветствует увеличение скорости роста функций м^^Опри ч ~ * о . в 
работе [32J показано, что пространству S , <*>! соответствует 
рост ~ «<р{£ 11̂11 } . При d = 1 рост может быть произ­
вольным (см. [к] ). В кваэилокализуемом случае tp^S область 
голоморфности W(Z) меньше обычной, и тем меньше, че;.; больше I , 
т.е. чем больше область аналитичности пробных функций. Наконец, 
при I-*00 , когда мы переходим к нелокалиэуемой теории, область 
голоморфности исчезает совсем. 

Поскольку область Т^ не граничит с вещественным пространст­
вом, функционал w в квазилокализуемом случае не может рассмат­
риваться как предельное значение голоморфной функции (17). Однако 
если пробная функция f аналитична в брусе R +' в , пересекаю­
щемся с Те , то справедливо представление 

№*)=^(^ъ,.-:<«*%)*(1<*'1 V'?"^f- ( 2 0 ) 

где Ь - любой вектор из пересечения ЬПНС . у ̂  
Свойства функций Вайтмана, определенных на пространстве 5,' 

подробно рассмотрены в работах [5, 6, 9] . В работе [5 J , в част­
ности, показано, что к областям вида (18) применима теорема Барг-
мана-Холла-Вайтмана. Поэтов функция W't,) определена и голоморф­
на в объединении множеств, получаемых из (18) применением всех 
собственных комплексных преобразований Лоренца. Эта область мень­
ше расширенной трубы локализуемой теории, однако по-прежнему со­
держит ^5, 9] вещественные точки - точки Йоста. 

Выразим теперь на языке функций Вайтмана условие (2). Если 
спектральность надо рассматривать в терминах функционалов и/, то 
локальность формулируется в терминах w . Соответствующие им го­
ломорфные функции мы обозначаем u?(z) , их область голоморфно­
сти - через (re. С функциями (17) они связаны формулой 
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t ^ , (z.,Zi,...,г„) = v/(*t-2c.,..., хл-2„.,) . микропричинность 
(I) означает, что функционал ъ/-и/г сосредоточен на множестве 

и объединение берется по всем индексам j ,]' , которые меняются 
местами при перестановке X . Соответственно, обобщение (2) будет 
означать, что Ь/-Ц_ ассоциирован с множеством /С- , т.е. непреры­
вен по топологии г(/С). Покажем, что это условие, как и в стро­
го локализуемом случае, приводит к симметрии голоморфных функций 
Ы(?) относительно перестановок аргументов, из явного вида точек 
iriocTa, приведенного в [5,9] , видно, что в множестве Q ПжО„ 
имеются точки Йоста, входящие в него вместе с комплексными окрест­
ностями сколь угодно большого радиуса R . Фиксируем такую точку 

t . для которой R»(t и рассмотрим S -образную последователь­
ность пробных функций 

?» = Ф е , гАе М*=1 (*j + ...*x*). 

Последовательность % (z) равномерно сходится к нулю в комплексной 
t -окрестности К х шесте со всеми выражениями вида 7 * W , Де т 

ло в том, что точки Йоста вполне пространственно-подооны[22] , по­
этому t удалена от Кг больше чем на R , а по нашему условию 
Ry>[ . Вспоминая переопределение (15) топологий т(м) , мы зак­
лючаем, что %-> о по т(К#)г а значит, ассоциированность W-v) 
с К_ ведет к равенству 

Jl (W~^x,K)=0. (21) 

С другой стороны, используя представление (19) в терминах ц> 

Ы, %) = JW**iyJ Ч» (**Uf)J* , у. = ;? ,4€Hfj (22) 
нетрудно убедиться, что 

№,%)-> ънх) , (#,,ъ)^г*л(*). да) 
В силу полиномиальной ограниченности U}(**ij) no x для вклада в 
интеграл (22) от области Цх-хЦ > S справедлива оценка 

I i Ч ч <*>]$ %(*+$& I < С,. / < h * екр {-*г(гг-ыгЯг)игА) 
fl»-tfl>8 ' < I Г 
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Такт: образо;.;, при S > |1^1| £ 1 г э т о т вклад стремится к нулю. 
Снова напомним условие Я » ( к представш.: оставшуюся часть инте­
грала с пошщыо теоремы Коши-Пуанкаре в виде 

\ WLz) ^ ( z l d i i + j i(>(x )<?„(*) Л* (34) 

где i j 

Поверхность б компактна в G^ , поэтолу для первого слагаемого 
справедлива оценка типа (24); второе же очевидным образом сходит­
ся при »!-»•«• к U?(t) .Из формул (21), (23) в силу принципа 
голоморфного продолжения следует голоморфность U>(i) в области 

U Ж Ge и ее симметрия по переменным Ха ,..., 2п 

т В работе [5]показано, что симметрия функций Вайтмана приво­
дит к правильной связи спина со статистикой в теории поля, пост­
роенной на S ' . В этой же работе для квазилокализуемнх полей 
доказана TCP-теорема. Теорема Ргаэля о пространственно-подобной 
асимптотике для S ' доказана в работе [б] и для нелокализуемой 
теории на S* , oi < I в работе [20] . Ыы сейчас изложим еще один 
способ оценки этой асю.штотики, основанный па использовании тео­
ремы 5. Напомним, что теорема Ргаэля формулируется в терминах так 
называемых усеченных вайтмановских функций ЪУТ (ет.:. [22 J , стр.98). 
Покажем, что какова бы ни была if £ i^(,ft("*% функция 

^ < ? , ,.••,?„) ' ( ^ „ V " ' , 44 х»Л-*<,.-,*„-*.,)), пле г.=Соу(25) 
С °* /• r,in 

принадлежит пространству J (« ). 
Прежде всего ответим, что функция "V1 есть не что иное как 

свертка, рассматриваемая на Зп -мерном подпространстве 
L *= W € R*(n*'*: Г 0 = о, ̂ . = 0, ;=/,...,п?Следуя Рюэлю [Зб] , рассмот­
рим перестановки специального вида, связанные с разбиением множест­
ва индексов (О, I,..., n ) на две совокупности J = (j o ...,jK) 

j ' = (J/,-, JK')» B каждой из которых индексы расположены в поряд­
ке возрастания . , 

1(о/,...,п)^(^У) , т'(о1<1...,»)-(У,У). ^ 
При этом в силу спектральности и благодаря усечению носители Wv_ 
и %}L ^оказываются разделенными конечным интервалом._В прост­
ранстве S* существует цультипликатор, равный I на suppW^.и нулю 
на supf> %^T

r , используя который,мы получаем представление 
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йт= (* т-й;) + (г^й>г ( а в ) 
Поскольку при преобразовании Фурье операция умножения переходит в 
операцию свертки, отсюда вытекает 

ШГ* Ч> = (WT- XtT ) * Ч> + Ы 1 ~ 1*1,) * (А * Ч>) . (27) 
йункционал uyZ-~WT, ассоциирован с конусом 

J jey,j'£3' " JJ i i i j . 
'функционал U)r- Ъ)]1 также ассоциирован с этим конусом, и даже с 
его частью, поскольку в У и У' все индексы расположены в по­
рядке возрастания. Привлекая теперь теорему 5, можно утверждать, 
что функция UrT*<f принадлежит пространству .S^CGj) > г Д е Су-
любой открытый конус, компактный в R*("f' \К^. Поскольку это спра­
ведливо для любого разбиения (э У') , ш заключаем, что 

WT*4> € S*(C). (28) 
где С - любой открытый конус, компактный в дополнении к пересече­
нию всех /<j • Осталось убедиться, что подпространство L можно 
погрузить в подходящий конус С. Достаточно показать, что L пере­
секается с Л K-j лишь в нуле. Для этого вычислим расстояние от точ­
ки t € L ДО Kjj> • Переходя к переменным ,f С*;-*,'), J$ (**•*;,), 
получигл, что оно равно i lit- - Zj,lj . Следовательно,расстояние 
от "с до /С равно половине величины 

р = m\n IIZ--X,;ll, ,«Q. 
которую можно интерпретировать как расстояние между двумя частя­
ми системы точек f ? o i...i хЛ в трехмерном евклидовом пространст­
ве. Поскольку одна из этих точек, t 0 , расположена в начале коор­
динат, то равенство f> нулю для любого разбиения возможно 
лишь в том случае, если и все остальные точки локализованы в нача­
ле. 

Доказанную теорему можно уточнить,если учесть, что теорема 5 
применила также к подпространствам Sp пространства 5°*, состо­
ящим из функций, удовлетворяющих неравенства-.: 

70 



Преобразование Зурье переводит S t в 5^ [25J . При р > I пос­
леднее пространство строго локализуемо и в нем по-прежнему сущест­
вует мультипликатор U • Ассоциированность наследуется при перехо­
де к более узкому пространству (относительно топологий в S* 
см. [25] ). Поэтому, если у € S* (R*""), то ЬУТ* >р 6 S^W' в 

частности, при е> = < /,_4 получаем оценку 

' ^ ' ^ N < c _ ^ i i Л е~"^ 
г.. „ <-t 

(30) 

Здесь х - геоыетрический фактор, не зависящий от <f i и it *fW>/4 — 
норма if в 2>°L » наличие этого множителя выражает непрерывность 
отображения Sj ! - * S°4c). При р =1 мультипликатор Ь не сущест­
вует, однако сказанное в § I относительно локальных свойств в этом 
пространстве можно рассматривать как качественное соображение в 
пользу того, что на самом деле имеет место экспоненциальное убыва­
ние ~~ exp (-т/•?/). В данном случае роль t играет величина мас­
совой щели m . 

Опираясь на доказанную теорему, можно обычным способом [22] 
доказать существование асимптотических состояний и полей. Подчерк­
нем, что существование асимптотических пределов можно доказать в 
любой нелокализуемой теории [20] . Однако лишь в квазилокализуе-
мом случае существует нетривиальная область голоморфности вайтма-
новских функций, которая позволяет вывести из локальности такие 
решающие для физической интерпретации свойства, как правильную 
связь спина со статистикой для асимптотических полей, ТСР-инвари-
антность и унитарность S -матрицы. Для существенно нелокализуе-
мых теорий для доказательства существования унитарной S-матрицы 
необходимо дополнительно предположить, что пространства in и out 
асимптотических состояний совпадают <ff-in <= 2?oat. Это предположе­
ние заменяет более детальное предположение о 1лультипликативной 
структуре вайткановских функций в ^-представлении в [7] . 

§ 3. Ограничения на рост упругой амплитуды. 
В теории поля умеренного роста существуют два способа выво­

да ограничений на рост амплитуды. Первый основан на использовании 
аналитических свойств запаздывающих функций и дисперсионных соот­
ношений. Сюда относятся работы [37-40J . Этим методом получена 
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граница Фруассара F(sti)< С S m s и доказана аналитичность упру­
гой амплитуды по i в эллипсе Мартена. Обобщению на нелокапизуемые 
теории легче поддается метод, предложенный Омнесом [4l] , который 
приводит, правда, к несколько более слабым результатам. Основная 
идея этого петода состоит в следующем. При рассеянии двух волновых 
пакетов с большим параметром удара <Ц и относительным импульсом 

к наиболее вероятное значение орбитального момента есть f ~ a k . 
12cm. силы между частицами короткодействующие, то вероятность рас­
сеяния быстро спадает с ростом Л , а значит, и парциальная ашли-
туда быстро уменьшается с ростом I при фиксированной энергии. В 
теории поля короткодействие проявляется в наличии массовой щели 
и в асимптотических свойствах вайтмановских функций. Поэтому тео­
рема Рюэля должна приводить к соответствующей оценке на парциальные 
амплитуды. Для теории умеренного роста такие оценки получены в ра­
боте (43] , а для квазилопализуемых и нелокализуемых - в/"7~У/'. 
Сейчас мы кратко поясним общий метод вывода этих ограничений, по­
ложив в основу формулу (30) и считая для простоты массы частиц 
равными. 

двухчастичные in и out состояния в теории Хаага-Рюэля [22] 
есть пределы 
|°?1 > = fife В. ft) Ь.«)\й> , где Й = I/ в. <*) 7 I*(*)< 

t •* ± °° 'i U '' х„= t L 

В - вспомогательное поле, связанное с исходным формулой 
в; (р) = А (р) h (рг) д. (р) , где h (рг) вырезает одночастичный ги­
перболоид: Ь(тг) =1, supph с (т2-§ 1гпг*-§) . Пробная функция 
о. (Р) ( L = 1,2) в нашей задаче должна быть локализована около 
точки к ;= (к ; о t j?.) , к 0 = /т г+ /? г . Волновые пакеты /.(к) есть 
нормированные решения уравнения Клейна-Гордона, которые в импульс­
ном представлении полагаются равными 

{.(?) = expj i(p-K{f + ipa.l , где рг= тг 

Такой выбор f; и <ft при К, = -Кг ( at =-аг t к ; Ю ; описыва­
ет столкновение в системе центра масс с относительным импульсом 
к = 1к,| и параметром удара а = 12аI . Фактор & характеризует 
ширину пакетов. Из формул S I Ь > = l°ui >, S = i *• IТ имеем 

откуда следует основное неравенство метода Омнеса [43J 
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< m | T T + | i n > = a J m < i h | T l i n > 4 

«и: dl < fi | 5 / <*) bf d) bf (t) Bf (D Ц2 > J У (3D 

Выражение под знаком модуля в правой части приводится к виду 

J(*> = Jvfr л>Н tevwfafajt.-Jit, ( 3 2 ) 

где после дифференцирования надо положить 1- -t и где 
V f t ,\) = (а г^т гКо +/r,E)J"#r<x A K f t - V - ' V * ) * СЗЗ) 

•* (34) 
ftp) = №-v%(~v$,(?>)%<.?<-) nh(f>P. 

Теперь можно использовать оценку (30) (и аналогичную оценку для 
производных). Важнш обстоятельством, не позволяющий получить 
оценку фруассаровского типа, является тот факт, что дифференци­
альные свойства функции h (рг) , а значит, и </*, ухудшаются при 
/>-»•» .Проще всего суть дела видна, если считать, что й; (р) полу­
чается из некоторой исходной функции <f0 € Sa'l , сосредоточен­
ной в окрестности точки ( ро = т ,р=о ) двумя операциями -
сдвигом на 4-вектор к; и сжатием в к/т раз так, чтобы носитель 
Ч. все вреь!Я лежал в области, где h =1. Тогда Я-к = <f. . При та­
ком выборе о. функция (34) удовлетворяет неравенства! 

IP'DW>J . < С ( ^ ) М ( Г ^ ) ' " ? - ? . ( 3 5 ) 

Фактор (к+т) показывает, что сдвинутая функция локализована в 
области lpl< к+т , учо характеризует рост производных исходной 
функции, а множитель к/т обусловлен сжатием. Благодаря непрерыв­
ности оператора <3>урье норму в оценке (30) можно заменить на норг.у 
в пространстве S* = 51/|"*> Для которой в силу (35) мы имеем 

6 С е * • аур (^Г'ш/ • 
Таким образом, эта норм*а конечна только если | ч > ^ „ д , и для 
функции (34) мы получаем оценку 

73 



\Y(x)\ 4 С' G(V exp (-6 (£)'~11 (37) 
где d = ">«x l^j-tjl и через G(k) обозначена функция ехр(\~\ | 
характеризующая рост функционалов в ишульсноы представлении. 
Отметим, что фактор 6 не является характерным параметром задачи, 
в соответствии с тем, что асимптотика (30) не является точной. 
Кроме того, из-за ухудшения дифференциальных свойств при «->°° 
полученная оценка не однородна по <L , а зависит от комбинации 
d/к . Подставляя теперь (37) в (32) и используя свойства гладких 
решений уравнения Клейна-Гордона, можно доказать [43, 7-9] 

|Э(0| i С" (ИЧУ* G O ) еЧ(-С (£)''*) (36) 
Левая часть форлулн (31) может быть преобразована к виду 

onCUTlir,) = £ (ян) I at<s)F.(s)J&, (39) 
где (Х( (ь) •= .Xi 77 (<0 , а /у te) _ кинематический фактор, за­
висящий только от пакетов. Этот фактор оценен в [43, 7-9] . Он 
имеет резкий максимум при [ ~ ак , б~4ь->г. Воспользовавшись 
положительностью a. cs) и F.d>) , можно записать 
Z (2М)( a,O0E<b)ds > <Г (ю г) • л № . {г1Ч)Е(ь) 

Здесь а.((ы1) - д JilJtGf<'b > а стоящий при этой величине мно­
житель ведет себя как полином по f и к . В результате искомая 
оценка для парциальной амплитуды выглядит следующим образом.-

Для упругой амплитуда h (s,t) это дает (7,9j оценку типа Грин-
берга-Лоу 

\F(s,i)\ сСзг[ЬбШ]г" ( 4 1 ) 

Стандартной процедурой [37,38] можно также показать, что F(s,i) 
голоморфна в эллипсе типа Лемана. 

В заключение отметим, что не исключено, что обсуждавшиеся 
выше недостатки оценки (37) на самом деле можно устранить. Для 

I 
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этого прежде всего надо усилить теорему 5. Можно ожидать, что не­
прерывность отображения S"'—» 5"(с) , о которой говорится в 
этой теореме, сохраняется при замене топологии S на более сла­
бую топологию S"1 (V) , где V-окрестность носителя функциона­
ла f . Такого усиления, по-видимому, достаточно для доказатель­
ства ограничений фруассаровского типа. 
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НЕЛОКАЛЬНАЯ РЕЛЯТИВИСТСКАЯ ГАМИЛЬТОПОВА 
КВАНТОВАЯ ТЕОРИЯ ПОЛЯ 

С.II. СОКОЛОВ 

Институт физики высоких энергий, Серпухов 

Под релятивистской гамильтоновой квантовой (РГК) теорией 
поля понимается совокупность из 10 таких эрмитовых операторов 

F = { H , P , i < , T l 
на пространстве Фока 

X = Ф Кк, 

где X =(ёК ) - а-частичное подпространство, которые 
1) удовлетворяют коммутационным соотношениям алгебры Ли группы 

Пуанкаре и могут быть интерпретированы, соответственно, как 
гамильтониан, импульс, генератор лоренц- и обычных поворотов; 

2) коммутируют с проектором IPS , выделяющим в <К подпростран­
ство нужной симметрии, и, следовательно, выражаются через 
операторы рождения-уничтожения о*, о ; 

3) удовлетворяют условию разделимости взаимодействия; 
4) определяют пуаккаре-инвариантную матрицу рассеяния через 

операторы Меллсра типа 

+ = »tm е е * , 
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где Н„ - гамильтониан, соответствующий каналу реакции м . . 
Что касается разделимости взаимодействия (т.е. убывания 

взаимодействий с расстоянием), то в -р -представлении это свой­
ство проявляется в том, ' , фо ядра и>-лт операторов взаимодей­
ствия 

V^ m=Jd^ nc<u' ma*(f 1)...a*(p t l>^ m( t, t,Oa(t;)...a(f m') 
А 

не должны зависеть параметрически от оператора числа частиц N, 
и их части, остающиеся после отделения сингулярности, связанной 
с трансляционной инвариантностью, должны быть несингулярными и 
гладкими функциями импульсов f> = {jp ,$к\ и f'={f \, — , f ' „ \ -

Выполнение всех этих требований при нетривиальных взаимо­
действиях возможно только в рамках нелокальной теории, для ко­
торой условие локальности заменяется более слабым условием типа 
асимптотической абелевости алгебры гейзенберговых опе­
раторов при их больших относительных трансляциях^ '. Условие 
асимптотической абелевости по своему физическому содержанию 
совпадает с условием хорошей (экспоненциальной) разделимости 
взаимодействия и является одной из его возможных формулировок. 

Двумерная модель РГК-теории поля, удовлетворяющая условиям 
1)-*0, была построена недавно на основе фронтовой формы динами­
ки ' 2 » 5 ' , в настоящей работе строится общая 4-мерная РГК-теория 
бозонного поля на основе точечной формы динамики, в которой 
операторы К, Т имеют свободный вид 

Здесь и далее операторы a ,a и состояния у £ 3fл нормированы 
следующим образом.-

'л 

78 



Оператор 4-инпульса Р»{Н,Р] содержит взаимодействие во 
всех 4 компонентах и имеет вид 

где каждая компонента 4-векторного оператора взаимодействия 
Vfn.nO имеет структуру, подобную (I). 

Задача, решаемая в данной работе, состоит в нахождении 
ядер операторов V c * , m ) по заданному набору первичных (при­
сутствующих в первом порядке теории возмущений) взаимодействий 
(I), где «r,,w = 6 i(t^ $(fr( 10-£(l>' ))* ,V ln.(l>,t>'>, 
&(•£) = Zi> • / ir-tj.l - ^-скорость и 1ГИ1и - произвольная 
гладкая лоренц- инвариантная эрмитово-симиетричная функция от f>, 
? ' • 

Технической основой решения задачи является релятивистская 
теория пряного взаимодействия, развитая в '*'5' и дающая част­
ное решение этой задачи для случая, когда присутствуют только 
взаимодействия, сохраняющие число частиц. Это решение имеет вид 

где оператор Р л п действует из W в 3f" и вычисляется че­
рез заданные операторы V K „ вида 

v„ nt(-n =j<m; &e i(&-fr')o-K n с-р.г) t(p') 
с помощью рекуррентных соотношений, связывающих Р„„ с V n n и 

операторами для меньшего числа частиц, в частности, с операто­
ром P t l = f 1 +• * + &(•-{>< ̂ ^ V a t . Рекуррентные соотноше­
ния являются нелинейными, содержат унитарные пакующие операторы 
и имеют довольно сложный вид (см. ' ' ) . Для понимания дальней­
шего конкретный вид рекуррентных соотношений является несущест­
венным и мы их выписывать не будем. 

Оператор Р^ллл и о ж е т б ы т ь переписан в форме (2) и удовле­
творяет условиям 1)-4), указанным вначале. 
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Идея дальнейшего построения состоит в том, что соотношения, 
выражающие f ^ „ через V„„ , могут быть использованы для 
вычисления опедатора р через операторы v b m и в случае, ко­
гда присутствуют взаимодействия, изменяющие число частиц, если 
воспользоваться методом частиц-дублетов. 

Введем формально частицы-дублеты, имеющие одну наблюдаемую 
и одну вакуумную компоненту. Однодублетное пространство Н^ , 
состояния и скалярное произведение в нем имеют вид 

Генераторы группы Пуанкаре имеют вид 
F d =Ieia i 0<*Ct)FV(p), 

где F ={'р, '^О^Р > ' t» х ^ 1 » J i a операторы поднятия 
(из вакуума) «с* и опускания (в вакуум) л определены соот­
ношениями 

Пространство состояний N частиц-дублетов определяется как 

В системе N частиц-дублетов операторы взаимодействия в 
подсистеме Г и= {1Л, . . . , i K ) будем считать заданными в форме 
V J ( r r b v 1 * + Vd * t где и > ш , Г Э Г И и 
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и где функция ^„„(.р,р'~) симметрична к перестановкам внутри 
групп переменных р и р' . При п ф т операторы V^, (гИ/г„) 
описывают взаимодействия, сохраняющие число дублетов, но изменя­
ющие число частиц в наблюдаемом, т.е. не-вакууинои, состоянии. 

Пусть г», т > 2 (что соответствует отсутствию поляризации 
вакуума и перенормировки массы). Тогда рекуррентные соотношения 
для операторов ¥ „ „ переносятся без изменений на случай час­
тиц-дублетов и дают оператор 4-импульса Р ^ для системы /V 
дублетов со взаимодействиями, способными изменять число частиц 
в наблюдаемом состоянии. На оператор VNf/ следует смотреть 
как на вспомогательную промекуточную величину, т.к. этот опера­
тор заведомо не удовлетворяет требованию разделимости взаимо­
действия (из-за ограниченности вакуумного "резерва" в системе 

А/ дублетов взаимовлияние частиц не полностью исчезает на 
больших расстояниях). Однако из операторов Р^/.^У^е нетрудно 
построить оператор Р с нужными свойствами. 

В случае тождественных частиц-дублетов симметричная часть 
«i пространства Tfj может быть естественно отображена с 
помощью некоторого унитарного оператора U ^ на подпространство 

Р4 © Н* а р р у я„ = 

ЫН 
пространства Фока 7 t . Это позволяет через операторы Р 
определить операторы 

Р = и Р* и"1 

г# Ч» fit u * , 
дающие РГН-описаиие системы частиц (синглетов) на « ^ , а так­
же выразить Р^ через отображенные на Лы суммарные операторы 
поднятия-опускания a*M , a„ вида 

При /V-»t» операторы а * ( а л (доопределенные на Л" как ну­
ли вне ?f^ ) переходят в операторы рокдения-уничтожения о* и : 
Теорема I. 

г ^ _» t 
Операторы «,v,a v , размазанные с функцией f ( p ) € & t 
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при Ы -> оо сильно сходятся к соответствующим разма­
занным операторам рождения-уничтожения: 

«ftnifda, f a„ =5 da, fa . 

Доказательство этой теоремы несложно и основано на явном 
виде операторов а Л . Мы его приводить не будем. 

Качественное рассмотрение показывает, что если ядра u-„m 

достаточно гладки (например, дважды дифференцируемы), достаточ­
но быстро убывают с р при фиксированных ф ' и равны нулю 
при п , т и ; "ч*" >*",»«* и е о л и эффективная массовая щель 

при всех */ > о превышает некоторое {* "> о , то операторы P v Р*, 
при /V -• ее сильно сходятся к некоторым операторам Р , со­
держащим взаимодействие, изменяющее число частиц, и удовлетво­
рявшим (совместно с к f т ) условиям I)-*). 

Для выполнения условия асимптотической абелевости на ядра 
\r„.„ как функции от -£ , ...,1\, необходимо (и, по-видимо­
му, достаточно) иалояить более жесткое условие бесконечной диф-
ференцируемости и экспоненциального убывания всех производных. 

Следует отметить, что описанный метод построения гамильто­
ниана Н и других операторов не связан с теорией возмущений 
и не ограничен ее рамками. 

Полученный класс гамильтоновых нелокальных релятивистских 
теорий поля является довольно широким и даже, по всей вероятно­
сти, "плотным" в классе всевозможных регулярных РГК-теорий (бо-
зонного) поля, в которых не возникает перенормировки массы (т.е. 
оператор массы покоя системы М = ( Н 1 - Р ) содериит в 
своем дискретном спектре физическую, равную голой, массу части­
цы) и существуют операторы Иеллера S* 

Автор благодарен А.С. Шварцу, D.U. Широкову и Б.В. Медве­
деву за ценные обсуждения. 
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II. 

Киральная теория и гравитация 
CHIRAL THEORY AND GRAVITATION 



НИЗКОЭНЕЕТЕТИЧВСЖАЯ ФИЗИКА МЕЗОНОВ (КИРАЛЬНАЯ ТЮРИЯ) 
М.К.Волков, В.Н.Первушин 

Объединенный институт ядерных исследований, Дубна 

Настоящий обзор посвящен изложению квантовой киральной тео­
рии, которая позволяет получать ниэкоэнергетические разложения 
различных адронннх процессов без введения в теорию произвольных 
параметров (кроме масс адронов и констант взаимодействий). 

Первые попытки применить аппарат теории квантованных полей 
для описания сильных взаимодействий были предприняты в начале 
50-х ГОДОЕ, сразу же после построения квантовой электродинамики. 
Эти попытки, однако, не привели к каким-либо существенным успехам 
не только из-за большой величины константы связи, но и вследст­
вие того, что простейшие из предложенных в то время лагранжианов 
не отражали никакой динамической симметрии сильных взаимодейст­
вий. Дело в том, что требования релятивистской инвариантности и 
прочих т.н. алгебраических симметрии, которые используются для 
классификации частиц, оставляют большой произвол в выборе лагран­
жиана. Поэтому для фиксирования вида взаимодействия необходимо 
постулировать более широкую - динамическую группу преобразований. 
Напомним, что в квантс?ой электродинамике такой динамической сим­
метрией является градиентная инвариантность. 

Известные в настоящее время динамические симметрии, которые 
используются в гравитации, в единой теории слабых и электромагнит­
ных взаимодействий и в сильных взаимодействиях, не только опреде­
ляют форму лагранжиана, но и обуславливают универсальность вза-
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имодействии в том смысле, что первые порядки разложения по кон­
станте связи начинают совпадать с первыми порядками разложения по 
степеням энергии. Это позволяет, независимо от величины константы 
связи, использовать соответствующую теорию поля для получения ра­
зумных результатов в области низких энергий. 

В настоящем обзоре мы попытаемся дать описание физики низко­
энергетических мезонных процессов по следующей схеме: I) гипоте­
за о динамической симметрии сильных взаимодействий; 2) вывод ла­
гранжиана взаимодействия, удовлетворяющего такой симметрии; 3)по­
лучение физических следствий в райках изучаемой квантовой теории 
поля, с использованием однопетлевого приближения. 

Исходным пунктом является весьма плодотворная идея о кираль-
ной симметрии сильных взаимодействий, согласно которой сильные 
взаимодействия приближенно инвариантны относительно некоторой груп­
пы преобразований, включающей в себя,наряду с изотопическими пре­
образованиями, преобразования, перемешивающие состояния с различ­
ной четностью. 

Идея этой симметрии была намечена еще в знаменитой работе 
Фейнмана и Гелл-Манна ' ' о У-А форме слабых взаимодействий, 
в которой используется следующий путь рассуждений. Как известно, 
универсальность некоторых взаимодействий различных частиц (напри­
мер, одна и та же величина электрического заряда для лептонов и 
адронов),свидетельствует о существовании сохраняющихся величин 
(электромагнитного тока) и, следовательно, о наличии определенной 
группы симметрии (в данном примере - калибровочной инвариантности). 
Точно так же, исходя из универсальности слабого взаимодействия 
аксиальных токов лептонов и адронов в ум -распаде и В -распаде 
нейтрона *% в работе ' *' было предложено включить в группу Есех 
преобразований для адронов преобразования, перепутывающие состо­
яния с различной четностью. Эта идея затем была развита в рабо­
тах Гелл-Манна ' ', где наряду с векторными адронными токами, 
генерирующими унитарную симметрию ,S U% > были введены аксиаль­
ные токи. Коммутационные соотношения для всех этих адронных то­
ков в работе **' стали называть киральной алгеброй токов, а со­
ответствующую симметрию - киральной симметрией. 

Существуют две возможные реализации киральной симметрии -
алгебраическая и динамическая. 

*/ Во время написания работы' ' в 1958 г. было известно, что отношение аксиальной константы /3 -распада к векторное имеет величину a *i3t0,i. J 



Примером алгебраической реализации является классификация 
невзаимодействующих безмассовых частиц (типа нейтрино) по новым 
квантовым числам - спиральностям. Реализация киральной симметрии 
на безмассовых частицах получила широкое применение при описании 
лептон-адронных процессов с большими переданными импульсами и 
большими энергиями. Такая симметрия согласуется с представления­
ми об адронах как о пучках безмассовых, невзаимодействующих пар-
тонов (или кварков), сосредоточенных в пространственной области 
размером I ГэВ - 1 ' 3'. 

Другой, динамический '^ путь реализации алгебры токов ока­
зался весьма плодотворным в области низких энергий, « I ГэВ, где 
адроны приближенно можно представить как точечные, дассивные час­
тицы. Для понимания сути динамической реализации полезно рассмот­
реть простой пример аксиальных токов, с помощью которых описыва­
ется й -распад нуклона. __ 

где //- волновые функции свободных нуклонов,^ - матрицы Дирака, 
Ч~' - матрицы Паули, а. - константа связи. Как следует из урав­

нений Дирака: (al-^f)//{/^)=0;/^f8i-/4)=0 ток 'Sj' не сохра­
няется, если /Vfti? __ 

Добавим к этому току полюсной член, описывающий излучение 
нуклоном безмассовой псевдоскалярной частицы с константой слабо­
го распада /£- и константой аксиального взаимодействия с нукло­
ном $/м : 

Нетрудно видеть, что тепзрь можно добиться сохранения аксиально­
го тока . / 

7"-1* =° (1-2) 

и,следовательно, существования соответствующей симметрии, если 
положить 

#*=?& • (1'3) 

Киральная симметрия в данном случае диктует динамику взаимодей­
ствия нуклонов с псевдоскалярной частицей, которую обычно называ­
ют голдсгоуновской частицей. Если отождествить эту частицу с пио­
ном, то равенство (1.3), полученное впервые Голдбергером и 
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Трейманол/ ' с помощью дисперсионных соотношений, выполняется с 
точностью до 7%. Пион имеет не нулевую массу /?7$-, поэтому ди­
вергенция аксиального тока (1.2) равна*': 

где 5*"'- пионное поле. Вследствие того, что величины, входящие 
в соотношение (1.3), как функции переданного импульса <f слабо 
изменяются на расстояниях порядка массы пиона (гипотеза гладкос­
ти), правую часть равенства (1.4) можно рассматривать как слабое 
возмущение, т.е. "почти ноль". Равенство (1.4), которое называют 
гипотезой частичного сохранения аксиального тока (ЧСАТ), опреде­
ляет механизм нарушения киральной симметрии. ЧСАТ и коммутацион­
ные соотношения алгебры токов дают возможность получения правил 
сумм для матричных элементов слабых и электромагнитных адронных 
токов, хорошо согласующихся с экспериментом ' \ и целого ряда 
низкоэнергетических соотношений между адронными амплитудами без 
испускания и с испусканием мезона с нулевым нефизическим импуль­
сом. Полученная информация нуждается в дополнительной экстрапо­
ляции на физические значения импульсов и с ростом энергии теряет 
смысл, т.к. не удовлетворяет условию унитарности. 

Методом, Е котором можно обойти указанные трудности, являет­
ся метод феноменологических лагранжианов, позволяющий просто вос­
производить результаты алгебры токов на уровне приближения деревь­
ев. При этом ииральная симметрия обеспечивает самосогласованность 
сильных взаимодействий в том смысле, что эффектные низкоэнер­
гетические константы связи слабых, электромагнитных и самих силь­
ных взаимодействий не перенормируются за счет высших порядков по 
сильному взаимодействию ' ' , т.е. киральная симметрия приводит 
к тому, что разложение по сильной константе связи в низших по­
рядках совпадает с низкоэнергетическим разложением по степеням 
энергии. Напомним, что аналогичная ситуация существует и в кван-
ТОЕОЙ электродинамике ' ', первые порядки теории возмущения в 
которой содержали бы основную информацию при низких энергиях 
даже при большой константе связи. 

В I969-I97I гг. ряд авторов указал / 9 - I ° / j ч т о метод фено­
менологических лагранжианов может не только воспроизводить ре­
зультаты алгебры токов, но и позволяет продвинуться дальше по 

** Равенство (1.4) написано для тока (I.I), где сделана замена &г* •» */(</*-т£) . Оно следует из уравнения движения для >Г -поля: (f*-m£)?r' = -л?П#£?л' ?/м. 
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энергиям, если использовать аппарат квантовой теории поля. За 
последние 6 лет появилось множество работ, посвященных квантова­
нию такого рода киралышх лагранжианов и описанию Е рамках кван-
ТОЕОЙ киральной теории большой совокупности экспериментальных 
данных по низкоэнергетическим процессам '"""'. 

Существует несколько ПОДХОДОЕ К квантованию киралышх лаг­
ранжианов. В работах ' 9 » 1 3 ' рассматривают лагранжианы, перенор­
мируемые за счет введения гипотетических сигма-частиц. Широко 
изучаются нелинейные лагранжианы / 1 0 - 1 * > 1 4 - < = 4 / без гипотетиче­
ских частиц. Эти теории неперенормируемы и, как известно, отлича­
ются от перенормируемых наличием бесконечного числа неопределен­
ных параметров, которые нельзя фиксировать перенормировкой физи­
ческих величин. В работе ' ^' число неопределенных параметров 
уменьшают до одного, используя то обстоятельство, что нелинейные 
теории являются пределом линейных при устремлении массы сигма-
частиц к бесконечности. 

Наконец, в серии работ ' i 5 _^ 4' используется метод регуляри­
зации квантовой теории поля с неполиномиальным лагранжианом, по­
зволяющий фиксировать все неопределенные параметры. Этот метод 
был предложен одним из авторов ' ^ и получил дальнейшее разви­
тие Е работах Лемана ' ' и Салама с сотрудниками ' г / ' . В лите­
ратуре он получил название суперпропагаторного (с.п.) метода. 
Согласно с.п. методу,при устранении расходимостей нужно рассмат­
ривать выражение, соответствующее совокупности диаграмм с фикси­
рованным числом вершин и произвольным числом внутренних линий, 
как единую аналитическую функцию. 

Настоящий обзор посвящен описанию низкоэнергетических ме-
зонных процессов Е рамках однопетлеЕого приближения квангоьэй 
киральной теории. Мы ограничимся здесь рассмотрением с.п. под­
хода, в котором низкоэнергетические процессы исследованы наибо­
лее полно, а результаты совпадают с результатами подхода б"-моде-
ли в пределе т^-оо / 1 4'. 

Перечислим основные гипотезы и предположения. 
I. Лагранжиан является реализацией киральной динамической 

симметрии. При этом,в силу гипотезы гладкости, выбирается мини­
мальный по числу производных лагранжиан. Нарушение киральной 
симметрии при введении массы мезонов производится согласно схе­
ме Гелл-Манна-Оакса-Ренера ' 2 8'. 
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П. Применяется с.п. метод вычисления петлевых мезонных диа-
rpaioi, который фиксирует все неопределенные параметры. 

Ш. Для вычисления барионных однопетлевых диаграмм достаточ­
но использовать стандартную теорию перенормировок, удовлетворяю­
щую киральной симметрии. Тем самым изучаются лишь конечные ин­
тегралы, соответствующие барионным петлевым диаграммам. Средние 
значения виртуальных барионных импульсов оказываются конечными 
и небольшими. Поэтому при низких энергиях мезонов сильные верши­
ны Е барионных петлях находятся в том же режиме, что в соотно­
шении Голдбергера-Треймана (1.3). Отсюда следует ожидать, что 
совпадение низкоэнергетического разложения и разложения по кон­
станте сильной связи имеет место и для однопетлевых барионных 
диаграмм. 

Проверка этого предположения, проведенная в работах /2.3.14/ 
показала, что поправки за счет следующих порядков теории возму­
щения по сильной константе связи составляют 20-30$. 

2. Феноменологические лагранжианы 
В этом разделе опишем общий метод получения феноменологи­

ческих лагранжианов, являющихся нелинейной реализацией киральной 
симметрии Z 3 0» 3 1/. Для примера рассмотрим симметрию SU,*$ll-i.. 

Пусть имеется лагранжиан для свободных невзаимодействующих 
нуклонов л _ л 

Этот лагранжиан инвариантен относительно изотопических преобразо­
ваний с параметрами ш _, 

у" = expf<t?}t/, (2.2) 
что отражается в классификации нуклонов по представлению (1/2) 
группы fiUz . Рассмотрим также преобразования, перепутывающие 
состояния с различной четностью, с параметрами 3 Г 

(/' = ехр {{.?%£}. (2.3) 
Лагранжиан (2.1) после преобразования (2.3) принимает вид: 

<С (</') =£¥) + М?0 - etpfa ?*})/ .(2.4) 
Лагранжиан (2.1) будет инвариантен, если положить массу нуклона 
равной нулю. Такая киральная инвариантность относительно (2.3) 
позволяет ввести дополнительную классификацию нуклонов по спи-
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ральностям, т.е. по правому и левому изотопическому спину, по 
представлениям(4,0) >(^>г) группы £Uz*t>Mz . Другой способ 
сделать лагранжиан (2.1) кирально-инвариавтным,не полагая М = 0, 
заключается во введении взаимодействия нуклонов с "компенсирую­
щими" полями, которые при преобразованиях (2.3) скомпенсировали 
бы возникающий неинвариантный множитель в лагранжиане (2.4). 
Поскольку речь идет о преобразованиях, меняющих четность, необ­
ходимо ввести взаимодействия с псевдоскалярными безмассоЕыми 
"пионами" с помощью замены: _,. 

Мфу - М?г*р{-& Ц](/', (2.5) 
где /$• - размерная константа. Причем поля IF' должны преобразо­
вываться по нелинейному закону: 

"/°/> Tf'J=«rf-r*¥J<rf*%№*¥J (2-6> 
так, чтобы выражение (2.5) было инвариантно относительно совмест­
ных преобразований полей b/ и W (2.3), (2.6). Инвариантный лаг­
ранжиан для самого пионного поля нетрудно построить из матриц 

Таким образом,полный инвариантный лагранжиан будет иметь вид 
<£(</, Г) = / &$(/- rft/M/ofdi У](/ ' £f*) • (2.8) 

Если отождествить введенное голдстоуновское поле с реальным пи­
оном, а аксиальный ток Uf=J^.'^lVfO(s'>)- с током,участвующим в 
слабых взаимодействиях, то константа fjl в первом борновском 
приближении совпадает с константой слабого распада пиона, отсю­
да у£ = 92 МэВ. 

3. Сильные взаимодействия (IF~jr -рассеяние) 
В дальнейшем изложении мы постараемся возможно меньше оста­

навливаться на деталях вычислений, отсылая интересующихся этими 
вопросами к оригинальным работам z 1 5 " 2 3 / , а,в основном, займемся 
обсуждением полученных результатов. Прежде всего,рассмотрим про­
цесс упругого ITJF- рассеяния. 

Амплитуда рассеяния имеет вид 
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(ЯГ)'i/fitfifSfit'O't 0lJ(is <*> = f< <(*rfZ (fit 'fit -fix -fi*) * 

*г£,^Ш«)<•$,<£/AM 4,<X<Jfa WJ, ( 3 ' I } 

где 1 - единичная матрица, ik - изотопические индексы пиона, 
S}/ - символы Кронекера, r? -/fit*/>*)*, t-^P/fij)1, M^/fiffibJ2. 
На рис. I изображены диаграммы, соответствующие однопетлевому 
приближению (порядок не выше */'/•"* ). Диаграмма 1а соответст­
вует древесному р р 

' X'" vv~v' 
а Ъ ^ „ у 

-* 'Ч- У 

Рис. I 
приближению. Вклад в амплитуду от диаграммы 16 вычисляется с 
использованием с.п. метода ? ' . Вклады остальных диаграмм вы­
числяются обычными методами ренормируемых теорий поля и здесь 
удерживаются лишь квадратичные члены по переменным Д", / , U , 
т.к. члены более высоких степеней будут малы, типа,^^*;^"* . 
Учет вкладов от всех членов барионного октета производится с по­
мощью /S"J/j теории. В результате Е "^/£* приближении получает­
ся следующее выражение для /l^,t,u) ' 

(W*j?(fit.«)=< а?-*)' < /res, ?, *), 
/l(sj,a) = -if+3f 'WZ'+wrinV-ffi-ifJtf)- ( 3' 2 ) 

-rsfu-MS-t) *3u-t]J{u) -l3/?-iXt-u)+jI-i]3(t)b 

7 Вклады от диаграмм 1в,г,д в константный и линейный по 
S , * i U члены содержат неопределенные параметры, которые молшо зафиксировать, используя низкоэнергетические теоремы, требующие, чтобы амплитуда при низких энергиях имела вид: уда f ц) ~ У/^г 
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3 области энергий, существенно меньших iT/^, формула 
(3.2) является хорошим разложением амплитуды 5ГУ-рассеяния по 
малому параметру </•„ . Следуя работе '**', введем обозначения 

Л*>-/>?*•*&, S/M, V j~7 г Wf 
w *;«>**: 

1 1 

J?e fa) '-^еР^/^Ы (l ф?)(/-*); *'&Щ. 
I D1 * 

Здесь ОСе - длины рассеяния, of и Се - параметры эффектив­
ной области, Ре{М - полином Ленандра. Тогда для длин рассея­
ния и параметров эффективной области 5Г9Г - системы получаются 
значения, приведенные в таблице. 

4й 
Эксперимент^33' Значения из' ' Значения из' ' 

а: 0,10; 0,60 0,15 0,05+0,02 

а? -0,10; -0,03 -0,042 -0,065+0,025 

а* 0,032; 0,040 0,031 0,0341+0,0036 

81 1,14-Ю" 3 ( I ,07+0,27) . I0" 3 

а; I , 4 - I 0 - 3 ; I , 8 - I 0 " 3 1,85-Ю" 3 (1,48+0,08). Ю - 3 

at - 2 , I 0 " 4 ; 3 - I 0 - 4 2 ,6-Ю" 4 (-3+8). Ю - 5 

81 - I . 0 2 - I 0 " 4 (-3,8+1,1)-10~ 5 

81 - 5 , 1 - Ю - 5 (-4,4+1,1) • Ю - 5 

с! 2 - Ю - 5 (1 ,13+0,36) .Ю - 5 

с} 1,06-Ю - 5 (1.27+0,36).10~ 5 

«; 1,33- 1С)"5 (3,8+0,5).Ю" 5 

<*! 5 . I0" 6 (4,8+0,8). Ю - 6 

а? 2 . I 0 " 6 С1,7+0,8).Ю" 6 
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При i --TJ из приведенных Еыше формул можно получить следу-
юане ппэстке выражения для длш! рассеяния 
л/ = (ге +*)№+7)Ze , а/ = (i £ z +зё * s)Ze , 

Результаты, приведенные в таблице^ ̂ орокю согласуются с из­
вестными экспериментальными данными /3$/ а также с результата­
ми феноменологического подхода Палоу и Индураина '3~', где ис­
пользуется представление ±>руассара-Грибова. 

Заметим, что, если значения длин рассеяния в /9-у. /'-волнах 
в основном определяются борновским членом (рис. 1а), то, начиная 
с 0-волны, вклад борцовского члена в длины рассеяния высших пар­
циальных волн полностью отсутствует и их величины определяются 
вкладом пионной петлевой диаграммы 16. 

Разлагая амплитуду Д по парциальным волнам и используя 
^эрмулу^'Л?^ -i) =(i-0/z/]e , можно получить информацию о 
поведении фаз %~Я~- системы. На рис. 2 приведены соответствующие 
графики. Пунктирной линией показано поведение фаз в пределе /7?-= 
=0 (случай, рассмотренный в работах /15,16/^ в р _ Е о л н е х о р о ш о 

заметен О -мезонный резонанс при энергии~800 МэВ с шириной ~ 
150 -эВ.Точки / - из / 3 3 а/, / - из ' 3 3 б / и \ - из / 3 3 в/ 
(об остальных см. ' ' ) . 

К 
90 
60 
10 
U 

SO 

so 
го 
to 
о 

-ю 
-го 
-50 

^ЩЩ^и 

Рис. 2 
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4. Электромагнитные взаимодействия 
ВзаимодойстЕие с электромагнитным полем Д^ вводится в 

лагранжиан обычным градиентно-инвариантным способом 
У» •/» J» ( 4 Л ) 

Г- = (г*,**,р,11\£-). 
a). I'opMttHKTop. Матричный элемент для пиона, находящегося 

во внешнем электромагнитном поле А , , равен 

viMw•»,„£$%. Ф,9К 
где pt и рг -импульсы пиона, а - ̂  ,рг , </^pt-pz » 

формфактор пиона. - вклад в формфактор от пионной 
диаграммы 36 и Ф to)- вклад от барионных диаграмм Зв,г,д 
в ё//т2 приближении к 

Ч ._ JU- ̂ 4. 
в 5 

Рис. 3 
При вычислении функции \р (</) используется с.п. метод. 

3 результате получаем 

где С-0,Г??.. , f*=f%m£, ^B и -?{</*) те же, что и в 
формуле (3.2). Из (4.3) видно, что вклад от пионной петли в ра­
диус пиона равен 

<*>tW)-1&;Ш - I е ' А W**•*****>- ил) 

Вклад от барионных диаграмм опять вычисляется с точностью 
до q z - членов, ввиду малости остальных. Все расходимости 
в диаграммах Зв,г,д взаимно компенсируются и для Ф^^(а) 
получается выражение *> 

*> Множитель 1,7 появляется после учета всех членов барион-ного октета (см./18). цц -взаимодействия дают очень малый вклад в формфактор пиона. 
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Ф* ty~ **$г7Ъ)Ч' (4.5) 

Отсюда для квадратичного радиуса пиона получается вклад 
•:7г){/=> >. 0,36 (Ф*>.)~. 

Радиус пиона 

\fvP~> / \ 7 - / * v ,<7-у*У ^ ce/rfA-v) (4.6) 
находится s удовлетворг^гчтьном согласии с последними г>ксперимен-
тальнкми данными ' ' . 

Подставляя пункции (4.3) л (4.5) в (4 .2) , приходит/ к следу­
ющему выражению для форв^тора пиона: 

<${f) = У - oCt / - / <-Ь6у* + (г -fVJffVJ. 
1та формула оииснвает поведение формфактора пиона при энергиях 
flq2f <. I Гэ • в хоролем согласи с экппериментальнх.п де.ннмм.1, не­
давно полученными Е Дубне и Серпухове /34/ 
•!а,б. Точки £ - из /34а/ 

. # " 
/346/ 

(см. графики на рис. 

нр^—" 
-0,0* -0,03 -0,02 -0,01 

М! 

Рис. 4 
Интересно отметить, что радиус пиона почти целиком опреде­

ляется вкладом барионних петлевкх диаграмм. Значение радиуса 
(4.6) близко к цредсказаниян^ сделанным на основе модели р -
доминантности *Ч/<?~У ~ \/~6/т%' ~ 0,64 Ф/>/ 

^ Аналогичные вьгчисшщя, проведенные для каоноЕ, дают сле­
дующие результаты/20/: *'<7г>„* - ом A»; /<?г>д.г' = 0,2s л * , что так­
же хорошо согласуется с предсказаниями модели векторной доминант-
ности/35/. 
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б). Комптон- эффект. Выпишем теперь матричный элемент, соот­
ветствующий комптон-э#екту на пионе 

где Л , ^ - импульсы ФОТОНОЕ; <f<" , е/' - поляризуемости; 
л, , вг - импульсы пионов, а , 8 - изотопические индексы. 
Сгизу же заметим, что для этого процесса Е однопетлевом приближе­
нии компенсации расходимостей происходит не только в барионных 
петлевых диаграммах, но и в пионных. Поэтому с.п. метод нет не­
обходимости использовать. Не приводя общего вида коЕариантной 
амплитуды Tcfg > запишем здесь ту форму, которая получается 
в первых порядках теории возмущений ( ^x/f^) 

У.\ XL 
Ж ' Ж-я* x-

a 

;y; 
<0/ \(Ы 

\"7 * / « 
-V«- j^'A- J-A~ -/но-i- A 

j и к 

Рис. 5 
Первые три члена в фигурных скобках являются борноЕскими члена­
ми (диаграммы 5а и 56), B^^fifz) - вклад от пионных петель 
(5Е И 5Г ) , fya>(e?ifc) - вклад от барионных петель (5 д-л). В 
а(Б) удержаны лишь константные члены, ЕВИДУ малости остальных 
членов разложения по степеням (fifo) • Кроме того, при выводе 
(4.7) использованы равенства (у&)={а2ег):0, <?f-f'f-0> />/ = 
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При совместном вычислении Еклада в амплитуду от диаграмм 
5в и 5г получается конечное выражение, рагное 

Ада -**гм£ШНи£-'П'- 6 
При рассмотрении комптон-эффекта на нейтральном пионе вклады 
от диаграмм 5д,е,ж полностью взаюлно сокращаются. Для заряженных 
ппонов Еклады от нуклзннп'х диаграмм 5д,е,з-л раЕны 

Учет Екладог от овальных членов барионного октета приводит опять 
к появлению множителя 1 ,7Е (4 .8) . 

Определяя поляризуемость пиона как коэффициент эффективного 

Еза:аюдейстЕИя пиона с внешним электромагнитным полем /1Ш ** 

^ 2 
получаем 

' ' (4Л-) 

Интересно отметить,что функция й fc/ifi) быстро меняется в по­
роговой области. В результате на пороге рождения двух пионов 
получаем 

Полученные значения ^^t в два раза больше тех значений, кото­
рые получались на основе использования алгебры гоков ' ' .Кроме 
того, в раооте'~^' получено оЦр* = 0 х/', 

** Энергетический множитель (g^fyyi-'ft '/г J, всегда присут­ствующий Е однопетлевом приближении в амплитуде T^g" (см.(4.7)), на квантов омеханическом языке соответствует комбинации (//"-£*) . Отсюда следует, что электрическая и магнитная поляризуемости пи­она в этом приближении равны по абсолютной величине и противопо­ложны по знаку. 
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5. Слабив взаимодействия 
I). Распады заряженных пионов ' ' 
Рассмотрим теперь основные распады заряженных мезонов и 

вычислим структурные константы этих распадов. Для этого нам не­
обходимо будет дополнить киральный лагранжиан той частью, кото­
рая ответственна за слабые взаимодействия. Выпишем ее 

где /£'- £.£CA'0fi(t)fa{i-ifc)O\ G- - слабая константа связи, в -
угол Кабиббэ, л/ , в и J - поля jtf -мезона, электрона и нейтри­
но. 

Для амплитуд процессов - / будем использогать обычное 
определение, коториз, например, для процесса jT-r-^/'/"''/'имеет 

<j«>>(e),{A(f)l$l*ffi)> = <? / / а у " гг/ £ , 
где £д - поляризация фотона, а о с/ к с - импульсы пио­
на, фотона и лептонной пары, соответственно. Поскольку, как лег­
ко убедиться на примере предыдущих расчетов, вклады барионных 
петель значительно превышают вклада от пионных гетель, мы здесь 
будем учитывать лишь барионные вклады. 

а). Начнем с рассмотрения основного распада пиона ̂ '''-yvV/ft'i 
С помощью этого процесса фиксируется единственный параметр ки-
ральной теории - /^- . Сказывается, что следующий за борновским 
порядок теории возмущений дает лишь малую поправку к Г~ , и 
в петлевых диаграммах 66 и 6в опять происходит полная компенса­
ция расходимостей. 

