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Abstract

Over the past decade, innovations in radiation and photonic detectors considerably improved their
resolution, pixel density, sensitivity, and sampling rate, which all contribute to increased data
generation rates. This huge data increases the amount of storage required, as well as the cabling
between the source and the storage units. To overcome this problem, edge machine learning
(EdgeML) proposes to move computation units near the detectors, utilizing machine learning
(ML) models to emulate non-linear mathematical relationships between detector’s output data.
ML algorithms can be implemented in digital circuits, such as application-specific integrated
circuits and field-programmable gate arrays, which support both parallelization and pipelining.
EdgeML has both the benefits of edge computing and ML models to compress data near the
detectors. This paper explores the currently available tool-flows designed to translate software ML
algorithms to digital circuits near the edge. The main focus is on tool-flows that provide a diverse
range of supported models, optimization techniques, and compression methods. We compare their
accessibility, performance, and ease of use, and compare them for two high data-rate
instrumentation applications: (1) CookieBox, and (2) billion-pixel camera.

1. Introduction

New instrumentation detectors have better sensitivity, sampling rate, and pixel density. These improvements
significantly increase the total data velocity, exceeding terabytes per second (TBs™!) in particle physics and
medical imaging experiments and surpassing the capacity of current acquisition systems [1, 2]. For example,
the data generation of Large Hadron Collider (LHC) experiments at CERN reach 1200 GBs™! [3]. The
detectors at the LHC use multi-level trigger systems and still need massive data centers to analyze, compress
and save the final data. The current methods save only a small fraction of the total generated data, recording
only 1in 10 to 1 in 100 bunch crossings happening at 40 MHz [4, 5]. Another example is the LINAC
Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) National Accelerator
Laboratory, which has a repetition rate of 1 MHz leading to colossal data velocity, exceeding TBs~! [6].

The current paradigm of collecting all raw data in a centralized node requires expensive hardware,
significant power, and has a large environmental impact. A potential solution is to move the computational
units closer to the edge of the system, either in adjacent hardware or directly embedded within the detector
control and acquisition circuits, a method called edge computing [7]. By placing computing resources and
data storage at the system’s edge, edge computing reduces system latency while enabling real-time analytic
and reducing operational costs [8, 9].

Edge computing allows only limited computing resources due to power and physical constraints, which
may not be enough when it comes to analyses requiring complex classical algorithms. Training machine
learning (ML) algorithms to model these complex algorithms can achieve the same behavior with less
computing complexity. Combining edge computing and ML is called edge ML (EdgeML). EdgeML offers
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Figure 1. Comparison of classic data acquisition system and EdgeML data acquisition system.

reduced latency, and bandwidth requirements. Figure 1 presents where the EdgeML fits in an edge
computing paradigm and how it differs from a standard data acquisition (DAQ) [10].

As can be seen, ML on the edge can provide intelligent, low-latency feedback to the detector and the
radiation source, enabling parameter adjustments. The amount of stored data in the EdgeML DAQ paradigm
is also significantly lower compared to standard DAQ. ML algorithms can be implemented in hardware to
increase pipelining and parallelization. While several processing units and digital circuits are available for
general tasks and ML purposes, only a few are suitable for use near the edge.

Choosing the correct processing units for EdgeML applications is a crucial subject due to the necessity of
very low latency for real-time DAQ. Moreover, low power consumption, low inference latency, low unit cost,
and high integration level are the next crucial factors for a good EdgeML system. Algorithms can be
implemented in hardware to increase pipelining and parallelization [11]. Application-specific integrated
circuits (ASICs) and field-programmable gate arrays (FPGAs) are two integrated circuits that can run with a
lower latency compared to other micro-controllers, and common processors such as central processing unit,
and graphics processing unit [12]. ASICs and FPGAs also achieve inherent parallelism through their
optimized architecture, allowing for the execution of multiple tasks or operations simultaneously. Moreover,
low power usage, and large number of input/output (I/O) ports for high-throughput communication also
make ASICs, and FPGAs two excellent choice for EdgeML applications [13]. The architecture of ML
algorithms and these digital circuits are a great match since ML algorithms generally use arithmetic that is
simple for digital circuits to execute, such as additions and multiplications [14]. However, ML algorithms are
progressing rapidly, and ASIC require long development cycles, making FPGA a better choice for
prototyping and low cost EdgeML applications.

Generally, there is ongoing research to integrate FPGA-based EdgeML models in high data-rate
instrumentation, particularly for online event selection, and DAQ paradigms at the edge of the system [15].
In [16], an FPGA-based ML event classification for custom electronics-based trigger systems in high energy
physics is introduced, where the lowest latency for real-time event classification is required. Additionally, the
authors in [17] have presented an FPGA-embedded system for ML-based tracking and triggering in the
electron—ion collider experiment. Moreover, a fast muon tracking with ML implemented in FPGA for
first-level trigger at LHC experiment is presented in [18].

