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Abstract. In this thesis we make small steps towards the ambitious

goal of a microphysical understanding of the inflationary era in the early

universe. We identify three key questions that require a proper under-

standing of the ultraviolet limit of the theory: i) the delicate flatness

of the inflaton potential, ii) the possibility of observable gravitational

waves and iii) a large non-Gaussianity of the primordial density fluctu-

ations. We study these fundamental aspects of inflation in the context

of string theory.

V (φ): In the first half of the thesis, we give the first fully explicit

derivation of the potential for warped D-brane inflation. The analy-

sis exposes the eta-problem, relates effective parameters in the inflaton

Lagrangian to microscopic string theory input, and illustrates impor-

tant correlations between the parameters of the potential. We show

that compactification constraints significantly limit the possibility of

obtaining inflationary solutions in these scenarios.

r: All inflationary models that predict an observable gravitational

wave signal require that the inflaton field evolves over a super-Planckian

range. In the second half of the thesis, we derive a microscopic bound

on the maximal inflaton field variation for D-brane models. The bound

arises from the compact nature of the extra dimensions and puts a

strong upper limit on the gravitational wave signal.

fNL: Finally, we explain that our limit on the field range also

significantly constrains the parameter space of Dirac-Born-Infeld infla-

tion. In this case the bound strongly restricts the possibility of a large

non-Gaussianity in the primordial fluctuations.
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CHAPTER 1

Introduction

1. Prelude

The classical Big Bang theory is incomplete. In particular, it fails to explain

why the universe is so smooth on scales that according to the Big Bang picture have

never been in causal contact. Cosmological inflation solves this ‘horizon problem’

in an elegantly simple way [83]. By hypothesizing an early period of accelerated

expansion the puzzle is solved. In addition, quantum mechanical fluctuations during

inflation are stretched to cosmic scales. Inflation therefore explains both the large-

scale homogeneity of the universe as well as the small primordial fluctuations that

are the seeds for large-scale structure.

However, a period of prolonged inflation requires that the early universe was

dominated by a form of energy whose density stays nearly constant as the universe

expands. This is unlike any physical phenomenon we have ever probed in terrestrial

experiments. The energy densities we are familiar with all dilute with expansion. We

are therefore led to ask: What is the physics of inflation? Can inflation be embedded

in a theory of fundamental physics?

Cosmic inflation is thought to have occurred at extremely high energies (∼ 1015

GeV), far out of reach of terrestrial particle accelerators (∼ 103 GeV). Given that

the inflationary proposal requires a huge extrapolation of the known laws of physics,

it is not surprising that the physics governing this phase of rapid expansion is still

very uncertain. In the absence of a complete theory, a standard practice has been a

2



1. introduction 3

phenomenological approach where an effective potential V (φ) is postulated. Here φ

is an order parameter used to describe the change in the inflationary energy during

inflation. The requirement of slow evolution of the energy density puts constraints on

the shape of V (φ). Ultimately, however, V (φ) should be derived from a fundamental

theory. Since string theory is the leading candidate for a UV-completion of the

Standard Model that consistently unifies gauge and gravitational interactions, it is

natural to search in string theory for a realization of the inflationary paradigm. One

of the main results of this thesis is an explicit derivation of V (φ) for a specific model

of inflation in string theory.

2. From String Compactification to the Low Energy Lagrangian

In this thesis we will be mainly concerned with describing low energy physics from

a top down approach. Our philosophy is illustrated in Figure 1.

String Compactification

Inflationary 
Lagrangians

4d Lagrangians

Observables

branes
fluxes

moduli

geometry of M6

potential V(φ)

Figure 1. From String Compactification Data to Low Energy Lagrangian
to Inflation. String theory specifies discrete compactification data C (geom-
etry and topology of extra dimensions, amount and types of branes, amount
and types of fluxes, etc.) At low energies, four-dimensional physics is de-
scribed by an effective field theory with Lagrangian L. In this thesis we
study the correspondence between C and L and search for configurations
that allow inflationary solutions.
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Starting from a consistent string theory configuration with given compactification

data C the aim is to derive the low energy 4d Lagrangian L. The input C amounts to

specifying the compactification geometry, the background fluxes and the configuration

of branes. From this the effective four-dimensional physics can in principle be derived.

The parameters in the four-dimensional Lagrangians L will be defined in terms of the

more fundamental input parameters in C. In this thesis we will be investigating this

correspondence between the fundamental parameters of a string compactification and

the effective four-dimensional physics.

Generically, a given string compactification will not lead to low energy Lagrangians

that permit cosmological inflation to occur. An important application of string theory

to early universe cosmology therefore is to identify the subset of Lagrangians that do

allow inflationary solutions. A systematic study of the correspondence C → L should

ultimately allow us to determine which models of inflation are possible in string

theory. One can then search for signatures that are (un)natural or (un)characteristic

in string inflation. This is to be compared to the results for inflation in the context of

quantum field theory. It is hoped that inflationary models derived from string theory

are more restricted and therefore more predictive.

Making explicit the correspondence between higher-dimensional string theory in-

put and four-dimensional effective Lagrangians is highly non-trivial. To study in-

flation requires having exquisite control over classical and quantum contributions to

the inflaton potential. To compute the inflaton mass requires understanding gravity

corrections to the potential up to dimension six, δV = 1
M2

pl
O6. This requires knowing

gs and α′ corrections, backreaction effects, etc. Common approximations like the

classical limit, non-compact or large volume treatments and probe approximations

for D-branes are often insufficient. In addition, as we will see, the inflaton potential

often depends sensitively on the inclusion of moduli stabilization effects.
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In this thesis we focus on a specific, concrete model of inflation in string theory,

warped D-brane inflation, with the aim of understanding corrections to the inflaton

potential as fully and explicitly as possible. This gives substantial progress towards

an existence proof of an inflationary scenario derived from the microscopic compacti-

fication data of string theory.

3. Compactification Effects in D-brane Inflation

Warped D-brane inflation has received considerable theoretical attention as a

framework where explicit computations can be performed. In particular, the in-

flaton potential is in principle completely computable from string theory. In practice,

computing the D3-brane potential in sufficient detail to determine whether it can be

flat enough for inflation is very challenging.

Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) [95] es-

tablished that the Coulomb part of the brane-antibrane potential in a warped back-

ground is sufficiently flat for inflation. However, they also showed that compactifi-

cation effects induced by the stabilization of moduli fields lead to crucial correction

terms that generically spoil the delicate flatness of the potential and lead to an in-

carnation of the supergravity eta-problem. At the time of Ref. [95], not all terms of

the inflaton potential could be computed explicitly, but the hope was expressed that

the individual contributions to the inflaton mass could cancel in special fine-tuned

configurations. However, this expectation required certain assumptions about the

functional form of a specific unknown correction term which we call the ‘superpoten-

tial correction’. An explicit computation was needed to assess the real status of the

eta-problem for brane inflation models.

In this thesis we compute the missing term in the D3-brane potential [18]. We

are then equipped with the full inflaton Lagrangian. In fact, we find that the missing

term and hence the resulting potential is not of the functional form anticipated in

earlier work. This lends a new perspective to the brane inflation scenario. The
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warped throat

r

D3
D3

r0

0

V(r) bulk Calabi-Yau

Figure 2. The KKLMMT Scenario. The 3-branes are spacetime-filling
and therefore pointlike in the extra dimensions. The net force on the D3-
brane is associated with the inflaton potential.

inflaton potential can be flat only locally over a small range of values for the inflaton

field. Fine-tuned inflation is restricted to the region near an inflection point of the

potential.

An important aspect of our analysis is the consistent treatment of compactification

constraints. The higher-dimensional theory determines the following aspects of the

four-dimensional effective theory:

(1) Functional form of correction terms.

As mentioned above and as we will explain in much more detail below

(Chapters 5, 6 and 7), considerations of holomorphicity and the dimension-

ality of the compact space dictate the functional form of the superpotential

correction to the inflaton potential. This severely restricts the possibility of

fine-tuning the shape of the potential.

(2) Range of parameters in the Lagrangian.

After deriving the effective Lagrangian L from explicit string theory data

C it is important to remember the relation been the effective parameters

in the four-dimensional Lagrangian and the higher-dimensional input (this

in contrast to “string-inspired” models where this connection is unknown

or subsequently forgotten). In particular, more often than not there are
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important compactification constraints on the input parameters in C that

restrict the allowed values of the parameters in L.

For example, in Ref. [21] Liam McAllister and I derived that the range

of the canonical inflaton field in this scenario is bounded by the size of the

compactification manifold

∆φ

Mpl

<
2√
N
� 1 . (1.1)

(Here, N is a large integer defined below.) Any parameter in the Lagrangian

that relates to a coordinate on the compact space has to satisfy this con-

straint. In later chapters we explain the relevance of this bound for the

fine-tuning of slow-roll models of brane inflation, for the viability of DBI

inflation and for the amplitude of inflationary gravitational waves.

(3) Correlation of parameters in the Lagrangian.

Knowing the explicit relation between the parameters in L and the data

in C allows us to identify important correlations between the parameters in

L. The effective parameters often cannot be treated independently but are

linked by virtue of having a common origin in the compactification of the

higher-dimensional Lagrangian. This perspective is lost in string-inspired

models without an explicit derivation of the Lagrangian.

4. String Theory and Primordial Gravitational Waves

Some of the simplest inflationary models (V (φ) = m2φ2, λφ4, . . . ) have the inflaton

field evolving over a super-Planckian range, ∆φ > Mpl. In particular, this is required

of all models with an observable gravitational wave signal [122]. So far it has been

challenging to derive such ‘large-field’ models from an explicit string compactification.

It is therefore interesting to ask whether these models can arise from a consistent

string compactification C or if there are any fundamental obstructions. In the context
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of effective field theory with a Planck scale cutoff Λ = Mpl it has been argued [122] that

the effective potential V (φ) can only be reliably computed over a domain ∆φ < Mpl.

The question of the implications of super-Planckian field excursions is UV-sensitive

and therefore provides an interesting window into microphysics (while inflation usually

hides UV-physics!). In addition, there is the possibility that these considerations

might be forced on us by a future observation of a primordial gravitational wave

signal. To explain such a signal from a microscopic point of view will be an interesting

theoretical challenge. In this thesis we ask whether scalar fields in string theory can

have ∆φ > Mpl and controllably flat potential (i.e. V ′, V ′′ � V for ∆φ > Mpl).

5. Outline of the Thesis

The structure of this thesis is as follows:

� Part I: Review

In Chapters 2, 3 and 4 we review key aspects of cosmology and string theory. This

sets the stage for the discussion in the following chapters. However, readers with a

background in cosmology and string theory may skip directly to Chapter 5 without

loss of continuity.

Our review of the fundamentals of modern cosmology (Chapter 2) emphasizes

observations and the physical mysteries (dark matter, dark energy, and inflation) that

they reveal. After a discussion of the homogeneous background cosmology we present

an analysis of cosmological fluctuations. An understanding of these fluctuations is

essential for observational tests of the inflationary paradigm. We then describe the

dark energy puzzle and its impact on fundamental physics. Finally, we end our

discussion of cosmology with a review of basic elements of inflation and an assessment

of the future prospects for cosmological observations.

To preface our discussion of string cosmology we then give an overview of recent

techniques of moduli stabilization in string theory (Chapter 3). In particular, we

describe type IIB flux compactifications and the KKLT scenario. Finally, we review
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the Klebanov-Strassler (KS) geometry as an important example of a warped back-

ground space whose metric is explicitly known. The KS solution will be an important

background for our study of string inflation.

We end our review of string cosmology with an assessment of the state of the

‘art’ of inflation in string theory (Chapter 4). We describe warped D-brane inflation

in some detail, emphasizing the eta-problem and the DBI mechanism. Finally, we

summarize the progress and challenges of other models of string inflation.

� Part II: The Inflaton Potential V (φ)

Chapter 5 is a technical calculation of a crucial correction to the non-perturbative

superpotential. This correction depends on the position of any mobile D3-branes in

the compactification geometry and therefore forms a key ingredient for computing the

inflaton potential in warped D-brane inflation (Chapters 6 and 7). We explain how

the gauge theory effect can be translated into a geometric calculation via open-closed

string duality. In particular, we compute the D3-brane backreaction on the warped

volume of the four-cycle wrapped by a stack of D7-branes. We prove that the final

result for the superpotential is then given by the holomorphic embedding condition

of the D7-branes.

Chapter 6 is a summary of the implications of the results of Chapter 5 for models

of D-brane inflation, while Chapter 7 is a long version of Chapter 6 that derives

all results and extends the discussion. First, we derive the D3-brane potential in

warped backgrounds. The multi-field potential depends on the radial coordinate

r and the five real angular coordinates of the KS throat as well as the complex

modulus associated with the overall volume of the compact space. We integrate out

the volume and the angles to get an effective single-field potential V (r). We identify

parameters in the inflaton potential with the microscopic input data of the string

compactification. Imposing all consistency conditions on the compactification, we

search for inflationary solutions in the effective theory. We find that inflationary
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solutions would be easy to find if compactification constraints were ignored. Imposing

constraints from the compactification geometry significantly restricts the parameter

space of successful models. In particular, the potential can be made flat only locally

and inflation is possible only close to an approximate inflection point of the potential.

This leads to a model that is very sensitive to the model parameters and the initial

conditions. We called this “A Delicate Universe” [20].

� Part III: String Theory and Gravitational Waves

Chapter 8 derives a microscopic bound on the field evolution during warped D-brane

inflation. In particular, we show that ∆φ < Mpl. This bound is model-independent

in the sense that it does not depend on the form of the potential and other details

of inflation. Via a result by Lyth [122] this geometric bound on the field range

is translated into a limit on the primordial gravitational wave amplitude. We also

discuss the implications of the field range bound for the viability of DBI inflation on

Calabi-Yau cones. The simplest models of DBI inflation overproduce primordial non-

Gaussianity if the microscopic compactification constraint is imposed on the D3-brane

position.

Chapter 9 speculates about possible generalizations of the result of Chapter 8. We

describe the important challenge of deriving explicit models of string inflation that

predict observable tensors, providing an important connection between microscopic

physics and macroscopic observables.

� Part IV: Conclusion

Chapters 10 and 11 offer some conclusions and perspectives.

In Chapter 10 we summarize the three main UV challenges/opportunities of string

inflation: the eta-problem of V (φ), a microscopically consistent realization of large-

field models with observable gravitational wave amplitude r and a microscopically

consistent realization of models with large non-Gaussianity fNL.
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In Chapter 11 we make some concluding remarks and give a personal perspective

on future directions.

� Appendices

The appendices contain many original and new results. We consider them an essential

aspect of this work.

In Appendix A we review Maldacena’s beautiful calculation of the inflationary

two- and three-point functions and cite the corresponding results for more general

inflation models like DBI inflation. These classic results are used throughout the

thesis as they form the basis for all modern comparisons of the inflationary predic-

tions with cosmological data. Appendix B, C and D give technical details of the

computations presented in Chapter 5, while Appendix E, F G and H give technical

details of the computations presented in Chapters 6 and 7. Finally, Appendix J is a

reference of key results used in this dissertation.

Note on collaboration. Modern theoretical physics is largely a collaborative effort.

This thesis would not have been possible without the input and guidance of my

outstanding collaborators. However, I was intimately involved in all the research

reported in this dissertation. Furthermore, in each project the majority of the writing

and rewriting of our results was done by Liam McAllister and myself. At the end my

contributions and those of my collaborators have been woven together and there is

no meaningful way to partition the final product.
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CHAPTER 2

Aspects of Modern Cosmology

In this chapter we present a review of basic cosmology (see also [62, 130, 160]).

The emphasis is on observations and the physical mysteries that they reveal. Readers

familiar with this background material may skip directly to Chapter 3.

We preface this chapter with a qualitative description of the thermal history of the

universe (§1). In §2 we then give the theoretical background for understanding the

status of observational cosmology. After describing the geometry and dynamics of the

homogeneous background spacetime we define fluctuations around the smooth back-

ground. We focus on fluctuations in the density and the metric (gravitational waves).

We describe how cosmological observations of these fluctuations are related to the

physics of the early universe. Next, we devote two sections to the mystery of cosmic

acceleration. We introduce dark energy and inflation in §3 and §4, respectively. While

we restrict our treatment of dark energy to brief and mostly qualitative remarks, we

discuss inflation in some detail. We explain the Big Bang puzzles and their resolution

by a period of accelerated expansion in the early universe. We then introduce the

inflaton potential V (φ) and the slow-roll conditions. Finally, we make the important

connection between cosmological observables (§2) and quantum fluctuations around

the classical inflationary dynamics (Appendix A).

14
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1. A Brief History of the Universe

“Why is the universe big, flat and empty?” “What is the origin of structure?”

These ancient questions have sharpened in recent years as a result of significant the-

oretical advances and high precision cosmological experiments. Remarkably, we now

have quantitative answers to these questions based on fundamental physics applied to

conditions in the early universe. Even more remarkably, for the first time in history

our theories can be tested against cosmological observations. Data from the cosmic

microwave background (CMB) [151] (Figure 1) and the large-scale structure (LSS)

[156] (Figure 2) have given us detailed views of the early universe and its late time evo-

lution. In this section we give a qualitative description of our modern understanding

of the cosmos. We fill in the quantitative details in later sections.

Figure 1. Temperature fluctuations in the cosmic microwave background
(CMB). Blue spots represent directions on the sky where the CMB temper-
ature is ∼ 10−4 below the mean, T̄0 = 2.7 K. This corresponds to photons
losing energy while climbing out of the gravitational potentials of overdense
regions in the early universe. Yellow and red indicate hot (underdense)
regions. The statistical properties of these fluctuations contain important
information about both the background evolution and the initial conditions
of the universe (see Figures 3 and 4).

1.1. Physics in an Expanding Universe. There is undeniable evidence for

the expansion of the universe: the light from distant galaxies is systematically shifted
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Figure 2. Distribution of galaxies. The Sloan Digital Sky Survey (SDSS)
has measured the positions and distances (redshifts) of nearly a million galax-
ies. Galaxies first identified on 2d images, like the one shown above on the
right, have their distances measured to create the 3d map. The left image
shows a slice of such a 3d map. The statistical properties of the measured
distribution of galaxies reveal important information about the structure
and evolution of the late time universe.

towards the red end of the spectrum [89], the observed abundances of the light ele-

ments (H, He, and Li) matches the predictions of Big Bang Nucleosynthesis (BBN)

[6], and the only explanation for the cosmic microwave background is a relic radiation

from a hot early universe [60].

Two principles characterize thermodynamics and particle physics in an expanding

universe:

(1) interactions between particles freeze out when the interaction rate Γ = σnv

drops below the expansion rate H.

(2) broken symmetries in the laws of physics may be restored at high energies.

Table 1 shows the thermal history of the universe and various phase transitions related

to symmetry breaking events. In the following we will give a qualitative summary of
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Table 1. Major Events in the History of the Universe

Time Energy

Planck Epoch? < 10−43 s 1018 GeV
String Scale? . 10−43 s . 1018 GeV
Grand Unification? ∼ 10−36 s 1015 GeV
Inflation? . 10−34 s . 1015 GeV
SUSY Breaking? > 10−10 s > 1 TeV
Baryogenesis? > 10−10 s > 1 TeV
Electroweak Unification 10−10 s 1 TeV
Quark-Hadron Transition 10−4 s 102 MeV
Nucleon Freeze-out 0.01 s 10 MeV
Neutrino Decoupling 1 s 1 MeV
BBN 3 min 0.1 MeV

Redshift

Matter-Radiation Equality 104 yrs 1 eV 104

Recombination 105 yrs 0.1 eV 1,100
Dark Ages 105 − 108 yrs > 25
Reionization 108 yrs 25− 6
Galaxy Formation ∼ 6× 108 yrs ∼ 10
Dark Energy ∼ 109 yrs ∼ 2
Solar System 8× 109 yrs 0.5
Albert Einstein born 14× 109 yrs 1 meV 0

these milestones in the evolution of our universe. We will emphasize which aspects

we consider certain and which are still more speculative.

1.2. From Electroweak Symmetry Breaking to Recombination. From

10−10 seconds to 380, 000 years the history of the universe is based on well under-

stood and tested(!) laws of particle, nuclear and atomic physics. We are therefore

justified to have some confidence about the events shaping the universe during that

time.

Enter the universe at 100 GeV, the time of the electroweak phase transition

(10−10 s). Above 100 GeV the electroweak symmetry is restored and the Z and W±

bosons are massless. Interactions are strong enough to keep quarks and leptons in

thermal equilibrium. Below 100 GeV the symmetry between the electromagnetic and

the weak forces is broken, Z and W± bosons acquire mass and the cross-section of



2. aspects of modern cosmology 18

weak interactions decreases as the temperature of the universe drops. As a result, at

1 MeV, neutrinos decouple from the rest of the matter. Shortly after, at 1 second, the

temperature drops below the electron rest mass and electrons and positrons annihi-

late efficiently. Only an initial matter-antimatter asymmetry of one part in a billion

survives. The resulting photon-baryon fluid is in equilibrium.

Around 0.1 MeV the strong interaction becomes important and protons and neu-

trons combine into the light elements (H, He, Li) during Big Bang Nucleosynthesis

(BBN) (∼ 200 s). The successful prediction of the H, He and Li1 abundances is one

of the most striking consequences of the Big Bang theory.

The matter and radiation densities are equal around 1 eV (1011 s). Charged matter

particles and photons are strongly coupled in the plasma and fluctuations in the

density propagate as cosmic ‘sound waves’. Around 0.1 eV (380,000 yrs) protons

and electrons combine into neutral hydrogen atoms. Photons decouple and form the

free-streaming cosmic microwave background (CMB). 13.7 billion years later these

photons give us the earliest snapshot of the universe (Figure 1).

1.3. Evolution of Cosmic Structure. Small density perturbations in the early

universe, δ ≡ δρ
ρ

, grow via gravitational instability to form the large scale structures

observed in the late universe (Figure 2). During radiation domination the growth is

slow, δ ∼ ln a (where a(t) is the scale factor, see below). Clustering becomes more

1BBN predicts the primordial abundances of the light elements deuterium D, helium-3
3He, helium-4 4He and lithium-7 7Li as a function of the baryon-to-photon ratio. These
predictions are tested by reconstructing the primordial abundances from astronomical ob-
servations. To reduce systematic uncertainties the observations are limited to astronomical
objects in which very little stellar nucleosynthesis has taken place (e.g. dwarf galaxies)
or to objects that are very distant and therefore in an early stage of their evolution (e.g.
quasars). The agreement between the theory and observations is excellent for deuterium
and helium, but less perfect for lithium [47]. However, because the 7Li abundance in old
Population II stars may be depleted, the observed lithium abundance depends both on stel-
lar models and the consistency of BBN. We consider it more likely that the ‘Li problem’
is explained by systematic errors in the measurements and uncertainties in astrophysical
modeling than by a fundamental problem with early universe cosmology. It should also
be noted that the baryon-to-photon ratio preferred by BBN is consistent with the value
inferred independently from CMB measurements.
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efficient after matter dominates the background density, δ ∼ a. Small scales become

non-linear first, δ ∼ 1, and form gravitationally bound objects that decouple from

the overall expansion. This leads to a picture of hierarchical structure formation (see

Table 2) with small scale structures (like stars and galaxies) forming first and then

merging into larger structures (clusters and superclusters of galaxies).

Table 2. Typical Length Scales in the Universe

meters

Planck Scale 10−35 m
String Scale? ∼ 10−30 m
“LHC Scale” 10−18 m
Quark, Electron < 10−18 m
Proton 10−15 m
Nucleus 10−14 m
Atom 10−10 m
DNA 10−8 m
Virus 10−7 m
Cell 10−4 m

light years parsec

Earth 108 m
Earth-Moon 109 m
Earth-Sun 1011 m 8 min
Earth-Star 1018 m 100 yrs 30 pc
Galaxy 1021 m 105 yrs 10 kpc
Local Group 1022 m 105 yrs 100 kpc
Virgo Cluster 1023 m 106 yrs 1 Mpc
Supercluster 1024 m 107 yrs 10 Mpc
Observable Universe 4.3× 1026 m 45× 109 yrs 1.4× 104 Mpc

Around redshift z = 25, high energy photons from the first stars begin to ionize

the hydrogen in the inter-galactic medium (IGM). This process of ‘reionization’ is

completed at z ≈ 6. Meanwhile, the most massive stars run out of nuclear fuel and

explode as ‘supernovae’. In these explosions the heavy elements (C, O, . . . ) necessary

for the formation of life are created, leading to the slogan “we are all stardust”.

At z ≈ 1, a negative pressure ‘dark energy’ comes to dominate the universe. The

background spacetime is accelerating and the growth of structure ceases, δ ∼ const.
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1.4. The First 10−10 Seconds. The fundamental laws of high energy physics

are well-established up to the energies reached by current particle accelerators (∼

1 TeV). Our ideas about the very early universe on the other hand are based on more

speculative physics. In this section we sketch the implications of physics beyond the

Standard Model for early universe cosmology.

Grand Unification. In the history of physics symmetry principles and unification

have been reliable guides towards the true nature of the world. The giants of physics,

Newton, Maxwell and Einstein, each provided important unifying principles that

revolutionized the way we see the world (physics+astronomy, electricity+magnetism,

space+time). Grand Unified Theories (GUTs) are a set of gauge theories that unify

the electromagnetic force with the strong and the weak nuclear forces at high energies

(∼ 1015 GeV). GUTs have a number of interesting theoretical consequences. Generic

versions of GUTs predict proton decay and the existence of magnetic monopoles.

Neither phenomenon is observed in nature.2 GUTs also predict a phase transition as

the temperature of the universe drops below 1015 GeV. Initially there was some hope

that this might be the physical origin of cosmological inflation (see below). However, it

now seems that this hope cannot be realized when details of the inflationary dynamics

are considered in the context of GUTs.

Finally, at the GUT scale, interactions violate baryon number and CP, while the

GUT phase transition provides out of equilibrium conditions. GUT physics therefore

can provide a plausible explanation for the observed baryon asymmetry of the universe

(alternatively, there are many models in which the baryon asymmetry is produced at

lower energies by electroweak processes).

2Indeed, one of Guth’s original motivations for inflation was to explain the absence of GUT
monopoles. Today, experimental limits on the proton lifetime rule out the simplest versions
of grand unified theories raising some doubts about the idea of the unification of forces at
the GUT scale.
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Inflation. The observed expansion of the universe implies serious initial conditions

problems (see §4) unless a period of accelerated expansion3 – inflation – is postulated

to have occurred somewhere between the GUT scale, 1015 GeV, and the electroweak

scale, 1 TeV. The large uncertainty in the energy scale of inflation reflects our lack

of understanding of the fundamental physical origin of the inflationary era. We defer

a detailed discussion of speculations on the “physics of inflation” to the remainder

of this thesis. Here, we would only like to mention that small quantum fluctuations

around the classical inflationary dynamics are stretched by inflation to cosmological

scales and seed primordial density fluctuations. Inflation therefore provides a very

elegant mechanism to explain the initial conditions relevant to the formation of large-

scale structure via gravitational instability.

Quantum Foam. At very very early times (10−43 s), corresponding to high energies

(1018 GeV) and short length scales (10−35 m), quantum mechanics becomes important

for the structure and dynamics of the universe. Classical notions of space and time lose

their familiar meanings. The uncertainty principle allows (virtual) particles to briefly

come into existence, and then annihilate, without violating energy conservation. The

energy of these virtual particles can be large if the space that is considered is small.

Since energy curves spacetime, this suggests that on very small scales space looks

nothing like the smooth large scale spacetime that characterizes the universe today.

On small scales violent quantum fluctuations produce a foam-like structure [161]. A

quantitative understanding of the physics of that era requires applying a theory of

quantum gravity to fluctuations at the Planck scale. The absence of such a theory

limits us to hand-waving and speculation.

3The cyclic model [154] proposes a radically different solution to the initial conditions prob-
lems and a very different cosmic history. In the cyclic model the Big Bang singularity was
not the beginning of time but only marked the transition from a slow contracting universe
to an expanding universe. The standard initial conditions problems are solved by a long
period of dark energy domination followed by slow contraction and a bounce.
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String Cosmology. It is now believed that general relativity is only an effective

theory valid at low energies and large distances. As we just sketched heuristically,

at very high energy and short distances, new symmetries and degrees of freedom of

a more fundamental theory are likely to become important. In the context of string

theory some of these qualitative ideas can be made more concrete (for a review see

e.g. [128]). Quantitatively, one expects a treatment based on quantum field theory

(QFT) and general relativity (GR) to break down down, either when the Hubble

scale H increases to the scale of some new physics (like the string scale Ms ≡ 1√
α′
∼

gsMpl �Mpl) or when spatial fluctuations shrink to the string scale ls. In many cases,

string degrees of freedom (characterizing the extended nature of strings) become

important in this limit.4 Perturbative and non-perturbative stringy dynamics has

been suggested as a way to resolve the cosmological Big Bang singularity and to

explain why our universe has three large space dimensions [42]. Due to lack of space

and expertise we cannot do justice to these interesting applications of string theory to

the very early universe in this work. For a recent survey of ideas we refer the reader

to Ref. [128].

2. Status of Observational Cosmology

2.1. ΛCDM. The recent data of fluctuations in the cosmic microwave back-

ground [151] (Figure 1) and the distribution of galaxies [156] (Figure 2) has led to

the emergence of a standard cosmological model. On the largest observed scales the

universe is homogeneous and isotropic, while on small scales tiny primordial fluctua-

tions in the overall density have grown by gravitational instability to form galaxies,

stars, and planets. Galaxies and clusters of galaxies would be unstable if it weren’t

4For the remainder of this thesis it will be important that we assume that the string scale
Ms is significantly above the inflation scale Minf ∼ (HinfMpl)1/2. At energies below Ms,
string theory reduces to supergravity with corrections that can be treated perturbatively.
In practice, we will also assume that the inflation scale is below the compactification (or
Kaluza-Klein) scale Mc ∼ L−1, where L is a typical length scale of the compactification
manifold. In that case, an effective four-dimensional description is possible.
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for the gravitational effect of cold dark matter (CDM). Finally, the observations show

that the present universe is dominated by a mysterious form of dark energy (Λ) that

causes the expansion of the universe to accelerate.

All the cosmological data can be well fit by a six parameter model: {Ωb, Ωdm,

h, τ} describes the homogeneous background (§2.2), while {As, ns} characterizes the

primordial fluctuations (§2.3). In this section we consider the observational evidence

for the ΛCDM model, before discussing the theoretical issues that the model raises

(§3 and §4).

2.2. Homogeneous Background.

Geometry. Averaged over very large scales the universe is nearly homogeneous

and isotropic. The spacetime is then described by the Friedmann-Robertson-Walker

(FRW) metric

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (2.1)

Here, the scale factor a(t) describes the relative size of spacelike hypersurfaces Σ3 at

different times. The curvature parameter k is +1 for positively curved Σ3, 0 for flat

Σ3, and −1 for negatively curved Σ3. Equation (2.1) uses comoving coordinates –

the universe expands as a(t) increases, but galaxies keep fixed coordinates5 r, θ, φ. If

we define the scale factor to be unity today, a(t0) ≡ 1, then the redshifting of light

between emission at time t and observation today at t0 is given by

1 + z =
λobserved

λemitted

=
1

a(t)
. (2.2)

The expansion rate of the universe is characterized by the Hubble parameter H(t) ≡

∂t ln a. This is arguably the most important function in cosmology. It is measured

5This statement only applies to the Hubble flow and ignores the peculiar velocities of galaxies
vpec = (ṙ, θ̇, φ̇).
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rather indirectly by determining separately the distances and redshifts of astronom-

ical objects. Since measuring distances in cosmology is notoriously difficult (see e.g.

[62, 134]), the value of the Hubble constant has historically been associated with large

uncertainties and fierce debates [134]. In defining cosmological distances a fundamen-

tal quantity is the comoving distance to an object at redshift z6

χ(z) ≡
∫ z

0

dz′

H(z′)
. (2.3)

It relates to two important distance measures: the ‘angular diameter distance’ and

the ‘luminosity distance’. Angular diameter distance is defined as the ratio of an

object’s physical transverse size to its angular size

dA(z) =
1

1 + z


sinh[

√
ΩkH0χ(z)]

[H0
√

Ωk]
k = +1

χ(z) k = 0

sin[
√

ΩkH0χ(z)]

[H0
√

Ωk]
k = −1

(2.4)

Observations of cosmic microwave background anisotropies provide a measure of the

angular diameter distance to the last scattering surface7 dA(zCMB). This provides

an accurate measure of the average geometry of the universe8 (see Figures 3 and 4).

Supernova observations on the other hand measure luminosity distances which relate

the observed apparent magnitudes to the absolute luminosity emitted by the stellar

explosion

dL(z) = (1 + z)χ(z) . (2.5)

6This is the distance along radial null geodesics of (2.1).
7CMB observations measure the angular diameter of the sound horizon at baryon-photon
decoupling. We here point out that the angular size of CMB anisotropies only provides a
measure of the integrated Hubble parameter to the last scattering surface. However, through
baryon acoustic oscillations in large-scale structure correlations and the Alcock-Paczynski
effect angular diameter distances to objects at lower redshifts can be measured. This might
provide interesting constraints on the late time evolution of H and the dynamics of dark
energy.
8From (2.4) we see that a measurement of Ωk requires an independent estimate of the
Hubble constant H0.
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Multipole moment

Figure 3. Power spectrum of CMB temperature fluctuations. The data
is in perfect agreement with the theoretical prediction (solid line) of the
ΛCDM model with a nearly scale-invariant input spectrum for the primordial
density perturbations (as predicted by inflation). The position of the first
peak measures the angular diameter distance to the recombination surface.

This gives a late time measurement of the evolution of the Hubble parameter H(z).

Analysis of data from type IA supernova explosions led to the discovery of the accel-

erating universe [137, 142].

Dynamics. So far we have described the kinematics of the FRW spacetime as

defined by the metric (2.1). To characterize the dynamics we relate the background

spacetime to the energy-momentum tensor of the universe. Einstein’s gravitational

field equations (M2
plGµν = Tµν) for a FRW universe (2.1) filled with a perfect fluid,

T µν = diag(−ρ, p, p, p), take the form of the Friedmann equations

H2 =
1

3M2
pl

ρ− k

a2
, (2.6)

ä

a
= − 1

6M2
pl

(ρ+ 3p) . (2.7)

Here, ρ and p are the energy density and the pressure of the fluid, respectively. For a

multi-component fluid, it is convenient to define the density parameter in a species i
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Figure 4. Fluctuations in the cosmic microwave background as a function
of the parameters of the background cosmology [figure courtesy of Wayne Hu].
(a) Variation of the total density (or curvature) shifts the positions of the
peaks of the spectrum. The CMB is therefore a probe of the background
geometry. (b) Increasing the dark energy contribution increases power on
large scales via the integrated Sachs-Wolfe effect. (c) The baryon density
affects the relative peak heights. The observed relative peak heights are
consistent with Big Bang nucleosynthesis values for Ωb. (d) Increasing the
matter content uniformly damps power on all scales.

relative to the critical density for a flat universe is ρc ≡ 3M2
plH

2

Ωi ≡
ρi
ρc
. (2.8)

The Friedmann equation (2.6) then becomes

Ω(t)− 1 =
k

H2a2
≡ Ωk , (2.9)
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where

Ω =
∑
i

Ωi = Ωr + Ωb + Ωdm + ΩΛ + · · · . (2.10)

Here, we consider radiation (photons and neutrinos)9 (r), baryons (b), dark matter

(dm) and dark energy (Λ). The CMB+LSS best fit parameters for the composition

of the universe today are [151]

Ωr 8.518× 10−5

Ωb 0.046± 0.003

Ωdm 0.231± 0.026

Ωm ≡ Ωb + Ωdm 0.277± 0.029

ΩΛ 0.723± 0.029

Ωk −0.0052± 0.0064

Ω ∼ 1± 10−2

This is consistent with a spatially flat universe, a theoretical prejudice inspired by

inflation (see §4). In the remainder of this thesis we will therefore set Ωk ≡ 0.

Notice from the second Friedmann equation (2.7) that accelerated expansion, ä >

0, as observed for the late universe (dark energy) and as postulated for the early

universe (inflation), requires a negative pressure component, p < −1
3
ρ. To explain

this from fundamental physics is one of the biggest challenges of theoretical physics.

2.3. Fluctuations. As we mentioned before, galaxies are formed by gravita-

tional instability of minute density fluctuations δρ, i.e. small perturbations of the

homogeneous FRW background (2.1). Observations of the cosmic microwave back-

ground radiation provide the earliest snapshot of these fluctuations. The metric of a

flat FRW universe with small perturbations is

ds2 =
[
ḡµν + δgµν

]
dxµdxν . (2.11)

9We use Ωr = Ωγ(1 + 0.2271Neff), where Ωγ is the photon density and Neff ≈ 3.04 is the
effective number of relativistic neutrino species.
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For the important discussion of the gauge dependence of this split into background

variables (ḡµν , ρ̄) and perturbations (δgµν , δρ) we refer the reader to the excellent

treatment in Ref. [130]. Here, we restrict ourselves to a summary of the basic techni-

cal results of first-order cosmological perturbation theory. (Further details are given

in Appendix A.) The metric perturbations δgµν can be decomposed into three dis-

tinct types: scalar, vector and tensor perturbations. This classification describes the

transformation properties of the perturbations under spatial coordinate reparameter-

izations [130]. At linear order scalar, vector and tensor perturbations do not interact.

Scalars. Scalar perturbations are characterized by 4 scalar functions and 2 gauge

degrees of freedom. In Newtonian gauge the perturbed metric takes the following

form

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)δijdx
idxj . (2.12)

In the absence of anisotropic stress (Tij = 0) Φ = Ψ and scalar metric perturbations

are described by a single function, the Newtonian potential Φ(t,x). In Fourier space

the fluctuation amplitude is

Φk(t) =

∫
d3x e−ik·xΦ(t,x) . (2.13)

The initial power spectrum of Φ is10

〈Φk(ti)Φk′(ti)〉 ≡ (2π)3δ(k + k′)Ps(k) , Ps(k) ≡ k3

2π2
Ps(k) . (2.14)

Assuming a power law, Ps(k) = Ask
ns−1, we define the spectral index of the primordial

power spectrum

ns − 1 ≡ d lnPs
d ln k

. (2.15)

10By “initial” we mean any time ti between the end of inflation and the horizon re-entry
of a given Fourier mode (see §4). The normalization of Ps(k) is chosen such that the real
space variance of Φ is 〈ΦΦ〉 =

∫∞
0 Ps(k) d ln k.
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The value ns = 1 corresponds to a scale-invariant Harrison-Zeldovich spectrum. The

scalar metric perturbations Φ are induced by inhomogeneities in the energy density,

ρ(t,x) = ρ̄(t)[1 + δ(t,x)] . (2.16)

Density perturbations δ and metric perturbations Φ are related by a Poisson equation

on subhorizon scales (k > aH) and by a constant rescaling on superhorizon scales

(k < aH). On subhorizon scales, gravity acts as an amplifier of these fluctuations,

which leads to the formation of the large-scale structure of the universe. The evolution

of density fluctuations is characterized by the growth function gk(t)
11

δk(t) ≡ gk(t, ti)

a
δk(ti) . (2.17)

CMB and LSS observations measure the density power spectrum at late times (Fig-

ure 5). To relate this to the primordial spectrum one needs to take into account the

post-processing of the spectrum as given by the growth factor gk(t). Assuming va-

lidity of general relativity and using the measured cosmological parameters to fix the

background cosmology we can factor out the cosmological evolution and extract the

spectrum of primordial fluctuations Ps(k). The precise shape of this spectrum pro-

vides an accurate test of inflationary perturbations as the origin of cosmic structure

(see §4 and Figure 6).

Vectors. Vector perturbations are related to rotational motion of the fluid. They

decay with the expansion of the universe and therefore do not affect the late time

properties of the universe. We will not consider them further.

11The function gk(t) depends on theory of gravity and the matter content of the universe.
The growth of structure therefore provides an important consistency test for the applica-
bility of general relativity on very large scales.
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Figure 5. Density fluctuations as a function of scale and relevant obser-
vational probes [figure courtesy of Max Tegmark].

Tensors. Tensor perturbations describe gravitational waves, i.e. perturbations to

the spatial metric of the form

ds2 = −dt2 + a(t)2(δij + hij)dx
idxj , (2.18)

where ∂ihij = hii = 0. A stochastic background of gravitational waves is a unique

prediction of inflationary cosmology (see §4). At linear order gravitational waves do

not couple to perturbations in the fluid.12 They therefore redshift like radiation and

their amplitudes decays with the expansion of the universe. The tensor perturbation

hij can be written in terms of two polarization modes: hij = h+e
+
ij + h×e

×
ij. The

primordial power spectrum for each polarization mode is

〈hkhk′〉 = (2π)3δ(k + k′)Pt(k) , Pt(k) ≡ k3

2π2
Pt(k) . (2.19)

12Second order couplings between scalar and tensor modes have been considered in [8, 23,
129], but they are small by virtue of the scalar amplitude being small, Φ ∼ 10−5.
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CMB polarization experiments will be sensitive to the tensor-to-scalar ratio

r ≡ Pt
Ps
. (2.20)

The data has now reached a precision that allows meaningful constraints to be placed

on ns (2.15) and r (2.20) (see Figure 6).

Figure 6. Constraints on the inflationary parameters ns and r from recent
cosmic microwave background and large-scale structure observations [151].

2.4. Summary. This is a golden age of cosmology. New precision data is testing

theoretical ideas about the structure and evolution of the universe. These observations

have revealed three problems that challenge the foundations of theoretical physics:

dark matter, dark energy, and inflation. We now know that 95% of the universe is not

ordinary atoms! However, we have yet to make sense of it! We have some ideas for

what the dark matter might be, but dark energy and inflation lack any explanation

in fundamental physics.
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3. Dark Energy

3.1. The Dark Energy Crisis. Explaining the nature of dark energy is one of

the greatest challenges of fundamental physics. Paul Steinhardt calls the discovery

of dark energy “one of the most surprising and profound discoveries in the history of

science” [152], while Steven Weinberg notes that “physics thrives on crisis” [159].

Two questions summarize the dark energy crisis:

� Why is the vacuum energy so unnaturally small?

The energy momentum tensor of the universe Tµν is expected to contain

a term Λgµν coming from the quantum mechanical energy density of the vac-

uum. Computations in quantum field theory13 suggest that the natural value

of the constant Λ should be in the range (TeV)4 ≤ Λtheory ≤ (1019 GeV)4.

According to Einstein’s equations, M2
plGµν = Tµν , such a term admits de Sit-

ter space as a solution. It is therefore natural to propose vacuum energy as

the cause of the observed acceleration of the universe today. Unfortunately,

the observed value of the cosmological constant Λobs ∼ (meV)4 is some 120

orders of magnitude smaller than its natural value, Λobs/Λtheory = 10−123.

This is the biggest disagreement between theory and experiment in the his-

tory of science. It is the famous cosmological constant problem: “Why is the

vacuum energy density so small?” And, “If it is so small, why is it not zero?”

� Why did acceleration start only in the recent past?

To make matters worse, the energy density of dark energy is observed to

be of the same order of magnitude as the present matter density. This is

13The following provides an estimate of the energy density of empty space: Consider sum-
ming the zero-point energies of all normal modes of some field of mass m up a wavenumber
cutoff Λ1/4 � m. This yields the following vacuum energy density

〈ρ〉 =
∫ Λ1/4

0

4πk2dk
(2π)3

1
2

√
k2 +m2 ≈ Λ

16π2
. (2.21)

If Λ1/4 is set to any particle physics scale (Mpl, MSUSY, Λ1/4
QCD, me), one gets a version of

the cosmological constant problem.
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puzzling since the vacuum energy density ρΛ ∝ a0 remains constant during

the evolution of the universe, whereas the matter energy density ρm ∝ a−3

decreases as the universe expands. The two energy densities being nearly the

same today means that their ratio ρΛ/ρm had to be incredibly small in the

early universe, but fine-tuned to become nearly equal today. In other words,

one might think that we are living at a special epoch when the dark energy

density and the matter density are nearly equal in magnitude. During most

of the history and the future of the universe this is not the case. This has

become known as the cosmic coincidence problem (the “why now?” problem).

3.2. Dark Energy in String Theory. The cosmological constant problem

points to a deep conflict between the physics of the very large and the very small.

Quantum mechanics describes the microscopic world of elementary particles, atoms

and molecules, while Einstein’s general relativity provides an elegant mathematical

formulation for the evolution of the universe on the largest scales. Both theories are

fantastically successful in describing fundamental features of the world. However,

whenever forced to apply quantum mechanics and general relativity simultaneously

one is led to troubling inconsistencies. String theory in contrast is a consistent theory

of quantum gravity and hence has the potential to address fundamental questions

about the initial Big Bang singularity and the center of black holes. It is therefore

justified to imagine that string theory will also give us new insights into the vacuum

energy problem. So far this hope has not been realized, although string theory has

provided some interesting new ideas for addressing the problem. In particular, for-

mulating de Sitter space in string theory has been a challenge that was overcome only

recently by the first explicit constructions of metastable de Sitter solutions (see Chap-

ter 3). The multiplicity of these vacuum solutions can explain the vacuum energy

problem by anthropic reasoning [39].
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4. Inflation

“SPECTACULAR REALIZATION:

This kind of supercooling can explain why the universe today is

so incredibly flat and therefore resolve the fine-tuning paradox

pointed out by Bob Dicke in his Einstein day lectures.”

Alan Guth, Dec 7, 1979.

4.1. Shortcomings of the Big Bang Theory. Despite the success of the Big

Bang theory in explaining basic cosmological observations (see §2) it was realized

(e.g. by Dicke) that the uniform expansion of the universe poses serious conceptual

problems.

Homogeneity Problem. The standard model of cosmology assumes that the uni-

verse is homogeneous and isotropic. Indeed observations confirm this. However, the

conventional Big Bang theory does not explain this fact. As we discussed above,

inhomogeneities are gravitationally unstable and therefore tend to grow with time.

Observations of the CMB for instance verify that the fluctuations were much smaller

at the last scattering epoch than today. One thus expects that these inhomogeneities

were still smaller further back in time. How to explain a universe so smooth in its

past?

Flatness Problem. Spacetime in general relativity is dynamical, curving in re-

sponse to matter in the universe. Why then is the universe so closely approximated

by flat Euclidean space? To understand the severity of the problem consider the

Friedmann equation in the form (2.9)

Ω(a)− 1 =
k

(aH)2
. (2.22)

In the conventional Big Bang theory the comoving Hubble radius (aH)−1 grows with

time and |Ω− 1| hence diverges with time. (A flat universe with Ω = 1 is an unstable
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fixed point.) In the context of the standard Big Bang model, the quasi-flatness

observed today, Ω(a0) ∼ 1, therefore requires extreme fine-tuning of Ω near 1 in the

early universe, e.g. the deviation from flatness at BBN, during the GUT era and at

the Planck scale, respectively has to satisfy the following conditions: |Ω(aBBN)− 1| ≤

O(10−16), |Ω(aGUT)− 1| ≤ O(10−55), |Ω(apl)− 1| ≤ O(10−61).

Conformal Time Today

CMB
Big Bang

Past Light-Cone

0  

causally disconneted @ CMB decoupling

Figure 7. Conformal spacetime of conventional Big Bang cosmology. The
CMB at last scattering consists of 105 causally disconnected regions!

Horizon Problem. Consider radial null geodesics in a flat FRW spacetime (2.1)

dr = ± dt

a(t)
≡ dτ . (2.23)

We define the comoving horizon, τ , as the causal horizon, i.e. the distance a light

ray travels between time 0 and time t

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

Ha2
=

∫ a

0

d ln a (aH)−1 . (2.24)

During the standard cosmological expansion the increasing comoving Hubble radius,

(aH)−1, is therefore associated with an increasing comoving horizon14, τ , and the

fraction of the universe in causal contact increases with time. However, the near-

homogeneity of the CMB tells us that the universe was quasi-homogeneous at the

14This explains the common practice of often using the terms ‘comoving Hubble radius’ and
‘comoving horizon’ interchangeably. Although these terms should conceptually be clearly
distinguished, this inaccurate use of language has become standard.
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time of last scattering on a scale encompassing many regions that are a priori causally

independent (see Figure 7). Why then is the CMB uniform on large scales (of order

the present horizon)?

Comment on Initial Conditions. It should be emphasized that the flatness and

horizon problems are not strict inconsistencies of the standard cosmological model.

If one assumes that the initial value of Ω was extremely close to unity and that

the universe began homogeneously (but with just the right level of inhomogeneity

to explain structure formation) then the universe would have continued to evolve

homogeneously in agreement with observations. The flatness and horizon problems

are therefore just severe shortcomings in the predictive power of the Big Bang model.

