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Abstract
In order to test the process of Optical Stochastic Cooling

(OSC) at the Cornell Electron Storage Ring (CESR), we plan

to use helical wigglers as both the pickup and kicker, since

the required radiation wavelength of 800nm can be achieved

with lower magnetic field strength in helical as compared to

planar wigglers. In order to simulate the lattice with such

wigglers, it is useful to be able to model the effect of the

wiggler on the optics without resorting to direct tracking,

which is time-consuming and so ill-suited for the repeated

evaluations necessary in running an optimizer. We generate

a Taylor map to third order for this element using analytic

field expressions, enabling easy determination of the effects

of such an element on linear and nonlinear optics. This

model is compared with the results of direct tracking and

shows good agreement.

INTRODUCTION
Optical stochastic cooling (OSC) is a proposed method to

cool particle beams by using the radiation they emit in one

wiggler to provide an appropriate energy kick in a second

wiggler. Details of the process and plans for a test at the

Cornell Electron Storage Ring (CESR) are available in [1].

One important consideration is the wiggler to use. The wave-

length of radiation provided by a planar wiggler is given by

λ = λw

2γ2
(1 + K2/2), where λw is the wiggler period, γ is the

relativistic factor, and K ≡ eBλw

2πmc is the undulator parameter,

with B being the peak magnetic field, e the electron charge,
and m the electron mass. For a helical wiggler, the formula

becomes λ = λw

2γ2
(1 + K2). We plan to perform this test

with 1 GeV electrons due to difficulties in operating CESR

at lower energy. We would also like to obtain radiation at

800 nm, since high-quality light optics are readily available

at this wavelength and the radiation may be amplified with a

Titanium-sapphire amplifier [2]. In order to meet both these

requirements, we need a long wiggler period, and/or a large

undulator parameter. Comparing the formulas for the planar

and helical wigglers, one can see that the helical wiggler

provides the same radiation wavelength with a
√
2 reduction

in the strength of the field, reducing the wiggler’s effects

on beam optics and emittance. Moreover, using a helical

wiggler increases the damping provided to the electrons by

the OSC process, since the dot product of the radiation’s

electric field with the electron’s velocity is roughly constant

along the wiggler, rather than oscillating. We have therefore

decided to use helical wigglers with 14 periods of length

λ = 32.5 cm and peak field B = 0.139 T, giving an undual-
tor parameter K = 4.23.
In designing a lattice for testing OSC at CESR, it is neces-

sary to optimize various aspects of the linear and nonlinear
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optics in order to obtain significant cooling rates and ac-

ceptances from the OSC process while maintaining good

Courant-Snyder parameters and a dynamic aperture which

enables us to inject and store a beam. For these repeated op-

timizations of our lattice, it is useful to have a helical wiggler

model which is fast to track through and provides accurate

measures of optics through third order so that we can extract

amplitude-dependent tune shifts in addition to the effects

on the linear optics. At the cost of not having precise infor-

mation within the wiggler itself, we may compute a map

translating initial phase space coordinates of a particle at the

wiggler entrance to coordinates at its exit. This map may be

formed by dividing the wiggler into thin slices, obtaining

maps for these individually, and then concatenating them.

For this work, we have used analytic formulas for the field

inside a helical undualtor as provided by [3]. This method

can be trivially extended to the case where analytic fields are

obtained by other methods, as in [4]. Although sufficiently

small steps in creating the map will give a result which is

near-symplectic, a final symplectification of the map may

be performed if desired. This initial work to obtain the map

only needs to be completed once for a given wiggler model,

and subsequent tracking with it is very fast, as we need only

multiply the initial particle phase space coordinates by the

terms in the map and sum the results.

CREATION OF THE MAP
We require an analytic expression for the magnetic fields

in the accelerator element in question. For our case, we use

the expansion of the field of a helical wiggler as presented in

[3]. This methodwill also work with Cartesian expansions as

generated by the methods of [4], which permits the inclusion

of fringe fields and matching sections.