Although FPGAs are great choice for high data-rate instrumentation, implementing ML models on
FPGAs requires a high level of expertise and knowledge in hardware design. In this paper, we first explore the
available tool-flows for mapping ML algorithms onto FPGAs, near the edge of the sensors. The main focus is
on tool-flows that provide a wide range of supported models, optimization techniques, and lower latency to
find the most suitable for instrumentation. After finding the most suitable one, we use it to implement
different ML models on FPGAs focused on two high data-rate instrumentation application: (1) CookieBox,
and (2) billion-pixel camera. We design our ML models, translate them to hardware code, and implement
the models for both application on the Zynq UltraScale+ MPSoC ZCU104 evaluation kit as the target board.

The rest of the paper is organized as follows: section 2 compares the current methods for implementing
ML on FPGA and explains the available ML to FPGA tool-flows. Section 3 describes the methodology, and
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the experiment setup that we use to compare the tool-flow performances on FPGA. The simulation and
hardware implementation results are presented in section 4. Finally, we discuss the performance of available
tool-flows for instrumentation and conclude the paper in sections 5 and 6, respectively.

2. Background

The usual FPGA programming languages are hardware description language (HDL) such as Verilog and, very
high-speed integrated circuit hardware description language (VHDL). ML model hardware implementations
in real-time systems are complicated, multi-step endeavors. Translating a complex ML algorithm to HDL
requires sufficient hardware knowledge and is time-consuming.

High-level synthesis (HLS) is a relatively new alternative for developing FPGA applications. HLS allows
software engineers to design applications for FPGA and ASIC platforms using more common programming
languages, namely C and C++ [19]. HLS tools can be used to implement ML algorithms with much less
development time and effort, but they may bring some compromise on performance compared to direct
HDL implementation [20, 21]. Several groups want to take automation a step further and create a tool-flow
that does the entire implementation chain from inference model to hardware implementation. These
tool-flows use an ML model from common libraries such as TensorFlow, Keras, and PyTorch, enabling FPGA
implementation with no hardware knowledge. Table 1 provides a thorough compilation of the presently
accessible tool-flows for ML to FPGA applications. It includes information about the supported models, ML
environment, release date, and the supported ML model compression methods. The following paragraphs
highlight a few of these tool-flows.

HLS4ML [22, 46], is an open-source Python package for ML inference in FPGAs. It first converts a Keras
or PyTorch model to an HLS model and maps it to the corresponding HDL code. HLS4ML was initially
designed for microsecond latency applications like the CERN LHC [47]. The HLS code generated by hls4ml
can also be used for ASIC design [48, 49]. HLS4ML offers many configuration settings such as I/O type,
reuse factor, precision, and different implementation strategies. The reuse factor is a parameter of HLS4ML
that determines how many times each FPGA multiplier will be used, directly impacting the model latency.

FINN [23] is a framework for building fast and flexible FPGA accelerators using a heterogeneous
streaming architecture. The FINN framework targets binarized neural networks (BNNs) and highly
quantized neural networks (NNs) for small boards. FINN converts each layer to an HLS design, and
subsequently stitches these sub-components together to make the whole network. Custom models can also
be imported from an Open Neural Network Exchange (ONNX) model by calling FINN from a Python script.
Compared to HLS4ML, FINN offers less customization and we can only change the target clock, target
throughput, and quantization.

It is worth mentioning that the HLS4ML and FINN teams are working together on a more unified test
flow so that both Keras and PyTorch models can be translated into quantized ONNX, as shown in figure 2
[50]. This will make the interaction of HLS4ML, and FINN much easier in the future.

The Vitis Al [24] platform is a comprehensive artificial intelligence (Al) inference development solution
for Xilinx devices and Alveo Data Center acceleration cards. Vitis Al is a proprietary configurable intellectual
property (IP) core with internal parallelism [48]. Some commonly used models supported by Vitis Al are
provided in the Xilinx Model Zoo [51] such as ImageNet networks and some object detection networks. Vitis
Al also supports custom models, and users can give it their customized NN model.

Versatile tensor accelerator (VTA) [25] is an open, generic, and customizable deep learning accelerator
with a complete Apache tensor virtual machine-based compiler stack. Generally, A VTA instance consists of a
vector-matrix and an arithmetic logic unit core, supporting operations on matrix operands. VTA targets
architectures similar to ResNet and MobileNet-based NN architectures.