The dramatic flatness of the early universe cannot be predicted by the standard

model, but must instead be assumed in the initial conditions. Likewise, the striking

large-scale homogeneity of the universe is not explained or predicted by the model,

but instead must simply be assumed. Inflation removes these assumptions about

initial conditions.

4.2. The Basic Idea of Inflation. All the Big Bang puzzles are solved by a

beautifully simple idea: ‘invert the behavior of the comoving Hubble radius’ (aH)−1

i.e. make it decrease sufficiently in the very early universe. A decreasing Hubble

radius corresponds to accelerated expansion

d

dt
(aH)−1 < 0 ⇒ d2a

dt2
> 0 . (2.25)

A flat universe then becomes an attractor solution (see Equation (2.22)) and the

observed CMB sky was in causal contact in the past (see Figure 8). A period of

acceleration in the early universe therefore very elegantly solves the problems with

the standard Big Bang theory. However, it raises the question: What is the physics

of inflation? Twenty-five years after inflation was introduced by Guth it remains a

paradigm in search of a theory. From the second Friedmann equation (2.7) we see
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Conformal Time Today

CMB

Big Bang

Past Light-Cone

Reheating

Inflation

0  

Figure 8. Conformal spacetime of the inflationary universe. The horizon
problem is solved by extending conformal time to negative values. In infla-
tionary cosmology the Big Bang is at τ = −∞, while without inflation it is
at τ = 0 (see Figure 7).

that accelerated inflationary expansion, like dark energy, requires a negative pressure

component to dominate the universe

d2a

dt2
> 0 ⇒ ρ+ 3p < 0 . (2.26)

Furthermore, the two Friedmann equations (2.6) and (2.7) may be combined into the

continuity equation

dρ

dt
= −3H(ρ+ p) . (2.27)

During inflation p ≈ −ρ, so the inflationary expansion requires that the early universe

was dominated by a nearly constant energy density, ρ̇ ≈ 0. This is unlike any physical

phenomenon we are familiar with.
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4.3. Slow-Roll Inflation. In the absence of a better theoretical understanding

of inflation it is standard practice to parameterize our ignorance by a scalar field φ

with potential V (φ) (see Figure 9). Consider therefore the scalar field Lagrangian

L = −1

2
gµν∂µφ∂νφ− V (φ) . (2.28)

Computing the energy-momentum tensor associated with L, we find that the homo-

reheating

Figure 9. The Inflaton Potential. Acceleration occurs when the potential
energy of the field V dominates over its kinetic energy 1

2 φ̇
2. Inflation ends

at φend when the slow-roll conditions are violated, ε→ 1. CMB fluctuations
are created by quantum fluctuations δφ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is converted into
radiation.
Left: A typical small-field potential. Right: A typical large-field potential.

geneous mode φ(t) acts like a perfect fluid with equation of state

w ≡ p

ρ
=

1
2
φ̇2 − V

1
2
φ̇2 + V

. (2.29)

The equation of motion of the inflaton field in an FRW background is the Klein-

Gordon equation

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (2.30)

From equation (2.29) we see that accelerated expansion, w < −1
3
, occurs when the

potential energy density dominates over the kinetic energy, V � 1
2
φ̇2. From the

equation of motion (2.30) we further note that this condition is sustained if φ̈ �

V ′. These two conditions for prolonged inflation are summarized by restrictions on
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the form of the inflaton potential V (φ) and its derivatives. Quantitatively, inflation

requires smallness of the slow-roll parameters

ε ≡
M2

pl

2

(V ′
V

)2

, (2.31)

η ≡ M2
pl

V ′′

V
. (2.32)

The conditions for inflation, ε, |η| � 1, constrain the shape of the inflaton potential.

Whether and how naturally such flat potentials are achievable in string theory is an

important open question which we will address in the bulk of this thesis.

4.4. Quantum Origin of Structure. So far we have only discussed the classical

evolution of the inflaton field. Something remarkable happens when one considers

quantum fluctuations of the inflaton: inflation combined with quantum mechanics

provides an elegant mechanism for generating the initial seeds of all structure in the

universe.

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 10. Creation and evolution of perturbations in the inflationary uni-
verse. Fluctuations are created quantum mechanically on sub-horizon scales.
While comoving scales remain constant the comoving Hubble radius during
inflation shrinks and the perturbations exit the horizon. Causal physics can-
not act on superhorizon perturbations and they freeze until horizon re-entry
at late times.
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A very intuitive way of understanding how the quantum fluctuations of the inflaton

field δφ(x) translate into density fluctuations δρ(x) is via the time-delay formalism

developed by Guth and Pi [84].15 The basic idea is that φ controls the time at which

inflation ends (see Figure 9). Small quantum fluctuations in the value of the inflaton

field δφ(x) ∼ H translate into differences in the end of inflation (ε ≡ 1) for different

regions of space δt(x). Regions acquiring a negative frozen fluctuation δφ remain

potential-dominated longer than regions where δφ is positive. Hence, fluctuations of

the field φ lead to a local delay of the end of inflation

δt =
δφ

φ̇
∼ H

φ̇
. (2.33)

For the field fluctuation we have used the result of the zero-point calculation in de

Sitter space, δφ ∼ H. After reheating, the energy density evolves as ρ = 3M2
plH

2

where H ∼ t−1, so that

δρ

ρ
∼ 2

δH

H
∼ Hδt ∼ H

H

φ̇
. (2.34)

This process therefore induces tiny density variations δρ which via gravitational in-

stability grow to form the observed large-scale structure of the universe. In addition,

quantum fluctuations during inflation excite tensor metric perturbations, δg ∼ H
Mpl

.

Future experiments hope to detect this stochastic background of gravitational waves

from inflation.

15Strictly speaking the time-delay formalism is only valid when inflation is well-described
by the de Sitter solution and the equation of state is nearly unchanging [158]. We refer the
reader to Appendix A for an improved derivation of the inflationary perturbation spectra.
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Figure 11. Constraints on inflationary models from recent cosmic mi-
crowave background and large-scale structure observations [151].

4.5. Cosmological Observables.

Power Spectra. The computation we just sketched gives the following results for

primordial scalar and tensor power spectra (see Appendix A for details)

Ps =
(H

2π

)2
(
H

φ̇

)2

≈ 1

24π2M4
pl

V

ε
(2.35)

Pt =
2

π2

( H

Mpl

)2

≈ 2

3π2

V

M4
pl

. (2.36)

Here, the r.h.s. should be evaluated when the fluctuation mode freezes after crossing

the horizon, k = aH, (see Figure 10) and the second equality made use of the slow-

roll approximation. In a power law description, Ps = Ask
ns−1 and Pt = Atk

nt , the

spectral indices in terms of the slow-roll parameters are

ns − 1 = 2η − 6ε , (2.37)

nt = −2ε . (2.38)

The deviation from scale-invariance (ns = 1, nt = 0) may be traced to a small time

evolution of the Hubble parameter during inflation. From (2.35) and (2.36) we define
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the tensor-to-scalar ratio

r = 16ε . (2.39)

Measurements of ns and r are strong discriminators of inflationary models (see Figure

11).

Inflationary Gravitational Waves. Detection of a stochastic background of primor-

dial gravitational waves is widely regarded as a ‘smoking gun’ signature of inflation.

The best hope for detecting such a signal is via the subtle imprints they leave in the

polarization of the CMB (B-modes).16 It is important to make pre-dictions for the ex-

pected gravitational wave amplitude before the next generation of CMB polarization

experiments comes online. In the context of string theory we discuss this challenge

in Chapters 8, 9 and 10.
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Figure 12. Current and future constraints on the inflationary gravita-
tional wave background (Figure adapted from Boyle et al. [41]). Shown
is the theoretical prediction for “minimally tuned” inflationary models as
defined in [41].

16In the future it might also become feasible to measure inflationary gravitational waves at
late times with direct-detection experiments like the Big Bang Observer (BBO) (see Figure
12)
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A conservative estimate for the minimal gravitational wave amplitude that is

accessible to future experiments is r > 0.01. Any signal that is much smaller than

this will be very hard to extract from astrophysical foregrounds [150]. A detection of

the primordial tensor-to-scalar ratio r would be truly revolutionary, as r encodes two

crucial pieces of information about the inflationary era:

(1) Energy scale of inflation

The measured amplitude of scalar perturbations Ps ≈ 2.4 × 10−9 implies a

relation between the energy scale of inflation V 1/4 and the tensor-to-scalar

ratio r

V 1/4 = 1.06× 1016 GeV
( r

0.01

)1/4

. (2.40)

Detecting tensors (r > 0.01) would therefore imply that inflation occurred

at very high energies.

(2) Super-Planckian field variation

There is a one-to-one correspondence between the tensor-to-scalar ratio r

and the evolution of the inflaton during inflation ∆φ ≡ |φCMB − φend| [122]

(see Figure 9 for a definition of ∆φ and Chapter 8 for a derivation of the

Lyth bound)

∆φ

Mpl

> O(1)
( r

0.01

)1/2

. (2.41)

Observable gravitational waves (r > 0.01) therefore require super-Planckian

field excursions ∆φ > Mpl while keeping the potential controllably flat. In

Chapters 8 and 9 we discuss whether this is realizable in a consistent micro-

scopic theory like string theory.

Primordial Non-Gaussianity. Gaussian fluctuations are completely described by

their two-point correlation function (or the power spectrum). The primordial fluc-

tuations created during slow-roll inflation are predicted to be highly Gaussian (see
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Appendix A) and the CMB power spectrum therefore reveals most of their statis-

tical properties. However, large non-Gaussianity can arise for non-minimal models

with non-trivial kinetic terms and/or multiple fields. This non-Gaussianity is best

extracted from the three-point function (or bi-spectrum)

〈Φk1Φk2Φk3〉 = (2π)3δ(k1 + k2 + k3)F (k1, k2, k3) , (2.42)

where the momentum dependence of the function F contains important clues about

the physics of inflation.

A simple way to characterize the non-Gaussianity of Φ is to assume that it can

be parameterized by a field redefinition of the form

Φ = ΦL + fNLΦ2
L , (2.43)

where ΦL is Gaussian and the constant fNL measures the amount of non-Gaussianity

of Φ. Equation (2.43) is often called local non-Gaussianity. For single-field slow-roll in-

flation fNL < 1 (see Appendix A). Since it is generally believed that non-Gaussianity

is only observable if fNL & 1, we conclude that primordial non-Gaussianities from

slow-roll inflation are unobservable. However, the non-Gaussianity can easily be one

or two orders of magnitude bigger in non-minimal models of inflation. The search

for primordial non-Gaussianity is therefore an important aspect of the experimental

efforts to test the physics of inflation.



2. aspects of modern cosmology 45

4.6. What is the Physics of Inflation? Understanding the (micro)physics of

inflation remains one of the most important open problems in modern cosmology

and theoretical physics. Explicit particle physics models of inflation remain elusive,

so that a natural microscopic explanation for inflation has yet to be uncovered.17

Nevertheless, there have recently been interesting efforts to derive inflation from string

theory. The search for inflationary solutions in string compactifications will be the

main focus of this thesis.

17At this point it should be emphasized that the inflationary era in the early universe
is an unproven hypothesis. It is therefore important to keep an open mind about creative
alternative solutions to the horizon and flatness problems and the generation of cosmological
perturbations. The most interesting proposals to date are the ekpyrotic/cyclic scenarios
[43, 100, 154]. In these models a period of slow contraction before the Big Bang expanding
phase replaces inflation.



CHAPTER 3

Elements of String Compactifications

In this chapter we review fundamental aspects of string compactifications. The

formal developments described here form the basis for modern studies of string cos-

mology. We make no attempt at a complete and/or pedagogical introduction to string

theory. For a more thorough treatment of this vast and rapidly evolving subject the

reader may be referred to [27, 79, 138, 164].

After describing the moduli problem in §1 we present flux compactifications and

the KKLT scenario in §2 and §3, respectively. These constructions fix all moduli

and allow metastable de Sitter solutions. In addition, compactifications with fluxes

generically have warped regions whose local geometry we review in §4.

1. The Moduli-Stabilization Problem

Low energy effective actions arising from string theory typically contain many

scalar fields collectively called moduli. In particular, the compact manifolds satis-

fying the string equations of motion generally come in continuous families whose

parameters (controlling the size and shape of the extra dimensions) become scalar

fields in the four-dimensional effective theory. Compactifications containing branes

have additional moduli that parameterize their relative positions and orientations.

Finally, any string compactification always contains the massless dilaton field.

Before considering potentials arising from fluxes and non-perturbative effects,

these string moduli fields are massless and their couplings are of gravitational

46
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strength. the existence of these fields therefore raises generic cosmological problems

– The late time evolution of moduli fields affects low energy observables like the cou-

plings of the Standard Model, Newton’s gravitational constant, and the fine-structure

constant. In addition, light moduli fields can lead to fifth force-type violations of the

equivalence principle. All of these effects are strongly constrained by experiments.

The presence of light moduli fields may also lead to problems in the early universe:

e.g. successful Big Bang nucleosythesis (BBN) requires a moduli mass mχ in excess

of 30 TeV. If mχ . 100 MeV then the energy stored in the moduli fields overcloses the

universe while if 100 MeV . mχ . 30 TeV then the moduli decay dilutes the BBN

products [110]. Phenomenologically viable models of particle physics and cosmology

therefore require a solution to the moduli-stabilization problem.

2. Flux Compactification

The moduli-stabilization problem has been solved only recently in the context of

flux compactifications of type IIB string theory [76], [82], [93]. Here we summarize

the basic elements of this program. For more details we refer the reader to the review

by Douglas and Kachru [63] or the recent Les Houches lectures by Denef [57].

2.1. Basic Ingredients. The basic ingredients of type IIB flux compactifications

are fluxes, branes and warped extra dimensions. The type IIB limit of string theory

contains D3-, D5-, and D7-branes as well as O(rientifold)-planes. The action for a Dp-

brane is the sum of a Dirac-Born-Infeld (DBI) term and a Chern-Simons (CS)-term

[139]

SDp = SDBI + SCS . (3.1)

The DBI action describes the worldvolume of the brane which in string frame is1

SDBI = −Tp
∫

dp+1ξ e−Φ
√
−det(GAB) . (3.2)

1This result is to leading order in α′ and for the case of vanishing worldvolume field strength.
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Here, Tp = (2π)−pg−1
s (α′)−(p+1)/2 is the D-brane tension in terms of the string coupling

gs and the fundamental string length
√
α′. The field Φ is the dilaton and GAB is

the pullback of the metric onto the brane worldvolume. The Chern-Simons-term2

describes the electric coupling of a Dp-brane to the R-R (p+ 1)-form Cp+1

SCS = µp

∫
Cp+1 , |µp| = Tpe

−(p−3)Φ/4 . (3.3)

Branes are therefore sources for form-field fluxes Fp+2 = dCp+1. The total flux of these

fields through topologically non-trivial surfaces in the extra dimensions is quantized,

e.g.

1

(2π)2α′

∫
A

F3 = M ,
1

(2π)2α′

∫
B

H3 = −K , (3.4)

where A and B are 3-cycles of the compact manifold, F3 = dC2 and H3 = dB2 are

3-form fluxes and M and K are integers.

Finally, the presence of branes and fluxes sources locally warped spacetime regions,

ds2 = h1/2(y) gµνdx
µdxν︸ ︷︷ ︸

4D

+h−1/2(y) gijdy
idyj︸ ︷︷ ︸

6D

. (3.5)

These regions are important backgrounds for quantitative studies of string cosmology

(see §4 and Chapter 4).

2.2. Moduli Potential. In the following we provide a lightning review of the

four-dimensional low-energy effective description of the KKLT proposal. We work in

the limit of N = 1 supergravity, where the moduli potential VF is characterized by a

superpotential W and a Kähler potential K

VF = eK/M
2
pl

[
Ki̄DiWDjW −

3

M2
pl

|W |2
]
, (3.6)

where DiW ≡ ∂iW + 1
M2

pl
(∂iK)W and Ki̄ ≡ ∂i∂̄K. The compactification typically

contains 3-form flux G3 ≡ F3 − τH3 which contributes to the superpotential via the

2More general forms of the Chern-Simons term may be found in [139].
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Gukov-Vafa-Witten (GVW) term [82]

Wflux =

∫
G3 ∧ Ω , (3.7)

where Ω denotes the holomorphic three-form on the Calabi-Yau three-fold and τ ≡

C0 + ie−Φ is the axio-dilaton. The Kähler potential for the complex structure moduli

and the dilaton is

K = −M2
pl ln

[∫
Ω ∧ Ω̄

]
−M2

pl ln[τ + τ̄ ] . (3.8)

Turning on generic G3-flux induces a potential VF that usually fixes all the complex

structure moduli (χα) and the dilaton (τ) [76]. The potential (3.6) is minimized for

DχαWflux = DτWflux = 0.

3. De Sitter Vacua in String Theory

3.1. Non-perturbative Effects. The (classical) flux background fixes the shape

(complex structure moduli) of the extra dimensions, but leaves the overall size (Kähler

moduli ρ) unfixed [76] (see Figure 1). Recently, Kachru, Kallosh, Linde and Trivedi

(KKLT) [93] provided a framework for stabilizing the overall size of the compact

manifold by including non-perturbative (quantum) effects e.g. gaugino condensation

on D7-branes or Euclidean D3-instantons. These effects are parameterized by the

following superpotential

Wnp = Ae−aρ , (3.9)

for a constant. With K = −3M2
pl ln[ρ+ ρ̄] the F-term potential (3.6) then leads to

supersymmetric anti-de Sitter (SUSY AdS) vacua, DρW = Dρ(Wflux +Wnp) = 0, with

stabilized Kähler modulus. The compactification is stabilized at large volume, ρ? � 1,

iff the flux superpotential is a small negative constant Wflux(χ?α, τ
?) ≡ W0 ∼ −10−4

(in units where Mpl ≡ 1).
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3.2. de Sitter Space. Having negative cosmological constant, these solutions

cannot yet describe our universe, VF = − 3
M2

pl
|W |2eK/M2

pl . KKLT therefore uplifted the

AdS minima to positive energies by adding anti-D3-branes. This ‘D-term’ uplifting

adds the following term to the moduli potential

VD =
D

(ρ+ ρ̄)2
, (3.10)

where D is a constant that depends on the D3-brane tension and the warping of

the background. The final potential for the volume modulus σ ≡ Re(ρ) is shown in

Figure 1

V (σ) =
aA

2M2
pl

e−aσ

σ2

(1

3
aσAe−aσ +W0 + Ae−aσ

)
+

1

4

D

σ2
. (3.11)

Notice that the de Sitter minimum is metastable. The magnitude of the cosmological

12 16 18 20
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no-scale
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volume

V (σ)

σ ≡ Re(ρ)

Figure 1. KKLT compactification: Potential for the volume modulus
σ = Re(ρ). Fluxes fix the complex structure and the dilaton field, but leave
the overall volume modulus unfixed (green curve). Non-perturbative effects
stabilize the volume in a supersymmetric minimum with negative cosmolog-
ical constant (blue curve). Anti-D3 branes provide the uplifting energy to a
metastable de Sitter minimum (red curve).

constant associated with the minimum depends on the choice of flux quanta (3.4) and

is therefore tunable. The discretuum of vacua in type IIB flux compactifications has

been employed for an anthropic solution to the cosmological constant problem [39].
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4. Klebanov-Strassler Geometry

The moduli spaces of compact Calabi-Yau spaces generically contain conifold sin-

gularities. The local description of these singularities is called the conifold, a non-

compact Calabi-Yau three-fold whose geometry is given by a cone. In contrast to

general Calabi-Yau backgrounds the metric data for the conifold is explicitly known.

This makes these backgrounds very interesting for detailed studies of string cosmology

and particle phenomenology.

In this section we cite basic geometrical facts about the conifold (for more details

we refer the reader to the recent Les Houches lectures by Benna and Klebanov [29]).

4.1. Singular Conifold. The (singular) conifold is defined by the complex equa-

tion
4∑
i=1

z2
i = 0 , zi ∈ C . (3.12)

The constraint equation (3.12) describes a cone over X5 = S2 × S3. To see this note

that if zi is a solution to (3.12) then so is λzi with λ ∈ C. Also, letting zi ≡ xi + iyi,

the complex equation (3.12) may be recast into three real equations

~x · ~x =
1

2
ρ2 , ~y · ~y =

1

2
ρ2 , ~x · ~y = 0 . (3.13)

The first equation defines a 3-sphere S3 with radius ρ/
√

2.3 The last two equations

then describe a 2-sphere S2 fibred over the S3. The Calabi-Yau metric on the conifold

is

ds2
6 = dr2 + r2ds2

T 1,1 , (3.14)

if we define the radial coordinate r ≡
√

3/2ρ2/3 or r3 ≡
∑4

i=1 |zi|2.

3Here, the variable ρ is of course not to be confused with the Kähler modulus introduced
in §3.
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The base of the cone is the T 1,1 coset space [SU(2)A× SU(2)B]/U(1)R which has

the topology S2×S3. The metric of T 1,1 in angular coordinates θi ∈ [0, π], φi ∈ [0, 2π],

ψ ∈ [0, 4π] is

ds2
T 1,1 =

1

6

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(dθ2
i + sin2 θidφ

2
i ) . (3.15)

4.2. Deformed Conifold. The space defined by (3.12) is singular at the tip

of the cone, r = 0. Various prescriptions exist for removing this singularity – e.g.

consider the deformed conifold defined by

4∑
i=1

z2
i = ε2 , (3.16)

where ε ∈ C. By a phase rotation of the zi coordinates we can always choose ε ∈

R+. This defines a one-dimensional moduli space. For large r the deformed conifold

geometry reduces to the singular conifold with ε = 0. Moving from large r towards

the origin, the sizes of the S2 and the S3 both decrease. Decomposing the zi into real

and imaginary parts we now find

ε2 = ~x · ~x− ~y · ~y , (3.17)

and

ρ2 = ~x · ~x+ ~y · ~y . (3.18)

This shows that the range of ρ (or r) is limited by

ε2 ≤ ρ2 <∞ (3.19)

and the singularity at r = 0 is avoided for ε2 > 0. It also shows that as ρ2 → ε2 the

S2 disappears (~y · ~y → 0) leaving just an S3 with finite radius.



3. elements of string compactifications 53

4.3. Warped Throat. A stack of N D3-branes placed at the singularity zi = 0

backreacts on the geometry, producing a warped background with the following ten-

dimensional line element

ds2 = h1/2(z)gµνdx
µdxν + h−1/2(z)gi̄dz

idz ̄ , (3.20)

where gi̄ is the metric (3.14) and the warp factor is

h(r) =
R4

r4
, R4 ≡ 27π

4
gsN(α′)2 . (3.21)

This AdS background is an explicit realization of the Randall-Sundrum scenario [140,

141] in string theory. In the spirit of AdS/CFT [124] the AdS5×T 1,1 geometry (3.20)

has a dual gauge theory interpretation. The dual N = 1 supersymmetric conformal

gauge theory was constructed in [107]. It is an SU(N)×SU(N) gauge theory coupled

to bifundamental chiral superfields. If one further adds M D5-branes wrapped over

the S2 inside T 1,1, then the gauge group becomes SU(N + M) × SU(N), giving

a cascading gauge theory [105, 106]. The three-form flux induced by the wrapped

D5-branes (fractional D3-branes) satisfies

1

(2π)2α′

∫
S3

F3 = M . (3.22)

The warp factor h(r) for this case was found by Klebanov and Strassler (KS) [105].

For large r it is [106]

h(r) =
27π(α′)2

4r4

[
gsN +

3

2π
(gsM)2 ln

( r
r0

)
+

3

8π
(gsM)2

]
, (3.23)

where r0 ∼ ε2/3e2πN/(3gsM).

The Klebanov-Strassler warped conifold background (also refered to as the warped

throat) is the basis for our explicit studies of warped D-brane inflation.



CHAPTER 4

Inflation in String Theory

Understanding the physics of inflation is one of the main challenges of fundamen-

tal physics and modern cosmology. Since string theory remains the most promising

candidate for a UV-completion of the Standard Model that unifies gauge and gravita-

tional interactions in a consistent quantum theory, it seems natural to search within

string theory for an explicit realization of the inflationary scenario. This search has

so far revealed two distinct classes of inflationary models which identify the inflaton

field with either open string modes (e.g. brane inflation [64, 95], DBI inflation [4, 147],

assisted M5-brane inflation [26], D3/D7 inflation [56], wrapped brane inflation [148]),

or closed string modes (e.g. Kähler moduli inflation [54], racetrack inflation [35, 36],

N-flation [61, 67]). In this chapter we review these theoretical developments.

We begin in §1 with general remarks about the promise of studying UV-physics

in string theory models of inflation. In §2 we review warped brane inflation with

particular emphasis on the eta-problem [95] and the DBI mechanism [147]. In §3 we

provide a brief survey of other models of string inflation. We describe their prospects

and problems. Finally, in §4 we explain the ambitious goal of deriving inflationary

models from explicit string compactifications.

For more details on these and related aspects of inflation in string theory we refer

the reader to the excellent review by McAllister and Silverstein [128] or the upcoming

review by Liam McAllister and myself [22].

54
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1. UV Challenges/Opportunities

We first make some preliminary remarks on the promise of studying inflation in the

context of string theory. Specifically, we will emphasize three problems in inflationary

cosmology that benefit most directly from the application of a UV-complete theory.1

1.1. V (φ) and the Eta–Problem. As the rest of this thesis will illustrate with

the example of brane inflation, the main challenge in string inflation is not to find

a flat potential, but to prove that it is the potential. After a modulus field with

(naively) flat potential has been identified, the challenge is to prove that the delicate

flatness of the potential is protected against corrections. More specifically, consider

an inflation model with some potential V (φ). A robust model requires understanding

gravity corrections up to (at least) dimension six

δV ∼ V

M2
pl

φ2 . (4.1)

These terms can induce O(H) corrections to the inflaton mass, which shift the infla-

tionary eta parameter by order unity

∆η ∼ O(1) . (4.2)

For a controllable model one needs to demonstrate explicitly that these dangerous

terms are absent, suppressed or cancel. This requires some knowledge of Planck scale

physics or quantum gravity.

1.2. Gravitational Waves. The Lyth bound [122] shows that observable ten-

sors (r > 0.01, say) require super-Planckian field excursions during inflation,

∆φ > Mpl . (4.3)

1The following remarks are inspired by discussions with Shamit Kachru, Eva Silverstein and
Liam McAllister.
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An effective field theory (EFT) description of inflation integrates out all heavy fields

above a cutoff M and only retains the light inflaton degree of freedom. It is argued

(e.g. [123]) that this procedure generically gives a tree-level potential of the following

form

V (φ) = V0 +
1

2
m2φ2 +

1

4
λφ4 + φ4

4∑
n=1

λn

( φ
M

)n
. (4.4)

Here we have separated the potential in a renormalizable part and an infinite series

of irrelevant terms which are supressed by the cut-off scale M . Since it is usually

assumed that λn ∼ O(1) and M . Mpl, this suggests a breakdown of the EFT

for φ > Mpl. Of course, this argument does not prove the impossibility of super-

Planckian vevs, but it suggests that capturing the dynamics over a super-Planckian

range requires going beyond EFT. Whether large-field models of inflation are under

(microphysical) theoretical control can therefore be addressed unambiguously only in

a UV-complete theory such as string theory.

1.3. Non-Gaussianity. In single-field slow-roll models of inflation the primor-

dial fluctuations are very nearly Gaussian with the amount of non-Gaussianity sup-

pressed by powers of the slow-roll parameters [125]. To obtain observable non-

Gaussianity during inflation requires extensions of the simplest models by including

multiple fields and/or non-trivial kinetic effects. In single-field models with higher-

derivative corrections to the canonical kinetic term the non-Gaussianity can be large

if and only if these operators are important to the inflationary background dynamics

[55]. From an effective field theory point of view this means living dangerously close

to the limit of control with a large number of higher-derivative corrections all being

simultaneously important. Such models therefore cry for UV-completion. String the-

ory has recently provided a number of interesting realizations for such models, e.g.

DBI inflation [147] (see §2).
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2. Warped D-brane Inflation

2.1. Setup. Warped D-brane inflation is arguably the most developed inflation-

ary scenario in string theory. In this setup inflation is described by the motion of

a D3-brane in a warped background (like the Klebanov-Strassler throat [105] intro-

duced in the previous chapter). The D3-brane fills four-dimensional spacetime and is

pointlike in the compact extra dimensions (see Figure 1). The position of the brane

in the extra dimensions serves as the inflaton field.

warped throat

r

D3
D3

r0

0

V(r) bulk Calabi-Yau

Figure 1. The KKLMMT Scenario. The 3-branes are spacetime-filling
and therefore pointlike in the extra dimensions. The net force on the D3-
brane is associated with the inflaton potential.

The kinetic term for the motion of the brane arises from the Dirac-Born-Infeld

(DBI) action (3.2) in the background (3.20)

LDBI = −f−1(φ)
√

1− 2f(φ)X + f−1(φ) . (4.5)

Here, X ≡ −1
2
gµν∂µφ∂νφ, where φ2 = T3r

2 parameterizes the inflaton field, and

f−1 = T3h
−1 is the warped tension of the brane. In the slow-roll limit (fX � 1) we

recover the familiar canonical kinetic term LDBI ≈ X.

The original brane inflation proposal by Dvali and Tye [64] considered a brane-

antibrane pair in an unwarped background (e.g. a torus). The brane then feels a

Coulomb-like force from the anti-brane that acts as a potential for the inflaton. How-

ever, in the scenario of Dvali and Tye this force is too strong to allow slow-roll
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inflation. In addition, the moduli stabilization problem had not been addressed.

Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) made the

important observation that a brane in a warped background feels a much weaker

force. Warping suppresses the brane-antibrane force sufficiently to make slow-roll

possible. In addition, KKLMMT showed how to embed the model into a concrete

KKLT compactification with fixed moduli. However, in the process they discovered

that compactification effects add correction terms to the potential that generically

spoil slow-roll.

2.2. The Eta–Problem. Consider a KKLT compactification with an additional

mobile D3-brane. As argued by Ganor [71], the non-perturbative superpotential (3.9)

now depends on the D3-brane position φ ∝ r

Wnp = A(φ)e−aρ . (4.6)

At this point A(φ) is an unknown function. The Kähler potential in such a setup was

given by DeWolfe and Giddings [58]

K = −3M2
pl ln[ρ+ ρ̄− k(φ, φ̄)] ≡ −3M2

pl lnU(ρ, φ) , (4.7)

where k(φ, φ̄) ≈ φφ̄ is the Kähler potential on the moduli space of the D3-brane

(e.g. a warped throat region). The inflaton potential may then be computed from the

F- and D-term potentials

V (φ) = VF (φ) + VD(φ) . (4.8)

Here, VF (φ) is the moduli potential (3.6) and VD(φ) = DU−2 parameterizes the the

energy of the brane-antibrane pair (see (3.10)). To arrive at a single field potential

for φ the volume modulus ρ has been integrated out. The slow-roll eta parameter

corresponding to (4.8) is

η =
2

3
+ ∆η(φ) , (4.9)
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where ∆η(φ) has isolated the terms that arise from the dependence of the superpo-

tential on φ (4.6) . Notice that if A = constant then η = 2
3

and inflation is impossible.

However, we know that it is inconsistent to assume that A is a pure constant inde-

pendent of the brane position φ. KKLMMT therefore expressed the hope that the

functional form of A(φ) would be such that it allowed a fine-tuned cancellation of the

2
3

in (4.9). Since at the time the function A(φ) was not known, this expectation re-

mained only a hope that had to be checked against an explicit computation. In other

words, to assess the true status of warped D-brane inflation one needed to compute

A(φ) (Chapter 5) and determine ∆η(φ) (Chapters 6 and 7). The first computation of

A(φ) [18] is one of the main results of this thesis. We find that inflation is harder to

achieve than was generally assumed.

KKLMMT

BDKM

Dvali+Tye (+warping)

2.0

1.5

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 2. Computations of the brane potential.
a) Dvali+Tye (+warping) [64, 95]: VCoulomb(φ) = V0(1− cφ−4).
b) KKLMMT [95]: VKKLMMT(φ) = VCoulomb(φ) + βφ2.
c) BDKM [19]: VBDKM(φ) = VCoulomb(φ) + λ1(φ− φ0) + λ3(φ− φ0)3.
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2.3. Physical Interpretation of the Brane Potential. We digress briefly to

give a more physical interpretation of the different contributions to the brane potential

(see Figure 2). A brane experiences (at least) three forces in a KKLT background:

(1) Coulomb interaction with the anti-D3:

The Coulomb-like interaction between the brane-antibrane pair may be

understood as follows: The energy density of the branes perturbs the warp

factor of the background geometry. Schematically, the perturbation δhi sat-

isfies the following equation of motion

∇2δhi = C δ(r − ri) ⇒ δhi ∝
1

|r − ri|4
, (4.10)

where ri parameterizes the positions of the D3-brane and the anti-D3-brane.

The D3-brane hence feels a 1/r4 force from the perturbed geometry sourced

by the anti-brane. The force is suppressed by warping and gives a negligible

contribution to the inflationary η-parameter.

(2) D3-brane backreaction on the volume:

Similarly, the D3-brane energy backreacts on the overall compactification

volume, so that the physical volume becomes dependent on the brane position

V(r). Since powers of the volume appear in the rescaling of the action from

string frame to Einstein frame2

LEinstein =
1

Vn(r)
Lstring , n ∈ Z , (4.11)

this gravitational interaction between the D3-brane and the compact space

induces a force on the D3-brane (first computed by KKLMMT [95]). This is

the physical origin of the 2
3
-term in equation (4.9).

2Strictly speaking, only a breathing mode appears in the dimensional reduction (see Ap-
pendix F).
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(3) D3/D7 interaction:

In a KKLT compactification the overall volume is stabilized by non-

perturbative effects on wrapped D7-branes. One therefore is obliged to in-

clude the force between the D3-brane and the D7-branes. The effect can be

small if the D7-branes are far from the throat region (in which case inflation

will be impossible) or it can be large if the D7-branes are in or near the

throat. In the hope of deriving inflationary solutions, we therefore consider

D7-branes wrapping a 4-cycle reaching into the throat. The presence of the

D3-brane changes the (warped) volume of the 4-cycle. A change in the 4-cycle

volume in turn changes the effective gauge coupling on the D7-brane world-

volume, g(r), and hence modifies the strength of the non-perturbative effect

in a way that depends on the location of the D3-brane, Wnp ∝ exp(1/g2(r))

(see (4.6)). This induces a force on the mobile D3-brane (first computed

by BDKMMM [18]; Chapter 5). We discuss the D3/D7 interaction in more

detail in the bulk of this thesis. It produces the ∆η(φ)-contribution in (4.9).

2.4. DBI Inflation. Silverstein and Tong [147] recently proposed an interest-

ing mechanism that potentially obviates the eta-problem of slow-roll brane inflation.

Their model (called DBI inflation) is driven by non-linear kinetic effects exhibited by

the action (4.5) and does not rely on the delicate flatness of the inflaton potential.

While slow-roll brane inflation corresponds to non-relativistic brane motion, the

non-linearities of the DBI action become important in the relativistic limit. The

relativistic limit of brane motion in a warped background may be characterized by

the parameter γ (defined in analogy to the Lorentz factor of relativistic particle

dynamics)3

γ ≡ 1√
1− f(φ)φ̇2

. (4.12)

3For simplicity we here restrict the discussion to the homogeneous mode φ(t).



4. inflation in string theory 62

Positivity of the argument of the square-root in (4.12) imposes a local speed limit on

the brane motion, φ̇2 ≤ f−1(φ) = T3h
−1(φ) (in units where c = 1). The presence of

strong warping in the throat, h−1 � 1, can make this maximal speed of the brane

much smaller than the speed of light. The parameter γ is large when φ̇ is close to

this speed limit.

From the inflaton action L = LDBI − V we find the homogeneous energy density

in the field

ρ = 2XL,X − L = (γ − 1)f−1 + V , (4.13)

while the pressure is

p = L = (1− γ−1)f−1 − V . (4.14)

The energy and pressure of the inflaton source the dynamics of the homogeneous

background spacetime, ds2 = −dt2 + a(t)2dx2, as described by the Friedmann equa-

tions

3M2
plH

2 = ρ , 2M2
plḢ = −(ρ+ p) . (4.15)

Inflation requires that the variation of the Hubble parameter H is small

ε ≡ − Ḣ

H2
=

3

2
(1 + w) < 1 , (4.16)

where

w ≡ p

ρ
=

(1− γ−1)f−1 − V
(γ − 1)f−1 + V

. (4.17)

From the expression for the equation of state parameter (4.17) we see that although

the brane moves relativistically in the DBI limit, γ � 1, inflation still requires that

the potential energy V dominates over the kinetic energy of the brane (γ − 1)T3h
−1.

This is possible because the kinetic energy of the brane is suppressed by the large

warping of the internal space, h−1 � 1.

In addition to providing an elegant solution to the eta-problem, DBI inflation

makes exciting phenomenological predictions. The primordial fluctuations produced
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during DBI inflation are highly non-Gaussian (fNL ∝ γ2 � 1) at a level easily de-

tectable by near future experiments [147]. This makes DBI inflation very falsifiable.

In fact, as we will show in Chapter 8, DBI inflation on Calabi-Yau cones is already

very constrained by a combination of experimental and microscopic considerations

[21].

3. Models of String Inflation

Models of inflation in string theory can be divided into two categories: models

where the inflaton is an open string or closed string degree of freedom.

3.1. Open String Models. Crudely speaking, open string moduli parameterize

the positions and orientations of D-branes. Using these moduli, many variants and

complements of brane-antibrane inflation and DBI inflation have been constructed

(e.g. assisted M5-brane inflation [26], D3/D7 inflation [56], wrapped brane inflation

[148], etc.). We refer the reader to the original papers and recent reviews [96] for

a more comprehensive summary of these developments. Since we described brane

inflation in some detail in the previous section we here restrict ourselves to a few

comments on models of inflation coming from the closed string sector.

3.2. Closed String Models. Closed string moduli are the Kähler moduli, the

complex structure moduli, the dilaton and the corresponding axions. The associated

inflationary models include racetrack inflation [35, 36], Kähler moduli inflation [54],

Roulette inflation [38], and N-flation [61, 67]. For no reason other than personal

taste we here select to describe Kähler moduli inflation and N-flation in more detail.

� Kähler moduli inflation by Conlon and Quevedo [54] is an interesting at-

tempt to embed inflation in the LARGE volume compactifications of [15]. An at-

tractive feature of these models is that most corrections to the inflaton potential are

suppressed by factors of the exponentially large volume.



4. inflation in string theory 64

Let the Kähler potential for three Kähler moduli ρi be

K = −2M2
pl ln

[
λ1(ρ1 + ρ̄1)3/2 + λ2(ρ2 + ρ̄2)3/2 + λ3(ρ3 + ρ̄3)3/2 + ξ

]
(4.18)

≡ −2M2
pl ln[V(φ)] , (4.19)

where ξ parameterizes α′ corrections. The superpotential has the same structure as

in KKLT (see Chapter 3)

W = W0 +
3∑
i=1

Aie
aiρi . (4.20)

For W0 = O(1)M4
pl this leads to a minimum at exponentially large volume V? ∼

O(1014). (Recall that the KKLT solution corresponds to the limit W0 ≈ −10−4M4
pl.)

At least three Kähler moduli are required to stabilize the overall volume V during

inflation. ρ1 and ρ2 are fixed, while a blow-up four-cycle ρ3 plays the role of the

evolving inflaton φ. In [54] the axion Im(ρ3) was frozen at its minimum and the

inflaton reduced to Re(ρ3). The more general case was considered in [38]. There, the

two complex fields ρ1 and ρ2 are again fixed, but in ρ3 ≡ φ + iθ, both the volume

modulus φ and the axion θ evolve during inflation. The resulting potential is periodic

in θ and exponentially flat in φ. In this multi-field case, the inflationary trajectories

are of course not unique, but depend on the initial conditions.

To date, it has not been proven rigorously that the eta-problem is really absent

in Kähler moduli inflation. Most corrections to the potential are suppressed by

factors of the overall (exponentially large) volume. However, as noted in [38, 54],

there are additional corrections to the Kähler potential of the form f(φ)V−n that

could depend on the inflaton. For generic functions f(φ) this gives an eta-problem.

Proving the absence of these terms remains an important step towards establishing

the viability of models of Kähler moduli inflation.

� N-flation [61, 67] is unique amongst inflationary models in string theory in

that it predicts an observable amplitude of gravitational waves. As we explained in
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Chapter 2, observable gravity waves are associated with super-Planckian field excur-

sions during inflation. In Chapters 8, 9 and 10 we explain why we think it may be

very challenging to embed large-field models of inflation in a consistent string com-

pactification. This makes it particularly interesting to discuss whether N-flation is a

serious exception to this general expectation.

N-flation overcomes the super-Planckian problem by the mechanism of assisted

inflation [115]. Let us first describe assisted inflation in effective field theory and

then present its string theoretic realization. We consider N fields φi with separable

potentials V (φ) =
∑

i Vi(φi). The individual fields do not exceed Planckian vevs. The

crucial point of the assistance effect is that each individual field feels the combined

Hubble friction of all fields, 3M2
plH

2 =
∑

i Vi, but only the force from its own potential

φ̈i + 3Hφ̇i = −∂iVi . (4.21)

(Note that cross-couplings between the fields can easily destroy the assistance effect).

Imagine a large number of fields with small initial displacements away from the min-

ima of their potentials, ∆φi � Mpl. The potentials Vi are then approximated by a

quadratic expansion about the minima Vi ≈ 1
2
m2
iφ

2
i . For simplicity, we also take all

masses to be equal mi = m [61] (the case of a distribution of different masses was

considered by Easther and McAllister [67]). The effective inflaton potential then be-

comes, V = 1
2
m2 [φ2

1 + φ2
2 + · · ·+ φ2

N ] ≡ 1
2
m2Φ2. Here, we have defined the effective

inflaton as the Pythagorean sum of the individual fields Φ2 ≡
∑

i φ
2
i . If the initial field

displacements are equal, φi ≡ φ, we can write Φ =
√
Nφi. If the number of fields N

is large enough, then the effective inflaton can have a super-Planckian displacement

∆Φ > Mpl even if ∆φi � Mpl. For string theory axions the required number of field

turns out to be N ≥ O(1000) [61, 67, 102].

We now come to the concrete realization of this idea using the many axions of

string theory – our treatment parallels that of Ref. [67]. A large number of axions
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are generically present in string compactifications. The axion Lagrangian is

L =
1

2
M2

plKij∇µφ
i∇µφj − V , (4.22)

where

V = exp

(
K
M2

pl

)[
KABDAWDBW − 3

|W |2

M2
pl

]
. (4.23)

Here A,B run over the dilaton τ , the complex structure moduli χα and the Kähler

moduli ρi ≡ σi − iφi. The Kähler potential only depends on the real part of the

Kähler moduli and in particular is independent of the axions φi. Meanwhile, in the

KKLT superpotential the dependence on the axions is as follows

Wi = Aie
−2πσie2πiφi ≡ Cie

2πiφi . (4.24)

Assuming that the complex structure moduli and the volume cycles σi have relaxed

to their minima, we focus on the evolution of the axion fields φi (we discuss this

assumption below). The complete superpotential from fluxes and nonperturbative

effects is

W = W0(τ ?, χ?α) +
∑
i

Wi(σ
?
i , φi) . (4.25)

Substituting (4.25) into (4.23) and performing a Taylor expansion around φi = 0 one

finds [67] (using F-flatness DAW |φi=0 = 0)

V = (2π)2M̂ijφ
iφj +O(φ3) , (4.26)

where

M̂ij ≡
1

M2
pl

eK/M
2
P
(
KABDACiDBCj − 3CiCj

)
. (4.27)

At this point, neither the kinetic terms, nor the mass matrix are diagonal. Hence, the

potential does not take the uncoupled form required for the assistance effect described

above. However, Ref. [67] showed that the cross-couplings in M̂ij are suppressed for

statistical reasons (see Appendix A of [67]). Furthermore, the metric Kij can be
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diagonalized by an orthogonal rotation

O k
i KklO l

j =
f 2
i

M2
pl

δij . (4.28)

The eigenvalues fi are the axion decay constants. Finally, after absorbing the fi into

a rescaling of the φi to make the kinetic terms canonical, the Lagrangian becomes

L =
1

2
∂µφi∂

µφi −Mijφ
iφj , (4.29)

where

Mij = (2π)2 e
K

fifj
O k
i

(
DACkD

ACl − 3CkCl
)
O l
j . (4.30)

In the limit where only the quadratic terms in (4.26) are retained a further orthogonal

rotation diagonalizes Mij. The eigenvalues of Mij are the masses mi of N canonically

normalized, uncoupled axions

L =
1

2
∂µφi∂

µφi −
∑
i

1

2
m2
iφ

2
i . (4.31)

(Ref. [67] went further and characterized the statistical properties of these eigenvalues

using random matrix theory). This seems to establish the Lagrangian assumed for

assisted N axion inflation. However, the devil is in the details. Are the cross-couplings

really small enough to allow the assistance effect? What happens when higher-order

corrections to the quadratic approximations for the potentials are included? Most

importantly there is a question of initial conditions: is it consistent to assume that

the real parts of the Kähler moduli have all relaxed to their minima before the axionic

counterparts? This assumption requires that the mass in the σi-directions is much

larger than in the φi-directions. Finally, the string compactifications of N-flation are

at the limit of control of the α′ and gs expansions [61]. Unknown higher corrections in

α′ and gs could spoil the success of the scenario. It therefore remains to be established
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explicitly whether N-flation is a consistent realization of large-field inflation in string

theory.4

4. Inflation from Explicit String Compactifications

None of the models in §3 have been derived from an explicit string compactification

that includes a computation of all relevent correction terms. In this thesis we make

important steps towards this goal.

String Compactification

Inflationary 
Lagrangians

4d Lagrangians

Observables

branes
fluxes

moduli

geometry of M6

potential V(φ)

Figure 3. From String Compactification Data to Low Energy Lagrangian
to Inflation. String theory specifies discrete compactification data C (geom-
etry and topology of extra dimensions, amount and types of branes, amount
and types of fluxes, etc.) At low energies, four-dimensional physics is de-
scribed by an effective field theory with Lagrangian L. In this thesis we
study the correspondence between C and L and search for configurations
that allow inflationary solutions.

In the following chapters, we formulate the standard that we would like to require

from an explicit model of string inflation. We illustrate this program with a concrete

computation of the inflaton potential for models of warped D-brane inflation. We

draw conclusions about the possibilities and impossibilities of effective field theories

derivable from this setup. We will find that although naively these scenarios lead to

4At the time of writing the most detailed discussions of these issues can be found in [80]
and [98] .
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effective Lagrangians that should easily allow inflationary solutions, the parameter

space of successful models is dramatically reduced by microphysical constraints arising

from the compactification geometry.



Part 2

The Inflaton Potential



CHAPTER 5

On D3-brane Potentials in Compact Spaces

We begin our study of D-brane motion in warped background spacetimes by com-

puting a crucial ingredient to the D3-brane potential.1 Technical details of the com-

putations presented in this chapter are relegated to Appendices B, C and D.

1. Introduction

1.1. Motivation. As we emphasized in Part I of this thesis, a truly satisfac-

tory model of inflation in string theory should include a complete specification of a

string compactification, together with a reliable computation of the resulting four-

dimensional effective theory. While some models come close to this goal, we have seen

that very small corrections to the potential can spoil the delicate flatness conditions

required for slow-roll inflation [153]. In particular, gravitational corrections typically

induce inflaton masses of order the Hubble parameter H, which are fatal for slow-roll.

String theory provides a framework for a systematic computation of these corrections,

but so far it has rarely been possible, in practice, to compute all the relevant effects.

However, there is no obstacle in principle, and one of our main goals in this work is

to improve the status of this problem.

It is well-known that a D3-brane probe of a ‘no-scale’ compactification [76] with

imaginary self-dual three-form fluxes experiences no force: gravitational attraction

1The material of this chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Kle-
banov, Juan Maldacena, Liam McAllister and Arvind Murugan, “On D3-brane Potentials
in Compactifications with Fluxes and Wrapped D-branes”, JHEP 0611, 031 (2006).

71
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and Ramond-Ramond repulsion cancel, and the brane can sit at any point of the

compact space with no energy cost. This no-force result is no longer true, in general,

when the volume of the compactification is stabilized. The D-brane moduli space

is lifted by the same nonperturbative effect that fixes the compactification volume.

This has particular relevance for inflation models involving moving D-branes.

In the warped brane inflation model of Kachru et al. [95] (see Chapter 4) it

was established that the interaction potential of a brane-antibrane pair in a warped

throat geometry is exceptionally flat, in the approximation that moduli-stabilization

effects are neglected. However, incorporating these effects yielded a potential that

generically was not flat enough for slow roll. That is, certain correction terms to the

inflaton potential arising from the Kähler potential2 and from volume-inflaton mixing

[95] could be computed in detail, and gave explicit inflaton masses of order H.3

One further mass term, arising from a one-loop correction to the volume-stabilizing

nonperturbative superpotential, was known [71] to be present, but was not computed.

