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ABSTRACT

In this thesis, we study the ekpyrotic scenario, which is a cosmological model of the early

universe. In this model the “initial conditions” of the universe are determined by a contracting

ekpyrotic phase, which means that the conventional “Big Bang” is replaced by a bounce. The

following thesis addresses the tension between ekpyrotic predictions and the observations of the

Cosmic Microwave Background radiation by the Planck team. According to the Planck data, the

primordial curvature fluctuations are nearly scale-invariant and Gaussian. During ekpyrosis, the

self-interactions of the perturbations are generally large, which results in sizable non-Gaussian

signatures of the nearly scale-invariant curvature perturbations. In this thesis, we propose two

approaches in order to resolve the tension with observations.

In the non-minimal entropic mechanism, nearly scale-invariant entropy perturbations are created

due to a non-minimal kinetic coupling between two scalar fields. We will show that the non-

Gaussian corrections during ekpyrosis are precisely zero leading to overall small non-Gaussian

signatures after the conversion process from entropy perturbations to curvature perturbations.

In the following, we will consider a kinetic conversion phase, which takes place after a non-singular

bounce leading to fairly di↵erent predictions compared to a kinetic conversion before the bounce,

since the entropy perturbations can grow quite substantially during the bounce phase. Due to this

growth, the possibly large non-Gaussian corrections created during the ekpyrotic phase become

suppressed during the bounce. Consequently, the resulting non-Gaussian signatures of the curva-

ture perturbations depend mostly on the conversion process.

The last part of this thesis addresses a major problem of the inflationary paradigm: Due to large

adiabatic fluctuations, slow-roll eternal inflation creates infinitely many physically distinct pocket

universes, which challenges the predictability of the inflationary paradigm. We propose a model

in the framework of scalar-tensor theories, which conflated ideas of both inflation and ekpyrosis.

During conflation, the universe undergoes accelerated expansion like during inflation, but there

are no large adiabatic fluctuations like during ekpyrosis resulting in the absence of the runaway

behavior in slow-roll eternal inflation.
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ZUSAMMENFASSUNG

In dieser Arbeit studieren wir das ekpyrotische Szenario, welches ein kosmologisches Modell

des frühen Universums ist. Dieses Modell erklärt mit Hilfe einer kontrahierenden ekpyrotischen

Phase die ”Anfangsbedingungen” des Universums. Das bedeutet, dass der konventionelle ”Urk-

nall” durch einem Rückprall ersetzt wird. In dieser Arbeit versuchen wir die Unstimmigkeiten

zwischen den Vorhersagen der ekpyrotischen Modelle und den Messungen der Kosmologischen

Hintergrundstrahlung des Planck Satelliten zu lösen. Den Planck Messungen zufolge sind die

ursprünglichen adiabatischen Fluktuationen fast skaleninvariant und gaußverteilt. Während der

ekpyrotischen Phase sind die Selbstwechselwirkungen der Fluktuationen typischer Weise groß. Dies

hat zur Folge, dass die nicht-Gaußschen Korrekturen der adiabatischen Fluktuationen ebenfalls

groß sind. Wir schlagen zwei Ansätze vor, um die Unstimmigkeiten zu beheben.

In dem nicht-minimalen entropischen Mechanismus werden fast skaleninvariante entropische Fluk-

tuationen mit Hilfe einer nicht-minimalen kinetischen Kopplung zwischen zwei Skalarfeldern

erzeugt. Wir werden zeigen, dass die nicht-Gaußschen Korrekturen während der ekpyrotischen

Phase genau Null sind. Dies führt zu insgesamt kleinen nicht-Gaußschen Korrekturen nach der

Umwandlung von entropischen zu adiabatischen Fluktuationen.

Im Folgendem werden wir eine kinetische Umwandlung untersuchen, die nach einem nicht-

singulären Rückprall stattfindet. Die Resultate weichen deutlich von denen ab, die von einer

Umwandlung vor einem Rückprall gewonnen werden, da die entropischen Fluktuationen während

des Rückpralls erheblich wachsen können. Dies hat zur Folge, dass die möglichen nicht-Gaußschen

Korrekturen, die zur Zeit der ekpyrotischen Phase erzeugt wurden, während des Rückpralls un-

terdrückt werden. Die resultierenden nicht-Gaußschen Korrekturen der adiabatischen Fluktuatio-

nen hängen somit größtenteils von dem Umwandlungsprozess ab.

Im letzten Teil der Arbeit gehen wir ein gravierendes Problem des inflationären Paradigmas an,

welches ”slow-roll eternal inflation” genannt wird. Aufgrund von großen adiabatischen Fluktu-

ationen werden unendlich viele physikalisch unterschiedliche Universen erzeugt. Dies stellt die

Vorhersagbarkeit des inflationären Paradigmas in Frage. Wir schlagen ein auf der Skalar-Tensor-

Gravitationstheorie basierendes Modell vor, das Ideen von Inflation und Ekpyrosis verbindet.

Während der Konflation expandiert das Universum beschleunigt, ähnlich wie in Modellen der

Inflation. Jedoch existieren hier keine großen adiabatischen Fluktuationen, da sich diese wie in

ekpyrotischen Modelle verhalten. Somit tritt im konflationärem Modell kein ”slow-roll eternal

inflation” auf.
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1. INTRODUCTION

In the last ten to twenty years, measurements of e.g., supernovae, the Large Scale Structure and

the Cosmic Microwave Background led to a very profound understanding of the evolution of the

universe. The precision to which cosmological parameters have been measured is astonishing. The

universe on large scales is remarkably simple; it is spatially nearly flat, homogeneous, and isotropic.

This means that the initial conditions of the universe had to be rather special. For example, in an

expanding universe, the spatial curvature grows with time, which means that initially, the universe

had to be very flat. Moreover, the structure in the universe formed due to small preexisting over-

and under-densities, which are imprinted in the temperature anisotropies of the Cosmic Microwave

Background radiation. The Planck satellite measured the Cosmic Microwave Background leading

to the following observation: the preexisting fluctuations are adiabatic, nearly scale-invariant and

nearly Gaussian. The current hot big bang model of our universe, which fits the observations, is

the so-called ⇤CDM model. The universe starts in a very hot and dense phase and cools down due

to the expansion of the universe. The expansion history of the universe is fairly well understood,

and we will cover basic cosmological concepts in Chapter 2. However, the initial conditions of the

universe cannot be explained by the standard hot big bang model. We have to assume that the

universe started spatially nearly flat, homogeneous, and isotropic. Moreover, the small anisotropies

in the Cosmic Microwave Background have to be added by hand.

Models of the early universe try to explain the initial conditions, which led to the universe we

observe today. The initial conditions of the hot big bang cosmology can be obtained dynamically

by introducing a phase prior to the conventional hot “Big Bang”. During this primordial phase

the universe has to be driven towards homogeneity, isotropy, and flatness, while adiabatic, nearly

scale-invariant, and nearly Gaussian fluctuations have to seed the anisotropies is the Cosmic Mi-

crowave Background.

The inflationary paradigm tries to explain the initial conditions of the universe by introduc-

ing a phase of rapid, accelerated expansion [11–13]. Due to the enormous expansion, any other

matter content is diluted, such that the universe becomes spatially flat and homogeneous. Inflation

can be modeled by a scalar field minimally coupled to gravity in a flat potential.

Ekpyrosis is an alternative model to inflation, where the initial conditions of the universe are

created via a slowly contracting phase preceding the conventional “Big Bang”. In this scenario

the universe undergoes a transition from contraction to expansion replacing the “Big Bang” with
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a bounce. Ekpyrosis was first introduced in [14] and extended to a cyclic model in [4, 15, 16].

These models are based on an embedding in heterotic M-theory, and we will discuss the ekpyrotic

scenario, the cyclic model and the braneworld picture of the universe in Chapter 3B. Ekpyrosis can

also be modeled by a scalar field minimally coupled to gravity. However, the ekpyrotic potential

is steep and negative.

As already mentioned, an important requirement for early universe models is the explanation

of super-horizon, nearly scale-invariant adiabatic/curvature fluctuations. Let us briefly state how

these fluctuations can be created during inflation. If we perturb the background, there is one

scalar degree of freedom in the case of a single scalar field minimally coupled to gravity. A useful

quantity is the so-called comoving curvature perturbation, which describes a small local change

in the expansion history. It turns out that to first order in perturbation theory, which describes

the free evolution of the quantum fluctuations, the fluctuations get amplified and stretched out-

side the horizon. The nearly scale-invariant fluctuations become classical and act as seeds of the

anisotropies in the Cosmic Microwave Background.

However, the adiabatic perturbations created during ekpyrosis have a deep blue spectrum [17, 18].

Moreover, these adiabatic fluctuations stay quantum and do not become classical [19]. We will

review the basics of cosmological perturbation theory to first order in Chapter 4 and calculate the

evolution of quantum fluctuations during ekpyrosis in Chapter 4F. While we introduce the basic

concepts of the ekpyrotic scenario, we will also discuss the corresponding concepts of inflation.

This allows us to illustrate the similarities and di↵erences of both models.

The fact that curvature perturbations do not become amplified during ekpyrosis led to the “new

ekpyrotic scenario” [20, 21], which is a two-field ekpyrotic model. The presence of an unstable

direction in the potential creates nearly scale-invariant entropy/isocurvature perturbations via

the entropic mechanism [22–24]. Entropy perturbations perturb the transverse direction (in field

space) of the background solution. The tachyonic potential can spoil the initial conditions [21]

and the duration of the ekpyrotic phase. However, in the context of the cyclic model, this led to

the so-called “phoenix” universe [25–27], which provides a selection principle for a successful cyclic

model of ekpyrosis. We will cover the new ekpyrotic scenario in Chapter 5.

We will then investigate second order e↵ects – namely non-Gaussian corrections – and the re-

sulting theoretical and observational consequences of early universe models in Chapter 6. The
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second order corrections correspond to self-interactions of the perturbations. The inflationary

potential is very flat, and thus the self-interactions are small. However, in the ekpyrotic case,

the potential is very steep, which typically leads to large self-interactions and consequently large

non-Gaussian corrections. The non-Gaussianities are in tension with observations. The challenges

for inflationary and ekpyrotic models will be reviewed in Chapter 7.

The resolution of the typically large non-Gaussian signatures [28] in ekpyrotic models is the

focus of this thesis. The non-minimal entropic mechanism [29–32] creates nearly scale-invariant

entropy perturbations via a non-minimal kinetic coupling between two scalar fields. In collabora-

tion with Angelika Fertig and Jean-Luc Lehners, we have shown in [31] that this model produces

overall small non-Gaussian corrections, which will be discussed in detail in Chapter 8. In the

non-minimal entropic mechanism, the potential does not depend on the second scalar field. How-

ever, the non-Gaussian corrections arise due to self-interactions, which are precisely zero during

ekpyrosis, because the potential does not depend on the second scalar field. This has crucial

consequences: In contrast to the ”new ekpyrotic scenario”, the intrinsic non-Gaussian corrections

vanish resolving the tensions with observations.

Eventually, the ekpyrotic phase has to come to an end – the universe has to undergo a bounce from

a contracting to an expanding phase. The challenges and developments of bouncing cosmologies

will be covered in Chapter 9 and Chapter 10. A realization of a non-singular bounce can be

obtained via a ghost-condensate [20, 24, 33], which is technically fairly simple and constitutes a

healthy e↵ective field theoretical description [8]. This allows us to calculate the evolution of the

background as well as the evolution of the adiabatic and entropy perturbations during a non-

singular bounce.

An important step for the viability of ekpyrotic models is the conversion phase: Entropy per-

turbations have to be converted to curvature perturbations in order to explain the structure

formation in the universe. We will discuss the cosmological predictions from a conversion phase

in detail in Chapter 6E. In various studies [22, 34, 35], the conversion phase takes place after (or

during) the ekpyrotic phase and before the bounce. The findings of [8] suggest that the e↵ective

field theoretical description of a ghost-condensate bounce is under better control in the presence

of a negative potential. This was the motivation to investigate the conversion process after a

non-singular bounce. In Chapter 11 we will calculate the evolution of entropy perturbations dur-
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ing a non-singular bounce and the subsequent conversion phase based on our findings in [9] in

collaboration with Angelika Fertig, Jean-Luc Lehners and Edward Wilson-Ewing. It turns out that

the possibly large non-Gaussian corrections created during ekpyrosis become suppressed during

the non-singular bounce phase. This means that the non-Gaussian signatures depend mostly on

the conversion process reducing the tension of the entropic mechanism with observations.

Since the very first inflationary models, a vast amount of early universe models have been proposed

– based on single scalar fields, multiple scalar fields, generalized scalar fields, single scalar fields

minimally and non-minimally coupled to gravity, higher derivative theories,...

Hundreds of di↵erent models alone are based on inflation – for a review see, e.g., [36]. However,

many conceptual and fundamental problems of the inflationary paradigm remain unresolved (cf.

Chapter 7). A severe challenge is (slow-roll) eternal inflation: rare, large adiabatic fluctuations

can cause a region in the universe to expand more rapidly since the scalar field moves up in the

potential. This can happen over and over leading to an infinite amount of pocket universes – each

physically di↵erent. With no probability measure, the multiverse challenges the predictability of

inflation.

In Chapter 13 we propose an early universe model with a phase of accelerated expansion based

on our paper [10] in collaboration with Angelika Fertig and Jean-Luc Lehners. The basic idea is

to conflate ideas of inflation and ekpyrosis combining features of both models. During conflation,

the universe undergoes accelerated expansion like during inflation, but perturbations behave like

during ekpyrosis. Hence (slow-roll) eternal inflation does not occur during conflation since there

are no large adiabatic fluctuations. The model belongs to the class of scalar-tensor theories, where

the scalar field is non-minimally coupled to gravity. We will cover the physical concepts of scalar-

tensor theories before the construction of the conflationary phase in Chapter 12.

The results presented in this thesis based on [9, 10, 31] will be put in context with the theoretical

and experimental developments in recent years in Chapter 14. We will review the properties,

challenges, open problems, and predictions of these models. Finally, we will discuss how future

experiments can falsify or provide evidence for the ekpyrotic scenario as a possible early universe

model.
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2. COSMOLOGY – AN INTRODUCTION

The following chapter will provide a brief review of the standard model of cosmology. We will

discuss the basic concepts of cosmology, important measurements and the resulting cosmological

parameters. We will then encounter shortcomings of the standard big bang theory, which are

mainly initial condition problems.

A. FLRW Cosmology

Einstein’s theory of general relativity answered many philosophical questions about the universe

with a physical theory. In the 1920’s Albert Einstein [37], Alexander Friedmann [38, 39] and George

Lemâıtre [40, 41] realized that the Einstein equations allow dynamical solutions of the universe.

Lemâıtre was the first who considered that the expanding universe could have a beginning. The

idea of an early quantum state, which he called the “primeval atom” later led to the name “Big

Bang”. In 1929 Edwin Hubble [42] discovered that distant nebulae are actually other galaxies and

that the recession velocity of these galaxies increases with distance. This led to the Hubble law and

consequently to the discovery that the universe is indeed expanding. In 1964 Penzias and Wilson

[43] measured an isotropic background signal: the Cosmic Microwave Background (CMB) radiation.

We will cover the CMB in detail in Chapter 2C. For now, let us state that the existence of such

an isotropic background radiation provides strong evidence for the expansion of the universe and

for the spatial isotropy and homogeneity on large scales. Isotropy means that there is no preferred

direction in space: The universe looks the same in each direction; it is rotation invariant. Another

indication for spatial isotropy are the results of large-scale structure measurements. In Fig. 1 the

measurement of the 2dF galaxy redshift survey [1] is plotted. On small scales, there are sheets and

filaments, while on large scales the galaxy distribution becomes spatially isotropic.

Homogeneity implies that the universe looks the same at each point in space – it is translation

invariant. An observer capable of jumping around in space would see the same physics at each

point in space if the universe is homogeneous. While we can measure spatial isotropy on large

scales, we cannot confirm that the universe is homogeneous. However, our position in the universe

is seemingly not special, which means that it is very probable that a distant observer would also see

an isotropic distribution of galaxies on larges scales. It the universe is spatially isotropic in multiple

points in space, then the universe is also spatially homogeneous. The concept of homogeneity and
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FIG. 1. 2dF galaxy redshift survey shows the position of galaxies for redshifts up to z = 0.25. On smaller scales

galaxies cluster together, while on large scales the distribution becomes spatially isotropic. Figure from [1].

isotropy in general relativity is called the Cosmological Principle, which is a generalization of the

Copernican Principle. The universe is essentially the same at each spatial point. As seen from

the large scale structure measurements the Cosmological Principle is valid on large scales. The

homogeneity and isotropy allow us to calculate the dynamics of our universe in a simple way. We

can foliate the four-dimensional manifold in IR ⇥ ⌃, where IR is the time direction and ⌃ is a

maximally symmetric 3-space. We can chose a metric of the form

ds2 = �dt2 + a2(t)�ij(x)dxidxj , (2.1)

where a(t) is the scale factor determining the relative size of the spatial hypersurface ⌃ at times

t. We have chosen so-called comoving coordinates, where cross-terms dt dxi are absent. The

metric with a maximally symmetric surface ⌃ is the famous Friedmann-Lemaitre-Roberson-Walker

(FLRW) metric:

ds2 = �dt2 + a2(t)


dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

�
. (2.2)

The metric is invariant under the following redefinition: k ! k/|k| , r ! r
p

|k| , a ! a/|k|, such

that k/|k| = sign k is the relevant parameter. This means there are three possible cases: An
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open universe with constant negative spatial curvature k = �1, a flat universe with zero spatial

curvature and a closed universe with constant positive spatial curvature k = +1.

Changing the coordinates in (2.2) the three space metric reads d�2 = d�+r2d⌦2, where r = sinh�

for k = �1, r = � for k = 0 and r = sin� for k = 1.

The Einstein equations are given by:

Gµ⌫ ⌘ Rµ⌫ �
1

2
gµ⌫R + ⇤gµ⌫ = Tµ⌫ , (2.3)

where we have set 8⇡G = M�2

P = 1. We will use the so-called reduced Planck units and c = ~ = 1

throughout this thesis, if not otherwise stated. Moreover, we will use the metric signature (�+++).

In order to calculate the Einstein equations we have to calculate the Christo↵el symbols for the

FLRW metric:

�0ij =
ȧ

a
gij , �i

0j =
ȧ

a
�ij , �2

12

=
1

r
(2.4)

�1
11

=
kr

1� Kr2
, �1

22

= �1
33

sin�2 ✓ = �r(1� kr2) (2.5)

�2
33

= � sin ✓ cos ✓ , �3
23

= cot ✓ (2.6)

This leads to the following non-zero components of the Ricci tensor

R
00

= �3
ä

a
, Rij =

�
aä + 2ȧ2 + 2k

�
�ij (2.7)

and the Ricci scalar

R =
3

a

�
aä + 2ȧ2 + k

�
. (2.8)

Assuming homogeneity and isotropy the most general matter fluid is the perfect fluid. An observer

comoving with the fluid would see the universe as isotropic. The energy-momentum tensor of a

perfect fluid is given by

Tµ⌫ = pgµ⌫ + (p + ⇢)uµu⌫ , (2.9)

where p(t) is the pressure, ⇢(t) is the energy density of the fluid and u⌫ is the comoving four-velocity

satisfying uµum = �1. For a comoving observer in the rest frame we have

Tµ
⌫ = diag(�⇢(t), p(t), p(t), p(t)). (2.10)

The equation of state w of the fluid is given by p = w⇢. Another parameter representing the

equation of state is ✏, defined via

p =

✓
2

3
✏� 1

◆
⇢, (2.11)
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with the relations w = 2

3

✏ � 1 and ✏ = 3

2

(w + 1). The parameter ✏ in inflationary models is also

called the slow-roll parameter, while in ekpyrotic models it is called the fast-roll parameter, as will

become apparent in later chapters. It is usually assumed that ✏ is constant or slowly varying.

From the Bianchi identity for the Einstein tensor (Gµ⌫
;⌫ = 0) we find that the energy-momentum

tensor is also covariantly conserved: Tµ⌫
;⌫ = 0. This leads to the equation of continuity:

⇢̇+ 3H(⇢+ p) = 0, (2.12)

where we have introduced the Hubble parameter

H =
ȧ

a
(2.13)

For a constant equation of state, we can integrate the equation of continuity yielding

⇢ ⇠ 1

a2✏
⇠ 1

a3(w+1)

. (2.14)

The energy density is not conserved in a dynamic universe. From (2.14) we can see how di↵erent

matter contents scale in an expanding or contracting universe. This is very important in order

to understand which matter content is dominant at di↵erent stages of the evolution of the universe.

Pressure free matter (dust) has an equation of state w = 0 or ✏ = 3

2

. This matter content

includes ordinary baryonic matter (e.g., stars and planets) and also dark matter when averaged

over large scales. From (2.14) we see that the energy density scales as ⇢ ⇠ a�3 – the energy density

scales inversely with the volume.

For radiation/relativistic particles the equation of state is given by w = 1

3

or ✏ = 2. The en-

ergy density scales as ⇢ ⇠ a�4. Thus the energy density of radiation falls o↵ faster than the

energy density of dust. From these considerations, we can already deduce that in an expanding

universe the universe was dominated by radiation followed by a matter dominated era. The scaling

⇢ ⇠ a�4 can be understood as follows: the number of e.g. photons scales with the volume as

⇠ a�3. Moreover, the wavelength scales also with the scale factor leading to a frequency or energy

scaling of ⇠ a�1 due to the expansion of the universe (redshift).

The cosmological constant has an equation of state w = �1 or ✏ = 0. The energy density of

the cosmological constant is constant and the pressure is negative. This negative pressure can lead

to an accelerated expansion of the universe. However, models of dark energy and inflation usually
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replace the cosmological constant by a scalar field in order to obtain a dynamical description

allowing for a beginning and ending of such a phase.

As just mentioned another very important matter content is described by one or multiple scalar

fields. In this thesis, we will discuss a variety of di↵erent scalar field models. For now, we will note

that the energy density of a single scalar field with a constant equation of state is also given by

⇢ ⇠ 1

a2✏
. (2.15)

We have discussed the matter content and geometry on the basis of the Cosmological Principle.

We can now calculate the corresponding Einstein equations: the famous Friedmann equations.

Assuming the FLRW metric and matter content described by a perfect fluid, we obtain

H2 +
k

a2
=

1

3
⇢, (2.16)

ä

a
= �1

6
(⇢+ 3p) = �1

3
⇢(✏� 1). (2.17)

The equations are called the first and second Friedmann equation. The first equation is often

simply referred to as the Friedmann equation, while the second equation is called the acceleration

equation. ⇢ and p denote the overall energy density and pressure, which consists of the sum of all

the di↵erent matter contents.

In the case of a spatially flat universe with k = 0, we can find a very useful definition of the

equation of state parameter:

✏ ⌘ � Ḣ

H2

. (2.18)

Let us consider a spatially flat (k = 0) universe with a constant equation of state ✏. In this case,

the solutions to the Friedmann equations are scaling solutions. Scaling solutions have the property

that all terms in the equations of motion scale in the same way with time. This class of solutions

will also be very important in the case of inflation and ekpyrosis: Scaling solutions are exact, and

one can find approximations for more complicated cases based on the scaling solutions. The scaling

solutions for k = 0 and ✏ = const. in an expanding universe (0 < t < 1) are given by

a(t) = t1/✏ , H =
1

✏t
, ⇢ =

3

✏2t2
, (2.19)

while in a contracting universe (�1 < t < 0) we have

a(t) = (�t)1/✏ , H =
1

✏t
, ⇢ =

3

✏2t2
. (2.20)
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In an expanding universe the Hubble parameter H > 0 and the scale factor a increases with time,

while in a contracting universe Hubble parameter H < 0 and the scale factor a decreases with

time. Comparing the solutions with the Friedmann equation (2.16) we indeed find that each terms

scales as t�2.

Let us take a look how the universe behaves when it is dominated by a single matter compo-

nent in an expanding universe:

In the case of dust the scale factor is given by a(t) ⇠ t
2
3 and from the second Friedmann equation

we find that the universe is decelerating.

For a radiation dominated universe we find a scale factor of the form a(t) ⇠ t
1
2 , while the universe

is again decelerating.

The cosmological constant yields an exponential expansion a(t) ⇠ eHt with ⇢ = const. and

H = const.. This solution is the well known de Sitter (dS) phase, which is accelerating. From the

acceleration equation we find that the universe is accelerating for w < �1

3

.

Let us define the critical density

⇢c = 3H2, (2.21)

which corresponds to a spatially flat universe. The critical density today is measured to be ap-

proximately [44]:

⇢c = 3H2

0

⇡ 3

8⇡G
(68 km s�1 Mpc�1) ⇡ 10�26 kg/m3. (2.22)

We can use the current critical density to define a density parameter

⌦ =
⇢
0

3H2

0

=
⇢
0

⇢c
(2.23)

and rewrite the Friedmann equation as

⌦� 1 =
k

a2H2

. (2.24)

Thus ⌦ also describes if the universe is open, flat or closed. We are now interested in the dynamics

of the universe in the presence of several matter components. The Friedmann equation reads

3H2 =
⇢r
a4

+
⇢m
a3

� 3k

a2
+ ⇤ . (2.25)
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We can also define current fractional energy densities ⌦i = ⇢i/⇢0 for each matter content individ-

ually:

⌦r =
⇢r,0
3H2

0

, ⌦m =
⇢m,0

3H2

0

, ⌦k = � k

3H2

0

, ⌦
⇤

=
⇤

3H2

0

, (2.26)

leading to a Friedmann equation of the form

✓
H

H
0

◆
2

=
⌦r

a4
+
⌦m

a3
+
⌦k

a2
+ ⌦

⇤

. (2.27)

Note, that one can write the Friedmann equation using today’s cosmological parameters as

1 = ⌦r + ⌦m + ⌦k + ⌦⇤

, (2.28)

where we have set a = 1 and H = H
0

. The Planck 2015 measurements obtained the following

values of the cosmological parameters today (to 1 �) [44]:

⌦r = (9.15± 0.34)⇥ 10�5,

⌦m = 0.308± 0.012,

⌦k = �0.005± 0.017, (2.29)

⌦
⇤

= 0.692± 0.12,

H
0

= (67.8± 0.9) kms�1Mpc�1.

The universe today is almost flat and thus we can use a flat FLRW metric with k = 0 to describe

the evolution of the universe. The fact, that the curvature term is so small is very surprising and

one of the puzzles of the standard hot big bang cosmology. This will be addressed in Chapter 2D.

We have just given a very brief introduction to the evolution of our universe. Today the universe

undergoes accelerated expansion due to the dark energy domination. The prior phase was domi-

nated by matter, during which the large scale structure was formed. And the preceding phase was

dominated by radiation. The currently best fitting model which describes our universe is called

the ⇤CDM -model , where ⇤ stands for the cosmological constant and CDM for cold dark matter.
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B. Light Propagation and Causal Structure

Due to the expansion of the universe the wavelength of light changes accordingly to

�
0

= �
1

a(t
0

)

a(tR)
⌘ �

1

(1 + z), (2.30)

where tR is the time of emission and t
0

corresponds to the time of observation (today). We have

introduced the redshift z: in an expanding universe a(t
0

) > a(tR) leading to z > 0, which means

that light is red shifted (longer wavelength) due to the expansion. While in a contraction universe

light is blue shifted.

Conformal time ⌧ is defined via

d⌧ =
dt

a
. (2.31)

We can write the FLRW metric with k = 0 in this new time coordinate:

ds2 = a2(⌧)
�
�d⌧2 + dr2 + r2(d✓2 + sin2 ✓d�2)

�
. (2.32)

In the case of a flat universe the FLRW metric is conformally equivalent to the Minkowski metric.

Light propagates according to ds2 = 0 and assuming a propagation along r leads to

d⌧ = ±dr . (2.33)

Let us introduce the notion of the particle horizon. It determines the maximal distance light can

travel between the initial time ti (which is often set to ti = 0) and the final time tf . Since light

propagates on null-lines and nothing travels faster than light, it determines the causal structure.

rf � ri = �⌧ =

Z ⌧(tf )

⌧(ti)
d⌧ =

Z tf

ti

dt

a
. (2.34)

Note that the physical distance is then given by d = a(t)(rf � ri). We can rewrite (2.34)

rf � ri =

Z tf

ti

dt

a
=

Z tf

ti

da

Ha2
=

Z tf

ti

d(ln a)

aH
, (2.35)

where (aH)�1 is called the comoving Hubble radius, while H�1 is called the Hubble radius. Let

us emphasize the di↵erence between the comoving particle horizon ⌧ and the comoving Hubble

radius. Particles separated by more than ⌧ could have never been in causal contact with each

other, while particles separated by more than (aH)�1 cannot communicate now.
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For a ⇠ tn with n < 1 we can estimate the physical particle horizon

d = a(t)

Z t

0

dt0

a(t0)
= tn

Z t

0

dt0 t�n =
t

1� n
⇠ H�1. (2.36)

The Hubble radius H�1 determines the causally connected region in the universe. A mode with

momentum k redshifts in an expanding universe; the physical momentum is given by kphys = k/a.

Thus a mode with momentum k is inside the horizon (sub-horizon) if:

k

aH
⌧ 1, (2.37)

while a mode with momentum k is outside the horizon (super-horizon) if

k

aH
� 1. (2.38)

Note that the (aH)�1 is the comoving Hubble radius, which determines if modes are inside or

outside the horizon at a given time. In the case of a constant equation of state with k = 0 we have

calculated the scaling solution (2.19), which can be used to calculate the behavior of the comoving

Hubble radius. Using

⇢ ⇠ 1

a3(1+w)

⇠ H2 , a ⇠ t1/✏ (2.39)

we find

(aH)�1 ⇠ a
1
3 (1+3w). (2.40)

This implies that the comoving Hubble radius grows monotonically for ordinary matter (dust

w = 0 and radiation w = 1/3) in an expanding universe, which has significant consequences: In

the past, the comoving Hubble radius was smaller than today. Regions which are in causal contact

today were causally disconnected in the past.

Going back in time also means that the universe becomes smaller, which implies that the universe

was much denser and hotter in the past. The energy of a photon is given by E = hc
� = kBT , and

we can write the wavelength as

� =
hc

kBT
. (2.41)

We have seen that the expansion leads to a redshift of the wavelength � ⇠ a and thus the temper-

ature scales as T ⇠ a�1. During radiation domination a ⇠ t1/2 leading to T ⇠ t�1/2. This allows

us to determine the thermal history of the very early universe. We will focus on a very impor-

tant observation and evidence for the hot big bang cosmology: the Cosmic Microwave Background

radiation.
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C. The Cosmic Microwave Background

In 1964 Penszias and Wilson measured an isotropic background signal [43] – the Cosmic Mi-

crowave Background (CMB) radiation. In the last 20-30 years, a variety of measurements by e.g.

WMAP, COBE and most recently the Planck satellite led to a profound understanding of the uni-

verse. The Cosmic Microwave Background is a remnant of the early universe. At around the time

of radiation-matter equality, the universe was filled with photons, electrons, protons and helium

ions. During that time the universe was opaque. Photons scattered permanently o↵ free electrons

via Thomson scattering. At some point, the energy was low enough such that free electrons could

bind with free protons and helium ions to form hydrogen and helium. Since photons interact much

less with neutral atoms, the universe became transparent. The photons were suddenly able to move

freely in all directions in the universe. The radiation emitted has a black body distribution, since

photons, electrons, and protons were in thermal equilibrium. The moment when neutral atoms

formed and the photons in the universe were released is called “recombination” or moment of last

scattering. This happened at around 370 000 years after the “Big Bang” at a temperature of about

3000K, which is related to a redshift of z = 1089.94±0.42 [44]. This means that the wavelength of

the emitted photons increased by a factor of 1090 since then, which corresponds to a temperature

of T = 2.7K and a frequency peak of around ⌫ = 160 GHz today. We can calculate the (comoving)

distance to the so-called last scattering surface, which marks the maximal radius of the observable

universe (via light), from (2.34):

dls = a
0

(rls � r
0

) =

Z
dt

a
=

Z a0=1

als

da

H
0

p
⌦r + ⌦ma2 + ⌦

⇤a4
⇡ 3.15

H
0

⇡ 45.3 billion light years,

(2.42)

where we have used a
0

= 1, H�1 ⇡ 14.4 billion light years, the Friedmann equation (2.16), the

cosmological parameters (2.29) obtained by Planck and the fact that aLS = 1/1090 at the time of

last scattering.

We can also calculate the (comoving) distance to the “Big Bang” surface, where ai = 0 leading to

dbb ⇡ 3.21
H0

⇡ 46.2 billion light years. In Fig. 2 we have drawn the last scattering surface and the

“Big Bang” surface. The Hubble radius (which is just the distance between the “Big Bang” surface

and the last scattering surface c.f. Eq. (2.36)) at the time of last scattering is also shown in the

figure. We see regions, which at the time of last scattering could not have been in causal contact.

We can estimate that the causal radius is just about 1� in the sky today using sin ✓ ⇡ (dbb�dls)/dls.

This is very surprising, since the Cosmic Microwave Background radiation is so isotropic. We will

come back to this “horizon problem” in the next section.
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FIG. 2. The Cosmic Microwave Background radiation was emitted at the moment of last scattering. We observe

in the middle of the sphere the CMB radiation today, which was emitted at a distance dLSS . The Hubble radius

1/H (in turquoise) at the time of last scattering corresponds to just about 1� in the sky today. Figure based on

[2].

The isotropy of the Cosmic Microwave Background is one of the most important evidence for

the isotropy of the universe. We would like to understand why the universe is so isotropic, which

models of the early universe have to address.

It turns out that the CMB is not perfectly isotropic, there are small temperature fluctuations of the

order ⇠ 10�5. These density/temperature fluctuations play a vital role in the structure formation

in the universe. The small temperature anisotropies in the CMB can be described by an expansion

in spherical harmonics Y m
l on the sky. The monopole corresponds to l = 0 , the dipole to l = 1,

the quadrupole to l = 2, while m is an integer running from �l to +l.

The temperature fluctuations are thus

�T (n̂) =
X

lm

almY m
l (n̂), (2.43)

where n̂ denotes the direction in the sky. The temperature anisotropies observed by the Planck

satellite are shown in Fig. 3. One can also define rotationally invariant quantities

CTT
l =

1

2l + 1

X

lm

ha⇤lmalmi , (2.44)

where h...i denotes an ensemble average. CTT
l is the angular correlation function of the tempera-

ture fluctuations. One usually uses the quantity DTT
l = l(l + 1)CTT

l /2⇡.

In Fig. 4 we see the famous angular power spectrum of the temperature fluctuations of the CMB ra-

diation. The shape can be explained by the dynamics during the radiation-matter phase if nearly
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FIG. 3. The figure shows the all-sky map of the Cosmic Microwave Background radiation. In this figure, the galaxy

foregrounds and the dipole (corresponding to the relative motion of the solar system to the CMB) have been

subtracted. Hot spots are shown in red, while cold spots are shown in blue. Figure taken from[3].

scale-invariant fluctuations were present before this phase. Moreover, the nearly scale-invariant

fluctuations had to be super-horizon. In fact, they enter the horizon while it increases with time.

