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Dipartimento di Fisica, Università di Cagliari, and INFN sezione di Cagliari, Cittadella
Universitaria 09042 Monserrato, Italy

Emanuele Berti

E-mail: berti@phy.olemiss.edu

Department of Physics and Astronomy, The University of Mississippi, University, MS
38677-1848, USA
Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA

Vitor Cardoso

E-mail: vitor.cardoso@ist.utl.pt

Department of Physics and Astronomy, The University of Mississippi, University, MS
38677-1848, USA
Centro Multidisciplinar de Astrof́ısica - CENTRA, Dept. de F́ısica, Instituto Superior
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Abstract. We discuss how the emission of gravitational waves by ultra-compact objects can
be qualitatively different depending on the presence or absence of an event horizon. Our case
study are nonrotating thin-shell gravastars. The model has an infinitely thin shell with finite
tension separating a de Sitter interior and a Schwarzschild exterior. The shell can be located
arbitrarily close to the would-be event horizon, so a gravastar might seem indistinguishable
from a black hole when tests are only performed on its external metric. We discuss gravitational
perturbations of thin-shell gravastars and show that the spectrum of axial and polar quasinormal
modes is completely different from that of a Schwarzschild black hole, even in the limit when the
surface redshift becomes infinite. Furthermore, we study gravitational wave emission from the
quasi-circular extreme mass ratio inspiral of compact objects of mass m0 into massive thin-shell
gravastars of mass M � m0. The power radiated in gravitational waves during the inspiral
shows distinctive peaks corresponding to the excitation of the polar oscillation modes of the
gravastar. The frequency of these peaks usually depends on the equation of state, but for ultra-
compact gravastars it typically lies within the optimal sensitivity bandwidth of LISA, providing
a very specific signature of the horizonless nature of the central object.
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1. Introduction
One of the most elusive properties characterizing black holes (BHs) in general relativity is the
presence of an event horizon. Evidence supporting the astrophysical reality of BHs necessarily
depends on direct or indirect observations of an event horizon in astrophysical ultra-compact
objects [1, 2]. Astrophysical observations usually probe the weak-gravity region, i.e. the
space-time far away from the event horizon. The most precise measurements so far indicates
the presence of a “dark object” of mass M ' (4.1 ± 0.6) × 106M� in our own galaxy [3].
Recent millimeter and infrared observations of Sagittarius A∗, the compact source of radio,
infrared and X-ray emission at the center of the Milky Way, infer an intrinsic diameter of 37+16

−10
microarcseconds, which is even smaller than the expected apparent size of the event horizon of
the presumed BH [4]. Traditional electromagnetic astronomy can at best yield lower limits on
the gravitational redshift corresponding to hypothetical surfaces replacing the event horizon, and
indeed some hold the view that an observational proof of the existence of event horizons based
on electromagnetic observations is basically impossible (but see [1, 2, 5] for different viewpoints
on this delicate issue). For this reason studies of the gravitational radiation signatures of event
horizons, possibly probing the strong-gravity region, are necessary to confirm or disprove the
BH paradigm [5, 6].

Gravitational-wave detectors offer a new way of observing BHs, complementing the wealth
of information from present electromagnetic observations [7, 8]. A promising approach consists
in probing the structure of compact objects which is encoded in their free oscillation spectrum,
i.e. in their quasinormal modes (QNMs) [9]. Measuring several free oscillation frequencies,
and comparing them with the QNM spectrum of BHs, provides a promising method to discern
between BHs and horizonless objects [10]. These tests are one of the main goals of the Laser
Interferometer Space Antenna (LISA) and they require a signal-to-noise ratio which may be
even achieved by advanced Earth-based gravitational-wave interferometers [11, 12, 13].

In this paper we review some recent results in testing possible alternatives to the BH
paradigm, following Refs. [14, 15]. We discuss compact objects whose external metric is virtually
identical to that of a Schwarzschild BH, but which do not possess an event horizon. We focus on
one of the simplest exemplars of such ultracompact horizonless objects: nonrotating thin-shell
gravastars [16, 17]. We investigate their complete linearized dynamics, generalizing previous
results [17, 18] by considering the thin-shell as a dynamical entity. Gravitational perturbations
are generically discontinuous across the shell, due to a finite tension, and suitable matching
conditions between interior and exterior perturbations have to be imposed [14]. By applying
this general formalism, we discuss the QNM spectrum of a thin-shell gravastar. The spectrum
of both axial and polar modes is complex and profoundly different from that of a BH, mainly
because of the different boundary conditions at the surface replacing the event horizon. In
particular polar modes depend on the equation of state (EOS) of matter on the shell and they
can be used to discern between different gravastar models.

