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Abstract: We revisit Weyl’s unified field theory, which arose in 1918, shortly after general relativity

was discovered. As is well known, in order to extend the program of the geometrization of physics

started by Einstein to include the electromagnetic field, H. Weyl developed a new geometry which

constitutes a kind of generalization of Riemannian geometry. In this paper, our aim is to discuss

Weyl’s proposal anew and examine its consistency and completeness as a physical theory. We

propose new directions and possible conceptual changes in the original work. Among these, we

investigate with some detail the propagation of gravitational waves, and the new features arising in

this recent modified gravity theory, in which the presence of a massive vector field appears somewhat

unexpectedly. We also speculate whether the results could be examined in the context of primordial

gravitational waves.

Keywords: Weyl unified theory; gravitational waves; Proca field

PACS: 04.20.Jb; 11.10.kk; 98.80.Cq

1. Introduction

In recent years, there has been a renewed interest in Proca’s early theory, which
originally appeared in the context of the classical and quantum electrodynamics of a
massive photon, a theory proposed to describe the weak interaction and the motion of
spin-1 mesons [1,2]. Despite its interesting and original ideas, the model did not survive too
long and was subsequently almost forgotten. However, it seems that new motivation has
appeared to reconsider the role that the Proca field can play in physical theory. Nowadays,
mention of the possible existence of the Proca field mainly appears coming from two
distinct contexts. Firstly, the idea of the presence of a massive vector field in the universe
has been motivated by current research in astrophysics and cosmology, namely, the dark
matter problem [3–6]. Indeed, it has been argued that the massive vector field considered
earlier by nuclear physicists can play a role in modeling what is called dark matter. The
second motivation comes from the following fact: in standard gravitation theory, i.e.,
general relativity, the Proca field does not appear in a natural way, and has to be put in by
hand as a matter field in much the same way as we do in the case of other physical (i.e,
non-geometrical) fields. However, a recent proposed theory of gravity, deeply inspired
by Weyl’s original unified field theory1 [7], seems to suggest the appearance of a massive
vector field, which has an entirely geometrical nature [8]. Here, we are referring to the
so-called Weyl’s gauge invariant theory of gravity [9].

Let us recall that, in his attempt to unify gravity with electromagnetism, H. Weyl
developed a new geometry, which constitutes one of the simplest generalizations of Rie-
mannian geometry [8]. Recently, Weyl’s unified field theory has been significantly reframed
into a modified theory of gravity in order to allow matter to couple with the space–time
geometry in a gauge-invariant way [9]. This is achieved by strictly following a prescription
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of “minimum coupling”, which complies with the principle of gauge invariance postulated
by Weyl2. An interesting outcome of this procedure is an unexpected appearance of a
vector field in the gravitation sector of the action. As it happens, for some choices of both
the values of the cosmological constant Λ and ω (a free parameter of the theory) this vector
field may be formally interpreted as a massive vector field satisfying an equation that is
identical to the Proca equation. Moreover, unlike the fact that the original Proca field is
defined in Minkowski spacetime as not gauge-invariant, a feature that is characteristic of
massive fields, here we should emphasize that the gauge invariance of the geometrical
vector field is granted by first principles. We shall return to this point later.

Let us remark that the investigation of massive vector fields within the framework of
general relativity has been carried out by several authors [10,11]. A particularly interesting
development of this line of research has recently shown the possibility of cosmic inflation
being driven by a vector field [12].

If we consider a modified gravity theory in which the presence of a massive vector
field is necessary, then a number of important questions naturally arise. A particular and
relevant question is the following: how do gravitational waves appear in such a theory? In the
present paper, we approach this problem via linearization of the field equations. As we
shall see, in this preliminary step the propagation of the gravitational waves (the metric
field waves) appears together (though not simultaneously in time) with the propagation of
the Proca field.

The present article is organized as follows. In Section 2, we give a short introduction
to the Weyl invariant theory. We recast the field equations of the theory in a form in which
the identification of the Weyl vector field with the Proca field becomes apparent. This is
simply achieved by absorbing into the energy–momentum tensor corresponding to the
electromagnetic field (the latter coming from Weyl’s original unified theory) the mass
term that naturally appears in the field equations. This procedure leads to the canonical
energy–momentum of the Proca field, such as is usually found in any classical field theory
textbook [13]. We proceed to Section 3, where we investigate the prediction of gravitational
waves in the theory. We then arrive at the interesting result that gravitational waves in this
modified theory consist, in fact, of the non-simultaneous propagation of both the metric
field gµν and the vector field σα. In Section 4, we speculate whether the results obtained in
the previous section could be examined in the context of primordial gravitational waves,
and we hope these considerations may stimulate future research. We conclude with some
remarks in Section 5.