MATLAB deep learning processor (DLP) [26] is a subset of the commercial MATLAB suite and a
tool-flow supporting a full ML model compilation, including quantization. It can target any platform
compatible with the Matlab HDL Coder [52], such as Xilinx’s Zynq and Zynq UltraScale+ platforms.
MATLAB DLP has its own front end, but it also can import NN models from currently available libraries such
as PyTorch. It also supports ONNX, making it inter-operable with other NN libraries and other tool-flows.

OpenVINO provides a set of tools and libraries for optimizing and deploying deep learning models on
various Intel hardware platforms, including FPGAs [27]. Although OpenVINO is not designed for FPGAs, it
has the same functionality as MATLAB DLP and Vitis Al for FPGA accelerators. It provides boosted deep
learning performance for vision, audio, and more models from popular frameworks like TensorFlow and
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Table 1. An overview of the available ML to FPGA tool-flows.

Compression ML
Tool-flow ML models methods Active environment  Development Release date
HLS4ML [22] FCNN?, Pruning, Yes Keras Open-source 2020
CNNP, RNN¢ quantization
FINN [23] FCNN, CNN Pruning, Yes PyTorch Open-source 2017
quantization
Vitis Al [24] CNN, RNN Pruning, Yes TensorFlow, Commercial 2019
quantization PyTorch
VTA [25] CNN Pruning, Yes PyTorch Commercial 2018
quantization
Matlab DLP CNN Pruning, Yes Keras, Commercial 2015
[26] quantization Caffe
OpenVinod CNN Pruning, Yes TensorFlow, Commercial 2019
[27] quantization PyTorch
OpenHLS [28] CNN Pruning, Yes PyTorch Open-source 2023
quantization
NNGEN [29] FCNN Quantization No Proprietary Open-source 2019
ScaleHLS [30] FCNN — No PyTorch Open-source 2022
CFU CNN — Yes TensorFlow Open-source 2021
Playground
(31]
VeriGOOD- CNN — Yes ONNX Open-source 2022
ML [32]
DNNWeaver CNN — No Proprietary Open-source 2016
[33]
DL2HDL [34] FCNN — No PyTorch Open-source 2019
FPGAConvnet CNN — No Proprietary Open-source 2022
(35]
FINN-L [36] LSTM — No PyTorch Open-source 2017
LeFlow [37] FCNN,CNN — No Proprietary Open-source 2018
CaFGPA [38] CNN — No Caffe Open-source 2018
DNN Builder CNN — No Caffe Open-source 2017
(39]
FP-DNN [40] CNN — No TensorFlow Open-source 2017
Snowflake [41] CNN — No Proprietary Open-source 2017
FFTCodeGen CNN — No Proprietary Open-source 2016
[42]
Haddoc2 [43] CNN — No Caffe Open-source 2017
Angel-Eye [44] CNN — No Caffe Open-source 2017
Caffein [45] CNN — No Caffe Open-source 2018

2 Fully connected neural network

b Convolutional neural network

¢ Recurrent neural network

4 OpenVino is the only tool-flow that targets Intel FPGAs. Other tool-flows target AMD Xilinx FPGAs.

QKeras
(Keras) HLS4ML
— QONNX [—
Brevitas
(Pytorch) b

Figure 2. HLS4ML and FINN common interface.

PyTorch. It also supports different quantization and optimization techniques but only supports a limited
number of Intel FPGA boards.

OpenHLS is a lightweight, compiler framework that uses a combination of compiler and HLS techniques
to compile the entire deep NN into fully scheduled register-transfer level design [28]. Its architecture is

4
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Table 2. Neural network characteristics for testing tool-flows.

Architecture FCNN CNN

Dataset UNSW-NB15 SVHN

Size (Params.) 3171 4460

Activation Categorical cross-entropy Categorical cross-entropy
Optimizer Adam Adam

Learning rate 0.001 0.001

Validation split 0.2 0.2

Batch size 256 64

similar to HLS4ML and FINN, but focused on Convolutional NNs (CNNs) in particular, while using low
level virtual machine as its core compiler [53].

The tool flows summarized above are the most actively developed ones, based on the level of activity on
their GitHub repositories, and offer better configuration and optimization support than other low activity
tools. Other available tool-flows have relatively less community support, with fewer features compared to the
first seven tool-flows of table 1. Among the tool-flows explained, only HLS4ML and FINN fully support both
fully connected NN (FCNN) and CNN layers with no board support limitation. Therefore, we see potential
in these tool-flows to implement fully customized models on FPGAs. Additionally, researchers can migrate
from FPGA to ASIC for fixed applications if the tool-flow provides HLS/HDL codes, which HLS4ML and
FINN do. Therefore, HLS4ML and FINN are chosen as potential candidates for EdgeML high data-rate
instrumentation.

