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¢ Abstract

In order to test the process of Optical Stochastic Cooling
< (OSC) at the Cornell Electron Storage Ring (CESR), we plan
o to use helical wigglers as both the pickup and kicker, since
E the required radiation wavelength of 800nm can be achieved
@with lower magnetic field strength in helical as compared to
g 2 planar wigglers. In order to simulate the lattice with such
3 w1gg1ers it is useful to be able to model the effect of the
2 w1ggler on the optics without resorting to direct tracking,
2 £ which is time-consuming and so ill-suited for the repeated
.2 evaluations necessary in running an optimizer. We generate
2a Taylor map to third order for this element using analytic
§ field expressions, enabling easy determination of the effects
£ of such an element on linear and nonlinear optics. This
g model is compared with the results of direct tracking and
£ shows good agreement.
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INTRODUCTION

Optical stochastic cooling (OSC) is a proposed method to
£ cool particle beams by using the radiation they emit in one
B wiggler to provide an appropriate energy kick in a second
S wiggler. Details of the process and plans for a test at the
2 Cornell Electron Storage Ring (CESR) are available in [1].
Z One important consideration is the wiggler to use. The wave-
S length of radiation provided by a planar wiggler is given by
< A= (1 + K?/2), where A, is the wiggler period, y is the

o relat1v1st1c factor, and K = ;B 4w s the undulator parameter,

& with B being the peak magnetlc field, e the electron charge,
©and m the electron mass. For a helical wiggler, the formula
8 becomes 1 = (l + K?). We plan to perform this test
“ with 1 GeV electrons due to difficulties in operating CESR
< at lower energy. We would also like to obtain radiation at
E 800 nm, since high-quality light optics are readily available
© at this wavelength and the radiation may be amplified with a
% Titanium-sapphire amplifier [2]. In order to meet both these
f requirements, we need a long wiggler period, and/or a large
2 undulator parameter. Comparing the formulas for the planar
E and helical wigglers, one can see that the helical wiggler
2 o provides the same radiation wavelength with a V2 reduction
;_ in the strength of the field, reducing the wiggler’s effects
'g on beam optics and emittance. Moreover, using a helical
—8 wiggler increases the damping provided to the electrons by
5 % the OSC process, since the dot product of the radiation’s
-o electric field with the electron’s velocity is roughly constant
g along the wiggler, rather than oscillating. We have therefore
~ decided to use helical wigglers with 14 periods of length
£1=325cmand peak field B = 0.139 T, giving an undual-
Z tor parameter K = 4.23.

In designing a lattice for testing OSC at CESR, it is neces-
& sary to optimize various aspects of the linear and nonlinear
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optics in order to obtain significant cooling rates and ac-
ceptances from the OSC process while maintaining good
Courant-Snyder parameters and a dynamic aperture which
enables us to inject and store a beam. For these repeated op-
timizations of our lattice, it is useful to have a helical wiggler
model which is fast to track through and provides accurate
measures of optics through third order so that we can extract
amplitude-dependent tune shifts in addition to the effects
on the linear optics. At the cost of not having precise infor-
mation within the wiggler itself, we may compute a map
translating initial phase space coordinates of a particle at the
wiggler entrance to coordinates at its exit. This map may be
formed by dividing the wiggler into thin slices, obtaining
maps for these individually, and then concatenating them.
For this work, we have used analytic formulas for the field
inside a helical undualtor as provided by [3]. This method
can be trivially extended to the case where analytic fields are
obtained by other methods, as in [4]. Although sufficiently
small steps in creating the map will give a result which is
near-symplectic, a final symplectification of the map may
be performed if desired. This initial work to obtain the map
only needs to be completed once for a given wiggler model,
and subsequent tracking with it is very fast, as we need only
multiply the initial particle phase space coordinates by the
terms in the map and sum the results.

CREATION OF THE MAP

We require an analytic expression for the magnetic fields
in the accelerator element in question. For our case, we use
the expansion of the field of a helical wiggler as presented in
[3]. This method will also work with Cartesian expansions as
generated by the methods of [4], which permits the inclusion
of fringe fields and matching sections.