Рис. 6 

** Приведем опять аналогичные результаты, пэлученнке нами 
для каонов / 2 0 / : ^ = i s Wfo»?; *„, =о 
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.1 результате Е однопетлевом прлблияенни получаем 

(»~JI,l) '• L ° ' Zx/ff /J' 

где /3* - жпульс пиона, /'/'' = £. cc.?t? Fi^^jufi-;/£)М(1/> - леп-
тоннин ток. .iTopoii член, стояшнл Е скобках, существенно меньше 
о.гижгцк. Сравнивая (5.1) с экспериментов, имеем /1 - 93 \Ш. 

б). Рассмотрим теперь процесс JT" -»yv " ̂ ^ . Подробное об-
с;,';-:ден:!̂  от;..го процесса мэкно найти Е работах / i- , 0f J'/ -

(1 

- ^ С ^ ^ 

: рпоуч-кое приближенно определяется длагра;.;..:а;л;1 7а 

1 ;:н -питловзо приближс:';:': ? основном исчерпывается диаграммами, 
^ГОИ'едепнкни на рпе. V6 и 7в. .жладч от этих диаграмм имеют вид 

"•'.*.• t ' x n - полностью ант;;сп:.гетрпчнь:И тензор. Таким образом, 
учет нуклоннкх петель сводится: П л перенормировке константы 
/ ~ (см. (15.1)); 2) к пояЕлеш:ю членов, описывающих структур­
ное излучение. 

Для отношения J У'^\- = ^ получаем 
. / = fr/j ~л* , (5.3) 

тогда как эксперимент дает два возможных значения У= fyll-XJ' '. 
(тметим, что в нашем подходе автоматически выполняются сле­

дующие из алгебры токов ' ' соотношения между константами / ? / 
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щие 

и константой / распада V'-'Yfi' , а также константой h^ и 
поляризуемостью пиона а (о). 

Амплитуда процесса 9Г''~¥#> ЕперЕые была вычислена в рабо­
те Стейнбергера ' ' в однопетлевом приближении (см. рис. 8); 

^,^ - импульсы фотонов. Экспериментальные значения _/ следую-

Соотношение, следующее из алгебры токов, имеет вид 
hr =- S/ge* . < 5- 5> 

Сравнивая (5.4) с (5.2), легко убедиться Е выполнении этого ра­
венства. 

Значение поляризуемости пиона при энергиях А А = ^ 
в ОСНОЕНОМ определяется барионннми вкладами (см. формулу (4.0)). 
Сравнивая (4.8) с (5.2), получаем 

Ъ=<&УА'' • (5-6) 
ото именно то соотношение, которое следует из алгебры TOKOE ' J ° ' . 
Учет вкладов от остальных членоЕ барионного октета приводит к по­
явлению множителей 1,7 в коэффициентах с g-J и 1,2 Е коэффициен­
тах с Оа • Тем самым равенства (5.5) и (5.6) не нарушаются. 

__:У:_ y < v ~ -рЖ-~^=У~ 
Рис. 8 и 9 
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Е ) Наконец, рассмотрим последний процесс Jr'-^VV(рис.9). 
Вычисление амплитуды этого процесса очень похоже на вычисление 
форыфакюра пиона и дает следующий результат: 

На этом мы закончим рассмотрение пионных взаимодействий**. 
где 

6. Заключение 
Подводя итоги приведенным здесь примерам использования кван­

товой киральной теории для описания низкоэнергетических процессов 
взаимодействия мезонов, можно отметить, что полученные результа­
ты, как минимум, воспроизводят реальную качественную картину раз­
личных физических процессов, приводя в большинстве случаев и к 
хорошему количественному согласию с опытом. 

Эти результаты показывают, что универсальность сильного, 
слабого и электромагнитного взаимодействий адронов может являть­
ся причиной успешного применения теории возмущений не только Е 
перЕом.но и в следующем порядке по сильной константе связи, что 
подтверждается прямыми оценками двухпетлевого приближения ' I 4 t ^ y / 
Напомним, что квантовая киральная теория в той форме, в которой 
она здесь сформулирована, может успешно использоваться лишь при 
низких энергиях, существенно меньших £F/*~ 1,2 ГэВ, того энерге­
тического масштаба, который естественно возникает в этой теории. 
При дальнейшем продвижении по энергии приближение точечных адро­
нов может оказаться неприемлемым в силу наличия структуры адро­
нов. 

Уверенность в наличии такой структуры непрерывно возрастает, 
чему способствуют успехи кварковой модели алгебры токов на све­
товом конусе и собственно Марковых моделей Е объяснении процес­
сов электророждения и нейтринных реакций при ЕЫСОКИХ энергиях и 
в описании огромного числа распадов резонансов и данных по спект­
роскопии адроноЕ. 

*f Укажем еще, что вычисление ^ез распада дает следующие значения для формфахторов:' Л+ =0,025, Д в =-0,03 и / -
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В то же время эти успехи определенно указывают, что кираль-
ная симметрия является приближенной симметрией сильных взаимодей­
ствий для всех доступных в настоящее Бремя анергий. Однако реали­
зуется эта симметрия для разных энергий по-разному. 3 связи с 
аткм, одним из наиболее интересных вопросов, по натеку мнению, 
ЯЕляется исследование смены режимов реализаций киральной симмет­
рии от динамической к алгебраической в области средних энергий. 

Некоторые возможности в изучении этого вопроса дают дуально-
резонансные модели, описывающие взаимодействие протяженных объек­
тов (струн). ЭТИ модели,С ОДНОЙ стороны, воспроизводят и приводят 
к амплитудам Венециано, с другой стороны, в пределе низких энер­
гии, переходят в полевые модели точечных частиц. В частности, 
аиболее реалистическая дуально-резонансная модель Невью-Шарца 

' имеет своим точечным пределом рассмотренную Е настоящем об­
зоре киральную теорию с нелинейным феноменологическим лагранжиа­
ном. 

7 
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ItEfTORffilLIZATION OF THE NOMLINEAB ff-MODEL ЦТ 2 + £ DIMENSION 
J.Zinn-Justin 

DPhT С Ш Saclay BP No 2, 91190 GIF-SUH-YVTiTTE (France) 

This talk will present a brief account of a work done in /1/ collaboration with E.Brezin' ' on the renormallzation of the 
non linear o" model with 0(•».) symmetry and its application, in 
Statistical Mechanics, to the phase transition of the classical 
Heisenberg ferromagnet. 

/2/ I. The non linear <T model' ' 

Vie will concentrate only on the (Г model with 0Ы) symmetry, 
although most of the results can be extended with minor modifica­
tions to the general case. 

The generating functional of Green's functions, in euclidean 
space, is given by: 

where <A (4 ) is 

CD 

(2) 

and 7Г is a fvi-il component vector field. 
This model is invariant under transformations of the 

symmetry group, acting on the vector ( TT , 
Notice that we have, for convenience,normalized the TC 

field so that the coupling constant T appears only in front of the 
lagrangian. 

Simple power counting shows that this model is, in perturbati­
on theory, not renormalizable for a dimension d>I . Indeed the TT 
field has canonical dimension ^zi , and the interaction contains 

-1 
arbitrary powers of TC 
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V/e shall show in what follows that the true large momentum 
behavior of this model, is related to the existence of a phase 
transition in the Heisenberg ferromagnet and this viill yield the 
physical solution of the problem. 

II. The classical Heisenberg ferromaKnet 

The Heisenberg model describes the interaction of a spin 
system of u-component unit vectors S> on a dL dimensional cubic 
lattice. We shall consider a system with a two spin interaction, 
whose Hamlltonian reads: 

Ж -. - 1 , Ц S. S,. , (3) 
where л and <L are lattice sites, and v;j is a positive short range, 
and translationally invariant potential. The thermodynamical pro­
perties of the system , are obtained from the partition function 

A 

It is known that this system undergoes a continuous (second order) 
phase transition for any dimension oL^3 . In 1 dimension no 
phase transition is possible with short range forces. The struc­
ture of this phase transition has been completely explained with 
the use of mean field theory, Wilson's renormalization group 
arguments' " , and the famous iVilson-Fishei/ ' £. -expansion 
( S z A- cL ) above 4 dimension and in the neighborhood of 4 dimen­
sion. It is characterized by critical exponents, scaling proper­
ties and universal scaling functions. The experimentally known 
phase transition is 3 dimension agrees more than qualitatively 
with the results of the E -expansion'-7 extrapolated at & =1. 

In two dimension the problem had not been solved until 
recently at the exception of the abelian О(2) case for which 
Berezinskr ' argued for the existence of a phase transition with 
long range correlations, temperature dependent critical exponents 
but without ordering. Indeed it has been rigorously established' " 
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that in two dimension, in models with oontinuous symmetry: 
< SA > = о V T . 

The problem of what happens in two dimension, and in the neighbor­
hood of two dimension is directly related to the renormalization 
of the non linear <Г model. 

III. Qualitative arguments about phase transition in low 
dimensions 

А. И. Ро1уакот/8' and A.A.Migd.-l''' where the first to solve 
this problem with qualitative arguments. 

Polyakov applied approximate renormalization group arguments to 
the Heisenberg model and obtained the first order effect. 

Migdal used approximate recursion formulae on the lattice to 
study the Ising model, the Heisenberg ferromagnet and gauge 
theories. The main results are the following: 

In the Ising model a phase transition appears for any dimen­
sion larger than one, and in the neighborhood of one dimension 
the critical temperature T c is of order lA-4}. 

In the Heisenberg model, phase transitions appear only at 
two dimensions for the abelian 0 (2) group, and above two dimen­
sions for the non-abelian case. In the latter case T c is of 
order ti-г) . 

Migdal has furthermore shown that in the framework of his 
approximation, the free energy -tnv Z of the Heisenberg model in 
d dimension is identical to the free energy of gauge theories 
in xA dimension. 

Therefore, in 4 dimension, the abelian gauge theory has a 
phase transition at a finite temperature and Q.E.D. corresponds 
to the low temperature phase; the non-abelian gauge theory has 
no phase transition and generates a new, presumably confined, 
theory. 

Let us now give some simplified arguments explaining the role 
of dimension 1 and 2 respectively for the Ising and Heisenberg 
model. These arguments are based on the idea that the ground 
state of the transfer matrix in degenerated at very low temperatu­
re if a transition has tr an. place. Because, in the large volume 
limit, the transfer matrix becomesa projector onto the ground 
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state, it is not necessary to calculate all matrix elements of this 
matrix, but it is sufficient to take a set of states, obtained 
from one of them by acting да it with the symmetry group. Those 
who are not familiar with the langague of the transfer matrix, 
will feel intuitively, I think, that a phase transition Is only 
possible if a global change on the boundary conditions of the 
system produces an infinite lobs of energy. 

Consider now the Ising model, in a box of linear dimension 
L . We first calculate the minimum energy of the system with 
the condition that all spins are equal on the boundary (Figure 
1). Now we calculate the change in the minimal energy if the 
boundary conditions are that the spin are opposite on both sides 
(Figure 2). Obviously 

On some surface we have to flip all the spins. Go a transition 
is possible for <1>1 . In the case of the Heisenberg -nodel, we 
shall impose the condition that the angle between the spins on 
one side and the other side is v 

Now the minimum energy is obtained by rotating continuously 
the spin from one side to the other by an onjle E (ligure J). 
?he energy is then: 

L z L ел Я ^ est - © L 
L г 

A change in the boundary condition leads to an infinite energy 
only for a > Z, . 

IV. Heisenberg model in i u dimension 

a) Low temperature expansion 
Ve shall calculate the free energy of the Heisenberg model 

through a systematic low temperature expansion. At low temperature, 
the spontaneous magnetization «c S; > is very close to one, 
and the spins fluctuate very little around their mean positionrv. 
It is therefore natural to parametrize % as: 

111 



л £ «г 
-п.. 3 = <г -» with <Т = /l-"""1". 
S,.^ "TV (5) 

The partition function is then given by: 

A 
Low temperature expansion corresponds just to «hat is called 
in field theoretic language loop expansion. If we expand the 
interaction in terms of the |T -variable we obtain: 

The propagator in momentum space is then 

^ ^ ~ ~Z, lor Q small • 

The properties of the phase transition are obtained by examining 
the long distance, i.e. the small momenta behaviour of the theory. 
It is easy to see that in this limit the interaction can be 
replaced by the interaction of the non-linear 6 model, 

Ъ) Role of dimension two 

Dimension two appears now clearly because the non-linear 
(Г -model is then just renormalizable. It is also renormalizable 

in d dimension if we perform a double series expansion in 
Tand [d-̂l. 

It can be regularized in a rotationally invariant way, 
for example by returning on the lattice, or simpler through the 
use of dimensional regularization, provided we add first a 
magnetic field to give a mass to the 'JT . 

Only two renormalizatic constants are needed: 
T —» Г,(т)Т , 
тг - ^ z i / x r r • 
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This is easy to prove if vie use the '.V.I. i den t i t i e s vihich express 
that the bagrangian i s invariant under the transforraation: 

l ТГ -- Z {л^ • 

The fienerating functional (1) therefore satisfies 

The connected functional WiwiZsatisfies the same equation. Its 
Legendre transform 1 : 

П Т Ы + УУ/ПГ.Н) ~. \±\ Tooftoo. ( 8 ) 

Satisfies then: 

Wx(nW^W И1 4 ^ z ° • (9) 
It can be easily shown' ' that this equation is stable under 
renormalization. 

The renormalized Lagrangian satisfies the same equation. 
The solution of this equation leads to the result 

Уг -_#* t21t)-,{jjt[Z(^yl
+^^n?,f ] ] . (10) 

where u. is a scale parameter and t is dlmenslonless. 

c) Kenormalization group equations 

Renormalization group equations are as follows: 
For the IPI correlation functions they take the form: 
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(12) 

in which we set the magnetic field И to a const an ;. Connected 
correlat ion functions of the IT вой the 0" sat isfy similar equa­
t ions ("(-У Tlfcl ) i s changed in Й "Sit)) . 

These equations can be integrated. Defining the correlat ion 
length a s : 

and the spontaneous magnetization ав 

' 3. a u i t ' i 

(13) 

wet'; ( 1 4 > 

we obtain a foaling form: 

t (15) 

which i s similar to the scaling form obtained from the (4-d) 
expansion, but contains additional information about Goldstone 
s ingu la r i t i e s . 

d) Calculation of the renormalization group function* 

I t i s easy to calculate Z* and ~Z. a t two loop order. The 
functionswIt)and 519 are as follows: 

Vufcl = U-ilfc - i-n-аЛ C t 4 ^ > •+ ОСЬ*;, 

"SlM-l-A-Ob + OO?) • (16) 
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A factor — J "̂ J. has been incorporated in the definition 
of k . w nty 

The important feature is the coefficient of t in vl Ct) 
which is negative for 'Vi? A . The non-linear 6" -model with non-
abelian group symmetry, is asymptotically free in 2 dimension 
(as gauge theories in 4 dimension). Therefore it has an U.V. 
stable fixed point t̂ , in ZtE dimension. The true asymptotic be­
haviour of this model above 2 dimension has nothing to do with 
perturbation theory. It is governed by this fixed point: 

with the anomalous dimension given by: 

1̂  - A-1+ "3(1*1 • (17) 

Expressions (16) yield: 

The non-linear (Г model behaves in the neighborhood of two 
dimension like a renormalizable theory. 

Arguments using the scaling form (15), and the low tempera­
ture expansion with a out-off, suggest that the poles, 
in the dimension parameter cL , whiob, In the dimen-
alonally regularised theory, accumulate at <^»2 from above, 
are in fact canceled by non analytic terms in the temperature 
like fc*^ which appear in a correct resummation of the iol-г) 
expansion. Now from the point of view of the Heisenberg ferro­
magnetic, this is also very interesting. Indeed a critical tempe­
rature 18 an I.E. unstable fixed point. The temperature t c 

is therefore the critical temperature of the model. The anoma­
lous dimension is one of the critical exponent. The correlation 
length exponent V is given by: 
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The expressions of v1 and n agree with the first order calculation 
of Polyakov ' . The other exponents are fuaction of V and h 
For instance the spontaneous magnetization behaves at be as: For instance the spontaneous magnet 

ft 

with lb - - i ? - l i c ) 

г w'CVc) 

Other results, in the framework of a (A-Hexpansion, can be obtai­
ned for critical phenomena. 

/11/ V. The large fry expansion / 

'.'.'e have seen that we can obtain the critical properties 
of the IleLsenberg ferromagnet from the non-linear СГ-model. But 
through mean field theory, these properties are also given by 
the large distance behaviour of the linear 6" -model. Furthermore 
the non-linoar 6~ model has directly a scaling form. This suggests 
strongly that the nonlinear 0" model is identical to the linear 
СГ model with a coupling constant fixed at itel.R. fixed point 

value, and the mass taken as a suitable function of the tempe­
rature. 

This can be explicitly verified through the use of the 
d. expansion. 

For the linear ч model this expansion can be obtained by 
the following procedure. One introduces a new dynamical variable 

d(x) , and replaces the quartic interaction by: 

-<2r (.it1-*- б 1 - ) 1 , * О** 1* °( (TfW 1) • 
г г. 

One then integrates over the fT field, and makes a saddle point 
expansion. 

In the case of the non-linear <$" model one writes the cons­
traint ТГ+5 г- 1 with the nse of a lagrange multiplier <̂ (x.) : 

and integrates in the same way on theTf field. In is easy to see 
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that the difference between the two expansions comes from the 
оС1, term of the linear (Г model. But this term disappears 

in the infrared limit. Therefore in the framework of the 
expansion the statement about the equivalences of these two models 
in true. Now in four dimension, the I.R. fixed point of the li­
near model is at the origin and the limiting Lagrangian is free. 
It seems therefore that the non-linear model in four dimension 
becomes a free field theory. 

Another consequence of this equivalence is that the solu­
tion to the infrared slavery in the non-linear 6~ model is the 
appearance of a bound state <T, and the restoration of 
symmetry between T and 6~ which become both massive. 

VII. The 0(2) case 

The abelian case is completely different from the non-
abelian case. The reason for this is that a circle is not dif­
ferent, in the metric sense,from a straight line, but the equiva­
lent is not true for a higher dimensional sphere. 

The effect of this property can be seen by making the change 
of variable 

IT = AWi. 6 
which transforms the model in a free field theory if 4 is zero, 
and in the Sine-Gordon model if H is not zero* 

The quantum Sine Gordon model has been extensively studied 
and I shall just give a reference' . Moreover the 0(i) model 
on a lattice (ХУ model) has also been solved directly * . 

VIII. The problem of crossing the critical temperature 

Low temperature expansion, gives an expansion which has a 
singularity at the critical temperature . It does not therefore 
allow us to calculate in the high temperature phase. In particu­
lar in two dimension, the low temperature expansion gives us 
the R.G. functions but is otherwise useless. In order to con­
tinue the theory above to , it is necessary to add to the in­
variant? interaction a magnetic field, i.e. a term which is 
coupled to the order parameter and which, in the linear represen-
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Lation ,;ives a nass to all the states. The essential feature 
of such an interaction is that it allows us to cross tc_ , and 
that the correlation functions are expandable above to. in terras 
of the source of this interaction (here the magnetic field). 
Duch a procedure has been applied to the Heisenbsrg model in two 
dimensions' ', It would be very useful to find a similar pro­
cedure for non-abelian gauge theory. 
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ТЕНЗОР И КОВККТОР КРУЧЕНИЯ В ЕДИНОЙ ТЕОРИИ ПОЛЯ 
Н.А. Черников 

Объединенный институт ядерных исследований, Дубна 

I. Уравнение Эйнштейна для аффинной связности 

В единой теории поля Эйнштейна' ' аффинная связность 
задается тензорным уравнением 

В новых работах/ ' по единой теории поля также принимается это 
уравнение. . „ 

На тензор 2 х р , а следовательно, и на связность 1 
никаких условий симметрии не накладывается. Требуется только, 
чтобы уравнение (I) определяло связность однозначно. Это наклады­
вает на тензор Q^ ограничения, которые здесь будут выяснены 
в процессе решения уравнения (I). 

С аффинной связностью и другими геометрическими понятиями, 
которые здесь встретятся, рекомендуем познакомиться по книге'3'. 
Будем обозначать 

так что о /"v A» 
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F„|i называется средней связностью, О ^ - тензором круче­
ния. Ковариантное дифференцирование со средней связностью будем 
обозначать символом V . Так как 

i s w a = !i*e - 9 f' -я Гл 

то уравнение (I) можно записать в вице 

2. Средняя связность 

Обозначим Я определитель матрицы С %Кр) и Л -ал­
гебраическое дополнение элемента ^ в этой матрице. Как хо­
рошо известно, 

Ээс г эос* 
Умножим уравнение (I) на 0."^ и свернем произведение по индек­
сам or a p . В результате получим 

|t . , С С - « '/ С - * ̂  *Г'). 
Следовательно, для существования однозначного решения уравнения 
(I) требуется условие Q ФО . В этом случае 

Таким образом, средняя связность эквиаффинна. __ 
Принимая условие %+0 , мы яожем ввести тензор Я ° ^ — , 

взаимный тензору ^ , так что S 

<Збос d — О* ~~ С/<*6 3 
(7) 
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3. Ковектор кручения 

Умножим уравнение (I) на э а и свернем произве­
дение по индексам <V • fi . В результате получим 

Ъх* <8> 

Так как „ , о „ °- v 

то уравнение (8) можно записать в виде 

Аналогично (2) обозначим 

Из уравнения (9) получаем 

Следовательно, ^ 

где 
с в с" 

Ч * ^«f/" ( I D 

есть ковектор кручения. Но 
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Поэтому ^ 

fi£dxryY VW * (12) 

Слецовательно, для существования однозначного решения уравкения^ 
(I) требуется условие h *0 , где Л - определитель матрицы (f> ) . 

Так как 

Ь-.э"-з..ь«-1* 
то 

f«6 " С'» • (13) 

Обозначая п определитель матрицы ( п^) , отсюда находим 

h = hg* . (14) 
Значит, условие Л ? 0 эквивалентно условию И •£ О 

Принимая условие h ФО , мы можем ввести тензор h , 
, так что 

ЬЛ«=&? ( 1 5 ) 

взаимный тензору h i так что 

«•й of 

Докажем, что тензор 

Л~ ог/3 
. Действительно, согласно (13) 

имеем 

Располагая этим результатом, найдем из (12) ковектор кручения 
в вице 
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3,-***"•»,. &?&(?"№). (17) 
В число дифференциальных уравнений единой теории поля вхо­

дят уравнения 5 „ , я О • Из (12) и (17) следует, что уравнения 
С! — 0 эквивалентны уравнениям 

4. Введение римановой геометрии 
Рассмотрим риманов мир Лг измерений с метрической формой 

Kaic обычно в римановой геометрии, с помощью тензоров л и А°^ 
будем опускать и поднлиать индексы. Например, 

Л,,?"-?/-^*" 
4/4 

Как положено в римановой геометрии, введем связность, обозначае­
мую скобкой Кристоффеля для метрического тензора h a ' 

l«Ji) 2 У дХл •дХое Ъха' • (21) 

Ковариантное дифференцирование с такой связностью будем обозна­
чать буквой 3) . Например, 
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Так как 

Ъ^^КАК-tf), (23) 
то 4 = nJ , где 

j-</et(s-;-y/). ( 2 4 ) 

Согласно (16) и (17),ковектор кручения запишем в вице 

Уравнения (18) очевидно эквивалентны уравнениям 

з>г(Ф1т)-о. (26) 
Смешанный двухвалентный тензор называется аффинором. Аффинор 

с компонентами А# обозначаем А . Воли компоненты вектора 
§^ располагаем в строку, а ковектора £„,, - в столбец, 

то т компонент А£ составляем матрицу (А) так, чтобы элемент 
А# оказался на пересечении строки с номером о( и столбца 

с номером Р . Произведение АВ двух аффиноров имеет компоненты 
А £8* . Складываются аффиноры покомпонентно. Символ А" 
означает степень п аффинора А . Единичный аффинор (компонен­
ты которого представляются символом Кронекера 5^* ) , как и 
число I , будем обозначать символом I . Так, / | с = , 1 . Вели F -
- число, то скалярный аффинор F't (он имеет компоненты FS^. ) 
будем обозначать просто F . Символом Aj1 обозначаем алгебраи­
ческое дополнение элемента А^ в матрице (А) . Величины 

Аы составляет аффинор - адъюнкт А аффинора А. По пра­
вилу Крамера имеем АА-\А1 , где IAI - определитель 
матрицы (А). Взли \A\40 , то существует обратный аффинор 

Нетрудно сообразить, что аффинор а , равный (13), зави­
сит от аффинора (19) следующим образом: 
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3 i-y l-tp- . (27) 

Так как § = h + ? , то 

£ = ir^ ' ^ e 7=V ' <28) 

Ввиду того, что тензор ¥ат» антисимметричен, характери­
стическое уравнение' ' для аффинора У имеет вин П (<fx)'=0 
при четной размерности N-2.K и fffKvV-Onpa нечетной 
размерности H—2K+i . Ейесь П О ) - многочлен от * сте­
пени К , причем коэффициент при старшем члене X равняется 
I и П(1)-3 равняется (24). Учитывая это, найдем аффиноры (28). 
По теореме Безу разность Л (1)—П(*) =(1—х)СК*) делится на 
(1-х) без остатка. Следовательно, 

у[П(1)-п<ч>2)] = ч>а-<гг)(1(ч>г)=3у, 
а значит, 

Теперь находим h — * + f т . цвди JV= 2 К , то можно поль­
зоваться более простой формулой для /г , а именно: 

Ti-j-QCte1). ( 3 0 ) 
Формулу (25) для ковектора кручения мы можем написать в 

следующем виде 

5. Уравнения Боша-ИнФельда 

В физически важном случае /V — Н будем считать, что 
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метрическая форма (19) имеет сигнатуру (I, -I, -I, -I). Нумера­
цию координат будем вести от 0 до 3. Полностью антисимметричный 
тензор объема £appv имеет существенную компоненту £ 0 и з 
Его контравариантные компоненты тоже антисимметричны и 
£0123 |/-/,' = — i . Наряду с тензором %,^ рассмотрим 
дуальный тензор (f>*^l,

=z_i.^arfiA4Va> , так что 

V ^ УПГ ^ 
т УГГ \ГТ \ПГ 

Определитель (24) равняется 
J - 1+F-G", (32) 

Вот еще одно выражение для G : 

В данном случае П(к) = Х +F*-G t т а к ч т о Q(x)=j+f-'-x . 
Следовательно, 

где 

(33) 

k ~ UF-G* ' Г 1+F-G* (34) 
Однако, в данном случае можно поступить иначе. Дело в том, 

что аффиноры f и у * связаны друг с другом двумя равенства-
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(35) 

Умножая второе из этих равенств на ̂  , получаем 

(36) <fz+Fy =-Gcp\ 

Попутно заметим, что G ф есть адъюнкт V аффинора $° 
Умножая (36) на <f , приходим к характеристическому уравнению 

у*VFV = G* . ( 3 7 ) 

(38) 

Так вот, на основании (35) заключаем 

Следовательно, 

Г - ± - 1±¥?1 гу- У = f-G<p*_ 
п - ±-уг l+F-G* ' T i-У 2 1 + F-G* '(39) 

Согласно (25), имеем 

* \jli+F-G4 /1и?~чГГ °Л • (4D 
Таким образом, уравнения Эйнштейна с £ =0 эквивалентны уравнениям 
нелинейной электродинамики Борна-Инфельда / 5 / 

« fii+F-бТ ' ( 4 2 ) 
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6. Преобразование уравнения ( I ) 

Будем искать решение уравнения ( I ) в виде суммы 

1 «р l«fij <*/» » (43) 

в которой первое слагаемое является заданной связностью (21), 
а второе - искомым тензором. Подставляя (43) в ( I ) , получаем 
уравнение для тензора Т 

или, поменяв местами oi и fi , уравнение 

Тру** TW + *?fi Ту«* ~ У" Т**е + *?"**> (44) 

где 

%ifig — °®Г V^fi (45) 

есть ковариантная производная (22). Здесь мы воспользовались 
также обозначениями (20). 

Над всеми слагаемыми, входящими в равенство (44), выполним 
операцию, превращающую тензор вида T^.g. в тензор Т(Ы.у\, 
равный 

^ Э А - ) 3 ( Tver + 1жм -*~ Jjtyoe) 
(46) 

Такая операция над тензором У^ ТуЫё — < ^ Tfijf6 дает нуль. 
Поэтому >;з (44) получаем следствие 

2 Vj»n + V(<vy) ^°> ( 4 7 ) 

так что 
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T" •+• Т = — Т — — <Р 
1 Я01 xX<*f> °<fX 2. T(<xfig) • 

Подставляя ато в (44), приходим к уравнению 

эквивалентному уравнению (I) . 

7. Случай ^«Р = а ' h ФО . 

Рассмотрим случай VSyt = ^ * пФО # ц 3 уравнения (48) 
следует, что в этом случае 71д,г

= О • Значит, если Q^^-h^p 
и §ФО , то уравнение (I) задает связность (21) однозначно. 

Обозначим символом V ковариантное дифференцирование с 
искомой связностью Г . Так как 

то уравнение (I) можно записать в ввде 

49^+25^2^=0 (49) 

независимо от того, симметричен или нет тензор QVJ3 . 
ГЛы видим, что в симметричном случае уравнение Эйнштейна 

(49) определяет связность (21) однозначно. Обычно же эту связ­
ность задают двумя условиями: Vr9o<p ~° > §^~0 . Одно усло­
вие Vp Sty-O в случае &,,,*3jt«K $=£° задает связность 
неоднозначно, а именно, в виде суммы (43), где Т^. + 7^, =0. 

8. Сведение уравнения (I) к системе двух .уравнений 

Разобьем теперь тензор J^ay на части 
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J r ^ y —?( T«pr + Tfi*rh « S w 2 (TW ? ^ 4 o ) 

Сразу яе заметим, что тензор ^оер,бп ~ Л̂̂ » есть тензор 
кручения (3), поскольку Г£, -Гря = Т£ -Tj£ . Что касает­
ся тепзора PJl~l^,.uhtr' > т о о н равняется разности 

средней связности (3) и связности (21). 
Из (48) без труда получаем систему двух уравнений 

Htjty * Vji Srxe ~~ ¥<х *~We , (52) 

^PX ^ ° (53) 

эквивалентную одному уравнению (I). Из (47), равно как из (52) 
и (53), следует, что 

• ?«*яГ°> ( 5 4 ) 

2S(o,fn~h %«(iy) u - ( 5 5 ) 

По определению ковариантной производной клеем 
о 
7у ^ctfi ~ ¥«J>f Vy «,. - VW + %'%«< ~ П*Р„е , 

A А - Р + Р 

а из уравнения (5) получаем 
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В полном согласии с (52) - (55) заключаем, что 
° L О 

% %;> = дару + 2 TOW) > 

а значит, 

'«Я 
о 

(57) 

•r w - i -<4* , , -4*r-3&j . 
В силу равенства (54) уравнения геодезических 

с/г Г > ыт +ЛЧГГ и , 

где / ^ - искомая связность, имеют первый интеграл 

f p , p ) - $ W ^ e > W X 
равный квадрату массы частицы. 

9. Уравнение для тензора кручения 

Подставим теперь (52) в (53) и получим следухщее уравнение 
для тензора кручения: 
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Согласно (55), 

Подставляя это в (58), получаем 
*Я,„ + ̂  ~ * W ^ >̂"'*'' 

с +a>lu(pvS +Ч>"Уё8 "f-V/ffS = ^w, «м " fl rv? * W * ( 5 9 ) 

где 

T * N Тору 2 r(«fir) 2 '« J* rf/u»f) 
(60) 

з Вместо того, чтобы решать систем уравнений (I) с IV 
неизвестными rj\ , можно решать систему уравнений (59) с 
** ***' * неизвестными *Sotpr • Действительно, если из­

вестен тензор «5* , то из (52) находим тензор JP , а вместе 
с тем и связность 

otji loytj off ~arji , ( 6 I ) 

удовлетворяющую системе уравнений (I). 

10. Введение операторов 

Для решения уравнения (59) прибегаем к алгебре линейных 
операторов, действупцих в пространстве трехвалентных тензоров 
Т вида Т#ру . Любой такой оператор X является тензором 
с компонентами х **?* • так что у Т есть тензор с компо-
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нентами *«рх -1/uve . Дальше вся тяжесть вычислений ложится на 
операторы. Поэтому (за исключением двух случаев) употребляем для 
их обозначения строчные буквы, удобные в написании. 

Обозначим а,6}с операторы с компонентами 

a"M-vM*"x' i"v6'= &"V'&' c^=^S:f 

Заметим, что они попарно коммутируют. Как и в случае аффиноров, 
символом I будем обозначать единичный оператор (с компонентами 

1У 8д $g ) . Это не приводит к какой-либо путанице, а между 
тем сокращает письмо. В этих обозначениях уравнение (59} запи­
сывается в виде 

(62) (1+aS-h ас + &c)S = У . 
Рассмотрим дальше оператор О. с компонентами 

4-KJit = ««• о,, cr . Так как q,3=> i , то оператор 
Q= Л.(2 + у +%гу идемпотентен, т .е . Q* = Q . Имеем 

также £0.= cq, » %ё= а^ , цс = €q. , и поэ­
тому любой полином от а, 6,с .симметричный по всем трем аргу­
ментам, как, например, аё+ etc + ёс , коммутирует с tg , а зна­
чит и с 6} . Уравнение (48) записывается в виде 

где oDy - тензор с компонентами (45), или 

7* = Я(±-1)ст + а-20)Я9 

Аналогично записываются уравнения (52) и (53): 

Р = 9V-?)cS, 

(63) 

(64) 

(65) 
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(66) 

(67) 

(68) 

Тензор (60) равняется 

Бели решить уравнение 
(i + a6 + ac + 6c)S0 = 3)<f>, 

то решением уравнения (62) будет 

Наконец, рассмотрим оператор i с компонентами 
2 / w " < s -- ££ S/f &х* . Так как 2 г = ^ , то оператор 
р _ ± (1 — i) идемпотентен, т.е. R.z-= R . Имее" также 

ZC=sCZ • и 1(Х=6'г, гё=аги потопу любой полином 
от а, 6, с , симметричный по первым двум аргументам, коммутирует 
с "2 , а значит, не /? . Так как -г ^г= ^ г г , то RQ°6tR 
и (RQ?~RQ .Имеем . „ , 

• ŵ ^ °^-

Всли некоторый тензор '<*^ антисимтлетричен по первык двум 
значкам,то R.T'^T , а если он антисимметричен по всем трем 
значкам, то RQT -QT^T. 

I I . Двумерный случаи 

В случае N =2 будем считать, что метрическая форма (19) 
имеет сигнатуру (1,1). Нумерацию координат будем вести от I до 2. 
Антисимметричный тензор объема £„„ имеет существенную компонен­
ту £п=1ПГ . Всякий антисимметричный тензор ^ , пропорцио-

%р, -8£~А . Так ка с &f £VJ, = С, 
. г Д е в * = Ш- • Так как £ г =»-4, 

В двумерном случае 

нален *-a(fi t TO есть 
то %JtX ^ 3-
то V = — в2 » в цву 
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RQ=0, (a+e)R - yCR . 

Поэтому (аё + ас +8c)R = - a R = в К. ^ У р а ш е н и е 

(62) дает д 

«J* i + ez ' 
В двумерном случае всякий (симметричный по первым двум 

значкам) тензор •f^fJ,!r « удовлетворяющий условию (54), представ­
ляется в виде'°' 

где Р — Р„ . Согласно уравнению (52), 
ОС Г* 

fie*- &6L P.-%S1-
Условие o L = О эквивалентно тому, что &о<~^ • Если 

12. Тензор кручения 

Дальше ограничимся физически важным случаем N =4. Вместо 
чисел (33) введем такие числа U,V , что 

u + v=—F, uv = — Gz . 

Характеристическое уравнение (37) запишется в виде 
(Ч>г-и)(<Рг-1/) =*0 . Поэтому и 
(аг-и)(а.г-гг) = 0, (e*-u)(6-v)=0, <c'-uXcW).-0(7Q) 

Будем искать минимальный полином для операторов X, xR и xRQ, 
где 

X'- - аё-ас -ёс . ( 7 1 ) 

(69) 
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Основываясь на оцних только равенствах (70), можно доказать, что 
(x-u)(x-v)[(x+u)2-^u,1[(x*v)z-^uvJ(x+3u)Cx + 3v) = 0 . 

(72) 

Однако это длинный и утомительный путь. Поступим иначе. Обозначит,! 
множество корней характеристи­

ческого уравнения для аффинора Ч> и рассмотрим комбинацию 
| = — a/fl — oty — узу чисел of.fi, У , принимающих значения 
из А • множество значений £ и есть множество корней 
минимального полинома для оператора X . Отсюда получаем (72). 
Подмножество значений £ при условии, что <хф^ есть мно­
жество корней минимального полинома для оператора X R , а 
подмножество значений £ при более сильном условии <*ф/3 , 
<*'Ф У » ft ФУ е с т ь множество корней минимального полинома 
для оператора X RQ . Отсюда получаем 

(x-u)(x-J)l(Ki-u^uv][(x*vf-^uvjR =0, ( 7 3 ) 

(x~u)(x-ir) R.Q = О . ( 7 4 ) 

Впрочем, ъ равенствах (73-74) так же, как и в равенстве (72), 
можно убедиться непосредственно. Предыдущие же соображения можно 
рассматривать как наводящие. 

Основываясь на (73), нетрудно решить уравнение (62). Вос­
пользовавшись тождеством 
a-u)(i-v) - (x-u)U-i/) = (i-x)(i-"- v + x) , 

получим 

Q = i-u-v+x bJ + (х-")(х-У) Q 
^ (4-ltXl-v) * (t-U)(i-V) ' ( 7 5 ) 

Теперь найдем (X-tt)(x-v)S . Jim этого напишем тождество 
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= (i-x)(i+u+t/+x)[i+u+v-6uv + (u+v)X + xz] . 
В силу (73) отсюда находим 
l(l+uf-4uv][(l+V}l-4uv](x-t/)(x-V)R = 

= (i-x)(i+и •* v+x)Ll * u * v ~ &u v + (ц+ v> x + J f •>' 

а значит, 

= (±+u + v+x)Ll+u + v-6uv + (ui-i/)X+xi]{x-uH*-v)¥. 
Нак видно, мы должны потребовать, чтобы 

lil + uf-'iuvlltt + vf-'iuv]**). ( 7 6 ) 

Заметим также, что в силу (66) и (74) 
(X-uHX-V) V = (Х-Ю(х-1Г)2)ф . 

Следовательно, 
(X-U)(X-W)S = *П (X-U)(X-IT)S)^> 

ще 
(1 + и + у+х)[1 + и + У-6иу + <и+у)к+хг] 

УП =» — - — ; 77 г ~, т 
C(t*u)*-^tftr][(l*V) ~4игг] . ( 7 7 ) 

Подставляя этот результат в (75), получае?̂ . цензор кручения в 
виде 
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Тензор кручения определяется однозначно, если наряду с условием 
ИфО выполняется условие 
(i-u)(l-if)[(i+u)2-4"v][tt+rti-4u"]*0. ( 7 9 ) 

Вели при этих условиях 3bjf е^/з~^ . т о тензор кручения 
равняется нулю, а значит, Q/t = (Sjt} • Наоборот, если 
Г* — {<xji} . т о ^ Л * 0 • Из (62) следует, что при этом 
и Y-0 • Но если У * О и (наряду с условием ИФО ) 
выполняется условие (l-u)(l-v)=tO, то и <Юг

,&р — 0 . Это 
нетрудно доказать, основываясь на выражении (66) для V. 
Действительно, так как <?а=<? , 3QaSC/ = — х €} , то 
(l-x)QSO<f = -2QY , а значит, 

Отсюда и из (66) следует доказываемое утверждение. 
Помимо условий Q Ф О , h ФО, нам потребовалось еще условие 

(76). Докажем, что оно не выполняется в единственном случае 
P=l G-0 • Действительно, в силу тождеств 

= (x-u)(x-vHx+3u)<x+3v) + 4(и-гт)г-(хг--игг) = 
= [xz+x(u+ir}-3uirjz— 4иы (u-v)* 

и равенств (69) имеем 

а это выражение обращается в нуль в единственном случае F=i, 
0 = 0 ' 

В заключение заметим, что в нашей работе' ' получено вы­
ражение для ковектора кручения в виде 
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Как видно, второе слагаемое в тензоре кручения (78) своего вклада 
в ковектор кручения не дает. Выражение (80) в работе ' ' преобра­
зовано к виду (40). Там же получена формула (41) и указано, что 
уравнения Эйнштейна S x - 0 эквивалентны уравнениям (42) нели­
нейной электродинамики Борна-Инфельда. 
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КВАНТОВАНИЕ РЕЛЯТИВИСТСКИХ СИСТЕМ СО СВЯЗЯМИ. ЭКВИВАЛЕНТНОСТЬ КА­
НОНИЧЕСКОГО И КОВАЕИАНЩЦТ) ФОРМАЛИЗМОВ В КВАНТОВОЙ ТЕОРИИ ГРАВИ­

ТАЦИОННОГО по га. 

Г.А.Вилковыский, Е.С.Фрадкин 

Физический институт ии. П.Н.Лебедева АН СССР, Москва 
Содержание: §§ 1-2 носят вводный характер. В § 3 получено об­

щее решение для «» -матрицы в произвольной вырожденной гамильто-
новой системе со связями. В § 4 рассмотрено приложение к теории 
гравитации, где полученный результат позволил разрешить проблему 
общих преобразований координат в квантовой области. Ковариантная 
£-матрица выведена непосредственно из канонических перестановоч­
ных соотношений, чем доказана ее унитарность и обоснованы приме­
нявшиеся ранее ковариантвые методы. 

I. Классическая динамика систем со связями. 
Общая динамическая система со связями задается в фазовом про­

странстве канонических переменных^) Pi,, t el,—Л»» видом гамиль­
тониана Н о (о^, 'рО И Уравнений связей: 

Ч*С% 1 ,ю=о, *«1,...«1. ш 

Мл рассмотрим специальные (вырожденные) системы, когда введенные 
величины удовлетворяет следующим соотношениям в терминах скобок 
Пуассона: v 

(3) 
где - некоторые функции канониче­
ских переменных. В частном случае, когда * \ Д ^ = C o n s t - , связи 
(2) образуют группу, в общем же случае соотношения (2) не являют­
ся групповыми. Задачей классической тес*... является нахождение ус­
ловного экстремума действия с гамильтонианом \-\0 при ограничении 
на поверхность связей: 

&=^и^У-н<о| т = < (4) 
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Специфика вырожденных систем со связями состоит в том, что че­
рез каждув точку поверхности связей проходит множество экстремалей 
действия (4). Действительно, они (4) могут быть получены не­
зависимых варьированием эквивалентного действия с лагранхевшш 
множителями: 

£ЕЪР,\-1 = ^ 1 # - Н О - Х " Т Д (5) 
При выполнении условий (9-(3) оказывается, что уравнения движения, 
следующие из (5), совместны при любом выборе экстремальных значений 
лагракжевых множителей Л • Поэтому одним и тем же начальным дан­
ным ( % 0 ) Р о ) на поверхности связей соответствует целый пучок 
классических траекторий, лежащих на этой поверхности и перечисляе­
мых функциями Х'Ч'в : 

.E№S.SP*CE (<Ь%Р?) (&Р?) 

Ввиду этой специфики, уравнения движения вырожденной системы со 
связями можно интерпретировать как скрытую динамику некоторой стан­
дартной гамильтоновой системы с O n - ***•") независимыми степенями 
свободы. Последняя может быть охарактеризована фазовым пространст­
вом независимых канонических переменных (физическим пространством): 
Яг* iP*!* 1^-'* 1" **\ и гамильтонианом И ph^s 0%-*> Р*)» кото­

рый неявно задается исходными величинами Н о и Т.1 • Способ зада­
ния этой системы и ее единственность могут быть объяснены следую­
щим образом. 

Рассмотрим в исходном фазовом пространстве семейство инфини-
тезимальных преобразований с параметрами р " , генерируемое свя-

S F«V-W^F»b FK-{Pt,T^F r . (6) 
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Заметим, что в силу (2) преобразование (6) не сходит с поверхности 
связей, поэтому мы можем подвергнуть действие £> (4) преобразова­
нию (6). При этом убедимся, что в силу (3): § F ^ = О ,т.е. 
действие,ограниченное на поверхности связей,вырождено. Инвариант­
ность действия (4) объясняет многозначность решения задачи Коши 
для экстремалей этого действия. Нетрудно проверить, что траекто­
рии на поверхности связей, отвечающие одним и тем же начальным 
данным,но разным выборам X(V> , X(V> , X ('Ь') ,... (см.рис.), 
при малых(ti~ to) отображаются друг на друга именно преобразова­
ниями (6). Отметим, что действие с лагранжевыми множителями (5} 
также инвариантно относительно преобразований (6): &^э С^>Р>\"\г0, 
если одновременно преобразуются и лагранжевы множители по закону: 

^F'-U^F'-VJ^. (7) 

При этом параметры F могут быть произвольными функциями всех 
переменных: 

F ' l = F ' l ( < b P , X - , V > . й ) 

При постоянных F преобразования (6) являются каноническими и 
отображают друг на друга точки C % i , p O •> C%i,PiY, Cfyi.P^,-
поверхности связей (см.рис). Эти точки получены в момент-t = -ti 
з результате развития из одного и того же начального состояния. 
Объявим такие точки физически-эквивалентными. Тогда поверхность 
связей разобьется на классы физически-эквивалентных точек, связан­
ных преобразованиями (6). Мы определим физическое пространство как 
пространство этих классов. Все точки С ^ Р * ) , О ^ Р О J ( V ) K V ' — 
внутри одного класса характеризуются одним и тем же значением га­
мильтониана Н о ( § C H o W s o ^ O ) и соответствуют одному и 
тому же физическому состоянию СчИ^Р-Г) (см.рис). Возникающий 
произвол в решении задачи Коши для уравнений движения исходной 
системы связан с наличием преобразований (6) внутри классов, при­
чем динамическое содержание теории касается классов эквивалентно­
сти в целом. Переход к физическому пространству имеет целью отде­
лить в обобщенных уравнениях Гамильтона (экстремалях (5)) инвари-
антностный произвол от динамики. 

Параметризовать физическое пространство (пространство классов) 
можно,выбрав по одному представителю из каждого класса. Дня этого 
достаточно наложить дополнительные условия, нарушающие инвариант-
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ность относительно (6): 
dP , LCv,Pi> = o , j . e v. .vw. (9) 
Гф* = {<*>\Т^*о. (I0) 

Из (10) следует единственное ограничение на выбор дополнительных 
условий: 

drtt+sT^o, ( п ) 
однако удобно,кроме того,считать,что: 

[Ф',ФП--о. 
Таким образом, физическая динамика описывается действием (5) с 
учетом дополнительных связей (9): 
< p[^,x ) i r l=^i(^-Ho-X M T / , -ЧФ"), аз) 
где введены дополнительные лагранхевы множители /fl/M . Размерность 
физического пространства определяется общим количеством связей в 
(13): S U V - V T V - V Y X x SLOTt-lffO . Любопытно, что действие (4) 
вырождается именно в результате ограничения на поверхность связей, 
т.е. связи, подчиненные соотношениям (2)-(3), всегда требуют нало­
жения новых связей (9), и количество их в задаче удваивается. 

Уравнения физической динамики следует из (13): 

& -- { P^Hot + х" {ХдД *•«>{ к**}\ <14) 

Т и ^ Ю = о,фЧ%\РО=°; ( 1 5 ) 

5 * = о* -X й -- {Ф'ЛГНФА>Ио^, (is) 
причем экстремальные значения (16) лагранжевых множителей X и \\ 
определяются совместностью уравнений (14) с «LVn связями (15). Та­
ким образом, при ограничении на физическое пространство (15) зада­
ча Коши получает единственное решение: траектория в физическом 
пространстве полностью определяется уравнениями (14)-(16) по на-

144 



чальным данный.Для нахождения явного вида этой траектории введем 
координаты физического пространства. Для этого разрешим 8.W. урав­
нений (15) относительно З.М. переменных, выразив их через оставшие­
ся ( S L V V - D L W ) переменных 

таким образом, чтобы координаты Яг i P физического фазового про­
странства были каноническими: 

При подстановке функций (17) в уравнения (14)-(16), последние при­
нимают вид стандартных уравнений Гамильтона: 

Т =Эр •> Г - Ъ с р (19) 
с гамильтонианом: 

W H S (%* р*) = Но (%L, P0l _, • 
Доказательство этого основного факта мы опускаем. Начальные данные 
к уравнениям (14)-(16) исчерпываются заданием З.(л-Ул.") незави­
симых величин: . 

Уравнения (19) получаются вариационным принципом из действия: 

= SttCPiV-HocV.^AU^o- ( 2 2 ) 

Последнее равенство объединяет условие каноничности независимых 
переменных О?* и р * (18) с выражением (20) для физического гамиль­
тониана. Таким образом,формула (22) может служить определением 
физической динамики. 

Единственность физической динамики вытекает из того факта, 
что замена в уравнении (22) одних дополнительных условий о р дру­
гими эквивалентна каноническому преобразованию переменных <̂ *, р*. 
Тем самым класс эквивалентных точек на поверхности Т * О целиком 

(20) 
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проектируется в одну точку физического пространства (см.рис), а 
произвол выбора представителя класса £б^р=0*) сводится к стандарт­
ным каноническим преобразованиям в этом пространстве. 

Классическая теория вырожденных систем была развита в работах 
Дирака, Бергмана, Андерсона, Комара,Де Витта, Швянгера, Аряовитта, 
Дезера, Мизнера и других авторов. Для настоящего изложения прин­
ципиальными явились статьи fl—4\ . 

П. Проблема квантования. Частное решение для *Р -матрицы. 
Наша цель - получить квантовую динамику физической системы с 

(v\-vn) независимыми степенями свободы, которая неявным образом со­
держится в исходной системе со связями. Для этого нужно наложить 
канонические перестановочные соотношения на независимые начальные 
данные (21): , , /tg 

(23) 

и решить уравнения Гамильтона (19) для гейзенберговских опера­
торов <$" (-fc) и р C"t). Искомыми величинами являются вакуумные сред­
ние Т -произведений этих операторов: 

<o|T^(tv..%*(^PVv- Р ' (ЛЮ> ( 2 4 ) 

Повторяя рассуждения работы \.5 } , мы можем решить уравнения (19) 
и (23) для функций (24). При этом мы придем к следующему конти­
нуальному интегралу: 

который определяет унитарную в физическом пространстве * «р-мат-
Проблема квантования систем со связями сводится к тому, что­

бы преобразовать интеграл (25) к фазовому пространству ( Ч ^ > Р О 
исходной системы и выразить его через заданные величины: гамильто-

* Имеется в виду, конечно, гильбертово пространство физи­
ческих состояний. 
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ниан Н о » связи T V и произвольные дополнительные условия Цр*. 
Решение этой проблемы в классе дополнительных условий (9) 

может быть получено следующие образом. Перепишем тождественно кон­
тинуальный интеграл (25), введя в него дополнительные интегриро­
вания с 8" -функциями: , _ Л , 

Наличие этих £ -функций дает возможность реализовать неявное оп­
ределение (22) величин физического пространства. Мы получим: 
j * * = Ц^*ат<*Ф % еп$(ФУ 

• ехр[ LJA (р*я* - U*WC<£,PV)1 = 
= W*<*P*C*TCHP S en &СФ:> • 

. ехрГЛ^бЛ 1 - HoCV.Piul, (26) 
где только мера интегрирования: 

<Ц*4р*4Т<4Ф =<ДЛС^РО 
остается невыраженной через элемент объема исходного фазового 
пространства. Задача нахождения меры была решена в работеI_4J• 
Решение имеет вид: / "ч , 

Представляя £ -функции в (26) с помощью интегрирования по вспомо­
гательным переменным (лагранкевнм множителям) ) ^ и if^ , полу­
чаем окончательно: 

В последнем выражении фигурируют только известные величины, и ин­
тегрирование ведется по траекториям в исходном фазовом простран­
стве, причем в показателе экспоненты возникает действие (13). Та­
ким образом, континуальный интеграл (27) решает сформулированную 
проблему: он является явным выражением для i -матрицы, унитарной 
в физическом пространстве. Независимость этой ^ -ыатрицы от выбо­
ра дополнительных условий С р в классе (9) может быть продемонст­
рирована с помощью канонических преобразований под знаком контину­
ального интеграла 
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4-
Тем не менее выражение (27) не является общим решением для 

-матрицы, так как оно справедливо в узком классе дополнительных 
условий (9). Как отмечалось в § I, вырожденность исходной системы 
может быть сформулирована как инвариантность действия с лагранже-
выми множителями (5) относительно преобразований (6)-(7). Поэтому 
дополнительные условия dp , снимающие вырождение этого действия, 
могут зависеть и от лагранжевых множителей X П Р И единственном 
ограничении: $ р Ц р ^ О . Необходимость расширения класса дополни­
тельных условий обусловлена приложением к релятивистским теориям 
калибровочных полей. По своей функциональной зависимости дополни­
тельные условия (калибровки), допустимые в решении (27), в прин­
ципе нерелятивистские. Например, в электродинамике калибровки вида 
(9) не зависят от четвертой компоненты электромагнитного поля, яв­
ляющейся лагранжевым множителем. Поэтому электродинамика в лорен-
цовской калибровке уже не содержится в решении (27). 