The authors of [95] argued that in some small percentage of possible models, this one-

loop mass term might take a value that approximately canceled the other inflaton

mass terms and produced an overall potential suitable for slow-roll. This was a

fine-tuning, but not an explicit one: lacking a concrete computation of the one-loop

correction, it was not possible to specify fine-tuned microscopic parameters, such as

fluxes, geometry, and brane locations, in such a way that the total mass term was

known to be small. In this chapter we give an explicit computation of this key,

missing inflaton mass term for brane motion in general warped throat backgrounds.

Applications of our results to brane inflation will be discussed in Chapters 6 and 7.

2These terms are those associated with the usual supergravity eta problem.
3Similar problems are expected to affect other warped throat inflation scenarios, such as
[65]. Indeed, concerns about the Hubble-scale corrections to the inflaton potential of [65]
have been raised in [44], but the effects of compactification were not considered there.
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1.2. Method. The inflaton mass problem described in [95] appears in any model

of slow-roll inflation involving D3-branes moving in a stabilized flux compactification.

Thus, it is necessary to search for a general method for computing the dependence

of the nonperturbative superpotential on the D3-brane position. Ganor [71] stud-

ied this problem early on, and found that the correction to the superpotential is a

section of a bundle called the ‘divisor bundle’, which has a zero at the four-cycle

where the wrapped brane is located. The problem was addressed more explicitly

by Berg, Haack, and Körs (BHK) [32], who computed the threshold corrections to

gaugino condensate superpotentials in toroidal orientifolds. This gave a substantially

complete4 potential for brane inflation models in such backgrounds. However, their

approach involved a challenging open-string one-loop computation that is difficult to

generalize to more complicated Calabi-Yau geometries and to backgrounds with flux

and warping, such as the warped throat backgrounds relevant for a sizeable fraction

of current models. Moreover, KKLT-type volume stabilization often proceeds via a

superpotential generated by Euclidean D3-branes [163], not by gaugino condensation

or other strong gauge dynamics; this requires computing semiclassical corrections

around the instanton background.

Following work by Giddings and Maharana [77], we overcome these difficulties

by viewing the correction to the mobile D3-brane potential as arising from a distor-

tion, sourced by the D3-brane itself, of the background near the four-cycle wrapped

by the D7-branes or Euclidean D3-brane responsible for the non-perturbative effect.

This corrects the warped volume of the four-cycle, changing the magnitude of the

nonperturbative effect. Specifically, we assume that the Kähler moduli are stabilized

by nonperturbative effects, arising either from Euclidean D3-branes or from strong

gauge dynamics (such as gaugino condensation) on D7-branes. In either case, the

4Corrections to the Kähler potential provide one additional effect; see [33, 75].
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nonperturbative superpotential is associated with a particular four-cycle, and has ex-

ponential dependence on the warped volume of this cycle. Inclusion of a D3-brane

in the compact space slightly modifies the supergravity background, changing the

warped volume of the four-cycle and hence the gauge coupling in the D7-brane gauge

theory. Due to gaugino condensation this in turn changes the superpotential of the

four-dimensional effective theory. The result is an energy cost for the D3-brane that

depends on its location.

This method may be viewed as the closed-string dual of the open-string computa-

tion of BHK [32]. In §4.2 we compute the correction for a toroidal compactification,

where an explicit comparison is possible, and verify that the closed-string method

exactly reproduces the result of [32]. We view this as a highly nontrivial check of the

closed-string method.

Employing the closed-string perspective allows us to study the potential for a

D3-brane in a warped throat region, such as the warped deformed conifold [105]

or its generalizations [48, 65], glued into a flux compactification. This is a case of

direct phenomenological interest. To model the four-cycle bearing the most relevant

nonperturbative effect, we compute the change in the warped volume of a variety of

holomorphic four-cycles, as a function of the D3-brane position. We find that most

of the details of the geometry far from the throat region are irrelevant. Note that

the supergravity method is applicable provided that the internal manifold has large

volume.

The distortion produced by moving a D3-brane in a warped throat corresponds to

a deformation of the gauge theory dual to the throat by expectation values of certain

gauge-invariant operators [108]. Hence, it is possible, and convenient, to use methods

and perspectives from the AdS/CFT correspondence [124] (see [2, 103] for reviews).
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1.3. Outline. The organization of this chapter is as follows. In §2 we recall the

problem of determining the potential for a D3-brane in a stabilized flux compactifi-

cation. We stress that a consistent computation must include a one-loop correction

to the volume-stabilizing nonperturbative superpotential. In §3 we explain how this

correction may be computed in supergravity, as a correction to the warped volume of

each four-cycle producing a nonperturbative effect. We present the Green’s function

method (cf. Ref. [77]) for determining the perturbation of the warp factor at the loca-

tion of the four-cycle in §4. We argue that supersymmetric four-cycles provide a good

model for the four-cycles producing nonperturbative effects in general compactifica-

tions, and in particular in warped throats. In §5 we compute in detail the corrected

warped volumes of certain supersymmetric four-cycles in the singular conifold. We

also give results for corrected volumes in some other asymptotically conical spaces.

In §6 we give an explicit and physically intuitive solution to the ‘rho problem’ [32],

i.e. the problem of defining a holomorphic volume modulus in a compactification with

D3-branes. We also discuss the important possibility of model-dependent effects from

the bulk of the compactification. We conclude in §7.

Technical details of the computations in this chapter are relegated to a number

of appendices. In Appendix B we present some facts about Green’s functions on

conical geometries, as needed for the computation of §5. Details of our computation

for warped conifolds are given in Appendix C. The equivalent calculation for Y p,q

cones is presented in Appendix D.

2. D3-branes and Volume Stabilization

2.1. Nonperturbative Volume Stabilization. For realistic applications to

cosmology and particle phenomenology, it is important to stabilize all the moduli.

The flux-induced superpotential [82] stabilizes the dilaton and the complex structure

moduli [76], but is independent of the Kähler moduli. However, nonperturbative
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terms in the superpotential do depend on the Kähler moduli, and hence can lead to

their stabilization [93]. There are two sources for such effects:

(1) Euclidean D3-branes wrapping a four-cycle in the Calabi-Yau [163].

(2) Gaugino condensation or other strong gauge dynamics on a stack of ND7

spacetime-filling D7-branes wrapping a four-cycle in the Calabi-Yau.

bulk CY

warped throat

D7

r

D3

D3

rμr00

4Σ

Figure 1. Cartoon of an embedded stack of D7-branes wrapping a four-
cycle Σ4, and a mobile D3-brane, in a warped throat region of a compact
Calabi-Yau. In the scenario of [95] the D3-brane feels a force from an anti-D3-
brane at the tip of the throat. Alternatively, in [65] it was argued that a D3-
brane in the resolved warped deformed conifold background feels a force even
in the absence of an anti-D3-brane. In this work we consider an additional
contribution to the D3-brane potential, coming from nonperturbative effects
on D7-branes.

Let ρ be the volume of a given four-cycle that admits a nonperturbative effect.5

The resulting superpotential is expected to be of the form [93]

Wnp(ρ) = A(χ,X)e−aρ . (5.1)

Here a is a numerical constant and A(χ,X) is a holomorphic function of the complex

structure moduli χ ≡ {χ1, . . . , χh2,1} and of the positions X of any D3-branes in the

5In general, there are h1,1 Kähler moduli ρi. For notational simplicity we limit our discussion
to a single Kähler modulus ρ, but point out that our treatment straightforwardly generalizes
to many moduli. The identification of a holomorphic Kähler modulus, i.e. a complex scalar
belonging to a single chiral superfield, is actually quite subtle. We address this important
point in §6.1. At the present stage ρ may simply be taken to be the volume as defined in
e.g. [76].
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internal space.6 The functional form of A will depend on the particular four-cycle in

question.

The prefactor A(χ,X) arises from a one-loop correction to the nonperturbative

superpotential. For a Euclidean D3-brane superpotential, A(χ,X) represents a one-

loop determinant of fluctuations around the instanton. In the case of D7-brane gauge

dynamics the prefactor comes from a threshold correction to the gauge coupling on

the D7-branes.

In the original KKLT proposal, the complex structure moduli acquired moderately

large masses from the fluxes, and no probe D3-brane was present. Thus, it was

possible to ignore the moduli-dependence of A(χ,X) and treat A as a constant, albeit

an unknown one. In the case of present interest (as in [95]), the complex structure

moduli are still massive enough to be negligible, but there is at least one mobile D3-

brane in the compact space, so we must write A = A(X). (See [71] for a very general

argument that no prefactor A can be independent of a D3-brane location X.)

The goal of this chapter is to compute A(X). As we explained in the introduction,

this has already been achieved in certain toroidal orientifolds [32], and the relevance

of A(X) for brane inflation has also been recognized [32, 95]. Here we will use a

closed-string channel method for computing A(X), allowing us to study more general

compactifications. In particular, we will give the first concrete results for A(X) in

the warped throats relevant for many brane inflation models.

2.2. D3-brane Potential After Volume Stabilization. The F-term part of

the supergravity potential is

VF = eκ
2K
[
Kij̄DiWDjW − 3κ2|W |2

]
, κ2 = M−2

pl = 8πG . (5.2)

6Strictly speaking, there are three complex fields, corresponding to the dimensionality of
the internal space, but we will refer to a single field for notational convenience.
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DeWolfe and Giddings [58] showed that the Kähler potential K in the presence of

mobile D3-branes is

κ2K = −3 ln
[
ρ+ ρ̄− γk(X, X̄)

]
≡ −2 lnV , (5.3)

where k(X, X̄) is the Kähler potential for the Calabi-Yau metric, i.e. the Kähler

potential on the putative moduli space of a D3-brane probe, V is the physical volume

of the internal space, and γ is a constant.7 We address this volume-inflaton mixing in

more detail in §6.1. For clarity we have assumed here that there is only one Kähler

modulus, but our later analysis is more general.

The superpotential W is the sum of a constant flux term [82] Wflux(χ?) =
∫
G3 ∧

Ω ≡ W0 at fixed complex structure χ? and a term Wnp (5.1) from nonperturbative

effects,

W = W0 + A(X)e−aρ . (5.4)

Equations (7.13) to (7.14) imply three distinct sources for corrections to the po-

tential for D3-brane motion:

(1) mK: The X-dependence of the Kähler potential K leads to a mass term

familiar from the supergravity eta problem.

(2) mD: Sources of D-term energy, if present, will scale with the physical volume

V and hence depend on the D3-brane location. This leads to a mass term

for D3-brane displacements.

(3) mA: The prefactor A(X) in the superpotential (7.14) leads to a mass term8

via the F-term potential (7.13).

7In §6.1 we will find that γ ≡ 1
3κ

2T3, where T3 is the D3-brane tension.
8After the appearance of [18] (Chapter 5) we realized in [19] (Chapter 7) that A(X) can
never lead to a pure mass term. We should therefore imagine a local definition of the mass
mA(X) as the second derivative of the potential. As indicated here (and proven in [19]) this
‘mass’ will depend on the field value X. This is to be contrasted with mK and mD which
are constants.
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The masses mK and mD were calculated explicitly in [95] and shown to be of

order the Hubble parameter H. On the other hand, mA has been computed only

for the toroidal orientifolds of [32]. It has been suggested [95] that there might exist

non-generic configurations in which mA cancels against the other two terms. It is in

these fine-tuned situations that D3-brane motion could produce slow-roll inflation.

By computing mA explicitly, one can determine whether or not this hope is realized

[19].

3. Warped Volumes and the Superpotential

3.1. The Role of the Warped Volume. The nonperturbative effects discussed

in §2.1 depend exponentially on the warped volume of the associated four-cycle: the

warped volume governs the instanton action in the case of Euclidean D3-branes, and

the gauge coupling in the case of strong gauge dynamics on D7-branes. To see this,

consider a warped background with the line element

ds2 = Gµνdx
µdxν +GijdY

idY j ≡ h−1/2(Y )gµνdx
µdxν + h1/2(Y )gijdY

idY j , (5.5)

where Y i and gij are the coordinates and the unwarped metric on the internal space,

respectively, and h(Y ) is the warp factor.

The Yang-Mills coupling g7 of the 7+1 dimensional gauge theory living on a stack

of D7-branes is given by9

g2
7 ≡ 2(2π)5gs(α

′)2 . (5.6)

The action for gauge fields on D7-branes that wrap a four-cycle Σ4 is

S =
1

2g2
7

∫
Σ4

d4ξ
√
gind h(Y ) ·

∫
d4x
√
−g gµαgνβ TrFµνFαβ , (5.7)

where ξi are coordinates on Σ4 and gind is the metric induced on Σ4 from gij. A key

point is the appearance of a single power of h(Y ) [77]. Defining the warped volume

9In the notation of [139], g2
7 = 2g2

D7.
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of Σ4,

V w
Σ4
≡
∫

Σ4

d4ξ
√
gind h(Y ) , (5.8)

and recalling the D3-brane tension

T3 ≡
1

(2π)3gs(α′)2
, (5.9)

we read off the gauge coupling of the four-dimensional theory from (5.7):

1

g2
=
V w

Σ4

g2
7

=
T3V

w
Σ4

8π2
. (5.10)

InN = 1 super-Yang-Mills theory, the Wilsonian gauge coupling is the real part of

a holomorphic function which receives one-loop corrections, but no higher perturba-

tive corrections [7, 143–145]. The modulus of the gaugino condensate superpotential

in SU(ND7) super-Yang-Mills with ultraviolet cutoff MUV is given by

|Wnp| = 16π2M3
UV exp

(
− 1

ND7

8π2

g2

)
∝ exp

(
−
T3V

w
Σ4

ND7

)
. (5.11)

The mobile D3-brane adds a flavor to the SU(ND7) gauge theory, whose mass m is a

holomorphic function of the D3-brane coordinates. In particular, the mass vanishes

when the D3-brane coincides with the D7-brane. In such a gauge theory, the superpo-

tential is proportional to m1/ND7 [91]. Our explicit closed-string channel calculations

will confirm this form of the superpotential.

In the case that the nonperturbative effect comes from a Euclidean D3-brane, the

instanton action is

S = T3

∫
Σ4

d4ξ
√
Gind = T3

∫
Σ4

d4ξ
√
gind h(Y ) ≡ T3V

w
Σ4
, (5.12)

so that, just as in (5.7), the action depends on a single power of h(Y ). The modulus

of the nonperturbative superpotential is then

|Wnp| ∝ exp
(
−T3V

w
Σ4

)
. (5.13)
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3.2. Corrections to the Warped Volumes of Four-Cycles. The displace-

ment of a D3-brane in the compactification creates a slight distortion δh of the warped

background, and hence affects the warped volumes of four-cycles. The correction takes

the form

δV w
Σ4
≡
∫

Σ4

d4Y
√
gind(X;Y ) δh(X;Y ) . (5.14)

By computing this change in volume we will extract the dependence of the superpo-

tential on the D3-brane location X. In the non-compact throat approximation, we

will calculate δV w
Σ4

explicitly, and find that it is the real part of a holomorphic func-

tion ζ(X).10 Its imaginary part is determined by the integral of the Ramond-Ramond

four-form perturbation δC4 over Σ4 (we will not compute this explicitly, but will be

able to deduce the result using the holomorphy of ζ(X)).

The nonperturbative superpotential of the form (5.1), generated by the gaugino

condensation, is then determined by

A(X) = A0 exp
(
−T3 ζ(X)

ND7

)
. (5.15)

We have introduced an unimportant constant A0 that depends on the values at which

the complex structure moduli are stabilized, but is independent of the D3-brane posi-

tion. As remarked above, computing (5.15) is equivalent to computing the dependence

of the threshold correction to the gauge coupling on the mass m of the flavor coming

from strings that stretch from the D7-branes to the D3-brane.

In the case of Euclidean D3-branes, the change in the instanton action is propor-

tional to the change in the warped four-cycle volume. Hence, the nonperturbative

10In the compact case, it is no longer true that δV w
Σ4

is the real part of a holomorphic
function. This is related to the ‘rho problem’ [32], and in fact leads to a resolution of
the problem, as we shall explain in §6.1 (see also [77]). The result is that in terms of an
appropriately-defined holomorphic Kähler modulus ρ (5.62), the holomorphic correction to
the gauge coupling coincides with the holomorphic result of our non-compact calculation.
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superpotential is of the form (5.1) with

A(X) = A0 exp
(
−T3 ζ(X)

)
. (5.16)

In this case, computing (5.14) is equivalent to computing the D3-brane dependence

of an instanton fluctuation determinant.

Finally, we can write a unified expression that applies to both sources of nonper-

turbative effects:

A(X) = A0 exp
(
−T3 ζ(X)

n

)
, (5.17)

where n = ND7 for the case of gaugino condensation on D7-branes and n = 1 for the

case of Euclidean D3-branes.

4. D3-brane Backreaction

4.1. The Green’s Function Method. A D3-brane located at some position X

in a six-dimensional space with coordinates Y acts as a point source for a perturbation

δh of the geometry:

−∇2
Y δh(X;Y ) = C

[
δ(6)(X − Y )√

g(Y )
− ρbg(Y )

]
. (5.18)

That is, the perturbation δh is a Green’s function for the Laplace problem on the back-

ground of interest. Here C ≡ 2κ2
10T3 = (2π)4gs(α

′)2 ensures the correct normalization

of a single D3-brane source term relative to the four-dimensional Einstein-Hilbert ac-

tion. A consistent flux compactification contains a background charge density ρbg(Y )

which satisfies ∫
d6Y
√
g ρbg(Y ) = 1 (5.19)

to account for the Gauss’s law constraint on the compact space [76].

To solve (5.18), we first solve

−∇2
Y ′Φ(Y ;Y ′) = −∇2

Y Φ(Y ;Y ′) =
δ(6)(Y − Y ′)
√
g

− 1

V6

, (5.20)
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where V6 ≡
∫

d6Y
√
g. The solution to (5.18) is then

δh(X;Y ) = C
[
Φ(X;Y )−

∫
d6Y ′
√
gΦ(Y ;Y ′)ρbg(Y

′)
]
. (5.21)

We note for later use that

−∇2
Xδh(X;Y ) = C

[
δ(6)(X − Y )√

g(X)
− 1

V6

]
. (5.22)

This relation is independent of the form of the background charge ρbg.

To compute A(X) from (7.15), we simply solve for the Green’s function δh obeying

(5.18) and then integrate δh over the four-cycle of interest, according to (5.14).

4.2. Comparison with the Open-String Approach. Let us show that this

supergravity (closed-string channel) method is consistent with the results of BHK

[32], where the correction to the gaugino condensate superpotential was derived via

a one-loop open-string computation.11

The analysis of [32] applied to configurations of D7-branes and D3-branes on

certain toroidal orientifolds, e.g. T 2 × T 4/Z2. We introduce a complex coordinate X

for the position of the D3-branes on T 2, as well as a complex structure modulus τ

for T 2, and without loss of generality we set the volume of T 4/Z2 to unity. Let us

consider the case where all the D7-branes wrap T 4/Z2 and sit at the origin X = 0 in

T 2.

The goal is to determine the dependence of the gauge coupling on the position X

of a D3-brane. (The location of the D3-brane in the T 4/Z2 wrapped by the D7-branes

is immaterial.) For this purpose, we may omit terms computed in [32] that depend

only on the complex structure and not on the D3-brane location. Such terms will

only affect the D3-brane potential by an overall constant.

11Analogous pairs of closed-string and open-string computations exist in the literature,
e.g. [17].
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Then, the relevant terms from equation (44) of [32], in our notation12, are

δ
(8π2

g2

)
=

1

4π Im(τ)

[
Im(X)

]2

− 1

2
ln

∣∣∣∣ϑ1

(
X

2π

∣∣∣τ)∣∣∣∣2 + . . . . (5.23)

Let us now compare (5.23) to the result of the supergravity computation. In

principle, the prescription of equation (5.14) is to integrate the Green’s function on

a six-torus over the wrapped four-torus. However, we notice that this procedure of

integration will reduce the six-dimensional Laplace problem to the Laplace problem

on the two-torus parametrized by X,

−∇2
Xδh(X; 0) = C

[
δ(2)(X)− 1

VT 2

]
, (5.24)

where VT 2 = 8π2 Im(τ). The correction to the gauge coupling, in the supergravity

approach, is then proportional to δh(X; 0). Solving (5.24) and using (5.10), we get

exactly (5.23). We conclude that our method precisely reproduces the results of [32],

at least for those terms that directly enter the D3-brane potential.

4.3. A Model for the Four-Cycles. The closed-string channel approach to

calculating A(X) is well-defined for any given background, but further assumptions

are required when no complete metric for the compactification is available. Fortu-

nately, explicit metrics are available for many non-compact Calabi-Yau spaces, and

at the same time, the associated warped throat regions are of particular interest

for inflationary phenomenology. For a given warped throat geometry, our approach

is to compute the D3-brane backreaction on specific four-cycles in the non-compact,

asymptotically conical space. We will demonstrate that this gives an excellent approx-

imation to the backreaction in a compactification in which the same warped throat

is glued into a compact bulk. In particular, we will show in §6.2 that the physical

effect in question is localized in the throat, i.e. is determined primarily by the shape

12After the replacement X → w, our definitions of the theta functions and torus coordinates
correspond to those of [139]; our X differs from the A of [32] by a factor of 2π.
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of the four-cycle in the highly warped region.13 The model therefore only depends on

well-known data, such as the specific warped metric and the embedding equations of

the four-cycles, and is insensitive to the unknown details of the unwarped bulk. In

principle, our method can be extended to general compact models for which metric

data is available.

It still remains to identify the four-cycles responsible for nonperturbative effects

in this model of a warped throat attached to a compact space. Such a space will in

general have many Kähler moduli, and hence, assuming that stabilization is possible

at all, will have many contributions to the nonperturbative superpotential. The most

relevant term, for the purpose of determining the D3-brane potential, is the term

corresponding to the four-cycle closest to the D3-brane. For a D3-brane moving in

the throat region, this is the four-cycle that reaches farthest down the throat. In

addition, the gauge theory living on the corresponding D7-branes should be making

an important contribution to the superpotential.

The nonperturbative effects of interest are present only when the four-cycle sat-

isfies an appropriate topological condition [163], which we will not discuss in detail.

This topological condition is, of course, related to the global properties of the four-

cycle, whereas the effect we compute is dominated by the part of the four-cycle in

the highly-warped throat region, and is insensitive to details of the four-cycle in the

unwarped region. That is, our methods are not sensitive to the distinction between

four-cycles that do admit nonperturbative effects, and those that do not. We therefore

propose to model the four-cycles producing nonperturbative effects with four-cycles

that are merely supersymmetric, i.e. can be wrapped supersymmetrically by D7-

branes. Many members of the latter class are not members of the former, but as

13To be precise, the physical effect is localized near the D3-brane, which may be taken to be
far from the bulk, in the region where the throat is well-approximated by the non-compact
metric. This is also the region where the background warping is large.
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the shape of the cycle in the highly-warped region is the only important quantity, we

expect this distinction to be unimportant.

We are therefore led to consider the backreaction of a D3-brane on the volume

of a stack of supersymmetric D7-branes wrapping a four-cycle in a warped throat

geometry. The simplest configuration of this sort is a supersymmetric ‘flavor brane’

embedding of several D7-branes in a conifold [9, 99, 133].

5. Backreaction in Warped Conifold Geometries

We now recall some relevant geometry. The singular conifold14 is a non-compact

Calabi-Yau threefold defined as the locus

4∑
i=1

z2
i = 0 (5.25)

in C4. After a linear change of variables (w1 = z1 + iz2, w2 = z1 − iz2, etc.), the

constraint (5.25) becomes

w1w2 − w3w4 = 0 . (5.26)

The Calabi-Yau metric on the conifold is

ds2
6 = dr2 + r2ds2

T 1,1 . (5.27)

The base of the cone is the T 1,1 coset space (SU(2)A×SU(2)B)/U(1)R whose metric

in angular coordinates θi ∈ [0, π], φi ∈ [0, 2π], ψ ∈ [0, 4π] is

ds2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θi dφi

)2

+
1

6

2∑
i=1

(
dθ2

i + sin2 θi dφ
2
i

)
. (5.28)

14The KS geometry [105] and its generalizations [48] are warped versions of the deformed
conifold, defined by

∑4
i=1 z

2
i = ε2. When the D3-branes and D7-branes are sufficiently far

from the tip of the deformed conifold, it will suffice to consider the simpler case of the
warped singular conifold constructed in [106].
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A stack of N D3-branes placed at the singularity wi = 0 backreacts on the geom-

etry, producing the ten-dimensional metric

ds2
10 = h−1/2(r)dx2

4 + h1/2(r)ds2
6 , (5.29)

where the warp factor is

h(r) =
27πgsN(α′)2

4r4
. (5.30)

This is the AdS5 × T 1,1 background of type IIB string theory, whose dual N =

1 supersymmetric conformal gauge theory was constructed in [107]. The dual

is an SU(N) × SU(N) gauge theory coupled to bifundamental chiral superfields

A1, A2, B1, B2, each having R-charge 1/2. Under the SU(2)A × SU(2)B global sym-

metry, the superfields transform as doublets. If we further add M D5-branes wrapped

over the two-cycle inside T 1,1, then the gauge group changes to SU(N+M)×SU(N),

giving a cascading gauge theory [105, 106]. The metric remains of the form (5.29),

but the warp factor is modified to [106]

h(r) =
27π(α′)2

4r4

[
gsN + b(gsM)2 ln

( r
r0

)
+

1

4
b(gsM)2

]
, (5.31)

with b ≡ 3
2π

, and r0 ∼ ε2/3e2πN/(3gsM). If an extra D3-brane is added at small r, it

produces a small change of the warp factor, δh = 27πgs(α′)2

4r4 + O(r−11/2). A precise

determination of δh on the conifold, using the Green’s function method, is one of

our goals in this chapter. As discussed above, this needs to be integrated over a

supersymmetric four-cycle.



5. on d3-brane potentials in compact spaces 88

5.1. Supersymmetric Four-Cycles in the Conifold. The complex coordi-

nates wi can be related to the real coordinates (r, θi, φi, ψ) via

w1 = r3/2e
i
2

(ψ−φ1−φ2) sin
θ1

2
sin

θ2

2
, (5.32)

w2 = r3/2e
i
2

(ψ+φ1+φ2) cos
θ1

2
cos

θ2

2
, (5.33)

w3 = r3/2e
i
2

(ψ+φ1−φ2) cos
θ1

2
sin

θ2

2
, (5.34)

w4 = r3/2e
i
2

(ψ−φ1+φ2) sin
θ1

2
cos

θ2

2
. (5.35)

It was shown in [9] that the following holomorphic four-cycles admit supersymmetric

D7-branes:15

f(wi) ≡
4∏
i=1

wpii − µP = 0 . (5.36)

Here pi ∈ Z, P ≡
∑4

i=1 pi, and µ ∈ C are constants defining the embedding of the

D7-branes. In real coordinates the embedding condition (5.36) becomes

ψ(φ1, φ2) = n1φ1 + n2φ2 + ψs , (5.37)

r(θ1, θ2) = rmin

[
x1+n1(1− x)1−n1y1+n2(1− y)1−n2

]−1/6
, (5.38)

where

r
3/2
min ≡ |µ| , (5.39)

1

2
ψs ≡ arg(µ) +

2πs

P
, s ∈ {0, 1, . . . , P − 1} . (5.40)

We have defined the coordinates

x ≡ sin2 θ1

2
, y ≡ sin2 θ2

2
(5.41)

15This is not an exhaustive list: another holomorphic embedding was used in [114].
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and the rational winding numbers

n1 ≡
p1 − p2 − p3 + p4

P
, n2 ≡

p1 − p2 + p3 − p4

P
. (5.42)

To compute the integral over the four-cycle we will need the volume form on the

wrapped D7-brane, which is

dθ1dθ2dφ1dφ2

√
gind =

VT 1,1

16π3
r4 G(x, y) dxdydφ1dφ2 , (5.43)

where

G(x, y) ≡ (1 + n1)2

2

1

x(1− x)
− 2n1

1

1− x

+
(1 + n2)2

2

1

y(1− y)
− 2n2

1

1− y
− 1 . (5.44)

In (5.43) we defined the volume of T 1,1

VT 1,1 ≡
∫

d5Ψ
√
gT 1,1 =

16π3

27
, (5.45)

with Ψ standing for all five angular coordinates on T 1,1.

For applications to brane inflation, we are interested in four-cycles that do not

reach the tip of the conifold (|ni| ≤ 1). This condition is obeyed when the pi are

nonnegative, and we shall restrict to this case for the remainder of the chapter. Two

particularly simple special cases of (5.36) are:

� Ouyang embedding [133]: w1 = µ .

� Karch-Katz embedding [99]: w1w2 = µ2 .

Analogous supersymmetric four-cycles are known [50] in some more complicated

asymptotically conical spaces, such as cones over Y p,q manifolds. We will consider

this case in §5.4 and in Appendix D.
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5.2. Relation to the Dual Gauge Theory Computation. The calculation of

δh and its integration over a holomorphic four-cycle is not sensitive to the background

warp factor. Let us discuss a gauge theory interpretation of the calculation when

we choose the background warp factor from (5.30), i.e. we ignore the effect of M

wrapped D5-branes. Here the gauge theory is exactly conformal, and we may invoke

the AdS/CFT correspondence to give a simple meaning to the multipole expansion

of δh,

δh =
27πgs(α

′)2

4r4

[
1 +

∑
i

cifi(θ1, θ2, φ1, φ2, ψ)

r∆i

]
. (5.46)

In the dual gauge theory, the ci are proportional to the expectation values of gauge-

invariant operators Oi determined by the position of the D3-brane [108]. Among

these operators a special role is played by the chiral operators of R-charge k,

Tr[Aα1Bβ̇1
Aα2Bβ̇2

. . . AαkBβ̇k
], symmetric in both the dotted and the undotted indices.

These operators have exact dimensions ∆chiral
i = 3k/2 and transform as (k/2, k/2) un-

der the SU(2)A×SU(2)B symmetry. In addition to these operators, many non-chiral

operators, whose dimensions ∆i are not quantized [81], acquire expectation values

and therefore affect the multipole expansion of the warp factor. But remarkably, all

these non-chiral contributions vanish upon integration over a holomorphic four-cycle.

Therefore, the contributing terms in δh have the simple form [108]

δhchiral =
27πgs(α

′)2

4r4

[
1 +

∞∑
k=1

(fa1...ak ẑa1...ak + c.c.)

r3k/2

]
, (5.47)

where fa1...ak ∼ ε̄a1 ε̄a2 . . . ε̄ak for a D3-brane positioned at za = εa. Above, ẑa1...ak are

the normalized spherical harmonics on T 1,1 that transform as (k/2, k/2) under the

SU(2)A × SU(2)B. The normalization factors are defined in Appendix B.

The leading term in (5.46), which falls off as 1/r4, gives a logarithmic divergence

at large r when integrated over a four-cycle. We note that this term does not appear if

we define δh as the solution of (5.18) with
√
g ρbg(Y ) = δ(6)(Y −X0). This corresponds

to evaluating the change in the warp factor, δh, created by moving the D3-brane to
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X from some reference point X0. If we choose the reference point X0 to be at the tip

of the cone, r = 0, then (5.46) is modified to

δh =
27πgs(α

′)2

4r4

[∑
i

cifi(θ1, θ2, φ1, φ2, ψ)

r∆i

]
. (5.48)

An advantage of this definition is that now there is a precise correspondence between

our calculation and the expectation values of operators in the dual gauge theory.

5.3. Results for the Conifold. We are now ready to compute the D3-brane-

dependent correction to the warped volume of a supersymmetric four-cycle in the

conifold. Using the Green’s function on the singular conifold (B.9), which we derive

in Appendix B, and the explicit form of the induced metric
√
gind (5.43), we carry

out integration term by term and find that most terms in (5.14) do not contribute.

We relegate the details of this computation to Appendix C. As we demonstrate

in Appendix C, the terms that do not cancel are precisely those corresponding to

(anti)chiral deformations of the dual gauge theory.

Integrating (5.48) term by term as prescribed in (5.14), we find that the final

result for a general embedding (5.36) is

T3 δV
w

Σ4
= T3 Re (ζ(wi)) = −Re

(
ln

[
µP −

∏4
i=1 w

pi
i

µP

])
, (5.49)

so that

A = A0

(
µP −

∏4
i=1 w

pi
i

µP

)1/n

. (5.50)

Comparing to (5.36), we see that A is proportional to a power of the holomorphic

equation that specifies the embedding. For n = ND7 coincident D7-branes, this power

is 1/n. This behavior agrees with the results of [71]; note in particular that when

n = 1, (5.50) has a simple zero everywhere on the four-cycle, as required by [71].

Finally, let us specialize to the two cases of particular interest, the Ouyang [133]

and Karch-Katz [99] embeddings in which the four-cycle does not reach all the way
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to the tip of the throat. For the Ouyang embedding we find

A(w1) = A0

(
µ− w1

µ

)1/n

, (5.51)

whereas for the Karch-Katz embedding we have

A(w1, w2) = A0

(
µ2 − w1w2

µ2

)1/n

. (5.52)

5.4. Results for Y p,q Cones. Recently, a new infinite class of Sasaki-Einstein

manifolds Y p,q of topology S2×S3 was discovered [73, 74]. TheN = 1 superconformal

gauge theories dual to AdS5 × Y p,q were constructed in [30]. These quiver theories,

which live on N D3-branes at the apex of the Calabi-Yau cone over Y p,q, have gauge

groups SU(N)2p, bifundamental matter, and marginal superpotentials involving both

cubic and quartic terms. Addition of M D5-branes wrapped over the S2 at the

apex produces a class of cascading gauge theories whose warped cone duals were

constructed in [86]. A D3-brane moving in such a throat could also serve as a model

of D-brane inflation [65].

Having described the calculation for the singular conifold in some detail, we now

cite the results of an equivalent computation for cones over Y p,q manifolds. More

details can be found in Appendix D.

Supersymmetric four-cycles in Y p,q cones are defined by the following embedding

condition [50]

f(wi) ≡
3∏
i=1

wpii − µ2p3 = 0 , (5.53)

where the complex coordinates wi are defined in Appendix D. Integration of the

Green’s function over the four-cycle leads to the following result for the perturbation

to the warped volume

T3 δV
w

Σ4
= T3 Re (ζ(wi)) = −Re

(
ln

[
µ2p3 −

∏3
i=1w

pi
i

µ2p3

])
, (5.54)
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so that

A = A0

(
µ2p3 −

∏3
i=1w

pi
i

µ2p3

)1/n

. (5.55)

5.5. General Compactifications. The arguments in [71], which were based on

studying the change in the theta angle as one moves the D3-brane around the D7-

branes, indicate that the correction is a section of a bundle called the ‘divisor bundle’.

This section has a zero at the location of the D7-branes. The correction has to live

in a non-trivial bundle since a holomorphic function on a compact space would be

a constant. In the non-compact examples we considered above we can work in only

one coordinate patch and obtain the correction as a simple function, the function

characterizing the embedding. Strictly speaking, the arguments in [71] were made

for the case that the superpotential is generated by wrapped D3-instantons. But the

same arguments can be used to compute the correction for the gauge coupling on

D7-branes.

In summary, we have explicitly computed the modulus of A, and found a result

in perfect agreement with the analysis of the phase of A in [71]. One has a general

answer of the form

A(wi) = A0

(
f(wi)

)1/n

, (5.56)

where f is a section of the divisor bundle and f(wi) = 0 specifies the location of the

D7-branes.

6. Compactification Effects

6.1. Holomorphy of the Gauge Coupling. In compactifications with mobile

D3-branes, the identification of holomorphic Kähler moduli and holomorphic gauge

couplings is quite subtle. This has become known as the ‘rho problem’ [32].16 Let us

recall the difficulty. In the internal metric gij appearing in (5.5), we can identify the

16Similar issues were discussed in [162].
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breathing mode of the compact space via

ds2 = h−1/2(Y )e−6ugµνdx
µdxν + h1/2(Y )e2ug̃ijdY

idY j . (5.57)

Here g̃ij is a fiducial metric for the internal space, e2u is the breathing mode, and gµν is

the four-dimensional Einstein-frame metric. In the following, all quantities computed

from g̃ij will be denoted by a tilde. The Born-Infeld kinetic term for a D3-brane,

expressed in Einstein frame and in terms of complex coordinates X, X̄ on the brane

configuration space, is then

Skin = −T3

∫
d4x
√
−ge−4u∂µX

i∂µX̄ j̄ g̃ij̄ . (5.58)

DeWolfe and Giddings argued in [58] that to reproduce this volume scaling, as well as

the known no-scale, sequestered property of the D3-brane action in this background,

the Kähler potential must take the form

κ2K = −3 ln e4u , (5.59)

with the crucial additional requirement that

∂i∂j̄e
4u ∝ g̃ij̄ , (5.60)

so that e4u contains a term proportional to the Kähler potential k(X, X̄) for the

fiducial Calabi-Yau metric. Comparing (5.58) to the kinetic term derived from (5.59),

we find in fact

∂i∂j̄e
4u = −

(
κ2T3

3

)
k,ij̄ . (5.61)

We can now define the holomorphic volume modulus ρ as follows. The real part of ρ

is given by

ρ+ ρ̄ ≡ e4u +

(
κ2T3

3

)
k(X, X̄) (5.62)
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and the imaginary part is the axion from the Ramond-Ramond four-form potential.

As explained in [95], this is consistent with the fact that the axion moduli space is a

circle that is non-trivially fibered over the D3-brane moduli space.

Next, the gauge coupling on a D7-brane is easily seen to be proportional to the

breathing mode of the metric, e4u ≡ ρ + ρ̄ −
(

1
3
κ2T3

)
k(X, X̄), which is not the real

part of a holomorphic function on the brane moduli space. However, supersymmetry

requires that the gauge kinetic function is a holomorphic function of the moduli. This

conflict is the rho problem.

We can trace this problem to an incomplete inclusion of the backreaction due to

the D3-brane. Through (5.62), the physical volume modulus e4u has been allowed to

depend on the D3-brane position. That is, the difference between the holomorphic

modulus ρ and the physical modulus e4u is affected by the D3-brane position. This

was necessary in order to recover the known properties of the brane/volume moduli

space. Notice from (5.62) that the strength of this open-closed mixing is controlled

by κ2T3, and so is manifestly a consequence of D3-brane backreaction in the compact

space. However, as we explained in §3, the warp factor h also depends on the D3-

brane position, again via backreaction. To include the effects of the brane on the

breathing mode, but not on the warp factor, is not consistent.17 One might expect

that consideration of the correction δh to the warp factor would restore holomorphy

and resolve the rho problem. This was suggested in [77], and we now carry out an

explicit calculation that confirms this.

What we find is that the uncorrected warped volume (V w
Σ4

)0, as well as the cor-

rection δV w
Σ4

, are both non-holomorphic, but their non-holomorphic pieces precisely

cancel, so that the corrected warped volume V w
Σ4

is the real part of a holomorphic

function of the moduli ρ and X.

17Let us point out that this is precisely the closed-string dual of the resolution found in [32]:
careful inclusion of the open-string one-loop corrections to the gauge coupling resolved the
rho problem. In that language, the initial inconsistency was the inclusion of only some of
the one-loop effects.
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First, we separate the constant, zero-mode, piece of the warp factor:

h(X;Y ) = h0 + δh(X;Y ) . (5.63)

By definition δh(X;Y ) integrates to zero over the compact manifold,∫
d6Y

√
g(Y ) δh(X;Y ) = 0 . (5.64)

This implies that the factor of the volume that appears in the four-dimensional New-

ton constant is unaffected by δh. Thus we have κ−2 = κ−2
10 h0Ṽ6. We define the

uncorrected warped volume via

(V w
Σ4

)0 ≡
∫

Σ4

d4ξ
√
gind h0 = e4u(X,X̄) h0 ṼΣ4 . (5.65)

This is non-holomorphic because of the prefactor e4u(X,X̄). In particular, using (5.62),

we have

(V w
Σ4

)0 = −
(
κ2T3

3

)
ṼΣ4 h0 k(X, X̄) + [hol.+ antihol.] . (5.66)

We next consider δh. When the D3-brane is not coincident with the four-cycle of

interest, we find from (5.22) that δh obeys

∇2
Xδh(X;Y ) =

C
V6

(5.67)

where C ≡ 2κ2
10T3 = 2κ2T3h0Ṽ6. Hence, δh is not the real part of a holomorphic

function of X. The source of the deviation from holomorphy is the term 1
V6

in (5.22).

Although this term is superficially similar to a constant background charge density, it

is independent of the density ρbg(Y ) of physical D3-brane charge in the internal space,

which has coordinates Y . Instead, 1
V6

may be thought of as a ‘background charge’

on the D3-brane moduli space, which has coordinates X. From this perspective,

it is the Gauss’s law constraint on the D3-brane moduli space that forces δh to be

non-holomorphic.
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In complex coordinates, using the metric g̃, and noting that Ṽ6 = V6 e
−6u, (5.67)

may be written as

g̃ij̄∂i∂j̄δh = κ2T3 h0 e
−4u , (5.68)

where because the compact space is Kähler, we can write the Laplacian using partial

derivatives. It follows that, to leading order in κ2,

δh =

(
κ2T3

3

)
h0 e

−4uk(X, X̄) + [hol.+ antihol.] . (5.69)

The omitted holomorphic and antiholomorphic terms are precisely those that we

computed in the preceding sections. Furthermore, recalling the definition (5.14), we

have

δV w
Σ4

=

(
κ2T3

3

)
h0 ṼΣ4k(X, X̄) + [ζ(X) + ζ(X)] . (5.70)

The non-holomorphic first term in (5.70) precisely cancels the non-holomorphic term

in (V w
Σ4

)0 (5.66), so that

V w
Σ4

= (V w
Σ4

)0 + δV w
Σ4

= ṼΣ4 h0 (ρ+ ρ̄) + [ζ(X) + ζ(X)] . (5.71)

We conclude that V w
Σ4

can be the real part of a holomorphic function.18 This sup-

ports the role of the warped four-volume in the definition of holomorphic coordinates

proposed in [77].

To summarize, we have seen that the background charge term in (5.22), which

was required by a constraint analogous to Gauss’s law on the D3-brane moduli space,

causes δV w
Σ4

to have a non-holomorphic term proportional to k(X, X̄). Furthermore,

the DeWolfe-Giddings Kähler potential produces a well-known non-holomorphic term,

also proportional to k(X, X̄), in the uncorrected warped volume (V w
Σ4

)0. We found

that these two terms precisely cancel, so that the total warped volume V w
Σ4

= (V w
Σ4

)0 +

18Strictly speaking, we have shown only that V w
Σ4

is in the kernel of the Laplacian; the
r.h.s. of (5.69) and (5.71) could in principle contain extra terms that are annihilated by the
Laplacian but are not the real parts of holomorphic functions. However, the obstruction to
holomorphy presented by k(X, X̄) has disappeared, and we expect no further obstructions.



5. on d3-brane potentials in compact spaces 98

δV w
Σ4

can be holomorphic. Thus, the corrected gauge coupling on D7-branes, and the

corrected Euclidean D3-brane action, are holomorphic.19

Note that, as a consequence of this discussion, the holomorphic part of the correc-

tion to the volume changes under Kähler transformations of k(X, X̄). This implies

that the correction is in a bundle whose field strength is proportional to the Kähler

form.

6.2. Model-Dependent Effects from the Bulk. In §2.2, we listed three con-

tributions to the potential for D3-brane motion. The first two were given explicitly in

[95], and we have computed the third. It is now important to ask whether this is an

exhaustive list: in other words, might there be further effects that generate D3-brane

mass terms of order H? In particular, could coupling of the throat to a compact bulk

generate corrections to our results, and hence adjust the brane potential?20

First, let us justify our approach of using noncompact warped throats to model

D3-brane potentials in compact spaces with finite warped throat regions. The idea

is that the effect of the D3-brane on a four-cycle is localized in that portion of the

four-cycle that is deepest in the throat. Comparing (5.43) to (5.48), we see that all

corrections to the warped volume scale inversely with r, and are therefore supported

in the infrared region of the throat. Hence, as anticipated in §4.3, the effects of interest

are automatically concentrated in the well-understood region of high warping, far from

the model-dependent region where the throat is glued into the rest of the compact

space. This is true even though a typical four-cycle will have most of its volume in

the bulk, outside the highly warped region. The perturbation due to the D3-brane

already falls off faster than r−4 in the throat, where the measure factor is r4, and

in the bulk the perturbation will diminish even more rapidly. Except in remarkable

19To complete the identification of the holomorphic variable, we note that the constant a
appearing in (5.1) is a ≡ 2T3ṼΣ4h0/n. The resulting dependence on gs could be absorbed
by a redefinition of ρ, as in [93].
20The bulk corrections considered in [1] are generically smaller than those we consider here.
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cases, the diminution of the perturbation will continue to dominate the growth of

the measure factor. A similar argument reinforces our assertion that the dominant

effect on a D3-brane comes from whichever wrapped brane descends farthest into the

throat.

We conclude that the effects of the gluing region, where the throat meets the bulk,

and of the bulk itself, produce negligible corrections to the terms we have computed.

Fortunately, the leading effects are concentrated in the highly warped region, where

one has access to explicit metrics and can do complete computations.

We have now given a complete account of the nonperturbative superpotential.

However, the Kähler potential is not protected against perturbative corrections, which

could conceivably contribute to the low-energy potential for D3-brane motion. Ex-

plicit results are not available for general compact spaces (see, however, [33, 75]);

here we will simply argue that these corrections can be made subleading. Recall

that the DeWolfe-Giddings Kähler potential provides a mixing between the volume

and the D3-brane position that generates brane mass terms of order H. Any fur-

ther corrections to the Kähler potential, whether from string loops or sigma-model

loops, will be subleading in the large-volume, weak-coupling limit, and will therefore

generically give mass terms that are small compared to H. In addition, the results of

[70] give some constraints on α′ corrections to warped throat geometries. We leave a

systematic study of this question for the future.

7. Implications and Conclusion

We have used a supergravity approach (see also [77]) to study the D3-brane cor-

rections to the nonperturbative superpotential induced by D7-branes or Euclidean

D3-branes wrapping four-cycles of a compactification. This has been a key, unknown

element of the potential governing D3-brane motion in such a compactification. We

integrated the perturbation to the background warping due to the D3-brane over

the wrapped four-cycle. The resulting position-dependent correction to the warped
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four-cycle volume modifies the strength of the nonperturbative effect, which in turn

implies a force on the D3-brane. This computation is the closed-string channel dual

of the threshold correction computation of [32], and we showed that the closed-string

method efficiently reproduces the results of [32].

We then investigated the D3-brane potential in explicit warped throat back-

grounds with embedded wrapped branes. We showed that for holomorphic embed-

dings, only those deformations corresponding to (anti)chiral operators in the dual

gauge theory contribute to correcting the superpotential. This led to a strikingly

simple result: the superpotential correction is given by the embedding condition for

the wrapped brane, in accord with [71].

An important application of our results is to cosmological models with moving

D3-branes, particularly warped brane inflation models [95]. It is well-known that

these models suffer from an eta problem and hence produce substantial inflation

only if the inflaton mass term is fine-tuned to fall in a certain range. Our result

determines a ‘missing’ contribution to the inflaton potential that was discussed in

[95], but was not computed there. Equipped with this contribution, one can quantify

the fine-tuning in warped brane inflation by considering specific choices of throat

geometries and of embedded wrapped branes, and determining whether prolonged

inflation occurs [19]. This amounts to a microscopically justified method for selecting

points or regions within the phenomenological parameter space described in [69]. This

approach was initiated in [32], but the open-string method used there does not readily

extend beyond toroidal orientifolds, and is especially difficult for warped throats in

flux compactifications. In contrast, our concrete computations were performed in

warped throat backgrounds, and thus apply directly to warped brane inflation models,

including backgrounds with fluxes.

Our approach also led to an explicit solution of the ‘rho problem’, i.e. the apparent

non-holomorphy of the gauge coupling on wrapped D7-branes in backgrounds with
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D3-branes. This problem arises from incomplete inclusion of D3-brane backreaction

effects, and in particular from omission of the correction to the warped volume that

we computed in this work. We observed that the correction is itself non-holomorphic,

as a result of a Gauss’s law constraint on the D3-brane moduli space. Moreover,

the non-holomorphic correction cancels precisely against the non-holomorphic term

in the uncorrected warped volume, leading to a final gauge kinetic function that is

holomorphic.

Let us emphasize that the problem of fine-tuning in D-brane inflation models has

not disappeared, but can now be made more explicit. A detailed analysis of this will

be presented in Chapters 6 and 7.