The existence of these super-horizon modes has to be explained by a model of the early universe.

For now, we will introduce these perturbations by hand and try to explain their origin in detail

throughout this thesis. A very useful quantity to describe these fluctuations is the so-called cur-

vature perturbation R(t, x). It denotes a local and time-dependent fluctuation in the curvature.

This corresponds to a small, local change in the scale factor – a local change of the expansion of

the universe. Locally the universe expands a little bit less or more leading to fluctuations in the

temperature. Let us write the curvature perturbation in Fourier space as

R
k

(t) =

Z
d3xR(t,x)e�ikx. (2.45)

We define the power spectrum PR as the two-point correlation function in Fourier space

hR
k

R
k

0i ⌘ (2⇡)3�(k+ k0)PR(k). (2.46)

We can relate the power spectrum of the curvature perturbation with the angular power spectrum

of the CMB temperature fluctuations via a transfer function Tl(k):

CTT
l =

Z
d3k

(2⇡3)
PRT 2

l (k). (2.47)
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FIG. 4. The figure shows the angular power spectrum of the temperature anisotropies in the Cosmic Microwave

Background. Small l correspond to large scales (small k), while large l correspond to small scales. The position

and size of the peaks and troughs are well understood in terms of the physics during matter-radiation equality,

which allows for the determination of the cosmological parameters of the ⇤CDM model – the fit is shown as a

red line. Figure taken from [3].

The transfer function Tl(k) (which encodes the evolution) can be calculated and consequently we

obtain the power spectrum of the primordial curvature perturbations by measuring the power

spectrum of the CMB temperature fluctuations. Let us define the variance �2

R and the spectral

index ns of the curvature perturbations:

�2

R ⌘ k3

2⇡2
PR , ns � 1 ⌘ d ln�R

d ln k
, (2.48)

where ns = 1 corresponds to a scale-invariant spectrum – this means that the power spectrum is

independent of the scale k. The real space correlation function is given by

hR2(x)i =
Z

d3k

(2⇡)3
PR(k) =

Z
d ln k�2

R, (2.49)

where we have used d3k = 4⇡k2dk. It is customary to write the variance as a power-law in k:

�2

R = AR

✓
k

k̃

◆ns�1

, (2.50)

where k̃ is a reference scale called the pivot scale. The Planck team used k̃ = 0.05Mpc�1 and

obtained the following measurements up to 1� [6]:

AR = (2.975± 0.056)⇥ 10�9, (2.51)
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ns = 0.9649± 0.0042. (2.52)

The primordial curvature perturbations have a nearly scale-invariant spectrum. The spectrum is

slightly red – there is a bit more power on larger scales (corresponding to smaller k). The measure-

ments of the CMB radiation by WMAP, COBE and most recently by Planck [6, 44, 45] gave us a

very precise picture of the early universe and subsequently of the universe today. The precision to

which cosmological parameters have been measured is astonishing. We cannot cover all the physics

involved in the CMB radiation and the consequential insights we obtained from the recent Planck

measurements. For a review on the CMB see e.g. [46, 47].

One very important topic and the central theme of this thesis is the non-Gaussianity of the curva-

ture perturbations and subsequently the temperature fluctuations. If the fluctuations are Gaussian,

the two-point correlation function su�ces to define all even higher order correlation functions, while

the odd correlation functions are zero. We can define the bispectrum as the 3-point correlation

function of the curvature perturbations in Fourier space

hRk1Rk2Rk3i = (2⇡)3�(k
1

+ k
2

+ k
3

)B(k
1

, k
2

, k
3

) (2.53)

and the trispectrum

hRk1Rk2Rk3Rk4i = (2⇡)3�(k
1

+ k
2

+ k
3

+ k
4

)T (k
1

, k
2

, k
3

, k
4

) . (2.54)

The amount of non-Gaussianity is parametrized by fNL, while the amplitude of the trispectrum is

parametrized by gNL. The Planck team published the following bounds to 1� [45]:

f local
NL = 0.8± 5.0, (2.55)

glocalNL = (9.9± 7.7)⇥ 104, (2.56)

where fNL = 0 corresponds to a purely Gaussian distribution. The primordial curvature per-

turbations are nearly scale-invariant and nearly Gaussian. A model of the early universe has to

describe how such super-horizon curvature perturbations are created. As we will see the ekpyrotic

model, which is the early universe model of interest in this thesis, usually produces sizable non-

Gaussianities. The main goal of this work is to construct an ekpyrotic model, which describes the

initial conditions of the universe we observe today.

Another important aspect of the Cosmic Microwave Background radiation is its polarization,

which can be described by an intensity matrix Iij in the plane (perpendicular to the direction of
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propagation)

Iij =

0

@T + Q U

U T � Q

1

A , (2.57)

where U and Q are the Stokes parameters and T denotes the temperature anisotropies. The Stokes

parameters can be expanded in spin-2 spherical harmonics

(Q ± iU)(n̂) =
X

l,m

a±2,lm±2

Ylm(n̂). (2.58)

Let us consider the following linear combinations

aE,lm = �1

2
(a

2,lm + a�2,lm) , (2.59)

aB,lm = � 1

2i
(a

2,lm � a�2,lm) , (2.60)

where the first term corresponds to the so-called E-mode, which is symmetric under parity trans-

formations, and the second term corresponds to the so-called B-mode, which is anti-symmetric

under parity. In (2.44) we have defined the temperature-temperature angular correlation function.

We can now extend this definition including the E-modes and B-modes

CXY
l =

1

2l + 1

X

m

ha⇤X,lmaY,lmi , (2.61)

where X, Y = T, E,B. We have seen in Eq. (2.47) that the temperature-temperature angular

power spectrum CTT
l is related to primordial scalar curvature perturbations. It turns out that

these scalar perturbations can only create E-modes, while primordial tensor perturbations (pri-

mordial gravitational waves) produce E-modes and B-modes. The primordial tensor fluctuations

induce a quadrupole in the radiation field leading to B-mode polarizations via Thomson-scattering.

Consequently, a measurement of primordial B-modes in the CMB would correspond to an indirect

measurement of primordial gravitational waves. Until now these primordial B-modes have not been

measured resulting in a bound on the ratio of the primordial tensor perturbations and primordial

scalar perturbations, which is called the tensor-to-scalar ratio r [6]:

r < 0.064. at 95% confidence level. (2.62)
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D. Hot Big Bang Puzzles

In the following, we will summarize the more prominent hot big bang puzzles.

The flatness problem:

The universe today is spatially flat with ⌦k = �0.005 ± 0.017 [45]. We know from the Fried-

mann equation (2.27), that the curvature term scales as ⇠ ⌦ka
�2, which suggests that the spatial

curvature should dominate eventually in an expanding universe. The spatial curvature in the

early universe had to be very small, such that its energy density could have never dominated the

evolution of the universe. Let us estimate how small the initial curvature had to be.

Using the Friedmann equation (2.24)

⌦� 1 =
k

a2H2

, (2.63)

we obtain using a ⇠ t2/3 during matter domination ⌦� 1 ⇠ a, while during radiation domination

we find ⌦ � 1 ⇠ a2 with a ⇠ t1/2. We can now compare the curvature at e.g. the electro-weak

energy scale ⇡ 1 TeV to the curvature at radiation-matter equality ⇡ 1 eV assuming radiation

domination

|⌦� 1|LS
|⌦� 1|EW

⇡ a2LS
a2EW

⇡ T 2

EW

T 2

LS

⇡ 1024. (2.64)

The curvature grew by a factor of 1024 between the electro-weak energy scale and the time of

radiation-matter equality. Overall the curvature grew by a factor of 1027 between the electro-weak

energy scale and today. This growth is even larger if we would go towards higher energy scales, e.g.

the grand unified scale of 1016GeV leads to a total growth of approximately 1053. This means that

the universe had to be very flat in the early universe and this fine-tuning of the initial conditions

is called the flatness problem.

The flatness problem arises because of the scaling (aH)�2 of the curvature term. We recog-

nize that (aH)�1 is the comoving Hubble radius and it always increases with time in a matter or

radiation dominated universe. This fact also led to the horizon problem, which we will discuss now.

The horizon problem:

The comoving Hubble radius is growing with time during matter or radiation domination in an

expanding universe. Regions of causal contact decrease as we go back in time. The isotropy of the

Cosmic Microwave Background radiation is thus very puzzling. We have seen that only a region
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of angular size of 1� on the sky today could be in causal contact at the time of recombination.

The physical horizon distance – the maximal distance light could have traveled since the “Big

Bang”– is given by

dH(t) = a(t)

Z t

0

dt0

a(t0)
(2.65)

with a(t) ⇠ t1/2 during radiation domination and a(t) ⇠ t2/3 during matter domination we find:

dH(t) ⇠ a(t)⇥
(

a(t) radiation

a(t)1/2 matter
. (2.66)

The causal horizon increases faster than the scale factor: with increasing time the universe contains

more regions which were never in causal contact with each other. Let us estimate the number of

causally disconnected regions of the CMB radiation in the sky. We compare the volume of the

universe today with the volume of the particle horizon at the time of last scattering

N(z) ⇠
✓

a
0

dH(t)

◆
3

⇡ (1 + z)3/2 ⇡ 4 · 105, (2.67)

where we have used a
0

= 1 and (2.66) with dH ⇠ a3/2 = (1 + z)�3/2. We need a mechanism

which explains how ⇠ 105 seemingly disconnected patches could have been in causal contact. If

the comoving Hubble radius would have evolved di↵erently than the particle horizon in the early

universe, then the horizon problem could be solved.

The singularity puzzle:

In the standard hot big bang cosmology the scale factor a(t) ! 0 as we approach the “Big Bang”

at t = 0. Curvature invariants like the Ricci scalar go to infinite as a(t) ! 0, since R ⇠ t�2.

This singularity is a true singularity, which was first formulated in the famous Penrose-Hawking

singularity theorems [48, 49].

The anisotropy puzzle:

In Chapter 2C we have discussed the Cosmic Microwave Background radiation, which provides

important evidence for the isotropy of the universe. The seemingly causally disconnected regions

at the time of recombination were related to the horizon problem, which has to be resolved by a

model of the early universe. Moreover, the existence of nearly scale-invariant and nearly Gaussian

super-horizon curvature perturbations has to be explained. We need a mechanism that can create

these super-horizon modes.
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3. INFLATION AND EKPYROSIS

A. Inflation

In the previous chapter we have discussed shortcomings of the standard big bang model. We

would like to explain the initial conditions of the universe which is spatially flat, homogeneous and

isotropic – while small anisotropies seed the structure formation of the universe.

We have noticed that the flatness and horizon problem arose because the comoving Hubble radius

grows in an expanding universe with an equation of state w > 1

3

:

(aH)�1 ⇠ a
1
3 (1+3w). (3.1)

Let us consider the following scenario: if the comoving Hubble radius was initially large in the past

and decreasing for a su�ciently long time, we could solve the flatness and horizon problem:

d

dt

✓
1

aH

◆
< 0. (3.2)

In an expanding universe H > 0 and thus with

d

dt

✓
1

ȧ

◆
< 0 (3.3)

we immediately obtain that the universe expands accelerated

ä > 0. (3.4)

From the acceleration equation

ä

a
= �1

6
(⇢+ 3p) = �1

6
⇢(1 + 3w) (3.5)

we find a third equivalent condition:

p < �1

3
⇢ or w < �1

3
, (3.6)

which tells us that the pressure has to be su�ciently negative.

The early universe phase of accelerated expansion with an equation of state w < �1

3

(✏ < 1)

and a shrinking comoving Hubble radius is called inflation [11–13]. In Fig. 5 we have sketched the

evolution of the comoving Hubble radius (aH)�1.
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FIG. 5. During inflation the comoving Hubble radius (aH)�1 shrinks. Comoving scales k leave the horizon at

aH = k. In the subsequent hot big bang evolution the comoving Hubble radius increases and the corresponding

comoving scale k re-enters the horizon. Figure based on [2].

If inflation lasts long enough the universe is rendered flat, homogeneous and isotropic. More-

over, quantum fluctuations during inflation become amplified and subsequently classical acting as

seeds for the CMB anisotropies – this will be discussed in Chapter 4.

Inflation can be described by a wide variety of models – for a review see e.g. [36]. Here we

will discuss the dynamics of a single scalar field minimally coupled to gravity in a potential, where

the action is given by

S =

Z
d4x

p
�g

✓
R

2
� 1

2
gµ⌫@µ�@⌫�� V (�)

◆
(3.7)

and the energy-momentum tensor of the scalar field reads

Tµ⌫ =
�2p�g

�S�

�gµ⌫
= @µ�@⌫�� gµ⌫

✓
1

2
@��@��+ V (�)

◆
. (3.8)

The equations of motion can be obtained by varying the action w.r.t the metric and the scalar field

leading to:

Rµ⌫ �
1

2
gµ⌫R = Tµ⌫ , (3.9)

⇤� = V,� . (3.10)

Assuming homogeneity, flatness and isotropy we use the flat FLRW metric. Moreover, the homo-

geneous scalar field �(x, t) = �(t) is described by a perfect fluid with energy density ⇢ and pressure

p:

⇢ =
1

2
�̇2 + V (�), (3.11)
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p =
1

2
�̇2 � V (�), (3.12)

while the equation of state reads

w =
p

⇢
=

1

2

�̇2 � V (�)
1

2

�̇2 + V (�)
. (3.13)

The Friedmann equations and the equation of motion for the scalar field are given by

3H2 =
1

2
�̇2 + V (�) , (3.14)

Ḣ = �1

2
�̇ , (3.15)

0 = �̈+ 3H�̇+ V,� . (3.16)

We can obtain negative pressure and accelerated expansion if the potential energy dominates over

the kinetic energy. For a su�ciently flat potential and a slowly rolling field

1

2
�̇2 ⌧ V (�) (3.17)

we find an equation of state w ⇡ �1 or ✏ ⌧ 1. Note that we have defined the equation of state ✏

in (2.18). In the context of inflation ✏ is also called the slow-roll parameter and we can re-express

it in various ways using the background equations of motion

✏ = � Ḣ

H2

=
�̇2

2H2

⇡
V 2

,�

2V 2

, (3.18)

where we have used the slow-roll condition (3.17) in the last step. The slow-roll condition and

flatness of the potential is indeed characterized by the smallness of the slow-roll parameter ✏⌧ 1,

which is of order O(10�2) in most inflationary single scalar field models.

We can define a second slow-roll parameter ⌘:

⌘ = � ✏̇

H✏
, (3.19)

which satisfies the slow-roll condition ⌘ ⌧ 1 ensuring that inflation lasts a su�cient long time.

Using ✏⌧ 1 we find

⌘ ⇡ 2
V,��

V
� 4✏, (3.20)

which characterizes the slope of the potential. It is customary to classify single scalar field infla-

tionary models into two types: large field models satisfying 0 < ⌘ < ✏ and V 00 > 0 and small field

models with ⌘ < 0 < ✏ and V 00 < 0. We will discuss which inflationary models are favored by
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observations in Chapter 7.

Using the slow-roll approximation, the Friedmann equation reads

H ⇡ 1

3
V (�) ⇡ const. (3.21)

During inflation the Hubble rate H is approximately constant. The limit H = const. is called the

de Sitter limit leading to an exponentially growing scale factor

a(t) = eHt. (3.22)

We indeed see that the comoving Hubble radius (aH)�1 decreases during inflation due to the

exponential, accelerated expansion and a constant Hubble rate. For a more general case, using the

definition ✏ ⌘ �Ḣ/H2 and conformal time d⌧ = dt/a, we obtain

d

d⌧

✓
1

aH

◆
= ✏� 1 (3.23)

and thus to first order in slow-roll parameters

aH ⇡ �1

⌧
(1 + ✏). (3.24)

The scale factor in the de Sitter limit reads:

a(⌧) = � 1

H⌧
. (3.25)

Note that in the de Sitter limit, inflation would never end, since the potential is perfectly flat.

Moreover, the de Sitter limit ✏! 0 is ill-defined, which becomes apparent when we discuss the be-

havior of perturbations during inflation. During matter domination a(⌧) ⇠ ⌧ and during radiation

radiation a(⌧) ⇠ ⌧2, where the initial singularity a(⌧) = 0 happens at ⌧ = 0. During inflation the

singularity a(⌧) = 0 occurs at ⌧ ! �1. This means in terms of conformal time there was enough

time, such that the previously causally disconnected patches at the time of last scattering were

indeed causally connected in the past.

The overall dynamics of inflation can be summarized as follows: For given initial conditions, which

we will discuss in Chapter 7, the inflationary phase starts. The inflaton field � rolls slowly on a

nearly flat potential leading to accelerated expansion. After a su�ciently long time, the universe is

rendered flat and homogeneous setting the initial conditions of the standard hot big bang model.

At a certain point the slow-roll condition breaks down, and ✏ becomes O(1) ending the inflationary

phase. Modifications of the inflationary model allow for reheating: In the following, the scalar field

decays into standard model particles and reheats the universe leading to the subsequent hot big

bang cosmology.
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B. Ekypyrosis

In a contracting universe, anisotropies become important, as we will show now. Let us consider

an anisotropic universe described by the Kasner-like metric:

ds2 = �dt2 + a2(t)
X

i

e2�i(t)(dxi)2, (3.26)

where �i parametrizes the anisotropies in the xi direction satisfying
P

i �i = 0. The Einstein

equations read

�̈i + 3H�̇i = 0 , (3.27)

3H2 =
X

i

�̇2i . (3.28)

From the first equation we obtain �̇i ⇠ a�3, such that the Friedmann equation including

anisotropies becomes:

3H2 =
⇢r
a4

+
⇢m
a3

� 3k

a2
+ ⇤+

�2

a6
+

⇢�

a3(1+w)

, (3.29)

where � describes the anisotropic energy density. In an expanding universe, the curvature term

becomes dominant, while in a contracting universe anisotropies dominate the evolution. It is a

well know result that a contracting universe with anisotropies leads to the so-called BKL (Belin-

sky, Khalatnikov and Lifshitz)-mixmaster behavior when approaching the big crunch [50, 51]. The

universe becomes more and more anisotropic described by a Kasner solution – while two spatial

directions shrink the other spatial direction grows. Moreover, the universe jumps from one Kasner-

universe to another repeatedly.

In order to avoid the BKL-mixmaster universe we need a matter content that suppresses the

anisotropies – namely a matter content with equation of state w > 1 or ✏ > 3. This phase with a

large equation of state (large pressure) is called ekpyrosis and was first introduced in [14].

Ekpyrosis can be modeled by a scalar field minimally coupled to gravity in a steep negative poten-

tial. The equation of state is indeed greater than one if the potential V (�) is negative

w =
p

⇢
=

1

2

�̇2 � V (�)
1

2

�̇2 + V (�)
> 1 . (3.30)

The background equations of motion are again given by

3H2 =
1

2
�̇2 + V (�) , (3.31)

Ḣ = �1

2
�̇ , (3.32)



38

0 = �̈+ 3H�̇+ V,� . (3.33)

Let us introduce a negative exponential potential

V (�) = �V
0

e�c� , (3.34)

where V
0

and c are constants – the relation between c and ✏ turns out to be given by c =
p
2✏.

There exists a scaling solution similar to the case in (2.20). Each term in the Friedmann equation

scales in the same way with time:

a(t) = a
0

(�t)1/✏ , H(t) =
1

✏t
, �(t) =

1p
2✏

ln

✓
V
0

✏2

3� ✏
t2
◆

, V (t) =
3� ✏

✏2t2
, (3.35)

where a
0

is an integration constant and time runs from (�1 < t < 0). In the case where ✏ � 1

we can use the approximation

�(t) ⇡ 1p
2✏

ln
�
�✏V

0

t2
�
=

r
2

✏
ln
⇣
�
p
✏V

0

t
⌘

, V (t) ⇡ � 1

✏t2
=

2

c2t2
(3.36)

The universe contracts very slowly during ekpyrosis since ✏ > 3 and ends in a big crunch towards

t ! 0. The universe has to bounce from a contracting phase to an expanding phase corresponding

to the universe we observe today. The bounce is a crucial and theoretically challenging phase,

which will be discussed in detail in Chapter 10. The bounce usually takes place during the kinetic

dominated phase, which corresponds to the time when the ekpyrotic potential is negligible. A

modification of the ekpyrotic potential (3.34) allows for a transition to a kinetic phase, cf. Fig. 6.

FIG. 6. Left: The typical ekpyrotic negative exponential potential is shown. Right: A modification allows for a

transition from an ekpyrotic phase to a kinetically dominated phase – here we have chosen a symmetric potential.

The bounce usually occurs during the kinetic phase; however, it is also possible that the bounce occurs at the

bottom of the potential, cf. Chapter 11.

The ekpyrotic scaling solution is an attractor solution [52]. It is stable to conventional matter

perturbations, curvature, and shear perturbations. It also means that if the initial conditions before
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ekpyrosis are close to the ekpyrotic initial condition, the solution will approach the scaling solution.

The fact that ekpyrosis has a global attractor solution is an important result for the robustness of

ekpyrosis. We will return to the initial conditions of ekpyrosis in the context of two-field models

in Chapter 5.

We have seen that during inflation H ⇡ const. while the scale factor grows by a large amount.

During ekpyrosis, the scale factor is almost constant while |H| grows. The comoving Hubble radius

(aH)�1 decreases during ekpyrosis, and we will calculate now how long ekpyrosis has to last in order

to solve the flatness and horizon problem. From equation (2.64) we have seen that the curvature

grows by a factor of 1027 (up to 1053) between the electro-weak (or the grand unified scale) and

today – this corresponds to a growth of around e60 or e120 respectively. From ⌦ � 1 = k(aH)�2

we find that the comoving Hubble radius has to shrink by a factor of e30 or e60 during ekpyrosis.

Using the fact that the scale factor is nearly constant during ekpyrosis and H ⇠ t�1 leads to

tek�beg

tek�end
= e60. (3.37)

As we will see in Chapter 5C, the amplitude of the entropy perturbations, which are created during

ekpyrosis, is determined by the depth of the ekpyrotic potential leading to an energy scale around

the GUT scale Vmin = (10�2MP l)2 in order to match observations, cf. Eq. (5.32). Using the

scaling solution (3.36) with c = 15 we obtain

tek�end ⇠ 103tP l. (3.38)

Combining (3.37) and (3.38), ekpyrosis has to last at least

tek�beg � 1030tP l ⇡ 10�13s (3.39)

in order to solve the flatness problem.

The ekpyrotic model [14] was extended to a cyclic model in [4, 15, 16]. This model is based on an

embedding in heterotic M-theory. In the braneworld picture, our visible three spatial dimensions

correspond to one brane. This brane is separated by a hidden dimension across another brane.

The distance between the two branes decreases due to an attractive force. When the two branes

collide, a bounce occurs creating matter and radiation on the brane. The separated branes attract

each other again continuing the cycle. In the e↵ective 4-dimensional description the scalar field

corresponds to the distance of the two branes and the evolution is determined by the scalar field in

a potential as shown in Fig. 7. Today we are in the dark energy dominated phase, where the scalar
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FIG. 7. Here the cyclic evolution is shown. Today we are in the dark energy phase. At some point the scalar field

rolls down the steep negative potential leading to a slowly contracting ekpyrotic phase. The universe undergoes a

bounce during the kinetically dominated phase leading to a hot big bang cosmology. Figure based on [4].

field � nearly rests on top of the potential. Due to the attractive force between the branes, the scalar

field rolls down the steep negative potential leading to a slowly contracting ekpyrotic phase. During

that phase, the universe is driven towards spatial homogeneity, isotropy, and flatness. At the end

of the subsequent kinetic phase, the universe undergoes a bounce creating matter and radiation

leading to a hot big bang cosmology. After the bounce, the universe is kinetically dominated

followed by a radiation and matter dominated phase. The scalar field jumps on top of the positive

potential, which results in a dark energy phase continuing the cycle.

The cyclic ekpyrotic model incorporates a singular bounce which does not allow to track the

evolution of the background and perturbations through the bounce. In this thesis, we will focus

on non-singular bounces models, in which we can follow the evolution through the bounce phase,

cf. Chapter 10.
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4. LINEAR PERTURBATIONS

In the previous chapter, we have discussed how inflation and ekpyrosis render the universe

flat, homogeneous, and isotropic. Another important success of these models is the evolution of

quantum fluctuations. As we will see, these small perturbations are the seeds of the temperature

fluctuations in the Cosmic Microwave Background. The nearly scale-invariant spectrum of these

temperature fluctuations can be explained via the primordial evolution of the universe.

This chapter is structured as follows. First, we will review the basics of cosmological pertur-

bation theory based on reviews in, e.g. [2, 53–55]: We will calculate the scalar and tensor degrees

of freedom, introduce common gauge choices and discuss the evolution of adiabatic perturbations

during ekpyrosis and inflation.

As we will see, during ekpyrosis the adiabatic fluctuations are not amplified, and thus a mod-

ification to the single scalar field model has to be made to match with observations. We will then

discuss the “new ekpyrotic scenario” in Chapter 5, where an unstable direction in the potential

leads to nearly scale-invariant entropy perturbations via the entropic mechanism.

A. Gauge Transformations

The action for a single scalar field minimally coupled to gravity is given by

S =

Z
d4x

p
�g

✓
R

2
� 1

2
gµ⌫@µ�@⌫�� V (�)

◆
(4.1)

We can split the scalar field into the homogeneous background solution �̄ and the local perturbation

��:

�(t,x) = �̄(t) + ��(t,x). (4.2)

The metric then also reads:

gµ⌫(t,x) = ḡµ⌫ + �gµ⌫(t,x). (4.3)

This allows us to calculate the perturbed Einstein equations for small perturbations

�Gµ⌫ = �Tµ⌫ . (4.4)
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The perturbed FLRW metric can be written in the following way:

ds2 = � (1 + 2A) dt2 + 2a(t)Bidxidt + a2(t) (�ij + hij) dxidxj . (4.5)

We separate the perturbations into three categories: scalar, vector and tensor perturbations. We

can decompose each vector into a longitudinal and a transverse part

Bi = BLi + BT i = @iB + BT i . (4.6)

Since the longitudinal part is curl-free, we can express it as a gradient of a scalar field B. The

transverse part is divergence free @iBi
T = 0. Thus there is one scalar mode B and two vector modes

BT i. Similarly the symmetric tensor hij can be decomposed into

hij = 2 �ij + 2@i@jE + 2
(

@iEj) + Eij , (4.7)

where Eij is traceless and transverse Eij�ij = 0, @iEij = 0 and Ei is transverse. Thus there are

two scalar modes  and E, two vector modes Ei and two tensor modes Eij .

To summarize we have the four scalars A, B,  , E, the vectors BT i, Ei and two tensor modes

Eij .

In the following, we will see how many physical scalar and tensor degrees there are.

Let us consider a local gauge transformation:

x↵ ! x̃↵ = x↵ + ⇠↵ , (4.8)

where ⇠ can be decomposed into ⇠↵ = (⇠0, ⇠i) with ⇠i = ⇠iT + @i⇠. So ⇠ and ⇠0 are scalars and

@i⇠
i
T = 0 is a divergent free 3-vector. Under such a gauge transformation we can calculate the

transformation-law for scalar and tensor quantities.

For any scalar quantity we have

⇢̃(x̃) = ⇢(x) , (4.9)

thus to first order we find

⇢(x) ! ⇢̃(x̃) = ⇢̃(x � ⇠) = ⇢(x)� ⇢(x),↵⇠
↵. (4.10)

Using the fact that the background is homogeneous we obtain the following expression for a scalar

quantity under a gauge transformation:

�⇢̃(x) = �⇢(x)� ⇠0⇢̇. (4.11)
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For the metric we have the following transformation property to first order in ⇠:

g̃µ⌫(x̃) = g↵�(x)

✓
�µ↵ +

@⇠µ

@x↵

◆✓
�⌫� +

@⇠⌫

@x�

◆
= gµ⌫(x) + g↵⌫(x)

@⇠µ

@x↵
+ gµ�(x)

@⇠⌫

@x�
. (4.12)

Together with

g̃µ⌫(x̃↵) = gµ⌫(x↵ + ⇠↵) = gµ⌫(x↵) + ⇠⇢gµ⌫(x↵),⇢ (4.13)

we find the expression for a tensor quantity under a gauge transformation:

g̃µ⌫(x) = gµ⌫(x)� gµ⌫,⇢ + g⇢⌫⇠µ,⇢ + gµ⇢⇠⌫⇢ . (4.14)

We can now calculate the transformation properties of the scalar quantities in the perturbed metric

(4.5) using (4.11) and (4.14)

A ! A + ⇠̇
0

(4.15)

B ! B +
1

a
(�⇠

0

� ⇠̇ + 2H⇠) (4.16)

 !  + H⇠
0

(4.17)

E ! E � 1

a2
⇠ (4.18)

The tensor perturbations are left unchanged, they are gauge-invariant. The two tensor degrees of

freedom correspond to primordial gravitational waves, which we will discuss at a later stage.

We can also find scalar quantities which are gauge-invariant by combining the above expressions.

One well known example are the so-called Bardeen potentials:

� = A +
d

dt
[a(B � a ̇)] , (4.19)

 = E � H(B � a ̇) . (4.20)

So far we have seen, that the scalar perturbations are not necessarily gauge-invariant. In order

to determine, which quantities are physical degrees of freedom one has two options. One can

work with only gauge-invariant quantities (like the Bardeen potentials) or one fixes a gauge (fix

⇠0 and ⇠). In the case of a single scalar field minimally coupled to gravity the perturbed Einstein

equations give rise to the condition � =  in the absence of anisotropic stress. This means that

there is only one physical scalar degree of freedom.

A prominent and useful gauge is the so-called comoving gauge. In this gauge the scalar field

is unperturbed. In the perturbed space-time the surfaces of constant time are also surfaces of the
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constant scalar field. The scalar field acts as clock in this gauge. The comoving gauge is defined

via

��com = 0 . (4.21)

Using the transformation property (4.11), the scalar field transforms under a time slicing (t !

t + ⇠0 = t + �t) as

��! ��� �̇�t . (4.22)

Thus we have to fix the gauge, such that

�t =
��

�̇
. (4.23)

In this gauge the scalar field perturbations are zero, while all the scalar perturbations are only in

the metric. Thats why this gauge is very convenient and we will work in this gauge most of the

time. Moreover, from (4.17) we have

 !  + H�t (4.24)

and thus in comoving gauge

 !  + H
��

�̇
⌘ R . (4.25)

This quantity is gauge invariant and in this gauge it is directly related to the fluctuation in the

scale factor on constant time (or �) surfaces as can be seen from the perturbed FLRW metric (4.5).

Thats why it is called the comoving curvature perturbation R. For a more general matter content

it is defined as

R ⌘  +
2H

⇢+ p
�q , (4.26)

where �q denotes the o↵-diagonal part of the perturbed energy-momentum tensor �T 0

i = @i�q.

The comoving curvature perturbation is a very important quantity – as it remains constant on

super-horizon scales in the case of a single scalar field.

A closely related quantity is the curvature perturbation on uniform energy-density hypersurfaces

[56]:

� ⇣ ⌘  + H
�⇢

⇢̇
. (4.27)
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This quantity is gauge invariant, since on constant energy-surfaces �⇢ = 0 and then ⇣ denotes again

fluctuations in the scale factor. These two quantities are related by a gauge transformation via

� ⇣ = R+
2⇢

3(⇢+ p)

✓
k

aH

◆
2

 . (4.28)

On large scales (k ! 0), ⇣ and R coincide (up to a sign) and are used interchangeably in the

literature.

In the spatially flat gauge the curvature  flat vanishes:  flat = 0 . The slicing is given by

 !  flat =  + H�t = 0 (4.29)

leading to the following gauge fixing

�t = �  

H
. (4.30)

Moreover, the scalar field transforms as

��! ��� �̇�t = ��+
�̇

H
 . (4.31)

This is the definition of the so-called Mukhanov-Sasaki variable Q:

Q = ��+
�̇

H
 =

�̇

H
R . (4.32)

In flat gauge the scalar fluctuations are entirely in the scalar field:

Qflat = �� . (4.33)

B. ADM-Formalism

In the following, we will calculate the second order action of the scalar and tensor perturbations.

It is useful to use the Arnowitt-Deser-Misner (ADM)-formalism [57], where we split the metric as

follows

ds2 = �N2dt2 + hij(dxi + N idt)(dxj + N jdt) , (4.34)

here N is the lapse function and Ni is the shift vector. hij denotes the metric on the fixed-time

hypersurface and the determinant is given by
p�g = N

p
h. Let us plug this metric into the action

of a single scalar field (this can be generalized for more complicated actions):

S =

Z
dx4

p
�g


1

2
R � 1

2
gµ⌫@µ�@⌫�� V (�)

�
. (4.35)
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The Ricci scalar R in 4 dimensions is related to the 3-dimensional Ricci scalar R(3) via the con-

tracted Cadazzi equation:

R = R(3) + KijKij � K2, (4.36)

where Kij is the extrinsic curvature. The rescaled extrinsic curvature

Eij = NKij (4.37)

is given by

Eij =
1

2
ḣij �riNj �rjNi =

1

2
ḣij � 2r

(iNj) . (4.38)

Plugging (4.34) and (4.36) into the action (4.35) leads to:

S =
1

2

Z
d4x

p
hN(R(3)+hij@i�@j��2V )+

1

2

Z
d4x

p
hN�1(EijE

ij �E2+(�̇�N i@i�)
2) . (4.39)

In the following, we chose the comoving gauge, where �� = 0 and the scalar fluctuation are entirely

in the metric described by the comoving curvature perturbation R:

hij = a2 [(1 + 2R)�ij + �ij ] , (4.40)

where �ij denotes the tensor perturbations, which will be discussed later. Varying the action with

respect to N and Ni yields the following constraint equations:

�L
�N

= R(3) � N�2(EijE
ij � E2)� N�2�̇2 � 2V = 0 , (4.41)

�L
�Ni

= ri[N
�1(Ei

j � �ijE)] = 0 . (4.42)

The solution to first order are given by

N = 1 +
Ṙ
H

, (4.43)

Ni =
1

H
@iR+ a2

�̇2

2H2

@i

⇣
(@j@

j)�1Ṙ
⌘

, (4.44)

where @�2 is defined such that @�2@2R = R. We can now plug the solutions (4.43) and (4.44)

into the action (4.39). Moreover, we use (4.38) and (4.40) to rewrite everything in terms of the

comoving curvature perturbation R.

This leads to a lengthy expression, which can be expanded in powers of R. Schematically the

action can be written as

S =

Z
d4xL[R(x)] =

Z
d4x

⇣
L
0

+ L(2)[R(x)] + L(3)[R(x)] + ...
⌘

, (4.45)
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where the zeroth order L
0

is the background action, L(2) describes the free propagation of the

scalar perturbations and L(3) describes the self-interaction of the scalar perturbations. A non-

zero L(3) corresponds to non-Gaussian corrections. Non-Gaussianities are an important feature to

distinguish di↵erent models of the early universe and it is the central theme of this thesis.