Таким образом, для приложения к релятивистским теориям поля 
необходимо найти общее решение для <d -матрицы с дополнительными 
условиями, зависящими не только от <^ }р , но и от X и от X . Бо­
лее того, для получения лагранжианов типа лагранжиана Ферми в 
электродинамике, нужно,чтобы дополнительные условия зависели и от 
собственных лагранжевых множителей % . В результате искомое 
обобщение формулы (27) должно содержать классическое действие (13) 
с дополнительными гсловиями, произвольно зависящими от всех аргу­
ментов: 

- х"%c<vS p o - <k <*>"(V> ̂  >*» > М - Л . ( 2 8 > 
Общее решение для ̂  -матрицы получено в работе 1&"\ . 

Ш. Общее решение для *Р -матрицы. 

Без уменьшения общности будем считать, что уравнения дополни­
тельных условий в (28) разрешены относительно X •' 

й Ф / , = - Х | , * ^ , | » А , ^ > т 

где Jfi. - произвольные функции остальных переменных. С учетом (29) 
классическое действие (28) принимает вид: 
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Заметим, что это действие существенно отличается от действия (13) 
с калибровкой (9): оно уже не генерирует связей,более того.лаг-
рапжевы множители Х * и /H/i образуют дополнительно |nrt пар не­
зависимых канонических переменных. Таким образом, действие (30) 
в релятивистской калибровке описывает динамическую систему с 
v h.+ Vvv ) независимыми степенями свободы: 

< ^ = ( V » ^ , P*s(5j),A.l,...Cn*wty(3I) 

Объединим связи Т]ц с импульсами "\и в столбец: 

а часть X дополнительного условия (29) объединим с координа­
тами V1 в строку: , . 

(34) 
Тогда гамильтониан Ц^+у^ =(J4o + XT vfi)0 принимает вид : 

H n + v n С % Л , Р О = Н о " G - a ^ 
(35) 

Квантование полученной динамической системы (32) не составля­
ет проблемы. Достаточно наложить канонические перестановочные 
соотношения на независимые переменные Q j * , Р д .чтобы полу­
чить £ р - матрицу,(псевдо-)-унитарную*' в гильбертовом простран­
стве всех ( ITL+Ina) степеней свободы: 
^** л = Jatf «ip* exp[ ijai (?jf - v w . o l , 

но не унитарную в физическом пространстве и не совпадающую с (25): 

1: Ф Ъ = t 
Система (32) не эквивалентна исходной системе со связями (22).В 
этом и состоит трудность совмещения требований релятивистской 
ковариантности и унитарности в физическом пространстве. Тем не 
/* исевдоунитарность: £$*"=4 ,1» * S > , 2 -оператор индефинитной метрики гильбертова пространства. 
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менее, об!цее решение для физической <i -матрицы может быть пост­
роено. Идея построения заключается в том, чтобы ещё расширить фа­
зовое пространство системы (32), дополнив его фермионными '"степе­
нями свободы в количестве Х \ п : 

Целью.такого расширения является эффективное "вычитание" степеней 
свободы:(n+wv^-(a.wv)=»i-»n и восстановление эквивалентности с фи­
зической динамикой. Фактически это вычитание осуществится в условии 
унитарности (см. ниже). Таким образом, мы приходим к гамильтонову 
формализму в полном пространстве независимых канонических перемен­
ных (Ч^>*2.Я)Р*,9а.К сформулированному в работе f 1 > §УД е м ис­
кать общее решение для физической ^> -матрицы в виде континуаль­
ного интеграла по траекториям в полном пространстве: 
7*** = и<^4^4?л. (36) 

где неизвестной является фермионная часть полного гамильтониана: 
Hcow*e<dte. = H » ^ * l + 1 (37) 

Она должна быть определена из условия равенства континуального 
интеграла (36) интегралу (25) по независимым каноническим пере­
менным физического пространства. Эта центральная проблема решена 
в работе \£ J . 

Существование решения в форме (36)-(37) в значительной мере 
обусловлено тем, что величины Ото., входящие в гамильтониан Нн+ш 
(35), удовлетворяют следующим соотношениям в терминах скобок 
Пуассона по переменным о * , р*, : 

{ & a ) G a = &cU Ca*, (38) 
{He,W«GtVt. (39) 

Последние проверяются на основе исходных равенств (2)-(3). 
Часть"Ц. и V t возникших в (38)-(39), является структурными 
коэффициентами соотношений (2)-(3), остальная их часть триви-
к^ Напомним.что фермионные переменные в С -числовом формализме 
трактуются как элементы алгебры Грассмана: 
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альна. В случае, когда связи (2) не образуют группы, соотноше­
ния (38) также не являются групповыми. Тождества Якоби для струк­
турных постоянных группы заменяются тогда более общими соотношо-
ниями: ^ yt^ + ^ U | c 4 U t e U e d 6 = 

следующими из (38). Из рассмотрения в §§1-2 видно, что классичес­
кая теория вырожденных систем и квантовая теория в специальных 
калибровках (9) нечувствительны к факту наличия или отсутствия 
группы в соотношениях (2). Однако для теории в общей калибровке 
(29) это обстоятельство становится существеннрм. Мы получили 
решение для ^ -матрицы в случае, когда на X\.ci6 £&**•*&. 
наложены следующие ограничения: 

t V 1 , U C
4 1 " i + «u4i3tfamttt,t»Au«. = О . ^ 

Теории, в которых структурные коэффициенты не коммутируют даже 
между собой, до сих пор не встречались. В частности, в теории гра­
витационного поля связи не образуют групп , но соотношения 
Ul)-(42) выполняются. 

Критерием для нахождения решения явилась независимость кон­
тинуального интеграла (36) от функций }С , входящих в гамиль­
тониан (35). Часть этих функций (}С ) фиксирует дополнительное 
условие (29), т.о. критерием послужила независимость ̂ э -матри­
цы (36) от выбора допэчнительных условий в классе (29). Ответ 
для полного гамильтониана (37) имеет вид [б J : 

Н«~*ь*«. = Но -б«у"+ <&>£(у1 +и«у с-
-i^Mft^-tj^uW. ( в ) 
Доказательство представляет собой серию канон! "ческих преобразова­
ний бозонных и фермионных переменных под знаком континуального 
интеграла (36), и выглядит чрезвычайно громоздко. Поразительной 
чертой ответа является присутствие четырёхфермионного взаимо­
действия с вершиной ̂ Э^» *U_J > возникающей, если связи не образуют 
групп. Мы обнаружили, что если при этом и соотношения (41)-(42) 
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не выполняются, то в гамильтониане появляется ещё шестиферкион-
ное взаимодействие с вершиной ̂ 1A,1A. J, однако этим дело не ог­
раничивается, и,по-видимому, в этом случае решение вообще не пред-
ставиыо в виде локальной теории (36)-(37). При выполнении соотно­
шений (41)-(42) ответ (43) является точным. 

Континуальный интеграл (36) с гамильтонианом (43) полностью 
решает поставленную проблему. Определённым каноническим преобра­
зованием £б"1 он может быть тождественно приведён к виду (27) для 
интеграла в нерелятивистской калибровке, а последний, как показа­
но в § 2, тождественно равен интегралу (25) в физическом прост­
ранстве (^*>Р*) .Таким образом, (36) является искомым выражением 
для физической "р -матрицы в общей калибровке (29). Однако класс 
дополнительных условий можно ещё расширить. Для этого введём обоб­
щённую бозон-фермионную скобку Пуассона в полном пространстве: 

где ]TL* обозначает число фермионов в /л , а I и 7. - левую 
и правую производные. В терминах скобки (44) гамильтониан (43) 
принимает вид: 

В этой форме ответ обобщается на калибровки JC , зависящие от 
вспомогательных фермионов *£ и 9 . Формулы (36) и (45) опреде­
ляют наиболее общий вид *р -матрицы вырожденной системы со свя­
зями. 

В калибровках, при которых гамильтониан (45)-эрмитов, <р-
- матрица (36) псевдоунитарна в полном гильбертовом пространстве 

(УЦгУп)бозонных и Ci.lm.") фермионных степеней свободы: 
:£<*i£u><4 **u'>=&«'. {46) 

Одновременно матрица <р , ограниченная на физическое пространст­
во, унитарна и в гильбертовом пространстве (И.-**0 физических сте­
пеней свободы. Механизм этого явления состоит в том, что когда ̂ .$1 
и \ 9 > - физические состояния, вклады нефиэических промежуточных 
состояний в условие унитарности (46) в точности компенсируют друг 
друга в сумме по L . Компенсация .идёт среди (&*гО нефизических 
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бозопных и CSlWv.) фермионных степеней свободы, и становится воз­
можной благодаря тему, что часть нефизических степеней свободы 
обязательно квантуется с индефинитной метрикой . Подчеркнём, 
что матричные элементы ^-S\^\'v.'> всех переходов .вообще гово­
ря, отличны от нуля, компенсация же происходит в квадратичном по 
матричным .элементам выражении (46). В этом - принципиальное отли­
чие релятивистских калибровок от калибровок класса (9), в которых 
переходы имеются только между физическими состояниями. 

1У. Приложение к квантовой теории гравитационного поля. 
Квантовая теория гравитации была первоначально сформулирована 

в работах £8-11д как теория неабелевакалибровочного поля. В даль­
нейшем, однако, выявились существенные отличия гравитационного поля 
от обычных калибровочных полей Янга-Миллса, обусловившие серьёзные 
трудности в квантовой гравидинамике \р~\ . 3 отличие от обычных ка­
либровочных преобразований, координатные преобразования в теории 
гравитации затрагивают не только форму функций поля, но и простран­
ственно-временной аргумент. Поэтому в квантовой области координат­
ное преобразование не сводится к унитарному преобразованию опера­
торов поля, оно еще влечёт за собой изменение Т 1 - упорядочения 
в <р - матрице [7~\ . Эффект этого изменения не учитывался в ра­
ботах £8-11J. Формально проблема сводится к тому, что в инфини-
теэимальной форме общие координатные преобразования содержат так 
называемый транспортный член: , 

i*^M»cx-) = - 5*г.1<^,, + • • • (47) 
с производной по времени от функций поля. Из-за этого члена пре­
образования (47) , рассматриваемые как замена переменных в функ­
циональном интеграле, - сингулярны С12,7]\и н е имеют определенно­
го якобиана. Эту трудность можно было бы обойти , проводя коор­
динатную замену переменных в другой форме: 

х/ В частности, у вспомогательных фермионов Ь »*а^ всегда нарушена связь спина и статистики. с ' 
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но тогда возникает проблема якобиана £ll, 7J : 
П <Ц*.Ш = Л • П Л$„ СхооУ ш ) 

Появление этого якобиана как раз и отражает упомянутый эффект изме­
нения Т-упрорядочения в <р -матрице. Преобразование (48) формаль­
но выглядит как тождественная перестановка дифференциалов, между 
тем в работе С 7 ^ была найдена локальная • часть якобиана А 
и показано, что Д ^ I. Проблема точного вычисления якобиана Д 
не поддавалась решению стандартными методами, в то время как такое 
вычисление необходимо для проверки калибровочной независимости и 
унитарности релятивистской <р -матрицы. Поэтому выражение для 
<d -матрицы, полученное в работах [e-Ill и £.7 ̂  , в случае грави­
тационного поля оставалось без обоснования. Помимо отсутствия 
корректного доказательства унитарности, имелось также видимое 
противоречие между ковариантным и унитарным выражениями для <р -

-матрицы в целом классе калибровок (в том числе в Дираковской ка­
либровке [ 13^ ). 

Разрешение указанных проблей, возникших в лагранжевой форму­
лировке теории гравитации, становится возможным на основе канони­
ческого формализма, развитого в §3. На языке канонического форма­
лизма экзотические особенности координатных преобразований приоб­
ретают естественное и простое звучание: связи в эйнштейновской 
теории квадратичны по импульсам и не образуют групп. Эти особен­
ности не явились, однако, препятствием для построения квантовой 
теории. В § 3 получено явно-унитарное выражение (36) для cj> -
матрицы в релятивистской калибровке, выведенное непосредственно 
из канонических перестановочных соотношений. Его калибровочная 
независимость и унитарность доказаны на основе канонических преоб­
разований, без использования сингулярных преобразований (47), т.е. 
выражение (36) даёт заведомо правильный ответ для релятивистской 
Ср -матрицы. Остаётся только преобразовать этот ответ к конфигу­

рационному пространству лагранжевой теории и сравнить его с выра-

Под локальностью здесь понимается пропорциональность о (о) • 
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жением, полученных.* в работах \8-IlJ. Эта задача решена в работе £l4"J « 
Оказалось,что правильное выражение для <р-матрицы отличается от 
результата ̂ 8—11^ только присутствием нетривиальной локальной меры, 
(найденной раньше в нашей работе £ 7 ^ из других соображений). Яко­
биан Д также удалось точно вычислить, имитируя координатные 
преобразования каноническими преобразованиями в фазовом простран­
стве. Оказалось, что этот якобиан не имеет нелокальной части, т.е. 
выражение, найденное для него в работе L7J» является точным. В ито­
ге изменение Т-упорядочения при координатных преобразованиях не 
ведёт к нелокальным изменениям в <i -матрице. Это - основной 
результат проведённого в Cl4*\ исследования. Он показывает, что 
вся специфика координатной группы сводится к наличию локальной ме­
ры в континуальном интеграле. Что же касается парадокса Дираков-
ской калибровки,то разницу между новариантным и унитарным выраже­
ниями оказалось возможным оттрансформировать специальным преобра­
зованием," выписанным в ГидЧ Таким образом, с учётом меры уда­
лось обосновать результаты работ Гб—11\и[7Д и доказать эквива­
лентность канонического и ковариантного формализмов квантования 
гравитационного поля. Основные этапы доказательства мы приведём 
в этом параграфе. 

Рассмотрим сначала в общем вице случай, когда системой со 
связями является калибровочное поле. Выражение для канонической 
<Р-матрицы имеет вид (36) с гамильтонианом (43). Разбивая вспо­

могательные фермионы Ь а и 5oi H a компоненты 

и интегрируя по ^р <£$t мы приведём это выражение в гроизвольной 
калибровке ^ р * * C<fc*РJX X"} к виду: 

где ° ^ ^ - вариационная производная, учитывающая обе зависимости 
dp : от X и \ ,скобка Дуассона {"Kill касается зависимости ф> 

о т Яг* » P i • и член, содержащий пару фермионов S C , записан 
в чиде преобразования $ , введённого формулами (6)-(7), в которых 
нужно вместо параметров р л подставить С .Кроме того,имеется 
четырехфермионный член. 
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Если рассматриваемой системой со связями является ка­
либровочное поле, то это поле_ образуется совокупностью 
канонических координат CL*- и лагранжевых множите­
лей \* . Соответствующая тфрия поля описывается 
действием и дополнительными условиями в конфигурацион­
ном пространстве: 

А о C S 0 ) 

где <р Г % ; Р / Х 1 - действие (5), а р = р (%,\>Х) -
решение классического уравнения Гамильтона: 

Как отмечалось в § I, действие(5) инвариантно относитель­
но преобразований (6)-(7) с параметрами (8). В случае 
калибровочных полей параметры (8) можно выбрать как функ­
ции некоторых других независимых бесконечно малых па­
раметров 
таким образом , что преобразования: 

(52) 
Р=Р° 

образуют калибровочную группу: 

^ *г - «-лм тчТа.. (53) 
Здесь С/4 4, - структурные постоянные калибровочной 
группа в отличие от X L j L » которые, вообще гово­
ря, зависят от канонических переменных. Существование 
преобразований (52) - (53) ещё не означает, что калиб­
ровочные преобразования (52) представимы в виде канони­
ческих преобразований (6) в фазовом пространстве. Послед-
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нее требует выполнения дополнительного условия ( согла­
сованности) , касаощегося импульсных переменных \l&~\ : 

/ ^ F W j p ^ l - ^ Р ° С Ч | Ч г | Л ' Н е п о с Р е Д с т в е н н о е вычис­
ление показывает, что условие согласованности 

не выполняется £l4"3 : 

°"к , г г (54) 
Во всех известных теориях коэффициенты 
не зависят от импульсов Р;, ( в теории гравитации *Ци 

\/ зависят только от eg ), поэтому второй член в 
выражении (54) выпадает. Остаётся первый член в (54), 
из которого видно, что I) условие согласованности всег­
да выполняется для классических траекторий в силу урав­
нений движения, и 2) оно выполняется в теориях, где 
связи линейны по импульсам. Таково общее соответствие 
гамильтоновой и лагранжевой формулировок теории калиб­
ровочных полей. 

Для такой теории в работах Пз-I^различными косвен­
ными (ковариантными) методами была построена < р ~ мат­
рица, определяемая следующим континуальным интегралом 
в конфигурационном пространстве : 

(55) 
где фигурируют величины, введённые формулами (50) и 
(52). Выражение для меры 4/*^-^") о ы л о получено в 
работе \J7~\ также косвенным методом (см. ниже).Наша 
задача состоит в том, чтобы преобразовать каноническую 

157 



<p - матрицу (49) к конфигурационному пространству ( проин­
тегрировать по р- и ) и результат сравнить с ответом (55). 
^Интегрирование по р ведет к подстановке Р= Р ° как в 
(50)). Нетривиальность сравнения (49) с (55) видна из того, 
что I) возникающий в (49) двухфермионный член (?ji.(% dp ) L „ 
вообще говоря, отличается от аналогичного члена С/. ̂ ( « ^ L . » о") 
в (55) , и 2) в (49) имеется четырехфёрмионный член, от-
сутсвующий в (55). Таким образом, сравнение (49) с (55) 
требует дополнительного исследования. 

В случае поля Янга-Миллса мы имеем: 
Р*Ч<ЪРАЗ*^>^*Ь U* v = E*v=c°*&±, (56) 
н и . линейны по Р . Поэтому правая часть уравнения (54) 
исчезает, и условие согласованности выполняется. В сово­
купности с первым уравнением из (56) это приводит к равен­
ству двухфернионных членов: 

Четырехфершюнный член в (49) тождественно равен нулю, 
так как связи образуют группу (56). В результате мы полу­
чим: r-jpfvHS _ ~ С < М » / 1 

Таким образом, эквивалентность канонического и коваряант-
ного формализмов доказана, причём мера - <4м(у) = Г Ы г 4 \ ^ Я 
- тривиальна. 

В случае гравитационного поля особенности группы Эйн­
штейна проявляются в том, что, во-первых, мы должны поло­
жить: 

(57) 
Во-вторых, из-за транспортного члена в калибровочных пре­
образованиях (47) связь Т о получается квадратичной по 
импульсам. Поэтому условие согласованности не выполняет­
ся ( уравнение i.54) ), т.е. общие координатные преобразо-
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вания непредставимы в виде канонических преобразований (во­
преки утверждению работы [2~\ ). В-третьих, структурные 
константы координатной группы содержат производные во вре­
мени, поэтому при переходе к каноническому формализму груп­
па не может быть сохранена: Е * „ 
В силу первых двух причин двухфермионные члены канониче­
ского и ковариантного ответов отличны друг от друга: 

С*ЧО\^де(ПА (58) 

- " парадокс дираковской калибровки". В силу третьей причи­
ны четырехфермионный член в (.49) выживает и приобретает 
вид: 

^ ^ Ш т ~ 1 ^ — с°сх^е°оо. , 
г г Ь\кСх^ дРккОО " (59) 

Ещё одна трудность состоит в том, что при интегрировании по 
р в ^49), мы приходим к модифицированным калибровочным усло­
виям, отличающимся от i50) дополнительными членами, содер­
жащими С С - поля. Поэтому, чтобы придти в лагранжевом 
ответе к стандартной калибровке (50) , мы должны начать в га 
мильтоновом выражении (49) с модифицированных дополнитель­
ных условий, зависящих от вспомогательных феркионов (Г,С . 
Существенно, что такое оообщение было получено в § 3 
(гамильтониан (45) ). 

И все же, несмотря ни на что, каноническое и ковариант-
ное выражения для гравитационной ^ э - матрицы совпадают. 
Замена переменных в интеграле (49): Q. -*• F" (\,С(>У) 
по формуле (57) превращает о в & и обусловливает 
появление нетривиальной локальной меры. Вторая замена 
в (49): р- «.к. ЛкЛ . . « %<& 

*V^(60) 
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ликвидирует "парадокс Дираковской калибровки" (58) , но 
приводит к появлению ляшних членов, содержащих четыре фар-
миона. Эти члены как раз имеют вид (59) с обратным знаком, 
и они в точности компенсируются затравочным чегырехфер-
мионным членом в (49). В результате: , 

Окончательный ответ имеет видО'Д" г /• « Г 

где достигнуто неизвестное ранее обобщение на калибровки, 
зависящие от ё С (члены с JfcS ) . Для меры получается 
выражение: . J\I 

/*N 
(61) 

совпадающее с L ? ! • 
Мера (61) содержит нековариантный фактор Q . 0 0 , отражаю­

щий выбор времени при каноническом квантовании. Однако 
якобиан калибровочного ( координатного) преобразования 
также нековариантен, потому что он описывает изменение 
Т 1 - упорядочения. JTOT якобиан отличен от единицы: коор­
динатное преобразование не является каноническим, и равен 
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В результате: 

Компенсация нековариантных членов происходит и на уровне 
регуляризованных выражений при счёте по теории возмуще­
ний или по методу стационарно:', фазы. На этом уровне спе­
цифика гравитационного взаимодействия проявляется в не­
обычной сингулярности возникающих обобщенных функций |_15 
Посладнее приводит к тому, что обычные методы регуляри-
вации либо неадекватны (размерная регуляризация), либо 
некорректны ( метод собственного времени). После устра­
нения ошибок в методе собственного времени, четвертич­
ная расходимость в амплитуде, пропорциональная космоло­
гическому члену, исчезает, а возникающее вместо неё 
нвковариантное выражение в точности компенсируется мерой 
[_I5̂ i Корректно регуляризованная амплитуда явно кова-

риантна. 
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111. 

Калибровочные теории и суперсимметрии 
GAUGE THEORIES 

AND SUPERSYMMETRIES 



СУПЕРСИЫМЕТРИЧНЬШ КАЛИБРОВОЧНЫЕ ТЕОРИИ ПОЛЯ 
А.А.Славнов 

Математический институт им.В.А.Стеклова АН СССР, Москва 

За последние два года в квантовой теории поля развилось но­
вое направление - теория суперсимметрии. Впервые идеи о возможно­
сти существования сииыетрии, связывающей ферии и бозе-поля, были вы­
сказаны в работах * ', однако важность этой концепции для кван­
товой теории поля была осознана линь после того, как Весе и Зуми-
но/V построили пример релятивистской суперсимметричной квантовой 
теории поля и обнаружили у подобных теорий ряд интересных черт, 
делающих их весьма привлекателышии с точки зрения применения к 
физике элементарных частиц. За прошедшие с тех пор два года было 
построено большое число моделей, из которых наибольший интерес 
представляют, по-видимому, суперсимметричные калибровочные теории. 
Была разработана суперсимыетричная диаграммная техника, развита 
процедура перенормировки, исследована проблема нарушения супер -
симметрии. В настоящее время мн вплотную подошли к вопросу о по­
строении реалистических суперсимметричных моделей взаимодействий 
элементарных частиц. 

В моем докладе я постараюсь ответить на следующие вопросы: 
зачем нужны суперсимметричные калибровочные теории? Как с ними 
работать? Каковы возможности их применения в физике элементарных 
частиц? 

I. Для чего нужны суперсимметричные калибровочные теории? 
В настоящее время общепринятой является точка зрения, соглас­

но которой слабые, электромагнитные и сильные взаимодействия пере­
носятся калибровочными полями. Основанные на этой гипотезе моде­
ли обладают рядом привлекательных черт, в первую очередь к ним 
относятся универсальность взаимодействия и перенормируемость. 

Наибольшую трудность для теории калибровочных полей представ­
ляет вопрос о спектре масс. Необходимо объяснить факт отсутствия 
наблюдаемых беамассовых заряженных векторных мезонов и кварков. 
Сейчас наиболее популярна гипотеза о "конфайнменте", предполагаю-
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адая существование в неабелевых калибровочных теориях потенциала 
притяжения, быстро растущего с расстоянием и не позволяющего 
кваркам и сильно взаимодействующий векторным мезонам разойтись на 
макроскопические расстояния. 

.лалолироятно,однако, чтобы тот же самый механизм мог объяс­
нить физику лептонов. Лептоны сами по себе являются наблюдаемыми 
элементарными частицами и не нуждаются в "конфайнменте". Естест­
венно предположить, что возникновение массы у промежуточных W -
мезонов, а также расщепление лептонов по массе обусловлено спон­
танным нарушением симметрии, например,эффектом Хиггса. Основанные 
на этом механизме объединенные модели слабых и электромагнитных 
взаимодействии типа Салама-Ваьнберга / n , - V неплохо согласуются с 
экспериментом, но с эстетической точки зрения вызывают ряд возра­
жений. Участвующие в них хиггсовские мезоны никак не связаны с ис­
ходными принципами калибровочных теорий. Единственная цель введе­
ния скалярных частиц - обеспечить наблюдаемый спектр масс. При 
этом,поскольку параметры, характеризующие массы и взаимодействия 
хиггсовских частиц, никак не ограничены калибровочной инвариант­
ностью, предсказательная сила подобных моделей довольно нала. 

Возникает яелание построить такую схему, в которой существо­
вание хиггсовских частиц с необходимостью следовало бы из основных 
принципов и которая естественным образом связывала бы параметры 
скалярных мезонов с параметрами остальных полей. Естественным кан­
дидатом на эту роль является теория, в которой существует симмет­
рия между ферми- и бозе-полями,т.е. суперсимметричная калибровоч­
ная теория. 

Алгебра суперсимметрии, постулированная в работах /*_3/ и ис­
пользуемая сейчас в большинстве работ, является минимальной ал­
геброй, включающей антикоммутирующие элементы и содержащей в ка-
чterse подалгебры алгебру группы Пуанкарэ. Она имеет вид 

где fy - генераторы четырехмерных трансляций, О^- генераторы 
преобразований суперсимметрии, являющиеся майорановскими спинора­
ми, С - патрица зарядового сопряжения. 
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Представления алгебры (I) удобно искать ' ' в пространстве функций 
от 8 переменных (х^,, б« ), где эс« - коммутирующие вещественные 
параметры, а 0 а - антикоммутирующие майорановские спиноры. Ал­
гебру (I) можно реализовать как алгебру преобразований простран­
ства параметров (Х и , 9<* ) 

xpsxr*i*t/*e, 0 - =&+£«, ( 2 ) 

где £У)в свою очередь, являются антикомнутирующими майорановскими 
спинорами. 

Скалярным суперполем называется функция от переменных XM,9, 
преобразующаяся по закону 

y'(V,e') = Y4*,e). (з) 
Из-за антикоммутативности параметров О любая функция от них яв­
ляется конечным полиномом 

(здесь выписана формула для разложения псевдоскалярного суперполя). 
Скалярное суперполе УС% ;6) эквивалентно нультиплету обычных по­
лей, зависящих только от X . Этот супермулыиплет содержит (псев-
до) скаляры CfM,N, Ф > два майорановских спинора j } \ и век­
торное поле Яу . При преобразованиях (3) компоненты С) f , M , N ^ u , 
А ,3) преобразуются друг через друга. 

Скалярное суперполе ЧЧэс,0) допускает инвариантное разложение 
на сумму трех скалярных суперполей с меньшим числом компонент 

У(х,в)=у+ (х,в;+ч/ (х,в) + % (*,вь ( 5 ) 

где "киральные" компоненты Y+ выделены ковариантныии условиями 

{iO-+iV,)^}%=0, (б) 
2)« - ковариантыая производная 
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Киральнче суперполя ф± (х>в) эквивалентны мультиплетам обычных 
полей, состоящий из двух (псевдо) скаляров и двухконпонентного 
спинора Y±s Уг(1±1^)Ч> 

I I . Как работать с суперсимметричными теориями? 

(8) 

Для построения инвариантного действия достаточно проинтегри­
ровать суперскаляр, наприиер, произведение нескольких суперполей, 
по пере, инвариантной относительно преобразований (2) / 7 /. Такая 
хера есть /с/уэсс/б , где интеграл по алгебре Грассмана опреде­
ляется формулами ,°/ 

Кратный интеграл понимается как повторный. 
Простейшее инвариантное действие имеет вид 

(9) 
9tf*,e)=<jp_+fele) 

и описывает невзаимодействующие (псевдо)скалярные поля Л + и 5,. 
и майорановский спинор У • 

Из определения (8) следует, что 

т.е. инвариантом является интеграл по я х от 2) - компоненты 
скалярного суперполя. (Для киральных суперполей инвариантон явля­
ется также /оСх %(х) ). 

Простейшая модель с нетривиальным взаимодействием описывает­
ся лагранжианом / 3' 
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Поскольку лагранжиан (10) не содержи* производных от поля J-* , 
оно не является истинной динамической переменной. Исключение f 
приводит к появление массового члена и контактного взашодействия 
скалярных полей Я* 

-(мА +$ЯМ(МЛ.+$АА). си) 
Система взаимодействующих скалярных и спинорных полей (10) описы­
вается всего двумя параметрами g и /1 . Это свойство сохраняет­
ся и в перенорнированной теории, причем в суперсимметричных тео­
риях не возникает независимого контрчлеяа перенормировки массы'. , 9 / 

Для приложений представляют интерес супереиыметричние теории, 
инвариантные относительно калибровочных преобразований. Калибро­
вочные векторные поля Ар включаются в суперполе общего вида f, 
а для описания полей материи можно воспользоваться кнральными су-
перполями. 

Калибровочные преобразования не коммутируют с преобразовани­
ями суперсимметрии, поэтому теория, инвариантная относительно ка­
либровочных преобразований и преобразований суперсимнетрии, однов­
ременно с необходимостью должна быть инвариантна относительно бо­
лее широкой группы преобразований / 1 0 /' 

qt)ir*,e)-»Q±cpt('*1e); е з ч > - * й л * % \ { 1 г ) 

где Qj. - произвольное киральное суперподе-матрица с компонента­
ми ( u* , V* , W+ ) , играюцими роль параметров калибровочного пре­
образования. Патрицы ft» удовлетворяют условиюй! = ft~ , а в слу­
чае группы S U и - еяе условию dtt&t = i. 

Инвариантный кинетический член для поля материи имеет 
в щ д /10, II, 12/ 

^<r*Afp t V> t *<pU-'Y]. (13) 
Инвариантное действие для калибровочного суперполя в случае 
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группы V (i) имеет вид 

а в неабелевои случае 

(15) 
Лагранжиан (13) существенно нелинеен и поэтому могут воз­

никнуть сомнения в перенормируемости подобной теории. Однако из-
за инвариантности относительно калибровочных преобразований (12) 
действие вырождено, и при квантовании необходимо наложить допол­
нительное условие. Зумино и Весе предложили воспользоваться ка­
либровочным произволом, чтобы обратить в ноль компоненты С,JC,Af;/V 
поля У . Эта калибровка обладает замечательным свойством: ряд 
(13) становится конечным полиномом. В случае Абелевой группы 
действие принимает вид 

и описывает электромагнитное взаимодействие спиноряых и скаляр­
ных полей плюс дополнительное взаимодействие спиноров и скаляров, 
характеризуемое той же константой 4 . Исключение компонент Т 
и % дает массовый член и контактное взаимодействие скалярных 
полей 2 
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В калибровке Весса-Зуиино перенорнируеиость теории очевидна. 
Однако условие 

не инвариантно относительно преобразований суперсишетрии, поэто­
му в калибровке (18) утрачена явная суперсшшетрия, что сильно за­
трудняет анализ перенормированвой теории. В частности отнюдь не 
очевидно, что можно провести перенормировку, сохранив равенство 
констант различных взаимодействий, участвующих^ (16). 

Эта проблема была решена в работах А 3 * 1 * / , где была постро­
ена явным образом суперсимметричная теория возмущений для калиб­
ровочных теорий. Вместо неинвариантного условия (18) используется 
суперсимметричное дополнительное условие типа 

% = 0. (19) 
В калибровке (19) в отличие от калибровки Весса-Зумино действие 
остается существенно нелинейным, и ряд теории возмущений содержит 
бесконечное число типов примитивно расходящихся диаграмм. Однако, 
как было показано, индекс расходимости не превышает 2, а благода­
ря существованию бесконечной системы обобщенных тождеств Уорда 
соответствующие константы перенормировки выражаются друг через 
груга. Для устранения всех ультрафиолетовых расходиыостей доста­
точно ввести два инвариантных контрчлена 

(В случае неабелевой суперсиыметричной теории, так же как в обыч­
ной теории Янта-Милдса, возникает еще дополнительная перенорми­
ровка заряда). Как и в простой модели (10), независимая перенорми­
ровка массы полей материи отсутствует / " « * б / . 

Поскольку в природе, по-видимому, отсутствует вырождение по 
массам скалярных и спиворных полей, суперсимнетрия должна быть 
нарушена. Естественно ожидать, что такое нарушение обусловлено 
появлением ненулевых вакуумных средних скалярных компонент супер-
полей. Легко видеть,однако, что потенциал (17) достигает абсолют­
ного минимума при J?t = ?+ = £> = О . Аналогичным свойством обла-
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дает и потенциал модели (10). Устойчивый экстренуи симметричен. 
Выход из этого положения был предложен Иллиопулосом и Файе ' ' , 
которые заиетили, что в случае абелевой калибровочной группы к 
действию (16) можно, не нарушая суперсимметр' . и калибровочной 
инвариантности, добавить член 

При преобразованиях (12) 

т.е. действие меняется на несущественную константу. 
Добавление члена (21) приводит к появлению ненулевого вакуум­

ного среднего поля 3D . В приближении деревьев <2>> с= f^1 • К а~ 
ионическое преобразование 2S-*SD-f3"f обращает <2»„ в нуль 
и порождает дополнительный массовый член 

SCOt-d-A]. (22) 
Супериультиплет расщепился по массе, т.е. суперсимметрия спонтан­
но нарушена. При этом, если J > Мг . то потенциал является 
тахионным, что свидетельствует о спонтанном нарушении внутренней 
симметрии. Дополнительный сдвиг полей А * делает теорию устой­
чивой и порождает массовый член для векторного поля А и . 

Спонтанное нарушение суперсимнетрии сопровождается появлени­
ем голдстоуновского безнассового фермиона. При f £ М им яв­
ляется А, а при / > М - суперпозиция полей А и V* . 

Механизм Файе-Иллиопулоса применим лишь в аОелевом случае, 
т.к. добавление члена $Ъ°- в неабедевон случае, очевидно,нарушает 
калибровочную инвариантность. Другой механизм, применимый в от­
сутствие абелевых калибровочных полей, был предложен в работах 
/18,19/^ в э т о м случае используются лагранжианы типа (10). К та­
кому лагранжиану можно, не нарушая суперсимнетрии, добавить член 
Xf5j.4-.F_) , порождающий ненулевое вакуумное среднее поля 5"+ . 
Однако новый устойчивый вакуум также оказывается суперсимметрич­
ным, а добавление A(3!J.+3_) приводит просто к изменению массы 
супернулыиплета. 
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Нетривиальный эффект возникает в системе П взаимодейству­
ющих суперполей, описываемых лагранжианом типа (10). Файе и 
О'Райферти показали, что при и » 3 в таких моделях может возни­
кать спонтанное нарушение суперсимметрии. 

Описанные механизмы спонтанного нарушения применимы лишь к 
весьма ограниченному классу теорий и до сих пор на их основе не 
удалось сконструировать ни одной реалистической модели. Кроме то­
го, они приводят к серьезным трудностям при попытке физической ин­
терпретации голдстоуновского фермиона. Бардин ' ' и Де Витт и 
Фридман '"' вывели для процессов с участием голдстоуновских 
фермионов низкоэнергетические теоремы, аналогичные теореме Адлера 
для голдстоуновских бозонов. Эти теоремы исключают возможность 
отождествления голдстоуновского фермиона с электронным нейтрино. 

В спонтанно нарушенной суперсимметричной теории можно по­
строить сохраняющийся ток 

$'4(а:) = - 1 С Г 1 ; ( Х > Т ••'. (23) 
где V(ic) - голдстоуновский фермион. Пользуясь сохранением тока 

SH(*)» получаем 

0=J^e'^<S|S^x)U>=f2^)V?+/'e-A)tM1)r?)^], (24) 
где М» - нейтринный полюсной член, a fy/ обозначает вклад ос­
тальных членов в (23). Из (24) следует, что Ny(f)-fO при f - * 0 . 
В частности,должна стремиться к нулю амплитуда ft -распада при 
а-»0 (или,что эквивалентно, при большой энергии заряженного леп-
тона). Экспериментальные данные противоречат такому поведению. 
Разумеется,остается возможность отождествить голдстоуновский фер­
мион с мюонным или каким-нибудь новым, еще не наблюдавшимся "ней­
трино". Такая возможность обсуждалась недавно в работе /22/. 

Я хочу обсудить еще один механизм нарушения суперсинметрии, 
позволяющий существенно расширить допустимый класс теорий и сво­
бодный от трудности с голдстоуновский нейтрино. 

Еще в работе ' ' было замечено, что в скалярной модели (10) 
суперсимметрию можно нарушить явно, но так "мягко", что симметрич­
ная процедура перенормировки остается неизменной, а соотношения 
между параметрами модели меняются лишь на конечные члены, вычис-
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ляеные по теории возмущений. Для этого достаточно к лагранжиану 
(10) добавить массовый член для скалярного поля вида 

Мы покажем, что добавление к суперсииметричнону лагранжиану 
любых массовых членов для скалярных полей оставляет теорию "квази-
симметричной", т.е. к ней применима симметричная процедура пере­
нормировки, и единственными новыми параметрами являются лишь сани 
массы скалярных частиц. Все остальные параметры отличаются от 
симметричных лишь конечными членами, вычисляемыми по теории воз­
мущений. Более того, такую теорию можно реализовать как суперсим­
метричную теорию со спонтанно нарушенной симметрией, если ввести 
дополнительные вспомогательные поля помимо Я) и -У . 

Поясним сказанное на примере простой модели, описываемой лаг­
ранжианом 

и$<#***<р+}ЫЪ*!*"-№е. ^ < 2 5 ) 

-* 
Здесь ф+ - киральный изодублет, V - суперсимметричное поле 
Янга-Миллса, «fs M i обозначает лагранжиан поля Янта-Миллса (15). 

Действие (25) инвариантно относительно неабелевой калибровоч­
ной группы 

ср+-а+ср+, №(а№'4;\ detail, У=Уf ( 2 6 ) 

Введем вспомогательные абелевы калибровочные поля V е и V* , вза­
имодействующие с <р+ и Sf следующим образом: 

s^lf^^^Dr^rU^e}. ( 2 7 ) 

Лагранжиан (2?) помимо преобразований (26) инвариантен относитель­
но абелевой калибровочной группы 

Из-за наличия линейного члена f ¥ вакуумное среднее O D ° > ^ 0 
и сулерсимметрия спонтанно нарушена. Переходя к новым полям 
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получаем массовый член 

м=1{<р:е»%(вв)Увг*=±№А)о1 х. (29) 
Вариация (27) по V, дает свободные уравнения для У , т.е. поле 
У " в действительноств не взаииодействует с "физическими" полями 
V в Ф + , и весь эффект полей V " и V е сводится к появлению 

в лагранжиане (25) массового члена (29), снимающего вырождение 
по массам. С другой стороны, теория, описываемая действием (25) + 
+ (29), эквивалентна явно суперсимметричной теории (27) и поэтому 
к ней применим весь аппарат, развитый для симметричных теорий. В 
частности, сохраняются соотношения, вежду константами перенормиров­
ки. Подробный анализ соответствующей процедуры можно найти в 
работе ' 2 3 Л 

Модель (25) представляет собой пример" асимптотически свобод­
ной теории без инфракрасных расходимостей. При _р > О лагранжи­
ан (25) -I- (29) порождает спонтанное нарушение изотопической ин­
вариантности. Переходя к устойчивому вакууму Л,.-»</)+ + « , по­
лучаем следующий спектр масс: все три компоненты векторного по­
ля, два комплексных ферниона в один эрмитов скаляр приобретают 
массу § . Безнассовыми остаются три голдстоуновских скаляра, 
устраняемые калибровочным преобразованием, и двухкомпонентый 
фернион. В модели отсутствуют инфракрасные расходимости. Вместе 
с тем, будучи теорией Янга-Миллса с одной безразмерной констан­
той, модель асимптотически свободна. 

Описанный механизм позволяет получить массовые члены вида 
Ъ.А\А+ + ЪА.А- . (зо) 

Аналогичным образом можно получить также массовые члены вида 

с (AtA* +AlA_). (3D 
Для этого нужно ввести вспомогательные киральные поля Ф ± , <р+ , 
взаимодействующие с О0 £ по типу (10): 
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К*оУл^О и сдвиг io-*C + J-e порождает массовый член (31). 
Поле Ф }° свободное и не влияет на физические следствия. В то же 
время явная суперсиаметрия выражения (33) позволяет применить к 
нему все выводы, сделанные для симметричной теории. Трудностей с 
голдстоуновскими "нейтрино" вообще не возникает, т.к. голдстоунов-
ский фермион входит во вспомогательные супермулыиплеты( У " или 
ф + ), не взаимодействующие с физическими полями. 
~ Следует отметить, что факт независимости логарифмических 

контрчленов, ответственных за перенормировку зарядов и волновых 
функций, от масс является общим / 2*> 2 5/ и не связан с симметри­
ей теории. Предлагаемый метод приводит к более сильным следетвияи-
он сохраняет тождества Уорда и гарантирует отсутствие независи­
мой перенормировки масс фернионов. 

Ш. Возможные применения суперсимметричных калибровочных 
теорий. 

Наиболее естественная область применения суперсимнетричных 
калибровочных теорий - это объединенные модели слабых и электро­
магнитных взаимодействий. Однако до сих пор не удавалось постро­
ить ни одной реалистической модели. Предложенная Файе / 2 6 / модель 
для электронного сектора не допускает обобщения на мюонный сек­
тор, и,кроме того, отождествление голдстоуновского фермиона с 
электронным нейтрино противоречит эксперименту. 

Ниже мы покажем, что описанный в предыдущем разделе механизм 
спонтанного нарушения симметрии позволяет конструировать прием­
лемые с точки зрения эксперимента модели слабых и электромагнит­
ных взаимодействий. 

В качестве калибровочной группы выберем оТЛСя)" "U(y. Поля 
материи будем описывать комплексными киральными дублетами ср+ = 
{ф**]Ф**}• Поскольку нас будет интересовать главным образом 
спектр масс и явный вид взаимодействия, в дальнейшем будем рабо­
тать в калибровке Весса-Зумино. Калибровочно инвариантный лагран-
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жиан имеет вид.-

Под c;j подразумевается суммирование от I до И . 
Нахождение минимума эффективного потенциала представляет со­

бой в общем случае весьма громоздкую задачу. Поэтому мы начнеи с 
конца - постулируем, что минимум достигается при некоторых значе­
ниях С/?+ ^ = <**, а затем постараемся соответственно подоб­
рать параметры ip, f, M. 

Переход к устойчивому вакууму Л+-*Я^ +<*+ порождает 
массовые члены для векторных мезонов. 
Заряженные компоненты 

Нейтральные компоненты 
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Сдвиг полей *А± порождает также дополнительный массовый член 
для фермионов 

Компонента 

остается безиассовой и иожет быть отождествлена с одним из ней­
трино. Из формулы (33) видно, что благодаря наличию янг-миллсов-
ского члена 

взаииодействие обязательно включает векторно-подоОные токи, благо­
даря чеку суперсимиетричные схемы наиболее естественны для попу­
лярных сейчас векторно-подобных моделей'' 2 7' 2 6'. 

Несмотря на то, что калибровочная группа не полупростая, 
взаимодействие фотона и нейтрино,в отличие от стандартной модели 
Вайнберга,характеризуется одной и той же константой %%\(%г+$?)~л 
благодаря чему масса заряженного векторного мезона строго фикси­
рована и определяется отношением электромагнитной в слабой кон­
стант. Поскольку нейтрино V входит в янг-ниллсовское взаиио­
действие с обеими поляризациями, право-поляризованная компонента 
заряженного фермиона (A (i-t\i) t не может принадлежать ни элект­
рону, ни мю-незову. Таким образом, минимальное число заряженных леп-
тонов, так же как и в моделях / 2 7 » 2 < % равно трем. Это соответству­
ет в формуле (32) двум киральным мудьтиплетан. 

При И = 2 мы с необходимость!) прихс.лм к следующему отож-
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дествлению заряженных лептонов ( с точностью до замены е <-*}*)• 

fi^cAfi. %\ +*ii^< / ^ ( V i A , ) - <35) 

Малый параметр £ характеризует отклонение взаимодействия 
электрона от V - A варианта. Вели взаимодействие точно имеет 
форму V - A , то £ = 0 . Мы рассматриваем , однако, более 
общий случай, когда (•$?£ ?±0 . Задание маос е ; ц f и 
параметра € однозначно определяет параметры ar*t" и Nij (при 
исследовании спектра масс можно без ограничения общности положить 
fit -О . Углы /8+ существенны лишь для взаимодействия фермио-
нов со скалярными частицами). 

-^(^«'X.V^-^ft*"^)'*'/-. < ( 3 6 ) 

(37) 

Сравнивая (34) с (36), находим, что 

о(„=0 ( g««="y<; %ы-г-М, Ч}01'1 =£™е . 
Отсюда следует правило сумм 

м£ = /Чг + 1у* * W . (38) 
Формулы (34), (37) однозначно определяют спектр нейтральных леп­
тонов. Этот спектр содержит второе "нейтрино" и массивные лепто-
ны, которые, однако, не удается отождествить, не входя в противо­
речие о экспериментом. 

Следовательно, необходимо либо увеличить число мультиплетов, 
т.е. взять ¥\7/Ъ , либо,оотавив неизменным число заряженных 
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лептонов, ввести д( полнительные нейтральные лептоны, взаимодейст­
вующие с <р+ . Первая возможность более последовательна, т.к. 
она позволяет ограничиться лишь минимальным калибровочно ин­
вариантным взаимодействием, не вводя новых безразмерных констант. 
К сожалению, соответствующие выкладки весьма громоздки, и к на­
стоящему времени еще не закончены. Поэтому мы обсудим здесь вторую, 
минимальную с точки зрения числа тяжелых лептонов, возможность. 

Введем дополнительный киралышй синглет c p s + - cp+_ , взаимо­
действующий с ср± ,,л 

Д*=#9>«<р-*}в - <р**ч<?1%*м- (39) 

Дополнительный член содержит значительный произвол, для фиксации 
которого следует привлечь какие-либо физические соображения. 
Цы потребуем, чтобы строго выполнялся закон сохранения лептон-
ного заряда. Сохранение лепгонного заряда связало с инвариантно­
стью относительно преобразований: 

I 1 I I I I I I , л/ Yi 
(40) 

/ 'АЛ 
К* 
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Лептонные заряды выбраны так, что при спонтанном нарушении сим­
метрии лептонный заряд по-прежнему сохраняется. Требование сох­
ранения лептонного заряда приводит к условиям: а-„=л г, г*?„={Г/г-о. 
Остающийся произвол в выборе параметров f, f позволяет подо­
брать их таким образом, чтобы устойчивый экстремум достигался 
при значениях <xit- , определяемых формулой (36). При этом массы 
всех скалярных мезонов, кроме трех голдстоуновских частиц, устра­
няемых калибровочным преобразованием, могут быть сделаны больши­
ми. 

Спектр масс нейтральных лептонов определяется квадратичной 
формой 

(41) 

где W - комбинация А и Д э , ортогональная V 
Если наложить на параметры а. ,г и а 2 2 условие 

то диагоналиэация приводит к следующему спектру: 
два двухкомпонентных нейтрино с нулевыми массами и два дираков-
ских фэрмиона с массами 

Если параметры € я <*чг удовлетворяют условиям 

totni-<<s«l , а,п Ъ.д, 
то массы дираховских фврмионов велики М,• » ты . при том же 
условии V( a: ty- + V ft и может быть отоадествлено о электрон­
ным нейтрино, a v a « л / . условие $ « g , , обеспе­
чивавшее универсальность ва&имодействия электрона и ню-мезона, 
гарантирует в то же время, чтя новое "нейтрино" Ы участвзет 
линь в сверхслабом взаимодействии. 
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Универсальность слабого взаимодействия e;/J- достигается 
при Q«9i . Однако взаимодействие е;/*- со скалярными части­
цами не монет быть сделано универсальным никаким выбором парамет­
ров и может в принципе быть ответственным за разность масс /*~е-

Мы не будем здесь более подробно обсуждать физические след­
ствия модели. На этом примере мы хотели продемонстрировать те 
возможности, которые открывают суперсимметричные калибровочные 
теории для описания слабых и электромагнитных взаимодействий и в 
особенности подчеркнуть, что они являются естественным аппаратом 
для векторно-подобных моделей. 
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УРАВНЕНИЯ ДВШЕИИЯ ДЛЯ СУПЕРИОЛЕЙ 
В.И.Огиевецкий, Э.Сокэчев 

Объединенный институт ядерных исследовании,Дубна 

I. Введение 
Сиииетрии нежду бозонами и фериионэми появились сравнитель­

но недавно. Они были предложены Гольфандои и Лихтманом в 
1971-72 годах, получили значительное дальнейшее развитие в рабо­
тах Волкова и Акулова 72-73 г г, а потои были переоткрыты Вессои 
и Зунино в 1974 году. Новые сиииетрии приобрели большую популяр­
ность и получили название сунерсиниетрий. Было создано и иссле­
довано несколько суперсиииетричных моделей, в частности, калиб­
ровочные теории (Весе, Зуиино, Феррара, Сэлам, Стратди, Файе, 
Славнов, Огиевецкий, Сокэчев и др.). Появились обзорь/1 ', со­
держащие ссылки на литературу. 

Однако реалистических суперсиииетричных иоде лей пока нет. 
Основная трудность состоит в отсутствии эдэкватного способа на­
рушения суперсимметрии. Сейчас ножно сказать, что младенчество 
суперешшетрии на исходе. Оно переходит в отрочество, выясняется, 
что ребенок хоть и красивый, но трудный, что он не совсем вун­
деркинд, но все-таки, возможно, способен на многое. Требуется 
дальнейшее изучение существующих проблей, а такие систеиатиче- . 
ские поиски новых путей. 

В частности, заметим, что пока детально рассматривались 
преимущественно скалярные суперполя - киральные в модели Весса 
и Зуиино и'Общие в распространенной суперсимиетричной версии 
теории Янга-Ииллса'*'7'. Такими суперполяии можно описывать 
только частицы со спинами 0, 1/2 и I. Однако представляют инте­
рес и высшие суперполя, в особенности спинорное и векторное, ко­
торые вклпчают и поля со спинами 3/2 и 2. В работе'8' предложена 
новая общая суперсишетричная версия теории Янга-Миллса (пока не 
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полностью разработанная). В ней спинорное суперполе играет роль 
калибровочного суперполя. Векторное суперполе интересно в связи 
с возыохньш обобщением теории тяготения. Гравитационное поле 
можно рассматривать как поле, источником которого служит тензор 
энергии-импульса. Существует векторное суперполе (супертон)'9', 
которое объединяет в себе тензор энергии-импульса и спинвектор-
ный ток суперсимметрии. Поэтоиу теория векторного суперпопя с су-
пертокои в качестве источника кажется наиболее экономным супер-
симметричным обобщением теории гравитации. 

Изучение новых суперполей естественно начинать со свободных 
уравнений движения для них. До сих пор дзяе в простейших случаях 
скалярных суперполей эти уравнения находились путем удачной до­
гадки а объединения большого числе уравнений для компонентных 
полей. Мы предлагаем общий метод для вывода таких уравнений, ос­
нованный на свойствах проекционных операторов и их корней. Этот 
способ применим и в обычной теории поля. 

План этого доклада следующий. После краткого напоминания 
понятия суперполя излагается метод вывода свободных уравнений 
движения. Он иллюстрируется на примерах обычных полей со спином 
3/2 и 2, а потом применяется к сшшорному и векторному суперпо­
лян. Обсуждаются теория со спинорным калибровочным суперполем и 
возможное обобщение теории тяготения. 

П. Суперполя 
Алгебра суперсимметрии состоит из генераторов группы Пуан­

каре и спинорных генераторов суперсдвигов 3* *': 

[ s ^ M ^ A ^ , (XPr]--0, K ^ H ^ / V • ( I ) 

Для реализации этой алгебры вводятся вспомогательные антикомму-
тирующие спинорные координаты (грасснановы числа) Qu : 

e^ + fybzo. (2) 
* ' В докладе используются обозначения: J t ^ i / "3 = fy»* = <&"#£• ) , 

где С-.С^'и1 - матрица зарядового сопряжения;д,= i ^ D : ^ 2 
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Далее рассматриваются суперполя - функции координат ас и грас-
смэновых переменных О : 

+ Ь91Мь9Л$1*} + Ь'*»1«М+Ь<*9>'Ыг) • ( 3 ) 

Внешний значок I обозначает совокупность лоренцевых индексов 
(скалярное суперполе Ф(я, &) > спинорное - *?£ C*,&> , век­
торное - Фи (г, 9) и т.д.)- Ьы будем говорить, что данное 
суперполе имеет внешний спин У , если оно подчиняется дополни­
тельным условиям, выделяющим представление группы Пуанкаре со 
сиипоы Т по внешним индексам. Например, векторное суперполе с 
внешним спином I удовлетворяет условию 'Ъ 4^(^,9) = О и т.д. 

Генераторы 5 Ч реализуются как операторы не супершш»х: 

где ,^g* обозначает дифференцирование (левое) но грассмано-
вым переменным. 