CHAPTER 6

Compactification Obstacles to D-brane Inflation

We proceed by analyzing the cosmological implications of the results of the pre-

vious chapter. This chapter summarizes our findings,1 while in the next chapter we

present more technical aspects of our computations.

1. Introduction

String theory is a promising candidate for the theoretical underpinning of the

inflationary paradigm [3, 83, 120], but explicit and controllable models of inflation in

string theory have remained elusive. In this chapter we ask whether explicit working

models are possible in the setting of slow-roll warped D-brane inflation [64, 95], in

which the inflaton field is identified with the location of a mobile D3-brane in a warped

throat region [105] of the compactification manifold. As explained in Chapter 5,

moduli stabilization introduces potentially fatal corrections to the inflaton potential

in this scenario. Some of these corrections arise from complicated properties of the

compactification [32] and have been computed only recently [18].

The attitude taken in most of the literature on the subject (cf. [95, 118]) is that

because of the vast number and complexity of string vacua, in some nonzero fraction

of them it should be the case that the different corrections to the inflaton potential

cancel to high precision, leaving a suitable inflationary model. This expectation or

1This chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Klebanov, Liam McAl-
lister and Paul Steinhardt, “A Delicate Universe: Compactification Obstacles to D-brane
Inflation”, Phys. Rev. Lett. 99, 141601 (2007).

102



6. compactification obstacles to d-brane inflation 103

hope has never been rigorously justified, and there is no guarantee that the correction

terms can ever cancel: for example, it may be the case that the correction terms

invariably have the same sign, so that no cancellation can occur. In this chapter

we report the results of a systematic investigation into whether or not this hope of

fine-tuned cancellation can in fact be realized. While this chapter is a non-techincal

summary of our conclusions, all the technical subtleties that we had to consider are

carefully spelt out in Chapter 7.

The new ingredient that makes this work possible is the result of [18] for a correc-

tion to the volume-stabilizing nonperturbative superpotential. As explained in Chap-

ter 5, this effect corresponds to the interaction between the inflationary D3-brane and

the moduli-stabilizing wrapped branes, i.e. D7-branes or Euclidean D3-branes wrap-

ping a four-cycle of the Calabi-Yau. The location of these wrapped branes therefore

becomes a crucial parameter in the D3-brane potential.

In a recent paper [45], Burgess et al. showed that for a particular embedding of

the D7-branes, the Ouyang embedding [133], the correction to the inflaton potential

from the term computed in [18] vanishes identically. In this case the potential is al-

ways too steep for inflation, independent of fine-tuning. Here, we consider a different

holomorphic embedding due to Kuperstein [114]. For fine-tuned values of the micro-

physical parameters, the potential for radial motion of a D3-brane in this background

contains an approximate inflection point around which slow-roll inflation can occur.

This potential is not of the form anticipated by previous authors: the D7-brane has

no effect whatsoever on the quadratic term in the inflaton potential, but instead

causes the potential to flatten in a small region far from the tip of the conifold. We

emphasize that arranging for this inflection point to occur inside the throat region,

where the metric is known and our construction is self-consistent, imposes a severe

constraint on the compactification parameters. Moreover, inflation only occurs for
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a bounded range about the inflection point, which requires a high degree of control

over the initial conditions of the inflaton field.

2. The Compactification

Our setting is a flux compactification [63, 76] of type IIB string theory on an

orientifold of a Calabi-Yau threefold, or, more generally, an F-theory compactification.

We suppose that the fluxes are chosen so that the internal space has a warped throat

region, and that n > 1 D7-branes supersymmetrically wrap a four-cycle that extends

into this region (see Figure 1 in Chapter 5). As a concrete example of this local

geometry, we consider the warped version [105] of the deformed conifold
∑
z2
i = ε2,

where zi are coordinates on C4. Assuming that the D3-brane is far from the tip of the

conifold, we may neglect the deformation ε. We choose zα = (z1, z2, z3) as the three

independent complex D3-brane coordinates, and use the conifold constraint to express

z4 in terms of them. We suppose that this throat is glued into a compact space, as in

[76], and for simplicity we take this space to have a single Kähler modulus ρ. Moduli

stabilization [93] relies on the fact that strong gauge dynamics on suitable D7-branes

generates a nonperturbative superpotential, Wnp = A(zα) exp[−aρ], where a = 2π
n

.

The D7-brane embedding is specified by a single holomorphic equation, f(zα) = 0,

and the result of [18] is that

A(zα) = A0

(
f(zα)

f(0)

)1/n

, (6.1)

whereA0 is independent of the D3-brane position zα. Including the flux superpotential

[82] Wflux =
∫
G3 ∧ Ω ≡ W0, the total superpotential is W = W0 + A(zα) exp[−aρ].

The DeWolfe-Giddings Kähler potential [58] is2

K(ρ, ρ̄, zα, z̄α) = −3 ln[ρ+ ρ̄− γk] ≡ −3 lnU , (6.2)

2In this chapter, we employ natural units where M−2
pl = 8πG ≡ 1.
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where k(zα, z̄α) is the Kähler potential of the Calabi-Yau space, and γ is a constant

[19]. Well inside the throat but far from the tip, we may use the Kähler potential of

the conifold [49],

k =
3

2

(
4∑
i=1

|zi|2
)2/3

=
3

2
r2 . (6.3)

Then the F-term potential is [19, 45]

VF =
1

3U2

[
(ρ+ ρ̄)|W,ρ|2 − 3(WW,ρ + c.c.)

+
3

2
(W,ρz

αW,α + c.c.) +
1

γ
kαβ̄W,αW,β

]
, (6.4)

where

kαβ̄ = r

[
δαβ̄ +

1

2

zαz̄β
r3
− zβ z̄α

r3

]
. (6.5)

To this we add the contribution of an anti-D3-brane at the tip of the deformed conifold

[95],

VD = D(r)U−2 , D(r) ≡ D

(
1− 3D

16π2

1

(T3r2)2

)
, (6.6)

where D = 2T3/h0, T3 is the D3-brane tension, and h0 is the KS warp factor at the tip.

3. Towards Fine-Tuned Inflation

To derive the effective single-field potential, we consider radial trajectories that

are stable in the angular directions, so that the dynamics of the angular fields be-

comes trivial. We also integrate out the massive volume modulus, incorporating the

crucial fact that the volume shifts as the D3-brane moves [19]. Then the canonically

normalized inflaton field φ = r
√

3
2
T3 parameterizes the motion along the radial di-

rection of the throat. To investigate the possibility of sustained inflation, we consider

the slow-roll parameter η = V ′′/V . We find η = 2
3

+ ∆η(φ), where ∆η arises from

the dependence (6.1) of the superpotential on φ. Slow-roll inflation is possible near
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φ = φ0 if ∆η(φ0) ≈ −2
3
. Here, using the explicit result of [18] for A(φ), we compute

∆η and determine whether the full potential can be flat enough for inflation.3

A reasonable expectation implicit in prior work on the subject is that there exist

fine-tuned values of the microphysical parameters for which ∆η(φ) ≈ −2
3
, i.e. the

correction to the inflaton potential arising from A(φ) includes a term quadratic in φ,

which, for a fine-tuned value of its coefficient, causes η to be small for a considerable

range of φ. However, we make the important observation that the functional form

of (6.1) implies that there is actually no purely quadratic correction. To see this we

note that A is a holomorphic function of the zα coordinates, which, by (6.3), scale

with radius as zα ∝ φ3/2. Thus, the presence of A(φ) in the form (6.1) does not lead

to new quadratic terms in (7.13). This is concrete evidence against the hope of a

fine-tuned cancellation of the inflaton mass over an extended range of φ.

However, as we now explain, there exists a simple example in which a different

sort of cancellation can occur. Kuperstein [114] studied the D7-brane embedding

z1 = µ, where we may assume that µ ∈ R+. This embedding, and the potential in this

background, preserve an SO(3) subgroup of the SO(4) global symmetry acting on the

zi coordinates of the deformed conifold. To find a purely radial trajectory that is stable

in the angular directions, we consider the variation δz1 while keeping the radius r fixed.

We then require the first variation of the potential δV = V (z1 + δz1, r, ρ)−V (z1, r, ρ)

to vanish for all r and the second variation δ2V to be non-negative. The extremality

constraint δV = 0 specifies the radial trajectory z1 = ± 1√
2
r3/2, z2 = ±iz1. A detailed

study of the angular mass matrix δ2V reveals that the trajectory along z1 = + 1√
2
r3/2

is unstable, while the potential along the negative axis, z1 = − 1√
2
r3/2, is stable in all

angular directions. After integrating out the imaginary part of the Kähler modulus

3For the special case of the Ouyang embedding, z1 + iz2 = µ, Burgess et al. proved a
simple no-go result for fine-tuned brane inflation [45]. They found that for this particular
example, ∆η vanishes along the angularly stable trajectory. We have found similar ‘delta-
flat’ trajectories [19] for all embeddings in the infinite class studied in [9]. These trajectories
cannot support slow-roll inflation, no matter how the parameters of the potential are tuned.
Here, we study an embedding for which there is no delta-flat direction.
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ρ, the potential is given in terms of the radius r (or the canonical inflaton φ) and the

real-valued volume modulus σ ≡ 1
2
(ρ+ ρ̄), as [19]

V (φ, σ) =
a|A0|2

3

e−2aσ

U2(φ, σ)
g(φ)2/n

[
2aσ + 6− 6eaσ

|W0|
|A0|

1

g(φ)1/n
+

3c

n

φ

φµ

1

g(φ)2

− 3

n

1

g(φ)

φ3/2

φ
3/2
µ

]
+

D(φ)

U2(φ, σ)
. (6.7)

Here g(φ) ≡ f(φ)
f(0)

= 1 +
(
φ
φµ

)3/2
, and φ2

µ ≡ T3(2µ2)2/3 denotes the minimal radial

location of the D7-branes. We have also introduced c−1 ≡ 4πγ(2µ2)2/3, used [19]

γ = σ0T3/3, and defined U(φ, σ) ≡ 2σ − σ0

3
φ2. The parameter σ0 is the stabilized

value of the Kähler modulus in the absence of the D3-brane (or when the D3-brane is

near the bottom of the throat). Now, for each value of φ we carry out a constrained

minimization of the potential to find σ?(φ), i.e. we find σ?(φ) such that ∂V
∂σ

∣∣
σ?(φ)

= 0.

The function σ?(φ) may either be computed numerically or fitted to high accuracy

by the approximate expression [19]

σ?(φ) ≈ σ0

[
1 +

1

n aσ0

(
1− 1

2aσ0

)(
φ

φµ

)3/2
]
. (6.8)

Substituting σ?(φ) into (6.7), we find the effective single-field potential V(φ) ≡

V (φ, σ?(φ)).

For generic values of the compactification parameters, V has a metastable min-

imum at some distance from the tip. In fact, one can show that the potential has

negative curvature near the tip and positive curvature far away, so that by continuity,

η vanishes at some intermediate value φ0. Then, one can find fine-tuned values of the

D7-brane position φµ for which this minimum is lifted to become an inflection point

(see Figure 2). This transition from metastability to monotonicity guarantees that

ε = 1
2
(V ′/V )2 can be made extremely small, so that prolonged slow-roll inflation is

possible. In our scenario, then, the potential contains an approximate inflection point
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Figure 1. Example of Inflation near an Inflection Point.
Compactification data: n = 8, φµ = 1

4 , A0 = 1, aσ0 = 10, W0 =
−1

3e
−2aσ0(2aσ0 + 3), D = 1.1× 2a2

3 σ0e
−2aσ0 .

at φ = φ0, where V is very well approximated by the cubic

V = V0 + λ1(φ− φ0) +
1

3!
λ3(φ− φ0)3 , (6.9)

for some V0, λ1, λ3.

The number of e–folds derived from the effective potential (7.58) is

Ne(φ) =

∫ φ

φend

dφ√
2ε

=

√
2V 2

0

λ1λ3

arctan

(
V0η(φ)√

2λ1λ3

)∣∣∣∣φ
φend

. (6.10)

Since η is small only for a limited range of inflaton values, the number of e–folds is

large only when ε is very small. This forces these models to be of the small field type.

The scalar spectrum on scales accessible to cosmic microwave background (CMB)

experiments can be red, scale-invariant, or blue, depending on how flat the potential

is. That is, ns − 1 = (2η − 6ε)|φCMB
≈ 2η(φCMB), where φCMB corresponds to the

field value when observable scales exit the horizon during inflation, say between

e-folds 55 and 60. The sign of η(φCMB), and hence of ns− 1, depends on where φCMB

is relative to the inflection point. If inflation only lasts for the minimal number of

e–folds to solve the horizon and flatness problems then the scalar spectrum is blue. If

the potential is made more flat, so that ε is smaller, inflation lasts longer, and φCMB
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is reduced, the spectrum can be red. This sensitivity to the details of the potential

reduces the predictivity of the scenario.

4. Microscopic Constraints

A crucial consistency requirement is that the inflationary region around φ0, and

the location φµ of the tip of the wrapped D7-branes, should fit well inside the throat,

where the metric is known. As shown in [21] (see Chapter 8), the range of φ in Planck

units is geometrically limited,

∆φ <
2√
N
, (6.11)

where N � 1 is the background D3-brane charge of the throat. When combined

with the Lyth bound [122], this yields a sharp upper bound on the tensor signal in

these models [21]. Here we find that this same bound actually poses an obstacle to

inflation itself: for an explicit inflationary model with the Kuperstein embedding of

D7-branes, φµ and φ0 must obey (6.11). Although one can find examples [19] in which

this requirement is met, this imposes significant restrictions on the compactification.

In particular, N cannot be too large, implying that corrections to the supergravity

approximation could be significant.

5. Conclusions

We have assessed the prospects for an explicit model of warped D-brane inflation

by including the known dangerous corrections to the inflaton potential. In particular,

we have studied whether the hope of fine-tuning superpotential corrections to the

inflaton potential to reduce the slow-roll parameter η can be justified. For a large

class [9] of holomorphic embeddings of wrapped D7-branes there are trajectories where

the potential is too steep for inflation, with no possibility of fine-tuning to avoid this

conclusion [45], [19]. For the Kuperstein embedding [114], fine-tuning is possible
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in principle, and inflation can occur in a small region near an inflection point of

the potential. The requirement (6.11) that this inflection point lies well inside the

throat provides stringent constraints on the compactification. Detailed construction

of compactifications where such constraints are satisfied remains an open problem.

This study illustrates the care that must be taken in assessing the prospects for

inflationary cosmology in string theory. It appeared that warped D-brane inflation

involved many adjustable parameters, including the D7-brane embedding and other

compactification data, and so it was reasonable to expect that working examples

would exist. However, the compactification geometry constrains these microphysical

parameters so that there is much less freedom to adjust the shape of the potential

than simple parameter counting would suggest.

The problem of constructing a fully explicit model of inflation in string theory

remains important and challenging. Diverse corrections to the potential that are neg-

ligible for many other purposes can be fatal for inflation, and one cannot reasonably

claim success without understanding all these contributions. We have made consider-

able progress towards this goal, but have not yet succeeded: a truly exhaustive search

for further corrections to the inflaton potential remains necessary.

Finally, there is a pressing need for a more natural model of string inflation than

the one we have presented here.



CHAPTER 7

Towards an Explicit Model of D-brane Inflation

For the dedicated reader this chapter presents the technical details behind the

results presented in Chapter 6.1 Appendices E, F, G, and H are an integral part of

this work.

1. Introduction

1.1. Review and Motivation. In this chapter we will be concerned with mak-

ing progress towards an explicit model of inflation in string theory, by which we mean

a model in which the fields and parameters in the low-energy Lagrangian are derived

from the data of a string compactification. In such a scenario, questions about the

structure of the inflaton potential can be resolved by concrete string theory compu-

tations. This should be contrasted with string-inspired models constructed directly

in effective field theory, for which naturalness is the final arbiter of the form of the

potential. We will not quite reach the ambitious goal of an entirely explicit model of

inflation derived from string theory, and indeed one main point of this work is that

truly explicit models of string inflation can be rather intricate, involving multiple

nontrivial microscopic constraints that are surprising from the low-energy perspec-

tive.

As before, we will work in the setting of D-brane inflation [64, 95], a promising

framework that has attracted considerable interest, but in which concrete, working

1This chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Klebanov and Liam
McAllister, “Towards an Explicit Model of D-brane Inflation”, JCAP 0801, 024 (2008).
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models remain scarce. In previous chapters we reviewed that moduli stabilization

gives rise to corrections to the inflaton potential. Some of these corrections arise from

complicated properties of the compactification and have been computed only recently

[18].2

The attitude taken in most of the literature on the subject (see e.g. [95, 118])

is that because of the vast number and complexity of string vacua, in some nonzero

fraction of them it should be the case that the corrections to the inflaton potential

cancel to high precision, leaving a suitable inflationary model. However, there is

no guarantee that this hope can be realized: for example, the correction terms may

invariably have the same sign so that no cancellation can ever occur. Moreover, the

precise nature of the cancellation will affect the detailed predictions of the model. In

this chapter we will systematically address the question of whether or not this hope

of fine-tuned cancellation can in fact be realized. The new ingredient that makes

this investigation possible is the result of Chapter 5 for the one-loop correction to

the volume-stabilizing nonperturbative superpotential. As we explained in Chapter

5, this effect is due to the interaction [32, 77] between the inflationary D3-brane and

the moduli-stabilizing wrapped branes, i.e. D7-branes wrapping a four-cycle within

the Calabi-Yau threefold.3 The location of these wrapped branes therefore becomes

a crucial parameter in the D3-brane potential.

With this theoretical input we ask whether the known correction terms to the

inflaton potential can indeed cancel for specific values of the microphysical input

parameters. To investigate this, we study D3-brane motion in warped conifold back-

grounds [105, 106] for a large class of wrapped brane embeddings. By identifying

radial trajectories that are stable in the angular directions, we integrate out the an-

gular degrees of freedom and arrive at an effective two-field potential for the inflaton –

2For important earlier work, see [32, 71, 77].
3Alternatively, one could consider Euclidean D3-branes wrapping this four-cycle. Their
effect on the nonperturbative superpotential is very similar to that of the D7-branes.
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corresponding to the radial direction in the throat – and the compactification volume.

Because we work in a framework with explicitly stabilized moduli, the compactifica-

tion volume has a positive mass-squared. However, this mass is not so large that

the volume remains fixed at a single value during inflation. Instead, the minimum

of the potential for the volume shifts as the D3-brane moves: the compact space

shrinks slightly as the D3-brane falls down the throat. Properly incorporating this

phenomenon leads to a nontrivial change in the effective single-field inflaton potential.

Thus, we find that an approximation that keeps the volume fixed at its KKLT [93]

minimum during inflation is not sufficiently accurate for a D-brane inflation model.

Our improved approximation is that the volume changes adiabatically, remaining in

an inflaton-dependent minimum, as the D3-brane moves.

Equipped with the effective single-field potential, we ask whether the trajectories

that are stable in the angular directions can enjoy flat potentials. For the large class

of holomorphic wrapped brane embeddings described in [9], we find trajectories that

are too steep to permit inflation, even with an arbitrary amount of fine-tuning of the

compactification parameters: the functional form of the leading corrections to the

potential makes fine-tuning impossible. (Our conclusions are consistent with those

reached in [45] for the special case of the Ouyang embedding [133].) This illustrates

a key virtue of the explicit, top-down approach: by direct computation we can refute

the very reasonable expectation that fine-tuning is generically possible.

Undeterred by this no-go result for a wide class of D3-brane trajectories, we devote

a large portion of this paper to showing that in a particularly simple and symmetric

embedding due to Kuperstein [114], the stable trajectory is not necessarily steep.

We then establish that for fine-tuned values of the microphysical parameters, a D3-

brane following this stable trajectory leads to sustained slow-roll inflation near an

inflection point of the potential. Finally, we derive nontrivial constraints, due to

the consistency of the embedding of the warped throat in a flux compactification,
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that relate the microscopic parameters of the inflaton Lagrangian. These constraints

sharply restrict the parameter space of the model, and in fact exclude most, but not

all, of the parameter space that permits sustained inflation.

Our result provides evidence for the existence of successful warped D-brane infla-

tion models based on concrete microscopic data of a flux compactification. However,

we emphasize that inflation is non-generic in this class of D-brane models. In fact, be-

cause of the geometric constraints, it is surprisingly difficult, though not impossible,

to achieve inflation.

1.2. Outline. The outline of this chapter is as follows: In §2 we briefly review

D-brane inflation in warped backgrounds. We then provide results for the complete

D3-brane potential in a warped throat region of the compactification. This includes

an important correction to the volume-stabilizing nonperturbative superpotential first

computed in [18]. In §3 we present a detailed study of a simple example, the case

of the Kuperstein embedding [114] of the wrapped branes. By integrating out the

complex Kähler modulus and the angular positions of the D3-brane, we derive effec-

tive single-field potentials for different brane trajectories. In §4 we then prove the

existence of a stable inflationary trajectory, but also discuss important constraints on

microscopic parameters that make inflation challenging to achieve. In §5 we comment

on generalizations to other embeddings. We then take the opportunity, in §6, to make

some general remarks about the problem of relating string compactification data to

the low energy Lagrangian. We conclude in §7.

In order to make this chapter more readable, we have relegated a number of more

technical results to a series of appendices. Although most of these results are new,

they could be omitted on a first reading. Appendix E gives details of the conifold

geometry and of the supergravity F-term potential. In Appendix F we dimensionally

reduce the ten-dimensional string action and derive microscopic constraints on the

inflaton field range and the warped four-cycle volume. In particular, we explain how
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to generalize the field range bound of [21] to a compactification with a nontrivial

breathing mode. We also derive a new constraint that relates the field range and the

volume of the wrapped four-cycle. Appendix G provides more technical aspects of

the proof that the inflationary trajectory is stable against angular fluctuations. In

Appendix H we derive the dependence of the compactification volume on the D3-

brane position. This is an important improvement on the typical approach of keeping

the volume fixed as the D3-brane moves.
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2. D3-brane Potential in Warped Backgrounds

2.1. The Compactification. Our setting is a flux compactification [76] (see

Chapter 3 or Ref. [63] for a review) of type IIB string theory on an orientifold of a

Calabi-Yau threefold (or an F-theory compactification on a Calabi-Yau fourfold). We

suppose that the fluxes are chosen so that the internal space has a warped throat

region. As a simple, concrete example of this local geometry, we consider the warped

deformed conifold [105]. The deformed conifold is a subspace of complex dimension

three in C4 defined by the constraint equation

4∑
i=1

z2
i = ε2 , (7.1)

where {zi, i = 1, 2, 3, 4} are complex coordinates in C4. The deformation parameter

ε can be made real by an appropriate phase rotation. The region relevant to our

modeling of D-brane inflation lies far from the bottom of the throat, where the right

hand side of (7.1) can be ignored and the metric of the deformed conifold is well-

approximated by that of the singular conifold,

ds2
6 = dr̂2 + r̂2ds2

T 1,1 , (7.2)

where ds2
T 1,1 is the metric of the Einstein manifold T 1,1, the base of the cone (see

Appendix A). This Calabi-Yau metric is obtained from the Kähler potential [49]

k =
3

2

(
4∑
i=1

|zi|2
)2/3

=
3

2
r2 = r̂2 . (7.3)

The warping is achieved by turning on M units of F3 flux through the A-cycle

of the deformed conifold (the three-sphere at the bottom) and −K units of H3 flux

through the dual B-cycle. The resulting warped deformed conifold background is

given in [87, 105]. If r̂UV is the maximum radial coordinate where the throat is
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glued into a compact manifold, then for ε2/3 � r̂ � r̂UV the background is well-

approximated by the warped conifold [106]

ds2
10 = h−1/2(r̂)ds2

4 + h1/2(r̂)ds2
6 , (7.4)

with the warp factor [87, 106]

h(r̂) =
L4

r̂4
ln

r̂

ε2/3
, L4 =

81

8
(gsMα′)2 . (7.5)

We also have [76, 87]

ln
r̂UV

ε2/3
≈ 2πK

3gsM
. (7.6)

The scale of supersymmetry breaking associated with an anti-D3-brane at the bottom

of the throat is D = 2T3h
−1
0 , where h0 is the warp factor there. The approximation

(7.5) is not accurate enough to determine the warp factor at the bottom of the throat;

its value is [87, 105]

h0 = a0(gsMα′)222/3ε−8/3 , a0 ≈ 0.71805 , (7.7)

which is approximately h0 ≈ e8πK/3gsM [76].

Following [93], we require that all the closed string moduli are stabilized,4 by a

combination of fluxes and nonperturbative effects. Each nonperturbative effect may

arise either from Euclidean D3-branes wrapping a four-cycle, or from strong gauge

dynamics, such as gaugino condensation, on a stack of n > 1 D7-branes wrapping a

four-cycle. Finally, as in [18], we require that at least one of the four-cycles bearing

nonperturbative effects descends a finite distance into the warped throat. For sim-

plicity of presentation we will refer to the nonperturbative effects on this cycle as

originating on D7-branes, but all our results apply equally well to the case in which

Euclidean D3-branes are responsible for this effect.

4This condition is necessary for a realistic model, and amounts to a nontrivial selection
criterion on the space of compactifications.
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bulk CY

warped throat

D7D3

D3

0 φµ
φ

Figure 1. Cartoon of an embedded stack of D7-branes wrapping a four-
cycle Σ4, and a mobile D3-brane, in a warped throat region of a compact
Calabi-Yau. The D3-brane feels a force from the D7-branes and from an
anti-D3-brane at the tip of the throat.

An embedding is specified by the number n = ND7 > 1 of D7-branes and the

minimal radial coordinate rµ reached by the D7-branes. The stabilization of rµ is

a potentially confusing issue, so we pause to explain it. In the construction [114]

of supersymmetric wrapped D7-branes in the noncompact KS throat, rµ is a free

parameter. One might therefore think that the wrapped D7-branes are not stabilized,

and that there is a massless field corresponding to changes in rµ. However, in the F-

theory picture, rµ is determined by the complex structure of the fourfold. For generic

choices of four-form fluxes, this complex structure is entirely fixed [121] (see also

[78]), just as the threefold complex structure is fixed in type IIB compactifications

with generic three-form fluxes [76]. Moreover, the scale of the associated mass terms

(see e.g. [94]), mflux ∼ α′√
V6

, with V6 the volume of the compact space, is considerably

higher than the (warped) energy scale associated with the brane–antibrane pair under

consideration. Hence, for our purposes the D7-brane moduli are massive enough to

be ignored. Next, the stabilized value of rµ is determined by the fluxes in the bulk

of the fourfold. In a generic compactification the number of choices of such fluxes

is vast, so we expect that for a given compactification and for any desired value r?µ,

there exist choices of flux that fix the D7-brane to a location rµ ≈ r?µ.
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2.2. D3-brane Potential from Moduli Stabilization. The effect of moduli

stabilization on the D3-brane is captured by the F-term potential of N = 1 super-

gravity,

VF = eκ
2K
[
DΣWKΣΩDΩW − 3κ2WW

]
, κ2 = M−2

pl ≡ 8πG , (7.8)

where {ZΣ} ≡ {ρ, zα;α = 1, 2, 3} and DΣW = ∂ΣW + κ2(∂ΣK)W . The combined

Kähler potential for the volume modulus, ρ, and the three open string moduli (D3-

brane positions), zα, is of the form postulated by DeWolfe and Giddings [58]5

κ2K(ρ, ρ, zα, zα) = −3 ln[ρ+ ρ̄− γk(zα, zα)] ≡ −3 lnU , (7.9)

where in general k(zα, zα) denotes the Kähler potential of the Calabi-Yau manifold.

The normalization constant γ in (7.9) is derived in Appendix F and may be expressed

as

γ ≡ σ0

3

T3

M2
pl

, (7.10)

where 2σ0 ≡ 2σ?(0) = ρ?(0) + ρ̄?(0) is the stabilized value of the Kähler modulus

when the D3-brane is near the tip of the throat.

The Kähler metric KΩΣ ≡ K,ΩΣ assumes the form

KΩΣ =
3

κ2U2

 1 −γkβ
−γkα Uγkαβ + γ2kαkβ

 , (7.11)

where kαβ ≡ ∂α∂βk is the Calabi-Yau metric, and kα ≡ k,α.

5In [46] it was suggested that this result may receive corrections in strongly-warped sce-
narios. However, the proposed corrections do not affect the metric on the Kähler moduli
space, and thus are irrelevant for most of the considerations presented here. However, a
truly thorough search for possible effects of such corrections on our analysis must await a
more complete understanding of the structure of corrections to the Kähler potential.
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The problem of finding the inverse metric, K∆ΓKΓΩ = δ∆
Ω, was solved in [45]:

K∆Γ =
κ2U

3

 U + γkγk
γδkδ kγk

γβ

kαδkδ
1
γ
kαβ

 . (7.12)

After some calculation, these results lead to the F-term potential

VF (ρ, zα) =
κ2

3U2

[(
ρ+ ρ+ γ(kγk

γδkδ − k)

)
|W,ρ|2 − 3(WW,ρ + c.c.)

+ (kαδkδW,ρW,α + c.c.) +
1

γ
kαβW,αW,β︸ ︷︷ ︸

∆VF

]
. (7.13)

The label ∆VF has isolated the terms in F-term potential (7.13) that arise exclusively

from the dependence of the nonperturbative superpotential on the brane position [18].

The remainder of (7.13) is the standard KKLT F-term potential [93].

The superpotential W is the sum of the constant Gukov-Vafa-Witten flux super-

potential [82], Wflux =
∫
G3 ∧ Ω ≡ W0, and a term from nonperturbative effects,

Wnp = A(zα)e−aρ,

W (ρ, zα) = W0 + A(zα)e−aρ , a ≡ 2π

n
. (7.14)

By a choice of phases we can arrange that W0 is real and negative. The nonper-

turbative term Wnp arises either from strong gauge dynamics on a stack of n > 1

D7-branes or from Euclidean D3-branes (with n = 1 ). We assume that either sort of

brane supersymmetrically wraps a four-cycle in the warped throat that is specified by

a holomorphic embedding equation f(zα) = 0. The warped volume of the four-cycle

governs the magnitude of the nonperturbative effect, by affecting the gauge coupling

on the D7-branes (equivalently, the action of Euclidean D3-branes) wrapping this

four-cycle. The presence of a D3-brane gives rise to a perturbation to the warp fac-

tor, and this leads to a correction to the warped four-cycle volume. This correction

depends on the D3-brane position and is responsible for the prefactor A(zα) [77]. In



7. towards an explicit model of d-brane inflation 121

[18], in collaboration with J. Maldacena and A. Murugan, we computed the D3-brane

backreaction on the warped four-cycle volume. This gave the result6

A(zα) = A0

(
f(zα)

f(0)

)1/n

. (7.15)

See [18] for a derivation of this result, and for a more complete discussion of the setup,

which we have only briefly reviewed here.

2.3. Potential in the Warped Conifold Throat. In this section we apply

the general formulae of the previous section to the case of a D3-brane moving in a

warped deformed conifold. We will assume that both the mobile D3-brane and the

fixed D7-branes are located far enough from the tip that the deformation parameter

ε may be neglected. If we use zα = {z1, z2, z3} as the three independent variables, the

conifold constraint allows us to express z4 = ±i(
∑3

α=1 z
2
α)1/2. Using this basis, and

the Kähler potential (7.3), we obtain the conifold metric

kαβ =
3

2

∂2

∂zα∂zβ

(
3∑

γ=1

|zγ|2 +

∣∣∣∣∣
3∑

γ=1

z2
γ

∣∣∣∣∣
)2/3

(7.16)

=
1

r

[
δαβ +

zαzβ
|z4|2

− 1

3r3

(
zαzβ + zβzα −

z4

z4

zαzβ −
z4

z4

zαzβ

)]
. (7.17)

Its inverse assumes the simple form

kαβ = r

[
δαβ +

1

2

zαzβ
r3
− zβzα

r3

]
. (7.18)

Expression (7.13) for the F-term potential simplifies significantly when we substitute

(7.18) and note that

U(ρ, r) = ρ+ ρ− 3γ

2
r2 , kγδkδ =

3

2
zγ , kγk

γδkδ = k . (7.19)

6The D3-brane-independent factor A0 in (7.15) arises from threshold corrections that depend
on the complex structure moduli. This quantity is not known except in special cases, but
is a relatively unimportant constant in our scenario, because the complex structure moduli
are stabilized by the flux background, and because, as we shall see, A0 appears in the final
potential only as an overall constant prefactor.



7. towards an explicit model of d-brane inflation 122

The remaining term in the potential is the contribution of an anti-D3-brane at

the tip of the conifold, including its Coulomb interaction with the mobile D3-brane

[95]

VD(ρ, r) =
D(r)

U2(ρ, r)
, D(r) ≡ D

[
1− 3D

16π2

1

(T3r2)2

]
+Dother ≈ D+Dother , (7.20)

where D ≡ 2h−1
0 T3 is twice the warped D3-brane tension at the tip7 and Dother

represents a possible contribution from distant sources of supersymmetry breaking,

e.g. in other throats.

The complete inflaton potential is then the sum of the F-term potential from

moduli stabilization, plus the contribution of the antibrane,

V = VF (ρ, zα) + VD(ρ, r) . (7.21)

The canonical inflaton φ is proportional to r, the radial location of the D3-brane

(see §F.3 for details). Using (7.21) to compute the slow-roll parameter

η ≡M2
pl

V,φφ
V

, (7.22)

we find

η =
2

3
+ ∆η(φ) , (7.23)

where ∆η arises from the dependence of the superpotential on φ. If A were a constant

independent of φ, slow-roll inflation would be impossible [95], because in that case

η = 2
3
. In this paper, using the explicit result of [18] for A(φ), we will compute ∆η

and determine whether the full potential can be flat enough for inflation. Note that

the sign of ∆η, while crucial, is not obvious a priori.

7A similar potential for a mobile D3-brane arises if instead of including the antibrane we
generalize the throat background [65].
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3. Case Study: Kuperstein Embedding

Let us consider a particularly simple and symmetric holomorphic embedding due

to Kuperstein [114], which is defined by the algebraic equation

f(z1) = µ− z1 = 0 , (7.24)

where, without loss of generality, we will consider the case in which µ ∈ R+. This

embedding preserves an SO(3) subgroup of the SO(4) global symmetry acting on

the zi coordinates of the deformed conifold. Kuperstein showed that this is a super-

symmetric embedding not just for the singular conifold, but also in the full warped

deformed conifold background with three-form fluxes. (For comparison, the embed-

dings of [9, 133] have so far been studied explicitly only in the AdS5 × T 1,1 back-

ground). Adding just a mobile D3-brane does not break supersymmetry in the case

of the non-compact throat. Therefore, the interaction between the D3-branes and

D7-branes must vanish in that limit. When the throat is embedded in a compactifi-

cation, the D3-brane potential can receive a contribution from the nonperturbative

superpotential (7.14).

The inflaton potential V (ρ, r, zi) is in general a complicated function of the Kähler

modulus and of the radial and angular coordinates of the D3-brane. In this section

we systematically integrate out all fields except the radial coordinate, leading to an

effective single-field potential for the radial inflaton.
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3.1. Multi-field Potential.

F-term potential. By the results of [18], equation (7.24) implies

A(z1) = A0

(
1− z1

µ

)1/n

, (7.25)

and the F-term potential (7.13) is

VF =
κ2a|A(z1)|2e−a(ρ+ρ̄)

3U(ρ, r)2

[(
a(ρ+ ρ̄) + 6

)
+ 6W0 Re

( eaρ

A(z1)

)

− 3 Re(αz1z1) +
r

aγ

(
1− |z1|2

2r3

)
|αz1 |2

]
, (7.26)

where

αz1 ≡
Az1
A

= − 1

n(µ− z1)
, (7.27)

and

Re(αz1z1) = − 1

2n

µ(z1 + z1)− 2|z1|2

|µ− z1|2
. (7.28)

Note that the potential (7.26) depends only on r, z1, and ρ. Therefore, it is invariant

under the SO(3) that acts on z2, z3, z4.

Angular degrees of freedom.

Imaginary part of the Kähler modulus. First, to reduce the complexity of the

multi-field potential, we integrate out the imaginary part of the Kähler modulus.

Setting ρ ≡ σ + iτ , equation (7.26) becomes

VF =
κ2a|A|2e−2aσ

3U2

[(
2aσ + 6

)
+ 6W0e

aσ Re
(eiaτ
A

)

− 3 Re(αz1z1) +
r

aγ

(
1− |z1|2

2r3

)
|αz1|2

]
. (7.29)

We see that only the underlined term depends on τ , and the potential for τ is mini-

mized when this term is as small as possible. Because W0 is negative, integrating out
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τ(z1, r) = Im(ρ) then amounts to the replacement

eiaτ

A
→ 1

|A|
. (7.30)

Notice that this is not the same as setting τ ≡ 0. In particular, τ(z1, r) might be a

complicated function, but all we need to know is (7.30).

Angular directions. The D3-brane position is described by the radial coordinate

r and five angles Ψi on the base of the cone. The angles are periodic coordinates on

a compact space, so the potential in Ψi is either constant or else has discrete minima

at some values Ψ?
i . We are interested in trajectories that are stable in the angular

directions, so that the motion occurs purely along the radial direction.

We can therefore reduce the number of degrees of freedom by fixing the angular

coordinates to the positions that minimize the potential. In Appendix G we show that

for any Kuperstein-like embedding f(z1) = 0, these extrema in the angular directions

occur only for trajectories satisfying

z1 = ±r
3/2

√
2
, ⇔ ∂V

∂Ψi

= 0 . (7.31)

Furthermore, in Appendix G we examine the matrix of second derivatives, ∂2V
∂Ψi∂Ψj

,

and find the conditions under which these extrema are stable minima. For the present

discussion we only need one result from that section: for small r, the trajectory (7.31)

is stable against angular fluctuations for negative z1 and unstable for positive z1. In

Appendix F we show that the canonical inflaton field φ is well-approximated by a

constant rescaling of the radial coordinate r,

φ2 ≡ T3r̂
2 =

3

2
T3r

2 . (7.32)

An important parameter of the brane potential is the minimal radial coordinate of

the D7-brane embedding [18, 114], r3
µ ≡ 2µ2, or φ2

µ = 3
2
T3(2µ2)2/3. The potential
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along the trajectory (7.31) may then be written as

V (φ, σ) = VF (φ, σ) + VD(φ, σ) , (7.33)

where

VF (φ, σ) =
κ2a|A0|2

3

exp(−2aσ)

U(φ, σ)2
g(φ)2/n

[
2aσ + 6− 6 exp(aσ)

|W0|
|A0|

1

g(φ)1/n

+
3

n

(
c
φ

φµ
±
(
φ

φµ

)3/2

−
(
φ

φµ

)3
)

1

g(φ)2

]
, (7.34)

VD(φ, σ) =
D(φ)

U(φ, σ)2
, (7.35)

and

g(φ) ≡

∣∣∣∣∣1∓
(
φ

φµ

)3/2
∣∣∣∣∣ , U(φ, σ) ≡ 2σ − σ0

3

φ2

M2
pl

. (7.36)

Here we have introduced the constant

c ≡ 1

4πγr2
µ

=
9

4n aσ0
φ2
µ

M2
pl

. (7.37)

This two-field potential is the input for our numerical study in §4.3.

3.2. Effective Single-Field Potential.

Real part of the Kähler modulus. Having reduced the potential to a function of

two real fields, φ and σ, we integrate out σ by assuming8 that it evolves adiabatically

while remaining in its instantaneous minimum σ?(φ), which is defined implicitly by

∂σV |σ?(φ) = 0 . (7.38)

8We are assuming that σ is much more massive than φ. This may not be valid for a truly
generic configuration of a D3-brane in a compact space, but we are specifically interested
in cases in which the potential for φ has been fine-tuned to be flat. Thus, when slow-roll
inflation is possible at all, the adiabatic approximation is justified. See also [135].
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This leads to the effective single-field potential

V(φ) ≡ V (σ?(φ), φ) . (7.39)

In general, we are not able to solve equation (7.38) analytically for σ?(φ), so we

perform this final step numerically (§4.3). Nevertheless, in Appendix H we derive

useful approximate analytical solutions for the stabilized volume modulus and its

dependence on φ (similar results were derived independently in [113]). Here, we cite

the basic results of that section. First, the critical value σF of the Kähler modulus

before uplifting is determined by DρW |φ=0, σF
= 0, or equivalently [93],

3
|W0|
|A0|

eaσF = 2aσF + 3 ⇒ ∂VF
∂σ

∣∣∣∣
σF

= 0 . (7.40)

We now show how the Kähler modulus is shifted away from σF by the inclusion of a

brane-antibrane pair.

(1) Shift induced by the uplifting

Adding an anti-D3-brane to lift the KKLT AdS minimum to a dS mini-

mum induces a small shift in the stabilized volume, σF → σF +δσ ≡ σ?(0) ≡

σ0, where

δσ ≈ s

a2σF
� 1� σF . (7.41)

Here we found it convenient to define the ratio of the antibrane energy to

the F-term energy before uplifting, i.e. when σ = σF ,

s ≡ (D +Dother)U
−2(0, σF )

|VF (0, σF )|
, (7.42)

where stability of the volume modulus in a metastable de Sitter vacuum

requires 1 < s . O(3). Although δσ is small, it appears in an exponent in

(7.34), so that its effect there has to be considered,

3
|W0|
|A0|

eaσ0 ≈ 2aσ0 + 3 + 2s . (7.43)
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When the D3-brane is near the tip, φ ≈ 0, the Kähler modulus remains at

σ0. Using this constant value even when the brane is at finite φ suffices for

understanding the basic qualitative features of the potential (7.34). How-

ever, important quantitative details of the potential depend sensitively on

the dependence of σ? on φ; see Appendix D and Ref. [135].

(2) Shift induced by D3-brane motion

In Appendix H we derive the following analytic approximation to the

dependence of the stabilized volume on the D3-brane position:

σ?(φ) ≈ σ0

[
1 + c3/2

(
φ

φµ

)3/2
]
, (7.44)

where

c3/2 ≈
1

n

1

aσF

[
1− 1

2aσF

]
. (7.45)

This expression is valid along z1 = − r3/2
√

2
, which we argue below is the inter-

esting case in which the potential is stable in the angular directions.

Analytic single-field potential. Along the trajectory z1 = − r3/2
√

2
, the inflaton po-

tential is

V(φ) =
κ2a|A0|2

3

exp(−2aσ?(φ))

U(φ, σ?(φ))2
g(φ)2/n

[
2aσ?(φ) + 6− 6 exp(aσ?(φ))

|W0|
|A0|

1

g(φ)1/n

+
3c

n

φ

φµ

1

g(φ)2
− 3

n

(
φ

φµ

)3/2
1

g(φ)

]
+

D(φ)

U(φ, σ?(φ))2
, (7.46)

where σ?(φ) can be determined numerically or approximated analytically by (7.44).

Using the analytic result (7.44) in (7.46) captures the basic qualitative features of the

potential, but is insufficient to assess detailed quantitative questions. In particular, by

using (7.44) one systematically underestimates the total number of e-folds supported

by the potential (see Appendix D and Ref. [135]).

The inflaton potential (7.46) is one of our main results.
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4. Search for an Inflationary Trajectory

In the preceding section, we derived the inflaton potential (7.46) along the

angularly-stable trajectory z1 = − r3/2
√

2
. We will now explore this potential and es-

tablish that slow roll inflation is possible for a certain range of parameters. First, in

§4.1, we present a few analytic results about the curvature of the potential. Then,

in §4.2, we describe the constraints on the parameters of the model that are dictated

by the structure of the compactification. Finally, in §4.3, we present the results of a

numerical study of the potential.

4.1. Analytic Considerations. Let us briefly recall the reason for computing

the effect of A(φ) on the inflaton potential. Kachru et al. [95] derived η = 2
3

for the

case A = const., and suggested that the inflaton-dependence of the nonperturbative

superpotential, A(φ), could contribute corrections to the inflaton mass, which, if of

the right sign, could accidentally make η small. This reasonable expectation hinges

on the presence of quadratic corrections to the inflaton potential.

We now argue that in view of the result (7.15), wrapped D7-branes give no purely

quadratic corrections to the inflaton potential. To see this, we note that the holo-

morphic coordinates on the conifold scale as fractional powers of φ, |zi| ∝ φ3/2, and

A(zi) is a holomorphic function of the zi coordinates [18]. This observation implies

that the inflaton potential is of the form

V(φ)

V(0)
= 1 +

1

3

φ2

M2
pl

+ v(φ) , (7.47)

where v(φ) contains no quadratic terms. The slow roll parameter η, which needs to

be very small for sustained slow roll inflation, is

η ≡M2
pl

V,φφ

V
=

2

3
+M2

plv,φφ . (7.48)
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Because v,φφ contains no constant term, there is no possibility of cancelling the 2
3

uniformly, for the entire range of φ. Instead, we can at best hope to cancel the 2
3

at

some special point(s) φ0 obeying v,φφ(φ0) = −2
3
.

Using the explicit form (7.46) and expanding for small φ/φµ, we find

η =
2

3
− η−1/2

(
φ

φµ

)−1/2

+ · · · , (7.49)

where

η−1/2 ≈
M2

pl

φ2
µ

3(4s− 3)

8n(s− 1)

1

aσ0

> 0 . (7.50)

Hence, η < 0 sufficiently close to the tip. On the other hand, we find that for φ� φµ,

η > 0. By continuity, η must vanish at some intermediate location φ0.

The precise location of φ0 is a parameter-dependent question. For this purpose,

the most important parameter is the minimal radius φµ of the D7-branes. Notice that

(7.48) can be written as

η =
2

3
+
M2

pl

φ2
µ

v,xx , (7.51)

where x ≡ φ
φµ

and vxx is insensitive to φµ (see (7.46)). From (7.49) we see that the

second term in (7.51) dominates near the tip, giving a large negative η. This implies

the opportunity for a small η by cancellation against the positive 2
3
. However, only if

φµ is not too small can this cancellation be achieved inside the throat. Otherwise, η

remains negative throughout the regime of interest. We conclude that for small φµ,

φ0 is outside the throat, and hence outside the validity of our construction.

4.2. Parameters and Microscopic Constraints. Let us describe the micro-

scopic parameters that determine the inflaton potential (7.46). In view of (7.42), the

D-term Dother + 2T3h
−1
0 and W0 are represented by s and by ωF = aσF , respectively.

Next, the prefactor A0 only appears as an overall constant rescaling the height of

the potential, so we set A0 ≡ 1. The shape of the inflaton potential is therefore

determined by n, ωF , s and φµ. As we now explain, microscopic constraints lead to
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important restrictions on the allowed parameter ranges and induce non-trivial corre-

lations among the above parameters.

First, the range of the radial coordinate r affects the four-dimensional Planck mass,

because a longer throat makes a larger contribution to the volume of the compact

space. In [21] Liam McAllister and I showed that this creates a strong constraint on

the allowed field range of the inflaton field φ (see also Appendix F)

∆φ

Mpl

<
2√
N
. (7.52)

Here we use the field range bound (7.52) to constrain the microscopically viable range

of φµ, the minimal radial extent of the D7-branes in canonical units. For this purpose

we find it convenient to write the bound in the form

φ2
µ

M2
pl

=
1

Q2
µ

1

B6

4

N
, (7.53)

where B6 ≡ V w6
(V w6 )throat

> 1 parameterizes the relative contribution of the throat to the

total (warped) volume of the compact space, and

Qµ ≡
rUV

rµ
(7.54)

is a measure of how far into the throat the four-cycle extends. Applicability of the

results of [18] requires Qµ = φUV

φµ
> 1.

Second, the warped volume V w
Σ4

of the wrapped four-cycle Σ4 is bounded below

by the warped volume in the throat region,

V w
Σ4

= (V w
Σ4

)throat + (V w
Σ4

)bulk ≥ (V w
Σ4

)throat . (7.55)

In Appendix F.2 we compute (V w
Σ4

)throat for the Kuperstein embedding

T3(V w
Σ4

)throat =
3

2
N lnQµ . (7.56)
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In §2 we explained how the unperturbed warped four-cycle volume relates to the

Kähler modulus of the compactification (more details can be found in Refs. [18,

77] and Appendix F). If we use B4 ≡
V wΣ4

(V wΣ4
)throat

> 1 to parameterize the relative

contribution of the throat to the total warped volume of the four-cycle wrapped by

the D7-branes, then we can relate the vev of the Kähler modulus to microscopic

parameters of the compactification

ωF ≈ ω0 ≈
3

2

N

n
B4 lnQµ . (7.57)

We require ω0 < O(30), because otherwise the inflation scale will be too low – see

Appendix F.

The constraints (7.53), (7.57) will play an essential role in our analysis. We will

find that inflationary configurations are rather easy to find if these constraints are

neglected, but imposing them dramatically decreases the parameter space suitable

for inflation.

Bulk contributions to the volume. We have just introduced two parameters, B4 =
V wΣ4

(V wΣ4
)throat

and B6 =
V w6

(V w6 )throat
, that represent ratios of total volumes to throat volumes.