In moving through a wiggler, the ideal particle will move
off-axis under the influence of the magnetic field. For what
follows, we will use x, vy, etc. to refer to the deviation of a
particle from the oscillatory reference trajectory. We first
note that the change in the horizontal velocity v, of a particle
of charge ¢, mass m and relativistic gamma factor y after
travelling a distance Az through some magnetic field is

Avy = q(y'B; - By)/(my)Az (1

with similar expressions for Av, and Av,. We are often
interested in the momenta x” and y’, which have been nor-
malized by v,, and so can write

Ax" = Avy /v, — szvx/vg 2)

so that
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Ax" = [q(y'B; — By)/(myv;) 3)
—vyq(x'By — y'By) [(myv})]Az

Ay" = [q(Bx — x"B;)/(myv) “4)
- Vy‘](x/By - y'Bx)/(mWZz)]Az

These may be Taylor expanded in terms of the initial

. _ 2 2 .
x,y,x’,y’, and vy, noting that v, = /vZ —vZ — vy, with v

and y constant. Combining these expansions with the simple
ones for the position coordinates (Ax = x’Az) enables us
to find the elements of the mapping elements M;;,T;;x, and
Ajjkm, defined so that the final phase space coordinates x;
are mapped from the initial ones by x; = M;;x; +T;jxx;xi +
AjjkmXj Xy Xm, with repeated indices summed over. These
matrix elements may be evaluated along the ideal orbit of
the particle, with slices Az chosen sufficiently thin to satisfy
our desired precision.

Having obtained the map for two portions of the wiggler
(portion 1 preceding portion 2), they may be concatenated
as follows:

2 1
Mij =My M,; ®)
2 7l 2 1 1
Tijk :Mimejk + TimanjMnk (6)
2 41 2 1 1 1
Aijkm =MinAnjkm + AinpsManpkMsm (7)
2 1 1 2 1 1
+ TiinnjkMpm + Tiananpkm

In this manner, one may proceed from maps for individual
slices of the wiggler to a map of the wiggler as a whole. Due
to the periodicity of the element, we may simplify further by
obtaining the map for one period in detail, then concatenating
it with itself to construct the whole.

RESULTS

For testing this map, we use a first-order Runge-Kutta
method to directly track 1 GeV electrons with various offsets
in the initial phase space coordinates through one period of
a wiggler with period length 32.5 cm and peak field 0.139 T
and fit the final phase space coordinates to polynomial func-
tions of the initial ones. The results are shown in Table 1,
and indicate good agreement between the direct tracking
and our map. The listed errors only take into account errors
from the fit to the tracking results, which are expected to
dominate errors in the tracking itself. We acknowledge an
asymmetry between the x and y terms in both the map and
tracking. However, the expected symmetry is broken by the
wiggler phase; the field at the front of the wiggler must point
in some direction. Introducing a 7r/2 phase shift switches
the identities of the x and y terms, as expected.
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Table 1: Comparison of Select Terms from Map and Fit to
Direct Tracking. Lengths are in meters and angles in radians.
Errors are only from the fit to the tracking results.
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Term Map Tracking E:
My, 1.00 1.00 £2 % 1077 S
My, 0.325 0.325 +2x 1077 2
M3 1.90 x 1073 1.88x 107 +107° 5
My,  —-476x107% —4.76x 107 +3 x 10712 =
Tin 8.96x 1073 9.07 x 103 + 107 e
Ti»n 569x107% 578x 1074 +2x 107 ¥
T3 0.122 0.122 £ 8 x 1077 £
Tiaa  1.33x107%  1.34x10%+2x107° P
A -8.09x107° 0.314+0.3 2
Ay —4.35%x107° 0.271 +0.3 g
Az 2.35x%1073 2.68x 1073 £1073 E
Aas —331x107°  -3.46x107°+5%x107° E
M>  -283x107% -283x10*+2x10710 =
My 1.00 1.00 £2 x 1077 g
M>3 415%x107° 4.03x10° +6x 107! g
My,  —483x107° —481x107°+4x10™ 1 z
Do 1.27 x 1076 1.49% 1070 +2x 1077 =
Ty —291x1073  —3.13x 1073 + 107 E
Tr33 1.73 x 107 1.72x 1075 +4 x 1078 ;
Ty —3.97x1072  -3.96x1072£3x107® =
Ay —5.03x1072 —4.99x 1072 +3x 107 S
Apy  —430x107* 0.402 +0.3 =
Ansz  297x107% 9.00x107°+8x 107 g
Asas  —-1.02x1073  —1.01x 103 £5x 1075 Z
Ms; 1.90x 107  1.88x107° +2x 107! Y
My 476x10°  4.76%x 1076 +2 x 10712 <
Ms; 1.00 1.00 +2 x 1077 )
My 0.325 0.325+2 x 1077 S
T —6.15x107  —5.07x107+2x108 €
T 152x107%  1.52x1073+2x 1070 g
T333 1.16 x 107 -7.07x 107" +2x 107* 8
Tys  685x107%  578x107*+2x 107 2
Az 4.40x 1073 437%x 103 +£3%x 1073 =
Apy  265x107°  236x107° +3x10°° 3
Az —8.09 x 1073 0.113+0.3 b
Asgas  —135x107° ~0.271+0.3 =
My —4.15x107° —454x107°+2x 10713 b
My 1.03x107°  1.05x 107 £9x 107" E
My -283x107*  -283x10%+2x10™* 2
Mus 1.00 1.00 7 x 1075 5
Tan 1.73x10°  1.89x 1076 +2x 10710 E
Tyy  421x1073 420%x1073 +£7x107° 3
Tuz3 1.04x 1073 1.08 x 107> +2x 1077 §
Tyy — —4.21x1073 -4.26x 1073 + 1074 2
Agin —744x1077  —7.42x107 £3x 1077 g
App —149x107%  -1.44%x107*+107° E
Aszzz —431x1072  —425x102+£3x10™* &
Agsas  —5.86x107% -0.347+0.3 £
g