Среди всех операторов, действующих на суперполя, фундамен­
тальную роль играет так называемая слинорнэя производная 

Q = 95= " Т (f9>* • (5) 
Она подчиняется алгебре, изоморфной (I): 
1ъ УГJ - г(<&ъъ, С%$,]•= о}\ъ<,ъА^ ?л/н. (в) 

Важнейший свойством QXi является их антикоммутативность с 
генераторами S* 

В силу этого любой оператор, построенный из 0 ^ , перестаново­
чен с суперсдвигами БФ^^в) - L i*St Ф- (х, в) 
(, £<t - антикоммутиругащие спинорные параметры). Обратно, MDSHO 
показать, что любой инвариантный относительно сулерсдвигов опера­
тор состоит только из 0 * (в частности, обычная производная 

"ди представимв как ^=--£-.гГ^,2) ) . Поэтому все урав­
нения движения для суперполей содержат только спинорные производ­
ные. 
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Для построения свободных уравнений движения необходимо 
знать, какие неприводимые представления суперсииметрии описывают­
ся суперполем с заданным внешним спином. 

Напомним аналогичную ситуации с обычными полями. Скалярное 
и спинорное поля описывают по одному представлению - спин 0 и 
1/2, соответственно, а векторное поле Ct„ (z) и поля с боль­
шим числом лоренцевых индексов являются уже приводимыми представ­
лениями группы Пуанкаре. Например, полз сС^(х) описывает 
спин I, выделяемый дополнительным условием Ъ/Ч ЯмСх) = О 
и спин 0 при условии Df.(t*(i) ~ 2va^(x) . Спиновое содерка-
ние поля при заданном квадрате импульса (первом операторе Казими­
ра группи Пуанкаре) определяется спектром оператора квадрате спи­
на У , т.е. второго оператора Казимира. 

В случае суперсииметрии неприводимые представления задаются 
оператором квадрата суперспина, связанным с обобщением вектора 
Паули-Любанского . Представление с суперспином V (при ненулевом 
Р ) включает в себя обычные (по группе Пуанкаре) спины (см. 
н а л р . Л 5 / ) ж / 

j - Y+I , У, У, У'-J - (8) 
С другой стороны, суперполе с заданным внешним спином «7" всег­
да описывает приводимое представление с суперспинаыи'*1^' 

У -. Jt|;J,J, T-i . ( 9 ) 

Например, скалярное суперполе СР(^,9) содержит суперспины 
О, О и 1/2, спинорное ФЛ&,М - U, 1/2, 1/2 и I, векторное 
cfy (*, 9) (при Э^% - О ) -1/2, I, I и 3/2 и т.д. Выделе­
ние того или иного неприводимого представления осуществляется 
проекционными операторами, построенными на основе оператора квад­
рата суперспина'*0'. Приведем некоторые из них, необходимые для 
дальнейшего: 

скалярное суперполе, суперспин 1/2 
Пп = 1-?Р>(ъъ)2 ; (ю) 

спинорное суперполе, суперспин I 

* ' При УЛ-0 суперспин заменяется суперспираявностью Л и 
представление с данным Л содержит спиральности Я = Л + | , Л-
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векторное суперполе, суперспины 3/2 и о 

U ley* - -рГ ~у£ • (13) 

Тот факт,что данное суперполе описывает определенное неприво-
дииое представление, иожет быть записан и в виде дифференциаль­
ных дополнительных условий ' 1 0 ' . Мы приведем здесь только условия, 
соответствующие проекционный операторам (10) и ( I I ) и (12): 

№*)/%-- Гл^ггъ=0,г*ъ=0 (п '> 

Ш. Уравнения движения 
Сначала мы перечислим некоторые характерные особенности из­

вестных уравьений движении для обычных полей, а потом перенесем 
их на суперполевой случай. 

В теории поля принято описывать частицы с помощью полей -
функций координат ¥;(я) , которые преобразуются по некото­
рым представлениям группы Лоренца ( С обозначает совокуп­
ность лоренцевых индексов). Если к генераторам группы Лоренца 
добавить еще и fj, ,- реализованный как i 2 * , получаются 
представления группы Пуанкаре, которые обязательно приводимы 
(хотя бы потому, что значение р 3 не фиксировано). С другой 
стороны, однако, естественно связывать такие характеристики час­
тиц, как массу и спин, с неприводимыми представлениями группы 
Пуанкаре. Поэтому необходимо наложить ряд условий на функции 
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Ч*(Х) , которые выделяют неприводимые представления. В пер­
вую очередь,-это условие, чтобы импульс частицы находился на мас­
совой поверхности 

рг у>. _ у** у». ф (I*,) 
Далее, в зависимости от лоренцева индекса * , поле мо..гет вклю­
чать один или несколько спинов. Обычно принято описывать одним 
полем только один спин (как правило, высший, содержащийся в нем). 
В связи с этим налагаются дополнительные условия 

Rij ̂  = О. (15) 
где Rij - набор дифференциальных операторов. 

Весьма желательно, чтобы условия (14) и (15) могли бы запи­
сываться в виде единого дифференциального уравнения 

откуда они бы следовали. Например, если описывать спин I вектор­
ным полем C l ^ l x ) , то (14) и (15) выглядят так: 

Па-Г(х) + Pi^a^tr) =• О, Э^ОрГх) - О . 
Эта пэра уравнений эквивалента уравнению Прока: 

U<^fKU)-r^rS'all(x) + wla/,(x)~ О. (I?) 
Если такая единая запись (14) и (15) не обеспечена, то при вклю­
чении взаимодействия возникают большие затруднения, иногда и 
противоречия. 

Наконец, порядок оператора Tttj в (16) должен быть не­
высоким. Принято, чтобы уравнения для бозонов были второго поряд­
ка, а для фермионов - первого. 

Как находить уравнения типа (16), удовлетворяющие всем пере­
численным требованиям? Вернемся к уравнению Прока (17), которое 
запишем в виде 

-о(П,) "я, . wJa.„ , (18) 
где 

fn.Lv -- г.» - ^ -
проекционный опервтор, выделяющий спин I. Тогда ясно, что поле 
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tyfo) - - %i (^i)/> UAV ft) удовлетворяет дополнительному 
условию (типа (15)) l>t<af.it) = О, а если так, <т($],) va„ = cu, 
и (18) сводится к ( й ) . 

Отсюда следует общая идея. Если Л;: - проекционный опе­
ратор, выделяющий из поля yj- (x) интересующее нас предста­
вление, то ыы умножаем его на - Q в необходимой степени ^ , 
чтобы погасить его нелокальноеть, и пишем уравнение 

Тем самым достигнуто выделение данного неприводимого представле­
ния. Однако уравнение (19) может оказаться слишком высокого по­
рядка. Тогда, если, например £ = 2, а нам необходимо уравнение 
второго порядка, мы моиеи найти (вообще говоря, неоднозначно) 
оператор 71-$-0)гП со свойством 

тгу 7tjK = (~a)*niK < 2 0 > 
и написать уравнение нужного порядка 

Лу•«£• - г*гЪ = О. (21) 

Оно такие выделяет неприводимое представление, поокольку из него 
следует (19): 

В более сложных случаях придется извлекать корень более высокой 
степени, чтобы понизить достаточно порядок уравнения. 

Простейшей иллюстрацией этого приема является уравнение Ди­
раке. Поскольку биспинорное поле % (х) описывает только 
спин 1/2, то проекционный оператор равен просто И , т.е. (19) 
записывается как (14): 

Так как нам необходимо уравнение первого порядка, мы находим TiJ-

п- fa = i7 
и получаем знакомое всем уравнение Дирака 

iff Г- w Г - О. 
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Нетривиальным примером применения предлэгэемого"корневого 
метода" является вывод других известных свободных уравнений дви­
жения. Так, спин 3/2 обычно описывают спин-векторныы полем 

Y (я) . Наряду со спином 3/2 это поле включает два спина 1/2. 
Дополнительные условия, исключающие спины 1/2, записывается 

Чтобы найти уравнения движения, содержащие в себе эти дополни­
тельные условия, рассмотрим проекционный оператор, выделяющий 
представление группы Пуанкаре со спином 3/2 у поли */£„ . Он 
имеет лад 

Следуя нашей процедуре, определим локальный оператор (-0)/Хк „а . 
Он содержит вторые производные. Поэтому для получения уравнения 
первого порядка ( %.„ - фермионное поле) надо извлечь квадрат­
ный корень iia(-OH>w Существует однопэраиетрическое семейство 
таких корней, допускающее вдобавок замены 4i-*^-*-Jijf^,^v4/

t/ , 
где р> - параметр. Требуя, чтобы искомое уравнение соответст­
вовало вариационному принципу с эрмитовой плотностью лагранжиа­
на, мы находим семейство уравнений Рарита-Швингерз 

(t-wty ~Mdrffv +#.7'К)+ ^r^frlfY, + М-ЪЩ^.-О, (23) 

где et - произвольный вещественный параметр. 
Аналогично, при описании спина 2 симметричным тензорным по­

лем -Я/nv следует исключить содержащиеся в нем "лишние" спины 
О и I. Соответствующие дополнительные условия 

должны следовать из уравнений движения. Выделяющий спин 2 проек­
ционный оператор имеет вид ff£ - ц _ %^у j 

ту*м = г %> % +/ %ги - г V % ( 2 / ° 
и имеет члены ~ D • Локализуем его, введя (-Q) /"]• Чтобы 
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получить уравнения второго порядка, извлечем квадратный корень из 
(-U) П . Из полученного семейства уравнений, привлекая еще за­
мены Пм*-*Ъ/1*+/*%»№ л ) выделим те уравнения, которые мо­
гут быть получены из эрмитовогс ^згранниэнз. В результате мы при­
ходим к известному семейству уравнений Фирца-Паули для симметрич­
ного тензорного поля. 

3£3V°<''-£#"V">+"'4"-'?-
(25) 

Итак, все известные свободные уравнения поля получаются обсужда­
емой процедурой. 

Наконец, несколько слов о безмзссовом случае. Обычно урав­
нения для этого случая получают, полагая т г С в массивных 
уравнениях. Что происходит при этом с условиями неприводимости? 
Во-первых, нужно отметить, что из безмассовых уравнений больше 
не следуют условия типа (1<0 и (15). Во-вторых, сам характер 
представлений при УП - О сильно меняется и старые условия (15) 
теряют смысл. Взамен им возникает одна или несколько калибровоч­
ных инвариантностей уравнения, которые делают лишние степени 
свободы полностью произвольными, тем самым исключая их из теории. 
Например, уравнение Прока (17) приобретает при т - С инвариант­
ность относительно калибровочного преобразования 

ctu(x) -*аг(х) + У» i>(*), 
где ¥fr/ - произвольная функция. Уравнения Рарита-Швингерэ 
(23) инвариантны при УП-0 относительно зядеи 

с произвольной спинорной функцией 2Сх) и т.д. 
Теперь мы можем перенести все эти соображения и идеи на су-

перполевой случай. Отметим только одну особенность. Любое супер­
поле включает в себя как бозоны, так и фермионы, поэтому нельзя 
однозначно указать нуяный порядок суперполевых уравнений. Здесь 
помогают следующие соображения. Наши уравнения должны вытекать 
из вариационного принципа' 1 1' 5' с функционалом действия 
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S =jd'x cfeZir.e) . ( 2 6 ) 

Напомним, что интегрирование и (26) грассманово'1 2', т.е. 
JQiil0P = Sj^ j а это означает, что размерность £eL&J = 

= -1/2 (в сы), тогда как £в! = +1/2. Отсюда следует, что 
[X] = -2, поскольку [S] = 0> (в единицах />-С= 1 ) . Запашем 
кинетический член лагранжиана в виде 

Л к - Tj Лд т у , 
где JT»V - оператор свободного уравнения. Тогда 

СП] = -2 - 2 ГфЗ . (27) 

Наконец, размерность сулерлоля мы связываем с размерностью поля 
с ведущим спином в нем. Поясним это на примере общего скалярного 
суперполя Фс*, В) . Пусть мы интересуемся высшим суперспином 
У =1/2, включающим в себя ведущий спин I. Этот спин содержится 
в поле Д н (х) (см. разложение (3)) и мы полагаем, что оно 
должно иметь правильную каноническую размерность с м . Отсюда 
размерность суперполя равна 0 и, согласно (27),CJTj = -2. Такую 
размерность имеет оператор 

7Z - (-а)Пъ (см. (10)), 
и мы получаем уравнение' > -/ 

Как и следовало ожидать, из (2в) при Ynj?0 следует условие не­
приводимости (10 ) , а при Ш-0 возникает калибровочная инвари­
антность 

У -* 9° *• Z2/I, 
где Л(*,в) - произвольная скалярная суперфункция. Расписан­
ное по компоиентаи,(28) сводится к набору обычных уравнении для 
вектора, скаляра и двух спиноров (при УП=0 - для вектора и 
спинора). 

Перейдем теперь к приложениям. 
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1У. Сшшорное суперполе 
Спинорное суперполе '^ CV, 9) содержит высший суперспин 

I и ведущий спин 3/2, включенный в спинвекторное поле f^j* (*) 
(коэффициент при Bfrfsb B разложении (3)). Принимая 
размерность этого поля канонической, си"^ , заключаем, что 
размерность суперполя есть ем" 1' 2 и, согласно (27), оператор 
уравнения должен иметь размерность си - 1. У локализованного про­
екционного оператора (II) размерность см - 2, поэтому из него нум-
но извлекать корень. Существует целое семейство таких корней. 
Бее они связаны ме.аду собой преобразованиями 

War в) -> <?"А Yt*. e i j *e ) t л , & - параметры, 
поэтому мы выбираем один из них и составляем уравнение 

%Y=}(hJ + ъъ търъръ - wsbifrptyr ~ *и f. (29) 

Тот факт, что в уравнение (29) входит оператор 7L =j/(-0){~j\ 
позволяет легко найти обратный оператор 

необходимый для вычислений по теории возмущений. 
Уравнению (29) соответствует функционал действия 

S-Sd4x(Pe7&,9) = £Sd'xd*e Y(x-*i)Y . (зо) 
Пользуясь алгебраическими свойствами производных Юы ' * ' и ин­
тегрируя по частям, можно представить лагранжиан в более удобной 

Z^kfrM-lrfSfrVf+fas^yf] . ± * у?. ( 3 1 ) 

Далее следует расписать уравнение (29) по компонентам и 
сделать подходящие заиены переменных, после чего получаются пра­
вильные уравнения для всех нужных полей. Эта процедура длинная и 
утомительная,и мы не будем излагать ее здесь. Отметим только, 
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что при ТИ = С , после надлежащих замен переменных остаются 
уравнение Рзрите-Швингерэ для результирующего спинвекторного по­
ля и ураг мние Ирока для результирующего векторного поля. Все 
остальные степени свободы либо обращаются в ноль, либо выпадают 
из уравнений в силу калибровочной инвариантности. Уравнение (29) 
при "т = О допускает два типа калибровочных преобразований 

% (х, »)-*% (Г, 6) + ЪлЛ (*, 6) ( 3 2) 

%(*, в)-*% (*, В) + (iJ/sU, I to, 0) , (зз) 

где Л (х, в) и 2 (7,0) - произвольные скалярные сулерполя. 
Первое из них - (32) - является пряным аналогом калибровочного 
преобразования векторного поля С1*(х)-рс^ъ) + "к,Я(х) и будет 
использовано нами в теории калибровочного спинорного суперполя. 
Преобразование (33) связано с калибровочной свободой уравнения 
Рарита-Швингера. 

У. Калибровочная теория со спинорным суперПолем 
в теории поля возможен только один тип калибровочных тео­

рии - теории Ннга-Миллса, в которых параметры преобразований 
внутренних симметрии заменяются скалярными функциями. В теории 
суперполя оказываются возможными дна типа калибровочных теорий 
в соответствии с тем, что можно рассматривать два вида скалярных 
суперфункций: киральные (суперспин 0) и общие (суперспины 1/2 и 
О). 

Первый случай широко рассматривается в литературе' ', на 
этой конференции о нем рассказывает А.А.Славнов. 5 теориях пер­
вого типа параметры преобразований внутренних симметрии Я ; 
заменяются на произвольные киральные скалярные суперфункции 
Д('(х, 6) • В качестве калибровочного суперполя выступает общее 
скалярное суперполв У(х,в) . Оно преобразуется нелинейно 
{&(f\l(x,9)i- vx?(-itffy,B)\vxf Vfx,&).ea.fn'A(x,e) ( 3 * ) 
и нелинейно же входит в лагранжиан. Это калибровочное суперполе 
содержит векторное поле Янгз-Миллс8 и калибровочное спинорное 
поле. Заметим, что такая теория напоминает кваэи-явг-миллсовский 

194 



случай в теории поля ' 1 5 ' , где такие UOZHO определить "векторное" 
поле 

которое преобразуется по янг-миллсовскому закону, если калибровоч­
ное скалярное поле ¥(х) преобразуется нелинейно: 

(&Cf(t%4>)) - Wf('ft). toLf(a) . (36) 

Однако преобразование (36) делает поле 'f(x) совершенно про­
извольные и теория с тюлек \/и (35) становится бессодержатель­
ной. С другой стороны, преобразование (34) затрагивает не все 
калибровочное суперполе \ / ( х , 6 ) , а только его киральную часть, 
и такая теория имеет смысл. 

Мы будем обсуждать второй случай. Ему отвечает более оОцая 
калибровочная суперсимметричная теория'"', в которой внутренняя 
симметрия реализуется локально в суперпространстае (*-, О) наи­
более общим способои. При атом параметры преобразований являются 
скалярными суперфункциями общего вида, а не только киралышни. 
Роль калибровочного суперполя играет спикорное иайорановское с«-
перполе, включающее векторное поле Ннгэ-Миллсэ и поле со спином 
3/2. Лагранжиан и уравнения движения содержат калибровочное су­
перполе полиномиально. 

Рассмотрим набор суперполей Vy» fa, б) , преобразую­
щихся по некоторому представлению группы внутренних симметрии с 
генераторами ^ 7 ^ J W « 

\fib.e),[^f(H-TI)]1mnV1t(z,ff). (37) 
Инвариантный лагранжиан для этих свободных суперполей включает 
сами поля и дифференциальные операторы, составленные из спинор-
ных производных. 

В полной аналогии с янг-миллсовскиы подходом заменим кон­
стантные параметры Я/ в (37) на произвольные скалярные су­
перфункции /\i (х, в) 

\С(*,9) ^[tafU'A^,6)Ti)2^ Vn (x,9) . (38) 
Эти преобразования образуют группу, т^ч как произведение скаляр-
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ных суперфункций есть снова скалярная суперфуикция. Теп самым 
достигнута наиболее общая локализация в суперпространстве группы 
внутренних симметрии. 

Как и в теории Янга-Миплса, можно определить удлиненную ко-
вариантную производную 

AXibV^fa+WifyDTiL* 1/и^,^. (39) 
Здесь введено спинорное "компенсирующее" суперполе 

где ti - генераторы присоединенного представления группы. Не­
трудно проверить, что k^S/w преобразуется по тому же закону 
(38), что и само суперполе 1/̂ и , если У£ fa, &) преобразу­
ется по закону 

(ад) 

3-
Здесь Л (*i в) ~ /I/t ri "' ~i . Групповое свойство преобразова­
ний (40) очевидно. 

Теперь легко построить лагранжиан для суперполеи Ут , ин­
вариантный относительно калибровочных преобразований (38). Для 
этого достаточно удлинить все спинорные производные 2 ) ы в ис­
ходном лагранжиане по правилу (39). Тем самым мы включаем инва­
риантное взаимодействие с калибровочным суперполем. Осталось на­
писать инвариантный относительно (40) лагранжиан самодействия 
для самого калибровочного суперполя % . Отправляясь от сво­
бодного лагранжиана (31), можно доказать, что он существует и 
фиксируется в виде 

где T z означает след по индексам внутренней симметрии. 
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Последний член в (41) инвариантен сам по себе, 
(Б+1%Ч,)вй\,У есть К>, - компонента в разложении 
антикоммутатора спинорных ковариантных производных (39). Коэффи­
циент I/I2 выбран по тем соображениям, чтобы уравнение для сво­
бодного суперполя сводилось к уравнению Прока для безмзссово-
го векторного поля и уравнению Раритэ-Швингерэ для безмассового 
спинвекторного поля. 

Следует сказать, что в обоуадземой теории могут возникнуть 
затруднения. В свободной случае, когда 4 =0 , действие инвари­
антно не только относительно преобразования V£''- V£ t-td^A •> 
вытекающего из (40), но и относительно преобразований (33), Нал 
неизвестно, можно ли обобщить эту вторую инвариантность на слу­
чай взаимодействия. Здесь есть над чем подумать. Именно вторая 
инвариантность связана с отсутствием массы у спин-векторного по­
ля. 

У1. Векторное суперполе 
Наш интерес к векторному суперполю Пм (X, &) продикто­

ван надеждой построить простейшую суперстшетричнуга версию тео­
рии тяготения. Ясно, что если ш верим в суперсимметрии, то в 
них следует вклшчить как-то и гравитационное поле' '. 3 литера­
туре часто обсуждается подход'* ', связанный с переносом на су­
перпространство (ос, в ) идей Римановой геометрии, на нашей со­
вещании об эхом рассказывает Д.Б.Волков. Обозначим через 
2 Mrf^ в*) "точку" в суперлространстве; после вве­

дения "м* трического тензора" Я ^ ^ ( ъ ) можно формально 
развивать суперпространственный аналог Римановой геометрии. От­
метим, что %Mtf(^ состоит фактически из высших супер-
полей: тензорного fay/ Or, &•) > спинвекторного £j*« fr, в) 
и спин-спинового 9-ы.я (х &) • Э т и сУПвРп<>ля могут описывать 
высшие спины (например, Ч-и*(х,&) моиет содержать спин 3 и 
спин 5/2 и так далее), и необходимо внимательно анализировать 
уравнения движения для полей. Они не должны содержать все спины 
3, 5/2 и лишние спины 2. 

Существует и более "экономный" подход. Уравнения Эйнштейна 
представимы в виде и могут быть выведены^16' как урэвнения для 
тензорного поля п м у ( х ) , источником которого служит тензор 
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энергии-иипульса Qjii, (X) всех нолей, включая гравитационное 

При действии на это уравнение оператором !>•' левая часть об­
ращается а нуль тождественно, а правая - в силу уравнений движе­
ния. Константа связи d имеет размерность си (в единицах 
И •= с = 1 ) и равна корню из константы Эйнштейна ее ,Я = *• 
Тензор €/и> существенно нешнейно зависит от гравитационного 
поля fyy : отправляясь от свободных уравнений для -^»ц/?стро-
ии для них тензор энергии-импульса, вводим его в уравнение, оно 
перестает быть свободным, исправляем & у членами первого по­
рядка, и продолжая итерации, приходим к уравнениям Эйнштейна в 
форме [fiZ). 

Такая полевая трактовка обобщается на случай суперсимметрий 
следующим образом. Тензор энергии-импульса входит вместе со спин-
векторным током суперсинметрии в единое вещественное векторное 
суперполе - суперток \̂ ц fa> в ) , Этот замечательный факт 
установили Феррара и Зумино^9'. В непосредственной аналогии с 
только что сказанным об уравнениях Эйнштейна можно предположить, 
что суперсиыиетричпая версия теории тяготения есть теория веще­
ственного векторного суперполя Жм(я, Ю , источником в урав­
нениях для которого служит суперток. 

Иными словвыи, мы предполагаем, что уравнение для гравита­
ционного суперполя имеет вид 

•Kr

vb(x,to- aVfb.e), (43) 
где квадрат константы связи U равен константе Эйнштейна ж, 
cl1 - X} 7<«i/ - оператор свободного урввнения, определением 
которого мы сейчас займемся. 

Векторное суперполе км(л,&) содержит в себе симмет­
ричное тензорное поле ^ / г ) , в суперток \fc(t,&) - тензор 
энергии-импульса О ^ ( х ) (в обоих случаях они входят в коэффи­
циенты при Pj^hs- О , поэтому A/* fit, &) безразмерно, а 

Vn h,&) имеет размерность см ). Таким образом, уравнение 
(43) содержит в себе уравнение для тензорного поля, генерируемо­
го тензором энергии-импульса, т.е. оно содержит в себе урзвнение 
Эйнштейна.. 

198 



Суперток в общей случае подчиняется условию сохранения 
(в оригинальной работе''' использовался спинорный формализм Ьэн-
дер-Бэрденэ) третьего порядка по спинорный производным 

2и ъъ Vr - ^ i £ (fQ V„ = О, (44) 
которое содержит в себе условия сохранения тензора энергии-
импульса и спинвекторного тока суперсимметрии: 

Ъ*$»<*)^°, У$ч(*)=0. (45) 
1„ожет быть сформулировано и некоторое эквивалентное усло­

вие сохранения первого порядка по спинорным производным. Оно за­
писывается в виде 

(№)ЛЪ,&) = &<>(*, в), (46) 
где S(xtff-) - некоторое скалярное суперполе с суперспином О, 
вид которого зависит от избранной модели. Так, в модели веществен­
ного скалярного сулерполя (28) 

- f К*[ЯЧ> fr/rZHi<f-29 Щр2¥>] 
(47) 

Если бы в уравнении (46) правая часть обращалась в нуль, то 
это означало бы, что 1/, ft, В) имело бы чистый суперспин 
3/2 (см. (12 у)). Наличие правой части а (46) с суперспином и 
означает, что в У„ (xl ff-J к суперспину 3/2 примешивается су-
перспии 0. Это важное заключение. 

Из уравнения (43) будет следовать условие сохранения (44) 
тогда и только тогда, когда оператор уравнения JZUV автомати­
чески удовлетворяет тому де условию 

Ъ^ЪЪ71^-2.1% (f'alt Щи = О. С*9) 
При поиске соответствующего \~\uvi основываясь на том, что мы 
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имеем дело со сыесью суперспинов 3/2 и О и что lt:HV должен 
—2 

иметь размерность см , можно снова приоегнуть к корневому мето­
ду. И действительно, полагая, что 

Т« ̂ 4v = ШЧПь 1- £ Пс)^„ , (50) 
где (fl)fi)ft» и (Пс)/!^ ~ проекционные операторы на су­
перспины 3/2 и 0, соответственно (см. (12) и (13)) t находим 

*«> = ffityvnJ}l)+%Jzri^fy«fi'i>tf/i-2]. (5i) 
далее, уравнение (43) при таком 7Г,„ инвариантно с точностью 
до низшей степени константы связи Л. относительно калибровочных 
преобразовании (аналогия - Sc k^v - Я T-vi-% Я/* в -еории 
тензорного полп) 

Shj, -Ър/*У\ (52) 

и Yv*. (>,&) - произвольная калибровочная сшшвектор-
ная функция. 

Наиболее прямой путь нахождения суперсишетричного аналога 
уравнения Эйнштейна состоял бы в том, чтобы построить суперток 
для левой части уравнения (43), подставить его в правую часть 
(виесте с супертоком для материальных суперполей), вычислить 
суперток для полученной систеш и продолжать эти итерации далее. 
Такой путь кажется слишком прямолинейный и трудный. Однако ос­
новная трудность еще и в том, что не найден алгоритм для вывода 
супертока. Авторы этого доклада потратили ммого сил для его на­
хождения, но пока безуспешно. В работе Феррара и Зумино супер­
ток был угадан для простейших моделей кирального и о&цего ска­
лярных суперполей. 

Вместе с тем, возможен и другой путь осуществления наме­
ченной программы. Этот путь состоит в поиске группы преобразо­
ваний над суперполями (аналога общековариантной группы), и са­
мые первые шаги по этому пути сделаны. Рассмотрим вещественное 
скалярное суперполе и в соответствии с уравнением (43) будем 
считать, что в низшем порядке его взаимодействие с векторным 
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суперполем дается в лагранжиане как а у* л , где 1/^ - су-
перток для свободного суперполя (47), т.е. лагранжиан имеет вид 

Х^ЪЩ2ь2^-1*гГ -haV^ lf+ ZM. (53) 
Чтобы (53) было инвариантно (с точностью до дивергенций обычных 
и спинорных) относительно (52), необходимо сопроьодить его неко­
торым преобразованием самого скалярного суперполя. 13 низшем по­
рядке по константе связи а это преобразование однозначно опре­
деляется в виде 

Ьфй, в) =-<$ ух, 9) dtyb, &) - гЛя/*, &).{ifek <p/', &) (54) 

где __ _ 
^Z№Y > *г=ъ//*Г. (55) 

Знаменательно, что при i.^-0, т.е. когда ^ « Д , &) не 
получает аддитивной добавки, и для не зависящей от X. калибро­
вочной суперфункции ¥&(*,&)- К/(&), ЪыУл(е) = С 
согласно (52), преобразование (54) сводится к сдвигам и супер­

сдвигам! Это находится в точной аналогии с тем, что общековзри-
знтное преобразование скалярного поля Ф(х), btffy)=a}Jxydfif(r) 
при "Ки-СлячЛ сводится к сдвигам, а аддитивная часть в SA.,^ 
равная ^м Я»/^-'З»-^ » исчезает. 

Отметим, что в модели кирального скалярного суперполя полу­
чается таким же обрэзом в точности такой же закон преобразования, 
что и (54) с единственным отличием в виде дополнительного члена 
без производных суперполя, связанного с различием размерностей 
кирального и общего скалярных суперполей. 

Важно отметить, что наличие в (54) члена с двумя спинорны-
ми производными "ШииИуН) от суперполя свидетельствует, что 
рассматриваемое суперсимметричное обобщение общековариантной 
группы не сводится к некоторой группе в суперпространстве (х, &), 
а является существенным образом группой преобразований над су-
перпопями. Это нам кажется естественным, так как, скажем, уже в 
линейной подгруппе S£C¥,R) общековариантной группы нельзя 
определить, согласно Картану, спиноров, а в пару (я, &) входит 
спинор. По этой причине в теории тяготения для описания спино-
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ров приходится вводить тетрадные степени свободы или использо­
вать нелинейные реализации' '. 

Истинное преобразование суперполей будет содержать, кроме 
(5*0, члени с ВЫСШИМИ степенями гравитационной константы И , не­
линейные по гравитационному суперполю. Они пока еще не найдены. 
Не найдено еще даже мультипликативное преобразование гравитацион­
ного суперполя Я/ч (У, &) . Может оказаться, что истинное не­
линейное уравнение, соответствующее (43), несет в себе спонтан­
ное нарушение суперсимыетрий. 

Возникает много вопросов, ответы на ноторые предстоит выяс­
нить. 1.ш не располагаем пока сколько-нибудь полной картиной. В 
этой части доклада ми описали первые неуверенные шаги, ведущие к 
соблазнительной, по мнению авторов, цели. 
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IV. 

Солитоны 
SOLITONS 



В ПОИСКАХ МНОГОМЕРНЫХ СОЛИТОНОВ 
Л.Д.Фаддеев 

Ленинградское отделение Математического института им.В.А.Стеклова 

В последние два года большие усилия многих ученых были на -
правлены на разработку нового теоретического механизма появления 
спектра масс элементарных частиц. Было показано, что локализован­
ным решениям классических уравнений поля соответствуют частицы в 
квантовой теории поля. Эти частицы представляют собой когерентные 
возбуждения фундаментального поля, содержащие бесконечное число 
частиц, соответствующих ему при квантовании по теории возмущений. 

Новые частицы, названные солитонами*' , и их связанные состо­
яния дают богатый спектр масс , который нельзя получить по обычной 
теории возмущений. Связь локализованных решений и элементарных 
частиц обсувдалась в литературе уже достаточно давно '*' - ' ', 
Прогресс в последние два года привел к следующим достижениям: 

1 . Разработана последовательная схема квантования, основан­
ная на модифицированной теории возмущений, в существенном совпа­
дающей с квазиклассическим методом, распространенным на квантовую 
теорию поля. 

2 . Найдены приближенные выражения для масс солитонов, их свя­
занных состояний и их амплитуд рассеяния.При этом выяснилось,что 
в теории слабо взаимодействующих фундаментальных полей солитоны 
имеют большие массы и сильно взаимодействуют. 

Этим вопросам посвящена значительная и быстро растущая лите­
ратура. Мы ограничимся ссылками на несколько оригинальных работ 
/ 5 / - W и обзоры W - / Ю / . 

К сожалению,указанные успехи, в основном,достигнуты только 
на примерах моделей теории поля в двумерном пространстве-времени. 

* ' Термин "солитон" возник в теории плазмы,используется там 
для обозначения локализованного решения уравнений движения,проис­
ходит от термина " so l i t a ry wave "- уединенная волна - и был вве­
ден в '•'по причине "очевидной аналогии с элементарными частицами. 
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Дяя переноса их на реальный четырехмерный случай необходимо, в пер-, 
вую очередь, иметь достаточно богатый набор примеров локализован -
них решений классических уравнений теории поля. В четырехмерном 
случае существует ряд специфических препятствий для существования 
таких решений. 3 связи с этим солитонный механизм описания спект­
ра масс элементарных частиц для четырехмерных моделей теории по­
ля пока находится в зачаточном состоянии. 

В настоящей лекции я рассказу о ряде приемов, которые уже 
оказались и могут оказаться еще полезными при поисках многомерных 
солитонов. Эти приемы разбросаны по многим математическим и физи­
ческим работам, зачастую в связи с другими задачами. Мой вклад 
состоит разве лишь в их систематизации и концентрации вокруг со-
литояной тематики. На содержание лекции оказали влияние беседы с 
А.Поляковым и С.Коулменом. 

§ I. Масштабное преобразование и как с ним бороться. 
Здесь мы приведем простой довод - почему существование стаци­

онарных локализованных решений нелинейных уравнений является ско­
рее правилом для одномерного пространства и исключением для трех­
мерного пространства. Мы будем при этом рассматривать бозонные 
поля и считать, что уравнения движения имеют второй порядок. 

Рассмотрим систему скалярных и векторных полей, обладающих 
внутренними степенями свободы. Весь набор этих полей обозначим 
через ^«.СУ) , так что индекс «о относится как к спиновым, так и к 
внутренним степеням свободы. Стационарные решения реализуют мини­
мум гамильтониана, который мы возьмем в обычной форме: квадратич­
ная форма первых производных + локальная функция полей 

Различие пространств разной размерности сказывается в разном по­
ведении HtUj и WiW) по отношению к масштабному преобразова -
от 

Ч(А -% Ч{\*\ - <*(*). (I) 

Именно, 

где ~i - размерность пространства. При с<°-^- первое слагаемое 
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убывает, а второе растет при росте V> .Тем самым, если V реали­
зует минимум, то условие стационарности 

?* и ы - о 
дает обычное вириальное соотношение 

При 1*=1 оба слагаемых монотонно растут при росте 4% , что 
показывает, что функционал Н(ч) не может иметь минимума на функ­
циях t , для которых H tU) и HjW) в отдельности конечны. Вот 
первое препятствие для существования солитонов npa^-J . Ниже мы 
обсудим пути его преодоления. 

При ""i = 2, первое слагаемое не меняется при масштабных преоб­
разованиях. Поэтому, если второе слагаемое отсутствует, то препят­
ствие для существования минимума исчезает. Если такой минимум су­
ществует, то вместе с ним есть по крайней мере целая линия "С* . 
Пример такой ситуации да встретим в следующем чараграфе. 

Вернемся к случаю **-3 и подумаем, как можно поправить де­
ло с тем, чтобы иметь солитоны. Две возможности наиболее очевид­
ны. 

1. Включить в гамильтониан члены, содержащие старшие степе­
ни производных. Так, гамильтониан й 3 С»1 , содержащий четвертые 
степени производных,при масштабном преобразовании преобразуется 

наи--» '*цо и ^ 
и при ^ З убывает при росте 'А . Ниже мы убедимся, что можно при­
думать лагранжиан, приводящий к гамильтониану такого типа. 

2 . Использовать медленно убывающие поля, для которых HJ*) 
и UvW) в отдельности не конечны. Пример такой ситуации дает 
лагранжиан, включающий поле материи Ч1 и поле Янга-Миллса hr , 
имеющие нетривиальную асимптотику при и °° . Если ^ t и 4 
убывают медленно, так что 5> \мЧк расходится, но 

V + = < \> • /L-v 
/* Г Г 

убывает достаточно быстро, так что ^v-vfi* сходится, то масш­
табное преобразование (I) недопустимо. Конечность последнего ин­
теграла будет сохраняться при более корректном масштабном преоб­
разовании 
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*crt -» *t**u A.U-» \ А Д Ч (2) 
При этом преобразовании гамильтонианы поля материи и поля Янга -
Миллса меняются следующим образом 

так что препятствие для существования солитонов исчезает. Именно 
эта возможность используется при построении моноподя т-Хоофта-
Полякова. 

Другой пример, в котором требуется масштабное преобразова -
ние вида 

A (rt -» * А Л ( М 
для поля Янга-Миллса, дает граничное условие тина 

• * 
А л U* - С*.с+, f3) 

где интеграл берется по контуру, уходящему на бесконечность, от 
одной из компонент поля Янга-Маллса. Возможность появления тако­
го граничного условия будет обсуждаться в § 3. 

Роль масштабных преобразований при обсуждении проблемы су­
ществования солитонов, по-видимому, была впервые отмечена Дерриком 
в ' '. 

§ 2. Подстановки и как их искать. 
С технической точки зрения,основу поисков солитонов состав­

ляет удачно найденная подстановка для искомого решения в уравне­
ние движения. Как правило, такая подстановка использует разделе­
ние переменных на радиальные и угловые. После подстановки урав­
нения движения превращаются в оистему обыкновенных нелинейных диф­
ференциальных уравнений по радиальным переменным. Вследствие не­
линейности уравнений движения такое разделение переменных основа­
но на искусственных приемах. Следующая теорема помогает подве -
сти под эти приемы научную базу. Мы сформулируем теоремыисполь­
зуя конечномерные обозначения,и не будем делать всех необходимых 
оговорок. 

Пусть дано многообразие X , группа и., действующая на л ,и 
инвариантная функция 
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Обозначим через /(„ множество всех неподвижных точек группы «• в 
X , т . е . множество точек tf„ таких, что » , ( . < , для всех а « С . 

Теорема. Экстремум J на X, является экстремумом £ на У . 
При приложениях к теории поля роль X. играет множество всех 

полей при фиксированном i , роль ^ - гамильтониан; в качестве 
X» следует брать множество полей специального вида, используемо­

го при подстановке, а С должно быть подгруппой полной группы ин­
вариантности гамильтониана, по отношению к которой инвариантны 
поля из Хо • Теорема поззоляет не проверять тот факт, что решение 
уравнений движения можно искать в виде поля из Хо • Такая провер­
ка обычно требует громоздких и скучных вычислений. 

На роль теоремы при проверке допустимости подстановок в не­
линейные уравнения обратил внимание С.Коулмен. 

Разберем несколько характерных примеров приложения теоремы. 
Заодно познакомимся со списком систем полей, которые использу­
ют при поисках многомерных солитонов. 

I . Нелинейное киральное поле. 
Под этим названием в литературе используют поля с^*) со зна­

чениями в компактной группе С (ниже - главные киральные поля) 
или однородном пространстве ^ / н . Характерным примером во втором 
случае являются поле У(<> со значениями на единичной сфере 
S " в пространстве размерности *Г»1 , т . е . 

Киральные поля неоднократно возникали в различных областях тео -
рии поля (модель мягких пионов Вейнберга, токовая модель Сугава-
ра и т . д . ) , но, по-видишшу,впервые они появились именно в связи 
с многомерными солитонами в работах Скирма ' 3 ' (см. такие / 1 2 ' , 

л/ 
Разберем две подстановки для поля У . 
a) Sb = I, КГ- 1 . Я люблю обозначение Vi (к) для этого по­

ля по очевидной ассоциации с направлением в трехмерном простран­
стве. Будем считать,что гамильтониан для стационарного решения 
инвариантен относительно изотопических вращений Ч - J T U , Т1« 00). 
Определим группу 
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Здесь x« Ui, Xi\ - (.J.*) > "г^Их - (}|Ч+^;**,Ц- вращение вокруг 
третьей оси во внутреннем пространстве на угол <* . Очевидно, что 
множество инвариантных V» -полей дается формулой 

/ si» 9(JJ c.st \ 
W = 1 SU Щ) S:-f ] Г4) 

V Си ft(,i I, 
где §(-$} - произвольная функция такая, что 6(°) - *Т" . Подста­
новка вала (4) многократно использовалась в литературе, в част­
ности, гамильтониан 

U . £ ^ ̂ » *>», 
допустимый в двумерном случае, на h -полях вида (4) принимает ввд 

U- !H*"* £^V$ 
о 

и допускает семейство солитонов вида 
9(^ - $• ftu4,j У\- • 

где (J» - произвольный размерный параметр. 
6 ) ^ = 5 , W=3 . Обозначим 1 - (тс,*.) • Будем считать, 

что гамальтониан инвариантен относительно группы (Нч) - OC '̂O(s) 
Рассмотрим подгруппу С вида 

Множество инвариантных полей дается формулой, аналогичной (4) 

% » V u « t 4 - •, ОС,- c.s9tvj ( 5 ) 

Из теоремы Деррика следует, что гамильтониан 

^" W * 
не допускает решений типа солитонов. Они, однако, существуют для 
гамильтониана Скирма 
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Подстановка (4) приводит п к виду 

и соответствующее уравнение движения имеет решение, убывающее на 
бесконечности. 

2 . Поле Янга-Миллса. 
Рассмотрим стационарное поле Янга-Миллса А («1, ассоцииро­

ванное о группой 0 0 } , в калибровке А. = 0 . Это поле задается 
матрицей %*Ъ , один из индексов которой - пространственный, а 
второй - изотопический. Сферически симметричная подстановка опре­
деляется действием группы С • О СМ, 

А -* <l AU"'*i И".1 

Общий вид инвариантных полей дается формулой 

Первые два слагаемых четны, а последнее - нечетно и потому 
его можно использовать в отдельности в качестве допустимой под -
становки. Впервые такая подстановка была использована Янгом и 
By ' 4 ' . Теорема Деррика не допускает солитонов такого вида. 

3 . Монополь т-Хоофта-Полякова ' 1 5 ' , ' 1 6 / . 

Рассмотрим -поле Янга-Миллса,взаимодействующее с изо -
,'зекторным полем "VC»). Из сказанного выше ясно, что подстановка 

A*(rt»0) А*(*1- *с«*«К*) ; ^ЧЫ- ^ № 
не противоречит уравнениям движения, следующим из гамильтониана 
Хиггса 

Гамильтониан И конечен, если + и А удовлетворяют граничным 
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условиям при ч- -» °° 
а (.О -> OL ; •Ut) -i Д \ 

Масштабное преобразование допустимо только в виде (2) и- теорема 
Деррика не противоречит существованию солитонов. 

4. Модель с v\ -полем. 
Рассмотрим модель поля Янга-Миллса, взаимодействующе­

го с * -полем. Возьмем стационарный гамильтониан в виде 

Первое слагаемое дает массу векторным полям, ортогональным поли 
у\ , и они быстро убывают при *• -> «• для любого стационарного ре­
шения, если такозые существуют. В то же время компонента (А,непа­
раллельная *, остается безмассовой и может медленно убывать. В 
частности, на нее модно наложить граничное условие типа (3), уст­
ранив тем самым препятствие теоремы Деррика. К сожалению, удачной 
подстановки для этой модели пока не найдено. 

В заключение отлетим, что во всех успешных примерах группа 
(л отождествляла спин и изоспин рассматриваемых полей. Возмож -

ность появления полуцелого спина в теории, содержащей поля с по­
луцелым изоспином, недавно обсуждалась в^^7^. 

§ 3. Топологические заряды и как их определять. 
При обсуждении проблемы существования многомерных солитонов 

все большее значение приобретает факт существования токов, кото­
рые сохраняются независимо от уравнений движения. Эти токи не свя­
заны с инвариантностью лагранжиана. Скорее можно сказать, что они 
связаны со спецификой структуры полей, входящих в лагранжиан. В 
этом параграфе мы проиллюстрируем эти токи на примерах и объясним, 
почему их естественно назвать топологическими. В следующем пара -
графе выяснится их роль для солитонов. 

I. Скалярное изовекторное поле 4 • 0 \ + , * ) . 
Рассмотрим выражение 

Очевидно, что vv-o. 
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Плотность заряда - нулевая компонента J, тока 0 - представляет 
собой полную дивергенцию 

~1 = ^ -, Р-. • e i K i t^ • ^ + ^ i + l *: 
так что заряд 

отличен от нуля, только если поле + не исчезает на бесконечно -
сти. 3 частности, для поля -V из модели т-Хоофта-Полякова 

2. Модель Хиггса. 
Рассмотрим поле Янга-Маллса А , связанное с произвольной 

компактной группой, и скалярное поле +* со значениями в присо -
единенном представлениа. Ток 

Л- w F*r v^ > ъ+'-V'- * Л А ! + - (6) 

сохраняется. Здесь \ - полностью антисимметричные структур­
ные константы. Действительно, 

Первое слагаемое справа исчезает в силу тоздества Бьянки. 
Далее, во втором слагаемом V 7 S антисимметризуется 

и в результате оно тоже исчезает. 
Плотность заряда ~3 0 опять является полной пространственной 

дивергенцией 

(при проверке опять следует использовать тождество Бьянки). За­
ряд Q. отличен от нуля, только если F а t не слишком быстро 
убывают на бесконечности. Например, Q,*o, если группа - 0(з) и 
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как это получается у моноподя т-Хоофта-Полякова.Заметим, что в 
этом случае заряды пунктов I и 2 эквивалентны. 

3 . Главное киралыюе поле. 
Пусть о!ж\ - поле со значениями в группе V . Определим де­

вай ток •" 

К- ^л-С ( 7 ) 

задающий матрицу в присоединенном представлении группы V». . Ток 

сохраняется. Здесь \ч - след в присоединенном представлении. Для 
проверки заметим, что из (7) следует, что 

4L„- rU- + 1ЛЛ1 - О 
и сохранение j» следует из товдества Якоби для коммутаторов.За­
ряд Q = J"3. Aic принимает (после подходящей нормировки) целые 
значения для полей ц<-*> , регулярных на бесконечности, т . е . таких, 

j ( n - Д . , 
где Ojo - постоянная матрица, и асимптотическое значение принима­
ется достаточно быстро. ;Лы не будем доказывать этого в общем ви­
де, а рассмотрим только случай группы S U U ) . 

В этом случае поле чМ можно параметризовать киральным по­
лем Ч. « (д ,1»), ТС1"-! . Ток (8) эквивалентен току 

V w t J J v ' v 1 ' * * ' *J • ••*•'* v-*!9* 
который сохраняется, так как векторы С ^ Д , «*•,....3 линейно за­
висимы. Плотность заряда "3, не может быть выражена как дивер -
генция несингулярного векторного поля. Если поле % регулярно,т.е. 

*У -* V , *•-»« , ** Ы* С. 0(1Л 
и предельное значение достигается достаточно быстро, то оно осу­
ществляет регулярное отображение пространства R* на сферу S 1 , 
при котором окрестность бесконечности в R' переходит в фиксиро­
ванную точку 'К" на сфере 5' . Нетрудно убедиться, что 1. Jv, 

в переменных % переходит в элемент объема на сфере,так 
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что целое число 

показывает, сколько раз У пробегает сферу ^ , когда / меняет­
ся в ft . Здесь 9 * 1 - обьем единичной сферы &* . 

4. Поле направлений W(*) . 
Для >\ -поля ток, аналогичный рассмотренному в предыдущем 

пункте, моано ввести лишь в трехмерном пространстве-времени. Од­
нако целое число моано связать с и -полем и в четырехмерном 
случае, т . е . для трехмерного пространства. Рассмотрим вектор 

U ; - *U; t " t l - » . * * % * !

 h ' (10) 

(аналог тока (9)) с нулевой дивергенцией. Существует такой вектор 
А ; ' ч т о Ц . ..* А 

Для регулярного л -поля интеграл 

- \ Д г Л А А** 

сходится и принимает целые значения. Эта характеристика h -поля 
в топологии называется инвариантом хопфа. Его можно описать и че­
рез интегралы от U; по двумерным поверхностям, т . е . инвариант 
Хопфа, так же как и заряды предыдущих пунктов, имеет локальную плот­
ность. 

На этом мы заканчиваем описание примеров топологических за ­
рядов. Эти примеры ясно показывают, как существенно размерность 
пространства входит в само определение этого понятия. Естествен­
ным языком для общего определения является терминология гомотопи­
ческих групп (см. элементарное изложение в ' ' ) . Отметим важное 
различие между топологическими зарядами пунктов 1,2 и пунктов 3 , 
4 . Первые отличны от нуля только для полей, имеющих нетривиальную 
асимптотику на бесконечности - (монополи, вихри и т . д . ) . Вторые 
для саиого своего существования требуют, чтобы поля отличались от 
фиксированного асимптотического значения в основном лишь в 
локализованной области. 
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§ 4. Топологические заряды и как их использовать. 
Важнейшая роль топологических зарядов для солитонов состоит 

в том, что солитоны,как правило, обладают ненулевым значением для 
них. Более того, в хороших случаях топологический заряд дяет оцен­
ку снизу для энергии стационарных решений с ненулевым его значе -
нием. Это свойство можно использовать как для самого доказатель­
ства существования, солитонов,так и для оценки их массы. 

Оценки для нелинейных функционалов, заданных на пространст­
вах функций, допускающих топологические заряды, давно известны в 
математической литературе (см., например, ' ' ) . Возможность при­
ложения таких оценок к проблеме солитонов упоминалась Скирмом 
' ' и вновь была возрождена рядом авторов ' ', ' 2 i'. в частности, 
в ' ' показано, что такие оценки позволяют упростить сами урав -
нения движения для солитонных решений, понияая их порядок. 

Проиллюстрируем все эти положения на примерах. 
I. Y\ - поле в двумерном пространстве. 
Ток (10) квадратичен в h -поле и поэтому оценивается через 

су.'/иу их квчдрзтов - т.е. плотность гамильтониана. Точная оценка 
пол1 чается на основании следующего замечания ^2и'. Введем вектор­
ное изовекторное поле 

* L 4 h ' hV 

В силу условия fc*4- 1 имеем 

С другой стороны, 

для тока У\ -поля. Тривиальное неравенство 
О;** - »;' ) * 2 О 

приводит к оценке 

которая становится точной при 

или, более кратко, 
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Последнее уравнение - первого порядка и в подходящей параметри­
зации сводится к условию Коши-Римана из теории аналитических 
функций (см., такяе ' 9 ' ) . В частности, решение, упомянутое 
в § 2, тривиально ему удовлетворяет. 

2 . Модель Хиггса. 
Рассмотрим гамильтониан для статических решений модели Хиг­

гса в пределе, когда самодействие скалярного поля исчезает: 

Очевидно, что заряд, ассоциированный с током (6) , оценивает сни­
зу этот гамильтониан 

I t J ' 
и неравенство становится точным, если 

*;,-> t \ { - е. ?;+. 
Это уравнение заменяет уравнения движения. Подстановка Хоофта-
Полякова приводит его к системе уравнений первого порядка для 

5 и ^ . Решение 

было впервые получено в ' Z 2 ' и дает явный вид коэффициентных 
функций монополя т-Хоофта-Полякова в пределе при Л - » ° . 

Если \ J 0 , то указанное сведение к уравнениям первого по­
рядка теряется, но неточная оценка типа(II) , конечно, остается 
справедливой. 

К сожалению, указанный трюк, приводящий к понижению порядка 
уравнений движения, работает не всегда. Так,гамильтониан для 
стационарных решений модели Скирма для главного игрального поля 
ч Ы допускает оценку через топологический заряд тока (8) 

которая становится точной при 
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Li - Е.ч; [ U . L j l 

Однако последнее уравнение не имеет локализованных решений. 3 
то -го время уравнения второго порядка 

-о; CU + U*L; - UULO • ° . 
вытекаюдие из гамильтониана Скирма, имеют локализуемое решение,во 
всяком случае для группы 5Ц(1).Для этого решения топологический 
заряд единичен и оценка типа (1Л выполняется с запасом. 

Похоле, что последнее уравнение отличается от уравнений пер­
вого порядка /!з предыдущих примеров тем, что левая и правая части 
в нем имеют разный порядок по неизвестным функциям. 

В заключение этого параграфа обсудим роль топологических за­
рядов второго типа (по терминологии предыдущего параграфа) в мо­
делях с калибровочными полями. Естественный вопрос о калибровоч­
ной инвариантности топологического заряда сразу же наталкивается 
на контрвопрос о том, как понимать калибровочную инвариантность. 
Поясним это подробнее, ограничиваясь случаем стационарных реше­
ний. 

В этом случае калибровочная группа составлена функциями 0-(*1 
заданными на пространстве ft* и имеющими значение в группе (х. . 
Формально элементы калибровочной группы совпадают с главными ки-
ральшши полями. В частности, именно в рассматриваемом случае 
трехмерного пространства полная группа матриц несвязала, ц е ­
менты, принадлежащие разным компонентам, отличаются разными зна­
чениями топологического заряда. Компонента связности единичного 
элемента состоит из элементов с нулевым зарядом и сама является 
группой, которую мы будем называть "малой". Вопрос состоит в том, 
что считать калибровочными преобразованиями: малую группу или 
полную группу? 

Напомним, что в гамильтоновом подходе калибровочные преоб­
разования порождаются связями, которые являются элементами алгеб­
ры Ли группы калибровочных преобразований. Условие выполнения 
связей соответствует факторизации по малой группе. Таким образом, 
если мы считаем, что калибровочной группой является полная груп­
па, то этим мы распространней принцип относительности дальше, чем 
этого требует динамика. 

Интересно отметить, что поле Янга-Миллса позволяет постро-
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ить величину, которая инвариантна относительно малой группы, но 
меняетзя при преобразованиях с нетривиальным топологическим заря­
дом. Эта величина определяется следующим образом 

и обладает следующим свойством: пусть Д означает образ действия 
элемента SL на поле А 

Тогда 

%lt} * <Ъ LA} • QUM , сю 
где 

Величина HhlAl И Эвестна математикам (см., например, ' 2 3') и исполь­
зовалась недавно в физической литературе (см., например, ' 2 4').К 
сожалению, она не является интегралом движения. Если калибровоч­
ной группой является полная группа, то (13) показывает, что ~Ъ1А] 
имеет физический смысл только о точностью до целочисленной добав­
ки. В этом случае можно говорить, что конфигурационное простран­
ство полей Янга-Маллса имеет топологию цилиндра. 