In the throat, we have access to an explicit Calabi-Yau metric and can compute the

volumes directly. This metric data in the throat is one of the main reasons that

warped D-brane inflation can be studied explicitly. In contrast, we have very little

data about the bulk, so we cannot compute B4 and B6.

Fortunately, these parameters do not directly enter the potential. Instead, they

appear in the compactification constraints (7.53) and (7.57), and thereby affect the

microscopically allowable ranges of the other parameters, such as φµ and Qµ. In

particular, when B6 is large, the range of φµ is reduced, because the throat is shorter

in four-dimensional Planck units. In the numerical investigation of §4.3, we find that

inflation is possible inside the throat, and our construction is self-consistent, provided

that B4/B6 & 2. For concreteness, we take B4 ∼ 9, B6 ∼ 1.5 in the remainder. This
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means that the throat contributes a greater share of the total six-volume than it does

of the wrapped four-cycle volume: in other words, the wrapped four-cycle only enters

the upper reaches of the throat. Although we expect that such a configuration can

be realized, it will be valuable to find a fully explicit construction. We note, however,

that a very large value of B4, implying that the D7-brane is hardly in the throat

at all, would mean that the result of [18] is inapplicable, because the correction to

the four-cycle volume is then dominated by the correction to the uncomputable bulk

portion of the volume.

Parameter choices. Although a systematic study of the full multi-dimensional

parameter space would undoubtedly be instructive, we here employ a simpler and

more transparent strategy that we believe nevertheless accurately portrays the range

of possibilities. To this end, we set some of the discrete parameters to reasonable

values and then scan over the remaining parameters. Let us emphasize that although

the precise values chosen here are not important, it is important that we were able

to find regions in parameter space where all our approximations are valid and all the

compactification constraints are satisfied.

First, we fix n → 8. This helps to reduce the degree to which the volume shifts

during inflation, as from (7.45), c3/2 ∝ n−1. Numerical study of the case n = 2 yields

results qualitatively similar to those we present here, but the analytical treatment is

more challenging. To ignore backreaction of the wrapped branes on the background

geometry, we require that the background D3-brane charge exceeds the number of

wrapped branes, N
n
> 1. For concreteness, we use N = 32. Finally, as previously

stated, we take B4 ∼ 5, B6 ∼ 2.

This allows us to impose the microscopic constraints (7.53), (7.57) on the compact-

ification volume ωF and the wrapped brane location φµ in terms of a single parameter

Qµ. The remaining parameters that determine the potential are then Qµ (7.54) and

s (7.42).
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To search for inflationary solutions, we scanned over Qµ and s, treating both as

continuous parameters, although they are in principle determined by discrete flux

input. Here, for simplicity of presentation, we will fix Qµ to a convenient value, Qµ =

1.2, and only exhibit the scanning over s. To interpret this scanning in microphysical

terms, we recall that, for fixed F-term potential and for fixed supersymmetry breaking

(corresponding to the parameter Dother) outside the throat, s is determined by D =

2T3h
−1
0 , where h0 is given in (7.7) and is of order h0 ≈ exp

(
8πK
3gsM

)
. The values of h0

we will consider can be achieved for reasonable values of K,M, gs.

In summary, we have arranged that all consistency conditions are satisfied, and all

parameters except for the amount of uplifting, s, are fixed. As we vary the uplifting,

the shape of the potential (7.46) will change. As we shall now see, for a certain range

of values of s the potential becomes flat enough for prolonged inflation.

2.18

2.16

2.14

2.12
 0.2 0.4 0.6 0.8  1.0

V(φ) × 1012

φ/φµ

Figure 2. Inflaton potential V(φ).
Compactification data: n = 8, ωF = 10, N = 32, Qµ = 1.2, B6 = 1.5,
B4 = 9, s = 1.1, which implies φµ = 0.25, W0 = −3.432×10−4, D+Dother =
1.2× 10−8, ω0 ≈ 10.1.

4.3. Numerical Results. The first observation we make about (7.46) is that,

near the parameter values we have indicated, it is generically non-monotonic. In fact,

the potential has a metastable minimum9 at some distance from the tip. We are

9A D3-brane located in this metastable minimum contributes to the breaking of super-
symmetry. It would be extremely interesting to use a configuration of a D3-brane and a
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confident that this is a minimum and not a saddle point, because we have explicitly

shown in the Appendices that the curvature of the potential in the angular directions

is non-negative. (The curvature is zero along directions protected by the unbroken

SO(3) symmetry of the background, and positive in the other directions.) Moreover,

we have shown that the potential is stable with respect to changes in the Kähler

modulus.

Next, we notice that as we vary s, the metastable minimum grows more shallow,

and the two zeroes of V ′, the local maximum and the local minimum, approach each

other. A zero of V ′′ is trapped in the shrinking range between these two zeroes of V ′.

For a critical value of s, the zero of V ′′ and the two zeroes of V ′ coincide, and the

potential has an inflection point. As s changes further, the potential becomes strictly

monotonic.

We therefore find that there exists a range of s for which both the first and second

derivatives of the potential approximately vanish. This is an approximate inflection

point. In the next section we discuss a phenomenological model that captures the

essential features of (7.46) in the vicinity of this inflection point.

4.4. Phenomenological Model: Cubic Inflation. We have shown that in-

flationary solutions in the Kuperstein embedding arise near an inflection point at

φ = φ0, where the potential is very well approximated by the cubic form [88, 123]10

V = V0 + λ1(φ− φ0) +
1

3!
λ3(φ− φ0)3 . (7.58)

moduli-stabilizing D7-brane stack to uplift to a de Sitter vacuum. Here we have not quite
accomplished this: we have, of course, included an anti-D3-brane as well, which is well-
known to accomplish the uplifting by itself [93]. If this antibrane is removed, the structure
of the potential changes, and it is not clear from our results so far that a remaining D3-brane
would suffice to uplift to a de Sitter vacuum. We leave this as a promising direction for
future work.
10Ref. [5] has developed an inflation model within the minimal supersymmetric standard
model (MSSM) that has a similar cubic phenomenology. We thank Justin Khoury for
bringing this model to our attention. Inflection point inflation in the context of string
theory, with the inflaton corresponding to the compactification volume, has been considered
in [92].
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Figure 3. The inflaton potential V(φ) as a function of s.
The transition from metastability to monotonicity is shown; old inflation
and new inflation are continuously connected.

Prolonged inflation requires smallness of the slow roll parameters, ε, η � 1. From

(7.58) we find11

ε ≡ 1

2

(
V,φ

V

)2

≈ 1

2

(
λ1 + 1

2
λ3(φ− φ0)2

V0

)2

, (7.59)

η ≡ V,φφ

V
≈ λ3

V0

(φ− φ0) . (7.60)

The number of e–folds between some value φ and the end of inflation φend is then

Ne(φ) =

∫ φ

φend

dφ√
2ε

=
Ntot

π
arctan

(
η(φ)

2πN−1
tot

)∣∣∣∣φ
φend

, (7.61)

where

Ntot ≡
∫ ∞
−∞

dφ√
2ε

= π

√
2V 2

0

λ1λ3

. (7.62)

11In this section we set Mpl ≡ 1.
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In (7.59) and (7.60) we have set V(φ) ≈ V0 in the denominators, while in (7.62) we

extended the integral from the range where |η| < 1 to infinity. These approximations

are very good in the regime

V0

λ3

� 1 ,
V0√
λ1λ3

� 1 . (7.63)

The first of these conditions guarantees that inflation is of the small-field type, while

the second implies that Ntot � 1. We will be interested in Ntot ≥ NCMB ∼ 60.

Ntot

Ne

η

end of inflation

near scale-invariance

ns < 1

ns > 1

Figure 4. η(φ) as a function of the number of e-folds of inflation,
Ne. In the green band, |η| < 2πN−1

tot .

Equation (7.61) shows that there are 1
2
Ntot e–folds during which |η| < 2πN−1

tot ; see

Figure 4. For large Ntot this implies that there is a large range of e–folds where η is

small and the scalar perturbation spectrum is nearly scale-invariant. Predicting the

scalar spectral index in these models is non-trivial:

ns − 1 = (2η − 6ε)|φCMB
≈ 2η(φCMB) . (7.64)

The scalar spectral index on CMB scales can be red, blue or even perfectly scale-

invariant depending on where φCMB is relative to the inflection point. If inflation only
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lasts for the minimal number of e-folds to solve the horizon and flatness problems

then the scalar spectrum is blue. If the potential is flatter than this, so that ε is

smaller, inflation lasts longer and φCMB is more likely to be smaller than φ0. The

spectrum is then red, since η(φCMB < φ0) < 0.

 200 400 600 800
 100 50

 1.20

 1.15

 1.10

 1.05

  0.95

  0.90

1.0
Ntot

ns

Figure 5. Spectral index ns, evaluated on CMB scales, as a function
of the total number of e-folds of inflation, Ntot. The light band gives the
WMAP3 2σ limit on ns (for r ≡ 0) [151].

More concretely, we can evaluate ns by inverting (7.61) at φCMB whereNe(φCMB) ≡

NCMB ∼ 60, and using η(φend) = −1. This gives

ns − 1 =
4π

Ntot

tan

(
π
NCMB

Ntot

− arctan

(
Ntot

2π

))
. (7.65)

Using arctanx = π
2
− x−1 +O(x−3) we furthermore find

ns − 1 =
4π

Ntot

tan

(
π
NCMB + 2

Ntot

− π

2
+O(N−3

tot )

)
. (7.66)

Using NCMB + 2 ≈ NCMB � 1, we may simplify this to

ns − 1 ≈ − 4π

Ntot

cot

(
π
NCMB

Ntot

)
, (7.67)
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which has the expansion

ns − 1 ≈ − 4

NCMB

+
4π2

3

NCMB

N2
tot

+O
(N3

CMB

N4
tot

)
. (7.68)

Equation (7.67) is plotted in Figure 5. We note the following properties of this

result. For Ntot not much greater than NCMB the spectrum is strongly blue and the

model is hence ruled out by recent observations [151] (in this regime the slow-roll

formulae we have used are not good approximations, but a more exact treatment

gives similar results). For Ntot ≈ 2NCMB the spectrum on CMB scales is exactly

scale-invariant. For Ntot & 2NCMB the spectrum is red and asymptotes to the lower

limit ns → 1 − 4/NCMB ≈ 0.93 for Ntot � NCMB. This asymptotic limit, which has

been noted in studies of inflation near an inflection point [5, 92], is more strongly red

than is typical in single-field inflation models.

Given the explicit expression (7.67) for the spectral index ns(Ne) we can compute

its scale-dependence or ‘running’:

αs ≡
dns
d ln k

= − dns
dNe

∣∣∣∣
Ne=NCMB

= − 4π2

N2
tot

sin−2

(
π
NCMB

Ntot

)
, (7.69)

≈ − 4

N2
CMB

− 4π2

3

1

N2
tot

+O
(N2

CMB

N4
tot

)
. (7.70)

The running can be large for models with blue spectral tilt (Ntot ∼ NCMB), but

is small for models with red spectra. The asymptotic value for Ntot � NCMB is

αs → −4/N2
CMB ≈ −10−3. Notice that because both the tilt ns − 1 and the running

αs are determined by Ntot alone (for fixed NCMB), this phenomenological model is

predictive.

It is possible to arrange for the magnitude of scalar perturbations on CMB scales

to be small,

∆2
R =

1

24π2

V
ε

∣∣∣∣
φCMB

≈ 2.4× 10−9 , (7.71)

by adjusting the overall scale of inflation V0.
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Let us comment briefly on some general difficulties in inflection point inflation.

Since inflation is restricted to a small region around the inflection point, an immediate

concern is the question of initial conditions. In particular, how sensitive is the present

scenario to the initial position and velocity of the D3-brane? What fraction of initial

conditions lead to overshoot rather than to inflation? These questions have recently

been analyzed by Bret Underwood [157] who finds that including the effects of the

DBI kinetic term dramatically improves naive estimates on the amount of fine-tuning

of initial conditions necessary for inflation.

Since this is a small-field model, it is sensitive to small corrections in the slope

of the potential (see §6). These corrections are important for both the background

evolution, i.e. the number of e–folds of inflation, and for the perturbation spectrum.

Finally, we note that the appearance of the inflection point feature depends sen-

sitively on the use of the adiabatic approximation for integrating out the volume

modulus. One might therefore be worried about cases in which the exact two-field

evolution is not well captured by this approximation and a more detailed numerical

study of the two-field evolution is required.12

5. Comments on Other Embeddings

The previous two sections contained a detailed discussion of the D3-brane poten-

tial for the Kuperstein embedding. We derived important microscopic constraints,

analyzed the fine-tuning problem involved in realizing inflationary solutions, and stud-

ied the resulting cosmological dynamics.

In this section we will make some brief remarks about other embeddings. When

applicable we will emphasize the differences and similarities to the Kuperstein case.

This will illustrate the special status of the Kuperstein embedding.

12This important problem has been explored in the subsequent work [135] where the validity
of the adiabatic approximation is explicitly confirmed.
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First, we give a simple proof that for an infinite class of D7-brane embeddings, the

ACR embeddings, there always exist trajectories for which no amount of fine-tuning

can flatten the inflaton potential. Areán, Crooks and Ramallo (ACR) [9] studied

supersymmetric four-cycles in the conifold described by the embedding equations

f(wi) = µP −
4∏
i=1

wpii = 0 , (7.72)

where pi ∈ Z, P ≡
∑4

i=1 pi and µP ∈ C are constants defining the embedding.

Here wi ∈ C are alternative coordinates on the conifold that follow from the zi

coordinates by a linear transformation (see Appendix E). The conifold constraint in

these coordinates is w1w2 − w3w4 = 0. By requiring that the pi are non-negative we

can restrict attention to four-cycles that do not reach the tip of the conifold. Two

simple special cases of the ACR embeddings (7.72) are the Ouyang embedding [133],

w1 = µ, and the Karch-Katz embedding [99], w1w2 = µ2.

To study the ACR embeddings in a unified way we define a collective coordinate

Φ

ΦP ≡
4∏
i=1

wpii , (7.73)

such that

A(ΦP ) = A0

(
1− ΦP

µP

)1/n

, (7.74)

and ∑
i

wiαwi =
∑
i

piΦ
PαΦP = PΦPαΦP , (7.75)

where

αΦP ≡
1

A

∂A

∂ΦP
= − 1

n

1

µP − ΦP
. (7.76)

Next, we consider the part of the F-term potential that depends on derivatives of the

superpotential with respect to the brane coordinates

∆VF = −κ
2a|A|2e−2aσ

U2

[
3 Re(wiαwi)−

1

aγ
k̂iwαwiαwj

]
, (7.77)



7. towards an explicit model of d-brane inflation 142

where

Re(wiαwi) = P Re(ΦPαΦP ) (7.78)

and

1

γ
k̂iwαwiαwj =

1

γr2
|αΦP |2

∣∣ΦP
∣∣2 {1

2
P 2 + (p1 − p2)2 + (p3 − p4)4 + Z(wi)

}
. (7.79)

Here, we found it convenient to write the Kähler metric k̂i̄w in SO(4)–invariant form

(see Appendix E) and defined the function

Z ≡ +

∣∣∣∣p1
w4

w1

+ p3
w2

w3

∣∣∣∣2 +

∣∣∣∣p1
w3

w1

+ p4
w2

w4

∣∣∣∣2
+

∣∣∣∣p2
w3

w2

+ p4
w1

w4

∣∣∣∣2 +

∣∣∣∣p2
w4

w2

+ p3
w1

w3

∣∣∣∣2 . (7.80)

5.1. Delta-flat Directions. We now show that there is always a radial trajec-

tory, Φ = 0, along which ∂W/∂wi is orthogonal to wi and lies in the null direction of

k̂i̄w. The term ∆VF in (7.77) then vanishes and the prefactor A of the superpotential

becomes independent of the brane position. We call this a delta-flat direction. For

the Ouyang embedding this trajectory was first found by Burgess et al. [45]. As noted

in [45], delta-flat directions are noteworthy because they have ∆η = 0 and therefore

imply a well-known no-go result for inflation [95].

More concretely, we see that for (7.78) to vanish one requires

Φ = 0 , (7.81)

i.e. at least one of the wi that enter the embedding must vanish. In fact, we

notice that (7.78) vanishes whenever (7.79) does, so we can restrict our atten-

tion to (7.79). If any pi > 1, then we see immediately from the overall factor

|ΦP |2 = |w1|2p1|w2|2p2|w3|2p3|w4|2p4 that (7.79) vanishes on wi = 0. For pi ≤ 1 there

are only a few distinct cases: Φ = w1, Φ2 = w1w2, Φ2 = w1w3, Φ3 = w1w2w3, and
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Φ4 = w1w2w3w4. In the next section we will illustrate the argument for the impor-

tant case of the Ouyang embedding, Φ = w1; the proof is easily generalized to the

remaining cases. This completes the proof that all ACR embeddings have delta-flat

trajectories.

5.2. Comparison of the Ouyang and Kuperstein Embeddings. Recently

the result of [18] has been applied [45, 113] to compactifications involving the Ouyang

embedding w1 = µ. In this case, the correction to the F-term potential is

∆VF =
κ2

3U2

[
3

2
(W,ρw1W,w1 + c.c.) +

1

γ
k̂11̄
w W,w1W,w1

]
, (7.82)

where

k̂11
w = r

(
1 +
|w1|2

2r3
− |w2|2

r3

)
. (7.83)

There are two kinds of radial extremal trajectories: the delta-flat trajectory w1 =

w3 = w4 = 0, for which ∆VF = 0 [45], and also a trajectory w2 = w3 = w4 = 0,

w1 ∈ R used in [113].

The Kuperstein scenario is closely related to the Ouyang scenario except for two

subtle differences which we now discuss:

(1) There exists no delta-flat direction for the Kuperstein embedding.

(2) The single-field potential along the non-delta-flat direction for the Ouyang

embedding is identical in shape to that along the corresponding Kuperstein

trajectory. However, the angular stability is different (see Appendix G).

This trajectory in the Kuperstein embedding is stable for small r, while in

the Ouyang embedding it is unstable in that regime.

To see this compare the correction to the F-term potential for the Ouyang embedding,

(7.82), with the corresponding term for the Kuperstein embedding,

∆VF =
κ2

3U2

[
3

2
(W,ρz1W,z1 + c.c.) +

1

γ
k11̄W,z1W,z1

]
, (7.84)
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where

k11̄ = r
(

1− 1

2

|z1|2

r3

)
. (7.85)

This shows immediately that the Kuperstein embedding does not have a delta-flat

direction, since k11̄ cannot vanish for r > 0. This is to be viewed in contrast to the

Ouyang case for which (7.83) vanishes on w1 = 0.

Considering k11̄, k̂11̄
w for each case one may further show that the trajectories

2|z1|2 = r3 and |w1|2 = r3 lead to identical shapes for the single-field potential.

However, ‘off-shell’, i.e. away from the extremal path, k̂11̄
w for the Ouyang embedding

is of a different form from k11̄ for the Kuperstein embedding. It is for this reason that

the angular stability of the two scenarios is different (see Appendix G for details). In

particular, while for the Kuperstein embedding the trajectory is stable for the regime

of interest, for the Ouyang embedding it is unstable.

To discuss the issue of stability in simple terms, we consider θ1 = θ2 = θ and

ψ̃ ≡ ψ − φ1 − φ2, so that w1 = e
i
2
ψ̃r3/2 sin2(θ/2). Then, as shown in [45] for n = 1,

VF (θ) = V1 sin2(θ/2) + V2 sin4(θ/2) + const. , (7.86)

where

V1 =
κ2|A0|2e−2aσ

3U2

r

γµ2

(
2− aµγ

√
r cos

ψ̃

2

(
9 + 4aσ + 6W0

eaσ

|A0|

))
, (7.87)

V2 =
1

4

κ2|A0|2e−2aσ

3U2

r

γµ2

(
− 2 + aγr2(12 + 8aσ)

)
. (7.88)

We see that ∂VF
∂θ

vanishes for θ = 0 or π.

The θ = 0 trajectory is delta-flat [45]. For this trajectory, ∂2VF
∂θ2 = 1

2
V1 which

is clearly positive for small r and stays positive up to some critical radius rc. To

compute rc we evaluate V1 at σ = σ0 using

4aσ0 + 9− 6W0
eaσ0

|A0|
≈ 3− 4s . (7.89)
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We find

V1 ≈
κ2|A0|2e−2aσ0

3U2

r

γµ2

(
2 + aµγ(4s− 3)

√
r cos

ψ̃

2

)
. (7.90)

For s > 3/4 and for real positive µ, the potential is minimized at ψ̃ = 2π, where

V1 ≈
κ2|A0|2e−2aσ0

3U2

r

γµ2

(
2− aµγ(4s− 3)

√
r

)
, (7.91)

This is positive as long as r is less than rc, where

rc
rµ

=
1

(4s− 3)2

(
9

aσ0

)2 M4
pl

φ4
µ

. (7.92)

Applying the field range bound in the form
φ2
µ

M2
pl
< 4

N
one finds

rc
rµ

>
N2

42

1

(4s− 3)2

(
9

aσ0

)2

. (7.93)

For typical parameters we therefore conclude that rc ≥ rµ and the delta-flat direction

is hence stable from the tip to at least the location rµ of the D7-branes.

For the θ = π trajectory, ∂2VF
∂θ2 = −1

2
V1. This is negative for r < rc and the θ = π

trajectory is therefore unstable in this regime. This analysis was carried out for n = 1

but it illustrates the essential qualitative point (for a more general analysis with the

same conclusion, see Appendix C.2).

In Appendix G.4 we show that for all ACR embeddings there are alternative

trajectories with Φ 6= 0 that are not delta-flat. This is important because it implies

that, for a D3-brane moving along such a trajectory, η can be different from 2
3
.

We postpone a more general treatment of such trajectories for the future (but see

Appendix G.4 for some preliminary remarks).
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6. Discussion

In this section we will briefly take stock of our progress towards an explicit model of

D-brane inflation. For this purpose, it is useful to consider the more general problem

of deriving a low-energy Lagrangian from the data of a string compactification.

In principle, the data of a compactification – such as the background geometry,

brane positions, and fluxes – determine the low-energy effective Lagrangian in full.

In practice, one typically begins by deriving the leading-order effective Lagrangian,

which follows from dimensional reduction of the classical ten-dimensional supergravity

action, including the effect of fluxes but treating D-branes as probes. Then, one can

include corrections to this action, including such things as nonperturbative terms in

the superpotential, D-brane backreaction effects, string loop corrections to the Kähler

potential, and α′ corrections to the Kähler potential. Except in cases with extended

supersymmetry, it is typically impossible to obtain results beyond leading order in

either series of corrections to the Kähler potential.

For the present purpose, an instructive way to organize these corrections is ac-

cording to their effects on the slow-roll parameter η, as follows. The leading order

classical four-dimensional Lagrangian we denote L0. Correction terms are well-known

to give rise to inflaton masses of order H, and hence corrections of order unity to η.

When all such effects, from any source whatsoever, have been added to L0, we denote

this corrected Lagrangian L1. By definition, this is the Lagrangian whose inflaton

mass term is a good approximation to the ‘true’ mass term that would follow from

a dimensional reduction incorporating corrections of arbitrarily high degree. (Notice

that the leading-order classical Lagrangian L0 may itself contain large inflaton mass

terms.) Finally, if to L1 we add the leading terms that give corrections to η that

are parametrically small compared to unity, we call the resulting Lagrangian L2. In

sum, we propose to organize corrections to the Lagrangian according to the degree of
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their effects on η, even though such an organization does not correspond to a literal

expansion parameter such as the string coupling.

To determine whether a given model gives rise to prolonged slow-roll inflation, one

needs to know L1. However, it is rarely true that all the required results are available.

For example, in the warped brane inflation model of [95], the inflaton-dependence of

the threshold factor A(φ) of the nonperturbative superpotential was not known until

recently [18, 32]. Similarly, in Kähler moduli inflation [54], a particular term in the

Kähler potential that could give ∆η ∼ 1 has not yet been computed (though it has

been conjectured that this term might vanish.) Although such partial data is generally

insufficient to determine whether a model is successful, even this degree of detail is

relatively rare: a fair fraction of proposed models of string inflation include only the

L0 data, without any corrections at all.

In this chapter, we have made progress towards a full understanding of the La-

grangian L1 for the warped brane inflation models of [95]. However, as we will now

explain, further work is necessary.

First, let us briefly recall the best-understood correction terms. The D3-brane po-

tential receives contributions from the mixing between the volume and the D3-brane

position in the DeWolfe-Giddings Kähler potential (7.9). Moreover, the nonpertur-

bative superpotential receives the correction (7.15) sourced by the backreaction of

the D3-brane on the warp factor. Holomorphy of the gauge kinetic function ensures

that this correction, which corresponds to a one-loop threshold factor, is the only

perturbative correction to the superpotential. The only additional contributions to

the superpotential come from multi-instantons, which give a negligibly small effect.

The Kähler potential, however, is not protected by holomorphy, and in general

receives α′ and gs corrections. In the large-volume, weak-coupling limit, these cor-

rections are suppressed relative to the leading terms in the DeWolfe-Giddings Kähler

potential, and so generate mass terms that are generically smaller than H by powers
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of the inverse volume or powers of the string coupling. Hence, by our above defi-

nition, these corrections correspond to terms in L2. Although complete results for

these terms are not available for a general compactification, the work of Berg, Haack,

and Körs [33, 34] in the toroidal orientifold case gives substantial guidance. These

authors found that the leading D3-brane-dependent corrections to K are of two types,

one suppressed by an additional power of ρ compared to the DeWolfe-Giddings result,

and the other suppressed by one power of gs. For ρ� 1, gs � 1, these terms give a

parametrically small correction to the D3-brane potential, and so belong to what we

have called L2. Even better, in some cases [33] the expectations of naive dimensional

analysis are borne out, and the numerical prefactors of these higher-order terms are

moderately small.13

Corrections due to the fluxes are a further possibility. The best-understood α′

corrections arise from the term (α′)3R4 in ten dimensions, with R4 standing for an

appropriate contraction of four powers of the Riemann tensor. In the presence of

three-form flux G3, there are additional terms from (G3)2R3, and it is less clear how

these correct the Kähler potential [25]. However, it has been argued that at large

volume, hence low flux density, this effect is subleading [15].

Finally, and perhaps most importantly, perturbations of the background fields in

the throat, which can arise from sources in the bulk, can give substantial corrections

to the D3-brane potential.14 It was argued in [59] (see also [113]) that in special cases

these effects may be small compared to the forces from the D7-brane. However, lack-

ing a more complete understanding of these effects, we do not claim that the potential

we have presented is completely general. Instead, our construction is representative

of a particulay tractable class of situations in which the bulk effects are small.

13We thank M. Berg for helpful discussions of this point.
14We thank S. Kachru for explanations of this point.
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7. Conclusions

In this chapter we have systematically studied the potential for a D3-brane in

a warped throat containing holomorphically-embedded D7-branes. This system is a

promising candidate for an explicit model of inflation in string theory. However, the

warped brane inflation model of [95] is well-known to suffer from an inflaton mass

problem, in that corrections from moduli stabilization tend to curve the potential

and make slow-roll inflation impossible. The true severity of this problem – and,

correspondingly, the status of the model – have remained unclear, because the func-

tional form of one particular correction term, arising from a threshold correction to

the nonperturbative superpotential, was unavailable before the recent result of [18].

In this work, building on [18], we have studied the corrected potential in detail. This

equipped us to assess the true status of the warped brane inflation model [95] and to

ascertain whether prolonged slow-roll inflation is indeed possible.

Our method for analyzing the potential involved several nontrivial improvements

over existing approximations. First, we systematically identified stable minima in the

angular directions of the conifold, and showed how the radial potential depends on

the choice of angular minimum. Second, we showed that the common assumption

that the compactification volume remains stabilized at its minimum during inflation

is inadequate: the volume shrinks slightly as the D3-brane falls down the throat, and

this leads to non-negligible corrections to the effective D3-brane potential. We gave

an analytic expression for the volume as a function of the D3-brane position and

showed that this is an excellent approximation to the full result.

For a large class of embeddings of the wrapped branes, the ACR embeddings, we

showed that the radial potential for a D3-brane at a particular angular extremum is

necessarily too steep to support inflation, because the contributions computed in [18]

vanish along the trajectory, and so the no-go result of [95] applies. This was first

explained in [45] for a special ACR embedding, the Ouyang embedding [133]. Our
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results here generalize this to the full ACR class. It follows that these trajectories

in throats containing wrapped branes with ACR embeddings do not permit slow roll

D-brane inflation, even if one allows an arbitrary degree of fine-tuning: there is simply

no parameter that can be varied to flatten the potential in such a case. However, we

also showed that all ACR embeddings have alternative trajectories, corresponding to

other choices of the angular extremum, for which this no-go result does not apply.

Our main result was an analysis of a very simple and symmetric embedding,

the Kuperstein embedding, that does allow a flat D3-brane potential. We found

that for certain fine-tuned ranges of the compactification parameters, the potential

is flat enough to allow prolonged inflation. However, the resulting potential is not as

simple as that conjectured in [95] and further elaborated in [68]: moduli stabilization

gives rise to a potential that is much more complicated than a mass term for radial

motion. Furthermore, adjusting the potential by varying microscopic parameters

changes features in the potential instead of just rescaling the mass term. In particular,

one can fine-tune to arrange for a flat region suitable for inflation, but we found

that this will occur around an inflection point away from the origin. Hence, when

inflation occurs, it does so near an approximate inflection point, rather than in a

shallow quadratic potential centered on the origin. In short, we found that a low-

order Taylor expansion of the potential around the minimum at the tip of the throat

does not properly describe those regions of the potential where inflation is possible.

Instead, one is obliged to use the complete potential presented here. Our result

implies that the phenomenology of some classes of warped D-brane inflation models

is well-described by an effective single-field potential with a constant and cubic term.

As we explained, models of this sort (see [5] for an analogous example in the MSSM)

are particularly sensitive to the initial conditions. Moreover, the tilt of the scalar

spectrum is exquisitely sensitive to the slope of the potential near the approximate

inflection point.
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One important, general lesson of our work is that there is considerably less freedom

to adjust the parameters of this system than one might expect from the low-energy

effective action. First, the functional form of A(φ) derived in [18] is rather special:

most importantly, A(φ) contains no quadratic term, and does not lead to any new

quadratic terms in the inflaton potential. This implies that the potential cannot be

flattened uniformly, and η can only be small in a limited region. Second, the range

of φ is limited by the microscopic constraint of [21]. Finally, the field range is linked

to the scale of inflation, because of a new geometric constraint linking the size of the

wrapped four-cycle and the length of the throat. Using these results, we found that

although this system depends on many microscopic parameters, in many cases it is

nevertheless impossible to choose these parameters in such a way that the slow-roll

parameter η is fine-tuned to vanish. This occurs because constraints originating in

the geometry of the compactification correlate the microscopic quantities, so that the

true number of adjustable parameters is much smaller than a naive estimate would

suggest.

An important direction for future work is a more comprehensive understanding

of any additional corrections to the potential, such as α′ corrections, string loop

corrections, and perturbations of the throat metric due to bulk sources. We have

argued that in some cases the presence of such effects is not fatal for inflation, but

precise observational predictions will certainly depend on these effects.
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Symbols used in this Chapter

Table 1. Definitions of symbols and notation used in this chapter and
in Appendices E, F, G, and H.

Variable Description Definition

zi complex conifold coordinates
∑

i z
2
i = 0, (E.4)–(E.7)

wi complex conifold coordinates w1w2 − w3w4 = 0, (E.8)–(E.11)
ε conifold deformation parameter

∑
i z

2
i = ε, equation (7.1)

r radial coordinate on the conifold r3 =
∑

i |zi|2
r̂ radial coordinate on the conifold r̂2 = 3

2
r2, ds2 = dr̂2 + . . .

r̃ radial coordinate on the conifold r̃ = eur̂
eu breathing mode equation (F.1)
gαβ̄ fiducial metric
g̃αβ̄ physical metric g̃αβ̄ = e2ugαβ̄
k Kähler potential gαβ̄ = k,αβ̄, k = 3

2
(
∑

i z
2
i )

2/3

φi, θi, ψ angular coordinates on T 1,1 equations (E.4)–(E.7)
h(r) warp factor equation (7.4)
rUV radius at the UV end ln rUV/ε

2/3 = 2πK/(3gsM)
φ inflaton field φ2 = T3r̂

2

ϕ canonical inflaton field Appendix F, ϕ2 ≈ σ
(0)
c

σ(φ)
φ2

K Kähler potential κ2K = −3 lnU
W superpotential
U argument of Kähler potential [58] U = ρ+ ρ̄− γk
ρ complex Kähler modulus
σ real part of ρ 2σ = ρ+ ρ̄
τ imaginary part of ρ 2i τ = ρ− ρ̄
σ? stabilized volume modulus ∂σV |σ? = 0
ω? rescaled volume modulus ω? ≡ aσ?
W0 GVW-flux superpotential W0 =

∫
G ∧ Ω

Wnp non-perturbative superpotential Wnp = A(zi)e
−aρ

f(zi) embedding equation A(zi) ∝ (f(zi))
1/n

g(zi) embedding equation g(zi) = f(zi)/f(0)
A0 prefactor of Wnp A0 = A(zi = 0)
VF F-term potential equation (7.8)
VD D-term potential VD = DU−2; equation (7.20)
D scale of D-term energy D ≡ 2h−1

0 T3

ε, η slow-roll parameters ε = 1
2
(V ′/V )2, η = V ′′/V

gs string coupling
T3 D3-brane tension T−1

3 = (2π)3gs(α
′)2
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Variable Description Definition

µ embedding parameter z1 = µ
n # of embedded D7’s
a parameter in Wnp a = 2π/n
rµ minimal radius of D7 r3

µ = 2µ2

φµ rescaled rµ φ2
µ = 3

2
T3r

2
µ

M , K flux on the A and B cycle
N five-form flux N ≡MK
L AdS radius equation (F.21)
Mpl 4d Planck mass M2

pl = 1
π
(T3)2V w

6

V w
6 warped 6-volume
V w

Σ4
warped 4-cycle volume Appendix F

s ratio of D- and F-term
x ratio of r and rµ x = r/rµ
x0 location of η = 0
Qµ ratio of rUV and rµ Qµ = rUV/rµ > 1
B6 bulk contribution to V w

6 (V w
6 )bulk = B6(V w

6 )throat

B4 bulk contribution to V w
Σ4

(V w
Σ4

)bulk = B4(V w
Σ4

)throat

ωF Kähler modulus before uplifting equation (H.2)
ω0 Kähler modulus after uplifting ω0 ≈ ωF + s/ωF
Γ factor in K Γ = 2σ0

Γ̃ factor in K Γ̃ ≡ Γe4u = U
γ prefactor in the Kähler potential γ = Γ

6
T3

M2
pl

= σ0

3
T3

M2
pl

c factor in VF c−1 = 4πγr2
µ

c3/2 factor in volume shift equation (7.45)
X, X + Y eigenvalues of Hessian Appendix G

P degree of ACR embeddings
∏

iw
pi
i = µP

pi embedding parameter pi ∈ Z
Φ collective coordinate for ACR ΦP ≡

∏
iw

pi
i
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String Theory and Gravitational Waves



“I never thought that anybody would ever actually measure these things.

I thought we were just calculating for the fun of it.”

Alan Guth
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CHAPTER 8

A Microscopic Limit on Gravitational Waves

We conclude our analysis of D-brane inflation by exposing a geometric limit on

the maximal amplitude of gravitational waves attainable in these models.1

1. Introduction

In the foreseeable future it may be possible to detect primordial gravitational

waves [37] produced during inflation [3, 83, 120]. This would be a spectacular oppor-

tunity to reveal physics at energy scales that are unattainable in terrestrial experi-

ments. In light of this possibility, it is essential to understand the predictions made

by various inflationary models for gravitational wave production. As we shall review,

a result of Lyth [122] connects detectably large gravitational wave signals to motion

of the inflaton over Planckian distances in field space. It is interesting to know when

suitably flat potentials over such large distances are attainable in string compactifica-

tions, allowing a potentially observable tensor signal in the associated string inflation

models. In this chapter we analyze this issue for the case of warped D-brane inflation

models [64, 95], and use compactification constraints to derive a firm upper bound

on the inflaton field range in Planck units.

1This chapter is based on Daniel Baumann and Liam McAllister, “A Microscopic Limit
on Gravitational Waves from D-brane Inflation,” Phys. Rev. D 75, 123508 (2007). The
computation was originally suggested to us by Juan Maldacena and we received important
initial input from Igor Klebanov.
The numerical estimates of Ref. [21] have been updated to the WMAP 5-year data [111]. The
sign of fNL for DBI inflation has been corrected. These changes strengthen the conclusions
of Ref. [21].
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For slow-roll warped brane inflation, our result implies that the gravitational wave

signal is undetectably small. This constraint is model-independent and holds for any

slow-roll potential. For DBI inflation [4, 147], the limit on the field range forces the

tensor signal to be much smaller than the current observational bound. Detection

in a future experiment may be possible only if r decreases rapidly soon after scales

observable in the cosmic microwave background exit the horizon. This does occur in

some models, but it has a striking correlate: the scalar spectrum will typically have

a strong blue tilt and/or be highly non-Gaussian during the same epoch.

We also consider compactification constraints on the special case of DBI inflation

with a quadratic potential. We find that observational constraints, together with our

bound on the field range, exclude scenarios with a large amount of five-form flux. For

a DBI model realized in a warped cone over an Einstein manifold X5, this translates

into a very strong requirement on the volume of X5 at unit radius. However, we

show that manifolds obeying this constraint do exist, at least in noncompact models.

This translates the usual problem of accommodating a large flux into the problem of

arranging that X5 has small volume.

2. The Lyth Bound

In slow-roll inflation2 the tensor fluctuation two-point function is3

Pt =
2

π2

(
H

Mpl

)2

, (8.1)

where H is the Hubble expansion rate. The scalar fluctuation two-point function is

Ps =

(
H

2π

)2(
H

ϕ̇

)2

. (8.2)

The first factor in (8.2) represents the two-point function of the scalar field, while

the second factor comes from the conversion of fluctuations of the scalar field into

2By slow-roll inflation we mean standard single-field inflation with canonical kinetic term.
3See Chapter 2 and Appendix A for details of the results cited in this section.



8. a microscopic limit on gravitational waves 158

fluctuations of the scale factor in the metric (or scalar curvature fluctuations). The

ratio between the tensor and scalar two-point functions is

r ≡ Pt
Ps

= 8
( ϕ̇

HMpl

)2

= 8
( dϕ
dN

1

Mpl

)2

, (8.3)

where dN = Hdt represents the differential of the number of e-folds. This implies

that the total field variation during inflation is

∆ϕ

Mpl

=
1

81/2

∫ Nend

0

dN r1/2 , (8.4)

where Nend ∼ 60 is the total number of e-folds from the time the CMB quadrupole

(N ≡ 0) exits the horizon to the end of inflation.

In any given model of inflation, r is determined as a function of N . As a measure

of the evolution of r we define the following quantity

Neff ≡
∫ Nend

0

dN
( r

rCMB

)1/2

, (8.5)

so that

∆ϕ

Mpl

=
(rCMB

8

)1/2

Neff . (8.6)

Here rCMB denotes the tensor-to-scalar ratio r evaluated on CMB scales, 0 < N <

NCMB ≈ 4. We use Neff to parameterize how far beyond NCMB the support of

the integral in (8.4) extends. If r is precisely constant then Neff = Nend, if r is

monotonically increasing then Neff > Nend, and if r decreases then Neff < Nend. For

a detailed discussion of related issues, see [66].

Equation (8.6) relates the amount of gravitational waves observable in CMB po-

larization experiments to the field variation ∆ϕ during inflation

rCMB =
8

(Neff)2

(∆ϕ

Mpl

)2

. (8.7)
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To make use of the relation (8.7), we need to estimate Neff , which amounts to deter-

mining r(N ). In slow-roll inflation r is proportional to the slow-roll parameter

ε ≡ −d lnH

dN
. (8.8)

We can define a second slow roll parameter η̃ as the fractional variation of ε during

one e-fold. Then we have

d ln r

dN
=
d ln ε

dN
= η̃ . (8.9)

Equivalently, we can write (8.9) in terms of the spectral indices of the scalar and

tensor power spectra

d ln r

dN
= nt − (ns − 1)

= −
[
(ns − 1) +

r

8

]
, (8.10)

where we have used the usual single-field consistency condition, nt = −r/8. Hence,

observational constraints on ns and r give limits on the evolution of r to first order

in slow-roll.

We notice that Neff < Nend only if η̃ is negative. Present observations [151, 156]

indicate that |η̃CMB| is very small on scales probed by CMB (N . 4) and large-scale

structure observations (N . 10). In particular, η̃CMB & −0.03. Since the variation

of η̃ is second order in slow-roll we may assume that η̃ remains small throughout

inflation. Integrating (8.9), we find a range Neff ∼ 30 − 60 in (8.7). Nearly all of

the range for η̃CMB allowed by WMAP3+SDSS [151, 156] actually corresponds to

Neff & 50. To get a conservative bound, we have considered the most negative values

of η̃CMB allowed at the 2σ-level, corresponding to the largest allowed values of ns− 1

and r. This gives Neff ∼ 30. Direct observation of gravitational waves by some

futuristic gravitational wave detector such as the Big Bang Observer (BBO) would

put a similar lower bound on Neff (see e.g. [40]).
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With this input, the Lyth bound [122] for slow-roll inflation becomes

rCMB .
8

302

(∆ϕ

Mpl

)2

. (8.11)

This bound implies that a model producing a detectably large quantity of gravita-

tional waves necessarily involves field variations of order the Planck mass. We will

now determine whether such large field variations are possible in a class of string

inflation models.

3. Constraint on Field Variation in Compact Spaces

In this section we determine the maximum field range of the inflaton in warped

D-brane inflation. By (8.7) or (8.11), this will imply an upper limit on gravitational

wave production in this scenario. As we will show, this geometrical restriction leads

to a strong, model-independent constraint.

3.1. Warped Throat Compactifications. Consider a warped flux compacti-

fication of type IIB string theory to four dimensions [63], with the line element

ds2 = h−1/2(y)gµνdx
µdxν + h1/2(y)gijdy

idyj , (8.12)

where µ, ν ∈ 0 . . . 3 are spacetime indices and i, j ∈ 4 . . . 9 are internal space indices.

We will be interested in the case that the internal space has a conical throat, i.e.

a region in which the metric is locally of the form4

gijdy
idyj = dρ2 + ρ2ds2

X5
, (8.13)

for some five-manifold X5. The metric on this cone is Calabi-Yau provided that X5

is a Sasaki-Einstein space. If the background contains suitable fluxes, the metric in

the throat region can be highly warped.

4We use ρ to denote the radial direction, because the conventional symbol r is already in
use.
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Many such warped throats can be approximated locally, i.e. for a small range of

ρ, by the geometry AdS5 ×X5, with the warp factor

h(ρ) =
(R
ρ

)4

, (8.14)

where R is the radius of curvature of the AdS space. In the case that the background

flux is generated entirely by N dissolved D3-branes placed at the tip of the cone, we

have the relation [81]

R4

(α′)2
= 4πgsN

π3

Vol(X5)
. (8.15)

Here Vol(X5) denotes the dimensionless volume of the space X5 with unit radius.5

Generically, we expect this volume to obey Vol(X5) = O(π3), e.g. Vol(S5) = π3,

Vol(T 1,1) = 16
27
π3. However, very small volumes are possible, for example by perform-

ing orbifolds.

Warped throats have complicated behavior both in the infrared and the ultravio-

let. For almost all X5, no smooth tip geometry, analogous to that of the Klebanov-

Strassler throat [105], is known. Furthermore, the ultraviolet end of the throat, where

the conical metric is supposed to be glued into a compact bulk, is poorly understood.

These regions are geometric realizations of what are called the ‘IR brane’ and ‘Planck

brane’ in Randall-Sundrum models. In this note we study constraints that are largely

independent of the properties of these boundaries. We take the throat to extend from

the tip at ρ = 0 up to a radial coordinate ρUV, where the ultraviolet end of the throat

is glued into the bulk of the compactification. Background data, in particular three-

form fluxes, determine ρUV, but we will find that ρUV cancels from the quantities of

interest.

To summarize our assumptions: we consider a throat that is a warped cone over

some Einstein space X5, but may have complicated modifications in the infrared and

5An equivalent definition of Vol(X5), which may be more clear when it is difficult to define
a radius, is as the angular factor in the integral defining the volume of a cone over X5.
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ultraviolet. This very large class of geometries includes the backgrounds most often

studied for warped brane inflation, but it would be interesting to understand even

more general warped throats.

conifold

0 IR UV

bulk

ρ
ρ ρ

Figure 1. Conifold geometry. The throat volume (bounded by ρIR and
ρUV) gives a lower limit on the total compactification volume. This provides
a lower limit on the four-dimensional Planck mass.

3.2. A Lower Bound on the Compactification Volume. Standard dimen-

sional reduction gives the following relation between the four-dimensional Planck mass

Mpl, the warped volume of the compact space V w
6 , the inverse string tension α′, and

the string coupling gs:

M2
pl ≡

V w
6

κ2
10

, (8.16)

where κ2
10 ≡ 1

2
(2π)7g2

s(α
′)4. The warped volume of the internal space is

V w
6 =

∫
d6y
√
g h . (8.17)

Formally this may be split into separate contributions from the bulk and the throat

region

V w
6 ≡ (V w

6 )bulk + (V w
6 )throat . (8.18)

The throat contribution is

(V w
6 )throat ≡ Vol(X5)

∫ ρUV

0

dρ ρ5h(ρ)

=
1

2
Vol(X5)R4ρ2

UV

= 2π4gsN(α′)2 ρ2
UV . (8.19)
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A key point is that the warped throat volume is independent of Vol(X5).

The result (8.19) is rather robust. To confirm that (8.14) is a suitable approxi-

mation for the warp factor, we note that in the Klebanov-Tseytlin regime [106] of a

Klebanov-Strassler throat, the warp factor may be written as

h(ρ) =
(L
ρ

)4

ln
ρ

ρs
, (8.20)

where L4 ≡ 3
2π

gsM2

N
R4, ln ρUV

ρs
≈ 2π

3
K
gsM

and N ≡MK. Integrating (8.20) one finds

(V w
6 )throat =

1

2
Vol(T 1,1)R4ρ2

UV , (8.21)

in agreement with equation (8.19).

The bulk volume is model-dependent, but we can impose a very conservative lower

bound on the total warped volume by omitting the bulk volume,

V w
6 > (V w

6 )throat . (8.22)

This implies a lower limit on the four-dimensional Planck mass in string units

M2
pl >

(V w
6 )throat

κ2
10

. (8.23)

3.3. An Upper Bound on the Field Range. Let us now consider inflation

driven by the motion of a D3-brane in the background (8.12). The canonically-

normalized inflaton field is

ϕ2 = T3ρ
2 , T3 ≡

1

(2π)3

1

gs(α′)2
. (8.24)

The maximal radial displacement of the brane in the throat is the length of the

throat, from the tip ρIR ≈ 0 to the ultraviolet end, ρUV, so that ∆ρ . ρUV. Naively

one could think that the range of the inflaton could be made arbitrarily large by

increasing the length of the throat. However, what is relevant is the field range in



8. a microscopic limit on gravitational waves 164

four-dimensional Planck units, which is

(∆ϕ

Mpl

)2

<
T3ρ

2
UV

M2
pl

<
T3κ

2
10ρ

2
UV

(V w
6 )throat

. (8.25)

Substituting equation (8.19) gives the following important constraint on the maximal

field variation in four-dimensional Planck units:

(∆ϕ

Mpl

)2

<
4

N
. (8.26)

Two comments on this result are in order. First, the field range in Planck units

only depends on the background charge N and is manifestly independent of the choice

of X5, so our result is the same for any throat that is a warped cone over some X5.

Second, the size of the throat, and hence the validity of a supergravity description

of the throat, increases with N . In the same limit, the field range in Planck units

decreases, because the large throat volume causes the four-dimensional Planck mass

to be large in string units. Because N = 0 corresponds to an unwarped throat, we

require at the very least N ≥ 1; in practice, N � 1 is required for a controllable

supergravity description.

The bound (8.26) is extremely conservative, because we have neglected the bulk

volume, which in many cases will actually be larger than the throat volume. Mod-

ifications of the geometry at the tip of the throat, where ρ � R, provide negligible

additional field range. One might also try to evade this bound by considering a stack

of n D3-branes moving down the throat, which increases the effective tension. How-

ever, the backreaction from such a stack is important unless n� N , so this will not

produce a bound weaker than (8.26) with N = 1.