Furthermore polar modes can be excited during the inspiral of compact objects in quasi-
circular orbits around stars [19, 20]. Thus differences between the QNM spectrum of an
horizonless object and that of a BH correspond to a different gravitational signal emitted by
the orbiting object because of the resonant scattering of gravitational radiation. We discuss
gravitational-wave emission from the quasi-circular extreme mass ratio inspiral of compact
objects of mass m0 into massive thin-shell gravastars of mass M � m0 [15]. As expected, the
power radiated in gravitational waves during the inspiral shows distinctive peaks corresponding
to the excitation of the polar oscillation modes of the gravastar.

The plan of the paper is as follows. In Sec. 2 we study free gravitational perturbations of
a thin-shell gravastar, discussing matching conditions across the shell and reviewing the QNM
spectrum. In Sec. 3 we discuss how the perturbation functions outside the shell (as obtained
by the matching conditions) can be used to compute the gravitational-wave emission from the
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quasi-circular extreme mass ratio inspiral of a point-like mass into a massive thin-shell gravastar.
We conclude by discussing results and possible extensions of our work.

2. Gravitational perturbations of thin-shell gravastars
Let us start with the equilibrium model, which is a static thin-shell gravastar described by the
metric [16, 17]

ds2
0 = −f(r)dt2 +

1
h(r)

dr2 + r2(dθ2 + sin2 θdϕ2) , (1)

with

f(r) =


h = 1 − 2M

r
, r > a ,

α h = α

(
1 − 8πρ

3
r2

)
, r < a ,

(2)

where M is the gravastar mass and ρ ≡ 3M/(4πa3) is the “energy density” of the interior region.
Junction conditions require the induced metric to be continuous across the shell, at r = a. This
implies that also f(r) has to be continuous at r = a, i.e. α = 1. The metric above reduces to
the de Sitter metric in the region r < a and to the Schwarzschild metric for r > a. On the shell
we must impose Israel’s junction conditions [21] between the extrinsic curvature Kij and the
surface-energy tensor Sij , i.e. [[Kij ]] = 8π [[Sij − γijS/2]]. Here and in the following we adopt
the same index notation as in Ref. [14]. The symbol “[[...]]” denotes the “jump” of a given
quantity across the shell, i.e. the difference between the limits of the corresponding quantity as
r → a±. The surface energy Σ and surface tension Θ are then related to discontinuities in the
metric coefficients as [16]

[[
√

h]] = −4πaΣ ,
[[

f ′√h/f
]]

= 8π(Σ − 2Θ) . (3)

The QNM spectrum of thin-shell gravastars has been studied in great detail in Ref. [14] using
the Regge-Wheeler (RW) gauge [22] (see also [17] for the axial QNM spectrum of five-layer
gravastar models). In the RW gauge, perturbations split into two independent sets: two axial
functions, usually called h0 and h1 and four polar functions, H0 ,H1 ,H2 ,K. Axial and polar
perturbations can be recast into two single functions, the so-called RW and Zerilli functions
respectively. Here we briefly review the method developed in [14], which consists in matching
perturbations in the de Sitter interior with perturbations in the Schwarzschild exterior. The
matching procedure is performed by using Israel’s junction conditions.

In the de Sitter interior, both the RW and Zerilli functions are described by the following
analytical solution of the linearized equations [14]

Ψin = rl+1

(
1 − C

( r

2M

)2
)−i 2Mω

2
√

C

F

(
l + 2 − i2Mω√

C

2
,
1 + l − i2Mω√

C

2
, l +

3
2
, C
( r

2M

)2
)

, (4)

where C ≡ (2M/a)3 = 8µ3 and F (a, b, c, z) is the hypergeometric function. In obtaining the
solution above, one must require regularity at the center (r = 0). For a thin-shell gravastar the
surface stress-energy tensor Θ is, in general, nonvanishing. This implies that the perturbation
functions are discontinuous across the shell. For axial perturbations these matching conditions
read [14]

[[h0]] = 0 ,
[[√

hh1

]]
= 0 . (5)

For a thin-shell gravastar Eqs. (5) just imply continuity of the RW function across the shell.
In the polar case, the matching of interior and exterior perturbations at the gravastar shell
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requires a more careful analysis because (unlike axial perturbations) polar perturbations of
spherical objects actually induce motions of matter, which in turn couples back to gravitational
perturbations. In Ref. [14] the following relations for the jump of the polar metric functions
across the shell have been derived:

