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ABSTRACT. In this thesis we make small steps towards the ambitious
goal of a microphysical understanding of the inflationary era in the early
universe. We identify three key questions that require a proper under-
standing of the ultraviolet limit of the theory: i) the delicate flatness
of the inflaton potential, ii) the possibility of observable gravitational
waves and iii) a large non-Gaussianity of the primordial density fluctu-
ations. We study these fundamental aspects of inflation in the context

of string theory.

V(¢): In the first half of the thesis, we give the first fully explicit
derivation of the potential for warped D-brane inflation. The analy-
sis exposes the eta-problem, relates effective parameters in the inflaton
Lagrangian to microscopic string theory input, and illustrates impor-
tant correlations between the parameters of the potential. We show
that compactification constraints significantly limit the possibility of

obtaining inflationary solutions in these scenarios.

r:  All inflationary models that predict an observable gravitational
wave signal require that the inflaton field evolves over a super-Planckian
range. In the second half of the thesis, we derive a microscopic bound
on the maximal inflaton field variation for D-brane models. The bound
arises from the compact nature of the extra dimensions and puts a

strong upper limit on the gravitational wave signal.

fnu: Finally, we explain that our limit on the field range also
significantly constrains the parameter space of Dirac-Born-Infeld infla-
tion. In this case the bound strongly restricts the possibility of a large

non-Gaussianity in the primordial fluctuations.
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CHAPTER 1

Introduction

1. Prelude

The classical Big Bang theory is incomplete. In particular, it fails to explain
why the universe is so smooth on scales that according to the Big Bang picture have
never been in causal contact. Cosmological inflation solves this ‘horizon problem’
in an elegantly simple way [83]. By hypothesizing an early period of accelerated
expansion the puzzle is solved. In addition, quantum mechanical fluctuations during
inflation are stretched to cosmic scales. Inflation therefore explains both the large-
scale homogeneity of the universe as well as the small primordial fluctuations that
are the seeds for large-scale structure.

However, a period of prolonged inflation requires that the early universe was
dominated by a form of energy whose density stays nearly constant as the universe
expands. This is unlike any physical phenomenon we have ever probed in terrestrial
experiments. The energy densities we are familiar with all dilute with expansion. We
are therefore led to ask: What is the physics of inflation? Can inflation be embedded
in a theory of fundamental physics?

Cosmic inflation is thought to have occurred at extremely high energies (~ 10!
GeV), far out of reach of terrestrial particle accelerators (~ 10° GeV). Given that
the inflationary proposal requires a huge extrapolation of the known laws of physics,
it is not surprising that the physics governing this phase of rapid expansion is still

very uncertain. In the absence of a complete theory, a standard practice has been a
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1. INTRODUCTION 3

phenomenological approach where an effective potential V' (¢) is postulated. Here ¢
is an order parameter used to describe the change in the inflationary energy during
inflation. The requirement of slow evolution of the energy density puts constraints on
the shape of V(¢). Ultimately, however, V(¢) should be derived from a fundamental
theory. Since string theory is the leading candidate for a UV-completion of the
Standard Model that consistently unifies gauge and gravitational interactions, it is
natural to search in string theory for a realization of the inflationary paradigm. One
of the main results of this thesis is an explicit derivation of V(¢) for a specific model

of inflation in string theory.

2. From String Compactification to the Low Energy Lagrangian

In this thesis we will be mainly concerned with describing low energy physics from

a top down approach. Our philosophy is illustrated in Figure 1.

C geometry of M,

R3’1 x Mg branes
fluxes

String Compactification

Inflationary

4d Lagrangians
Lagrangians

£ moduli
potential V(¢)

Observables

FIGURE 1. From String Compactification Data to Low Energy Lagrangian
to Inflation. String theory specifies discrete compactification data C (geom-
etry and topology of extra dimensions, amount and types of branes, amount
and types of fluxes, etc.) At low energies, four-dimensional physics is de-
scribed by an effective field theory with Lagrangian £. In this thesis we
study the correspondence between C and £ and search for configurations
that allow inflationary solutions.
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Starting from a consistent string theory configuration with given compactification
data C the aim is to derive the low energy 4d Lagrangian £. The input C amounts to
specifying the compactification geometry, the background fluxes and the configuration
of branes. From this the effective four-dimensional physics can in principle be derived.
The parameters in the four-dimensional Lagrangians £ will be defined in terms of the
more fundamental input parameters in C. In this thesis we will be investigating this
correspondence between the fundamental parameters of a string compactification and
the effective four-dimensional physics.

Generically, a given string compactification will not lead to low energy Lagrangians
that permit cosmological inflation to occur. An important application of string theory
to early universe cosmology therefore is to identify the subset of Lagrangians that do
allow inflationary solutions. A systematic study of the correspondence C — L should
ultimately allow us to determine which models of inflation are possible in string
theory. One can then search for signatures that are (un)natural or (un)characteristic
in string inflation. This is to be compared to the results for inflation in the context of
quantum field theory. It is hoped that inflationary models derived from string theory
are more restricted and therefore more predictive.

Making explicit the correspondence between higher-dimensional string theory in-
put and four-dimensional effective Lagrangians is highly non-trivial. To study in-
flation requires having exquisite control over classical and quantum contributions to
the inflaton potential. To compute the inflaton mass requires understanding gravity
corrections to the potential up to dimension six, 6V = MLSIOG. This requires knowing
gs and o' corrections, backreaction effects, etc. Common approximations like the
classical limit, non-compact or large volume treatments and probe approximations
for D-branes are often insufficient. In addition, as we will see, the inflaton potential

often depends sensitively on the inclusion of moduli stabilization effects.



1. INTRODUCTION 5

In this thesis we focus on a specific, concrete model of inflation in string theory,
warped D-brane inflation, with the aim of understanding corrections to the inflaton
potential as fully and explicitly as possible. This gives substantial progress towards
an existence proof of an inflationary scenario derived from the microscopic compacti-

fication data of string theory.

3. Compactification Effects in D-brane Inflation

Warped D-brane inflation has received considerable theoretical attention as a
framework where explicit computations can be performed. In particular, the in-
flaton potential is in principle completely computable from string theory. In practice,
computing the D3-brane potential in sufficient detail to determine whether it can be
flat enough for inflation is very challenging.

Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) [95] es-
tablished that the Coulomb part of the brane-antibrane potential in a warped back-
ground is sufficiently flat for inflation. However, they also showed that compactifi-
cation effects induced by the stabilization of moduli fields lead to crucial correction
terms that generically spoil the delicate flatness of the potential and lead to an in-
carnation of the supergravity eta-problem. At the time of Ref. [95], not all terms of
the inflaton potential could be computed explicitly, but the hope was expressed that
the individual contributions to the inflaton mass could cancel in special fine-tuned
configurations. However, this expectation required certain assumptions about the
functional form of a specific unknown correction term which we call the ‘superpoten-
tial correction’. An explicit computation was needed to assess the real status of the
eta-problem for brane inflation models.

In this thesis we compute the missing term in the D3-brane potential [18]. We
are then equipped with the full inflaton Lagrangian. In fact, we find that the missing
term and hence the resulting potential is not of the functional form anticipated in

earlier work. This lends a new perspective to the brane inflation scenario. The
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bulk Calabi-Yau

V(r)

D3

warped throat

FIGURE 2. The KKLMMT Scenario. The 3-branes are spacetime-filling
and therefore pointlike in the extra dimensions. The net force on the D3-
brane is associated with the inflaton potential.

inflaton potential can be flat only locally over a small range of values for the inflaton
field. Fine-tuned inflation is restricted to the region near an inflection point of the
potential.

An important aspect of our analysis is the consistent treatment of compactification
constraints. The higher-dimensional theory determines the following aspects of the

four-dimensional effective theory:

(1) Functional form of correction terms.

As mentioned above and as we will explain in much more detail below
(Chapters 5, 6 and 7), considerations of holomorphicity and the dimension-
ality of the compact space dictate the functional form of the superpotential
correction to the inflaton potential. This severely restricts the possibility of
fine-tuning the shape of the potential.

(2) Range of parameters in the Lagrangian.

After deriving the effective Lagrangian £ from explicit string theory data
C it is important to remember the relation been the effective parameters
in the four-dimensional Lagrangian and the higher-dimensional input (this
in contrast to “string-inspired” models where this connection is unknown

or subsequently forgotten). In particular, more often than not there are



1. INTRODUCTION 7

important compactification constraints on the input parameters in C that
restrict the allowed values of the parameters in L.

For example, in Ref. [21] Liam McAllister and I derived that the range
of the canonical inflaton field in this scenario is bounded by the size of the
compactification manifold

& 2

< —
Mpl \/N

(Here, N is a large integer defined below.) Any parameter in the Lagrangian

<1. (1.1)

that relates to a coordinate on the compact space has to satisfy this con-
straint. In later chapters we explain the relevance of this bound for the
fine-tuning of slow-roll models of brane inflation, for the viability of DBI
inflation and for the amplitude of inflationary gravitational waves.
(3) Correlation of parameters in the Lagrangian.

Knowing the explicit relation between the parameters in £ and the data
in C allows us to identify important correlations between the parameters in
L. The effective parameters often cannot be treated independently but are
linked by virtue of having a common origin in the compactification of the
higher-dimensional Lagrangian. This perspective is lost in string-inspired

models without an explicit derivation of the Lagrangian.

4. String Theory and Primordial Gravitational Waves

Some of the simplest inflationary models (V (¢) = m2¢?, A\¢?, ... ) have the inflaton
field evolving over a super-Planckian range, A¢ > M. In particular, this is required
of all models with an observable gravitational wave signal [122]. So far it has been
challenging to derive such ‘large-field’ models from an explicit string compactification.
It is therefore interesting to ask whether these models can arise from a consistent

string compactification C or if there are any fundamental obstructions. In the context



1. INTRODUCTION 8

of effective field theory with a Planck scale cutoff A = M, it has been argued [122] that
the effective potential V' (¢) can only be reliably computed over a domain A¢ < M.
The question of the implications of super-Planckian field excursions is UV-sensitive
and therefore provides an interesting window into microphysics (while inflation usually
hides UV-physics!). In addition, there is the possibility that these considerations
might be forced on us by a future observation of a primordial gravitational wave
signal. To explain such a signal from a microscopic point of view will be an interesting
theoretical challenge. In this thesis we ask whether scalar fields in string theory can

have A¢ > M, and controllably flat potential (i.e. V', V" <V for A¢ > M,).

5. Outline of the Thesis

The structure of this thesis is as follows:

m Part [: Review
In Chapters 2, 3 and 4 we review key aspects of cosmology and string theory. This
sets the stage for the discussion in the following chapters. However, readers with a
background in cosmology and string theory may skip directly to Chapter 5 without
loss of continuity.

Our review of the fundamentals of modern cosmology (Chapter 2) emphasizes
observations and the physical mysteries (dark matter, dark energy, and inflation) that
they reveal. After a discussion of the homogeneous background cosmology we present
an analysis of cosmological fluctuations. An understanding of these fluctuations is
essential for observational tests of the inflationary paradigm. We then describe the
dark energy puzzle and its impact on fundamental physics. Finally, we end our
discussion of cosmology with a review of basic elements of inflation and an assessment
of the future prospects for cosmological observations.

To preface our discussion of string cosmology we then give an overview of recent
techniques of moduli stabilization in string theory (Chapter 3). In particular, we

describe type IIB flux compactifications and the KKLT scenario. Finally, we review
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the Klebanov-Strassler (KS) geometry as an important example of a warped back-
ground space whose metric is explicitly known. The KS solution will be an important
background for our study of string inflation.

We end our review of string cosmology with an assessment of the state of the
‘art’ of inflation in string theory (Chapter 4). We describe warped D-brane inflation
in some detail, emphasizing the eta-problem and the DBI mechanism. Finally, we

summarize the progress and challenges of other models of string inflation.

m Part II: The Inflaton Potential V' (¢)

Chapter 5 is a technical calculation of a crucial correction to the non-perturbative
superpotential. This correction depends on the position of any mobile D3-branes in
the compactification geometry and therefore forms a key ingredient for computing the
inflaton potential in warped D-brane inflation (Chapters 6 and 7). We explain how
the gauge theory effect can be translated into a geometric calculation via open-closed
string duality. In particular, we compute the D3-brane backreaction on the warped
volume of the four-cycle wrapped by a stack of D7-branes. We prove that the final
result for the superpotential is then given by the holomorphic embedding condition
of the D7-branes.

Chapter 6 is a summary of the implications of the results of Chapter 5 for models
of D-brane inflation, while Chapter 7 is a long version of Chapter 6 that derives
all results and extends the discussion. First, we derive the D3-brane potential in
warped backgrounds. The multi-field potential depends on the radial coordinate
r and the five real angular coordinates of the KS throat as well as the complex
modulus associated with the overall volume of the compact space. We integrate out
the volume and the angles to get an effective single-field potential V' (r). We identify
parameters in the inflaton potential with the microscopic input data of the string
compactification. Imposing all consistency conditions on the compactification, we

search for inflationary solutions in the effective theory. We find that inflationary
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solutions would be easy to find if compactification constraints were ignored. Imposing
constraints from the compactification geometry significantly restricts the parameter
space of successful models. In particular, the potential can be made flat only locally
and inflation is possible only close to an approximate inflection point of the potential.
This leads to a model that is very sensitive to the model parameters and the initial

conditions. We called this “A Delicate Universe” [20].

m Part III: String Theory and Gravitational Waves
Chapter 8 derives a microscopic bound on the field evolution during warped D-brane
inflation. In particular, we show that A¢ < M. This bound is model-independent
in the sense that it does not depend on the form of the potential and other details
of inflation. Via a result by Lyth [122] this geometric bound on the field range
is translated into a limit on the primordial gravitational wave amplitude. We also
discuss the implications of the field range bound for the viability of DBI inflation on
Calabi-Yau cones. The simplest models of DBI inflation overproduce primordial non-
Gaussianity if the microscopic compactification constraint is imposed on the D3-brane
position.

Chapter 9 speculates about possible generalizations of the result of Chapter 8. We
describe the important challenge of deriving explicit models of string inflation that
predict observable tensors, providing an important connection between microscopic

physics and macroscopic observables.

m Part IV: Conclusion
Chapters 10 and 11 offer some conclusions and perspectives.

In Chapter 10 we summarize the three main UV challenges/opportunities of string
inflation: the eta-problem of V' (¢), a microscopically consistent realization of large-
field models with observable gravitational wave amplitude r and a microscopically

consistent realization of models with large non-Gaussianity fyr.
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In Chapter 11 we make some concluding remarks and give a personal perspective

on future directions.

m Appendices
The appendices contain many original and new results. We consider them an essential
aspect of this work.

In Appendix A we review Maldacena’s beautiful calculation of the inflationary
two- and three-point functions and cite the corresponding results for more general
inflation models like DBI inflation. These classic results are used throughout the
thesis as they form the basis for all modern comparisons of the inflationary predic-
tions with cosmological data. Appendix B, C and D give technical details of the
computations presented in Chapter 5, while Appendix E, F G and H give technical
details of the computations presented in Chapters 6 and 7. Finally, Appendix J is a

reference of key results used in this dissertation.

Note on collaboration. Modern theoretical physics is largely a collaborative effort.
This thesis would not have been possible without the input and guidance of my
outstanding collaborators. However, I was intimately involved in all the research
reported in this dissertation. Furthermore, in each project the majority of the writing
and rewriting of our results was done by Liam McAllister and myself. At the end my
contributions and those of my collaborators have been woven together and there is

no meaningful way to partition the final product.
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CHAPTER 2

Aspects of Modern Cosmology

In this chapter we present a review of basic cosmology (see also [62, 130, 160]).
The emphasis is on observations and the physical mysteries that they reveal. Readers

familiar with this background material may skip directly to Chapter 3.

We preface this chapter with a qualitative description of the thermal history of the
universe (§1). In §2 we then give the theoretical background for understanding the
status of observational cosmology. After describing the geometry and dynamics of the
homogeneous background spacetime we define fluctuations around the smooth back-
ground. We focus on fluctuations in the density and the metric (gravitational waves).
We describe how cosmological observations of these fluctuations are related to the
physics of the early universe. Next, we devote two sections to the mystery of cosmic
acceleration. We introduce dark energy and inflation in §3 and §4, respectively. While
we restrict our treatment of dark energy to brief and mostly qualitative remarks, we
discuss inflation in some detail. We explain the Big Bang puzzles and their resolution
by a period of accelerated expansion in the early universe. We then introduce the
inflaton potential V' (¢) and the slow-roll conditions. Finally, we make the important
connection between cosmological observables (§2) and quantum fluctuations around

the classical inflationary dynamics (Appendix A).

14



2. ASPECTS OF MODERN COSMOLOGY 15

1. A Brief History of the Universe

“Why is the universe big, flat and empty?” “What is the origin of structure?”
These ancient questions have sharpened in recent years as a result of significant the-
oretical advances and high precision cosmological experiments. Remarkably, we now
have quantitative answers to these questions based on fundamental physics applied to
conditions in the early universe. Even more remarkably, for the first time in history
our theories can be tested against cosmological observations. Data from the cosmic
microwave background (CMB) [151] (Figure 1) and the large-scale structure (LSS)
[156] (Figure 2) have given us detailed views of the early universe and its late time evo-
lution. In this section we give a qualitative description of our modern understanding

of the cosmos. We fill in the quantitative details in later sections.

FIGURE 1. Temperature fluctuations in the cosmic microwave background
(CMB). Blue spots represent directions on the sky where the CMB temper-
ature is ~ 1074 below the mean, Ty = 2.7 K. This corresponds to photons
losing energy while climbing out of the gravitational potentials of overdense
regions in the early universe. Yellow and red indicate hot (underdense)
regions. The statistical properties of these fluctuations contain important
information about both the background evolution and the initial conditions
of the universe (see Figures 3 and 4).

1.1. Physics in an Expanding Universe. There is undeniable evidence for

the expansion of the universe: the light from distant galaxies is systematically shifted
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FIGURE 2. Distribution of galaxies. The Sloan Digital Sky Survey (SDSS)
has measured the positions and distances (redshifts) of nearly a million galax-
ies. Galaxies first identified on 2d images, like the one shown above on the
right, have their distances measured to create the 3d map. The left image
shows a slice of such a 3d map. The statistical properties of the measured
distribution of galaxies reveal important information about the structure
and evolution of the late time universe.

towards the red end of the spectrum [89], the observed abundances of the light ele-
ments (H, He, and Li) matches the predictions of Big Bang Nucleosynthesis (BBN)
[6], and the only explanation for the cosmic microwave background is a relic radiation
from a hot early universe [60].

T'wo principles characterize thermodynamics and particle physics in an expanding

universe:

(1) interactions between particles freeze out when the interaction rate I' = onv
drops below the expansion rate H.

(2) broken symmetries in the laws of physics may be restored at high energies.

Table 1 shows the thermal history of the universe and various phase transitions related

to symmetry breaking events. In the following we will give a qualitative summary of
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TABLE 1. Major Events in the History of the Universe

‘ Time ‘ Energy ‘
Planck Epoch? <107 % s 10" GeV
String Scale? <1078 s <1018 GeV
Grand Unification? ~ 10730 s | 10 GeV
Inflation? <1073 s | <101 GeV
SUSY Breaking? > 10710 s > 1 TeV
Baryogenesis? > 10710 s > 1 TeV
Electroweak Unification 1079 s 1 TeV
Quark-Hadron Transition 107% s 102 MeV
Nucleon Freeze-out 0.01 s 10 MeV
Neutrino Decoupling 1s 1 MeV
BBN 3 min 0.1 MeV

\ \ \ Redshift
Matter-Radiation Equality 10% yrs 1eV 10*
Recombination 10° yrs 0.1 eV 1,100
Dark Ages 105 — 10® yrs > 25
Reionization 108 yrs 25 —6
Galaxy Formation ~ 6 x 108 yrs ~ 10
Dark Energy ~ 10% yrs ~ 2
Solar System 8 x 10? yrs 0.5
Albert Einstein born 14 x 10° yrs 1 meV 0

these milestones in the evolution of our universe. We will emphasize which aspects

we consider certain and which are still more speculative.

1.2. From Electroweak Symmetry Breaking to Recombination. From
10719 seconds to 380,000 years the history of the universe is based on well under-
stood and tested(!) laws of particle, nuclear and atomic physics. We are therefore
justified to have some confidence about the events shaping the universe during that
time.

Enter the universe at 100 GeV, the time of the electroweak phase transition
(1071%s). Above 100 GeV the electroweak symmetry is restored and the Z and W=
bosons are massless. Interactions are strong enough to keep quarks and leptons in
thermal equilibrium. Below 100 GeV the symmetry between the electromagnetic and

the weak forces is broken, Z and W= bosons acquire mass and the cross-section of
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weak interactions decreases as the temperature of the universe drops. As a result, at
1 MeV, neutrinos decouple from the rest of the matter. Shortly after, at 1 second, the
temperature drops below the electron rest mass and electrons and positrons annihi-
late efficiently. Only an initial matter-antimatter asymmetry of one part in a billion
survives. The resulting photon-baryon fluid is in equilibrium.

Around 0.1 MeV the strong interaction becomes important and protons and neu-
trons combine into the light elements (H, He, Li) during Big Bang Nucleosynthesis
(BBN) (~ 200s). The successful prediction of the H, He and Li' abundances is one
of the most striking consequences of the Big Bang theory.

The matter and radiation densities are equal around 1 eV (10! s). Charged matter
particles and photons are strongly coupled in the plasma and fluctuations in the
density propagate as cosmic ‘sound waves’. Around 0.1 eV (380,000 yrs) protons
and electrons combine into neutral hydrogen atoms. Photons decouple and form the
free-streaming cosmic microwave background (CMB). 13.7 billion years later these

photons give us the earliest snapshot of the universe (Figure 1).

1.3. Evolution of Cosmic Structure. Small density perturbations in the early
universe, 0 = %, grow via gravitational instability to form the large scale structures
observed in the late universe (Figure 2). During radiation domination the growth is

slow, § ~ Ina (where a(t) is the scale factor, see below). Clustering becomes more

!BBN predicts the primordial abundances of the light elements deuterium D, helium-3
3He, helium-4 *He and lithium-7 7Li as a function of the baryon-to-photon ratio. These
predictions are tested by reconstructing the primordial abundances from astronomical ob-
servations. To reduce systematic uncertainties the observations are limited to astronomical
objects in which very little stellar nucleosynthesis has taken place (e.g. dwarf galaxies)
or to objects that are very distant and therefore in an early stage of their evolution (e.g.
quasars). The agreement between the theory and observations is excellent for deuterium
and helium, but less perfect for lithium [47]. However, because the "Li abundance in old
Population II stars may be depleted, the observed lithium abundance depends both on stel-
lar models and the consistency of BBN. We consider it more likely that the ‘Li problem’
is explained by systematic errors in the measurements and uncertainties in astrophysical
modeling than by a fundamental problem with early universe cosmology. It should also
be noted that the baryon-to-photon ratio preferred by BBN is consistent with the value
inferred independently from CMB measurements.
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efficient after matter dominates the background density, § ~ a. Small scales become
non-linear first, § ~ 1, and form gravitationally bound objects that decouple from
the overall expansion. This leads to a picture of hierarchical structure formation (see
Table 2) with small scale structures (like stars and galaxies) forming first and then

merging into larger structures (clusters and superclusters of galaxies).

TABLE 2. Typical Length Scales in the Universe

\ meters | \
Planck Scale 107% m
String Scale? ~ 1073 m
“LHC Scale” 107%¥ m
Quark, Electron <107%¥ m
Proton 107 m
Nucleus 107" m
Atom 107 m
DNA 1078 m
Virus 107" m
Cell 10~ m

\ | light years | parsec
Earth 10° m
Earth-Moon 10° m
Earth-Sun 10" m 8 min
Earth-Star 108 m 100 yrs 30 pc
Galaxy 102 m 10° yrs 10 kpc
Local Group 10?2 m 10% yrs 100 kpc
Virgo Cluster 1023 m 10% yrs 1 Mpc
Supercluster 1024 m 107 yrs 10 Mpc
Observable Universe | 4.3 x 102 m | 45 x 10% yrs | 1.4 x 10* Mpc

Around redshift z = 25, high energy photons from the first stars begin to ionize
the hydrogen in the inter-galactic medium (IGM). This process of ‘reionization’ is
completed at z ~ 6. Meanwhile, the most massive stars run out of nuclear fuel and
explode as ‘supernovae’. In these explosions the heavy elements (C, O, ...) necessary
for the formation of life are created, leading to the slogan “we are all stardust”.

At z =~ 1, a negative pressure ‘dark energy’ comes to dominate the universe. The

background spacetime is accelerating and the growth of structure ceases, 0 ~ const.
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1.4. The First 107!° Seconds. The fundamental laws of high energy physics
are well-established up to the energies reached by current particle accelerators (~
1 TeV). Our ideas about the very early universe on the other hand are based on more
speculative physics. In this section we sketch the implications of physics beyond the
Standard Model for early universe cosmology.

Grand Unification. In the history of physics symmetry principles and unification
have been reliable guides towards the true nature of the world. The giants of physics,
Newton, Maxwell and Einstein, each provided important unifying principles that
revolutionized the way we see the world (physics+astronomy, electricity+magnetism,
space-+time). Grand Unified Theories (GUTSs) are a set of gauge theories that unify
the electromagnetic force with the strong and the weak nuclear forces at high energies
(~ 10" GeV). GUTs have a number of interesting theoretical consequences. Generic
versions of GUTs predict proton decay and the existence of magnetic monopoles.
Neither phenomenon is observed in nature.? GUTs also predict a phase transition as
the temperature of the universe drops below 10> GeV. Initially there was some hope
that this might be the physical origin of cosmological inflation (see below). However, it
now seems that this hope cannot be realized when details of the inflationary dynamics
are considered in the context of GUTs.

Finally, at the GUT scale, interactions violate baryon number and CP, while the
GUT phase transition provides out of equilibrium conditions. GUT physics therefore
can provide a plausible explanation for the observed baryon asymmetry of the universe
(alternatively, there are many models in which the baryon asymmetry is produced at

lower energies by electroweak processes).

Indeed, one of Guth’s original motivations for inflation was to explain the absence of GUT
monopoles. Today, experimental limits on the proton lifetime rule out the simplest versions
of grand unified theories raising some doubts about the idea of the unification of forces at

the GUT scale.
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Inflation. The observed expansion of the universe implies serious initial conditions
problems (see §4) unless a period of accelerated expansion® — inflation — is postulated
to have occurred somewhere between the GUT scale, 10'® GeV, and the electroweak
scale, 1 TeV. The large uncertainty in the energy scale of inflation reflects our lack
of understanding of the fundamental physical origin of the inflationary era. We defer
a detailed discussion of speculations on the “physics of inflation” to the remainder
of this thesis. Here, we would only like to mention that small quantum fluctuations
around the classical inflationary dynamics are stretched by inflation to cosmological
scales and seed primordial density fluctuations. Inflation therefore provides a very
elegant mechanism to explain the initial conditions relevant to the formation of large-
scale structure via gravitational instability.

Quantum Foam. At very very early times (103 s), corresponding to high energies
(10'® GeV) and short length scales (1072° m), quantum mechanics becomes important
for the structure and dynamics of the universe. Classical notions of space and time lose
their familiar meanings. The uncertainty principle allows (virtual) particles to briefly
come into existence, and then annihilate, without violating energy conservation. The
energy of these virtual particles can be large if the space that is considered is small.
Since energy curves spacetime, this suggests that on very small scales space looks
nothing like the smooth large scale spacetime that characterizes the universe today.
On small scales violent quantum fluctuations produce a foam-like structure [161]. A
quantitative understanding of the physics of that era requires applying a theory of
quantum gravity to fluctuations at the Planck scale. The absence of such a theory

limits us to hand-waving and speculation.

3The cyclic model [154] proposes a radically different solution to the initial conditions prob-
lems and a very different cosmic history. In the cyclic model the Big Bang singularity was
not the beginning of time but only marked the transition from a slow contracting universe
to an expanding universe. The standard initial conditions problems are solved by a long
period of dark energy domination followed by slow contraction and a bounce.
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String Cosmology. 1t is now believed that general relativity is only an effective
theory valid at low energies and large distances. As we just sketched heuristically,
at very high energy and short distances, new symmetries and degrees of freedom of
a more fundamental theory are likely to become important. In the context of string
theory some of these qualitative ideas can be made more concrete (for a review see
e.g. [128]). Quantitatively, one expects a treatment based on quantum field theory
(QFT) and general relativity (GR) to break down down, either when the Hubble
scale H increases to the scale of some new physics (like the string scale My = \/% ~
gsMy) < M) or when spatial fluctuations shrink to the string scale ;. In many cases,
string degrees of freedom (characterizing the extended nature of strings) become
important in this limit.* Perturbative and non-perturbative stringy dynamics has
been suggested as a way to resolve the cosmological Big Bang singularity and to
explain why our universe has three large space dimensions [42]. Due to lack of space
and expertise we cannot do justice to these interesting applications of string theory to

the very early universe in this work. For a recent survey of ideas we refer the reader

to Ref. [128].

2. Status of Observational Cosmology

2.1. ACDM. The recent data of fluctuations in the cosmic microwave back-
ground [151] (Figure 1) and the distribution of galaxies [156] (Figure 2) has led to
the emergence of a standard cosmological model. On the largest observed scales the
universe is homogeneous and isotropic, while on small scales tiny primordial fluctua-
tions in the overall density have grown by gravitational instability to form galaxies,

stars, and planets. Galaxies and clusters of galaxies would be unstable if it weren’t

4For the remainder of this thesis it will be important that we assume that the string scale
My is significantly above the inflation scale M, ~ (HjnfMp])l/ 2. At energies below M,
string theory reduces to supergravity with corrections that can be treated perturbatively.
In practice, we will also assume that the inflation scale is below the compactification (or
Kaluza-Klein) scale M. ~ L™, where L is a typical length scale of the compactification
manifold. In that case, an effective four-dimensional description is possible.



2. ASPECTS OF MODERN COSMOLOGY 23

for the gravitational effect of cold dark matter (CDM). Finally, the observations show
that the present universe is dominated by a mysterious form of dark energy (A) that
causes the expansion of the universe to accelerate.

All the cosmological data can be well fit by a six parameter model: {€, Qgn,
h, T} describes the homogeneous background (§2.2), while { A, ns} characterizes the
primordial fluctuations (§2.3). In this section we consider the observational evidence
for the ACDM model, before discussing the theoretical issues that the model raises
(83 and §4).

2.2. Homogeneous Background.
Geometry. Averaged over very large scales the universe is nearly homogeneous
and isotropic. The spacetime is then described by the Friedmann-Robertson-Walker

(FRW) metric

2

1 —Fkr?

ds? = —dt? + a(t)? ( + 7r?(d6? 4 sin? 9dgb2)) . (2.1)

Here, the scale factor a(t) describes the relative size of spacelike hypersurfaces X3 at
different times. The curvature parameter k is 41 for positively curved >3, 0 for flat
Y3, and —1 for negatively curved 3. Equation (2.1) uses comoving coordinates —
the universe expands as a(t) increases, but galaxies keep fixed coordinates® r, 0, ¢. If
we define the scale factor to be unity today, a(ty) = 1, then the redshifting of light

between emission at time ¢ and observation today at ¢y is given by

)\observed 1
Aemitted a(t) ( )

The expansion rate of the universe is characterized by the Hubble parameter H(t) =

Oy Ina. This is arguably the most important function in cosmology. It is measured

>This statement only applies to the Hubble flow and ignores the peculiar velocities of galaxies
Vpec = (TZ, 9, ¢)
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rather indirectly by determining separately the distances and redshifts of astronom-
ical objects. Since measuring distances in cosmology is notoriously difficult (see e.g.
(62, 134]), the value of the Hubble constant has historically been associated with large
uncertainties and fierce debates [134]. In defining cosmological distances a fundamen-

tal quantity is the comoving distance to an object at redshift z°

\(z) = OZ % 2.3)

It relates to two important distance measures: the ‘angular diameter distance’ and
the ‘luminosity distance’. Angular diameter distance is defined as the ratio of an

object’s physical transverse size to its angular size

sinh[vO Hox(2)]  p. — 4

] [Hov]
sV H()]
[Hov/]

Observations of cosmic microwave background anisotropies provide a measure of the
angular diameter distance to the last scattering surface’ da(zcmp). This provides
an accurate measure of the average geometry of the universe® (see Figures 3 and 4).
Supernova observations on the other hand measure luminosity distances which relate
the observed apparent magnitudes to the absolute luminosity emitted by the stellar

explosion

dp(z) = (1+ 2)x(2) . (2.5)

This is the distance along radial null geodesics of (2.1).

"CMB observations measure the angular diameter of the sound horizon at baryon-photon
decoupling. We here point out that the angular size of CMB anisotropies only provides a
measure of the integrated Hubble parameter to the last scattering surface. However, through
baryon acoustic oscillations in large-scale structure correlations and the Alcock-Paczynski
effect angular diameter distances to objects at lower redshifts can be measured. This might
provide interesting constraints on the late time evolution of H and the dynamics of dark
energy.

8From (2.4) we see that a measurement of Q; requires an independent estimate of the
Hubble constant Hy.
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FIGURE 3. Power spectrum of CMB temperature fluctuations. The data
is in perfect agreement with the theoretical prediction (solid line) of the
ACDM model with a nearly scale-invariant input spectrum for the primordial
density perturbations (as predicted by inflation). The position of the first
peak measures the angular diameter distance to the recombination surface.

This gives a late time measurement of the evolution of the Hubble parameter H(z).
Analysis of data from type A supernova explosions led to the discovery of the accel-
erating universe [137, 142].

Dynamics. So far we have described the kinematics of the FRW spacetime as
defined by the metric (2.1). To characterize the dynamics we relate the background
spacetime to the energy-momentum tensor of the universe. Einstein’s gravitational
field equations (M2G,, = T),) for a FRW universe (2.1) filled with a perfect fluid,

T# = diag(—p, p, p,p), take the form of the Friedmann equations

1 k

2 _
H" = e (2.6)
1%
1
= et (2.7)
pl

Here, p and p are the energy density and the pressure of the fluid, respectively. For a

multi-component fluid, it is convenient to define the density parameter in a species 7
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FIGURE 4. Fluctuations in the cosmic microwave background as a function
of the parameters of the background cosmology [figure courtesy of Wayne Hul.
(a) Variation of the total density (or curvature) shifts the positions of the
peaks of the spectrum. The CMB is therefore a probe of the background
geometry. (b) Increasing the dark energy contribution increases power on
large scales via the integrated Sachs-Wolfe effect. (c¢) The baryon density
affects the relative peak heights. The observed relative peak heights are
consistent with Big Bang nucleosynthesis values for €. (d) Increasing the
matter content uniformly damps power on all scales.

relative to the critical density for a flat universe is p. = 3M2 H?

Pe

The Friedmann equation (2.6) then becomes

k

U =1 =gz

EQk,

26

(2.9)
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where

Q=" Q=0+ U+ + QU+ (2.10)

Here, we consider radiation (photons and neutrinos)? (r), baryons (b), dark matter
(dm) and dark energy (A). The CMB+LSS best fit parameters for the composition

of the universe today are [151]

Q, 8518 x 10~°
O 0.046 + 0.003
Qarm 0.231 +0.026

Q= Oy + Qg | 0.277 £ 0.029

Qa 0.723 £ 0.029
Qe —0.0052 £ 0.0064
Q ~ 141072

This is consistent with a spatially flat universe, a theoretical prejudice inspired by
inflation (see §4). In the remainder of this thesis we will therefore set Q) = 0.
Notice from the second Friedmann equation (2.7) that accelerated expansion, @ >
0, as observed for the late universe (dark energy) and as postulated for the early
universe (inflation), requires a negative pressure component, p < —%p. To explain

this from fundamental physics is one of the biggest challenges of theoretical physics.

2.3. Fluctuations. As we mentioned before, galaxies are formed by gravita-
tional instability of minute density fluctuations dp, i.e. small perturbations of the
homogeneous FRW background (2.1). Observations of the cosmic microwave back-
ground radiation provide the earliest snapshot of these fluctuations. The metric of a

flat FRW universe with small perturbations is
ds* = [gw, + 59;”/] dztdz"” . (2.11)

We use Q, = Q,(1 + 0.2271Ng), where €, is the photon density and Neg ~ 3.04 is the
effective number of relativistic neutrino species.
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For the important discussion of the gauge dependence of this split into background
variables (g,,, p) and perturbations (dg,,, dp) we refer the reader to the excellent
treatment in Ref. [130]. Here, we restrict ourselves to a summary of the basic techni-
cal results of first-order cosmological perturbation theory. (Further details are given
in Appendix A.) The metric perturbations dg,, can be decomposed into three dis-
tinct types: scalar, vector and tensor perturbations. This classification describes the
transformation properties of the perturbations under spatial coordinate reparameter-
izations [130]. At linear order scalar, vector and tensor perturbations do not interact.

Scalars. Scalar perturbations are characterized by 4 scalar functions and 2 gauge
degrees of freedom. In Newtonian gauge the perturbed metric takes the following
form

ds? = —(1 + 20)dt* + a(t)*(1 — 20)d;;da’da’ . (2.12)

In the absence of anisotropic stress (7;; = 0) ® = ¥ and scalar metric perturbations
are described by a single function, the Newtonian potential ®(¢,x). In Fourier space

the fluctuation amplitude is
Br(t) = / dPx %Dt x) (2.13)

The initial power spectrum of ® is'®

k‘S

~ 2n?

(D (t) B (1)) = 27)%5(k + K)Py(k),  Py(k) P(k) . (2.14)

Assuming a power law, P,(k) = A.k™ ! we define the spectral index of the primordial

power spectrum
_dIn P
~ dlnk

(2.15)

Nng —

1By “initial” we mean any time t; between the end of inflation and the horizon re-entry
of a given Fourier mode (see §4). The normalization of Ps(k) is chosen such that the real
space variance of ® is (®®) = [;* Py(k)dInk.
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The value ng = 1 corresponds to a scale-invariant Harrison-Zeldovich spectrum. The

scalar metric perturbations ® are induced by inhomogeneities in the energy density,
p(t,x) = p(t)[1 + (¢, x)] . (2.16)

Density perturbations 0 and metric perturbations ® are related by a Poisson equation
on subhorizon scales (k > aH) and by a constant rescaling on superhorizon scales
(k < aH). On subhorizon scales, gravity acts as an amplifier of these fluctuations,
which leads to the formation of the large-scale structure of the universe. The evolution

of density fluctuations is characterized by the growth function g (¢)'!

bty = 2L 5 4y (2.17)

a

CMB and LSS observations measure the density power spectrum at late times (Fig-
ure 5). To relate this to the primordial spectrum one needs to take into account the
post-processing of the spectrum as given by the growth factor gx(t). Assuming va-
lidity of general relativity and using the measured cosmological parameters to fix the
background cosmology we can factor out the cosmological evolution and extract the
spectrum of primordial fluctuations P;(k). The precise shape of this spectrum pro-
vides an accurate test of inflationary perturbations as the origin of cosmic structure
(see §4 and Figure 6).

Vectors. Vector perturbations are related to rotational motion of the fluid. They
decay with the expansion of the universe and therefore do not affect the late time

properties of the universe. We will not consider them further.

UThe function gy (t) depends on theory of gravity and the matter content of the universe.
The growth of structure therefore provides an important consistency test for the applica-
bility of general relativity on very large scales.
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FIGURE 5. Density fluctuations as a function of scale and relevant obser-
vational probes [figure courtesy of Max Tegmark].

Tensors. Tensor perturbations describe gravitational waves, i.e. perturbations to

the spatial metric of the form
ds? = —dt* + a(t)*(6y; + hy;)dr'da’ (2.18)

where 0;h;; = hi = 0. A stochastic background of gravitational waves is a unique
prediction of inflationary cosmology (see §4). At linear order gravitational waves do
not couple to perturbations in the fluid.!? They therefore redshift like radiation and
their amplitudes decays with the expansion of the universe. The tensor perturbation
hi; can be written in terms of two polarization modes: h;; = h+e;’j + hxeixj. The

primordial power spectrum for each polarization mode is

(i) = (2778(k + K)Pi(k),  Pi(k) = 2]“—;7%(/{;) . (2.19)

12Second order couplings between scalar and tensor modes have been considered in [8, 23,
129], but they are small by virtue of the scalar amplitude being small, ® ~ 1075,
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CMB polarization experiments will be sensitive to the tensor-to-scalar ratio

P,
. 2.20
"= P (2:20)

The data has now reached a precision that allows meaningful constraints to be placed

on n, (2.15) and r (2.20) (see Figure 6).
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FIGURE 6. Constraints on the inflationary parameters ns and r from recent
cosmic microwave background and large-scale structure observations [151].

2.4. Summary. This is a golden age of cosmology. New precision data is testing
theoretical ideas about the structure and evolution of the universe. These observations
have revealed three problems that challenge the foundations of theoretical physics:
dark matter, dark energy, and inflation. We now know that 95% of the universe is not
ordinary atoms! However, we have yet to make sense of it! We have some ideas for
what the dark matter might be, but dark energy and inflation lack any explanation

in fundamental physics.
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3. Dark Energy

3.1. The Dark Energy Crisis. Explaining the nature of dark energy is one of
the greatest challenges of fundamental physics. Paul Steinhardt calls the discovery
of dark energy “one of the most surprising and profound discoveries in the history of
science” [152], while Steven Weinberg notes that “physics thrives on crisis” [159].

Two questions summarize the dark energy crisis:

m Why is the vacuum energy so unnaturally small”
The energy momentum tensor of the universe 7}, is expected to contain
a term Ag,, coming from the quantum mechanical energy density of the vac-
uum. Computations in quantum field theory'? suggest that the natural value
of the constant A should be in the range (TeV)* < Agpeory < (10" GeV)™.
According to Einstein’s equations, M&G uw = T, such a term admits de Sit-
ter space as a solution. It is therefore natural to propose vacuum energy as
the cause of the observed acceleration of the universe today. Unfortunately,
the observed value of the cosmological constant Agps ~ (meV)? is some 120
orders of magnitude smaller than its natural value, Agps/Atheory = 10722
This is the biggest disagreement between theory and experiment in the his-
tory of science. It is the famous cosmological constant problem: “Why is the
vacuum energy density so small?” And, “If it is so small, why is it not zero?”
m Why did acceleration start only in the recent past?
To make matters worse, the energy density of dark energy is observed to

be of the same order of magnitude as the present matter density. This is

13The following provides an estimate of the energy density of empty space: Consider sum-
ming the zero-point energies of all normal modes of some field of mass m up a wavenumber
cutoff A4 > m. This yields the following vacuum energy density

Al/4 2
Ark2dk 1 A
(p) :/ T V2 m2 . (2.21)
0

(2m)3 2 1672

If AY4 is set to any particle physics scale (Mp1, Msusy, A(lg/éD, me), one gets a version of
the cosmological constant problem.
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0

puzzling since the vacuum energy density pp o< a” remains constant during

the evolution of the universe, whereas the matter energy density p,, o< a3
decreases as the universe expands. The two energy densities being nearly the
same today means that their ratio pa/p,, had to be incredibly small in the
early universe, but fine-tuned to become nearly equal today. In other words,
one might think that we are living at a special epoch when the dark energy
density and the matter density are nearly equal in magnitude. During most

of the history and the future of the universe this is not the case. This has

become known as the cosmic coincidence problem (the “why now?” problem).

3.2. Dark Energy in String Theory. The cosmological constant problem
points to a deep conflict between the physics of the very large and the very small.
Quantum mechanics describes the microscopic world of elementary particles, atoms
and molecules, while Einstein’s general relativity provides an elegant mathematical
formulation for the evolution of the universe on the largest scales. Both theories are
fantastically successful in describing fundamental features of the world. However,
whenever forced to apply quantum mechanics and general relativity simultaneously
one is led to troubling inconsistencies. String theory in contrast is a consistent theory
of quantum gravity and hence has the potential to address fundamental questions
about the initial Big Bang singularity and the center of black holes. It is therefore
justified to imagine that string theory will also give us new insights into the vacuum
energy problem. So far this hope has not been realized, although string theory has
provided some interesting new ideas for addressing the problem. In particular, for-
mulating de Sitter space in string theory has been a challenge that was overcome only
recently by the first explicit constructions of metastable de Sitter solutions (see Chap-
ter 3). The multiplicity of these vacuum solutions can explain the vacuum energy

problem by anthropic reasoning [39].
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4. Inflation

“SPECTACULAR REALIZATION:

This kind of supercooling can explain why the universe today is
so incredibly flat and therefore resolve the fine-tuning paradox
pointed out by Bob Dicke in his Einstein day lectures.”