5

g

WEPTS102

3357 @®



10th Int. Partile Accelerator Conf.
5 ISBN: 978-3-95450-208-0

We also compared the predictions of direct tracking with
tracking using the Taylor map. Plots showing the shift in y’
-Z due to initial offsets in the various phase-space coordinates
are shown as Fig. 1 - 3. The worst offender gives a deviation
2 of less than one nrad for a one mm initial offset.
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Figure 1: Change in final value of y” as a function of initial
x offset.
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8 Figure 2: Change in final value of y’ as a function of initial
2y offset.
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g DISCUSSION

S

5 We may compare the terms obtained in this manner with
Ethose which appear for a planar wiggler [5]. In the pla-
P nar case, we expect that the M, term should be equal to
2 2

- (qZBP)ZL for a particle of momentum P and charge ¢ moving

g,through awiggler with peak field B and length L, and that the
E Ap111 term should be equal to —(qt;szz)zL if the wiggler has
8 wavenumber k,. For our values, these predictions become
aMy = 283 x 10*m™! and Ay ;) = =7.06 x 1072m™>.
= Evidently, the helical wiggler has the same quadrupolar fo-
o cusing as the planar version. However, the octupolar terms
E differ, although it is interesting that the sum in quadrature
% of A111 and A4333 comes close to the planar wiggler value.
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x’ offset.

RADIATION INTEGRALS

In order to obtain accurate values for the emittance and
damping rates, it is necessary to also characterize the energy
losses in the wiggler. Fortunately, an examination of the
formulas provided in [6] shows that, in the limit as the un-
dulator parameter K — oo, the energy losses in the wiggler
approach those for a simple dipole. For our case, with K > 4,
this approximation is better than 1%. It is then sufficient
for us to simply evaluate the radiation integrals using the
formulas provided in [7], noting that the radius of curvature
p= e% for a particle of momentum P.

CONCLUSIONS

We have generated a map for a helical wiggler using con-
catenation of Taylor maps for individual slices, enabling fast
tracking through a lattice without the need to perform any
sort of tracking within the wiggler at run-time. This map
agrees well with the results of direct tracking, inspiring con-
fidence in the results obtained using it. The procedure for
doing this may be extended to any element where analytic
expressions for the fields have been obtained.

FUTURE WORK

So far, we have focused on tracking particles ignoring
edge effects; once a design for the wiggler is finalized, we
can incorporate edge effects into our map. Additionally,
we can apply symplectification techniques at the end of the
process to obtain a perfectly symplectic map.
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