[[K]] = 0 , [[K ′]] = −8π
δΣ√
f(a)

,

2M

a2
[[H]] − [[H f ′]] − 2f(a)[[H ′]] + 4iω[[H1]] = 16π

√
f(a)(1 + 2v2

s)δΣ . (6)

The parameter vs depends on the EOS on the thin shell, Θ = Θ(Σ):

v2
s ≡ −

(
∂Θ
∂Σ

)
Σ=0

, (7)

and it has the dimensions of a velocity. Roughly speaking, this parameter is related to the sound
speed on the shell, although it is not necessarly bounded by 0 < v2

s < 1 [23].
From Eq. (6) it is clear that polar QNMs (unlike axial QNMs) should depend on vs, i.e. on

the equation of state on the shell. This is a new feature that does not arise in the case of axial
perturbations [17]. The situation closely parallels the ordinary stellar perturbation problem
[24, 25]. The role played by the equation of state in the dynamical stability of gravastars against
spherically symmetric perturbations was discussed in Ref. [16]. Our calculations extend that
investigation to nonradial oscillations (see also Ref. [26] for a discussion on stability of thin-
shells surrounding a BH).
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Figure 1. Left: Some axial (continuous lines) and polar (dashed lines) QNMs of a thin-shell gravastar with
v2

s = 0.1 and l = 2 as the compactness µ varies. Numbers next to the polar and axial modes refer to the overtone
index N (N = 1 being the fundamental mode). Right: Tracks of the fundamental polar and axial modes for
different values of the “sound speed” parameter vs when v2

s > 0. Figures are taken from Ref. [14].

2.1. QNM Spectrum
Here we briefly review results obtained in Ref. [14] for the QNM spectrum of thin-shell gravastars.
We focus of l = 2 modes, although qualitatively similar results hold for l > 2. Axial and polar
QNM frequencies have been computed by using the junction conditions (5) and (6) and the
continued fraction method [27]. Some QNMs of a static thin-shell gravastar are shown in Fig. 1.
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The QNM spectrum is qualitatively similar to that of ‘ordinary” ultracompact stars (compare
Fig. 1 with those in Refs. [28, 29]). For numerical calculations we first choose to keep vs fixed
and to vary µ from some starting value. In the left panel of Fig. 1 we chose v2

s = 0.1, and we
computed the QNM spectrum for µ = 0.4 by using the continued fraction method. We then
follow each QNM as µ → 0 and as µ → 1/2 to produce the tracks displayed in the figure. The
imaginary part of both axial modes (continuous lines) and polar modes (dashed lines) becomes
very small in the “Schwarzschild limit”, i.e. as µ → 1/2. Of course this method does not
allow to find QNMs which do not exist when µ = 0.4, but otherwise exist for smaller (or larger)
compactness. Thus we choose different starting values of µ, in order to cover the entire spectrum.

Numerical results are in excellent agreement with previous results [17, 18] for axial modes. A
new feature emerging in our case is that, unlike axial modes, polar modes depend on the EOS. In
the right panel of Fig. 1 we show the tracks described in the complex plane by the fundamental
polar and axial mode as we vary the compactness parameter µ and for different positive values
of v2

s . Although not shown, when v2
s < 0 polar modes are qualitatively similar to the axial ones.

One of the most important conclusions is that neither axial nor polar modes of a gravastar
reduce to the QNMs of a Schwarzschild BH when µ → 1/2. In this limit, the real part of most
modes is extremely small (much smaller than the Schwarzschild result, 2MωR ' 0.74734 for the
fundamental mode with l = 2 [7]). Indeed, the QNM spectrum is drastically different from the
QNM spectrum of a Schwarzschild BH: when µ → 1/2 the entire spectrum seems to collapse
towards the origin. This is in sharp contrast with the Schwarzschild BH case and it can be used
to tell very compact gravastars from BHs [17].