4. Implications for Slow-Roll Brane Inflation

Via the Lyth relation (8.7), the bound (8.26) translates into a microscopic con-

straint on the maximal amount of gravitational waves produced during warped brane
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inflation

rCMB

0.009
≤ 1

N

( 60

Neff

)2

. (8.27)

As explained in §2, for slow-roll inflation, recent observations [151, 156] imply

30 . Neff . Nend ≈ 60 . (8.28)

Let us stress that the lower part of this range is occupied only by models with a large,

positive scalar running or a blue scalar spectrum and a large tensor fraction.

This implies

rCMB

0.009
.

4

N
. (8.29)

Near-future CMB polarization experiments [37] will probe6 rCMB & O(10−2). Detec-

tion of gravitational waves in such an experiment would therefore imply that N < 4.

This implies that the space is effectively unwarped, and that the supergravity descrip-

tion is uncontrolled. We therefore find that warped D-brane inflation can be falsifed

by a detection of gravitational waves at the level rCMB & 0.01.

One might have anticipated this result on the grounds that D-brane inflation mod-

els are usually considered to be of the ‘small-field’ type, and are typically thought

to predict an unobservably small tensor fraction. Let us stress, however, that ex-

tracting precise predictions from D-brane inflation scenarios is rather involved, and

requires careful consideration, and fine-tuning, of the potential introduced by moduli

stabilization [18]. It is quite unlikely that the fully corrected potential will enjoy the

same exceptional flatness as the uncorrected potential given in [95] (see Chapter 7).

As moduli stabilization effects increase ε, they increase r, and a priori this may be

expected to lead to observable gravitational waves. Indeed, it has been argued in the

context of more general single-field inflation that minimally tuned models correlate

with maximal gravitational wave signals [41]. Nevertheless, our result implies that

6The ultimate detection limit is probably around r ∼ 10−3 − 10−4. Measuring even lower r
is prohibited by the expected magnitude of polarized dust foregrounds and by the lensing
conversion of primordial E-modes to B-modes [150].
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even the maximal signal in warped D-brane inflation is undetectably small. We have

thus excluded the possibility of detectable tensors on purely kinematic grounds, i.e.

by using only the size of the field space.

5. Implications for DBI Inflation

A very interesting alternative to standard slow-roll inflation arises when nontrivial

kinetic terms drive inflationary expansion [12]. The DBI model [4, 147] is a string

theory realization of this possibility in which a D3-brane moves rapidly in a warped

background of the form (8.12). The resulting Dirac-Born-Infeld action is [147]

LDBI = −f−1(ϕ)
√

1− 2f(ϕ)X + f−1(ϕ)− V (ϕ) , (8.30)

where X ≡ −1
2
gµν∂µϕ∂νϕ, f−1(ϕ) ≡ T3h

−1(ϕ) is the rescaled warp factor, and ϕ2 ≡

T3ρ
2. As was true in our earlier discussion, the warp factor is determined by solving

the supergravity equations of motion in a given background. The potential for the

brane motion, V (ϕ), arises from more subtle interactions of the D3-brane with the

rest of the compactification [18]. For the present discussion we will treat V (ϕ) as

a phenomenological potential, but ultimately it should of course be derived from an

explicit string theory compactification [18].

We will now combine the Lyth bound with our field range bound (8.26) to con-

strain the tensor signal in DBI inflation.7

5.1. A Generalized Lyth Bound. We will first present the Lyth bound in a

theory with a general kinetic term, then specialize to the DBI case. Consider the

action [72]

S =
1

2

∫
d4x
√
−g
[
M2

plR+ 2P (X,ϕ)
]
, (8.31)

7Further constraints on the reletivistic limit of brane inflation was obtained in interesting
follow-up work by Lidsey and Huston [116]. We summarize their results in §7.
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where P (X,ϕ) is a general function of the inflaton ϕ and of X. For slow-roll inflation

with canonical kinetic term,

P (X,ϕ) ≡ X − V (ϕ) . (8.32)

while DBI inflation may be parameterized by

P (X,ϕ) ≡ −f−1(ϕ)
√

1− 2f(ϕ)X + f−1(ϕ)− V (ϕ) . (8.33)

From (8.31) we find the energy density in the field to be ρ = 2XP,X − P . We also

define the speed of sound as

c2
s ≡

dP

dρ
=
P,X
ρ,X

=
P,X

P,X + 2XP,XX
. (8.34)

One can define slow-variation parameters in analogy with the standard slow-roll pa-

rameters

ε ≡ − Ḣ

H2
=

XP,X
M2

PH
2
, η̃ ≡ ε̇

εH
, s ≡ ċs

csH
. (8.35)

To first order in these parameters the basic cosmological observables are [72]

Ps =
1

8π2M2
pl

H2

csε
, (8.36)

Pt =
2

π2

H2

M2
pl

, (8.37)

ns − 1 = −2ε− η̃ − s , (8.38)

nt = −2ε . (8.39)

The tensor-to-scalar ratio in these generalized inflation models is

r = 16 csε . (8.40)
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This nontrivial dependence on the speed of sound implies a modified consistency

relation

r = −8 csnt . (8.41)

As discussed recently by Lidsey and Seery [117], equation (8.41) provides an inter-

esting possibility for testing DBI inflation (see also [149]). The standard slow-roll

predictions are recovered in the limit cs = 1.

Restricting to the homogeneous mode ϕ(t) we find from (8.35) that

dϕ

Mpl

=

√
2ε

P,X
dN (8.42)

and hence

∆ϕ

Mpl

=

∫ Nend

0

√
r

8

1

csP,X
dN . (8.43)

Notice the nontrivial generalization of the slow-roll result (8.4) through the factor

csP,X . For DBI inflation (8.33) this factor happens to be

csP,X = 1 , (8.44)

where

c2
s = 1− 2f(ϕ)X ≡ 1

γ2(ϕ)
, (8.45)

so that the Lyth bound remains the same as for slow-roll inflation.8

The variation of r during inflation follows from (8.40)

d ln r

dN
=
d ln ε

dN
+
d ln cs
dN

= η̃ + s . (8.46)

While the observed near scale-invariance of the density perturbations restricts the

magnitude of s = d ln cs/dN in the range 0 ≤ N . 10, outside that window s can

in principle become large and negative. By (8.46) this would source a rapid decrease

in r. Note, however, that the results given in this section are first order in s and

8This result has been obtained independently by S. Kachru and by H. Tye.
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receive important corrections when s is large. Furthermore, omission of terms in the

DBI action involving two or more derivatives of ϕ may not be consistent when s is

sufficiently large.

Constraints on the evolution of r may also be understood by rewriting equation

(8.46) as

d ln r

dN
= nt − (ns − 1) = −

[
(ns − 1) +

r

8cs

]
. (8.47)

This implies that r can decrease significantly only if the scalar spectrum becomes

very blue (ns − 1 > 0) and/or the speed of sound becomes very small, so that r/cs

is large. During the time when observable scales exit the horizon this possibility is

significantly constrained, but outside that window r may decrease rapidly in some

models.

5.2. Constraints on Tensors. Just as in slow-roll inflation we can write

rCMB

0.009
≤ 1

N

( 60

Neff

)2

. (8.48)

However, in DBI inflation we have to allow for the possibility that a nontrivial evo-

lution of the speed of sound allows Neff to be considerably smaller than Nend, which

weakens the Lyth bound. The precise value of Neff will be highly model-dependent.

In light of the constraint (8.48), constructing a successful DBI model with de-

tectable tensors is highly nontrivial. First of all, such a model must produce a spec-

trum of scalar perturbations consistent with observations, i.e. with the appropriate

amplitude and with a suitably small level of non-Gaussianity. Then, the model should

include each of the following additional elements related to the large tensor signal:

(1) A consistent compactification in which

(V w
6 )bulk � (V w

6 )throat , (8.49)
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so that the inequality in (8.26) may be nearly saturated.

(2) A small five-form flux N , together with a demonstration that the super-

gravity corrections and brane backreaction are under control in this difficult

limit.

(3) A decrease in r that is rapid enough to ensure that Neff � 30. In this situ-

ation the slow-variation parameters η̃, s cannot both be small, substantially

complicating the analysis.

It would be extremely interesting to find a system that satisfies all these con-

straints, especially because this would be a rare example of a complete string inflation

model with detectable tensors.9

5.3. Constraints on Quadratic DBI Inflation. In this section we illustrate

our considerations for one important class of DBI models,10 those with a quadratic

potential, i.e. we consider an action of the form (8.30), with

V (ϕ) =
1

2
m2ϕ2 . (8.50)

Such a potential might be generated by moduli-stabilization effects, which often drive

D3-branes toward the tip of the throat. This particular example is a ‘large-field’

model, and so it should come as no surprise that it is strongly constrained by our

upper limit (8.26) on the field range. At sufficiently late times, the Hubble parameter

is [147]

H(ϕ) = c ϕ , (8.51)

9We should mention one promising string inflation scenario, N-flation [61, 67], that does
predict observable tensors. It would be very interesting to understand whether this model
can indeed be realized in a string compactification [80].
10We consider the so-called ‘UV model’, i.e. with a D3-brane moving toward the tip of the
throat; cf. [51] for an interesting alternative.
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for some constant c. Using this in (8.35), one finds

ε γ(ϕ) = 2M2
pl

(Hϕ

H

)2

= 2

(
Mpl

ϕ

)2

. (8.52)

This relates the DBI Lorentz factor γ to the slow-roll parameter ε < 1 and to the

inflaton field value.

Microscopic Constraint from Limits on Non-Gaussianity. Observational tests of

the non-Gaussianity of the primordial density perturbations are most sensitive to the

three-point function of the comoving curvature perturbations. It is usually assumed

that the three-point function has a form that would follow from the field redefinition

ζ = ζL +
3

5
fNLζ

2
L , (8.53)

where ζL is Gaussian. The scalar parameter fNL quantifies the amount of non-

Gaussianity. It is a function of three momenta which form a triangle in Fourier

space. Here we cite results for the limit of an equilateral triangle. Slow-roll models

predict |fNL| � 1 [125], which is far below the detection limit of present and future

observations. For generalized inflation models represented by the action (8.31) one

finds [52]

fNL = − 35

108

( 1

c2
s

− 1
)

+
5

81

( 1

c2
s

− 1− 2Λ
)
, (8.54)

where

Λ ≡
X2P,XX + 2

3
X3P,XXX

XP,X + 2X2P,XX
. (8.55)

For the case of DBI inflation (8.30), the second term in (8.54) is identically zero

[52], so that the prediction for the level of non-Gaussianity (8.54) is11

fNL = − 35

108

( 1

c2
s

− 1
)
≈ − 35

108
γ2 , (8.56)

11Notice that this result is generic to DBI inflation and is independent of the choice of the
potential and the warp factor. This is in contrast to other observables like ns, Ps, etc.
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where the second relation holds when cs � 1. This result leads to an upper bound

on γ from the observed limit on the non-Gaussianity of the primordial perturbations.

The recent analysis of the WMAP 5-year data [111] gives −151 < fNL < 253 (95%

confidence level), which implies

γ . 22 . (8.57)

Using the expressions (8.40) and (8.52), we have

N < 4
(Mpl

ϕ

)2

=
rγ2

8
=

27

70
r|fNL| . (8.58)

Combining the observational bound on gravitational waves [111], r < 0.2, with the

bound on non-Gaussianity, we find

N . 12 . (8.59)

Quadratic DBI inflation with a larger amount of five-form flux is hence excluded by

current observations. The Planck satellite may be sensitive enough to give the limits

|fNL| < 50 and r < 0.05. Non-observation at these levels would give the bound N < 1,

excluding quadratic DBI inflation.

Microscopic Constraint from the Amplitude of Primordial Perturbations. We can

derive an additional constraint on this scenario by requiring the proper normalization

of the scalar perturbation spectrum. Using the result (8.36) [72] for the scalar spec-

trum, along with the relation c−1
s = γ(ϕ) =

√
1 + 4M4

plf(ϕ)(Hϕ)2 for DBI inflation,

we find [4, 147]

Ps =
16

π2

γ2(γ2 − 1)

(rγ2)2

1

M4
plf

. (8.60)

For the AdS5 warp factor (8.14)

M4
plf(ϕ) = λ

(Mpl

ϕ

)4

= λ
(rγ2

32

)2

, (8.61)
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where

λ ≡ T3R
4 =

π

2

N

Vol(X5)
, (8.62)

we find

Ps =
(32

π

)3

× γ2(γ2 − 1)

(rγ2)4

Vol(X5)

N
. (8.63)

In the relativistic limit we have γ2(γ2 − 1) ∼ γ4 = 9f 2
NL and (8.63) becomes

Ps =
( 32

3π

)3 3

r4f 2
NL

Vol(X5)

N
& 3.2

Vol(X5)

N
, (8.64)

where the last relation comes from the current observational bounds on r and fNL on

CMB scales. COBE or WMAP give the normalization Ps ≈ 2.4 × 10−9, so that we

arrive at the condition

N & 109 Vol(X5) . (8.65)

The requirements (8.59) and (8.65) are clearly inconsistent for the generic case,

Vol(X5) ∼ O(π3). We conclude that quadratic DBI inflation in warped throats12

cannot simultaneously satisfy the observational constraints on the amplitude and

Gaussianity of the primordial perturbations unless Vol(X5) . 10−8. In particular,

this excludes realization of this scenario in a cut-off AdS model or in a Klebanov-

Strassler [105] throat. Cones with very small values of Vol(X5) can be constructed by

taking orbifolds or considering Y p,q spaces in the limit that q is fixed and p→∞ [73].

However, it seems rather unlikely that one could embed these spaces into a string

compactification.

6. Conclusions

We have established a firm upper bound on the canonical field range in Planck

units for a D3-brane in a warped throat. This range can never be large, and can be

of order one only in the limit of an unwarped throat attached to a bulk of negligible

12Throats that are not cones over Einstein manifolds could evade this constraint, and may
be a more natural setting for realizing the DBI mechanism. We thank E. Silverstein for
explaining this to us.
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volume. Combined with the Lyth relationship [122] between the variation of the infla-

ton field during inflation and the gravitational wave signal, this implies a constraint

on the tensor fraction in warped D-brane inflation. The tensor signal is undetectably

small in slow-roll warped D-brane inflation, regardless of the form of the potential.

In DBI inflation, detectable tensors may be possible only in a poorly-controlled limit

of small warping, moderately low velocity, rapidly-changing speed of sound, and sub-

stantial backreaction. In this case, the scalar spectrum will typically have a strong

blue tilt and/or become highly non-Gaussian shortly after observable scales exit the

horizon.

We have also presented stronger constraints for the case of DBI inflation with a

quadratic potential, finding that combined observational constraints on tensors and

non-Gaussianity imply an upper bound N . 12 on the amount of five-form flux. Near-

future improvements in the experimental limits could imply N < 1 and thus exclude

the model. For models realized in a warped cone over a five-manifold X5, current

limits imply that the dimensionless volume of X5, at unit radius, is smaller than

10−8. Manifolds of this sort do exist; extremely high-rank orbifolds and cones over

special Y p,q manifolds are examples, but it is not clear that these can be embedded

in a string compactification.

Although our result resonates with some well-known effective field theory ob-

jections (see e.g. [123]) to controllably flat inflaton potentials involving large field

ranges, we stress that our analysis was entirely explicit and did not rely on notions

of naturalness or of fine-tuning.

Our microscopic limit on the evolution of the inflaton implies that a detection of

primordial gravitational waves would rule out most models of warped D-brane infla-

tion, and place severe pressure on the remainder. We expect that compactification

constraints on canonical field ranges imply similar bounds in many other string in-

flation models [54]. In this sense, current models of string inflation do not readily
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provide detectable gravitational waves. However, this is not yet by any means a

firm prediction of string theory, and it is more important than ever to search for a

compelling model of large-field string inflation that overcomes this obstacle. Given

the apparent difficulty of achieving super-Planckian field variations with controllably

flat potentials for scalar fields in string theory, a detection of primordial gravitational

waves would provide a powerful selection principle for string inflation models and give

significant clues about the fundamental physics underlying inflation.
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7. Epilogue

Our result for the maximal field range in brane inflation models [21] has inspired

interesting subsequent work e.g. [28, 90, 97, 109, 112, 116, 136, 148]. In this section

we briefly describe some of these recent developments.

7.1. Bound in the Relativistic DBI Limit. Lidsey and Huston [116] derived

an interesting generalization of our field range bound [21] that is useful in the rel-

ativistic DBI limit (|fNL| � 1). First, one notes that for an arbitrary warp factor

h(ϕ) = T3f(ϕ) the geometric bound on the field range may be written as follows(
∆ϕ

Mpl

)2

<
4

Nthroat

, (8.66)

where

Nthroat ≡
4 Vol(X5)

π ϕ2
UV

∫ ϕUV

ϕIR

dϕϕ5f(ϕ) . (8.67)

If one defines ∆ϕ? to be the field variation when observable scales are generated dur-

conifold

bulk

∆ϕ!

ϕ! ϕUVIRϕ

CMB

Figure 2. Conifold geometry. Lidsey and Huston [116] use a slice of the
throat to bound the compactification volume.

ing inflation (this corresponds to ∆N? ≤ 4 e-foldings of inflationary expansion or the

CMB multipole range 2 ≤ ` < 100), then the integral in (8.67) can be approximated

as follows ∫ ϕUV

ϕIR

dϕϕ5f(ϕ) > ∆ϕ?ϕ
5
?f? > (∆ϕ?)

6f? . (8.68)
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Here, we have bounded the integral by a small part of the Riemann sum, defined

f? ≡ f(ϕ?) and used ∆ϕ? < ϕ?. Equation (8.66) then becomes(
∆ϕ?
Mpl

)6

<
π

Vol(X5)
(f?M

4
pl)
−1 . (8.69)

Next, we express the warped tension f−1 in terms of the scalar power spectrum Ps,

the tensor-to-scalar ratio r, and the non-Gaussianity parameter fNL. This relates f?

to observables

(f?M
4
pl)
−1 =

π2

16
P ?
s r

2
?

(
1 +

1

3|fNL|

)
, (8.70)

and hence gives (
∆ϕ?
Mpl

)6

<
π3

16Vol(X5)
P ?
s r

2
?

(
1 +

1

3|fNL|

)
. (8.71)

For slow-roll models with |fNL| � 1 this is not a very useful constraint. However, for

relativistic DBI models with |fNL| � 1 the bound (8.71) is independent of fNL. Since

P ?
s ∼ 2.4×10−9, r? < 0.4 (from observations) and Vol(X5) = O(π3) (from theory) we

conclude that super-Planckian field variation is inconsistent with observations (unless

Vol(X5) is made unnaturally small). The Lyth bound (8.7) can now be written as(
∆ϕ?
Mpl

)2

≈ r?
8

(∆N?)2 . (8.72)

Substituting this into (8.71) we find [116]

r? <
32P ?

s

(∆N?)6

π3

Vol(X5)
∼ 10−10

Vol(X5)
. (8.73)

We have used P ?
s = 2.4 × 10−9 and ∆N? ≈ 4. The tensor amplitude is therefore

unobservably small for relativistic DBI models. We emphasize that the bound (8.73)

does not apply to slow-roll models since |fNL| > 1 has been assumed in its derivation.
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Interestingly, Lidsey and Huston also derived a lower limit on r for models of UV

DBI inflation with |fNL| � 1 and ns < 1 [116]

r? >
4(1− ns)√

3|fNL|
. (8.74)

The limits (8.73) and (8.74) are clearly inconsistent unless Vol(X5) is very small,

cf. (8.59) and (8.65).

With the work of [21], [136], [24] and [116] there is now a growing body of evidence

that the theoretically best-motivated models of relativistic (UV) DBI inflation are in

tension with the data if microscopic constraints are applied consistently. In [136] and

[24] it was shown numerically that these problems persist even if considerable freedom

is allowed for the functional form of the brane potential V (ϕ) and the background

warp factor f(ϕ).

7.2. Relaxing the Bound?

Wrapped Branes. Becker et al. [28] and independently Kobayashi et al. [109] sug-

gested an interesting way to potentially relax the field range bound of [21]. Both

papers showed that the bound weakens if the analysis of [21] is generalized to Dp-

branes wrapping (p− 3)-cycles in the throat. Recall that for D3-branes the maximal

field range is bounded by N−1/2

(∆ϕ

Mpl

)
D3
< 2N−1/2 . (8.75)

For branes of higher dimensionality the relation between the radial coordinate ρ and

canonical field ϕ changes and the field range bound scales only as N−1/4 for D5-branes

and is independent of N for D7-branes,

(∆ϕ

Mpl

)
D5

< 2Cg−1/4
s N−1/4 (8.76)(∆ϕ

Mpl

)
D7

< 2CN0 (8.77)
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where

C ≡
( pgs

Vol(X5)

)1/2

. (8.78)

Here, p is the winding number of the wrapped brane. However, as Becker et al. [28]

explain, inflationary models with wrapped branes suffer from significant backreaction

(we discuss these problems and their generalizations in the next chapter).

Multiple Coincident Branes. Above we extended the Lyth bound to general

P (X,φ) actions [21]

∆ϕ

Mpl

=

∫ Nend

0

√
r

8

1

csP,X
dN . (8.79)

For both slow-roll inflation (cs = P,X = 1) and DBI inflation (cs = 1/γ, P,X = γ) we

find that csP,X = 1. For slow-roll inflation and DBI inflation there is therefore a one-

to-one correspondence between r and ∆ϕ. However, from (8.79) one sees immediately

that the Lyth bound is weakened for models with csP,X � 1. Huston et al. [90] suggest

that such an action can arise as the non-Abelian effective action of multiple coincident

branes. However, their paper also exposes that models with observable gravitational

wave amplitude can hardly be made consistent with non-Gaussianity constraints.



CHAPTER 9

Comments on Field Ranges in String Theory

1. String Moduli and the Lyth Bound

It is a fascinating open question whether super-Planckian fields can be realized in

a consistent microscopic theory of inflation. At the same time, the Lyth bound [122]

and the advent of CMB polarization experiments makes the answer to this question

timely. In Chapter 8 we proved the impossibility of super-Planckian field variation

for D3-brane inflation in warped throats. In this chapter we broaden our scope and

make some general remarks about the sizes of the moduli spaces for large classes of

models of string inflation.

More concretely, we speculate about the following two constraints on moduli fields

in string theory:

• C1: Kinematical Constraints on the Field Range: (∆ϕ)kin < Mpl?

Some fields in string theory are restricted by “pure geometry”. In these cases

very strong statements can be made about the impossibility of using those

fields to construct inflationary models with observable tensors.

• C2: Dynamical Constraints on the Field Range: (∆ϕ)dyn < Mpl?

For the fields that violate the first condition (i.e. (∆ϕ)kin > Mpl) we consider

whether flat potentials can extend over super-Planckian distances. This re-

quires careful study of backreaction effects and corrections to the inflaton

potential.

180
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In the following sections we describe simple examples for the constraints C1 and

C2. Elementary examples for C1 are: branes on a torus, D3-branes in a warped

throat and string axions. Wrapped higher-dimensional branes provide nice examples

of C2. We also discuss possible counter-examples to C2 [61, 148].

2. Branes

2.1. Branes on T 6. The first system we study is D-branes on a isotropic six-

torus.1 We compute a limit on the kinematical range of the brane coordinates.

Field Range. The Dp-branes are spacetime-filling and wrap a (p−3)–cycle on the

torus. Let the volume of the torus and the volume of the cycle be V6 = (2πL)6 and

Vp−3 = (2πL)p−3, respectively. Dimensional reduction of the ten-dimensional Einstein

and Dirac-Born-Infeld actions defines the canonical field,

ϕ2 = TpVp−3r
2 , (9.1)

and the four-dimensional Planck mass,

M2
pl = κ−2

10 V6 , κ2
10 ≡

1

2
(2π)7g2

s(α
′)4 . (9.2)

Generically, the brane coordinate is limited by the size of the torus r < 2πL. We

then get the following result for the maximal field variation in Planck units(
∆ϕ

Mpl

)2

Dp

<
gs
2

(
L

ls

)p−7

� 1 , (9.3)

where L � ls ≡
√
α′ and gs < 1 in the controlled theoretical regime. Branes on

an isotropic torus therefore provide a sharp example for the conjecture C1: the field

range is kinematically limited to be sub-Planckian.

1For the case of an anisotropic torus some of the constraints presented here may be relaxed
[127], [85].
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2.2. Branes on AdS5 ×X5.

Field Range. String compactifications with a local throat region (0 < r < rmax,

h(r) ∼ R4

r4 ) satisfy the following constraint on the compactification volume (see Chap-

ter 8)

V6 > (V6)throat = Vol(X5)

∫ rmax

0

dr r5h(r) (9.4)

=
1

2
r2

maxR
4Vol(X5) . (9.5)

As before, this implies a lower bound on the four-dimensional Planck mass. For a

wrapped Dp-brane the maximal field range inside the throat is (see (9.1))

∆ϕ2 < TpVp−3r
2
max . (9.6)

Using Vp−3 ∼ Rp−3 and T3R
4Vol(X5) = π

2
N we therefore find(

∆ϕ

Mpl

)2

Dp

< 4
TpR

p−3

NT3

≡
(

∆ϕ

Mpl

)2

max

. (9.7)

For the case of D3-branes we showed in Chapter 8 that (∆ϕ)kin ≤ (∆ϕ)max =

2√
N
Mpl � Mpl. However, for higher-dimensional wrapped branes (∆ϕ)kin can in

principle be large [28, 109].

Backreaction. The above analysis leading to the bound (9.7) assumes that the

wrapped branes can be treated as a probe of the background geometry. Quantita-

tively, this requires that the (local) curvature induced by the energy of the branes is

much less than the curvature of the background space. This backreaction constraint

takes the following form [28]

γTpR
p−3 � NT3 . (9.8)

Together with equation (9.7) this implies(
∆ϕ

Mpl

)2

max

� 1

γ
≤ 1 . (9.9)
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We therefore conclude that, although the kinematical range (9.7) can be large, the

field range is bounded by dynamical considerations (9.9). This is an example where

C1 does not hold, but C2 limits the field range to be sub-Planckian.

2.3. D8-branes on S1/Z2 × X5. A very elegant example for a field that can

have large kinematical range but sub-Planckian dynamical range was related to me by

Maldacena2 [126]. He considers a spacetime-filling D8-brane wrapping five dimensions

of the compact space. The brane is pointlike in the sixth compact dimension (see

Figure 1).

0 L

R3,1

X5

D8
y0

Figure 1. Wrapped D8-brane on (R3,1 × S1/Z2)×X5.

Field Range. Using the above methods one easily finds the canonical range of the

D8-brane in the sixth dimension (cf. equation (9.3))(
∆ϕ

Mpl

)2

D8

=
gs
2

(L
ls

)
. (9.10)

This can be arbitrarily large for L � ls. Notice that the field range for D8-branes

(9.10) becomes parametrically larger in the controlled regime L � ls. This is in

contrast to the case for Dp-branes with p < 7 for which by (9.3) the field range

decreases parametrically for L� ls. This observation makes D8-branes moving along

a long interval naively a promising system for super-Planckian field variation.

2I thank Juan Maldacena for the permission to reproduce his argument here.
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Backreaction. Maldacena, however, argues that although the kinematical range

(9.10) is unbounded, backreaction restricts the brane motion to be sub-Planckian.3

To see this, one considers backreaction of the D8-brane in the spacetime R3,1 ×

S1/Z2. Orientifold planes at y = 0, L bound the interval S1/Z2. For a D8-brane at

y = y0 in the extra dimension the metric is

ds2 = h−1/2dx2 + h1/2dy2 , (9.11)

where the warp factor h(y) obeys

∂2
yh = −gδ(y − y0) . (9.12)

Equation (9.12) has the following solution

h = 1− (gL)Θ(z − z0) · (z − z0) , z ≡ y

L
, (9.13)

where Θ is the Heaviside function. Hence, the spacetime is flat for z < z0 and curved

AdS space for z > z0. Notice that

h(z = 1) = 1− (gL)(1− z0) (9.14)

becomes singular at (1 − z0) = (gL)−1. The maximum value of (1 − z0) therefore

is the minimum of 1 and (gL)−1. For (gL)−1 < 1 the warped geometry becomes

singular at z = 1 for (1− z0) > (gL)−1. This singularity dynamically limits the range

of controlled motion of the brane.

The four-dimensional Planck mass in the perturbed geometry is

M2
pl =

V6

g2
=

1

g2
V5

∫ L

0

dy h =
V5L

g2

(
1− gL

2
(1− z0)2

)
. (9.15)

3In this example we ignore factors of π and focus our attention on the parametric dependence
of the result.
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0 1
D8

z0 (1 − z0)max

h(z)

Figure 2. Warp factor induced by the D8-brane. For (gL)−1 < 1 a singu-
larity appears at z = 1 for (1− z0) > (gL)−1.

Given that the maximum of (1 − z0) is the minimum of 1 and (gL)−1, we get the

following constraints

M2
pl > V5L

g2

(
1− 1

2
1
gL

)
> V5L

2g2 , (gL)−1 < 1 ,

M2
pl > V5L

g2

(
1− gL

2

)
> V5L

2g2 , (gL) < 1 .
(9.16)

The canonical field range, ϕ2 = V5L2

g
z2, is limited by backreaction to

∆ϕ2 = V5L2

g
· (gL)−2 = V5

g3 , (gL)−1 < 1 ,

∆ϕ2 = V5L2

g
· 12 = V5L2

g
, (gL) < 1 .

(9.17)

In Planck units we therefore find

∆ϕ2

M2
pl

< 2(gL)−1 , (gL)−1 < 1 , (9.18)

∆ϕ2

M2
pl

< 2(gL) , (gL) < 1 . (9.19)

This proves that although the kinematical range (9.10) can be parametrically large,

backreaction of the D8-brane on the background geometry restricts its dynamical field

range to be sub-Planckian, (∆ϕ)dyn < Mpl.
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2.4. Monodromies. Eva Silverstein and Alexander Westphal recently proposed

a very interesting idea for realizing large-field inflation in string theory [148] using a

monodromy4 mechanism.

Their particular model considers a D4-brane wrapping a 1-cycle with monodromy

in the Nil compactifications of Ref. [146]. The specific model is less important here

than the general idea of using monodromy to extend the field range probed by the

brane. We therefore focus on the general idea rather than the specific realization.

Nil Geometry. The Nil geometry

ds2
Nil

α′
= L2

u1
du2

1 + L2
u2

du2
2 + L2

x(dx
′ +Mu1du2)2︸ ︷︷ ︸

T 2

(9.20)

compactified by the following projections

tx : (x′, u1, u2)→ (x′ + 1, u1, u2) (9.21)

tu1 : (x′, u1, u2)→ (x′ −Mu2, u1 + 1, u2) (9.22)

tu2 : (x′, u1, u2)→ (x′, u1, u2 + 1) (9.23)

gives the manifold N3. We consider type IIA string theory on an orientifold of the

product space N3 × Ñ3. For the moment it suffices to consider a single N3. For each

u1 there is a 2-torus T 2 in u2 and x′

ds2
T 2(u1)

α′
= L2

u2
du2

2 + L2
x(dx

′ +Mu1du2)2 . (9.24)

Going once around the circle S1 defined by the u1-direction the complex structure

of the torus shift by M units, i.e. τ → τ + M as u1 → u1 + 1. The projection tu1

(9.22) identifies these equivalent tori. At M special locations around the u1-circle,

4In complex analysis, functions may fail to be single-valued as one goes around a path
encircling a singularity, e.g. consider f(z) = ln z where z = |z|eiθ – because ez+2πin = ez

one finds that f(z) → f(z) + 2πin as the origin is encircled n times. In this example the
covering space is a helicoid.
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Mu1 = j ∈ Z, the tori are equivalent to rectangular tori

ds2
T 2

α′
= L2

xdy
2
1 + L2

u2
dy2

2 , (9.25)

where

y1 ≡ x′ + ju2 , y2 ≡ u2 . (9.26)

Wrapped Branes and Monodromy. Silverstein and Westphal consider a D4-brane

wrapped on the 1-cycle defined by u2 = λ or (y1, y2) = (jλ, λ). It is proposed that

transverse motion in the u1-direction may be the source of inflation. The crucial point

is the following: as the brane circles in the u1-direction the fibred torus returns to an

equivalent torus but the 1-cycle does not, e.g. at u1 = 0, the brane wraps (y1, y2) =

(0, λ), while at u1 = 1, the brane wraps (y1, y2) = (Mλ, λ). This monodromy is the

key to extending the field range.

0 1 2

. . . 

Figure 3. Wrapped D4-brane with Monodromy.

Field Range. As before, the four-dimensional Planck mass Mpl is fixed by the

compactification volume V6 = (α′)3L6, where L3 ≡ Lu1Lu2Lx, i.e.

M2
pl =

2

(2π)7

L6

g2
s

1

α′
. (9.27)

However, now, as a result of the monodromy, the brane field space is not constrained

by the compactification volume. The monodromy effect implies that the D-brane

moduli space lives on a subspace of the covering of the compactification, i.e. on the
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space obtained by undoing the projection tu1 . At fixed Mpl, the field range in the

u1-direction can be large by moving around the S1 many times (see Figure 3).

To quantify this one considers the DBI-action for the wrapped D4-brane

SD4 =
−1

(2π)4(α′)5/2

∫
d5ξ e−Φ

√
detG(X)(∂X)2 (9.28)

=
−1

(2π)4gs(α′)5/2

∫
R3,1×u2

d5ξ
√
−g4gu2u2(1− α′gu1u1u̇

2
1) (9.29)

≈ −1

(2π)4gs(α′)2

∫
d4x
√
−g4

√
L2
u2

+ L2
xM

2u2
1

(
1− 1

2
α′L2

u1
u̇2

1

)
. (9.30)

For large u1 (LxMu1 � Lu2), this gives

SD4 =

∫
d4x
√
−g4

(
1

2
ϕ̇2 − µ10/3ϕ2/3

)
, (9.31)

where

ϕ2

M2
pl

= α2u3
1 . (9.32)

Here we have defined

α2 ≡ 2

9
(2π)3gs

M

L3

Lu1

Lu2

(9.33)

and

µ10

M10
pl

≡
(
Ms

Mpl

)10

· 9

4

M2

(2π)8g2
s

(
Lx
L

)3
Lu2

Lu1

. (9.34)

For ∆u1 = k � 1, the field range

∆ϕ2

M2
pl

=
2

9
(2π)3gs

Mk3

L3

Lu1

Lu2

(9.35)

can be super-Planckian for Mk3 > L3 and Lu1 � Lu2 .

Backreaction. Silverstein and Westphal [148] studied various backreaction effects

and concluded that the field range can be super-Planckian even if dynamical con-

straints are taken into account. This makes their model very interesting and worthy

of further investigation.
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3. Axions

3.1. Field Ranges for String Theory Axions.

Natural Inflation. In the context of inflationary model building, axions have the

attractive feature that their potential is protected by a shift symmetry ϕ→ ϕ+δ. This

symmetry guarantees that to first approximation the axion is massless. However, non-

perturbative corrections break the shift symmetry and generically lead to a potential

of the form

V (ϕ) = Λ4
(

1 + cos(ϕ/fa)
)
. (9.36)

For fa > Mpl this gives a successful and (technically) natural inflation model.

Axions in String Theory. String theory contains many axion fields (both model-

independent and model-dependent). However, systematic studies by Banks et al. [16]

and recently by Svrcek and Witten [155] suggest that string theory does not allow

(parametrically) super-Planckian values for fa as required for inflation from a single

axion field.

Field Range. We give a sketch of the argument in Ref. [16]. Consider the complex

modulus field ρ = σ+ iα (for concreteness the reader may imagine the dilaton or the

overall volume). The associated Lagrangian is

L = cM2
pl

(∂σ)2 + (∂α)2

4σ2
− V (σ, α) , (9.37)

where c = 1 for the dilaton and c = 3 for the total volume. Instanton corrections

induce a potential for the axion field α

V ∼ Λ4 cosα . (9.38)

Let σ be stabilized at σ?. The canonical axion field is then ϕ2 = c
4
α2

σ2
?

and

V ∼ Λ4 cos(ϕ/fa) , where
fa
Mpl

≡
√
c/2

σ?
. (9.39)
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Backreaction. We notice that the axion decay constant fa can only be large if σ? �

1. However, the non-perturbative axion potential (generated e.g. from Euclidean

branes wrapped over some cycle of size σ?) scales as e−σ? . For σ? � 1, the factor e−σ?

is not very small and therefore n-instanton corrections proportional to e−nσ? cannot be

ignored. This presents a serious obstruction to the possibility of having parametrically

large axion decay constants in string theory, since the multi-instanton corrections will

destroy the desired large periodicity of the single instanton contribution, reducing the

“effective” fa by a factor of n.

3.2. N-flation: Assisted Axion Inflation. As we have just seen, there seem to

be fundamental obstructions to getting single axion fields with super-Planckian field

range. However, as we reviewed in Chapter 4, the N-flation model of Dimopoulos

et al. [61] (see also [67]) suggests that the effective field related to the Pythagorean

sum of N axions, Φ2 ≡
∑

i ϕ
2
i , can have super-Planckian range, (∆Φ)kin > Mpl,

even if all individual axions have sub-Planckians fa’s, ∆ϕi < Mpl. However, this

requires N ≥ 1000 and it remains unclear whether the potential is radiatively stable

or whether dynamical effects limit the effective field range (∆Φ)dyn. N-flation remains

an interesting candidate for large-field inflation that deserves further study.

4. Volume Modulus

So far we have considered the effective four-dimensional fields associated with

localized energy densities (branes) moving through the compact extra dimensions.

The moduli space was compact and it was natural to expect geometrical restrictions

on the canonical field range.

In the search for super-Planckian field excursions it is therefore natural to look for

fields with non-compact moduli spaces. An immediate example is the overall volume

of the compactification manifold. The moduli space associated with the volume is

non-compact with decompactification corresponding to infinite range.
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Single Field. The volume (Kähler) modulus ρ has a logarithmic Kähler potential

K = −3M2
pl ln(ρ+ ρ̄) ≡ −3M2

pl lnσ . (9.40)

Typical energy sources in string theory all scale as inverse powers of the volume σ

V =
∑
i

ai
σci

, (9.41)

where ci are constants of order unity. The canonical field associated with σ is ϕ =

Mpl lnσ. The potential for the canonical field is therefore a sum of steep potentials

V ∼
∑
i

aie
−ciφ/Mpl . (9.42)

This can never be sufficiently flat for inflation over a super-Planckian range (at best

the potential can be flat for a small field range near an inflection point in the potential

[92, 119]).

Multiple Fields. One may wonder whether models with multiple Kähler moduli

can enjoy flat potentials of super-Planckian range even though individually each field

has a steep exponential potential. In the absence of a general no-go result for large-

field inflation from multiple Kähler moduli, it is instructive to consider the explicit

examples discussed in the literature. In Chapter 4 we reviewed Conlon and Quevedo’s

model for Kähler moduli inflation in the context of LARGE volume compactifications

[15]. Elementary considerations [53] show that in this example the field range during

inflation is always small. The same conclusion applies to any other realization of

Kähler moduli inflation that we are aware of. No existing model has a flat potential

over a super-Planckian range.
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5. Implications

We caution the reader not to overinterpret the results of this chapter. We have

given various examples for limits on the field range for moduli in string theory. Often

we found that fields which naively have a large kinematical range, are dynamically

limited to a sub-Planckian range by backreaction constraints. However, given that

we have not identified a physical principle for why super-Planckian vevs should be

censored by string theory, the examples we have given in this chapter can at best be

viewed as illustrative for the challenges one faces when trying to embed large-field

inflation in string theory.



Part 4

Conclusions



CHAPTER 10

Inflationary UV Challenges/Opportunities

In this thesis we have discussed aspects of inflation that benefit most directly

from the application of a UV-complete theory. In this chapter we summarize the

main physics points that we learned from the analysis of D-brane inflation. We

believe these conclusions to be more general than the particular example we studied.

1. The Inflaton Potential

The major challenge for a microphysical understanding of the inflationary era of

the early universe is obtaining the requisite slow variation of the inflationary energy

density. Typically, this is described in terms of an inflaton field with very flat potential

V (φ) and quantified by the smallness of the slow-roll parameters ε and η. Many

models suffer from an eta-problem, meaning that corrections to V (φ) shift the eta

parameter by order unity

∆η ∼ 1 . (10.1)

In this thesis, we have proposed a useful classification for corrections to the inflaton

potential in terms of their contribution to the η–parameter. To establish a robust

model and prove that slow-roll can occur requires theoretical control over all possible

order one corrections to η. Corrections whose contributions to η are parametrically

suppressed can be ignored to first order (i.e. when treating the background evolution).
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Figure 1. Computations of the brane potential.
a) Dvali+Tye (+warping) [64, 95]: VCoulomb(φ) = V0(1− cφ−4).
b) KKLMMT [95]: VKKLMMT(φ) = VCoulomb(φ) + βφ2.
c) BDKM [19]: VBDKM(φ) = VCoulomb(φ) + λ1(φ− φ0) + λ3(φ− φ0)3.

In Figure 1 we illustrate this scheme for the example of warped D-brane inflation.

In a warped background the Coulomb attraction between a D3-brane and an anti-D3-

brane is of the following form: VCoulomb(φ) = V0(1 − cφ−4). Warping suppression of

the interaction makes the potential exponentially flat, ε, η � 1. If this were the end

of the story, this would be the perfect inflationary model. However, as we discussed in

the bulk of this thesis, moduli stabilization effects give dangerous ∆η ∼ 1 corrections

to VCoulomb. This is the origin of the eta-problem for these models. KKLMMT [95]

showed that D3-brane backreaction on the compactification volume resulted in the

following potential (see Chapter 4): VKKLMMT(φ) = VCoulomb + βφ2. Generically, the

potential is then too steep for inflation. In the first half of this thesis, we derived

a crucial further correction to the potential arising from interaction of the D3-brane

with D7-branes involved in the non-perturbative stabilization of the compactification

volume. As we show in Figure 1 this allows a fine-tuned solution of the eta-problem

close to a locally flat plateau around an inflection point. We also argued that all

further corrections to the potential are parametrically suppressed (∆η � 1), so that

we can claim a robust model. However, the model is very sensitive to the values of
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the microscopic input parameters and the initial conditions (such as the initial brane

position and velocity).

2. Gravitational Waves

One of the most exciting observational signatures of inflation is a spectrum of

primordial gravitational waves. Interestingly, all inflationary models that predict

an observable gravitational wave signal require that the inflaton field evolves over a

super-Planckian range

r

0.01
= O(1)

(
∆φ

Mpl

)2

. (10.2)

So far it has been challenging to derive such ‘large-field’ models from an explicit and

controllable string compactification. For D-brane inflation Liam McAllister and I

derived following bound on the field range

∆φ

Mpl

<
2√
N
� 1 . (10.3)

Similar field range bounds exist for most models of string inflation. However, a

deeper physical principle behind these theoretical observations hasn’t been established

(although there have been some interesting proposals [11, 131, 132]). In particular,

there is no general no-go result for gravitational waves from string inflation. Also, it

should be noted that N-flation [61, 67] and the monodromy mechanism of Ref. [148]

may be interesting exceptions that deserve further investigation.

3. Non-Gaussianity

In single-field slow-roll models of inflation the primordial density fluctuations are

Gaussian to a very high degree [125]. Non-Gaussianity can only be large if higher-

derivative terms, Xn ≡ (1
2
(∂φ)2)n, play a crucial role during inflation. One is then

faced with the problem of providing a plausible UV-completion of the theory. The

relativistic limit of D-brane inflation (DBI inflation) is an interesting example where



10. inflationary uv challenges/opportunities 197

higher-derivative terms are important and non-Gaussianities can be large in a con-

trolled setting.

DBI inflation falls under the general category of higher-derivative theories first

studied by Mukhanov and Garriaga [72]. The effective field theory action for these

theories may be parameterized by an infinite series of higher-derivative terms Xn

suppressed by a cutoff scale Λ2n

P (X,φ) = P0(φ) + P1(φ)
X

Λ2
+

1

2
P2(φ)

X2

Λ4
+

1

3!
P3(φ)

X3

Λ6
+ . . . , (10.4)

where Pn
Λ2n = dnP

dXn

∣∣
X=0
∼ O(1). Considering the special case of a X2

Λ4 correction to the

slow-roll action, Creminelli [55] showed that the non-Gaussianity can only be large

(fNL > 1) if X
Λ2 > 1. One then worries about the UV-convergence of (10.4).

DBI inflation is a special type of higher-derivative action

PDBI(X,φ) = −f−1
√

1− 2fX + f−1 − V (φ) (10.5)

or

PDBI = −V (φ) + f−1

∞∑
n=1

λn(fX)n , λn ≡ (2n− 3)!! . (10.6)

In a generic effective field theory one would typically assume uncorrelated coefficients

λn in (10.6). In the relativistic limit 2fX ∼ O(1) one might then worry about

the validity of (10.6). However, string theory does the sum! The coefficients λn

for the terms in (10.6) are not independent, but correlated by their string theoretic

origin in the square-root DBI action (10.5). Any inflationary model with large non-

Gaussianities arising from non-canonical kinetic effects requires a similiar degree of

UV-completeness as DBI inflation.



“I have deep faith that the principle of the universe will be beautiful and simple.”

Albert Einstein

“Of two equivalent theories or explanations, all other things being equal,

the simpler one is to be preferred.”

Occam’s Razor
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CHAPTER 11

Epilogue

“It doesn’t matter how beautiful your theory is, it doesn’t matter how

smart you are or what your name is. If it doesn’t agree with experiment,

it’s wrong.”

Richard Feynman

Cosmological observations are, for the first time, precise enough to allow detailed

tests of theories of the early universe. This has established inflation [3, 83, 120] as

the leading explanation for the origin of structure in the universe. In this thesis we

described the search for the microphysical origin of inflation. The physics of inflation

is in principle very simple – a universe dominated by the energy density of a uniform

scalar field1 that satisfies the slow-roll conditions leads to exponential expansion. The

simplest scenario furthermore has the advantage that it is very predictive: canoni-

cal single-field inflation predicts a homogeneous and flat universe with small density

perturbations that are nearly scale-invariant, adiabatic and Gaussian. These predic-

tions are consistent with recent measurements of anisotropies in the cosmic microwave

background temperature [151]. Inflation further predicts a stochastic background of

gravitational waves which leaves subtle imprints in the polarization of the CMB and

can therefore potentially be detected by future experiments. Involving two or more

1This can be a fundamental scalar or an effective scalar condensate.
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scalar fields extends the possibilities, but also diminishes the predictive power of in-

flation. At present, the data does not require any extensions of the simplest models

beyond single-field slow-roll.

The observational evidence for ‘simple’ inflation is strong and rapidly growing

[111], and in the near future it will be possible to falsify a large fraction of existing

models. This presents a remarkable opportunity for inflationary model-building, and

it intensifies the need for a more fundamental description of inflation than current

phenomenological models can provide. At the same time, theoretical advances in

string theory (moduli stabilization, SUSY breaking, etc.) have led to the first reliable

models of string inflation. This research is still in its infancy but it holds the promise

to give an improved understanding of key UV-sensitive predictions of inflation (eta-

problem, gravitational waves, non-Gaussianity). We have come to appreciate that

understanding the universe on the largest scales depends crucially on insights about

the physics of the very small. The future therefore holds much promise for cosmology

and its connection to fundamental physics.



Appendix



Reading Guide for the Appendices

The following appendices are an integral part of this work and contain many

original results and important theoretical additions to the main body of the thesis:

� Appendix A reviews the calculation of the two- and three-point functions for

quantum fluctuations created during inflation. These classic results are used

throughout the thesis as they form the basis for all modern comparisons of

the inflationary predictions with the cosmological data.

� Appendices B, C and D complement the computations of Chapter 5.

� Appendices E, F, G, and H give important technical details of the arguments

presented in Chapter 7.

� Finally, Appendix J collects frequently used results from early universe cos-

mology and string theory.
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APPENDIX A

Primordial Fluctuations from Inflation

In this appendix we review Maldacena’s beautiful calculation of the two- and

three-point functions for quantum fluctuations created during inflation [125]. The

analysis shows that primordial non-Gaussianities are unobservably small for slow-

roll models of inflation. Large non-Gaussianities, however, arise if inflation is driven

by a scalar field with non-minimal kinetic term. We cite results for the two- and

three-point functions for inflationary models with general speed of sound [52].

We use the classic results of this appendix throughout this thesis as they form the

theoretical basis for comparing inflationary predictions to observational data.