For now we are interested in the linear perturbations and thus we will only consider the second

order action L(2).

C. Evolution of Curvature Perturbations for a Single Scalar Field

In the following, we will calculate the behavior of scalar and tensor fluctuations during inflation

and ekpyrosis. This is a well established treatment developed by [56, 58–62] in the context of

inflation and by [17, 18] in the ekpyrotic case. Most of the results will refer to the above citations

within this chapter.

We expand the action up to second order in perturbations and after many integrations by parts

we end up with the following action:

S(2) = �
Z

d4x
p
�g✏gµ⌫@µR@⌫R =

Z
d3xdt✏[a3Ṙ2 � a(@iR)2] , (4.46)

where ✏ =
˙�2

2H2 . We introduce the so-called Mukhanov-Sasaki variable

v = zR with z2 = 2a2✏ , (4.47)

which allows us to canonically normalize the action. Switching to conformal time leads to

S(2) =
1

2

Z
d3xd⌧


(v0)2 � (@iv)

2 +
z00

z
v2
�

, (4.48)

where a prime 0 denotes a derivative w.r.t. conformal time d⌧ = dt/a. We expand the perturbations

into Fourier modes

v(⌧,x) =

Z
d3k

(2⇡)3
v
k

(⌧)eikx . (4.49)

The equation of motion is also known as Mukhanov-Sasaki equation:

v00
k

+

✓
k2 � z00

z

◆
v
k

= 0 . (4.50)

Each mode with momentum k evolves independently – in other words there is no mixing of modes

at the linear level. Equation (4.50) is the equation of motion of an harmonic oscillator with a

time-dependent mass m2 = (k2 � z00/z). The second term is due to the presence of gravity and
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it will have important consequences for the evolution of the quantum fluctuations in the early

universe. We will encounter (4.50) and variations of this equations various times in this thesis. We

will review the standard treatment in dealing with this equation in the following.

D. Quantization

We quantize the field by promoting the mode functions to operators

v̂
k

(⌧) = vk(⌧)âk + vk(⌧)
⇤â†�k

, (4.51)

where v(⌧) are the complex solutions to equation (4.50) and â†�k

and â
k

are the creation and

annihilation operators satisfying

[â
k

, â†�k

0 ] = (2⇡)2�(k� k0). (4.52)

The field operator and its conjugate momentum ⇡̂ = v̂0 satisfy the usual equal time commutator

relation

[v̂(⌧,x), ⇡̂(⌧,y)] = i�(x� y), (4.53)

while

[v̂(⌧,x), v̂(⌧,y)] = [⇡̂(⌧,x), ⇡̂(⌧,y)] = 0. (4.54)

The Wronskian is a constant of motion

W [vk, vk] ⌘ v⇤kv
0
k � v⇤0k vk = i , (4.55)

where the r.h.s has to be chosen such that (4.52) is satisfied. In other words, the Wronskian

normalizes the mode function acting as a boundary condition for the modes. We chose the vacuum

state for the fluctuations

a
k

|0i = 0 , (4.56)

which corresponds to the second boundary condition of the modes. The standard choice is the

so-called Bunch-Davies vacuum, where the modes satisfy

lim
|k⌧ |!1

vk =
1p
2k

e�ik⌧ . (4.57)

The modes on small scales or/and very early times correspond to the Minkowski vacuum with

positive frequency solution. The very small scale modes do not “feel” the curvature and thus
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behave like in Minkowski space. We can immediatly see that (4.57) is a solution of (4.50) if

z00/z ⌧ k2.

Moreover, the time-dependent mass term can lead to an instability. For example in the case of the

de Sitter limit during inflation we had a(⌧) = �(H⌧)�1, see (3.24), obtaining

z00

z
=

2

⌧2
. (4.58)

In this case, the Mukhanov-Sasaki equation reads

v00k +

✓
k2 � 2

⌧2

◆
vk = 0 . (4.59)

The negative sign leads to an instability and consequently to an amplification of the mode function

with solution

vk =
1p
2k

e�ik⌧

✓
1� i

k⌧

◆
, (4.60)

where we have used the Bunch-Davies vacuum as initial condition. In the late time/large scale

limit |k⌧ | ! 0 we obtain

lim
|k⌧ |!0

vk ⇠ ⌧�1 . (4.61)

The modes vk grow during inflation and leave the horizon at k = aH. Let us investigate the

behavior of the (physical) modes – the comoving curvature perturbation Rk. We should note that

the de Sitter limit is actually ill-defined here. Taking the limit ✏! 0 corresponds to z ! 0, which

is defined via z2 = 2a2✏ as the prefactor in the second order action (4.46). In the next chapter we

will calculate the evolution in a more general setting and will use the so-called quasi de Sitter limit

in the inflationary case. Using a(⌧) = �(H⌧)�1 we obtain

z = �
p
2✏

⌧H
. (4.62)

Thus the comoving curvature perturbation Rk = vk/z in the de Sitter limit is given by

Rk =
iHp
4k3✏

e�ik⌧ (1 + ik⌧) . (4.63)

The comoving curvature perturbation becomes constant on large scales:

lim
|k⌧ |!0

Rk = const. (4.64)

This is an important result. The comoving curvature perturbations grow and become super-

horizon. After horizon exit the perturbations freeze – they become constant. We will denote the
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moment of horizon crossing via the subscript ⇤. We will now introduce important quantities to

describe the perturbations and make contact with observations.

The two-point correlation function reads:

hv̂
k

, v̂
k

0i = h0|v̂
k

, v̂
k

0 |0i (4.65)

= vkv
⇤
k0 h0|[âk, â†�k

0 ]|0i

= (2⇡)3|vk|2�(~k + ~k0)

⌘ (2⇡)3Pv(k)�(~k + ~k0) ,

where we have used the general solution (4.51) and the commutation relation (4.52) of the creation

and annihilation operators. Pv(k) is the power spectrum, which we introduced in (2.46) in the

context of the temperature fluctuations in Cosmic Microwave Background. Equivalently, in terms

of the comoving curvature perturbation R we obtain

hR̂
k

, R̂
k

0i = (2⇡)3|Rk|2�(k+ k0) (4.66)

⌘ (2⇡)3PR(k)�(k+ k0) .

The variance �2

R is given by

�2

R =
k3

2⇡2
PR (4.67)

and the spectral index reads:

ns � 1 ⌘ d ln�2

R
d ln k

. (4.68)

It is useful to write the variance in a power-law form

�2

R = AR

✓
k

k̃

◆ns�1

, (4.69)

where k̃ is a reference scale also called pivot scale and AR is the amplitude. Note that ns = 1

leads to a scale-invariant spectrum, while ns < 1 corresponds to a red spectrum and ns > 1 to a

blue spectrum.

Using (4.63) the power spectrum of the comoving curvature perturbation R in the de Sitter

limit reads:

PR =
H2

⇤
4k3✏

, (4.70)
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while the variance is given by

�2

R =
H2

⇤
8⇡2✏

(4.71)

leading to a perfect scale-invariant spectrum ns = 1. Note that in the literature one often uses

the terminology power spectrum instead of the variance �2

R – in this case P̃R is in fact the

rescaled power spectrum corresponding to the variance. During inflation in the de Sitter limit, the

curvature perturbations R become amplified and super-horizon with a scale-invariant spectrum.

The amplitude depends on the ratio of the squared Hubble parameter at horizon crossing and the

slow-roll parameter ✏. The de Sitter limit ✏ ! 0 corresponds to a perfectly flat potential, which

means that inflation would never end. As we will see in a more realistic inflationary scenario,

where ✏ is small but non-zero, the comoving curvature perturbations obtain a nearly scale-invariant

spectrum, since modes exit the horizon at di↵erent times.

E. General solutions

Let us solve the equation of motion in a more general setting. Depending on the background

dynamics the term z00/z can be complicated, such that there only exist approximate analytic (or

numerical) solutions. However, we can find analytic solutions, if we can rewrite (4.50) in the

following form

vk +


k2 +

1

⌧2

✓
1

4
� ⌫2

◆�
vk = 0, (4.72)

which is a Bessel equation and the general solution is given in terms of Hankel functions

vk(⌧) =
p
�k⌧

⇣
↵kH

(1)

⌫ (�k⌧) + �kH
(2)

⌫ (�k⌧)
⌘

, (4.73)

where ⌫ is the Hankel index, which is constant (or approximately constant) and given by:

⌫ =

r
z00

z
⌧2 +

1

4
. (4.74)

The Hankel functions are given in terms of Bessel functions

H(1,2)
⌫ (x) = J⌫(x)± iY⌫(x). (4.75)

To leading order the Hankel functions have the following asymptotic behavior for large arguments

(x ! 1), corresponding to early times/small scales:

H(1,2)(x) =

r
2

⇡x
exp

⇣
±i(x � ⌫x

2
� ⇡

4
)
⌘

, (4.76)
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while for small arguments (x ! 0), corresponding to late times/large scales we find

H(1,2)(x) = ⌥ i

⇡
�(⌫)

⇣x

2

⌘�⌫
. (4.77)

At early times ⌧ ! �1, the modes are deep inside the horizon and the Bunch-Davies solution is

given by:

vk =
1p
2k

e�k⌧ . (4.78)

Comparing this solution to the large argument behavior (corresponding to early times/small scales)

of the Hankel function fixes the two constants in equation (4.73)

↵k =

r
⇡

4k
ei⇡(2⌫+1)/4 , �k = 0 (4.79)

yielding the following solution in terms of the Hankel function of the first kind:

vk =

r
⇡

4

p
�⌧H(1)

⌫ (�k⌧) , (4.80)

where we have neglected the unimportant phase factor. This is an important expression and we

will use it numerous times in this thesis.

Now we can use the small argument behavior of the Hankel function H
(1)

⌫ to find the late time/large

scale |k⌧ | ! 0 solution of the modes:

vk =
2⌫�(⌫)p

4⇡k
(�k⌧)�⌫+ 1

2 , (4.81)

which corresponds to the following scale-dependence in terms of ⌫

vk ⇠ k�⌫ . (4.82)

The comoving curvature perturbation is related to the canonically normalized Mukhanov-Sasaki

variable via R = v/z. Depending on the background dynamics parametrized by z (and ⌫) we

can determine the power spectrum, the time dependence and scale dependence of the comoving

curvature perturbation R.

From (4.81) we obtain the following scale-dependence of the comoving curvature perturbations in

the large scale limit:

Rk ⇠ k�⌫ . (4.83)

The variance, cf. Eq. (4.67), is thus given by

�2

R ⇠ k�2⌫+3 (4.84)
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and the spectral index, cf Eq. (4.68), reads:

ns � 1 = 3� 2⌫ . (4.85)

Let us summarize the results of this chapter: The solution of the Mukhanov-Sasaki equation (4.72)

is given in terms of the Hankel function of the first kind

vk =

r
⇡

4

p
�⌧H(1)

⌫ (�k⌧) , (4.86)

where the Hankel index ⌫ reads

⌫ =

r
z00

z
⌧2 +

1

4
, (4.87)

which determines the large scale limit of the modes

vk =
2⌫�(⌫)p

4⇡k
(�k⌧)�⌫+ 1

2 (4.88)

leading to a spectral index of the comoving curvature perturbations R

ns � 1 = 3� 2⌫ . (4.89)

1. Adiabatic Scalar Perturbations during Inflation

In the following, we want to calculate the behavior of the curvature perturbations R during

inflation in the slow-roll approximation ✏⌧ 1, which we have discussed in (3A).

We can expand z = a
p
2✏ in terms of the slow-roll parameters ✏ and ⌘ to first order yielding

z00

z
⇡ a2H2

✓
2� ✏+

3

2
⌘

◆
. (4.90)

Using

aH ⇡ �1

⌧
(1 + ✏) , (4.91)

which we have obtained in equation (3.24), the Hankel index ⌫ in the slow-roll approximation to

first order in slow-roll parameters reads

⌫ =

r
z00

z
⌧2 +

1

4
⇡ 3

2
+ ✏+

⌘

2
. (4.92)

Using the large scale limit

vk =
2⌫�(⌫)p

4⇡k
(�k⌧)�⌫+ 1

2 (4.93)
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FIG. 8. During inflation the Hubble radius H�1 is nearly constant. The physical wavelength �phys = a� becomes

super-horizon due to the accelerated expansion. The horizon crossing happens at k = aH and the comoving

curvature perturbation R becomes constant.

we obtain the spectral index of the comoving curvature perturbations R

ns � 1 = �2✏� ⌘ . (4.94)

The Planck team measured the spectral index ns = 0.9677 ± 0.0060 corresponding to a red tilt

[44]. This fact constraints the value of ⌘: small field models with convex potentials belong to

the class of models characterized by a negative ⌘, which makes the spectrum blue while the first

term in Eq. (4.94) makes the spectrum red. In the next chapter we will calculate the evolution

of tensor perturbations (primordial gravitational waves) during inflation. The combination of the

spectral index ns and the tensor-to-scalar ratio r allows for a comparison of inflationary models

with observations, which will be covered in Chapter 7.

Let us summarize the behavior of the scalar fluctuations during inflation: On small scales the

modes oscillate like in Minkowski space. At some point the modes become amplified due to the

negative mass term. Moreover, the comoving curvature perturbation R becomes constant on very

large scales – the modes freeze outside the horizon. The physical wavelength �phys = a/k grows,

while the physical horizon is nearly constant given by 1/H – this behavior is shown in Fig 8. In

other words the horizon exit is given by |k⌧ | = 1 or equivalently k = aH. The moment of horizon

crossing is denoted by k⇤ = a⇤H⇤.
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2. Tensor Perturbations during Inflation

Now we consider the evolution of tensor perturbations (gravitational waves) during inflation.

At linear order the scalar and tensor perturbations evolve independently. Using the ADM-

decomposition, we obtain the second order action of the tensor perturbations analogous to the

scalar perturbations. The resulting second order action is given by

S(2) = �1

8

Z
d4x

p
�ggµ⌫@µ�ij@⌫�ij . (4.95)

The tensor perturbation has two components denoted by � = (+,⇥). Going to Fourier space we

have the following decomposition

�ij(~k) =
X

�

h
â(~k,�)uk + â†(�~k,�)u⇤

k

i
eij(~k,�)/a , (4.96)

where eij(~k,�) is the polarization tensor and uk is the canonically normalized variable given by

uk = a
2

�k. The variation of the action w.r.t. uk yields the mode equation:

u00
k

+

✓
k2 � a00

a

◆
u
k

= 0 . (4.97)

Note that in the case of ✏ = const., this equation of motion is exactly the same as the equation of

motion of the scalar modes (4.50), since z00/z = a00/a for ✏ = const. This means that the spectrum

of the adiabatic scalar fluctuations and the tensor fluctuations are the same.

We can thus adopt the previous calculations. We quantize the field

û
k

= uk(⌧)âk + u⇤
k(⌧)a

†
�k

(4.98)

using the quantization condition

[â
k

, â†�k

0 ] = (2⇡)2�(k� k0) , (4.99)

as well as the Wronskian

W [uk, uk] ⌘ u⇤
ku

0
k � u⇤0

k uk = i , (4.100)

The equation of motion in the de Sitter limit reads

u00
k +

✓
k2 � 2

⌧2

◆
uk = 0 , (4.101)

leading to the solution

uk =
1p
2k

e�ik⌧

✓
1� i

k⌧

◆
. (4.102)
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At late times we obtain

lim
|k⌧ |!0

uk = � 1p
2k

i

k⌧
. (4.103)

Using uk = a
2

�k with a = �(H⌧)�1 and defining the power spectrum as the sum of the power

spectra of both polarizations leads to

PT = 2 |�k|2 = 2

����
2uk

a

����
2

=
4H2

⇤
k3

, (4.104)

while the variance is given by

�2

T =
k3

2⇡2
PT =

2H2

⇤
⇡2

⌘ AT

✓
k

k⇤

◆nT

. (4.105)

Note that a scale-invariant spectrum of the tensor perturbations corresponds to nT = 0 by defini-

tion, while in the case of the scalar spectral index ns = 1 corresponds to a scale-invariant spectrum.

In the de Sitter limit, the tensor perturbations have a scale-invariant spectrum. Also, note that

the tensor amplitude depends only on the Hubble parameter H and not on ✏. This is in contrast

to the scalar field amplitude in Eq. (4.71). Let us define the tensor-to-scalar ratio

r =
�2

T

�2

R
= 16✏, (4.106)

where we have used (4.71) and (4.105). In 2014 the BICEP2 team [63] announced a measurement

of primordial gravitational waves. However, it turned out that dust foregrounds were subtracted

incorrectly. Until today primordial gravitational waves have not been detected and the current

bound on the tensor-to-scalar ratio is given by r < 0.11 [44]. A variety of inflationary models are

in tension with a small tensor-to-scalar ratio r and we will discuss the challenges of inflationary

and ekpyrotic models in Chapter 7.
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F. Adiabatic Scalar Perturbations and Tensor Perturbations during Ekpyrosis

Let us investigate the behavior of adiabatic fluctuation during ekpyrosis. In the previous chapter

we have calculated the behavior of adiabatic/curvature perturbations in the case of a single scalar

field minimally coupled to gravity. We have reviewed the quantization procedure, the Mukhanov-

Sasaki equation and its general solutions, and finally we have calculated the power-spectrum and

the spectral index.

We can thus easily determine the behavior of curvature and tensor perturbations during ekpyrosis.

The background scaling solution (3.35) in a steep negative potential is given by

a(t) = ã
0

(t)1/✏ , (4.107)

where ã
0

is a constant. Using d⌧ = dt/a we find

⌧ = � ✏

1� ✏
t�(1�✏)/✏ , (4.108)

and thus we can write the scale factor in terms of conformal time

a(⌧) = a
0

(�⌧)1/(1�✏) . (4.109)

Keeping in mind the definition z2 = 2a2✏ we see that

z00

z
=

a00

a
=

2� ✏

(1� ✏)2
1

⌧2
for ✏ = const. (4.110)

This leads to the following mode equation (4.50):

v00k +

✓
k2 � 2� ✏

(1� ✏)2
1

⌧2

◆
vk = 0 , (4.111)

where ⌧ runs from large negative values towards zero and ✏ > 3 is the equation of state, which

is constant during ekpyrosis. We have already discussed this equation of motion in Chapter 4D.

Assuming that at small scales the modes behave like in Minkowski space, corresponding to the

Bunch-Davies vacuum, the solution is given in terms of the Hankel function of the first kind up to

a phase (4.80)

vk =

r
⇡

4

p
�⌧H(1)

⌫ (�k⌧) , (4.112)

with the Hankel index (4.87)

⌫ =
1

2

3� ✏

(1� ✏)
. (4.113)
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Since ✏ > 3 the Hankel index 0 < ⌫ < 1/2 and thus the spectral index

ns � 1 = 3� 2⌫ = 2� ✏� 3

✏� 1
(4.114)

is highly blue, 3 < ns < 4. The adiabatic/curvature perturbations during ekpyrosis have a highly

blue spectrum [17, 18] and cannot act as the seeds of the structure formation. Moreover, the

adiabatic fluctuations stay quantum: there is no quantum to classical transition in contrast to

the inflationary case [19]. This is an important di↵erence between inflation and ekpyrosis and the

motivation for the model of conflation, which we will discuss in Chapter 13.

Moreover, the tensor perturbations also have a blue spectrum and stay quantum, since the equations

of motion are the same for scalar and tensor fluctuations in the case of a single scalar field minimally

coupled to gravity with a constant equation of state, cf. Chapter 4E 2. From Eq. (4.111)

u00
k +

✓
k2 � 2� ✏

(1� ✏)2
1

⌧2

◆
uk = 0 (4.115)

we immediately find the tensor spectral index

nT = 3� 2⌫ = 3� ✏� 3

✏� 1
= � 2✏

1� ✏
, (4.116)

which is highly blue. During ekpyrosis, there is no amplification of tensor modes, and consequently,

the tensor-to-scalar ratio is zero. Note, that at second order in perturbations the tensor and scalar

curvature fluctuations interact, which can lead to a non-zero tensor-to-scalar ratio [64]. However,

this e↵ect is small and does not change the fact that ekpyrotic models predict an absence of

primordial gravitational waves. It is possible that gravitational waves could have been produced

at another stage, but until now such models have not been investigated.

This is an important distinction between inflationary and ekpyrotic models. Typically, inflation-

ary models predict a sizable scalar-to-tensor ratio – depending on the energy scale of inflation –

while ekpyrotic models predict no primordial gravitational waves. Consequently, a measurement

of primordial gravitational waves would rule out the current ekpyrotic models.

In order to create nearly scale-invariant adiabatic perturbations in an ekpyrotic scenario, we have

to modify the single-scalar field ekpyrotic model introduced in Chapter 3B.
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5. EKPYROSIS AS A TWO-FIELD-MODEL: THE NEW EKPYROTIC SCENARIO

In the previous chapter, we have investigated the behavior of adiabatic perturbations during

ekpyrosis. In contrast to inflation, the adiabatic quantum fluctuations during ekpyrosis have a

deep blue spectrum and stay quantum – the fluctuations do not become amplified and squeezed.

In order to obtain large scale curvature perturbations, which become the seeds of structure for-

mation, one has to modify the ekpyrotic model described in Chapter 3B. In the “new ekpyrotic

scenario” [20] a second scalar field is introduced.

We will see in the following that the scalar perturbations perpendicular to the background evolu-

tion (in field space) – in the so-called entropy direction – obtain a nearly scale-invariant spectrum

due to the presence of an unstable transverse direction in the potential. This process is called

entropic mechanism, and we will discuss the evolution of entropy perturbations in Chapter 5C.

These entropy perturbations have to be converted into curvature perturbations. We will give a

brief introduction to the conversion process at the end of this chapter and discuss the conversion

in detail in Chapter 6E and Chapter 11C.

A. Background

Let us consider the following two-field model

S =

Z
d4x

p
�g


R

2
� 1

2
gµ⌫@µ�1@µ�1 �

1

2
gµ⌫@µ�2@µ�2 � V (�

1

,�
2

)

�
, (5.1)

where both fields have a steep negative potential of the form

V (�
1

,�
2

) = �V
1

e�c1�1 � V
2

e�c2�2 , (5.2)

where c
1

(�
1

) and c
2

(�
2

) are usually set to be constant, if not stated otherwise. This model is called

the new ekpyrotic scenario [20]. We will perform a field redefinition such that the adiabatic field

� represents the path along the background trajectory:

�̇2 = �̇2
1

+ �̇2
2

. (5.3)

Introducing an angle ✓ between the background trajectory and �
1

we obtain

�̇ = �̇
1

cos ✓ + �̇
2

sin ✓ , (5.4)

where

cos ✓ =
�̇
1

�̇
=

�̇
1q

�̇2
1

+ �̇2
2

, sin ✓ =
�̇
2

�̇
=

�̇
2q

�̇2
1

+ �̇2
2

. (5.5)
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✓ �s
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FIG. 9. The adiabatic perturbations �� perturb the background along the background trajectory, while entropy

perturbations �s perturb the transverse direction of the background trajectory. Figure based on [5].

In Fig 9 we have drawn a general field space trajectory. The adiabatic field � evolves along the

background trajectory while there is (per definition) no evolution in the perpendicular direction of

the adiabatic field. Only the perturbations in the transverse direction will evolve – these are the

so-called entropy perturbations �s.

The adiabatic field � in terms of �
1

and �
2

is given by

� =
�̇
1

�
1

+ �̇
2

�
2

�̇
. (5.6)

We can easily define the adiabatic and entropy perturbations cf. Fig 9

�� = ��
1

cos ✓ + ��
2

sin ✓ , (5.7)

�s = ��
1

sin ✓ + ��
2

cos ✓ . (5.8)

The adiabatic field is not gauge invariant, as we have already seen in the single scalar field case.

However, it is related to the comoving curvature perturbation R via:

R =  +
H

�̇
�� . (5.9)

Note that we can chose the comoving gauge where �� = 0 and the scalar degree of freedom is the

comoving curvature perturbation R. Moreover, in flat gauge  = 0 and we obtain R = H
˙�
��.
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Let us first consider the background solution. The ekpyrotic two-field potential (5.2) can be

expressed in the new variables in the following way:

V (�, s) = �V
0

e�
p
2✏�

✓
1 +

1

2
✏s2 +


3

3!
✏3/2s3 + ...

◆
, (5.10)

where the parameter 
3

is given by


3

= 2
p
2
c2
1

� c2
2

|c
1

c
2

| , (5.11)

which vanishes for a symmetric potential with c
1

= c
2

. The ekpyrotic scaling solution in the

two-field case reads:

� = �
r

2

✏
ln
⇣p

V
0

✏t
⌘

, a ⇠ (�t)1/✏ , s = 0 , ✓ = const. (5.12)

where we have assumed that ✏ =
c21
2

+
c22
2

is large, cf. Chapter 3B. The field rolls along the

ridge of the potential with the same scaling solution as in single scalar field case; s is strictly

speaking not a field, since s = 0, by definition, along the background trajectory – s denotes the

transverse direction, which is also often denoted as �. However, there is an unstable direction

perpendicular to the background direction. The presence of this tachyonic direction has various

physical implications.

Due to the entropy perturbations, the field may fall o↵ the ridge during the ekpyrotic phase.

Consequently, ekpyrosis could not last long enough in order to render the universe flat and isotropic.

This also means that the initial conditions in the new ekpyrotic scenario are harder to fulfill. The

evolution of the adiabatic field � is shown in Fig, 10. In the “phoenix universe” [25–27] – the

embedding of the new ekpyrotic scenario in a cyclic model – suitable initial conditions are selected

naturally.

B. Adiabatic and Entropy Perturbations

In this chapter, we will discuss the splitting into adiabatic and entropy perturbations in detail.

Moreover, we will calculate the evolution of curvature perturbations and entropy perturbations

in the new ekpyrotic scenario. Let us briefly review a general definition of adiabatic and entropy

perturbations. Adiabatic or curvature perturbations perturb the solution along the background

solution. This means that the perturbation in any scalar quantity X is described by (see e.g. [53])

H�t =
�X

Ẋ
. (5.13)
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FIG. 10. The adiabatic field � rolls along the ridge in the presence of an unstable direction for suitable initial

conditions. However, the adiabatic field � can fall o↵ the ridge due to unsuitable initial conditions or due to

entropy perturbations transverse to the background trajectory.

An example is the energy density and the pressure

�⇢

⇢̇
=
�p

ṗ
. (5.14)

A time displacement �t results in a relative change of all quantities.

The general definition of the entropy perturbation between any two matter quantities X and Y is

given by [5]:

Sxy = H

✓
�X

Ẋ
� �Y

Ẏ

◆
. (5.15)

We have defined the adiabatic and entropy perturbations in terms of ��
1

and ��
1

in Eq. (5.7) and

Eq. (5.8) respectively. The splitting into adiabatic and entropy perturbations was first considered

by [5] at the linear level, and later extended by various authors [65–67]. Let us define the adiabatic

and entropic unit vector

eI� ⌘ 1q
�̇2
1

+ �̇2
2

⇣
�̇
1

, �̇
2

⌘
, eIs ⌘ 1q

�̇2
1

+ �̇2
2

⇣
��̇

2

, �̇
1

⌘
, (5.16)

which can be written, using the angle ✓ in field space, as

eI� = (cos ✓, sin ✓) , eIs = (� sin ✓, cos ✓) . (5.17)

At linear order the adiabatic and entropy perturbations are then defined to be

��(1) = e�I��
I , �s(1) = esI��

I , (5.18)
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which coincides with our previous result in (5.7) and (5.8). The advantage of this notation will

become apparent when dealing with higher order perturbations and/or generalized multi-field

models. It also allows us to calculate the derivative w.r.t to the adiabatic or entropic direction in

a simple way – for example V� ⌘ eI�V,I , Vs ⌘ eIsV,I , Vss ⌘ eIse
J
s V,IJ . A useful relation is Vs = ��̇✓̇,

which will be used throughout this thesis.

We can imagine that in general the evolution of adiabatic and entropy perturbations can be-

come complicated. If the trajectory in field space bends (✓̇ 6= 0) the adiabatic and entropy

perturbations interact – they source each other. However, during ekpyrosis there is no bending in

field space: the adiabatic field rolls along the ridge of the potential.

Consequently, during ekpyrosis the evolution of the adiabatic and entropy perturbations to first

order is fairly simple, since ✓̇ = 0. The field rolls down the adiabatic direction and the curvature

perturbations to first order behave like in the single scalar field case. This means that in the

new ekpyrotic scenario the spectrum of the comoving curvature perturbation R and of the tensor

perturbation is highly blue, cf. Chapter 4 F.

Because of the simplicity of this two-field model, we will skip the general derivation of the equations

of motion to first order in perturbations in the case of multiple fields, which can be found in e.g.

[5]. The equation of motion for the entropy perturbations to first order are given by [5]:

�̈s + 3H �̇s +

✓
k2

a2
+ Vss + 3✓̇2

◆
�s =

✓̇

�̇

k2

2⇡Ga2
 . (5.19)

On large scales or for ✓̇ = 0 the source term on the r.h.s is negligible and the evolution of �s

decouples from the adiabatic evolution.

As discussed, if the field space bends the entropy perturbations can source the curvature pertur-

bations. On large scales the evolution of the comoving curvature perturbation R to first order is

determined by [5]:

Ṙ = �2H

�̇
✓̇�s =

r
2

✏
✓̇�s . (5.20)

This is in contrast to the single scalar field case where the comoving curvature perturbations become

constant on large scales, which can be easily confirmed by using (5.20); in the single scalar field

case �s = 0 and thus Ṙ = 0 on large scales.

We will derive a more general evolution equation in Chapter 6E and we will discuss the conversion

process in detail throughout this thesis.
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C. The Entropic Mechanism

We will now calculate the evolution of the entropy perturbations �s to first order during ekpy-

rosis. Using ✓̇ = 0, the equation of motion (5.19) reads

�̈s + 3H �̇s +

✓
k2

a2
+ Vss

◆
�s = 0. (5.21)

We first rewrite the equation in terms of conformal time d⌧ = dt/a and the re-scaled variable

�S = a�s:

�S00 +

✓
k2 � a00

a
+ a2Vss

◆
�S = 0 , (5.22)

where 0 denotes the derivative w.r.t. conformal time. It is important to note that the ekpyrotic

phase has to come to an end eventually. Meaning that the ekpyrotic potential has to flatten out

leading to a kinetic phase. Since the ekpyrotic potential is parametrized by the fast-roll parameter

✏, we will introduce a time dependence of ✏. We chose a time-dependence in terms of e-folding time

(scale-factor time) dN ⌘ d ln a, which corresponds to d
dt = H d

dN . Requiring a slow change in ✏ and

✏� 1, we will keep only linear term in d✏/dN .

Di↵erentiating ✏ = �̇2

2H2 twice, using the background equation of motion for � and Vss = V�� leads

to the following expressions [22]:

a00

a
= H2a2(2� ✏) , (5.23)

Vss = H2(6✏� 2✏2 +
5

2
✏,N ) , (5.24)

aH =
1

✏⌧

✓
1 +

1

✏
+
✏,N
✏2

◆
. (5.25)

The equation of motion (5.22) becomes:

�S00 +


k2 � 2

⌧2

✓
1� 3

2✏
+

3✏,N
4✏2

◆�
�S = 0 . (5.26)

It is now straightforward to calculate the solution in analogy to the single scalar field case. Setting

the Bunch-Davies vacuum as initial conditions in the far past leads to the following solution (up

to a phase)

�S =

p
�k⌧

2
H(1)

⌫ (�k⌧) , (5.27)

where the Hankel index ⌫ is given by:

⌫ =
3

2

✓
1� 2

3✏
+
✏,N
3✏2

◆
. (5.28)
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FIG. 11. The modes start deep inside the Hubble radius H�1. Since H�1 ⇠ t the Hubble radius shrinks as t goes

from large negative values towards zero. The entropy perturbations become super-horizon.

Thus the spectral index of the entropy perturbations reads

ns � 1 =
2

✏
� ✏,N

✏2
. (5.29)

The first term – the gravitational contribution – makes the spectrum blue. The second term leads

to a red tilt, since ✏ is decreasing in order to end the ekpyrotic phase while N is negative in a

contracting universe. In order to estimate the spectral index we can rewrite the above expression

in terms of N = d ln(aH) – the number of e-folds before ekpyrosis ends. Assuming a power-law

dependence ✏ ⇡ N↵ leads to [22]

ns � 1 =
2

✏
� d ln ✏

dN ⇡ 2

N↵
� ↵

N . (5.30)

The overall sign of the spectral index is sensitive to ↵. For example ↵ ⇡ 2 leads to ns ⇡ 0.97,

which is in good agreement with the Planck data [44, 68].

In the late time limit (�k⌧ ! 0), the solution is given by:

�S =
1p

2(�⌧)k⌫
. (5.31)

The entropy perturbations become amplified. In the inflationary case the modes exit the horizon,

since the scale factor a stretches the modes while the Hubble radius H�1 ⇡ const.. In the ekpyrotic

scenario the scale factor a ⇡ const., while the Hubble radius H�1 shrinks by a large amount. We

have drawn the corresponding diagram in Fig 11. Using the scaling solution, we find an estimate

for the amplitude of �s at the end of ekpyrosis:

�s(tek�end) ⇡
|✏Vek�end|1/2p

2k⌫
. (5.32)

As already mentioned, an important step is the conversion of entropy perturbations to curvature

perturbations, which are the seeds of the temperature fluctuations in the Cosmic Microwave Back-

ground radiation. We will discuss the conversion mechanism in detail in Chapter 6E. For now we
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FIG. 12. Entropy perturbations are converted to curvature perturbations via a bending in field space. The amount

of conversion depends on the e�ciency of the conversion process.

will give a brief overview in order to estimate the conversion process to first order in perturbations.

One possibility is the so-called kinetic conversion, which takes place during the kinetic phase after

ekpyrosis and before the bounce. During the kinetic phase the ekpyrotic potential can be neglected

leading to the following background solution

H =
1

3t
, �̇ = �

r
2

3

1

t
(5.33)

and the entropy perturbations are described by

�̈s + 3H �̇s = 0 , (5.34)

which means that the entropy perturbations grow logarithmically – we will neglect his small growth

for now. In order to convert entropy perturbations to curvature perturbations the background

trajectory has to bend

Ṙ = �2H

�̇
✓̇�s =

r
2

✏
✓̇�s . (5.35)

In Fig. 12 a typical conversion process is shown, where the field space trajectory bends due to

a repulsive potential at �
2

= 0. Let us estimate the resulting conversion: assuming that �s is

approximately constant during the conversion process and assuming a total bending angle of order

unity yields [69]:

Rconv�end ⇡ 1

5
�sek�end , (5.36)

where �sek�end is the value of the entropy perturbation at the end of ekpyrosis. Thus we find:

hR2

conv�endi =
Z

dk

k
�2

R ⇡ d3k

(2⇡)3
1

25
(�sek�end)

2 ⇡ dk

k

✏Vek�end

100⇡2
kns�1 , (5.37)
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where we have used (5.32) in the last step. This means that the energy scale of the ekpyrotic

potential at the end of ekpyrosis has to reach approximately the grand unified scale Vek�end ⇡

(10�2MPL)4 in order to be in agreement with the observed amplitude �2

R ⇡ 3⇥ 10�9 [6].