Alan Guth, Dec 7, 1979.

4.1. Shortcomings of the Big Bang Theory. Despite the success of the Big
Bang theory in explaining basic cosmological observations (see §2) it was realized
(e.g. by Dicke) that the uniform expansion of the universe poses serious conceptual
problems.

Homogeneity Problem. The standard model of cosmology assumes that the uni-
verse is homogeneous and isotropic. Indeed observations confirm this. However, the
conventional Big Bang theory does not explain this fact. As we discussed above,
inhomogeneities are gravitationally unstable and therefore tend to grow with time.
Observations of the CMB for instance verify that the fluctuations were much smaller
at the last scattering epoch than today. One thus expects that these inhomogeneities
were still smaller further back in time. How to explain a universe so smooth in its
past?

Flatness Problem. Spacetime in general relativity is dynamical, curving in re-
sponse to matter in the universe. Why then is the universe so closely approximated
by flat Euclidean space? To understand the severity of the problem consider the

Friedmann equation in the form (2.9)

Qa) — 1= (a2)2 . (2.22)

In the conventional Big Bang theory the comoving Hubble radius (aH)~! grows with

time and |2 — 1| hence diverges with time. (A flat universe with 2 = 1 is an unstable
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fixed point.) In the context of the standard Big Bang model, the quasi-flatness
observed today, Q(ag) ~ 1, therefore requires extreme fine-tuning of €2 near 1 in the
early universe, e.g. the deviation from flatness at BBN, during the GUT era and at

the Planck scale, respectively has to satisfy the following conditions: |Q2(appn) — 1| <

O(10719), |Q(agur) — 1| < O(107%%), |Q(ay) — 1] < O(107°).

Conformal Time Today
A

Past Light-Cone

CMB

o/b\ ————————————————— /-(j‘ -~-- Big Bang

causally disconneted @ CMB decoupling

FIGURE 7. Conformal spacetime of conventional Big Bang cosmology. The
CMB at last scattering consists of 10° causally disconnected regions!

Horizon Problem. Consider radial null geodesics in a flat FRW spacetime (2.1)
dr=4+——=dr. (2.23)

We define the comoving horizon, 7, as the causal horizon, i.e. the distance a light

ray travels between time 0 and time ¢

t / a a
T= / e _ da / dlna(aH)™*. (2.24)
o a(t) o Ha? 0

During the standard cosmological expansion the increasing comoving Hubble radius,

(aH)™', is therefore associated with an increasing comoving horizon', 7, and the
fraction of the universe in causal contact increases with time. However, the near-

homogeneity of the CMB tells us that the universe was quasi-homogeneous at the

4This explains the common practice of often using the terms ‘comoving Hubble radius’ and
‘comoving horizon’ interchangeably. Although these terms should conceptually be clearly
distinguished, this inaccurate use of language has become standard.
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time of last scattering on a scale encompassing many regions that are a priori causally
independent (see Figure 7). Why then is the CMB uniform on large scales (of order
the present horizon)?

Comment on Initial Conditions. It should be emphasized that the flatness and
horizon problems are not strict inconsistencies of the standard cosmological model.
If one assumes that the initial value of €2 was extremely close to unity and that
the universe began homogeneously (but with just the right level of inhomogeneity
to explain structure formation) then the universe would have continued to evolve
homogeneously in agreement with observations. The flatness and horizon problems
are therefore just severe shortcomings in the predictive power of the Big Bang model.
The dramatic flatness of the early universe cannot be predicted by the standard
model, but must instead be assumed in the initial conditions. Likewise, the striking
large-scale homogeneity of the universe is not explained or predicted by the model,
but instead must simply be assumed. Inflation removes these assumptions about

initial conditions.

4.2. The Basic Idea of Inflation. All the Big Bang puzzles are solved by a
beautifully simple idea: ‘invert the behavior of the comoving Hubble radius’ (aH)™*
i.e. make it decrease sufficiently in the very early universe. A decreasing Hubble
radius corresponds to accelerated expansion

&
de?

d
—(aH)™ ' <0 =

0. 2.25
iy > (2.25)

A flat universe then becomes an attractor solution (see Equation (2.22)) and the
observed CMB sky was in causal contact in the past (see Figure 8). A period of
acceleration in the early universe therefore very elegantly solves the problems with
the standard Big Bang theory. However, it raises the question: What is the physics
of inflation? Twenty-five years after inflation was introduced by Guth it remains a

paradigm in search of a theory. From the second Friedmann equation (2.7) we see
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Conformal Time Today
A

Past Light-Cone

CMB

\Reheating

N

Inflation

--------------------------------- Big Bang

FIGURE 8. Conformal spacetime of the inflationary universe. The horizon
problem is solved by extending conformal time to negative values. In infla-
tionary cosmology the Big Bang is at 7 = —oo, while without inflation it is
at 7 =0 (see Figure 7).

that accelerated inflationary expansion, like dark energy, requires a negative pressure
component to dominate the universe

d%a

@>O = p+3p<0. (2.26)

Furthermore, the two Friedmann equations (2.6) and (2.7) may be combined into the
continuity equation
dp

<~ 3H(p+p). (2.27)

During inflation p =~ —p, so the inflationary expansion requires that the early universe
was dominated by a nearly constant energy density, p ~ 0. This is unlike any physical

phenomenon we are familiar with.
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4.3. Slow-Roll Inflation. In the absence of a better theoretical understanding
of inflation it is standard practice to parameterize our ignorance by a scalar field ¢

with potential V(¢) (see Figure 9). Consider therefore the scalar field Lagrangian
L.
L= —59"0,00,6 ~ V(@) (225)

Computing the energy-momentum tensor associated with £, we find that the homo-

V(%) V(9)

/ 8¢ /

\/ - -

dcmB Pend reheating Pend dcMB
- -t L

Ao A¢

FIGURE 9. The Inflaton Potential. Acceleration occurs when the potential
energy of the field V' dominates over its kinetic energy %qbQ Inflation ends
at ¢eng when the slow-roll conditions are violated, ¢ — 1. CMB fluctuations
are created by quantum fluctuations §¢ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is converted into
radiation.

Left: A typical small-field potential. Right: A typical large-field potential.

geneous mode ¢(t) acts like a perfect fluid with equation of state

1.2
12 v
29+

g
Il
IS

The equation of motion of the inflaton field in an FRW background is the Klein-
Gordon equation
¢+3HG+V'(6)=0. (2.30)

From equation (2.29) we see that accelerated expansion, w < —%, occurs when the

potential energy density dominates over the kinetic energy, V' > %gzﬁQ From the

equation of motion (2.30) we further note that this condition is sustained if ¢ <

V', These two conditions for prolonged inflation are summarized by restrictions on
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the form of the inflaton potential V' (¢) and its derivatives. Quantitatively, inflation

requires smallness of the slow-roll parameters

M? V/ )
¢ = TPI<V) , (2.31)
V//
n = M;V. (2.32)

The conditions for inflation, €, |n| < 1, constrain the shape of the inflaton potential.
Whether and how naturally such flat potentials are achievable in string theory is an

important open question which we will address in the bulk of this thesis.

4.4. Quantum Origin of Structure. So far we have only discussed the classical
evolution of the inflaton field. Something remarkable happens when one considers
quantum fluctuations of the inflaton: inflation combined with quantum mechanics
provides an elegant mechanism for generating the initial seeds of all structure in the

universe.

Comoving Scales

!

horizon exit horizon re-entry Comoving

¢ .

density fluctuation

Inflation Hot Big Bang

-
Time [log(a)]

FIGURE 10. Creation and evolution of perturbations in the inflationary uni-
verse. Fluctuations are created quantum mechanically on sub-horizon scales.
While comoving scales remain constant the comoving Hubble radius during
inflation shrinks and the perturbations exit the horizon. Causal physics can-
not act on superhorizon perturbations and they freeze until horizon re-entry
at late times.
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A very intuitive way of understanding how the quantum fluctuations of the inflaton
field d¢(x) translate into density fluctuations dp(x) is via the time-delay formalism
developed by Guth and Pi [84]."> The basic idea is that ¢ controls the time at which
inflation ends (see Figure 9). Small quantum fluctuations in the value of the inflaton
field 0¢(x) ~ H translate into differences in the end of inflation (¢ = 1) for different
regions of space 0t(x). Regions acquiring a negative frozen fluctuation d¢ remain
potential-dominated longer than regions where d¢ is positive. Hence, fluctuations of

the field ¢ lead to a local delay of the end of inflation

TRLOVECE (2.33)

¢ 0

For the field fluctuation we have used the result of the zero-point calculation in de
Sitter space, d¢ ~ H. After reheating, the energy density evolves as p = 3M3H?

where H ~ t~!, so that

5—p~25—H~H6t~H£. (2.34)
p H )

This process therefore induces tiny density variations dp which via gravitational in-

stability grow to form the observed large-scale structure of the universe. In addition,

quantum fluctuations during inflation excite tensor metric perturbations, dg ~ Mil
P

Future experiments hope to detect this stochastic background of gravitational waves

from inflation.

15Strictly speaking the time-delay formalism is only valid when inflation is well-described
by the de Sitter solution and the equation of state is nearly unchanging [158]. We refer the
reader to Appendix A for an improved derivation of the inflationary perturbation spectra.
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FIGURE 11. Constraints on inflationary models from recent cosmic mi-
crowave background and large-scale structure observations [151].

4.5. Cosmological Observables.
Power Spectra. The computation we just sketched gives the following results for

primordial scalar and tensor power spectra (see Appendix A for details)

H\2 [ H\? 1V
p = (=) (Z) n—— = 2.
s <27r) (¢) 247T2M§16 (2.35)
29, HN\2 2V
P - —<—) ~2 2.36
! T2\ My 3m2 M, (2:36)

Here, the r.h.s. should be evaluated when the fluctuation mode freezes after crossing
the horizon, k = aH, (see Figure 10) and the second equality made use of the slow-
roll approximation. In a power law description, P, = A,k™ ! and P, = A,k™, the

spectral indices in terms of the slow-roll parameters are

ns—1 = 21— 6e, (2.37)

ng = —2e. (2.38)

The deviation from scale-invariance (ns = 1,n; = 0) may be traced to a small time

evolution of the Hubble parameter during inflation. From (2.35) and (2.36) we define
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the tensor-to-scalar ratio

r = 16€. (2.39)

Measurements of ny and r are strong discriminators of inflationary models (see Figure
11).

Inflationary Gravitational Waves. Detection of a stochastic background of primor-
dial gravitational waves is widely regarded as a ‘smoking gun’ signature of inflation.
The best hope for detecting such a signal is via the subtle imprints they leave in the
polarization of the CMB (B-modes).'% It is important to make pre-dictions for the ex-
pected gravitational wave amplitude before the next generation of CMB polarization
experiments comes online. In the context of string theory we discuss this challenge

in Chapters 8, 9 and 10.
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FIGURE 12. Current and future constraints on the inflationary gravita-
tional wave background (Figure adapted from Boyle et al. [41]). Shown
is the theoretical prediction for “minimally tuned” inflationary models as
defined in [41].

16T the future it might also become feasible to measure inflationary gravitational waves at
late times with direct-detection experiments like the Big Bang Observer (BBO) (see Figure
12)
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A conservative estimate for the minimal gravitational wave amplitude that is
accessible to future experiments is » > 0.01. Any signal that is much smaller than
this will be very hard to extract from astrophysical foregrounds [150]. A detection of
the primordial tensor-to-scalar ratio » would be truly revolutionary, as r encodes two

crucial pieces of information about the inflationary era:

(1) Energy scale of inflation
The measured amplitude of scalar perturbations P, ~ 2.4 x 10~ implies a
relation between the energy scale of inflation V'/* and the tensor-to-scalar

ratio r

1/4 16 ro\YA
VU4 = 1.06 x 10' GeV <W> . (2.40)

Detecting tensors (r > 0.01) would therefore imply that inflation occurred

at very high energies.

(2) Super-Planckian field variation
There is a one-to-one correspondence between the tensor-to-scalar ratio r
and the evolution of the inflaton during inflation A¢ = |pomB — Pena| [122]
(see Figure 9 for a definition of A¢ and Chapter 8 for a derivation of the
Lyth bound)

A¢ o\ 12

Observable gravitational waves (r > 0.01) therefore require super-Planckian
field excursions A¢ > M, while keeping the potential controllably flat. In
Chapters 8 and 9 we discuss whether this is realizable in a consistent micro-

scopic theory like string theory.

Primordial Non-Gaussianity. Gaussian fluctuations are completely described by
their two-point correlation function (or the power spectrum). The primordial fluc-

tuations created during slow-roll inflation are predicted to be highly Gaussian (see
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Appendix A) and the CMB power spectrum therefore reveals most of their statis-
tical properties. However, large non-Gaussianity can arise for non-minimal models
with non-trivial kinetic terms and/or multiple fields. This non-Gaussianity is best

extracted from the three-point function (or bi-spectrum)
<(1)k1 (I)k2(I)k3> = (271')350{1 + k2 + kg)F(k’l, k’Q, k’3) s (242)

where the momentum dependence of the function F' contains important clues about
the physics of inflation.
A simple way to characterize the non-Gaussianity of ® is to assume that it can

be parameterized by a field redefinition of the form
d =, + fur®7, (2.43)

where @ is Gaussian and the constant fy;, measures the amount of non-Gaussianity
of . Equation (2.43) is often called local non-Gaussianity. For single-field slow-roll in-
flation fxr, < 1 (see Appendix A). Since it is generally believed that non-Gaussianity
is only observable if fx;, = 1, we conclude that primordial non-Gaussianities from
slow-roll inflation are unobservable. However, the non-Gaussianity can easily be one
or two orders of magnitude bigger in non-minimal models of inflation. The search
for primordial non-Gaussianity is therefore an important aspect of the experimental

efforts to test the physics of inflation.
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4.6. What is the Physics of Inflation? Understanding the (micro)physics of
inflation remains one of the most important open problems in modern cosmology
and theoretical physics. Explicit particle physics models of inflation remain elusive,
so that a natural microscopic explanation for inflation has yet to be uncovered.!”
Nevertheless, there have recently been interesting efforts to derive inflation from string
theory. The search for inflationary solutions in string compactifications will be the

main focus of this thesis.

1"At this point it should be emphasized that the inflationary era in the early universe
is an unproven hypothesis. It is therefore important to keep an open mind about creative
alternative solutions to the horizon and flatness problems and the generation of cosmological
perturbations. The most interesting proposals to date are the ekpyrotic/cyclic scenarios
[43, 100, 154]. In these models a period of slow contraction before the Big Bang expanding
phase replaces inflation.



CHAPTER 3

Elements of String Compactifications

In this chapter we review fundamental aspects of string compactifications. The
formal developments described here form the basis for modern studies of string cos-
mology. We make no attempt at a complete and/or pedagogical introduction to string
theory. For a more thorough treatment of this vast and rapidly evolving subject the
reader may be referred to [27, 79, 138, 164].

After describing the moduli problem in §1 we present flux compactifications and
the KKLT scenario in §2 and §3, respectively. These constructions fix all moduli
and allow metastable de Sitter solutions. In addition, compactifications with fluxes

generically have warped regions whose local geometry we review in §4.

1. The Moduli-Stabilization Problem

Low energy effective actions arising from string theory typically contain many
scalar fields collectively called moduli. In particular, the compact manifolds satis-
fying the string equations of motion generally come in continuous families whose
parameters (controlling the size and shape of the extra dimensions) become scalar
fields in the four-dimensional effective theory. Compactifications containing branes
have additional moduli that parameterize their relative positions and orientations.
Finally, any string compactification always contains the massless dilaton field.

Before considering potentials arising from fluxes and non-perturbative effects,

these string moduli fields are massless and their couplings are of gravitational

46
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strength. the existence of these fields therefore raises generic cosmological problems
— The late time evolution of moduli fields affects low energy observables like the cou-
plings of the Standard Model, Newton’s gravitational constant, and the fine-structure
constant. In addition, light moduli fields can lead to fifth force-type violations of the
equivalence principle. All of these effects are strongly constrained by experiments.
The presence of light moduli fields may also lead to problems in the early universe:
e.g. successful Big Bang nucleosythesis (BBN) requires a moduli mass m, in excess
of 30 TeV. If m, < 100 MeV then the energy stored in the moduli fields overcloses the
universe while if 100 MeV < m, < 30 TeV then the moduli decay dilutes the BBN
products [110]. Phenomenologically viable models of particle physics and cosmology

therefore require a solution to the moduli-stabilization problem.

2. Flux Compactification

The moduli-stabilization problem has been solved only recently in the context of
flux compactifications of type IIB string theory [76], [82], [93]. Here we summarize
the basic elements of this program. For more details we refer the reader to the review

by Douglas and Kachru [63] or the recent Les Houches lectures by Denef [57].

2.1. Basic Ingredients. The basic ingredients of type IIB flux compactifications
are fluxes, branes and warped extra dimensions. The type IIB limit of string theory
contains D3-, D5-, and D7-branes as well as O(rientifold)-planes. The action for a Dp-
brane is the sum of a Dirac-Born-Infeld (DBI) term and a Chern-Simons (CS)-term
[139]

Spp = Sper + Scs - (3.1)

The DBI action describes the worldvolume of the brane which in string frame is!

SDBI = —Tp/dp+1§6_q>\/ —det(GAB) . (32)

IThis result is to leading order in o and for the case of vanishing worldvolume field strength.
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Here, T, = (27) Pg;*(a/)~P*1/2 is the D-brane tension in terms of the string coupling
gs and the fundamental string length v/o/. The field ® is the dilaton and G4p is
the pullback of the metric onto the brane worldvolume. The Chern-Simons-term?

describes the electric coupling of a Dp-brane to the R-R (p + 1)-form C,4

Scs = Hp / Cpta,s |bp| = Tpei(pig)q)ﬂl- (3.3)

Branes are therefore sources for form-field fluxes £,,5 = dC)1;. The total flux of these

fields through topologically non-trivial surfaces in the extra dimensions is quantized,
e.g.
L / Fs=M L / Hy=-K (3.4)
@rpa [0 TN G 0T T |
where A and B are 3-cycles of the compact manifold, F3 = dCy and Hz = dB, are
3-form fluxes and M and K are integers.

Finally, the presence of branes and fluxes sources locally warped spacetime regions,

ds® = h'2(y) gudatda” +h~Y2(y) gi;dy'dy’ . (3.5)
—w I

These regions are important backgrounds for quantitative studies of string cosmology

(see §4 and Chapter 4).

2.2. Moduli Potential. In the following we provide a lightning review of the
four-dimensional low-energy effective description of the KKLT proposal. We work in
the limit of N' = 1 supergravity, where the moduli potential Vp is characterized by a

superpotential W and a Kahler potential IC
2 ._ S 3
Vi = Mo | KD, WD W — W|W|2 : (3.6)
pl

where D;W = o,W + ﬁ((’MC)W and KC;; = 0;0;KC. The compactification typically

pl

contains 3-form flux G35 = F3 — 7H3 which contributes to the superpotential via the

2More general forms of the Chern-Simons term may be found in [139)].
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Gukov-Vafa-Witten (GVW) term [82]

Wi / Gs A0, (3.7)

where €2 denotes the holomorphic three-form on the Calabi-Yau three-fold and 7 =
Oy +ie~?® is the axio-dilaton. The Kihler potential for the complex structure moduli

and the dilaton is
K =—M}n [/Q/\Q] — M2 In[r + 7] . (3.8)

Turning on generic Gs-flux induces a potential Vr that usually fixes all the complex
structure moduli (x,) and the dilaton (7) [76]. The potential (3.6) is minimized for

DXaWﬂux - DTWﬂuX = 0.

3. De Sitter Vacua in String Theory

3.1. Non-perturbative Effects. The (classical) flux background fixes the shape
(complex structure moduli) of the extra dimensions, but leaves the overall size (Kéhler
moduli p) unfixed [76] (see Figure 1). Recently, Kachru, Kallosh, Linde and Trivedi
(KKLT) [93] provided a framework for stabilizing the overall size of the compact
manifold by including non-perturbative (quantum) effects e.g. gaugino condensation
on D7-branes or Euclidean D3-instantons. These effects are parameterized by the

following superpotential

Wnp = Aeiap’ (39)

for a constant. With K = —3M3In[p + p] the F-term potential (3.6) then leads to
supersymmetric anti-de Sitter (SUSY AdS) vacua, D,W = D,(Wau+W,p) = 0, with
stabilized Kahler modulus. The compactification is stabilized at large volume, p, > 1,
iff the flux superpotential is a small negative constant W (x5, 7*) = Wy ~ —1074

(in units where My, = 1).
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3.2. de Sitter Space. Having negative cosmological constant, these solutions

cannot yet describe our universe, Vp = —%|W|Qe’c/ Mii KKLT therefore uplifted the
pl

AdS minima to positive energies by adding anti-D3-branes. This ‘D-term’ uplifting

adds the following term to the moduli potential

D
Vp = W ; (3.10)

where D is a constant that depends on the D3-brane tension and the warping of

the background. The final potential for the volume modulus ¢ = Re(p) is shown in

Figure 1
aA e /1 o o 1D
V(O’) = ng 0_2 <§GO'A€ +W0+A€ > +Zﬁ (311)

Notice that the de Sitter minimum is metastable. The magnitude of the cosmological

V(o)
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no-scale
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L o = Re(p)
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FicureE 1. KKLT compactification: Potential for the volume modulus
o = Re(p). Fluxes fix the complex structure and the dilaton field, but leave
the overall volume modulus unfixed (green curve). Non-perturbative effects
stabilize the volume in a supersymmetric minimum with negative cosmolog-
ical constant (blue curve). Anti-D3 branes provide the uplifting energy to a
metastable de Sitter minimum (red curve).

constant associated with the minimum depends on the choice of flux quanta (3.4) and
is therefore tunable. The discretuum of vacua in type IIB flux compactifications has

been employed for an anthropic solution to the cosmological constant problem [39].
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4. Klebanov-Strassler Geometry

The moduli spaces of compact Calabi-Yau spaces generically contain conifold sin-
gularities. The local description of these singularities is called the conifold, a non-
compact Calabi-Yau three-fold whose geometry is given by a cone. In contrast to
general Calabi-Yau backgrounds the metric data for the conifold is explicitly known.
This makes these backgrounds very interesting for detailed studies of string cosmology
and particle phenomenology.

In this section we cite basic geometrical facts about the conifold (for more details

we refer the reader to the recent Les Houches lectures by Benna and Klebanov [29]).

4.1. Singular Conifold. The (singular) conifoldis defined by the complex equa-
tion

=0, zeC. (3.12)

The constraint equation (3.12) describes a cone over X5 = S? x S3. To see this note
that if 2% is a solution to (3.12) then so is Az’ with A € C. Also, letting 2* = a2’ + iy/’,

the complex equation (3.12) may be recast into three real equations

IO | I | I

The first equation defines a 3-sphere S? with radius p/v/2.> The last two equations
then describe a 2-sphere S? fibred over the S®. The Calabi-Yau metric on the conifold
is

dsg = dr? + r’dsF.. (3.14)

if we define the radial coordinate r = /3/2p*? or * = 30| |2 ]%.

3Here, the variable p is of course not to be confused with the Kéhler modulus introduced
in §3.
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The base of the cone is the T coset space [SU(2)4 x SU(2)]/U(1)r which has
the topology S? x S3. The metric of 71! in angular coordinates 6; € [0, 7|, ¢; € [0, 27],
W € [0,4n] is

2 2
1 2 1
2 _ 1 e L 2 | 20 12
dsiin = ) (d@b + ;1 cos 9ngbz> + 5 E (d@; + sin® 0,d¢;) . (3.15)

i=1
4.2. Deformed Conifold. The space defined by (3.12) is singular at the tip
of the cone, » = 0. Various prescriptions exist for removing this singularity — e.g.

consider the deformed conifold defined by

Z 22 =g?, (3.16)

where ¢ € C. By a phase rotation of the z; coordinates we can always choose ¢ €
R*. This defines a one-dimensional moduli space. For large r the deformed conifold
geometry reduces to the singular conifold with ¢ = 0. Moving from large r towards
the origin, the sizes of the S? and the S both decrease. Decomposing the z; into real

and imaginary parts we now find
ef=r-r—v-y, (3.17)

and

=TT+ (3.18)

This shows that the range of p (or r) is limited by

2 <pP<oo (3.19)

and the singularity at r» = 0 is avoided for €2 > 0. It also shows that as p?> — &2 the

S? disappears (- — 0) leaving just an S® with finite radius.
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4.3. Warped Throat. A stack of N D3-branes placed at the singularity z; = 0
backreacts on the geometry, producing a warped background with the following ten-

dimensional line element
ds? = h'/?(2) g, datda” + h™'%(2)g;;d2 d27 (3.20)

where g;; is the metric (3.14) and the warp factor is

hir)=—, R'= %QSN(O/)Z. (3.21)

This AdS background is an explicit realization of the Randall-Sundrum scenario [140,
141] in string theory. In the spirit of AdS/CFT [124] the AdSs x T™! geometry (3.20)
has a dual gauge theory interpretation. The dual N' = 1 supersymmetric conformal
gauge theory was constructed in [107]. It is an SU(N) x SU(N) gauge theory coupled
to bifundamental chiral superfields. If one further adds M D5-branes wrapped over
the S? inside 7', then the gauge group becomes SU(N + M) x SU(N), giving
a cascading gauge theory [105, 106]. The three-form flux induced by the wrapped

D5-branes (fractional D3-branes) satisfies

1
(2m)%/ /53 Fa= A (3:22)

The warp factor h(r) for this case was found by Klebanov and Strassler (KS) [105].
For large r it is [106]

_ 2Tm(o)?
4t

lgsNJr %(QSM)QIH<L) + i(gsM)z} : (3.23)

0 8w

h(r)

where ry ~ g2/3¢2mN/(3gsM)

The Klebanov-Strassler warped conifold background (also refered to as the warped

throat) is the basis for our explicit studies of warped D-brane inflation.



CHAPTER 4

Inflation in String Theory

Understanding the physics of inflation is one of the main challenges of fundamen-
tal physics and modern cosmology. Since string theory remains the most promising
candidate for a UV-completion of the Standard Model that unifies gauge and gravita-
tional interactions in a consistent quantum theory, it seems natural to search within
string theory for an explicit realization of the inflationary scenario. This search has
so far revealed two distinct classes of inflationary models which identify the inflaton
field with either open string modes (e.g. brane inflation [64, 95], DBI inflation [4, 147],
assisted M5-brane inflation [26], D3/D7 inflation [56], wrapped brane inflation [148]),
or closed string modes (e.g. Kdhler moduli inflation [54], racetrack inflation [35, 36],

N-flation [61, 67]). In this chapter we review these theoretical developments.

We begin in §1 with general remarks about the promise of studying UV-physics
in string theory models of inflation. In §2 we review warped brane inflation with
particular emphasis on the eta-problem [95] and the DBI mechanism [147]. In §3 we
provide a brief survey of other models of string inflation. We describe their prospects
and problems. Finally, in §4 we explain the ambitious goal of deriving inflationary
models from explicit string compactifications.

For more details on these and related aspects of inflation in string theory we refer
the reader to the excellent review by McAllister and Silverstein [128] or the upcoming

review by Liam McAllister and myself [22].

o4
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1. UV Challenges/Opportunities

We first make some preliminary remarks on the promise of studying inflation in the
context of string theory. Specifically, we will emphasize three problems in inflationary

cosmology that benefit most directly from the application of a UV-complete theory.!

1.1. V(¢) and the Eta—Problem. As the rest of this thesis will illustrate with
the example of brane inflation, the main challenge in string inflation is not to find
a flat potential, but to prove that it is the potential. After a modulus field with
(naively) flat potential has been identified, the challenge is to prove that the delicate
flatness of the potential is protected against corrections. More specifically, consider
an inflation model with some potential V' (¢). A robust model requires understanding
gravity corrections up to (at least) dimension six

SV ~ MLglng : (4.1)
These terms can induce O(H) corrections to the inflaton mass, which shift the infla-

tionary eta parameter by order unity
An~ O(1). (4.2)

For a controllable model one needs to demonstrate explicitly that these dangerous
terms are absent, suppressed or cancel. This requires some knowledge of Planck scale

physics or quantum gravity.

1.2. Gravitational Waves. The Lyth bound [122] shows that observable ten-

sors (r > 0.01, say) require super-Planckian field excursions during inflation,
A¢ > Mpl . (43)

'The following remarks are inspired by discussions with Shamit Kachru, Eva Silverstein and
Liam McAllister.
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An effective field theory (EFT) description of inflation integrates out all heavy fields
above a cutoff M and only retains the light inflaton degree of freedom. It is argued
(e.g. [123]) that this procedure generically gives a tree-level potential of the following
form
Loy 14 4 - P \"

V(6) = Vo + 5mP¢* + NG+ 6 ;An(ﬂ) - (44)
Here we have separated the potential in a renormalizable part and an infinite series
of irrelevant terms which are supressed by the cut-off scale M. Since it is usually
assumed that A, ~ O(1) and M < M, this suggests a breakdown of the EFT
for ¢ > M. Of course, this argument does not prove the impossibility of super-
Planckian vevs, but it suggests that capturing the dynamics over a super-Planckian
range requires going beyond EFT. Whether large-field models of inflation are under
(microphysical) theoretical control can therefore be addressed unambiguously only in

a UV-complete theory such as string theory.

1.3. Non-Gaussianity. In single-field slow-roll models of inflation the primor-
dial fluctuations are very nearly Gaussian with the amount of non-Gaussianity sup-
pressed by powers of the slow-roll parameters [125]. To obtain observable non-
Gaussianity during inflation requires extensions of the simplest models by including
multiple fields and/or non-trivial kinetic effects. In single-field models with higher-
derivative corrections to the canonical kinetic term the non-Gaussianity can be large
if and only if these operators are important to the inflationary background dynamics
[55]. From an effective field theory point of view this means living dangerously close
to the limit of control with a large number of higher-derivative corrections all being
simultaneously important. Such models therefore cry for UV-completion. String the-

ory has recently provided a number of interesting realizations for such models, e.g.

DBI inflation [147] (see §2).
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2. Warped D-brane Inflation

2.1. Setup. Warped D-brane inflation is arguably the most developed inflation-
ary scenario in string theory. In this setup inflation is described by the motion of
a D3-brane in a warped background (like the Klebanov-Strassler throat [105] intro-
duced in the previous chapter). The D3-brane fills four-dimensional spacetime and is
pointlike in the compact extra dimensions (see Figure 1). The position of the brane

in the extra dimensions serves as the inflaton field.

V() bulk Calabi-Yau

warped throat

FIGURE 1. The KKLMMT Scenario. The 3-branes are spacetime-filling
and therefore pointlike in the extra dimensions. The net force on the D3-
brane is associated with the inflaton potential.

The kinetic term for the motion of the brane arises from the Dirac-Born-Infeld

(DBI) action (3.2) in the background (3.20)

Lopr = —f"HO)V1=2f(0)X + f(4). (4.5)

Here, X = —%g’“’@uqﬁ@ygb, where ¢* = Tir? parameterizes the inflaton field, and
f~t = T3h! is the warped tension of the brane. In the slow-roll limit (fX < 1) we
recover the familiar canonical kinetic term Lppr ~ X.

The original brane inflation proposal by Dvali and Tye [64] considered a brane-
antibrane pair in an unwarped background (e.g. a torus). The brane then feels a
Coulomb-like force from the anti-brane that acts as a potential for the inflaton. How-

ever, in the scenario of Dvali and Tye this force is too strong to allow slow-roll
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inflation. In addition, the moduli stabilization problem had not been addressed.
Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) made the
important observation that a brane in a warped background feels a much weaker
force. Warping suppresses the brane-antibrane force sufficiently to make slow-roll
possible. In addition, KKLMMT showed how to embed the model into a concrete
KKLT compactification with fixed moduli. However, in the process they discovered
that compactification effects add correction terms to the potential that generically

spoil slow-roll.

2.2. The Eta—Problem. Consider a KKLT compactification with an additional
mobile D3-brane. As argued by Ganor [71], the non-perturbative superpotential (3.9)

now depends on the D3-brane position ¢ o r
Whp = A(p)e . (4.6)

At this point A(¢) is an unknown function. The Kéhler potential in such a setup was

given by DeWolfe and Giddings [58]
K = _3M131 ln[p + /5 - k<¢> é)} = _SMsl In U(pa ¢) 9 (47)

where k(¢,¢) ~ ¢¢ is the Kihler potential on the moduli space of the D3-brane
(e.g. a warped throat region). The inflaton potential may then be computed from the

F- and D-term potentials
V(¢) = Vr(¢) + Vb(9). (4.8)

Here, Vi(¢) is the moduli potential (3.6) and Vp(¢) = DU~? parameterizes the the
energy of the brane-antibrane pair (see (3.10)). To arrive at a single field potential
for ¢ the volume modulus p has been integrated out. The slow-roll eta parameter
corresponding to (4.8) is

1=z +An(g), (4.9
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where An(¢) has isolated the terms that arise from the dependence of the superpo-
tential on ¢ (4.6) . Notice that if A = constant then n = % and inflation is impossible.
However, we know that it is inconsistent to assume that A is a pure constant inde-
pendent of the brane position ¢. KKLMMT therefore expressed the hope that the
functional form of A(¢) would be such that it allowed a fine-tuned cancellation of the
% in (4.9). Since at the time the function A(¢) was not known, this expectation re-
mained only a hope that had to be checked against an explicit computation. In other
words, to assess the true status of warped D-brane inflation one needed to compute
A(¢) (Chapter 5) and determine An(¢) (Chapters 6 and 7). The first computation of
A(¢) [18] is one of the main results of this thesis. We find that inflation is harder to

achieve than was generally assumed.

200 V(¢)

KKLMMT

15+
BDKM
10 —— - -
Dvali+Tye (+warping)
051

FIGURE 2. Computations of the brane potential.

a) Dvali+Tye (+warping) [64, 95]: Voouomb(6) = Vo(1 — cp™4).

b) KKLMMT [95]: Vkkrmmt(¢) = Vooulomb(9) + 567,

¢) BDKM [19]: Veprm(¢) = Veoulomb(9) + A1 (¢ — ¢o) + X3(¢ — ¢o)?.
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Physical Interpretation of the Brane Potential. We digress briefly to

give a more physical interpretation of the different contributions to the brane potential

(see Figure 2). A brane experiences (at least) three forces in a KKLT background:

(1)

Coulomb interaction with the anti-D3:

The Coulomb-like interaction between the brane-antibrane pair may be
understood as follows: The energy density of the branes perturbs the warp
factor of the background geometry. Schematically, the perturbation dh; sat-

isfies the following equation of motion

1
S ——
e =t

where r; parameterizes the positions of the D3-brane and the anti-D3-brane.
The D3-brane hence feels a 1/r* force from the perturbed geometry sourced
by the anti-brane. The force is suppressed by warping and gives a negligible
contribution to the inflationary n-parameter.
D3-brane backreaction on the volume:

Similarly, the D3-brane energy backreacts on the overall compactification
volume, so that the physical volume becomes dependent on the brane position
V(r). Since powers of the volume appear in the rescaling of the action from

string frame to Einstein frame?

1
'CEinstein - Vn—(r)ﬁstring ) nc Za (411)

this gravitational interaction between the D3-brane and the compact space
induces a force on the D3-brane (first computed by KKLMMT [95]). This is

the physical origin of the %—term in equation (4.9).

2Strictly speaking, only a breathing mode appears in the dimensional reduction (see Ap-
pendix F).
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(3) D3/D7 interaction:

In a KKLT compactification the overall volume is stabilized by non-
perturbative effects on wrapped D7-branes. One therefore is obliged to in-
clude the force between the D3-brane and the D7-branes. The effect can be
small if the D7-branes are far from the throat region (in which case inflation
will be impossible) or it can be large if the D7-branes are in or near the
throat. In the hope of deriving inflationary solutions, we therefore consider
D7-branes wrapping a 4-cycle reaching into the throat. The presence of the
D3-brane changes the (warped) volume of the 4-cycle. A change in the 4-cycle
volume in turn changes the effective gauge coupling on the D7-brane world-
volume, ¢(r), and hence modifies the strength of the non-perturbative effect
in a way that depends on the location of the D3-brane, W, o< exp(1/g*(r))
(see (4.6)). This induces a force on the mobile D3-brane (first computed
by BDKMMM [18]; Chapter 5). We discuss the D3/D7 interaction in more

detail in the bulk of this thesis. It produces the An(¢)-contribution in (4.9).

2.4. DBI Inflation. Silverstein and Tong [147] recently proposed an interest-
ing mechanism that potentially obviates the eta-problem of slow-roll brane inflation.
Their model (called DBI inflation) is driven by non-linear kinetic effects exhibited by
the action (4.5) and does not rely on the delicate flatness of the inflaton potential.

While slow-roll brane inflation corresponds to non-relativistic brane motion, the
non-linearities of the DBI action become important in the relativistic limit. The
relativistic limit of brane motion in a warped background may be characterized by
the parameter 7 (defined in analogy to the Lorentz factor of relativistic particle

dynamics)?
1

S (4.12)
1= f(¢)¢?

=)
Il

3For simplicity we here restrict the discussion to the homogeneous mode ¢(t).
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Positivity of the argument of the square-root in (4.12) imposes a local speed limit on
the brane motion, ¢> < f~'(¢) = T3h~'(¢) (in units where ¢ = 1). The presence of
strong warping in the throat, h=! < 1, can make this maximal speed of the brane
much smaller than the speed of light. The parameter v is large when ¢ is close to
this speed limit.
From the inflaton action £ = Lpg; — V' we find the homogeneous energy density
in the field
p=2XLx—-L=n-1f'+V, (4.13)

while the pressure is

p=L=(1—-~yHft-Vv. (4.14)

The energy and pressure of the inflaton source the dynamics of the homogeneous
background spacetime, ds* = —dt? + a(t)*dx?, as described by the Friedmann equa-
tions

SMAH? =p,  2MAH =—(p+p). (4.15)

Inflation requires that the variation of the Hubble parameter H is small

H 3
where
p (A= Hf'-V
w=== 4.17
T e

From the expression for the equation of state parameter (4.17) we see that although
the brane moves relativistically in the DBI limit, v > 1, inflation still requires that
the potential energy V' dominates over the kinetic energy of the brane (y — 1)T3h L.
This is possible because the kinetic energy of the brane is suppressed by the large
warping of the internal space, h™! < 1.

In addition to providing an elegant solution to the eta-problem, DBI inflation

makes exciting phenomenological predictions. The primordial fluctuations produced



4. INFLATION IN STRING THEORY 63

during DBI inflation are highly non-Gaussian (fx1, o< 7% > 1) at a level easily de-
tectable by near future experiments [147]. This makes DBI inflation very falsifiable.
In fact, as we will show in Chapter 8, DBI inflation on Calabi-Yau cones is already
very constrained by a combination of experimental and microscopic considerations

21].

3. Models of String Inflation

Models of inflation in string theory can be divided into two categories: models

where the inflaton is an open string or closed string degree of freedom.

3.1. Open String Models. Crudely speaking, open string moduli parameterize
the positions and orientations of D-branes. Using these moduli, many variants and
complements of brane-antibrane inflation and DBI inflation have been constructed
(e.g. assisted M5-brane inflation [26], D3/D7 inflation [56], wrapped brane inflation
[148], etc.). We refer the reader to the original papers and recent reviews [96] for
a more comprehensive summary of these developments. Since we described brane
inflation in some detail in the previous section we here restrict ourselves to a few

comments on models of inflation coming from the closed string sector.

3.2. Closed String Models. Closed string moduli are the Kahler moduli, the
complex structure moduli, the dilaton and the corresponding axions. The associated
inflationary models include racetrack inflation [35, 36], Kdhler moduli inflation [54],
Roulette inflation [38], and N-flation [61, 67]. For no reason other than personal

taste we here select to describe Kahler moduli inflation and N-flation in more detail.

B Kihler moduli inflation by Conlon and Quevedo [54] is an interesting at-
tempt to embed inflation in the LARGE volume compactifications of [15]. An at-
tractive feature of these models is that most corrections to the inflaton potential are

suppressed by factors of the exponentially large volume.
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Let the Kéahler potential for three Kahler moduli p; be

K = —2M2In|Ai(p1+ p1)*? 4 Xa(p2 + p2)*/ + As(ps + p3)** + €| (4.18)

—2MZ In[V(9)], (4.19)

where ¢ parameterizes o/ corrections. The superpotential has the same structure as

in KKLT (see Chapter 3)

3
W=Wo+ ) Aemr. (4.20)

i=1

For Wy = O(1)M,) this leads to a minimum at exponentially large volume V, ~
O(10™"). (Recall that the KKLT solution corresponds to the limit Wy ~ —107*M),.)

At least three Kéhler moduli are required to stabilize the overall volume V during
inflation. p; and py are fixed, while a blow-up four-cycle ps plays the role of the
evolving inflaton ¢. In [54] the axion Im(ps) was frozen at its minimum and the
inflaton reduced to Re(p3). The more general case was considered in [38]. There, the
two complex fields p; and ps are again fixed, but in p3 = ¢ + 16, both the volume
modulus ¢ and the axion 6 evolve during inflation. The resulting potential is periodic
in 6 and exponentially flat in ¢. In this multi-field case, the inflationary trajectories
are of course not unique, but depend on the initial conditions.

To date, it has not been proven rigorously that the eta-problem is really absent
in Kéahler moduli inflation. Most corrections to the potential are suppressed by
factors of the overall (exponentially large) volume. However, as noted in [38, 54],
there are additional corrections to the Kéhler potential of the form f(¢)V™" that
could depend on the inflaton. For generic functions f(¢) this gives an eta-problem.
Proving the absence of these terms remains an important step towards establishing

the viability of models of Kahler moduli inflation.

B N-flation [61, 67] is unique amongst inflationary models in string theory in

that it predicts an observable amplitude of gravitational waves. As we explained in
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Chapter 2, observable gravity waves are associated with super-Planckian field excur-
sions during inflation. In Chapters 8, 9 and 10 we explain why we think it may be
very challenging to embed large-field models of inflation in a consistent string com-
pactification. This makes it particularly interesting to discuss whether N-flation is a
serious exception to this general expectation.

N-flation overcomes the super-Planckian problem by the mechanism of assisted
inflation [115]. Let us first describe assisted inflation in effective field theory and
then present its string theoretic realization. We consider N fields ¢; with separable
potentials V(¢) = > . Vi(¢;). The individual fields do not exceed Planckian vevs. The
crucial point of the assistance effect is that each individual field feels the combined

Hubble friction of all fields, 3M7 H? = 37, V;, but only the force from its own potential
¢; + 3Ho; = —0,V;. (4.21)

(Note that cross-couplings between the fields can easily destroy the assistance effect).
Imagine a large number of fields with small initial displacements away from the min-
ima of their potentials, A¢; < M. The potentials V; are then approximated by a
quadratic expansion about the minima V; ~ im2¢?. For simplicity, we also take all
masses to be equal m; = m [61] (the case of a distribution of different masses was
considered by Easther and McAllister [67]). The effective inflaton potential then be-
comes, V = Im?[¢ + ¢3 + - -+ + ¢%] = im?®2. Here, we have defined the effective
inflaton as the Pythagorean sum of the individual fields ®* = Y, ¢2. If the initial field
displacements are equal, ¢; = ¢, we can write ® = /N¢;. If the number of fields N
is large enough, then the effective inflaton can have a super-Planckian displacement
A® > M, even if Ag; < Mp,. For string theory axions the required number of field
turns out to be N > (O(1000) [61, 67, 102].