A.1. Slow-Roll Inflation

Background. Slow-roll models of inflation are described by a canonical scalar field

φ minimally coupled to gravity

S =
1

2

∫
d4x
√
−g

[
R− (∇φ)2 − 2V (φ)

]
, M−2

pl ≡ 8πG = 1 . (A.1)

We consider a flat background metric

ds2 = −dt2 + a(t)2δijdx
idxj = a2(τ)(−dτ 2 + δijdx

idxj) (A.2)

with scale factor a(t) and Hubble parameter H(t) ≡ ∂t ln a satisfying the Friedmann

equations

3H2 =
1

2
φ̇2 + V (φ) , Ḣ = −1

2
φ̇2 . (A.3)
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The scalar field satisfies the Klein-Gordon equation

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (A.4)

The standard slow-roll parameters are

ε =
1

2

(V ′
V

)2

≈ 1

2

φ̇2

H2
, η =

V ′′

V
≈ − φ̈

Hφ̇
+

1

2

φ̇2

H2
. (A.5)

ADM Formalism. We treat fluctuations in the ADM formalism [13] where space-

time is sliced into three-dimensional hypersurfaces

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) . (A.6)

Here, the lapse function N(x) and the shift function Ni(x) are non-dynamical La-

grange multipliers. The action (A.1) becomes

S =
1

2

∫
d4x
√
−g
[
NR(3) − 2NV +N−1(EijE

ij − E2) +

N−1(φ̇−N i∂iφ)2 −Ngij∂iφ∂jφ− 2V
]
, (A.7)

where

Eij ≡
1

2
(ġij −∇iNj −∇jNi) , E = Ei

i . (A.8)

Eij is related to the extrinsic curvature of the three-dimensional spacetime slices

Kij = N−1Eij. To fix time and spatial reparameterizations we choose a gauge for the

dynamical fields gij and φ [125]

δφ = 0 , gij = a2[(1 + 2ζ)δij + hij] , ∂ihij = hii = 0 . (A.9)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are

parameterized by the metric fluctuation ζ(t,x). Geometrically, ζ measures the spatial

curvature of constant-φ hypersurfaces, (3)R = −4∇2ζ/a2. An important property of

ζ is that it remains constant outside the horizon. We can therefore restrict our
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computation to correlation functions at horizon crossing. The ADM action (A.7)

implies the following constraint equations for the Lagrange multipliers N and N i

∇i[N
−1(Ei

j − δijE)] = 0 , (A.10)

R(3) − 2V −N−2(EijE
ij − E2)−N−2φ̇2 = 0 . (A.11)

A.1.1. Two-Point Function.

Scalar Perturbations. Maldacena solved for N and N i in equations (A.10) and

(A.11) and substituted the result back into the action. After integrations by parts

and using the background equations of motion he finds [125]

S =
1

2

∫
d4x a3 φ̇

2

H2

[
ζ̇2 − a−2(∂iζ)2

]
≡
∫

d4x a3 ε�ζ . (A.12)

For H ∼ const. this corresponds to the action for a massless field ψ ≡ φ̇
H
ζ in de Sitter

space

S =
1

2

∫
d4x a3

[
(ψ̇)2 − a−2(∂iψ)2

]
(A.13)

=
1

2

∫
d4x (Hτ)−2

[
(∂τψ)2 − (∂iψ)2

]
. (A.14)

We define the following Fourier expansion of the field ψ

ψ(τ,x) =

∫
d3k

(2π)3
ψk(τ)eik·x . (A.15)

The Fourier components ψk are promoted to operators and expressed via the following

decomposition

ψ̂k = v∗k(τ)â−k + v−k(τ)â+
−k , (A.16)

where the creation and annihilation operators â+
−k and â−k satisfy the canonical com-

mutation relation

[â−k , â
+
−k′ ] = (2π)3δ(k + k′) (A.17)
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if and only if the mode functions are normalized as follows

Im(v′−kv
∗
k) = 1 , (...)′ ≡ ∂τ (...) . (A.18)

The Bunch-Davies vacuum, â−k |0〉 = 0, corresponds to

vk =
H√
2k3

(1− ikτ)eikτ . (A.19)

On small scales, kτ � 1, this reduces to the Minkowski vacuum. We then compute

the power spectrum of ψ

〈ψk(τ)ψk′(τ)〉 = (2π)3δ(k + k′)|vk(τ)|2 (A.20)

= (2π)3δ(k + k′)
H2

2k3
(1 + k2τ 2) . (A.21)

On super-horizon scales, kτ � 1, this approaches a constant

〈ψk(τ)ψk′(τ)〉 ∼ (2π)3δ(k + k′)
H2

2k3
. (A.22)

The de Sitter result for ψ (A.22) allows us to compute the power spectrum of ζ = H
φ̇
ψ

at horizon crossing, a(t?)H(t?) ∼ k,

〈ζk(t)ζk′(t)〉 = (2π)3δ(k + k′)
H2
?

2k3

H2
?

φ̇2
?

. (A.23)

We define the dimensional power spectrum Ps(k) by

〈ζkζk′〉 = (2π)3δ(k + k′)Ps(k) , Ps(k) ≡ k3

2π2
Ps(k) , (A.24)

such that the real space variance of ζ is 〈ζζ〉 =
∫∞

0
Ps(k) d ln k. This gives

Ps(k) =
H2
?

(2π)2

H2
?

φ̇2
?

. (A.25)

Since ζ approaches a constant on super-horizon scales the spectrum at horizon crossing

determines the future spectrum until a given fluctuation mode re-enters the horizon.
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The scale dependence of the spectrum follows from the time-dependence of the Hubble

parameter and is quantified by the spectral index

ns − 1 ≡ d lnPs
d ln k

=
1

H?

d

dt?
ln
H4
?

φ̇2
?

= 2η? − 6ε? . (A.26)

Tensor Perturbations. The action for tensor fluctuations is

S =
1

8

∫
dx4a3

[
(ḣij)

2 − a−2(∂lhij)
2
]
. (A.27)

We define the following Fourier expansion

hij =

∫
d3k

(2π)3

∑
s=+,×

εsij(k)hsk(t)eik·x , (A.28)

where εii = kiεij = 0 and εsij(k)εs
′
ij(k) = 2δss′ . The two polarization modes of gravita-

tional waves, hsk ≡ h+,×
k , correspond to massless scalars in de Sitter space for which

the power spectrum is given by (A.22)

〈hkhk′〉 = (2π)3δ(k + k′)
1

2k3

H2
?

M2
pl

. (A.29)

The dimensionless power spectrum of tensor fluctuations therefore is

Pt(k) =
2

π2

H2
?

M2
pl

. (A.30)

From (A.25) and (A.30) we get the tensor-to-scalar ratio

r ≡ Pt
Ps

= 16ε? . (A.31)

The tensor spectral index is

nt ≡
d lnPt
d ln k

= −2ε? . (A.32)
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We see that single-field slow-roll models satisfy a consistency condition between the

tensor-to-scalar ratio r and the tensor tilt nt

r = −8nt . (A.33)

A.1.2. Three-Point Function and Non-Gaussianity. Using the same for-

malism (but fighting with considerably more algebra) Maldacena also derived the

bispectrum (three-point function) of scalar fluctuations [125]

〈ζk1ζk2ζk3〉 = (2π)3δ
(∑

ki

)H4
?

φ̇4
?

H4
?

M4
pl

1∏
i(2k

3
i )
A? (A.34)

where

A? ≡ 2
φ̈?

φ̇?H?

∑
i

k3
i +

φ̇2
?

H2
?

[
1

2

∑
i

k3
i +

1

2

∑
i 6=j

kik
2
j + 4

∑
i>j k

2
i k

2
j∑

i ki

]
︸ ︷︷ ︸

≡(
P
i k

3
i )f(k)

. (A.35)

Shape of Non-Gaussianity. A simple way to characterize the non-Gaussianity of

ζ is to assume that it can be parameterized by a field redefinition of the form

ζ = ζL +
3

5
fNLζ

2
L , (A.36)

where ζL is Gaussian and the constant fNL measures the amount of non-Gaussianity

of ζ. Equation (A.36) is often called local non-Gaussianity. This leads to a momentum

dependence of the three-point functions that is close to (but not exactly the same

as) the momentum dependence found in (A.35). One may, however, define a weakly

k-dependent fNL parameter

fNL ∼
5

3

A?
(4
∑

i k
3
i )

= − 5

12
[(ns − 1) + f(k)nt] (A.37)

where 0 ≤ f(k) ≤ 5
6
. This shows that fNL � 1 due to the near scale-invariance of the

primordial spectra, ns−1, nt � 1. Since it is generally believed that non-Gaussianity
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is only observable if fNL & 1, we conclude that primordial non-Gaussianities from

slow-roll inflation are unobservable.

A.2. Models with General Speed of Sound

While primordial fluctuations are highly Gaussian for slow-roll models of inflation,

non-Gaussianities can be significant for models with non-canonical kinetic effects.

Chen et al. [52] studied such models using the following parameterization for the

inflaton action

S =
1

2

∫
d4x
√
−g [R+ 2P (X,φ)] , (A.38)

where X ≡ −1
2
gµν∂µφ∂νφ. Examples of inflation models with actions of the type

(A.38) are K-inflation [12], DBI inflation [147] and ghost inflation [10]. The function

P corresponds to the pressure of the scalar fluid, while its energy density is

ρ = 2XP,X − P . (A.39)

Furthermore, the models are characterized by a non-trivial speed of sound

c2
s ≡

dP

dρ
=

P,X
P,X + 2XP,XX

. (A.40)

Finally, it proves convenient to define parameters for the time-variation of the expan-

sion rate H(t) and the speed of sound cs(t)

ε = − Ḣ

H2
=
XP,X
H2

, η̃ =
ε̇

εH
, (A.41)

s =
ċs
csH

. (A.42)

A.2.1. Two-Point Function.

Scalar Perturbations. A calculation similar to that of the previous section gives

the power spectrum of scalar fluctuations

Ps(k) =
1

8π2M2
pl

H2
?

cs?ε?
. (A.43)
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The r.h.s. of (A.43) is evaluated at the time of (sound) horizon exit at a?H? = csk.

The scale-dependence of the spectrum is

ns − 1 = −2ε? − η̃? − s? . (A.44)

Tensor Perturbations. The tensor fluctuation spectrum is the same as for slow-roll

models

Pt(k) =
2

π2

H2
?

M2
pl

(A.45)

nt = −2ε? . (A.46)

The r.h.s. of (A.45) and (A.46) is evaluated at a?H? = k. We see that for models

with cs 6= 1 the consistency relation between r and nt, equation (A.33), is modified

r = −8csnt . (A.47)

A.2.2. Three-Point Function and Non-Gaussianity. To present the results

for the calculation of the three-point function it is useful to define two more param-

eters

Σ ≡ XP,X + 2X2P,XX =
H2ε

c2
s

, (A.48)

λ ≡ X2P,XX +
2

3
X3P,XXX . (A.49)

Following Maldacena [125], Chen et al. [52] derived the three-point function of super-

horizon curvature fluctuations

〈ζk1ζk2ζk3〉 = (2π)7δ(k1 + k2 + k3) (Ps)
2 1∏

i k
3
i

A? , (A.50)
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where

A? ⊃
(

1

c2
s

− 1− 2λ

Σ

)
3k2

1k
2
2k

2
3

2K3

+

(
1

c2
s

− 1

)(
− 1

K

∑
i>j

k2
i k

2
j +

1

2K2

∑
i 6=j

k2
i k

3
j +

1

8

∑
i

k3
i

)
. (A.51)

Here, we defined K ≡ k1 + k2 + k3.

Shape of Non-Gaussianity. We notice that the momentum dependence of (A.51)

is significantly different from the local shape of non-Gaussianity (A.35). While for

(A.35) the signal is largest when one of the momenta is very small, k1 � k2 ∼ k3,

(A.51) peaks when the magnitude of all momenta is the same, k1 ∼ k2 ∼ k3. For

obvious reasons this is called the equilateral shape [14]. One may define the parameter

f equil
NL =

5

3

A?
(4
∑

i k
3
i )
, (A.52)

where A? is now evaluated for equilateral triangles in momentum space. From (A.51)

one then finds

f equil
NL = − 35

108

( 1

c2
s

− 1
)

+
5

81

( 1

c2
s

− 1− 2Λ
)
, (A.53)

where

Λ ≡ λ

Σ
=
X2P,XX + 2

3
X3P,XXX

XP,X + 2X2P,XX
. (A.54)

DBI Inflation. For the Lagrangian of DBI inflation [147]

PDBI(X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ) , (A.55)

one finds that the second term in (A.53) is identically zero and

fDBI
NL = − 35

108

( 1

c2
s

− 1
)
. (A.56)



APPENDIX B

Green’s Functions on Conical Geometries

In this appendix we give mathematical details on the Green’s functions used in

Chapter 5. Further details may be found in Ref. [104].

B.1. Green’s Function on the Singular Conifold

The D3-branes that we consider throughout this thesis are point sources in the

six-dimensional internal space. The backreaction they induce on the background

geometry can therefore be related to the Green’s functions for the Laplace problem

on conical geometries (see Chapter 5)

−∇2
XG(X;X ′) =

δ(6)(X −X ′)√
g(X)

. (B.1)

In the following we present explicit results for the Green’s function on the singular

conifold. In the large r limit, far from the tip, the Green’s functions for the resolved

and deformed conifold reduce to those of the singular conifold [104].

In the singular conifold geometry (5.27), the defining equation (B.1) for the

Green’s function becomes

1

r5

∂

∂r

(
r5 ∂

∂r
G
)

+
1

r2
∇2

ΨG = − 1

r5
δ(r − r′)δT 1,1(Ψ−Ψ′) , (B.2)

where ∇2
Ψ and δT 1,1(Ψ−Ψ′) are the Laplacian and the normalized delta function on

T 1,1, respectively. Ψ stands collectively for the five angular coordinates of the base

and X ≡ (r,Ψ). An explicit solution for the Green’s function is obtained by a series
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expansion of the form

G(X;X ′) =
∑
L

Y ∗L (Ψ′)YL(Ψ)HL(r; r′) . (B.3)

The YL’s are eigenfunctions of the angular Laplacian,

∇2
ΨYL(Ψ) = −ΛLYL(Ψ) , (B.4)

where the multi-index L represents a set of discrete quantum numbers related to the

symmetries of the base of the cone. The angular eigenproblem is worked out in detail

in §B.2. If the angular wavefunctions are normalized as∫
d5Ψ
√
gT 1,1 Y ∗L (Ψ)YL′(Ψ) = δLL′ , (B.5)

then ∑
L

Y ∗L (Ψ′)YL(Ψ) = δT 1,1(Ψ−Ψ′) , (B.6)

and equation (B.2) reduces to the radial equation

1

r5

∂

∂r

(
r5 ∂

∂r
HL

)
− ΛL

r2
HL = − 1

r5
δ(r − r′) , (B.7)

whose solution away from r = r′ is

HL(r; r′) = A±(r′)rc
±
L , c±L ≡ −2±

√
ΛL + 4 . (B.8)

The constants A± are uniquely determined by integrating equation (B.7) across r = r′.

The Green’s function on the singular conifold is

G(X;X ′) =
∑
L

1

2
√

ΛL + 4
× Y ∗L (Ψ′)YL(Ψ)×


1
r′4

(
r
r′

)c+L
r ≤ r′ ,

1
r4

(
r′

r

)c+L
r ≥ r′ ,

(B.9)

where the angular eigenfunctions YL(Ψ) are given explicitly in §B.2.
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B.2. Eigenfunctions of the Laplacian on T 1,1

In this section we complete the Green’s function on the singular conifold (B.9) by

solving for the eigenfunctions of the Laplacian on T 1,1

∇2
ΨYL =

1
√
g
∂m(gmn

√
g∂nYL) = (6∇2

1 + 6∇2
2 + 9∇2

R)YL (B.10)

= −ΛLYL ,

where

∇2
iYL ≡

1

sin θi
∂θi(sin θi∂θiYL) +

( 1

sin θi
∂φi − cot θi∂ψ

)2

YL , (B.11)

∇2
RYL ≡ ∂2

ψYL . (B.12)

The solution to equation (B.10) is obtained through separation of variables

YL(Ψ) = Jl1,m1,R(θ1)Jl2,m2,R(θ2) eim1φ1+im2φ2 e
i
2
Rψ , (B.13)

where

1

sin θi
∂θi(sin θi∂θiJli,mi,R(θi))−

( mi

sin θi
− R

2
cot θi

)2

Jli,mi,R(θi) = −Λli,RJli,mi,R(θi) .

(B.14)

The eigenvalues are Λli,R ≡ li(li + 1)− R2

4
. Explicit solutions for equation (B.14) are

given in terms of hypergeometric functions 2F1(a, b, c;x)

JΥ
li,mi,R

(θi) = NΥ
L (sin θi)

mi
(

cot
θi
2

)R/2
×

2F1

(
−li +mi, 1 + li +mi, 1 +mi −

R

2
; sin2 θi

2

)
, (B.15)

JΩ
li,mi,R

(θi) = NΩ
L (sin θi)

R/2
(

cot
θi
2

)mi
×

2F1

(
−li +

R

2
, 1 + li +

R

2
, 1−mi +

R

2
; sin2 θi

2

)
, (B.16)
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where NΥ
L and NΩ

L are determined by the normalization condition (B.5). If mi ≥ R/2,

solution Υ is non-singular. If mi ≤ R/2, solution Ω is non-singular. When mi = R/2,

the solutions coincide. The full wavefunction corresponds to the spectrum

ΛL = 6
(
l1(l1 + 1) + l2(l2 + 1)− R2

8

)
. (B.17)

The eigenfunctions transform under SU(2)1×SU(2)2 as the spin (l1, l2) representation

and under the U(1)R with charge R. The multi-index L has the data:

L ≡ (l1, l2), (m1,m2), R .

The following restrictions on the quantum numbers correspond to the existence of

single-valued regular solutions:

• l1 and l2 are both integers or both half-integers.

• m1 ∈ {−l1, · · · , l1} and m2 ∈ {−l2, · · · , l2} .

• R ∈ Z with R
2
∈ {−l1, · · · , l1} and R

2
∈ {−l2, · · · , l2}.

As discussed in §5.2, chiral operators in the dual gauge theory correspond to l1 =

R
2

= l2.



APPENDIX C

Computation of Backreaction in the Singular Conifold

This appendix computes the gravitational backreaction of a D3-brane on the vol-

ume of a four-cycle in the singular conifold.

C.1. Correction to the Four-Cycle Volume

Recall from Chapter 5 the definition (5.14) of the (holomorphic) correction to the

warped volume of a four-cycle Σ4

δV w
Σ4

= Re(ζ(X ′)) =

∫
Σ4

d4X
√
gind(X) δh(X;X ′) , (C.1)

where δh(X;X ′) = CG(X;X ′) and T3C = 2π.

Embedding, Induced Metric and a Selection Rule. The induced metric on

the four-cycle, gind, is determined from the background metric and the embedding

constraint. In §5 of Chapter 5 we introduced the class of supersymmetric embeddings

(5.36). Equation (5.37) and the form of the angular eigenfunctions of the Green’s

function (see §B.2 of Appendix B) imply that (C.1) is proportional to

e
i
2
Rψs

(2π)2

∫ 2π

0

dφ1 e
i(m1+R

2
n1)φ1

∫ 2π

0

dφ2 e
i(m2+R

2
n2)φ2 = e

i
2
Rψs δm1,−R2 n1

δm2,−R2 n2
. (C.2)

We may therefore restrict the computation to values of the R-charge that satisfy

m1 = −R
2
n1 , m2 = −R

2
n2 . (C.3)

216
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The winding numbers ni (5.42) are rational numbers of the form

ni ≡
ñi
q
, ñi ∈ Z , (C.4)

where ñi and q do not have a common divisor. Therefore the requirement that

the magnetic quantum numbers mi be integer or half-integer leads to the following

selection rule for the R-charge

R = q · k , k ∈ Z . (C.5)

Green’s Function and Reduced Angular Eigenfunctions. The Green’s

function on the conifold (§B.1) is

G(X;X ′) =
∑
L

Y ∗L (Ψ′)YL(Ψ)HL(r; r′) , (C.6)

where it is important that the angular eigenfunctions (§B.2) are normalized correctly

on T 1,1 ∫
d5Ψ
√
gT 1,1|YL(Ψ)|2 = 1 , (C.7)

or

VT 1,1

∫ 1

0

dx [Jl1,m1,R(x)]2
∫ 1

0

dy [Jl2,m2,R(y)]2 = 1 . (C.8)

The coordinates x and y are defined in (5.41). Next, we show that the hypergeometric

angular eigenfunctions reduce to Jacobi polynomials if we define

l1 ≡
R

2
+ L1 , l2 ≡

R

2
+ L2 , L1, L2 ∈ Z . (C.9)

This parameterization is convenient because chiral terms are easily identified by L1 =

0 = L2. Non-chiral terms correspond to non-zero L1 and/or L2. Without loss of

generality we define chiral terms to have R > 0 and anti-chiral terms to have R < 0.
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With these restrictions the angular eigenfunctions of §B.2 simplify to

JR
2

+L1,−R2 n1,R
(x) = x

R
4

(1+n1)(1− x)
R
4

(1−n1) PL1,R,n1(x) , (C.10)

JR
2

+L2,−R2 n2,R
(y) = y

R
4

(1+n2)(1− y)
R
4

(1−n2) PL2,R,n2(y) , (C.11)

where

PL1,R,n1(x) ≡ NL1,R,n1P
R
2

(1+n1),R
2

(1−n1)

L1
(1− 2x) , (C.12)

PL2,R,n2(y) ≡ NL2,R,n2P
R
2

(1+n2),R
2

(1−n2)

L2
(1− 2y) . (C.13)

The Pα,β
N are Jacobi polynomials and the normalization constants NL1,R,n1 and

NL2,R,n2 can be determined from (C.8).

Main Integral. Assembling the ingredients of the previous subsections (induced

metric, embedding constraint, Green’s function) we find that (C.1) may be expressed

as

T3 δV
w

Σ4
= (2π)3

∫ 1

0

dxdy
√
gind(x, y)

∑
L,ψs

Y ∗L (x′, y′)YL(x, y)HL(r; r′)

=
VT 1,1

2

∑
L,ψs

Y ∗L (r′)c
+
L × e

i
2
Rψ′s r

−c+L
min ×

InK(Q+
L)√

ΛL + 4
, (C.14)

where

InK(Q+
L) ≡

∫ 1

0

dxdy G(x, y)

(
r(x, y)

rmin

)−6Q+
L

PL1,R,n1(x)PL2,R,n2(y) . (C.15)

Here K ≡ (L1, L2, R), n ≡ (n1, n2) and

Q±L ≡
c±L
6

+
R

4
, c±L ≡ −2±

√
ΛL + 4 . (C.16)

The sum in equation (C.14) is restricted by the selection rules (C.3) and (C.5). Equa-

tion (C.15) is the main result of this section.
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In the following we will show that the integral (C.15) vanishes for all non-chiral

terms and reduces to a simple expression for (anti)chiral terms.

C.2. Non-Chiral Contributions

In this section we prove that

InK(Q) ≡
∫ 1

0

dxdy PL1,R,n1(x)PL2,R,n2(y)×

×xQ(1+n1)(1− x)Q(1−n1)yQ(1+n2)(1− y)Q(1−n2) ×

×
[

(1 + n1)2

2

1

x(1− x)
− 2n1

1

1− x

+
(1 + n2)2

2

1

y(1− y)
− 2n2

1

1− y
− 1

]
(C.17)

vanishes for Q→ Q+
L iff L1 6= 0 or L2 6= 0. This proves that non-chiral terms do not

contribute to the perturbation δV w
Σ4

to the warped four-cycle volume.

The Jacobi polynomial Pα,β
N (x) satisfies the following differential equation

−N(N + α + β + 1)Pα,β
N (1− 2x) =

= x−α(1− x)−β
d

dx

(
x1+α(1− x)1+β d

dx
Pα,β
N (1− 2x)

)
. (C.18)

Multiplying both sides by xqα(1− x)qβ and integrating over x gives

−N(N + α + β + 1)

∫ 1

0

dxPα,β
N (1− 2x)xqα(1− x)qβ =

=

∫ 1

0

dxPα,β
N (1− 2x)xqα(1− x)qβ × (C.19)

×
[
(qα + qβ + 1)(α + β − qα − qβ) +

qα(α− qα)− qβ(β − qβ)

(1− x)
+
qα(qα − α)

x(1− x)

]
,

where we have used integration by parts.
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In the case of interest, (C.17), we make the following identifications: N ≡ L1, α ≡
R
2

(1 + n1), β ≡ R
2

(1− n1), qα ≡ Q(1 + n1), qβ ≡ Q(1− n1). This gives∫ 1

0

dxP
R
2

(1+n1),R
2

(1−n1)

L1
(1− 2x)xQ(1+n1)(1− x)Q(1−n1) ×

(
(1 + n1)2

2x(1− x)
− 2n1

(1− x)

)
=

= XL1,R,Q

∫ 1

0

dxP
R
2

(1+n1),R
2

(1−n1)

L1
(1− 2x) xQ(1+n1)(1− x)Q(1−n1) , (C.20)

where

XL1,R,Q ≡
(2Q+ 4Q2 − L2

1 − L1R−R− 2L1 − 2RQ)

Q(2Q−R)
. (C.21)

The corresponding identity for the y-integral follows from the above expression and

the replacements L1 → L2 and n1 → n2. We then notice that the integral (C.17) is

InK(Q) = (XL1,R,Q + YL2,R,Q − 1)× ΛL1,R,n1,Q ΛL2,R,n2,Q

=
6(Q−Q+

L)(Q−Q−L)

Q(2Q−R)
× ΛL1,R,n1,Q ΛL2,R,n2,Q , (C.22)

where

ΛL1,R,n1,Q ≡
∫ 1

0

dxPL1,R,n1(x) xQ(1+n1)(1− x)Q(1−n1) , (C.23)

ΛL2,R,n2,Q ≡
∫ 1

0

dy PL2,R,n2(y) yQ(1+n2)(1− y)Q(1−n2) . (C.24)

Since InK(Q) ∝ (Q − Q+
L) it just remains to observe that the integrals (C.23) and

(C.24) are finite to conclude that

lim
Q→Q+

L

InK = 0 iff Q+
L 6=

R

2
. (C.25)

This proves that non-chiral terms do not contribute corrections to the warped volume

of any holomorphic four-cycle of the form (5.36).
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C.3. Chiral Contributions

Finally, let us consider the special case Q+
L = R

2
which corresponds to chiral

operators (L1 = L2 = 0) in the dual gauge theory. In this case,

Ichiral
R ≡ lim

Q→R
2

InK =
3R + 4

2

1

R
× Λ0,R,n1,

R
2
× Λ0,R,n2,

R
2
, (C.26)

where

Λ0,R,n1,
R
2
≡

∫ 1

0

dxP0,R,n1(x) x
R
2

(1+n1)(1− x)
R
2

(1−n1) , (C.27)

Λ0,R,n2,
R
2
≡

∫ 1

0

dy P0,R,n2(y) y
R
2

(1+n2)(1− y)
R
2

(1−n2) . (C.28)

Notice that P0,R,ni = N0,R,ni = (N0,R,ni)
−1(P0,R,ni)

2. Hence,

Λ0,R,n1,
R
2
≡ (N0,R,n1)−1

∫ 1

0

dx
(
P0,R,n1(x)

[
x(1+n1)(1− x)(1−n1)

]R/4)2

(C.29)

Λ0,R,n2,
R
2
≡ (N0,R,n2)−1

∫ 1

0

dy
(
P0,R,n2(y)

[
y(1+n2)(1− y)(1−n2)

]R/4)2

(C.30)

and

Λ0,R,n1,
R
2
× Λ0,R,n2,

R
2

=
1

VT 1,1N0,R,n1N0,R,n2

(C.31)

by the normalization condition (C.8) on the angular wave function. Therefore, we

get the simple result

Ichiral
R√

Λchiral
R + 4

=
1

VT 1,1N0,R,n1N0,R,n2

× 1

R
. (C.32)

We substitute this into equation (C.14) and get

T3 (δV w
Σ4

)chiral =
1

2

∑
s

∑
R=q·k

1

R
×
(∏

i

(w̄′i)
pi
)R/P

× 1

µ̄R
× ei

R
P

2πs , (C.33)

where we used

(r′)3R/2 Y ∗R(Ψ′)

N0,R,n1N0,R,n2

=
(∏

i

(w̄′i)
pi
)R/P

(C.34)
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and

eiarg(µ)R r
−3R/2
min =

1

µ̄R
. (C.35)

The sum over s in (C.33) counts the P different roots of equation (5.36):

P−1∑
s=0

e
q·k
P

2πs = P δ q·k
P
,j , j ∈ Z . (C.36)

Dropping primes, we therefore arrive at the following sum

T3 (δV w
Σ4

)chiral =
1

2

∞∑
j=1

1

j
×
(∏

i

w̄pii

)j
× 1

µ̄P ·j
, (C.37)

which gives

T3 (δV w
Σ4

)chiral = −1

2
ln

[
1−

∏
i w̄

pi
i

µ̄P

]
. (C.38)

For the anti-chiral terms (R < 0) an equivalent computation gives the complex

conjugate of this result.

The R = 0 term formally gives a divergent contribution that needs to be

regularized by introducing a UV cutoff at the end of the throat. Alternatively, as

discussed in §5.2, this term does not appear if we define δh as the solution of (5.18)

with
√
g ρbg(Y ) = δ(6)(Y −X0). This choice amounts to evaluating the change in the

warp factor, δh, created by moving the D3-brane from some reference point X0 to

X. We may choose the reference point X0 to be at the tip of the cone, r = 0, and

thereby remove the divergent zero mode.

The total change in the warped volume of the four-cycle is therefore

δV w
Σ4

= (δV w
Σ4

)chiral + (δV w
Σ4

)anti−chiral (C.39)

and

T3 Re(ζ) = T3 δV
w

Σ4
= −Re

(
ln

[
µP −

∏
iw

pi
i

µP

])
. (C.40)
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Finally, the prefactor of the nonperturbative superpotential is

A(wi) = A0 e
−T3ζ/n = A0

(µP −∏iw
pi
i

µP

)1/n

. (C.41)
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Computation of Backreaction in Y p,q Cones

This appendix computes the gravitational backreaction of a D3-brane on the vol-

ume of four-cycles in Y p,q cones.

D.1. Setup

Metric and Coordinates on Y p,q. Cones over Y p,q manifolds have the following

metric

ds2 = dr2 + r2ds2
Y p,q , (D.1)

where the Sasaki-Einstein metric on the Y p,q base is given by [73, 74]

ds2
Y p,q =

1− y
6

(dθ2 + sin2 θ dφ2) +
1

v(y)w(y)
dy2 +

v(y)

9
(dψ + cos θ dφ)2

+w(y)
[
dα + f(y) (dψ + cos θ dφ)

]2
. (D.2)

The following functions have been defined

v(y) ≡ b− 3y2 + 2y3

b− y2
, w(y) ≡ 2(b− y2)

1− y
, f(y) ≡ b− 2y + y2

6(b− y2)
, (D.3)

with

b ≡ 1

2
− p2 − 3q2

4p3

√
4p2 − 3q2 . (D.4)

The parameters p and q are two coprime positive integers. The zeros of v(y) are

y1,2 =
1

4p

(
2p ∓ 3q −

√
4p2 − 3q2

)
, y3 =

3

2
− (y1 + y2) . (D.5)
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It is convenient to introduce

x ≡ y − y1

y2 − y1

. (D.6)

The angular coordinates θ, φ, ψ, x, and α span the ranges

0 ≤ θ ≤ π , 0 < φ ≤ 2π , 0 < ψ ≤ 2π ,

0 ≤ x ≤ 1 , 0 < α ≤ 2π` , (D.7)

where ` ≡ − q
4p2y1y2

.

Green’s Function. The Green’s function on the Y p,q cone is

G(X;X ′) =
∑
L

1

4(λ+ 1)
× Y ∗L (Ψ′)YL(Ψ)×


1
r′4

(
r
r′

)2λ

r ≤ r′ ,

1
r4

(
r′

r

)2λ

r ≥ r′ .

(D.8)

Here L is again a complete set of quantum numbers and Ψ represents the set of angular

coordinates (θ, φ, ψ, x, α). The eigenvalue of the angular Laplacian is ΛL ≡ 4λ(λ+2).

The spectrum of the scalar Laplacian on Y p,q, as well as the eigenfunctions YL(Ψ),

were calculated in [31, 101]. We do not review this treatment here, but simply present

an explicit form of YL(Ψ)

YL(Ψ) = NL e
i(mφ+nψψ+nα

`
α)Jl,m,2nψ(θ)Rnα,nψ ,l,λ(x) , (D.9)

where

Rnα,nψ ,l,λ(x) = xα1(1− x)α2(a− x)α3h(x) , a ≡ y1 − y3

y1 − y2

. (D.10)

The parameters αi depend on nψ and nα (see [101]), and the function h(x) satisfies

the following differential equation[
d2

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− a

)
d

dx
+

αβx− k
x(1− x)(a− x)

]
h(x) = 0 . (D.11)
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The parameters α, β, γ, δ, ε, k depend on p, q and on the quantum numbers of the

Y p,q base. Explicit expressions may be found in [101].

Finally, we introduce the normalization condition that fixes NL in (D.9). If we

define z ≡ sin2 θ
2

then the normalization condition∫
d5Ψ
√
gY p,q |YL(Ψ)|2 = 1 (D.12)

becomes

N2
L

∫ 1

0

dz dx
√
g(x, z) J2R2 =

1

(2π)3`
, (D.13)

where √
g(x, z) =

√
g(x) =

q(2p+ 3q +
√

4p2 − 3q2 − 6qx)

24p2
. (D.14)

Embedding, Induced Metric and a Selection Rule. The holomorphic em-

bedding of four-cycles in Y p,q cones is described by the algebraic equation [50]

3∏
i=1

wpii = µ2p3 , (D.15)

where

w1 ≡ tan
θ

2
e−iφ , (D.16)

w2 ≡
1

2
sin θ x

1
2y1 (1− x)

1
2y2 (a− x)

1
2y3 ei(ψ+6α) , (D.17)

w3 ≡
1

2
r3 sin θ [x(1− x)(a− x)]1/2eiψ . (D.18)

This results in the following embedding equations in terms of the real coordinates

ψ =
1

1 + n2

(n1φ− 6n2α)− ψs , (D.19)

r = rmin

[
z1+n1+n2(1− z)1−n1+n2

]−1/6 [
x2e1(1− x)2e2(a− x)2e3

]−1/6

≡ rminrzrx , (D.20)
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where

ψs ≡ arg(µ) +
2πs

p2 + p3

, s ∈ {0, 1, . . . , (p2 + p3)− 1} (D.21)

r
3/2
min ≡ |µ| , (D.22)

and

ei ≡
1

2

(
1 +

n2

yi

)
, (D.23)

n1 ≡
p1

p3

, (D.24)

n2 ≡
p2

p3

. (D.25)

Integration over φ and α together with the embedding equation (D.19) dictates

the following selection rules for the quantum numbers of the angular eigenfunctions

(D.9),

m = −n1

2
QR , nα = 3`n2QR , nψ =

1 + n2

2
QR , (D.26)

where QR is the R-charge defined as QR ≡ 2nψ − 1
3`
nα. In this case αi = ei

QR
2

.

Finally, we need the determinant of the induced metric on the four-cycle

dθdx
√
gind =

r4

z(1− z)x(1− x)(a− x)
G(x, z) dzdx . (D.27)

G(x, z) is a polynomial of order 3 in x and of order 2 in z.

Main Integral. The main integral (the analog of (C.15)) is therefore given by

IL =

∫
dxdz G(x, z)N2

L

z(1− z)x(1− x)(a− x)

(
r

rmin

)−6Q+
L

P a,b
A=l−nψ(1− 2z)hL(x) , (D.28)

with a ≡ (1+n1 +n2)QR
2

, b ≡ (1−n1 +n2)QR
2

and 6Q+
L ≡ 2λ+ 3

2
QR. We will calculate

this integral for a general 6Q+
L = 2w + 3

2
QR and then take the limit w → λ.
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First we compute the integral over z in complete analogy to the treatment of

Appendix C. The Jacobi polynomial satisfies

r3QR
z

d

dz

(
r−3QR
z z(1− z)

d

dz
P a,b
A (1− 2z)

)
+A(A+ 1 + a+ b)P a,b

A (1− 2z) = 0 . (D.29)

Let us multiply this equation by r
−(2w+ 3

2
QR)

z and integrate over z. It can be shown

that there is a third order polynomial G(x) which is implicitly defined by the following

relation

G(x, z)

z(1− z)
−G(x) =

G(x, z = 0)

(1 + n1 + n2)2
(
w2

92 −
Q2
R

16

) ×
×
[
r

2w+ 3
2
Qr

z
d

dz

(
z(1− z)r−3QR

z

d

dz

(
r

3
2
QR−2w

z

))
+ A(A+ 1 + a+ b)

]
. (D.30)

The right-hand side vanishes after multiplying by r
−6Q+

L
z P a,b

A (1− 2z) and integrating,

and we get

IL =

∫
dxG(x)N2

L

x(1− x)(a− x)
r
−6Q+

L
x hL(x)

∫
dz r

−6Q+
L

z P a,b
A (1− 2z) . (D.31)

D.2. Non-Chiral Contributions

To evaluate (D.31) we make use of the differential equation (D.11). We multiply

(D.11) by r
−2w− 3

2
QR

x and integrate over x. There exists a first order polynomial

M
√
g(x) such that

G(x)

x(1− x)(a− x)
−M

√
g(x) =

=
144 G(x = 0)

(1− n2)(3QR + 4λ)(18QRn2 + 8λn2 − 9QR − 4λ− 24)
×
[
(αβx− k)−

− r2w+ 3
2
QR

x
d

dx

(
r
−2w− 3

2
QR

x (γ(1− x)(a− x) + δx(x− a) + εx(x− 1))
)

+ r
2w+ 3

2
QR

x
d2

dx2

(
x(1− x)(a− x)r

−2w− 3
2
QR

x

)]
, (D.32)
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where we defined

M ≡ 48(λ− w)(λ+ w + 2)

(1 + n2)(16w2 − 9Q2
R)

. (D.33)

After multiplying by r
−6Q+

L
x h(x) and integrating over x, the right-hand side vanishes

and we have

IL = MN2
L

∫
dxdz

√
g(x, z)

(
r

rmin

)−6Q+
L

P a,b
A (1− 2z)h(x) (D.34)

= MNL

∫
dzdx

√
g

(
r

rmin

)−2λ

J(z)R(x) . (D.35)

Since limw→λM = 0, this immediately implies that limw→λ IL = 0 ‘on-shell’, i.e. for

all operators except for the chiral ones. Just as for the singular conifold case, we have

therefore proven that non-chiral terms do not contribute to the perturbation to the

warped four-cycle volume.

D.3. Chiral Contributions

For the chiral operators one finds

λ =
3

4
QR , (D.36)

and both the numerator and the denominator of M (D.33) vanish. Chiral operators

also require A = l − nψ to be equal to zero. Taking the chiral limit we therefore find

IL =
(3QR + 4)

(1 + n2)QR

N2
L

∫
dx q(2p+ 3q +

√
4p2 − 3q2 − 6qx)

24p2

(
r

rmin

)−3QR

(D.37)

=
(3QR + 4)

(1 + n2)QR

1

(2π)3`
, (D.38)

since A = 0 implies P a,b
A (1 − 2z) = 1 and h(x) = 1. The integral in (D.37) reduces

to the normalization condition (D.13). Finally, we use the identity for chiral wave-

functions r
3
2
QRYL(Ψ) = (wn1

1 wn2
2 w3)

QR
2 and the relation between T3 (δV w

Σ4
)chiral and IL

(an analog of (C.14)). Note that the (2π)3 in (C.14) should be changed to (2π)3` as
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α runs from 0 to 2π`. We hence arrive at the analog of (C.33)

T3 (δV w
Σ4

)chiral =
1

2

∑
QR,s

2

(1 + n2)QR

(w̄n1
1 w̄n2

2 w̄3)
QR
2 ei

(1+n2)
2

QRψs , (D.39)

where we recall that ψs = 2πs
p2+p3

. The summation over s effectively picks out nψ =

(1+n2)
2

QR to be of the form (p2+p3)s′ with natural s′, or QR = 2p3s
′. After summation

over s′ we have

T3 (δV w
Σ4

)chiral = −1

2
ln

[
µ̄2p3 −

∏
i w̄

pi
i

µ̄2p3

]
. (D.40)

A similar calculation for the anti-chiral contributions gives the complex conjugate

of (D.40).

The final result for the perturbation of the warped volume of four-cycles in cones

over Y p,q manifolds is then

T3 δV
w

Σ4
= −Re

(
ln

[
µ2p3 −

∏
iw

pi
i

µ2p3

])
, (D.41)

so that

A(wi) = A0

(µ2p3 −
∏

iw
pi
i

µ2p3

)1/n

. (D.42)



APPENDIX E

The F-term Potential

In this appendix we derive the F-term potential for D3-branes and wrapped D7-

branes in the conifold.

E.1. The Singular Conifold

The conifold constraint,
∑4

i=1 z
2
i = 0, for complex coordinates {zi; i = 1, 2, 3, 4}

may be written as det(W ) = 0 where

W =
1√
2

 z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

 ≡
 w3 w2

w1 w4

 . (E.1)

The Kähler potential (7.3) is chosen such that the Kähler metric on the conifold,

kαβ ≡ ∂α∂βk, is Calabi-Yau (Ricci-flat)

ds2 = ∂α∂βk duαduβ

= k′′ |Tr(W †dW )|2 + k′Tr(dWdW †) , (E.2)

where (. . . )′ ≡ d(... )
dr3 and {uα;α = 1, 2, 3} are three complex coordinates on the coni-

fold, e.g. uα = zα. The metric on the conifold (E.2) may be cast in the form (7.2)

where

ds2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(dθ2
i + sin2 θidφ

2
i ) , (E.3)

is the metric on the Einstein space T 1,1.
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The complex coordinates zi are related to the real coordinates {r ∈ [0,∞], θi ∈

[0, π], φi ∈ [0, 2π], ψ ∈ [0, 4π]} via

z1 =
r3/2

√
2
e
i
2
ψ

[
cos
(
θ1 + θ2

2

)
cos
(
φ1 + φ2

2

)
+ i cos

(
θ1 − θ2

2

)
sin
(
φ1 + φ2

2

)]
, (E.4)

z2 =
r3/2

√
2
e
i
2
ψ

[
− cos

(
θ1 + θ2

2

)
sin
(
φ1 + φ2

2

)
+ i cos

(
θ1 − θ2

2

)
cos
(
φ1 + φ2

2

)]
, (E.5)

z3 =
r3/2

√
2
e
i
2
ψ

[
− sin

(
θ1 + θ2

2

)
cos
(
φ1 − φ2

2

)
+ i sin

(
θ1 − θ2

2

)
sin
(
φ1 − φ2

2

)]
, (E.6)

z4 =
r3/2

√
2
e
i
2
ψ

[
− sin

(
θ1 + θ2

2

)
sin
(
φ1 − φ2

2

)
− i sin

(
θ1 − θ2

2

)
cos
(
φ1 − φ2

2

)]
. (E.7)

The complex coordinates wi are related to the real coordinates {r, θi, φi, ψ} via

w1 = r3/2e
i
2

(ψ−φ1−φ2) sin
θ1

2
sin

θ2

2
, (E.8)

w2 = r3/2e
i
2

(ψ+φ1+φ2) cos
θ1

2
cos

θ2

2
, (E.9)

w3 = r3/2e
i
2

(ψ+φ1−φ2) cos
θ1

2
sin

θ2

2
, (E.10)

w4 = r3/2e
i
2

(ψ−φ1+φ2) sin
θ1

2
cos

θ2

2
. (E.11)

E.2. Making SO(4) Symmetry Manifest

It is sometimes convenient to write the F-term potential (7.13) in terms of the

four homogeneous coordinates zi of the embedding space C4 which makes the SO(4)

symmetry of the conifold transparent. For that reason we define a new metric K̂AB

which depends on zi in such a way that for any function W (zi) the following identity

is satisfied

DAW K̂ABDBW ≡ DΣWKΣΩDΩW , (E.12)

where {ZA} ≡ {ρ, zi; i = 1, 2, 3, 4} and {ZΣ} ≡ {ρ, zα;α = 1, 2, 3}. In this equation

the conifold constraint, z2
4 = z2

4(zα) = −
∑3

α=1 z
2
α, is substituted after differentiation

on the left-hand side and before differentiation on the right-hand side. The metric

K̂AB(zi) defined through (E.12) is not unique and the choice of one over another is a



E. the f-term potential 233

matter of convenience. We construct K̂AB with the help of the auxiliary matrix JAΣ

K̂AB = JAΣKΣΩ JB
Ω
, (E.13)

where JAΣ is defined as follows

DΣW =
∂ZA

∂ZΣ
DAW ≡ JAΣ DAW , JAΣ =


1 0

0 δiα

0 −zα√
−

P3
γ=1 z

2
γ

 . (E.14)

This gives K̂AB as a function of zα. To find it as a function of zi guess a K̂AB(zi)

such that it reduces to K̂AB(zα) after substituting the conifold constraint. This step

and hence K̂AB(zi) is not unique. Nevertheless finding an SO(4)–invariant K̂AB(zi)

is not difficult, e.g. replacing
(
−
∑3

γ=1 z
2
γ

)1/2

by z4 everywhere in K̂AB(zα) and JAΣ

we find

K̂AB =
κ2U

3

 U + γklk̂
lmkm klk̂

l

k̂imkm
1
γ
k̂i

 , (E.15)

where

ki =
zi
r
, (E.16)

and

k̂i = J iα k
αβ J 

β
= r

[
δi +

1

2

zizj
r3
− zizj

r3

]
. (E.17)

Notice that k̂i is not the inverse of ki = 1
r

[
δi̄− 1

3

zizj
r3

]
, which is ki = r

[
δi + 1

2

zizj
r3

]
.

From (E.16) and (E.17) one then finds

klk̂
l̄ =

3

2
zj , klk̂

lmkm =
3

2
r2 = r̂2 = k , (E.18)

and hence,

K̂AB =
κ2U

3

 ρ+ ρ 3
2
zj

3
2
zi

r
γ

[
δi + 1

2

zizj
r3 − zizj

r3

]
 . (E.19)
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Using the above results we arrive at the F-term potential

VF =
κ2

3U2

[
(ρ+ ρ)|W,ρ|2 − 3(WW,ρ + c.c.) +

3

2
(W,ρz

iW,i + c.c.) +
1

γ
k̂iW,iW,j

]
.

(E.20)

The result (E.20) is essential for the main analysis presented in Chapter 7. In terms

of the wi-coordinates the F-term potential (E.20) is

VF =
κ2

3U2

[
(ρ+ ρ)|W,ρ|2 − 3(WW,ρ + c.c.) +

3

2
(W,ρw

iW,i + c.c.) +
1

γ
k̂iW,iW,j

]
,

(E.21)

where

k̂i = r

[
δi +

1

2

wiwj
r3
−
ci
′
i c

j′

j wi′wj′

r3

]
. (E.22)

The matrix ci
′
j has only four non-zero elements c1

2 = c2
1 = 1 and c3

4 = c4
3 = −1.



APPENDIX F

Dimensional Reduction

As explained in detail in Chapters 5 and 7, D7-branes wrapping certain four-cycles

in the compactification source nonperturbative effects that stabilize the volume mod-

ulus. In §F.1 we identify the real part of the Kähler modulus with the warped volume

of the four-cycle and give a detailed derivation of the DeWolfe-Giddings Kähler po-

tential. These results are well known, but our goal here is to fix notation with enough

care to permit precise discussions in Chapter 7. §F.2 computes the throat contribution

to the warped four-cycle volume for our setup and relates it to microscopic compact-

ification data. We also explain how this relates microscopic input to the energy scale

of inflation. Finally, in §F.3, we present an improved derivation of the field range

bound of [21] that includes a non-trivial breathing mode of the compactification.

F.1. Kähler Modulus and Kähler Potential

We consider the line element

ds2 = h−1/2(y)e−6ugµνdx
µdxν + h1/2(y)e2ugαβ̄dyαdyβ , (F.1)

where gµν is the four-dimensional Einstein frame metric, h is the warp factor, gαβ̄ is a

fiducial metric on the internal space, and the factor eu extracts the breathing mode.

Before proceeding, let us explain the division of the metric g̃αβ̄ ≡ e2ugαβ̄ into a

fiducial metric g and a breathing mode e2u. These two objects do play different roles:
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note in particular that although g affects the four-dimensional Planck mass

M2
pl =

1

π
(T3)2

∫
d6y
√
g h ≡ 1

π
(T3)2V w

6 , (F.2)

the breathing mode does not, because of the factor e−6u in the spacetime term of

(F.1).

For any fixed location Y ≡ Yα of the D3-brane, there is a minimum ρ?(Y ) of

the nonperturbatively-generated potential for the Kähler modulus ρ. (We will soon

come to a precise definition of ρ in terms of the fields in (F.1).) We argued in §3 for

an adiabatic approximation in which, as the D3-brane moves and hence the location

ρ?(Y ) of the instantaneous minimum changes, ρ moves to remain in this instantaneous

minimum ρ?(Y ). In terms of the fields in (F.1), this is most conveniently represented1

by fixing the fiducial metric once and for all, but allowing the breathing mode eu(Y,Ȳ )

to keep track of the change in the volume that is due to the displacement of the

D3-brane.