6. NON-GAUSSIANITY

A. Overview

Large self-interactions of the scalar field give rise to large non-Gaussian contributions. Before

the Planck measurements in the year 2013, a variety of inflationary models were developed in order

to produce sizable non-Gaussianities. The amount and the specific type, e.g. local or equilateral

(see below), of non-Gaussian contributions is an important feature of any model of the primordial

universe.

Before we discuss the Planck measurements and the implications for inflationary and ekpyrotic

models, we will review the treatment of cosmological perturbations theory up to third order. The

bispectrum is defined in an analogous fashion as the power spectrum; it is the Fourier transform

of the three-point function:

hRk1Rk2Rk3i = (2⇡)3B(k
1

, k
2

, k
3

)�(k
1

+ k
2

+ k
3

) (6.1)

and the trispectrum is the Fourier transform of the four-point function:

hRk1Rk2Rk3Rk4i = (2⇡)3T (k
1

, k
2

, k
3

, k
4

)�(k
1

+ k
2

+ k
3

+ k
4

) . (6.2)

In the following, we will focus on the second order corrections. However, we will also state

important results regarding the trispectrum in order to compare the ekpyrotic predictions with

observations.

The non-Gaussianities can be characterized by the amount (also called size) and the shape. The

shape is determined by the configuration of the momenta ki. Because of momentum conservation

the momenta form a triangle and it is customary to distinguish three special cases:

The equilateral shape is defined by the condition k
1

⇡ k
2

⇡ k
3

, such that the triangle is equilateral,

the squeezed (also called local) shape is defined via k
1

⇡ k
2

� k
3

and finally the folded shape is

defined by k
1

⇡ 2k
2

⇡ 2k
3

. Fig. 13 shows the di↵erent configurations.

Non-Gaussianities of the equilateral shape can arise in models with non-standard (higher deriva-

tive) kinetic terms, e.g., DBI inflation. In this case, the non-Gaussianities are produced when the
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FIG. 13. The figure shows three configurations of the three momenta ki : the local, equilateral and folded shape

respectively.

three modes leave the horizon at the same time since they have the same size. A large equilateral

non-Gaussian contribution is caused by a small speed of sound of the perturbations.

The local shape is the most important one in this thesis. It arises naturally in single field models

of inflation, but also in two-field models of ekpyrosis. The squeezed or local shape defined by

k
1

⇡ k
2

� k
3

can be understood as follows: The mode with small momentum k
3

leaves the horizon

first since the wavelength �
3

is large. The perturbation associated with the momentum k
3

freezes

after horizon exit: this results in a modulation of the other two momenta – when leaving the

horizon they underlie a changed background.

Local non-Gaussianities can be parametrized by this simple form:

R(x) = RL(x) +
3

5
fNL (RL(x))

2 +
9

5
gNL (RL(x))

3 , (6.3)

where RL(x) is the linear and Gaussian curvature perturbation. Since RL(x) is defined locally in

real space it is called local non-Gaussianity. The higher order perturbations are just defined by

the linear (Gaussian) fluctuations. The amount of non-Gaussianity is parametrized by fNL (and

gNL). In the case of local non-Gaussianities we can already find an expression for the bispectrum.

Using the definition of the power-spectrum

hRk1Rk2i = (2⇡)3PR(k1)�(k1 + k
2

) (6.4)

and the definition of the bispectrum (6.1) together with the local expansion (6.3) we find:

B(k
1

, k
2

, k
3

) =
6

5
fNL (PR(k1)PR(k2) + PR(k1)PR(k3) + PR(k2)PR(k3)) . (6.5)

Similarly we obtain for the trispectrum:

T (k
1

, k
2

, k
3

, k
4

) = ⌧NL (PR(k13)PR(k3)PR(k4) + 11 permutations) (6.6)

+
54

25
gNL (PR(k2)PR(k3)PR(k4) + 3 permutations) ,
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where kij = |ki + kj |. Let us introduce a very useful way of calculating the local non-Gaussianity

parameter fNL, which we will use throughout this thesis. From (6.3) we find

fNL =
5

3

R end
beg R(2)0

⇣R end
beg R(1)0

⌘
2

, gNL =
25

9

R end
beg R(3)0

⇣R end
beg R(1)0

⌘
3

, (6.7)

where we integrate the evolution equation up to second order in perturbations from the beginning

of the evolution until R becomes constant. As it turns out this is a very easy way of calculating

the resulting non-Gaussian signatures of the comoving curvature perturbations in the context of

ekpyrosis.

Before we discuss the resulting non-Gaussianities of inflationary and ekpyrotic models let us review

the measurements by the Planck team (to 1�) [45]:

f local
NL = 0.8± 5.0, (6.8)

glocalNL = (9.9± 7.7)⇥ 104. (6.9)

This means that the comoving curvature perturbations are nearly Gaussian and any model of the

early universe has to fit these measurements.

B. Calculation of Non-Gaussianities

In Chapter 4B we have calculated the quadratic action for the scalar perturbation R in the

case of a single field minimally coupled to gravity. We have used the ADM - decomposition and

expanded the action of the scalar perturbations up to second oder.

Now we expand the action up to third order, which is the self-interaction of the curvature perturba-

tions in the case of a single scalar field minimally coupled to gravity. We will follow the formalism

by Maldacena [70] (see also [71]).

The third order Lagrangian is given by [70]

L(3) = ✏2RṘ2 + ✏2R(@R)2 � 2✏Ṙ(@R)(@�) + 2f(R)
�L

2

�R +O(✏3), (6.10)

where

f(R) ⌘ ⌘/4R+ ... (6.11)

and �L2
�R is the variation of the second order action with respect to R. The additional terms in

f(R) vanish outside the horizon and thus do not contribute to the non-Gaussian corrections. The

term proportional to f(R) can be removed by a field redefinition of the form

R ! Rn + f(Rn). (6.12)
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This redefinition leads to the following change in the bispectrum

hRk1Rk2Rk3i = hRn(k1

)Rn(k2

)Rn(k3

)i+ ⌘

4
(hRn(k1

)Rn(k2

)Rn(k3

)i+ 2 perm.) + ... (6.13)

In order to calculate this expectation value, we use the so-called in-in formalism [70]. In particle

physics, the S-matrix describes the transition probability for a state in the far past | i to become

a state h 0| in the far future

h 0| i = h 0(1)| (�1)i , (6.14)

where the states in the far past and future do not interact corresponding to two asymptotic con-

ditions.

However, in cosmology we evaluate expectation values of products of fields at fixed times. There

is only one asymptotic condition at very early times when the modes are deep inside the horizon

corresponding to the Bunch-Davies vacuum. The expectation value of a product of fields reads

hW (t)i = hin|W (t)|ini , (6.15)

where |ini describes the vacuum in the interacting theory at some early time t0 and t > t0 corre-

sponds to some later time at e.g. horizon crossing. The idea is now to evolve/project the |ini and

hin| states to the vacuum states h0| and |0i. We will skip the derivation presented in [70] and state

the result:

hW (t)i = �i

Z t

�1
dt0 h0|[W I(t), HI

int(t
0)]|0i (6.16)

= 2Re

 
�i

Z t

�1(1�i✏)
dt0 h0|W I(t)HI

int(t
0)|0i

!
, (6.17)

where I denotes the interaction picture operators and HI
int is the interacting Hamiltonian which is

given by HI
int = �L(3) from equation (6.10) in the case of a single scalar field.

C. Non-Gaussianities Signatures during Inflation

We have expanded the action of the comoving curvature perturbation up to third order and

reviewed how we can calculate expectation values in cosmology using the in-in formalism. Now

we will use this formalism in order to obtain the non-Gaussian corrections during inflation in the

case of a single scalar field minimally coupled to gravity. We expand and quantize the comoving
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curvature perturbation as usual

R̂(⌧,x) =

Z
d3k

(2⇡)3
R̂(⌧,k)eikx (6.18)

with

R̂(⌧,k) ⌘ R̂k(⌧) = ukâk + u⇤
�kâ

†
�k

, (6.19)

where uk are solutions to the Mukhanov-Sasaki equation, which we have obtained in the de Sitter

limit (4.63)

uk =
iHp
4✏k3

e�ik⌧ (1 + ik⌧) . (6.20)

We can now calculate each term individually using equation (6.17) and the third order Lagrangian

(6.10). The first term reads

Hint =

Z
d3xa3✏2RṘ2, (6.21)

such that the first term of the 3-point function in fourier space is given by:

hR(k
1

, 0)R(k
2

, 0)R(k
3

, 0)i =

Re h�2i

Z
d3q

1

(2⇡)3
d3q

2

(2⇡)3
d3q

3

(2⇡)3

Z
d⌧d3xa2✏2ei(q1+q2+q3)xRk1Rk2Rk3Rq1R0

q2R
0
q3i . (6.22)

Using Wick’s theorem we have to add all possible non-zero contractions. Moreover, we perform

the integrals leading to �-functions and plug in the solutions (6.20). The time integral has the

following form
Z

0

�1(1�i✏)
d⌧(1� ik

1

⌧)eiK⌧ = � ik
1

K2

� i

K
(6.23)

with K = k
1

+ k
2

+ k
3

. The final results reads

hR(k
1

, 0)R(k
2

, 0)R(k
3

, 0)i = (2⇡)3�(3)(k
1

+k
2

+k
3

)
H4

16✏

1

k3

1

k3

2

k3

3

k2

2

k2

3

✓
1

K
+

k
1

K2

+ perm.

◆
. (6.24)

We repeat the above calculation for all the other terms of the Lagrangian (6.10) and end up with

the final result:

hRk1Rk2Rk3i = S(k
1

, k
2

, k
3

)
1

(k
1

k
2

k
3

)2
P̃ 2

R(2⇡)
7�(3)(k

1

+ k
2

+ k
3

) , (6.25)

where P̃R = H2

8⇡2✏
is the rescaled power spectrum (or variance), cf. Eq. (4.71), and S is the shape

function given by [70, 71]:

S =
1

8k
1

k
2

k
3

0

@(3✏� ⌘)
X

i

k3

i + ✏
X

i 6=j

k2

i k
2

j +
8✏

K

X

i>j

k2

i k
2

j

1

A . (6.26)
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The shape function peaks in the squeezed/local limit for k
3

! 0. The non-Gaussianities produced

during inflation modeled by a single scalar field minimally coupled to gravity in a potential are of

the local form. Comparing the result with (6.5) we obtain in the local limit hR3i ⇠ fNLP̃ 2

R, which

means that the non-Gaussianity parameter fNL ⇠ ✏, which is small of O(0.01) during inflation.

This was expected, since the inflationary potential is very flat leading to small self-interactions.

D. Non-Gaussian Signatures during Ekpyrosis

In the minimal entropic mechanism entropy perturbations are created in the presence of an

unstable potential. The potential can be parametrized via:

V = �V
0

e
p
2✏�
h
1 + ✏s2 +


3

3!
✏3/2s2 +


4

4!
✏2s4 + ...

i
, (6.27)

where 
3

and 
4

are O(1). For an exact exponential potential we find 
3

= 2
p
2(c2

1

� c2
2

)/|c
1

c
2

|

and 
4

= 4
p
2(c6

1

� c6
2

)/c2
1

c2
2

(c2
1

+ c2
2

).

We can use the in-in formalism to calculate the 3-point correlation function of the entropy pertur-

bations [24, 28]

h(�s)3i = 2Re

 
�i

Z t

�1(1�i✏)
dt0 h0|�s

k1�sk2�sk3Hint(t
0)|0i

!
, (6.28)

with Hint(t0) = Vsss(�s)3/3! = �p
✏

3

/(3!t02)(�s)3, where we have used the scaling solution during

ekpyrosis. We find after some steps analogous to the previous discussion

h(�s)3i = (2⇡)32Re

✓
�i

Z t

1
dt0�s

k1(t)�sk2(t)�sk3(t)
(�p

✏
3

)

t02
�s

k1(t
0)�s

k2(t
0)�s

k3(t
0)

◆
. (6.29)

Instead of using the mode function obtained in (5.27) we use an approximation to simplify the

calculation. For very large ✏ (which corresponds here to neglecting gravity) we obtain the following

first order equations of motion:

�̈s +
�
k2 + V,ss

�
�s = 0 (6.30)

with V,ss = �2/t2. We find the following solution

�sk =
1p
2k

✓
1� i

kt

◆
e�ikt. (6.31)

Here we see again that the V,ss term indeed acts like a de Sitter background for the entropy

perturbations. Using the solution (6.31) we obtain the 3-point correlation function of the entropy
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perturbations

h(�s)3i = (2⇡)3�(3)(k
1

+ k
2

+ k
3

)

p
✏

3

6t4

P
i k

3

i

⇧ik3

i

. (6.32)

Non-Gaussianities of the entropy perturbations produced via the entropic mechanism are of the

local form. Moreover, the bispectrum becomes large for |kit| ⌧ 1, which corresponds to large scales

– the dominant contribution arises on super-horizon scales. This means we can use the large scale

limit when calculating the evolution of these perturbations.

The equation of motion of entropy perturbations to second order on large scales (neglecting gradi-

ents) is given by [72]

�̈s + 3H �̇s +
⇣
Vss + 3✓̇2

⌘
�s = (6.33)

� ✓̇

�̇
(�̇s)2 � 2

�̇

 
✓̈ + V�

✓̇

�̇
� 3

2
H ✓̇

!
�s�̇s +

 
�1

2
Vsss + 5Vss

✓̇

�̇
+ 9

✓̇3

�̇

!
(�s)2 .

During ekpyrosis the background evolves accordingly to the scaling solution (5.12), which yields:

�̇ = �
p
2p
✏t

, V = � 1

✏t2
, V,� = �

p
2p
✏t2

, V,�� = � 2

t2
, (6.34)

V,s� = 0 , V,s� = 0 , V,ss = � 2

t2
, V,sss = �3

p
✏

t2
. (6.35)

Since the non-Gaussianities are of the local form, we can write the entropy perturbations as an

expansion of the linear and Gaussian entropy perturbation �sL. Using the fact that there is no

bending in field space during ekpyrosis (✓̇ = 0), the solution of (6.33) during ekpyrosis to leading

order in 1/✏ is given by:

�s = �sL +

3

p
✏

8
�s2L (6.36)

with �sL ⇠ 1

t . For completeness let us state the result up to third order

�s = �sL +

3

p
✏

8
�s2L + ✏

✓

4

60
+
2
3

80
� 2

5

◆
�s3L , (6.37)

which corresponds to the solution of the equation of motion (6.33) expanded up to third order

in perturbations, cf. [72]. This solution will be useful when calculating the further behavior of

entropy perturbations after ekpyrosis – we can use (6.37) as initial conditions before the conversion.

Moreover, we see that the intrinsic non-Gaussian contribution of the entropy perturbations depends

on
p
✏, which is generally large. This is in contrast to the ekpyrotic model, where the slow-roll

parameter is small. This was expected, since the self-interactions are large for steep potentials.

The intrinsic non-Gaussianity of the entropy perturbations can be small if the two-field potential is
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very symmetric leading to 
3

⇡ 0. However, as we have already discussed, we need to convert the

entropy perturbations to curvature perturbations. In the following chapter, we will describe the

conversion process to higher order in perturbations and calculate the corresponding non-Gaussian

contribution of the comoving curvature perturbations.

E. Conversion

The conversion of entropy perturbations to curvature perturbations is an important and vital

process for the viability of ekpyrotic models. In the following chapter, we will discuss possible

conversion processes and their consequences to observational signatures.

In order to convert entropy perturbations to curvature perturbations a bending in field space has

to occur. In Chapter 5C we have already estimated the e↵ect of a kinetic conversion at the linear

level in perturbations.

The two main results of the upcoming discussion can be summarized as follows:

• An e↵ective conversion, where a large portion of entropy perturbations are converted to cur-

vature perturbations, leads to more structure formation and generally small non-Gaussian

corrections. While non-smooth, rapid and ine↵ective conversions lead to less structure for-

mation and large non-Gaussianities, which are incompatible with observations.

• There are basically four possibilities for when and how the conversion takes place. During

ekpyrosis [28, 34, 73, 74], shortly after the bounce due to modulated preheating [75], after

ekpyrosis during the kinetic phase (before the bounce) [22, 35, 69] or during the kinetic phase

after the bounce [9]. While the first three possibilities were studied extensively in previous

works, the conversion process after a non-singular bounce yielded very interesting results,

which are the main subject of this thesis based on [9]. We will cover the findings of our

paper in Chapter 10.

For now, we will cover the ekpyrotic conversion and kinetic conversion before the bounce.

In order to calculate the conversion process from entropy to curvature perturbations, we will derive

a simple and very useful form of the evolution equation on large scales [69, 73, 76]. Choosing the

comoving gauge and using a FLRW metric as the background, the perturbed metric on large scales
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(or, more precisely, when spatial gradients can be neglected) can we written as

ds2 = �dt2 + a(t)2e2R(t,xi
)dxidxi . (6.38)

The stress-energy tensor of a perfect fluid has the form

Tµ
⌫ =

0

@�⇢ 0

0 p �ij

1

A , (6.39)

where ⇢ is the scalar matter density and p the pressure.

The equation of continuity is given by

⇢̇+ 3(H + Ṙ)(⇢+ p) = 0 , (6.40)

with the background (denoted by overbars) satisfying

˙̄⇢+ 3H̄(⇢̄+ p̄) = 0 . (6.41)

On comoving hypersurfaces the energy density is uniform, ⇢ = ⇢̄ (and hence also H = H̄ because

of the Friedmann equation). We then obtain

Ṙ = �H̄
�p

⇢̄+ p̄ + �p
, (6.42)

where �p ⌘ p(t, xi) � p̄(t). On these hypersurfaces �⇢ = 0 and thus we can write the pressure

perturbation in terms of a perturbation in the potential, �p = �2�V |�⇢=0

. Using this relation, we

obtain a compact expression for the evolution of the comoving curvature perturbation on large

scales:

Ṙ =
2H̄�V

˙̄�2 � 2�V
, (6.43)

where �V = V (t, xi) � V̄ (t). Note that this equation is valid to all orders in perturbation theory.

In concrete applications, one has to expand it to the desired order, and express �V in terms of the

adiabatic and entropic fluctuations at that order.

Expanding (6.43) up to second order yields:

Ṙ = �2H

�̇
✓̇ �s +

H

�̇2

⇣
Vss + 4✓̇2

⌘
(�s)2 � V�

�̇
�s�̇s , (6.44)

where we have dropped the indices (1) and (2). It should be clear to which order these quantities

are expanded: e.g. Ṙ = R(1)+R(2), while the last term reads �s�̇s = �s(1) ˙�s(1). As we can see the
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linear part of the first term coincides with equation (5.20). Moreover, at second order there is a

sourcing of curvature perturbations from entropy perturbations without a bending in field space.

This means that there is already a sourcing during ekpyrosis due to non-linear e↵ects.

We can use analytic estimates in order to calculate the conversion process to second order in the

case of an ekpyrotic conversion and a kinetic conversion. Due to the complexity of Eq. (6.44) we

also obtain the non-Gaussian contributions numerically. In the case of local non-Gaussianities the

comoving curvature perturbation can be written as (6.3):

R(x) = RL(x) +
3

5
fNL (RL(x))

2 , (6.45)

where RL(x) is the linear and Gaussian curvature perturbation. This leads to the non-Gaussianity

parameter

fNL =
5

3

R end
beg R(2)0

⇣R end
beg R(1)0

⌘
2

. (6.46)

In order to calculate fNL we have to solve the equation of motion (6.33) of the entropy perturbations

on larges scales

�̈s + 3H �̇s +
⇣
Vss + 3✓̇2

⌘
�s = (6.47)

� ✓̇

�̇
(�̇s)2 � 2

�̇

 
✓̈ + V�

✓̇

�̇
� 3

2
H ✓̇

!
�s�̇s +

 
�1

2
Vsss + 5Vss

✓̇

�̇
+ 9

✓̇3

�̇

!
(�s)2,

and use the expansion obtained in (6.37)

�s = �sL +

3

p
✏

8
�s2L , (6.48)

which determines the initial conditions before the conversion. Finally we have to integrate (6.46)

from the beginning of ekpyrosis to the end of the conversion phase.

In the new ekpyrotic scenario the potential has an unstable direction. This instability leads to the

production of nearly scale-invariant entropy perturbations and intrinsic non-Gaussian signatures

of the local type via the entropic mechanism, cf. Eq. (6.48).

Let us consider the “ekpyrotic conversion” [20, 34, 74], which takes place during the ekpyrotic

phase. The conversion occurs when the scalar field falls o↵ the ridge of the unstable potential,

which suggests that this conversion process is very abrupt due to the steepness of the potential.

The resulting non-Gaussian parameter due to an ekpyrotic conversion was found to be [28, 72, 73]:

fNL = � 5

12
c2
1

. (6.49)
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For completeness we will also include corrections to third order in perturbations, which correspond

to the amplitude of the trispectrum:

⌧NL =
1

4
c4
1

, (6.50)

gNL =
25

108
c4
1

. (6.51)

Since we require c
1

> 10 in order to obtain a red spectrum, cf. (5.30), we find that the non-

Gaussianities produced during an ekpyrotic conversion are in disagreement with the Planck

measurements [45].

In a cyclic embedding of the new ekpyrotic scenario the “phoenix universe” can explain the

initial conditions of our universe dynamically [25–27]. Only regions with the right initial condi-

tions for a stable ekpyrotic evolution will undergo a successful cycle, cf. Fig. 10 in Chapter 10,

while other regions can end up in a big crunch. Regions where the scalar field rolls o↵ the ridge

too early produce less structure and large non-Gaussianities incompatible with observations.

Let us consider the kinetic conversion which we have introduced in Chapter 5C. In Chapter

3B we have discussed the cyclic ekpyrotic model which is based on the braneworld picture of the

universe [4, 15, 16, 77]. The attractive force between the two branes causes the two branes to

approach each other. This attractive force leads to the ekpyrotic potential. At the end of ekpy-

rosis the potential turns o↵ and the universe is kinetically dominated. In the higher dimensional

description the second scalar field describes the size of the internal manifold, while the first scalar

field describes the distance between the two branes. Thus the line �
2

= 0 describes a boundary in

field space. Moreover, the presence of matter on the negative tension brane gives rise to a repulsive

potential near �
2

= 0. Thus, during the kinetic phase the field space trajectory automatically

bends. This conversion is called “kinetic conversion”. It is clear that the amount of conversion is

highly model-dependent – as it is determined by the repulsive potential in field space.

The evolution equations (6.47) and (6.44), which describe the evolution of the entropy pertur-

bations and the conversion process are quite complicated. However, a variety of analytic estimates

and various numerical simulations led to a very good understanding of the kinetic conversion

process [22, 35, 69, 78]. Let us try to get a better understanding of the conversion process to

second order in perturbations. The first term in Eq. (6.44) converts the intrinsic non-Gaussian

contribution directly to the curvature perturbation due to the bending in field space. This con-
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tribution would be zero if there are no intrinsic non-Gaussian corrections during ekpyrosis. The

remaining terms are present due to the non-linear relationship between the second order curvature

perturbations R(2) and the first order entropy perturbations. And thus these terms contribute to

the final non-Gaussian corrections even if the intrinsic non-Gaussianities are zero. During ekpyrosis

(✓̇ = 0) there is already a sourcing of entropy to curvature perturbations, which is called integrated

non-Gaussianity. The integrated non-Gaussianity parameter, using Eq. (6.46), is given by

f integrated
NL =

5

12R2

L

⇣
�s(1)(tend)

⌘
2

, (6.52)

where RL is the linear comoving curvature perturbation at the end of the conversion phase and

�s(1)(tend) is the entropy perturbation at the end of ekpyrosis. It turns out that the integrated

contribution f integrated
NL ⇡ 5, which can be neglected for now, since it is small compared to the

contributions during the conversion phase – the other contributions in Eq. (6.46) are typical large,

but mostly cancel each other out [69, 78].

Following [69, 78] we will provide an intuitive and easy derivation of the resulting non-Gaussian

contributions during the conversion phase, which match the numerical and approximate analytic

solutions very well – as we will see below.

During the kinetic phase the potential is not important leading to a logarithmic growth of the

entropy perturbations, cf. (5.34). We will neglect this growth in the following. During the con-

version phase the repulsive potential leads to a sinusoidal evolution of the entropy perturbations

independently of the precise form of the potential:

�s ⇡ cos (!(t � tc)) �s(tc) , (6.53)

where tc denotes the beginning of the conversion phase, ! ⇡ 5/2�t and �t is the duration of the

conversion. The final amplitude of R after the conversion is smaller than �s, which allows us to

assume that the repulsive potential depends only on �s. Moreover, the repulsive potential should

not change the background evolution too much, such that �V ⌧ �̇2. From (6.43) we obtain

Ṙ =
2H̄�V

˙̄�2 � 2�V
⇡ 2H̄

˙̄�2
�V ⇡ 2H̄

˙̄�2
�s . (6.54)



79

Using the relation ✓̇ = V,s

�̇ ⇡ �t and Eq. (6.53), we can calculate the final comoving curvature

perturbation at linear order

RL =

Z
2H̄
˙̄�2
�sL (6.55)

⇡
r

2

3

✓̇

!
sin(!�t)�s(tc) (6.56)

⇡ 1

5
�s(tc) . (6.57)

Moreover, Eq. (6.54) holds true to all order in perturbation theory. And thus we immediately find

the resulting comoving curvature perturbations after the conversion:

R(2) ⇡ 
3

p
✏

40
�s2L , (6.58)

R(3) ⇡ 1

5
✏

✓

4

60
+
2
3

80
� 2

5

◆
�3L , (6.59)

where we have used the expansion in Eq. (6.48). The final non-Gaussianity parameters are

fNL =
5

3

R(2)

R2

L

⇡ 
3

p
✏ , (6.60)

gNL =
5

3

R(3)

R3

L

⇡ 70✏

✓

4

60
+
2
3

80
� 2

5

◆
. (6.61)

Using the above approximations we were able to calculate the final non-Gaussian corrections after

a kinetic conversion in a fairly simple way. Moreover, these approximations are very close to the

numerical and analytic estimates in [22, 35, 69, 78], which are given by the phenomenological

expressions

fNL =
3

2

p
✏

3

+ 5 , (6.62)

gNL = 100

✓

4

60
+
2
3

80
� 2

5

◆
✏ . (6.63)

In this chapter, we have studied the conversion process up to third order in perturbations. During

an ekpyrotic conversion, large non-Gaussianities are produced which are not compatible with

observations. The kinetic conversion due to a repulsive potential during the kinetic phase before

the bounce produces non-zero non-Gaussian corrections. Even though the conversion process is

model-dependent we have obtained fairly general results. A smooth and e↵ective conversion leads

to larger RL and non-zero non-Gaussianities depending on the steepness and symmetry of the

ekpyrotic two-field potential.
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7. CHALLENGES FOR INFLATIONARY AND EKPYROTIC MODELS

In this chapter we will review some of the challenges for inflationary and ekpyrotic models. We

will face problems which arise from tensions with the Planck measurements as well as fundamen-

tal/theoretical problems of the models.

From the Planck measurements we know, that the primordial curvature perturbations are nearly

scale-invariant and nearly Gaussian. Moreover, primordial gravitational waves have not been de-

tected yet. Let us briefly summarize the Planck measurements/bounds which have to be predicted

by the models of the early universe [6, 44, 45]:

AR = (2.975± 0.056)⇥ 10�9, (7.1)

ns = 0.9649± 0.0042 , (7.2)

r < 0.064 at 95% confidence level , (7.3)

f local
NL = 0.8± 5.0 , (7.4)

glocalNL = (9.9± 7.7)⇥ 104 , (7.5)

where AR is the amplitude, ns is the spectrum of the curvature perturbation R, r is the tensor-

to-scalar ratio, f local
NL is the non-Gaussianity parameter and glocalNL parametrizes the size of the

trispectrum (up to 1 �).

A. Inflation

Let us first look at which inflationary models are in agreement with the Planck data. In Fig. 14

we have plotted the ns � r – plane published by the Planck team [44]. The simplest models -

namely the exponential potential (power-law inflation) as well as the m2�2 - potential (chaotic

inflation) – are ruled out. These models of inflation had the advantage of being simple and fairly

robust in terms of initial conditions. The smallness of the tensor-to-scalar ratio disfavors a variety

of inflationary models. As it turns out the very idea of inflation to provide initial conditions for

the universe is challenged by the fact, that inflation itself needs fairly strong initial conditions [79].

Other considerations further challenge the initial conditions for inflation. Entropic arguments

suggest that inflation is exponentially unlikely compared to a universe without inflation [80].

Quantum arguments also suggest that it is exponentially unlikely that inflation starts [81].
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FIG. 14. The figure shows the ns � r – plane. Observations disfavor a variety of inflationary due to the fact that

the tensor-to-scalar ratio r is small. The currently best fitting model is R2 - inflation, which is a plateau-model of

inflation. Figure taken from [6].

Models in agreement with observations belong mostly to the class of plateau models. In these

models, the inflaton starts on a plateau and rolls slowly towards the local minimum of the poten-

tial. These models are challenged by the unlikeliness problem [79], which states that inflation is

more likely to occur around the local minimum of the potential compared to an evolution on top

of the plateau. The currently best fitting model is R2 - inflation, where the spectral index and

tensor-to-scalar ratio in terms of e-folds to lowest order are given by [82, 83]

ns � 1 ' � 2

N
, r ' 12

N2

. (7.6)

The initial velocity and gradient of the scalar field have to be small in the first place, which is

harder to achieve for plateau models compared to chaotic potentials [79, 84]. Moreover, smooth-

ness over more than one Hubble radius is required to initiate inflation, which is again a condition

inflation should provide on its own [79].

Inflation cannot yield a complete history of the early universe since the initial singularity is not

resolved [85].

Another problem is the trans-Planckian problem of the quantum fluctuations. If inflation lasts only

slightly longer than needed in order to solve the big bang puzzles, then the wavelengths of interest

today originate from sub-Planckian values [86, 87]. This means we cannot trust the calculations

of inflationary models without an embedding in a consistent quantum theory.
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The major challenge is eternal inflation [88–90], which occurs in two di↵erent scenarios: eter-

nal inflation from false vacuum decay and slow-roll eternal inflation. The idea of slow-roll eternal

inflation is as follows: The scalar field rolls slowly down the near flat potential, while small quan-

tum fluctuations seed the temperature fluctuation in the Cosmic Microwave Background. However,

there exist rare, large quantum fluctuations which can move the inflaton back up in the potential.

This region expands more rapidly since the Hubble rate is larger in this region (3H2 ⇡ V (�) in the

slow-roll approximation). This e↵ect will prolong and dominate the expansion history. Moreover,

the large quantum jumps can occur over and over leading to an infinite amount of pocket universes

– which means that inflation never ends globally. Since every pocket universe has a di↵erent

expansion history, an infinite amount of physically distinct universes are created – all possible

values of e.g. ns, As, r, fNL can occur: “Anything that can happen will happen; in fact, it will

happen infinitely many times” [90]. This famous quote by Alan Guth is troublesome for a theory,

which wants to predict the initial conditions of our universe. With no probability measure, the

multiverse challenges the predictability of the inflationary paradigm [91–95].

Slow-roll eternal inflation occurs due to large adiabatic quantum fluctuations. In Chapter 13

we will introduce a new model based on our paper [10], which incorporates ideas of both inflation

and ekpyrosis. We will construct an accelerated expanding phase – the conflationary phase – which

does not su↵er from slow-roll eternal inflation.

B. Ekpyrosis

A main challenge for any model with a contracting phase is the transition from contraction to

expansion: the bounce. The realization of a healthy bouncing cosmology is a hard task. However,

in the last 10 to 20 years a variety of models and ideas led to a better understanding of the bounce

phase. We will discuss the developments and challenges of cosmic bounces in detail in Chapter 10.

Even though e↵ective field theoretical models like the Galileon bounce and the ghost condensate

bounce are fairly well understood, it remains an open question whether such models can arise in

a consistent theory of quantum gravity.

In Chapter 5 and Chapter 6D we have reviewed the entropic mechanism. In this two-field model,

nearly scale-invariant entropy perturbations are created in the presence of an unstable potential.
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The initial conditions of ekpyrosis can be harder to fulfill, because of the tachyonic transverse

direction. The addition of another matter content is one way to solve the initial condition problem

[21]. The embedding in a cyclic model leads to a selection principle in the “phoenix universe” [27].

A major drawback of the entropic mechanism is the production of typically large non-Gaussian

signatures. The constraints on non-Gaussianities by the Planck measurements challenges ekpyro-

sis. We have calculated the second order curvature perturbations R(2), which were produced via

a kinetic conversion phase before the bounce. We have obtained the non-Gaussian parameter

fNL =
3

2

3

p
✏+ 5, (7.7)

where 
3

parametrizes the symmetry of the two-field potential and ✏ is the fast roll parameter.

Since ✏� 3 we require a symmetric potential in order to be in agreement with observations.

The entropic mechanism naturally predicts large non-Gaussianities and this very fact needs to be

addressed in order to obtain a viable ekpyrotic model.

In this thesis, we will present two ways to improve the ekpyrotic scenario:

The non-minimal entropic mechanism [29–32] introduces a non-minimal kinetic coupling between

two scalar fields. Due to this coupling, nearly scale-invariant entropy perturbations are produced.

We have shown in [31] that in this model the intrinsic non-Gaussianities are precisely zero, which

leads to overall small non-Gaussian corrections in agreement with the Planck measurements. The

mechanism was also generalized for a larger class of non-minimal kinetic couplings [32] and it

was shown that there are no initial condition problems in this mechanism [96]. We will discuss

the non-minimal entropic mechanism and the results obtained in our paper [31] in the next chapter.

The conversion phase is an important step for a viable ekpyrotic model. We have discussed the

kinetic conversion which takes place during the kinetic phase between ekpyrosis and the bounce.

In Chapter 11 we will present the findings of our paper [9], which incorporates a kinetic conversion

after the bounce. We will show that the value of the non-Gaussianity parameter fNL is mainly de-

termined by the conversion process after the bounce, while the intrinsic non-Gaussian contributions

during ekpyrosis are suppressed. This means, that the typically large intrinsic non-Gaussianities

produced via the entropic mechanism are not necessary in conflict with observations.
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8. NON-MINIMAL ENTROPIC MECHANISM

In this chapter we will discuss an interesting alternative to the entropic mechanism. The draw-

back of an unstable potential and the inherent restrictions on the initial conditions are absent in

this model [96]. The potential is independent of the second scalar field. In the non-minimal entropic

mechanism a non-minimal coupling in the kinetic term of the second scalar field is introduced. This

mechanism was first introduced by [29, 30] and the action takes the following form:

S =

Z
d4x

p
�g


R

2
� 1

2
@µ�@

µ�� 1

2
e�b�@µ�@

µ�+ V
0

e�c�

�
, (8.1)

where b, c and V
0

are the parameters of this model. As we will see the non-minimal kinetic

coupling provides a de Sitter-like background for the entropy perturbations leading to a nearly

scale-invariant spectrum. The non-minimal entropic mechanism was also generalized for a larger

class of non-minimal kinetic couplings in [32]. This mechanism is very similar to the pseudo-

conformal mechanism [97, 98] and Galilean Genesis [99], where a non-minimal coupling in the

kinetic term of a spectator field leads to nearly scale-invariant perturbations.