We now come to the concrete realization of this idea using the many axions of

string theory — our treatment parallels that of Ref. [67]. A large number of axions
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are generically present in string compactifications. The axion Lagrangian is

1 4 .
L= ngllciijvW -V, (4.22)
where
K - W2
V = exp (M_§1> [/CABDAWDBW —3 | (4.23)

Here A, B run over the dilaton 7, the complex structure moduli x, and the Kahler
moduli p; = 0; — i¢;. The Kahler potential only depends on the real part of the
Kahler moduli and in particular is independent of the axions ¢;. Meanwhile, in the

KKLT superpotential the dependence on the axions is as follows
Wi = Ai€_27mi€27ri¢i = Ci€2m¢i . (424)

Assuming that the complex structure moduli and the volume cycles o; have relaxed
to their minima, we focus on the evolution of the axion fields ¢; (we discuss this
assumption below). The complete superpotential from fluxes and nonperturbative

effects is
W =Wo(m",x5) + Z Wi(or, i) - (4.25)

Substituting (4.25) into (4.23) and performing a Taylor expansion around ¢; = 0 one
finds [67] (using F-flatness D,W|, _, = 0)

V = (27)2My¢'¢" + O(¢%) (4.26)
where
Ny = Mi%e’C/M?» (KABDAC,DEC; — 3C,C)) . (4.27)
p

At this point, neither the kinetic terms, nor the mass matrix are diagonal. Hence, the
potential does not take the uncoupled form required for the assistance effect described
above. However, Ref. [67] showed that the cross-couplings in Mij are suppressed for

statistical reasons (see Appendix A of [67]). Furthermore, the metric IC;; can be
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diagonalized by an orthogonal rotation

2
P

The eigenvalues f; are the axion decay constants. Finally, after absorbing the f; into

a rescaling of the ¢; to make the kinetic terms canonical, the Lagrangian becomes
L= ! oot — M’y
=3 L 9i0" " — Mid'd) (4.29)

where

K
fe FOF (DACDAC = 3C,C1) O (4.30)
iJj

In the limit where only the quadratic terms in (4.26) are retained a further orthogonal

M = (2m)°

rotation diagonalizes M;;. The eigenvalues of M;; are the masses m; of N canonically

normalized, uncoupled axions
L= E ;0" " — g lngb? (4.31)
2 nyn - 2 77 .

(Ref. [67] went further and characterized the statistical properties of these eigenvalues
using random matrix theory). This seems to establish the Lagrangian assumed for
assisted N axion inflation. However, the devil is in the details. Are the cross-couplings
really small enough to allow the assistance effect? What happens when higher-order
corrections to the quadratic approximations for the potentials are included? Most
importantly there is a question of initial conditions: is it consistent to assume that
the real parts of the Kahler moduli have all relaxed to their minima before the axionic
counterparts? This assumption requires that the mass in the o;-directions is much
larger than in the ¢;-directions. Finally, the string compactifications of N-flation are
at the limit of control of the o and g, expansions [61]. Unknown higher corrections in

o’ and g4 could spoil the success of the scenario. It therefore remains to be established
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explicitly whether N-flation is a consistent realization of large-field inflation in string

theory.?

4. Inflation from Explicit String Compactifications

None of the models in §3 have been derived from an explicit string compactification
that includes a computation of all relevent correction terms. In this thesis we make

important steps towards this goal.

String Compactification geometry of M,

RS’l x Mg branes
fluxes

N

Inflationary

4d Lagrangians
Lagrangians

L: moduli
potential V(¢)

Observables

FIGURE 3. From String Compactification Data to Low Energy Lagrangian
to Inflation. String theory specifies discrete compactification data C (geom-
etry and topology of extra dimensions, amount and types of branes, amount
and types of fluxes, etc.) At low energies, four-dimensional physics is de-
scribed by an effective field theory with Lagrangian £. In this thesis we
study the correspondence between C and £ and search for configurations
that allow inflationary solutions.

In the following chapters, we formulate the standard that we would like to require
from an explicit model of string inflation. We illustrate this program with a concrete
computation of the inflaton potential for models of warped D-brane inflation. We
draw conclusions about the possibilities and impossibilities of effective field theories
derivable from this setup. We will find that although naively these scenarios lead to

4At the time of writing the most detailed discussions of these issues can be found in [80]
and [98] .
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effective Lagrangians that should easily allow inflationary solutions, the parameter
space of successful models is dramatically reduced by microphysical constraints arising

from the compactification geometry.



Part 2

The Inflaton Potential



CHAPTER 5

On D3-brane Potentials in Compact Spaces

We begin our study of D-brane motion in warped background spacetimes by com-
puting a crucial ingredient to the D3-brane potential.! Technical details of the com-

putations presented in this chapter are relegated to Appendices B, C and D.

1. Introduction

1.1. Motivation. As we emphasized in Part I of this thesis, a truly satisfac-
tory model of inflation in string theory should include a complete specification of a
string compactification, together with a reliable computation of the resulting four-
dimensional effective theory. While some models come close to this goal, we have seen
that very small corrections to the potential can spoil the delicate flatness conditions
required for slow-roll inflation [153]. In particular, gravitational corrections typically
induce inflaton masses of order the Hubble parameter H, which are fatal for slow-roll.
String theory provides a framework for a systematic computation of these corrections,
but so far it has rarely been possible, in practice, to compute all the relevant effects.
However, there is no obstacle in principle, and one of our main goals in this work is
to improve the status of this problem.

It is well-known that a D3-brane probe of a ‘no-scale’ compactification [76] with

imaginary self-dual three-form fluxes experiences no force: gravitational attraction

!The material of this chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Kle-
banov, Juan Maldacena, Liam McAllister and Arvind Murugan, “On D3-brane Potentials
in Compactifications with Fluxes and Wrapped D-branes”, JHEP 0611, 031 (2006).

71
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and Ramond-Ramond repulsion cancel, and the brane can sit at any point of the
compact space with no energy cost. This no-force result is no longer true, in general,
when the volume of the compactification is stabilized. The D-brane moduli space
is lifted by the same nonperturbative effect that fixes the compactification volume.
This has particular relevance for inflation models involving moving D-branes.

In the warped brane inflation model of Kachru et al. [95] (see Chapter 4) it
was established that the interaction potential of a brane-antibrane pair in a warped
throat geometry is exceptionally flat, in the approximation that moduli-stabilization
effects are neglected. However, incorporating these effects yielded a potential that
generically was not flat enough for slow roll. That is, certain correction terms to the
inflaton potential arising from the Kihler potential? and from volume-inflaton mixing
[95] could be computed in detail, and gave explicit inflaton masses of order H.?
One further mass term, arising from a one-loop correction to the volume-stabilizing
nonperturbative superpotential, was known [71] to be present, but was not computed.
The authors of [95] argued that in some small percentage of possible models, this one-
loop mass term might take a value that approximately canceled the other inflaton
mass terms and produced an overall potential suitable for slow-roll. This was a
fine-tuning, but not an explicit one: lacking a concrete computation of the one-loop
correction, it was not possible to specify fine-tuned microscopic parameters, such as
fluxes, geometry, and brane locations, in such a way that the total mass term was
known to be small. In this chapter we give an explicit computation of this key,
missing inflaton mass term for brane motion in general warped throat backgrounds.

Applications of our results to brane inflation will be discussed in Chapters 6 and 7.

2These terms are those associated with the usual supergravity eta problem.

3Similar problems are expected to affect other warped throat inflation scenarios, such as
[65]. Indeed, concerns about the Hubble-scale corrections to the inflaton potential of [65]
have been raised in [44], but the effects of compactification were not considered there.
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1.2. Method. The inflaton mass problem described in [95] appears in any model
of slow-roll inflation involving D3-branes moving in a stabilized flux compactification.
Thus, it is necessary to search for a general method for computing the dependence
of the nonperturbative superpotential on the D3-brane position. Ganor [71] stud-
ied this problem early on, and found that the correction to the superpotential is a
section of a bundle called the ‘divisor bundle’, which has a zero at the four-cycle
where the wrapped brane is located. The problem was addressed more explicitly
by Berg, Haack, and Kérs (BHK) [32], who computed the threshold corrections to
gaugino condensate superpotentials in toroidal orientifolds. This gave a substantially
complete? potential for brane inflation models in such backgrounds. However, their
approach involved a challenging open-string one-loop computation that is difficult to
generalize to more complicated Calabi-Yau geometries and to backgrounds with flux
and warping, such as the warped throat backgrounds relevant for a sizeable fraction
of current models. Moreover, KKLT-type volume stabilization often proceeds via a
superpotential generated by Euclidean D3-branes [163], not by gaugino condensation
or other strong gauge dynamics; this requires computing semiclassical corrections
around the instanton background.

Following work by Giddings and Maharana [77], we overcome these difficulties
by viewing the correction to the mobile D3-brane potential as arising from a distor-
tion, sourced by the D3-brane itself, of the background near the four-cycle wrapped
by the D7-branes or Euclidean D3-brane responsible for the non-perturbative effect.
This corrects the warped volume of the four-cycle, changing the magnitude of the
nonperturbative effect. Specifically, we assume that the Kdhler moduli are stabilized
by nonperturbative effects, arising either from Euclidean D3-branes or from strong

gauge dynamics (such as gaugino condensation) on D7-branes. In either case, the

4Corrections to the Kihler potential provide one additional effect; see [33, 75].
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nonperturbative superpotential is associated with a particular four-cycle, and has ex-
ponential dependence on the warped volume of this cycle. Inclusion of a D3-brane
in the compact space slightly modifies the supergravity background, changing the
warped volume of the four-cycle and hence the gauge coupling in the D7-brane gauge
theory. Due to gaugino condensation this in turn changes the superpotential of the
four-dimensional effective theory. The result is an energy cost for the D3-brane that
depends on its location.

This method may be viewed as the closed-string dual of the open-string computa-
tion of BHK [32]. In §4.2 we compute the correction for a toroidal compactification,
where an explicit comparison is possible, and verify that the closed-string method
exactly reproduces the result of [32]. We view this as a highly nontrivial check of the
closed-string method.

Employing the closed-string perspective allows us to study the potential for a
D3-brane in a warped throat region, such as the warped deformed conifold [105]
or its generalizations [48, 65], glued into a flux compactification. This is a case of
direct phenomenological interest. To model the four-cycle bearing the most relevant
nonperturbative effect, we compute the change in the warped volume of a variety of
holomorphic four-cycles, as a function of the D3-brane position. We find that most
of the details of the geometry far from the throat region are irrelevant. Note that
the supergravity method is applicable provided that the internal manifold has large
volume.

The distortion produced by moving a D3-brane in a warped throat corresponds to
a deformation of the gauge theory dual to the throat by expectation values of certain
gauge-invariant operators [108]. Hence, it is possible, and convenient, to use methods

and perspectives from the AdS/CFT correspondence [124] (see [2, 103] for reviews).
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1.3. Outline. The organization of this chapter is as follows. In §2 we recall the
problem of determining the potential for a D3-brane in a stabilized flux compactifi-
cation. We stress that a consistent computation must include a one-loop correction
to the volume-stabilizing nonperturbative superpotential. In §3 we explain how this
correction may be computed in supergravity, as a correction to the warped volume of
each four-cycle producing a nonperturbative effect. We present the Green’s function
method (cf. Ref. [77]) for determining the perturbation of the warp factor at the loca-
tion of the four-cycle in §4. We argue that supersymmetric four-cycles provide a good
model for the four-cycles producing nonperturbative effects in general compactifica-
tions, and in particular in warped throats. In §5 we compute in detail the corrected
warped volumes of certain supersymmetric four-cycles in the singular conifold. We
also give results for corrected volumes in some other asymptotically conical spaces.
In §6 we give an explicit and physically intuitive solution to the ‘rho problem’ [32],
i.e. the problem of defining a holomorphic volume modulus in a compactification with
D3-branes. We also discuss the important possibility of model-dependent effects from
the bulk of the compactification. We conclude in §7.

Technical details of the computations in this chapter are relegated to a number
of appendices. In Appendix B we present some facts about Green’s functions on
conical geometries, as needed for the computation of §5. Details of our computation
for warped conifolds are given in Appendix C. The equivalent calculation for Y74

cones is presented in Appendix D.

2. D3-branes and Volume Stabilization

2.1. Nonperturbative Volume Stabilization. For realistic applications to
cosmology and particle phenomenology, it is important to stabilize all the moduli.
The flux-induced superpotential [82] stabilizes the dilaton and the complex structure

moduli [76], but is independent of the Kéahler moduli. However, nonperturbative



5. ON D3-BRANE POTENTIALS IN COMPACT SPACES 76

terms in the superpotential do depend on the Kahler moduli, and hence can lead to
their stabilization [93]. There are two sources for such effects:

(1) Euclidean D3-branes wrapping a four-cycle in the Calabi-Yau [163].

(2) Gaugino condensation or other strong gauge dynamics on a stack of Np;

spacetime-filling D7-branes wrapping a four-cycle in the Calabi-Yau.

FIGURE 1. Cartoon of an embedded stack of D7-branes wrapping a four-
cycle 34, and a mobile D3-brane, in a warped throat region of a compact
Calabi-Yau. In the scenario of [95] the D3-brane feels a force from an anti-D3-
brane at the tip of the throat. Alternatively, in [65] it was argued that a D3-
brane in the resolved warped deformed conifold background feels a force even
in the absence of an anti-D3-brane. In this work we consider an additional
contribution to the D3-brane potential, coming from nonperturbative effects
on D7-branes.

Let p be the volume of a given four-cycle that admits a nonperturbative effect.’

The resulting superpotential is expected to be of the form [93]
Wip(p) = A(x, X)e . (5.1)

Here a is a numerical constant and A(y, X) is a holomorphic function of the complex
structure moduli x = {x1, ..., xs21} and of the positions X of any D3-branes in the

°In general, there are h! Kihler moduli p;. For notational simplicity we limit our discussion
to a single Kahler modulus p, but point out that our treatment straightforwardly generalizes
to many moduli. The identification of a holomorphic Kéhler modulus, ¢.e. a complex scalar
belonging to a single chiral superfield, is actually quite subtle. We address this important
point in §6.1. At the present stage p may simply be taken to be the volume as defined in
e.g. [76].
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internal space.’ The functional form of A will depend on the particular four-cycle in
question.

The prefactor A(y, X) arises from a one-loop correction to the nonperturbative
superpotential. For a Fuclidean D3-brane superpotential, A(x, X) represents a one-
loop determinant of fluctuations around the instanton. In the case of D7-brane gauge
dynamics the prefactor comes from a threshold correction to the gauge coupling on
the D7-branes.

In the original KKLT proposal, the complex structure moduli acquired moderately
large masses from the fluxes, and no probe D3-brane was present. Thus, it was
possible to ignore the moduli-dependence of A(y, X) and treat A as a constant, albeit
an unknown one. In the case of present interest (as in [95]), the complex structure
moduli are still massive enough to be negligible, but there is at least one mobile D3-
brane in the compact space, so we must write A = A(X). (See [71] for a very general
argument that no prefactor A can be independent of a D3-brane location X.)

The goal of this chapter is to compute A(X). As we explained in the introduction,
this has already been achieved in certain toroidal orientifolds [32], and the relevance
of A(X) for brane inflation has also been recognized [32, 95]. Here we will use a
closed-string channel method for computing A(X), allowing us to study more general
compactifications. In particular, we will give the first concrete results for A(X) in

the warped throats relevant for many brane inflation models.

2.2. D3-brane Potential After Volume Stabilization. The F-term part of

the supergravity potential is

Vi = ek [ICﬁDZ-WDjW —32WP|, W= M =8rG. (5.2)

OStrictly speaking, there are three complex fields, corresponding to the dimensionality of
the internal space, but we will refer to a single field for notational convenience.
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DeWolfe and Giddings [58] showed that the Kéhler potential I in the presence of

mobile D3-branes is
KK =-3n[p+p—7k(X,X)] = -2V, (5.3)

where k(X, X) is the Kihler potential for the Calabi-Yau metric, i.e. the Kihler
potential on the putative moduli space of a D3-brane probe, V is the physical volume
of the internal space, and + is a constant.” We address this volume-inflaton mixing in
more detail in §6.1. For clarity we have assumed here that there is only one Kéhler
modulus, but our later analysis is more general.

The superpotential W is the sum of a constant flux term [82] Waux(xx) = [ G A
2 = W, at fixed complex structure x, and a term W,, (5.1) from nonperturbative
effects,

W =W+ A(X)e . (5.4)

Equations (7.13) to (7.14) imply three distinct sources for corrections to the po-

tential for D3-brane motion:

(1) my: The X-dependence of the Kéhler potential K leads to a mass term
familiar from the supergravity eta problem.

(2) mp: Sources of D-term energy, if present, will scale with the physical volume
V and hence depend on the D3-brane location. This leads to a mass term

for D3-brane displacements.

(3) ma4: The prefactor A(X) in the superpotential (7.14) leads to a mass term®

via the F-term potential (7.13).

n §6.1 we will find that v = %52T3, where T3 is the D3-brane tension.

8After the appearance of [18] (Chapter 5) we realized in [19] (Chapter 7) that A(X) can
never lead to a pure mass term. We should therefore imagine a local definition of the mass
ma(X) as the second derivative of the potential. As indicated here (and proven in [19]) this
‘mass’ will depend on the field value X. This is to be contrasted with mx and mp which
are constants.



5. ON D3-BRANE POTENTIALS IN COMPACT SPACES 79

The masses mx and mp were calculated explicitly in [95] and shown to be of
order the Hubble parameter H. On the other hand, m4 has been computed only
for the toroidal orientifolds of [32]. It has been suggested [95] that there might exist
non-generic configurations in which m,4 cancels against the other two terms. It is in
these fine-tuned situations that D3-brane motion could produce slow-roll inflation.
By computing m 4 explicitly, one can determine whether or not this hope is realized

19].

3. Warped Volumes and the Superpotential

3.1. The Role of the Warped Volume. The nonperturbative effects discussed
in §2.1 depend exponentially on the warped volume of the associated four-cycle: the
warped volume governs the instanton action in the case of Euclidean D3-branes, and
the gauge coupling in the case of strong gauge dynamics on D7-branes. To see this,

consider a warped background with the line element
ds? = G, datda” + GidYidY? = h2(Y) g, datda” + h2(Y)gi;dY'dY?,  (5.5)

where Y and g;; are the coordinates and the unwarped metric on the internal space,
respectively, and A(Y") is the warp factor.
The Yang-Mills coupling g; of the 7+ 1 dimensional gauge theory living on a stack
of D7-branes is given by
g2 = 2(27)°gs(a/)?. (5.6)
The action for gauge fields on D7-branes that wrap a four-cycle ¥, is

1

S=g5z | TV ih(Y)- / d'zy/=g ¢"g" Tr Fy Fop (5.7)
7 J3y

where &; are coordinates on ¥4 and ¢ is the metric induced on Y, from g;;. A key

point is the appearance of a single power of h(Y") [77]. Defining the warped volume

In the notation of [139], g2 = 2¢%..
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of 24,
v = [ ate/gney), (5.8)
p

and recalling the D3-brane tension

1
Th= ——— 5.9
= By o
we read off the gauge coupling of the four-dimensional theory from (5.7):
1V TV
—2 — L — = . (510)

9 g 8
In NV = 1 super-Yang-Mills theory, the Wilsonian gauge coupling is the real part of
a holomorphic function which receives one-loop corrections, but no higher perturba-
tive corrections [7, 143-145]. The modulus of the gaugino condensate superpotential
in SU(Npr) super-Yang-Mills with ultraviolet cutoff Myy is given by

1 872 TV
W | = 1672M3. ex (———) X ex (——E) 5.11
Wl Uv €Xp Npr g2 p Npe ( )

The mobile D3-brane adds a flavor to the SU(Np7) gauge theory, whose mass m is a
holomorphic function of the D3-brane coordinates. In particular, the mass vanishes
when the D3-brane coincides with the D7-brane. In such a gauge theory, the superpo-
tential is proportional to m*,7 [91]. Our explicit closed-string channel calculations
will confirm this form of the superpotential.

In the case that the nonperturbative effect comes from a Euclidean D3-brane, the

instanton action is

S—T, / e/ G — 7, / Qg n(Y) = TyVe (5.12)
Y4 v

so that, just as in (5.7), the action depends on a single power of h(Y). The modulus

of the nonperturbative superpotential is then

Wi| o exp(—Tgvgg) . (5.13)
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3.2. Corrections to the Warped Volumes of Four-Cycles. The displace-
ment of a D3-brane in the compactification creates a slight distortion dA of the warped
background, and hence affects the warped volumes of four-cycles. The correction takes

the form
5VE4E/ d*Y\/gm(X;Y) 6h(X;Y) . (5.14)
p)

By computing this change in volume we will extract the dependence of the superpo-
tential on the D3-brane location X. In the non-compact throat approximation, we
will calculate 6V5, explicitly, and find that it is the real part of a holomorphic func-
tion ¢(X).'° Its imaginary part is determined by the integral of the Ramond-Ramond
four-form perturbation 0Cy over ¥4 (we will not compute this explicitly, but will be
able to deduce the result using the holomorphy of ((X)).

The nonperturbative superpotential of the form (5.1), generated by the gaugino

condensation, is then determined by

A(X) = A exp<—%§()) . (5.15)

We have introduced an unimportant constant A, that depends on the values at which
the complex structure moduli are stabilized, but is independent of the D3-brane posi-
tion. As remarked above, computing (5.15) is equivalent to computing the dependence
of the threshold correction to the gauge coupling on the mass m of the flavor coming
from strings that stretch from the D7-branes to the D3-brane.

In the case of Euclidean D3-branes, the change in the instanton action is propor-

tional to the change in the warped four-cycle volume. Hence, the nonperturbative

In the compact case, it is no longer true that 0Vy’ is the real part of a holomorphic
function. This is related to the ‘rho problem’ [32], and in fact leads to a resolution of
the problem, as we shall explain in §6.1 (see also [77]). The result is that in terms of an
appropriately-defined holomorphic Kéahler modulus p (5.62), the holomorphic correction to
the gauge coupling coincides with the holomorphic result of our non-compact calculation.
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superpotential is of the form (5.1) with

A(X) = A exp(—Tg,C(X)> . (5.16)

In this case, computing (5.14) is equivalent to computing the D3-brane dependence
of an instanton fluctuation determinant.
Finally, we can write a unified expression that applies to both sources of nonper-

turbative effects:

A(X) = A exp(—%(x» : (5.17)

where n = Np7 for the case of gaugino condensation on D7-branes and n = 1 for the

case of Euclidean D3-branes.

4. D3-brane Backreaction

4.1. The Green’s Function Method. A D3-brane located at some position X
in a six-dimensional space with coordinates Y acts as a point source for a perturbation
0h of the geometry:

§O(X —Y)

~Vidh(X;Y)=C
g(Y)

— oY) - (5.18)

That is, the perturbation dh is a Green’s function for the Laplace problem on the back-
ground of interest. Here C = 2x3,T3 = (27)*g,(a’)? ensures the correct normalization
of a single D3-brane source term relative to the four-dimensional Einstein-Hilbert ac-
tion. A consistent flux compactification contains a background charge density py,(Y")

which satisfies
/dﬁy\/gpbg(y) =1 (5.19)

to account for the Gauss’s law constraint on the compact space [76].

To solve (5.18), we first solve

SO —-Y) 1

—V2,0(YV;Y)=-Vio(Y,Y) = -
POIY) = V(Y = ——— -

(5.20)
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where Vg = [d°Y’,/g. The solution to (5.18) is then
Sh(X;Y)=C [CD(X;Y) . /d6Y’\/§<I>(Y;Y’)pbg(Y’)} . (5.21)

We note for later use that

SOX-Y) 1

= V| (5.22)

—V%4oh(X;Y)=C [

This relation is independent of the form of the background charge py,.
To compute A(X) from (7.15), we simply solve for the Green’s function dh obeying

(5.18) and then integrate dh over the four-cycle of interest, according to (5.14).

4.2. Comparison with the Open-String Approach. Let us show that this
supergravity (closed-string channel) method is consistent with the results of BHK
[32], where the correction to the gaugino condensate superpotential was derived via
a one-loop open-string computation.*!

The analysis of [32] applied to configurations of D7-branes and D3-branes on
certain toroidal orientifolds, e.g. T? x T*/Z,. We introduce a complex coordinate X
for the position of the D3-branes on 72, as well as a complex structure modulus 7
for T?%, and without loss of generality we set the volume of T%/Z, to unity. Let us
consider the case where all the D7-branes wrap T*/Z, and sit at the origin X = 0 in
T2

The goal is to determine the dependence of the gauge coupling on the position X
of a D3-brane. (The location of the D3-brane in the T"/Z, wrapped by the D7-branes
is immaterial.) For this purpose, we may omit terms computed in [32] that depend

only on the complex structure and not on the D3-brane location. Such terms will

only affect the D3-brane potential by an overall constant.

" Analogous pairs of closed-string and open-string computations exist in the literature,
e.g. [17].
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Then, the relevant terms from equation (44) of [32], in our notation'?, are
2 1 2 1 X

(5 = s )]~ 2o (X))
7r

g% /) 4mIm(7) 2
Let us now compare (5.23) to the result of the supergravity computation. In

2

TR (5.23)

principle, the prescription of equation (5.14) is to integrate the Green’s function on
a six-torus over the wrapped four-torus. However, we notice that this procedure of
integration will reduce the six-dimensional Laplace problem to the Laplace problem

on the two-torus parametrized by X,

—~V%5h(X;0)=C [5(2)(X) — Vl} , (5.24)

where V72 = 872 Im(7). The correction to the gauge coupling, in the supergravity
approach, is then proportional to dh(X;0). Solving (5.24) and using (5.10), we get
exactly (5.23). We conclude that our method precisely reproduces the results of [32],

at least for those terms that directly enter the D3-brane potential.

4.3. A Model for the Four-Cycles. The closed-string channel approach to
calculating A(X) is well-defined for any given background, but further assumptions
are required when no complete metric for the compactification is available. Fortu-
nately, explicit metrics are available for many non-compact Calabi-Yau spaces, and
at the same time, the associated warped throat regions are of particular interest
for inflationary phenomenology. For a given warped throat geometry, our approach
is to compute the D3-brane backreaction on specific four-cycles in the non-compact,
asymptotically conical space. We will demonstrate that this gives an excellent approx-
imation to the backreaction in a compactification in which the same warped throat
is glued into a compact bulk. In particular, we will show in §6.2 that the physical

effect in question is localized in the throat, i.e. is determined primarily by the shape

12 After the replacement X — w, our definitions of the theta functions and torus coordinates
correspond to those of [139]; our X differs from the A of [32] by a factor of 2.
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of the four-cycle in the highly warped region.!® The model therefore only depends on
well-known data, such as the specific warped metric and the embedding equations of
the four-cycles, and is insensitive to the unknown details of the unwarped bulk. In
principle, our method can be extended to general compact models for which metric
data is available.

It still remains to identify the four-cycles responsible for nonperturbative effects
in this model of a warped throat attached to a compact space. Such a space will in
general have many Kahler moduli, and hence, assuming that stabilization is possible
at all, will have many contributions to the nonperturbative superpotential. The most
relevant term, for the purpose of determining the D3-brane potential, is the term
corresponding to the four-cycle closest to the D3-brane. For a D3-brane moving in
the throat region, this is the four-cycle that reaches farthest down the throat. In
addition, the gauge theory living on the corresponding D7-branes should be making
an important contribution to the superpotential.

The nonperturbative effects of interest are present only when the four-cycle sat-
isfies an appropriate topological condition [163], which we will not discuss in detail.
This topological condition is, of course, related to the global properties of the four-
cycle, whereas the effect we compute is dominated by the part of the four-cycle in
the highly-warped throat region, and is insensitive to details of the four-cycle in the
unwarped region. That is, our methods are not sensitive to the distinction between
four-cycles that do admit nonperturbative effects, and those that do not. We therefore
propose to model the four-cycles producing nonperturbative effects with four-cycles
that are merely supersymmetric, i.e. can be wrapped supersymmetrically by D7-

branes. Many members of the latter class are not members of the former, but as

13To be precise, the physical effect is localized near the D3-brane, which may be taken to be
far from the bulk, in the region where the throat is well-approximated by the non-compact
metric. This is also the region where the background warping is large.
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the shape of the cycle in the highly-warped region is the only important quantity, we
expect this distinction to be unimportant.

We are therefore led to consider the backreaction of a D3-brane on the volume
of a stack of supersymmetric D7-branes wrapping a four-cycle in a warped throat
geometry. The simplest configuration of this sort is a supersymmetric ‘flavor brane’

embedding of several D7-branes in a conifold [9, 99, 133].

5. Backreaction in Warped Conifold Geometries

We now recall some relevant geometry. The singular conifold'® is a non-compact

Calabi-Yau threefold defined as the locus
=0 (5.25)
i=1
in C*. After a linear change of variables (w; = z; + izp,wy = 21 — 129, etc.), the
constraint (5.25) becomes

wywe — wws = 0. (5.26)

The Calabi-Yau metric on the conifold is
dsg = dr? + r*dsi.. . (5.27)

The base of the cone is the T coset space (SU(2)4 x SU(2)5)/U(1)r whose metric

in angular coordinates 6; € [0, 7], ¢; € [0,27],¢ € [0,4n] is

2 2
ds2., = %(ow +3 cost, d¢i)2 + é 3 (def + sin26; d¢$) . (5.28)
1=1

i=1

“The KS geometry [105] and its generalizations [48] are warped versions of the deformed
conifold, defined by 224:1 zlz = ¢2. When the D3-branes and D7-branes are sufficiently far
from the tip of the deformed conifold, it will suffice to consider the simpler case of the

warped singular conifold constructed in [106].
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A stack of N D3-branes placed at the singularity w; = 0 backreacts on the geom-

etry, producing the ten-dimensional metric
ds?y = h2(r)dad + b2 (r)dsg | (5.29)

where the warp factor is
_ 2TmgN(a)?

hr) 4rt

(5.30)

This is the AdSs; x TH! background of type IIB string theory, whose dual N =
1 supersymmetric conformal gauge theory was constructed in [107]. The dual
is an SU(N) x SU(N) gauge theory coupled to bifundamental chiral superfields
Ay, Ag, By, Bs, each having R-charge 1/2. Under the SU(2)4 x SU(2)p global sym-
metry, the superfields transform as doublets. If we further add M D5-branes wrapped
over the two-cycle inside T, then the gauge group changes to SU(N + M) x SU(N),
giving a cascading gauge theory [105, 106]. The metric remains of the form (5.29),
but the warp factor is modified to [106]

27n(a)?

h(r) 4rt

T 1
9:N -+ (g M) (=) + Jh(g.00)°) (5.31)

with b = 2, and ro ~ £2/3¢2™N/(g:M)

5 If an extra D3-brane is added at small r, it

produces a small change of the warp factor, dh = W + O(r~12). A precise
determination of dh on the conifold, using the Green’s function method, is one of

our goals in this chapter. As discussed above, this needs to be integrated over a

supersymmetric four-cycle.
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5.1. Supersymmetric Four-Cycles in the Conifold. The complex coordi-

nates w; can be related to the real coordinates (r,0;, ¢;, 1) via

0, . 05

wy = r¥Perméi=o2) gy D) sin R (5.32)
i 0 0

wy = 132ez(VHo1H92) (g 51 cos 52 , (5.33)
i 0 0

wy = r/2eaWFr=92) oog El sin 52 : (5.34)
i 0 )

wy = r/2eaite) gip 51 cos 32 . (5.35)

It was shown in [9] that the following holomorphic four-cycles admit supersymmetric

D7-branes:
4

flw;) = wai —uF=0. (5.36)

i=1
Here p; € Z, P = Z?:l pi, and p € C are constants defining the embedding of the

D7-branes. In real coordinates the embedding condition (5.36) becomes

U(P1, P2) = N1 + nado + s, (5.37)
P(01,605) = rain [T — 2) Ty (1 — gt YO (5.38)
where
rale = lul, (5.39)
1 21s
51/15 = arg(u)+?, se€{0,1,...,P—1}. (5.40)

We have defined the coordinates

r=sin®—, y=-sin -2 (5.41)

15This is not an exhaustive list: another holomorphic embedding was used in [114].
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and the rational winding numbers

D1 —P2—P3t+Dps _P1—DPp2+DpP3—Dpa
ny = P , N9 = P .

(5.42)

To compute the integral over the four-cycle we will need the volume form on the

wrapped D7-brane, which is

d6;d0ydpydgpy \/gind = % 1 G (x,y) dedydgdes (5.43)
where
Gry) = © +2n1)2 z(1 - 0 Mg
C +2”2)2 y(ll— ;= 2 i L (5.44)
In (5.43) we defined the volume of 7!
Vi = / &P /Grir = 127;3 , (5.45)

with ¥ standing for all five angular coordinates on 71,

For applications to brane inflation, we are interested in four-cycles that do not
reach the tip of the conifold (|n;| < 1). This condition is obeyed when the p; are
nonnegative, and we shall restrict to this case for the remainder of the chapter. Two
particularly simple special cases of (5.36) are:

m Ouyang embedding [133]: wy = .

m Karch-Katz embedding [99]: wywy = p?.

Analogous supersymmetric four-cycles are known [50] in some more complicated
asymptotically conical spaces, such as cones over Y?? manifolds. We will consider

this case in §5.4 and in Appendix D.
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5.2. Relation to the Dual Gauge Theory Computation. The calculation of
0h and its integration over a holomorphic four-cycle is not sensitive to the background
warp factor. Let us discuss a gauge theory interpretation of the calculation when
we choose the background warp factor from (5.30), i.e. we ignore the effect of M
wrapped Db5-branes. Here the gauge theory is exactly conformal, and we may invoke
the AdS/CFT correspondence to give a simple meaning to the multipole expansion

of dh,

5B — 27mgs(a)? L+ Z cifi(01, 02, b1, P2, 1)

4rt rhi

(5.46)
In the dual gauge theory, the ¢; are proportional to the expectation values of gauge-
invariant operators O; determined by the position of the D3-brane [108]. Among
these operators a special role is played by the chiral operators of R-charge k,
Tr[Aq, B, AQQB/@2 o Ag, Bﬁk]’ symmetric in both the dotted and the undotted indices.
These operators have exact dimensions A = 3 /2 and transform as (k/2, k/2) un-
der the SU(2)4 x SU(2) g symmetry. In addition to these operators, many non-chiral
operators, whose dimensions A; are not quantized [81], acquire expectation values
and therefore affect the multipole expansion of the warp factor. But remarkably, all
these non-chiral contributions vanish upon integration over a holomorphic four-cycle.

Therefore, the contributing terms in 6k have the simple form [108]

277Tg$<0/)2 - (fal...a /Z\al...a. + C-C-)
6hchiral - 4—74 1+ Z - 7,.3]6/2k 5 (547)
k=1

where fu, 4, ~ €4,€q, - - - €, for a D3-brane positioned at z, = €,. Above, Z,, ., are
the normalized spherical harmonics on T%! that transform as (k/2,k/2) under the
SU(2)4 x SU(2)p. The normalization factors are defined in Appendix B.

The leading term in (5.46), which falls off as 1/7%, gives a logarithmic divergence
at large r when integrated over a four-cycle. We note that this term does not appear if
we define 6k as the solution of (5.18) with \/g py,(Y) = 6© (Y — X). This corresponds

to evaluating the change in the warp factor, dh, created by moving the D3-brane to
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X from some reference point X,. If we choose the reference point X, to be at the tip

of the cone, r = 0, then (5.46) is modified to

oh

_ 27mgs(a)? Z cifi(0h, 02, d1, ¢, )

- 2 (5.48)

i
An advantage of this definition is that now there is a precise correspondence between

our calculation and the expectation values of operators in the dual gauge theory.

5.3. Results for the Conifold. We are now ready to compute the D3-brane-
dependent correction to the warped volume of a supersymmetric four-cycle in the
conifold. Using the Green’s function on the singular conifold (B.9), which we derive
in Appendix B, and the explicit form of the induced metric \/W (5.43), we carry
out integration term by term and find that most terms in (5.14) do not contribute.
We relegate the details of this computation to Appendix C. As we demonstrate
in Appendix C, the terms that do not cancel are precisely those corresponding to
(anti)chiral deformations of the dual gauge theory.

Integrating (5.48) term by term as prescribed in (5.14), we find that the final

result for a general embedding (5.36) is

T56Vyy, = T3 Re (((w;)) = —Re (ln [MP — HE f]) : (5.49)

so that

1/n

A= 4 (“P - H}l wﬁ) / . (5.50)
i

Comparing to (5.36), we see that A is proportional to a power of the holomorphic

equation that specifies the embedding. For n = Np; coincident D7-branes, this power

is 1/n. This behavior agrees with the results of [71]; note in particular that when

n =1, (5.50) has a simple zero everywhere on the four-cycle, as required by [71].

Finally, let us specialize to the two cases of particular interest, the Ouyang [133]

and Karch-Katz [99] embeddings in which the four-cycle does not reach all the way
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to the tip of the throat. For the Ouyang embedding we find

A(wy) = A (“ _Mwl)l/n , (5.51)

whereas for the Karch-Katz embedding we have

1/n
M2 —w1w2> /

= (5.52)

A(wy, ws) = A (

5.4. Results for Y?? Cones. Recently, a new infinite class of Sasaki-Einstein
manifolds Y74 of topology 52 x S was discovered [73, 74]. The A = 1 superconformal
gauge theories dual to AdSs x YP4 were constructed in [30]. These quiver theories,
which live on N D3-branes at the apex of the Calabi-Yau cone over Y79, have gauge
groups SU(N)?!, bifundamental matter, and marginal superpotentials involving both
cubic and quartic terms. Addition of M D5-branes wrapped over the S? at the
apex produces a class of cascading gauge theories whose warped cone duals were
constructed in [86]. A D3-brane moving in such a throat could also serve as a model
of D-brane inflation [65].

Having described the calculation for the singular conifold in some detail, we now
cite the results of an equivalent computation for cones over Y74 manifolds. More
details can be found in Appendix D.

Supersymmetric four-cycles in Y74 cones are defined by the following embedding

condition [50]
3

flw) = [[wt —p* =0, (5.53)

=1

where the complex coordinates w; are defined in Appendix D. Integration of the
Green’s function over the four-cycle leads to the following result for the perturbation

to the warped volume

Ty 6V = Ty Re (C(w;)) = —Re (m [“2p3 1l p]) , (5.54)

2
,u7’3
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so that

ops 3 pi 1/n
A=A, (’“‘ Iy w ) . (5.55)

2
Mp3

5.5. General Compactifications. The arguments in [71], which were based on
studying the change in the theta angle as one moves the D3-brane around the D7-
branes, indicate that the correction is a section of a bundle called the ‘divisor bundle’.
This section has a zero at the location of the D7-branes. The correction has to live
in a non-trivial bundle since a holomorphic function on a compact space would be
a constant. In the non-compact examples we considered above we can work in only
one coordinate patch and obtain the correction as a simple function, the function
characterizing the embedding. Strictly speaking, the arguments in [71] were made
for the case that the superpotential is generated by wrapped D3-instantons. But the
same arguments can be used to compute the correction for the gauge coupling on
D7-branes.

In summary, we have explicitly computed the modulus of A, and found a result
in perfect agreement with the analysis of the phase of A in [71]. One has a general

answer of the form
1/n
Alw;) = Ag ( f(wi)) , (5.56)

where f is a section of the divisor bundle and f(w;) = 0 specifies the location of the

D7-branes.

6. Compactification Effects

6.1. Holomorphy of the Gauge Coupling. In compactifications with mobile
D3-branes, the identification of holomorphic Kéhler moduli and holomorphic gauge
couplings is quite subtle. This has become known as the ‘Tho problem’ [32].1% Let us

recall the difficulty. In the internal metric g;; appearing in (5.5), we can identify the

6Similar issues were discussed in [162].
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breathing mode of the compact space via
ds? = h12(Y)e S g, datda” + hY2(Y)e?  gi;dY Y7 . (5.57)

Here g;; is a fiducial metric for the internal space, e** is the breathing mode, and g,,,, is
the four-dimensional Einstein-frame metric. In the following, all quantities computed
from g;; will be denoted by a tilde. The Born-Infeld kinetic term for a D3-brane,
expressed in Einstein frame and in terms of complex coordinates X, X on the brane

configuration space, is then
Siin = — T3 / d*ay/—ge 9, X 0" X g5 (5.58)

DeWolfe and Giddings argued in [58] that to reproduce this volume scaling, as well as
the known no-scale, sequestered property of the D3-brane action in this background,

the Kahler potential must take the form
KK = —3Ine*, (5.59)
with the crucial additional requirement that

9;0;¢™ o §ij , (5.60)

J

so that e*" contains a term proportional to the Kihler potential k(X, X) for the
fiducial Calabi-Yau metric. Comparing (5.58) to the kinetic term derived from (5.59),

we find in fact

2
s = (2, oo

We can now define the holomorphic volume modulus p as follows. The real part of p

is given by

2T B
p+p=et+ (“ 3) k(X,X) (5.62)
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and the imaginary part is the axion from the Ramond-Ramond four-form potential.
As explained in [95], this is consistent with the fact that the axion moduli space is a
circle that is non-trivially fibered over the D3-brane moduli space.

Next, the gauge coupling on a D7-brane is easily seen to be proportional to the
breathing mode of the metric, e** = p + p — (%/@2T3) k(X, X), which is not the real
part of a holomorphic function on the brane moduli space. However, supersymmetry
requires that the gauge kinetic function is a holomorphic function of the moduli. This
conflict is the rho problem.

We can trace this problem to an incomplete inclusion of the backreaction due to
the D3-brane. Through (5.62), the physical volume modulus e** has been allowed to
depend on the D3-brane position. That is, the difference between the holomorphic
modulus p and the physical modulus e** is affected by the D3-brane position. This
was necessary in order to recover the known properties of the brane/volume moduli
space. Notice from (5.62) that the strength of this open-closed mixing is controlled
by kT3, and so is manifestly a consequence of D3-brane backreaction in the compact
space. However, as we explained in §3, the warp factor h also depends on the D3-
brane position, again via backreaction. To include the effects of the brane on the
breathing mode, but not on the warp factor, is not consistent.!” One might expect
that consideration of the correction dh to the warp factor would restore holomorphy
and resolve the rho problem. This was suggested in [77], and we now carry out an
explicit calculation that confirms this.

What we find is that the uncorrected warped volume (Vi¥)o, as well as the cor-
rection 0V5, are both non-holomorphic, but their non-holomorphic pieces precisely
cancel, so that the corrected warped volume Vi is the real part of a holomorphic

function of the moduli p and X.

I"Let us point out that this is precisely the closed-string dual of the resolution found in [32]:
careful inclusion of the open-string one-loop corrections to the gauge coupling resolved the
rho problem. In that language, the initial inconsistency was the inclusion of only some of
the one-loop effects.
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First, we separate the constant, zero-mode, piece of the warp factor:
h(X;Y) =ho+0h(X;Y). (5.63)
By definition dh(X;Y') integrates to zero over the compact manifold,

/d6Y\/g(Y) Sh(X;Y)=0. (5.64)

This implies that the factor of the volume that appears in the four-dimensional New-
ton constant is unaffected by dh. Thus we have k=2 = /il_OQho‘N/G. We define the

uncorrected warped volume via

(Vs )o = / d*ey/gimd hy = X by Vs, (5.65)
Xy

This is non-holomorphic because of the prefactor e**“X ). In particular, using (5.62),

we have
IQZ T3

(Vi )o = — (

We next consider 6h. When the D3-brane is not coincident with the four-cycle of

> Vs, ho k(X, X) + [hol. + antihol.] . (5.66)

interest, we find from (5.22) that dh obeys

VEOh(X;Y) = é (5.67)
6

where C = 2r3,Ty = 2k>T3hoVs. Hence, 6h is not the real part of a holomorphic
function of X. The source of the deviation from holomorphy is the term VLG in (5.22).
Although this term is superficially similar to a constant background charge density, it
is independent of the density py,(Y") of physical D3-brane charge in the internal space,
which has coordinates Y. Instead, v%, may be thought of as a ‘background charge’
on the D3-brane moduli space, which has coordinates X. From this perspective,

it is the Gauss’s law constraint on the D3-brane moduli space that forces dh to be

non-holomorphic.
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In complex coordinates, using the metric §, and noting that Vg = Ve %, (5.67)

may be written as

§90,0:6h = K*Ty hg e, (5.68)

where because the compact space is Kahler, we can write the Laplacian using partial

derivatives. It follows that, to leading order in 2,

2T _
oh = <&3 3) ho e”**k(X, X) + [hol. + antihol ] (5.69)

The omitted holomorphic and antiholomorphic terms are precisely those that we
computed in the preceding sections. Furthermore, recalling the definition (5.14), we

have

T) ho Viea (X, X) + [C(X) + C(X)]. (5.70)

oy = (
The non-holomorphic first term in (5.70) precisely cancels the non-holomorphic term

in (V&¥)o (5.66), so that

VR = (Vi )o +8Va, = Vi, o (p + ) + [C(X) + (X)) (5.71)
We conclude that Vi can be the real part of a holomorphic function.'® This sup-
ports the role of the warped four-volume in the definition of holomorphic coordinates
proposed in [77].