In the rest of this paper we investigate HLS4ML, and FINN, compare them, and explore their different
configuration settings to find the optimal configuration. Our objective is to find the optimal tool-flow
considering the latency and use the best one for two high data-rate instrumentation applications: (1)
CookieBox and (2) billion-pixel camera. We design and translate ML models to hardware code, and
implement the models for both application on the Zynq UltraScale4+ MPSoC ZCU104 evaluation kit as the
target board.

3. Methodology

3.1. Tool-flows comparison
We first selected two different training data sets, and designed NN models for these applications to ensure the
fit on our board. For each application we designed an FCNN model and an CNN model.

The first model (FCNN) has three hidden layers and a total size of 3171 parameters. The training data set
for the FCNN model is the UNSW-NB15, a big data set created to provide a comprehensive network-based
data set that can reflect modern network traffic scenarios [54].

The second model (CNN) has three convolutional layers, two dense layers, and a total size of 4460
parameters. The training data set for the CNN model is the Street View House Number (SVHN) data set,
which can be seen as similar flavor to MNIST with over 600 000 labeled data [55].

Table 2 provides an overview of the key characteristics of both NN models for testing tool-flows. Both
model’s architecture are presented in figure 3. Since FINN is only focused on highly quantized models, we
also used the Qkeras in the HLS4ML front-end to quantize the model for a better side-by-side comparison
with FINN. Unfortunately, due to a software limitation in Vivado, we were unable to compare the FCNN and
CNN models using the same datasets in the first experiment. Vivado restricts the number of parameters per
layer to 4096, which would be exceeded if we were to implement an FCNN model for the SVHN dataset, due
to the large input shape.

Once we have selected the NN models and use HLS4ML and FINN to generate their corresponding HLS
code, we extract the corresponding IP block of the model, bring it into the Vivado design suite, and finalize
the final block design to test and implement on the board. The overall design flow is presented in figure 4. In
the final block design, it is crucial to appropriately connect the NN block to various components. These
components include a memory controller, a processor, and a counter. The counter counts the number of
clock cycles that it takes to complete the inference of the ML block, which indicates the latency of the ML
block. The latency has no variability and depends only on architecture of the trained model. We use the
advanced extensible interface (AXI) developed by ARM for communication bus protocol in the block design.
We chose the Zynq UltraScale+ MPSoC ZCU104 evaluation kit as target boards, since it has an ARM
processor, and sufficient resources for our ML models. The processor is not necessary but facilitates the
testing process. We created our own ZCU104 block design for HLS4ML, since is not fully supported by
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Figure 3. FCNN and CNN models architecture for testing tool-flows.

* Memory Controller
ML cod HLS/HDL Create block « Processor
coto (ML IP) design I

Calculate latency
and save output
data

Data
validation

Figure 4. The test flow for evaluating the Tool-Flows.

OFF-Chip Memory

AXl Interface

In Out

AXI Interface

ML Block

Figure 5. Data transmission flow.

HLS4MUL’s end-to-end examples [56]. To send the data in and out of the NN block on the board, we use an
off-chip memory to send the data with the AXI. This flow is presented in figure 5.

The NN models implemented by HLS4ML were trained on a PC using Keras library, since Keras is fully
supported as HLS4ML front-end. The same NN models are implemented by FINN using PyTorch since
FINN does not support Keras at this time.
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Table 3. Neural network characteristic for testing instrumentation applications.

Application CookieBox Billion-pixel camera
Architecture FCNN CNN FCNN CNN
Size (Params.) 3433 3665 2593 2185
Loss function scc? SCC MSE® MSE
Optimizer Adam Adam Adam Adam
Learning rate 0.001 0.001 0.0001 0.0001
Validation 0.2 0.2 0.15 0.15
Batch size 256 2042 100 100

? Sparse categorical cross-entropy (SCC)
® Mean square error + regularization term

3.2. Instrumentation applications

After comparing HLS4ML and FINN using the mentioned models, and selecting the best one with the lowest
latency, we now apply a similar process for two real high data-rate instrumentation applications: the
CookieBox and the billion-pixel camera [6, 57]. The objective of this experiment is to determine whether the
performance of tool-flows is sufficient for these applications. We again compare both FCNN and CNN
models to find the optimal ML configuration.

The first application is the CookieBox, which is an angular streaking detector for online x-ray beam
diagnostic tool in the LCLS-II project by SLAC [6, 58]. LCLS-II operates at a repetition rate of 1 MHz,
resulting in a massive amount of data exceeding terabytes per second. To handle this data overload, a strategy
is employed to veto some certain pulses. The CookieBox detector is actually used to make these veto
decisions. The designed ML model’s purpose for CookieBox is to classify different x-ray beam shots, and veto
the unnecessary ones [59].