In the following, we will discuss the background evolution, which is essentially an ekpyrotic phase

driven by a single scalar field � with a constant spectator field �. Afterwards we will calculate the

behavior of the entropy perturbations to first order in perturbation theory.

In Chapter 8C we will calculate the non-Gaussian corrections in the non-minimal entropic mecha-

nism based on our paper [31]. The intrinsic non-Gaussianities are precisely zero leading to overall

small non-Gaussian corrections in agreement with the Planck measurements. The following dis-

cussion is based on [31].

A. Background

The background equations of motion obtained from the action (8.1) in a flat FLRW universe

are given by

�̈+ 3H�̇+ cV
0

e�c� = �1

2
be�b��̇2, (8.2)

�̈+
⇣
3H � b�̇

⌘
�̇+ eb�V,� = 0, (8.3)

H2 =
1

6

⇣
�̇2 + e�b��̇2 � 2V

0

e�c�
⌘

, (8.4)
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Ḣ = �1

2

⇣
�̇2 + e�b��̇2

⌘
. (8.5)

Since the potential V (�) is independent of �, there is a solution with � = const. and we chose

coordinates such that

� = 0. (8.6)

Thus the background evolution is described by a single scalar field in an ekpyrotic potential with

the scaling solution , cf. (3.35):

a(t) / (�t)1/✏, � =

r
2

✏
ln

"
�
✓

V
0

✏2

(✏� 3)

◆ 1
2

t

#
, ✏ =

c2

2
. (8.7)

Note that here we have not used the approximation that ✏ is large. This will become clear at a

later stage. In order to solve the flatness problem we require w > 1 or ✏ > 3 (i.e. c2 > 6), where

the equation of state was defined via w = ✏/3� 1.

B. Linear Perturbations

In this chapter we will investigate the behavior of entropy perturbations in the non-minimal

entropic model. The equations of motion to first order were calculated e.g. in [29, 30, 100] . A very

useful approach is the so-called covariant cosmological perturbation theory [67, 101, 102], which

will be used when calculating perturbations to higher order. For now we will just introduce a useful

definition of the gauge-invariant entropy perturbation

�s = e�
b
2���, (8.8)

where the additional factor e�
b
2� is due to the non-minimal kinetic coupling.

We chose the longitudinal gauge, where the metric is given by

ds2 = �(1 + 2�)dt2 + a2(1� 2�)dx2, (8.9)

where � denotes the Bardeen potential and where we have assumed no anisotropic stress, as

anisotropies are suppressed during ekpyrosis, leading to (� =  ).

The equations of motion for � to linear order reads [29, 30, 100]

�̈�+ (3H � b�̇) ˙��+


k2

a2
+ eb�V,��

�
��� b�̇ ˙��

+ eb� [V,�� + bV,�] �� = 4�̇�̇� 2eb�V,��.

(8.10)
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Using the background solution the equation for � becomes a closed equation. With �̇ = 0 and

V,� = V,�� = V,�� = 0 we obtain the equation of motion for the entropy perturbations �s to first

order [100]:

�̈s + 3H �̇s +


k2

a2
� b2

4
�̇2 � b

2
V,�

�
�s = 0. (8.11)

We again change to conformal time dt = ad⌧, and we chose the canonically normalized entropy

perturbation vs ⌘ a�s, leading to

v00s +


k2 � a00

a
� b2

4
�02 � b

2
a2V,�

�
vs = 0, (8.12)

where a prime denotes the derivative w.r.t conformal time ⌧ . The last two terms in (8.12) are

present due to the non-minimal coupling. We can make use of the background solution in order to

calculate the di↵erent terms.

We have calculated the second term already in (4.110): Using a(⌧) / (�⌧)1/(✏�1), we obtain

a00

a
= � (✏� 2)

(✏� 1)2⌧2
. (8.13)

The velocity �0 in terms of the “fast-roll” parameter ✏ is given by

�0 =
p
2✏H =

p
2✏

(✏� 1)⌧
. (8.14)

In order to evaluate the last term, we can make use of a2V,� = �
p
2✏a2V and the first Friedmann

equation in conformal time:

a2V = �a2V
0

e�c� = 3H2 � 1

2
�02 = � (✏� 3)

(✏� 1)2⌧2
. (8.15)

Combining the above equations we obtain the equation of motion for the entropy perturbations to

first order

v00s +


k2 � 1

(✏� 1)2⌧2

✓
�✏+ 2 +

b

c
(✏2 � 3✏) +

b2

c2
✏2
◆�

vs = 0 , (8.16)

where ✏ = c2/2. It is useful to define a new parameter �, which quantifies the di↵erence of the two

coe�cients b and c

b

c
⌘ 1 +� . (8.17)

The equation of motion can now be solved in terms of Hankel functions. Imposing Bunch-Davies

vacuum initial conditions, we obtain (up to a phase)

vs =

r
⇡

4

p
�⌧H(1)

⌫ (�k⌧) , (8.18)
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where the Hankel index ⌫ is given by

⌫2 =
9

4

✓
1 +

2

3

�✏

(✏� 1)

◆
2

! ⌫ =
3

2
+

�✏

(✏� 1)
. (8.19)

Remarkably, no approximation for ⌫ had to be made, since the expression for ⌫2 combines to a

perfect square. The second solution ⌫ = �3

2

� �✏
(✏�1)

corresponds to an unstable solution and will

not be considered further.

Making use of the late time behavior |k⌧ | ! 0 of the Hankel function we obtain

vs / k�⌫(�⌧)1/2�⌫ (|k⌧ | ⌧ 1), (8.20)

while the spectral index is given by [29–31]

ns = 4� 2⌫ = 1� 2�
✏

(✏� 1)
. (8.21)

In the case of b = c we obtain an exactly scale-invariant spectrum. We can estimate the possible

deviation from scale-invariance: since ✏ > 3 we see that ns � 1 is always between �3� and �2�.

If b is about two percent larger than c we obtain a red spectrum with ns = 0.96 in agreement with

the Planck measurements [6]. It is important to note, that in the non-minimal entropic mechanism

✏ > 3 in comparison to the entropic mechanism, in which ✏ � 1. Consequently, the requirements

on the steepness of the ekpyrotic potential is relaxed in the non-minimal entropic mechanism.

As already discussed in the case of the entropic mechanism in Chapter 5C, the ekpyrotic po-

tential should eventually flatten out – which corresponds to a diminishing c. We will use the

analogous approach by introducing a slowly varying time-dependence of the parameter c.

Until now we have not made any approximations. In order to introduce a time-dependence we will

use the limit ✏ � 1 like in the minimal entropic mechanism. Using the e-folding time dN = d ln a

we obtain the relations:

H ⇡ (✏⌧)�1

✓
1 +

1

✏
+
✏,N
✏2

◆
, �a00

a
= H2(✏� 2) ⇡ ⌧�2

✓
1

✏
� 4

✏3
+

2✏,N
✏3

◆
, (8.22)

and

�0 =
p
2✏H ⇡ ⌧�1

r
2

✏

✓
1 +

1

✏
+
✏,N
✏2

◆
, a2V,� = ⌧�2

1p
2✏

✓
2� 2

✏
+ 3

✏,N
✏2

◆
. (8.23)

Plugging the expressions into the equations of motion (8.12) yields the following spectral index of

the entropy perturbations [31]

ns � 1 = �2�� 7

3

✏,N
✏2

(✏� 1). (8.24)
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In analogy with a diminishing equation of state ✏ in the entropic mechanism we obtain a red spec-

trum. Note that ✏N > 0, since N and ✏ decrease with time. This means the entropy perturbations

are nearly scale-invariant with a red tilt due to the flattening of the potential and/or b 6= c.

Let us address the stability of the perturbative solution. We can find the solution of the original

scalar field fluctuation �� by making use of the late-time/large-scale expression for the mode

functions (8.20) with ⌫ given in (8.19) and the expression for the potential (8.15). We obtain

�� = e
b
2�

vs
a

/ (�a⌧)
b
c (�⌧) 1

2�⌫ 1

a
= constant. (8.25)

The original scalar field fluctuation �� is constant – independent of ✏ and irrespective of whether

b = c or not. Thus this solution is stable and the fact that �� is precisely constant will also have

important implications for non-Gaussian corrections as we will see in the next chapter.

In this chapter we have seen how nearly scale-invariant entropy perturbations are created via a

non-minimal kinetic coupling between the two fields. Let us try to understand how this mechanism

works from another perspective. As already mentioned this mechanism is reminiscent of the pseudo-

conformal mechanism [97, 98] and Galilean Genesis [99]. The second order action of the field

fluctuation �� reads

S(2) =

Z
d4x

p
�g⌦2(�)@µ��@

µ�� (8.26)

=

Z
d3xd⌧a2⌦2(�)

�
(��0)2 � (@i��)

2

�
(8.27)

where in this model the non-minimal kinetic coupling reads ⌦2(�) = eb�, cf. (8.1). Using the

scaling solution during ekpyrosis, using Eq. (8.15) and restricting to the case c = b, we find that

a2⌦2(�) ⇠ ⌧�2. The non-minimal kinetic coupling ⌦2(�) acts e↵ectively as a de Sitter background

for the fluctuations. This mechanism works, since the ekpyrotic potential V (�) = V
0

e�c� scales in

the same way as the non-minimal kinetic coupling. We can now generalize this mechanism: suppose

we change the potential slightly leading to a slight change in the ekpyrotic scaling solution. We

can then find a non-minimal kinetic coupling, such that a2⌦2(�) ⇠ ⌧�2. This generalization was

first considered in [32] and allows for various pairs of (V (�),⌦(�)).

We have shown that the variance �2

s has a slight scale dependence, if the potential flattens out

or/and if b 6= c (note that �2

s =
k3

2⇡2 Ps, which should not be confused with the definition b
c ⌘ 1+�

determining the di↵erence between b and c). It could also be possible that the spectral index

depends on the scale – this is called the running of the spectral index.
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The spectral index is defined via

ns � 1 ⌘ d ln�2

s

d ln k
= �d ln�2

s

dN , (8.28)

while the running is defined via

↵s ⌘
dns

d ln k
= �dns

dN . (8.29)

It has been shown in [103], that the running ↵s in the non-minimal entropic mechanism is ↵s ⇡

�10�2 to �10�3. The running is fairly large, if the generation of the red spectrum is entirely due

to the diminishing ✏ (the second term in Eq. (8.24)), while the running is smaller if b 6= c causes the

red spectrum. In both cases the running ↵s is larger compared to most inflationary models and the

new ekpyrotic scenario [103], which could provide an important distinction in future observations.

C. Non-Gaussian Corrections

In the following, we will calculate the non-Gaussian corrections for the non-minimal entropic

mechanism based on our findings in [31] . The evolution equations for the second order curvature

and entropy perturbations will be derived and discussed. The action for this model was given by:

S =

Z
d4x

p
�g


R

2
� 1

2
@µ�@

µ�� 1

2
e�b�@µ�@

µ�+ V
0

e�c�

�
. (8.30)

The kinetic terms of the scalar fields can be written in the form

� 1

2
(@�)2 � 1

2
e�b�(@�)2 ⌘ �1

2
GIJ@

µ�I@µ�
J , (8.31)

where now �I = (�,�) and I, J can take the values 1, 2. Here we have introduced a field space

metric; the field space metric and its inverse are given by

GIJ =

0

@1 0

0 e�b�

1

A , and GIJ =

0

@1 0

0 eb�

1

A . (8.32)

The field space metric leads to non-trivial connections given by

�1
22

= ���� =
b

2
e�b�, �2

12

= ���� = � b

2
, (8.33)

while the only non-trivial component (up to those related by symmetry) of the Riemann tensor is

R1

212

= R�
��� = �b2

4
e�b�. (8.34)
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We can also define the zweibeine

eI� = (�1, 0), eIs = (0, e
b
2�), (8.35)

which allow us to rotate the field fluctuations at linear order into the adiabatic and entropy fluc-

tuations

�� ⌘ e�I ��
I = ��� and �s ⌘ esI ��

I = e�
b
2���. (8.36)

Here we recognize the definition of the entropy perturbations to first order in the previous chapter.

Note that within this setup we must take e�
1 = �1; this is because � is defined to increase along

the background trajectory [101] and thus also �̇ = ��̇ is the velocity of the background trajectory

in the constant � backgrounds that we are interested in. We can also define inverse zweibeine via

��I = e I
↵ ��↵, (8.37)

where ��↵ = (��, �s) to linear order.

As shown in [101] we can define the adiabatic and entropic perturbations at second order

��(2) ⌘ e�I �
(2)�I +

1

2
e�J�

J
LK(e K

↵ e L
� ��↵���) +

1

2�̇
�s�̇s , (8.38)

�s(2) ⌘ esI �
(2)�I +

1

2
esJ �

J
LK(e K

↵ e L
� ��↵���)� ��

�̇
(�̇s � V,s

2�̇
) . (8.39)

In our model this yields

��(2) = ���(2) + �s

2

 
�̇s

�̇
� b

2
�s

!
, (8.40)

�s(2) = e�
b
2���(2) + ��

 
b

4
�s � �̇s

�̇
+

V,s

2�̇2
��

!
. (8.41)

The fact that the potential does not depend on the second scalar field � has crucial consequences

on the non-Gaussian corrections. If we expand the action up to third order, no cubic terms in ��

can arise. But these terms are precisely the interaction-terms, which give rise to non-Gaussianities

as shown in Chapter 6. Hence there are no intrinsic non-Gaussian corrections in the non-minimal

entropic mechanism:

��(2) = �s(2) = 0 (8.42)

Let us verify this statement by inspecting the second order equations of motion. Since the potential

does not depend on �, and the background solution satisfies �̇ = 0, it is immediately clear that

the perturbed equation of motion will be identical to that at first order:

d2

dt2
(��(1) + ��(2)) + (3H � b�̇)

d

dt
(��(1) + ��(2)) +

k2

a2
(��(1) + ��(2)) = 0. (8.43)
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There is no source term for ��(2) in the equation of motion (since there is no cubic term in the

action). Equivalently there is no source term for �s(2) in the corresponding equation for the entropy

perturbations at second order:

�̈s
(2)

+ 3H �̇s
(2)

+


k2

a2
� b2

4
�̇2 � b

2
V,�

�
�s(2) = 0, (8.44)

where we have used the definition of the second order entropy perturbations (8.40) in the comoving

gauge �� = ��(2) = 0. Since there is no source term, the solution is indeed given by

��(2) = �s(2) = 0. (8.45)

Note that the linear solution �� = const. is non-zero due to the quantization of the perturbations,

which obey the Heisenberg uncertainty relations.

The intrinsic non-Gaussian corrections vanish in the non-minimal entropic mechanism, which is in

direct contrast to the sizable intrinsic non-Gaussianities produced in the entropic mechanism, cf.

Chapter 6D. However, it is still possible that first order entropy perturbations could source second

order curvature perturbations during ekpyrosis due to non-linear e↵ects, as discussed in Chapter

6E. In order to calculate the evolution of the comoving curvature perturbation to second order we

have to expand the general evolution equation (6.43), namely

Ṙ =
2H�V

�̇2 � 2�V
, (8.46)

up to second order in perturbations.

Let us start by expanding the potential up to second order:

�V = VI ��
I + VI �

(2)�I +
1

2
V,IJ��

I��J . (8.47)

Making use of the identities

�MI = e�I e M
� + esI e M

s , (8.48)

and

1 = e�I e I
� = esI e I

s , (8.49)

we obtain

�V = VI e I
↵ ��↵ + VI e I

�


��(2) � 1

2
e�J �

J
LK(e K

↵ e L
� ��↵���)� 1

2�̇
�s�̇s

�

+ VI e I
s


�s(2) � 1

2
esJ �

J
LK(e K

↵ e L
� ��↵���) +

��

�̇
(�̇s � V,s

2�̇
)

�
+

1

2
V,IJ e I

↵ e J
� ��↵ ���

= VI e I
↵ ��↵ + VI e I

�


��(2) � 1

2�̇
�s�̇s

�

+ VI e I
s


�s(2) +

��

�̇
(�̇s � V,s

2�̇
)

�
+

1

2
V
;IJ e I

↵ e J
� ��↵ ��� ,

(8.50)
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where we have defined V
;IJ = V,IJ � �KIJV,K . In comoving gauge �� = ��(2) = 0 and hence

�V = V,s

⇣
�s + �s(2)

⌘
� V,�

2�̇
�s�̇s +

1

2
V
;ss �s

2. (8.51)

The evolution of the comoving curvature perturbation (8.46) up to second order then becomes

Ṙ(1) + Ṙ(2) =
2H�V

�̇2 � 2�V

⇡ 2H

�̇2
�V [1 + 2�̇�2�V ]

=
2H

�̇2

"
V,s

⇣
�s + �s(2)

⌘
� V,�

2�̇
�s�̇s +

 
1

2
V
;ss + 2

V 2

,s

�̇2

!
�s2

#
.

(8.52)

Such an expansion is justified when |�V/�̇2| ⌧ 1. In realistic cases, assuming the conversion process

lasts longer than 10�3 or so e-folds (�N > 10�3), this is easily satisfied as at linear order we must

obtain

R(1) =

Z
2H�V

�̇2
dt =

Z
2�V

�̇2
dN ⇠ �V

�̇2
�N ⇠ 10�5 (8.53)

in order to match observations.

We need to look at equation (8.52) both during the ekpyrotic phase and during the conversion

phase. In fact, at second order some conversion can already happen during the ekpyrotic phase,

where at the linearized level the entropy and curvature modes are entirely decoupled. During the

ekpyrotic phase, equation (8.52) reduces to

Ṙ(2) =
H

�̇2


V,�

✓
� 1

�̇
�s(1) ˙�s(1)

◆
+ V

;ss �s
(1)2

�

=
H

�̇2


V,�

�̇
�s(1) ˙�s(1) � e �

s e �
s ���� V,� �s

(1)2

�

=
HV,�

�̇2
�s(1)

 
˙�s(1)

�̇
� b

2
�s(1)

!
,

(8.54)

or, in conformal time

R(2)

0
=

Ha2V,�

�02
�s(1)

 
�s(1)0

�0
� b

2
�s(1)

!
. (8.55)

Using the late-time/large-scale expression for the entropy mode functions during the ekpyrotic

phase (8.20), we obtain

�s(1)0

�0
� b

2
�s(1) =

1

a


v0s
�0

� Hvs
�0

� b

2
vs

�

=
vs
a


(�1� �✏

✏� 1
)(�✏� 1p

2✏
)� 1

✏� 1
(�✏� 1p

2✏
)� b

2

�

= 0 .

(8.56)
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Thus, amazingly enough, no second-order curvature perturbations are generated during the ekpy-

rotic phase when c is a constant. This can be understood from the fact that the linearized solution

is given by ��(1) = constant, cf. Eq. (8.25), and thus the linearized solution behaves exactly like

the background. If one thinks of the perturbation in the potential �V (2) at second order (in Eq.

(8.46)) as a linear perturbation around the linearized solution, then it is clear that this vanishes in

the same way as the linear perturbation vanishes around the constant � background solution. In

summary, we are finding that the ekpyrotic phase produces no local non-Gaussianity at all, both

for the entropy and the curvature fluctuations, when the equation of state is constant.

The above results also hold true for the generalized non-minimal entropic mechanism [32]. Let us

review a simple argument that the intrinsic non-Gaussian contributions also vanish in this case.

From the second order action, cf. (8.26),

S(2) =

Z
d4x

p
�g⌦2(�)@µ��@

µ�� (8.57)

we obtain the equations of motion

r⌫
�
⌦2@⌫(��)

�
= 0, (8.58)

where r⌫ denotes the covariant derivative. Using the definition �s = ⌦�� and the solution to

the equations of motion �� = const., we find �s ⇠ ⌦. The evolution equation for the comoving

curvature perturbations up to second order with a generalized kinetic coupling reads [32]

R(2)

0
=

Ha2V,�

�02
�s(1)

 
⌦,�

⌦
�s(1) � �s(1)0

�0

!
. (8.59)

Now using the fact that �s ⇠ ⌦, we obtain

(�s)0

�s
=
⌦0

⌦
=
⌦,�

⌦
�0 , (8.60)

which leads to R(2)

0
= 0, and thus the intrinsic non-Gaussian corrections also vanish in the gener-

alized non-minimal entropic mechanism.

In Chapter 8B, we argued that a natural extension is to allow the equation of state (or fast-

roll) parameter ✏ to be a slowly varying function of time. In that case the time-dependence of the

entropic mode functions is sightly modified, and we obtain

�s(1)0

�0
� b

2
�s(1) =

1

6

vs
a

r
✏

2

✏,N
✏2

. (8.61)
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Then there exists a small source term for the second-order curvature perturbation during the

ekpyrotic phase, with

R(2)0 = � H
�02

a2V,��s
(1)

"
�s(1)0

�0
� b

2
�s(1)

#

= � 1

12

v2s
a2

1

(�⌧)
✏,N
✏2

.

(8.62)

If we approximate the time dependence of the fluctuation modes vs/a / 1/⌧ then we can easily

perform the integral, obtaining [31]

R(2)

ek = � 1

24
(�sek�end)

2

✏,N
✏2

. (8.63)

We can see that the coe�cient of (�sek�end)2 is tiny, of O(10�3) at most for realistic cases. Thus,

the non-minimal entropic mechanism generates almost perfectly Gaussian entropy perturbations

over the course of the ekpyrotic phase.

D. Discussion

In this chapter, we have discussed a very promising ekpyrotic model. The background is stable,

and the ekpyrotic solution is an attractor [96]. The non-minimal entropic mechanism produces

nearly scale-invariant entropy perturbations. The intrinsic non-Gaussianities of these perturba-

tions vanish exactly, and the sourcing due to non-linear e↵ects during ekpyrosis is very small – this

also holds true for the generalized non-minimal entropic mechanism in [32]. Moreover, it has been

shown in [104] that the intrinsic non-Gaussianities to third order also vanish.

An important step is the conversion phase, which we have discussed in detail in Chapter 6E.

The conversion in the case of a non-minimal kinetic coupling up to third order in perturbations

was studied in [104]: The analysis suggests that the non-minimal kinetic coupling has to turn o↵

before the conversion phase. Di↵erent scenarios were studied, and the results are in agreement

with the kinetic conversion covered in Chapter 6E. The recently proposed Swampland conjecture

[105–108] could also apply to the non-minimal entropic mechanism. The Swampland conjecture

constrains the e↵ective field theories which are consistent with a quantum theory of gravity. In

particular, e↵ective field theories are only viable in a field space range up to �� ⇠ O(1). This

means that the ekpyrotic phase, the bounce phase, and the conversion phase should be described

by di↵erent e↵ective field theories. One has to see which implications the String Swampland will

have on the development of e↵ective field theory models and consequently on cosmology.
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We have obtained the expansion of the entropy perturbations during ekpyrosis in the presence of

an unstable potential in (6.37)

�s = �sL +

3

p
✏

8
�s2L , (8.64)

which defines the initial conditions after the ekpyrotic phase, where �sL ⇠ 1

t . In the case of the

non-minimal entropic mechanism, the second order entropy perturbations vanish:

�sL ⇠ 1

t
, �s(2) = 0 . (8.65)

In the case of the non-minimal entropic mechanism we can use the expansion (8.64) by choosing


3

= 0. Thus we immediately obtain an estimate for the non-Gaussianity parameter analogous to

the discussion in Chapter 6E:

f local
NL = ±5 . (8.66)

For a more detailed analysis of the conversion process up to third order see [104]; in this work, the

trispectrum was calculated:

gNL ⇠ O(�102) to O(�103) , (8.67)

which is negative. Moreover, it has been shown that the running of the spectral index ns is larger

than in single field inflationary models [103]:

↵s ⇠ O(�10�3) to O(�10�2) . (8.68)

The non-minimal entropic mechanism leads to distinct predictions. However, there is one crucial

step left: the transition from contraction to expansion via a cosmological bounce. If we cannot

track the evolution of the background and the perturbations through the bouncing phase, then

the predictability of the ekpyrotic scenario is lost. In the following chapters, we will discuss the

challenges and developments of bouncing cosmologies.
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9. GALILEON THEORY

In this chapter, we will discuss Galileon theory, which is a higher derivative theory including

a variety of known theories. As we will see the Galileon theory allows for non-singular bounce

solutions, which we will cover in detail in Chapter 10.

A. Introduction

Galileon theory was first introduced in [109] in flat space and later generalized in [110–112].

Generalized Galileon theory describes the most general single scalar field Lagrangian (containing

higher time derivatives), which yields second order equations of motion. It turned out that Galileon

theory is equivalent to Horndenski theory [113], which was formulated more than 30 years earlier.

The generalized Galileon action for a single scalar field coupled to gravity is given by [112]:

S =
5X

i=2

Z
d4
p
�gLi, (9.1)

with

L
2

= K(X,�) , (9.2)

L
3

= �G
3

(X,�)⇤� , (9.3)

L
4

= G
4

(X,�)R + G
4X

⇥
(⇤�)2 � (rµr⌫�)

2

⇤
, (9.4)

L
5

= G
5

(X,�)Gµ⌫rµr⌫�+
G

5X

6

⇥
(⇤�)3 � 3⇤�(rµr⌫�)

2 + 2(rµr⌫�)
3

⇤
. (9.5)

Here X = �1

2

gµ⌫@µ@⌫ is the standard kinetic term, R is the Ricci scalar, Gµ⌫ is the Einstein tensor,

(rµr⌫�)2 = rµr⌫�rµr⌫� and GiX = @Gi
@X .

The Galileon action contains a variety of known theories:

• For G
3

= G
5

= 0, G
4

= 1

2

and K(X,�) = X � V (�) we recover the action for a scalar field

minimally coupled to gravity in a potential.

• For G
3

= G
5

= 0, G
4

= 1

2

and K(X,�) the theory describes a scalar field with a non-

standard kinetic term. Prominent examples are k-essence models of dark energy [114] (or

inflation), the Dirac-Born-Infeld action [115] and the ghost condensate [20, 24, 116–118].
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• For G
4

= 1

2

F (�) the scalar field is non-minimally coupled to gravity. The well known Brans-

Dicke theory [119] is an example of such a scalar-tensor theory. In Chapter 13 we will

construct a model where the scalar field is non-minimally coupled to gravity

• For non-zero G
3

the Galileon term is present. In the decoupling limit of the Dvali-Gabadaze-

Poratti brane model [120] there is a specific cubic self-interaction term present: the Galileon

term. This term was later generalized in the Galileon model [111].

• The term G
5

6= 0 arises for example in Kaluza-Klein compactification of higher-dimensional

Lovelock gravity [121]. Another example is covariant Galileon theory [110] which is obtained

by the choosing G
3

= X, G
4

= X2 and G
5

= X2. We will omit this term from now on, since

we will not consider such models.

B. Background Equations

In the following, we will derive the equations of motion obtained from (9.1). An easy way to

obtain the equations of motion is to substitute � = �(t) and ds2 = �N2dt2 + a2(t)dx2 into the

action (9.1) and then vary the action w.r.t N(t), a(t) and �(t). The variation w.r.t N(t) gives the

Friedmann equation [112]

5X

i=2

"i = 0, (9.6)

where

"
2

= 2XKX � K , (9.7)

"
3

= 6X�̇HG
3X � 2XG

3� , (9.8)

"
4

= �6H2G
4

+ 24H2X (G
4X + XG

4XX)� 12HX�̇G
4�X � 6H�̇G

4� . (9.9)

The variation w.r.t a(t) leads to the evolution equation [112]

5X

i=2

Pi = 0, (9.10)

where

P
2

= K , (9.11)

P
3

= �2X
⇣
G

3� + �̈G
3X

⌘
, (9.12)

P
4

= 2
⇣
3H2 + 2Ḣ

⌘
G

4

+ 2
⇣
�̈+ 2H�̇

⌘
G

4� + 4XG
4�� + (9.13)
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+ 4X
⇣
�̈� 2H�̇

⌘
G

4�X � 12H2XG
4X � 4HẊG

4X � 8ḢXG
4X � 8HXẊG

4XX . (9.14)

And finally the variation w.r.t �(t) yields the scalar field equation of motion [112]

1

a3
d

dt

�
a3J

�
= P�, (9.15)

where

J = �̇KX � 2�̇G
3� + 6HXG

3X + 6H2�̇ (G
4X + 2XG

4XX)� 12HXG�X , (9.16)

P� = K� + 6
⇣
2H2 + Ḣ

⌘
G

4� � 2X
⇣
G

3�� + �̈G
3�X

⌘
+ 6H

⇣
Ẋ + 2HX

⌘
G

4�X . (9.17)

C. Ostrogradski Theorem

Higher derivative scalar theories arise naturally in e↵ective field theories and give rise to a va-

riety of cosmological models. Higher derivative theories allow for non-singular bounce solutions as

we will see in Chapter 10. Before we proceed we will discuss the so-called Ostrogradski Theorem,

see e.g. [122].

The Ostrogradski Theorem states, that if a Lagrangian depends nondegenerately on second order

(or higher) time derivatives, there exists a linear instability in the Hamiltonian. Non-degenerately

means that the higher time derivatives cannot be eliminated by partial integration. It also means

that one can invert the equation for the canonical momentum, as we will see below.

Thus Lagrangians with higher derivatives are unstable unless these higher derivatives can be elim-

inated or canceled, such that the equations of motions are 2nd order in time derivatives. This is

precisely why Galileon/Horndenski theory does not su↵er from the Ostrogradski instability: gen-

eralized Galileon theory is the most general scalar field theory coupled to gravity, which admits

2nd order equations of motions.

Here we will briefly show how the Ostrogradski theorem arises following [122]. Consider the La-

grangian L = L(q, q̇, q̈), which depends nondegenerately on q̈. The Euler-Lagrange equation is

given by

@L

@q
� d

dt

@L

@q̇
+

d2

dt2
@L

@q̈
= 0 . (9.18)

Because of the non-degeneracy @L
@q̈ depends on q̈ leading to an equation of motion of the form:

q(4) = F (q, q̇, q̈, q(3)) and a solution of the form:

q(t) = Q
⇣
t, q

0

, q̇
0

, q̈
0

, q
(3)

0

⌘
, (9.19)
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where q(3) and q(4) are the third and forth time derivative of q respectively. We need four initial

conditions thus there are four canonical variables. We choose:

Q
1

⌘ q , P
1

⌘ @L

@q̇
+

d

dt

@L

@q̈
(9.20)

Q
2

⌘ q̇ , P
2

⌘ @L

@q̈
. (9.21)

The non-degeneracy allows to invert the above equation, such that we can write q̈ in terms of

Q
1

,Q
2

and P
2

, which means there exists a function a(Q
1

, Q
2

, P
2

) such that

@L

@q̈
|q=Q1,q̇=Q2,q̈=a = P

2

. (9.22)

If the Lagrangian is degenerate, then this inversion is not possible and thus the instability can be

avoided. The Hamiltonian is obtained by a Legendre transformation with q̇ = q(1) and q̈ = q(2):

H(Q
1

, Q
2

, P
1

, P
2

) ⌘
2X

i=1

Piq
(i) � L (9.23)

= P
1

Q
2

+ P
2

a(Q
1

, Q
2

, P
2

)� L(Q
1

, Q
2

, a(Q
1

, Q
2

, P
2

)) . (9.24)

The Hamiltonian (9.23) depends linearly on the canonical momentum P
1

. The system is not bound

from below or above – P
1

can have any values filling the whole phase space direction.

The linear instability has severe consequences. Let us consider an interacting theory: nothing

forbids the system to decay into a waste collection of positive and negative energy particles.

In the case of Galileon theory the Ostrogradski instability is absent, since the equations of motion

are second order in time derivatives. For example the term proportional to G
4X in (9.4) is chosen

such that the higher derivatives are canceled out in the equations of motion.

D. Perturbations for Generalized Galileon Theory

In order to calculate the tensor and scalar perturbations in generalized Galileon theories it is

customary to use the ADM-decomposition [57] in the comoving gauge with �� = 0.

We have already calculated the second order action in the case of a single scalar field minimally

coupled to gravity in Chapter 4B . We can follow an analogous calculation using the generalized

Galileon action (9.1). We write the perturbed metric as

ds2 = �N2dt2 + �ij(dxi + N idt)(dxj + N jdt) , (9.25)

where N is the lapse function and Ni is the shift vector

N = 1 + ↵ , Ni = @i� , �ij = a2(t)e2R
✓
�ij + hij +

1

2
hikhkj

◆
. (9.26)
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↵, � and R are the scalar perturbations and hij is the tensor perturbation. In order to calculate the

quadratic action for the scalar and tensor perturbations, we proceed analogously to the standard

single scalar field case. We plug the above expressions into the action, and after varying the action

w.r.t ↵ and �, we obtain two constraint equations. Using the constraint equations, we can eliminate

↵ and � from the action and obtain the tensor perturbation hij and one physical scalar degree of

freedom: the comoving curvature perturbation R.

1. Tensor Perturbations

The quadratic action for the tensor perturbations reads [112]

S =
1

8

Z
dtd3xa3

✓
GT ḣ2

ij �
FT

a2
(~rhij)

2

◆
, (9.27)

where

GT := 2G
4

, (9.28)

FT := 2G
4

� 4XG
4X . (9.29)

The sound speed of the tensor perturbations is given by

c2s =
FT

GT
. (9.30)

Thus in scalar-tensor theories and Galileon theories with G
4X = 0 the sound speed is c2s = 1 (as we

will see this is not the case for scalar perturbations). As a side note: the detection of gravitational

waves from a binary black hole merger by LIGO in 2016 [123] constrains dark energy models based

on modified gravity. Galileon dark energy models with non-minimal derivative coupling to gravity

are in tension with observations, because the sound speed is measured to be close to one.

From the action (9.27) ghost and gradient instabilities are avoided if

GT > 0 , FT > 0. (9.31)

We will discuss ghost and gradient instabilities for tensor and scalar perturbations in Galileon

theories in the next chapter.

As usual it is customary to canonically normalize the perturbations, introducing

dyT :=
cT
a
dt , (9.32)
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zT :=
a

2
(FTGT )

1/4 , (9.33)

vij := zThij , (9.34)

leads to the quadratic action for the canonically normalized tensor modes

S =
1

2

Z
dyTd

3x

✓
v02ij � (~rvij)

2 +
z00T
zT

v2ij

◆
, (9.35)

where a prime denotes a di↵erentiation w.r.t yT . The action reduces to the standard single scalar

field case for FT = GT = 1

2

.