To summarize, we have seen that the background charge term in (5.22), which
was required by a constraint analogous to Gauss’s law on the D3-brane moduli space,
causes 0V5i to have a non-holomorphic term proportional to k(X X). Furthermore,
the DeWolfe-Giddings Kahler potential produces a well-known non-holomorphic term,
also proportional to k(X, X), in the uncorrected warped volume (V¥ )o. We found

that these two terms precisely cancel, so that the total warped volume Vi, = (V& )o+

18Gtrictly speaking, we have shown only that Vsy, is in the kernel of the Laplacian; the
r.hs. of (5.69) and (5.71) could in principle contain extra terms that are annihilated by the
Laplacian but are not the real parts of holomorphic functions. However, the obstruction to
holomorphy presented by k(X, X) has disappeared, and we expect no further obstructions.
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0V can be holomorphic. Thus, the corrected gauge coupling on D7-branes, and the
corrected Euclidean D3-brane action, are holomorphic.?

Note that, as a consequence of this discussion, the holomorphic part of the correc-
tion to the volume changes under Kihler transformations of k(X, X). This implies
that the correction is in a bundle whose field strength is proportional to the Kahler

form.

6.2. Model-Dependent Effects from the Bulk. In §2.2, we listed three con-
tributions to the potential for D3-brane motion. The first two were given explicitly in
[95], and we have computed the third. It is now important to ask whether this is an
exhaustive list: in other words, might there be further effects that generate D3-brane
mass terms of order H? In particular, could coupling of the throat to a compact bulk
generate corrections to our results, and hence adjust the brane potential??°

First, let us justify our approach of using noncompact warped throats to model
D3-brane potentials in compact spaces with finite warped throat regions. The idea
is that the effect of the D3-brane on a four-cycle is localized in that portion of the
four-cycle that is deepest in the throat. Comparing (5.43) to (5.48), we see that all
corrections to the warped volume scale inversely with r, and are therefore supported
in the infrared region of the throat. Hence, as anticipated in §4.3, the effects of interest
are automatically concentrated in the well-understood region of high warping, far from
the model-dependent region where the throat is glued into the rest of the compact
space. This is true even though a typical four-cycle will have most of its volume in
the bulk, outside the highly warped region. The perturbation due to the D3-brane

4

already falls off faster than r—* in the throat, where the measure factor is 4, and

in the bulk the perturbation will diminish even more rapidly. Except in remarkable

9To complete the identification of the holomorphic variable, we note that the constant a
appearing in (5.1) is a = 273V, hg/n. The resulting dependence on g, could be absorbed
by a redefinition of p, as in [93].

20The bulk corrections considered in [1] are generically smaller than those we consider here.
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cases, the diminution of the perturbation will continue to dominate the growth of
the measure factor. A similar argument reinforces our assertion that the dominant
effect on a D3-brane comes from whichever wrapped brane descends farthest into the
throat.

We conclude that the effects of the gluing region, where the throat meets the bulk,
and of the bulk itself, produce negligible corrections to the terms we have computed.
Fortunately, the leading effects are concentrated in the highly warped region, where
one has access to explicit metrics and can do complete computations.

We have now given a complete account of the nonperturbative superpotential.
However, the Kahler potential is not protected against perturbative corrections, which
could conceivably contribute to the low-energy potential for D3-brane motion. FEx-
plicit results are not available for general compact spaces (see, however, [33, 75]);
here we will simply argue that these corrections can be made subleading. Recall
that the DeWolfe-Giddings Kahler potential provides a mixing between the volume
and the D3-brane position that generates brane mass terms of order H. Any fur-
ther corrections to the Kahler potential, whether from string loops or sigma-model
loops, will be subleading in the large-volume, weak-coupling limit, and will therefore
generically give mass terms that are small compared to H. In addition, the results of
[70] give some constraints on o/ corrections to warped throat geometries. We leave a

systematic study of this question for the future.

7. Implications and Conclusion

We have used a supergravity approach (see also [77]) to study the D3-brane cor-
rections to the nonperturbative superpotential induced by D7-branes or Euclidean
D3-branes wrapping four-cycles of a compactification. This has been a key, unknown
element of the potential governing D3-brane motion in such a compactification. We
integrated the perturbation to the background warping due to the D3-brane over

the wrapped four-cycle. The resulting position-dependent correction to the warped



5. ON D3-BRANE POTENTIALS IN COMPACT SPACES 100

four-cycle volume modifies the strength of the nonperturbative effect, which in turn
implies a force on the D3-brane. This computation is the closed-string channel dual
of the threshold correction computation of [32], and we showed that the closed-string
method efficiently reproduces the results of [32].

We then investigated the D3-brane potential in explicit warped throat back-
grounds with embedded wrapped branes. We showed that for holomorphic embed-
dings, only those deformations corresponding to (anti)chiral operators in the dual
gauge theory contribute to correcting the superpotential. This led to a strikingly
simple result: the superpotential correction is given by the embedding condition for
the wrapped brane, in accord with [71].

An important application of our results is to cosmological models with moving
D3-branes, particularly warped brane inflation models [95]. It is well-known that
these models suffer from an eta problem and hence produce substantial inflation
only if the inflaton mass term is fine-tuned to fall in a certain range. Our result
determines a ‘missing’ contribution to the inflaton potential that was discussed in
[95], but was not computed there. Equipped with this contribution, one can quantify
the fine-tuning in warped brane inflation by considering specific choices of throat
geometries and of embedded wrapped branes, and determining whether prolonged
inflation occurs [19]. This amounts to a microscopically justified method for selecting
points or regions within the phenomenological parameter space described in [69]. This
approach was initiated in [32], but the open-string method used there does not readily
extend beyond toroidal orientifolds, and is especially difficult for warped throats in
flux compactifications. In contrast, our concrete computations were performed in
warped throat backgrounds, and thus apply directly to warped brane inflation models,
including backgrounds with fluxes.

Our approach also led to an explicit solution of the ‘rho problem’, 7.e. the apparent

non-holomorphy of the gauge coupling on wrapped D7-branes in backgrounds with
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D3-branes. This problem arises from incomplete inclusion of D3-brane backreaction
effects, and in particular from omission of the correction to the warped volume that
we computed in this work. We observed that the correction is itself non-holomorphic,
as a result of a Gauss’s law constraint on the D3-brane moduli space. Moreover,
the non-holomorphic correction cancels precisely against the non-holomorphic term
in the uncorrected warped volume, leading to a final gauge kinetic function that is
holomorphic.

Let us emphasize that the problem of fine-tuning in D-brane inflation models has
not disappeared, but can now be made more explicit. A detailed analysis of this will

be presented in Chapters 6 and 7.



CHAPTER 6

Compactification Obstacles to D-brane Inflation

We proceed by analyzing the cosmological implications of the results of the pre-
vious chapter. This chapter summarizes our findings,! while in the next chapter we

present more technical aspects of our computations.

1. Introduction

String theory is a promising candidate for the theoretical underpinning of the
inflationary paradigm [3, 83, 120], but explicit and controllable models of inflation in
string theory have remained elusive. In this chapter we ask whether explicit working
models are possible in the setting of slow-roll warped D-brane inflation [64, 95], in
which the inflaton field is identified with the location of a mobile D3-brane in a warped
throat region [105] of the compactification manifold. As explained in Chapter 5,
moduli stabilization introduces potentially fatal corrections to the inflaton potential
in this scenario. Some of these corrections arise from complicated properties of the
compactification [32] and have been computed only recently [18].

The attitude taken in most of the literature on the subject (cf. [95, 118]) is that
because of the vast number and complexity of string vacua, in some nonzero fraction
of them it should be the case that the different corrections to the inflaton potential

cancel to high precision, leaving a suitable inflationary model. This expectation or

IThis chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Klebanov, Liam McAl-
lister and Paul Steinhardt, “A Delicate Universe: Compactification Obstacles to D-brane
Inflation”, Phys. Rev. Lett. 99, 141601 (2007).

102
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hope has never been rigorously justified, and there is no guarantee that the correction
terms can ever cancel: for example, it may be the case that the correction terms
invariably have the same sign, so that no cancellation can occur. In this chapter
we report the results of a systematic investigation into whether or not this hope of
fine-tuned cancellation can in fact be realized. While this chapter is a non-techincal
summary of our conclusions, all the technical subtleties that we had to consider are
carefully spelt out in Chapter 7.

The new ingredient that makes this work possible is the result of [18] for a correc-
tion to the volume-stabilizing nonperturbative superpotential. As explained in Chap-
ter 5, this effect corresponds to the interaction between the inflationary D3-brane and
the moduli-stabilizing wrapped branes, i.e. D7-branes or Euclidean D3-branes wrap-
ping a four-cycle of the Calabi-Yau. The location of these wrapped branes therefore
becomes a crucial parameter in the D3-brane potential.

In a recent paper [45], Burgess et al. showed that for a particular embedding of
the D7-branes, the Ouyang embedding [133], the correction to the inflaton potential
from the term computed in [18] vanishes identically. In this case the potential is al-
ways too steep for inflation, independent of fine-tuning. Here, we consider a different
holomorphic embedding due to Kuperstein [114]. For fine-tuned values of the micro-
physical parameters, the potential for radial motion of a D3-brane in this background
contains an approximate inflection point around which slow-roll inflation can occur.
This potential is not of the form anticipated by previous authors: the D7-brane has
no effect whatsoever on the quadratic term in the inflaton potential, but instead
causes the potential to flatten in a small region far from the tip of the conifold. We
emphasize that arranging for this inflection point to occur inside the throat region,
where the metric is known and our construction is self-consistent, imposes a severe

constraint on the compactification parameters. Moreover, inflation only occurs for
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a bounded range about the inflection point, which requires a high degree of control

over the initial conditions of the inflaton field.

2. The Compactification

Our setting is a flux compactification [63, 76] of type IIB string theory on an
orientifold of a Calabi-Yau threefold, or, more generally, an F-theory compactification.
We suppose that the fluxes are chosen so that the internal space has a warped throat
region, and that n > 1 D7-branes supersymmetrically wrap a four-cycle that extends
into this region (see Figure 1 in Chapter 5). As a concrete example of this local
geometry, we consider the warped version [105] of the deformed conifold Y 22 = &2,
where z; are coordinates on C*. Assuming that the D3-brane is far from the tip of the
conifold, we may neglect the deformation . We choose z, = (21, 22, 23) as the three
independent complex D3-brane coordinates, and use the conifold constraint to express
z4 in terms of them. We suppose that this throat is glued into a compact space, as in
[76], and for simplicity we take this space to have a single Kéhler modulus p. Moduli
stabilization [93] relies on the fact that strong gauge dynamics on suitable D7-branes
generates a nonperturbative superpotential, Wy, = A(z,) exp|—ap|, where a = 27”

The D7-brane embedding is specified by a single holomorphic equation, f(z,) = 0,

and the result of [18] is that

A(zy) = Ag <~’;(i§))>l/n , (6.1)

where Ay is independent of the D3-brane position z,. Including the flux superpotential
82] Wiy = [ G5 A Q = Wy, the total superpotential is W = Wy + A(z,) exp[—ap).
The DeWolfe-Giddings Kihler potential [58] is?

K(p, p, 20: 2a) = =3In[p+p—~vk] = —3InU, (6.2)

In this chapter, we employ natural units where M p_12 =8rG = 1.
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where k(z,, Z,) is the Kéhler potential of the Calabi-Yau space, and + is a constant
[19]. Well inside the throat but far from the tip, we may use the Kéhler potential of
the conifold [49],

3 (< i 3
— E 2 _ 2

Then the F-term potential is [19, 45]

1 ) .
Vi = 302 (0 + D) |W,[> =3(WW, +c.c.)
3 — 1 3 —
(T2 Wa ) 4 KWLV, (6.4)
where
2 5 1z,Z 25%
af __ af a<f Bra

To this we add the contribution of an anti-D3-brane at the tip of the deformed conifold
[95],

Vp=D(r)U?,  D()=D (1 - 56—1;@) , (6.6)

where D = 2T5/hy, T3 is the D3-brane tension, and hyg is the KS warp factor at the tip.

3. Towards Fine-Tuned Inflation

To derive the effective single-field potential, we consider radial trajectories that
are stable in the angular directions, so that the dynamics of the angular fields be-
comes trivial. We also integrate out the massive volume modulus, incorporating the
crucial fact that the volume shifts as the D3-brane moves [19]. Then the canonically
normalized inflaton field ¢ = r\/ﬁ parameterizes the motion along the radial di-
rection of the throat. To investigate the possibility of sustained inflation, we consider
the slow-roll parameter n = V”/V. We find n = % + An(¢), where An arises from

the dependence (6.1) of the superpotential on ¢. Slow-roll inflation is possible near
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¢ = ¢o if An(pg) =~ —%. Here, using the explicit result of [18] for A(¢), we compute
An and determine whether the full potential can be flat enough for inflation.?

A reasonable expectation implicit in prior work on the subject is that there exist
fine-tuned values of the microphysical parameters for which An(¢) ~ —%, i.e. the
correction to the inflaton potential arising from A(¢) includes a term quadratic in ¢,
which, for a fine-tuned value of its coefficient, causes 17 to be small for a considerable
range of ¢. However, we make the important observation that the functional form
of (6.1) implies that there is actually no purely quadratic correction. To see this we
note that A is a holomorphic function of the z, coordinates, which, by (6.3), scale
with radius as z, oc $3/2. Thus, the presence of A(¢) in the form (6.1) does not lead
to new quadratic terms in (7.13). This is concrete evidence against the hope of a
fine-tuned cancellation of the inflaton mass over an extended range of ¢.

However, as we now explain, there exists a simple example in which a different
sort of cancellation can occur. Kuperstein [114] studied the D7-brane embedding
21 = j, where we may assume that 4 € R*. This embedding, and the potential in this
background, preserve an SO(3) subgroup of the SO(4) global symmetry acting on the
z; coordinates of the deformed conifold. To find a purely radial trajectory that is stable
in the angular directions, we consider the variation dz; while keeping the radius r fixed.
We then require the first variation of the potential 0V = V(21 4+ 21,7, p) — V (21,7, p)
to vanish for all » and the second variation %V to be non-negative. The extremality
constraint 0V = 0 specifies the radial trajectory z; = :I:\/Lir?’ﬂ, 29 = Fiz;. A detailed
study of the angular mass matrix 2V reveals that the trajectory along z; = +\/i§r3/ 2
is unstable, while the potential along the negative axis, z; = —\%rg/ 2 is stable in all

angular directions. After integrating out the imaginary part of the Kahler modulus

3For the special case of the Ouyang embedding, z; + izo = p, Burgess et al. proved a
simple no-go result for fine-tuned brane inflation [45]. They found that for this particular
example, An vanishes along the angularly stable trajectory. We have found similar ‘delta-
flat’ trajectories [19] for all embeddings in the infinite class studied in [9]. These trajectories
cannot support slow-roll inflation, no matter how the parameters of the potential are tuned.
Here, we study an embedding for which there is no delta-flat direction.
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p, the potential is given in terms of the radius r (or the canonical inflaton ¢) and the

real-valued volume modulus o = 1(p + p), as [19]

(I‘A0|2 e ™ 2/n aa‘WO, 1 3c ¢ 1
Vig,o) 3 07,0 @) |2a0 6= 6 T w6, g0
3 1 ¢°2 D(¢)
e P - 07(6.0) (6.7)

Here g(¢) = % =1+ (%)3/2, and ¢7, = T5(214%)?/% denotes the minimal radial
location of the D7-branes. We have also introduced ¢! = 4my(2u%)%?, used [19]
v = 00T3/3, and defined U(¢,0) = 20 — %¢*. The parameter oy is the stabilized
value of the Kéhler modulus in the absence of the D3-brane (or when the D3-brane is
near the bottom of the throat). Now, for each value of ¢ we carry out a constrained
minimization of the potential to find 0,(¢), i.e. we find o,(¢) such that 2- or(a) = 0-

The function o,(¢) may either be computed numerically or fitted to high accuracy

by the approximate expression [19]

1 - 1 i 3/2
() ()] o8

Substituting o,(¢) into (6.7), we find the effective single-field potential V(¢) =
V(¢> U*(¢))

For generic values of the compactification parameters, V has a metastable min-

O'*((b) ~ 0y

imum at some distance from the tip. In fact, one can show that the potential has
negative curvature near the tip and positive curvature far away, so that by continuity,
7 vanishes at some intermediate value ¢y. Then, one can find fine-tuned values of the
D7-brane position ¢, for which this minimum is lifted to become an inflection point
(see Figure 2). This transition from metastability to monotonicity guarantees that
¢ = 3(V'/V)? can be made extremely small, so that prolonged slow-roll inflation is

possible. In our scenario, then, the potential contains an approximate inflection point
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V(¢) x 10*?
218 +
2.16
214 +
l 0.2 0.4 0.6 0.8 10
212 F ¢/¢u

FIGURE 1. Example of Inflation near an Inflection Point.
Compactification data: n = 8, ¢, = i, Ay = 1, aocyg = 10, Wy =
—1e72099(2a00 + 3), D = 1.1 x 22 gpe~ 2090,

at ¢ = ¢p, where V is very well approximated by the cubic

V=V 0a(6 — 60) + 50(6 — 60’ (6.9)

for some Vj, A1, As.

The number of e—folds derived from the effective potential (7.58) is

R Von(¢) \ |°
N, = = O arctan ( _> . 6.10
(¢) ¢end \/2_6 )\1A3 2)\1A3 ¢end ( )

Since 7 is small only for a limited range of inflaton values, the number of e—folds is
large only when € is very small. This forces these models to be of the small field type.
The scalar spectrum on scales accessible to cosmic microwave background (CMB)
experiments can be red, scale-invariant, or blue, depending on how flat the potential
is. That is, ny — 1 = (2n — 6€)|¢CMB ~ 21(¢omB), where ¢oump corresponds to the
field value when observable scales exit the horizon during inflation, say between
e-folds 55 and 60. The sign of n(¢cmp), and hence of ny — 1, depends on where ¢coyp
is relative to the inflection point. If inflation only lasts for the minimal number of
e—folds to solve the horizon and flatness problems then the scalar spectrum is blue. If

the potential is made more flat, so that e is smaller, inflation lasts longer, and ¢cvp
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is reduced, the spectrum can be red. This sensitivity to the details of the potential

reduces the predictivity of the scenario.

4. Microscopic Constraints

A crucial consistency requirement is that the inflationary region around ¢q, and
the location ¢, of the tip of the wrapped D7-branes, should fit well inside the throat,
where the metric is known. As shown in [21] (see Chapter 8), the range of ¢ in Planck
units is geometrically limited,

2

where N > 1 is the background D3-brane charge of the throat. When combined
with the Lyth bound [122], this yields a sharp upper bound on the tensor signal in
these models [21]. Here we find that this same bound actually poses an obstacle to
inflation itself: for an explicit inflationary model with the Kuperstein embedding of
D7-branes, ¢, and ¢, must obey (6.11). Although one can find examples [19] in which
this requirement is met, this imposes significant restrictions on the compactification.
In particular, N cannot be too large, implying that corrections to the supergravity

approximation could be significant.

5. Conclusions

We have assessed the prospects for an explicit model of warped D-brane inflation
by including the known dangerous corrections to the inflaton potential. In particular,
we have studied whether the hope of fine-tuning superpotential corrections to the
inflaton potential to reduce the slow-roll parameter n can be justified. For a large
class [9] of holomorphic embeddings of wrapped D7-branes there are trajectories where
the potential is too steep for inflation, with no possibility of fine-tuning to avoid this

conclusion [45], [19]. For the Kuperstein embedding [114], fine-tuning is possible
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in principle, and inflation can occur in a small region near an inflection point of
the potential. The requirement (6.11) that this inflection point lies well inside the
throat provides stringent constraints on the compactification. Detailed construction
of compactifications where such constraints are satisfied remains an open problem.

This study illustrates the care that must be taken in assessing the prospects for
inflationary cosmology in string theory. It appeared that warped D-brane inflation
involved many adjustable parameters, including the D7-brane embedding and other
compactification data, and so it was reasonable to expect that working examples
would exist. However, the compactification geometry constrains these microphysical
parameters so that there is much less freedom to adjust the shape of the potential
than simple parameter counting would suggest.

The problem of constructing a fully explicit model of inflation in string theory
remains important and challenging. Diverse corrections to the potential that are neg-
ligible for many other purposes can be fatal for inflation, and one cannot reasonably
claim success without understanding all these contributions. We have made consider-
able progress towards this goal, but have not yet succeeded: a truly exhaustive search
for further corrections to the inflaton potential remains necessary.

Finally, there is a pressing need for a more natural model of string inflation than

the one we have presented here.



CHAPTER 7

Towards an Explicit Model of D-brane Inflation

For the dedicated reader this chapter presents the technical details behind the
results presented in Chapter 6.1 Appendices E, F, G, and H are an integral part of

this work.

1. Introduction

1.1. Review and Motivation. In this chapter we will be concerned with mak-
ing progress towards an explicit model of inflation in string theory, by which we mean
a model in which the fields and parameters in the low-energy Lagrangian are derived
from the data of a string compactification. In such a scenario, questions about the
structure of the inflaton potential can be resolved by concrete string theory compu-
tations. This should be contrasted with string-inspired models constructed directly
in effective field theory, for which naturalness is the final arbiter of the form of the
potential. We will not quite reach the ambitious goal of an entirely explicit model of
inflation derived from string theory, and indeed one main point of this work is that
truly explicit models of string inflation can be rather intricate, involving multiple
nontrivial microscopic constraints that are surprising from the low-energy perspec-
tive.

As before, we will work in the setting of D-brane inflation [64, 95], a promising
framework that has attracted considerable interest, but in which concrete, working

'This chapter is based on Daniel Baumann, Anatoly Dymarsky, Igor Klebanov and Liam
McAllister, “Towards an Explicit Model of D-brane Inflation”, JCAP 0801, 024 (2008).
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models remain scarce. In previous chapters we reviewed that moduli stabilization
gives rise to corrections to the inflaton potential. Some of these corrections arise from
complicated properties of the compactification and have been computed only recently
[18].2

The attitude taken in most of the literature on the subject (see e.g. [95, 118])
is that because of the vast number and complexity of string vacua, in some nonzero
fraction of them it should be the case that the corrections to the inflaton potential
cancel to high precision, leaving a suitable inflationary model. However, there is
no guarantee that this hope can be realized: for example, the correction terms may
invariably have the same sign so that no cancellation can ever occur. Moreover, the
precise nature of the cancellation will affect the detailed predictions of the model. In
this chapter we will systematically address the question of whether or not this hope
of fine-tuned cancellation can in fact be realized. The new ingredient that makes
this investigation possible is the result of Chapter 5 for the one-loop correction to
the volume-stabilizing nonperturbative superpotential. As we explained in Chapter
5, this effect is due to the interaction [32, 77] between the inflationary D3-brane and
the moduli-stabilizing wrapped branes, i.e. D7-branes wrapping a four-cycle within
the Calabi-Yau threefold.®> The location of these wrapped branes therefore becomes
a crucial parameter in the D3-brane potential.

With this theoretical input we ask whether the known correction terms to the
inflaton potential can indeed cancel for specific values of the microphysical input
parameters. To investigate this, we study D3-brane motion in warped conifold back-
grounds [105, 106] for a large class of wrapped brane embeddings. By identifying
radial trajectories that are stable in the angular directions, we integrate out the an-

gular degrees of freedom and arrive at an effective two-field potential for the inflaton —

2For important earlier work, see [32, 71, 77].
3Alternatively, one could consider Euclidean D3-branes wrapping this four-cycle. Their
effect on the nonperturbative superpotential is very similar to that of the D7-branes.
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corresponding to the radial direction in the throat — and the compactification volume.
Because we work in a framework with explicitly stabilized moduli, the compactifica-
tion volume has a positive mass-squared. However, this mass is not so large that
the volume remains fixed at a single value during inflation. Instead, the minimum
of the potential for the volume shifts as the D3-brane moves: the compact space
shrinks slightly as the D3-brane falls down the throat. Properly incorporating this
phenomenon leads to a nontrivial change in the effective single-field inflaton potential.
Thus, we find that an approximation that keeps the volume fixed at its KKLT [93]
minimum during inflation is not sufficiently accurate for a D-brane inflation model.
Our improved approximation is that the volume changes adiabatically, remaining in
an inflaton-dependent minimum, as the D3-brane moves.

Equipped with the effective single-field potential, we ask whether the trajectories
that are stable in the angular directions can enjoy flat potentials. For the large class
of holomorphic wrapped brane embeddings described in [9], we find trajectories that
are too steep to permit inflation, even with an arbitrary amount of fine-tuning of the
compactification parameters: the functional form of the leading corrections to the
potential makes fine-tuning impossible. (Our conclusions are consistent with those
reached in [45] for the special case of the Ouyang embedding [133].) This illustrates
a key virtue of the explicit, top-down approach: by direct computation we can refute
the very reasonable expectation that fine-tuning is generically possible.

Undeterred by this no-go result for a wide class of D3-brane trajectories, we devote
a large portion of this paper to showing that in a particularly simple and symmetric
embedding due to Kuperstein [114], the stable trajectory is not necessarily steep.
We then establish that for fine-tuned values of the microphysical parameters, a D3-
brane following this stable trajectory leads to sustained slow-roll inflation near an
inflection point of the potential. Finally, we derive nontrivial constraints, due to

the consistency of the embedding of the warped throat in a flux compactification,
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that relate the microscopic parameters of the inflaton Lagrangian. These constraints
sharply restrict the parameter space of the model, and in fact exclude most, but not
all, of the parameter space that permits sustained inflation.

Our result provides evidence for the existence of successful warped D-brane infla-
tion models based on concrete microscopic data of a flux compactification. However,
we emphasize that inflation is non-generic in this class of D-brane models. In fact, be-
cause of the geometric constraints, it is surprisingly difficult, though not impossible,

to achieve inflation.

1.2. Outline. The outline of this chapter is as follows: In §2 we briefly review
D-brane inflation in warped backgrounds. We then provide results for the complete
D3-brane potential in a warped throat region of the compactification. This includes
an important correction to the volume-stabilizing nonperturbative superpotential first
computed in [18]. In §3 we present a detailed study of a simple example, the case
of the Kuperstein embedding [114] of the wrapped branes. By integrating out the
complex Kahler modulus and the angular positions of the D3-brane, we derive effec-
tive single-field potentials for different brane trajectories. In §4 we then prove the
existence of a stable inflationary trajectory, but also discuss important constraints on
microscopic parameters that make inflation challenging to achieve. In §5 we comment
on generalizations to other embeddings. We then take the opportunity, in §6, to make
some general remarks about the problem of relating string compactification data to
the low energy Lagrangian. We conclude in §7.

In order to make this chapter more readable, we have relegated a number of more
technical results to a series of appendices. Although most of these results are new,
they could be omitted on a first reading. Appendix E gives details of the conifold
geometry and of the supergravity F-term potential. In Appendix F we dimensionally
reduce the ten-dimensional string action and derive microscopic constraints on the

inflaton field range and the warped four-cycle volume. In particular, we explain how



7. TOWARDS AN EXPLICIT MODEL OF D-BRANE INFLATION 115

to generalize the field range bound of [21] to a compactification with a nontrivial
breathing mode. We also derive a new constraint that relates the field range and the
volume of the wrapped four-cycle. Appendix G provides more technical aspects of
the proof that the inflationary trajectory is stable against angular fluctuations. In
Appendix H we derive the dependence of the compactification volume on the D3-
brane position. This is an important improvement on the typical approach of keeping

the volume fixed as the D3-brane moves.
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2. D3-brane Potential in Warped Backgrounds

2.1. The Compactification. Our setting is a flux compactification [76] (see
Chapter 3 or Ref. [63] for a review) of type IIB string theory on an orientifold of a
Calabi-Yau threefold (or an F-theory compactification on a Calabi-Yau fourfold). We
suppose that the fluxes are chosen so that the internal space has a warped throat
region. As a simple, concrete example of this local geometry, we consider the warped
deformed conifold [105]. The deformed conifold is a subspace of complex dimension

three in C* defined by the constraint equation

4
Y =2, (7.1)

where {z;,7 = 1,2,3,4} are complex coordinates in C*. The deformation parameter
€ can be made real by an appropriate phase rotation. The region relevant to our
modeling of D-brane inflation lies far from the bottom of the throat, where the right
hand side of (7.1) can be ignored and the metric of the deformed conifold is well-

approximated by that of the singular conifold,
dsg = di* + P*dsFui (7.2)

where ds3., is the metric of the Einstein manifold 7%, the base of the cone (see

Appendix A). This Calabi-Yau metric is obtained from the Kéhler potential [49]

3 (< v 3
— E 2 _ 2 _ »2
]{]—5 (iZI ‘ZZ| ) —57" =Tr. (73)

The warping is achieved by turning on M units of Fj flux through the A-cycle
of the deformed conifold (the three-sphere at the bottom) and — K units of Hj flux
through the dual B-cycle. The resulting warped deformed conifold background is

given in [87, 105]. If 7yy is the maximum radial coordinate where the throat is
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glued into a compact manifold, then for €*? < # < #yy the background is well-

approximated by the warped conifold [106]
ds3y = h "2 (7)ds] + h'/2(7)dst, (7.4)

with the warp factor [87, 106]

L A 81
T In — L' = —(g.Md')?. (7.5)

h(T) = m ’ ]

We also have [76, 87]

72UV 2r K

The scale of supersymmetry breaking associated with an anti-D3-brane at the bottom
of the throat is D = 2T3hy*, where hg is the warp factor there. The approximation
(7.5) is not accurate enough to determine the warp factor at the bottom of the throat;

its value is [87, 105]
ho = ag(gsMa')?2%378/3 4y~ 0.71805, (7.7)

which is approximately hgy ~ e575/39sM [76].

Following [93], we require that all the closed string moduli are stabilized,* by a
combination of fluxes and nonperturbative effects. Each nonperturbative effect may
arise either from Euclidean D3-branes wrapping a four-cycle, or from strong gauge
dynamics, such as gaugino condensation, on a stack of n > 1 D7-branes wrapping a
four-cycle. Finally, as in [18], we require that at least one of the four-cycles bearing
nonperturbative effects descends a finite distance into the warped throat. For sim-
plicity of presentation we will refer to the nonperturbative effects on this cycle as
originating on D7-branes, but all our results apply equally well to the case in which

Euclidean D3-branes are responsible for this effect.

“This condition is necessary for a realistic model, and amounts to a nontrivial selection
criterion on the space of compactifications.
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FIGURE 1. Cartoon of an embedded stack of D7-branes wrapping a four-
cycle Y4, and a mobile D3-brane, in a warped throat region of a compact
Calabi-Yau. The D3-brane feels a force from the D7-branes and from an
anti-D3-brane at the tip of the throat.

An embedding is specified by the number n = Np; > 1 of D7-branes and the
minimal radial coordinate r, reached by the D7-branes. The stabilization of r, is
a potentially confusing issue, so we pause to explain it. In the construction [114]
of supersymmetric wrapped D7-branes in the noncompact KS throat, r, is a free
parameter. One might therefore think that the wrapped D7-branes are not stabilized,
and that there is a massless field corresponding to changes in r,. However, in the F-
theory picture, 7, is determined by the complex structure of the fourfold. For generic
choices of four-form fluxes, this complex structure is entirely fixed [121] (see also
[78]), just as the threefold complex structure is fixed in type IIB compactifications
with generic three-form fluxes [76]. Moreover, the scale of the associated mass terms
(see e.g. [94]), mgux ~ \7_1;?’ with Vg the volume of the compact space, is considerably
higher than the (warped) energy scale associated with the brane—antibrane pair under
consideration. Hence, for our purposes the D7-brane moduli are massive enough to
be ignored. Next, the stabilized value of r, is determined by the fluxes in the bulk
of the fourfold. In a generic compactification the number of choices of such fluxes
is vast, so we expect that for a given compactification and for any desired value r7,

there exist choices of flux that fix the D7-brane to a location r, ~ 7’;.
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2.2. D3-brane Potential from Moduli Stabilization. The effect of moduli
stabilization on the D3-brane is captured by the F-term potential of NV = 1 super-

gravity,
Vi = ek [DEWICEEDQW —3PWW |, k= M2 =8nG, (7.8)

where {Z*} = {p, 2o; = 1,2,3} and DsW = 0sW + k*(0sK)W. The combined
Kéhler potential for the volume modulus, p, and the three open string moduli (D3-

brane positions), zq, is of the form postulated by DeWolfe and Giddings [58]°
K2 K(p, Py Zas Za) = —3In[p+ p — Vk(20, Za)] = —3In U, (7.9)

where in general k(z,,Z,) denotes the Kahler potential of the Calabi-Yau manifold.
The normalization constant v in (7.9) is derived in Appendix F and may be expressed
as

o1y T3

=202 (7.10)
M

where 20y = 20,(0) = p,.(0) + p,(0) is the stabilized value of the Kéahler modulus
when the D3-brane is near the tip of the throat.

The Kahler metric Kos5; = K o5 assumes the form

3 1 —kg

Koz = 22

: (7.11)

—Yka | Uvkog + Vkaks

where kaﬁ = 8a8gk is the Calabi-Yau metric, and k, = k.

°In [46] it was suggested that this result may receive corrections in strongly-warped sce-
narios. However, the proposed corrections do not affect the metric on the Kéhler moduli
space, and thus are irrelevant for most of the considerations presented here. However, a
truly thorough search for possible effects of such corrections on our analysis must await a
more complete understanding of the structure of corrections to the Kéhler potential.
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The problem of finding the inverse metric, KAT K, = 04,, was solved in [45]:

w2U [ U+ vk kks | k k0P

KAT = (7.12)

3 kag kg

1p.af
vy
After some calculation, these results lead to the F-term potential

2

K _ < N
Vr(ps 2a) 302 (p +p+ ’Y(kvk’yakg - k)) ’VV,/J|2 = 3(WW, +c.c)
- 1 = o
+ (kW , W o + c.c.) + ;kaﬁwawﬁl : (7.13)

The label AV has isolated the terms in F-term potential (7.13) that arise exclusively
from the dependence of the nonperturbative superpotential on the brane position [18].
The remainder of (7.13) is the standard KKLT F-term potential [93].

The superpotential W is the sum of the constant Gukov-Vafa-Witten flux super-
potential [82], Wy = f Gs N Q= Wy, and a term from nonperturbative effects,
Wip = A(zq)e™,

W(p,za) = Wo + A(za)e ", a=—. (7.14)

By a choice of phases we can arrange that Wj is real and negative. The nonper-
turbative term W), arises either from strong gauge dynamics on a stack of n > 1
D7-branes or from Euclidean D3-branes (with n = 1 ). We assume that either sort of
brane supersymmetrically wraps a four-cycle in the warped throat that is specified by
a holomorphic embedding equation f(z,) = 0. The warped volume of the four-cycle
governs the magnitude of the nonperturbative effect, by affecting the gauge coupling
on the D7-branes (equivalently, the action of Euclidean D3-branes) wrapping this
four-cycle. The presence of a D3-brane gives rise to a perturbation to the warp fac-
tor, and this leads to a correction to the warped four-cycle volume. This correction

depends on the D3-brane position and is responsible for the prefactor A(z,) [77]. In
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[18], in collaboration with J. Maldacena and A. Murugan, we computed the D3-brane

backreaction on the warped four-cycle volume. This gave the result®

A(za) = Ay (J;((zg)>>l/n . (7.15)

See [18] for a derivation of this result, and for a more complete discussion of the setup,

which we have only briefly reviewed here.

2.3. Potential in the Warped Conifold Throat. In this section we apply
the general formulae of the previous section to the case of a D3-brane moving in a
warped deformed conifold. We will assume that both the mobile D3-brane and the
fixed D7-branes are located far enough from the tip that the deformation parameter

e may be neglected. If we use z, = {21, 22, 23} as the three independent variables, the

3
aloc

conifold constraint allows us to express z4 = +i(>.°_, 22)"/2. Using this basis, and

the Kéhler potential (7.3), we obtain the conifold metric
3 2
kg = - 2
op 202,073 (; 1" +

3 2/3
Z ) (7.16)
=1
1 [ zaZg 1

— — 24
7+ —5 — 7= | %28 + 26%a — —ZaZB — —ZaZ? . (77
PRV ( g @ P ﬁ)] (7.17)

Its inverse assumes the simple form

= = 12,z 23%
af __ af a~f B~a

Expression (7.13) for the F-term potential simplifies significantly when we substitute

(7.18) and note that

Ulp,m) =p+p— %W . Kk = gzﬂ,, ek ks = k. (7.19)
6The D3-brane-independent factor Ag in (7.15) arises from threshold corrections that depend
on the complex structure moduli. This quantity is not known except in special cases, but
is a relatively unimportant constant in our scenario, because the complex structure moduli
are stabilized by the flux background, and because, as we shall see, Ay appears in the final
potential only as an overall constant prefactor.
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The remaining term in the potential is the contribution of an anti-D3-brane at
the tip of the conifold, including its Coulomb interaction with the mobile D3-brane
[95]

D(r)

Vb(p,r) = ——— D(r)=D ll D1

1672 (Tyr?)?

Dotner = D+ Dotper , (7.20
U2<p,7”) 9 :|+ th + th ( )

where D = 2h, 1T, is twice the warped D3-brane tension at the tip” and Dogper
represents a possible contribution from distant sources of supersymmetry breaking,
e.g. in other throats.

The complete inflaton potential is then the sum of the F-term potential from

moduli stabilization, plus the contribution of the antibrane,
V = Vr(p,za) + Vb(p,7) . (7.21)

The canonical inflaton ¢ is proportional to r, the radial location of the D3-brane

(see §F.3 for details). Using (7.21) to compute the slow-roll parameter

v
_ 2 V,09
n= M=, (7.22)
we find
2
n=3+ An(e), (7.23)

where An arises from the dependence of the superpotential on ¢. If A were a constant

independent of ¢, slow-roll inflation would be impossible [95], because in that case

Wil

n = £. In this paper, using the explicit result of [18] for A(¢), we will compute An
and determine whether the full potential can be flat enough for inflation. Note that

the sign of An, while crucial, is not obvious a priori.

TA similar potential for a mobile D3-brane arises if instead of including the antibrane we
generalize the throat background [65].
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3. Case Study: Kuperstein Embedding

Let us consider a particularly simple and symmetric holomorphic embedding due

to Kuperstein [114], which is defined by the algebraic equation

f(z1)=p—2=0, (7.24)

where, without loss of generality, we will consider the case in which p € R*. This
embedding preserves an SO(3) subgroup of the SO(4) global symmetry acting on
the z; coordinates of the deformed conifold. Kuperstein showed that this is a super-
symmetric embedding not just for the singular conifold, but also in the full warped
deformed conifold background with three-form fluxes. (For comparison, the embed-
dings of [9, 133] have so far been studied explicitly only in the AdSs; x T™! back-
ground). Adding just a mobile D3-brane does not break supersymmetry in the case
of the non-compact throat. Therefore, the interaction between the D3-branes and
D7-branes must vanish in that limit. When the throat is embedded in a compactifi-
cation, the D3-brane potential can receive a contribution from the nonperturbative
superpotential (7.14).

The inflaton potential V'(p, 7, z;) is in general a complicated function of the Kahler
modulus and of the radial and angular coordinates of the D3-brane. In this section
we systematically integrate out all fields except the radial coordinate, leading to an

effective single-field potential for the radial inflaton.
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3.1. Multi-field Potential.

F-term potential. By the results of [18], equation (7.24) implies

A(z1) = Ay (1 - %) " , (7.25)

and the F-term potential (7.13) is

K2alA(z)[2ealotP)

% 5) +6) +6W,Re( -
r 3U(p,r)? (a(p o) ) oW e(A(zQ)
r |Zl‘2 2
— 3RC<OCZIZ’1) + a(l — 2_713>|O-/Z1| ] s (726)
where
A 1
a, =2 7.27
p R (7:27)
and
1 p(z +71) — 2|z
Re(a, ) = —— . 7.98
e(a,, 21) o e (7.28)

Note that the potential (7.26) depends only on 7, z;, and p. Therefore, it is invariant
under the SO(3) that acts on zy, 23, 24.

Angular degrees of freedom.

Imaginary part of the Kahler modulus. First, to reduce the complexity of the
multi-field potential, we integrate out the imaginary part of the Kahler modulus.

Setting p = o + 17, equation (7.26) becomes

R2a|A|2672a0 o eia‘r
Vi = T[(zaaw) + 6 Woe Re( )
— 3Re(as,z1) + i(1 - M)\az 2. (7.20)
! ary 2r3 !

We see that only the underlined term depends on 7, and the potential for 7 is mini-

mized when this term is as small as possible. Because W, is negative, integrating out
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7(z1,7) = Im(p) then amounts to the replacement

S (7.30)

Notice that this is not the same as setting 7 = 0. In particular, 7(z1, ) might be a
complicated function, but all we need to know is (7.30).

Angular directions. The D3-brane position is described by the radial coordinate
r and five angles W, on the base of the cone. The angles are periodic coordinates on
a compact space, so the potential in W, is either constant or else has discrete minima
at some values W7. We are interested in trajectories that are stable in the angular
directions, so that the motion occurs purely along the radial direction.

We can therefore reduce the number of degrees of freedom by fixing the angular
coordinates to the positions that minimize the potential. In Appendix G we show that
for any Kuperstein-like embedding f(z;) = 0, these extrema in the angular directions

occur only for trajectories satisfying

r3/2 oV
T o

Furthermore, in Appendix G we examine the matrix of second derivatives

_o*v
' U000
and find the conditions under which these extrema are stable minima. For the present
discussion we only need one result from that section: for small r, the trajectory (7.31)
is stable against angular fluctuations for negative z; and unstable for positive z;. In

Appendix F we show that the canonical inflaton field ¢ is well-approximated by a

constant rescaling of the radial coordinate r,
2 a2 S o2
¢ = Tg?" = §T37” . (732)

An important parameter of the brane potential is the minimal radial coordinate of

the D7-brane embedding [18, 114], r8 = 2% or ¢2 = 3T5(2u*)*/. The potential
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along the trajectory (7.31) may then be written as

V((ba U) = VF(¢7 U) + VD(¢7 U) ) (733>
where
wa|Ag|* exp(—2a0) 1o, Wo| 1
Ve(p,0) 3 U607 g(9) 2a0 + 6 — Gexp(aa)m—g((b)l/n
3(.0 ,(2\" ( 6 >3 !
e+ £ — = 7.34
+n (Cﬁbu <¢u) ¢u g(¢>2 7 ( )
__D(9)
Vp(¢,0) = U602 (7.35)
and »
_ o _ 0o ¢2
g6 =17 (¢—) Ve =2 P (7.36)
Here we have introduced the constant
1 9
= = — . 7.37
‘ Amyry 4p aaojf;—‘él ( )

This two-field potential is the input for our numerical study in §4.3.

3.2. Effective Single-Field Potential.
Real part of the Kahler modulus. Having reduced the potential to a function of
two real fields, ¢ and o, we integrate out o by assuming® that it evolves adiabatically

while remaining in its instantaneous minimum o, (¢), which is defined implicitly by

V| . =0. (7.38)

o+ (@)

8We are assuming that ¢ is much more massive than ¢. This may not be valid for a truly
generic configuration of a D3-brane in a compact space, but we are specifically interested
in cases in which the potential for ¢ has been fine-tuned to be flat. Thus, when slow-roll
inflation is possible at all, the adiabatic approximation is justified. See also [135].
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This leads to the effective single-field potential

V(¢) = V(ou(9), ¢). (7.39)

In general, we are not able to solve equation (7.38) analytically for o,(¢), so we
perform this final step numerically (§4.3). Nevertheless, in Appendix H we derive
useful approximate analytical solutions for the stabilized volume modulus and its
dependence on ¢ (similar results were derived independently in [113]). Here, we cite
the basic results of that section. First, the critical value op of the Kahler modulus

before uplifting is determined by D,W| 40,0, = 0, or equivalently [93],

Wi oV,
SMe‘wF = 2a0p + 3 = ol

oF
We now show how the Kéahler modulus is shifted away from o by the inclusion of a

brane-antibrane pair.