Топологический заряд главного кирального поля и инвариант 
Хопфа v\ -поля (в случае группы 0(1^ ) инвариантны только по от­
ношению к малой группе. Более точно, имеют место соотношения 

Это показывает, что если калибровочной группой является полная 
группа, то топологический заряд нелинейных полей не имеет физи -
ческого смысла. 

Независимо от ответа на вопрос о калибровочной группе, из 
сказанного ясно, что топологический заряд киральных полей не мо­
жет оценивать снизу калибровочно-инвариантный гамильтониан. Это 
дополнительное препятствие для существования солитонов характер-
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но для калибровочных теорий в реальном четырехмерном пространст­
ве-времени. 

Возможный путь для преодоления этого препятствия состоит в 
использовании двух киральных полей. Например, в случае группы 
SUdi или Ol/b) мок:ю использовать совместно главное клральное 

поле и v» -поле. Модель электромагнитных и слабых взаимодействий 
лептонов, обобщающая модель ' ' в этом направлении, будет обсуж­
дена отдельно. 

Я постарался изложить здесь все общие соображения, появивши­
еся в литературе в связи с поисками многомерных солитонов. Итог 
этих поисков пока не очень утешителен. Пока наиболее успешный 
золитон - это монополь т-Хоофта-Полякова, не являющийся по на­
стоящему локализованным. Более привлекательный солитон для кали-
бровочпо инвариантной теории киральных полей пока не построен. Я 
надеюсь, тем не менее, что это будет скоро сделано. 
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П р и л о ж е н и е 
1. A.M.Поляков обратил мое внимание на то, что понижение 

порядка в уравнениях для монополя при % =0 было получено 
Е.Б.Богомольшм, препринт ИТФ, Черноголовка, 1975 г. 

2. Отметим еще один путь для преодоления отмеченной в конце 
доклада трудности с неинвариантностью топологического заряда при 
калибровочных преобразованиях. Следует использовать главное ки-
ральное поле Qto и ввести калибровочное преобразование в виде 

QOO -* Slki 2 ( x i ̂  ^ • 

Простейший инвариантный лагранжиан выглядит следующим образом: 

где 

223 



TOPOLOGICALLY NONTRIVIAL SOLUTIONS OF CLASSICAL 

EQUATIONS AND THEIR ROLE IN QUANTUM FIELD THEORY 

A . S . S o h w a r z 

Moscow Physioal Engineering Institute 

The topological considerations оan be used in quantum field 
theory. We discuss here some applications of topology, especially 
for treatment of solitons. A brief review of the papers ' ' " * ' 
and the more detailed account of some unpublished results will be 
given. 

At first we consider the extremals of euclidean action for 
Yang-Mills field (these extremals can be important in the problem 
of confinement of quarks). Further we discuss the existence of the 
magnetic monopoles in the gauge theories. In conclusion some two-
dimensional models will be studied. 

1. Extremals of euclidean action. 
Let us consider the euclidean action for the Yang-Mills 

field 

S<V'<T W'.<v>j к 
where Yang-Mills field B„ takes values in the Lie algebra •&£. 

of a non-abelian simple compaot Lie group Q- , 

and <( У denotes invariant scalar produot in 4- . The 
space of fields having finite euolldean aotion breaks up into 
pleoes - connectivity components. To prove this assertion it is 
useful to note that the number 
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where (-. - — £ .f kyg- > i s a n i n t e e e r (this number is 
known In topology as "Pontryagin's number"). The field Q'~ 
can be obtained from field D м. by means of continuous de­
formation if and only if Яг ( В ,, ) = <L ( В ) It follows 
from the identity 

ttot S f B / ) J> ^ | ^ ( В ^ | and S C S ^ -

in the case «J, ( B ^ ) ...> 0 , g. ̂  - _ g. , l n the 
case Q, ( В „ ) < 0 .We see that the fields satisfying 

( y ^ Q j - . Ч/'С&и') ^ ^ a r e extremals of euolidean 
action. One can find fields satisfying Q? - + (j > » 
( L ( J 3 , \ i + ^ . The explicit construction of such fields 
and proofs of the assertions above are given by Belavin, Polya-
kov, Tyupkln, Sohwarz in ' ' . The existence of fields IB м, sa­
tisfying Q . - + (j j f fyC&J)- i ^ is not yet proved 
in the oase *\r ~>, 2. > D u t it is very probable as follows 
from the assertions mentioned below. 

We consider the system of non-linear equations 
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Let us suppose for simplicity that ly - o(JC2)- In the case 
of (3) satisfying 

%• К В ( П > ) - 4/" w e P r o T e tbat in linear approximation one can 
find a family of solutions depending on 2Ц, -3 parameters. 
(Exaotly If we choose the solution of (1) in the form 

I '" we obtain a system of linear 
,u> equations for oC .. -We assert that this linear system has at 

Г 
least 2 <Ь - p independent solutions). It follows from our re­
sults that in the case Q/ ( B ^ ) = Й/ >/ 2. the number of 
equations in the system (3) is less than the number of unknowns. 
(The system under consideration is infinite-dimensional; to make 
clear the statement above one can say that every reasonable fi­
nite-dimensional approximation for this system contains more 
unknowns than equations). 

One can prove also more general results. Namely, we consi­
der a smooth Yang-Mills field В »*. on a four-dlmenslonal com-
paot riemannian manifold r[ . (In geometrical language the 
Yang-Mills field В у . can be considered as a connection in 
principal fibre bundle with the base M and the group Q . 

Ш 6 U l DUUU U U U U l C i ) • J.UC £ U U b l j a g l U UU1 We fix here one of such bundles. The Pontryagln number can be 
defined as 

St?-1 

It is well known that two connections in one bundle have coin­
ciding Pontryagln numbers). ^ 

In the case under consideration the tensor ITJ л oan 
be defined by means of formula ( T J « 3 J V 1 ^ctayS" " 

1 /S" 
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where Gj., - ^ Pp £ V s , | -_ J et ( ̂  ) «ad ^ is 

the metric tensor In M . The fields satisfying [y •, - ly„j 

are extremals of the functional 

$z(sr)-\<Gr;,Gr">Jf А, со 
these extremals are useful for calculation of euclldean Green 
functions. 

The assumption of compactness excludes the oase when 
is an euclidean spaoe. However one can apply the assertions 
proved for iquatlon G ^ = &j*J in the oase when 
is a sphere with usual metrics to the case when i*\ Is an 
euclidean space, because this equation is conformally invariant. 

Let us define a non-linear operator Гч by the formula 

R ( B r b (G^-G^, v?Bk) . 
where Vf^yHp - I t B ^ , B r ] 
6 . is a fixed Yang-Hills field. The operator rs maps 

the space of Yang-Mills fields into the space of pairs ( -* j , 

o(. ) where #„,' is tensor function satisfying J: =-/ --J 
• Г 7"' '"r 'pi 

(the functions t^j &&& °C take values in th. Lie algebra •££). 
Г w (J 

We consider a linear operator О в satisfying 

R ( B r * £ | p - R C B ^ ) - е £ ь а г ) + 0(e) 

(one can say that 5 R 1 S a differential of R )• It is easy 
to see that S ^ b < v / g , -vfy-fK+vfy , p f t >, 
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where 

Using topological methods developed in ' •' ' one can calcu­
late the indexx^ of the operator 3 a ' N a m e l T « o n e o a n prove 
that in the case when /A is a topological sphere 

index S e =• 2<£6<y - J. (5) 
and in the case when /*| Is a topological torus 

index $ = 2cC6<y- (5') 
Ыеге Ц/ is i'ontryagin number, d. is dimension of the group (j 
and oCfc is an integer which can be easily calculated for every 
group Q (for example, Q(, - j_ in the case (7 - p (J (2} 
and d. * - 2. i n the case (j - J} U ( 4 ) ) • ( A r D l t r a ry 
manifold At can be studied but only the cases of topological 
sphere and topological torus axe of interest for physice). 

It is evident that 8 * satisfies К ( B~) - 0 if and 
omy if Qrr--^} v™ 3r - о itRCy. o, 

x) The index of linear operator | is defined as 
Р(~Г) _ у (~Г + ) » where c(.T) is the number of Independent 

solutions of equation ) £> - 0. It is evident that 
P^-pN ;> i.n.J.eX~T" * I : f t n e l i n e a r operator | aots from 
m-dimen3ional space into n-dimensional spaoe wv. < «j , к < « 
the index of ~T is equal to »w - И- . 
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then in linear approximation one can find a family of solu­
tions of equation R(Bj,) = 0 depending on б(<э а) parameters. 
Using (5), (5') and inequality 0 ( £ > e ) » index g we can 
estimate (;($_). In some cases it is easy to find solutions of 
(3) with 4/ >i . For example in the case (? = 5)|J(4)the X a n e ~ 
Mills field 

is a solution of (3) with fy(B..) = 2. , if Bu. is a solution 
of (3) for G = Sti(2) with ( U S M ) - 1 .One can рготе 
that 0 ( S B ) - i O , £ C S B ' ) = V , index 5 = i , 

index S B ' - -7 

2. Magnetio monopoles 

6. t'Hooft ' ' proved that there exists magnetic monopo­
les in the Georgi and Gloashow model. Precisely, he found a re­
gular time-independent solution of the olassioal Lagrange equa­
tions having a magnetio charge; the energy of this solution is 
finite. This solution is ohosen in the independent paper by A.M. 
Polyakov ' ' too. The oonnection between such solutions of 
olassioal equations and quantum particles in the oase of the 
weak ooupllng is analysed in /^«/Vi/lV./ie/^ J n /5/ u w a s 

obtained by means of topological considerations that the magne­
tic monopoles exist in a wide olass of the gauge theories. We 
detail here some assertions announced in '*'. 

Let us consider scalar fields <p and veotor Yang-Mills 
fields Bu described by the following Lagranglan: 
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A»-j<tj.t,v^>-fe»<&,.,,GO - Ф̂) ( 6 ) 

Here В u. = (Dij, В «..».) belongs to the Lie algebra of 

a compact simply connected group Q- , GM^'KGIUJ,... &^ Л-

- - ^ B , " ^ B r - i [ B r B j , 4 > a ^ , . . . , « f t , ) belongs to 

the space of k-dimensional unitary representation of this group 
(this representation we denote by T and corresponding represen­
tation of the Lie algebra by a covariant derivative: 

У(Ф) is a (j-invariaat function. 
We use the name "classical vacuum" for the point of k-dlmen-

sional space at which the function V(*^) bas a minimum (this mi­
nimum is assumed to be equal to zero); the set of the classical 
vacuums will be denoted by К «We assume that any classioal va­
cuum can be obtained from any other one by the transformation of 
the group Q , i.e.» the group {j acts on К transitively 
(this means that the degeneracy of the vacuum is entirely due 
to the action of the group). The stable subgroup (i.e.,the sub­
group containing the transformation that leave a fixed classical 
vacuum fir\0 in place) will be denoted by H • '-Tne group H 
contains the symmetries which are not spontaneously broken, the 
dimension of this group is equal to the number of the Yang-Mills 
fields which does not acquire mass by means of the Hlggs mecha­
nism. Let us consider at first the most interesting case when 
only one vector field does not acquire mass (i.e. 

H -UtD). 
We prove that in this case there exist magnetio monopoles. 
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First of all we shall give a gauge invariant expression 
for tensor of electromagnetic field Fv, „ .We shall demons 
te that this expression can be written in the form 

To explain the notations used in (7) we should introduce some 
auxiliary notions* Let us consider the mapping P of a 
neighbourhood W of the manifold R of classical vacuums on 
R satisfying f^e.^) ~ X Р(Ф) ( I n t h e c a 3 e ° f Gergi-
Slashow model the set R is a sphere ) ф | =. p and the mapping 
P can be defined by the formula Р(ф) = |ф/ р ф . 

The existence of mapping P in the general case is well known 
in the group theory). The action of (j on Lie algebra (adjoint 
representation of Q ") will be denoted by Z" (i.e. t" (A) = 
= а"1 Д n. ). The function к.(Ф) can be defined аз a function 

satisfying ^(рСФ))=кСФ), U - y t > ) ^ U 4 > U < - U 0 

where U.„ is the generator of H t I K0l - 1 • 
The 2-form U> = ^()} p =. солд(Ф)^Л ^ 

must satisfy the following requirements 

where <L £ Qr f At B ^ ^ . ('Ле conditions 1,2 oan be written 
also in the form 1. P tO- oi , 2 .Та чэ * *J . Here as 
usual the form u> - f> «*> is defined by the formula 
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where j ^ is the differential of the mapping P , i.e. 

of 6 

One can verify that there exists one and only one 2-form 
satisfying the requirements Hated above. (In the case of Ueor-
gi-Glashow model 

к(Ф) - 1 Ф Г Ч , сО=-1Ф|"3ев.«с+','^'л'?<; 

and the expression (7)coincides with the corresponding expres­
sion in ' '.)To Justify the expression (7) for F^„ one can 
use the gauge P C ^ O - ^ o . 

In this gauge 

where A - — \ В , . Ц.„ / . It is easy to check that 
Д can be considered as electromagnetic field in the gauge 
P(<b) = m. • * e see that the expression (7) is correct in the 

gauge Р(Ф) =. m e ; but this expression is gauge-invariant 
and therefore gives a right answer in arbitrary gauge. Using 
the expression (7) one can verify that there exist magnetic mono-
poles in the theory. (The magnetio charge is defined as a total 
flUX in § H d l > "he" H-(F a 3,F 3 1,F l i 8) 
is a magnetio field). Let V^ ( И.) be a smooth function which 
is defined on the unit sphere £j and takes values in the 
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vacuum manifold Г\ . We shall consider a field 
6 ^ С*) ) which is smooth for | X| ̂  i and satisfies 

t <*> « УС^,) , 6„(7)-Х g,(X.) , 7 j s o сю 

for м 1 > 1 . (By means of simple topological considera­
tions one can prove the existence of suoh a smooth function 
IL(^) t h a t t h e condition 9 i = 0 is fulfilled). 

It is easy to verify that the fields under consideration 
have finite energy. One can prove that the magnetic charge 
1*(Ф В. ) is equal to — £ ( Ф B, ) , where c/O 
) ' * See 7 ' *•' 
and | ( ф В, ) is an integer which оan be defined for example 
by means of the integration of the 2-form V cO over the 
sphere S : 

(The proof of (9) is sketched in preprint'7'; it is based on 
some topological theorems). 

For every integer fc one can construct a field (Ф} 8 ) 
satisfying "J (ф В } - % , therefore there exist the fields hav­
ing finite energy and non-zero magnetic charge. 

Let us discuss briefly the case of arbitrary group \-\ 
We ohoose oompaot one-parameter subgroups \]. belonging to the 
center of hj (i.e.,commuting with all elements of Г) ) • L e* "•; 
be the generators of these subgroups; we suppose that n.1>a ^ 
generate the center of the Lie algebra of H • It Is easy to see 
that there exist z Independent "magnetic oharges". Really, re­
placing к by К• la the definitions of к(Ф) and «J we get 
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functions kj/Ф) and 2-forms u>* . (To prove that the defini­
tion of u)l is correct one must use that k; belongs to the 
center). By means of k;, and u>l one can define £ tensors 
fT and corresponding magnetic charges 'У* (т, В А ) , 

For fields satisfying (8) one can prove 

The proof is quite similar to that of (9). 
It is proved in ' 5 ^ (see ' 7 / ,»' a' for details) that in the 

case when the group H is not simply connected, the phase 
space (the space of fields with finite energy) breaks up into 
pieces - connectivity components. One can construct the one-one 
correspondence between connectivity oomponents and the elements 
of the group T U ( R ) , i.e. ione can define for every field 
(Ф i В ) with finite energy an element X (ф ? в , ) £ ~П^ С R ) 

, i со) io*> \ 
in such a way that a field ^'P И ) can be continuously 
deformed into ( <f> В А ,) If and only if J С 9 , D 4 j = 

= J ( 4 > U
 ; 6^ ) . It is easy to see that ЧЛ, ( R ^ T T ^ H ) 

so that we can consider _> (ф В . ) as an element of"~J7̂ (H). 

U3ing 7n(U( i))-H. one oan consider К(Ф, В ^ ) as an 
integer in the case H = U (i) . It is evident that for the 
fields satisfying (8) t ( ф } B A ) - *Г(Ф, 8 A ) 

so that for these fields 
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Both sides of (11) does not ohange by continuous deformation 
of field. In arbitrary component one can find a field satisfy­
ing ( 8 ) ; using this foot we see that (11) Is correct for an 
arbitrary field having finite energy. 

In the general case it is easy to prove that for every 
V e Ti^CH) one can find suoh an integer M . that 

fe. 
^У = Z_ ^}i • 

t = i 

«here *C . denotes the element of "fi^H^deflned by the sub­
group (J- . Using the formula (10) one can prove that for every 
field with finite energy satisfying *Г(Ф, В А ) а У the 
magnetic oharge А» (Ф, S * ) I s equal to -A- 2 _ C; • П-: » 
where cletfc-) / 0 

Let us consider as an example the case when G - pU(3 Jy'p 
la a traceleas Hermitian matrix, VvP^is a polynomial of degree 
^ 4 satisfying V(o) > m.i.n.V('i')' It was noted in ' 5' that in 
this oase one can find a time independent solution of Lagrange 
equations in the form 

e<?>. 5tp2[V7] ( 1 2 ) 

e>„c7) = o 

where X< L a r e the usual generators of S U C 3 ) 
X " (A l j\j. j)v 3).One oan easily derive a system of equations for 

oC, У8, У" t the rigorous proof of existence of the solution of these 
equations is given in /9/ (this proof oan be applied also to 
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/ ot О О \ 
. О А О ) 

the equations f or o£ /3 obtained by t'Hooft in Georgi-Crlashow 
model). If V(f) ^ 0.(Sp<P -S) the group £! U(3 ) acts on 
K, transitively. One can prove that two eigenvalues of the 
matrix mae f̂  oust ooinoide. Therefore one can choose >v>0«.ft, 
in the form 

and consequently J-| •= \J (2).(See / 5/»/ 8/»/ 9/'). The center of 
Y\ is isomorphic to U ( 1} i hence there exists only one mag­
netic charge; one can oalculate this charge using the tensor (7). 
The field (12) has a non-zero magnetic oharge. 

One can prove on physical level of accuracy that If HrL/l^) 
there exists a time-dependent solution of Lagrange equations 
having finite energy and non-зего magnetio charge; in the ge­
neral case the number of such solutions is not less than the 
dimension of the center of H (see ' 5' ' ' ' ' ) . 

Let us consider now the extremals of euclidean action 
рГФВ )for Lagrangian (6), assuming for simplicity that Q- is 
a simple compact non-abelian Lie group, H - U (.4.). One can 
define for arbitrary field satisfying £(ф Q ) <-=~ the Pontry-
agin number И. ( В „ ) which characterizes the behaviour of Yang-
Mills field at Infinity and the integer гп(ф) which characte­
rizes the behaviour of scalar field at infinity (the asympto-
tic3 of <ф a t infinity determines an element of the group 
ТГ (R) i it is easy to check that "ТГ̂ Св") is Isomorphic to the 
group of Integer). However one оan prove that the euolldean 
aotlon oan be finite only in oase when Kie^sw-.f*) (this 
was proved by Romanov). The spaoe<J_ of fields having finite 
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euclideaa action breaks up Into components J& » where 
(^В-У^ l f *>** о п 1 У i f л С в „ ) -»«(Ф)=П. It follows 
Immediately from ( 2 ) that 

бсФ, eyo > ^ U t B ^ l 
for arbitrary ($> 8..} <s ̂ .^ • Using the scale transformation 

(Ф(*>, В <*> ) "̂  ( Ф<Ь> , Хв^СХл)) 
one can verify that JEU*. 8 / 0 with#,Bv.)«<g^may be arbit­
rarily found near to ̂ jj l̂ -i (i.e. ,the greatest low bound 
of $C*, в ^ о » g.^ is equal to ££>. 1 ). 
We see that ЬСФ.в^Л does not reach its minimal value on /~l . 

3. Two-dimensional models 
In the papers ' ' »»*'»' '» the conneotion between solitons 

and quantum particles was analysed. The general results were 
verified for two-dimensional non-linear Scarc-'l-ger equation 

and corresponding quantum problem (these problems have been -
solved exactly earlier in / 2 1/-/24/ ),*) 

x) Many papers devoted to the oonneotlon between solltons and 
quantum partioles were recently published /'|5r-/20/> 

Various two dimensional models were used for illustration 
of general results. The approach used in ' ' t ' J ' * f ' ' 
differs from the other ones. 
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More general non-linear Schroedinger equation 

was considered in ' '. In the case when w(x; is finite func­
tion satisfying ^ WCx)J/ < 0, м = 0 ; it Is proved In ^ 
that for every n >o there esists a solution of (14) having 
the form 500 e' *""* satisfying \l£>Cx)| J/ = KU • 
In thf case when 0<JL< ( W(x) e Jx '. £> it is 
proved the existenoe of, time-independent solution SC) of (14) 
satisfying fc.i^ £(*) =: + HZ Л SwOOotxj г . Х^* « . / 

The existence of particle-like solutions is not necessary 
for existenoe of topologloally non-trivial particles in corres­
ponding quantum problem. It is demonstrated in ' '*''• for two 
two—dimensional models: 

a) scalar field with H L w t = \ : R(4>): where Я(Ф) 
is an even polynom and \ is sufficiently large; 

b) massless fermions interacting with scalar field ф 
(we say that the state ~^T is topologioally non-trlvlal If 
it has the finite energy and satisfies the condition 

A A 
I Pa. i- P °-

< A e 
Here 0+ and Q~ are physical vacuums connected with each 
other by a symmetry transformation: 
ф -*. - <^> l n o a s e a ) a n d <j>-? - 4 >

j <f -̂  J/ry- m case b) 

Д is any local or quasi-local operator and the energy of the 

L~ (^e^V.e^V)^^!-6^' 
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physical vacuum 1з supposed to Ъе equal to 0. From the exis­
tence of topologicals non-trivial states one о an obtain the 
exlstenoe of topologlcally non-trivial particles). 
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V. 

Дуалыю-ршансные модели 
DUAL-RESONANCE MODELS 



ДИНАМИКА РЕЛЯТИВИСТСКОЙ СТРУНЫ И ЕЕ СВЯЗЬ С ФИЗИКОЙ АДРОНОВ 

Б.М.Барбашов, В.В.Нестеренко 

Объединенный институт ядерных исследований,Дубна 

С о д е р ж а н и е 

1. Введение 
2 . Физические предпосылки для рассмотрения струнныл моделей: 

а) партонная модель; 
б) дуально-резонансные модели. 

3 . Функция действия релятивистской струны, проблема Плато и 
нелинейная теория поля Борна-Инфельда. 

4 . Классическая и квантовая динамика релятивистской струны. 
5 . Струна во внешнем электромагнитном поле. 

I . В в е д е н и е 

В последнее время в ацронной физике при изучении резо­
нансной области и области асимптотически высоких энергий появил­
ся ряд указаний на т о , что динамика сильновааимодействупцих 
частиц в какой-то степени аналогична динамике одномерно-протя­
женного релятивистского объекта (струны). Факты, подтверждающие 
эту аналогию, получены в рамках различных подходов к сильным 
взаимодействиям (партонная модель, дуально-резонансные модели). 
Здесь кратко обсуждаются физические предпосылки использования 
в качестве модели адрона релятивистской струны. Излагается 
классическая и квантовая динамика струны, являющейся первым 
примером релятивистского протяженного объекта, указана связь 
струны с дуально-резонансными моделями и полевой моделью Борна-
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Инфельда.При исследовании поведения струны в постоянном электро­
магнитном поле оказалось, что уже в классике появляется состояния 
с отрицательным квадратом массы струны - тахионы. Для иллюстрации 
приведен ряц примеров классического движения свободной струны и 
струны во внешнем электромагнитном поле из заданного начального 
состояния. 

2. Физические предпосылки для рассмотрения струнных моделей 
а) Партонная модель 

Как известно, в этой модели постулируется, что адроны 
построены из точечных составляющих - партонов'1'. При описании 
внутреннего движения партонов в адронах используется специальная 
фейнмановская переменная X . Эта переменная указывает, какую 
долю от всего продольного импульса ацрона несет партон с данным 
X ( O ^ O C ^ l ) . Оказывается, что этой.одномерной переменной 
достаточно для описания динамики партонов. 

Теперь допустим, что мы хотим проследить за движением 
партона с данным ОС . Для этого потребуется ввести 4-век-
Т 0 Р Г1>СХ) • описывающий координаты выделенного партона. Если 
партоны распределены по шкале X достаточно плотно (в пределе 
непрерывно), то совокупность партонов в адроне будет представлять 
собой одномерный протяженный объект в 4-мерном пространстве-
времени, описываемый Г„Сэе) , т.е. струну. 

Предположив, что соседние партоны взаимодействуют между 
собой гармонически, можно получить гамильтониан партонов в сле­
дующем вице: 

н-Ас^А c(^ f i . ш 
о 

где Sir\6=x,rC - параметр, описывающий временную эволюцию 
партонов, Q - некоторая константа, зависящая от массы парто­
нов. Такой гамильтониан можно рассматривать как гамильтониан 
струны, движущейся в 4-мерном пространстве-времени' ' . 

б) Дуальные резонансные модели 
Впервые модель струны была введена в рассмотрение при 
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попытке разобраться в том, какая динамическая система лежит в 
основе дуальных резонансных моделей. Для построения дуальных 
амплитуд был разработан специальный математический аппарат -
- операторный формализм и диаграммная техника'3'. Именно в этом 
подходе наиболее просто проследить связь между дуальными моделя­
ми и релятивистской струной. 

Вводится бесконечный набор операторов рождения <Яп и 
уничтожения я £ , удовлетворяющих следующим правилам комму­
тации: 

СаГ.О—^^, (2) 

3-1,»-i где <£°%i = - <frU =- <£г = . . . в - а Г ' • - * , D -размер­
ность псевдоевклидова пространства, в котором действуют операторы 

N -точечной амплитуде Венециано &# сопоставляется дре­
весная диаграмма, прецставленная на рис.1. Амплитуду В„ можно 

ft 

Р. 

4>1 

*| *• ь 

Лщ-г ю> 
Рис.1. V„ V,,., Р„ 

построить , пользуясь правилами соответствия. Согласно этим пра­
вилам,внешним частицам с импульсами р , и р н сопоставляются 
вакуумные состояния <0| и |о) , соответственно. Как обычно, 
состояние вакуума определяется требованием 

Каждой вершине соответствует вершинный оператор V(t^) 
(i-2,3,..., fj-l ): 

гдеЛ'- наклон траектории Редже. 
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Внутренним линиям на диаграмме сопоставляется пропагатор 
4 A.j-tiy+rf'AlVrfce)]"* 

где Лц- (Pi+Pi*i+ ••••*• Pj) , МО) -интерсепт 
рецжевской траектории e< f5l() = ы.(0) + oc'S,y o£'A/ 8 = 
= 2 n^n^n - массовый оператор. 
"*' Согласно этим правилам,для амплитуды Вуу получаем следую­

щее выражение: 

В , = <oi V(p a) A„V<p3xa(,V<:ft)... VQv,)lo>. 

Вычисляя вакуумное среднее в этой формуле, можно преоб­
разовать B N к обычному интегральному представлению для N -
точечной амплитуды Венецианов *' 

В ж = 5 - З П о 1 з с < а . J Л ( 1 - » Ч >
Р « 9 

W о о i-i Utiji* J ' 
где xij = xi_lxi...Jc._t. 

Векторы состояний в рассматриваемом формализме строятся 
как обычно - действием оператора рождения a £ f на вакуум. 
Однако из-за метрического тензора Q1"1 в коммутаторе (2) 
появляются векторы с отрицательной нормой. Физические векторы 
состояний (с положительной нормой) определяются условиями Ви-
раэоро 

CLe+<<(o)]W> = o, 
(3) 

LjV>=0, n-t.1,3,... , 
где Ln= i fZ^n рон +2Vn«+0 o + o ^ 

hi 
(4) 
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Для исключения духовых состояний необходимо потребовать, чтобы 
оС(0)= i и размерность пространства D , в котором 
действуют операторы а * » равнялась бы 26. 

Очевидно, что операторы, удовлетворяющие коммутационным 
соотношениям (2), можно получить, рассматривая конечную одно­
мерную систему, движущуюся в псевдоевклицовом пространстве с 
размерностью D . Действительно, операторы а * нумеруются 
одним целым числом и и имеют лоренцевский индекс \> . 

Простейшим одномерным объектом является струна с квад­
ратичным гамильтонианом (I). Однако в такой системе нельзя 
подучить нелинейные дополнительные условия ( *> ) н а векторы 
состояний. 

Намоу*' предложил взять действие релятивистской струны 
пропорциональным площади мировой поверхности, покрываемой струной 
в процессе ее движения 

т £ о * J , a Tt. о 

где х^ = Xj.C.6^%) - лоренцевский вектор, зависящий от двух 
параметров о и Т : 6 нумерует точки струны, a t описы­
вает временную эволюцию. Квантование этой системы приводит к 
математическому аппарату, полностью эквивалентному операторному 
формализму в дуально-резонансных моделях. 

3 . ФУНКЦИЯ действия релятивистской струны, проблема Плато и 
нелинейная теория поля Борна-ИнДельда 

функция действия релятивистской струны (5) строится по 
аналогии с функцией действия релятивистской точки Sm , кото­
рая, как известно, пропорциональна длине I мировой траектории 
точки в пространстве Миньковского ж = ( t , 5?) • Траектория 
задается параметрически ос = эе ' (Т) 

ш Ufa*. *,-(£•*)• 
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й*бор параметра Т произволен. Вели взять за Т время ~t , то 
Sm —~тУ\- (~М)^ • е о л и ж е f -собственное время, то это 
фиксируется условием X t = 1 . Принцип наименьшего действия 
означает, что свободная частица движется между двумя точками 
по геодезической. 

Для релятивистского одномерного объекта (струны) действие 
выбирается пропорциональным площади поверхности^ , которая 
"заметается" струной при движении в пространстве-времени 
X = (t, 5?) : 

^ ЦХ) 

^ ZJicc' J J <6> 
*Ч 6ft) 

Поверхность 2 задана параметрически X J * = X J * & X ) 7 X = J £ - , 3 C * < 2 £ -
Стоящее под интегралом выражение представляет собой элемент пло­
щади поверхности d S L . Действительно, в пространстве Евклида 
имеем (см. рис.2) 

dz = \x\)x\3in6ol'cd6 = 
=]/xlxt-(i-coslley dtd6 = 
^/jc*oc*-Cxx? dTol6. 

Рис.2. 

Константа ot имеет размерность квадрата длина и таким 
образом в теорию вводится фундаментальная длина Л/Ы.1' , так же 
как в релятивистской теории точки есть размерный параметр -
- масса покоя щ . 

Принцип наименьшего действия для струны % S = 0 озна­
чает с геометрической точки зрения решение задачи Плато' ', т.е. 
нахождение экстремальной поверхности в пространстве-времени 
( t , аГ ) с фиксированным начальным и конечным положением 
струны jf (<5,Tj) и Xj.(.6,Ti) • Задача Плато в пространстве 
Миньковского сводится к уравнениям гиперболического типа, а 
не эллиптического, как в евклидовом пространстве. 

Впервые действие (6) и связанная с ним проблема экстре-
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мальных поверхностей в псевдоевклвдовом пространстве были рас­
смотрены Барбашовым и Черниковым ^ при изучении нелинейных 
полей Борна-Инфельда' ' . Действительно, нелинейное уравнение 
скалярного поля Борна f в двумерном пространстве-времени 

с лагранжианом 

может быть истолковано как уравнение экстремальной поверхности 
в трехмерном пространстве (£ ,эс ,эс |р) . Запишем функцию действия 
для этого поля 

и введем новые переменные 6 и *t : ЭС=ЭС(6,Т), Х="ССй,'С)(, 

f -fСзссб,г), tc<VO)-aexj,c&S). 
тогда 

Замечая, что 

* Ц И H 

'dfc -fI I A y 
а также , , , 

* * cldof* ol*o/t = o r * 

получим точно выражение для действия бесконечной релятивистской 
струны в трехмерном пространстве-времени у = Ct,x7u,) ' 

(?) 

249 



К такому хе выражению сводится и лагранжиан электроди­
намики Борна-Инфельда: 

Бели рассмотреть двумерное пространство ( £ , э е ) , то 

г i -г £=г i=2 ' 

Переход от переменных (t, х) к (6,Т) опять приводит к 
действию для релятивистской струны (7) в четырехмерном прост­
ранстве (t, х , ae'Ai •, ае Аг) . Самый общий вид лагранжиана 
И полей типа Борна-Инфельда в двумерном пространстве (i^x), 
сводящийся к лагранжиану струны в пространстве п+ 2. изме­
рений путем введения переменных 6 и Т , дается следующим 
выражением 

Выбор переменных й н Т не однозначен, т.к. фулщия 
действия инвариантна относительно произвольных замен 6=/ t(6,T} 
и Т = fi(<bfT) в полной аналогии с механикой релятивистской 
точки, где t - также произвольный параметр, который фиксирует­
ся, например, условием зс*=1(Т—собственное время). 

Перейдем теперь непосредственно к изложению теории 
релятивистской струны. 

4. Классическг'Я и квантовая динамика релятивистской струны'^ 

Варьирование действия (5) приводит к следующим уравне­
ниям движения 
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(8) 

В случае конечной струны эти уравнения необходимо дополнить 
граничными условиями 

Г ? I = 0 - (9) 
Уравнения# (8) удовлетворяют двум тождествам: их проекции на 
векторы Xj, и Х„ равны нулю. Поэтому функции Х„<6,7) 
этими уравнениями полностью не определяются. На искомые решения 
можно наложить два дополнительных условия, в качестве которых 
удобно взять следующие: 

хх =0, хг+хг=0. (ю) 
Эти условия являются уравнениями характеристик для системы (8). 
Одновременно они могут рассматриваться как условия на выбор 
параметров 6 и Т . Однако эти уравнения полностью не фикси­
руют 6 и Т ' остается еще возможность подстановок 

не меняющих уравнений движения (8) и дополнительных условий (10). 
Окончательная фиксация 6 и Т (калибровка) может быть выбрана 
применительно к каждой конкретной задаче (см. далее). 

С учетом (10) уравнения движения (8) и граничные условия 
(9) линеаризуются: 

.. // 
*/ ~ ХГ ~ ° ' (II) 

X \ = 0 . 
Г\6*0,Т\ (12) 

/6/ В работе была решена общая задача Коши для поля Борна-
Инфельда в пространстве Ct,X) , а следовательно, и для бесконеч­
ной релятивистской струны. По начальному положению струны 
ЭС^.(d,T=0)= j^Cei) и начальным скоростям в каждой точке V <6) 
было найдено положение струны в любой другой момент времени. 
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Это решение имеет вид , _. 

л> сма* ±[y.6+z)+$c6-zu-1 jar, о) с/л, ( 1 з ) 

где Jf - плотность канонического импульса струны в начальный 
момент времени: 

Найденное решение справедливо для бесконечной струны. Бели 
струна конечна ( 0 4 ё 4- 9Т ) , то необходимо еще удовлетворить 
граничным условиям зе<6/С)|=^ О , что приводит к требованию 
четного продолжения начальных данных j>GU и 5ГСЛ) за пределы 
интервала 0 4 6 4ЭГ » где они заданы. В качестве иллюстрации 
приведем несколько примеров движения струны из заданного началь­
ного положения/ 9'. 

Рассмотрим струну, свернутую в начальный момент времени 
в окружность радиуса R и покоящуюся в плоскости Х,и-

x0a)=R cosi., у0«)= R sin£, 

i?a)=o, iv= i • ( I 4 ) 

Согласно (13), решение имеет вид: 
t-r, 

3c«.T)=^[3fe(e-t)+ac0c<J+i)]= R c o i ^ - c o t g , 

Таким образом, начальная окружность (14) о течением времени 
меняет свой радиус по закону RoOiQtfR) , оставаясь в плоскооти 
ЭЕ,и. , то есть пульсирует с периодом 3TR 

Воли взять струну, имевшую в начальный момент времени 
опять форму круга, но разрезанного в одной точке, причем концы 
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струны остаются свободными,то движение струны принимает теперь 
совершенно иной характер. На рис.3 приведены профили струны в 
различные моменты времени. 

t=JTR t = f - J f R t=jTiR t=-2.XR 

Рис.3. 
За время £ = 4 з г Я струна возвращается в исходное положение. 

Движение той же струны, но с закрепленными концами, по­
казано на рис.4. 

\ 
WY" \ I t-йи4; 

+=»к Рис.4. 
Струна, имевшая в начальный момент времени форму прямоли­

нейного отрезка длиной L , изменяет периодически во времени 
свою длину с периодом 2. К .причем концы струны меняются местами 
(см. рис.5). 
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t-0 

t=£ 

i г i . t г t 
t - * H t-fl 

i l * . * i t 

*-f« t=f« t=2C 

Рис. 5. 
Для построения гамильтонова формализма введем канонические 

импульсы .Фазовое пространство рассматриваемой 
системы ограничено связями 

ы-г*< ( 1 5 ) 

что является следствием сингулярности лагранжиана струны (5). 
Гамильтониан системы тождественно равен нулю: 

2f—SFx-£ шО. 
Для систем со связями гамильтонов формализм и переход к 

квантовой теории были разработаны Дираком' . Следуя этому методу, 
в качестве гамильтониана релятивистской струны следует взять 
линейную комбинацию связей (15) 

где ̂  и f j - произвольные функции. Этим произволом можно 
воспользоваться так, чтобы уравнения движения были наиболее просты­
ми. Обычно полагают 

H = f VCWsrWic'iMu. 
Ь A 
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Уравнения движения и граничные условия в гамильтоновом 
формализме получим из вариационного принципа 

который приводит к уравнениям Гамильтона 

*,«Sfe-*5Co = ЭЗУ _ 
JV* dd ^ ddfcW ^ ? 

и граничным условиям 

Очевидно, что эти уравнения полностью совпадают с соот­
ветствующими уравнениям!' (II), (12) в лагранжевом формализме. 
Их решение можно представить в виде рядов Фурье 

Переход к квантовой теории осуществляется постулированием 
следующих коммутационных соотношений: 

Остальные коммутаторы равны нулю. В рассматриваемой схеме кванто­
вания связи (15) должны быть наложены как дополнительные условия 
на физические векторы состояний 

эжениям Фурье (16), пол] 
знсных моделях 

Переходя к разложениям фурье (16), получим условия Виразоро (3) 
в дуально-резонансных моделях 
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где « 

Рассмотренная схема квантования лагранжиана (7) для бес­
конечной струны была предложена Барбашовым и Черниковым'6' при 
исследовании полей Борна-Инфельда. Ими же была найдена алгебра 
операторов и (алгебра Вираэоро). 

Таким образом, математический аппарат, описывающий кванто­
вую динамику релятивистской струны, полностью совпадает с оператор­
ным формализмом в модели Венециано. Более того, было показано, 
что hi -точечная амплитуда Венециано может быть получена как кван-
товомеханическая амплитуда перехода для релятивистских струн, 
взаимодействующих с внешними , подобранными соответствующим обра­
зом, токами' и'. 

Эти результаты позволяют заключить, что в оонове .дуальных 
резонансных моделей лежит динамика одномерных релятивистских 
протяженных объектов. 

Квантовая механика релятивистской струны, о которой гово­
рилось выше, соответствует древесным дуальным диаграммам. Более 
сложные дуальные диаграммы, содержащие замкнутые петли, требуют 
вторичного квантования струны, то есть построения квантовой теории 
поля струны. Для этого необходимо ввести в рассмотрение полевые 
операторы, зависящие уже от координат не одной пространственно-
временной точки, как это имеет место в стандартной квантовой 
теории поля, а от функций Х-16) , описывающих струну. Таким 
образом, полевые операторы в этом случае являются функционалами 

$=Ф{*ГСА>}-
В этом направлении сделаны пока лишь самые первые шаги (см. 
работы Рэмонда' * * ' ) . другой подход к описанию взаимного превра­
щения струи в рамках метода функционального интегрирования был 
предложен ГЛаадельстамом 1 3 '. 

5. Струна во внешнем электромагнитном поле 

При построении дуальных амплитуд, как уже отмечалось выше, 
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в модель релятивистской струны необходимо вводить взаимодействие. 
В этой связи представляет интерес рассмотреть точно решаемые 
модели взаимодействующей струны. Найти точные решения удается для 
струны в постоянном однородном электромагнитном поле и в поле 
плоской электромагнитной волны. 

Действие струны в электромагнитном поле определим следую­
щим образом: 

тг 6tcc) 
5=jdrjol6(^0 + < ^ £ w t ) , (I?) 

г д е #0=-Ш)г-хЪчК ^ - a ^ A F / b o . 
функции d){CC), i =1,2 описывают движение концов струны. Их явный 
вид будет найден в дальнейшем. 

Вариация дейотвия (17) приводит к уравнениям движения на 
переменные v С ^ Д ) 

(18) 

и граничным условиям 

аЗР а А* * Г ' (и) 

Варьирование функций <э^(Т), Ч. =1,2 в (17) приводит к требованиям 

Таким образом, взаимодействие с электромагнитным полем 
не изменяет уравнений движения струны, изменяются лишь граничные 
условия. Это является следствием того факта, что dCi^t в (17) 
описывает взаимодействие с электромагнитным полем двух точечных 
зарядов, расположенных на концах струны. Заряды эти равны по 
величине, но противоположны по знаку. Действительно, 
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4t d x 16=4^) tf4t d* U - ^ C Q 
Как и в свободном случае,уравнения (18) не являются незави­

симыми, а удовлетворяют двум тождествам: проекция этих уравнений 
на ЭС_ и ЭСуи равна нулю. Поэтому уравнения (18) не определяют 
полностью все переменные ЗС^Сб.Т) , и на искомые решения можно на­
ложить два дополнительных условия: 

^ х = 0, хг+эк1=0. (2D 
Легко показать, что из (21) и (19) следует (20). Поэтому в даль­
нейшем условие (20) не будем рассматривать как независимое. С 
учетом (21)уравнения движения (18) и граничные условия (19) при­
нимают вид 

acrc*.T)-*/.e»,i:)-0, (22) 

X.„ + QFTOC/'+(!Xy+%>FrOCf*)'6=Q, (23) 

Уравнения движения (22), граничные условия (23) и допол­
нительные условия (21) еще не полностью фиксируют выбор переменных 
6 и Т . Действительно, эти уравнения не меняют свой вид при 

переходе к новым переменным S и Т таким, что 

3 f - f = r r t ( e - * n = 5 ( o c ) , g v c ^ J K e + D s j U j i ' ) (24) 

с произвольными функциями еСбОи ]$(($} . Это позволяет наложить 
еще одно условие (условие калибровки) на искомые функции Хм(6Ц) 
и параметры 6 . t • Попытаемся найти такую калибровку, £ 
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которой движение концов струны описывается уравнениями*' 
*6<<Г) = 0, 1=1,2. ( 2 5 ) 

Спроектируем граничные условия (23) на постоянный вектор 
Я : 

6=^€Т), 1-1,2. 
Теперь зафиксируем калибровку требованием 

П'Хг+рп'РуХ'хО, (27) 

Л ГА,+р»'^Л^-55 (28) 
где <У - произвольная константа, не равная нуле. Как будет 
показано далее, такая калибровка означает, что проекция плотности 
канонического импульса струны в каждой ее точке на вектор л 
есть постоянная величина ZP . 

Из (26) следует, что 
ё^СТ) = 0 , 1-4,2, 

то есть <oxCt\ и ©*(Т) есть просто константы, в качестве кото­
рых удобно взять 0 и t: 

ё,(Т)-о, eten=£. 
Можно показать, что выбор калибровки (27), (28) в случае 

постоянного электромагнитного поля соответствует переходу к новым 

ж) 
' Когда рассматривается свободная струна, то обычно счи­

тается, что уравнения (25) имеют месте/ '. Однако в общем случае 
функции 6<СГ) , (-t»l,2.) i описывающие движение концов 
отруны, должнн быть определены из вариации действия (6) и только 
в калибровках, выбранных определенным образом,движение концов 
струны описывается уравнением (25). 

259 



параметрам о и ̂  по формулам (24) с функциями о<- и J3 
определенного вида. 

Таким образом, в лагранжевом формализме задача о движе­
нии релятивистской струны в постоянном электромагнитном поле фор­
мулируется следующим образом. Требуется найти вектор 0См<*,Т), 
который удовлетворяет уравнению Даламбера 

Хг(6Х)-Хг(6Л)=й , (22) 
дополнительным условиям 

*ос=о, i 8 + i * = o , (2D 
условиям калибровки 

n"Xy + ^nvPy/.XJ,= Q, (27) 

ПУХг + $ПУРтХГ=& (28) 

и граничным условиям 

Х„ + <}.Рг~хГ = 0 при 6=0,t. (29) 

Далее мы будем работать в нековариантном формализме, выра­
жал с помощью дополнительных условий (21) и условий калибровки 
(27) и (28) зависимые компоненты вектора JC- через независимые. 

Теперь сформулируем гамильтонов формализм для описания дви­
жения струны в постоянном электромагнитном поле. Введем канони­
ческие импульсы ЛГ^в-Э^Р/эзс^ . С учетом дополнительных условий 
(21) легко получить следующее выражение для яг" : 

$г=хГ + ?Г%. (зо) 
Канонический импульс 3i " является аналогом обобщенного импульса 
заряженной частицы, движущейся в электромагнитном поле. Опреде­
лим канонический импульс струны как целого: 
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t 
0 

Используя (30), уравнения движения (22) и граничные условия (29), 
покажем, что импульс П и сохраняется: 

$Е- fob Р"Аад) с*б -fc^+ F^p A = 
•е>о 

Учитывая это, массу покоя струны как целого естественно 
определить следующим образом: 

Как и в случае свободной струны, фазовое пространство 
рассматриваемой системы ограничено связями' 1 0' между канонически­
ми неременными Х,С*,Т) и JT- (6,Т) : 

(32) 

Это является следствием сингулярности лагранжиана (5) d e t | | У J|= 
= 0 . * " / • * * 

Гамильтониан системы, как и в свободном случае, оказывает­
ся тождественно равным нулю 

Помимо первичных овязей (32), на канонические переменные 
можно наложить еще условия калибровки'*4'. По аналогии с лагранже-
вым формализмом, эти условия удобно взять в следущем виде: 

пх+$>п vFy (яг-$ Рг х*) = о, (зз) 

"*т & (34) 

Первичные связи (32) и условия калибровки (33), (34) в со-
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вокупности образуют связи второго рода, так как их скобки 
Пуассона не равны нулю. 

И в гамильтоновом формализме будем выделять независимые 
("поперечные") канонические переменные Х±С6,Х) и 3ij.C^,T) и 
зависимые t , ЭС иЗЦ.ЗГ* . Это приведет, конечно, к потере яв­
ной релятивистской ковариантности, однако этот путь дает воз­
можность найти точные решения граничной задачи и уравнений дви­
жения для независимых компонент. 

Как известно' ', любое электромагнитное поле, постоянное 
в пространстве и времени, соответствующим преобразованием Лоренца 
может быть сведено к следующим 4 случаям: 

1. Ё>0,Н=0, (Е*-Не>0, fff-0); 
2. Е=0, T1V0, (Е*-Н4<0, .rfT-O); 
3. Е и Н отличны от нуля и параллельны (инвариант 

Е -Н принимает произвольные значения , ЕН Ф 0 )5 
4. Электрическое и магнитное поля во всех системах отсче­

та равны по величине и перпендикулярны друг другу ( Е г _ Н 1 = 0 
Elf-fl). 

Во всех четырех случаях удается найти решение уравнений 
движения и граничных условий в виде рядов Фурье и определить опе­
ратор квадрата массы струны. При этом оказывается, что электри­
ческое поле приводит к уменьшению расстояния между эквидистантны­
ми уровнями этого оператора и сдвигает квадрат массы основного 
состояния в отрицательную область. Магнитное поле дает лишь отри­
цательный вклад в квадрат массы основного состояния. Существен­
но, что уже на классическом уровне появляются состояния с мни­
мой массой (тахионы). Таким образом, .для струны в постоянном 
электромагнитном поле ситуация с тахионом усугубляется. Кроме 
того, из решений видно, что существуют предельные значения поля, 
при которых решения изменяют свой характер. Например, критическое 
значение электрического поля равно 

г L 
Вели положить, что заряды на концах струны по абсолютной величи­
не равны заряду электрона, а Ы ' * 0,9 ГэВ - 2, то EnJ" 10**1ольт/см 
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Для сравнения отметим, что эта величина превышает в 10 + раз 
напряженность электрического поля, действующего в атоме водорода 
на электрон. При значении внешних полей Е в н ̂  F г р все решения 
для струны в электромагнитном поле переходят в свободные. 

В качестве примера рассмотрим случай, когда отличны от 
нуля электрическое поле Б и магнитное поле К и они парал­
лельны. Решение задачи^ в остальных случаях проводится аналогично. 

Направим поля Е и п по оси ЗС : 

Постоянный вектор П , входящий в условия калибровки (33), (34), 
удобно взять в следующем виде: 

П*-(1, 1, 0, 0). (35) 
Подставляя (35) в (27) и (28), получим 

t'-JC -ECt-x> = 0, / / l* (36) t-x-ECt'-зс)*^. 
Граничные условия (29) в покомпонентной записи имеют вид: 

t'+Ex = 0, 

4 *!*.-"• V *-o.i . 
у. + Hz =0, 
z - н ^ = о. 

Независимыми переменными будем считать U- и 2 • Граничным 
условиям и уравнениям движения удовлетворяют следующие разложе­
ния U 1 2 в ряды фурье: 

:02ГТ -i#T -да»2^(«:е'П 0.е-т [к«(^)- (37) 
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?«.T)-[V + F,^H-PfW-|0^ft[f + 
+ VT^F£^A e + 8 » e ) cos(f$+ ™ 

Зависимые компоненты t и ос будут определяться из дополнительных 
условий (21), которые можно разрешить с помощью уравнений калибров­
ки (36): 

Вектор 7^, имеет компоненты: 

3Tt = i +Еос, 

эГд-i+Et', 

л"г= z - Н £ . . 
Для независимых компонент ЗЛ"* и ЭТг получаем из формул 

(37) и (38) разложения Фурье: 
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'HSff9*aiffr К o ' t T 

В качестве гамильтониана можно взять следующую величину: 

i 

о 1~* с 
Для квадрата массы струны имеем выражение 

Приведем значения М * для .других конфигураций электромагнитного 
поля. Вели отлично от нуля только электрическое поле £ , то 

где ап1 = (а^,а„г). -> 
В постоянном однородном магнитном поле Н 

Если EJLH и |ЕЫН1 . то 

Переход к квантовому описанию мотао осуществить, постулируя 
коммутационные соотношения: 

Остальные коммутаторы равны нулю. 
Проверка релятивистской инвариантности в данной задаче стал­

кивается с трудностями. Для того чтобы построить сохраняющиеся 
операторы лоренцевских поворотов, необходимо включить в рассмот­
рение электромагнитное поле и проквантоэать его. Это, конечно, 
чрезвычайно усложняет задачу. 
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Приведем несколько примеров классического движения 
струны в постоянном электромагнитном поле. _» 

а) Струна в постоянном электрическом поле Е (рис.6). 
.Поле направлено по оси ОС . Струна совершает колебательные 
движения к изменяет свою длину, но ее проекция на направление 
электрического поля Е ( т . е . электрический дипольный момент стру­
на а ) 

Рис.6. -» с * \ - Л 
остается постоянной и равной я = О Е Д (1~с ) ш 

Струну с двумя противоположными зарядами на концах можно 
рассматривать как модель нейтрального ЯГ -мезона, построенного 
из двух кварков, удерживаемых струной. Зная поведение такой 
системы в электрическом поле, можно найти поляризуемость об -
мезона. В рассматриваемом случае эта величина оказывается рав­
ной 

at*i-l6~3fm3, 
где cL -
вектором Е 

ент, связывающий дипольный момент струны с 
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! 'J €, входящее в Ы , определяется из приравни­
вания массы струны .даосе JTC-мезона, безразмерную величину О Е 
нужно заменить , как обычно, на 23!^СеС'оЕ , где aC'teO,vVaB~2 

- наклон реджевской траектории. 
б) Движение струны в постоянном магнитном поле (рис.7). 

В начальный момент струна имела форму прямолинейного отрезка, 
расположенного на оси у . • В процессе движения она переме-_^ 
щается поступательно в направлении, перпендикулярном к полю Н. 

+ 

Рис.7. 
_9 в) Струна в скрещенных электрическом и магнитном полях 
Е 1 Н , Е - Н (рис.8). 

Как и в случае одного магнитного поля, струна выталкива­
ется в направлении, перпендикулярном Н , и совершает колеба­
тельные движения вдоль поля t . 

Как и в свободном случае, при движении релятивистской 
струны во внешнем электромагнитном поле появляются изломи в 
ее профиле. Это является отражением того факта, что рассмат­
риваемая модель струны не учитывает важные с физической точки 
зрения обстоятельства: во-первых, заряды, расположенные на 
концах струны, должны иметь массу, что существенно меняет ха­
рактер граничных условий; во-вторых, эти варяды должны взаимо-
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L -̂
+ 

_ +• 

Рио.ь. 
действовать между собой через электромагнитное поле. 
Пренебрегать электромагнитным взаимодействием зарядов 
струны можно ТОЛЬКО в том случае, если расстоя­
ние между ее концами в процессе движения не оказывается значи­
тельно меньшим характерной длины струны *>'№* ч* 2*10" см 
( o t ' » 0,9 Гэ1Г 2). Взли это так, то электрическое поле Б *• j f e p ' 
создаваемое зарядом струны на ее противоположном конце, значи­
тельно меньше Вкр — (2Лг£с«<Ъ)~*. Действительно, 

Б™ Н 13» 
если считать, что заряды струны равны по абсолютной величине 
заряду электрона. 