The dependence of polar QNMs on the EOS as shown in the right panel of Fig. 1 is quite
interesting. For small values of the sound speed parameter (v2

s ≤ 0.5 or so) the modes show an
ordinary behavior, which is similar to that (not shown) for v2

s < 0 and to that for axial modes.
However for larger values modes have a peculiar behavior, until a critical value vcrit ' 1.007 is
reached and, for vs > vcrit, the QNM behavior changes quite drastically.
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Figure 2. Real (left) and imaginary parts (right) of the fundamental polar mode for different values of the
equation of state parameter vs. For each (µ,vs) a couple of mode exists, which is shown with the same linestyle.
The horizontal line in the left panel corresponds to twice the orbital frequency of a particle in circular orbit at the
innermost stable circular orbit (ISCO): only modes below the line can be excited during a quasicircular inspiral
(cfr. Sect. 3). Figures are taken from Ref. [14].

Even more interestingly, when v2
s > 0 the QNM spectrum has a very rich and complex

structure. A second family of QNMs with very small imaginary part appears. In the left
(right) panel of Fig. 2 we show the real (imaginary) part of both the first and the second
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family of modes, for some selected values of vs. The second family of QNMs has very long
damping, and in this sense it is similar to the s-modes of “ordinary” ultra-compact stars
discussed by Chandrasekhar and Ferrari [25], although for gravastars these modes appear for
small compactness µ < µcrit(vs, l). These mode are suitable to be computed also by the resonant
method [25, 30] whose results are in excellent agreement with the continued fraction method.
The imaginary part of modes with v2

s & 0.84 rapidly approaches zero at some finite compactness
µ while the real part of the modes stays finite. This suggests an instability at high vs, as shown
by the critical threshold in Fig. 3. In the region below the solid line, thin-shell gravastars may
undergo an instability to nonradial perturbations with l = 2. Moreover the dashed line in Fig. 3
corresponds to the critical line above which the second famility of modes disappears (both the
real and imaginary part of modes tend to zero).

Figure 3. Significant thresholds in the (µ, v2
s) plane. Numerical results suggest that the region below the black

solid line corresponds to unstable thin-shell gravastar models. The second family of modes exists in the region of
parameter below the red dashed line (see the text for a detailed discussion). Figures are taken from Ref. [14].

3. Gravitational-wav emission from extreme mass ratio inspirals
Here we consider a physical process where the GW energy spectrum has distinct signatures
depending on whether the dynamics involve a thin-shell gravastar or a BH. We review recent
results in Ref. [15], in which the gravitational emission by a particle with mass m0 orbiting a
horizonless object with mass M � m0 has been computed in detail (see Refs. [19, 20, 31] for
related works considering neutron stars). We consider a particle orbiting a thin-shell gravastar
in a circular orbit with radius R0. This should be sufficient to show that gravitational radiation
from extreme mass ratio inspirals around horizonless objects is drastically different from the BH
case. Similar arguments can presumably be made for more complex (or contrived) gravastar
models and for eccentric orbits.

The time-averaged energy-flux can be shown to be [19, 15]

ĖR(mωK) ≡
〈

dEGW

dt

〉
=
∑
lm

m2
0

4π(mωK)2
|Âlm(mωK)|2 ≡

∑
lm

ĖR
lm. (8)

where the dot indicates differentiation with respect to proper time, E is the energy per unit
mass of the particle, ωK =

√
M/R3

0 denotes the Keplerian orbital frequency and (l, m) are
the usual quantum numbers. As discussed in detail in Ref. [19], the function Âlm(ω) is related
to the amplitude of the wave at radial infinity apart a Dirac delta contribution, δ(ω − mωK),
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and it can be computed in terms of two independent solutions Ψ 0
lm and Ψ 1

lm of the following
inhomogeneous Bardeen-Press-Teukolsky (BPT) equation [32, 33]{

∆2 d

dr

[
1
∆

d

dr

]
+

[(
r4ω2 + 4i(r − M)r2ω

)
∆

− 8iωr − 2n

]}
Ψlm(ω, r) = −Tlm(ω, r), (9)

satisfying suitable boundary conditions [31]. In the equation above ∆ = r2−2Mr and the source
term Tlm(ω, r) describes the point mass m0 moving on a given orbit around the gravastar. In
order to evaluate Ψ 0

lm and Ψ 1
lm, the BPT equation is integrated with an adaptive Runge-Kutta

method starting with initial conditions on the gravastar shell obtained from the Zerilli and RW
functions (as well as their derivatives), which can be constructed from the interior perturbations,
Eq. (4), by using the junction conditions Eqs. (5)-(6) (see [15] for details).