(1) Shift induced by the uplifting
Adding an anti-D3-brane to lift the KKLT AdS minimum to a dS mini-
mum induces a small shift in the stabilized volume, op — op+do = 0,(0) =

0o, where

S

for~ 5— <1< op. (7.41)
a“op

Here we found it convenient to define the ratio of the antibrane energy to

the F-term energy before uplifting, i.e. when o = op,

(D + Dother)U_Q(Oa UF)
V(0,07

, (7.42)

S

where stability of the volume modulus in a metastable de Sitter vacuum
requires 1 < s < O(3). Although do is small, it appears in an exponent in

(7.34), so that its effect there has to be considered,

W
3Me“"° ~ 2a00 + 3+ 2s. (7.43)
| Aol
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When the D3-brane is near the tip, ¢ =~ 0, the Kdhler modulus remains at
09. Using this constant value even when the brane is at finite ¢ suffices for
understanding the basic qualitative features of the potential (7.34). How-
ever, important quantitative details of the potential depend sensitively on
the dependence of o, on ¢; see Appendix D and Ref. [135].
(2) Shift induced by D3-brane motion
In Appendix H we derive the following analytic approximation to the

dependence of the stabilized volume on the D3-brane position:

¢ 3/2
1+ C3/2 (gb_ﬂ) ] , (744)

0.(¢) = 0

where
11 1
~ — 1— . 7.45
“3/2 naocp [ 2aap] ( )
This expression is valid along z; = —%, which we argue below is the inter-

esting case in which the potential is stable in the angular directions.

Analytic single-field potential. Along the trajectory z; = —%, the inflaton po-

tential is

Vo) = ol SRR g [zm«z»)+6_aexp<aa*<¢>)‘m|’g(¢1)l/n
e 13 (0" 1 D(o)
ML n(¢> @ | T TGaer T

where 0,(¢) can be determined numerically or approximated analytically by (7.44).
Using the analytic result (7.44) in (7.46) captures the basic qualitative features of the
potential, but is insufficient to assess detailed quantitative questions. In particular, by
using (7.44) one systematically underestimates the total number of e-folds supported
by the potential (see Appendix D and Ref. [135]).

The inflaton potential (7.46) is one of our main results.
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4. Search for an Inflationary Trajectory

In the preceding section, we derived the inflaton potential (7.46) along the
angularly-stable trajectory z; = —%. We will now explore this potential and es-
tablish that slow roll inflation is possible for a certain range of parameters. First, in
84.1, we present a few analytic results about the curvature of the potential. Then,
in §4.2, we describe the constraints on the parameters of the model that are dictated

by the structure of the compactification. Finally, in §4.3, we present the results of a

numerical study of the potential.

4.1. Analytic Considerations. Let us briefly recall the reason for computing
the effect of A(¢) on the inflaton potential. Kachru et al. [95] derived n = 2 for the
case A = const., and suggested that the inflaton-dependence of the nonperturbative
superpotential, A(¢), could contribute corrections to the inflaton mass, which, if of
the right sign, could accidentally make 7 small. This reasonable expectation hinges
on the presence of quadratic corrections to the inflaton potential.

We now argue that in view of the result (7.15), wrapped D7-branes give no purely
quadratic corrections to the inflaton potential. To see this, we note that the holo-
morphic coordinates on the conifold scale as fractional powers of ¢, |z| o< ¢*2, and
A(z;) is a holomorphic function of the z; coordinates [18]. This observation implies

that the inflaton potential is of the form

j% 1y %]\@;—1 (), (7.47)

where v(¢) contains no quadratic terms. The slow roll parameter 7, which needs to

be very small for sustained slow roll inflation, is

\Y 2
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2
3

Because v 44 contains no constant term, there is no possibility of cancelling the
uniformly, for the entire range of ¢. Instead, we can at best hope to cancel the % at
some special point(s) ¢o obeying v 44(¢o) = —3.

Using the explicit form (7.46) and expanding for small ¢/¢,,, we find

9 —1/2
=g -2 (qb%) T (7.49)

where

M2 3(4s —3) 1
pl
1R ——F— > 0. 7.50
=172 ¢2 8n(s — 1) aoy (7.:50)

Hence, n < 0 sufficiently close to the tip. On the other hand, we find that for ¢ > ¢,
1 > 0. By continuity, 7 must vanish at some intermediate location ¢.

The precise location of ¢q is a parameter-dependent question. For this purpose,
the most important parameter is the minimal radius ¢,, of the D7-branes. Notice that

(7.48) can be written as

2 M3
T 7.51
where = = % and v,, is insensitive to ¢, (see (7.46)). From (7.49) we see that the

second term in (7.51) dominates near the tip, giving a large negative 7. This implies
the opportunity for a small by cancellation against the positive % However, only if
¢, is not too small can this cancellation be achieved inside the throat. Otherwise, 7
remains negative throughout the regime of interest. We conclude that for small ¢,

¢ is outside the throat, and hence outside the validity of our construction.

4.2. Parameters and Microscopic Constraints. Let us describe the micro-
scopic parameters that determine the inflaton potential (7.46). In view of (7.42), the
D-term Dgper + 2750 Uand W, are represented by s and by wp = aop, respectively.
Next, the prefactor Ay only appears as an overall constant rescaling the height of
the potential, so we set Ag = 1. The shape of the inflaton potential is therefore

determined by n, wr, s and ¢,. As we now explain, microscopic constraints lead to
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important restrictions on the allowed parameter ranges and induce non-trivial corre-
lations among the above parameters.

First, the range of the radial coordinate r affects the four-dimensional Planck mass,
because a longer throat makes a larger contribution to the volume of the compact
space. In [21] Liam McAllister and I showed that this creates a strong constraint on

the allowed field range of the inflaton field ¢ (see also Appendix F)

Ag 2
a9

Mpl \/_N .

Here we use the field range bound (7.52) to constrain the microscopically viable range

(7.52)

of ¢, the minimal radial extent of the D7-branes in canonical units. For this purpose
we find it convenient to write the bound in the form

¢n 1 14

RATRN 7.53
ME T QBN (759

where Bg = ( Ve”

W > 1 parameterizes the relative contribution of the throat to the

total (warped) volume of the compact space, and
TUv
Qu=— (7.54)

T

is a measure of how far into the throat the four-cycle extends. Applicability of the
results of [18] requires Q,, = (’5;—" > 1.
N
Second, the warped volume V5’ of the wrapped four-cycle ¥, is bounded below

by the warped volume in the throat region,
VEU; - (Vi)throa‘c + (Vzujl)bulk Z (Vzujl%:hroat . (755)

In Appendix F.2 we compute (V& )hroat for the Kuperstein embedding

3
T3(V£‘f:1)throat = §N1H Qp . (756)
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In §2 we explained how the unperturbed warped four-cycle volume relates to the
Kéhler modulus of the compactification (more details can be found in Refs. [18,
77] and Appendix F). If we use By = (Vz“;)% > 1 to parameterize the relative
contribution of the throat to the total warped volume of the four-cycle wrapped by

the D7-branes, then we can relate the vev of the Kéahler modulus to microscopic

parameters of the compactification

Wp = wy & 2%34 In@, . (7.57)
We require wy < O(30), because otherwise the inflation scale will be too low — see
Appendix F.

The constraints (7.53), (7.57) will play an essential role in our analysis. We will
find that inflationary configurations are rather easy to find if these constraints are
neglected, but imposing them dramatically decreases the parameter space suitable
for inflation.

Bulk contributions to the volume. We have just introduced two parameters, By, =

vy w
—d— and Bg = ML, that represent ratios of total volumes to throat volumes.
(V24)throat (V6 )throat

In the throat, we have access to an explicit Calabi-Yau metric and can compute the
volumes directly. This metric data in the throat is one of the main reasons that
warped D-brane inflation can be studied explicitly. In contrast, we have very little
data about the bulk, so we cannot compute B4 and Bg.

Fortunately, these parameters do not directly enter the potential. Instead, they
appear in the compactification constraints (7.53) and (7.57), and thereby affect the
microscopically allowable ranges of the other parameters, such as ¢, and Q,. In
particular, when B is large, the range of ¢, is reduced, because the throat is shorter
in four-dimensional Planck units. In the numerical investigation of §4.3, we find that
inflation is possible inside the throat, and our construction is self-consistent, provided

that B,/Bs 2 2. For concreteness, we take By ~ 9, Bg ~ 1.5 in the remainder. This
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means that the throat contributes a greater share of the total six-volume than it does
of the wrapped four-cycle volume: in other words, the wrapped four-cycle only enters
the upper reaches of the throat. Although we expect that such a configuration can
be realized, it will be valuable to find a fully explicit construction. We note, however,
that a very large value of By, implying that the D7-brane is hardly in the throat
at all, would mean that the result of [18] is inapplicable, because the correction to
the four-cycle volume is then dominated by the correction to the uncomputable bulk
portion of the volume.

Parameter choices. Although a systematic study of the full multi-dimensional
parameter space would undoubtedly be instructive, we here employ a simpler and
more transparent strategy that we believe nevertheless accurately portrays the range
of possibilities. To this end, we set some of the discrete parameters to reasonable
values and then scan over the remaining parameters. Let us emphasize that although
the precise values chosen here are not important, it is important that we were able
to find regions in parameter space where all our approximations are valid and all the
compactification constraints are satisfied.

First, we fix n — 8. This helps to reduce the degree to which the volume shifts
during inflation, as from (7.45), ¢3/» o n~!. Numerical study of the case n = 2 yields
results qualitatively similar to those we present here, but the analytical treatment is
more challenging. To ignore backreaction of the wrapped branes on the background
geometry, we require that the background D3-brane charge exceeds the number of
wrapped branes, % > 1. For concreteness, we use N = 32. Finally, as previously
stated, we take By ~ 5, Bg ~ 2.

This allows us to impose the microscopic constraints (7.53), (7.57) on the compact-
ification volume wp and the wrapped brane location ¢, in terms of a single parameter
Q.- The remaining parameters that determine the potential are then @, (7.54) and
s (7.42).
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To search for inflationary solutions, we scanned over (), and s, treating both as
continuous parameters, although they are in principle determined by discrete flux
input. Here, for simplicity of presentation, we will fix (), to a convenient value, @), =
1.2, and only exhibit the scanning over s. To interpret this scanning in microphysical
terms, we recall that, for fixed F-term potential and for fixed supersymmetry breaking
(corresponding to the parameter Doger) outside the throat, s is determined by D =
2T3hy*, where hy is given in (7.7) and is of order hg =~ exp (%). The values of hg
we will consider can be achieved for reasonable values of K, M, g,.

In summary, we have arranged that all consistency conditions are satisfied, and all
parameters except for the amount of uplifting, s, are fixed. As we vary the uplifting,
the shape of the potential (7.46) will change. As we shall now see, for a certain range

of values of s the potential becomes flat enough for prolonged inflation.

V(¢) x 10*?
2.18 F
2.16 |
2.14 F
l 0.2 0.4 0.6 0.8 1.0
212 F &/ u

FIGURE 2. Inflaton potential V(¢).

Compactification data: n = 8, wp = 10, N = 32, @, = 1.2, Bg = 1.5,
By =9, s= 1.1, which implies ¢, = 0.25, Wy = —3.432 x 1074, D+ Dgther =
1.2 x 1078, wy ~ 10.1.

4.3. Numerical Results. The first observation we make about (7.46) is that,
near the parameter values we have indicated, it is generically non-monotonic. In fact,

the potential has a metastable minimum? at some distance from the tip. We are

9A D3-brane located in this metastable minimum contributes to the breaking of super-
symmetry. It would be extremely interesting to use a configuration of a D3-brane and a
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confident that this is a minimum and not a saddle point, because we have explicitly
shown in the Appendices that the curvature of the potential in the angular directions
is non-negative. (The curvature is zero along directions protected by the unbroken
SO(3) symmetry of the background, and positive in the other directions.) Moreover,
we have shown that the potential is stable with respect to changes in the Kahler
modulus.

Next, we notice that as we vary s, the metastable minimum grows more shallow,
and the two zeroes of V', the local maximum and the local minimum, approach each
other. A zero of V" is trapped in the shrinking range between these two zeroes of V.
For a critical value of s, the zero of V" and the two zeroes of V' coincide, and the
potential has an inflection point. As s changes further, the potential becomes strictly
monotonic.

We therefore find that there exists a range of s for which both the first and second
derivatives of the potential approximately vanish. This is an approximate inflection
point. In the next section we discuss a phenomenological model that captures the

essential features of (7.46) in the vicinity of this inflection point.

4.4. Phenomenological Model: Cubic Inflation. We have shown that in-
flationary solutions in the Kuperstein embedding arise near an inflection point at

® = ¢o, where the potential is very well approximated by the cubic form [88, 123]'°

1

V="V + (¢ — o) + §A3(¢ — ¢0)°. (7.58)

moduli-stabilizing D7-brane stack to uplift to a de Sitter vacuum. Here we have not quite
accomplished this: we have, of course, included an anti-D3-brane as well, which is well-
known to accomplish the uplifting by itself [93]. If this antibrane is removed, the structure
of the potential changes, and it is not clear from our results so far that a remaining D3-brane
would suffice to uplift to a de Sitter vacuum. We leave this as a promising direction for
future work.

10Ref. [5] has developed an inflation model within the minimal supersymmetric standard
model (MSSM) that has a similar cubic phenomenology. We thank Justin Khoury for
bringing this model to our attention. Inflection point inflation in the context of string
theory, with the inflaton corresponding to the compactification volume, has been considered
in [92].



7. TOWARDS AN EXPLICIT MODEL OF D-BRANE INFLATION 136
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FIGURE 3. The inflaton potential V(¢) as a function of s.
The transition from metastability to monotonicity is shown; old inflation
and new inflation are continuously connected.

Prolonged inflation requires smallness of the slow roll parameters, ¢,7 < 1. From

(7.58) we find!!

Vo \> 1 (At 2hs(6 — ¢0)?\”
O

~ — (¢ — o). (7.60)

=

I

<
=

The number of e—folds between some value ¢ and the end of inflation ¢e,q is then

¢ N, [
N.(¢) :/ 49 _ Mot arctan ( 77(¢)1) : (7.61)
d)end \/% T 27TNt0t d)end
where
~do __ [
Niot = —— =Ty —. 7.62
w= | = (7.62)

HTn this section we set My =1.
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In (7.59) and (7.60) we have set V(¢) ~ Vj in the denominators, while in (7.62) we
extended the integral from the range where |n| < 1 to infinity. These approximations

are very good in the regime

% \%
0<<1’ 0

— —— > 1. 7.63
A3 A3 (7.63)

The first of these conditions guarantees that inflation is of the small-field type, while

the second implies that Ny, > 1. We will be interested in Ny, > Nous ~ 60.

U

near scale-invariance ng > 1

end of inflation

FIGURE 4. n(¢) as a function of the number of e-folds of inflation,
N,. In the green band, |n| < 27Ny}

Equation (7.61) shows that there are Ny e—folds during which || < 27Ny{; see
Figure 4. For large Ny this implies that there is a large range of e—folds where 7 is
small and the scalar perturbation spectrum is nearly scale-invariant. Predicting the

scalar spectral index in these models is non-trivial:

ns — 1= (2n —66)|,. .., ~ 2n(dcus) - (7.64)

The scalar spectral index on CMB scales can be red, blue or even perfectly scale-

invariant depending on where ¢cy\p is relative to the inflection point. If inflation only
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lasts for the minimal number of e-folds to solve the horizon and flatness problems
then the scalar spectrum is blue. If the potential is flatter than this, so that e is
smaller, inflation lasts longer and ¢cyp is more likely to be smaller than ¢g. The

spectrum is then red, since n(¢cup < ¢o) < 0.

1.201
1.15¢
1.10¢
1.051

Lo 200 400 600 800 N, tot

0.95F \\

0901

FIGURE 5. Spectral index ng, evaluated on CMB scales, as a function
of the total number of e-folds of inflation, Niot. The light band gives the
WMAP3 20 limit on n, (for r = 0) [151].

More concretely, we can evaluate ng by inverting (7.61) at ¢comp where N (dcmp) =

Neomp ~ 60, and using 1(¢enq) = —1. This gives

4 N Nio
ng—1= N:; tan (7r ]\(;ti/[tB — arctan ( 2;;)) . (7.65)

Using arctanz = § — 2~ ' + O(2~?) we furthermore find

ne— 1

4 ; < News + 2
= an|\mT———
Ntot Ntot

- g + O(Ntof)) . (7.66)

Using Nous + 2 & Nous > 1, we may simplify this to

47 NCMB)
ng— 1~ — cot [ 7 , 7.67
Ntot ( Ntot ( )
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which has the expansion

n,— 1=~

4 4N, N3
4 D CCMB O(ﬂ) (7.68)

“News 3 Ng, Ny
Equation (7.67) is plotted in Figure 5. We note the following properties of this
result. For N, not much greater than Ncoyp the spectrum is strongly blue and the
model is hence ruled out by recent observations [151] (in this regime the slow-roll
formulae we have used are not good approximations, but a more exact treatment
gives similar results). For Ny ~ 2Ncyp the spectrum on CMB scales is exactly
scale-invariant. For N, 2 2Ncyp the spectrum is red and asymptotes to the lower
limit ny — 1 —4/Noup ~ 0.93 for Ny, > Noyp. This asymptotic limit, which has
been noted in studies of inflation near an inflection point [5, 92|, is more strongly red
than is typical in single-field inflation models.

Given the explicit expression (7.67) for the spectral index ng(N,) we can compute

its scale-dependence or ‘running’:

dn dny L e (WNCMB) , (7.69)

STk T AN,

=NcwuB

Q

4 4% 1 N2
- ———+O<ﬂ>. 7.70
N 3 Nz, O\, ) T

The running can be large for models with blue spectral tilt (Niyoy ~ Neomgs), but
is small for models with red spectra. The asymptotic value for Ny > Nceup is
s — —4/Ngyp ~ —1073. Notice that because both the tilt ny — 1 and the running
a are determined by Ny alone (for fixed Noup), this phenomenological model is
predictive.

It is possible to arrange for the magnitude of scalar perturbations on CMB scales

to be small,
9 1V

R= 942 ¢

A

~2.4x 1077, (7.71)

dcMB

by adjusting the overall scale of inflation Vj.
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Let us comment briefly on some general difficulties in inflection point inflation.
Since inflation is restricted to a small region around the inflection point, an immediate
concern is the question of initial conditions. In particular, how sensitive is the present
scenario to the initial position and velocity of the D3-brane? What fraction of initial
conditions lead to overshoot rather than to inflation? These questions have recently
been analyzed by Bret Underwood [157] who finds that including the effects of the
DBI kinetic term dramatically improves naive estimates on the amount of fine-tuning
of initial conditions necessary for inflation.

Since this is a small-field model, it is sensitive to small corrections in the slope
of the potential (see §6). These corrections are important for both the background
evolution, i.e. the number of e—folds of inflation, and for the perturbation spectrum.

Finally, we note that the appearance of the inflection point feature depends sen-
sitively on the use of the adiabatic approximation for integrating out the volume
modulus. One might therefore be worried about cases in which the exact two-field
evolution is not well captured by this approximation and a more detailed numerical

study of the two-field evolution is required.'?

5. Comments on Other Embeddings

The previous two sections contained a detailed discussion of the D3-brane poten-
tial for the Kuperstein embedding. We derived important microscopic constraints,
analyzed the fine-tuning problem involved in realizing inflationary solutions, and stud-
ied the resulting cosmological dynamics.

In this section we will make some brief remarks about other embeddings. When
applicable we will emphasize the differences and similarities to the Kuperstein case.

This will illustrate the special status of the Kuperstein embedding.

12This important problem has been explored in the subsequent work [135] where the validity
of the adiabatic approximation is explicitly confirmed.
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First, we give a simple proof that for an infinite class of D7-brane embeddings, the
ACR embeddings, there always exist trajectories for which no amount of fine-tuning
can flatten the inflaton potential. Aredn, Crooks and Ramallo (ACR) [9] studied

supersymmetric four-cycles in the conifold described by the embedding equations
4
flw) = p” =JJuwt =0, (7.72)
i=1

where p;, € Z, P = Zlepi and uf € C are constants defining the embedding.

Here w; € C are alternative coordinates on the conifold that follow from the z;

coordinates by a linear transformation (see Appendix E). The conifold constraint in

these coordinates is wyws — wzw, = 0. By requiring that the p; are non-negative we

can restrict attention to four-cycles that do not reach the tip of the conifold. Two

simple special cases of the ACR embeddings (7.72) are the Ouyang embedding [133],
2

wy = p, and the Karch-Katz embedding [99], wiwe = p*.

To study the ACR embeddings in a unified way we define a collective coordinate

d
4
o = Juwt, (7.73)
i=1
such that
CI)P l/n
A(®T) = Ay (1 — —P) , (7.74)
1
and
Z Wiy, = Zpiq)POé<1>P = PdPagr, (7.75)
where

194 1 1
S A9SF T nuf —oP- (7.76)

(0%

Next, we consider the part of the F-term potential that depends on derivatives of the

superpotential with respect to the brane coordinates

l€2a|A‘2€_2aU

AVp = 7

. 1 -~
[3 Re(w'au,) — ak‘fjawiawj] : (7.77)
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where

Re(w'a,,) = PRe(®"agr) (7.78)
and

1 2 (1
i lar P07 (5P 4 (01— pa)? (0 =)' + 2w} (779

iy X7} __
5 k) v, O

Here, we found it convenient to write the Kahler metric &7 in SO(4)-invariant form
(see Appendix E) and defined the function

2 2

Wy (%) w3 W
Z = +p—+ps—| +|p—+pi—
w1 w3 w1 Wy
w w 2 w w 2
3 1 4 1
+|P2— +Ps—| +|P2— +P3— (7~80)
W2 Wy (%) w3

5.1. Delta-flat Directions. We now show that there is always a radial trajec-
tory, & = 0, along which W /0w is orthogonal to w; and lies in the null direction of
k7. The term AV in (7.77) then vanishes and the prefactor A of the superpotential
becomes independent of the brane position. We call this a delta-flat direction. For
the Ouyang embedding this trajectory was first found by Burgess et al. [45]. As noted
in [45], delta-flat directions are noteworthy because they have An = 0 and therefore
imply a well-known no-go result for inflation [95].

More concretely, we see that for (7.78) to vanish one requires
®=0, (7.81)

i.e. at least one of the w; that enter the embedding must vanish. In fact, we
notice that (7.78) vanishes whenever (7.79) does, so we can restrict our atten-
tion to (7.79). If any p; > 1, then we see immediately from the overall factor
(BT |2 = |w;|?P* |wa|*2 |w3]?P3 |wy|?P+ that (7.79) vanishes on w; = 0. For p; < 1 there

are only a few distinct cases: ® = w;, ®? = wiwy, ®? = wiws, P* = wiwows, and
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d* = wiwowsw,. In the next section we will illustrate the argument for the impor-
tant case of the Ouyang embedding, ® = w;y; the proof is easily generalized to the
remaining cases. This completes the proof that all ACR embeddings have delta-flat

trajectories.

5.2. Comparison of the Ouyang and Kuperstein Embeddings. Recently
the result of [18] has been applied [45, 113] to compactifications involving the Ouyang

embedding w; = p. In this case, the correction to the F-term potential is

52 3 - 1A= _
where
B 2 2
R = (14 Dl (7.83)

There are two kinds of radial extremal trajectories: the delta-flat trajectory w; =
w3 = wy = 0, for which AVp = 0 [45], and also a trajectory wy = w3 = wy = 0,
wy € R used in [113].

The Kuperstein scenario is closely related to the Ouyang scenario except for two

subtle differences which we now discuss:

(1) There exists no delta-flat direction for the Kuperstein embedding.

(2) The single-field potential along the non-delta-flat direction for the Ouyang
embedding is identical in shape to that along the corresponding Kuperstein
trajectory. However, the angular stability is different (see Appendix G).
This trajectory in the Kuperstein embedding is stable for small r, while in

the Ouyang embedding it is unstable in that regime.

To see this compare the correction to the F-term potential for the Ouyang embedding,

(7.82), with the corresponding term for the Kuperstein embedding,

K2 |3 —— Lo ST
AVF = m §<WP21W7Z1 + C.C.) + ;kllw,zlwzl ) (784)
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where

i 1]z[?
- 7‘( . 57«_13) . (7.85)

This shows immediately that the Kuperstein embedding does not have a delta-flat
direction, since k'! cannot vanish for » > 0. This is to be viewed in contrast to the
Ouyang case for which (7.83) vanishes on w; = 0.

Considering kﬁ,/;‘},} for each case one may further show that the trajectories
22112 = 7 and |wy]? = 73 lead to identical shapes for the single-field potential.
However, ‘off-shell’; i.e. away from the extremal path, /2;}01 for the Ouyang embedding
is of a different form from k'! for the Kuperstein embedding. It is for this reason that
the angular stability of the two scenarios is different (see Appendix G for details). In
particular, while for the Kuperstein embedding the trajectory is stable for the regime
of interest, for the Ouyang embedding it is unstable.

To discuss the issue of stability in simple terms, we consider §; = 05 = 6 and

=1 — ¢y — ba, so that wy = e2¥7¥2sin%(A/2). Then, as shown in [45] for n = 1,

Vr(0) = Visin®(0/2) + Vasin(0/2) + const. (7.86)
where
R2|A0|2€_2a0 r 775 4o
V, = e o (2 — apy/T cos ) (9 + dao + 6W0m> ) , (7.87)

1 k2| Ag|?e2% 7 )
= - —2 12 . .
Vo 1 a2 N + ayr (12 4 8ao) (7.88)

We see that aa% vanishes for 0 = 0 or 7.

The 6 = 0 trajectory is delta-flat [45]. For this trajectory, 8;9‘? = Vi which

is clearly positive for small r and stays positive up to some critical radius r.. To

compute r. we evaluate V; at 0 = g using

ao
e 0

4@0'0 + 9 — 6W0m ~3—4s. (789)
0
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We find
/{2|A0|2672a00

3U?

Vi ~ 722 (2 + apy(4s — 3)\/r cos %) : (7.90)

For s > 3/4 and for real positive u, the potential is minimized at 1; = 27, where

B /{]2‘140|2€_2a00 r

-
' U2 qu

5 (2 —apy(4s — 3)\/F) : (7.91)
This is positive as long as r is less than r., where

e_ 1 (9\ My (7.92)
r. (45 —3)% \aog ot '

2
Applying the field range bound in the form % < % one finds
pl

e N1 (1)2 | (7.93)

Ty 42 (45 — 3)2 \aoy

For typical parameters we therefore conclude that r. > r, and the delta-flat direction

is hence stable from the tip to at least the location r, of the D7-branes.

9*Vp
802

For the 6§ = 7 trajectory, = —%Vl. This is negative for r < r. and the § = 7
trajectory is therefore unstable in this regime. This analysis was carried out for n = 1
but it illustrates the essential qualitative point (for a more general analysis with the
same conclusion, see Appendix C.2).

In Appendix G.4 we show that for all ACR embeddings there are alternative

trajectories with ® # 0 that are not delta-flat. This is important because it implies

that, for a D3-brane moving along such a trajectory, n can be different from

wWro

We postpone a more general treatment of such trajectories for the future (but see

Appendix G.4 for some preliminary remarks).
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6. Discussion

In this section we will briefly take stock of our progress towards an explicit model of
D-brane inflation. For this purpose, it is useful to consider the more general problem
of deriving a low-energy Lagrangian from the data of a string compactification.

In principle, the data of a compactification — such as the background geometry,
brane positions, and fluxes — determine the low-energy effective Lagrangian in full.
In practice, one typically begins by deriving the leading-order effective Lagrangian,
which follows from dimensional reduction of the classical ten-dimensional supergravity
action, including the effect of fluxes but treating D-branes as probes. Then, one can
include corrections to this action, including such things as nonperturbative terms in
the superpotential, D-brane backreaction effects, string loop corrections to the Kahler
potential, and o' corrections to the Kahler potential. Except in cases with extended
supersymmetry, it is typically impossible to obtain results beyond leading order in
either series of corrections to the Kahler potential.

For the present purpose, an instructive way to organize these corrections is ac-
cording to their effects on the slow-roll parameter 7, as follows. The leading order
classical four-dimensional Lagrangian we denote £y. Correction terms are well-known
to give rise to inflaton masses of order H, and hence corrections of order unity to 7.
When all such effects, from any source whatsoever, have been added to Ly, we denote
this corrected Lagrangian £;. By definition, this is the Lagrangian whose inflaton
mass term is a good approximation to the ‘true’ mass term that would follow from
a dimensional reduction incorporating corrections of arbitrarily high degree. (Notice
that the leading-order classical Lagrangian £, may itself contain large inflaton mass
terms.) Finally, if to £; we add the leading terms that give corrections to n that
are parametrically small compared to unity, we call the resulting Lagrangian £y. In

sum, we propose to organize corrections to the Lagrangian according to the degree of
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their effects on 7, even though such an organization does not correspond to a literal
expansion parameter such as the string coupling.

To determine whether a given model gives rise to prolonged slow-roll inflation, one
needs to know £;. However, it is rarely true that all the required results are available.
For example, in the warped brane inflation model of [95], the inflaton-dependence of
the threshold factor A(¢) of the nonperturbative superpotential was not known until
recently [18, 32]. Similarly, in Kéhler moduli inflation [54], a particular term in the
Kéhler potential that could give An ~ 1 has not yet been computed (though it has
been conjectured that this term might vanish.) Although such partial data is generally
insufficient to determine whether a model is successful, even this degree of detail is
relatively rare: a fair fraction of proposed models of string inflation include only the
Ly data, without any corrections at all.

In this chapter, we have made progress towards a full understanding of the La-
grangian £ for the warped brane inflation models of [95]. However, as we will now
explain, further work is necessary.

First, let us briefly recall the best-understood correction terms. The D3-brane po-
tential receives contributions from the mixing between the volume and the D3-brane
position in the DeWolfe-Giddings Kéahler potential (7.9). Moreover, the nonpertur-
bative superpotential receives the correction (7.15) sourced by the backreaction of
the D3-brane on the warp factor. Holomorphy of the gauge kinetic function ensures
that this correction, which corresponds to a one-loop threshold factor, is the only
perturbative correction to the superpotential. The only additional contributions to
the superpotential come from multi-instantons, which give a negligibly small effect.

The Kahler potential, however, is not protected by holomorphy, and in general
receives o and g, corrections. In the large-volume, weak-coupling limit, these cor-
rections are suppressed relative to the leading terms in the DeWolfe-Giddings Kahler

potential, and so generate mass terms that are generically smaller than H by powers
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of the inverse volume or powers of the string coupling. Hence, by our above defi-
nition, these corrections correspond to terms in L. Although complete results for
these terms are not available for a general compactification, the work of Berg, Haack,
and Kors [33, 34| in the toroidal orientifold case gives substantial guidance. These
authors found that the leading D3-brane-dependent corrections to K are of two types,
one suppressed by an additional power of p compared to the DeWolfe-Giddings result,
and the other suppressed by one power of g,. For p > 1, g, < 1, these terms give a
parametrically small correction to the D3-brane potential, and so belong to what we
have called £,. Even better, in some cases [33] the expectations of naive dimensional
analysis are borne out, and the numerical prefactors of these higher-order terms are
moderately small.'3

Corrections due to the fluxes are a further possibility. The best-understood o’
corrections arise from the term (a/)®R* in ten dimensions, with R* standing for an
appropriate contraction of four powers of the Riemann tensor. In the presence of
three-form flux G3, there are additional terms from (G3)?R?, and it is less clear how
these correct the Kéhler potential [25]. However, it has been argued that at large
volume, hence low flux density, this effect is subleading [15].

Finally, and perhaps most importantly, perturbations of the background fields in
the throat, which can arise from sources in the bulk, can give substantial corrections
to the D3-brane potential.'* It was argued in [59] (see also [113]) that in special cases
these effects may be small compared to the forces from the D7-brane. However, lack-
ing a more complete understanding of these effects, we do not claim that the potential
we have presented is completely general. Instead, our construction is representative

of a particulay tractable class of situations in which the bulk effects are small.

13We thank M. Berg for helpful discussions of this point.
"We thank S. Kachru for explanations of this point.
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7. Conclusions

In this chapter we have systematically studied the potential for a D3-brane in
a warped throat containing holomorphically-embedded D7-branes. This system is a
promising candidate for an explicit model of inflation in string theory. However, the
warped brane inflation model of [95] is well-known to suffer from an inflaton mass
problem, in that corrections from moduli stabilization tend to curve the potential
and make slow-roll inflation impossible. The true severity of this problem — and,
correspondingly, the status of the model — have remained unclear, because the func-
tional form of one particular correction term, arising from a threshold correction to
the nonperturbative superpotential, was unavailable before the recent result of [18].
In this work, building on [18], we have studied the corrected potential in detail. This
equipped us to assess the true status of the warped brane inflation model [95] and to
ascertain whether prolonged slow-roll inflation is indeed possible.

Our method for analyzing the potential involved several nontrivial improvements
over existing approximations. First, we systematically identified stable minima in the
angular directions of the conifold, and showed how the radial potential depends on
the choice of angular minimum. Second, we showed that the common assumption
that the compactification volume remains stabilized at its minimum during inflation
is inadequate: the volume shrinks slightly as the D3-brane falls down the throat, and
this leads to non-negligible corrections to the effective D3-brane potential. We gave
an analytic expression for the volume as a function of the D3-brane position and
showed that this is an excellent approximation to the full result.

For a large class of embeddings of the wrapped branes, the ACR embeddings, we
showed that the radial potential for a D3-brane at a particular angular extremum is
necessarily too steep to support inflation, because the contributions computed in [18]
vanish along the trajectory, and so the no-go result of [95] applies. This was first

explained in [45] for a special ACR embedding, the Ouyang embedding [133]. Our
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results here generalize this to the full ACR class. It follows that these trajectories
in throats containing wrapped branes with ACR embeddings do not permit slow roll
D-brane inflation, even if one allows an arbitrary degree of fine-tuning: there is simply
no parameter that can be varied to flatten the potential in such a case. However, we
also showed that all ACR embeddings have alternative trajectories, corresponding to
other choices of the angular extremum, for which this no-go result does not apply.
Our main result was an analysis of a very simple and symmetric embedding,
the Kuperstein embedding, that does allow a flat D3-brane potential. We found
that for certain fine-tuned ranges of the compactification parameters, the potential
is flat enough to allow prolonged inflation. However, the resulting potential is not as
simple as that conjectured in [95] and further elaborated in [68]: moduli stabilization
gives rise to a potential that is much more complicated than a mass term for radial
motion. Furthermore, adjusting the potential by varying microscopic parameters
changes features in the potential instead of just rescaling the mass term. In particular,
one can fine-tune to arrange for a flat region suitable for inflation, but we found
that this will occur around an inflection point away from the origin. Hence, when
inflation occurs, it does so near an approximate inflection point, rather than in a
shallow quadratic potential centered on the origin. In short, we found that a low-
order Taylor expansion of the potential around the minimum at the tip of the throat
does not properly describe those regions of the potential where inflation is possible.
Instead, one is obliged to use the complete potential presented here. Our result
implies that the phenomenology of some classes of warped D-brane inflation models
is well-described by an effective single-field potential with a constant and cubic term.
As we explained, models of this sort (see [5] for an analogous example in the MSSM)
are particularly sensitive to the initial conditions. Moreover, the tilt of the scalar
spectrum is exquisitely sensitive to the slope of the potential near the approximate

inflection point.
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One important, general lesson of our work is that there is considerably less freedom
to adjust the parameters of this system than one might expect from the low-energy
effective action. First, the functional form of A(¢) derived in [18] is rather special:
most importantly, A(¢) contains no quadratic term, and does not lead to any new
quadratic terms in the inflaton potential. This implies that the potential cannot be
flattened uniformly, and 1 can only be small in a limited region. Second, the range
of ¢ is limited by the microscopic constraint of [21]. Finally, the field range is linked
to the scale of inflation, because of a new geometric constraint linking the size of the
wrapped four-cycle and the length of the throat. Using these results, we found that
although this system depends on many microscopic parameters, in many cases it is
nevertheless impossible to choose these parameters in such a way that the slow-roll
parameter 7 is fine-tuned to vanish. This occurs because constraints originating in
the geometry of the compactification correlate the microscopic quantities, so that the
true number of adjustable parameters is much smaller than a naive estimate would
suggest.

An important direction for future work is a more comprehensive understanding
of any additional corrections to the potential, such as o' corrections, string loop
corrections, and perturbations of the throat metric due to bulk sources. We have
argued that in some cases the presence of such effects is not fatal for inflation, but

precise observational predictions will certainly depend on these effects.



7. TOWARDS AN EXPLICIT MODEL OF D-BRANE INFLATION

152

Symbols used in this Chapter

TABLE 1. Definitions of symbols and notation used in this chapter and
in Appendices E, F, G, and H.

Variable Description

Definition

2 complex conifold coordinates 22 =0, (E4)—(E.7)
w; complex conifold coordinates wywy — wzwy = 0, (E.8)—-(E.11)
£ conifold deformation parameter > z7 = ¢, equation (7.1)
r radial coordinate on the conifold 7% = 3" |z
7 radial coordinate on the conifold 72 = 3% ds® = dr? +
T radial coordinate on the conifold 7 = e"r
e breathing mode equation (F.1)
9o fiducial metric
Jo5  physical metric Joj = €90
k Kéhler potential Jop =k op, k=33, 22)%3
¢i, 0;, 7 angular coordinates on 7! equations (E.4)—(E.7
h(r)  warp factor equation (7.4)
ryy  radius at the UV end Inryy/e? =2rK/(3g,M)
) inflaton field ¢? = Tyr?
© canonical inflaton field Appendix F, ¢? ~ ;’(SZ:) ?
K Kaihler potential KK = —3InU
w superpotential
U argument of Kahler potential [58] U = p+ p— vk
p complex Kahler modulus
o real part of p 20=p+p
T imaginary part of p 2iT=p—0p
o, stabilized volume modulus V|, =0
Wy rescaled volume modulus Wy = ao,
Wy GVW-flux superpotential Wo=[GAQ
Wy, non-perturbative superpotential —~ W, = A(z;)e”*
f(z;)  embedding equation A(z) o< (f(z)Vm
g(z;)  embedding equation 9(z) = f(z)/f(0)
A prefactor of W, Ay =A(z =0)
Vi F-term potential equation (7.8)
Vb D-term potential Vp = DU~2; equation (7.20)
D scale of D-term energy D = 2hy'Ty
e,n  slow-roll parameters e=s(V V)2, n=V"]V
Js string coupling
T D3-brane tension Tyt = (27)%gs(a)?
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Variable  Description Definition
1 embedding parameter 21 =
n # of embedded D7’s
a parameter in Wy, a=2m/n
Ty minimal radius of D7 7“3 = 2u?
b rescaled 1, ¢ = 3Tyr?,
M, K  flux on the A and B cycle
N five-form flux N=MK
L AdS radius equation (F.21)
M, 4d Planck mass M2 = L(T3)%Vg"
V" warped 6-volume
Ve warped 4-cycle volume Appendix F
s ratio of D- and F-term
x ratio of r and 7, r=r/r,
X location of n =0
Qu ratio of ryy and 7, Qu=ruv/ry,>1
Bg bulk contribution to Vg’ (Ve bure = Bes(V5")throat
B, bulk contribution to Vi (Ve Jbuie = Ba(VS)throat
wp Kéhler modulus before uplifting  equation (H.2)
Wo Kéhler modulus after uplifting — wy =~ wr + s/wr
r factor in IC I' =20
r factor in K L=Tel=U
y prefactor in the Kahler potential ~ %E—E =2 1\5331
c factor in Vp ¢t = dmyr
C3/2 factor in volume shift equation (7.45)
X, X +Y eigenvalues of Hessian Appendix G
P degree of ACR embeddings [T, w? = u”
i embedding parameter pi €7
® collective coordinate for ACR OF =T, vt
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Part 3

String Theory and Gravitational Waves



“I never thought that anybody would ever actually measure these things.

I thought we were just calculating for the fun of it.”

Alan Guth
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CHAPTER 8

A Microscopic Limit on Gravitational Waves

We conclude our analysis of D-brane inflation by exposing a geometric limit on

the maximal amplitude of gravitational waves attainable in these models.!

1. Introduction

In the foreseeable future it may be possible to detect primordial gravitational
waves [37] produced during inflation [3, 83, 120]. This would be a spectacular oppor-
tunity to reveal physics at energy scales that are unattainable in terrestrial experi-
ments. In light of this possibility, it is essential to understand the predictions made
by various inflationary models for gravitational wave production. As we shall review,
a result of Lyth [122] connects detectably large gravitational wave signals to motion
of the inflaton over Planckian distances in field space. It is interesting to know when
suitably flat potentials over such large distances are attainable in string compactifica-
tions, allowing a potentially observable tensor signal in the associated string inflation
models. In this chapter we analyze this issue for the case of warped D-brane inflation
models [64, 95|, and use compactification constraints to derive a firm upper bound

on the inflaton field range in Planck units.

'This chapter is based on Daniel Baumann and Liam McAllister, “A Microscopic Limit
on Gravitational Waves from D-brane Inflation,” Phys. Rev. D 75, 123508 (2007). The
computation was originally suggested to us by Juan Maldacena and we received important
initial input from Igor Klebanov.

The numerical estimates of Ref. [21] have been updated to the WMAP 5-year data [111]. The
sign of fnr, for DBI inflation has been corrected. These changes strengthen the conclusions
of Ref. [21].
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For slow-roll warped brane inflation, our result implies that the gravitational wave
signal is undetectably small. This constraint is model-independent and holds for any
slow-roll potential. For DBI inflation [4, 147], the limit on the field range forces the
tensor signal to be much smaller than the current observational bound. Detection
in a future experiment may be possible only if r decreases rapidly soon after scales
observable in the cosmic microwave background exit the horizon. This does occur in
some models, but it has a striking correlate: the scalar spectrum will typically have
a strong blue tilt and/or be highly non-Gaussian during the same epoch.

We also consider compactification constraints on the special case of DBI inflation
with a quadratic potential. We find that observational constraints, together with our
bound on the field range, exclude scenarios with a large amount of five-form flux. For
a DBI model realized in a warped cone over an Einstein manifold X5, this translates
into a very strong requirement on the volume of X5 at unit radius. However, we
show that manifolds obeying this constraint do exist, at least in noncompact models.
This translates the usual problem of accommodating a large flux into the problem of

arranging that X5 has small volume.

2. The Lyth Bound

In slow-roll inflation? the tensor fluctuation two-point function is®

2 [ H\?
P=—|(— 8.1
e (Mpl) 7 (8:)

where H is the Hubble expansion rate. The scalar fluctuation two-point function is

(2 (4

The first factor in (8.2) represents the two-point function of the scalar field, while
the second factor comes from the conversion of fluctuations of the scalar field into

2By slow-roll inflation we mean standard single-field inflation with canonical kinetic term.
3See Chapter 2 and Appendix A for details of the results cited in this section.
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fluctuations of the scale factor in the metric (or scalar curvature fluctuations). The

ratio between the tensor and scalar two-point functions is

P @ )2 dp 1\?
=—=8|—"—) =8 (——) : 8.3
) (HMpl N M, (8:3)
where dNV = Hdt represents the differential of the number of e-folds. This implies
that the total field variation during inflation is

ASD B 1 Nend

- 1/2 8.4
Mpl 81/2 . dN?” ) ( )

where NM.nq ~ 60 is the total number of e-folds from the time the CMB quadrupole
(N = 0) exits the horizon to the end of inflation.
In any given model of inflation, 7 is determined as a function of A/. As a measure
of the evolution of r we define the following quantity
Nend

Nog = d/\/( r )1/2, (8.5)

0 rcMB

so that

Ap TCMB>1/2
M, _< 8 Net

pl

(8.6)

Here rcvp denotes the tensor-to-scalar ratio r evaluated on CMB scales, 0 < N <
Novs ~ 4. We use Ngg to parameterize how far beyond Ngyp the support of
the integral in (8.4) extends. If r is precisely constant then Moz = Nepq, if 7 is
monotonically increasing then Mg > Mg, and if 7 decreases then Nog < Nepq. For
a detailed discussion of related issues, see [66].
Equation (8.6) relates the amount of gravitational waves observable in CMB po-
larization experiments to the field variation Ag during inflation
e wiw (i) -

pl
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To make use of the relation (8.7), we need to estimate Neg, which amounts to deter-

mining 7(N). In slow-roll inflation r is proportional to the slow-roll parameter

dln H
dN

(8.8)

€= —

We can define a second slow roll parameter 7 as the fractional variation of € during

one e-fold. Then we have
dlnr dlne

N v T

Equivalently, we can write (8.9) in terms of the spectral indices of the scalar and

(8.9)

tensor power spectra

dinr
N - ny — (ng — 1)
- ~[m-n+g], (8.10)
where we have used the usual single-field consistency condition, n; = —r/8. Hence,

observational constraints on n, and r give limits on the evolution of r to first order
in slow-roll.