В заключение рассмотрим способ решения уравнений движе­
ния струны в поле плоской электромагнитной волны А ц Д О ' ^ б >, %. 
&%0 * ( £ ' £ ) - О • Решение этой задачи было найдено в работе' °' 
для циркулнрно поляризованной волны, когда £ h - 0 . Ш приве­
дем здесь решение в общем случае, когда £ * ф 0 . Граничные 
условия (23), как и раньше, диктуют выбор калибровки (27), (28), 
при которой Ц^СС)~ О и граничные значения 6 есть «4«=0, 
<&t= I . Подставим в граничные условия (29) решение для х „ 
в виде y/.=tyl/.(6+V+Vbf.C6-T)}j2. и fy,r= iik^-^f.*v).r 

G*P№ k(Vi+Vt)\ ' H e т е Р я я общности, можно выбрать век­
тор поляризации £ „ пространственно-подобным £./ = - 1 
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Тогда шеей: 

(39) 

где dL=6-T*fl = &+t. 
Будем искать решения Щ„ Си) и If̂ ,, Сы) как суперпози­

ции решении для свободной струны Xrb*,R) L[a«Г/») + &.ЗД]/2 
следующего вида г J г 

где Я , г ftj - константы, не зависящие от ё и *Г , а свободные 
решения удовлетворяют свободным граничным условиям: a'-Cfit) =• 
—~В1(<^1'},(=^Л-^°о6^е могао показать, что (39) являются общим 
решением (29), если R t и ftj.положить равными 

где Р г « Sold 3 .̂«,«Г> = J- jdACa;(6*1)- Ь^С6-Т)2 _ четырех-
импульс струны в отсутствие поля. Множители /?i и R t имеют 
резонансный вид, резонансы возникают при (rP)£= CZn+l)TT. 

Решения (39) для Щ' и У* . выраженные через а1 

и о , имеют важное свойство, состоящее в том, что Ct'r и 
Ь' могут быть также выражены через у ' и У ^ . Легко про­

верить, что 
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Это дает возможность по начальным значениям Ч,* и ^«/J найти 
начальные значения б л (,, и затем, продолжая их, как для сво­
бодной струны, найти с помощью (39) продолженные значения %ц и 
ЧЪ/« . Удобно выбрать в условиях калибровки (27), (28) в ка­
честве вектора п вектор, пропорциональный к , тогда Pf,f^f=Qi 

и (27), (28) принимают следующий вид 

Пх = ± П(Ч>;+%') = ±п(а'+ 8) = 0, 

Отсюда следует, что 
ka'=?F ^ &а= FFji, 

Выбирая изотропный вектор fy в виде к- = (F,0, О, F) 
(волна распространяется вдоль оси 2 ), получаем условие попе­
речной калибровки Яэс=&х=-0 и &х=£х=&. 
При выбранной калибровке легко найти плотность четырех-импульса 
струны ОТ'= Xf+ g- РГ'Х. = *f* ifrkfCiX) , 
однако полный импульс Н»=5с1бЗТ., здесь не сохраняется. 
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СПОНТАННЫЕ ВАКУУМНЫЕ ПЕРЕХОДЫ В ДУАЛЬНОЙ МОДЕЛИ НЕВЬБ-ШВАРЦА 
Д.В.Волков» А.А.Еелтухин, А.И.Паинев 

Харьковски* физико-технический институт АН УССР 

Проблема спонтанных вакуумных переходов в дуальных моделях, 
сформированная в '1'г', недавно была ренена для случаев дуальной 
модели Венециано (ДИВ) с интерсептом <J.0 = - t ' , ДМВ с произ -
вольным интерсептом / ч>- > / и частного случая дуальной М-модеяг.' 

Метод, используемы! в работах ' , состоит в суммировании 
по индуцированным вакуумным переходам (ИВП) или нпурионам и в 
последующем аналитическом продолжении по константе ИВП переопре­
деленное S - матрицы на другие листы римановой поверхности. 

Процедура аналитического продолжения по константе ИВП обычно 
используется для изучения спонтанных вакуумных переходов (СВП) 
в лагранкевом формализме теории поля. Однако в случае дуальных 
моделей процедура аналитического продолжения приводит к новым 
существенным моментам. Наиболее важный из них состоит в появле­
нии дополнительного вырождения резонансных состояний, которое 
не может быть обнаружено обычным факторизационннм методом. 
Как показано в работах ' 4> 5', это дополнительное вырождение в 
спектре резонансных состояний проявляет себя в расщеплении всех 
дочерних траекторий на "истинные дочери*'и на так называемые 
"прмемыщи" , причем при неравной нулю константе ИВП эти пос -
ледние отстоят на нецелочислевнон расстоянии от исходной мате -
рннской траектории. 

S - матрица, перестроенная с учетом этого расщепления ре­
зонансны- состояний, обладает определенной внутренней структу -
рой, соответствующей наличию безконечного числа сохраняющихся 
гиперзарядов. Такая структура может быть интерпретирована в 
терминах скалярных кварков с различными массами, размещенных на 
внеиних концах дуальных струн. 

Аналитическое продолжение S -матрицы по константе Е Ш 
смещает, перегруппировывает непрерывным образом расщепление 
траектории, так что на других римаиовнх листах интерсепта при -
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ншавт другие значения. В терминах кварков перестройка £ -мат­
рицы, вследствие ее аналитического продолжения на другие рина-
новн листн, может быть сформулирована в форме простого правша, 
предписывающего изменение знака квадратов масс некоторых кварков 
(уч/-*-/4i правило). Как следствие этого правила,для произ -
вольного начального значения е(о существует такой путь анали­
тического продолжения, который приводит к результирующее 5 -
матрице, свободно! от тахионов. 

В важном частном случае, когда Л*°1 , ведущие траектория 
будут вырожденными после спонтанного наруяенвя и симметрия но -
дели становится SU(2)*Ш)*№)* ... - группе! симметрии. 

В случае произвольного интерсепта траектории do в ДНВ 
присутствует духовно состояния, которые остается и после учета 
СВП. Как известно, при частном значении U. = i в ДМВ духи 
отсутствую. СВП изменяют значение лзтерсептов траектори!, в 
результате чего в индивидуальных дуальных амплитудах духовые 
состояния появляются и в этом важном частном случае. Сохрани -
вхся хи духовые состояния посхе симметризации дуальных амплитуд 
по перестановкам внеиних частиц, этот вопрос в настоящее врдея 
остается открытым. 

В настоящей работе проводится аналогичное рассмотрение СВП 
в дуально! модели Невьв-нмрпа ОШНИ). 

Как показано в работах / 1 > 2 / , суммирование по ИВП приводит 
к следующему переопределении П -точечных В -ФункциМ 

где J3 - константа индуцированного перехода нпуриона в вакуум. 
Суммирование в выражении (I) удобно выполнять в П пос­

ледовательных этапов. На первом этапе проведен суммирование по 
всем мпуриоиам между i -oi н 1*1 -о! частицами. На следующих 
этапах аналогичное суммирование выполняем последовательно между 
всеми соседними частицами. 

Парциальная сумма, соответствующие первому этапу, имеет сле­
дующий вид (см.также рис.!)» 
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£сли исходная П -точечная 6 -функция имеет вид 

в которой каждой частице с инпульсом р^ соответствует интегри­
рование по переменной Лс , и подннтегральное выражение инва -
риантяо относительно некоторой группа преобразований переменных 

Zi , то суммирование по Л/ в (2) приводит к возникновению 
в подинтегральном выражении в формуле (3) дополнительной функ­
ции fl(£*,Zi,#w,&4g;«^e<i./<e(e;p) » зависящей инва -
риантным образом от четырех соседних переменных ZH , Z, , 

Е{„ , Нь-Ч и от величин ^ = J, + o/'pj 2 . Тот факт, 
что функция Л не зависит от числа вневних частиц П , поз­
воляет написать для этой функции интегральное уравнение. Для 
получения интегрального уравнения иожво использовать соотноше­
ние, связывавшее перестроенные амплитуды с отличавшимся числом 
вневних частиц 

BR;(Pv->p«)--BJPb---,p«)+pBt(pb-,pip^r->p«). w 

Это соотношение непосредственно вытекает из соотношения ( 2 ) . 
Все сказанное выше относится в равной степени ко всем 

дуальным моделям. Остановимся подробнее на дуальной модели 
Невьв-Шварца (ШИП). Роль переменных Z t играют в этом случае 
пары (г,-, <у;) ' ' , где <pt. - антикоммутируоцие переменные с 
правилом интегрирования 

5<fi<4 '1, №Ъ =0. ( 5 ) 

Как было показано Фарли, амплитуда в ДИНШ кнварианта относительно 
группы проективных преобразований 
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Здесь ш хотвн отметит s, что в действительности амплитуда Д И 1 
обладает бодее ироко! группе! симметрии, вклвчавще! варяду с 
преобразовшшшв (б) собствевво суперпроективнне преобразовавая 

z:=zi * <ш • wo; <р/- (ft • j *î Zi ^ е д д (?) 
где J в ^ - два везаавсвивх антивомиутврущвх параметра пре­
образована!, инвариантами вто! группа преобразована! является 
обобщеннее ангармонические отнонення 

z = (*« - ZJ - Ук ц-уа», -г,- - т - «ft-.) ( 8 ) 

J" ( Z « W j - <fU<ft)(Z« -ZJH - 4?K«fc-0 
в специфические трехточечине анварвантв 

, (9) 

Таким образов, в общем случае функция R зависит от Ф; , Ч^н в 

а может бить представлена следувщам разложением 

v.. 

Реиая интегральное уравнение для функции У? , можно найти 
следущв! вид для фувкци! f . , f , f b ^ i 

« ( , . (5,2;*^;^) - j . ( s*b?;V'^;>} C l 2 ) 

(п) 

275 



yz;.k/b,;./.;p)» - ^(г;*н,в1£;А;р) 

где 

илJ * i - r(-sjr(i-s)r(s-»fa)rfr-w,-i-) _ 
M->,<x«,p;- , /Y*-s)fY-3;r<s-rf«)r(s^.-*) " 

_ £ g w ,°* 3/Y-£S)r(2S-£cb-Q (13) 
7 £ J , p rL(-d*-t) 

ифункцив ^(SfejJ^oU*,;*,) определяются сдедувщюм внра-
кенняни: 

Контур ивтегрвровавня ^ по переневвой S обходит все корни 
уравнения 

шггг ms)WZ*-0 - Q (is) 
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которне пря непрерввнои изменения р вдоль контура, яачинадого-
ся в точке j3=0 , совпадают пря ji-o с коряяня 

S„(0)= и, (« = о , £ , 1 Д - ; . (ряс.2) 

используя явные вид функция R ( I I ) , мы ножен выполнить 
последующие суммирования по ИВП между ( i* i ) -1 и ( i + 2 ) - | 
частицами, ( t + 2 )-Ш и ( ь + 3 ) и т . д . Это позволяет найти 
оховчательяое выражение для перестроенной в результате ИВП ду­
ально! амплитуда Невью-Шварца. 

Перестроенная У) -точечная амплитуда Невьв-Шварпа пред -
ставляется в виде п -кратного контурного интеграла или, экви­
валентно, в виде п -кратно! суммы бесконечного числа слагаемых, 
определяемых вычетами подинтегрального выражения в корнях урав -
нення (15) и имеет вид: 

-••••(-o"(s,-s.*tA- s»4-> s , '- i ' +^i, (к) 

о л , . 1 ffo -fc, -ft <М&ч -г», -fa <ы ] 
Анализ этого выражения приводит к квархово! интерпретация 

структуре перестроенно! амплитуда ДНИ. При «тон катодан! ко -
рень 5»(р 1) уравнения (15) связывается с сохраняицимс i заря-
дож кварка i -ого сорта. Спектр масс резонансных состолии! в 
перестроенно! ДНИ полностью определяется указанно! кварыво! 
структуре! и имеет вид 

Si**i 
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i DmS 

<*si X^_R£ 
s;(p 2) s'o(f) SJf) W 

Рис.1. Движение корней уравнения (15) в плоскости 5 и 
контур интегрирования V . 

f—^ 

, 3mS 

oto tekf > 0 t Re5 

6 
Sip) 

Рис.2. Движение корней уравнения (15) при обходе 
ближайшей точки ветвления. 
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a» J J (17) 

где / л 2 ( т , п ) ~ квадрат пасен резонанса, составлеавого аз 
m -ого кварка а и «ого антикварка, расположенного ва 5Г 
или f - ыезояных траекториях яла ва дочерних траекториях, а 

равно квадрату пасен ш -ого кварка. 
Зависимость /t*(»n,«) от т в и приводит, как это 

вытекает аз формул (17,18), к сдввгу 3N а ^ - неэоввнх траек­
торий на величину 25 в(р г) и к расщепление и сдвигу их дочер­
них траектория. Это позволяет сделать вывод о тон, что спектр 
резонансных состоянии в ДМНШ обладает дополнительным внрохде -
наем, связанном с наличием бесконечвого чвела кварков с воз -
раставщей массой, которое не может быть обнаружено обычным 
факторизациовннм методом. И Ш играют роль возмущения, снимав-
цего это вырождение, а константа р г характеризует его интен­
сивность. В этом смысле роль ВВП в ДМ аналогична роли магнитно­
го поля И в квантовой механике, где последнее позволяет 
вскрыть дополнительные степени свободы, связанные со спиновой 
структурой. Учет вскрыто! кварково! структуры приводит к уста­
новление ШЯ Х(Л<)« ••• группы симметрии дуальных амплитуд 
в ДМНШ. Для рассмотревия сповтавннх вакуумных переходов в ДННШ 
мы должны рассмотреть аналитическое продолжение перестроенной 
амплитуды Н-Ш по произвольному контуру в плоскости р>г , начи­
нающемуся в точке lb-О . Процедура такого продолкевия уже оп -
ределена представлеваен (16) и для ДНВ рассмотрена в работах . ' 

В представлении (16) полоса подантегрального выражения яв­
ляются функцией параметра р>г , определяемой из уравнения (15), 
и при ji-О совпадает либо с корнями 
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ЛИбО 

S:(0)=-J.*i-W ( (ю = 0,*,1,-), (20) 
которые ва 5 -плоскоств раэделевв контуром ввтегрвроваввя $ . 
При изменении параметра р 2 корвв S*(p) в Sm(p l) дви­
жутся вепрервввш образом в плоскоств 5 . В общем случае обхо­
ду по произвольному замкнутому контуру а плоскоств р г соответ­
ствует некоторая перестановка корне!, определяемых выражениями 
(19,20). 

Для рассмотреввя СВП существенны такие двахеввя корне* 
S^(p) и S^(ff) , в результате которых векоторве из 

корней S«,(o) переставляются с некогорнма из корней 5* (О) 
Прв непрерывном изменении параметра /з1 такие корвв сталквва -
ются с контуром интегрирования jf , в результате чего после 
обхода контура С контур g деформируется, а интегралы, 
входящие в (16), получаю некоторую добавку по сравнению с вх 
исходными значениями. 

Вела такие обходы существуют, то амплитуда (16) является 
многозначно* функцией параметра р г , а ее эваченвя прв /а=0 , 
не совпадающие с исходными звачеваямв,соответствуют различным 
спонтанным переходам. 

Рассмотрим обход по замкнутому контуру в плоскости /зг , 
прв которон какие-то из значении S„(o) - т переходят в симмет­
ричные относительно точки S=£(<4»*£) эваченвя, т.е. 

УП _,„(,• % -т , в результате чего квадраты эффективных 
масс кварков, соответствующие давним т, меняют свой знак, т.е. 

уи£ -» -/и£ • Аналогичны! эффект имеет место в в A <f3 

теорвв, где в результате спонтанных переходов квадрат массн 
скалярной частицы меняет знак на обратный. 

Устранение тахновов 
Пусть Zn-$<clc<,Zn*t ,(nsO,k,\\t-~) .тогда 

ум* < 0 прв ип£ и, (т=о,1,1,-->п) • в исходной ноделв 
Невью-Вварца имеются тахиона. Выбирая контур обхода в плоскости 
р г так, чтобы в результате обхода гп*1 первых кварков 
изменили знак квадрата массн на противоположный,/^-'-/^-^-ых) 
( ш ^ и ) , получай следующие значения для интерсептов 

главных ЗГ i С траекторий к вх траекторий приемнней: 
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,( в*(к,<>= • * • * * - * - * (к,е>и) 
л»(к,с)=-к*е (к>п,е«и) 
и*\к,ц = к-с (к4и,е>и) 
«/*(*,€) =-./„-!+к+е (к,е^и) 

=i„?(ic;e) = J.*1-K-e (к,е>ю) 
•(.»•( к,е)= г - - к + е (К>и/^И) 
«1/(к,Ч * * • " - £ (к<п,«>п) 
о/.Чк,г) = -=<<,+к+€ (* ,«*") , 

т.е. во всех случаях в//(к /е)^0 ; J ? ( « , £ ) £ £ , что 
гарантирует отсутствие тахионов в результирующих дуальных ампли­
тудах, если учесть, что состояние с нулевым спиной на у -меэон-
нои траектории всегда отцепляется. 

М*0. SUW'SUW'UlQ'lMfrUH)*- симметрия. 
Оригинально! модели Невьв-Шваряа соответствует значение d,-0 . 
При dc-0 для траектории,определяемых соотноиениями (21) и 
(.22),при к,Z-0,^ получаем. 

£(№ = £Ш) - .tffto) -- АН) -- - £ (23) 
JLliOfl) = Л г ) = ^ ( kp) -' ° Щ j) = 0, (24) 

т.е. траектории elc (*Л),<Ао(*Л) , занимавшие до 
спонтанного перехода различные положения, после спонтанного пе­
рехода принимаю одинаковое положение при к,е=0,£ и яв -
ляотся вырожденными (см.рис.Э). При этон интерсепт <р -ыеэоннои 
траектории принимает значение, равное нулю, так что квадрат мас­
он у - "«зона становится равным I ГэВ 2. Появление массы у р -
мезона , происходящее вследствие спонтанных вакуумных переходов, 
свидетельствует о наличии механизма Хиггса в ДМБП. Возможность 
существовании механизма Хиггса в Д1 предсказывалась многими ав­
торами, однако непосредственно реализовать его не удавалось 
из-за возникавших трудностей математического характера '"'. 

Вырождение траектории (23) и (24) обусловлено тем, ч;э квад­
раты масс кварков с т=о и т = £ после спонтанного пе -
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Рис.Э. Полижение вырожденнш траекторий частиц, 
приведенных в таблице I . 

1 
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pexода приобретает одаваковые значения. Последнее обстоятельст­
во связано с поведенное корне! S0(p) и Sx(p z) в плос -
кости 5 • Как непосредственно видно кэ рис.1, при о/.-О 
конечные положения корне! So(p!) и SJ.(JJ*) совпадает. Сов­
падение положёни! корне! S»(^!) к S^(pl) приводит, в свою 
очередь, к совпадению всех свойств кварковых состояний, соответ­
ствующих эти корням, I I повыиенЕЮ симметрии дуальных амплитуд, 
до симметрии SU(2)* (Л(1)»И(0* •• • -группы. 

При этом О -й и £ -й кварки относятся к дублетному пред -
ставлению SU(Z) -группы, а частицы, принадлежащие траекториям 
(23) или (24), соответствуют SU(2) -с инг летным и трип летным 
состояниям. Причем заряженные частицы расположены на траекториях 
с интерсептаыи,равными ^ ' ( О , ^ и d,f'?(|,0) , а части­
цы с нулевыми гиперзарядами расположены на траекториях с интер­
септаыи elo'v(°,°) m* о/* , рЦг) • в случае, когда внешние 
частицы в дуальных амплитудах принадлежат траекториям (23) или 
(24), зависимость дуальных амплитуд от внутренних квантовых 
чисел факторизуется в виде жпура от изоспиновых матриц Гс (^=0,1, 
2,3) и соответствует обычному введению в дуальные амплитуды изо­
спиновых состояний по методу Чана-Патона. Отметим, что на воз -
ножную связь между дуальностью с одной стороны и внутренними 
оимметриями и кварками с другой указывалось в ряде работ w*'. 
Установив наличие SU(2) - симметрии для состояний, принадлежа­
щих траекториям (23), (24) и их дочернин траекториям, рассмот -
рин, какие частицы соответствуют этим состояниям. Для этого за­
метим, что все состояния, расположенные на траекториях с интер­
септами, равнини U£(»>,m) , имеют положительную & -четность, 
а все состояния на траекториях с интерсептами Л^(т,т) 
имеют отрицательную G- - четность. Это непосредственно следует 
из рассмотрения структуры отдельных слагаемых, присутствующих 
в выражении дли амплитуды 8^(Р,Р^АДй)» Аналогичным образом 
% ) Приведем в качестве примера следующее высказывание Детлеф-

сена и Нилсена : 
"We believe that there i s some deep truth in the statement 
that dualitylike principles imply symmetry - including 
SU(2)-symmetry". 
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можно показать, что состояния, принадлежащие траекториям 
o i ? ( m , * ) (°(о(т>*)) , имеют £ - четность, противоположную 
G-четности состояний, принадлежащих траекториям с интерсепта-

ни oio(m,») (и?1*п,*))ш Установив этин способом абсолют -
ную & - четность состояний, расположенных на траекториях с 
интерсептамн,равнннн в(?(™,п) t<if(m,v\) с т * и , не удает­
ся. Замечая, однако, что траектории с интерсептами, равными 

dHo.O) • °l!(0,t) * °lo(i.o), содержат изотриплет 
мезонов, ни припаем состояниям, расположенным на этих 

траекториях, положительную &-четность. Тогда 6 -четности 
остальных состоянии оказываются полностью определенными. Зная 
& -четность • изотопические спин состояний, принадлежащих вы­

рожденным траекториям (23), (24) ж жх первым дочерним траекто­
риям, мы можем идентифицировать эти состояния со следующими, 
ннзхолежащими скалярными, псевдоскалярными, векторными и акси­
ально-векторными мезонами (сн.таблицу I). 

Из таблица следуют известные соотвомения между массами мезо­
нов, обычно получаемые из рассмотрения правил сунн при высоки-
энергиях или при алгебраической реализации кираяьной 

SU(2)*SUW симметрии / 9 / 

изучая вылеты в полюсах 4-точечннх 8» функций и 5-точеч­
ных функций В* , соответствующих различным внутренним и внеш­
ним состояниям, приведенным в таблице I, мм ножен получить ана­
логичные соотномения между константами связи этих состояний. 
Это позволяет нам заключить, что окончательная симметрия, воз­
никающая в ДМНШ при рассмотрении спонтанных вакуумных переходов, 
является S№)*SU&*U(V*UU)*-- симметрией. 

Литература 
1. Д.В.Волков, А.А.Хелтухив, А.И.Паинев. ЯФ, 18, 902, 1973. 
2 . K.Bardakci, Nuol.Phjs., B68, 331, 1974; В70. 397, 197*. 
3 . Д.В.Волков, А Д.Желтухи, А.И.Памнев. Я§, 21, 611, 1975. 

284 



4. Д.В.Волков, А.А.Желтухин, А.И.Шшнев. ЯФ, 22, 1225, 1975 
5. Д.В.Волков, А.А.Жвдтухин, А.И.Шшнев. Препршт ЖГИ 75-5,1975 

Д.В.Волков. Препринт ОИЯИ Р2-8765, Дувна, 1975. 
6 . Bardakci K . ,Ha lpem M. Dual M-models, P r e p r i n t , Berkeley , 1973. 
7 . F a i r l l e D.V. ,Mart in D. Nuovo 01m. 18A, 373, 1973. 
8 . E.Gremmer, G.Scherk. Nuol .Phys . , 122 , 117, 197Ч-. 
9 . Weinberg S . Phys .Rev. , 1 Д , 177, 1969. 

Gilman F . I . , H a r a r y H. Phya.Rev. 165..1803, 1968. 

Таблица I 

Интерсепты тра­
екторий, соответ­
ствующих кваркам 

Частицы 
Гэвг Iе J 

1 1* 
0* / 

H 
4 
2 

г 
0" 0 

At, A:, A : 3 
2 

г 
0" 

1 
вг,а*вг 

(Г 
1 0 + 0 

• • • • • • • * • • # • • • # 
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DUAL MODELS : CANDIDATES FOR A RENORMALIZABLE THEORY OF GRAVITY 
J. Scherk 

Laboratoire de Physique Theorique de l'Ecole Normale Superieure 
Paris, France 

Invited talk at the International Conference on Nonlocal Quantum 
Field Theory, organized by the Joint Institute for Nuclear 
Research, USSR, Alushta 20-28 April 1976. 

Abstract : Dual models are shown to be possible candidates for 
constructing a renormalizable theory of gravitation. Modifica­
tions of the Einstein theory occur at short distance. The problem 
of extra dimensions present in the known models is shown to be 
solvable. 

I. Introduction :"Our understanding of covariant quantization 
,e 
/2/ 

of gravitation ' 'has been progressing tremendously during the 
past few years. Quantization in the so-called light-cone gauge 
has also improved. So far, it seems that all systems of matter 

/I/ fields in interaction with gravity are unrenormalizable . It 
is expected that extending supersymmetry to a local invariance 
will improve the situation. Other possibilities, mentioned in 
are still open, namely conforraal invariant versions of gravity, 
or the twistor calculus. Should all these fail, however, the 
situation would not be quite desperate, as we wish to show that 
dual models could be used to construct a renormalizable theory 
of gravity, and further that in such a theory, Yang-Mills fields 
and gravitational fields would become unified. 

It is shown in section II that dual models provide 
non-local, non-polynomial field theories which in a low-energy 
approximation reproduce the standard theory of gravity in inter­
action with gauge fields, spinors and scalar fields. In section III 
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we show, how extra dimensions can be interpreted as providing 
internal symmetry degrees of freedom, which could be identified 
with flavor. In section IV we discuss a simple 4-dimensional 
dual model. In section V we examine a simple field theoretical 
model (namely an Einstein-Yang-Mills-Higgs model) where sponta­
neous compactification of extra dimensions occur, together with 
removal of tachyons. In this simple model, a connection between 
the flavour and colour gauge group is found, and it is also 
understood why extra dimensions are confined to a size of the 
order of Planck's length. 

II. Dual Models as non-local, non-polynomial field theories: 
It is well known that dual models are theories of 

extended objects, namely of strings ' '' ' ' > . it is less known 
that they can equally be viewed as non-local, non-polynomial 
field theories, where only a finite, number of Cields appear in 
the action. Let us consider, for instance, the Veneziano model 
of open strings, with internal symmetry group U(N), coupling 
constant • and slope « . It contains N massless vector mesons, 
plus an infinite number of massive particles of mass of the 
order «' * . Now, let us consider the on mass-shell tree ampli­
tudes (as given by the model) for the scattering of these massless 
vector mesons. These tree amplitudes can be expanded in a power 
series in 0( . (More precisely, they are expanded in power series 
of <X 5 j : where S j ; are the Mandelstam variables in each 
channel). At each finite order in o( the poles due to the massive 
particles are absent since their propagators are expanded away, 
while poles due to the nassless vector mesons remain present : 

( I I . 1 ) 
Because of this, of the crossing and of the factorization 

properties of a dual model, at each order in the o(' expansion, 
we can derive a Lagrangian series : 

which reproduces the tree amplitudes of the dual model. 
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од is obviously defined solely in term of Ы vector fields 
WiT (*) i a"<i is unique up to canonical changes of variables. 
For dimensional reasons, one sees that each term in the expansion 
will contain more powers in the field variables or more deriva­
tives than the previous, and therefore, we have a non-polynomial, 
non-local field theory. 

Only a first few terms in this series are known. The 
first one, e£ is the yang-Mills Lagrangian : 

A. Tr L£»v> G r J J rf- ._ -± ^r L^v 

w r . 

(II.3) 

(и.*: 
G^ -- ^ w v - -э„ w,. * л. [w,., w„J f 

l— w p л * • (II.5) о Higher order terms, therefore represent modifications 
of the Yang-Mills action at short distance (derivative terms) 
or for strong fields (non polynomiality). 

For instance, tt'i* = ie of' Tr [G^v G v p & r #»J (И.б/ 8 / 

is comparable to £ a only if &«.« л/ —1— (II.7). 
J> * 4*°*' 
Ob is known only for a U(*j group, a case in which 

A vanishes. J.H. Schwarz and myself ' ' have found that it is 
given by : 

*'*.£** «'* e2 [ fe f v& r , f - ^ 6^v G v f & f, еьДд.в, 
Now this is a funny result, because this factor of - H 

can be also obtained by expanding to order Л the Born-Infeld 
Lagrangian : 

A.x. = A"* (a .b4 7 l . vAG r v l - i ) ( I I . 9 ) 

and by identifying (up to a numerical constant) Л with ea( 
*3.I cannot be the whole of a yet, since oC must also 

contain derivatives of (Эри , but it could well be that it 
represents the whole part of it which contains no such derivatives. 
This conjecture is as yet unproven, but it could well be true, 
especially since (as remarked by Tze ' ) the Born-Infeld Lagran­
gian yields for large values of Л the Nielsen-Olesen ' ' 
theory of dual strings. 
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An interesting result of the dual unitarization scheme is 
that open strings cannot be considered alone : closed strings 
appear as intermediate states generated by singularities in the 
non-planar loop diagrams ' ' • ' ' ' , Since the spectrum of closed 
strings contains some massless states, in the enlarged unified 
model of closed and open strings there are more fields to play 
with and to construct the Lagrangian, 

These additional fields are the following : 
A massless symmetric tensor field K.^y (graviton field) 
A massless antisymmetric tensor field Ац,» (torsion field) 
A massless scalar field ф (dilaton field). 
All these are singlets with respect to the internal symmetry 
group U(W) , as is the case for all closed string states. 

The A ^ field has a rather peculiar role : in the 
model of closed strings alone, it describes a torsion of space-

/12/ time . On the other hand, when the closed string model is 
incorporated into the unified model, one finds that Apyhas a 
direct coupling with the singlet Wj» field. Once the mass matrix 
is diagonalized, one finds / 1 3// 1 4/ that A rv"eats up" the U/^ 
field to become a massive antisymmetric tensor or mass n J f * • 
So, in what follows, we shall disregard both Aj, v and Wj. 

The b.j»v field behaves exactly as a graviton field, 
namely one finds ' '' ' that it enters always through the com­
bination g K V = ^fV +• ( M W G ) ^ h.|»v where ^rv 

is the flat space metric, and that the action has general cova-
riance. This general covariance again follows from the gauge 
invariance of the model. Q/ is determined in term of e. andi(' 
by the relation : _j_ (^ pj 

where J) is the dimension of space-time. 
This relation follows simply from the fact that gravitons 

are one-loop bound states of open strings (factor u rather 
than C* ) a n d fro-i dimensionality. 

Because of general covariance, we can write an action 
which sums up non linear terms in "n^v , namely all terms 
having at most two derivatives in " r vi : 
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(II.ll) 
In &̂ tf , only the Wp (*' ф О ) fields are kept. 

ry. is the usual Ricci tensor, 4 s -cJe*" ̂ (.*> » and 

The = iditional terms A , Я , etc... also should be 
modified to oe made generally covariant, and also higher orders 
terms in "R , of the type "R , *Rpv "• and so on should 
appear in the full action. So far noneof these has been computed. 

In the Neveu-Schwarz-Ramond model of open and closed 
strings, fermionic open strings also appear. Among their spectrum 
there is a massless set of fermions, which can be chosen to belong 
to the spinor, W dimensional representation of the SUMjgroup. 
Not surprisingly, one finds that to lowest order in ei' and G» , 
the fermion Lagrangian is given by : 

* P - * щ к е (11.12) 
where t are the Dirac matrices and ^ 0 ^ is the general co-
variant and Yang-Mills covariant derivative. 

Defining the Vierbein fields by : 

_ .в. ^ « f W r . t ] (II.13) 
To sura up these results, we may say that, as far as 

long-range effects are concerned, and for sufficiently weak fields 
dual models reproduce the conventional theories involving gravi-
tons, gauge vector bosons, farmions and scalars. This should come 
as no surprise, since these theories are in fact unique 'once 
the requirements of Lorentz invariance, absence of ghosts and 
minimality of the couplings are imposed. 

At short distance, or hit i energy, dual models on the 
other hand depart radically from these local field theories. 

one has 
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Even though we cannot compute the higher terms in the action, 
the tree amplitudes of the dual model are exactly known. For 
instance, we can compare graviton-graviton scattering in the 
center of mass for fixed angle as given by Einstein's theory and 
as given by a dual model. Both amplitudes coincide in the tree 
approximation at low energy. At high energy, the amplitude in 
Einstein's theory grows like £ ' , where £" is the center 
of mass-energy, while the dual amplitude falls down exponentially. 
Therefore, dual models satisfy tree-unitarity (the N- point tree 
amplitudes grow less rapidly than E at fixed angles), while 
quantized gravity does not. Similarly, in the Regge limit, dual 
models have Regge behaviour, even in the tree approximation, 
while the Einstein's theory has fixed pole behaviour. So we may 
conclude that dual models which coincide at low-energy with tho 
well-known local field theories we discussed before, have a 
softer behaviour than these local theories at high energies. 
This softer behaviour is due to the presence of the slope para­
meter fo<'} which plays the role of a fundamental length in 
the theory. 

This softer behaviour of dual models is also reflected 
/IB/ in the renormalizability of its one-loop diagrams ', while 

the Einstein-Yang-Mills-Dirac action fails the test of renorma­
lizability at this one-loop level '. There is also good evi­
dence for renormalizability of the dual model at the bj loop 
level. 

Because of these good features of dual models, J.H. 
/19/ Schwarz and myself ' ' proposed the hypothesis that one of them 

may really be the correct theory unifying gravity with the Dther 
fundamental fields. Before one can take this hypothesis serious­
ly, one has to be sure that all local theories including gravity 
are unrenomalizable. So far, this is true of all those which 
have been studied, but there is still the hope that a supersymme-
tric theory of gravity ' ' may be renormalizable or some other 
version of the theory. Should this fail, however, we would have 
to take a dual model of gravity as a serious alternative. 

In such a model, the unification of gravity with vector 
gauge field, and renormalizability are achieved at a high cost. 
One does not need a few vector bosons and Higgs scalars, as for 
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unifying electromagnetism and weak interactions, but an infi­
nite tower of particles having masses of the order of Oi' * 
We can actually read the value of this mass scale from eq.(11.10) . 
Setting Ps H in it, and the physical value for Newton's constant, 
we get : (tf 1)^ ~ в"* И. 6 t0~3i стп . (11.14). 
So unless в is ridiculously small, deviations from the local 
field theory occur at the order of Planck's length (give or take 
a few orders of magnitude). 

The price is then mostly a conceptual one since testing 
any theory at such a short distance is presently unthinkable. 
There are also some indications that one would have to pay this 
price anyhow. A useful criterion to construct renormalizable 
theories seems to be tree unitarity . Applied to a system of 
particles of spin О , i- , i. , this selects the spontaneously 
broken gauge theories as the unique solution. When spiu 2- par­
ticles are included, one cannot implement tree unitarity without 
adding an infinite number of particles of growing spin or more 
and more derivative couplings ' ' . Both solutions, as we have 
seen, are realized in a dual -nodel. 

Finally, even this conceptual price need not be paid 
if we find a local gauge theory, which in some limit (probably 
strong coupling), yields the dual model. The existence of vortex-

/21/ /22/ 
like solutions ' ' and of monopoles ' 'in gauge theories makes 

/23/ 
this hypothesis rather credible ' ' . So, we may have the follo­
wing conceptual scheme : 

Fundamental Strings as Dual model contain- Today's 
local field - > classical — > ing gravitons, —-> physics as 
theory solutions gauge bosons, etc . a low energy 

approximation 

One of the attractive features of this scheme is that 
all fields postulated today (gravitons, gauge bosons of weak 
electromagnetic and strong interactions, quarks, leptons, Higgs 
scalars) and whose number is steadily increasing would be bound 
state fields rather than fundamental fields. Even though many 
aspects of the model would be untestable at present energy, the 
model may be constrained enough to make a certain number of low 
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energy predictions as we shall see. Whether or not such a 
model will be sufficiently credible to be accepted, will depend 
on the progress in building local renormalizable models of gravity 
and also, on whether or not the "flavour explosion" will continue. 

III. Extra space-time dimensions : the arguments of the previous 
section are quite general and would apply to any dual model 
having massless fermions, vector mesons and a graviton present in 
its spectrum.If one now asks whether one of the existing models is 
the correct one, only a very limited choice is possible. The 
Veneziano model (D = 26) can be excluded as it contains no fermions. 
The supersymmetric model of strings has Ds 2. and therefore 
is also excluded. Nahm ' 'has given some convincing arguments 
that dual models with ©s 9,6 , H and 5,3 may exist, but one 
has only started to investigate their properties. This leaves us 
with only one model in working order, namely the Neveu-Schwarz-
Ramond model with 3>- -10 • This model is a good candidate for 
a unified theory as it contains a spin two massless particle 
which can be identified with the graviton, massless vector mesons 
which could be gluons and intermediate vedor bosons prior to 
symmetry breaking, while the massless fermions could be identified 
with quarks and leptons . The SOCNJ gauge group would be 
the colour group '. Ы — 4 would give a kind of Pati-Salam 

/27/ model ' ', with the leptons as fourth colour. 
This raises the question of how we can make sense of the 

6 extra dimensions of this model. Before we answer the question, /26/ let us notice ' ' that there is a certain advantage in having 
extra-dimensions present, namely the natural presence of a symmetry 
looking much like flavour : in 10 dimensions spinors have 32 
components, so that they can be considered as 8. 4-components 
Dirac spinors. The symmetry group of the model Гле> (Poincare 
group in 10 dimensions) contains as a subgroup "Рц the Poincare 
group in 4 dimensions which mixes only the Lorentz indices, and 
the Of6) group, which does not mix the Lorentz indices, but 
mixes the 8 spinors into each other. In fact Of6) is homomorphn 
to SUC1) and a careful study reveals that the 8 ground state 
spinors transform as a 4 and 4 representation of S U W . So 
if we can manage to break the unwanted Т щ invariance, but to 
keep this V^ в Of 6) invarian.ce in a better version of the model, 
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we have a natural way of introducing the SU(4) group as well 
as the existence of miiror fermions. 

The most economic way of making sensible the existence 
/26/ of extra-dimensions is by compactifying them 

Let JT = ( X м , X') where />=4*,£,3 are 
the coordinates in the usual Minkowski space-time, Хл (-t = i,2,—,6) 
the coordinates in the internal space. Let us assume that the 
metric in the full space-time is given by : 

Wo|vV 3A 
(III.l) 

Such a metric describes a direct product of the Minkowski 
space-time by an internal space, which we assume to be space­
like. The internal space may be left invariant under a certain 
group (y . Then the symmetry of the whole space time is 
Pj, © & and Cf can be interpreted as an internal symmetry 
group. 

If the internal space is space-like and compact, the 
existence of extra dimensions is seen only by the presence of a 
tower of particles associated with each 4 dimensional field. To 
see this, let us consider the case of a scalar field 
in such a space-time : 

(III.2) 
s = - Jd*x j d * « ^ [ ^ 3 p $ 4 $ + <"*£'$] 

S-_-J<Md*KJI[M*^ * Г(-^-^ад^)Ф)] ( 1 1 1 з ) 

If the internal space is space-like and compact, the 
Laplace-Beltrami operator -ĵ r ̂ л (>/̂  ̂ *J «j ) has only 
positive real eigenvalues. The eigenvectors *их(' 1') carry 
increasing representations of the group Qj and can be properly 
orthonormalized. We expand Ж in a series of eigenvectors 
with coefficients $. Cx1") being ordinary, four-dimensional 
fields : 

W , Ч ' (III.4) 
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We may then integrate over the internal coordinates to 
obtain a purely 4-dimensional action : 

s = - L id"* [\ **w(**) \ „̂ол * л мw) § л Ф . Н 
{,.} J г » j (III.5) 

where M .л is the eigenvalue of the Laplace-Beltrami operator 
associated with the eigenfunction $ , _ (•**) 

Let us give two simple examples : 
1. The N extra coordinates span a flat hypertorus : we shall 
call this compactification without curvature. 

. Metric : Q M = o^j (no curvature) 

. Boundary conditions : Л and X* • R^ are identified, 
the fields being periodic in X* -» X* * "R,- ( the "R«- being 

N parameters having the dimension of a length. The integration 
interval is О < X.- $ "R^ 

. Invariance group : X* -» X' + Ы , Ы* arbitrary , 
& = T M « v > U ( - 0 , T being a translation. 

. Eigenvectors : \ L] a \ У1Л ,•••,''*/, \ 4»̂  are integers 

$«L, (*') "- (V-*-)" 4 «KP I *^ТЦ^.' (in.6) 

One expands in a Fourier series. 
Mass formula : M V , - *|TTl 2-. 2 U (Ш.7) 

Conservation laws : the "П, are N ronserved, additive, 
commuting quantum numbers, looking much like charges. 

2. The И extra coordinates are angular variables в 1 Г.. eM.,j ф 
on an S,j hypersphere of radius "R0 . We shall call this : 
corapactification with constant curvature. 

. Metric : g < 4 = -R* , 4zZ- **• S i r , l e - • •• 

. Boundary conditions : the fields are well defined on Sn 

. Invariance group : the group of rotations in N «• 1 dimen­
sions : SOftJ+i) 
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. Eigenvectors : . The 
У111 being the so-called surface harmonics. The number of 
harmonics having the same eigenvalue L for the Laplace-
Beltrami operator being . 

The expansion is called a Laplace series. 
. Mass formula : M* _ _L L ( L + N - ± ) (III.9) 

. Conservation laws : 
for M = 2 SO(V) <>/ S*J(2) : isospin group. One additive 
conserved quantum number which could be identified with 
the electric charge. 
for N-.5 S0«}~ SUf4). There are 3 additive conser­
ved commuting charges which could be identified with charge 
strangeness and charm. 

In both these examples, we see that the ground state 
is always singlet under G . This would change of course if 
we were looking at spinors in the full-space-time. Then one would 
find that the ground states would be Dirac spinors and belong 
to the spinor representations of the group 6 . If we identify 
the spinors with quarks/leptons, G with flavour, we then 
have a natural way of understanding why the "observed" ones be­
long to the spinor representation of G rather than to a higher 
one. Here, by spinor representation we also include the conjugate 
one since for Gs SU(4^ both 4 and 4 appear as ground states. 
This approach is very close to the Kaluza-Klein theory and to 

/29/ the work of Cho and Freund ' ' , who also considered theories in 
а Ч + N dimensional space-time. Yet dual models are in a better 
position for renormalizability than field theories since they 
are renormalizable for more than 4 dimensions. 
IV. Compact!fication of dual models without curvature : 
It is not a priori obvious that compactification can be achieved 
in a dual model without destroying its properties of self-consis­
tency. Cremmer and myself ' ' have investigated the simplest 
type of compactification, namely compactification without curva­
ture in both the Veneziano and the Neveu-Schwarz-Ramond model. 
We have found that both models can be compactified along these 
lines without loss of any of the good properties (unitarity. 
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Regge behaviour, absence of ghosts). We find that the modifica­
tions can be summed up as follows : 

- each extra momentum becomes quantized (it can be thought of 
as an additive conserved charge) : P **" — ЗТГ — _ 

where Tflfl' is an integer. 
- topological quantum numbers appear for closed strings, namely 

a wiring number 71* for each compactified direction. The number 
describes how many times a closed string wraps around the hyper-
torus in the i — direction of the internal space before closing 
upon itself. These quantum numbers are additively conserved in 
the interactions of closed strings among themselves, but not in 
the open/closed string interactions. 

- for a state of quantum numbers Wl' j1" , the mass formula 
is given by : 

o('MS V + £ Г ™ W ) X
 + <- ,(** •»<)*] , 

where r is an integer or half integer coming from the oscilla­
tors, the second term is the contribution of the extra charges, 
the last term the contribution of the wiring number ( It1 = О for 
open strings). N is the number of compactified dimensions 
(22 in the Veneziano model, 6 in the Neveu-Schwarz-Ramond model). 

- The theory one obtains this way is still unsatisfactory as 
a theory of gravity because if of' and "R^ are small enough, 
it means that at low energy, we can disregard the dependence of 
all fields in the internal variables. So all fields at low energy 
depend only upon the 4 space-time variables X . Yet, the 
indices of the fieMsare still 26 or 10 dimensional. For instance, 
for B i H O , the metric 9{i8 describes one graviton 
q rf(x^ > s..x • ectors 9 H i (x} , twenty-one scalar fields 
3i*i (>0 ' a^"1 massless. A vector field W p describes a Lorentz 
vector field W,» (*1 , and six scalar fields W„-(>0 . So we get 
too many unwanted massless fields. Further having 6 arbitrary 
parameters, H ^ , is somewhat ugly. Finally, the group <y is 
too trivial : U(4} and the tachyon problem (though it can 
be improved) still remains. 

These unwanted features would disappear if we could 
have compactificatiori with curvature because Cf would be a rota-
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tion group in the internal space, rather than a product of 
translation groups. So & acting on a field W ; (*r

t X*) would 
both act on the internal coordinates X* and the index -i of the 
field, and the mass degeneracy between vector fields 
and scalar fields W ^ (to take a specific example) 
would be removed. The number of arbitrary parameters *Rt

- would 
also be greatly reduced. Although we have not yet investigated 
compactification with curvature in a dual model, we present in 
the next section a simple field theoretical example where it is 
seen to occur spontaneously. 
v. Spontaneous compactification with constant curvature in a 

/31/ 
simple model : Cremmer and myself ' ' have investigated a 
simple classical field theory where spontaneous compactification 
with constant curvature occurs. It has the following features 
which mimic quite well a dual model : 

- we start with a 6 dimensional world and we want to show 
that two dimensions can become compactified. 

- there is a graviton introduced by the usual Einstein action 
and the usual generally covariant couplings. 

- there is a gauge group with Yang-Mills vector bosons, chosen 
to be 0 (3) 

- there are tachyons prior to spontaneous symmetry breaking, 
namely a triplet of Higgs scalars. 
The action is just the conventional Einstein-Yang-Mills-Higgs 
action, the only peculiarity being the space-time dimension , 
but all directions being treated symmetrically in the action : 

where as usual : , K , 
u-!e = э* w a -э . цГ + e €

a b c w£ w! 

five. 

I» 

( V . l ) 

(V.2) 

V(Q*b i -MQ a Q a -F l b V0 ( v . 4 ) 

у is an adjustable constant. 
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We now look if the equations of motion derived from 
admit e solution where 
ds*= -(d*e)\(dtf • у * ^ * ? + тС(«*е\«йЧ><*<рг) (V.5) 
so that the symmetry between different space directions is broken, 
the internal space being an S a sphere and its group of invariance 
G being 0G9 . 

We find that this is the case, provided that the follow­
ing corresponding ansatzes are made for the Yang-mills and Higgs 
fields : 

^ " ° ' (V.6) 
W e -. (-S<r,*,c-s*,cO (-e- *-*) . ( v 7 ) 

W^ = (.-ылФсляв , -su$«*e,-4t».e)si. 1e(-£ 1*v)rv.8) 
Q a. ( Cos Ф л^ 6 , **" Ф S<̂ > в , Co» ©") p (V.9) 

These ansatzes are almost identical to those of ' t Hooft and 
/21/ Polyakov ' ' for magnetic monopole solutions. The only difference 

is that "O" and p are constants rather than functions of a 
radial variable. This is because the metric describes a direct 
product of two spaces. 

The constants "R 0 , *W , p and also V 0 are then deter­
mined so that the equations of motion are satisfied. One finds 
that there are two such solutions : 

а) ЛГ = О , p = * , K e - - — , V 0 - —-7.Л (v.io) 

b) 

This second solution exists only if F ^ v^TTo), 

These solutions have a global 0(3) symmetry if we do 
simultaneous rotations in © , Cy space and in the "isospin" 
space. We see also that, in both cases, R 0 comes out of the 
order of Planck's length : *R0 £. (8TTG)* e" 1 so that it 
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explains why extra dimensions (if they exist at all) are 
confined at such a small distance. Finally, we see also a relation 
emerging between the gauge group and the number of space-time 
dimensions which can be confined. A generalization shows that a 
gauge group Ofl^*1) can confine N dimensions. So in the 
Neveu-Schwarz model, this would suggest to use for instance the 
gauge group SUj, 'vi О (6) to confine 5 dimensions, while 
the 6th one could be compactified without curvature, introducing 
just one arbitrary dimensional parameter in the theory. The 
reason for this choice is somewhat technical : if the dual model 
was 9 dimensional, we could already have G * 
The ground state fermions would transform as a 4 representation 
of SU(4). Because it is 10 dimensional, the number of ground 
state fermions is doubled, and they transform as 4,4 under SUC1*). 
So, one may prefer to break Тщ down to ^ ® S О (Ч) в *J ( i) 
rather than to г^ ф О (̂ ) • Further, one can play with the 
quantization conditions on momenta in the additional cyclic di­
mension, as was done in ref. /30/ in simpler examples, to break 
bU(4) by giving different masses to states having different values 
of the quantum numbers S,V associated with SU(4) . If one calls 10 p the momentum in the 10th direction, a quantization rule 
which respects the conservation of momentum, and of the additive 
quantum numbers of SO(4j at each vertex, is simply : 

Г -R Г / (V.12) 
This quantization rule would break even the mass degene­

racy of the low-lying fermions. 
So we see that once it is understood that extra dimen­

sions can spontaneously confine themselves to a compact domain of 
the order of Planck's length, their presence can be welcomed 
and used to introduce internal symmetries. The ultimate success 
of this line of approach to construct a satisfactory theory of 
gravity will also, certainly, depend on whether or not alterna­
tive local theories of gravity will turn out to be renormaliza-
Ые. 
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О ГИПОТЕЗЕ ДУАЛЬНОСТИ В КВАНТОВОЙ ТЕОРИИ ПОЛЯ 
И.Т.Тодоров 

Институт ядерных исследований и ядерной энергетики Болгарской 
академии наук, София 

А н н о т а ц и я 

Обоармавиш один из предварительных итогов работы по кон- \ 
формно.инвариантным операторным разложениям. В рамках аксиомати- i 
ческой локальной квантовой теории поля вводится предположение о 
существовании полной системы локальных операторных полей 0«.<*) • 
Постулируется, что векторы вида <о\Q»,сч) С&^оО раскладываются 
в ряд по векторам <ol Q, оо . Из условия локальной коммутатив­
ности выводится некоторое свойство дуальности для 4-точечной (а 
отевда и для п-точечной) функции.Идеи такого типа неоднократно вы­
сказывались за последние несколько лет (в основном в рамках кон­
формной теории), но их последовательный вывод все еще находится в 
стадии доработки. В процессе этой работы,с одной стороны,была 
выявлена большая (чем первоначально предполагалось) общность идеи 
.дуальности операторных разложений, а,с другой стороны, несколько 
сузился произвол формальных спекуляций. В частности, было выяснено, 
что конформная ковариантность ядер Клебша-Гордона проявляется лишь 
для вакуумного разложения; была понята роль сходимости возникаю- \ 
щих разложений функций Вайтмана для обеспечения условия положитель­
ности. 

I. Вводные замечания 

Понятие дуальности в физике элементарных частиц было впервые 
сформулировано при изучении связи резонансного и высокоэнергети­
ческого поведения амплитуды двухчастичного рассеяния в контексте 
моделей с полюсами Редже. Модель Венециано (ом., например/*»*') f 
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строго говоря, не укладывается в рамки локальной квантовой теории 
поля. Формально аналогичная идея возникла при изучении операторных 
разложений в конформной квантовой теории поля' 5'. Дуальность в 
этс. случае является следствием локальной коммутативности и связы­
вает между собой вакуумные операторные разложения л разных каналах. 
Непосредственной связи между этими двумя ПОНЯТИЯМИ нет, так как 
в дуальных резонансных моделях речь идет об амплитудах на массо­
вой поверхности, в то время как в конформной теории асимптоти­
ческие условия (обеспечивающие интерпретацию теории в терминах 
частиц) не выполняются, и ^-матрица на массовой поверхности вооб­
ще не существует. С другой стороны, как было замечено'6> ', сво­
бодное псле с мессой тоже имеет дуальное(вакуумное) операторное 
разложение, хотя оно не является конформно инвариантным (и удов­
летворяет асимптотическому условию). Это дало основание Маку'8/ 
выдвинуть некоторый новый принцип дуальности в акоио>- ?ическом 
подходе к локачьной квантовой теории поля. Цель моьл> сообще­
ния - рассказать об этом принципе и о его обосновании в рамках 
работы по конформной теории (см.'"'). 
2. Полная система локальных операторных полей 

Рассмотрим в качестве примера теорию нейтрального бесспи-
::ового поля 1г» . Согласно постулату цикличности (см., напри­
м е р / 1 0 ' ^ векторы вида 

?^f)io> = (^+£ Jfo.it....**>4> - ^ W V . J 4 ' ° > , ( I ) 

где fe пробегает полеI комплексных чисел, а /<*,, ...,.*k) -
- всевозможные пробные функции, образующие плотное множество в 
гильбертовом пространстве Ж векторов состояний. Полиномы 

Т(ч,$) , определенные равенством (I), представляют ообой при­
мер полного набора (сглаженных) полилокальных операторов. 