The second application is the billion-pixel camera, an x-ray camera for synchrotron and x-ray
free-electron laser experiments. The Billion-pixel camera will generate 1000 to 10 000 images in one second,
and each image is around 1-2 GB in size. Accordingly, the billion-pixel camera will generate between
1TBs™! and 10+ TBs™! of data [60]. The designed ML model’s purpose for the billion-pixel camera is to
compress input images by reducing sparse representations of the camera’s images, followed by quantization
and entropy coding for data compression [61]. It is worth mentioning that we needed to add a custom layer
to the HLS4ML back-end for the billion-pixel camera experiment. We had to use a parametric soft shrink
activation for the billion-pixel camera ML model, which is not supported by HLS4ML default models. The
softshrink activation is defined as:

x—A, ifx>A
Softshrinky (x) = ¢ x4\, ifx< —\ (1)
0, otherwise.

The softshrink activation helps increase the code sparsity, which we measure as the number of zero-value
elements in the encoding divided by the total element count. Since the function is not a supported HLS4ML
layer, we modified the back-end accordingly in order to convert the model. The NN model training setup for
both applications is presented in table 3. The architecture of both models are also presented in figures 6
and 7, respectively.

4, Results

4.1. Tool-flow comparison
In the first experiment, our objective was to determine the tool-flow with the best latency for high data-rate
instrumentation. We first use the high throughput configuration of the FINN, which focuses on the lowest
latency (highest throughput). The configuration of HLS4ML for the first experiment is also set to a reuse
factor of 1, a latency strategy, and a parallel data structure.

For the second experiment, we use the base configuration of the FINN focused on minimizing resource
usage. The configuration of HLS4ML for the second experiment is set to a reuse factor of 64, a resource
strategy, and a stream data structure. Finally, the target clock frequency for all experiments is set to 100 MHz.



10P Publishing

Mach. Learn.: Sci. Technol. 4 (2023) 045035 M M Rahimifar et al

Input Flatten input Dense layer Dense layer Dense layer Dense layer Output
Flatten RelLU RelLU RelU Softmax
32x16 ——— 1x512 — 4 N 32 Neurons 32 Neurons 5 Neurons 1x5
(a) FCNN
20@8x4 o@me X160
10@32x16  10@16x8  10@16x8  10@8x4 e
1@32x16 ; ;
H ] rl'y-rr rrlrrr n“"nu
— i LN
Conv2D Max-Pool Conv2D Max-Pool Conv2D Max-Pool
(b) CNN
Figure 6. CookieBox ML models architecture.
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(b) CNN model. Similiar to the FCNN, the convolution and the softshrink
are applied repeatedly, 5 times in total.

Figure 7. Billion-pixel camera ML models architecture.

The results for both experiments are shown in tables 4 and 5, respectively. We also compare the
implementations of the mentioned models using HLS4ML and FINN with the available related works in
both tables. We have chosen related works that concentrate on both latency and resource implementation to
draw meaningful comparisons with our implementation. In table 4, we select models from other related
works with the lowest latency for comparison. For a fair comparison in table 5, we opt for more compressed
models from other related works, as we are emphasizing lower resource utilization in the second experiment.

As can be seen, the latency of HLS4ML for both experiments is lower compared to FINN, since the
HLS4ML utilizes several HLS pragmas, such as loop unrolling in the final HLS code, resulting in low latency.
By switching the implementation strategy from latency optimization to resource minimization in the
HLS4ML configurations, resource usage decreases at the cost of increased latency. FINN performs better
when it comes to resource utilization, especially digital signal processor (DSP) usage. FINN shows efficient
power usage, as expected, due to its primary design targets, which are smaller boards and models. It is

8
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Table 4. Implementation results for both fully connected (FCNN) and convolutional (CNN) models targeting a lower latency.

Tool-flow HLS4ML (this work) FINN (this work) [22] [48] [49] [62]
Dataset UNSW-NB15 SVHN UNSW-NB15 SVHN SVHN  VoltageNet Cityscapes MNIST
Model FCNN CNN FCNN CNN CNN CNN CNN FCNN
Size (Params.) 3171 4460 3171 4460 170000 81000 14 000 118 000
Accuracy (%) 93 86 92 83 90 NA 77 93
Board ZCU104 ZCU104 ZCU104 ZCU104 VU9P Zedboard ZCU102 VU19P
Clock (MHz) 100 100 100 100 200 100 140 200
Latency (us) 4 45 9 72 6 110 4800 10
Power (w) 3.5 5.3 2.9 4.5 NA NA NA NA
BRAM® (%) 0 23 1 28 3 93 56 70
DSPP (%) 1 16 0 2 95 100 60 38
LUT® (%) 3 8 7 31 15 48 46 20

FF¢ (%) 0 4 3 17 3 25 25 7

2 Block RAM

b Digital signal processor
¢ Look-up table
4 Flip-flops

Table 5. Implementation results for both fully connected (FCNN) and convolutional (CNN) models targeting a lower resource
utilization.