We notice that Neg < MNonq only if 7 is negative. Present observations [151, 156]
indicate that |fjcys| is very small on scales probed by CMB (N < 4) and large-scale
structure observations (N < 10). In particular, fjcys = —0.03. Since the variation
of 7 is second order in slow-roll we may assume that 7 remains small throughout
inflation. Integrating (8.9), we find a range Neg ~ 30 — 60 in (8.7). Nearly all of
the range for noup allowed by WMAP3+4SDSS [151, 156] actually corresponds to
Neg = 50. To get a conservative bound, we have considered the most negative values
of novp allowed at the 20-level, corresponding to the largest allowed values of ng — 1
and r. This gives Msg ~ 30. Direct observation of gravitational waves by some
futuristic gravitational wave detector such as the Big Bang Observer (BBO) would

put a similar lower bound on Nog (see e.g. [40]).
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With this input, the Lyth bound [122] for slow-roll inflation becomes

8 Ap\2
< _— (=X
"CMB 303 < ] -’p1> : (8.11)

This bound implies that a model producing a detectably large quantity of gravita-
tional waves necessarily involves field variations of order the Planck mass. We will
now determine whether such large field variations are possible in a class of string

inflation models.

3. Constraint on Field Variation in Compact Spaces

In this section we determine the maximum field range of the inflaton in warped
D-brane inflation. By (8.7) or (8.11), this will imply an upper limit on gravitational
wave production in this scenario. As we will show, this geometrical restriction leads

to a strong, model-independent constraint.

3.1. Warped Throat Compactifications. Consider a warped flux compacti-

fication of type IIB string theory to four dimensions [63], with the line element
ds? = h12(y) g datda” + B2 (y)gi;dy'dy’ | (8.12)

where p,v € 0...3 are spacetime indices and 7,7 € 4...9 are internal space indices.
We will be interested in the case that the internal space has a conical throat, i.e.

a region in which the metric is locally of the form*
gi;dy'dy’ = dp? + pPds%. (8.13)

for some five-manifold X5. The metric on this cone is Calabi-Yau provided that X5
is a Sasaki-Einstein space. If the background contains suitable fluxes, the metric in

the throat region can be highly warped.

4We use p to denote the radial direction, because the conventional symbol r is already in
use.
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Many such warped throats can be approximated locally, i.e. for a small range of

p, by the geometry AdSs x X5, with the warp factor

h(p) = (E>4, (8.14)

where R is the radius of curvature of the AdS space. In the case that the background

flux is generated entirely by IV dissolved D3-branes placed at the tip of the cone, we

have the relation [81]
4 3
=4rgsN ———— .
(@2~ T ITNOI(XG)

Here Vol(X5) denotes the dimensionless volume of the space X5 with unit radius.”

(8.15)

Generically, we expect this volume to obey Vol(X;) = O(n?), e.g. Vol(5°) = w3,

Vol(T') = 7%, However, very small volumes are possible, for example by perform-
ing orbifolds.

Warped throats have complicated behavior both in the infrared and the ultravio-
let. For almost all X5, no smooth tip geometry, analogous to that of the Klebanov-
Strassler throat [105], is known. Furthermore, the ultraviolet end of the throat, where
the conical metric is supposed to be glued into a compact bulk, is poorly understood.
These regions are geometric realizations of what are called the ‘IR brane’ and ‘Planck
brane’ in Randall-Sundrum models. In this note we study constraints that are largely
independent of the properties of these boundaries. We take the throat to extend from
the tip at p = 0 up to a radial coordinate pyy, where the ultraviolet end of the throat
is glued into the bulk of the compactification. Background data, in particular three-
form fluxes, determine pyy, but we will find that pyy cancels from the quantities of
interest.

To summarize our assumptions: we consider a throat that is a warped cone over

some Einstein space X5, but may have complicated modifications in the infrared and

®An equivalent definition of Vol(X3), which may be more clear when it is difficult to define
a radius, is as the angular factor in the integral defining the volume of a cone over Xj.
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ultraviolet. This very large class of geometries includes the backgrounds most often
studied for warped brane inflation, but it would be interesting to understand even

more general warped throats.

O pIR pUV

bulk

conifold

FIGURE 1. Conifold geometry. The throat volume (bounded by pir and
puv) gives a lower limit on the total compactification volume. This provides
a lower limit on the four-dimensional Planck mass.

3.2. A Lower Bound on the Compactification Volume. Standard dimen-

sional reduction gives the following relation between the four-dimensional Planck mass

M, the warped volume of the compact space V", the inverse string tension o', and
the string coupling g:
s _ V5"
Mpl = /{_2 , (8].6)
10

where k3, = 1(27)7g2(c/)*. The warped volume of the internal space is

Vi = /dﬁy\/ﬁh. (8.17)

Formally this may be split into separate contributions from the bulk and the throat
region

Ve’ = (V") buk + (V5") throat - (8.18)
The throat contribution is
PUV 5
(Ve = VolXs) [ dpphip)
0

1
= 5 Vol(Xs)R'piy

= 21'g,N (') piy . (8.19)
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A key point is that the warped throat volume is independent of Vol(X5).
The result (8.19) is rather robust. To confirm that (8.14) is a suitable approxi-
mation for the warp factor, we note that in the Klebanov-Tseytlin regime [106] of a
Klebanov-Strassler throat, the warp factor may be written as

h@»::(%)ﬂnﬁz, (8.20)

where L* = %%R“, In 20 %’TgLM and N = M K. Integrating (8.20) one finds

1
(V") throat = §V01(T171)R4p%v, (8.21)

in agreement with equation (8.19).
The bulk volume is model-dependent, but we can impose a very conservative lower

bound on the total warped volume by omitting the bulk volume,
‘/6w > (‘/Gw)throat . (822)

This implies a lower limit on the four-dimensional Planck mass in string units

(‘/Gw ) throat
Ko .

M2 > (8.23)

3.3. An Upper Bound on the Field Range. Let us now consider inflation
driven by the motion of a D3-brane in the background (8.12). The canonically-

normalized inflaton field is

=Tp", Ty= (8.24)

The maximal radial displacement of the brane in the throat is the length of the
throat, from the tip pir ~ 0 to the ultraviolet end, pyv, so that Ap < pyy. Naively
one could think that the range of the inflaton could be made arbitrarily large by

increasing the length of the throat. However, what is relevant is the field range in
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four-dimensional Planck units, which is

(A¢>2 T3p%v T3l€%0p%v (825)

Mp1 M§1 (‘/(;w)throat .
Substituting equation (8.19) gives the following important constraint on the maximal
field variation in four-dimensional Planck units:

(%)2 < %. (8.26)

Two comments on this result are in order. First, the field range in Planck units
only depends on the background charge N and is manifestly independent of the choice
of X5, so our result is the same for any throat that is a warped cone over some Xs.
Second, the size of the throat, and hence the validity of a supergravity description
of the throat, increases with N. In the same limit, the field range in Planck units
decreases, because the large throat volume causes the four-dimensional Planck mass
to be large in string units. Because N = 0 corresponds to an unwarped throat, we
require at the very least N > 1; in practice, N > 1 is required for a controllable
supergravity description.

The bound (8.26) is extremely conservative, because we have neglected the bulk
volume, which in many cases will actually be larger than the throat volume. Mod-
ifications of the geometry at the tip of the throat, where p < R, provide negligible
additional field range. One might also try to evade this bound by considering a stack
of n D3-branes moving down the throat, which increases the effective tension. How-
ever, the backreaction from such a stack is important unless n < N, so this will not

produce a bound weaker than (8.26) with N = 1.

4. Implications for Slow-Roll Brane Inflation

Via the Lyth relation (8.7), the bound (8.26) translates into a microscopic con-

straint on the maximal amount of gravitational waves produced during warped brane
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inflation

rems 1 (ﬂ)g (8.27)

0.009 = N \ N
As explained in §2, for slow-roll inflation, recent observations [151, 156] imply

30 5 ./\/;ﬁ‘ § -/\/’end ~ 60. (828)

Let us stress that the lower part of this range is occupied only by models with a large,
positive scalar running or a blue scalar spectrum and a large tensor fraction.

This implies

TCMB 4
< — 8.29
0.009 ~ N ( )

Near-future CMB polarization experiments [37] will probe® royp = O(1072). Detec-
tion of gravitational waves in such an experiment would therefore imply that N < 4.
This implies that the space is effectively unwarped, and that the supergravity descrip-
tion is uncontrolled. We therefore find that warped D-brane inflation can be falsifed
by a detection of gravitational waves at the level rcyg 2 0.01.

One might have anticipated this result on the grounds that D-brane inflation mod-
els are usually considered to be of the ‘small-field’ type, and are typically thought
to predict an unobservably small tensor fraction. Let us stress, however, that ex-
tracting precise predictions from D-brane inflation scenarios is rather involved, and
requires careful consideration, and fine-tuning, of the potential introduced by moduli
stabilization [18]. It is quite unlikely that the fully corrected potential will enjoy the
same exceptional flatness as the uncorrected potential given in [95] (see Chapter 7).
As moduli stabilization effects increase €, they increase r, and a priori this may be
expected to lead to observable gravitational waves. Indeed, it has been argued in the
context of more general single-field inflation that minimally tuned models correlate
with maximal gravitational wave signals [41]. Nevertheless, our result implies that

5The ultimate detection limit is probably around r ~ 10~% — 10~*. Measuring even lower r
is prohibited by the expected magnitude of polarized dust foregrounds and by the lensing
conversion of primordial E-modes to B-modes [150].
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even the maximal signal in warped D-brane inflation is undetectably small. We have
thus excluded the possibility of detectable tensors on purely kinematic grounds, i.e.

by using only the size of the field space.

5. Implications for DBI Inflation

A very interesting alternative to standard slow-roll inflation arises when nontrivial
kinetic terms drive inflationary expansion [12]. The DBI model [4, 147] is a string
theory realization of this possibility in which a D3-brane moves rapidly in a warped

background of the form (8.12). The resulting Dirac-Born-Infeld action is [147]

Lopr = —fHP)V1=2f(0)X + () = V(¥), (8.30)

where X = —1¢"70,00,, [~ (¢) = T3h™'(p) is the rescaled warp factor, and * =
Tsp%. As was true in our earlier discussion, the warp factor is determined by solving
the supergravity equations of motion in a given background. The potential for the
brane motion, V' (g), arises from more subtle interactions of the D3-brane with the
rest of the compactification [18]. For the present discussion we will treat V(¢) as
a phenomenological potential, but ultimately it should of course be derived from an
explicit string theory compactification [18].

We will now combine the Lyth bound with our field range bound (8.26) to con-

strain the tensor signal in DBI inflation.”

5.1. A Generalized Lyth Bound. We will first present the Lyth bound in a
theory with a general kinetic term, then specialize to the DBI case. Consider the

action [72]
1
S=3 /d4x\/—g [MER +2P(X,¢)] (8.31)

"Further constraints on the reletivistic limit of brane inflation was obtained in interesting
follow-up work by Lidsey and Huston [116]. We summarize their results in §7.
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where P(X, ) is a general function of the inflaton ¢ and of X. For slow-roll inflation

with canonical kinetic term.,
P(X,0) =X —-V(p). (8.32)
while DBI inflation may be parameterized by

P(X,0)=—f o)W1 —2f(0)X + f! V(). (8.33)

From (8.31) we find the energy density in the field to be p = 2XPx — P. We also

define the speed of sound as

»_dP _ Py Py

= =2 o ’ . 8.34
dp px Px+2XPxx (53

One can define slow-variation parameters in analogy with the standard slow-roll pa-

rameters .
H XPx € Cs
=—— = — = — = . 8.35
m - wem T em T eH (8:35)
To first order in these parameters the basic cosmological observables are [72]
1 H?
P, = ———, .
87T2M§1 Cs€ (8.36)
2 H?
P = ——, (8.37)
T M7
ng—1 = —2e—n—s, (8.38)
ng = —2€. (8.39)

The tensor-to-scalar ratio in these generalized inflation models is

r =16 cq€. (8.40)
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This nontrivial dependence on the speed of sound implies a modified consistency
relation

r=—8csn;. (8.41)
As discussed recently by Lidsey and Seery [117], equation (8.41) provides an inter-
esting possibility for testing DBI inflation (see also [149]). The standard slow-roll
predictions are recovered in the limit ¢, = 1.
Restricting to the homogeneous mode () we find from (8.35) that

dp
— 2N 8.42
My PX (8.42)

and hence

end
8.43
/ 8CSPX ( )

Notice the nontrivial generalization of the slow-roll result (8.4) through the factor

¢sP x. For DBI inflation (8.33) this factor happens to be
Py =1, (8.44)

where
1

2 ()

so that the Lyth bound remains the same as for slow-roll inflation.®

G =1-2f(p)X

, (8.45)

The variation of r during inflation follows from (8.40)

dlnr dlne dlney,
N AN + IV =n-+s. (8.46)

While the observed near scale-invariance of the density perturbations restricts the
magnitude of s = dlnc,/dN in the range 0 < N < 10, outside that window s can
in principle become large and negative. By (8.46) this would source a rapid decrease

in 7. Note, however, that the results given in this section are first order in s and

8This result has been obtained independently by S. Kachru and by H. Tye.
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receive important corrections when s is large. Furthermore, omission of terms in the
DBI action involving two or more derivatives of ¢ may not be consistent when s is
sufficiently large.

Constraints on the evolution of » may also be understood by rewriting equation

(8.46) as
dlnr

dN

This implies that r can decrease significantly only if the scalar spectrum becomes

=y — (ny— 1) = — [(ns 1)+ 87;} . (8.47)

very blue (ns — 1 > 0) and/or the speed of sound becomes very small, so that r/c;
is large. During the time when observable scales exit the horizon this possibility is
significantly constrained, but outside that window r may decrease rapidly in some

models.

5.2. Constraints on Tensors. Just as in slow-roll inflation we can write

TCMB 1 (ﬂ)Q

v (8.48)

0.009 = N

However, in DBI inflation we have to allow for the possibility that a nontrivial evo-
lution of the speed of sound allows N.g to be considerably smaller than N,,q, which

weakens the Lyth bound. The precise value of N g will be highly model-dependent.

In light of the constraint (8.48), constructing a successful DBI model with de-
tectable tensors is highly nontrivial. First of all, such a model must produce a spec-
trum of scalar perturbations consistent with observations, i.e. with the appropriate
amplitude and with a suitably small level of non-Gaussianity. Then, the model should

include each of the following additional elements related to the large tensor signal:

(1) A consistent compactification in which

(‘/Eiw)blﬂk < (‘/Yfiw)throat s (849)
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so that the inequality in (8.26) may be nearly saturated.

(2) A small five-form flux N, together with a demonstration that the super-
gravity corrections and brane backreaction are under control in this difficult
limit.

(3) A decrease in r that is rapid enough to ensure that Nz < 30. In this situ-
ation the slow-variation parameters 77, s cannot both be small, substantially

complicating the analysis.

It would be extremely interesting to find a system that satisfies all these con-
straints, especially because this would be a rare example of a complete string inflation

model with detectable tensors.’

5.3. Constraints on Quadratic DBI Inflation. In this section we illustrate
our considerations for one important class of DBI models,'® those with a quadratic

potential, i.e. we consider an action of the form (8.30), with
L 5 9
Vie) = MY (8.50)

Such a potential might be generated by moduli-stabilization effects, which often drive
D3-branes toward the tip of the throat. This particular example is a ‘large-field’
model, and so it should come as no surprise that it is strongly constrained by our
upper limit (8.26) on the field range. At sufficiently late times, the Hubble parameter
is [147]

H(p) =cep, (8.51)

9We should mention one promising string inflation scenario, N-flation [61, 67], that does
predict observable tensors. It would be very interesting to understand whether this model
can indeed be realized in a string compactification [80].

10We consider the so-called ‘UV model’, i.e. with a D3-brane moving toward the tip of the
throat; ¢f. [51] for an interesting alternative.



8. A MICROSCOPIC LIMIT ON GRAVITATIONAL WAVES 171
for some constant ¢. Using this in (8.35), one finds

ev(p) = 2M§1<%)2 —2 (%)2 . (8.52)

This relates the DBI Lorentz factor v to the slow-roll parameter ¢ < 1 and to the
inflaton field value.

Microscopic Constraint from Limits on Non-Gaussianity. Observational tests of
the non-Gaussianity of the primordial density perturbations are most sensitive to the
three-point function of the comoving curvature perturbations. It is usually assumed

that the three-point function has a form that would follow from the field redefinition

C=Gt Shdh, (359

where (; is Gaussian. The scalar parameter fy; quantifies the amount of non-
Gaussianity. It is a function of three momenta which form a triangle in Fourier
space. Here we cite results for the limit of an equilateral triangle. Slow-roll models
predict | fyr| < 1 [125], which is far below the detection limit of present and future
observations. For generalized inflation models represented by the action (8.31) one

finds [52]

35 /1 5 /1
2 __1> _<__1_2A), 8.54
e 108<c§ T 2 (8.54)

where
X?Pxx + %XSP,XXX
XPx +2X?Pxx

For the case of DBI inflation (8.30), the second term in (8.54) is identically zero

A

(8.55)

[52], so that the prediction for the level of non-Gaussianity (8.54) is'*

35 /1 35
:————1)%——2 8.56
I 108((:3 108 (8.56)

UNotice that this result is generic to DBI inflation and is independent of the choice of the
potential and the warp factor. This is in contrast to other observables like ng, Ps, etc.
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where the second relation holds when ¢, < 1. This result leads to an upper bound
on 7 from the observed limit on the non-Gaussianity of the primordial perturbations.
The recent analysis of the WMAP 5-year data [111] gives —151 < fxr, < 253 (95%
confidence level), which implies

7S 22, (8.57)

Using the expressions (8.40) and (8.52), we have

MyN2 M2 27
N<4<7pl> :% 7o /el (8.58)

Combining the observational bound on gravitational waves [111], » < 0.2, with the

bound on non-Gaussianity, we find
N <12. (8.59)

Quadratic DBI inflation with a larger amount of five-form flux is hence excluded by
current observations. The Planck satellite may be sensitive enough to give the limits
| fan| < 50 and r < 0.05. Non-observation at these levels would give the bound N < 1,
excluding quadratic DBI inflation.

Microscopic Constraint from the Amplitude of Primordial Perturbations. We can
derive an additional constraint on this scenario by requiring the proper normalization

of the scalar perturbation spectrum. Using the result (8.36) [72] for the scalar spec-

trum, along with the relation c;! = \/ 1+ 4]\/[ ©)(H,)? for DBI inflation,
we find [4, 147]

167°(y*—1) 1

P, =— . )

=GR ML (8.60)

For the AdSs warp factor (8.14)
M\4 Y2\ 2
M) = A(=2) = (55) 61
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where
N
A=TyR' =2 .62
=3 Vol(X5) (8.62)
we find
32\3  ¥*(y* — 1) Vol(X5)
p— (22 , .
° ( T > 8 (ry2)* N (8.63)
In the relativistic limit we have v?(y* — 1) ~ v* = 9f%; and (8.63) becomes
323 3 Vol(X;) Vol(X5)
== > 32— .64
s (371’) rifé, N <9 N (8.64)

where the last relation comes from the current observational bounds on r and fxr, on
CMB scales. COBE or WMAP give the normalization P, ~ 2.4 x 1079, so that we
arrive at the condition

N > 10° Vol(Xs). (8.65)

The requirements (8.59) and (8.65) are clearly inconsistent for the generic case,
Vol(X5) ~ O(r3). We conclude that quadratic DBI inflation in warped throats'?
cannot simultaneously satisfy the observational constraints on the amplitude and
Gaussianity of the primordial perturbations unless Vol(X5) < 107%. In particular,
this excludes realization of this scenario in a cut-off AdS model or in a Klebanov-
Strassler [105] throat. Cones with very small values of Vol(X5) can be constructed by
taking orbifolds or considering Y77 spaces in the limit that ¢ is fixed and p — oo [73].
However, it seems rather unlikely that one could embed these spaces into a string

compactification.

6. Conclusions

We have established a firm upper bound on the canonical field range in Planck
units for a D3-brane in a warped throat. This range can never be large, and can be

of order one only in the limit of an unwarped throat attached to a bulk of negligible

2Throats that are not cones over Einstein manifolds could evade this constraint, and may
be a more natural setting for realizing the DBI mechanism. We thank E. Silverstein for
explaining this to us.
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volume. Combined with the Lyth relationship [122] between the variation of the infla-
ton field during inflation and the gravitational wave signal, this implies a constraint
on the tensor fraction in warped D-brane inflation. The tensor signal is undetectably
small in slow-roll warped D-brane inflation, regardless of the form of the potential.
In DBI inflation, detectable tensors may be possible only in a poorly-controlled limit
of small warping, moderately low velocity, rapidly-changing speed of sound, and sub-
stantial backreaction. In this case, the scalar spectrum will typically have a strong
blue tilt and/or become highly non-Gaussian shortly after observable scales exit the
horizon.

We have also presented stronger constraints for the case of DBI inflation with a
quadratic potential, finding that combined observational constraints on tensors and
non-Gaussianity imply an upper bound N < 12 on the amount of five-form flux. Near-
future improvements in the experimental limits could imply N < 1 and thus exclude
the model. For models realized in a warped cone over a five-manifold X5, current
limits imply that the dimensionless volume of X5, at unit radius, is smaller than
1078, Manifolds of this sort do exist; extremely high-rank orbifolds and cones over
special YP? manifolds are examples, but it is not clear that these can be embedded
in a string compactification.

Although our result resonates with some well-known effective field theory ob-
jections (see e.g. [123]) to controllably flat inflaton potentials involving large field
ranges, we stress that our analysis was entirely explicit and did not rely on notions
of naturalness or of fine-tuning.

Our microscopic limit on the evolution of the inflaton implies that a detection of
primordial gravitational waves would rule out most models of warped D-brane infla-
tion, and place severe pressure on the remainder. We expect that compactification
constraints on canonical field ranges imply similar bounds in many other string in-

flation models [54]. In this sense, current models of string inflation do not readily
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provide detectable gravitational waves. However, this is not yet by any means a
firm prediction of string theory, and it is more important than ever to search for a
compelling model of large-field string inflation that overcomes this obstacle. Given
the apparent difficulty of achieving super-Planckian field variations with controllably
flat potentials for scalar fields in string theory, a detection of primordial gravitational
waves would provide a powerful selection principle for string inflation models and give

significant clues about the fundamental physics underlying inflation.
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7. Epilogue

Our result for the maximal field range in brane inflation models [21] has inspired
interesting subsequent work e.g. [28, 90, 97, 109, 112, 116, 136, 148]. In this section

we briefly describe some of these recent developments.

7.1. Bound in the Relativistic DBI Limit. Lidsey and Huston [116] derived
an interesting generalization of our field range bound [21] that is useful in the rel-
ativistic DBI limit (|fx| > 1). First, one notes that for an arbitrary warp factor

h(¢) = T5f () the geometric bound on the field range may be written as follows

Ap ) 2 4
< , 8.66
(Mpl Nthroat ( )
where
4 Vol(X YoV
Nthroat = #/ ng 905.]((90> : (867)
TPuv PIR

If one defines Ay, to be the field variation when observable scales are generated dur-

(PIR 90* (/qu

bulk

conifold Agp
*

CMB

FIGURE 2. Conifold geometry. Lidsey and Huston [116] use a slice of the
throat to bound the compactification volume.

ing inflation (this corresponds to AN, < 4 e-foldings of inflationary expansion or the
CMB multipole range 2 < ¢ < 100), then the integral in (8.67) can be approximated

as follows

PYuv
/ doo* f(0) > Apudlfe > (Mg, (8.68)
%)

IR
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Here, we have bounded the integral by a small part of the Riemann sum, defined

[« = [(px) and used Ap, < ¢,. Equation (8.66) then becomes

(52 < oy UM (569
My Vol(X5) e '

Next, we express the warped tension f~! in terms of the scalar power spectrum P,
the tensor-to-scalar ratio r, and the non-Gaussianity parameter fyr. This relates f,

to observables

2 1
M) = 1 pry2 <1 + —) , 8.70
and hence gives
Ag0*>6 3 9 < 1 )
< ———FPri (1+ : 8.71
( Mpl 16V01(X5) 3’fNL‘ ( )

For slow-roll models with |fxr| < 1 this is not a very useful constraint. However, for
relativistic DBI models with |fxp| > 1 the bound (8.71) is independent of fyy,. Since
Pr ~24x107 r, < 0.4 (from observations) and Vol(X5) = O(7?) (from theory) we
conclude that super-Planckian field variation is inconsistent with observations (unless

Vol(X5) is made unnaturally small). The Lyth bound (8.7) can now be written as

(ﬁf*)z ~ %(A/\a)? (8.72)

pl

Substituting this into (8.71) we find [116]

2P 7 10710
A./V;)6 VOI(X5> VOl(X5) .

Ty < ( (8.73)

We have used P = 2.4 x 107 and AN, ~ 4. The tensor amplitude is therefore
unobservably small for relativistic DBI models. We emphasize that the bound (8.73)

does not apply to slow-roll models since | fxr,| > 1 has been assumed in its derivation.
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Interestingly, Lidsey and Huston also derived a lower limit on 7 for models of UV
DBI inflation with |fxi| > 1 and ng < 1 [116]
4(1 — n,
> —(J:ayf—mf |
The limits (8.73) and (8.74) are clearly inconsistent unless Vol(X5) is very small,
cf. (8.59) and (8.65).

(8.74)

With the work of [21], [136], [24] and [116] there is now a growing body of evidence
that the theoretically best-motivated models of relativistic (UV) DBI inflation are in
tension with the data if microscopic constraints are applied consistently. In [136] and
[24] it was shown numerically that these problems persist even if considerable freedom
is allowed for the functional form of the brane potential V() and the background

warp factor f(p).

7.2. Relaxing the Bound?

Wrapped Branes. Becker et al. [28] and independently Kobayashi et al. [109] sug-
gested an interesting way to potentially relax the field range bound of [21]. Both
papers showed that the bound weakens if the analysis of [21] is generalized to Dp-
branes wrapping (p — 3)-cycles in the throat. Recall that for D3-branes the maximal
field range is bounded by N~1/2

Ay
—7) <N 2, 8.75
(Mp1>D3 (8.75)

For branes of higher dimensionality the relation between the radial coordinate p and
canonical field ¢ changes and the field range bound scales only as N ~'/4 for D5-branes

and is independent of N for D7-branes,

Agp —1 -

-t 2 /4N 1/4 )

<Mp1 ) D5 < 20y, (8.76)
Ap 0
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where

C= (%)W. (8.78)

Here, p is the winding number of the wrapped brane. However, as Becker et al. [2§]
explain, inflationary models with wrapped branes suffer from significant backreaction
(we discuss these problems and their generalizations in the next chapter).

Multiple Coincident Branes. Above we extended the Lyth bound to general
P(X, ¢) actions [21]

end
8.79
/ 8 CSPX ( )
For both slow-roll inflation ( = Px =1) and DBI inflation (¢, = 1/v, Px =7) w

find that ¢, P x = 1. For slow-roll inflation and DBI inflation there is therefore a one-
to-one correspondence between r and Ap. However, from (8.79) one sees immediately
that the Lyth bound is weakened for models with ¢, P x > 1. Huston et al. [90] suggest
that such an action can arise as the non-Abelian effective action of multiple coincident
branes. However, their paper also exposes that models with observable gravitational

wave amplitude can hardly be made consistent with non-Gaussianity constraints.



CHAPTER 9

Comments on Field Ranges in String Theory

1. String Moduli and the Lyth Bound

It is a fascinating open question whether super-Planckian fields can be realized in
a consistent microscopic theory of inflation. At the same time, the Lyth bound [122]
and the advent of CMB polarization experiments makes the answer to this question
timely. In Chapter 8 we proved the impossibility of super-Planckian field variation
for D3-brane inflation in warped throats. In this chapter we broaden our scope and
make some general remarks about the sizes of the moduli spaces for large classes of
models of string inflation.
More concretely, we speculate about the following two constraints on moduli fields
in string theory:
e C1: Kinematical Constraints on the Field Range: (A@)yn < Mpy?
Some fields in string theory are restricted by “pure geometry”. In these cases
very strong statements can be made about the impossibility of using those
fields to construct inflationary models with observable tensors.
e C2: Dynamical Constraints on the Field Range: (Ag)ayn < Mp?
For the fields that violate the first condition (i.e. (Ap)kin > Mp1) we consider
whether flat potentials can extend over super-Planckian distances. This re-
quires careful study of backreaction effects and corrections to the inflaton

potential.

180
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In the following sections we describe simple examples for the constraints C1 and
C2. Elementary examples for C1 are: branes on a torus, D3-branes in a warped
throat and string axions. Wrapped higher-dimensional branes provide nice examples

of C2. We also discuss possible counter-examples to C2 [61, 148].

2. Branes

2.1. Branes on 7°. The first system we study is D-branes on a isotropic six-
torus.” We compute a limit on the kinematical range of the brane coordinates.

Field Range. The Dp-branes are spacetime-filling and wrap a (p — 3)—cycle on the
torus. Let the volume of the torus and the volume of the cycle be Vi = (2rL)% and
V,—3 = (27 L)P~3, respectively. Dimensional reduction of the ten-dimensional Einstein

and Dirac-Born-Infeld actions defines the canonical field,
0* =T,V 17, (9.1)
and the four-dimensional Planck mass,

M§1 = ”1_02‘/67 K%O = (27r)7g§(o/)4. (9.2)

Generically, the brane coordinate is limited by the size of the torus r < 27L. We
then get the following result for the maximal field variation in Planck units

Ap\? g (LN\"T
= s (2 1 .
(), <5() =< 03

Dp

where L > [, = Vo' and g; < 1 in the controlled theoretical regime. Branes on
an isotropic torus therefore provide a sharp example for the conjecture C1: the field

range is kinematically limited to be sub-Planckian.

'For the case of an anisotropic torus some of the constraints presented here may be relaxed

[127], [85).
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2.2. Branes on AdS; x X5.
Field Range. String compactifications with a local throat region (0 < 7 < 7pax,

h(r) ~ f—:) satisfy the following constraint on the compactification volume (see Chap-

ter 8)

Ve > (Ve)throat = Vol(X5) / drroh(r) (9.4)
0

1
= §r2 R*Vol(X5). (9.5)

max

As before, this implies a lower bound on the four-dimensional Planck mass. For a

wrapped Dp-brane the maximal field range inside the throat is (see (9.1))

Ap? < TV, 312, . (9.6)

max

Using V,—3 ~ RP~® and T3 R*Vol(X5) = SN we therefore find

Ago)2 T,RP3 (A@)Q
— <4 = . 9.7
(Mpl NT; M, (97)

Dp max

For the case of D3-branes we showed in Chapter 8 that (A@)kn < (AQ)max =
\/LNMpl < M. However, for higher-dimensional wrapped branes (Ay)y, can in
principle be large [28, 109].

Backreaction. The above analysis leading to the bound (9.7) assumes that the
wrapped branes can be treated as a probe of the background geometry. Quantita-
tively, this requires that the (local) curvature induced by the energy of the branes is
much less than the curvature of the background space. This backreaction constraint
takes the following form [28§]

YT,RP™® < NTy. (9.8)

Together with equation (9.7) this implies

Agp)2 1
— < -<1. 9.9
(Mpl v (5:9)

max
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We therefore conclude that, although the kinematical range (9.7) can be large, the
field range is bounded by dynamical considerations (9.9). This is an example where

C1 does not hold, but C2 limits the field range to be sub-Planckian.

2.3. D8-branes on S'/Z, x X°. A very elegant example for a field that can
have large kinematical range but sub-Planckian dynamical range was related to me by
Maldacena?® [126]. He considers a spacetime-filling D8-brane wrapping five dimensions
of the compact space. The brane is pointlike in the sixth compact dimension (see

Figure 1).

R3,l

D8

5 N

X5

FIGURE 1. Wrapped D8-brane on (R3*! x S!/Z5) x X5.

Field Range. Using the above methods one easily finds the canonical range of the

D8-brane in the sixth dimension (cf. equation (9.3))
2

()5

This can be arbitrarily large for L > [,. Notice that the field range for D8-branes

(9.10) becomes parametrically larger in the controlled regime L > [,. This is in

contrast to the case for Dp-branes with p < 7 for which by (9.3) the field range

decreases parametrically for L > [;. This observation makes D8-branes moving along

a long interval naively a promising system for super-Planckian field variation.

2 thank Juan Maldacena for the permission to reproduce his argument here.
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Backreaction. Maldacena, however, argues that although the kinematical range
(9.10) is unbounded, backreaction restricts the brane motion to be sub-Planckian.?

To see this, one considers backreaction of the D8-brane in the spacetime R*! x
S1/Z,. Orientifold planes at y = 0, L bound the interval S'/Z,. For a D8-brane at

Yy = 1o in the extra dimension the metric is
ds? = h™2da? + n'/2dy?, (9.11)
where the warp factor h(y) obeys
8§h = —g0(y —yo) - (9.12)
Equation (9.12) has the following solution

h=1—(gL)O(z — z) - (2 — 20) , z

RS

(9.13)

where © is the Heaviside function. Hence, the spacetime is flat for z < 2y and curved

AdS space for z > zy. Notice that
h(z=1)=1—(gL)(1 — 2) (9.14)

becomes singular at (1 — zy) = (¢gL)~'. The maximum value of (1 — z;) therefore
is the minimum of 1 and (¢gL)~'. For (¢gL)~!' < 1 the warped geometry becomes
singular at z = 1 for (1 —2) > (¢gL)~'. This singularity dynamically limits the range
of controlled motion of the brane.

The four-dimensional Planck mass in the perturbed geometry is

Ve 1 L Vil L
V2 — 6 Ve Vs g 2
pl_?_? 5/0 dyh—?<1—7(1 ZO))' (919)

3In this example we ignore factors of 7 and focus our attention on the parametric dependence
of the result.
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D8
ﬂ (1 - ZO)max ;I.
v

FIGURE 2. Warp factor induced by the D8-brane. For (¢L)~! < 1 a singu-

larity appears at z = 1 for (1 — zg) > (gL)~'.
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Given that the maximum of (1 — 2;) is the minimum of 1 and (gL)~!, we get the

following constraints

2
My >

2
My >

The canonical field range, ¢? =

A(pg
Ap?

Vs L2

2 —
Bl (gL)? =

.12 —

In Planck units we therefore find

< 2(gL)™,

< 2(g9L),

o, (gL)~ <1,
o, (9L) <1.

: 22, is limited by backreaction to

3, (gL)~' <1,
Vs

L? (gL) < 1.

(L)' <1,

(gL) < 1.

(9.16)

(9.17)

(9.18)

(9.19)

This proves that although the kinematical range (9.10) can be parametrically large,

backreaction of the D8-brane on the background geometry restricts its dynamical field

range to be sub-Planckian, (A)gyn < M.



9. COMMENTS ON FIELD RANGES IN STRING THEORY 186

2.4. Monodromies. Eva Silverstein and Alexander Westphal recently proposed
a very interesting idea for realizing large-field inflation in string theory [148] using a
monodromy* mechanism.

Their particular model considers a D4-brane wrapping a 1-cycle with monodromy
in the Nil compactifications of Ref. [146]. The specific model is less important here
than the general idea of using monodromy to extend the field range probed by the
brane. We therefore focus on the general idea rather than the specific realization.

Nil Geometry. The Nil geometry

ds?,
S = 12 du? + L2, dud + L2(da’ + Muydu)® (9.20)

S

«

~~
T2

compactified by the following projections

te (2 ug,ug) — (27 + 1, ug, ug) (9.21)
ty, = (2 ur,ug) — (2 — Mug,ug + 1, u9) (9.22)
tu, (2 ur,u9) — (2 ug, us + 1) (9.23)

gives the manifold N3. We consider type IIA string theory on an orientifold of the
product space N3 x Nj. For the moment it suffices to consider a single N3. For each
uy there is a 2-torus 772 in us and 2’

ds7e (us)

= L2 duj + L2(dz' + Muydus)®. (9.24)
«

Going once around the circle S* defined by the u;-direction the complex structure
of the torus shift by M units, i.e. 7 — 7+ M as u; — uy + 1. The projection t,,

(9.22) identifies these equivalent tori. At M special locations around the w;-circle,

“In complex analysis, functions may fail to be single-valued as one goes around a path
encircling a singularity, e.g. consider f(z) = Inz where z = |z[e? — because e* 727" = ¢?
one finds that f(z) — f(z) + 2min as the origin is encircled n times. In this example the
covering space is a helicoid.
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Mu, = j € 7Z, the tori are equivalent to rectangular tori

d52T2 212 2 1.2
where
y1 =2 + jus, Yo =us. (9.26)

Wrapped Branes and Monodromy. Silverstein and Westphal consider a D4-brane
wrapped on the 1-cycle defined by us = X or (y1,92) = (jA, A). It is proposed that
transverse motion in the u;-direction may be the source of inflation. The crucial point
is the following: as the brane circles in the ui-direction the fibred torus returns to an
equivalent torus but the 1-cycle does not, e.g. at u; = 0, the brane wraps (yi,y2) =
(0, A), while at u; = 1, the brane wraps (y1,y2) = (M, A). This monodromy is the

key to extending the field range.

T2

. — [[A[m-

1 2
Uq

FIGURE 3. Wrapped D4-brane with Monodromy.

Field Range. As before, the four-dimensional Planck mass M, is fixed by the

compactification volume Vg = (o/)?LS, where L? = L, L, L, i.c.

2 L51
M? == (9.27)

P 20)T g2 of

However, now, as a result of the monodromy, the brane field space is not constrained
by the compactification volume. The monodromy effect implies that the D-brane

moduli space lives on a subspace of the covering of the compactification, i.e. on the
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space obtained by undoing the projection t,,. At fixed My, the field range in the
up-direction can be large by moving around the S* many times (see Figure 3).

To quantify this one considers the DBI-action for the wrapped D4-brane

~1

Spy = W/dsfe_‘b\/detG(X)(aX)g (9.28)
-1

= W/RB’I d5€ \/_g4gu2u2(1 — O/gulul’d%) (929)

~ ! e/ 2 20 /2,,2 Lo o

For large uy (L,Mwuy > L,,), this gives

1,
Sps = /d43?\/ —0a (5902 - M10/3902/3) : (9.31)

where

— =auy. (9.32)

Here we have defined

2
2= Z2(21)3¢s— 9.33
and
10 M"Y 9 M* (L\’L
”—10 = (—S> " To82 <—x) = (9.34)
M M, 4(2m)8¢2 \ L ) Ly
For Au; = k> 1, the field range
Ay? 2(2 3 Mk? Ly, (9.35)
= - T sT o .
My 9T,

can be super-Planckian for Mk® > L? and L,, > L,,.

Backreaction. Silverstein and Westphal [148] studied various backreaction effects
and concluded that the field range can be super-Planckian even if dynamical con-
straints are taken into account. This makes their model very interesting and worthy

of further investigation.
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3. Axions

3.1. Field Ranges for String Theory Axions.

Natural Inflation. In the context of inflationary model building, axions have the
attractive feature that their potential is protected by a shift symmetry ¢ — @+4. This
symmetry guarantees that to first approximation the axion is massless. However, non-
perturbative corrections break the shift symmetry and generically lead to a potential

of the form
Vip) = A4<1 + cos(yp/ fa)> . (9.36)

For f, > M, this gives a successful and (technically) natural inflation model.

Azions in String Theory. String theory contains many axion fields (both model-
independent and model-dependent). However, systematic studies by Banks et al. [16]
and recently by Svrcek and Witten [155] suggest that string theory does not allow
(parametrically) super-Planckian values for f, as required for inflation from a single
axion field.

Field Range. We give a sketch of the argument in Ref. [16]. Consider the complex
modulus field p = o + i (for concreteness the reader may imagine the dilaton or the
overall volume). The associated Lagrangian is

(00)% + (0a)?

2
L =cMy 107

—V(o,a), (9.37)

where ¢ = 1 for the dilaton and ¢ = 3 for the total volume. Instanton corrections

induce a potential for the axion field o

V ~ Acosa. (9.38)

N

Let o be stabilized at o,. The canonical axion field is then p? = 3% and

fa ¢/2

4
V ~ A cos(e/ fa), where i o

(9.39)
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Backreaction. We notice that the axion decay constant f, can only be large if 0, <
1. However, the non-perturbative axion potential (generated e.g. from Euclidean
branes wrapped over some cycle of size o,) scales as e~ 7*. For o, < 1, the factor e=7*
is not very small and therefore n-instanton corrections proportional to e™"?* cannot be
ignored. This presents a serious obstruction to the possibility of having parametrically
large axion decay constants in string theory, since the multi-instanton corrections will
destroy the desired large periodicity of the single instanton contribution, reducing the

“effective” f, by a factor of n.

3.2. N-flation: Assisted Axion Inflation. As we have just seen, there seem to
be fundamental obstructions to getting single axion fields with super-Planckian field
range. However, as we reviewed in Chapter 4, the N-flation model of Dimopoulos
et al. [61] (see also [67]) suggests that the effective field related to the Pythagorean
sum of N axions, ®* = >, 7, can have super-Planckian range, (A®)y, > My,
even if all individual axions have sub-Planckians f,’s, Ayp; < M. However, this
requires N > 1000 and it remains unclear whether the potential is radiatively stable
or whether dynamical effects limit the effective field range (A®)q4y,. N-flation remains

an interesting candidate for large-field inflation that deserves further study.

4. Volume Modulus

So far we have considered the effective four-dimensional fields associated with
localized energy densities (branes) moving through the compact extra dimensions.
The moduli space was compact and it was natural to expect geometrical restrictions
on the canonical field range.

In the search for super-Planckian field excursions it is therefore natural to look for
fields with non-compact moduli spaces. An immediate example is the overall volume
of the compactification manifold. The moduli space associated with the volume is

non-compact with decompactification corresponding to infinite range.
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Single Field. The volume (K&hler) modulus p has a logarithmic Kéhler potential
K =-=3M}In(p+p) = —3M,Ino. (9.40)
Typical energy sources in string theory all scale as inverse powers of the volume o

v=3 %, (9.41)

o¢

(2
where ¢; are constants of order unity. The canonical field associated with o is ¢ =

M, Ino. The potential for the canonical field is therefore a sum of steep potentials
Vi agem M (9.42)

This can never be sufficiently flat for inflation over a super-Planckian range (at best
the potential can be flat for a small field range near an inflection point in the potential
(92, 119]).

Multiple Fields. One may wonder whether models with multiple Kahler moduli
can enjoy flat potentials of super-Planckian range even though individually each field
has a steep exponential potential. In the absence of a general no-go result for large-
field inflation from multiple Kahler moduli, it is instructive to consider the explicit
examples discussed in the literature. In Chapter 4 we reviewed Conlon and Quevedo’s
model for Kahler moduli inflation in the context of LARGE volume compactifications
[15]. Elementary considerations [53] show that in this example the field range during
inflation is always small. The same conclusion applies to any other realization of
Kahler moduli inflation that we are aware of. No existing model has a flat potential

over a super-Planckian range.
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5. Implications

We caution the reader not to overinterpret the results of this chapter. We have
given various examples for limits on the field range for moduli in string theory. Often
we found that fields which naively have a large kinematical range, are dynamically
limited to a sub-Planckian range by backreaction constraints. However, given that
we have not identified a physical principle for why super-Planckian vevs should be
censored by string theory, the examples we have given in this chapter can at best be
viewed as illustrative for the challenges one faces when trying to embed large-field

inflation in string theory.
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Conclusions



CHAPTER 10

Inflationary UV Challenges/Opportunities

In this thesis we have discussed aspects of inflation that benefit most directly
from the application of a UV-complete theory. In this chapter we summarize the
main physics points that we learned from the analysis of D-brane inflation. We

believe these conclusions to be more general than the particular example we studied.

1. The Inflaton Potential

The major challenge for a microphysical understanding of the inflationary era of
the early universe is obtaining the requisite slow variation of the inflationary energy
density. Typically, this is described in terms of an inflaton field with very flat potential
V(¢) and quantified by the smallness of the slow-roll parameters € and 7. Many
models suffer from an eta-problem, meaning that corrections to V(¢) shift the eta

parameter by order unity

An~1. (10.1)

In this thesis, we have proposed a useful classification for corrections to the inflaton
potential in terms of their contribution to the n—parameter. To establish a robust
model and prove that slow-roll can occur requires theoretical control over all possible
order one corrections to 7. Corrections whose contributions to n are parametrically

suppressed can be ignored to first order (i.e. when treating the background evolution).