To this end, we normalize the fiducial metric g to correspond to ρ?(0), i.e. so that

the volume computed with g is precisely the physical volume of the internal space

when the D3-brane sits at the tip of the throat, Y ≈ 0. Then, eu(Y,Ȳ ) represents the

change in the volume that is due to the displacement of the D3-brane away from the

tip, and by this definition, u(0) = 0. In the throat region, the fiducial metric takes

the form

gαβ̄dyαdyβ = dr̂2 + r̂2ds2
T 1,1 . (F.3)

The non-perturbative superpotential arising from strong gauge dynamics on n

D7-branes (or Euclidean D3-instantons) wrapping a four-cycle Σ4 in the background

(F.1) is [18]

|Wnp|2 ∝ exp

[
−

2T3V
w

Σ4
e4u

n

]
, (F.4)

1At the end of this section we will verify that choosing a different normalization of the
fiducial metric does not affect any physical quantities.
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where V w
Σ4
≡
∫

d4ξ
√
gind h. Before the mobile D3-brane enters the throat region, the

(warped) four-cycle volume is (V w
Σ4

)0. When the D3-brane is in the throat, it induces

a perturbation in the warp factor, δh, which sources a change in the warped four-cycle

volume, δV w
Σ4

(Y ). (This change in the warped volume is logically distinct from the

shift in the stabilized value of the Kähler modulus studied in Appendix H.) Hence,

|Wnp|2 ∝ exp

[
−

2T3δV
w

Σ4
(Y )e4u(Y,Ȳ )

n

]
exp

[
−

2T3(V w
Σ4

)0e
4u(Y,Ȳ )

n

]
(F.5)

≡ |A(Y )|2e−a(ρ+ρ̄) . (F.6)

We now define a ≡ 2π
n

and identify the Kähler modulus [18]

ρ+ ρ̄ ≡ Γe4u(Y,Ȳ ) + γk(Y, Ȳ ) , Γ ≡
T3(V w

Σ4
)0

π
. (F.7)

Here k is the little Kähler potential for the fiducial metric on the conifold, ∂α∂β̄k ≡

gαβ̄. The term proportional to k in (F.7) has to be added to make ρ holomorphic; see

[18, 77] for extensive discussions of this issue. Because u(0) = k(0) = 0, we may relate

the parameter Γ to the value of the stabilized Kähler modulus ρ when the D3-brane

is at the tip of the throat,

Γ ≡ ρ?(0) + ρ̄?(0) = 2σ?(0) ≡ 2σ0 . (F.8)

The range of allowed values for σ0 is constrained by the throat contribution to the

warped four-cycle volume, which we will compute in the next section.

With these definitions the DeWolfe-Giddings Kähler potential is

K = −3M2
pl ln

[
ρ+ ρ̄− γk(Y, Ȳ )

]
= −3M2

pl ln
[
Γe4u(Y,Ȳ )

]
. (F.9)

To determine the constant γ, we compare the kinetic terms derived from the DBI

action,

LDBI
kin = −1

2
T3e

−4ugαβ̄∂µY
α∂µY β , (F.10)
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with the kinetic terms2 derived from (F.9),

LKkin = −Kαβ̄∂µY α∂µY β

≈ 3M2
ple
−4u∂α∂β̄e

4u∂µY
α∂µY β , (F.11)

where

∂α∂β̄e
4u = −γ

Γ
∂α∂β̄k = −γ

Γ
gαβ̄ . (F.12)

Equations (F.10) and (F.11) are consistent if we define

γ ≡ Γ

6

T3

M2
pl

=
1

6

(V w
Σ4

)0

V w
6

. (F.13)

Using equation (F.8) this may be written in the useful form

γ =
σ0

3

T3

M2
pl

. (F.14)

We now notice that the physical quantities of interest, such as ρ and γk, are inde-

pendent of the split into breathing mode eu(0) and fiducial metric g in (F.1). For

2Of course, the complete kinetic terms for the D3-brane coordinates and the volume modulus
are

Lkin ≡ −Kρρ∂µρ∂µρ−KYαYβ∂µY
α∂µY β −

(
KρYβ∂µρ∂

µY β + c.c.
)

= 3M2
pl

γkαβ∂µY
α∂µY β

U

−3M2
pl

∣∣∣∣∂µρU
∣∣∣∣2 + 3M2

pl

∣∣∣∣γkα∂µY α

U

∣∣∣∣2 + 3M2
pl

(
∂µρ

U

γkβ∂
µY β

U
+ c.c.

)

≈
3M2

plγkαβ∂µY
α∂µY β

U
,

In the final relation we have focused attention on a subset of the kinetic terms for the
D3-brane coordinates. This is justified for several reasons. First, in Chapter 7 we are
specifically searching for (fine-tuned) configurations in which the D3-brane potential is
unusually flat. In such a case, it is consistent to use an adiabatic approximation for the
motion of the volume modulus, and omit the kinetic terms for ρ. Next, the term involving
|kα∂µY α|2 is suppressed, relative to the term we have retained, by U−1 � 1. Furthermore,
kα vanishes at the tip of a singular conifold, and is correspondingly very small at the tip of
the deformed conifold we are considering. Finally, from the explicit form of k we learn that
the term |kα∂µY α|2 is suppressed by the small quantity (φ/Mpl)2 relative to the term we
have retained.
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example,

γk =
1

6

T3

[M2
ple

6u]

T3[(V w
Σ4

)0e
4u]

π
[e2uk] =

1

6

(Ṽ w
Σ4

)0

Ṽ w
6

k̃ ≡ γ̃k̃ , (F.15)

where we have defined

k̃ ≡ e2uk = e2ur2 = r̃2 , (F.16)

and

γ̃ ≡ e−2uγ =
Γ̃

6

T3

[M2
ple

6u]
=

1

6

(Ṽ w
Σ4

)0

Ṽ w
6

, (F.17)

where

Γ̃ ≡ Γe4u = 2σ0e
4u . (F.18)

This shows that γ̃k̃ is invariant under the change of conventions

e2u(0) → λe2u(0) , gαβ̄ → λ−1gαβ̄ . (F.19)

One easily sees that ρ+ ρ̄ is likewise invariant. We have therefore justified our original

choice of the convenient value u(0) = 0.

F.2. Warped Four-Cycle Volume

The four-cycle Σ4 wrapped by the D7-branes is, in principle, compact. The vol-

ume of the four-cycle receives contributions both from the throat region and the bulk,

(V w
Σ4

)0 = (V w
Σ4

)0,throat +(V w
Σ4

)0,bulk. Since we have access to explicit metric information

only in the throat region we cannot evaluate (V w
Σ4

)0,bulk. However, we can still make

progress by deriving results that are largely independent of the unknown bulk region.

In the remainder of this section we compute (V w
Σ4

)0,throat for various embeddings and

use (V w
Σ4

)0 ≡ B4(V w
Σ4

)0,throat, with B4 > 1, to parameterize the unknown bulk contri-

bution. In the non-compact limit, (V w
Σ4

)0,throat diverges. Here we identify the leading

order divergence and regularize the throat volume by introducing the UV cutoff r̂UV,

where the throat attaches to the bulk and h(r̂UV) ≈ 1.
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We use the following approximation to the warp factor [87, 106],

h ≈ L4

r̂4
ln

r̂

ε2/3
, (F.20)

where

2T3L
4 =

27

16π2

(
3gsM

2πK

)
N , lnQ0 ≡ ln

r̂UV

ε2/3
≈ 2πK

3gsM
. (F.21)

At large radius r̂ the D7-brane wraps an S3 and the metric on the four-cycle is

ds2
Σ4
→ dr̂2 + r̂2ds2

S3 . (F.22)

The warped four-cycle volume then becomes

(V w
Σ4

)0 ≡
∫

d4ξ
√
gindh = B4L

4Vol(S3)

∫ r̂UV

r̂µ

dr̂

r̂
ln

r̂

ε2/3
(F.23)

= B4L
4Vol(S3) lnQµ

[
lnQ0 −

1

2
lnQµ

]
, (F.24)

where Qµ ≡ r̂UV

r̂µ
> 1. The numerical value of Vol(S3) depends on the specific embed-

ding. For the Kuperstein embedding we have [114]

Vol(S3) =
16π2

9
, (F.25)

and hence, by (F.7),

Γ =
3

2π
B4N lnQµ

[
1− 1

2

lnQµ

lnQ0

]
. (F.26)

This implies

ω0 ≡ aσ0 =
3

2
B4

(
N

n

)
lnQµ

[
1− 1

2

lnQµ

lnQ0

]
, (F.27)

≈ 3

2
B4

(
N

n

)
lnQµ . (F.28)

Since, B4 > 1, N/n > 1 and Qµ > 1, this can assume a range of values, with

ω0 = O(10) being easily achievable. The value of ω0 is important as it determines
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the scale of inflation

VdS
M4

pl

∼ e−2ω0

2ω0

. (F.29)

In particular, for B4 = O(1) and lnQµ = O(1), constraints on the minimal phe-

nomenologically viable inflation scale, VdS > O(TeV4) ∼ 10−60M4
pl or ω0 . 150,

translate into an upper limit on the background five form flux

N

n
< O(102) . (F.30)

This can be a serious constraint on nonperturbative volume stabilization by the KKLT

mechanism.

Finally, the ACR [9] embeddings,
∏4

i=1w
pi
i = µP , satisfy

Vol(S3) =
16π2

9
P , (F.31)

and hence

ω0 ≈
3

2
PB4

(
N

n

)
lnQµ . (F.32)

F.3. Canonical Field Range

F.3.1. Canonical Inflaton. The inflaton action includes the kinetic term

Lkin = −1

2
T3e

−4u(r̂)(∂µr̂)
2 ≡ −1

2
(∂µϕ)2 , (F.33)

so the canonical inflaton field is

ϕ =

∫ (
T3

Γ

Γ̃(r̂)

)1/2

dr̂ . (F.34)

For analytical considerations the following approximation is often sufficient (see Ap-

pendix H for more accurate analytical results)

ϕ2 ≈ Γ

Γ̃(r̂)
T3r̂

2 ≈ 2σ0

ρ+ ρ̄
T3r̂

2 ≈ T3r̂
2 ≡ φ2 . (F.35)
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This is independent of the split into breathing mode and fiducial metric in (F.1):

ϕ2

M2
pl

=
[Γe4u]

Γ̃

T3[e2ur̂2]

[M2
ple

6u]
=

r̃2

1
π
T3Ṽ w

6

. (F.36)

This implies

γk

ρ+ ρ̄
=

Γ

ρ+ ρ̄

T3r̂
2

6M2
pl

≈ Γ

Γ̃

T3r̂
2

6M2
pl

=
1

6

ϕ2

M2
pl

(F.37)

and the DeWolfe-Giddings Kähler potential becomes separable

κ2K ≈ −3 ln(ρ+ ρ̄)− 3 lnu , u ≡ 1− 1

6

ϕ2

M2
pl

. (F.38)

F.3.2. Bound on the Field Range. We now derive the microscopic bound on

the inflaton field range in four-dimensional Planck units [21]. Recall that the Planck

mass depends on the warped volume of the internal space as

M2
pl =

1

π
(T3)2V w

6 , (F.39)

where V w
6 is computed from the fiducial metric excluding the breathing mode. The

warped volume of the internal space receives contributions both from the throat and

from the bulk, V w
6 = (V w

6 )throat +(V w
6 )bulk. Since the bulk metric is not known we use

the parametrization V w
6 ≡ B6(V w

6 )throat, with B6 > 1, to characterize the unknown

bulk contribution. Using the warp factor (F.20), we find that the leading contribution

to the throat volume is

(V w
6 )throat =

π

T3

N

4
r̂2

UV . (F.40)

This implies that the range of the inflaton is bounded by [21]

ϕ2

M2
pl

≤ ϕ2
UV

M2
pl

=
4

e4u(rUV)NB6

, (F.41)

where

e4u(rUV) =
σ(rUV)

σ(0)
. (F.42)
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In Chapter 8 we explained that this relation sharply limits the amount of gravitational

waves that can be expected in D-brane inflation models. One of the main results of the

present paper is that the bound (F.41) also provides a surprisingly strong constraint

on the possibility of fine-tuning the inflaton potential, even in cases where the energy

scale of inflation is too low for gravitational waves to be relevant.

The bound (F.41) is written in a slightly stronger and more general form than the

bound given in Chapter 8,

ϕ2

M2
pl

≤ 4

N
. (F.43)

The factor B6 > 1 is simply an explicit representation of the unknown bulk contribu-

tion to V w
6 and hence to M2

pl. The breathing mode factor requires further explanation.

Recall that we have used the convention eu(0) = 1, so that the breathing mode factor

is unity when the D3-brane is at the tip of the throat. We will now argue that in

the configurations of interest, the variation of the breathing mode as the D3-brane

is displaced from the tip is characterized by the condition e4u(r) = σ(r)
σ(0)
≥ 1. The

D3-brane potential from moduli stabilization is minimized when the D3-brane is at

the tip of the throat, in all the configurations studied in this paper (see also [59]).

Displacing the D3-brane from the tip increases the potential, and so tends to increase

the compactification volume, because positive energy causes a runaway potential for

the volume. (We have confirmed this expectation by explicit numerical analysis in

§4.3, and by analytical arguments in Appendix H.) Thus, moving the D3-brane up

the throat dilates the space, and leads to e4u(r) = σ(r)
σ(0)

> 1 for r > 0. This effect goes

in the direction of making the bound (F.41) stronger than (F.43), but the effect is

very small in practice: in the cases we considered, 1 < σ(rUV)
σ(0)

< 1.1. Such a factor is a

negligible correction in comparison to the uncertainties in B6, so it is very reasonable

to omit it, as in Chapter 8.



APPENDIX G

Stability in the Angular Directions

In this appendix we study the angular stability of the radial inflationary trajectory

proposed in Chapter 7.

G.1. Kuperstein Embedding

The following analysis complements our Kuperstein case study of §3 and §4 in

Chapter 7. In §G.1.1 we derive the condition for extremal trajectories z1 = ± r3/2
√

2

whose angular stability we investigate in §G.1.2.

G.1.1. Extremal Trajectories. Recall that the Kuperstein potential (7.26) de-

pends only on the following dynamical fields: |z1|2, z1 + z1, r, and σ = Re(ρ). Along

a trajectory that extremizes the potential in the angular directions we must have

∂V
∂Ψi

= 0 for all r, so we aim to find points in T 1,1 that satisfy

∂|z1|2

∂Ψi

= 0 =
∂(z1 + z1)

∂Ψi

. (G.1)

We examine (G.1) by introducing local coordinates in the vicinity of a fiducial point

z0 ≡ (z′1, z
′
2, z
′
3, z
′
4). The coordinates around this point are given by the five generators

of SO(4) acting nontrivially on z0

z(r,Ψi) = exp(T) z0 . (G.2)

The Kuperstein embedding, z1 = µ, breaks the global SO(4) symmetry of the conifold

down to SO(3), and the D3-brane potential preserves this SO(3) symmetry. We will

244
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find that the actual trajectory breaks this SO(3) down to SO(2) which we take to

act on z3 and z4. The coordinates that make this SO(2) stability group manifest are

given by

T ≡



0 α2 α3 α4

−α2 0 β3 β4

−α3 −β3 0 0

−α4 −β4 0 0


, (G.3)

where Ψi ≡ {αi, βi} ∈ R are the local coordinates of the base of the cone. We aim

to find z0 such that the potential V (z1 + z1, |z1|2) is extremal along z0. We here find

trajectories along which the linear variation of z1 + z1 and |z1|2 vanishes. First, we

observe from (G.2) and (G.3) that for arbitrary z0 we have

δz1 =
4∑
i=2

αiz
′
i , αi ∈ R . (G.4)

and, hence,

δ|z1|2 =
4∑
i=2

αi(z
′
iz̄
′
1 + z′1z̄

′
i) ≡ 0 . (G.5)

To satisfy (G.5) for all αi one requires

z′i = iρiz
′
1 , ρi ∈ R . (G.6)

We may use SO(3) to set ρ3 = ρ4 = 0, while keeping ρ2 finite. The conifold constraint,

z2
1 + z2

2 = 0 then implies ρ2 = ±1, while the requirement

δ(z′1 + z̄′1) = a2(z′2 + z̄′2) = 0 , (G.7)

makes z′2 purely imaginary and z′1 real. This proves that the following is an extremal

trajectory of the brane potential for the Kuperstein potential

z′1 = ± 1√
2
r3/2 , z′2 = ±iz′1 . (G.8)
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G.1.2. Stability. Let us now study the stability of the potential along the path

(G.8). From (G.2) one finds

z1 = z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) +
i

2
ρ2(2α2 − α3β3 − α4β4) + · · ·

]
, (G.9)

and

z1 + z̄1 = 2z′1

[
1− 1

2
(α2

2 + α2
3 + α2

4) + · · ·
]
, (G.10)

|z1|2 = (z′1)2
[
1− (α2

3 + α2
4) + · · ·

]
. (G.11)

Since the Kuperstein potential (7.26) depends only on r, z1 + z1, and z1z1, and

∂|z1|2

∂Ψi

∣∣∣∣
0

=
∂(z1 + z1)

∂Ψi

∣∣∣∣
0

= 0 (G.12)

where
(
. . .
)∣∣

0
denotes evaluation at z0, we find

∂V

∂Ψi

∣∣∣∣
0

= 0 , (G.13)

and

∂2V

∂Ψi∂Ψj

∣∣∣∣
0

=

[
∂V

∂|z1|2
∂2|z1|2

∂Ψi∂Ψj

+
∂V

∂(z1 + z1)

∂2(z1 + z1)

∂Ψi∂Ψj

]∣∣∣∣
0

, (G.14)

where

∂i∂j|z1|2
∣∣
0

= ±r
3/2

√
2
∂i∂j(z1 + z1)|0 + r3δi2δj2 = −r3δi3δj3 − r3δi4δj4 . (G.15)

Hence, the angular mass matrix at z0 has the form

∂2V

∂Ψi∂Ψj

∣∣∣∣
0

=



X 0 0 0 0

0 X + Y 0 0 0

0 0 X + Y 0 0

0 0 0 0 0

0 0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2

α3

α4

β3

β4

(G.16)



G. stability in the angular directions 247

where

X ≡ ∓
√

2r3/2 ∂V

∂(z1 + z1)

∣∣∣∣
0

, (G.17)

Y ≡ −r3 ∂V

∂|z1|2

∣∣∣∣
0

. (G.18)

The flat-directions in the β–angles parameterize the symmetry group SO(3)/SO(2)

that leaves the Kuperstein embedding z1 = µ invariant. The α3 and α4–angles have

degenerate eigenvalues.

To calculate the eigenvalues X and Y we note that the F-term potential (7.26)

may be written as

VF = C(r, σ)G1/n

[
(2aσ + 6)− 6 eaσ|W0|

|A0|
G−1/2n

+
3

2n

( 1

µ
(z1 + z1)− 2

µ2
|z1|2

)
G−1 +

4c

n

r

rµ

(
1− |z1|2

2r3

)
G−1

]
, (G.19)

and the D-term potential (7.20) depends only on r and is independent of the angles

(at least far from the tip [59]). In (G.19) we have defined the functions

C(r, σ) ≡ κ2a|A0|2e−2aσ

3U2
> 0 , ∂z1+z1C = ∂|z1|2C = 0 , (G.20)

G ≡ |A|
|A0|

=

∣∣∣∣1− z1

µ

∣∣∣∣2 , ∂z1+z1G =
−1

µ
, ∂|z1|2G =

1

µ2
, (G.21)

G0 ≡ G|0 = |1∓ x3/2|2 = g(x)2 , (G.22)

and the variable

x ≡ sign(z1)
r

rµ
=

φ

φµ
. (G.23)
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After a lengthy but straightforward computation we find

X = ±2C
n

x3/2

|1∓ x3/2|2(1−1/n)

[
2aσ +

9

2
− 3 eaσ|W0|

|A0|
1

|1∓ x3/2|1/n

∓ 3
(

1− 1

n

)x3/2(1∓ x3/2)

|1∓ x3/2|2
− 3c

(
1− 1

n

) x

|1∓ x3/2|2

]
, (G.24)

and

X + Y =
(
1∓ x3/2

)
X +

2Cc
n

x

|1∓ x3/2|2(1−1/n)

(
1 +

3

2c
x2

)
, (G.25)

where

c ≡ 9

4n aσ0
φ2
µ

M2
pl

. (G.26)

Notice that stability of the trajectory z1 = ± 1√
2
r3/2 for both positive and negative real

z1 only requires thatX > 0 (from (G.25) this automatically impliesX+Y > 0; at least

for the regime of interest: r < rµ). Hence, from equation (G.24) a simple numerical

check can decide whether a specific scenario is stable in the angular directions. For

all potential inflationary trajectories we have performed this stability test.

Analytical approximation. In Appendix H we explain how the position of the

Kähler modulus in the AdS vacuum, σF , shifts to σ0 when the minimum gets uplifted

to de Sitter

aσ0 ≈ aσF +
s

aσF
, s ≡ VD(0, σF )

|VF (0, σF )|
, (G.27)

where 3|W0|
|A0| e

aσF = 2aσF + 3 and 3|W0|
|A0| e

aσ0 ≈ 2aσ0 + 3 + 2s. Substituting this into

(G.24) we find

X = ±2C
n

x3/2

|1∓ x3/2|2(1−1/n)

[
3

2
− 2s

|1∓ x3/2|1/n
+ 2aσ0

(
1− 1

|1∓ x3/2|1/n
)

+ 3
(

1− 1

|1∓ x3/2|1/n
)
∓ 3
(

1− 1

n

)x3/2(1∓ x3/2)

|1∓ x3/2|2

−3c
(

1− 1

n

) x

|1∓ x3/2|2

]
. (G.28)
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In the limit x→ 0 this becomes

lim
x→0

X = ∓C
n
x3/2 [4s− 3] . (G.29)

Hence, the near tip region is stable on the negative axis and unstable on the positive

axis. Notice that it was essential to include the shift from uplifting to realize this.

G.2. Ouyang Embedding

G.2.1. Extremal Trajectories. For the Ouyang embedding, w1 = µ, the brane

potential depends on w1 + w1, |w1|2 and |w2|2. To find extremal trajectories of the

potential we therefore require

∂|w1|2

∂Ψi

=
∂|w2|2

∂Ψi

=
∂(w1 + w1)

∂Ψi

= 0 . (G.30)

We introduce local coordinates by applying generators of SU(2) to the generic point

W0

W = eiT1W0e
−iT2 , W0 ≡

 w′3 w′2

w′1 w′4

 , (G.31)

where

Ti ≡

 αi βi + iγi

βi − iγi −αi

 . (G.32)

This implies

δw1 = −i(α1 + α2)w′1 + (−β1 + iγ1)w′3 + (β2 − iγ2)w′4 + · · · (G.33)

and δ(w1 + w̄1) = 0 gives w′1 ∈ R, w′3 = w′4 = 0. We find that δ|w1|2 = 0 and

δ|w2|2 = 0 if w′2 ∈ R. The conifold constraint w′1w
′
2 = 0 then restricts the solution to

the following two options:

w′1 = 0 , |w′2| = r3/2 , ⇔ θ1 = θ2 = 0 , (G.34)
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or

w′1 = ±r3/2 , w′2 = 0 , ⇔ θ1 = θ2 = π . (G.35)

Delta-flat direction. For w′1 = 0 the superpotential correction to the potential

vanishes and inflation is impossible, as noted in [45] and reviewed in §5 of Chapter 7.

Non-delta-flat direction. For w′2 = 0 the superpotential correction to the potential

does not vanishes. In fact, along this extremal trajectory the potential can be shown

to be identical to the potential for the Kuperstein case. Stability for Ouyang and

Kuperstein however is different as we discuss next.

G.2.2. Stability.

Delta-flat direction. Near w′1 = 0, w′2 6= 0 we have

w1 = w′2 [β1β2 − γ1γ2 − i(β1γ2 + β2γ1)] (G.36)

w2 = w′2

[
1 + i(α1 + α2)− 1

2
(α1 + α2)2 − 1

2
(β2

1 + β2
2 + γ2

1 + γ2
2)

]
(G.37)

and (to second order)

w1 + w1 = 2w′2 [β1β2 − γ1γ2] (G.38)

|w1|2 = 0 (G.39)

|w2|2 = (w′2)2
[
1− (β2

1 + β2
2 + γ2

1 + γ2
2)
]
. (G.40)

The mass matrix in these coordinates is non-diagonal, but may easily be diagonalized

by the transformation

β1,2 =
u1 ± v1√

2
, γ1,2 =

v2 ± u2√
2

, U2 ≡ u2
1 + u2

2 , V 2 ≡ v2
1 + v2

2 . (G.41)

This gives

w1 + w1 = w′2
[
U2 − V 2

]
, |w2|2 = (w′2)2

[
1− (U2 + V 2)

]
. (G.42)
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A lengthy but straightforward computation gives the eigenvalues of the angular mass

matrix of the potential along the delta-flat direction

XU =
2Cc
n

x

[
1∓ 1

4c
x1/2

(
4aσ + 9− 6eaσ|W0|

|A0|

)]
, (G.43)

XV =
2Cc
n

x

[
1± 1

4c
x1/2

(
4aσ + 9− 6eaσ|W0|

|A0|

)]
. (G.44)

We confirmed that these stability criteria are precisely what was found for the delta-

flat direction in Burgess et al. [45] (cf. their equation (3.15)). Equation (G.43) and

(G.44) show that the delta-flat direction is angularly stable if x < xc and unstable if

x > xc, where

xc ≡
(

4c

4s− 3

)2

=
1

(4s− 3)2

(
9

aσ0

)2
1

n2

M4
pl

φ4
µ

. (G.45)

Equation (G.45) is the generalization of (7.92) to general n. Applying the field range

bound in the form
φ2
µ

M2
pl
< 4

N
one finds

xc >
1

(4s− 3)2

(
9

aσ0

)2
N2

(4n)2
≥ 1 . (G.46)

For typical parameters the delta-flat direction is hence stable from the tip to at least

the location of the D7-branes.

Non-delta-flat direction. The non-delta-flat trajectory of the Ouyang embedding

is very closely related to the extremal trajectories of the Kuperstein embedding. In

fact, the shape of the potential is identical for the two cases. However, the stability

analysis reveals subtle, but important differences.

Near w′2 = 0, w′1 6= 0 we have

w1 + w̄1 = 2w′1

[
1− 1

2
(U2 + V 2)

]
, |w1|2 = (w′1)2

[
1− V 2

]
, (G.47)

where we have defined

U2 ≡ (α1 + α2)2 , V 2 ≡ β2
1 + β2

2 + γ2
1 + γ2

2 . (G.48)
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Computing the eigenvalues of the angular mass matrix we find results that are almost

identical to the Kuperstein results (G.24) and (G.25) except for one crucial sign

difference:

XU = X , (G.49)

XV =
(
1∓ x3/2

)
X +

2Cc
n

x

|1∓ x3/2|2(1−1/n)

(
− 1 +

3

2c
x2

)
, (G.50)

where X is the Kuperstein result (G.24). Since the leading term in (G.50) now

comes with the opposite sign (cf. (G.25)), the non-delta-flat trajectory for Ouyang

is typically unstable for small x whereas the corresponding trajectory for Kuperstein

is stable

XV ≈ −
2Cc
n

x

|1∓ x3/2|2(1−1/n)
< 0 . (G.51)

This is consistent with the results of [45].

G.3. Stability for small r

To summarize our discussion of stability for the Kuperstein scenario and the

Ouyang scenario we now give an intuitive explanation of angular stability in the

limit of small r.

For either the Kuperstein or the Ouyang embedding, stability near the tip r → 0

is controlled by the term in the potential proportional to k11̄. We first focus on the

Kuperstein embedding. Since k11̄ contains a term proportional to r−3, its contribution

to the second derivative of the potential with respect to an angular variable Ψi,
∂2V
∂Ψ2

i
,

grows as r. All other terms grow at least as r3/2 (this follows from ∂
∂Ψ

= ∂zi
∂Ψ

∂
∂zi

+ c.c.

and ∂zi
∂Ψ
∼ r3/2). A parallel consideration confirms that k11̄ is responsible for the

leading contribution to the stability analysis in the case of the Ouyang embedding as

well.

Now, the trajectories z1 = ± r3/2
√

2
maximize |z1|2 for a given r, and any variation

of angles may only increase k11̄ = r
(

1− |z1|
2

2r3

)
. Hence the trajectories in question
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are stable at small r under fluctuations of any angles that affect |z1|2. So far, this

analysis does not include the phase of z1, which of course leaves |z1|2 invariant. The

leading correction to the potential from fluctuations of this phase comes not through

k11̄ but through terms in V proportional to z1 + z1. These terms change sign when

z1 does; thus, one of the signs in z1 = ± r3/2
√

2
corresponds to the stable trajectory,

while the other sign corresponds to an unstable trajectory. We showed above that

the stable trajectory in fact corresponds to z1 < 0 (careful consideration of the shift

of the volume, cf. Appendix H, is required for that argument.)

The analysis for the Ouyang embedding is very similar. The delta-flat trajectory

|w2|2 = r3 (θ1 = θ2 = 0) maximizes the ratio |w2|2
r3 . Thus, any angular fluctuation

can only decrease the ratio |w2|2
r3 , without affecting |w1|2

r3 (cf. (G.39)). This is easily

checked with the help of the angular coordinates θi (E.8). On the other hand, the

trajectory |w1|2 = r3 (θ1 = θ2 = π) maximizes |w1|2
r3 , and angular fluctuations away

from this trajectory decrease the ratio |w1|2
r3 , without affecting |w2|2

r3 . As a result,

k11̄ = r
(

1 + |w1|2
2r3 − |w2|2

r3

)
cannot decrease in the case of the delta-flat trajectory

|w2|2 = r3, but necessarily has a negative mode along the non-delta-flat trajectory

|w2|2 = r3. Hence, the non-delta-flat trajectory is unstable for small r. No further

consideration is needed to show that the delta-flat trajectory |w2|2 = r3 is stable.

Since angular fluctuations around w1 = 0 can not affect w1 + w1 term the leading

contribution always comes from k11̄.

We have therefore demonstrated that near the tip, the trajectory |z1|2 = 2r3 is

stable for the Kuperstein embedding, whereas the trajectory |w1|2 = r3 in the Ouyang

embedding is unstable.

G.4. Higher-degree ACR Embeddings

We conclude this appendix with a derivation of the non-delta flat trajectory for

higher degree ACR embeddings. As before, to find an extremal radial direction we

need to satisfy the equations ∂V
∂Ψi

= 0 for any r. Since the potential for a general ACR
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embedding depends only on |Φ|2P , Re(ΦP ) and

Z ≡
∣∣∣∣p1

w4

w1

+ p3
w2

w3

∣∣∣∣2 +

∣∣∣∣p1
w3

w1

+ p4
w2

w4

∣∣∣∣2
+

∣∣∣∣p2
w3

w2

+ p4
w1

w4

∣∣∣∣2 +

∣∣∣∣p2
w4

w2

+ p3
w1

w3

∣∣∣∣2 , (G.52)

we will consider these terms separately. Extremizing Re(ΦP ) with respect to the

phase of Φ selects real ΦP . For any non-zero Φ we can use equations (G.31) and

(G.32) to show that

Re

[
δΦP

ΦP

]
= Re

[∑
i

pi
δwi
wi

]
= 0 (G.53)

for ∣∣∣∣w1

w3

∣∣∣∣2 = tan2 θ1

2
=
p1 + p4

p2 + p3

, (G.54)∣∣∣∣w1

w4

∣∣∣∣2 = tan2 θ2

2
=
p1 + p3

p2 + p4

, (G.55)

and

ΦP = ±λP r3P/2 , (G.56)

where

λP ≡ (p1 + p3)
1
2

(p1+p3)(p1 + p4)
1
2

(p1+p4)(p2 + p3)
1
2

(p2+p3)(p2 + p4)
1
2

(p2+p4)

P P
. (G.57)

Notice that this point trivially extremizes |Φ|2P since

δ|Φ|2P = |Φ|2PRe

[
δΦP

ΦP

]
= 0 . (G.58)

In addition, since ΦP is real, equation (G.53) also implies δRe(ΦP ) = 0. Finally,

surprisingly enough, (G.54, G.55) also extremize (G.52) with respect to the angular

directions. Therefore (G.56) is an extremal radial trajectory which exists for a generic

case in addition to the delta-flat direction, Φ = 0. For P = 1 this reproduces the

non-delta-flat direction for the Ouyang embedding, cf. §G.2. For P = 2, p1 = p2 = 1
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we find that the Karch-Katz embedding has a non-delta-flat direction given by Φ2 =

w1w2 = w3w4 = ±1
4
r3.

Although every ACR embedding contains non-delta flat directions (G.56), we now

argue that these higher degree embeddings (P > 1) are not promising settings for flat

potentials. Recall that for the P = 1 Kuperstein an inflection point could be arranged

on the negative z1–axis (modulo consistency with microscopic constraints) basically

because a x3/2-term in the potential led to a negative divergence of η for small x,

which could be balanced against the x2–term from the η-problem for intermediate x

(see §4.1). For P > 1 embeddings this possibility disappears since there are then no

terms of lower order in x than the x2–term. Hence,

lim
x→0

η =
2

3
. (G.59)

This is suggestive evidence that fine tuning in higher degree ACR embeddings cannot

give inflation, at least not at x < 1 (cf. [113]).



APPENDIX H

Stabilization of the Volume

In this appendix we discuss subtleties in the stabilization of the compactification

volume.

In the AdS minimum of a KKLT compactification, the stabilized value of the

Kähler modulus ωF ≡ aσF is given by the SUSY condition

DρW |r=0, ωF
= 0 ⇒ ∂VF

∂ω

∣∣∣∣
ωF

= 0 , (H.1)

which in terms of the flux superpotential is [93]

3
|W0|
|A0|

eωF = 2ωF + 3 . (H.2)

Adding an antibrane to lift the KKLT AdS minimum to a dS minimum induces a

small shift in the stabilized volume, ω0 = ωF + δω. We compute this shift in §H.1.

This gives the value of the Kähler modulus in the absence of a mobile D3-brane (or

when the brane is near the tip of the throat). The presence of a D3-brane away from

the tip induces a further shift of the volume that depends on the brane position,

which we denote ω?(r). We compute this dependence of the Kähler modulus on the

D3-brane position in §H.2. (See also [113].)

256



H. stabilization of the volume 257

H.1. Shift Induced by Uplifting

The stabilized value of the Kähler after uplifting, ω0 = ωF + δω, is determined

from

∂V

∂ω

∣∣∣∣
ω0

= 0 ≈ ∂2VF
∂ω2

∣∣∣∣
ωF

δω +
∂VD
∂ω

∣∣∣∣
ω0

, (H.3)

where, from (7.20),

∂VD
∂ω

∣∣∣∣
ω0

=
−2VD
ω

∣∣∣∣
ω0

≈ −2VD
ωF

∣∣∣∣
ωF

[
1− 3

δω

ωF

]
. (H.4)

Solving (H.3) and (H.4) for δω we find

δω =
ωF

3 + ω2

2VD

∂2VF
∂ω2

∣∣∣
ωF

. (H.5)

From equation (7.34) we have

VF (0, ω) = C
e−2ω

(2ω)2

[
(2ω + 6)− 6eω

|W0|
|A0|

]
(H.6)

VD(0, ω) = D
1

(2ω)2
(H.7)

and

∂VF
∂ω

= −ω + 2

ω

[
VF + C

e−2ω

2ω

]
. (H.8)

Since

VF (0, ωF ) = −Ce
−2ωF

2ωF
, (H.9)

equation (H.8) vanishes at ωF , confirming equation (H.1). The second derivative of

the F-term potential at ωF is

∂2VF
∂ω2

∣∣∣∣
ωF

= − 2

(ωF )2

[
(ωF )2 +

5

2
ωF + 1

]
VF (0, ωF )

≈ +2 |VF (0, ωF )| , (H.10)
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where ωF � 1. It proves convenient to define the ratio of the antibrane energy to the

F-term energy before uplifting,

s ≡ VD(0, ωF )

|VF (0, ωF )|
, (H.11)

where stability of the volume modulus in a metastable de Sitter vacuum typically

requires 1 . s . O(3). Using (ωF )2

s
� 1 in equation (H.5), we find

ω0 ≈ ωF +
s

ωF
. (H.12)

Although δω is small, it appears in an exponent in the potential (7.34), so that its

effect there has to be considered:

3
|W0|
|A0|

eω0 = 3
|W0|
|A0|

eωF eδω ≈ (2ωF + 3)

(
1 +

s

ωF

)
≈ 2ωF + 3 + 2s ,

≈ 2ω0 + 3 + 2s . (H.13)

H.2. Shift Induced by Brane Motion

Adding a mobile D3-brane to the compactification induces a further shift of the

Kähler modulus that depends on the radial position of the brane, ω?(r). The function

ω?(r) is determined by the solution of a transcendental equation,

∂ωV |ω?(r) = 0 . (H.14)

Although equation (H.14) does not have an exact analytic solution, here we derive

a simple, but very accurate approximate solution. (See also [113].) The precise

form of the solution we give here is only valid for the trajectory z1 = − r3/2
√

2
of the

Kuperstein potential (see Chapter 7). While these results can easily be generalized

to the trajectory z1 = r3/2
√

2
and to more general embeddings, we have argued in the
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main body of the paper that the trajectory z1 = − r3/2
√

2
in the Kuperstein embedding

is of primary interest as far as the possibility of inflationary solutions is concerned.

First, we notice that ω? appears both in polynomial terms and exponential terms

in (H.14). Letting ω? → ω0 = ωF + s
ωF

(see equation (H.12)) in all polynomial terms,

but not in the exponentials, we transform the transcendental equation (H.14) into a

quadratic equation for eω?(r). Solving this we obtain the dependence of the Kähler

modulus on the brane position as an expansion in x

ω?(r) = ω0

[
1 + c1x+ c3/2x

3/2 + c2x
2 + . . .

]
, (H.15)

where

ω0 = ωF +
s

ωF
+
s(3s− 5)

2ω2
F

+O(ω−3
F ) , (H.16)

and

c1 =

(
27

8n2

M2
pl

φ2
µ

)
1

ω3
F

+O(ω−4
F ) , (H.17)

c3/2 =
1

n

1

ωF

[
1− 1

2ωF

]
+O(ω−3

F ) , (H.18)

c2 =

(
s− 1

6

φ2
µ

M2
pl

)
1

ω2
F

+O(ω−3
F ) . (H.19)

As we can see from this, typically c3/2 � c1, c2, so that the following expression is a

good approximation

ω?(r) ≈ ω0

[
1 + c3/2x

3/2
]
. (H.20)

In fact, in the cases we studied numerically this proved to be a remarkably accurate

approximation to the exact result. Notice also that c1, c3/2, c2 are all positive – the

volume shrinks as the D3-brane moves towards the tip.
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Figure 1. D3-brane potential V(φ).
Shown are the analytic potential derived from (H.20)(dashed line) and the
exact numerical result (solid line).

H.3. Canonical Inflaton Revisited

Equipped with (H.20) for the evolution of the volume modulus, we may obtain a

more accurate analytical result for the canonical inflaton field (F.34),

ϕ(r) =

∫ ( 3σ0T3

U(r, σ?(r))

)1/2

dr , (H.21)

where

3σ0T3

U(r, σ?(r))
=

3

2
T3

(
ω?(r)

ω?(0)
−

3
2
T3r

2

6M2
pl

)−1

. (H.22)

This implies

ϕ(r) =

∫ [
1 + c3/2

(
φ

φµ

)3/2

− φ2

6M2
pl

]−1/2

dφ (H.23)

≈ φ

[
1−

c3/2

5

(
φ

φµ

)3/2

+
φ2

36M2
pl

]
, (H.24)

≈ φ . (H.25)



APPENDIX J

Collection of Useful Results

In this appendix we cite key results of early universe cosmology and string theory.

As these results are used throughout the thesis, we collect them here for easy reference.

J.1. Early Universe Cosmology

J.1.1. Primordial Fluctuations.

Scalar Fluctuations. We define scalar metric perturbations ζ(t,x) by the following

line element

ds2 = −dt2 + e2ζ(t,x)a2(t)δijdx
idxj . (J.1)

The power spectrum of ζ is

〈ζkζk′〉 = (2π)3δ(k + k′)Ps(k) , (J.2)

where ζk(t) =
∫

d3xζ(t,x)e−ik·x. By convention we define the following dimensionless

power spectrum

Ps(k) ≡ k3

2π2
Ps(k) . (J.3)

This is normalized such that the variance of ζ is 〈ζζ〉 =
∫∞

0
Ps(k) d ln k. The scale-

dependence of the power spectrum is defined by the scalar spectral index

ns − 1 ≡ d lnPs
d ln k

. (J.4)

Scale-invariance corresponds to ns = 1.
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We may also define the running of the spectral index by

αs ≡
dns
d ln k

. (J.5)

If ζ is Gaussian then the power spectrum contains all the statistical information.

Non-Gaussianity is encoded in higher-order correlation functions of ζ. Local non-

Gaussianity is parameterized by the following field redefinition

ζ = ζL +
3

5
fNLζ

2
L , (J.6)

where ζL is Gaussian.

Tensor Fluctuations. We define tensor metric perturbations hij(t,x) by the fol-

lowing line element

ds2 = −dt2 + a2(t)(δij + hij(t,x))dxidxj , ∂ihij = hii = 0 . (J.7)

The power spectrum of h is

〈hkhk′〉 = (2π)3δ(k + k′)Pt(k) , (J.8)

where hk is the Fourier transform of the two polarization modes of hij (see Appendix

A). The dimensionless power spectrum is

Pt(k) ≡ k3

2π2
Pt(k) . (J.9)

Its scale-dependence is encoded in the tensor spectral index

nt ≡
d lnPt
d ln k

. (J.10)

Scale-invariance corresponds to nt = 0. We define the tensor-to-scale ratio

r ≡ Pt
Ps
. (J.11)
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J.1.2. Inflationary Predictions.

Slow-roll Models. We use the standard slow-roll parameters

ε = − Ḣ

H2
≈
M2

pl

2

(V ′
V

)2

, η ≈M2
pl

V ′′

V
, ξ(2) = M4

pl

V ′V ′′′

V 2
. (J.12)

Inflation predicts a nearly scale-invariant spectrum of scalar perturbations

Ps(k) =
1

8π2M2
pl

H2

ε

∣∣∣∣∣
k=aH

≈ 1

24π2M4
pl

V

ε

∣∣∣∣∣
k=aH

. (J.13)

At first-order in slow-roll there is a small scale-dependence

ns − 1 = 2η − 6ε . (J.14)

The spectrum is very nearly Gaussian, with

fNL ≈ −
5

12
(ns − 1) . (J.15)

Running of the spectral index is second-order in slow-roll

αs ≈ 16εη − 24ε2 − 2ξ(2) . (J.16)

Inflation also predicts a nearly scale-invariant spectrum of tensor perturbations

Pt(k) =
2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

. (J.17)

At first-order in slow-roll there is a small scale-dependence

nt = −2ε . (J.18)

The tensor-to-scalar ratio is

r = 16ε , (J.19)
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and the single-field slow-roll consistency relation is

r = −8nt . (J.20)

Models with General Speed of Sound. The action

S =

∫
d4x
√
−g
[
M2

pl

2
R+ P (X,φ)

]
, X ≡ −1

2
gµν∂µφ∂νφ , (J.21)

describes a fluid with pressure P , energy density ρ = 2XP,X −P , and speed of sound

c2
s ≡

dP

dρ
=

P,X
P,X + 2XP,XX

. (J.22)

Such a fluid can source inflation if the following slow-variation parameters

ε = − Ḣ

H2
, η̃ =

ε̇

εH
, s =

ċs
csH

(J.23)

are small. The non-trivial speed of sound modifies the scalar spectrum

Ps(k) =
1

8π2M2
pl

H2

csε

∣∣∣∣∣
csk=aH

. (J.24)

Its scale-dependence becomes

ns − 1 = −2ε− η̃ − s . (J.25)

For cs � 1 the spectrum can be highly non-Gaussian

f equil
NL = − 35

108

( 1

c2
s

− 1
)

+
5

81

( 1

c2
s

− 1− 2Λ
)
, (J.26)

where

Λ ≡
X2P,XX + 2

3
X3P,XXX

XP,X + 2X2P,XX
. (J.27)

The tensor spectrum is the same as for slow-roll models (J.17).
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J.2. String Theory

In the following we find it convenient to define the fundamental string scale and

the string length as follows

M2
s =

1

α′
= l−2

s . (J.28)

We used the reduced four-dimensional Planck scale

M2
pl =

1

8πG
= (2.43× 1018 GeV)2 . (J.29)

J.2.1. Dimensional Reduction. The ten-dimensional Einstein action dimen-

sionally reduced to four dimensions leads to the following correspondence

M8
10

2

∫
d10X

√
−GR10 →

M2
pl

2

∫
d4x
√
−gR4 + . . . , (J.30)

where M8
10 = 2

(2π)7g2
s
M8

s and

M2
pl

M2
s

=
2

(2π)7g2
s

V6

l6s
. (J.31)

J.2.2. Warped Compactification. A warped compactification has the follow-

ing generic line element

ds2 = h−1/2(y)gµνdx
µdxν + h1/2(y)g̃ijdy

idyj . (J.32)

The compactification volume that enters the dimensional reduction (J.31) then is

V6 =

∫
d6y
√
g̃ h(y) . (J.33)

Locally, the internal metric is often taken to be a cone, g̃ijdy
idyj = dr2 + r2ds2

X5
,

with radial coordinate r and base manifold X5.

AdS5 ×X5. The warp factor for AdS5 ×X5 on the interval rIR < r < rUV is

h(r) =
R4

r4
,

R4

l4s
≡ 4πgsN

π3

Vol(X5)
, (J.34)

where e.g. Vol(S5) = π3, Vol(T 1,1) = 16π3

27
.
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Conifold. The warp factor in the large radius limit of the Klebanov-Strassler so-

lution is

h(r) =
R4

r4

[
1 + c ln

( r
r0

)
+
c

4

]
, c ≡ 3

2π

gsM
2

N
. (J.35)

J.2.3. D-branes.

Dp-brane Tension. The tension of a Dp-brane is

Tp =
Mp+1

s

(2π)pgs
. (J.36)

Dp-brane Action in Warped Background. Dimensional reduction in the back-

ground (J.32) leads to the following effective action for a Dp-brane

SDp =

∫
d4ξ
√
−gLDp , LDp = −f−1(φ)

√
1− 2f(φ)X − f−1(φ) , (J.37)

where X ≡ −1
2
gµν∂µφ∂νφ and

φ2 = (TpVp−3)r2 , f−1(φ) = (TpVp−3)h−1 , Vp−3 =

∫
dp−3ξ

√
g . (J.38)

J.2.4. Supergravity.

F-term Potential. The potential for complex superfields Φi is

VF = eK/M
2
pl

[
KAB̄DAWDBW −

3

M2
pl

|W |2
]
. (J.39)

Here, K(Φi, Φ̄i) and W (Φi) are the Kähler potential and the superpotential, respec-

tively. We defined the covariant derivative, DAW = ∂AW + 1
M2

pl
(∂AK)W , and the

Kähler metric, KAB̄ = ∂A∂B̄K.

D3s and D7s in the Conifold. In this thesis we consider D3-branes on the (sin-

gular) conifold. The D3-brane position is given by the complex coordinates zi which

satisfy ∑
z2
i = 0 and

∑
|zi|2 = r3 . (J.40)
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Moduli stabilization requires a stack of n D7-branes that wrap a four-cycle in the

compact space. This four-cycle is defined by the embedding condition f(zi) = 0. The

volume of the four-cycle relates to the Kähler modulus ρ.

The system of D3-branes and wrapped D7-branes corresponds to the following

superpotential

W = W0 + A(zi)e
−aρ , A(zi) = f(zi)

1/n . (J.41)

The Kähler potential is

K = −3M2
pl ln [ρ+ ρ̄− γk(zi, z̄i)] ≡ −3M2

pl lnU , (J.42)

where γ is a constant and k is the Kähler potential of the conifold

k(zi, z̄i) =
3

2

(∑
i

|zi|2
)2/3

. (J.43)

Equations (J.41) and (J.42) lead to the following potential (J.39)

VF =
1

3M2
plU

2

[
(ρ+ ρ)|W,ρ|2 − 3(WW,ρ + c.c.) +

3

2
(W,ρz

iW,i + c.c.) +
1

γ
k̂iW,iW,j

]
,

(J.44)

where

k̂i ≡ r

[
δi +

1

2

zizj
r3
− zizj

r3

]
. (J.45)
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