•Vb сформулируем более жесткое требование существования 
полной системы локальных тензорных операторов, которое будет 
далее мотивировано примером теории свободного поля и идеей раз­
ложения операторных произведений' 1 1 - 1 3'. Введем для этой цели 
систему операторных полей: 
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где 0^'j.i" - симметрический тензор ранга -и (который обычно 
предполагается бесшпуровым); он может быть заменен еще однород­
ным полиномом степени -п от псевдоевклидового вектора J 

Г 1 . . . г ^ >% - 5 • ( 2 б ) 

Потребуем, чтобы операторы (2) обладали следующими свойствами: 
А). Поля С>, (х) удовлетворяют всем аксиомам Вайтманнг ,' 

в частности, 
AI) Пуанкаре-инвариантность: существует унитарное пред­

ставление LA*. л) группы Пуанкаре, действующее в 7С , кото­
рое оставляет вектор вакуума на месте и преобразует ковариантно 
поле О ' : 

UCM)|0>=I°>, U (Л, Л) О1(х;^0(Л,лУ^О(^х> 

А2) локальная коммутативность: Г^ 6 "* Ч»'>>3=0 
при пространственно-подобном *-у (т .е . при ( x - y j z < О ) ; 

A3) спектральное условие, из которого вытекает, что 

Ч,...,,/*..-.,Х„;Р> = le-'-VQ,^,)..- V O O^.J^O (4) 

при f0 < i r i ; 
A4) положительная определенность матрицы двухчастичных 

* у » = P ' X < ° « ^ Q ^ «**•. ( 5 ) 

Ив совместного применения условий AI), A3) и А4) и из 
естественных требований на возникающем классе обобщенных функции 
вытекает, что при любом выборе конечного набора комплексных чи-
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сел е ; эрмитова форма 4 - Z ; "r l e ' - i & z i является плотностью 
положительной лорещ-инвариантной меры не более, чем степенного 
роста (по р ) с носителем в (замкнутом) конусе 7*=\е1\?'>\^\). 

Б). Операторы (2) образуют полную систему в том смысле, что 
конечные сумки вида 

{f B^|:JC"^^-A«^i o>, ( 6 ) 

где <*> - тензорные пробные функции (опреде­
ленного класса), задают плотное множество в ^fC . 

Среди наборов, удовлетворяющих условиям А) и Б),можно 
без ограничения общности выделить класс эрмитовых полей, которые 
не могут быть представлены в виде линейной комбинации от диф­
ференциальных операторов, действующих на другие поля набора. 
Мы оудеи называть это свойство операторной независимостью. 
В частности, если <е<х> входит в набор (2), то Ц, <?<** не входит 
в этот набор. Кто и нет надобности включать в систему основных 
полей, так как, если f^fxi - вектор основных функций, то: 

где /<*>=•-(J, f <•«> - тоже основная функция и если условие полноты 
Б) выполняется для системы полей, включающей ч? и Vr <e , оно 
будет также выполняться для системы без поля S7, ф . 
3. Пример: Структура системы основных полей в теории свободного 

бесспинового поля 
В случае теории свободного поля %<> можно построить набор 

(2) из нормальных произведений производных <е . В этом случае 
операторы 0\*,%) порождают алгебру ОС (над полем веществен­
ных чисел) относительно (обычного сложения и) нормального произ­
ведения. В этой алгебре можно ввести двуйнуп градуировку: про­
странство O t k содержит все однородные полиномы степени £ 
по % , в степени к по полю <€ , и его производным. В случае 
системы полей можно задать градуировку по каждому типу поля. 
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Рассмотрим в качестве примера свободное заряженное поле 
^ О) массы ноль в 2 1 -мерном пространстве-времени: 

В этом случае алгебра ОС может быть представлена в вице прямой 
суммы подпространстг ^ - и , ^ » г Д е ^ ~ степень однородности 
по полю <€ (и его производным),a feA - степень однородности 
по <£* . Выпишем явный вид полной системы основных полей в 
секторе 

«ЭО 
ОС„ = ф ос' . 

В атом случае (из-за беэмассовости поля) можно наложить наряду с 
требованием операторной независимости еще и условие бесшпурово-
сти, которое на языке полиномов 0С*;?) записывается в виде 

а% ОС*;?) =0. ( 8 ) 

Каждый однородный полином, удовлетворявший этому условию гармо­
ничности, определяется однозначно по своим значениям на световом 
конусе 

1.2К-1 - J
 ( 9 ) 

(см., например, доказательство результата для комплексного слу­
чая, приведенного в ' ^ - Предложение 2.5). 

Рассмотрим, следуя'5', систему билокальных полей 

Оьl*i, Ч; Ъ) = Ч L' ̂ ЪЪ,ЪЪ) <П,1 *ъц ( 1 0 ) 

где Ц, - однородный полином, который выражается через поли­
ном Гпгенбауера, 
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a Kt ~ (вещественная) нормировочная постоянная. Тогда операторы 

являются сохраняющимися тензорными токами. Чтобы записать это 
свойство в терминах однородных полиномов на конусе (9), введем 
векторный оператор J =( J^ ) внутреннего дифференцирования 
па конусе, который действует на однородные полиномы степени t 
по формуле 

^ Q, 1*;У = [ \ ~ £o^S& D *] °№\ (13) 
Ъ = 2- • "г ~ ъу • 

свойство "внутренности" обеспечивается тождеством 

В терминах этого оператора закон сохранения записывается в форме 

(УЛ) Ое(»;0- 1 л 4 O^-.^Q, ( I 4 ) 

Властности, полагая £= L , ) c

1 = j ^ i i из (I0)-(I2) получаем 
оператор электромагнитного тока: 

Q(х;р= / y j » , jtn = i**<»Vr?ыу.--№,?А>-щ*'41ъ) 

при 1=2 ,*г=ксгь-1) находим оператор энергии-импульса 
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Заметим еще, что все поля полученного таким образом базиса кон­
формно ковариантны; поле О г обладает размерностью 2.к+£-2.. 
Отсюда следует свойство ортогональности полей Ор при разных 

(см. / ± 0 /) : 

<\<vb)Oejx,-hte = %ел га-^^.м. (17) 
Замечание о базисе в пространстве 6%« в случае массивного 

заряженного поля. Как отмечается Фёлкелом /7/, базис (12) вполне 
приемлем и в случае свободного поля массн уп?0 (т»е., удовлет­
воряющее (W-+- п) *(?/*)= О, вместо (7)). Это показывает, что 
условие бесшпуровости (8) может быть наложено как общее требова­
ние для тензорных полей полного набора (2). Отметим, что при 
-т, > С поля (12) не удовлетворяют закону сохранения (14). Для 
построения полной системы локальных операторов _Тг , удовлет­
воряющих (14), приходится в случае массивного свободного поля 
отказаться от требования бесшпуровости (8), оставляя в силе 
закон сохранения типа (14): 

"Токи" J0 и J можно ири этом выбрать как в (12): 

где /f W дается равенством (15), а операторы J^ при li2 
можно нормировать условием 

U% J^x^) = 4 ^ \1(.*>Х)1 1=2,3,.... Ц 8 ) 
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Это условие (вместе с (14') приводит, в частности, к "улучшенному" 
тензору энергии-импульса 

Отметим, что хотя токи \ тоже образуют полный набор, они 
не являются операторно независимыми. 

4. Вакуумное разложение произведения двух операторных полей. 
Конформное парциальное разложение 4-точечной ФУНКЦИИ 

В силу постулата полноты системы векторов (5) любой вектор 
состояния, в том числе и вектор <"о I О/.с*.,5,) (Х'ы-.М 
может быть разложен по системе векторов <с|. O ' . ' E V 

v- г ( 2 0 ) 

Умножая скалярно обе части этого равенства на Otl ( x s ; t ) ' Q ^ 
и переходя к фурье-образу по х 3 , получаем следующую систему 
уравнений для функций В: 

=1 h B,7 t̂.5x; *-**; '.§?> * £ > № • ( 2 I ) 

В частности, если выполнено условие ортогональности (17), сумма 
по I сводится к одному слагаемому и "ампутированная функция" 
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3 определяется из (21) на носителе двухточечной функции Вайтмана. 
В конформной теории, при заданных (динамических) размерно­

стях к. * <-е полей О/ (Л. - половина размерности пространства-
времени), двухточечные и трехточечные функции, в том числе и ядра 
В определяются с точностью до постоянных множителей. Напишем, 
в качестве примера, разложение вакуумного произведения двух 
элементарных конформно-инвариантных скалярных полей ^ и ч?* 
(размерностью ь + с ). Базисные поля О и ампутированные 3-то­
чечные функции В, входящие в это разложение, будем нумеровать 
парами 

характеризующими сопряженные друг другу симметрические тензорные 
представления (универсальной накрывающей) конформной группы С * ; 
здесь I =0,1,2,... - число тензорных индексов (или иначе - сте­
пень однородности полинома Oz (*'•%> по изотропному вектору 9). 
Из условия Л4) положительной определенности двухточечной функции 
следует, что cttk + l-z (так что размерность ^<-'е была 
не меньше канонической размерности z К + 1-2 сохраняющихся тен­
зоров (Ю)-(12) свободной теории), мы предполагаем, для упроще­
ния записи, что при данном X лишь одно поле 0% дает вклад в 
разложение вектора <о\ <Pr*i)¥"ViJ v В этих терминах искомое раз­
ложение имеет вид 
< о | ( е(х,) 'С% г )= иг(х,-Жг)<01 +Ео ](№*<*„**•.р><°1 Os». 
и ) J*> " " ( 2 3 ) 

где тензорные индексы величин Ъ и О , по которым производит­
ся суммирование, опущены. Вершинная функция ~Ъг может быть 
определена как целая аналитическая функция f , которая при 
пространственно-подобных л, г =*,~*i и времениподобном р имеет 
в в д Л-БЕ+С V/W,) 
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где I> * дается формулой (II), а А(Х,О _ некоторая постоян­
ная. 

двухточечная конформно-инвариантная функция Вайтмана в 
импульсном пространстве &J (Р> , соответствующая представлению 

/С , удовлетворяет условию 

иг, (?) и? Ш-С&,. О» - С &(r"> eir^ > 
г г >о ( 2 5 ) 

ufz(r> ur^ir) игг(Р)= I ЬГХ(Г> . <-
Нормировку поля С^ можно ограничить таким образом, чтобы С 
равнялось I. (Ото свойство сохраняется, если умножить Ог на 

а4 (а >о )). 
Из разложения (23) комплексным сопряжением и заменой 

t ^ » , , **£=•*) получаем 

f.-C 

(черта означает комплексное сопряжение и мы воспользовались ус­
ловием эрмитовости для полей О (*•> ) . Умножая скадярно по­
членно равенства (23) и (26) и принимая во внимание, что 

< 0Y <f> Ог (%)>„ ~(2^В(рг%)1<гх (?>, (27) 

(28) 

находим 
<<tixx)v*(xj <е«ч)1е*(хч))> - иге*,-**) ьго,3-хч)+ 

Разложение типа (28) выводится в рамках конформной кван­
товой теории поля v3/"5' •' ' ) . Важно отметить, что оно схо­
дится (если вообще имеет место хотя бы как асимптотическое 
разложение на малых расстояниях), так как оно совпадает с разло­
жением по парциальным волнам по отношению к (универсальной накрыва­
ющей) конформной группе С в пространстве Шшковского (другими 
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словами, оно сводится к разложению унитарного представления 
на неприводимые составляйте (см/ * ' ) . Выдвигаются сообра­
жения' ', что такое свойство сходимости останется справедлишм и 
в общем случае как следствие условий спектральности и положитель­
ной определенности 4-точечной функции, т.е. условием 

| ..(Л,-- •**« ^(»г,х,х<е(у,)<е"сх1)^,)<е'-(х1,)У0 Р(*,.х*)>о (29) 
при любом выборе пробной функции т- . 

Заметим, что мы не случайно написали разложение (20) 
((23), (26)) не в операторной форме, а лишь после применения 
к вектору вакуума. Это требовалось не только для справедливости 
нашего вывода. Как было показано в ; конформная инвариантность 
коэффициентов В имеет место лишь для вакуумного разложения (дана 
в простейшем случае разложения произведения свободных полей). 

5. Свойстве дуальности как следствие локальной коммутативности 

Рассмотрим четырехточечную функцию (28) в области, где 
все разности аргументов х;- = Х;-х- пространственно-поцобны. 
Тогда из условия локальной коммутативности вытекает, что можно 
поменять местами аргументы х г и х ч в представлении (28) и 
прийти к соотношению дуального типа: 
«for.-xoarfrj-x») + -g Qjf}<g*(^Xi. ? ) ^ ( f ) - % \ K}. p ) = 

(30) 
e=o 

ДЛЯ xjj <0 , X3i ^O , x,%<0. 
Свойство такого типа имеет место в любой теории с полным 

набором локальных операторов. Оно обобщается очевидным образом 
и на п -точечную функцию. При этом интересно, что для обеспе­
чения локальности п -точечной функции достаточно иметь свойство 
типа (30) для четырехточечной функции от произвольных тензорных 
полей (из полного набора). 

Рассмотрим для простоты теорию нейтрального скалярного 
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поля и предположим, что справедливо соотношение 

,о( , ; *,,<х,-»Р) = 
JM Г • ( 3 1 ) 

при хД < 0. 
Здесь or - (i«; f1'. ••• /*-Л - краткое обозначение набора, всех 
индексов поля О ; тензорные индексы, соответствующие третьему 
аргументу функций В и функций иг'к , по которым производится сум­
мирование, опущены. Запшпем -п.-точечную функцию (•»>*) произволь­
ных полей О в виде 

+ZjW>B'cx l l <x f ; -•.>'-.*-.-.p)j«r J kft-)BVx 1 1*.; .•*..., -w. r ) . <32) 

где 
« ^ = Х I-Inj^V^J 

(33) 

Пользуясь условием эрми.'овости и/гк,.-»,-, *,,*,-, >,,•<,)= wfx,.»».*,..*.-,».,*,) 
и локальности, можно показать, что правая часть (32) не зависит 
от выбора т.Более того,из (31-33) и из гипотез А) и Б) относитель­
но полного набора следуют все аксиомы Вайтмана, в том числе поло­
жительная определенность и локальная коммутативность для -п -то­
чечной функции (см.' 8'). 

Конформная теория характеризуется тем, что в ней известны 
все двухточечные и трехточечные функции, с точностью до множите­
лей, зависящих лишь от размерностей полей. Возникает заманчивая 
задача- определить эти размерности и постоянные множители таким 
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образом, чтобы удовлетворялось условие дуальности (31). Это озна­
чало бы построение (может быть нетривиального!) примера, локальной 
квантовой теории поля. Когда решение задачи дает так много, не­
удивительно, что его пока не удается найти. Поэтому нам представ­
ляется интересным изучение (хотя бы тривиальных) точно решаемых мо­
делей с этой точки зрения. 
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1 1 vi. 

Кварковые модели прошенных частиц 
QUARK MODELS 

OF EXTENDED PARTICLES 



ДИНАМИКА СОСТАВНЫХ МОДЕЛЕЙ АДРОНОВ 
А. Г.Филиппов 

Объединенный институт ядерных исследований,Дубна 

Развитие динамики составных моделей адронов начинается 
с известной работы Ферми и Яага, опубликованной в 1949 г. и 
воспринятой современниками весьма прохладно. Позднее, под впе­
чатлением увеличения числа элементарных частиц модели, в кото­
рых все адроны строятся из протона, нейтрона и Л -гиперона 
(С.Саката, М.А.марков и др.), стали казаться более привлекатель­
ными. 

Современные адроны "состоят" из кварков. Существенно но­
вым элементом модели кварков по сравнению с первыми составными 
моделями адронов является то, что барионы строятся из трох 
кварков. 

"Три кварка" изобретены Дж.Джойсом в 1939 г. Понадобилось 
25 лет, чтобы "понять" роль кварков в физике элементарных частиц. 
Это сделали в 1964 г. Цвейг и Гелл-Манн. К сожалению, Цвейг 
назвал кварки "тузами", и, вероятно, по этой причине его очень 
интересная работа, не потерявшая значения до сих пор, осталась 
неопубликованной и не получила известности, которой она по праву 
заслуживает. К счастью, впоследствии выяснилось (Глэшоу с сотр.), 
что для построения непротиворечивой теории слабого взаимодейст­
вия желательно ввести четвертый кварк. Таким образо?л, кварки по 
справедливости следовало бы называть тузами. Большинство пред­
почло, однако, сохранить слово "кварк", и поэтому четвертый 
пришлось назвать "очарованным" (на наш взгляд, удобно было бы 
в этом случае употреблять слово "квартки" или "квартики"). йце 
раньше число кварков было утроено, когда Н.Н.Боголюбов с сот­
рудниками, а также Намбу и Хан для преодоления противоречий со 
статистикой кварков ввели новую степень свобода, которую теперь 
принято называть "цветом". Оказалось, что введение цвета позво-
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ляет успешно разрешить другие парадоксы модели кварков.Поэтому 
использование цвета кварков и квартков представляется сегодня 
почти неизбежным, "Когда же . . . я установил со всей ясностью 
это трехцикловое. лвенаддатичленное истинное знание об этих че­
тырех благородных истинах, тогда . . . возникло у меня зрение и 
знание; непоколебимо просветление коего сознания" ( с м . ' 1 ' , где 
можно найти дальнейшие подробности о четырех благородных истинах, 
в частности, о благом восьмеричном пути). 

Последние экспериментальные данные о новых частицах 
("джипеионах" или джипси-частицах), о двумюонных и электроно-
мюонных событиях вызывают подозрения, что кварков монет оказаться 
еще больше, может быть, бесконечно много. Все это открывает но­
вые горизонты и вызывает вполне естественное воодушевление. Од­
нако попытки анализа новых явлений на языке привычной кварковой 
модели, которой уже более десяти лет от роду, вскрыли несколько 
недодуманных и недоделанных черт этой модели. Все эти недодумки 
и недоделки относятся к проблемам динамики кварков. Здесь мы 
не будем сколько-нибудь подробно обсуждать эти проблемы в связи 
с новыми частицами, ограничившись обычными ацронами. Основные 
вопросы, ответы на которые необходима для понимания джипеионов 
как связанных состояний очарованных и цветных кварков, можно 
сформулировать, оставаясь на более надежной почве обычных адронов. 

Так как кварки пока не открыты и остаются "вещью в себе", 
их можно наделять, не рискуя впасть в противоречие с опытом, мно­
гочисленными свойствами, которые позволяют объяснять наблюдаемые 
явления и выражаются некоторыми прилагательными к слову„кварк" 
В просторечии тонкости обычно не учитываются, и кварк называют 
просто кварком^ а~ u, J, s .c , . . . ) . При этом подразумеваются "обыч­
ные" кварки с дробным зарядом , обладающие спином 1/2, но не 
подчиняющиеся статистике Ферми. Кварки имеют очень малые собствен­
ные размеры ( ~ 0.1 ГэВ- ) и движутся внутри адрона, размер кото­
рого ~5 ГэВ . Поэтому можно считать их почти свободными и слабо 
взаимодействующими друг с другом. Можно, с другой стороны, 
представлять себе, что кварки связаны упругими пружинками ("гду-
онами"), которые не позволяют им удаляться на большие расстояния 
друг от друга. При этом пружинки связывают лишь состояния <з и 

5 или QQQ . Пружинки примерно одинаковы для всех кварков, 
а массы кварков отличаются. При достаточно простых и естественных 
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предположениях о взаимодействиях кварков с электромагнитными 
и слабыми токами и об их взаимодействии друг с другом, эти наив­
ные представления позволили качественно, а во многих случаях 
и количественно понять удивительно много фактов физики ацронов. 

Особенно удачной оказалась модель квазинезависимых квар­
ков (Дубненский "мешок" с кварками), предложенная Н.Н.Боголюбо­
вым с сотрудникам!/ '. Согласно этой модели, кварки , обладающие 
очень большой массой, движутся почти свободно в очень сильном 
самосогласованном поле, которое почти начисто "съедает" их 
массу. В окончательные ответы входит поэтому всегда только эф­
фективная масса кварков, которая оказывается малой, а кварки 
в свободном состоянии не появляются. На основе таких представ­
лений были рассчитаны электромагнитные и слабые распады и форм-
факторы адронов. Результаты оказались в гораздо лучшем согласии 
с экспериментальными данными, чем расчеты, основанные на. исполь­
зовании статической SIW-симметрии. Это связано с тем, что в 
модели квазинезависимых кварков были аккуратно учтены реляти­
вистские эффекты, которые изменяют некоторые предсказания стати­
ческой S<J(&)-симметрии. Модель квазинезависимых кварков была 
существенно развита в работах П.Н.Боголюбова. Ему, в част­
ности, удалось получить хорошо согласующиеся с экспериментом зна­
чения масс возбужденных состояний барионов, магнитных моментов 
барионов /VM*. ; < W G , , < Ч . 1 > , . Л . . 

Недавно были предприняты попытки развить в различных 
направлениях идеи модели Дубненского "мешка". В модели Ыассачу-
зетского "мешка" в ограниченной области пространства вводится 
постоянная объемная плотность энергии в (внешнее давление), 
позволяющая удерживать кварки и глуоны внутри "мешка". Наличие 
этой энергии не позволяет "мешку" быть ни слишком большим, ни 
слишком малым (средний размер "мешка" - (ву'^ ). Вели зафикси­
ровать размер адрона, то модель Массачузетского мешка по су­
ществу сводится к Дубненской модели и при использовании ряда 
предположений, позволяющих провести вычисления, приводит к тем 
же количественным результатам для масс _, Уг , / * „ , <**/Gv и <г а>,, л. 
(Это более подробно обсуждается в докладе Л.Н.Боголюбова на 
данной конференции, см. также его обзор' 3'). Проблема учета 
движений поверхности мешка пока не решена и представляет серьезные 
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трудности. Для их преодоления предлагается ввести еще поверх­
ностное натяжение "мешка" (эластичная"шкура"адрона). При этом 
получается Будапештски! "мешок", обсуждаемый на этой конференции 
в докладе Ю.Кути. Серьезная нерешенная проблема этой модели -
- возможность сильного взаимодействия "шкуры" с кварками, что 
может привести к рождению большого числа пар кварков и анти­
кварков внутри мешка. 

Интересным новым моментом Массачузетской модели являет­
ся возможность рассмотрения сильно возбужденных состояний адронов. 
Оказывается'4', что плотность распределения уровней энергии ад­
ронов должна экспоненциально расти с ростом массы, а среднее 
значение спина адронов растет при этом почти линейно. Такое 
поведение характерно для статистических и дуальных моделей ад­
ронов и порождает надежду на возможность объяснения происхождения 
сил, удериивадцих кварки внутри ацрона в самосогласованной моде­
ли: кварки 
^связываются силами, порождаемыми обменом резонансных состояний, 
которые, в свою очередь, состоят из кварков, 
-которые... 
Надежда эта основана на том обстоятельстве, что обмен резо­
нансными состояниями с экспоненциально растущим спектром масс 
порождает потенциал взаимодействия "мешочного" типа, и слабо 
возбужденные состояния адронов можно описывать в рамках Дубнен-
ской модели (см. предпоследний раздел данного доклада). 

Массачузетский мешок, очевидно, является нелокальным 
объектом и не может быть непосредственно описан в терминах ло­
кальных квантовых теорий поля. Тем не менее нечто подобное 
„мешкам"можно получить и в локальных теориях поля, если использо­
вать "солитонные" решения классических нелинейных уравнений тео­
рии поляг '. Другая возможность использования локальной теории 
поля реализуется в модели так называемого Стэнфордского мешка' . 
В этой модели, подобно Дубненской, кварки имеют очень большую 
затравочную массу, которая почти нацело "съедается" сильным 
притяжением между кварками (глубокая скалярная потенциальная 
яма). Глубина ямы и затравочная масса кварка приблизительно 
равны, т.к. имеют общую природу - они возникают за счет спонтан­
ного нарушения симметрии вакуума. Для волновых функций кварков, 
однако, получается несколько неожиданный результат: вместо того, 

322 



чтобы свободно двигаться внутри мешка, кварки скапливаются у 
его стенок. По этой причине некоторые предсказания Стэнфордской 
модели оказываются совершенно неудовлетворительными (например, 
отношение 6л /&* примерно в два раза меньше экспериментального 
значения). 

Одна из наиболее трудных проблем всех описанных моделей 
мешков - вычисление вероятностей чисто адронных процессов (распа­
ды Л-* В + С , рассеяние ^ + B - * O D и т.п.). В случае переходов 
А-*&+-*' или /А-̂  В + (I &t) , определяющихся матричными эле­
ментами <B/3fM |А>, < Ы Зи,1 А > ,были оазработаны достаточно 
простые и эффективные методы (смУ '" ' ) , позволяющие вычис­
лять динамические моменты локальных токов Эсм, 3* между состоя­
ниями адронов, составленных из кварков. При этом кварковые волно­
вые функции могут описываться с помощью квазипотенциалышх урав­
нений Логунова-Тавхелидзе или других релятивистских уравнении 
для связанных состояний. Пользуясь этими методами и соотношениями 
РСАС, можно попытаться вычислить процессы А -> 6 +- тг , выражая их 
через матричные элементы <В/ J w (А) .На таком пути удалось по­
лучить некоторые интересные результаты, однако последовательной 
схемы расчета даже простейших адронных процессов и процессов Д-> 

-*&К, А-> B ( ^ I ) с cfy или %\v , существенно отличными от нуля, 
построить пока не удалось. Подробное обсуждение успехов и труд­
ностей описываемого подхода можно найти в работах ' . 

На наш взгляд, наиболее существенная трудность связана 
как раз с наиболее сильной стороной таких методов. Вес они основа­
ны на SU(6)-симметрии, хорошо воспроизводя ее удачные предска­
зания и исправляя неудачные. Однако при этом отодвигается на вто­
рой план приближенная киральная SL,'(3) R X. Sui3)i (или 
SI/(2)R* 4U(2)L ) симметрия взаимодействий адронов и, в част­

ности, РСАС. Как становится сейчас все более ясным, именно понима­
ние реализации этих симметрии может привести к выяснению природы 
происхождения масс кварков и загадочных аномалий в спектре масс 
и распадов псевдоскалярных мезонов (один из возможных подходов 
к этим проблемам обсуждается ниже). 

Особенно ясно характер проблем, о которых идет речь, 
проявляется в паллиативном полуфеноменологическом подходе к рас­
чету процессов А - * В у, А -» Втг , основанном на так называемом 
"преобразовании Ыелоша" (см., например/ 9* 1 0'). Основная идея 

323 



этого подхода состоит в том, что при использовании SU(k)-cm:-
кетрии (точнее, ЬСЧСОк, или киральных симметрии поля кварков, 
входящих в токи, ("токовые" кварки) нельзя отождествлять с поляг.™ 
кварков, образующих наблюдаегате адрош ("структурные" кварки). 
В случае свободных кварков удается построить унитарное преобра­
зование V , связывающее структурные и токовые кварки и , 
соответственно, SiJ(6)w -генераторы Wa , действующие на токовые 
кварки, связаны с генераторами И4. преобразования структурных 
кварков соотношение:.: W, = V F„, V ~1 . Для вычисления перехо­
дов нам нацо знать <8 t r P | } k I A„f>. где |Ао Г Р > и | В<^ 
преобразуются но неприводимым представлениям SU(6)>v «тр с г е ~ 
нераторами W* . ЕЬли известно выражение для у , то этот 
матричный уле.-.ент можно записать в виде < В Г 0 К | v 1 3W v\ Аг°к>, 
где теперь |Ато«) и |6г»к) преобразуются генераторами F« 
грушш bVib)w,ток »о тег.'же представлениям , что \АсГП>, I Sc-p>. 
В случае свободных кварков гажно найти V в явном виде (это и 
есть "преобразование Мелоша", фактически эквивалентное давно 
известному преобразованию Прайса-Тани-Фолди-Вутуйсена или ПТФВ 

(см/ ' ) . В случае взаимодействующих кварков явный виц этого 
преобразования неизвестен, и вообще не ясно, можно ли его 
построить. Однако для целей феноменологического анализа предпо­
лагается, что V'Sw V преобразуется под действием bOU>)WiTOK 

так же, как и в свободном случае. Эта гипотеза удивительно хорошо 
"сработала", позволив выразить через небольшое число параметров 
большое количество экспериментальных данных по распадам А-»Втг '°' 
(Матричные элементы <Вгек1 ^ " 1 3 № VI Аг<>к}> выражаются через коэф­
фициенты Кпебша-Гордона и небольшое число параметров, что позво­
ляет связать реакции с А и В, принадлежащим определенным мульти-
плетам bU(6) w ) . 

Несмотря на успехи этого подхода, нетрудно понять, что с 
теоретической точки зрения он ведет в тупик. Сама необходимость 
различать структурные и токовые кварки связана с тем, что мы 
исключили взаимодействие кварков, а хотим учесть возможность из­
менения, скажем, полного орбитального момента кварков в процессе 

А - > В +тт • Обращаясь к результатам П.Н.Боголюбова, полу­
ченным в модели квазинезависимых кварков ' 3 ' , щ видим, что такое 
изменение состояний кварков происходит автоматически, и это 
обусловило улучшение предсказаний ^0(6) для д , w™ , &*/Gv 

и т .п . 

324 



Примерно также обстоит дело и в релятивистских моделях 
кварков, связаннкх осцилляторшм "потенциалом"^ * '. Таким об­
разом, в более реалистических моделях взаимодействия кварков 
различать структурные и токовые кварки не нужно, но зато необхо­
димо научиться вычислять волновые функции кварков, т.е. детально 
задавать динамику их взаимодействия. И случае достаточно 
простых уравнений и потенциалов это, вероятно, возможно, хотя и 
не просто. С другой стороны, в феноменологическом подходе вообще 
нет места для киральных симметрии и РСАС, тогда как в реалисти­
ческую модель эти симметрии, как мы покажем ниже, вполне можно 
"вписать" (подобные идеи высказывались ранее' ', но не били 
достаточно полно разработаны). Наконец, при феноменологическом 
подходе наиболее удачные предсказания модели квазинезависимых 
кварков^ ' ( fAr, jun , GA / Gv ) воспроизвести не удает-
ся'Э, 1 0'. •дсе а т о заставляет смотреть на феноменологическую мо­
дель как на временный мост между динамикой кварков и эмпирической 
реальностью, построенннй на довольно ненадежных опорах. Даль­
нейший прогресс может исходить лишь из более полного развития 
динамики, основы которой заложены давно и достаточно прочно. 

В этом кратком обзоре успехов и проблем динамики кварков 
мы не имели возможности остановиться на других современных идеях, 
которые либо связаны с существенно новым формализмом описания 
связанных состояний кварков ("дуальные струны") , либо с уве­
личением их числа. 

В последнее время к четырем кваркам пытаются добавить 
пятый ("квинтики") и шестой ("секстики"), вводя "ароматы" кварков. 
Многие из этих идей обсуждаются в других докладах на этой конфе­
ренции, мы оставляем все эти увлекательные возможности в стороне 
и, употребляя слово„кварк!' будем подразумевать три триплета квар­
ков, отличающихся цветом и связанных силами, которые мы сначала 
не будем пытаться описывать более детально. Величина заряда 
кварков для дальнейшего не очень существенна, так как мы почти не 
касаемся электромагнитных взаимодействий адронов. С учетом цвет­
ной степени свободы наши кварки подчиняются статистике Ферми. 

Прежде чем переходить к основному содержанию этой работы, 
сфориулируем некоторые "детские" вопросы - "как" и "почему" 
кварковых моделей. Окончательные ответы на эти вопросы пока не 
известны, и наша цель — лишь показать , что на эти вопросы 
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|.:ог.ут существовать разумные ответы, и они не относятся к 
категории вопросов, о которцх говорят: "На идиотский вопрос 
ответ монет быть только идиотским". 

Вот некоторые из этих вопросов. I . Почему есть QQ и 
QGQ и нет экзотических конфигурации, таких как QQQ(OQ) ? 

2. Почему нет экзотических квантовых чисел ^pt у системы QQ. ? 
3. Какими уравнениями описывать связанные состояния кварков? 
4. Почему кварки кажутся нам свободными внутри адрона и появляют­
ся в свободном состоянии лишь в конфигурациях QQ , QQQ ? 
5. Какие силы связывают кварки внутри ацрона? Как узнать что-либо 
о природе этих сил из опыта? 6. Почему траектории Редже адронов 
растут? Почему их наклон универсален? 7. Какова масса кварков? 
В. Почеку есть ЬиИ-си.метрия? Почему она нарушена? Э. Почему 
есть киральная симметрия? Почеку есть частичное сохранение ак­
сиального тока? Почему и как эти симметрии нарушены? 10. Почему 
псевдоскалярные мезоны резко отличаются от векторных и тензор­
ных мезонов? Как получать соотношения между массами адронов? 
Как описывать смешивание состоянии адронов с одинаковыми кван­
товыми числами? Почему оно возникает? I I . Почему адроны можно 
классифицировать по представлениям статической группы ь'^б.) •* 
х b'a (1-) * 0 (3) L или Ь1)(Ь) х 0^1 ? Почему есть(56 ,L « т н . ) 
и(70 , L нечетн \ , нет 20_ и др. 12. Почему в некоторых слу­
чаях bU(&) w дает успешные предсказания для двухчастичных 
распадов? Почеку удается исправить неудачные предсказания ^uCQw 
с помощью "преобразования Мелоша"? Каков его смысл? 

Возможность ответа на вопрос Jf I обычно связывается с поня­
тие!." цвета кварков. Используя цветные глуони, можно устроить та­
кой г.'.ир, в котором существует ответ не только на этот вопрос, 
но и ответы на вопросы 4,5. Однако это мало помогает пониманию 
остальных вопросов. Поэтому мы в дальнейшем забудем о первом 
вопросе и будем проявлять почти полную цветовую слепоту. Практи­
чески во всем, что обсуждается ниже, цвет кварков учесть легко. 

Ответ на второй вопрос, на первый взгляд, тривиален - в 
нерелятивистской кварковой модели экзотические значения 3 Р С 

просто не появляются. Но вправе ли мы пользоваться нерелятивистс­
кой моделью для описания мезонных состояний? Очевидно, нет 
( с м / • ' и предыдущую дискуссию). Нэли все же попытаться описы-
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вать псевдоскалярные и векторные мезоны нерелятивистскими волно­
выми функциями, мы получим совершенно несообразные результаты 
для процессов, в которых кварки аннигилируют: Р -гр\>, ?-*Xf. 
М •* X-г е.*е~ (парадокс Матвеева, Струминского, Тавхслицзе, Ван-
Ройена и Вайскопфа' ' ) . Итак, связанные состояния Q и Q не­
обходимо описывать релятивистской волновой функцией. Но в этом 
случае мы должны знать ответ на вопрос № 3. Если использовать 
уравнения Бете-Солпитера, то ответ на ВОПРОС № 2 становится про­
блематичным, т.к. это уравнение допускает состояния с аномаль­
ными значениями " } к . Правда, обычно такие состояния имеют 
отрицательную норму, и их нельзя сопоставить частицам. Очевидно, 
однако, что появление состояний с отрицательной нормой лишь 
"увеличивает скорбь", и нужно искать какой-то другой выход. 
Он состоит в том, что релятивистские волновые функции, соответст­
вующие пространственно-подобным относительным координатам частиц, 
имеют хорошую физическую интерпретацию: нет состояний с отрица­
тельной нормой и классификация частиц такая же, как в нереля­
тивистском случае. Уравнения, которым подчиняются такие волно­
вые функции, называются квазилотенциальныш и их систематичес­
кое использование началось после того, как в работе А.А.Логунова 
и А.Н.Тавхелидзе' J' был сформулирован квазипотенциальный подход 
к квантовой теории поля. (Обзор развития и применения этого подхо­
да см. в' ' ) . Следует различать два типа квазипотенциальных 
уравнений. В одном случае такие уравнения непосредственно выводят­
ся из основных уравнений квантовой теории поля, и соответствую­
щий квазипотенциал, определяющий динамику двухчастичных реакций, 
мояно выразить через функции Грина. В уравнениях второго типа 
квазипотенциал подбирается таким образом, чтобы с наибольшей 
возможной точностью воспроизвести двухчастичную амплитуду рас­
сеянии на массовой оболочке. Уравнения первого типа строятся 
однозначно, но оказываются весьма сложными. (Они в основном 
использовались для расчетов электродинамических поправок к свя­
занным состояниям ' ) , Уравнения второго типа с "локальным" 
квазипотенциалом имеют гораздо более широкую область приложений 
и,в частности, широко применялись для расчета релятивистских 
связанных состояний, траекторий Редке и т.д. ( с м / 1 5 , 1 ', обзор 
применений квазипотенциальных уравнений к задаче о взаимодейст­
вии двух нуклонов см. в ' ) . Локальный квазшютенциал и соот-
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ветствующее уравнение очевидно, не определяются однозначно, и 
поэтому существуют различные модификации оригинального уравне­
ния Логунова-Талхелидзз (уравнения В.Г.Кадышевского, И.Т.Тоцоро-
ва и др.) . Недавно в работах А.А.Логунова, О.А.Хрусталева и др. 
(см/ ' ) было предложено очень интересное обобщение уравнений 
"локального" типа, позволяющее учитывать в квазипотенциальных 
уравнениях вклад многочастичшх состояний. JTH уравнения, бе­
зусловно, найдут широкое применение при изучении сильно возбук-
денннх состояний адронов, когда многочастичными эффектами пре­
небрегать нельзя:. 

В заключение этого краткого обсуждения проблемы выбора 
уравнения для описания связанных состояний кварков отметим, 
что наиболее удачной формулировкой представляется сегодня квази­
потенциальное уравнение в системе бесконечного полного импульса 
частицы' ' , или, что то же самое, в переменных светового фронта 
(такое уравнение используется, в частности, М.В.Терентьевым, 
доклад на этой конференции). Хотя в принципе вопрос о выборе 
уравнения решается в пользу квазипотенциальных уравнений, мы 
в дальнейшем изложении займем несколько "оппортунистическую!' или, 
если угодно, прагматическую позицию, используя для описания ре­
лятивистских связанных состояний QQ уравнения Бете-Солпитера, 
но забывая об экзотических состояниях и состояниях с неположи­
тельной нормой. При этом, конечно, нельзя претендовать на после­
довательное описание связанных состояний кварков и необходимо 
помнить об области применимости такого подхода. Причина этого 
заключается в том, что нам понадобится одновременно рассматривать 
уравнения для связанного состояния QQ и уравнения для пропа-
гаторов кварков. В подходе, основанном на уравнениях Швингера-
Дайсона, имеется хорошо известная и изученная связь между этими 
уравнениями (см. ниже). Соотношение между квазипотенциалом и 
одночастичным пропагатором неизвестно. Поэтому мы будем перехо­
дить к квазипотенциальным волновым функциям лишь на последнем 
этапе, при физической интерпретации Б.-С. волновых функций. Отме­
тим, что указанная связь нужна нам лишь при исследовании псевдо­
скалярных сильно связанных состояний QQ . Для описания других 
состояний мезонов (векторных, аксиальных, тензорных и т .д . ) и 
барионов лучше пользоваться квазипотенциальными уравнениями. 

Уравнение Бете-Солпитера для QQ. в диаграммном вице 
выглядит так (см.,например/ ' ) : 
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p-f-^-ff 
Здесь 8 - связатшое состояние кварка Q и антикварка Q , 
а V - ядро уравнения, которое ш называем "потенциалом". Вер­
шинная функция Г связана с волновой функцией Б.-С. X. соотно­
шением 

Ы?) = < П р - | ) г ( г < к ^ ^ г Л 
где S - точный пропагатор кварков 

Напомним, что 

Уравнения для Г и Д однородны и определяют эти функции с 
точностью до произвольного нормировочного множителя, который можно 
зафиксировать некоторым билинейным условием нормировки. Проще 
всего получить это условие из уравнения для двухчастичной функции 
Грина кварка и антикварка 

G * G.+G.VG = Go + GVG.. 

(Здесь & -точная двухчастичная функция Грина, a G0 - свободная 
? .даци Грина, равная 5(р-"-|-)в ^ ( р - % ) )• Отсюда следует, 
к.о 

(1 -&.V)G = G0 = QH-V&.\ 

т.е. R = &;' - V , 
RG = (G;,-V)& = 1 - G(G;'-V) = GR. 
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Таким образом, 

Это - искомое билинейное уравнение для G . Выделим в G 
полюс, соответствующий связанному состоянию 

(агЛ(* г-Мв) 

и полюс, относящийся к состоянию с положительной энергией Е е = 

Разложив R по степеням (^о-Е-вЗ 

R « R | + (К . -Б В ) 4 Ы К _ с 

из тождества & = GRG получим 

0 1 - п - f 7 ^ У - ? „ _ ! _ v £ ^ * „ = 2км.. 

В более подробной записи это условие нормировки выглядит так: 

Здесь Wpi'),»'') - ядро уравнения Б.-С., так что 

Г(Р,к) = \л\тч,,ь)Щ-1£)г<ь*)Чч+%). 
Уравнение для £ легко получить из этого уравнения и условия свя­
зи X и Г . Заметим, что таким же способом можно получить 
условие нормировки для квазипотенциальной волновой функции/ Л 
Выпишем также общий вид Б.-С. волновой функции для псевдоскаляр­
ных мезонов: 

330 



где используется стандартное представление для Y -матриц 

y.-(i-°l). * Ч ° Л ) , ^-( i° j ) . 
Инвариантность относительно преобразований f я С дает соот­
ношения 

где р = (р С / - р ),. С у/ С ~1 = - Х> 

Всли С в = + 1 , то Z - четная функция переменной (кр) . 
Вели £ ь = -1 , то рс -нечетная функция этой переменной. 

Состояния с £„=. -i экзотические, и в общем случае их появление 
неизбежно. Вели, однако, для волновой функции выполнено условие 
Маркова-Юкавы (крЗ = 0 , то очевидно, что экзотическое состояние 
не возникает. В релятивистском пределе это условие выполнено,что 
и объясняет исчезновение экзотики. Это же условие обычно содержит­
ся в уравнениях квазипотенциального подхода (см/ ' " ' ) , и оно 
автоматически "истребляет" экзотические и "призрачные" состояния. 
Механизм исчезновения аномальных состояний в уравнениях "свето­
вого фронта" внешне выглядит несколько иным, но суть дела та 
же: избавляясь от лишней переменной (относительное время кварка 
и антикварка), мы одновременно избавляемся и от всех патологий 
релятивистского уравнения для связанных состояний. 

На этом мы оставим пока обсуждение вопросов 1-3, забудем 
на время о вопросах 4-6, связанных с выбором потенциала V , и 
обратимся к вопросам 7-10. Для ответа на них необходимо рассмот­
реть уравнения для пропагаторов кварков. 

Чтобы получить такие уравнения, предположим, что потенци­
ал У локален, т.е. что V{p,%k k ) = /(;p-<j?, к 2). Тогда этот 
потенциал можно считать неким обобщенным пропагатором (суперпропага-
тором), и простейшее уравнение для пропагаторов кварков в диаграм­
мном виде можно представить так; 
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vCfp-"}/) 
S 
—#-

Ясно, что это уравнение - приближенное. В следующем приближении 
можно было бы попытаться учесть поправки к вершине QQV и к 
пропагатору 

Первое приближение соответствует часто применяемому в квантовой 
статистике приближению самосогласованного поля. Уравнение для 
связанных состояний кварков и антикварков тесно связано с урав­
нением для пропагаторов кварков. Действительно, если считать мас­
совый оператор кварков ГП функционалом пропагатора S • то 
ядро уравнения Б.-С. равно 

V = &П\ /6S , 
в чем можно убедиться совершенно непосредственно. Именно ради 
сохранения этой связи мы и пошли по "оппортунистическому" пути 
использования уравнения Б.-С. Можно надеяться, что при достаточ­
но удачном выборе потенциала учет поправок к вершине QQ V и 
к глуонному пропагатору V не приведет к принципиальному изме­
нению теории, что и позволит в дальнейшем оправдать использование 
приближения самосогласованного поля. Напомним, что именно такая 
удача случилась в теории сверхпроводимости, где при достаточно 
простом выборе потенциала уравнения самосогласованного поля поз­
волили не только качественно, но и количественно описать широкий 
круг явлений' '. Наш подход к происхождению масс кварков и к 
объяснению нарушений симметрии основан на аналогии с теорией 
сверхпроводимости, и мы надеемся, что удача может также повто­
риться. Идея о такой аналогии впервые высказана в работах . 
Используеиые нами уравнения для пропагатора кварка чрезвычайно 
похожи на уравнения для фермионного пропагатора в теории сверх­
проводимости в форме Намбу и Эяиашберга и ранее использовались 
в электродинамике электронов с *"„=0 ' 2 4*, Более глубокий под­
ход основывается на канонической преобразовании и уравнениях 
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Н.Н.Боголюбова. Этот подход будет нами использован при обсуждении 
соотношения между "структурными" и "токовыми" кварками. 

В аналитическом виде наше уравнение для пропагаторов квар­
ков можно записать так: 

Здесь 'э(р) - матриц?, не только по спиновым, но и по унитарным 
индексам, так что пропагатор 5 описывает сразу три кварка. Мы 
предполагаем, что затравочная масса всех кварков строго равна нулю 
и что взаимодействие УСУ- инвариантно: 

/ . з Л„ + 8 / Д * < Ло" ( Н ? ) ' ^" м а т р щ ы Гелл-Манна-
Мы будем искать решение этих уравнения,соответствующих ненулевым и, 
вообще говоря, не равным массам кварков. Удобно поэтому ввести 
проекционные операторы на состояния и, cl кварков и 4 кварка 

и,соответственно,пропагаторы и,Л кварков и s кварка: S, и 
$ г . Тогда S = % S< 1- % S i , S ' , ' 9 i S , - ' + ? 2SJ* . Нетрудно 

проверить, что g . 

Уравнение для пропагаторов кварков, как и уравнения для 
связанных состояний кварков удобно изучать в евклидовском прост­
ранстве-времени. Бели потенциал несингулярен, то такой переход 
обычно можно достаточно строго обосновать ("Ваковское вращение"). 
Б случае сингулярных потенциалов функции Грина и волновые функ­
ции обычно имеют существенную особенность при бесконечно большом 
значении импульса, в силу чего уравнения в евклидовском прост­
ранстве и в псевдоевклидовском пространстве оказываются не экви­
валентными. В частности, псевдоевклидовы уравнения обычно не имев? 
решения, так как мнише части пропагаторов быстро растут при неог­
раниченном росте импульса во вренениподобноы направлении. Тем 
не менее, евклидовские уравнения могут иметь хорошо определенное 
и единственное решение. Их смысл можно понять следующим образом. 
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Рассмотрим для определенности пропагатор. Его мнимая часть однознач­
но определена в очень широком классе неперенормируемых и нелокаль­
ных теорий поля. Дисперсионный метод позволяет восстановить ве­
щественную часть. В ренормируемых теориях вещественная часть оп­
ределяется с точностью до конечного числа произвольных постоянных, 
в неренормируемых теориях число постоянных произвольно велико. 
Аналитическое продолжение решений евклицовских уравнений в псевдоев­
клидову область однозначно определяет эти константы так, что функ­
ция Грина оказывается в определенном смысле наименее сингулярной 
при больших значениях импульсов. В частности, требование сущест­
вования решения евклидовского уравнения означает, что пропагатор 
должен достаточно быстро убывать по пространственно-подобным 
значениям импульса. Можно сформулировать такие требования минималь­
ной сингулярности, которые обеспечивают единственность определе­
ния пропагаторов в достаточно обширном классе теорий. Гораздо труд­
нее найти достаточные условия существования пропагаторов, удовлет­
воряющих таким требованиям единственности. Исследование уравнений 
в евклицовской метрике является удобным эвристическим приемом 
эффективного построения таких пропагаторов. Более общий метод со­
стоит в том,что уравнения Швинтера-Дайсона и им подобные интег­
ральные уравнения сводятся к дифференциальным уравнениям с оп­
ределенными граничными условиями. Эти уравнения пригодны в любой 
метрике. Случай сингулярной задачи отличается тем, что некоторым 
граничным условиям удовлетворить нельзя. Наш способ построения 
решений состоит в том, что эти граничные условия отбрасываются и 
заменяются некоторыми условиями минимальной сингулярности. Во 
всех исследованных до сих пор задачах тот же самый результат мож­
но было бы получить, решая соответствующее евклидовское ИЕГгеграль-
ное уравнение. Это обстоятельство не случайно, но мы не имеем воз­
можности обсуждать его здесь более подробно ( с м / 2 5 ' ) . 

Итак, займемся евклидовским уравнением для пропагаторов 
кварков. Потенциал У|(р-'() г) м о ж н о разложить по четырехмерным 
сферическим функциям - полиномам Гегенбауэра 

п=« ' у \Р\\%\ 

Тогда уравнения для пропагаторов, или, что то же самое, для мас­
совых операторов §•=£'' + Р можно представить в форме (е; = оё, 

Га] = [м-'] а - некоторый параметр): 
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£ = |* -i. Za'* 
(2) 

5 

где ^ ^ = f"! _J_^li_ «(*,з), X S a l P l' 3* a^' 

Мы забыли отметить выше, что, поскольку наша теория должна быть 
0 { з ) к * и с з ) с инвариантной, мы выбираем Q £ Y - вершину в виде 
комбинации вектора и аксиала, т.е. 

При этом предполагается, что пропагатор глуонов можно выбрать в 
поперечной калибровке (калибровка Ландау). В рамках развиваемого 
полуфеноменологического подхода мы позволим себе принять эту ги­
потезу без дальнейшего обсуждения. Легко видеть, что при этом 
пропагатор каждого кварка определяется одной функцией - массовым 
оператором кварка. 

Рассмотрим сначала симметричное решение, когда е, = G £ ̂  б„. 
Тогда уравнения (2) сводятся к одному уравнению 

с. = (G + з8'0 К4 cj = (f + £ 9'д) К (cj. 
Допустим, что это уравнение имеет нетривиальное решение. Это реше­
ние определяет ненулевую массу кварков, если имеет решение урав­
нение 

С(р) I = ул. , f'- = р.? - р г 

Разумеется, чтобы такое решение могло существовать, в теории дол­
жна существовать размерная константа а., через которую можно 
выразить массу. В частности, в электродннаиике электронов таким спо­
собом получить массу электрона нельзя. Масса электрона может 
быть выражена либо через некоторое дополнительное взаимодействие, 
либо через параметр обрезания, который по существу также опреде-
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ляет некоторое дополнительное, не электродинамическое взаимодейст­
вие электронов. Чтобы мы могли получить массу кварков, потенциал 
их взаимодействия должен существенно зависеть от некоторого 
размерного параметра, т .е . сыть в каком-то смысле нелокалким. 
Может показаться, что достаточно взять любое неренормируамое 
взаимодействие, однако в обычных неренормируемых теориях потен­
циал сингулярен на малых расстояниях и позволяет уйти кваркам 
из адронов' 2 5' . № ниже покажем, что существует специальный класс 
теорий поля, в которых потенциал регулярен на малых расстояниях 
и сингулярен на относительно больших расстояниях между кварками. 
В таких теориях можно построить потенциал, для которого уравнение 
для пропагатора кварков в евклидовском пространстве имеет хорошо 
определенное решение, и масса кварков оказывается конечной. Пока 
массы всех кварков равны, никакого нарушения симметрии нет, хотя 
иногда называют решения с ненулевой массой, полученные при нуле­
вой затравочной массе, решениями со спонтанным нарушением симмет­
рии типа У,- -инвариантности или киральной симметрии. Правильнее 
назввать такую реализацию киральной симметрии динамической реали­
зацией, или реализацией Боголюбова-Намбу-Голдстоуна (БНГ). 
Впервые такая реализация симметрии была получена в классической 
работе Н.[{.Боголюбова по теории сверхтекучести (1946 г . ) , а об­
щий метод снятия вырождения ("метод кваэисредних") и теорема о 
появлении возбуждений с нулевой массой ("теорема о </%г ") в сис­
темах многих тел сформулированы в работах ' . Динамическая реа­
лизация симметрии, в частности, киралышх, в квантовой теории 
поля изучена в работаг 2 ' . (Обзор современного состояния пробле­
мы динамической реализации игральных симметрии см. tf2 ' ) . 

В нашем случае возможность БНГ-реализации киральной сим­
метрии и проблема появления частиц с нулевой массой должны уста­
навливаться на основе решения основных уравнений. Как известно, 
в случае динамической реализации киральной симметрии могут 
появиться псевдоскалярные частицы с нулевой м а с с о й ' 2 7 ' 2 8 ' . Однако 
в динамической теории обсуждаемого здесь типа появление таких 
частиц, так же как и сама возможность БНГ-реализации, вовсе не 
очевидны. Для того чтобы полностью исследовать эту проблему, 
необходимо (по меньшей мере!) показать, что существуют нетри­
виальные БНГ-решения уравнений для пропагатора кварков, однород­
ных БС-уравнений для псевдоскалярных мезонов и неоднородных 
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уравнений для функций Грина двух кварков, имеющие соответствующие 
мезонные полюсы. Такая программа ни в одной реалистической реля­
тивистской теории пока не осуществлена (см. подробную дискуссию 
в недавних работах' э ' ) . Здесь мы не будем пытаться обсувдать 
эту труднейшую проблему во всем объеме, а лишь обратим внимание 
на некоторые новые обстоятельства, существенные для моделей 
кварков и еще не рассматривавшиеся в литературе. 

Напишем уравнение для псевдоскалярных частиц с нулевой 
массой, которое следует из уравнения (I): Ч Р , О ) = у,-АЛ(р^), H F ^ - J W 

К*>=(8г-тЗ'Чк«Ь}. Mil- U,llm-K^ y; 
Легко видеть, что если уравнение для пропагатора кварков при д'=</ 
имеет симметричное решение, то и это уравнение для девяти псевдо­
скалярных мезонов также имеет решение, которое имеет вид: 

Отсюда следует, что вакуумное и однокварковое состояния отличаются 
на нетривиальное каноническое преобразование (преобразование Бого­
любова) от соответствующего свободного вакуума и свободного кварка. 
Физический вакуум и физический кварк содержат бесконечно много 
возбужденных безмассовых псевдоскалярных частиц. Естественно 
отождествить затравочные безмассовые кварки с "токовыми кварками", 
а массивные физические кварки со структурными. Тогда преобразование 
перехода от "физических" кварков к "токовым" по существу совпадает 
с преобразованием Боголюбова, и можно использовать технику, разви­
тую в теории сверхтекучести и сверхпроводимости. 