194
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Dvali+Tye (+warping)
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FIGURE 1. Computations of the brane potential.

a) Dvali+Tye (+warping) [64, 95]: Voouomb(6) = Vo(1 — cp™4).

b) KKLMMT [95]: Vikrmmr (@) = Veoulomb(#) + B¢

¢) BDKM [19]: Vepku(6) = Veoulomb(9) + A1(é — o) + As(¢ — ¢o)®.

In Figure 1 we illustrate this scheme for the example of warped D-brane inflation.
In a warped background the Coulomb attraction between a D3-brane and an anti-D3-
brane is of the following form: Viouomb(®) = Vo(1 — c¢~*). Warping suppression of
the interaction makes the potential exponentially flat, e,7 < 1. If this were the end
of the story, this would be the perfect inflationary model. However, as we discussed in
the bulk of this thesis, moduli stabilization effects give dangerous An ~ 1 corrections
t0 Vooulomb. This is the origin of the eta-problem for these models. KKLMMT [95]
showed that D3-brane backreaction on the compactification volume resulted in the
following potential (see Chapter 4): Vickrvmr (@) = Voouwomn + 8¢, Generically, the
potential is then too steep for inflation. In the first half of this thesis, we derived
a crucial further correction to the potential arising from interaction of the D3-brane
with D7-branes involved in the non-perturbative stabilization of the compactification
volume. As we show in Figure 1 this allows a fine-tuned solution of the eta-problem
close to a locally flat plateau around an inflection point. We also argued that all
further corrections to the potential are parametrically suppressed (An < 1), so that

we can claim a robust model. However, the model is very sensitive to the values of
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the microscopic input parameters and the initial conditions (such as the initial brane

position and velocity).

2. Gravitational Waves

One of the most exciting observational signatures of inflation is a spectrum of
primordial gravitational waves. Interestingly, all inflationary models that predict

an observable gravitational wave signal require that the inflaton field evolves over a

ﬁ = 0(1) (ﬁ_d’l)? _ (10.2)

P

super-Planckian range

So far it has been challenging to derive such ‘large-field” models from an explicit and
controllable string compactification. For D-brane inflation Liam McAllister and I

derived following bound on the field range
— < —=<1. (10.3)

Similar field range bounds exist for most models of string inflation. However, a
deeper physical principle behind these theoretical observations hasn’t been established
(although there have been some interesting proposals [11, 131, 132]). In particular,
there is no general no-go result for gravitational waves from string inflation. Also, it
should be noted that N-flation [61, 67] and the monodromy mechanism of Ref. [148]

may be interesting exceptions that deserve further investigation.

3. Non-Gaussianity

In single-field slow-roll models of inflation the primordial density fluctuations are
Gaussian to a very high degree [125]. Non-Gaussianity can only be large if higher-
derivative terms, X™ = (1(9¢)*)", play a crucial role during inflation. One is then
faced with the problem of providing a plausible UV-completion of the theory. The

relativistic limit of D-brane inflation (DBI inflation) is an interesting example where
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higher-derivative terms are important and non-Gaussianities can be large in a con-
trolled setting.

DBI inflation falls under the general category of higher-derivative theories first
studied by Mukhanov and Garriaga [72]. The effective field theory action for these
theories may be parameterized by an infinite series of higher-derivative terms X"

suppressed by a cutoff scale A"

X 1 X2 1 X3

P(X,0) = Po(¢) + Pi(¢) 55 + 5 P2(0) 57 + 5133(@F +. (10.4)

P, __ d”P‘
A2n T X" | X=0

where ~ O(1). Considering the special case of a )1{—42 correction to the
slow-roll action, Creminelli [55] showed that the non-Gaussianity can only be large
(fxL > 1) if 25 > 1. One then worries about the UV-convergence of (10.4).

DBI inflation is a special type of higher-derivative action

Popi(X,0) = —fTV1=2fX + [ = V(¢9) (10.5)

or

Popr=—=V(0) + 7Y M(fX)", A= (2n-3). (10.6)
n=1

In a generic effective field theory one would typically assume uncorrelated coefficients
An in (10.6). In the relativistic limit 2fX ~ O(1) one might then worry about
the validity of (10.6). However, string theory does the sum! The coefficients A,
for the terms in (10.6) are not independent, but correlated by their string theoretic
origin in the square-root DBI action (10.5). Any inflationary model with large non-
Gaussianities arising from non-canonical kinetic effects requires a similiar degree of

UV-completeness as DBI inflation.



“I have deep faith that the principle of the universe will be beautiful and simple.”

Albert Einstein

“Of two equivalent theories or explanations, all other things being equal,

the simpler one is to be preferred.”

Occam’s Razor
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CHAPTER 11

Epilogue

“It doesn’t matter how beautiful your theory is, it doesn’t matter how
smart you are or what your name is. If it doesn’t agree with experiment,
it’s wrong.”

Richard Feynman

Cosmological observations are, for the first time, precise enough to allow detailed
tests of theories of the early universe. This has established inflation [3, 83, 120] as
the leading explanation for the origin of structure in the universe. In this thesis we
described the search for the microphysical origin of inflation. The physics of inflation
is in principle very simple — a universe dominated by the energy density of a uniform
scalar field! that satisfies the slow-roll conditions leads to exponential expansion. The
simplest scenario furthermore has the advantage that it is very predictive: canoni-
cal single-field inflation predicts a homogeneous and flat universe with small density
perturbations that are nearly scale-invariant, adiabatic and Gaussian. These predic-
tions are consistent with recent measurements of anisotropies in the cosmic microwave
background temperature [151]. Inflation further predicts a stochastic background of
gravitational waves which leaves subtle imprints in the polarization of the CMB and

can therefore potentially be detected by future experiments. Involving two or more

IThis can be a fundamental scalar or an effective scalar condensate.
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scalar fields extends the possibilities, but also diminishes the predictive power of in-
flation. At present, the data does not require any extensions of the simplest models
beyond single-field slow-roll.

The observational evidence for ‘simple’ inflation is strong and rapidly growing
[111], and in the near future it will be possible to falsify a large fraction of existing
models. This presents a remarkable opportunity for inflationary model-building, and
it intensifies the need for a more fundamental description of inflation than current
phenomenological models can provide. At the same time, theoretical advances in
string theory (moduli stabilization, SUSY breaking, etc.) have led to the first reliable
models of string inflation. This research is still in its infancy but it holds the promise
to give an improved understanding of key UV-sensitive predictions of inflation (eta-
problem, gravitational waves, non-Gaussianity). We have come to appreciate that
understanding the universe on the largest scales depends crucially on insights about
the physics of the very small. The future therefore holds much promise for cosmology

and its connection to fundamental physics.



Appendix



Reading Guide for the Appendices

The following appendices are an integral part of this work and contain many

original results and important theoretical additions to the main body of the thesis:

B Appendix A reviews the calculation of the two- and three-point functions for
quantum fluctuations created during inflation. These classic results are used
throughout the thesis as they form the basis for all modern comparisons of

the inflationary predictions with the cosmological data.

m Appendices B, C and D complement the computations of Chapter 5.

m Appendices E, F, G, and H give important technical details of the arguments

presented in Chapter 7.

m Finally, Appendix J collects frequently used results from early universe cos-

mology and string theory.
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APPENDIX A

Primordial Fluctuations from Inflation

In this appendix we review Maldacena’s beautiful calculation of the two- and
three-point functions for quantum fluctuations created during inflation [125]. The
analysis shows that primordial non-Gaussianities are unobservably small for slow-
roll models of inflation. Large non-Gaussianities, however, arise if inflation is driven
by a scalar field with non-minimal kinetic term. We cite results for the two- and
three-point functions for inflationary models with general speed of sound [52].

We use the classic results of this appendix throughout this thesis as they form the

theoretical basis for comparing inflationary predictions to observational data.

A.1. Slow-Roll Inflation

Background. Slow-roll models of inflation are described by a canonical scalar field

¢ minimally coupled to gravity
1 _
S = 3 /d4:1:\/—g [R—(V¢)> =2V ()] , Mp12 =81G =1. (A1)
We consider a flat background metric
ds® = —dt* + a(t)?6;;da'da? = a*(7)(—dr? + d;;da’da?) (A.2)

with scale factor a(t) and Hubble parameter H(t) = 0; Ina satisfying the Friedmann
equations
3H? = %éz +V(p), H= —%&. (A.3)
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The scalar field satisfies the Klein-Gordon equation
b+3Ho+V'(¢)=0. (A.4)

The standard slow-roll parameters are

ezl(zywlﬂ'ﬁ? Ve 1é

~ N —— = A.
2\v) Fam TV T Ty T ame (A.5)

ADM Formalism. We treat fluctuations in the ADM formalism [13] where space-

time is sliced into three-dimensional hypersurfaces
ds* = —N?dt* + g;;(da’ + N'dt)(da? + N/dt). (A.6)

Here, the lapse function N(x) and the shift function N;(x) are non-dynamical La-

grange multipliers. The action (A.1) becomes

1 3
S = 3 /d4:1:\/—_g[NR(3) — 2NV + N"YE,;EY — E*) +

N1 — N'd,$)? — Ng¥0,69;¢ — zv] , (A7)

where

N —

E;; is related to the extrinsic curvature of the three-dimensional spacetime slices
K;; = N7'E;;. To fix time and spatial reparameterizations we choose a gauge for the

dynamical fields g;; and ¢ [125]

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are
parameterized by the metric fluctuation (¢, x). Geometrically, ( measures the spatial
curvature of constant-¢ hypersurfaces, @R = —4V?(/a®. An important property of

¢ is that it remains constant outside the horizon. We can therefore restrict our
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computation to correlation functions at horizon crossing. The ADM action (A.7)

implies the following constraint equations for the Lagrange multipliers N and N*

Vi[N"YE; - §,E)] =0, (A.10)

R®) — 2V — N"X(E;EY — E*) = N2> = 0. (A.11)

A.1.1. Two-Point Function.
Scalar Perturbations. Maldacena solved for N and N* in equations (A.10) and
(A.11) and substituted the result back into the action. After integrations by parts

and using the background equations of motion he finds [125]

1 4, 3 & 1 — 4, 3
Szi/dxaﬁ[g —a” (IC)}:/dxaeDC. (A.12)
For H ~ const. this corresponds to the action for a massless field ¢ = in de Sitter
space
S = /d4xa ~2(9)) ] (A.13)

/ A ()2 [(0.0)? — (0)?] (A.14)

We define the following Fourier expansion of the field ¥

U(T,x) = /%@/}k(ﬂeik'x. (A.15)

The Fourier components vy are promoted to operators and expressed via the following

decomposition
Ui = vi(T)a + vop(T)aty (A.16)

where the creation and annihilation operators &J_rk and a, satisfy the canonical com-
mutation relation

[y, 0] = (2m)°0(k + k') (A.17)
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if and only if the mode functions are normalized as follows
Im(v' ,0f) =1, (.)=0,(.). (A.18)
The Bunch-Davies vacuum, a,_|0) = 0, corresponds to

(1 — ikT)e . (A.19)

H
V. =
SEVOYE
On small scales, k7 > 1, this reduces to the Minkowski vacuum. We then compute

the power spectrum of 1

(WUk(T)dwe (7)) = (2m)°0(k +K)|uy(7)[? (A.20)
= (2n)°d(k + k’)%(l + k7% (A.21)

On super-horizon scales, k7 < 1, this approaches a constant

(T (7)) ~ (25 + K)o (A2

The de Sitter result for ¢ (A.22) allows us to compute the power spectrum of { = %@D
at horizon crossing, a(t,)H(t,) ~ k,
2 172

()G 1) = 2700+ K) 5 (A2

We define the dimensional power spectrum P;(k) by

k3

~ o2

(Gelie) = (2m)°0(k + K)Py(k),  Pu(k) Ps(k), (A.24)

such that the real space variance of ¢ is ((¢) = [, Ps(k)dInk. This gives

H? H?
(2m)2 g2

Py(k) = (A.25)

Since ¢ approaches a constant on super-horizon scales the spectrum at horizon crossing

determines the future spectrum until a given fluctuation mode re-enters the horizon.
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The scale dependence of the spectrum follows from the time-dependence of the Hubble

parameter and is quantified by the spectral index

dnP, 1 d H
=1 —Ed—t*lnq.j—z—Qn*—&*. (A.26)

ng —

Tensor Perturbations. The action for tensor fluctuations is

S = é / data® [(hij)2 —a2(9hy;)?] . (A.27)

We define the following Fourier expansion

A3k o
hij = / B > k)b ()™, (A.28)
s=+,X

where €; = k'e;; = 0 and €;(k)e;; (k) = 26,9. The two polarization modes of gravita-

tional waves, hy = hI’X, correspond to massless scalars in de Sitter space for which

the power spectrum is given by (A.22)

1 H?
hhie) = (27)°0(k + K') ——=%-. A2
() = (2806 + K) 53 (4.29)
The dimensionless power spectrum of tensor fluctuations therefore is
Ak = 21 (A.30)
t —_— 7T2 Msl . .
From (A.25) and (A.30) we get the tensor-to-scalar ratio
P,
r= Fz = 16e, . (A.31)
The tensor spectral index is
dIn P,
ny =S 9 (A.32)
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We see that single-field slow-roll models satisfy a consistency condition between the

tensor-to-scalar ratio r and the tensor tilt n,

r=—8n;. (A.33)

A.1.2. Three-Point Function and Non-Gaussianity. Using the same for-
malism (but fighting with considerably more algebra) Maldacena also derived the

bispectrum (three-point function) of scalar fluctuations [125]

oY Y 1
— 3 ) * *
(G Graie) = (275 (ki) BRTEN  ROTIR (A.34)
where
., 0 TN LR VP y D, kR
A*_2¢*H* Ei 'k + 455 |3 §i kD ;ﬁ:kk NI Lo Bl ) S| (A.35)

=32, k) f(k)
Shape of Non-Gaussianity. A simple way to characterize the non-Gaussianity of

( is to assume that it can be parameterized by a field redefinition of the form

C=Gt Shdh, (4.36)

where (; is Gaussian and the constant fy;, measures the amount of non-Gaussianity
of (. Equation (A.36) is often called local non-Gaussianity. This leads to a momentum
dependence of the three-point functions that is close to (but not exactly the same
as) the momentum dependence found in (A.35). One may, however, define a weakly

k-dependent fyi, parameter

5 A, 5
AR R R

where 0 < f(k) < 2. This shows that fx;, < 1 due to the near scale-invariance of the

1)+ f(k)ny (A.37)

primordial spectra, ny — 1,n; < 1. Since it is generally believed that non-Gaussianity
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is only observable if fxr, = 1, we conclude that primordial non-Gaussianities from

slow-roll inflation are unobservable.

A.2. Models with General Speed of Sound

While primordial fluctuations are highly Gaussian for slow-roll models of inflation,
non-Gaussianities can be significant for models with non-canonical kinetic effects.
Chen et al. [52] studied such models using the following parameterization for the

inflaton action

1
5= / d'oy/ =GR + 2P(X.8)] . (A.38)
where X = —%g“”@ugb&,gb. Examples of inflation models with actions of the type

(A.38) are K-inflation [12], DBI inflation [147] and ghost inflation [10]. The function

P corresponds to the pressure of the scalar fluid, while its energy density is
p=2XPx —P. (A.39)

Furthermore, the models are characterized by a non-trivial speed of sound

2 = (A.40)

‘  Px+2XPxx '

dP Px
dp

Finally, it proves convenient to define parameters for the time-variation of the expan-

sion rate H(t) and the speed of sound c(t)

H XPy é

€= "mTm o 0= (A.41)
s = cch' (A.42)

A.2.1. Two-Point Function.
Scalar Perturbations. A calculation similar to that of the previous section gives
the power spectrum of scalar fluctuations

1 H?
87r2]\/[]§1 Cor€s

P(k) (A.43)
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The r.h.s. of (A.43) is evaluated at the time of (sound) horizon exit at a,H, = csk.

The scale-dependence of the spectrum is
ng—1=—26 —1, — 5, . (A.44)

Tensor Perturbations. The tensor fluctuation spectrum is the same as for slow-roll

models
A = 21 (A.45)
! o2 M '
ng = —2€,. (A.46)

The r.h.s. of (A.45) and (A.46) is evaluated at a,H, = k. We see that for models

with ¢, # 1 the consistency relation between r and n,, equation (A.33), is modified
r=—8¢csn;. (A.A47)

A.2.2. Three-Point Function and Non-Gaussianity. To present the results

for the calculation of the three-point function it is useful to define two more param-

eters
9 H?e
CS
_ 2 2 3
A = X*Pxx + X Pxxx. (A.49)

Following Maldacena [125], Chen et al. [52] derived the three-point function of super-

horizon curvature fluctuations

(Gt ChaGiea) = (27)70 (k1 + Kz + k) (Ps)°

5 A (A.50)
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where

4 (l_l_g) 312k2%2

2 z 2K3
1 21.2 2 3 3

+ (0—2— )( =Y Kk +ﬁ2kk Zk:i . (A5
$ i>] i#£] i

Here, we defined K = ki + ko + k3.

Shape of Non-Gaussianity. We notice that the momentum dependence of (A.51)
is significantly different from the local shape of non-Gaussianity (A.35). While for
(A.35) the signal is largest when one of the momenta is very small, k1 < ko ~ ks,
(A.51) peaks when the magnitude of all momenta is the same, k; ~ ko ~ k3. For

obvious reasons this is called the equilateral shape [14]. One may define the parameter

A,
(425 k)

where A, is now evaluated for equilateral triangles in momentum space. From (A.51)

equil

NL

5}
= S (A.52)

one then finds
Eciuﬂ:_ﬁ@_l) +E<l_1_2A) (A.53)

62

where
A X?Pxx + %XBP,XXX
Y XPx+2X2Pxx

DBI Inflation. For the Lagrangian of DBI inflation [147]

Popi(X, ¢) = O)V1-2f(¢)X + [ V(g), (A.55)

(A.54)

one finds that the second term in (A.53) is identically zero and

= 13058 (l - 1) . (A.56)



APPENDIX B

Green’s Functions on Conical Geometries

In this appendix we give mathematical details on the Green’s functions used in

Chapter 5. Further details may be found in Ref. [104].

B.1. Green’s Function on the Singular Conifold

The D3-branes that we consider throughout this thesis are point sources in the
six-dimensional internal space. The backreaction they induce on the background
geometry can therefore be related to the Green’s functions for the Laplace problem
on conical geometries (see Chapter 5)

5O(X — X)

~V3G(X; X)) = 0

(B.1)

In the following we present explicit results for the Green’s function on the singular
conifold. In the large r limit, far from the tip, the Green’s functions for the resolved
and deformed conifold reduce to those of the singular conifold [104].

In the singular conifold geometry (5.27), the defining equation (B.1) for the

Green’s function becomes

19 /.0 1y, 1 , ,

where V% and 6711 (¥ — U’) are the Laplacian and the normalized delta function on
T11 respectively. U stands collectively for the five angular coordinates of the base

and X = (r, V). An explicit solution for the Green’s function is obtained by a series
212
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expansion of the form

G(X; X') =) Yy (W)Y (W) Hy(r;7'). (B.3)

The Y;’s are eigenfunctions of the angular Laplacian,
VIYi() = —ALYL(P), (B.4)

where the multi-index L represents a set of discrete quantum numbers related to the
symmetries of the base of the cone. The angular eigenproblem is worked out in detail

in §B.2. If the angular wavefunctions are normalized as

/dqu \/ 9111 YE(‘I’)Y[/(@) = 5LL/ , (B5)
then
D Y (UYL(W) = 6 (T = T), (B.6)
L
and equation (B.2) reduces to the radial equation

10

9 )
5 <r5—HL> —ZLH = ——s(r =), (B.7)

or

whose solution away from r =1’ is
Hp(ryr') = Ai(r’)r’% , cE=-24/Ap+4. (B.8)

The constants Ay are uniquely determined by integrating equation (B.7) across r = r’.

The Green’s function on the singular conifold is

G(X: X' = E ! Y (UYL (U T}4 <%>CL rer, B.9
: = —_— X X .
( ) ) — 9 /—\L 1 L( )L( ) 1(,«_’)62 . ( )

where the angular eigenfunctions Y7, (¥) are given explicitly in §B.2.
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B.2. Eigenfunctions of the Laplacian on 7!

In this section we complete the Green’s function on the singular conifold (B.9) by

solving for the eigenfunctions of the Laplacian on 7!

1
ViY, = ﬁam(gmn\/gann):(6V§+6V§+9V§)YL (B.10)
- _ALYLa
where
VY, = 0y (sin 60y, (13— w-a)2y B.11)
itL = sin 0, bu(510:05,Y1) + sin 0, ¢ — COLVIGy Lo (B.
VaYp = 90y, (B.12)

The solution to equation (B.10) is obtained through separation of variables

V() = Jiy s 1 (01) Ty g, 1 () €101 im292 o389 (B.13)
where
1 . m; R 2
sin&aei(sm 0:00,J1,,mi,r(0:)) — <sin6» 3 cot 9i> Tt 2 (05) = =D g Tt mi m(05) .

(B.14)
The eigenvalues are Aj, g = [;(l; + 1) — RTQ. Explicit solutions for equation (B.14) are

given in terms of hypergeometric functions o F(a, b, ¢; x)

0,7\ R/2
Jl?mivR(é’,-) = Ng(siné’i)mi<co1§§> X

R 0;
2F1(—l¢+mi,1+li+mi,1+mi—§;S1H2 5) s <B15)
T me(0:) = N (sin6;)"? (COt 5) X

R R R .0,
A=+ 2145+ 21—m, —~'2i) B.1
o l+2, + —I—2, m+2,81n2, (B.16)
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where N and N§! are determined by the normalization condition (B.5). If m; > R/2,

solution Y is non-singular. If m; < R/2, solution {2 is non-singular. When m; = R/2,

the solutions coincide. The full wavefunction corresponds to the spectrum

2

Ap = 6(h(h+ 1)+ a(la +1) - %) | (B.17)

The eigenfunctions transform under SU(2); x SU(2), as the spin (Iy, ) representation

and under the U(1)g with charge R. The multi-index L has the data:

L= (lhlg), (ml,mg), R.

The following restrictions on the quantum numbers correspond to the existence of

single-valued regular solutions:
e [, and [, are both integers or both half-integers.
® My € {—ll,"' ,ll} and mo € {—12,"' ,lg}.

e ReZwith e {-l,--- L} and & € {—1p,--- ,bo}.

As discussed in §5.2, chiral operators in the dual gauge theory correspond to [y

£,



APPENDIX C

Computation of Backreaction in the Singular Conifold

This appendix computes the gravitational backreaction of a D3-brane on the vol-

ume of a four-cycle in the singular conifold.

C.1. Correction to the Four-Cycle Volume

Recall from Chapter 5 the definition (5.14) of the (holomorphic) correction to the

warped volume of a four-cycle >4

6V = Re(¢(X")) :/E d*X+/gmd(X) oh(X; X)), (C.1)

where dh(X; X') = CG(X; X') and T5C = 2.

Embedding, Induced Metric and a Selection Rule. The induced metric on
the four-cycle, ¢, is determined from the background metric and the embedding
constraint. In §5 of Chapter 5 we introduced the class of supersymmetric embeddings
(5.36). Equation (5.37) and the form of the angular eigenfunctions of the Green’s

function (see §B.2 of Appendix B) imply that (C.1) is proportional to

1R1p5 2 2 )
S / dgpy eimitgn)en / Ay elmatamlor — gaRbs s 0 5 L (C.2)
0 0

(27‘(‘)2 mi,—3ny m2,—5n2

We may therefore restrict the computation to values of the R-charge that satisfy

R R
my = —Enl, mo = —Eng . (C?))
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The winding numbers n; (5.42) are rational numbers of the form

n.
n; = —, ni €7, (C4)

q
where n; and ¢ do not have a common divisor. Therefore the requirement that
the magnetic quantum numbers m; be integer or half-integer leads to the following

selection rule for the R-charge
R=q-k, keZ. (C.5)

Green’s Function and Reduced Angular Eigenfunctions. The Green’s
function on the conifold (§B.1) is

G(X; X') =Y Y7 (W)Yo (U)Hi(r;r), (C.6)

where it is important that the angular eigenfunctions (§B.2) are normalized correctly
on TH!

/d5\11‘/gT1,1’YL(\I’)|2 = 1, (07)
or

1 1
Vi / 0 [Ty oy ()] / Ay s n ()2 = 1. (C.8)
0 0

The coordinates = and y are defined in (5.41). Next, we show that the hypergeometric

angular eigenfunctions reduce to Jacobi polynomials if we define

R R
ZIE§+L17 lQEE‘i‘LQ, Ll,LQEZ. (Cg)

This parameterization is convenient because chiral terms are easily identified by L, =
0 = Ls. Non-chiral terms correspond to non-zero L; and/or L,. Without loss of

generality we define chiral terms to have R > 0 and anti-chiral terms to have R < 0.
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With these restrictions the angular eigenfunctions of §B.2 simplify to

R Ei_p,
J%+L1,*§n1,R<x> = $Z(1+n1)(1 - :IZ') 1(mm) PLLR:TLI (l‘) ) (ClO)
R(|4p R(|_,,
J%#—Lz,—%nz,R(y) =y (1t 2)(1 - y) a(1=n2) PL2,R,7L2 (y) ) (C11>
where
B(14n),B(1-n
P (#) = Ny g P22 (1 9y (C.12)
E(14n2),E(1—n
Promm(y) = Noppa,Pe 200 oy (C.13)

The Pﬁ‘,’ﬁ are Jacobi polynomials and the normalization constants N, g, and

Ni, rn, can be determined from (C.8).

Main Integral. Assembling the ingredients of the previous subsections (induced

metric, embedding constraint, Green’s function) we find that (C.1) may be expressed

as
1
1,67 = @0 [ dedy /g g) YV Yale) Halrio)
0 Ly
VTl’l x / Nnet iRtﬁ’ —cf [?((QZ)
— 2 LZZ}:YL (7‘) L X e2 Tmié’ X \/ﬁ, (014)
where
n -+ ! T'(ZL’, y) _GQI
Ix(Qr) = [ dadyG(z,y) : Pry Ry (2) Pro s (Y) - (C.15)
0 min
Here K = (L1, Lo, R), n = (n1,n2) and
+
Q%E%+§’ g =-2+/A,+4. (C.16)

The sum in equation (C.14) is restricted by the selection rules (C.3) and (C.5). Equa-

tion (C.15) is the main result of this section.
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In the following we will show that the integral (C.15) vanishes for all non-chiral
terms and reduces to a simple expression for (anti)chiral terms.
C.2. Non-Chiral Contributions

In this section we prove that

1
]In((@) = /0 dl’dy PLLR,m (x)PLQ,R,M (y> X

X :L‘Q(l-l—m)(l _ :L‘)Q(l—nl)yQ(l-i—m)(l _ y)Q(l—m) %
X |:(1 + n1>2 1

-2
2 z(l—-ux) e
(1+mn)? 1 1
—2n —1 C.17
2 y(l-y) 1—y (C17)

vanishes for Q — Q7 iff Ly # 0 or Ly # 0. This proves that non-chiral terms do not

contribute to the perturbation 6V3, to the warped four-cycle volume.

The Jacobi polynomial Pﬁ‘,’ﬁ (x) satisfies the following differential equation
~N(N+a+3+1)Py’(1—2z) =
d d
=z *(1— x)’ﬂ% (:U1+a(1 — x)lwapﬁ‘,ﬂ(l — 2:1:')> . (C18)

Multiplying both sides by x% (1 — )% and integrating over x gives
1
_N(Nta+8+1) / da P2 (1 — 22) 2% (1 — 2)% —
0
1
= / dz PP (1 — 22) 2% (1 — )% x (C.19)
0

X [(%x + s+ D)(a+8—qo—qp) + o — Qz(xl) :zs(ﬁ —4s) | qz(ga__;;) |

where we have used integration by parts.
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In the case of interest, (C.17), we make the following identifications: N = L;, o =

E1+n1), =51 -m), ¢ =Q(1+n1), g3 = Q(1 —ny). This gives

1 2
/ dx Pé(l—&-m)g(l—m)(l — 2z) J}Q(1+n1)(1 B x)Q(l—nl) « (1+mnq) B 2, _
0 20(1—z) (1 —x)

1 B1an) B(1—n
—XLI,R,Q/ dp P2 TR0 () ggy g QUM (1 yQUm) (C.20)
0

where
(2Q +4Q? — L* — LR — R — 2L, — 2RQ)
XL1,R,Q =
Q(2Q — R)

. (C.21)

The corresponding identity for the y-integral follows from the above expression and

the replacements L; — Lo and ny; — ny. We then notice that the integral (C.17) is

I(Q) = (X,rQ +Yioro — 1) X ALy Rin@ ALo e,
6(Q —Q1)(Q—Q1)
— Q(Qé? — R) L X AL1,R,TZ1,Q AL2,R,n2,Q , (022)
where
1
AL, rmo = / dz P, rn, () xQ(H"l)(l — m)Q(l’"l) , (C.23)
0
1
ALy, Rns@ = g/‘dyfi%Rmxy)yQu+””(1—%DQ“_"”- (C.24)
0

Since I%(Q) < (Q — QF) it just remains to observe that the integrals (C.23) and
(C.24) are finite to conclude that
: n : ., R
lim I; =0 iff Q] #—. (C.25)
Q—Q} 2
This proves that non-chiral terms do not contribute corrections to the warped volume

of any holomorphic four-cycle of the form (5.36).
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C.3. Chiral Contributions

Finally, let us consider the special case Q} = % which corresponds to chiral

operators (L; = Ly = 0) in the dual gauge theory. In this case,

chiral n 3R + 41
]Rh 1 = C;*)E IK = 2 E X AO,R,TU,% X AO,R,RQ,% 5 (026)
2
where
' £ £

AO,R,Hl:% = / d(E PO,R,TL1 (.I) xE( +n1)(1 '/1;)5( 7n1) ? (C 27)

0

_ ! B (14ny) (1—n2)

AO;R,R%% = / dy I R,na (y) Yz (1 y) 2 (C 28)

0

Notice that Py g, = Norn; = (No.rm;) " (Po.rn;)?. Hence,

1
— n —ni)1B/4 2
AO,R,n1,§ = (NO,R,TM) 1/0 dz (PO,RJH (SL’) [‘T(H- 1)<1 - x)(l 1)} > (C29>

1
Normpz = (Nogn,) 1/ dy (PO,R,m(y) [y (1 — )0 7)] ) (C.30)
0

Nk
I

and
1

A r XA R =
0,Rn1,%5 0,Rn2,5
b2 B2 VTlleO,R,nlNO,R,ng

(C.31)

by the normalization condition (C.8) on the angular wave function. Therefore, we

get the simple result

Ichlral 1 1
X —. (C.32)

Achlral +4 VTl,l NO,R,nl NO,RJD R

We substitute this into equation (C.14) and get

(6V24 chiral — Z Z - X <H U_)g)pi>R/P X —LR X €i%2ﬂ-s, <033)

quk H

where we used

(1)3F/2 V(W) _ (H(U—J’_)Pi)R/P (C.34)

No,rni No,B.ns
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and
eiars()R . —3R/2 _ 1 (C.35)
min ,B/R : :
The sum over s in (C.33) counts the P different roots of equation (5.36):
Pl
P =Pl ., jEL. (C.36)
P 7]
s=0
Dropping primes, we therefore arrive at the following sum
w 1 - 1 —Pi J 1
T3 (5V24)chira1 = 5;3 X ( i w; ) X W’ (C.37)
which gives
T3 (5V24)chiral = —5 In [1 — /]P :| . (038)

For the anti-chiral terms (R < 0) an equivalent computation gives the complex
conjugate of this result.

The R = 0 term formally gives a divergent contribution that needs to be
regularized by introducing a UV cutoff at the end of the throat. Alternatively, as
discussed in §5.2, this term does not appear if we define §h as the solution of (5.18)
with /g prg(Y) = 0© (Y — X;). This choice amounts to evaluating the change in the
warp factor, dh, created by moving the D3-brane from some reference point X, to
X. We may choose the reference point X, to be at the tip of the cone, r = 0, and

thereby remove the divergent zero mode.

The total change in the warped volume of the four-cycle is therefore
5‘/;]1; = (5V§l)l:1)€hira1 + (5V§J€L)anti—chiral (039)
and

TyRe(¢) = T3 6V3¥ = —Re (m {/‘P—M—QWD . (C.40)
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Finally, the prefactor of the nonperturbative superpotential is

P __ wPiN1/n
A<wz) = AO e*Tgc/n — AO (,u 11:[2 w; > ' (041)
0



APPENDIX D

Computation of Backreaction in Y?¢ Cones

This appendix computes the gravitational backreaction of a D3-brane on the vol-

ume of four-cycles in Y77 cones.

D.1. Setup

Metric and Coordinates on Y?4. Cones over Y?¢ manifolds have the following

metric

ds? = dr? + r*ds} ., (D.1)

where the Sasaki-Einstein metric on the Y79 base is given by [73, 74]

ds?,, = 1%‘” (d6” + sin® §.dg?) + (y;ﬂ 0 dy? + ”(gy) (Ao + cos 0 dg)?
+w(y)[da + f(y) (A + cosf dg) ] (D.2)
The following functions have been defined
)= B = ) = oy
with
bzé—l% 4p? — 3¢2. (D.4)

The parameters p and ¢ are two coprime positive integers. The zeros of v(y) are

1 3
y1,2=4—p(2p$3q—\/4p2—3q2>, y3=§—(y1+yz)- (D.5)
9224
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It is convenient to introduce

p= 470 (D.6)
Yo —

The angular coordinates 0, ¢, ¥, x, and « span the ranges
0<O0<m, 0<op<2m, 0<o <2m,
0<z<1, 0<a<2n/, (D.7)

q

where ¢ = T I
P Y1Y2

Green’s Function. The Green’s function on the Y?9 cone is

2\
1 r /
1 7,14(7) TST,
v * !
GX:X) =) j—4(A+1) < Y7 (UYL () x e
L T—4<T7> r>r.

Here L is again a complete set of quantum numbers and W represents the set of angular

(D.8)

coordinates (0, ¢, 1, x, ). The eigenvalue of the angular Laplacian is A;, = 4\(A+2).
The spectrum of the scalar Laplacian on Y9 as well as the eigenfunctions Y7 (¥),
were calculated in [31, 101]. We do not review this treatment here, but simply present

an explicit form of Y7, (V)

V(W) = Ny ettt 2o gy on, (0) Ry an (@) (D.9)
where
« o « _ U1 — U3
Rna,nw,l,)\(x) =21 —2)"(a — 2)*h(zx), o= (D.10)
Y1 — Y2

The parameters «; depend on n, and n, (see [101]), and the function h(z) satisfies

the following differential equation

d? v ) € d afx —k B
{@+(E+x—1+x—a)%+x(1—x)(a—x) he) =0 (D-11)
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The parameters «, 3, v, 0, €, k depend on p, ¢ and on the quantum numbers of the
YP4 base. Explicit expressions may be found in [101].
Finally, we introduce the normalization condition that fixes Ny, in (D.9). If we

define z = sin? ¢ then the normalization condition
2

/d5\11\/M|YL(\I/)|2 =1 (D.12)

becomes
1
1
Nl%/ dZd[L’ \/g(ZL',Z) J2R2 = W, (D13)
0 T

where

V(7] = oty = LEIMEIE S S0y

P

Embedding, Induced Metric and a Selection Rule. The holomorphic em-
bedding of four-cycles in Y74 cones is described by the algebraic equation [50]

3

wai = 12 (D.15)
i=1
where
9 —’L¢
w, = tange , (D-16)
1. 1 L I
wp = gsinfai(l— )P (a— ) e!lvroa), (D.17)
1 ,
wy = 57"3 sinf [2(1 — z)(a — x)]"/2%e™ . (D.18)

This results in the following embedding equations in terms of the real coordinates

1

Y = ] (n1¢ — bnga) — g, (D.19)
+ N9

ro= roo [Zl+n1+n2(1 . Z)l—nﬁ-ng}*l/ﬁ [1,261(1 . x)Qeg(a . $)233}*1/6

= Tmin”2"z, (D.20)
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where
" () 4 —278 €{0,1,....(po+p3) — 1} (D.21)
s = ar , S 1, — )
gy P2 + pa P2 T P3
vm = lul, (D.22)
and
1 %)
= (1 _), D.23
ng = ]ﬂ, (D.24)
Ps3
nyg = b2 (D.25)
P3

Integration over ¢ and « together with the embedding equation (D.19) dictates
the following selection rules for the quantum numbers of the angular eigenfunctions

(D.9),

- 1—|—77,2

— " Qn, (D.26)

m = _%QR , Ng =3MeQr, Ny

where Qg is the R-charge defined as Qr = 2ny, — éna. In this case «o; = ei%.

Finally, we need the determinant of the induced metric on the four-cycle

7,.4

2(1—2)z(1l —z)(a — )

dfdx /gt = G(z,z)dzdz. (D.27)

G(z, z) is a polynomial of order 3 in # and of order 2 in z.

Main Integral. The main integral (the analog of (C.15)) is therefore given by

- dedz G(z, z) N}? r o\ 6L s . )
hn _/z(l —2)2(l —2)(a — ) (rmm) Py, (1=22)h(x),  (D.28)

with a = (1+n4 —|—n2)%, b=(1-mny —|—n2)Q2—R and 6Q7 = 2A+3Qr. We will calculate

this integral for a general 6Q; = 2w + %QR and then take the limit w — A.
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First we compute the integral over z in complete analogy to the treatment of

Appendix C. The Jacobi polynomial satisfies

d d
rijRd— (r;3QRz(1 - z)d—Pj’b(l — 2z)) +AA+T+a+b)Py"(1—22)=0. (D.29)
z z
. . . —(2w+3Qr) .
Let us multiply this equation by 7, and integrate over z. It can be shown

that there is a third order polynomial G(x) which is implicitly defined by the following

relation

G(z,2)
2(1—2z)

G(z,z=0)
(14 ny +no)? (g’—j — %)

~G(@) =

20430 4 (1 yosen 4 () SQr-2u
X [rz dz (2(1 2)r, ° (rz ) +AA+1+a+0b)| . (D.30)

_eOt
The right-hand side vanishes after multiplying by 7. 0@ Pj’b(l — 22) and integrating,

and we get

de G(z) N} _soF / —6Q7 pab
I, = . F T dzr, TPy (1 —22) . D.31
L /:L’(l—x)(a—x)r e () =T A ( z) (D.31)

D.2. Non-Chiral Contributions

To evaluate (D.31) we make use of the differential equation (D.11). We multiply

- ’U)—§ . . .
(D.11) by e U T29% and integrate over x. There exists a first order polynomial

M/ g(x) such that
G(Jf) x) - M /g<x> _

z(1l—x)(a—

_ 144G (z = 0)
(1= n2)(3Qg + 4N (18Q g1y + 8Any — 9Qp — 4\ — 24) X [(aﬁx — k) —

30 L (R 1) 4 dn(e — a) + enle — 1))

2

2w+%QRd_ . . —2w—-3Qr
+re dw2<$(1 x)(a — x)ry )], (D.32)
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where we defined
A8(N — w)(A + w + 2)

M= ) 6w —9q) -

(D.33)

_eOt
After multiplying by 74 6QLh(:U) and integrating over x, the right-hand side vanishes

and we have

I, = MNz/dxdz\/g(a:,z)( T

min

)6QL PU(1—22)h(z)  (D.34)

— MN, / dzdx\/§< ! )_2A J(2)R(z) . (D.35)

Since lim,, .y M = 0, this immediately implies that lim,, ., I, = 0 ‘on-shell’; 7.e. for
all operators except for the chiral ones. Just as for the singular conifold case, we have
therefore proven that non-chiral terms do not contribute to the perturbation to the

warped four-cycle volume.

D.3. Chiral Contributions

For the chiral operators one finds
3
A= Qn, (D.36)

and both the numerator and the denominator of M (D.33) vanish. Chiral operators

also require A = [ —n, to be equal to zero. Taking the chiral limit we therefore find

_ (3Qr+4) dz q(2p + 3q + \/4p> — 3¢ — 6qx) [ ~3Qr

- (1+ n?)QRNE/ 24p? ( ) (D.37)
BQr+4) 1
(1+n9)Qr (2m)3¢°

T'min

(D.38)

since A = 0 implies P3"(1 — 2z) = 1 and h(x) = 1. The integral in (D.37) reduces

to the normalization condition (D.13). Finally, we use the identity for chiral wave-
QR

functions r29rY () = (w?leng)TR and the relation between T3 (0V3 )chiras and 17,

(an analog of (C.14)). Note that the (27)3 in (C.14) should be changed to (27)3( as
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a runs from 0 to 27¢. We hence arrive at the analog of (C.33)

1 2 Qr . (14ng)
T3 (0Vs) )ehiral = ————— (w{whrws) ¢ e @nvs D.39
3( E4)h 1 22<1+n2)QR< 1 2 3) ( )
QR:S
where we recall that 1, = pf+;3- The summation over s effectively picks out n, =

(1+—2”2)QR to be of the form (ps+p3)s’ with natural s, or Qr = 2p3s’. After summation

over s’ we have

1 =2p3 ,lez
Ty (VA Jira = =5 In {%} . (D.40)

[12P3
A similar calculation for the anti-chiral contributions gives the complex conjugate

of (D.40).

The final result for the perturbation of the warped volume of four-cycles in cones

over YP4 manifolds is then

2p3 ] Pi
Ty 6V = —Re (m {%D , (D.41)
so that
2p3 __ wPiN1/n



APPENDIX E

The F-term Potential

In this appendix we derive the F-term potential for D3-branes and wrapped D7-

branes in the conifold.

E.1. The Singular Conifold

The conifold constraint, Z?:l 2?2 = 0, for complex coordinates {z;;i = 1,2, 3,4}

may be written as det(W) = 0 where

1 23+ 124 21 — 129 W3 Wo
W=—

\/§ Z1 + iZQ —2z3 + i24 W1 Wy

(E.1)

The Kéhler potential (7.3) is chosen such that the Ké&hler metric on the conifold,
k.5 = 0aO3k, is Calabi-Yau (Ricci-flat)
ds® = 0,05k du*du?
= K" Te(WIdW)[> + & Te(dWdwT) (E.2)

d(...)
dr3

where (...) = and {u,; a = 1,2,3} are three complex coordinates on the coni-

fold, e.g. u, = z,. The metric on the conifold (E.2) may be cast in the form (7.2)

where
2

1 ’ 2 1
o 1 s 1 2 2 12
dsii. = 5 (d@/} + ;Zl cos Qqubl) + 5 E (d6; + sin® 0,d¢;) , (E.3)

=1

is the metric on the Einstein space T

231
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The complex coordinates z; are related to the real coordinates {r € [0,0¢],0; €

0, 7], ¢; € ]0,27],9 € [0,4x]} via

S 7“3/2€%.w -COS(91+02> o < 1+¢2> (1—92> < 1+¢2>]
V2 i 2

z9 = T:)//;e;w _—cos<01;92>sin<¢ 5 >+zcos< ) ( )] (E.5)
/2, : _ _

z3 = T\g/;eéw _—sin (01—;92>COS (¢1 2¢2) —i—isin( ! 92) )] E.6)

2T _ _
zg = T\j;eéw _—sin<01;02>sin<¢12¢2>—isin(1 92) <¢1 ¢>] (E.7)

The complex coordinates w; are related to the real coordinates {r, 6;, ¢;, ¥} via

w, = 13/2e3W—¢1-92) gipy % sin % (E.8)
wy = r¥2eatorter) oog % Cos % : (E.9)
wy = r¥2erWtor=92) cog % sin % : (E.10)
wy = rez®morter) gin 92 COS% (E.11)

E.2. Making SO(4) Symmetry Manifest

It is sometimes convenient to write the F-term potential (7.13) in terms of the
four homogeneous coordinates z; of the embedding space C* which makes the SO(4)
symmetry of the conifold transparent. For that reason we define a new metric KCAB
which depends on z; in such a way that for any function W(z;) the following identity
is satisfied

DAWKAPDLW = Ds WK™ DoW | (E.12)

where {Z4} = {p, z;;i = 1,2,3,4} and {Z¥} = {p, 2o; = 1,2,3}. In this equation
the conifold constraint, 22 = 23(z,) = — S0 _, 22, is substituted after differentiation

on the left-hand side and before differentiation on the right-hand side. The metric

I/C\Ag(zi) defined through (E.12) is not unique and the choice of one over another is a
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matter of convenience. We construct K42 with the help of the auxiliary matrix J4,
KAP = JAG K TP, (E.13)

where J4y, is defined as follows

1 0
0z4 A "
DEW:ﬁDAWEJ EDAW, J 5= 0 51 . (E14)
0] =z
\/‘Zi:l 23

This gives JCAB as a function of Zo. To find it as a function of z; guess a I€A§(zz~)
such that it reduces to IEAE(ZQ) after substituting the conifold constraint. This step
and hence K4B(z) is not unique. Nevertheless finding an SO(4)-invariant K45 (z;)

1/2 o
is not difficult, e.g. replacing (— yod 22) by 24 everywhere in K42 (z,) and J%,

y=1"v
we find
K2 U + vkk™ ke | ik
CAB _ B U TR ! | (F.15)
3 ];,zmkm l];,ij
¥
where
po— 2 (E.16)
[ ’]" bl .
and
. , = = 1 zZz Zzs
7 Tl af 17 _ ] ke N tCe')
kY =J'k Jﬁ—rlé +2r3 7‘3} (E.17)

Notice that k7 is not the inverse of k=1 [ i — %Z:?} , which is k7 = r [5@ + %ZT—?] .