The energy flux emitted in gravitational waves ĖR, normalized by the Newtonian quadrupole
energy flux ĖN , reads

P (v) ≡ ĖR

ĖN
=
∑
lm

5
128π

M2

(mωK)2v10
|Âlm(mωK)|2 . (10)

where ĖN = 32m2
0v

10/(5M2), v = (MωK)1/3 = p−1/2 being the orbital velocity and p = R0/M
the semilatus rectum of the circular orbit. The normalized energy flux (10) can be computed
up to v ≤ 1/

√
6 ' 0.408, which corresponds to the innermost stable circular orbit (ISCO) at

R0 = 6M . The instability of circular orbits with R0 < 6M sets an upper bound on the velocity
of the point mass. If the radius of the gravastar is larger than the ISCO, i.e. µ < 0.1666, the
upper limit in v is smaller. From the analytical form of the stress-energy tensor in Eq. (9) (see
also [19]) it is easy to see that, for each assigned l, a mode of the star is excited when the orbital
frequency satisfies the resonant condition

mωK = ωQNM , (11)

where ωQNM is the QNM frequency. Thus we expect sharp peaks to appear at the values of
v corresponding to the excitation of the gravastar QNMs for different values of the angular
momentum parameter l. This offers an intriguing signature of the absence of event horizons,
since the emitted power for a Schwarzschild BH does not show any peak. In fact one can easily
check that the frequency of the fundamental QNM of a Schwarzschild BH is higher than the
critical value mωK corresponding to a particle at the ISCO [31]. In other words, Schwarzschild
QNMs can only be excited by particles plunging into the BH, while the QNMs of a gravastar
can be excited during the inspiral.

3.1. Comparing the gravitational flux of a thin-shell gravastar and of a black hole
Our purpose here is to compare and contrast the energy flux from particles orbiting Schwarzschild
BHs to the energy flux from particles orbiting thin-shell gravastars. The gravitational emission
of a Schwarzschild BH perturbed by a particle has been studied analytically and numerically in
great detail for both circular and eccentric orbits [34, 35, 36]. We consider thin-shell gravastars
as a case study for generic compact horizonless objects, but several different models can be
explored (see e.g. [16, 17]). However we expect the qualitative results of our analysis to apply
quite in general, since the main difference in the gravitational-wave emission of a compact object
comes from the different boundary conditions at the “surface” replacing the BH event horizon,
rather than from the specific nature of this surface.

The numerical study in Ref. [15] covers the whole range in compactness (0 < µ < 0.5) and
it mainly focuses on the most physical range of the EOS parameter (0 < v2

s < 1), although the
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superluminal case (v2
s > 1) and models with v2

s < 0 were also investigated. For each value of
the gravastar parameters (µ, v2

s) we integrate the perturbations equations for a point-like object
of mass m0 moving on a circular orbit of radius R0 with orbital velocity v and we compute the
energy flux (10) by using the BPT formalism, as previously discussed.

As shown in Section 2, in the Schwarzschild limit µ → 0.5 the real part of the QNM frequency
tends to zero and to a very good approximation it is independent of vs [14]. In order for a QNM
to be excited by particles in circular orbits, the QNM frequency must be small enough to allow
for the resonant condition (11).
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Figure 4. Left: Dominant (l = 2) contribution to the energy flux for very high compactness and v2
s = 0.1

(but when µ ∼ 0.5 resonances are almost independent on v2
s). Right: Energy flux (summed up to l = 6) of the

gravitational radiation emitted by a small mass orbiting thin-shell gravastars with v2
s = 0.1 and different values

of µ, compared with the flux for a Schwarzschild BH, as a function of the particle orbital velocity v. In the inset
a typical resonance is plotted.The comparison between numerical data and a simple harmonic oscillator [20] is
shown. Figures are taken from Ref. [15].

In Fig. 4 we show the energy flux for a gravastar. In the left panel the dominant (l = 2)
contribution at very high compactness is shown. The frequencies of the lowest QNMs of a
Schwarzschild BH are higher than those of an ultra-compact gravastar, and cannot be excited
by particles in stable circular orbits. For this reason the power emitted by a BH (on the scale of
the plot) appear almost as a flat line. Resonance peaks do appear for gravastars, as expected,
when ωQNM = 2ωK. Notice that these resonances are extremely narrow and they would get
even narrower for l > 2. This is because the imaginary part of the excited modes is extremely
small (2MωI ∼ 10−7, 10−10 for l = 2 and l = 3, respectively) in the high-compactness limit
µ → 0.5, leading to a corresponding decrease in the quality factor of the oscillations. Whether
these resonances are actually detectable is an interesting question for LISA data analysis [31].