2. Scalar Perturbations

The quadratic action for the scalar perturbation R is given by [112]

S =

Z
dtd3xa3

✓
GSṘ2 � FS

a2
(~rR)2

◆
, (9.36)

where

GS :=
⌃

⇥2

G2

T + 3GT , (9.37)

FS :=
1

a

d

dt

⇣ a

⇥
G2

T

⌘
� FT , (9.38)

and

⌃ := XKX + 2X2KXX + 12H�̇XG
3X + 6H�̇X2G

3XX � 2XG
3� � 2X2G

3�X (9.39)

�6H2G
4

+ 6[H2

�
7XG

4X + 16X2G
4XX + 4X3G

4XXX

�
(9.40)

�H�̇
�
G

4� + 5XG
4�X + 2X2G

4�XX

�
] , (9.41)

⇥ := ��̇XG
3X + 2HG

4

� 8HXG
4X � 8HX2G

4XX + �̇G
4� + 2X�̇G

4�X . (9.42)

The sound speed is given by c2s = FS/GS . Ghost and gradient instabilities are avoided, if

GS > 0 , FS > 0. (9.43)

We canonically normalize the scalar perturbations via

dyS :=
cS
a
dt , (9.44)

zT :=
ap
2
(FSGS)

1/4 , (9.45)

v := zSR , (9.46)
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leading to the quadratic action for the canonically normalized scalar field

S =
1

2

Z
dySd

3x

✓
v02 � (~rv)2 +

z00S
zS

v2
◆

, (9.47)

where a prime denotes a di↵erentiation w.r.t yS .

After reviewing the scalar and tensor perturbations for generalized Galileon theories we can now

discuss general properties of the perturbations in Galileon theories. In the following chapter, we

will analyze the stability conditions (9.31) and (9.43).

E. No-Go Theorem for Generalized Cubic Galileon Theory

Before we discuss the development, properties and problems of various singular and non-singular

bouncing cosmologies, we will review the recently proposed no-go theorem for the generalized cubic

Galileon theory in [124, 125], which states that gradient instabilities cannot be avoided during a

non-singular bounce.

In order to avoid ghost and gradient instabilities, we require

GT > 0 , FT > 0 and GS > 0 , FS > 0. (9.48)

We have seen that for G
4

= 1

2

the functions FT = GT = 1. The time evolution of the functions FT

and GT is caused by the non-minimal coupling to gravity. Moreover, only for a non-zero derivative

coupling G
4X 6= 0 the functions FT 6= GT . From the definition of FS in (9.38) we have:

FS =
1

a

d⇠

dt
� FT (9.49)

with ⇠ =
aG2

T
⇥

. From (9.42) we see that ⇥ is a function of � and H and thus it should be a smooth

function of time. Thats why ⇠ should only vanish at the singularity a = 0. The condition FS > 0

reads:

1

a

d⇠

dt
> FT > 0. (9.50)

Integrating the above equation from ti to tf leads to:

⇠f � ⇠i >

Z tf

ti

aFTdt . (9.51)

This is the important equation resulting in the no-go theorems discussed in [124, 125].

Consider a non-singular universe with scale factor a 6= 0 from t ! �1 to t ! 1. Since a 6= 0 the
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r.h.s. of (9.51) does generally not converge – only if FT converges su�ciently fast towards zero in

the asymptotic past and future. We suppose that ⇠i < 0 in the case where the integral does not

converge:

� ⇠f < |⇠i|�
Z tf

ti

aFTdt . (9.52)

The integral grows for large tf , since a grows – the r.h.s. eventually becomes negative leading to

⇠f > 0. Thus the function ⇠ has to cross zero which is not possible in a non-singular universe.

Suppose now that ⇠ is always positive:

� ⇠i < �⇠f +

Z tf

ti

aFTdt . (9.53)

For ti ! �1 the r.h.s. becomes positive leading to ⇠i < 0. This contradicts the assumption that

⇠ > 0. The inequality cannot be fulfilled if the integral does not converge. This is the main result

of the no-go theorems [124, 125]. In the case of a non-singular bounce the gradient instability

cannot be removed, if the integral does not converge.

Small scale perturbations can grow dramatically during a non-singular bounce due to the gra-

dient instabilities. However, in the presence of the Galileon term �G
3

(X,�)⇤�, the small scale

perturbations are under better control in comparison to other non-singular bounce models. The

dynamics can be modeled such that the gradient instabilities become only important shorty before

or after the bounce – during the bounce phase, gradient instabilities are absent [126]. However,

this does not really solve the problems associated with the gradient instability.

Maybe we just have to accept that gradient instabilities are present for a large class of non-

singular bouncing models. It is important to note that the theories we discuss are just e↵ective

field theories. The theory is only valid up to a certain energy scale. It has been shown that in

the case of a non-singular bounce via a ghost condensate, the small scale modes of interest lie

outside of the validity of the e↵ective field theoretical description [8]. Even though the model has

gradient instabilities, the e↵ective field theoretical model is well behaved, and we can calculate the

background dynamics and the perturbations around the background. We will discuss the ghost

condensate model in detail in Chapter 10B and will use it in various scenarios in the course of this

thesis.

Let us consider the case where we can circumvent the no-go theorem following [127]: FT con-

verges su�ciently fast to zero in the far past and future. For example if in the far past a ⇠ |t|p,
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then we need FT ⇠ |t|�p+1. We also need that ⇠ in equation (9.51) remains finite – suppose that

⇥ ⇠ |t|q, then GT ⇠ |t|q�p/2. This means that FT and GT have to scale di↵erently. Keeping in

mind the definition of the two functions from the equations (9.28), this is only possible if there is

a non-minimal derivative coupling to gravity in the form of G
4

(X,�)R with G(X,�)
4X 6= 0. As

already stated, non-singular bouncing models without this non-minimal derivative coupling are

plagued by gradient instabilities.

The fact that the functions FT and GT have to fall o↵ in the past and future is by no means a

desirable property. These functions are the prefactors of the perturbations in the action suggesting

a break down of the perturbative description. It was argued in [127], that such a bounce model is

fully stable – we have to see if such bounces can be incorporated in viable early universe models

in the future.

We should note that after the publication of the no-go theorems [124, 125], a variety of mod-

els were proposed, which try to circumvent the no-go theorem. The above discussed model beyond

the cubic Galileon – namely the non-minimal derivative coupling G
4

(X,�) is one example. Other

possibilities are, e.g. theories beyond Horndenski [128] and non-singular bounces in the framework

of e↵ective field theories of cosmological perturbations [129, 130].
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10. COSMIC BOUNCES

A. Introduction

During ekpyrosis, the universe is driven towards homogeneity, isotropy, and flatness in a con-

tracting universe. Eventually, the universe has to undergo a bounce from contraction to expansion.

In the previous Chapter 9E we have discussed a no-go theorem and the resulting gradient instabil-

ities during a non-singular bounce for the Cubic Galileon theory. In the following, we will review

a variety of di↵erent bouncing cosmologies.

Bouncing cosmologies can be divided into two classes: singular bounces, where the scale fac-

tor a in the 4-dimensional description becomes zero and non-singular bounces, where the universe

transitions from contraction to expansion at a non-zero value of the scale factor a. In Chapter 3B

we have discussed the cyclic model, which incorporates a singular bounce.

1. Singular Bounces

A singular bounce in the braneworld description

The cyclic ekpyrotic model is based on colliding branes in M-theory [15]. While the scale factor

becomes zero in the 4-dimensional description when the branes collide, the 5-dimensional scale

factor is non-zero. However, this description is only valid up to a Planck time before or after the

collision. The lack of a non-perturbative description challenges the predictions of the ekpyrotic

models. There has been a lot of discussions about how perturbations evolve during such a singular

bounce, and di↵erent matching conditions have been proposed [131].

A singular anti-gravity bounce

In [132, 133] a scalar field theory minimally coupled to gravity was lifted to a Weyl-invariant theory,

which allowed to trace the cosmological evolution through a big-crunch/big-bang transition.

In this setup, the universe undergoes a brief anti-gravity phase. Analytic solutions were found, and

it was shown that this model is geodesically complete. It was argued in [134] that the singularity

is not resolved since Weyl-invariant curvature terms diverge. In response it was shown that a

su�cient number of conserved quantities exist, such that the theory is geodesically complete [133].
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2. Non-Singular Bounces

The ambitious attempt to resolve the initial cosmological singularity of the universe is a hard

task [87, 135]. In the following, we will discuss how non-singular bounce solutions can be obtained

and review the advances and developments of non-singular bounce models.

Let us consider a single scalar field minimally coupled to gravity. We obtain from the Fried-

mann equations

Ḣ = �1

2
(⇢+ p) = ��̇2 . (10.1)

It is not possible to transition from contraction (H < 0) to expansion (H > 0) in this framework.

However, the violation of the null energy condition (NEC)

⇢+ p > 0 (10.2)

allows the universe to undergo a bounce from contraction to expansion; in the covariant form the

NEC reads Tµ⌫n
µn⌫ � 0 for any null vector nµ, satisfying gµ⌫n

µn⌫ = 0 . A NEC violation can be

obtained by adding an exotic matter content. As a first try let us consider a ghost field – a scalar

field with the wrong kinetic sign. The negative sign in the kinetic term causes a violation of the

NEC leading to Ḣ = �1

2

(⇢ + p) = �̇2. But this naive first try introduces ghosts: the energy of

the theory is unbounded from below. The vacuum h�i = 0 is unstable, and nothing prevents the

vacuum to decay.

In the case of a tachyon – a scalar field with a negative mass – one can introduce higher order

correction terms which stabilize the vacuum. This is the so-called tachyon condensation. For

example in the case of a potential of the following form

V (�) = �1

2
m2�2 +

1

4
��4 + ... (10.3)

with � > 0 the vacuum is stable where h�i 6= 0. A similar idea can be used in the case of

the ghost field: higher order derivative terms like (@�)4 can stabilize the ghost field leading to

a ghost condensate. We will cover the ghost condensate in detail in the next chapters. Various

non-singular bounce models have been proposed in recent years, and we will give a brief overview

in the following.
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In the previous chapter, we have reviewed the generalized Galileon theory, which includes a

variety of known scalar field models. Non-singular Galileon bounce models have been studied in-

tensively in the literature, e.g. [116, 118, 136–139]. Even if gradient instabilities are unavoidable in

the generalized cubic Galileon theory due to the no-go theorem discussed in the previous chapter,

the small scale perturbations are under better control due to the presence of the Galileon term, cf.

(9.1), namely L
3

= �G
3

(X,�)⇤�. We have to see if perfectly stable non-singular Galileon bounces

can be obtained in the future, which circumvent the no-go theorems.

Non-singular bounces can also be obtained via a modification of gravity: For example in Horava-

Lifshitz gravity [140, 141], F (R) theories [142] and Gauss-Bonnet gravity [143].

Non-singular bounces have also been constructed in string theory and loop quantum cosmology.

One approach in string theory is the so-called s-brane bounce [144, 145]. As the universe contracts,

the temperature increases reaching a critical temperature. At this moment a tower of massive

string states become massless, which have to be included in the low energy e↵ective action. This

results in a so-called s-brane, which can violate the null energy condition leading to a non-singular

bounce.

Loop quantum cosmology uses the quantization techniques of loop quantum gravity in a homoge-

neous and isotropic universe. The leading order quantum gravity corrections lead to loop quantum

cosmology e↵ective equations of the classical equations. The e↵ective Friedmann equation reads

[146]

H2 =
1

3
⇢

✓
1� ⇢

⇢c

◆
, (10.4)

where ⇢c is the critical energy density. The classical Friedmann equation is obtained in the limit

⇢c ! 1. Due to the presence of the correction term, the universe naturally bounces [147, 148].

B. The Ghost Condensate

1. Pure Ghost Condensate

In the following, we will discuss the basic conceptions and properties of the ghost condensate

[20, 24, 33]. A modification of the pure ghost condensate model enables us to implement a non-

singular bounce after the ekpyrotic phase. We will cover important studies and advances regarding

the non-singular ghost condensate bounce, which justifies its use throughout this thesis.
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In order to stabilize the non-singular bounce phase, we will include higher derivative terms in

the Lagrangian. The standard kinetic term becomes a generalized kinetic term of the form P (X)

– or more general P (X,�).

Let us consider a scalar field minimally coupled to gravity with a non-standard kinetic term

S =

Z
d4x

p
�g

✓
1

2
R + P (X)

◆
, (10.5)

with

P (X) = �X + X2 . (10.6)

The energy density and the pressure are given by

⇢ = 2XPX � P , (10.7)

p = P , (10.8)

such that the null energy condition reads ⇢ + p > 2XPX . The theory admits a shift symmetry

�! �+ const. and the equation of motion of the scalar field reads

d

dt
(a3PX �̇) = 0 . (10.9)

There exists a solution at the minimum of P with PX = 0. This solution breaks the shift symmetry

and the time translation symmetry down to an unbroken diagonal shift symmetry. The scalar field

develops a time-dependent vacuum expectation value which grows linearly in time

h�i = ct , (10.10)

where c is a constant. The perturbed second order Lagrangian around this vacuum expectation

value is proportional to [20, 33]

L ⇠ (PX + 2XPXX) ( ˙��)2 � PX(r��)2. (10.11)

At the ghost condensate point the equation of state w = �1, since PX = 0. The ghost condensate

has the same equation of state as the cosmological constant, which led to the development of ghost

condensate models with accelerated expansion, e.g. [116]. Moreover, the perturbations (10.11)

around the ghost condensate point PX = 0 are ghost free. When PX becomes zero the speed of

sound cs also becomes zero. In order to obtain a non-zero gradient term one can add higher order

corrections [20]

L ⇠ � 1

M2

(r2��)2, (10.12)
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which leads to a dispersion relation of the form !2 ⇠ k4/M2 – note there is no k2 term. At

the ghost-condensate point Lorentz-invariance is broken; fluctuations with small momentum move

slower than fluctuations with large momentum.

At the ghost condensate point the NEC is not violated yet. However, small deviations from the

ghost condensate point PX = 0 can lead to a NEC violation when PX < 0. Consequently, the

universe undergoes a ghost-free non-singular bounce. We should note that gradient instabilities

are present when PX < 0, which can be seen from (10.11). This is an expected result, since the

ghost-condensate described by a generalized kinetic term P (X) is part of Galileon theory. The

no-go theorem discussed in the previous chapter states, that gradient instabilities during such

a non-singular bounce are unavoidable. The consequences of these gradient instabilities will be

covered in the next chapter.

2. Ghost Condensate P (X,�)

We are interested in a cosmological scenario where the universe starts in an ekpyrotic phase

with a proceeding non-singular bounce. Here we take � to be the field driving the bounce, while �

is assumed to be transverse (in field space) to the background trajectory during the bounce phase.

The transition to the ghost-condensate phase occurs via a sign change of the kinetic term in a

ghost-free manner due the presence of higher derivate terms.

We are interested in models of gravity minimally coupled to two scalar fields �,� with an action

of the form

S =

Z
d4x

p
�g


R

2
+ P (X,�)� 1

2
(@�)2 � V (�,�)

�
, (10.13)

where X ⌘ �1

2

gµ⌫@µ�@⌫� = �1

2

(@�)2 and V (�,�) is a potential which we will describe in much

more detail later. The kinetic term is given by

P (X,�) = K(�)X + Q(�)X2 . (10.14)

In a flat Robertson-Walker background with the metric

ds2 = �dt2 + a(t)2�ijdxidxj , (10.15)

the background equations of motion are

3H2 =
1

2
K(�)�̇2 +

3

4
Q(�)�̇4 +

1

2
�̇2 + V (�,�) , (10.16)
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Ḣ = �1

2
K(�)�̇2 � 1

2
Q(�)�̇4 � 1

2
�̇2 , (10.17)

0 = P,� � V,� � PX(�̈+ 3H�̇)� PXX �̈�̇
2 � PX��̇

2 , (10.18)

0 = �̈+ 3H�̇+ V,� . (10.19)

During the bounce phase, � is taken to be constant, and will thus not contribute to the dynamics of

the background (but we will be highly interested in the perturbations of �). During ekpyrosis the

functions K(X,�) = 1 and Q(X,�) = 0, while the ekpyrotic potential V depends on the specific

model; we will cover the entropic mechanism and the non-minimal entropic mechanism.

Eventually, the ekpyrotic phase has to end – if the potential flattens out, the kinetic energy comes

to dominate leading to a kinetic phase.

At a certain point the function Q(X,�) turns on and K(X,�) changes the sign to K(X,�) = �1

allowing for a ghost-free NEC violation inducing a non-singular ghost condensate bounce.

A non-singular bounce can occur during the kinetic phase while the scalar field rolls up the potential

or at the bottom of the potential. We will see that the presence of a potential during the non-

singular bounce phase can have important consequences regarding the validity of the e↵ective field

theoretical description.

Various parameterizations of the functions Q(X,�) and K(X,�) are possible. Here we choose the

following symmetric form following [149]:

K(�) = 1� 2
�
1 + 1

2

�2
�
2

, (10.20)

Q(�) =
q

�
1 + 1

2

�2
�
2

. (10.21)

As already stated these functions can turn on during the kinetic phase when the ekpyrotic potential

is negligible leading to a pure ghost condensate phase or during the ekpyrotic phase. In the latter

case we consider the symmetric potential given by a regularised version of an ekpyrotic potential

[8]

V (�) = � 2Vo

e�
p
2✏� + e

p
2✏�

, (10.22)

where Vo and ✏ are constants. Away from the bounce, there will be additional contributions to the

potential, which depend on the specific model during ekpyrosis and during the conversion phase.

Neglecting the potential, for now, the kinetic term at the ghost condensate point at � = 0 reads

P = �X + qX2, (10.23)
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which is just the form of the pure ghost condensate. From PX = 0 we obtain X = 1/2q confirming

again that � grows linearly with time. Moreover the energy density ⇢ = 2XPX � P reads

⇢ |PX=0

=
1

4q
, (10.24)

which can be interpreted as the energy density of the pure ghost condensate. Restoring the mass

dimensions in the Lagrange density (10.14) we see that q has mass dimension �4. The ratio

between the horizon length at the bounce and the reduced Planck length is ⇠ MP q1/4. For a

su�cient classical horizon length we require a ratio of at least [8]

MP q1/4 � 102, (10.25)

corresponding to an energy scale of two orders of magnitude below the reduced Planck mass and

thus an horizon mass of at most 1016 GeV. For MP q1/4 = 102 we obtain, returning to natural units

q = 108. (10.26)

In the presence of a potential the energy density at the ghost condensate point reads:

⇢ |PX=0

=
1

4q
+ V (�), (10.27)

which leads, using the symmetric potential (10.22), to

⇢ |PX=0

=
1

4q
� V

0

. (10.28)

For now we have seen how a ghost-condensate phase can violate the NEC inducing a non-singular

bounce. The addition of the functions K(X,�) and Q(X,�) allows for a dynamical description of

an ekpyrotic phase followed by a bounce phase.

Before we continue the discussion of this specific bounce model let us cover important results

and developments regarding the ghost condensate model. Aside from the absence of ghosts [33]

detailed studies of the perturbative [8] and semi-classical stability [150] properties have been

completed. These models (even including a cubic Galileon term) were successfully constructed

in N = 1 supergravity [149], which is a very important step in the embedding of such models

in a fundamental theory. This “super-bounce” model is considered as one of the more robust

non-singular bounce models, see, e.g. [135] for a comparison of di↵erent bouncing cosmologies. In

the next chapter, we will return to the unavoidable presence of gradient instabilities and argue

that all fluctuations which are within the regime of validity of the e↵ective theory remain under

control.
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3. Adiabatic Perturbations through the Bounce

The evolution of the curvature perturbations through a non-singular bounce has been studied

in detail in [7]. Here we summarize the main results taken from our review in [9].

In conformal time, the linearized equation of motion for the comoving curvature perturbation

R is given by

d2R
d⌧2

+
2

z

dz

d⌧

dR
d⌧

+ c2sk
2R = 0 , (10.29)

where

z2 = a2
PXX + 2PXXX2

H2

, (10.30)

c2s =
PX

PX + 2PXXX
. (10.31)

Then, near the bounce (taken to occur at ⌧ = 0) this equation is solved by the series

R = ↵

✓
1� 1

2
c̄2sk

2⌧2 + . . .

◆
+ �⌧3 , (10.32)

where ↵,� are constants. Here the value of the speed of sound at the bounce is approximated by

c̄2s ⇡ �1/3. Thus, for perturbations which have a wavelength that is long compared to the scale of

the bounce (k/a ⌧ q1/4), we expect the solution to be approximately constant across the bounce.

This is confirmed by numerically solving the equation of motion, see Fig. 15. In the figure, the

purple and red lines correspond approximately to the scale of the bounce, and here some evolution

of the curvature perturbation is shown. However, for longer-wavelength perturbations (all curves

that are above the red line) there is essentially no evolution at the bounce. Modes of potential

interest for cosmological observations have a wavelength many orders of magnitude larger still,

and such modes remain conserved across the bounce to very high precision. (As an aside, note

that the Mukhanov-Sasaki perturbation variable v = zR blows up across the bounce, as noticed

in [151], but this is due to z diverging at the bounce point. The perturbation of physical interest,

R, remains frozen on large scales during the bounce.)

We should add one comment regarding the adiabatic modes: as one can see both from the series

solution above and the figure, short-wavelength modes are a↵ected by the gradient instability that

is caused by the speed of sound squared going negative during the bounce phase. This instability

is in fact ever stronger for ever shorter modes. It is thus of importance to know the cut-o↵ of

our e↵ective field theory, in order to assess whether the background bounce solution is really
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FIG. 15. Evolution of the curvature perturbations (here denoted by Rk) across a flat non-singular ghost condensate

bounce, for di↵erent wavenumbers k. We are interested in long-wavelength modes which are conserved with high

accuracy. The numerical plot here shows the evolution of the curvature perturbation modes in terms of harmonic

time th, defined as dth = a2d⌧ = a3dt. The time interval plotted above is much longer than the period of violation

of the null energy condition; see [7, 8] for more details. Figure taken from [8].

trustworthy or not. The cut-o↵ scale ⇤strong was calculated in [8] and it was found that it must

be evaluated at the moment when PX = 0, with the result that

⇤4

strong =
2

q
, ⇢ |PX=0

=
1

4q
+ V (�) , (10.33)

where we have also listed the energy scale of the background (10.28) for comparison. As one

can see, in the absence of a potential the cut-o↵ is a factor of 8 above the energy density of the

background, and this separation of scales is larger when a negative potential is present, as we

have assumed here (in our specific example these two scales are separated by a factor of about

40). Meanwhile, the cut-o↵ is not too far above the energy scale of the background, implying that

the most dangerous very short/high frequency perturbation modes indeed lie outside the regime

of validity of the theory. Thus, from an e↵ective field theory point of view, this bounce model

is reliable. The presence of a negative potential during the bounce phase then suggests that the

conversion of entropy into curvature perturbations ought to occur after the bounce, and not before

[8]. We will discuss the evolution of entropy perturbations through a non-singular bounce and the

proceeding conversion phase in the expanding phase in the following chapter.
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11. ENTROPY PERTURBATIONS THROUGH A NON-SINGULAR BOUNCE

We have discussed how the ekpyrotic scenario renders the universe flat, homogeneous, and

isotropic. We have covered the evolution of entropy perturbations in the entropic mechanism and

non-minimal entropic mechanism during ekpyrosis and the subsequent conversion process during a

kinetic phase before the bounce. Moreover, a non-singular bounce phase via a ghost condensate was

presented, which is healthy in the e↵ective field theoretical description. The large scale comoving

curvature perturbations, which were sourced by entropy perturbations, stay frozen through the

non-singular bounce phase, such that the obtained predictions do not change in the proceeding,

expanding phase.

In the previous chapter we have argued that the presence of an ekpyrotic potential during the

non-singular ghost condensate bounce increases the separation of the cut-o↵ scale ⇤strong and

the energy scale of the background. This suggests that the conversion could occur after the non-

singular bounce.

In the following, we will calculate the evolution of entropy perturbations through a non-singular

bounce and the subsequent conversion phase based on our paper [9], which we will follow closely

in this chapter. We show that such a scenario o↵ers interesting new possibilities, due to a possible

non-trivial evolution of entropy perturbations during the bounce phase joining the contracting and

expanding phases together. In particular, we will show with the example of a specific bounce model

that entropy perturbations can grow significantly during the bounce phase, with the consequence

that these enhanced entropy perturbations can easily provide the dominant contribution to the

final post-bounce amplitude of the curvature perturbations leading to the following results:

• The amplitude of the final curvature perturbations tends to be significantly enhanced. Con-

versely, this means that the entropy perturbations at the end of the ekpyrotic phase can

be smaller than currently assumed in this model. In other words, the energy scale of the

contraction phase can be smaller.

• The enhancement of the amplitude of the entropy perturbations implies that the importance

of its intrinsic non-Gaussianity is reduced. This is because the most important contribution

to the non-Gaussianity of the final curvature perturbation comes from the non-linearity of the

conversion process, and not from the intrinsic non-Gaussianity that can already be present

in the entropy perturbations.
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We would like to note that cosmological bounces can also be caused by quantum gravity e↵ects,

for example in loop quantum cosmology [146]. Interestingly, at least in the case that the bounce

is dominated by an ekpyrotic-like field, the qualitative predictions concerning the scalar and ten-

sor power spectra do not appear to depend significantly on the exact mechanism of the bounce

[148, 152] and therefore the qualitative results obtained in the following chapters may also hold in

other cases where the bounce occurs due to di↵erent physical e↵ects, including quantum gravity

e↵ects.

In the following, we will use the specific ghost condensate model introduced in Chapter 10B 2,

where the two-field action (10.13) is given by

S =

Z
d4x

p
�g


R

2
+ P (X,�)� 1

2
(@�)2 � V (�,�)

�
, (11.1)

with the kinetic term

P (X,�) = K(�)X + Q(�)X2 , (11.2)

where the functions K(�) and Q(�) are given by (10.20) and (10.21) respectively. In the presence

of a potential during the bounce phase we will use the symmetric regularised ekpyrotic potential

in Eq. (10.22). A numerical solution of the equations of motion (10.16) - (10.19) near the bounce

is shown in Fig. 16. Here the parameters of the model are chosen to be

✏ = 10 , Vo = 2⇥ 10�8 , q = 108 , (11.3)

where q, with mass dimension of �4, determines the energy scale of the bounce. In the present

case the energy scale is (10�2MP l)4, two orders of magnitude below the reduced Planck mass. This

scale also determines the duration of the bounce, i.e. the time period over which the null energy

condition is violated, t 2 (�p
q,
p

q) = (�104, 104), as is verified in the right panel of Fig. 16 which

plots the sum of energy density and pressure. The initial conditions for the bounce solution were

chosen such that the bounce occurs at t = 0 with

�(0) = 0 , a(0) = 1 , �(0) = 0 , �̇(0) = 0 . (11.4)

From the first Friedmann equation with ⇢ = 0, we obtain �̇(0) ⇡ 9.7⇥ 10�5, where we have chosen

� to roll from negative to positive values as time progresses. Note that we have chosen �(0) = 0 at

the bounce time since this is the centre of the region where the scalar field � can violate the null

energy condition and cause the bounce.
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FIG. 16. A numerical solution around the time of the non-singular bounce. The left panel shows the evolution of

the scale factor a, while the right panel plots the sum of energy density ⇢ and pressure p. When this last sum is

negative, the null energy condition is violated, which is a necessary condition in order to obtain a non-singular

bounce in a flat Robertson-Walker universe. Figure taken from [9].

The bounce is symmetric around t = 0 due to the symmetric form of K(�) and Q(�) (the form of

the potential does not a↵ect this since � is kinetic-dominated during the bounce); we made these

choices for the sake of simplicity. An asymmetric bounce is also possible (see, e.g., [7]), but the

evolution of the long-wavelength perturbations (those of observational interest) is not significantly

a↵ected by the details of the bounce since the bounce time is much shorter than the wavelength

of these perturbations. One may also approximate the numerical solution analytically near the

bounce. Note that at the bounce itself the Hubble rate is zero by definition, H = 0, and thus the

Friedmann equation implies that the energy density vanishes too. Combining this result with the

equation of motion for the scale factor (10.17) and neglecting the potential at the bounce then

gives

a(t) ⇡ et
2/(18q) , (11.5)

�(t) ⇡
r

2

3q
t . (11.6)

The scalar field � evolves linearly in time near the bounce, which is the characteristic time evolu-

tion of a ghost condensate.

The bounce is followed (and, depending on the model, perhaps also preceded) by a phase of

kinetic energy domination, during which the kinetic term for � is to a good approximation canon-

ical, and with equation of state w = 1. The background equations then reduce to the simple

form

3H2 ⇡ 1

2
�̇2 ⇡ �Ḣ, �̈+ 3H�̇ ⇡ 0 , (11.7)
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and the solution is given by

a ⇡ āo(±t)1/3, � ⇡
r

2

3
ln(±t) + �̄o, (11.8)

for some constants āo, �̄o, and where a positive (negative) sign corresponds to an expanding (con-

tracting) kinetic phase. The energy density scales as ⇢ / a�6, since

�̇ ⇡
r

2

3

ā3o
a3

. (11.9)

We are now ready to turn our attention to the behavior of fluctuations in this background.

A. Evolution of Entropy Perturbations

An important simplification of the background we are studying is that only one of the scalar

fields, namely �, evolves at the background level. This has the consequence that during the

bounce phase, the perturbations of � (which in their gauge-invariant form correspond to curvature

perturbations R) and the perturbations of � (which correspond to entropy perturbations) evolve

independently, and we can study them separately. The evolution of the curvature perturbations

was already discussed in Chapter 10B 3. We have shown that the curvature perturbations evolve

through the non-singular bounce basically una↵ected.

Now we can start to analyze the evolution of the entropy perturbations. We have covered the

decomposition of perturbations into adiabatic and entropy modes in Chapter 5C and Chapter 8C

based on the developments in [5, 65–67]. At linear and second order, the adiabatic and entropy

perturbations are then defined to be

��(1) = e�I��
I , �s(1) = esI��

I , (11.10)

��(2) = e�I��
I(2) +

1

�̇
�s�̇s , �s(2) = esI��

I(2) � ��

�̇

 
�̇s +

✓̇

2
��

!
. (11.11)

Up to second order and on large scales, they obey the equation of motion

�̈s + 3H �̇s +
⇣
Vss + 3✓̇2

⌘
�s = (11.12)

� ✓̇

�̇
(�̇s)2 � 2

�̇

 
✓̈ + V�

✓̇

�̇
� 3

2
H ✓̇

!
�s�̇s +

 
�1

2
Vsss + 5Vss

✓̇

�̇
+ 9

✓̇3

�̇

!
(�s)2,

where V� ⌘ eI�V,I , Vs ⌘ eIsV,I , Vss ⌘ eIse
J
s V,IJ , etc. (a useful additional relation is Vs = ��̇✓̇), and

where �s = �s(1) + �s(2). Also, at large scales the spatial gradient terms are negligible and have

been dropped in the above expression.
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B. Entropy Perturbations through the Non-Singular Bounce

During the bounce phase, the field space trajectory is straight (✓̇ = 0), and the equation (11.12)

thus simplifies to

�̈s + 3H �̇s + Vss�s +
1

2
Vsss(�s)

2 = 0 . (11.13)
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FIG. 17. A plot of the entropy perturbation and its time derivative during the period where the null energy condition

is violated, and where the bounce occurs. The parameters are those of Eq. (11.3). In this example, the transverse

potential (i.e. the potential in the entropic direction) is flat, and there is a modest growth of the perturbation

across the bounce. Figure taken from [9].

Let us first analyze the case where the transverse potential is flat, Vss = Vsss = 0. In that limit,

�̇s = A a(t)�3, which, given (11.5), is easily integrated,

�s = A

r
3⇡q

2
Erf

✓
tp
6q

◆
+ B, (11.14)

where A and B are integration constants determined by the values of �s and �̇s at the beginning of

the bounce phase. During the bounce period, the entropy perturbation thus changes by an amount

��s = A

Z tb=q1/2

�tb=�q1/2
e
� 1

6q t
2

dt = A
p
6⇡qErf(1/

p
6) ⇡ 1.9⇥ A

p
q . (11.15)

In cosmological models such as those that we consider, the entropy perturbation before the bounce

typically reaches a scale not much smaller than the scale of the bounce, i.e. one would expect that

the amplitude of the entropy perturbations is of the order of q�1/2, and that therefore Aq1/2 ⇠

O(1). In this case, there is a modest growth of the entropy perturbation during the period of

NEC violation. A numerical example confirming this estimate is provided in Fig. 17, where the

initial entropy perturbation was taken to be �spre�bounce = 10�5. The small growth of the entropy

perturbations across a non-singular bounce was previously noted in [151].
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FIG. 18. A plot of the entropy perturbation and its time derivative during the period where the null energy

conditions is violated and the bounce occurs. The parameters are again those of Eq. (11.3), but in this example

the transverse potential is unstable, see Eq. (11.16). The instability causes an additional growth in the entropy

perturbation across the bounce. Figure taken from [9].

An important point here is that in the case that Vss = Vsss = 0 during the bounce, for this

amplification to occur it is essential that the entropy perturbations never freeze. If the entropy

perturbations are frozen – i.e. if �̇s = 0 – at the onset of the bounce phase, then the constant

solution �s = B is singled out and no amplification will occur during the bounce. So, a necessary

condition for the entropy perturbations to be amplified during the bounce is that their time evo-

lution remains non-trivial at all times leading up to the bounce.

We can now also look at the case where a transverse, unstable potential is present during the

bounce phase, cf. Chapter 5:

V (�) = � 2Vo

e�
p
2✏� + e

p
2✏�

✓
1 +

1

2
✏�2 + · · ·

◆
, (11.16)

implying that

Vss = � 2Vo✏

e�
p
2✏� + e

p
2✏�

. (11.17)

During the bounce � grows linearly in time, � =
p
2/(3q) t leading to

Vss = � 2Vo✏

e�
p

4✏/(3q)t + e
p

4✏/(3q)t
= � Vo✏

cosh(
p

4✏/(3q)t)
(11.18)

This unstable potential leads to an additional amplification of the entropy perturbations. A typical

example is shown in Fig. 18, where we have chosen the same parameters as in Eq. (11.3). In this

example, there is a total growth by a factor of about 7 across the bounce. The growth does depend

on the parameters of the model, in particular on ✏ which sets the scale of the instability. However,

provided that the overall scale of the potential changes in proportion to the change of scale of



120

the bounce, i.e. provided Vo / q�1, then the total growth is independent of the bounce energy

scale q�1/4. Note that this additional growth in the amplitude of the entropy perturbations will

be scale-invariant (i.e. independent of the Fourier wavenumber) since all of the Fourier modes of

observational interest are in a regime where the gradient terms in their equations of motion are

entirely negligible during the bounce. Hence an unstable transverse potential leads to an additional

growth, but at the expense of requiring more special initial conditions since now only trajectories

lying very close to the ridge in the potential will make it through the bounce.

t

log10 ds

-1¥ 106 -500000 500000 1¥ 106

-4.0

-3.5

-3.0

t

log10 ds

-1¥ 106 -500000 500000 1¥ 106

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

FIG. 19. The growth of the entropy perturbations across the kinetic and bounce phases (where the period of null

energy violation is confined to the interval �104 < t < 104). The left panel shows the case where the potential is

flat in the entropic direction, while in the right panel this transverse potential is unstable. The combined e↵ect

of the kinetic and bounce phases leads to a significant overall amplification of the entropy perturbations. Figure

taken from [9].