Чтобы показать, что БНГ-реализация U13) R *1ЛЗЛ.-симметрии 
действительно осуществляется, необходимо задать явный вид взаимо­
действия, т.е. К(х,у) . Реально осуществить всю программу 
пока удается лишь для упрощенной модели, когда K(x,yJ = 1 ы 1Цу) 
Результаты оказываются несколько неожиданными. В случае v =о 
помимо тривиального решения б,= <? действительно существует (при 
должном выборе %k) нетривиальное решение е£0 и 9 безмассовых 
мезонов. Вели g V 0 , то безмассовым остается лишь девятый ме­
зон т\' , а остальные могут приобрести массу. Нетривиальное ре­
шение возникает лишь при достаточно большом значении константы 
д* + Ц-%'г ' Воли %'ФО , то существует решение с в ц ь ^ , т.е. 
в принципе возможно спонтанное нарушение VC3) -симметрии. Од­
нако в этом случае пока не ясно, что происходит с псевдоска-
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лирными мезонами (эта проблема в настоящее время изучается). 
В любом случае необходимо еще исследовать , какое из решений 
стабильно. Удобный критерий стабильности был предложен Б.А.Арбу- * 
зовым, А.Н.Тавхелидзе и Р.Н.Фаустовым в 1961 г.: если ввести в 
затравочный лагранжиан малую массу фермиона Л , то для стабильно­
сти нетривиального решения необходимо,чтобы 7>л-иЛ)/^ :'-| А_ ( 5

>0 
Таким образом, задачу можно поставить так: найти такое взаимодейст­
вие кварков К (л, я) > чтобы существовало нетривиальное несиммет­
ричное БНГ-решение наших уравнений, удовлетворяющее условиям ста­
бильности. При д'=о такое решение не существует, но мы надеемся, 
что при %'фо эту задачу можно решить. 

Описанный подход позволяет надеяться найти разумные ответы 
на большую часть вопросов 7-10. В затравочной теории есть С (3) -
симметрия и игральная_симметрия. Эти симметрии нарушаются потому, 
что кварки приобретают массы, которые спонтанно расщепляются. 
Псевдоскалярные мезоны имеют аномально малые массы из-за того, 
что в первом приближении по нарушению симметрии они имеют нулевые 
массы. Чтобы реализовать механизм спонтанного нарушения симметрии, 
ми были вынуждены ввести два типа 0(3) -инвариантных взаимо­
действий - "прямые" и "обменные" (или U(3) -синглетное и и(з) -
октетное). Нетрудно понять, что обменное взаимодействие вызывает 
смешивание кварковых конфигураций: 

=< - -<*£ • -саг 
S 5 И Т.П. 

Необходимо, однако, понять, почему это смешивание очень мало для 
векторных и тензорных мезонов и не так мало для псевдоскалярных 
мезонов. Этот вопрос мы попытаемся обсудить в конце этой работы, 
где мы также вернемся к вопросу о массовых формулах. Вопрос о 
симметрии г'А<о) мы обсуждать здесь не будем. Эта симметрия -
приближенная динамическая симметрия, которая реализуется на 
некоторой части адровных состояний и не имеет фундаментального 
смысла. SU(6)-симметрия получается, если массы кварков достаточ­
но велики, а спиновые взаимодействия малы. № просто предположим, 
что эти условия выполнены. 
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Обсудим теперь более детально переход от безмассовых кварков 
к массивным. Этот переход наиболее адекватно описывается с помощью 
канонического преобразования Боголюбова. Введем операторы полей 
кварков, удовлетворяющие каноническим перестановочным соотношениям 
при равных временах 

{ •£(*), W)]-S+ S'V*'), t-t';№<*), №'Й -0. 
Разложим операторы f по операторам уничтожения и рождения. Для 
этого нужно сначала выбрать определенный спинорвый базис. Возьмем 
для матриц Дирака следующее представление 

и выберем базисные спинорные функции так: Ф( Л )= 21 ч р , Q-f, e',pA 

C 2 p ) U r f t i l J = r t i r f ( i i ) i К « : p e — l P l * 0 ' 

(2р ) UPUW =-p" KpftO, £ Uf(itl)= UP0,2) , fcUpft«;=-Uhor.«; 

Как видно, мы классифицируем состояния по собственным значениям 
операторов у г и ( Z p ) » эта классификация не зависит от выбора 
представления для матриц Дирака, однако при построении каноничес­
ких преобразований мы будем использовать соотношения, которые 
верны лишь в данном представлении. Введем двухкомпонентные ба­
зисные спинорные функции 4,=(l,0),f2.-(0,i) и оператор преоб­
разования Щр ) , превращающий их в собственные функции двух-
компонентного оператора спиральности 

U~Yp)№/lPI UfF) = *и 

В нашем представлении выполнены соотношения: 

*KU> * ( ? Р О . « • ° ) j «РИМ = (0, Чпы), рЩ Н р 1 = "р* , UP, - U„ 
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Рассмотрим простейшее каноническое преобразование полевых 
операторов + Л 

, № a ^ ) S ^ 9 ) i s 
f(x> -> V ^ w y " 4 =¥'<», V- e s e , S - S , 

где 9 л р - некоторая четырехрядная матрица, которая может зависеть 
и от оператора импульса р . Воспользуемся формулой Бейкера-
Хаусдорфа 

и каноническими перестановочными соотношениями 

В результате получим 

e«K*)e s e J * <K*)e = e ^ J 

Рассмотрим преобразование, определяемое матрицей £ = ~1Р.?|р| ^ ^ 
Нетрудно проверить, что при этом гамильтониан свободных кварков 
преобразуется так: 

^' = e' s^ e- t S, H' = e He 

Хорошо известны два частных случая этого преобразования 
i )-few*|pl/m. i) "bgw = —m/jpj 

<as«r«JjU, ^ u r ^ L E ^ с « и г ^ = р = , 5£ЯИГ — у ^ » 
Первый - это известное преобразование Прайса-Тани-Фолди-Вутуйсе-
ыа, второй - преобразование Чини-Тушека-Бозе-Гамба-Сударшана. 
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Свободный гамильтониан принимает соответственно вид 

H' = . e , s H e - , s . 
Первое представление удобно для перехода к нерелятивистскому пре­
делу, а второе - к ультрарелятивистскому . На эти преобразования 
обычно смотрят как на преобразования спинорного базиса, т .е . 

Возможна, однако, другая точка зрения - можно преобразовывать 
вместо этого операторы уничтожения и рождения (+,- значения спи-
ральности) п - г, п - Р"1" 

it -LS - I " ' Г > - q P + ' V - *f,-

Тогда получаем соотношения между старыми и новыми операторами 
о'„ = с^^ар1 - ^ f c i ^ , < = < V + v m f 4 p 3 j 

которые, как легко видеть, является частным случаем преобразования 
Боголюбова. Унитарный оператор преобразования через операторы 
рождения и уничтожения записывается следующим образом: 

Рассмотрим теперь гамильтониан свободных кварков, взаимо­
действующих друг с другом через некоторый "потенциал". можно 
представлять себе просто четырехфермионное взаимодействие с неко­
торым формфактором. Бели это взаимодействие устроено так, что 
кварки приобретают массу,- то по аналогии с теорией сверхпрово­
димости можно предположить, что наиболее существенная часть 
взаимодействия, описывающая этот "фазовый переход", может быть 
представлена в виде билинейного оператора Л = 5̂ » -*-&Щ 

p S 
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описывающего рождение из вакуума пары кварка и антикварка с 
квантовыми числами псевдоскалярных мезонов. Каноническое преоб­
разование Боголюбова диагонализует билинейную часть гамильтониана 

Разумеется,необходимо было бы показать,что остающаяся часть 
взаимодействия не приводит к принципиальному изменению свойств 
найденного решения. Однако эту задачу можно было бы попытаться 
решить лишь после того, как достаточно хорошо изучены силы, 
действующие между кварками. В данной работе мы даже не пытаемся 
подойти к решению этой проблемы. Хотя ниже и предлагается неко­
торое определенное взаимодействие кварков, которое выглядит не 
слишком сложным и достаточно реалистичным, всякая попытка оценить 
отбрасываете члены настолько осложнена техническими трудностями, 
что кажется пока почти безнадежной. Более реальный путь к решению 
такой задачи, на наш взгляд, мог бы состоять в построении более 
простой точно решаемой модели, после чего можно было бы попы­
таться постепенно обобщить ее до более реалистической. Прагмати­
ческий подход сводится к тому, что мы ограничимся построением 
простейшего канонического преобразования,выписанного выше,и будем 
использовать его так, как используется "преобразование Мелоша". 
Иными словами, не следует пытаться придавать значение конкретной 
форме преобразования, а извлекать из него следствия, которые 
могут не зависеть от этой конкретной формы: трансформационные 
свойства операторов тока при SUfe) -преобразованиях волновых 
функций адронов и т.п. В нашей интерпретации токовые кварки 
соответствуют безмассовым полям, а структурные - полям, которые 
приобрели массу за счет механизма Б.-Н.-Г. Через поля токовых 
кварков определяются операторы токов, а поля структурных кварков 
входят в уравнение Бете-Солпитера. Переход к переменным свето­
вого фронта, необходимый для феноменологических приложений, мы 
не обсуждаем, отсылая читателя к работал/ 1 0' 1 1'. 

Перейдем к обсуждению вопросов 4-6. На эти вопросы, свя­
занные с проблемой природы сил, действующих между кварками, обыч­
но приводят три возможных ответа: I. Кварки связаны безмассовыми 
цветными глуонами, на малых расстояниях они свободны, на большие 
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расстояния им не позволяет уйти инфракрасная особенность потен­
циала ("ультрафиолетовая свобода = инфракрасному рабству"); 
2. Кварки "сидят" на концах струны, для описания которой исполь­
зуются релятивистские квантовые уравнения. 3. Кварки заключены 
в мешок. Существуют попытки найти связь между этими подходами, суть 
которых сводится к тому, чтобы найти "струноподобные" или "ме­
шочные" решения в калибровочных теориях. .Новый вариант третьего 
подхода недавно развит нами в работах 3 0'. Он наиболее близок 
к Дубненскому мешку , но обладает некоторыми чертами других подхо­
дов и существенно связан с основной гипотезой дуальных иоделей: 
плотность уровней резонансных состояний экспоненциально растет с 
ростом массы резонансов: ро*1-) ~ m * ejcf Сто.} , т -> оо . 
В дуальных моделях также предполагается, что резонансными уровня­
ми вообще исчерпывается спектр адронных состояний, по крайней 
мере в первом приближении. На самом деле, конечно, при достаточно 
больших массах перекрывание уровней резонансов будет столь боль­
шим, что квазидискретный спектр, получающийся при пренебрежении 
конечной шириной резонансов, неизбежно перейдет в непрерывный 
спектр. Для наших рассуждений это несущественно, нам важно 
правильно угадать асимптотическое поведение спектральной функции 
всех состояний - дискретных, квазидискретных и континуума. Пред­
положим, что эта спектральная функция экспоненциально растет с 
ростом массы: р = ^£l^(ma)Ч-^^(ги)^ Для большей определенности 
допустим, что ее можно задать в этом виде при всех значениях т , . 
Это выражение можно сравнить со сглаженным эмпирическим спектром 
наблюдаемых резонансных состояний. Сравнение позволяет определить 
параметр а и грубо оценить параметр с '• 1 - 4 г э В _ 1 , С ~7#ГэВ - 1. 
Используем теперь идею "бутстрапа", сформулированную в первой 
части этой работы. Пренебрегая спиновой и изоспиновой зависимостью 
сил, мы можем тогда написать потенциал, входящий в евклидовское 
уравнение Б-С в виде ( t = о „ - *ъ)'') 

vw = ̂  (*mV л^т1'г) = SjJ-jv e~lK* W**; - (з) 
Здесь в случае обмена одной частицей спектральная функция равна 

ft Сю*) e9« W - " » * ) * * , 
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где /VR ^ (.2.$р_ -+-l) . При некоторых дополнительных пред­
положениях о распределении спинов резонансов можно показать, 
что в обмене бесконечным набором резонансов со спектральной плот­
ностью р(т 2) главную часть потенциала определяет именно эта 
спектральная плотность, и мы получаем 

Vd) = f 9.V.{ 1Мг-а.^} ; f~f. 
Появление символа главного значения нуждается в некотором поясне­
нии. Воли просто пользоваться формулой (3), мы сумеем найти потен­
циал лишь при X7- > а} • Определить его при любых значениях 

Хг и найти его выражение в импульсном пространстве можно, если 
воспользоваться методами неполиномиальной квантовой теории поля. 
Тогда на потенциал можно смотреть как на суверпропагатор в почти 
локализуемой теории поля. Примером такой теории является 

tut = С . - t o t e * P С 4 т г а 1 ( р > ] : 
Если вычислитьKFSMtCt)fi„t(o)), то мы получим выражение, V -
~#1Г G z (i v -a*J~" 1 • Как показано в работах: " ' , это выра­
жение и его преобразование Фурье к импульсному пространству опре­
делены однозначно, если использовать принцип минимальной сингу­
лярности суперпропагатора. Таким образом: 

VCW) = с^сс ^f1 , \Г%\ -Ы^?%^ V 
(С - чиол.конст.). 

Это выражение для потенциала теперь подставляем в уравне­
ние Б-С для псевдоскалярных мезонов и в уравнение для пропагато-
ров кварков. Чтобы были выполнены предположения, введенные нами 
ранее, допустим, что потенциал есть смесь вектора и аксиала 
и содержит "прямые" ^обменные" по и(3)силы. Ufa не будем изла­
гать здесь все полученные на этом пути результаты ввиду того, что 
это потребовало бы очень много места, а исследование нелинейных 
уравнений для пропагаторов пока не закончено. 

Упомянем только о детальных результатах , полученных 
для упрощенного уравнения Б-С для Т -мезонов. Заменяя точный 
пропагатор кварков свободным, с отличной от нуля массой и считая, 
что масса кварков достаточно велика т£ <&• А ю % , после 
некоторых преобразований, которые можно найти в работах/ * ^ , урав­
нение записывается в виде (х =af> ) 
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4* +[!-£- -ЩЗи-0 , ttOU-tfJ^) 
uw -*o 

A->0 а условие нормировки приближенно имеет вид 

Это уравнение было подробно исследовано и решено численно различ­
ными методами. Найденная волновая функция Ц мезона была затем 
использована для вычисления вероятности распадов 

г 

Q * в 
В результате получены оценки всех неизвестных параметров, входящих 
в уравнение для Т-мезона: a "SIS'I iz=iO, Мв=*0А (ГМЦ-к.) 
Подчеркнем, что при этом не использовалась априорная оценка 
параметра а. , полученная из резонансной интерпретации потенциала. 
Тем не менее оба значения си находятся в замечательном согла­
сии друг с другом. Мы оценили также наклон траектории Редже для 
If мезона: оС^=0,£ тО.З • Результат не противоречит последним 
экспериментальным оценкам этой величины. 

Отметим, что наиболее характерная особенность потенциала, 
обсуждаемого здесь я отличающая его от всех других, доступна пря­
мой экспериментальной проверке. Действительно, наличие особенности 
потенциала при конечном значении г проявляется в том, что форм-
факторы, дифференциальные сечения упругого рассеяния и т.п. со­
держат осциллирующие члены вида ~<j,_> ел (_%0-/Z ) • Такого 
рода осцилляции были недавно обнаружены в дифференциальном сече­
нии упругого рассеяния протонов' 3^. Период этих осцилляции 
хорошо согласуется с предсказанием нашей модели AQ~ ^ Г ~ 3 ГэВ. 

В заключение кратко остановимся на получении массовых фор­
мул и проблеме смешивания. Предположим, что уравнения для вектор­
ных и тензорных мезонов также имеют вид 
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Для векторных мезонов это очень хорошее приближение, для тензорных 
мезонов при получаемых нами массах кварков это приближение выпол­
няется значительно хуже,но все же с разумной точностью.Запишем 
это уравнение в абстрактной форме,обобщенной на случай неравных 
масс кварков (такого типа уравнения получены в квазипотенциаль­
ной теории П.И.Боголюбовым) 

Ч * Hm 
Здесь Lc,- оператор, инвариантный относительно ШJ -группы, вое 
нарушение симметрии содержится в массах кварков. В случае смеши­
вания двух состояний, например, s s и к-й, получим 

Если пренебречь смешиванием, то нетрудно получить соотношения 

где (f^-собственное значение оператора Lc, . При наличии сме­
шивания выполним следующие очевидные преобразования 

Отсвда следует X3 = -CK.Vtc?)/^ ± [ ( O ' - ^ W i f + ^ J 

Формулы для псевдоскалярных мезонов даже при учете смешивания 
работают плохо, что, видимо, связано с особой природой этих частиц 
(в первом приближении их масса просто равна нулю). В качестве 
курьеза отметим, что для псевдоскалярного октета с неплохой 
точностью выполнены следующие массовые формулы: 
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n . Z ' 3 ' 
Объяснения этих эмпирических соотношений пока не найдены. Не 
исключено, что о;" не имеют никакого более глубокого смысла. 

Подчеркнем, адэ практически те хе самые результаты можно 
получить, ИСПОЛЬЗУЯ квазипотенциальные уравнения различных типов 
(см., например/ 3'). Менее понятна ситуация с барионами. Вели 
для описания бариона как системы из трех кварков применять нере­
лятивистские уравнения (например, уравнения Фадеева), что 
кажется вполне разумным при больших массах кварков, то серьезную 
трудность вызывает необходимость объяснения отсутствия в низшей 
части спектра масс &V(£) -мультиплетов 20, 56, L -нечетн.; 
70. L = четн. Этот факт можно было бы объяснить, если бы пары 
кварков проявляли тенденцию к спариванию. Действительно, предполо­
жим, что двухчастичные силы таковы, что может образовываться 
дикварк (QQ) , так что Б = ̂ 69S),. Qk (напомним, что дикварк может 
существовать лишь внутри адрона, т.е. является квазичастщей). 
Т.к. мы хотим получить 56, то дикварк должен принадлежать муль-
типлету 21, который симметричен по унитарным индексам (антисим­
метрия волновой функции достигается за счет цветовых степеней 
свободы). Относительный момент кварков в дикварке тогда должен 
быть четным. Мультиплеты, в которые входят барионы и бар ионные 
резонансы, получаются следующим образом: 

(21 * 6 = « + 7-0) 
ГГЩ <з щ = r n r m © LOU 

i< £ 5Ъ Ш 70 . 
Мудьтиплет 20 . таким образом, отсутствует (точнее, имеет гораздо 
большую массу). Так как 56 симметричен по SU'(6) индексам, то 
момент Q относительно (QQ) может быть только четным , а в 
случае 70 - только нечетным. Вопрос состоит теперь в том, су­
ществуют ли такие силы и такие уравнения движения, для которых 
эти предположения выполнены. В этом нет ничего невозможного, 
если силы связаны с обменом цветом. Введя такой обмен, можно 
устроить мир так, что кварк и антикварк притягиваются, а два 
кварка притягиваются лишь в состоянии 21. Задачу о барионах 
можно теперь свести к двухчастичным задачам. Для описания ди-
кварка воспользуемся результатами, полученными для мезонных со-
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стояний, а для описания связанного состояния кварка и дикварка 
попробуем принять нерелятивистское приближение. Тогда для ди-
кварков получаем массовую формулу С >п„. = и ы ) 

w V i - "V = « « - | - m s s ; / 2 = О» +»>0/.г , (.1=0, '/г, 1 ) 
Октет барионов описывается следупцишволновыми функциями 

|p>=/T7i «.£," +• WJ JK, 15+> =vfi7? и * £ -\/27з * * * , 

|л> ••=\1771(и%к -dxTlt) , \='> = 4Ш ч V - / i / з ь x, / 2 j 

где %i( XV 2 / # 0 - волновые функции дикварков с изоспинами I, 1/2, 
и 0. В нерелятивистском приближении массовые формулы Гелл-Манна-
Окубо следуют из соотношений 

3 "'s T

6 ' '" 6 

«»3-c» *=f wv+£w» s + f m . + |-»Mf3 

после исключения всех неизвестных параметров. Для декаплета барио­
нов получим 

Пл -С„ = ти + ™±} ">*•-£«=§• *«•*-£"'>.+£"''.+§-»>, 

откуда следует правило равных интервалов. Эти соотношения можно 
несколько подправить, добившись лучшего согласия между выражениями 
масс барионов через массы кварков и дикварков для декаплета и ок­
тета. Выписанные выше формулы приводят к соотношениям 

C10 C 8 ~ 

P ' it IP 

4 ^ 
и т.п., 

которые выполнены не очень хорошо, гораздо хуже, чем сами массовые 
формулы. Введем в соотношения (4) и (5) дополнительные члены 
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c g - * Cg + с ; mL } c , 0 - ^ C < 0 4- c<o f*4 ; 

которые не изменяют массовые формулы , но вводят нарушение сим­
метрии, не сводящееся к расщеплению масс кварков. Между параметра­
ми Cg и С,р имеется одно соотношение 

Вели предположить, что с(0 = -S, с4' = S , где параметр S 
описывает нарушение симметрии в потенциале, то нетрудно найти 

(l + S)/0-S) « 1,5* , <5 - ОЛ. 
Эта величина нарушения симметрии вполне разумна. 

Вопрос о смегаьвании барионных состояний вызывает некоторые 
затруднения, так как обменные силы могут присутствовать как в 
дикварковом , так и кварк-дикварковом каналах. Успех массовых 
формул без смешивания говорит о том, что как и в случае векторных 
и тензорных мезонов,роль обменных сил невелика. Этот факт также 
нуждается в каком-то объяснении. Одна из возможностей состоит в 
том, что силы зависят от полной энергии кварков (точнее, от их 
инвариантной массы s ). По аналогии с поведением амплитуд в тео­
рии Редже, можно предположить, что необменные силы не убывают с 
ростом s » a обменные убывают. Это предположение кажется совер­
шенно естественным в нашей интерпретации потенциала взаимодействия 
кварков. 

На этом мы прекратим обсуждение динамики составных моделей 
адронов, в надежде, что нам удалось хоть отчасти достигнуть постав­
ленной цели - показать, что сформулированные вначале вопросы разумны. 
Остается еще один вопрос, который особенно волнует скептиков и пес­
симистов - почему нам до сих пор не удается наблюдать кварки не­
посредственно, в свободном виде. Иначе - СУЩЕСТВУЮТ ли кварки? 
Вопрос о существовании кварков - не только физический, но и фило­
софский вопрос. Что значит "существовать"? После Канта мы разли­
чаем всякий предмет как истинно сущий, как умопостигаемый и как 
действующий. Кварки,несомненно,умопостигаемы, со значительной до­
лей уверенности мы можем сказать, что они действуют, во всяком 
случае мы имеем ряд косвенных указаний на феноменальное существо­
вание кварков. Являются ли они истинно сущими? Современная физика 
склонна дать утвердительный ответ на этот вопрос» Парадоксальным 
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в этом ответе кажется то, что кварки существуют, но навечно 
заключены в адронной тюрьме. Как сказал один древний философ, 
"верю в это, потому что это абсурдно". Мы присоединимся к этому 
умозаключению. Кажется, что современная кварковая модель адронов 
уже достаточно абсурдна (или мягче: парадоксальна), чтобы 
содержать элемент Абсолютной Истины. 
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NONLOCAL FIHLD TII30HY OF THE QUARK MODEL 
Ikuo Sogami 

Department of Physics, Kyoto Sangyo University, Kyoto, Japan 

Until now the success of the composite picture such as the 
quark model has been limited mainly to investigations of the one-
body problem of composite system. The purpose of my talk is to 
show a possibility to construct such a (global) field theory as 
being suitable to treat scattering processes between composite 
systems. In this theory • , not only hadrons are identified with 
definite stationary states of quark-antiquark systems and three 
quark systems, but also strong interactions between hadrons are 
assumed to result from virtual exchanges of ^ - % systems between 
them. 

Let us introduce a bilocal field Ф о ^ г ) to describe the 
V - %• system with a scalar quark at X + ir and a scalar anti-

quark at f.~^_r . The basic equation for the free bilocal field is 
postulated to be 

1£:-:<,УЁ(х,г)-=о , ^ = -b-|? С) 

with the boundary conditions that the field is not singular at 
r^ = ъ and decreases more rapidly than any inverse power of f* 

when the absolute value of an arbitrary component of fy tends to 
infinity. As the square-mass operator 'B^i we choose the following 
form, proposed by l u k a w a ' " and Markov' , as 

where 

^ = ,,K - -WH-1-У l?&& - fW)\ , ( 2 ) 

'v = V - 2 %-Ъ/г* (з) \ 
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and f is a parameter of the extent of the system. This square 
mass operator represents the 4-dimensional relative harmonic 
oscillation between constituents when the %-^ system is at rest 
as a whole. The use of the internal metric operator X^* de­
pending on the external momentum £ r is inevitable to obtain the 
positive-definite square-mass spectrum. 

We can expand the general solution of eq. (1) as 

in the complete orthonormal system of the eigenfunction лЛ]'.. «.0" > D 
of the square-mass operator belonging to the eigenvalue 
u.* , = w.1 -t- iK.*<n> , where the abbreviations O O = CKKL.) 

ii .£ -££ 
, , n = M-t-2Ki-b вой % —2- 2- i— are used v;ith non-
negative integers M, К and Ц . The eigenfunctions of nt„ 

/2/ 4 

are given' w explicitly by 

к ч г Г ггг„, ^ + Ч e V ' r гл@л~ ̂  r . . . . к , 

where 

Xl = y' - rtVi* (6) 

and H i Ь end © are Hermite's polynomial, Laguerre's polynomial 
and Gupta's operator •", respectively. The component local 
fields ffr-fj?-) in the expansion (4) should be interpreted as 
describing the external motion of the meson with spin L , parity 
-̂\) and mass |*ад > because they are proved to satisfy the 

Pauli-Fierz equation. 
How let us consider the test-function space 

i& = у л . 
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where 

All elements of & are infinitely differentiable with respect to if, 
and decrease more rapidly than any inverse power of Г* as 
\- -j» t л. • elements of the dual space 

&* = л < 
ir ?o 

of the test-function space >& are just the tempered distributions. 
'Ve can interpret the element of }S as describing the internal 
structure of real meson, while certain elements of >8 are neces­
sary to construct the Green fuactions which represent the virtual 
meson states. 

The bilinear generating function defined by the series as 

is proved to have the compact form 

where 

Let us regard this function (8) first as an analytic function in 
the complex $ -plane with variables t~r , г,,' and |;f ranging all 
over the real values. Next we put the restriction on the variable 

% of this function to be 1<^ = \ and define the new function as 
follows: 

^ K U -> Г, Г -, e " ) = jjj^ frb ; r > r> • £<• + <-*) ( 1 0 ) 

for 91* nit , and 

(8) 

(9) 
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^Ог; г, г', О = L*. ^ н ; г, г; е" х) (и.) 

for 'X=2TUC. and 

^Уг; г, г"; -О = U ^ О; г, г' -, t л) (12) 
for "К = (2*',vH') тс , то. being an arbitrary integer. Definitions 
(11) and (12) are consistent since the boundary values of (Q 
at Х=титс from both sides exist and coincide with each 
other in the >S -space. The <^f -function is proved to belong to 
the>S* -space. Especially the boundary value (11) 

&Cr-f-, R ) = <^(fe>; Г, r'; |) 

plays the role of § -function in the internal space. 
The ̂ -function obeys the differential relation 

eve - w$,) ^ с к ; r, r'.; e ^ л) = cC (<*- &-) <& 0»; •--«-; ^ , m> 
«here a is the linear trajectory 

о а ю = a» -+- odtf С5) 
with 

С^=~ Упг/-м* and (X,= /Krt1 . 
Let us introduce the integral representation 

?° 

ou^; r, p') = -<*'} ^U'; f, r ' . - t^^^^dK (16) 
' о 

and the related quantity 

$ (R ; n »M = -£,,, th ; r, r') - £ 6G*; P. f )* ( 1 ? , ) 
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with a positive infinitesimal fc . The propagator of the %-% 
system is defined by the Fourier transform 

which satisfies the differential equation 

[t2 ~ ">*£"> ̂ cCX,- r, V) = ЙСг-г- ; I) £ 4 w . (19) 
The commutation function and its positive and negative-frequency 
parts are defined by 

i Г '2- -чкх ,, 
£Лх•„ \. r') = - ^ ^ fctko-DCfc; г, г') e dk 

(20) 

and 

Д:(Л; r, r) = * ^ ^ 9(*M<£> Cte; с f) e dfe , ( 2 i ) 

respectively. All of them are proved to satisfy the homogeneous 
differential equation 

<X ~Щ»"> &. r t* J Г, Г') = 0 . (22) 
'.Ve find the relations between the singular functions of the 

^ - ry system and those in the local field theory as 

£ ^; r, V) - Z 1/̂ .K.ti-; 2) O/JT'V'.^AuOc ; M (23) 
tn.) ' 

for 0.= С, 0, + and -, where Д; is the Feynman propagator and 
da is the Pauli-Jordan function with the positive and nega­

tive-frequency parts /It • These relations are helpful because 
they imply the physical content of bilocal singular functions. 
As is shown in the relation 

Д.Ш ; (0 = Э(Л.0ЛОчр) - Х-Х'И-1*;|0 , (24) 
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the Feynman function 4 L works to propagate positive-frequency 
parts of wave aroused at Xr = o forward in time (,Ko>cO , and its ne­
gative-frequency parts backward in time ^XJ^O) . Although such a 
strict causal relation concerning the external time variable does 
not hold for the 3bc -function, we find that it satisfies the 
asymptotic-macrocausal relation 

(25) 

in the >X* -space. This asymptotic relation implies the fact that 
ofc£ -function maintains the definite external time-ordering for 

the propagation of %-% system. 
We quantize the Dilocal field Ъу imposing the condition 

[&*,«, Ф/,Г)] = C<£0l^-X' 5 Г,<С) , (26) 

Inserting the Fierz decomposition (4) into eq. (26), we get the 
commutation relations 

for the free component local fields which satisfy the condition of 
microcausality. The component local field is decomposed further 
into the form 

Г v_-4. I ( 2 8 ) 

in terms of the plane wave and the helicity tensor, the amplitude 
O^, and OtJ" are proved to obey the commutation rules 

(29) 
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The Fock space is introduced as usual. He define the vacuum state 
\ьУ as the normalized state vector satisfying the requirements 

сц Г 1 1 с^л--Ч с , > = с f o r v t , l 0 > * a n d fe (30) 

Many-meson states are built up by operating appropriate creation 
operators to the vacuum state as many times as necessary. 

Vie can introduce the concept of the normal product in the 
local field theory into our scheme as it stands. The product of 
two field operators 5>(x, r) and $(X\ r0 , for example, is 
expressed as 

by the sum of the normal product and the ordinary pairing 

ЗХ.к.1-У$1>1,\Л = <:£+<Л- x'' ?'r') - <b|$tX.e$Oi>')|c> (32) 

of them. As the generalization of this decomposition, Wick's theo­
rem for normal products hold?also in our theory. 

It is impossible to arrange, in a relativistically invariant 
may, bilocal field operators in the definite order of external 
time variable ̂  , because they do not satisfy the locality condi­
tion with respect to external variables X r . lor bilocal field 
operators ф = Ф1Л;,Г,), j =1,2,...,n , we define here the chro­
nological product ( T' -product) as V/ick's sum of normal products 
including the •]. - i, propagators as follows: 

ХШ,- $.] = '•&£;••• V + • & • • fc."t" • *Ь---Ъ 
—, •-. (33) 

where the chronological pairing (T' -pairing) is given by 

v--fctix-x'; г,г) x * *' 
$(V°)'l?<Xr<)={ (3*) 

^Длх-х'; r,r) ч = \' _ 
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Using the asymptotic-macrocausal relation (25) of tho %-% propa­
gator, we can prove the asymptotic theorem 

k - T l^^- - - in" \= $,T'L^- 5.) (35) 
for the T'-product, and its generalization 

ii~ Т1А.Л»--- A*]= A,TXA 2 - -fVl Об) 

for the mixed "("'-products, where 

Лj * '- £0*-;. г,) §ty, v>' )lCb,«)-) '- • (57) 

In an arbitrarily-fixed Lorentz frame, let us consider the state 
vector |t> being labelled and specified by the external time 
variable t =)<->• For the U -matrix defined by 

it> = и'и,-~м-~> , c?°) 
we postulate the equation 

t^l!'<-t,-^ = HiLt>U'lt,-^ > (59) 

«here 

Hiltf = - [ .L?MA* . (ад) 

The analogue of the U -mat r ix in the l o c a l f i e l d theory , 

~ v - f C l ( l 

with T -products in place of T -products, is proved to satisfy 
asymptotically eq. (39). Consequently we get the S-matrix 

S = 51 -^- \j Д.*, • • • \̂  ,Un T' LXt^) • • • I x ^ ~ ) №) 
which is apparently invariant under the Lorentz transformation. 
It is not clarified yet whether our g -matrix is unitary or not. 
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Let us consider here the pseudolocal interactions 

for the bilocal field, and 

( t w = *\ ' K\rvixx.r-v Awdr (44) 

between a scalar local field >\CM and the bilocal field, where 'j-
and e are coupling constants. It should be emphasized that, although 
these interactions are local with respect to the external variables 
X,. . they produce the nonlocal interactions among meson-field, 

and bPtween the local field A W and meson-fields. To clarify 
this fact, let us rewrite the Fierz-expansion of the bilocal field 
in the integral form 

h > r) = i_ \ £-;;;•"••- u-: v-o V'1' ,. (YНП , 
where 

h • r-

,-v~ , , . л \ { ^ ~vk(x->) •-l->u 

(45) 

(46) 

This expansion shows that the Ou-meson is created and annihilated 
at \ around * r with certain probability ' determined by the 
function in eq.(46). 

It is straightforward to generalize our theory, discussed so 
far, so as to include the trilocal fields which describe the 

composite systems of three scalar quarks. 
The simplest application of our theory is found in the 

calculation of form factors and structure functions''•' (see 
Fig.1, and Fig.2). Prom the interaction (44) and the similar 

Xfao 

Fig. 1 Fig. 
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form for the trilocal field, we get the form factors 

CUtV=0- -Аг У , (47) 

V ° = U- 7̂ > (48) 
and 

eat) = o , (49) 

respective]^ for the pion, proton and neutron. Similarly their 
structure functions for deep inelastic processes are obtained in 
the Bjorken limit as' / 8 / 

д-it) ,. - i i^ iu-x. ' ) ' " (50) 

J ^ M * ' = a inUO-Vfe^ iK-iCi-vr (51) 

and 
•in) 

(52) 
respectively. All the results from eg. (47) to eg. (52) are compa­
tible with the conjecture given by Drell and Tan'°'. 

Next let us calculate S-matrix elements of elastic hadron-
hadron scatterings. For the u.-it scattering the dominant contri­
bution in high-energy region results from the process shown in 
Fig. 3 where all the excited %-% states are exchanged in the x -
channel. 

О») 

CO) Co) 
Fig. 3 

For this process we find the amplitude 

/Uut) ос с*j* h j £ r / f e w x _ " Jce-)^ (53) 
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where 

да- ^-''1(^1-'Ф^-^-^^Эгч']Г <5.> 
Similar parametrized-amplitudes are obtained tor the lt)j> and ̂ f> 
elastic scattering processes. The high-energy behaviour of these 
processes with fixed (*И ) are shown in the table where the cross-
section are listed with the quark-spin corrections. Our results 
agree with power lows predicted by Matveev, Huradyan and Tavkhe-
lidze' and Brodsky and Farrar '. As for the hard structure 
of hadrons, our theory seems to work very well. 

T a b l e 

Amplitude 1 Я** \ л. ^ 

( ) corrected 
dt 

mr s" 
- I S 
S 

*p S - 4 s-8 

PP S-"' s- 1 0 
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КВАРК-ЛЕПТОННАЯ АНАЛОГИЯ И ОСЦИЛЛЯЦИИ НЕЙТРИНО 

С.И.Биленький, Б.М.Понтекорво 

Объединенный институт ядерных исследований,Дубна 

1. Смешивание нейтрино и^ейтринные осцилляции били рас ­
смотрены много лет тому назад' ' . В работе' ' была дана теория 
осцилляции нейтрино. Возможные эффекты осцилляции в нейтринной 
астрономии были рассмотрены в работах . 

Авторы работы' ' исходили из предположения о существова­
нии только четырех стационарных состоянии нейтрино (два нейтри­
но Майорана с массой). В этой теории два нейтрино занимают особое 
место среди фундаментальных фермионов (каждый из всех других 
лептонов и кварков описывается четырехкомпонентнш/. спинором). 
Теоргог ' является в принципе теорией с тремя параметрами (две 
массы и угол смешивания). В работе' ' приводятся, однако, неко­
торые соображения в пользу максимального смешивания. 

В этой заметке ш введем смешивание нейтрино, основываясь 
>.ia аналогии между слабым взаимодействием лептонов и слабым взаимо­
действием кварков. При этом мы будем предполагать, что каждое 
нейтрино описывается четырехкомпонентным спинором. Как будет 
видно, следствия представленной здесь теории и теории' ' практи­
чески совпадают, хотя, с теоретической точки зрения,эти теории 
различны. 

2 . Как хорошо известно' ' , слабое взаимодействие адронов 
в случае четырех кварков может быть построено таким образок, 
чтобы изменякщий странность нейтральный ток не появлялся в пер­
вом порядке, но возникал (в соответствии с результатами опытов) 
в высших порядках теории возмущений. Этого можно достигнуть, 
если, наряду с кабиббовской комбинацией cL и S кварков 

cL'^oLcosQ^ -h ssln,ec (I) 

ввести в гамильтониан оротогональную (I) комбинацию 
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S'=-dslnB^ -h vSccoB^ . (2) 

Для того, чтобы запретить в первом порядке процессы типа 
и.—* е. •*-* , введем (по аналогии с кварками) две ортогональ­

ные комбинации нейтринных полей' • ' 

i?e = i> COO & -+• i}'.sin.B 

i) =--})J<SI6 + Я'соэв. (3) 
Л 

Мы должны, однако, учесть глубокое отличие между лептона-
ми и кварками, состоящее в том, что кварки, кроме слабого взаимо­
действия, участвуют также в сильном взаимодействии, в котором 
сохраняется странность. Рассматриваемая кварк-лептонная аналогия 
является по существу аналогией между слабым взаимодействием 
лептонов и кварков. В случае лептонов нет квантовых чисел, ана­
логичных странности, и, следовательно, нет параметра, полностью 
аналогичного углу Кабиббо, который бы характеризовал степень 
нарушения мюонного заряда. Угол Э априори может быть любим. 
Однако выделенными значениями в являются в =0 (обычная тео­
рия с сохранением мюонного заряда) и & =^- (максимальное 
смешивание). В дальнейшем мы рассмотрим случай в =~ 
Итак, предположим, что поля нейтрино входят в гамильтониан 
взаимодействия в виде 

, * / / х ,_ .,/•> (4) 
" Л fSL ' 

При этом исчезает понятие мюонного заряда. Возникает вопрос: чем 
отличаются 0 и ^' . Очевидно, что нейтрино \> и *' 
должны иметь разные массы (обозначим их т . и rnf ). 

Заряженный лептонный ток имеет вид 
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J* =<£fc° +ря'> +-ГР1 +F*'rY < 5 ) 

Очевидно, что нейтральный ток, возникающий в теориях 
типа Салама-Вайнберга, наряду с заряженным током (5), симмет­
ричен. Несимметричные нейтральные токи ( )л —» е *• v- и др. 
эффекты) могут появляться только в высших порядках теории воз­
мущений. 

/а/ о 
3. Из недавнего опыта' ' по изучению /в -распада Н сле­

дует, что масса антинейтрино, испускаемого вместе с электроном, 
^ 30 эВ. Из этих данных получаем, что 

т, <: 30 эи 

т.' £z 30 эВ. 
(6) 

Это заключение относится ко всем теориям с несохралением мюон-
ного заряда (т .е . со смешиванием нейтрино). В частности, оно от­
носится и к теории, предложенной к ' . 

В рассматриваемой теории может быть вычислена вероятность 
распада и. -» е-г . Используя (6), можно показать' "t^O/ ч т о 

Экспериментальная верхняя граница 
fynj&6 2 - I 0 - 8 . 
• /*" Очевидно, что для проверки теории со смешиванием нейтрино 

нужны эксперименты другого типа. Такими экспериментами являются 
ошты по изучению эффектов, связанных с нейтриншми осцилляциями. 
Как известно, в этих экспериментах измеряется амплитуда (а не 
ее квадрат). 

Уравнения, описывающие поведение нейтринного пучка в рас­
сматриваемой нами схеме, аналогичны уравнениям, полученным в 
работе' ' . Ш обсудим ниже ряд эффектов и выяснил, какую можно 
получить информацию о величине т.'—т. . 

Пучки нейтрино не описываются в случае, если тлеет место 
смешивание, стационарными состояниями. Возникают, следовательно, 
такие эффекты, как образование электронов при взаимодействии 
нейтрино от эс—fj. -распада с ядрами, появление "стерильных" 
нейтрино в пучках нейтрино от реактора и Солнца 'л др. 
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Для отношения числа электронов, образующихся при взаимо­
действии с лцрами нейтрино от Ж—IJ- -распада, к соответствую­
щему числу мюонов, получаем 

L 

N J L / + соэЛ±- ' (7) 
' а 

где L - расстояние от источника нейтрино до детектора, 
L0 = /j^fti^frfi - длина осцилляции ( Р- импульс нейтрино в лаб. 

системе). Из данных, полученных в опыте ЦЕРНа' ^{ с помощью (7) 
наводим 

Im.'- m-fj~ / эл. 

Меньшее верхнее значение величины / т - т~/ может быть 
найдено из данных, полученных в экспериментах с реакторными 
антинейтрино' ' . Из сравнения измеренного на опыте выхода позитро­
нов в процессе 

•о& •+ р —» е -h / г , 

с величиной, ожидаемой в случае, если нет осцилляции, находим 

/ т.'- т. I^ /о эц. 

Обсудим теперь эксперименты с солнечными нейтрино. Интен­
сивность детектируемых солнечных нейтрино ( -Jj' ) дается сле­
дующим выражением*' 

I (Я,р) = ~I0 (A,p)(l + cozSif- ) , 
1 2 - 1 и° (в) " 

где 10(Я-,Р'- интенсивность детектируемых нейтрино ( у е " ) , 
ожидаемая в случае, если осцилляции отсутствуют, /[_ - расстоя­
ние между Землей и Солнцем. 

*' В рассматриваемой нами схеме более тяжелое нейтрино рас­падается на более легкое с испусканием фотона. Используя Тб), мож­но показать, что нейтрино с энергией I мэВ за время жизни прохо­дит расстояние,на несколько порядков большее расстояния между Зем­лей и Солнцем. 
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Эффекты, связанные с осцилляциями, могут,в принципе,наблю­
даться, если L0 & Я, , т . е . если 

fm,'- т. I > /О эВ. 

При любой реалистической в настоящее врег.и постановке опыта член 
co3oL-&- в выражении (8) исчезает из-за всевозможных ус­

реднений. В этом случае из (8) получаем 
Г = / Т0. (9) 

Отметим, что с точки зрения проверки этого соотношения наиболь­
ший интерес представляют создающиеся в настоящее время новые 
детекторы нейтрино, основанные на Ga-Ge. - радиохимичес­
ких методах' 1 3 , 1 4'. 

4. Сделаем в заключение несколько замечаний. Хорошо из­
вестно, что в случае, если массы обоих нейтрино равны нулю, име­
ются две эквивалентных теории нейтрино: 

1) два двухкомпонентных нейтрино, 
2) два нейтрино Майорана. 
Вели в гамильтониане взаимодействия поля двух нейтрино 

смешиваются, то цля того, чтобы подавить такие процессы, как 
jtL-~eff , они должны входить в гамильтониан в виде ортогональных 

комбинаций. В такой теории массы нейтрино, разумеется, должны 
быть разными. 

Теория, предложенная в работе' ^, основана на обобщении 
случая (2) и является, следовательно, теорией, в которой каждое 
из двух нейтрино с массой могут находиться в двух состояниях. 

Рассмотренная здесь теория основана на обобщении (I) и 
является, следовательно, теорией, в которой два нейтрино с мас­
сой описываются четырехкомпонентными спинорами. В этой схеме 
нейтрино 0 и i>' описываются так же, как и остальные лептоны 
и кварки, в то время как в TeopHi/ 2 / нейтрино занимают особое 
место среди остальных фундаментальных частиц. 

Следствия, вытекающие из обеих схем, практически совпада­
ют, хотя в принципе их можно различить. Например, в теории' ' 
разрешен двойной безнейтринный В -распад. В нашем случае этот 
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процесс запрещен (сохраняется лептонный зарягс). Расчеты'1 ' по­
казывают, однако, что двойной в -распад весьма сильно в тео­
рии/ ' подавлен. ' 
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vacuum manifold Г\ . We shall consider a field 
6 ^ С*) ) which is smooth for | X| ̂  i and satisfies 

t <*> « УС^,) , 6„(7)-Х g,(X.) , 7 j s o сю 

for м 1 > 1 . (By means of simple topological considera­
tions one can prove the existence of suoh a smooth function 
IL(^) t h a t t h e condition 9 i = 0 is fulfilled). 

It is easy to verify that the fields under consideration 
have finite energy. One can prove that the magnetic charge 
1*(Ф В. ) is equal to — £ ( Ф B, ) , where c/O 
) ' * See 7 ' *•' 
and | ( ф В, ) is an integer which оan be defined for example 
by means of the integration of the 2-form V cO over the 
sphere S : 

(The proof of (9) is sketched in preprint'7'; it is based on 
some topological theorems). 

For every integer fc one can construct a field (Ф} 8 ) 
satisfying "J (ф В } - % , therefore there exist the fields hav­
ing finite energy and non-zero magnetic charge. 

Let us discuss briefly the case of arbitrary group \-\ 
We ohoose oompaot one-parameter subgroups \]. belonging to the 
center of hj (i.e.,commuting with all elements of Г) ) • L e* "•; 
be the generators of these subgroups; we suppose that n.1>a ^ 
generate the center of the Lie algebra of H • It Is easy to see 
that there exist z Independent "magnetic oharges". Really, re­
placing к by К• la the definitions of к(Ф) and «J we get 
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i) The internretational requirement 

The free multilooal field must he decomposable into 
physical states. This in turn will allow me to define an S-matrix 
within the I£Z framework. Thus 

(Fierz'decomposition), of 
L^'^Cf'/y-dJ is а С-пшаЬег operator and 7%A/conventional 

free field with quantum numbers Of and mass Мы . The free equa­
tion must have the form 

which is solved by solving the eigenvalue equation 

ii) The confinement or macrocausality condition 

Т%(Х/Г) must satisfy 

and 

w 

(5) 

(6) 

%Г>-> ° for Г ^ <*> 
sufficiently fast . 

This condition implies that trfijfi/ has to depend on f~'P > 
where pf i s time-like ( this provides the necessary damping 
along the internal light-cone Гл2"0 ) . Thus only i f (5) yields 
a posit ive definite mass spectrom one can have confinement. 

Cf'Y/v) - must be normalizable according to 

/«Л- <r«fo)v*'fo)- S^ (7) 

for tlne-llke p* 
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The quantization of fe(X/f/is given by the requirement that 
fQ^fxJ must be canonically quantized in the conventional way 

(the par t ic le s t a tes must have posit ive definite metric). The 
commutator i s 

where 

Since depends on will in general not 
vanish for JfV'tf (we have an extended object). However, due to the 
confinement condition the contribution outside Хл=0 will be effec­
tively only for a compact domain» 

The work of Sogami' ' suggests that ̂ always can be divided 
according to 

where ^ vanishes for X<0, and ^ j for X ?0 . The confinement 
condition implies that 

Interaction is introduced by the insertion of a source term 
on the RHS of Eq. (4). Integrating the resulting equation one 
obtains 
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where vflL'^' a r e * n e free in- and out-fields and where the 
retarded and advanced Greais functions have to satisfy id and adv 

i) Dfajr,r)<?*fac';r,r'J=S'fax'JS*fr-r'J 

u) -Д*г G-я (x,--)-O 

iu) Jw (<?8(xrMtfx;-J)s0 

iv) <TR (XyJ-^efxy)*1-^*}-) 

v ) <5-fi (x; r,r') = <fo f-Xjr,'/-) • 

(13) 

The only possible solution is 

<&&г-)*-0Ы&(хН-£&Ъ'-) • (I*) 

'.Vhen the Yang-Feldman-Kallen quantization is inconsistent 
since it violates 

which is a necessary condition for the existence of a unitary 
S-operator. However, I conjecture that there still exists a 
consistent quantization and that this quantization can be obtained 
by adding correction terms to the Y-F-K quantization. This I 
have cheched up to the 4th order in the coupling constant. 

The S-operator may be solved for order bjr ord»'" in the coup­
ling constant and will not be represented by a simple generalized 
Dyson solution. However such a representation constitutes the main 
contribution to the S-operator and it is given by 

SF=Te " > ев) 
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where T is the generalized time-ordering of Okubo' J . The true 
S-operation is obtained by the addition of small correction terms 
on the loop level to eq. (16). 

Л simple and calculable model which can be fully fitted 
within the above general framework has been presented by Sogami' . 
He solves equation (5) with the mass operator ( l~F is here a single 
relative coordinate) 

М*=-т2+М2+*М\ . (17) 

where 

(18) 

„fit- ЭЛ?» . п^-а^Ч_а/ч> 

where fffintf • /I and j? are parametersi As a subsidiary equation 
he has 

where 

The confined solution i s given by 

(20) 

Rffr'h (*4?*»шГ*«г(&?нм(г) ( 2 1 ) 
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К and N is the radial and time excitation quantum number»respecti­
vely. L is the angular momentum (spin) and (П helicity. The mass 
spectrum is given by 

/*MCL ^-^c-f-f^mt+s.C^i-L-hXNjm^. (22) 

Thus the particles lie on linear Regge trajectories with the slope 

and leading intercept 
a. (24) 

The mass spectrum is positive definite for/*0 ana 0(0<0 , 
I shall now consider the following interaction for Sogami's 

bilocal field 

which imitates a three-string vertex in the dual models. By the 
replacement f/X/rJ = fifajfa) where r*4 " X/'-Xf 
yA- X*+X£ one obtains 

Л " Л Я 

' yt/f/iJ<i w<* ' ' / - X ' / ' / / № ' - ' / г с т / ' Л ( 2 б ) 

For simplicity I shall only consider the quasi-local version, i.e.» 

\^=fSSS^M4r'9rxJtMxrrW^t-'). (27) 

The nonlocality will be reflected in the momentum space by 
a particular singularity structure of the ^^vt^t function, which 
is defined by 
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(28) 
= < A/ ** S Д *, J: Ws/fi; #, > • 

For eq. (27) one has 

which will have singularities if the integral does not converge 
for all values of />/*, t =1,2,3. 

For the Sogami model this integral is a gaussian one, vihich 
I define by 

I obtain 

'ОС 
* ,--a- . № ) 

which simplifies for Mz -tnt ' 

In fact determines the position of the singularities for 
a genei .1 vertex function and they seem not to be in the physical 
region. 

Thus, in the momentum space there are additional singulari­
ties in the Feynman graphs which explains why unitary requires 
correction terms to these graphs. 

I shall now consider the Born amplitude of the elastic scat­
tering of two ground state mesons with the interaction (27). 
Using the naive representation of the Green's function, I obtain 
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the following T-matrix for the 5" -graph 

7? ̂  «'(tf?f<kz-'-"f* (Э-г*Г'/г 

(&-?-^-?рф№*(к№<чг* (32) 
ФОп)-*(&-')<- №<-<*/*• 

This expression contains the particle poles which is seen if one 
performs an expansion around Z =0 in the integrand. These poles 
will have the following singular coefficients 

(&-U - Я - " 
due to the vertex function (31). The asymptotic behaviour is 

For the t-graph I obtain * 

v*. 
(33) 

This diagram represents the exhange of the extended object.Its 
leading behaviour at high energy is determined by the £=0 end of 
the integral since S" is multiplied by Z . A full >*• -plane 
analysis can be performed by taking the Mellin transform of (33) 
and expanding the integrand around Z =0» The leading behaviour 
turns out to be 

-j- ^(rtm-^fa**^ ***** 
where 
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The nonleading behaviour is represented by daughter trajectory 
Regge behaviour and odd order fixed poles. Thus, eq. (34) represents 
the leading behaviour only for 0(M?—t . For <x(t)<-1 
the fixed pole at g. --Л will take over. At •Х./б) =-1 one has 
a double pole as leading behaviour. 

The full Born anplitude is obtained by adding together the 
J"- , -6 - and it -graphs. Thus crossing is just a consequence of 
the field theoretic framework. 

From the calculations so far it seems to me quite possible 
that one here has a space-time description of the scattering of 
extended objects in consistency with relativity and quantum 
mechanics, and that a model theory of this type yields an S-matrix 
that satisfies. 

i) Relativistic invariance 
ii) Unitarity (?) 
iii) Positive definite mass spectrum, and positive definite 

normed states 
iv) Crossing 
v) Regge behaviour 
However, maximal analyticity seems very hard to obtain within 

the present scheme and it is an open question whether the extra sin­
gularities in the unphysical region of the amplitudes at the end 
will act destructively or not. In a way they seem to be a natural 
consequence of the fact that the hadrons have finite size. Indeed 
it is these singularities that yield the main contribution to the 
electormagnetic form factors. 
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