From (E.16) and (E.17) one then finds
17 3— r.lm 3 2 ~2
kikV = 521 ; kik' ki = == k, (E.18)

and hence,

(E.19)
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Using the above results we arrive at the F-term potential

2

Vi = ——
E= 302

N W

— - | P —
(o IV, 2 = 3T, o ) 4 SOV, 4 cic) + LRIV
(E.20)
The result (E.20) is essential for the main analysis presented in Chapter 7. In terms

of the w;-coordinates the F-term potential (E.20) is

2 _ 3 1.
Vi = g (04 I 3T, + e + SOV, - cie) + LWV
(E.21)
where o
.07 i 1w C?C;' Wi
kY =r [53 + 5 3 - 3 (E'22>

. i’
The matrix ¢j has only four non-zero elements ¢; = ¢} = 1 and ¢} = 5 = —1.



APPENDIX F

Dimensional Reduction

As explained in detail in Chapters 5 and 7, D7-branes wrapping certain four-cycles
in the compactification source nonperturbative effects that stabilize the volume mod-
ulus. In §F.1 we identify the real part of the Kahler modulus with the warped volume
of the four-cycle and give a detailed derivation of the DeWolfe-Giddings Kahler po-
tential. These results are well known, but our goal here is to fix notation with enough
care to permit precise discussions in Chapter 7. §F.2 computes the throat contribution
to the warped four-cycle volume for our setup and relates it to microscopic compact-
ification data. We also explain how this relates microscopic input to the energy scale
of inflation. Finally, in §F.3, we present an improved derivation of the field range

bound of [21] that includes a non-trivial breathing mode of the compactification.

F.1. Kahler Modulus and Kahler Potential

We consider the line element
ds? = K12 (y)e g, datdz” + h1/2(y)62“ga5dyo‘dy_5, (F.1)

where g, is the four-dimensional Einstein frame metric, & is the warp factor, g,5 is a
fiducial metric on the internal space, and the factor e* extracts the breathing mode.
Before proceeding, let us explain the division of the metric g,; = engQB into a

fiducial metric g and a breathing mode e?*. These two objects do play different roles:

235
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note in particular that although g affects the four-dimensional Planck mass

1 1
Mgl — ;(Tg,)? /dﬁy\/gh = ;(Tg)zvgv, (F.2)

—6u

the breathing mode does not, because of the factor e in the spacetime term of

(F.1).

For any fixed location Y = Y, of the D3-brane, there is a minimum p,(Y") of
the nonperturbatively-generated potential for the Kéhler modulus p. (We will soon
come to a precise definition of p in terms of the fields in (F.1).) We argued in §3 for
an adiabatic approximation in which, as the D3-brane moves and hence the location
px(Y") of the instantaneous minimum changes, p moves to remain in this instantaneous
minimum p,(Y). In terms of the fields in (F.1), this is most conveniently represented’
by fixing the fiducial metric once and for all, but allowing the breathing mode eu(¥Y)
to keep track of the change in the volume that is due to the displacement of the
D3-brane.

To this end, we normalize the fiducial metric g to correspond to p,(0), i.e. so that
the volume computed with ¢ is precisely the physical volume of the internal space
when the D3-brane sits at the tip of the throat, Y =~ 0. Then, eu¥:Y) represents the
change in the volume that is due to the displacement of the D3-brane away from the
tip, and by this definition, w(0) = 0. In the throat region, the fiducial metric takes

the form

9apdy®dy? = di? + P2dst., . (F.3)

The non-perturbative superpotential arising from strong gauge dynamics on n
D7-branes (or Euclidean D3-instantons) wrapping a four-cycle ¥, in the background
(F.1) is [18]

(F.4)

2T,V et
)

n

1At the end of this section we will verify that choosing a different normalization of the
fiducial metric does not affect any physical quantities.
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where V5 = Ik d‘%\/ﬁ h. Before the mobile D3-brane enters the throat region, the
(warped) four-cycle volume is (V5 )o. When the D3-brane is in the throat, it induces
a perturbation in the warp factor, dh, which sources a change in the warped four-cycle
volume, Vi (Y'). (This change in the warped volume is logically distinct from the

shift in the stabilized value of the Kéhler modulus studied in Appendix H.) Hence,

TSV (Y 4u(Y,Y) T (Y 4u(Y,Y)
Wipl? o exp |—— 24(71 Je exp | — o 243;6 (F.5)
= |A®Y)|Pemelot) (F.6)
We now define a = 2% and identify the Kéhler modulus [18]
_ _ T V’LU
p+p=Te"Y) L Ak(Y,Y), TI= @ . (F.7)

Here £ is the little Kéhler potential for the fiducial metric on the conifold, 0,05k =
gop- The term proportional to £ in (F.7) has to be added to make p holomorphic; see
[18, 77] for extensive discussions of this issue. Because u(0) = k(0) = 0, we may relate
the parameter I' to the value of the stabilized Kahler modulus p when the D3-brane

is at the tip of the throat,
I'= p.(0) + p+(0) = 20,(0) = 200 . (F.8)

The range of allowed values for o is constrained by the throat contribution to the
warped four-cycle volume, which we will compute in the next section.

With these definitions the DeWolfe-Giddings Kahler potential is
K = —3M21n [p+ p— vk(Y,Y)] = —3M2 In [Pe4“(Y’Y)] . (F.9)

To determine the constant v, we compare the kinetic terms derived from the DBI

action,

1 _
LBl — —§T36—4“gaga,tyaaﬂyﬂ, (F.10)
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with the kinetic terms? derived from (F.9),

L, = —K,30,Y°0"YB
~ 3MZAe 0,050, Y 0"Y P (F.11)
where
Oape™™ = —L0u05k = g5 (F.12)

Equations (F.10) and (F.11) are consistent if we define

LTy 1(V)

v=— = - (F.13)
6MY 6 Vg
Using equation (F.8) this may be written in the useful form
oy T3
v====. (F.14)
M

We now notice that the physical quantities of interest, such as p and vk, are inde-

pendent of the split into breathing mode e“® and fiducial metric g in (F.1). For

2()f course, the complete kinetic terms for the D3-brane coordinates and the volume modulus
p
are

Liin = —Kp0upd"p — ICYQY?(%YO‘@“W — (prfﬁaupﬁ“ﬁ + c.c.)
L Yk 5O Y Ry D
dupl? ’yk@WQ 8p’)’k*8“Yﬁ
2 | 9u 2 au 2 L B
BM2vk, 50, Y MY P
~ o7 ,

In the final relation we have focused attention on a subset of the kinetic terms for the
D3-brane coordinates. This is justified for several reasons. First, in Chapter 7 we are
specifically searching for (fine-tuned) configurations in which the D3-brane potential is
unusually flat. In such a case, it is consistent to use an adiabatic approximation for the
motion of the volume modulus, and omit the kinetic terms for p. Next, the term involving
|kaauﬁ|2 is suppressed, relative to the term we have retained, by U~! <« 1. Furthermore,
k. vanishes at the tip of a singular conifold, and is correspondingly very small at the tip of
the deformed conifold we are considering. Finally, from the explicit form of k£ we learn that
the term |k,0,Y|? is suppressed by the small quantity (¢/Mp1)? relative to the term we
have retained.
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example, )
1 Ty T[(VE)oe™] 1(VEos _ -
k== - k] = =k = gk F.15
where we have defined
k= ek =e®r? =2, (F.16)
and .
r T 1 (V&¥)o
~ . _—2u 3 P
= —— == F.17
J=e Ty 6B 6 T (F.17)
where
[ =Te = 20pe™. (F.18)
This shows that 4k is invariant under the change of conventions
0 — X0 g 5= N g.5. (F.19)

One easily sees that p+ p is likewise invariant. We have therefore justified our original

choice of the convenient value u(0) = 0.

F.2. Warped Four-Cycle Volume

The four-cycle ¥, wrapped by the D7-branes is, in principle, compact. The vol-
ume of the four-cycle receives contributions both from the throat region and the bulk,
(V&¥)o = (V&¥)o,throat + (V55 )o,puic- Since we have access to explicit metric information
only in the throat region we cannot evaluate (Vzuj1 Jobulk- However, we can still make
progress by deriving results that are largely independent of the unknown bulk region.
In the remainder of this section we compute (vgl)o,thmat for various embeddings and
use (V¥ )o = Ba(V5)o,throat, With By > 1, to parameterize the unknown bulk contri-
bution. In the non-compact limit, (Vz’é‘jL )o.throat diverges. Here we identify the leading
order divergence and regularize the throat volume by introducing the UV cutoff 7yv,

where the throat attaches to the bulk and h(fyy) = 1.
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We use the following approximation to the warp factor [87, 106],

L* P
where
27 SgsM fUV 2rK
T, L4 = N 1 =ln— ~ . F.21
T 162 ( 27TK) o MQ=EhgE~ e (F.21)

At large radius # the D7-brane wraps an S® and the metric on the four-cycle is
ds3, — di* + #*ds%a . (F.22)

The warped four-cycle volume then becomes

Yo R F
(Vgﬁ)gz/d4§ g'mdh = B4L4V01(S3)/ Tlnm (F23)

Ty r

— B, LVol(S*) nQ, {m Qo — %m Qﬂ} (o)

where @, = % > 1. The numerical value of Vol(S?) depends on the specific embed-

ding. For the Kuperstein embedding we have [114]

Vol(5?) = %ﬂ?, (F.25)
and hence, by (F.7),
= %B4Nln Q, { - ;Eg‘;] . (F.26)
This implies
Wo = agy = 234 (%) nQ, { . %Egﬂ : (F.27)
~ 234 (%) nQ,. (F.28)

Since, By > 1, N/n > 1 and @), > 1, this can assume a range of values, with

wo = O(10) being easily achievable. The value of wy is important as it determines
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the scale of inflation

‘/dS e — 2w0

—_— Y

Msl 2(.{)0 )

(F.29)

In particular, for By = O(1) and In@, = O(1), constraints on the minimal phe-
nomenologically viable inflation scale, Vzg > O(TeV*) ~ 10*60M§l or wy < 150,
translate into an upper limit on the background five form flux

% < 0(10%). (F.30)

This can be a serious constraint on nonperturbative volume stabilization by the KKLT
mechanism.

Finally, the ACR [9] embeddings, H?Zl wl = ul’, satisfy

1672
Vol(S%) = 9” P, (F.31)
and hence
N
Wy ~ ;PB4 (g) In Q,u . (F32)

F.3. Canonical Field Range

F.3.1. Canonical Inflaton. The inflaton action includes the kinetic term

1 R R 1
Ekin = —§T36_4u(r)(au7”)2 = —5(8#@)2, (F33)

so the canonical inflaton field is

o= / (Tg%)wdf. (F.34)

For analytical considerations the following approximation is often sufficient (see Ap-

pendix H for more accurate analytical results)

r
gp2 R = Tgf2 ~ -
() p+p

20'0

Tyi? =~ Ty = ¢°. (F.35)
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This is independent of the split into breathing mode and fiducial metric in (F.1):

2 r du T 2un2 ~2
Mpl r [Mple ] ;Tsvﬁw
This implies
k I T3 T Ty 1 ¢?
LA e PO . (F.37)
p+p p+p6My  TOM; 6M;
and the DeWolfe-Giddings Kahler potential becomes separable
K*K =~ —3In(p+p) — 3Inu uZl—lﬁ (F.38)
~ p p ) - 6 Mgl . .

F.3.2. Bound on the Field Range. We now derive the microscopic bound on
the inflaton field range in four-dimensional Planck units [21]. Recall that the Planck

mass depends on the warped volume of the internal space as

1

™

p

(T3)°Vg" (F.39)

where V" is computed from the fiducial metric excluding the breathing mode. The
warped volume of the internal space receives contributions both from the throat and
from the bulk, Vi = (V) throat + (V§”)buie- Since the bulk metric is not known we use
the parametrization Vi = Bg(Vg")throat, With Bg > 1, to characterize the unknown
bulk contribution. Using the warp factor (F.20), we find that the leading contribution
to the throat volume is

™ N ,

(V;}w)throat = TgZTUV . (F40)

This implies that the range of the inflaton is bounded by [21]

2 2
4
LA 1 (F.41)

where

eulrov) — m _ (F.42)
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In Chapter 8 we explained that this relation sharply limits the amount of gravitational
waves that can be expected in D-brane inflation models. One of the main results of the
present paper is that the bound (F.41) also provides a surprisingly strong constraint
on the possibility of fine-tuning the inflaton potential, even in cases where the energy
scale of inflation is too low for gravitational waves to be relevant.
The bound (F.41) is written in a slightly stronger and more general form than the
bound given in Chapter 8,
2
]\% < %. (F.43)
The factor Bg > 1 is simply an explicit representation of the unknown bulk contribu-
tion to V¥ and hence to Mgl. The breathing mode factor requires further explanation.
Recall that we have used the convention e*® = 1, so that the breathing mode factor
is unity when the D3-brane is at the tip of the throat. We will now argue that in

the configurations of interest, the variation of the breathing mode as the D3-brane

is displaced from the tip is characterized by the condition e*“(") = 228 > 1. The

D3-brane potential from moduli stabilization is minimized when the D3-brane is at
the tip of the throat, in all the configurations studied in this paper (see also [59]).
Displacing the D3-brane from the tip increases the potential, and so tends to increase
the compactification volume, because positive energy causes a runaway potential for
the volume. (We have confirmed this expectation by explicit numerical analysis in
4.3, and by analytical arguments in Appendix H.) Thus, moving the D3-brane up
the throat dilates the space, and leads to e**(") = ZES; > 1 for r > 0. This effect goes

in the direction of making the bound (F.41) stronger than (F.43), but the effect is

very small in practice: in the cases we considered, 1 < % < 1.1. Such a factor is a
negligible correction in comparison to the uncertainties in Bg, so it is very reasonable

to omit it, as in Chapter 8.



APPENDIX G

Stability in the Angular Directions

In this appendix we study the angular stability of the radial inflationary trajectory

proposed in Chapter 7.

G.1. Kuperstein Embedding

The following analysis complements our Kuperstein case study of §3 and §4 in

73/2

Chapter 7. In §G.1.1 we derive the condition for extremal trajectories z; = + 7

whose angular stability we investigate in §G.1.2.

G.1.1. Extremal Trajectories. Recall that the Kuperstein potential (7.26) de-
pends only on the following dynamical fields: |z1|?, z; + Z1, r, and 0 = Re(p). Along

a trajectory that extremizes the potential in the angular directions we must have

—gq‘fi = 0 for all r, so we aim to find points in 7! that satisfy
0|z Oz +7)
=0=" G

We examine (G.1) by introducing local coordinates in the vicinity of a fiducial point
zo = (21, 25, 25, 23). The coordinates around this point are given by the five generators

of SO(4) acting nontrivially on z
z(r, ;) = exp(T) zo . (G.2)

The Kuperstein embedding, z; = pu, breaks the global SO(4) symmetry of the conifold

down to SO(3), and the D3-brane potential preserves this SO(3) symmetry. We will
244
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find that the actual trajectory breaks this SO(3) down to SO(2) which we take to
act on z3 and z4. The coordinates that make this SO(2) stability group manifest are
given by

0 (6] a3 Oy

—Q 0 53 @1
—ag —f3| 0 0

_|
Il

—oy —f4| 0 0
where U; = {a;, 5;} € R are the local coordinates of the base of the cone. We aim
to find zg such that the potential V' (z; + 21, |21]?) is extremal along z,. We here find
trajectories along which the linear variation of z; + z; and |2;|?* vanishes. First, we

observe from (G.2) and (G.3) that for arbitrary z, we have

4
0z = Zaiz;, a; €ER. (G.4)
i=2
and, hence,
4
Slar> = a2z + 242) = 0. (G.5)
i=2

To satisfy (G.5) for all a; one requires
2 =ipizy, pi € R. (G.6)

We may use SO(3) to set p3 = py = 0, while keeping ps finite. The conifold constraint,

22 + 22 = 0 then implies p, = &1, while the requirement
8(z1+ 21) = as(25+ 25) =0, (G.7)

makes 2} purely imaginary and zj real. This proves that the following is an extremal

trajectory of the brane potential for the Kuperstein potential

2= +—r32 2y = *tiz) . (G.8)

Sl
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G.1.2. Stability. Let us now study the stability of the potential along the path
(G.8). From (G.2) one finds

1 i
2 =2 1—§(a§+a§+ai)+5,02(2042—04353—044ﬁ4)+"'} ) (G.9)
and
1
n+z o= 272 {1—§(Q§+a§+ai)+~-], (G.10)
) = ()P [1—(a5+a])+-]. (G.11)

Since the Kuperstein potential (7.26) depends only on r, z; 4+ Z7, and 2,Z7, and

0|z I(z1 +71)
_ =0 G.12
ov; |, ov; 0 ( )
where ( . ) | , denotes evaluation at zg, we find
oV
= 1
o0, 0, (G.13)
and
0*V - ov 82‘21’2 4 82<Zl +Z_1) (G 14)
(9\1]18‘11] 0 N 6|z1|2 (9\1118\% 8(21 +Z_1) 3\1118\111 0 ’ ’
where
2 i/ — 3 3 3
&0]-],21] |O = iﬁ 820]-(21 + Zl)|0 +7r 5i25j2 = —T 51’35]'3 — T 5i45j4 . (G15)

Hence, the angular mass matrix at zo has the form

X 0 0 00 Q9
0 X+Y 0 00 Qs
OoV_| _ X+Y (G.16)
oV, |, = 0 0 + 0 0 Qy .
0 0 0 0 0 03
0 0 0 0 0 o
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where
1%
X = FVutP——| | G.17
- Iz +71) | ( )
ov
y = -3 G.18
8\21|2 0 ( )

The flat-directions in the f-angles parameterize the symmetry group SO(3)/SO(2)
that leaves the Kuperstein embedding z; = p invariant. The a3 and ay—angles have
degenerate eigenvalues.

To calculate the eigenvalues X and Y we note that the F-term potential (7.26)

may be written as

6 e |W,
Vi =C(r,0)GY™ | (2a0 + 6) — —6|A| | O|gfl/2n
0
3 /1 _ 2 2\ ~—1 de r ’z1|2 -1
+ 2n<u(z1+zl)—u2121] o+ nm<1_ e A I (CAT)

and the D-term potential (7.20) depends only on r and is independent of the angles

(at least far from the tip [59]). In (G.19) we have defined the functions

K,2a|A0|2672a0

C(T’, O') = T > 07 az1+ac = 3|21|2C = O, (G20)
Al ’ 2| —1 1

g = — =1|1-—= , (921 Tlg:_; az12g:_7 G.21

4| ’ ' i Qo =g (G2

G = Gl,=117F :U3/2|2 = g(x)?, (G.22)

and the variable

r_ ¢

r =sign(z)— = —.
Tu  Ou

(G.23)
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After a lengthy but straightforward computation we find

2C x3/?
n |1 23/2)20-1/)

ao 1
2a0 + 9 — 3¢ Wl

X = =+
2 |A0’ |1q:x3/2’1/n

1\ 2%2(1 F 2%/?) 1 x
3(1——)——3 (1——)— . (G.24
+ n/ |1 F 2322 ¢ n/ |1 F 2322 ( )
and
2Cc x 3
_ 3/2 9 9
X+Y = (1F277) X +— TETEE=T0 (1+20x> : (G.25)
where
9
C= ——. (G.26)
1
4naUOM§1

Notice that stability of the trajectory z; = i\/iﬁr?)/ 2 for both positive and negative real

z only requires that X > 0 (from (G.25) this automatically implies X+Y > 0; at least
for the regime of interest: r < r,). Hence, from equation (G.24) a simple numerical
check can decide whether a specific scenario is stable in the angular directions. For

all potential inflationary trajectories we have performed this stability test.

Analytical approximation. In Appendix H we explain how the position of the
Kéhler modulus in the AdS vacuum, o, shifts to oy when the minimum gets uplifted

to de Sitter

s Vp(0,0p
aoy ~ aop + prg 5= m , (G.27)
where %e“” = 2a0p + 3 and %e”ﬂ ~ 2a0¢ + 3 + 2s. Substituting this into

(G.24) we find

2C x3/?

3 2s
i; |1 23/2]20-1/n)

X = - - -
2 ’1:F$3/2|1/n

1
+ 2a09 (1 - e ]F$3/2|1/n>

1 ) <1_l>x3/2(1$x3/2)

3(1 R —
+ ’1:Fx3/2|1/n n |1:Fl‘3/2\2

1 T
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In the limit x — 0 this becomes

x—0

lim X = $%x3/2 [4s — 3] . (G.29)

Hence, the near tip region is stable on the negative axis and unstable on the positive

axis. Notice that it was essential to include the shift from uplifting to realize this.

G.2. Ouyang Embedding

G.2.1. Extremal Trajectories. For the Ouyang embedding, w; = p, the brane
potential depends on wy + wy, |w|* and |wsy|*. To find extremal trajectories of the
potential we therefore require

Olwi > Olwsl* _ O(wy + i)
ov, v, oY,

~0. (G.30)

We introduce local coordinates by applying generators of SU(2) to the generic point
Wo

. ' wh !
W =eTWoe '™, Wy = A I (G.31)
wy W
where
Qo i 1y
T, = Pt (G.32)
Bi — iy —Q
This implies
dwy = —i(ay + ag)wy + (=F1 + i) ws + (B2 — iy2)w) + - -- (G.33)

and §(w; + wy) = 0 gives w] € R, wjy = w) = 0. We find that §|w;|> = 0 and
dlwe]? = 0 if why € R. The conifold constraint wjw) = 0 then restricts the solution to

the following two options:

w; =0, lwh| =132, & 0, =0,=0, (G.34)
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or

w, = £r3/2, wh =0, & Oy =0,=m. (G.35)

Delta-flat direction. For w} = 0 the superpotential correction to the potential

vanishes and inflation is impossible, as noted in [45] and reviewed in §5 of Chapter 7.

Non-delta-flat direction. For w!, = 0 the superpotential correction to the potential
does not vanishes. In fact, along this extremal trajectory the potential can be shown
to be identical to the potential for the Kuperstein case. Stability for Ouyang and

Kuperstein however is different as we discuss next.
G.2.2. Stability.

Delta-flat direction. Near w} = 0, wj # 0 we have

wy = wh[B1f2 —nv2 — i(Biye + Boni)] (G.36)

, 1 1
wy = wy |Ltion +ag) = Slont+a2)” = S (8] + 5 +7 +93) | (G37)

and (to second order)

wy+ W = 2w, 5152 — 1172) (G.38)
> = 0 (G.39)
jwol* = (wy)* [1— (67 + 65 +7 +73)] - (G.40)

The mass matrix in these coordinates is non-diagonal, but may easily be diagonalized

by the transformation

uli-vl UQ:]:UQ

\/5 ) 71,2 = \/§ )

Prp = UP=ui +uy, VP=0]+05. (G.41)
This gives

wy + w7 =wh [U* = V?] wa|? = (wh)* [1 — (U +V?)] . (G.42)
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A lengthy but straightforward computation gives the eigenvalues of the angular mass

matrix of the potential along the delta-flat direction

2Cc 1 6e |Wo|
Xy = ZCalig a2 (4 _ 2 Wl 4
U - x{ qi4cx <a0+9 Ay >], (G.43)
2Cc 1 6e7 |Wo|
Xy = Yz |1+—2"?(4 - . 44
v " x{ 2 (aa+9 Ay (G.44)

We confirmed that these stability criteria are precisely what was found for the delta-
flat direction in Burgess et al. [45] (cf. their equation (3.15)). Equation (G.43) and

(G.44) show that the delta-flat direction is angularly stable if x < x, and unstable if

. 2: 1 9\ LMy (G.45)
‘ 4s — 3 (4s —3)2 \aoy ) n? ¢* '

Equation (G.45) is the generalization of (7.92) to general n. Applying the field range

x > x., where

2
bound in the form % < % one finds
pl

1 9 \* N2
Te > m (aTcO) (an)? >1. (G.46)

For typical parameters the delta-flat direction is hence stable from the tip to at least

the location of the D7-branes.

Non-delta-flat direction. The non-delta-flat trajectory of the Ouyang embedding
is very closely related to the extremal trajectories of the Kuperstein embedding. In
fact, the shape of the potential is identical for the two cases. However, the stability
analysis reveals subtle, but important differences.

Near w), = 0, w] # 0 we have
1
wy + Wy = 2w, {1 — 5(U2 + vz)} , lwi|* = (w})? [1 = V7], (G.47)
where we have defined

U= (a1 +a)?, V=4 62+92492, (G.48)
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Computing the eigenvalues of the angular mass matrix we find results that are almost
identical to the Kuperstein results (G.24) and (G.25) except for one crucial sign

difference:

Xy = X, (G.49)

2Cc x 3
— 3/2 22
Xv = (1Fa77) X + — TETEEEED (EHQCQ;) , (G.50)

where X is the Kuperstein result (G.24). Since the leading term in (G.50) now
comes with the opposite sign (¢f. (G.25)), the non-delta-flat trajectory for Ouyang
is typically unstable for small # whereas the corresponding trajectory for Kuperstein

is stable
2Cc T

Xy~ — n |1 F 23/2)20-1/n) <

0. (G.51)

This is consistent with the results of [45].

G.3. Stability for small r

To summarize our discussion of stability for the Kuperstein scenario and the
Ouyang scenario we now give an intuitive explanation of angular stability in the
limit of small 7.

For either the Kuperstein or the Ouyang embedding, stability near the tip r — 0
is controlled by the term in the potential proportional to k''. We first focus on the

Kuperstein embedding. Since k'! contains a term proportional to 73, its contribution

to the second derivative of the potential with respect to an angular variable ¥;, g%,
grows as r. All other terms grow at least as r*/? (this follows from g—qj = g‘fﬁ % + c.c.

and 2 ~ r32). A parallel consideration confirms that k'! is responsible for the
leading contribution to the stability analysis in the case of the Ouyang embedding as
well.

. . 3/2 .. . . .
Now, the trajectories z; = £= 5 maximize |21|? for a given 7, and any variation

212
273

of angles may only increase k' = r <1 - ) Hence the trajectories in question
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are stable at small r under fluctuations of any angles that affect |z|?. So far, this
analysis does not include the phase of z;, which of course leaves |z |? invariant. The
leading correction to the potential from fluctuations of this phase comes not through
k' but through terms in V proportional to z; + Z;. These terms change sign when
z1 does; thus, one of the signs in z; = i% corresponds to the stable trajectory,
while the other sign corresponds to an unstable trajectory. We showed above that
the stable trajectory in fact corresponds to z; < 0 (careful consideration of the shift
of the volume, c¢f. Appendix H, is required for that argument.)

The analysis for the Ouyang embedding is very similar. The delta-flat trajectory

|w2]?

lwy|* = 13 (6, = 0y = 0) maximizes the ratio %-. Thus, any angular fluctuation

(cf. (G.39)). This is easily

can only decrease the ratio |“;§‘2, without affecting |2

1
r3

checked with the help of the angular coordinates #; (E.8). On the other hand, the

. . . 2 .
trajectory |wy|? = r3 () = 0, = 7) maximizes 45 and angular fluctuations away

2|2
r3

from this trajectory decrease the ratio ‘%'2, without affecting [w

As a result,
o= g <1 + % — ‘“;—23|2> cannot decrease in the case of the delta-flat trajectory
lws|* = r®, but necessarily has a negative mode along the non-delta-flat trajectory

lws|* = 73. Hence, the non-delta-flat trajectory is unstable for small r. No further

3 is stable.

consideration is needed to show that the delta-flat trajectory |ws|? = r
Since angular fluctuations around w; = 0 can not affect w; + wy term the leading
contribution always comes from k!l

We have therefore demonstrated that near the tip, the trajectory |z;|> = 2r3 is

stable for the Kuperstein embedding, whereas the trajectory |w;|?> = r? in the Ouyang

embedding is unstable.

G.4. Higher-degree ACR Embeddings

We conclude this appendix with a derivation of the non-delta flat trajectory for

higher degree ACR embeddings. As before, to find an extremal radial direction we

oV

5u; =0 for any r. Since the potential for a general ACR

need to satisfy the equations
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embedding depends only on |®[?”, Re(®”) and

2 2

Wy (%) w3 w2
Z = |pp—+ps—| +|p1— +pi—
wq w3 wq Wy
w w 2 w 2
3 1 1
+|p2— +Ppa—| + pz— +ps—| (G.52)
wa Wy w3

we will consider these terms separately. Extremizing Re(®') with respect to the

phase of ® selects real ®”. For any non-zero ® we can use equations (G.31) and

(G.32) to show that

5or dw;
Re [ } Re Zpl w] = (G.53)
for
wy |? 0 +
gy S & , (G.54)
ws 2 p2tops
2
0
L e B ) (G.55)
Wy 2 ptm
and
OF = £ \Pp3P/2 (G.56)
where
o (pl _|_p3)%(p1+p3)(p1 +p4)%(p1+p4)(p2 + p3)%(p2+p3)(p2 _|_p4)%(p2+p4)
A= . (G.57)
pP
Notice that this point trivially extremizes |®[*! since
sor
5|@* = |®|* Re [ @P] =0. (G.58)

In addition, since ®F is real, equation (G.53) also implies dRe(®”) = 0. Finally,
surprisingly enough, (G.54, G.55) also extremize (G.52) with respect to the angular
directions. Therefore (G.56) is an extremal radial trajectory which exists for a generic
case in addition to the delta-flat direction, ® = 0. For P = 1 this reproduces the

non-delta-flat direction for the Ouyang embedding, cf. §G.2. For P =2, p; =p, =1
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we find that the Karch-Katz embedding has a non-delta-flat direction given by ®? =
WiWey = WaWy = :I:}J’?’.

Although every ACR embedding contains non-delta flat directions (G.56), we now
argue that these higher degree embeddings (P > 1) are not promising settings for flat
potentials. Recall that for the P = 1 Kuperstein an inflection point could be arranged
on the negative z;—axis (modulo consistency with microscopic constraints) basically

because a z3/2

-term in the potential led to a negative divergence of n for small z,
which could be balanced against the z>-term from the n-problem for intermediate x
(see §4.1). For P > 1 embeddings this possibility disappears since there are then no
terms of lower order in x than the 2> term. Hence,

2
limn = 3 (G.59)

z—0

This is suggestive evidence that fine tuning in higher degree ACR embeddings cannot

give inflation, at least not at = < 1 (¢f. [113]).



APPENDIX H

Stabilization of the Volume

In this appendix we discuss subtleties in the stabilization of the compactification

volume.

In the AdS minimum of a KKLT compactification, the stabilized value of the

Kéhler modulus wp = aop is given by the SUSY condition

B Ve
=0 = = =0, (H.1)

wp

D,W|

r=0,wp

which in terms of the flux superpotential is [93]

ol or _9p 43, (H.2)
| Ao|

Adding an antibrane to lift the KKLT AdS minimum to a dS minimum induces a
small shift in the stabilized volume, wy = wp + dw. We compute this shift in §H.1.
This gives the value of the Kédhler modulus in the absence of a mobile D3-brane (or
when the brane is near the tip of the throat). The presence of a D3-brane away from
the tip induces a further shift of the volume that depends on the brane position,
which we denote w,(r). We compute this dependence of the Kéhler modulus on the

D3-brane position in §H.2. (See also [113].)
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H.1. Shift Induced by Uplifting

The stabilized value of the Kahler after uplifting, wy = wr + dw, is determined

from
ov 0*Vi Vp
| T | Yt | (H.3)
wo wE wo
where, from (7.20),
GVD —2VD —2VD 5w
v R [1 - 35] . (H.4)
wo wo WE
Solving (H.3) and (H.4) for dw we find
Wr
0w = 3 w2 9?Vp (H5>
+ 2Vp Ow? wp
From equation (7.34) we have
Ve(0.w) = [ (2w + 6) — 6o el (HL6)
T T w)y? | Aol '
1
Vo(0.w) = D (HL.7)
and
oVp w42 e 2w
- _Z = H
Ow w [VF+02w} (H8)
Since
e—QwF
= — H.
Ve(Oswr) = ~C5 . (1L9)

equation (H.8) vanishes at wg, confirming equation (H.1). The second derivative of

the F-term potential at wp is

0%V, 2 5
awj = _W {(wF)Q -+ §wF + 1:| VF(O,LUF)

wp
~ +2|Vp(0,wr)l, (H.10)
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where wp > 1. It proves convenient to define the ratio of the antibrane energy to the

F-term energy before uplifting,
§= — (H.11)

where stability of the volume modulus in a metastable de Sitter vacuum typically

requires 1 < s < O(3). Using @ > 1 in equation (H.5), we find

wozwp—i—i. (H.12)
wr

Although 0w is small, it appears in an exponent in the potential (7.34), so that its

effect there has to be considered:

[Wol [Wo 5 ( s )
33— =3——e¥Fe® =~ Quwp+3) |1+ —
4l =Py Gor +3) 1+,
~ 2wp+3+2s,
~ 2wy+ 3+ 2s. (H.13)

H.2. Shift Induced by Brane Motion

Adding a mobile D3-brane to the compactification induces a further shift of the
Kéhler modulus that depends on the radial position of the brane, w,(r). The function

w,(r) is determined by the solution of a transcendental equation,

8.V, o =0. (H.14)

wy (1)

Although equation (H.14) does not have an exact analytic solution, here we derive
a simple, but very accurate approximate solution. (See also [113].) The precise
form of the solution we give here is only valid for the trajectory z; = —% of the
Kuperstein potential (see Chapter 7). While these results can easily be generalized

to the trajectory z; = % and to more general embeddings, we have argued in the
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r3/2

main body of the paper that the trajectory z; = — 7 in the Kuperstein embedding
is of primary interest as far as the possibility of inflationary solutions is concerned.
First, we notice that w, appears both in polynomial terms and exponential terms
in (H.14). Letting w, — wo = wp + - (see equation (H.12)) in all polynomial terms,
but not in the exponentials, we transform the transcendental equation (H.14) into a
quadratic equation for e*+("). Solving this we obtain the dependence of the Kihler

modulus on the brane position as an expansion in x

W*(T):u}o [1+C1$+03/2I3/2+02$2+...}, (H15)
where
s s(3s—1D5) B
WO:(JJF—I—w—F—FW—FO(ng), (H16)
and
271 M3\ 1
= (=52 ) = + 0w H.17
o = (5 ¢,%)w%* W), (H.17)
11 1
= —— 1= 5—| +O(w’ H.18
op = no 1= | + O, (1.15)
s—1¢2\ 1 L
= — = | =& . H.1
Co ( G M§1> %+(9(wF) (H.19)

As we can see from this, typically c3/2 > ¢, ¢z, so that the following expression is a

good approximation

w*(r) ~ Wy [1 + 03/25E3/2:| . (HQO)

In fact, in the cases we studied numerically this proved to be a remarkably accurate
approximation to the exact result. Notice also that ¢y, c3/2, ¢z are all positive — the

volume shrinks as the D3-brane moves towards the tip.
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FIGURE 1. D3-brane potential V(¢).
Shown are the analytic potential derived from (H.20)(dashed line) and the
exact numerical result (solid line).

H.3. Canonical Inflaton Revisited

Equipped with (H.20) for the evolution of the volume modulus, we may obtain a

more accurate analytical result for the canonical inflaton field (F.34),

. 30’0T3 1/2
#lr) = /<U(r, @(r))) ar, (H.21)
where .
30’0T3 o 3 w*(r) %T:J,TQ
Ulronm) 2 <w*<0> Ty ) 22
This implies
3/2 , 1-1/2
o(r) = / 1+c3 ((Z%) — 6%31] d¢ (H.23)
- e (0N &
SN [1 -5 (¢_M) + 36—]\131] , (H.24)
SENOR (H.25)



APPENDIX J

Collection of Useful Results

In this appendix we cite key results of early universe cosmology and string theory.

As these results are used throughout the thesis, we collect them here for easy reference.

J.1. Early Universe Cosmology

J.1.1. Primordial Fluctuations.
Scalar Fluctuations. We define scalar metric perturbations ((t,x) by the following
line element

ds? = —dt? 4 292 (1)6;;da’da? . (J.1)

The power spectrum of ( is
(GG) = (2m)°0(k + K )Py (k) , (J.2)

where (i (t) = [ d®z((t,x)e"**. By convention we define the following dimensionless

power spectrum

k) = 2P (k). (1.3)

~on?

This is normalized such that the variance of ¢ is ((¢) = [, Ps(k)dInk. The scale-

dependence of the power spectrum is defined by the scalar spectral index

_dIn P,
~ dlnk

(J.4)

Ng —

Scale-invariance corresponds to ng = 1.
261



J. COLLECTION OF USEFUL RESULTS 262
We may also define the running of the spectral index by

dng
oy =

T dlnk’

(J.5)

If ¢ is Gaussian then the power spectrum contains all the statistical information.
Non-Gaussianity is encoded in higher-order correlation functions of (. Local non-

Gaussianity is parameterized by the following field redefinition

=Gt s, (1.6)

where (;, is Gaussian.
Tensor Fluctuations. We define tensor metric perturbations h;;(t,x) by the fol-

lowing line element
ds® = —dt* + a®(t) (6 + hij(t,x))dz'd2? ,  O;hyy = hl=0. (J.7)
The power spectrum of h is
(hihi) = (27)30(k + K)Py (k) , (J.8)

where hy is the Fourier transform of the two polarization modes of h;; (see Appendix

A). The dimensionless power spectrum is

Ak = 2 ). (J.9)

272

Its scale-dependence is encoded in the tensor spectral index

dIn P,
= . 1
" ik (3.10)
Scale-invariance corresponds to n; = 0. We define the tensor-to-scale ratio
Iy
= —. J.11
r=% (111)
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J.1.2. Inflationary Predictions.
Slow-roll Models. We use the standard slow-roll parameters

V//
n= Msl_

H NM_I?I(K’)Q
M V?

V/V///
— (2) — M4
H? 2 \V ¢

€ = pl —V2 .
Inflation predicts a nearly scale-invariant spectrum of scalar perturbations

1 H?
8mAM2 €

1 V

247‘[’2]\/[31 €

Pu(k) =

k=aH k=aH

At first-order in slow-roll there is a small scale-dependence
ns — 1 =2n — 6e.

The spectrum is very nearly Gaussian, with

5

fNL ~ —E

(ng—1).

Running of the spectral index is second-order in slow-roll

oy & 16en — 246 — 26
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(J.12)

(J.13)

(J.14)

(J.15)

(J.16)

Inflation also predicts a nearly scale-invariant spectrum of tensor perturbations

2 H?
F(k) = 5+

At first-order in slow-roll there is a small scale-dependence
ng = —2€.

The tensor-to-scalar ratio is

r = 106e,

(J.17)

(J.18)

(J.19)



J. COLLECTION OF USEFUL RESULTS 264

and the single-field slow-roll consistency relation is
r=—8n,. (J.20)
Models with General Speed of Sound. The action
/d%\/_{ le+ P(X, ) = —%guvau¢ay¢, (J.21)

describes a fluid with pressure P, energy density p = 2X P x — P, and speed of sound

dP P
cC=—= X . (J.22)
dp  Px+2XPxx
Such a fluid can source inflation if the following slow-variation parameters
a é és
— i = J.23
‘T "Tam CToH (3.23)
are small. The non-trivial speed of sound modifies the scalar spectrum
1 H?
Py(k) = ————— J.24
(k) 8m2M? cqe (7:24)
csk=aH
Its scale-dependence becomes
ns—1=—-2e—n—s. (J.25)
For ¢, < 1 the spectrum can be highly non-Gaussian
; 35 /1 5 /1
equil
_ ——1) —<——1—2A), J.26
A 108( Tl (J.26)
where
X?’Pxx + X3P
A= XX T 57 XA (3.27)

XPx +2X?Pxx

The tensor spectrum is the same as for slow-roll models (J.17).
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J.2. String Theory

In the following we find it convenient to define the fundamental string scale and

the string length as follows

M? = — = I (J.28)
We used the reduced four-dimensional Planck scale
1
M? = (2.43 x 10" GeV)?. (J.29)

Pl RrG

J.2.1. Dimensional Reduction. The ten-dimensional Einstein action dimen-

sionally reduced to four dimensions leads to the following correspondence
M M?
%/leX\/—GRN — Tr’l/d4x\/——g724 +..., (J.30)

where M = me and
M§1 2 Vs

M2 (2m)Tg2 15

(J.31)

J.2.2. Warped Compactification. A warped compactification has the follow-

ing generic line element
ds? = h™12(y) g datda” + % (y)gi;dy'dy’ . (J.32)
The compactification volume that enters the dimensional reduction (J.31) then is

vy = / Oy /G hy) (1.33)

Locally, the internal metric is often taken to be a cone, g;dy'dy’ = dr? + r?ds%.,
with radial coordinate r and base manifold Xs.

AdSs x X5. The warp factor for AdSs x X5 on the interval rig < r < ryy is

R R w3
h(r) = 7“_4 , l_4 = 47Tgst s (J34)

where e.g. Vol(S5) = 73, Vol(T'?!) = %-
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Conifold. The warp factor in the large radius limit of the Klebanov-Strassler so-

lution is

R* 3 gsM?
h(r):r_‘l [1+cln(i>+f} ; c=—2 . (J.35)

To

J.2.3. D-branes.

Dp-brane Tension. The tension of a Dp-brane is

Wiss:
(2m)Pgs

T, = (1.36)

Dp-brane Action in Warped Background. Dimensional reduction in the back-

ground (J.32) leads to the following effective action for a Dp-brane

Sy = / A6V =g Ly, Lop=—F OVI-2@X — [ 8),  (137)

where X = —1¢0,¢0,¢ and

P =TVt O =Gk Vo= [ @ (139)

J.2.4. Supergravity.
F-term Potential. The potential for complex superfields ®; is
Vi = M | KABD WDEW — %WP] . (J.39)
pl

Here, K(®;, ®;) and W(®;) are the Kihler potential and the superpotential, respec-
tively. We defined the covariant derivative, DoW = o,W + ML;(aAIC)W, and the
Kéhler metric, K 5 = 0405K.

D3s and D7s in the Conifold. In this thesis we consider D3-branes on the (sin-

gular) conifold. The D3-brane position is given by the complex coordinates z; which

satisty

Zz?:O and Z\zi|2:r3. (J.40)
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Moduli stabilization requires a stack of n D7-branes that wrap a four-cycle in the
compact space. This four-cycle is defined by the embedding condition f(z;) = 0. The
volume of the four-cycle relates to the Kahler modulus p.

The system of D3-branes and wrapped D7-branes corresponds to the following

superpotential

W =Wy + A(z)e ", A(z) = f(z)V". (J.41)

The Kahler potential is
K=-=3M In[p+p—~k(z,z)=—-3MInU, (J.42)
where ~ is a constant and k is the Kéhler potential of the conifold
- 3 L\ 2/3
Kz, 7) = §<Z’Z"| ) . (1.43)

Equations (J.41) and (J.42) lead to the following potential (J.39)

1 ~ _ 3 . 1.
Ve = 3M—§1U2 (p+ D)W, |* =3(WW, +cc.) + §(W,pz Wi+ cec)+ ;WWJ‘WJ )
(J.44)
where
~ _ 127z Zi%i
[ P L ] (J.45)

2 73 73
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