The bounce is followed (and, if the potential is less important just before the bounce, also

preceded) by a phase of kinetic energy domination. During these phases H = 1/(3t) and the

potential is subdominant, such that the entropy perturbations obeys the approximate equation

�̈s + (1/t)⇥ �̇s ⇡ 0 and consequently grows approximately logarithmically,

�s = C ln(t/tk) + D (11.19)

for some integration constants C, D, tk. Once again, this growth is conditional upon the entropy

perturbations not being frozen, i.e. that �̇s 6= 0— otherwise �s = D and no growth will occur. Even

for C 6= 0, the growth is rather slow, but the cumulative e↵ect over the two (bounce–expanding

kinetic) or three (contracting kinetic–bounce–expanding kinetic) phases can be substantial. We

have illustrated this in Fig. 19, where the left panel corresponds to having a flat transverse potential

and the right panel shows the case of an unstable transverse potential. Even without an instability,

the entropy perturbations tend to grow by 1.5 to 2 orders of magnitude, depending on how long

the kinetic phases last. As we will see in detail in the following sections, this growth implies
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that a conversion of entropy perturbations into curvature perturbations after the bounce phase

easily provides the dominant contribution to the final amplitude of the curvature perturbations,

keeping in mind that any curvature perturbations that might be present before the bounce remain

constant across that phase. The right panel in Fig. 19 then shows the amplification of the entropy

perturbations for the case where the potential in the entropic direction is unstable. In that case,

the growth is further enhanced, and in our numerical example, the entropy perturbations reach an

overall growth of 3 orders of magnitude. Note that the bounce has the e↵ect of not just amplifying

the entropy perturbations, but also its time derivative �̇s grows during the bounce, thus bringing

with it an even stronger growth during the expanding kinetic phase.

C. Conversion after the Bounce

We have just calculated the evolution of entropy perturbations through a non-singular ghost

condensate bounce. We have discussed how these entropy perturbations are created during ekpy-

rosis via the entropic mechanism in Chapter 5 and Chapter 6D or via the non-minimal entropic

mechanism in Chapter 8.

These perturbations will pass through the bounce as described in Chapter 11B. At some point,

the entropy perturbations need to be converted into curvature perturbations. We will now de-

scribe the evolution of the perturbations from the end of ekpyrosis to the end of the conversion

process, assuming that the bounce occurs in between these phases. In Fig. 20 we have sketched

the overall background evolution. As we have seen, at the end of the ekpyrotic phase the curvature

perturbations are negligible, while the entropy perturbations take the form c.f. Eq. (6.37) and Eq.

(8.64):

�s(1) = �sek , �̇s(1) = ��sek
tek

(11.20)

�s(2) =

3

p
✏

8
�s2ek , �̇s(2) = �3

p
✏

4

�s2ek
tek

(11.21)

For our numerical evaluations we choose �sek = 10�5. Note that the non-minimally coupled models

simply correspond to specifying 
3

= 0.

We have reviewed the conversion process in detail in Chapter 6E. The conversion is described by

the evolution equation on large scales, cf. Eq. (6.44):

Ṙ = �2H

�̇
✓̇ �s +

H

�̇2

⇣
Vss + 4✓̇2

⌘
(�s)2 � V�

�̇
�s�̇s. (11.22)
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FIG. 20. During the ekpyrotic phase the field rolls down the ekpyrotic potential. Here we have chosen a stable

transverse direction corresponding to the non-minimal entropic case. The bounce occurs at the bottom of the

ekpyrotic potential. During the expanding kinetic phase the conversion takes place due to the presence of a

repulsive potential.

The comoving curvature perturbations can be expanded as, cf. Eq. (6.45):

R(x) = RL(x) +
3

5
fNL (RL(x))

2 , (11.23)

which allows us to calculate the non-Gaussian parameter fNL.

In order to model the conversion, we will add a term to the potential, which will induce a

bending of the background trajectory. In a more fundamental context such a term is in principle

calculable (see, e.g. the heterotic M-theory embedding of the cyclic universe [153]). Here we will

choose our total potential to be given by

V (�) = � 2Vo

e�
p
2✏� + e

p
2✏�

✓
1 +

1

2
✏�2 +

1

3!
✏3/2

3

�3

◆
+ Vrep (11.24)

with

Vrep = 10�4 Vo ⇥ e�5[sin(⇡/10)��cos(⇡/10)��2]

2

. (11.25)

Note that the repulsive potential is simply a smooth (Gaussian-shaped) barrier oriented at an angle

to the background trajectory. The bounce occurs at � = 0 and the conversion process begins at

around � = �2. We should comment on the overall scale that we chose for the repulsive part of

the potential: As has been discussed in previous works [78, 154], the most important aspect of the

conversion process is the overall e�ciency of the conversion, i.e. how much of the initial entropy

perturbations is converted into curvature perturbations, c.f. Chapter 6E. Ine�cient conversions
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lead to little structure formation and a very wide range of predictions for non-Gaussian corrections.

By contrast, the predictions narrow to a much smaller range for e�cient conversions, and moreover,

they lead to greater structure formation. The amplitude of the entropy perturbation generated

via ekpyrosis depends crucially on the energy scale reached by the potential. This energy scale

must be rather large (i.e. not too far below the Planck scale) in order for the perturbations to

obtain an amplitude in agreement with observations. Hence the conversion process must indeed

be e�cient, as one cannot assume that the potential reaches even larger energy scales (at which

point the e↵ective description used here would certainly break down). For these reasons, we will

focus on e�cient conversions, and this translates into our choice for the overall scale of the repulsive

potential. An important open problem is to justify this assumption in a more fundamental context.
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FIG. 21. The evolution of the linear and second order entropy perturbations from after the bounce through the

conversion phase. Here we have taken 3 = 0. The left panel corresponds to having a stable potential (11.26)

during the bounce (i.e. a flat transverse direction), while the right panel shows the case of the unstable potential

(11.24). Figure taken from [9].

We have performed a series of numerical simulations, following the entropy and curvature per-

turbations through the kinetic and bounce phases until after the conversion period. In these

simulations, we have chosen di↵erent repulsive potentials in combination with stable and unstable

ekpyrotic potentials during the bounce. We will simply show a few typical examples. Fig. 21 shows

the evolution of the linear and second order entropy perturbations from after the bounce through

the conversion phase. The left panel corresponds to having a stable potential during the bounce

(i.e. a flat transverse direction)

V (�) = � 2Vo

e�
p
2✏� + e

p
2✏�

+ Vrep, (11.26)

while the right panel shows the case of the unstable potential (11.24), where we have used the

background parameters given by (11.3), namely ✏ = 10, Vo = 2 ⇥ 10�8. The linear entropy per-
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turbation grows significantly during the bounce phase and starts oscillating during the conversion.

The second order perturbation grows as a consequence of the growth of the linear perturbation

since the linear perturbation acts as its source. As a result, the growth of the second order per-

turbation lags a little behind the growth of the linear perturbation, but the overall growth is very

significant, as shown in more detail in Fig. 22.
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FIG. 22. The left panel shows the logarithm of the second order entropy perturbation for a bounce with the stable

potential (11.26) and a preceding kinetic phase. The right panel shows the analogous plot for a bounce with the

unstable potential (11.24). The logarithm shows more clearly the overall amplification through the kinetic and

bounce phases. Figure taken from [9].

The curvature perturbations at linear and second order are plotted in Fig. 23, where one clearly

sees the period of the conversion. At late times, the field space trajectory bends less and less, and

the curvature perturbations approach constant values, as expected.

For the specific example shown in the left panels of Figs. 21–23, the potential during the bounce

is stable. In this example, the final value of the curvature perturbation R, its ratio to the entropy
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FIG. 23. The evolution of the linear and second order curvature perturbations from after the end of ekpyrosis

through the conversion phase. Here we have again taken 3 = 0. The left panel corresponds to having a stable

potential (11.26) during the bounce (i.e. a flat transverse direction), while the right panel shows the case of the

unstable potential (11.24). Figure taken from [9].
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perturbation at the beginning of the conversion phase (i.e. the time at which the trajectory starts

bending significantly) and the value of the final non-Gaussianity parameter fNL are given by

Rfinal = �3.5⇥ 10�4 , (11.27)

Rfinal

�sconv�beg
= �0.18 , (11.28)

fNL = �4.0 . (11.29)

For the time interval from t
1

= 1.45⇥ 106 to t
2

= 10.5⇥ 106 the background evolves by one e-fold,

i.e. aH changes by a factor of e, and during this time 95% of the total conversion takes place.

Hence this is clearly a very e�cient, yet smooth, conversion. The analogous example for the case

with an unstable potential during the bounce phase is shown in the right panels of Figs. 21–23.

Here we obtain the values

Rfinal = �1.5⇥ 10�2 , (11.30)

Rfinal

�sconv�beg
= �0.20 , (11.31)

fNL = �3.6 . (11.32)

The conversion period is the same as above, and this is an equally e�cient conversion. As expected,

the final curvature perturbation is however much larger, by almost two orders of magnitude in the

present case. Nevertheless, the value of the non-Gaussianity parameter fNL remains of the same

order, as the second order perturbation has been amplified correspondingly.

In the examples discussed so far, the entropy perturbation was perfectly Gaussian before the

conversion process. This is the relevant case for the non-minimally coupled ekpyrotic models.

However, in ekpyrotic models with an unstable potential, there can already be a significant intrinsic

non-Gaussianity in the entropy perturbation, parameterized by 
3

and depending on the tilt of

the potential (6.27). The dependence of the final value of fNL on 
3

is shown in Fig. 24, for

the example where the bounce is stable. Interestingly, the dependence on 
3

is very weak, as the

change in fNL is smaller than 2 for �1 < 
3

< +1. This may be understood as follows: as the

entropy perturbations grow during the bounce phase, the second order part is sourced more and

more strongly by the terms quadratic in the linear perturbation. Thus, even though the intrinsic

second order term is also amplified (roughly like the linear term), its relative importance compared

to the square of the linear term is lessened. Thus, for these models where the conversion takes

place after the bounce, the main contribution to the non-Gaussianity comes from the non-linearity

of the conversion process itself, and not from a possible intrinsic non-Gaussianity generated during

the contraction phase. This is precisely the opposite situation to that described in [69], where
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FIG. 24. The dependence of fNL on the intrinsic non-Gaussianity (parameterized by 3) is seen to be surprisingly

small when converting after the bounce. The example shown here has a stable potential during the bounce. Figure

taken from [9].

the conversion process was analyzed for large intrinsic non-Gaussianity and neglecting the non-

linearities of the conversion process. Thus, converting after the bounce rather than before brings

with it a significant change in the implications of the conversion process.

D. Conversion before the Bounce

It may be useful to contrast the new results that we just described with the old case of having

the conversion occur during the phase of kinetic contraction before the bounce, which we covered

in detail in Chapter 6E. Following [104], we take the repulsive potential to be

Vrep =
12⇥ 10�9

[sin(⇡/6)�+ cos(⇡/6)�+ 2]2
, (11.33)

and the initial conditions for the numerical evolution are given by

to = �1000 , ao = 1 (11.34)

�o = �
r

2

3
� 4.5 , �̇o =

r
2

3

1

|to|
(11.35)

�so = 10�5 , ˙�so =
10�5

|to|
. (11.36)

Then we find

Rfinal = 2.3⇥ 10�6 , (11.37)

Rfinal

�sconv�beg
= 0.14 , (11.38)

fNL = 6.7 . (11.39)
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FIG. 25. The dependence of fNL on the intrinsic non-Gaussianity (parameterised by 3) for a model of conversion

before the bounce. Note that the slope has the opposite sign compared to the case when converting after the

bounce: this is due to the fact that here the universe contracts whereas it expands in the other case. Figure taken

from [9].

For this example, 87% of the conversion take place over one e-fold of evolution from around t
1

=

�440 to t
2

= �70; thus for this particular example the conversion is slightly less e�cient than it

was in the examples above, but nevertheless comparable. Due to this di↵erence in e�ciency, the

value of fNL is slightly higher. The dependence of fNL on 
3

is shown in Fig. 25. Note that this

dependence, which is well parameterised by the phenomenological formula fNL ⇡ 3

2

p
✏

3

+ 5 [35],

is vastly more significant in the present case than when converting after the bounce and therefore

a wider range of values is obtained.

E. Implications for Models and Observations

The main implication of having a conversion phase during the expansion phase after the bounce,

rather than before the bounce, is that the final amplitude of the curvature perturbation is signif-

icantly enhanced. As we saw with the help of specific examples, for the case of a bounce with a

stable potential the curvature perturbation is approximately two orders of magnitude larger than

when the conversion takes place before the bounce. For an unstable potential, the growth is even

more significant, by almost four orders of magnitude in the example shown around Eq. (11.30). It

is useful to recall from Eq. (5.32) that at the end of the ekpyrotic phase the Fourier mode of the

entropy perturbation reaches a value

�sk(tek�end) ⇡
|✏Vek�end|1/2p

2k⌫
. (11.40)
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For the case where the conversion takes place during the contraction phase before the bounce, this

leads to the following root mean square value for the curvature perturbation (where we have used

the approximation R ⇡ 1

5

�sek�end, c.f. Eq. (5.37) and [69]),

hR2i ⇡
Z

d3k

(2⇡)3
✏Vek�end

50k2⌫
=

Z
dk

k

✏Vek�end

100⇡2
kns�1 . (11.41)

Matching to the observed value of �2

R ⇡ 3⇥ 10�9 [6] leads to an estimated depth of the potential

of |Vek�end| ⇡ (10�2MP l)4, around the grand unified scale. For conversion after the bounce, we

obtain an enhancement of the curvature perturbation by approximately two to four orders of

magnitude. This would mean that the potential does not have to become quite so deep, and the

energy scale that the potential must reach is around 10�4 or 10�3 in reduced Planck units.

Despite the fact that the amplitude of the curvature perturbation is significantly enhanced by

the conversion process, the level of non-Gaussianity remains similar (though as we have seen the

value of the local non-Gaussianity parameter fNL is now mostly determined by the conversion

process and not by the intrinsic level of non-Gaussianity produced during the ekpyrotic phase).

Our numerical examples suggest that for e�cient conversion processes typical values lie in the

range

� 5 . fNL . +5 , (11.42)

while a little less e�cient conversions lead to values of O(10). This is a very interesting range of

values, consistent with current bounds on fNL, which are fNL = 0.8±10.0 at the 2� level [44], but

within the reach of not-too-distant future experiments. In particular, the Square Kilometer Array

is expecting to reduce the error on local non-Gaussianities to �(fNL) ⇡ 1, cf. [155, 156], at which

point one would expect to measure the presently discussed values.
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12. SCALAR-TENSOR-THEORIES

In Chapter 9 we have discussed the most general scalar field Lagrangian which yields second

order equations of motion: the Galileon (or Horndeski) Lagrangian. We have constructed a bounce

via a ghost-condensate phase and extended the discussion to Galileon bounces. In this chapter, we

will investigate another subclass of Galileon theory which is called scalar-tensor-theory. In scalar-

tensor-theories the scalar and tensor degrees of freedom are mixed. Newtons gravitational constant

is no longer constant but a function of the scalar field �. The first and very prominant example of

a scalar-tensor theory is Brans-Dicke theory [119]. Brans and Dicke considered a modification of

general relativity of the following form:

SBD =
1

2

Z
d4x

p
�g
h
�R � !

�
gµ⌫rµ�r⌫�� V (�)

i
+ S(m), (12.1)

where S(m) is the action of ordinary matter which is coupled minimally to the metric gµ⌫ :

S(m) =

Z
d4x

p
�gL(m). (12.2)

In this theory, matter does not couple directly to the scalar field. However, � couples directly

to the Ricci scalar. Thus the gravitational field is described by the scalar field � and the metric

tensor gµ⌫ . This leads to a �-dependent e↵ective gravitational constant

Geff =
1

8⇡�
, (12.3)

here we have not set 8⇡G = 1. � > 0 guarantees the positivity of the gravitational coupling

corresponding to attractive and ghost-free gravity. ! is a dimensionless free parameter, which is

constrained by Solar System experiments, e.g., ! > 40 000 by the Cassini probe in 2003 [157]. The

natural value for ! of order unity is not in agreement with measurements; Brans-Dicke gravity has

to be very close to general relativity in today’s cosmology. Note that theories with modified gravity

describing the dark energy phase today usually make use of a screening mechanism. Most of the

time these theories want to describe large scale modifications and thus use screening mechanisms

on low scales in order to match solar system observations [158–160]. However, early universe

models incorporating modified gravity can work di↵erently, since these models can dynamically

become a theory of general relativity. In the case of a scalar-tensor-theory, this corresponds to a

constant field �.
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In the following, we will look at the generalization of the Brans-Dicke theory, including more

general couplings to the Ricci scalar and more general kinetic terms. As already mentioned this is

a subclass of Galileon theory of Chapter 9 where G
3

= G
4X = G

5

= 0. The action is given by

S =

Z
d4x

p
�g [F (�)R � P (X,�)] + S(m). (12.4)

A. Einstein Equations for Scalar-Tensor-Theories

We have already obtained the equations of motion of generalized Galileon theory in Chapter

9. We will briefly highlight the e↵ect of the non-minimal coupling to gravity compared to the

derivation of the Einstein equations in the case of a minimal coupling to gravity.

The Palatini identity relates the variation of the Ricci tensor �Rµ⌫ to the variation of the Christo↵el

symbol ���µ⌫ :

�Rµ⌫ = r���
�
µ⌫ �r⌫��

�
µ� . (12.5)

The variation of the Ricci scalar R reads:

�R = Rµ⌫�g
µ⌫ + gµ⌫�Rµ⌫ (12.6)

= Rµ⌫�g
µ⌫ + gµ⌫

⇣
r���

�
µ⌫ �r⌫��

�
µ�

⌘
(12.7)

= Rµ⌫�g
µ⌫ �rµr⌫�g

µ⌫ + gµ⌫⇤�gµ⌫ . (12.8)

The last terms normally contribute as a total derivative in the action. However, this will no longer

be the case due to the presence of the non-minimal coupling to gravity F (�)R. In the case of a flat

FLRW metric we obtain the equations of motion for the scalar-tensor theory, which coincides with

the equation of motion for the generalized Galileon theory in Chapter 9B (for G
3

= G
4X = G

5

= 0):

rµ (PXrµ�) = P,� +
1

2
RF,� , (12.9)

3FH2 + 3HḞ = ⇢ , (12.10)

⇢+ p + 2FḢ � HḞ + F̈ = 0 . (12.11)

with the e↵ective energy density ⇢ = 2XPX �P and e↵ective pressure p = P . As we can see due to

the non-minimal coupling the equations of motion become more complicated. However, this also

leads to interesting new cosmological solutions.

From now on we will restrict to the case P (X,�) = K(�)X � V (�) (until we discuss non-singular

bounces):

S =

Z
d4x

p
�g


F (�)R � 1

2
K(�)gµ⌫rµ�r⌫�� V (�)

�
+ S(m). (12.12)
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B. Conformal Transformation

The scalar-tensor-theory action given in equation (12.12) is written in the so-called Jordan

frame. In Jordan frame, the scalar field is non-minimally coupled to gravity, while matter is only

minimally coupled – there is no direct coupling between the scalar field � and ordinary matter. The

Jordan frame can be transferred into the so-called Einstein frame via a conformal transformation.

In Einstein frame, the scalar field is minimally coupled to gravity, while ordinary matter couples

directly to the scalar field. Because of the complexity of the equations of motion (12.9) it is often

useful to transform the theory to the Einstein frame, where the equations of motion are generally

easier to solve. Since both frames are physically equivalent, the solution can then be transformed

back to the Jordan frame. We will examine in the following how a change of frame via a conformal

transformation can be obtained. For a review of scalar-tensor-theories and detailed derivations

see, e.g. [161, 162].

One can always find a suitable conformal transformation from Jordan frame to Einstein frame if

the non-minimally coupling is F (�) > 0 (and if there is no derivative coupling F (�, X)X = 0.

F (�, X)X 6= 0 does not belong to the class of scalar-tensor theories, cf. Chapter 9).

In the following, we will use the subscript “J” to indicate Jordan frame quantities and no subscript

to indicate Einstein frame quantities. Moreover, we use � in Jordan frame and � in Einstein frame.

The connection between the field-redefinition of the scalar field will be discussed in the upcoming

chapter.

In the following, we will transform the scalar-tensor-theory action (12.12) in Jordan frame to the

Einstein frame.

SJ =

Z
d4x

p
�gJ


1

2
F (�)RJ � 1

2
K(�)gµ⌫J rµ�r⌫�� VJ(�)

�
+ S

(m)

J , (12.13)

where again the matter action is given by

S
(m)

J =

Z
d4x

p
�gJL(m) . (12.14)

We perform a point-dependent rescaling of the metric tensor

gJµ⌫ ! gµ⌫ = ⌦(x)2gJµ⌫ . (12.15)

⌦ is the conformal factor, which is a regular nowhere vanishing function. The transformation is

called a Weyl or conformal transformation. Due to the rescaling of the metric, length scales are
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changed. However, null vectors and null intervals remain null, leading to the same light-cones in

both frames: the causal structure is the same in both frames. Conformal transformations are a

very important tool in studying causal structures (e.g., Penrose diagrams).

Inspecting (12.15), the transformation of the 00-component of the metric can be absorbed into the

time coordinate interval via:

dt = ⌦dtJ . (12.16)

Using the flat FLRW metric, we obtain for the transformation of the ij-component of the metric

a = ⌦aJ . (12.17)

We have absorbed the conformal factor ⌦ in the definition of the time interval dt and the scale

factor a. This means that we have two di↵erent frames which are related via a conformal trans-

formation. We will discuss the consequences of such a change of frame throughout this chapter.

In order to transform the action (12.13) into the Einstein frame, we need to know how the

Ricci scalar RJ transforms under a conformal transformation. From the conformal transformation

(12.15) we obtain for the inverse metric and the determinant:

gµ⌫ = ⌦(x)2gJµ⌫ , gµ⌫ = ⌦(x)�2gJµ⌫ , g = ⌦(x)8gJ . (12.18)

Using the above relations we find for the Christo↵el symbols:

�↵µ⌫ = �↵Jµ⌫ + ⌦
�1

�
�↵µr⌫⌦+ �↵⌫rµ⌦� gJµ⌫r↵⌦

�
. (12.19)

This allows us to calculate how the Ricci scalar RJ transforms under the conformal transformation

(12.15) [163]:

RJ = ⌦2 [R + 6⇤ ln⌦+ 6gµ⌫rµ (ln⌦)r⌫ (ln⌦)] . (12.20)

The above equation can be easily inverted using (12.18)

R = ⌦�2

⇥
RJ � 6⇤J ln⌦� 6gµ⌫J rµ (ln⌦)r⌫ (ln⌦)

⇤
, (12.21)

where ⇤J = gµ⌫J rµr⌫ . The second term in both equations contributes as a total derivative in the

action.
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Plugging the transformed Ricci scalar (12.20) and the transformed metric (12.18) into the action

(12.13) yields:

S =

Z
d4x

p
�g⌦�4


1

2
F (�)⌦2 (R + 6gµ⌫rµ (ln⌦)r⌫ (ln⌦))�

1

2
K(�)⌦2gµ⌫rµ�r⌫�� VJ(�)

�

+S(m) . (12.22)

The scalar field is non-minimally coupled to gravity if

⌦ =
p

F . (12.23)

The conformal transformation which changes the Jordan frame action to the Einstein frame action

(where the coupling to gravity is minimal) reads

gµ⌫ = FgJµ⌫ . (12.24)

Moreover, we can canonically normalize the scalar field via a field redefinition. Using

@µ ln
p

F =
1

2F
@µF =

F,�

2F
@µ� (12.25)

we obtain

S =

Z
d4x

p
�g

"
R

2
�
 

K(�)� 3

2

F (�)2,�
F (�)

!
1

2
gµ⌫rµ�r⌫�� VJ(�)

F (�)2

#
+ S(m). (12.26)

Let us introduce the field redefinition:

d� = d�

 
K(�)� 3

2

F (�)2,�
F (�)

!
1/2

. (12.27)

We can also “invert” (12.27) by writing the functions in terms of �, which is necessary when

transforming from Einstein frame to Jordan frame. We obtain

p
K(�)d� = d�

 
F (�)� 3

2

F (�) 2,�
F (�)

!
1/2

. (12.28)

Defining the Einstein frame potential

V (�) =
VJ(�)

F (�)2
(12.29)

and using the field redefinition yields the final Einstein frame action:

S =

Z
d4x

p
�g


R

2
� 1

2
gµ⌫rµ�r⌫�� V (�)

�
+ S(m). (12.30)

It is important to note that this action is generally not equivalent to general relativity. This is

due to the matter coupling S(m). We assumed here, that in Jordan frame ordinary matter does
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not couple directly to the scalar field. Ordinary matter in Jordan frame only couples minimally to

gravity. But this means, that a transformation from Jordan frame

S
(m)

J =

Z
d4x

p
�gJL(m) (12.31)

to the Einstein frame

S(m) =

Z
d4x

p
�gF (�)�2L(m) (12.32)

results in a �-dependent matter coupling – the coupling constants are �-dependent. This can give

rise to so-called 5th force e↵ects – a violation of the equivalence principle. Geodesics in this frame

are di↵erent to the ones in general relativity. The fact that the Einstein frame is generally not

equivalent to general relativity due to the non-minimal matter coupling causes often confusion or

is sometimes just ignored. Only if the scalar field � becomes constant the Einstein frame theory is

(classically) equivalent to general relativity.

As a final remark let us state that in conformal field theories the Weyl/conformal transformation

gµ⌫ ! g̃µ⌫ = ⌦(x)2gµ⌫ (12.33)

resulting in a rescaling

x ! x̃ = ⌦x (12.34)

is used for the same space-time. There is no change of frame: the conformal factor is not absorbed

into the time and space coordinates in contrast to the case we have discussed here cf. (12.16).

This leads to the well known conformal transformation properties, e.g., under rescaling the scalar

field transforms as

�(x) ! �(x̃) = �(⌦x) = ⌦���(x), (12.35)

where � = D�2

4

is the conformal dimension.
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13. CONFLATION

A. Introduction

In the previous chapter, we have discussed the properties of scalar-tensor theories. A non-

minimal coupling to gravity allows for a variety of cosmological solutions. It is possible to change

from one frame to another via a conformal transformation and we have determined the transforma-

tion properties of various quantities. Both frames are physically equivalent since they are related

via a conformal transformation. Moreover, as we will see, the scalar and tensor perturbations in

both frames are the same.

Scalar-tensor theories of gravity allow for very interesting cosmological solutions e.g. [164–167].

Let us examine shortly possible new features of these scalar-tensor theories (or generalized Galileon

theories) in an example. We have reviewed the evolution equation of curvature perturbations R in

generalized Galileon theories in Chapter 9. The action (9.36) can be written in conformal time as

S =

Z
d⌧d3xa2GS

⇣
R02 � c2s(~rR)2

⌘
, (13.1)

where we have used c2S = FS
GS

. The corresponding equations of motion for the canonically normalized

variable v = zSR with zS = a2GS in momentum space reads

v00 +

✓
c2sk

2 � z00S
zS

◆
= 0 . (13.2)

The spectrum of the comoving curvature perturbations R is scale-invariant if

z = a2GS ⇠ ⌧2 or z = a2GS ⇠ ⌧�2 , (13.3)

since the equations of motion using (13.3) becomes

v00 + (k2 � 2

⌧2
) = 0 . (13.4)

As a reminder: This is the same equation as in the standard single scalar field case in the de Sitter

limit during inflation (4.59). Note, the second solution in (13.3) is used in the matter-dominated

contraction models in the standard single scalar field case [168, 169].

Due to the non-trivial GS - term in scalar-tensor theories (or generalized Galileon theories),

we can obtain scale-invariant curvature perturbations R. For example, a constant scale factor

combined with GS ⇠ ⌧2 produces nearly scale invariant perturbations. This is in contrast to the



136

case of a single scalar field minimally coupled to gravity. This is just one example of the new

possibilities which arise in scalar-tensor theories. A very interesting model in this context is the

so-called anamorphic cosmology [167].

During the contracting anamorphic smoothing phase (similar to ekpyrosis), nearly scale-invariant

curvature perturbations R are created, which are similar to those produced during inflation.

Anamorphic cosmology is described by a scalar-tensor theory, which makes such a construction

possible. It has been shown in [167] that one can write (13.1) in the case of a scalar-tensor theory

in a frame-invariant way

S =
1

2

Z
d⌧d3x↵PL✏PL

⇣
R02 � c2s(~rR)2

⌘
, (13.5)

where ↵PL and ✏PL are frame-invariant quantities. The comoving curvature perturbations R are

frame independent.

This very fact was one motivation for the construction of the conflationary model, which we

proposed in [10]. The basic idea of the model of conflation is to conflate ideas of inflation and

ekpyrosis combining features of both models. Conflation can be thought of as being complementary

to the anamorphic phase described above.

During conflation, the universe expands exponentially like during inflation, but perturbations

behave like during ekpyrosis. Hence eternal inflation does not occur during conflation since there

are no large adiabatic fluctuations.

The starting point of the construction of conflation is an ekpyrotic model described by a scalar field

minimally coupled to gravity in a steep negative potential. Then we transform the ekpyrotic model

in Einstein frame into a scalar-tensor theory in Jordan frame via a conformal transformation. In

this frame, we will construct an accelerated phase.

Remarkably, in this model, the non-minimally coupled scalar field has a kinetic energy term of the

wrong sign, and it rolls up a negative potential. Nevertheless, the theory is ghost-free.

Subsequently, the model will be extended allowing for a graceful exit of the phase. This extension

is necessary: In Einstein frame, the universe would end up in a big crunch after the ekpyrotic

contracting phase. Thus we add a non-singular bounce in Einstein frame and investigate the

consequence of such an implementation for the model in Jordan frame.



137

Chapter 13D1 contains the analysis of scalar and tensor fluctuations up to first order in pertur-

bation theory in the two frames. We will demonstrate that their spectra in both frames are indeed

the same.

The model of conflation describes a phase of accelerated expansion, where adiabatic fluctuations

stay quantum – with no run-away behavior like in eternal inflation – and where entropy per-

turbations are amplified as during ekpyrosis. The following chapters are based on our paper

[10].

B. The Conflationary Phase

1. Ekpyrotic Phase in Einstein Frame

We review briefly the ekpyrotic phase described in Chapter (3B). During the slowly contracting

phase the pressure p is very high with an equation of state w = p/⇢ > 1. Ekpyrosis is modeled by a

scalar field minimally coupled to gravity in a steep negative potential. Thus the action in Einstein

frame is

S =

Z
d4x

p
�g


R

2
� 1

2
gµ⌫@µ�@⌫�� V (�)

�
, (13.6)

where a typical ekpyrotic potential is given by a negative exponential,

V (�) = �V
0

e�c� . (13.7)

Considering the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, we obtain the equa-

tions of motion for the scalar field �

�̈+ 3H�̇+ V,� = 0, (13.8)

which admits the scaling solution [14]

a(t) = a
0

✓
t

t
0

◆1/✏

, � =

r
2

✏
ln

✓
t

t
0

◆
, where t

0

= �
r
✏� 3

V
0

✏2
and c =

p
2✏. (13.9)

Here the Einstein frame time coordinate t is negative and runs from large negative values towards

small negative values. The equation of state is w = 2

3

✏�1, where ✏ =
˙�2

2H2 is the fast-roll parameter.

We require ✏ > 3, since the ekpyrotic phase has to satisfly w > 1.
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2. Specific Conformal Transformation

We will now change from the Einstein frame to the Jordan frame via the conformal transfor-

mation

gµ⌫ = F (�)gJµ⌫ . (13.10)

As discussed in Chapter 12B the corresponding Jordan frame action will be of the form (12.13):

SJ =

Z
d4x

p
�gJ


1

2
F (�)RJ � 1

2
K(�)gµ⌫J @µ�@⌫�� VJ(�)

�
+ S

(m)

J . (13.11)

The conformal factor F (�) can in principle be chosen arbitrarily. Each choice will correspond to a

di↵erent frame – each frame is physically equivalent to every other frame. A common choice is a

polynomial of the form F (�) = ⇠�n, e.g. n = 1 in the specific Brans-Dicke model discussed before

or non-minimal couplings inspired by dilaton couplings in string theory, e.g. [165, 166, 170].

We will chose the following ansatz in the Einstein frame:

F (�) = ec��. (13.12)

As we will see this ansatz corresponds to a non-minimal coupling in Jordan frame (after field-

redefinition) of the form

F (�) = ⇠�2, (13.13)

which is also known as induced gravity [171]; see e.g. [172] for related studies.

This choice is convenient, since it allows for analytic solutions in the Jordan frame. We will further

simplify the initial model by setting the non-canonical kinetic term K(�) = k = const.

Using the scaling solution (13.9) in Einstein frame we can find the relations between the times in

both frames by integrating dt =
p

FdtJ

tJ
tJ,0

=

✓
t

t
0

◆
1��

, (13.14)

where

tJ,0 =
t
0

1� �
. (13.15)

By using this relation we find for the scale factor in Jordan frame aJ = a/
p

F

aJ = a
0

✓
t

t
0

◆ 1�✏�
✏

= a
0

✓
tJ
tJ,0

◆ 1�✏�
✏(1��)

. (13.16)
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It is important to note, that the ansatz F (�) = ec�� leads to a power-law relationship between

both time coordinates since the scaling solution for the scalar field � ⇠ ln(�t).

The purpose of this conformal transformation into the Jordan frame was the construction of

an accelerated phase. The condition for accelerated expansion in the Jordan frame is that the

tJ -exponent in equation (13.16) has to be larger than 1,

1� ✏�

✏(1� �)
> 1. (13.17)

Keeping in mind that during ekpyrosis ✏ > 3, we can see from (13.17) that � has to be larger than

1 in order to obtain accelerated expansion.

The non-linear scalar-field redefinition (12.28) with K(�) = k

d�

d�
=

vuutF

k

 
1� 3

2

F 2

,�

F 2

!
(13.18)

can now be integrated by using F (�) = ec��. We obtain

� =
1p
⇠
e
c��/2 , (13.19)

where the parameter ⇠ is given terms of the parameters ✏, � and k:

⇠ =
c2�2k

4� 6c2�2
=

✏�2k

2� 6✏�2
, (13.20)

or in terms of ✏

✏ =
2⇠

�(6⇠ + k)
. (13.21)

We indeed obtain the non-minimal coupling (13.13) by using (13.19) in (13.12). The requirement

⇠ > 0 is fulfilled if k < 0, since � > 1 and ✏ > 3. Thus the sign of the kinetic term has to be negative

and we choose k = �1. This “wrong” sign does not lead to ghosts, because of the scalar-tensor

coupling as we will see in Chapter 13D. From (13.20) we obtain the lower bound on ⇠ > 1/6 due

to the choice k = �1.