In Table 1 we list the expected excited modes, as extracted from the QNM spectrum for
different values of µ corresponding to ultra-compact gravastars. Both for l = 2 and for l = 3
the typical frequencies lay within the optimal sensitivity bandwidth of LISA, providing a very
specific signature of the horizonless nature of the central object. A simple fit of the resonant
frequency as a function of the compactness suggests that LISA has the potential to reveal solid
surfaces replacing horizons even when these solid surfaces are extremely close to the location of
the Schwarzschild horizon [15].

The rich structure of the QNM spectrum allows gravastars which are as compact as neutron
stars to leave a signature on the gravitational signal emitted by small, inspiralling compact
objects. In the right panel of Fig. 4 we plot the normalized energy flux P (v) as a function of the
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Table 1. Values of the compactness µ, angular momentum quantum number l, QNM frequency, orbital
velocity v and gravitational-wave frequency νGW of the circular orbits which correspond to the excitation of the
fundamental QNM of the gravastar for the given multipole. The Keplerian frequency is given in mHz and rescaled
to the typical gravastar mass M6 = 106M� that would be targeted by LISA [15].

µ l MωQNM v (M6/M)νGW (mHz)
0.49997 2 0.1339 0.4061 4.328

3 0.1508 0.3691 4.873
0.49998 2 0.1276 0.3996 4.123

3 0.1429 0.3625 4.616
0.49999 2 0.1180 0.3893 3.812

3 0.1310 0.3521 4.232
0.499995 2 0.1096 0.3799 3.543
0.499999 2 0.0941 0.3610 3.041

orbital velocity for gravastar models with v2
s = 0.1 and compactness in the range 0.1 . µ . 0.25,

as well as for a Schwarzschild BH. The total flux was computed by adding all multipoles (|m| ≤ l)
and by truncating the multipolar expansion at l = 6. Roughly speaking, a truncation at l = 6
produces a relative error (in the non-resonant regime) of order p−5 = v10 [19, 36]. When
µ & 0.166 the ISCO is located outside the gravastar and the plots extend up to the ISCO
velocity vISCO ' 0.408 (corresponding to R0 = 6M). For less compact gravastars the energy
flux is truncated at the velocity corresponding to the location of the shell. When l = 2 and
v2
s = 0.1 no QNMs can be excited for 0.21 ≤ µ ≤ 0.49997. In this compactness range the energy

flux emitted by either the gravastar or the BH is mostly due to the orbital motion and it only
depends on the compactness of the central object.

In the inset of Fig. 4 we zoom around a typical resonance as function of the Keplerian orbital
frequency MωK of the particle for µ = 0.2 and l = 2 (dashed green line). A fit using the
simple harmonic oscillator model of Ref. [20] (red line) reproduces the qualitative features of
both resonance and antiresonance.

The complex structure of the spectrum for values of µ smaller than about 0.2 is best
understood by considering the real and imaginary parts of the weakly damped QNM frequencies
of a gravastar as plotted in the left and right panels of Fig. 2, respectively. Only QNMs whose
real part lies below the horizontal line in the left panel (corresponding to twice the ISCO orbital
frequency for a particle in circular orbit) can be excited. The range of µ over which QNMs can
be excited depends on the speed of sound parameter vs and on l.

4. Conclusions
We have discussed in detail gravitational perturbations of a thin-shell gravastar, a model which is
representative of generic horizonless ultra-compact objects. We have studied the QNM spectrum
and showed that both axial and polar modes are drastically different from Schwarzschild QNMs,
even when the compactness approaches the Schwarzschild value, µ → 0.5. In particular polar
modes depend on the equation of state of matter on the thin-shell and they may be used to
discern between different gravastar models. More importantly, polar modes can be excited
by small masses orbiting the thin-shell gravastar. We have discussed point-like particles in
circular orbit and we have shown that for some orbital frequencies the energy flux in GWs
shows resonances. The existence of resonant frequencies depends both on the compactness and
on the equation of state on the shell. However, in the most interesting case of ultra-compact
gravastars (µ → 0.5) resonant frequencies are independent on the EOS and above a certain
critical compactness resonances always exist. Interestingly enough, typical resonant frequencies
lay within the optimal sensitivity bandwidth of LISA, providing a very specific signature of the
horizonless nature of the central object. It would be interesting to generalize our method to
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more realistic models for horizonless objects [16, 17], possibly in connection with both circular
and eccentric inspirals. Another interesting and nontrivial development is the generalization to
the case of rotating gravastars [37, 38].
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