Tool-flow HLS4ML (this work) FINN (this work) [22] [48] [49] [62]
Dataset UNSW-NB15 SVHN UNSW-NB15 SVHN SVHN  VoltageNet Cityscapes MNIST
Model FCNN CNN FCNN CNN CNN CNN CNN FCNN
Size (Params.) 3171 4460 3171 4460 170000 81000 5300 118 000
Accuracy (%) 85 83 85 81 88 NA 81 93
Board ZCU104 ZCU104 ZCU104 ZCU104 VU9P Pyng-Z1 ZCU102 VUI19P
Clock (MHz) 100 100 100 100 200 100 140 200
Latency (us) 5.5 60 10 80 30 3300 4900 100
Power (W) 3.1 5.2 2.1 42 NA NA NA NA
BRAM (%) 1 51 7 70 2 1.4 25 20

DSP (%) 0 12 0 2 20 0 18 1

LUT (%) 1 5 5 26 18 21 30 5

FF (%) 0 3 1 13 4 11 16 6

important to note that the power reported in the tables those reported by Xilinx Vivado post layout
implementation. Both tool-flows demonstrate a good performance compared to the related works. Although
[22] demonstrates a better latency, it uses higher clock frequency and a bigger board compared to the others,
and also uses much more resources. The resource utilization of HLS4ML and FINN is also relatively better,
considering our target is a smaller board (except than [48]). Additionally, it is worth noting that power usage
data for the other works is not available for a direct comparison, and obtaining power values for the related
works was not feasible.

In summary, HLS4ML outperforms FINN in terms of latency, which is the most crucial factor for high
data-rate instrumentation applications, as previously mentioned. Consequently, we move forward with
HLS4ML and test real instrumentation models with various configurations.

4.2. Instrumentation applications

First, we implemented an FCNN model for both the CookieBox and the billion-pixel camera, focusing on
both latency and resource utilization in separate tests. The results are shown in table 6. In this table, the
resource utilization percentage demonstrates the usage of each FPGA resource.

As mentioned earlier, the NN model used for the billion-pixel camera is larger than the one used for the
CookieBox. This results in higher resource utilization and power usage. Although the FCNN model for the
billion-pixel camera is larger, it has a smaller input shape. This leads to lower latency compared to the model
designed for the CookieBox. By scrutinizing the waveform analysis in Vivado simulations, we noticed that
most of the inference time is spent on the HLS4ML blocks trying to fetch the input data. Consequently, a
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Table 6. Instrumentation experiment (CookieBox and billion-pixel camera) results with an FCNN model.

Strategy Best latency Resource optimal

Model CookieBox Billion-pixel camera CookieBox Billion-pixel camera
Latency (us) 5.70 0.89 10 1.01

Power (w) 4 5.9 3.7 3.8

BRAM (%) 1 1 5 2

DSP (%) 1 15 1 8

LUT (%) 39 38 20 19

FF (%) 2 7 6 4

Table 7. Instrumentation experiment (CookieBox and billion-pixel camera) results with a CNN model.

Strategy Best latency Resource optimal

Model CookieBox Billion-pixel camera CookieBox Billion-pixel camera
Latency (us) 21.14 94.12 150 120

Power (w) 4.8 6.2 4.5 4.2

BRAM (%) 30 2 35 3

DSP (%) 20 17 4 3

LUT (%) 45 40 24 31

FF (%) 8 19 9 18

smaller input data shape results in less latency. Moreover, the latency results with a resource implementation
strategy are slightly higher, but we can achieve lower resource utilization, which is ideal for smaller boards.

We repeat both tests with a CNN model as presented in table 7. Like the FCNN results, the latency of the
billion-pixel camera is lower compared to the CookieBox for the resource optimal case. However, the
billion-pixel camera latency is higher for the best latency case. The main reason behind this is that due to the
usage of a custom layer for the billion-pixel camera application, the latency strategy did not give usable
results. Instead, we used the resource strategy with reuse factor 1. The bigger model of the billion-pixel
camera causes a higher resource utilization. CNN models are usually big and difficult to fit on smaller
boards. However, with the HLS4ML resource strategy, it is doable to fit CNN models on a board with much
lower resource utilization.