Let us summarize the above results: we have constructed an accelerated expansion in Jordan

frame via the conformal transformation (13.12). The starting point was an ekpyrotic phase with a

negative exponential potential and an equation of state w > 1. The acceleration condition led to

� > 1 , (13.22)
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the positivity of the gravitation coupling resulted in

k = �1 , (13.23)

and the choice of k yielded

⇠ >
1

6
. (13.24)

Using equations (13.9) and (13.14) we can write � as a function of the Jordan frame time:

�(tJ) =
1p
⇠

✓
tJ
tJ,0

◆ �
1��

. (13.25)

The Jordan frame potential can be written in terms of � as

VJ(�) = F 2(�)V (�) = �V
0

e(2��1)c� = �VJ,0�
4�2/� , (13.26)

where we have defined VJ,0 ⌘ V
0

⇠2�1/� . The negative exponential potential in Einstein frame is

transformed into a negative power-law potential in the Jordan frame. This is an important result:

Accelerated expansion can be obtained in the presence of a negative potential in Jordan frame.

The final Jordan frame action is given by:

SJ =

Z
d4x

p
�gJ


1

2
⇠�2RJ +

1

2
gµ⌫J @µ�@⌫�+ VJ,0�

4�2/�

�
+ S

(m)

J . (13.27)

3. Equations of Motion in Jordan Frame

The equations of motion derived in (12.9) for the action (13.27) are given by

3H2

JF + 3HJF,tJ =
1

2
k�2

,tJ
+ VJ , (13.28)

2FHJ,tJ + k�2

,tJ
� HJF,tJ + F,tJ tJ = 0, (13.29)

�,tJ tJ + 3HJ�,tJ � 3F,�

k

�
HJ,tJ + 2H2

J

�
+

VJ,�

k
= 0, (13.30)

where the subscript ,tJ is the time derivative with respect to the Jordan frame time tJ and where

we have not yet specified the potential VJ and the sign of the kinetic term k. We can solve the

first Friedmann equation (13.28) for the Hubble parameter HJ ,

HJ = �F,tJ

2F
±

s
F 2

,tJ

4F 2

+
k

6F
�2

,tJ
+

1

3F
VJ . (13.31)

The solution for HJ will always be positive, since the square root is always less than �F,tJ
2F > 0,

because k, VJ < 0. We can find the solution corresponding to contraction in Einstein frame via the

relation between the Hubble parameter in both frames:

H =
1p
F

✓
HJ +

FtJ

2F

◆
, (13.32)
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where we have used dt =
p

FdtJ and a =
p

FaJ . Since H < 0 in the Einstein frame, the solution

HJ has to satisfy

HJ < �F,tJ

2F
. (13.33)

This is exactly the first term in equation (13.31), which means we have to chose the negative

solution:

HJ = �F,tJ

2F
�

s
F 2

,tJ

4F 2

+
k

6F
�2

,tJ
+

1

3F
VJ . (13.34)

The quantity VJ/�,tJ using (13.25) and (13.26) is given by

VJ

�,tJ

=
✏� 3

✏(2� 6✏�2)
(13.35)

This term is time-independent. This will be useful when setting the initial conditions for specific

values of the parameters.

4. Initial Conditions and Graceful Exit

In this chapter, we will construct a specific example of the conflationary model. We choose

the ekpyrotic fast roll parameter ✏ = 10 and the parameter � = 2, which defines the conformal

transformation. � = 2 leads to a Jordan frame potential of the form:

VJ(�) = �VJ,0�
3 . (13.36)

We chose the following initial conditions:

�(tbeg) = 10 , aJ(tbeg) = 1 , VJ,0 = 10�10 . (13.37)

Using (13.26) and (13.35) we find for the initial field velocity |�tJ | ⇡ 5.83 ·10�3. The numerical

solution for the potential VJ(�) is shown in blue in Fig. 26, while the scale factor a(tJ) and

the scalar field �(tJ) are shown in blue in Fig. 27. The numerical solution indeed reproduces

the conflationary solution, which was obtained by the conformal transformation of the ekpyrotic

scaling solution. From the solution of the scalar field � and the scale factor aJ we see, that there

is a space-time singularity at tJ = 0 , aJ = 0, � = 1. This is reminiscent of the inflationary

singularity. An extension of the model into, e.g. a cyclic model could resolve this singularity. The

e↵ective description might also break down at a certain point since the gravitational coupling F (�)

becomes infinite.
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FIG. 26. Left: The original Jordan frame potential VJ is shown in blue, the shifted potential UJ in dashed red.

Right: The equation of state in Jordan frame, for the shifted potential. Figure taken from [10].
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FIG. 27. Scalar field and scale factor in Jordan frame: the blue curves show the transformed ekpyrotic scaling

solution and the red dashed curves correspond to the field evolutions in the shifted potential. Figure taken from

[10].

The conflationary phase has to end eventually – likewise in Einstein frame the ekpyrotic phase

has to end eventually. As a first modification we introduce a small shift in the Jordan frame

potential:

UJ(�) = VJ(�) + V
1

, (13.38)

where V
1

= VJ ,
10

. In Einstein frame this shift leads to a change of the ekpyrotic potential in the
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form of:

U(�) = F�2UJ(�) = �V
0

e�c� + V
1

e�2c��. (13.39)

The equation of state in Jordan frame is shown on the right of Fig. 26. Indeed the conflationary

phase ends at around tJ ⇡ 10 000, when the equation of state becomes !J > �1

3

the accelerated

phase ends. The evolution of the scalar field � and the scale factor aJ are shown as red dashed

curves in Fig. 27. The scalar field reaches a maximum point on the potential at around � ⇡ 0.4

and then starts to roll back down the potential. The scale factor also reaches a maximum value

and starts to re-contract.

The re-contraction is unavoidable in Jordan frame in this model. From

HJ = �F,tJ

2F
�

s
F 2

,tJ

4F 2

+
k

6F
�2

,tJ
+

1

3F
VJ = �F,tJ

2F
�

s
F 2

,tJ

4F 2

+
1

3F
⇢J . (13.40)

we see that whenever ⇢J = k
2

�2

,tJ
+ VJ = 0 the Hubble parameter HJ = 0, since F,tJ < 0. The

shift in the potential leads to such a behavior. During conflation the potential is negative and the

kinetic terms is also negative with k = �1, which leads to ⇢J < 0. The scalar field slows down,

such that at a certain point the positive potential and the negative kinetic term are equal leading

to ⇢ = 0 and consequently HJ = 0.

While this simple modification stopped the accelerated expansion. It is not enough in order

to obtain a graceful exit. In the current model, the scalar field � rolls back down the potential.

In the following, we want to construct a model, where the scalar field is stabilized on top of the

positive potential. The scalar field could then decay, such that reheating would take place or it

would stay on top of the potential acting as dark energy.

If the scalar field stabilizes on top of the potential, both Jordan and Einstein frame become essen-

tially equivalent. However, in Einstein frame, the universe still contracts leading to a big crunch.

In the following, we will incorporate a non-singular bounce in the Einstein frame and calculate the

resulting dynamics in the Jordan frame.
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FIG. 28. The Einstein frame scalar potential used in the bounce model (13.41). Figure taken from [10].

C. Einstein Frame Bounce Transformed to Jordan Frame

We have already discussed non-singular bounces in Chapter 10. We have reviewed the gen-

eral properties, the problems, and di↵erences between various non-singular bounce models. The

construction of a non-singular bounce via a ghost condensate phase has the advantage of being

technically fairly simple and constituting a healthy e↵ective field theory description. The action

takes the form

S =

Z
d4x

p
�g


R

2
+ P (X,�)

�
(13.41)

with

P (X,�) = K(�)X + Q(�)X2 � V (�), (13.42)

where X ⌘ �1

2

gµ⌫@µ�@⌫� denotes the ordinary kinetic term.

The functions K(�) and Q(�) can be chosen in various ways. At a certain time the sign of K(�)

has to change, while Q(�) has to turn on. We also add a local minimum to the potential, as shown

in Fig. 28. After the bounce, the scalar field rolls into the local minimum and stabilizes. At this

point reheating can occur.

Here we use the specific functions used in [173]:

K(�) = 1� 2
�
1 + 1

2

(�+ 4)2
�
2

, (13.43)

Q(�) =
V
0�

1 + 1

2

(�+ 4)2
�
2

, (13.44)

V (�) = � 1

e3� + e�4(�+5)

+ 100
h
(1� tanh(�+ 4))

⇣
1� 0.95e�2(�+6)

2
⌘i

, (13.45)
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where compared to [173] the theory has been rescaled according to gµ⌫ ! V
1/2
0

gµ⌫ . This implies

K ! K, Q ! V
0

Q and V ! V �1

0

V . The equations of motions are given by

rµ (PXrµ�)� P,� = 0, (13.46)

3H2 = ⇢, (13.47)

Ḣ = �1

2
(⇢+ p), (13.48)

where p = P is the pressure and ⇢ = 2XPX � P energy density.

The bounce can occur when the kinetic term changes sign, which can be seen from Ḣ = �XPX .

The higher order term X2 allows that the kinetic term can pass through zero and also contributes

to the fluctuations avoiding ghosts. The Einstein frame bounce solution is shown in Fig. 29. The

initial conditions are chosen to be �
0

= 0, �̇
0

= �2.4555, a
0

= 100 and we have set V
0

= 10�6

and c = 3. The scalar field first rolls down the potential during the ekpyrotic phase. The bounce

occurs at around � = �4, and afterwards, the universe starts expanding. The scalar field rolls into

the dip of the positive potential and oscillates there with a decaying amplitude shown in Fig. 29.
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FIG. 29. Left: Scalar field and scale factor for the bounce solution in Einstein frame. Right: Parametric plot of the

scalar field and scale factor in Einstein frame. This plot nicely illustrates the smoothness of the bounce. Figure

taken from [10].

We will transform this Einstein frame bounce into Jordan frame. We have discussed the con-

formal transformation of a scalar field with a standard kinetic term in Chapter (12B). Here we

have added a generalized scalar field P (X,�) with higher derivatives and will now calculate the

transformation properties of such a term.
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The action in Einstein frame is given by

S =

Z
d4x

p
�g


R

2
+ P (X,�)

�
. (13.49)

The Ricci scalar transforms under the conformal transformation as cf. (12.20)

R =
1

F

⇣
RJ � 6⇤J ln

p
F � 6gµ⌫J @µ

⇣
ln

p
F
⌘
@⌫

⇣
ln

p
F
⌘⌘

, (13.50)

while the kinetic term transforms as

X ⌘ �1

2
gµ⌫@µ�@⌫� = � 1

2F
gµ⌫J @µ�@⌫� = � 1

2F

✓
@�

@�

◆
2

gµ⌫J @µ�@⌫� ⌘ 1

F

✓
@�

@�

◆
2

XJ . (13.51)

This leads to the following action in Jordan frame

SJ =

Z
d4x

p
�gJ


F (�)

RJ

2
+ PJ(XJ ,�)

�
, (13.52)

where the Jordan frame functions are defined as

PJ ⌘ KJXJ + QJX2

J � VJ , (13.53)

KJ ⌘ F

 
K � 3

2

F 2

,�

F 2

!✓
@�

@�

◆
2

= 4⇠

✓
K

c2�2
� 3

2

◆
, (13.54)

QJ ⌘ Q

✓
@�

@�

◆
4

=
16

c4�4�4

Q, (13.55)

VJ ⌘ F 2V = ⇠2�2V, (13.56)

here we have used the specific transformation used in Chapter 13B 2:

@�

@�
=

2

c��
and F (�) = ⇠�2. (13.57)

The full evolution of the scale factor is shown in Fig. 30. The scale factor increases by many

orders of magnitude, while the scalar field � rolls up the negative potential with decreasing velocity.

It starts at �
0

= 2.4267 and very quickly decreases to a field value � ⇠ 10�9, where it stays for a

very long time. It is important to note that during that time, the non-singular bounce in Einstein

frame already took place. This Einstein frame bounce leads to no drastic changes in the Jordan

frame dynamics – the universe just keeps expanding.

The dynamics in Jordan frame change as soon as ⇢J = 0. As already discussed, the universe

re-contracts at this point. The potential becomes positive while the kinetic energy decreases lead-

ing to the re-contraction at around tJ ⇡ 4.05 · 109, see Fig. 31 and Fig. 32. Since HJ < 0, the

anti-friction term leads to an increased scalar field velocity allowing the scalar field to roll over the
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FIG. 30. Full evolution of the scale factor for the transformed solution in Jordan frame. During the conflationary

phase, the scale factor increases by many orders of magnitude until the scalar field rolls up the potential towards

� ⇠ 10�9. While the scalar field almost rests on the positive potential, the universe keeps expanding. During the

exit of the conflationary phase, the scale factor and scalar field undergo non-trivial evolution which is hard to see

in the present figure and is shown in detail in Fig. 31 and Fig. 32. Figure taken from [10].
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FIG. 31. Scalar field and scale factor for the transformed solution in Jordan frame towards the end of the evolution.

The scalar field rolls into the dip of the potential and oscillates. Due to the non-minimal coupling to gravity, the

scale factor also oscillates. The universe expands monotonically once the scalar field has stabilized. Figure taken

from [10].
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FIG. 32. Parametric plot of the scalar field and scale factor in Jordan frame. Note that initially, the scalar field

decreases its value very rapidly. Later on, as the scalar field stabilizes, the scale factor goes through oscillations

but eventually increases monotonically. Figure taken from [10].

potential barrier. The scalar field starts to oscillate in the local minimum with decreasing velocity.

Whenever ⇢J = 0 the Hubble rate HJ changes sign, such that the scale factor oscillates similar to

the scalar field. Once the scalar field stabilizes, continuous expansion occurs. The oscillations of

the scale factor do not violate the null energy condition. These oscillations occur because of the

non-minimal coupling of the scalar field to gravity.

Let us summarize the results: We have constructed an accelerated phase in Jordan frame via

a conformal transformation of an ekpyrotic phase in Einstein frame. Conflation is driven by a

scalar field with a “wrong” kinetic sign in a negative potential. Moreover, we have included

an Einstein frame bounce and modified the ekpyrotic potential leading to a graceful exit of the

conflationary phase and stabilization of the scalar field in Jordan frame.
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D. Perturbations in Jordan Frame

Under a conformal transformation, the physics does not change – it is just a change of frame.

Thus, metric perturbations are una↵ected by a conformal transformation, as we will see now. Our

starting point was an ekpyrotic phase in Einstein frame, and we already know the behavior of

the quantum fluctuations during ekpyrosis. The adiabatic scalar perturbations and the tensor

fluctuations obtain a blue spectrum and are not amplified, c.f. Chapter 4 F.

Nearly scale-invariant entropy perturbations can be produced via an introduction of a second scalar

field. We have discussed the entropic mechanism in Chapter 5C and the non-minimal entropic

mechanism in Chapter 8.

Thus the conflationary phase, which was constructed in the previous chapter, has unique prop-

erties. During the accelerated expansion large adiabatic quantum fluctuations are absent. This

is very di↵erent compared to inflation, where large quantum fluctuations lead to slow-roll eternal

inflation – questioning the predictability of inflation, see Chapter 7.

In the following, we will calculate the adiabatic scalar perturbations and tensor perturbations in

the Jordan frame directly. Furthermore, we will add a second scalar field with a non-minimal

kinetic coupling. The entropy perturbations produced via the non-minimal entropic mechanism

will be calculated afterward.

1. Perturbations for a Single Scalar Field

In Chapter 9 we have calculated the first order perturbations of the Galileon scalar field. The

second order action of the comoving curvature perturbation R in Jordan frame is given by [165]:

S
(2)

J =
1

2

Z
d4x

a2J�
02

�
HJ + �

0
�

�
2

(6⇠ � 1)
⇣
R02

J � (@iRJ)
2

⌘
, (13.58)

where we have assumed F (�) = ⇠�2 and 0 denotes the derivative w.r.t to conformal time ⌧ , which

is equal in both frames as dt/a = dtJ/aJ . From (13.58) the ghost-free condition is given by

⇠ >
1

6
, (13.59)

which is the same condition on ⇠ calculated in Eq. (13.24). As usual we define

z2J =
a2J�

02
�
HJ + �

0
�

�
2

(6⇠ � 1) , (13.60)
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in order to canonically normalize the scalar perturbations via vJk = zJRJ . The equations of

motion for the mode functions in Fourier space has the usual form:

v00Jk + (k2 � z00J
zJ

)vJk = 0 . (13.61)

The function zJ is however di↵erent compared to the standard single scalar field case containing

contributions of the scalar field in the denominator. This term is present due to the non-minimal

coupling to gravity and thus di↵ers from the standard inflationary solution. Using the background

solutions obtained in Chapter 13B 2, we can calculate the various terms in the equations of motions

(13.61). The ekpyrotic scaling solution transformed to Jordan frame is given by

aJ(tJ) = a
0

✓
tJ
tJ,0

◆ 1�✏�
✏(1��)

, �(tJ) =
1p
⇠

✓
tJ
tJ,0

◆ �
1��

. (13.62)

Integrating d⌧ = dtJ/aJ yields the relationship between physical Jordan frame time and conformal

time:

tJ ⇠ (�⌧)
✏(1��)
✏�1 . (13.63)

Thus we obtain zJ(⌧) ⇠ (�⌧)1/(✏�1), which leads to

z00J
zJ

=
2� ✏

(✏� 1)2
1

⌧2
. (13.64)

In the far past the modes are deep in the horizon and thus we impose Bunch-Davies boundary

conditions. The solution (up to a phase) reads

vJ =

r
�⇡
4
⌧H(1)

⌫ (�k⌧) , (13.65)

where H
(1)

⌫ is a Hankel function of the first kind with index ⌫. The resulting spectral index is given

by

ns � 1 = 3� 2⌫ = 2�
����
✏� 3

✏� 1

���� , (13.66)

where ✏ corresponds to the Einstein frame equation of state parameter during ekpyrosis. Since

✏ > 3, the (blue) spectrum is always between 3 < ns < 4,. The spectrum is identical to the

adiabatic perturbations during ekpyrosis, cf. Eq. (4.114).

This is an expected result: the adiabatic perturbations have the same spectrum in both frames.

The adiabatic fluctuations during conflation stay quantum and the run-away behavior of slow-roll

eternal inflation is absent in this model.
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The second order action of the tensor pertubations �Jij is given by (9.27) :

SJ = �1

8

Z
d4xF (�)

p
gJgµ⌫J @µ�Jij@⌫�Jij . (13.67)

Introducing z2T = F (�)a2J , we obtain the canonically normalized perturbations h✏ij ⌘ zT�ij , where

✏ij is the polarization tensor. The mode equation in Fourier space reads:

h00
k +

✓
k2 � z00T

zT

◆
hk = 0 . (13.68)

Again the non-minimal coupling to gravity leads to a di↵erent zT compared to a usual inflationary

model in Einstein frame. From zT / �aJ / (�⌧)1/(✏�1) we find zT / zJ . This leads to a spectral

index of

nT = 3�
����
✏� 3

✏� 1

���� , (13.69)

which again coincides with the ekpyrotic model in Einstein frame in Eq. (4.116). In the limit

where |k⌧ | ⌧ 1, which corresponds to the late-time/large-scale limit, the adiabatic scalar and

tensor mode functions behave as [19, 174]

v , h / ⇡

22⌫�(⌫)�(⌫ + 1)
(�k⌧)1�1/✏ � i(�k⌧)1/✏ . (13.70)

Given that ✏ > 3, this implies that as (�k⌧) ! 0 neither the scalar nor the tensor perturbations

are amplified. There are no primordial gravitational waves during conflation. Moreover, the fact

that the adiabatic scalar perturbations stay quantum results in the absence of eternal inflation.

There are no large curvature perturbations, which would prolong the conflationary phase creating

an infinite amount of pocket universes. We have indeed constructed an early universe model, which

incorporates an accelerated phase without the runaway behavior of eternal inflation.
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2. Non-Minimal Entropic Mechanism in Jordan Frame

A second scalar field has to be added in order to produce nearly scale-invariant entropy pertur-

bations during ekpyrosis. In the following, we will discuss the transformation of the non-minimal

entropic mechanism cf. Chapter 8 in the Jordan frame. The Einstein frame action takes the

following form:

S =

Z
d4x

p
�g


1

2
R � 1

2
gµ⌫@µ�@⌫�� 1

2
gµ⌫e�b�@µ�@⌫�+ V

0

e�c�

�
. (13.71)

The scalar field follows the scaling solution �, while the second scalar field � is constant. The

transformation to Jordan frame is analogous to the calculations in Chapter 13B 2 with the addition

of the non-minimally coupled kinetic term. The action is Jordan frame yields:

SJ =

Z
d4x

p
�gJ


⇠�2

RJ

2
+

1

2
gµ⌫J @µ�@⌫�� 1

2
gµ⌫J ⇠

�c�b
�c �

2�c�2b
�c @µ�@⌫�+ VJ,0�

4� 2
�

�
. (13.72)

Note that the non-minimal kinetic coupling e�b� in the Einstein frame becomes a power-law cou-

pling in Jordan frame – analogous to the transformation of the potential. The equations of motion

for the two fields in Jordan frame are given by

⇤�+
�c � b

�c
⇠

�c�b
�c �

�c�2b
�c gµ⌫J @µ�@⌫�� 1

2
F (�),�RJ + V (�)J,� = 0, (13.73)

⇤�� 2�c � 2b

�c

�0

�
�0 � 2a2J⇠

b��c
�c �

2b�2�c
�c V (�)J,� = 0. (13.74)

The potential is again �-independent leading to a background solution � = const. from Eq. (13.74).

Thus the equation of motion for � coincides with the single scalar field case. The equations of

motion for the linear entropy perturbations �� in Fourier space are

��00 +

✓
2
a0J
aJ

+ n
�0

�

◆
��0 + k2�� = 0 , (13.75)

where n = 2�c�2b
�c . We again introduce the canonically normalized variable

vJs = aJ�
n
2 �� . (13.76)

Using the background equation of motion,

�00 + 2
a0

a
�0 + 6⇠

a00

a
�� a2VJ,� = 0, (13.77)

we obtain the mode equation in Fourier space:

v00Js +


k2 +

n

2

�02

�2

� n2

4

�02

�2

+
a00J
aJ

(3n⇠ � 1)� a2J
n

2

VJ,�

�

�
vJs = 0 . (13.78)
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We can now plug in the background solution (13.62) into the mode equation leading to

v00Js +

✓
k2 � 1

(✏� 1)2⌧2
⇥
2� (4 + 3�)✏+ (2 + 3�+�2)✏2

⇤◆
vJs = 0, (13.79)

where � = b
c � 1, such that n = 2����1

� . The solution is given in form of a Hankel function with

⌫ =
3

2
+
�✏

✏� 1
, (13.80)

which translates into a spectral index

ns � 1 = 3� 2⌫ = �2�
✏

(✏� 1)
. (13.81)

The mode equation is independent of �. Moreover, the spectral index coincides with the spectral

index in Einstein frame (8.21), [31]. This confirms that the spectrum of the entropy perturbations

is indeed frame-independent.

E. Summary

We have introduced the idea of conflation based on a scalar-tensor theory of gravity, which con-

flates ideas of inflation and ekpyrosis. An accelerated expanding phase was constructed in Jordan

frame via a conformal transformation of an ekpyrotic model in Einstein frame. During conflation,

the universe is driven towards homogeneity and flatness due to the accelerated expansion, like

in inflation. However, adiabatic and tensor perturbations are not amplified, just as in ekpyrotic

models. Conflation may be seen as being complementary to anamorphic models, in which nearly

scale-invariant curvature perturbations are created in a contracting universe.

Since adiabatic fluctuations are not amplified, conflation does not lead to eternal inflation and

a multiverse. This also remains true in a two-field model: The nearly scale-invariant entropy

perturbations have no impact on the background dynamics – even a large entropy perturbation

cannot prolong the conflationary phase. Consequently, there is no multiverse and the associated

problems are absent.

Another important feature is the construction of accelerated expanding backgrounds via a negative

potential. It will be interesting to see if a conflationary model can arise from supergravity or string

theory, where negative potentials and non-minimal couplings to gravity arise naturally.
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A modification to the conflationary model had to be made in order to obtain a graceful exit

– in analogy to the ekpyrotic phase which naturally leads to a big crunch. Moreover, the scalar

field should stabilize eventually, such that the non-minimal coupling to gravity becomes minimal

leading to essentially equivalent frames. We have implemented a non-singular bounce in Einstein

frame and added a dip in the shifted potential, which led to a graceful exit and stabilization of the

scalar field.

It would be interesting to see if a graceful exit can be obtained by means of other mechanisms. In

further studies, one could investigate the space-time singularity (where the e↵ective gravitational

constant also becomes infinite), the initial conditions of conflation and the requirements on the

conflationary phase in order to solve the big bang puzzles. An interesting avenue is the implemen-

tation of a cyclic model in Einstein frame and the properties of the corresponding model in Jordan

frame. Such a cyclic embedding could address some of the above open questions.
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14. DISCUSSION

Models of the early universe have to explain the initial conditions which led to the universe

we observe today. In particular, we would like to understand the spatial flatness, isotropy, and

homogeneity on large scales as well as the existence of small temperature anisotropies in the Cosmic

Microwave Background, which led to the structure formation in the universe.

The Planck satellite measured cosmological parameters to very high precision which deepened

our understanding of the universe. However, the Planck data also challenges the viability of vari-

ous early universe models. While the simplest inflationary models – namely m2�2–potentials and

exponential potentials – are basically ruled out, the ekpyrotic scenario typically predicts sizable

non-Gaussian corrections.

In this thesis, we have reviewed the development of ekpyrotic models, non-singular bounce models,

the evolution of adiabatic and entropy perturbations to first and second order, and the conversion

process.

The entropic mechanism produces nearly scale-invariant entropy perturbations due to the pres-

ence of an unstable transverse direction in the potential. Entropy perturbations source curvature

perturbations already during ekpyrosis at second order in perturbations and the intrinsic non-

Gaussian corrections depend on the steepness and symmetry of the two-field potential. The final

non-Gaussianities after a kinetic conversion from entropy to curvature perturbations before the

bounce can be parametrized by the phenomenological formula [35]

fNL ⇡ 3

2

p
✏

3

+ 5, (14.1)

where 
3

is O(1) and zero for a symmetric potential.

In this thesis, we have proposed two di↵erent approaches in order to explain the production

of small non-Gaussian correction in the ekpyrotic scenario.

• The non-minimal entropic mechanism

• A kinetic conversion after a non-singular bounce
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In the non-minimal entropic mechanism, a non-minimal coupling in the kinetic term of the second

scalar field is introduced. This model is stable and does not su↵er from initial condition problems.

Due to the non-minimal coupling, nearly scale-invariant entropy perturbations are produced. We

have shown in [31], that the intrinsic non-Gaussian corrections are precisely zero in this model lead-

ing to overall small non-Gaussian corrections, which are in agreement with the Planck data. The

non-minimal entropic mechanism was also generalized including more general kinetic couplings.

Moreover, an analysis of the non-minimal entropic mechanism to third order in perturbations

also confirmed vanishing intrinsic contributions, and the final amplitude of the trispectrum was

calculated [104].

Any early universe model with a contracting phase needs to incorporate a viable bounce phase.

The di�culty of tracing the evolution of the background and the perturbations during a singular

bounce led to the development of various non-singular bounce models. A non-singular bounce

can be achieved by a violation of the null energy condition, which usually introduced a variety

of pathologies. Most of the pathologies are under control due to the development of non-singular

bounce models like the ghost condensate and Galileon bounces. New non-singular bounce models

have been proposed due to the recent no-go theorems for Cubic Galileon theories. We have to see

if these new theories can produce completely stable bouncing cosmologies.

It has been shown in [8] that the small scale perturbations causing the gradient instabilities during

the ghost condensate phase lie outside of the validity of the e↵ective field theoretical description.

Thus the non-singular bounce model is healthy in the e↵ective field theoretical description, and

we can calculate the evolution of curvature and entropy perturbations through the bounce.

The presence of a potential during the non-singular ghost condensate bounce increases the di↵er-

ence in scale between the cut-o↵ of the e↵ective field theoretical description and the background.

This was the motivation for the analysis of a conversion phase after the bounce. In [9] we have cal-

culated the evolution of entropy perturbations through the non-singular bounce and the subsequent

evolution during the kinetic conversion phase. The first and second order entropy perturbations

can grow substantially during the bounce, especially in the presence of an unstable potential.

Moreover, during the kinetic phase after (and maybe before) the bounce the entropy perturbations

grow logarithmically. This growth was previously often ignored, but it can be significant if the

kinetic phase lasts long enough.
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The analysis of a kinetic conversion after the bounce led to very interesting new insights. Due

to the growth of the first and second order entropy perturbations during the bounce, the main

contribution to the final non-Gaussian corrections is the conversion phase. The intrinsic non-

Gaussianities are suppressed due to the evolution of the entropy perturbations during the bounce

and kinetic phase. The phenomenological formula (14.1) does not apply in the case of a kinetic

conversion after the bounce, and thus the entropic mechanism can produce small non-Gaussian

correction in agreement with observations. The growth of the entropy perturbations also has the

consequence that the ekpyrotic potential does not have to become as deep. The energy scale can

be up to two orders of magnitude below the GUT scale, which implies a healthier e↵ective field

theoretical description.

The final non-Gaussian corrections depend highly on the conversion phase and are thus model-

dependent. In the cyclic ekpyrotic model, there is a natural explanation for the existence of a

repulsive potential. However, it is not clear how such a potential arises in the context of non-

singular bounce models. It has to be seen if a non-singular bounce model with a subsequent

conversion can be obtained from a fundamental theory. Nevertheless, we can deduce general prop-

erties of the conversion phase: the kinetic conversion phase has to be smooth and e↵ective.

During a smooth and e↵ective conversion, a large amount of entropy perturbations are converted to

curvature perturbations, which leads to more structure formation and generally small non-Gaussian

corrections. Non-smooth, rapid and ine↵ective conversions lead to less structure formation and

large non-Gaussianities, which are incompatible with observations.

Slow-roll eternal inflation challenges the inflationary paradigm. Eternal inflation creates an infi-

nite amount of pocket universes with di↵erent physical properties. However, without a probability

measure, one should not trust the “predictions” of inflation. In this thesis, we have proposed

a model of the early universe, which is accelerating while creating the initial conditions of the

universe without the runaway behavior of eternal inflation [10]. This scalar-tensor theory con-

flates/combines ideas of inflation and ekpyrosis. The perturbations behave like during ekpyrosis:

there are no large adiabatic fluctuations, and the entropy perturbations are nearly scale-invariant

and nearly Gaussian.
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An interesting aspect of this model is the existence of a negative potential. The embedding of

inflationary models in a string theory setting is challenged by a variety of problems. A hard task is

the construction of a stable de Sitter vacuum. A variety of mechanisms have been proposed in order

to obtain a positive potential. In the conflationary model, we have found an accelerating solution

incorporating a negative potential. It has to be seen if such a model can arise in supergravity or

string theory, where negative potentials and non-minimal couplings to gravity arise naturally.

We would like to note, that a modification to the conflationary model had to be made in order

to allow for a graceful exit. The shift in the potential was introduced to obtain a positive value

of the potential at the end of conflation. Moreover, we have added a non-singular bounce in

Einstein frame, such that both frames become essentially the same after the stabilization of the

field. However, there are possibly other mechanisms allowing for a graceful exit, which have to be

explored in the future.

It is (nearly) impossible to falsify the inflationary paradigm. The vast amount of inflationary

models allow for almost any prediction or feature compatible with observations. The supposed

measurement of primordial gravitational waves by the BICEP2 team led to the development of

dozens of inflationary models within weeks, which “explained” the tension between the BICEP2

and Planck data. The question if a model fitting the data is natural within the inflationary

paradigm has to be asked. We have covered challenges for the plateau-models of inflations,

which belong to the class of inflationary models in agreement with observations. One has to see if

these problems can be solved and if future experiments can measure primordial gravitational waves.

The question of naturalness or simplicity also has to be addressed in the context of ekpyrotic

models. In the new ekpyrotic scenario, the presence of an unstable transverse direction leads to

restrictions on the initial conditions of ekpyrosis. The phoenix universe, where the new ekpyrotic

model is embedded into a cyclic description, suggests a natural selection principle. Only certain

regions with the right initial conditions successfully continue the cycle, while other regions do not.

In this thesis, we have incorporated a non-singular bouncing cosmology in order to track the

evolution of the background and the perturbations through the bounce. We hope to find a cyclic

embedding of such a non-singular bounce model in future work in order to resolve the initial condi-

tions problem in the new ekpyrotic scenario. We have also argued that the naturally large intrinsic

non-Gaussian corrections in the new ekpyrotic model are actually suppressed if the conversion

phase occurs after a non-singular bounce.
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The non-minimal entropic mechanism is at the moment the best ekpyrotic model. The non-

minimal kinetic coupling between the two scalar fields can be seen as a drawback of the model.

However, non-minimally kinetic couplings appear naturally in string theory, and it would be

exciting if the non-minimal entropic mechanism could be obtained from a fundamental theory.

The non-minimal entropic mechanism produces small, but non-zero non-Gaussian correction. The

predictions of the non-minimal entropic mechanism are:

�5 . fNL. +5 , (14.2)

gNL ⇠ O(�102) or O(�103) , (14.3)

r ⇡ 0 , (14.4)

↵s ⇠ O(�103) . (14.5)

These predictions are fairly distinct from single-field inflationary models. The absence of primordial

gravitational waves, the non-zero non-Gaussian corrections, the negative trispectrum parameter

gNL and the generally larger running ↵s are features which can be tested in the not too distant

future. The search for primordial gravitational waves via ground- and space-based experiments

could reduce the bounds on the tensor-to-scalar ratio to r ⇠ O(10�3) [175]. A detection of pri-

mordial gravitational waves would definitely rule out current ekpyrotic models.

The most exciting upcoming surveys, which will measure the Large Scale Structure in the uni-

verse are EUCLID [176] and SKA [156]. The Square Kilometer Array (SKA) will measure the

Large Scale Structure for very large volumes and redshifts up to z ⇠ 3. The measurement of the

redshifted 21cm line of neutral hydrogen allows for a precise redshift determination leading to a

3D mapping of the Large Scale Structure (note that the CMB is a 2D mapping on the sky). It is

expected that the SKA survey will operate in 2025, which will help to understand, e.g., the evolu-

tion of the Large Scale Structure and the evolution of Dark Energy. Moreover, measurements of

the galaxy power spectrum and the dark matter power spectrum will further constrain primordial

non-Gaussianity [155, 156]. This means within the next ten to twenty years the errors on fNL will

reduce to �(fNL) ⇡ 1. Measurements of non-Gaussian signatures together with tighter bounds

on gNL with indications for negative values could favor the non-minimal entropic mechanism as a

possible model of the early universe.
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In conclusion, the development of fairly healthy non-singular bounce models in the e↵ective

field theoretical description and the understanding of general properties of the conversion phase

improved the ekpyrotic scenario. In this thesis, we have resolved the tension between ekpyrotic

predictions and observations by demonstrating how nearly Gaussian curvature perturbations can

be created in ekpyrotic cosmologies. The ekpyrotic scenario is thus a viable model of the early

universe.
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