In moving through a wiggler, the ideal particle will move

off-axis under the influence of the magnetic field. For what

follows, we will use x, vx , etc. to refer to the deviation of a
particle from the oscillatory reference trajectory. We first

note that the change in the horizontal velocity vx of a particle

of charge q, mass m and relativistic gamma factor γ after
travelling a distance Δz through some magnetic field is

Δvx = q(y′Bz − By)/(mγ)Δz (1)

with similar expressions for Δvy and Δvz . We are often

interested in the momenta x ′ and y′, which have been nor-
malized by vz , and so can write

Δx ′ = Δvx/vz − Δvzvx/v2z (2)

so that
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Δx ′ = [q(y′Bz − By)/(mγvz) (3)

− vxq(x ′By − y′Bx)/(mγv2z )]Δz

Δy′ = [q(Bx − x ′Bz)/(mγvz) (4)

− vyq(x ′By − y′Bx)/(mγv2z )]Δz

These may be Taylor expanded in terms of the initial

x, y, x ′, y′, and γ, noting that vz =
√
v2 − v2x − v2y , with v

and γ constant. Combining these expansions with the simple
ones for the position coordinates (Δx = x ′Δz) enables us
to find the elements of the mapping elements Mi j,Ti jk , and
Ai jkm, defined so that the final phase space coordinates xi
are mapped from the initial ones by xi = Mi j xj +Ti jk xj xk +
Ai jkmxj xk xm, with repeated indices summed over. These
matrix elements may be evaluated along the ideal orbit of

the particle, with slices Δz chosen sufficiently thin to satisfy
our desired precision.

Having obtained the map for two portions of the wiggler

(portion 1 preceding portion 2), they may be concatenated

as follows:

Mi j =M2
ikM1

k j (5)

Ti jk =M2
imT1

mjk + T2
imnM1

mjM
1
nk (6)

Ai jkm =M2
inA1njkm + A2inpsM1

njM
1
pkM1

sm (7)

+ T2
inpT1

njkM1
pm + T2

inpM1
njT

1
pkm

In this manner, one may proceed from maps for individual

slices of the wiggler to a map of the wiggler as a whole. Due

to the periodicity of the element, we may simplify further by

obtaining themap for one period in detail, then concatenating

it with itself to construct the whole.

RESULTS
For testing this map, we use a first-order Runge-Kutta

method to directly track 1 GeV electrons with various offsets

in the initial phase space coordinates through one period of

a wiggler with period length 32.5 cm and peak field 0.139 T
and fit the final phase space coordinates to polynomial func-

tions of the initial ones. The results are shown in Table 1,

and indicate good agreement between the direct tracking

and our map. The listed errors only take into account errors

from the fit to the tracking results, which are expected to

dominate errors in the tracking itself. We acknowledge an

asymmetry between the x and y terms in both the map and

tracking. However, the expected symmetry is broken by the

wiggler phase; the field at the front of the wiggler must point

in some direction. Introducing a π/2 phase shift switches
the identities of the x and y terms, as expected.

Table 1: Comparison of Select Terms from Map and Fit to

Direct Tracking. Lengths are in meters and angles in radians.

Errors are only from the fit to the tracking results.