Although the latency results in both tables 6 and 7 are the lowest that achieved with HLS4ML, these
results are with uncompressed ML models. To compress the model size, we used different quantization
settings, with the most optimum HLS4ML configuration focused on the latency, such as reuse factor 1, and
latency strategy, to find the best configuration for the CookieBox and billion-pixel camera. We additionally
decrease the bit depth of various models, which corresponds to the input image size and the complexity of
the model input. The implementation results for different quantization bit depths for the CookieBox
application are presented in table 8. We were able to achieve 1.9 us with similar accuracy. Moreover, reduced
bit depth also deflates the model sizes and lowers resource utilization. Thus, by using a lower bit depth in
HLS4ML, the final model can be implemented on a small board with excellent latency. According to table 8,
choosing higher bit depth and CNN models causes higher latency and resource utilization.

The results for the FCNN with 7 bit depth are not available because of a software limitation in Vivado,
which limits the number of parameters per layer to 4096. The 7 bit FCNN exceeds that limit when using a
16 x 128 flattened image input size.

The same experience is repeated for the billion-pixel camera application in table 9. Here, the NN aims to
find sparse representations of large gray-scale images. Because this is an image encoding and decoding
process, there is no accuracy metric to rely on. Instead, we use sparsity rates and peak signal to noise ratio
(PSNR) metrics to judge the quality of the encoding and decoding, respectively, where higher values indicate
better NN performance. Similar to the CookieBox, we test multiple quantization bit depths. The 8 bit depth
is a reference value due to its good latency, sparsity, PSNR, and low resource utilization. We test both a lower
bit depth for lower latency and a higher bit depth to confirm the effect of quantization on resource
utilization. The FPGA implementation resource utilization and quantization relation for both CookieBox,
and billion-pixel camera applications are also illustrated in figures 8 and 9, respectively. The provided
information includes latency calculations in microseconds, along with the usage ratio for DSP, look-up table,
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Table 8. CookieBox model quantization results.
Model FCNN CNN
Bit depth 3 5 7 3 5 7
Accuracy (%) 81 84 NA 82 86 84
Size (Params.) 1897 3433 9577 3065 3665 6065
Latency (us) 1.9 5.7 NA 11.4 21.1 91
BRAM 4 4 NA 46 96 190
DSP (%) 0 1 NA 13 20 26
LUT (%) 21 39 NA 29 45 63
FF (%) 1 2 NA 6 8 10
Table 9. Billion-pixel camera model quantization results.
Model FCNN CNN
Bit depth 5 8 11 5 8 11
Code Sparsity (%) 94 99 99 60 94 96
PSNR (dB) 40.7 44.6 43.8 324 29.5 29.4
Size (Params.) 2593 2593 2593 2185 2185 2185
Latency (us) 0.82 0.89 0.9 69.1 94.1 97.3
BRAM 2 2 2 9 9 9
DSP (%) 17 15 58 0 17 55
LUT (%) 22 38 55 25 40 36
FF (%) 3 5 5 14 19 20
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Figure 8. CookieBox model different bit widths relation with implementation results.

and flip-flop, which represent the percentage usage of each resource out of their total count in the FPGA, for

both applications.

5. Discussion

It is evident that selecting a higher bit depth leads to improved accuracy in the final FPGA implementation.

However, increasing the quantization bits, especially in CNNs, substantially increases resource utilization and
latency. However, the relationship between model size and resource utilization is not exactly linear. Choosing
a high-precision model for FCNN with our current strategy is limited by the number of parameters per layer
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of 4096. To address this issue, one approach is to use a smaller model. Additionally, Vivado’s forthcoming
new features and updates for larger boards can provide a solution to this challenge in the future.

Most existing ML to FPGA tool-flows are designed for CNNs rather than other neural network
architectures. CNNs are widely used in several image applications but are harder to fit on FPGAs due to the
large number of operations for the convolutional layers. However, for high data-rate instrumentation
applications, FCNN models are often sufficient. These models are fully supported by two available tool-flows
only: HLS4ML and FINN. Moreover, after testing an EdgeML application with an FPGA, researchers may
migrate to ASICs for the final fixed application. This is not possible with the tool-flows that do not provide
the HLS/HDL codes. However, moving to ASIC using HLS4ML and FINN is doable. All in all, we chose
HLS4ML and FINN as potential candidates in EdgeML instrumentation applications.