Term Map Tracking

M11 1.00 1.00 ± 2 × 10−7
M12 0.325 0.325 ± 2 × 10−7
M13 1.90 × 10−5 1.88 × 10−5 ± 10−9
M14 −4.76 × 10−6 −4.76 × 10−6 ± 3 × 10−12
T111 8.96 × 10−3 9.07 × 10−3 ± 10−4
T122 5.69 × 10−4 5.78 × 10−4 ± 2 × 10−4
T133 0.122 0.122 ± 8 × 10−7
T144 1.33 × 10−4 1.34 × 10−4 ± 2 × 10−9
A1111 −8.09 × 10−3 0.314 ± 0.3
A1222 −4.35 × 10−5 0.271 ± 0.3
A1333 2.35 × 10−3 2.68 × 10−3 ± 10−3
A1444 −3.31 × 10−5 −3.46 × 10−5 ± 5 × 10−6
M21 −2.83 × 10−4 −2.83 × 10−4 ± 2 × 10−10
M22 1.00 1.00 ± 2 × 10−7
M23 4.15 × 10−9 4.03 × 10−9 ± 6 × 10−11
M24 −4.83 × 10−5 −4.81 × 10−5 ± 4 × 10−11
T211 1.27 × 10−6 1.49 × 10−6 ± 2 × 10−7
T222 −2.91 × 10−3 −3.13 × 10−3 ± 10−4
T233 1.73 × 10−5 1.72 × 10−5 ± 4 × 10−8
T244 −3.97 × 10−2 −3.96 × 10−2 ± 3 × 10−8
A2111 −5.03 × 10−2 −4.99 × 10−2 ± 3 × 10−4
A2222 −4.30 × 10−4 0.402 ± 0.3
A2333 2.97 × 10−6 9.00 × 10−6 ± 8 × 10−5
A2444 −1.02 × 10−3 −1.01 × 10−3 ± 5 × 10−5
M31 1.90 × 10−5 1.88 × 10−5 ± 2 × 10−11
M32 4.76 × 10−6 4.76 × 10−6 ± 2 × 10−12
M33 1.00 1.00 ± 2 × 10−7
M34 0.325 0.325 ± 2 × 10−7
T311 −6.15 × 10−7 −5.07 × 10−7 ± 2 × 10−8
T322 1.52 × 10−3 1.52 × 10−3 ± 2 × 10−9
T333 1.16 × 10−6 −7.07 × 10−11 ± 2 × 10−4
T344 6.85 × 10−4 5.78 × 10−4 ± 2 × 10−4
A3111 4.40 × 10−3 4.37 × 10−3 ± 3 × 10−5
A3222 2.65 × 10−5 2.36 × 10−5 ± 3 × 10−6
A3333 −8.09 × 10−3 0.113 ± 0.3
A3444 −1.35 × 10−5 −0.271 ± 0.3
M41 −4.15 × 10−9 −4.54 × 10−9 ± 2 × 10−13
M42 1.03 × 10−5 1.05 × 10−5 ± 9 × 10−12
M43 −2.83 × 10−4 −2.83 × 10−4 ± 2 × 10−4
M44 1.00 1.00 ± 7 × 10−5
T411 1.73 × 10−6 1.89 × 10−6 ± 2 × 10−10
T422 4.21 × 10−3 4.20 × 10−3 ± 7 × 10−9
T433 1.04 × 10−5 1.08 × 10−5 ± 2 × 10−7
T444 −4.21 × 10−3 −4.26 × 10−3 ± 10−4
A4111 −7.44 × 10−7 −7.42 × 10−7 ± 3 × 10−7
A4222 −1.49 × 10−4 −1.44 × 10−4 ± 10−5
A4333 −4.31 × 10−2 −4.25 × 10−2 ± 3 × 10−4
A4444 −5.86 × 10−4 −0.347 ± 0.3
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We also compared the predictions of direct tracking with

tracking using the Taylor map. Plots showing the shift in y′

due to initial offsets in the various phase-space coordinates

are shown as Fig. 1 - 3. The worst offender gives a deviation

of less than one nrad for a one mm initial offset.

Figure 1: Change in final value of y′ as a function of initial
x offset.

Figure 2: Change in final value of y′ as a function of initial
y offset.

DISCUSSION
We may compare the terms obtained in this manner with

those which appear for a planar wiggler [5]. In the pla-

nar case, we expect that the M21 term should be equal to

−(qB)2L
2P2 for a particle of momentum P and charge q moving

through a wiggler with peak field B and length L, and that the
A2111 term should be equal to −(qBkz )2L

3P2 if the wiggler has

wavenumber kz . For our values, these predictions become
M21 = −2.83 × 10−4m−1 and A2111 = −7.06 × 10−2m−3.
Evidently, the helical wiggler has the same quadrupolar fo-

cusing as the planar version. However, the octupolar terms

differ, although it is interesting that the sum in quadrature

of A2111 and A4333 comes close to the planar wiggler value.

Figure 3: Change in final value of y′ as a function of initial
x ′ offset.

RADIATION INTEGRALS
In order to obtain accurate values for the emittance and

damping rates, it is necessary to also characterize the energy

losses in the wiggler. Fortunately, an examination of the

formulas provided in [6] shows that, in the limit as the un-

dulator parameter K → ∞, the energy losses in the wiggler
approach those for a simple dipole. For our case, with K > 4,
this approximation is better than 1%. It is then sufficient

for us to simply evaluate the radiation integrals using the

formulas provided in [7], noting that the radius of curvature

ρ = P
eB for a particle of momentum P.

CONCLUSIONS
We have generated a map for a helical wiggler using con-

catenation of Taylor maps for individual slices, enabling fast

tracking through a lattice without the need to perform any

sort of tracking within the wiggler at run-time. This map

agrees well with the results of direct tracking, inspiring con-

fidence in the results obtained using it. The procedure for

doing this may be extended to any element where analytic

expressions for the fields have been obtained.

FUTURE WORK
So far, we have focused on tracking particles ignoring

edge effects; once a design for the wiggler is finalized, we

can incorporate edge effects into our map. Additionally,

we can apply symplectification techniques at the end of the

process to obtain a perfectly symplectic map.
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