We first showed that FINN is generally a better choice for smaller boards and that HLS4ML performs
better considering the latency, which makes it a great candidate for high data-rate instrumentation
applications. As shown in the instrumentation applications’ results, we were able to achieve excellent results
with different quantized models using HLS4ML for the CookieBox, and the billion-pixel Camera. As
mentioned earlier, although EdgeML models have been utilized for instrumentation, there has been limited
prior research focusing on the CookieBox, and the billion-pixel camera. An HDL-based ML model for
CookieBox has been utilized in [58], demonstrating a 20 us latency, which is higher than this paper’s
implementation using HLS4ML. In addition, [61] demonstrates a remarkable 100:1 high compression ratio,
and a 99% code sparsity for the billion-pixel camera with a minimal latency of 0.89 us latency on FPGA, by
using the HLS4ML tool-flow.

Furthermore, we examined the latency of different models and observed that a significant portion of the
latency arises from fetching the input data, rather than processing it. This explains why the billion-pixel
camera model runs with lower latency, as it has a smaller input data shape. However, this situation could be
improved by increasing the input bus limit, resulting in a significant decrease in latency. The reason HLS4ML
and FINN might not allow this could be their reliance on main target boards with processors, which imposes
limits on increasing the input bus. Additionally, we also noticed that the ML blocks by HLS4ML are not fully
pipelined. This is not a problem for the block latency but limits the throughput. The pipelining technique
can enhance the throughput of all models in the ML block.

It is worth mentioning that although HLS4ML supports a wide selection of layers, it is not
straightforward to change its back-end codes and add custom layers. We had to add a custom layer for the
billion-pixel camera application but the new custom layer behaved strangely in some cases, specifically with
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the CNN model where the latency strategy did not produce meaningful results. The use of the resource
strategy explains the high latency for the billion-pixel camera’s best latency strategy in table 7, as well as the
low resource usage for the CNN in table 9, especially considering DSPs. The incompatibility between the
latency strategy and the custom layer may be fixed in future updates.

6. Conclusion

In this paper, we explained the new developments in high data-rate instrumentation and why they essentially
need low-latency solutions such as EdgeML. We presented an exhaustive exploration of currently available
tool-flows for EdgeML on FPGA with a focus on their usability for scientific high data-rate instrumentation
applications. Our selection has been on those tool-flows that offer an attractive variety of supported
networks, optimization, compression, platforms, and accessibility. After comparing, and testing ML to FPGA
tool-flows, we noticed that the best choice for a practical instrumentation application with lower latency,
especially the high data-rate instrumentation applications, is HLS4ML due to its numerous optimizations,
configuration options, and the possibility of being used for ASICs. For lower-resource platforms and smaller
FPGAs, FINN is a more suitable tool-flow since it is mainly focused on small and highly quantized NN
models. HLS4ML, and FINN differ in their implementation strategies: HLS4ML demonstrates the potential
for low-latency ML applications, and FINN minimizes resource and power usage. Here, we see HLS4ML as
an excellent candidate for further research in instrumentation as we tested it for two different high data-rate
instrumentation applications: (1) CookieBox and (2) billion-pixel camera. In the short term, we plan to
implement EdgeML models using these tool-flows near a detector emulator, such as an arbitrary waveform
generator. Subsequently, this work will guide future FPGA implementations as a part of an EdgeML-based
real-time analysis of high-velocity data in large experiments.
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Appendix. List of abbreviations

Table of abbreviations

Abbreviation

Definition

ML
FPGA
ASIC
EdgeML
TB
LHC
LCLS
GB
SLAC
DAQ
CPU
GPU
EIC
1/0
HDL
HLS
NN
BNN
ONNX
QONNX
Al
VTA
1P
TVM
ALU
DLP
DNN
RTL
LLVM
CNN
FCNN
RNN
AXI
SCC
MSE
DSP
LUT
FF
SVHN
XFEL
PSNR
AWG

Machine learning

Field programmable gate arrays
Application-specific integrated circuits
Edge machine learning

Tera bytes

Large Hadron Collider

LINAC coherent light source

Giga bytes

Stanford Linear Accelerator Center
Data acquisition

Central processing unit

Graphics processing unit
Electron—ion collider
Input/output

Hardware description language
High level synthesis

Neural network

Binarized neural network

Open Neural Network Exchange

Quantized Open Neural Network Exchange

Artificial intelligence

Versatile tensor accelerator
Intellectual property

Tensor virtual machine
Arithmetic logic unit

Deep learning processor

Deep neural network

Register transfer level

Low level virtual machine
Convolutional neural network
Fully connected neural network
Recurrent neural network
Advanced extensible interface
Sparse categorical cross-entropy
Mean square error

Digital signal processors
Look-up table

Flip-flops

Street View House Number data set
x-ray free-electron laser

Peak signal to noise ratio
Arbitrary waveform generator
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