2. The Weyl Invariant Theory

This theory arose from the attempt to complete Weyl’s (unfinished and incomplete)
original work [14,15]. To carry out this task we needed (a) to provide a gauge-invariant
procedure of how to couple matter with the spacetime geometry; (b) to define proper
time in an invariant manner; and (c) to avoid the problem of the so-called “second clock
effect”, which plagued the theory since its inception. We then realized that one way to
sort out these problematic features of the original theory would be to define right from
the beginning a gauge-invariant metric tensor. This may be achieved in the following way.
We first go to the so-called Weyl natural gauge defined by R = Λ ̸= 0. In this gauge, the
field equations become rather simplified, while the action becomes linear in R (see [9]).
Now, among all elements of the Weyl conformal structure we pick up a pair (g, ξ), where
g and ξ represent, respectively, a metric tensor and a 2- f orm field (the Weyl field) in the
natural gauge. With these two elements, we define another metric γ, given by γ = R

Λ
g. We

also define the 2- f orm field σ = ξ + d ln R, where R = gµνRµν denotes the scalar curvature
(recalling that Rµν is defined with respect to the Weyl connection and not with respect
to the Christoffel symbols). We now identify Λ with the cosmological constant, as did
Weyl when he defined his natural gauge. Of course, the numerical value of Λ is left to be
determined by observation. (Incidentally, Weyl considered that the way of introducing the
cosmological constant in his theory was purely geometrical and natural, instead of putting
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it in the field equations in an ad hoc manner.) We would like stress the fact that γ and
σ, defined as above, are invariant under Weyl (gauge) transformations, and therefore are
two representatives of the geometry of the whole conformal structure, not dependent on
any particular gauge. It is also important to note that the gauge transformations do not
affect Λ, whose value once chosen becomes fixed. Thus, the mass of the Weyl field does not
depend on the gauge. In this way, we are able to define a gauge-invariant action leading to
gauge-invariant field equations (see [8] for details).

2.1. The Field Equations

Let us start by recalling that the field equations in Weyl’s invariant theory are given
by [9]

1√−g
∂β

(

√

−gFαβ
)

=
3Λ

2ω
σα, (1)

Rαβ −
1
2

Rgαβ +
Λ

4
gαβ +

3
2

(

σασβ −
1
2

gαβσµσµ

)

=
ω

Λ
Tαβ − κT

(m)
αβ , (2)

where Rµν and R denote, respectively, the Ricci tensor and the scalar curvature defined
with respect to the Riemannian connection, σ is a 1-form field, Tαβ = FαµF

µ
β +

1
4 gαβFµνFµν

and T
(m)
µν represent the energy–momentum tensor of matter, and κ is a coupling constant.

Let us make a short comment on the role of σ. In Weyl’s original approach, σ led naturally
to a new notion of curvature, a sort of “length curvature” represented by the 2-form F = dσ
(Streckenkrummung), in addition to the “direction curvature” (Richtungkrummung), the
latter given by the Riemann tensor [8]. To his amazement, Weyl found that the length
curvature F = dσ presents striking similarities with the electromagnetic tensor, and it
was this discovery, together with the invariance of his modified compatibility condition
(between the metric and the affine connection), that led him to the attempt to geometrize the
electromagnetic field. It is worth mentioning here that the discovery of this new symmetry,
which Weyl called gauge symmetry, is now celebrated as one of the most significant facts in
the history of modern physics: it represents the birth of modern gauge theories [16].

Let us remark that the above equations may be obtained by varying the action

S =
∫

d4x
√

−g[R +
ω

2Λ
FαβFαβ +

3
2

σασα − Λ

2
+ κLm],

which is identical to the action of Proca’s neutral spin-1 field in curved spacetime with the
cosmological constant coupled to gravity [17]. Here, Lm denotes the Lagrangian density
of matter with κ being a coupling constant. (We recall that here the curvature scalar is
calculated with the Riemannian connection.)

By introducing the tensor

T
(P)
αβ = FαµF

µ
β +

1
4

gαβFµνFµν − 3Λ

2 ω

(

σασβ −
1
2

gαβσµσµ

)

, (3)

which may be formally considered as the energy–momentum tensor of the Proca field,

provided that we define m =
√

− 3Λ

2 ω as its mass, it is not difficult to verify that the field
equations can be rewritten as

Rαβ −
1
2

gαβR +
Λ

4
gαβ =

ω

Λ
T
(P)
αβ − κT

(m)
αβ (4)

1√−g
∂β(
√

−gFαβ) = −m2σα. (5)

By virtue of the analogy with Proca theory, it seems plausible to reinterpret the former
Weyl field σ not as the electromagnetic field, as Weyl originally did, but as a sort of massive
vector field, which enters the theory through a purely geometrical reasoning3.
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2.2. Energy–Momentum Conservation

As is well known, in general relativity theory the Bianchi identities imply that the
right-hand side of (4) must be divergenceless. On the other hand, with the help of (5) it can
easily be shown that ∇αT(P)αβ = 0, which in turn leads to ∇αT(m)αβ = 0, meaning that the
energy–momentum tensor of matter is conserved. In the context of the present theory, this
result has an important meaning, namely, that the curves that describe the motion of free-
falling particles must be identified with the metrical geodesics, and not the auto-parallels.
Thus, the geodesic postulate appears as a consequence of the field equations4.

3. Gravitational Waves

Before their detection, gravitational waves were a general relativistic phenomenon
theoretically predicted long ago, at least as early as 1918 by Einstein, who investigated
a linearized version of the field equations [18]. A more complete and mathematically
rigorous treatment of the subject was given by Choquet-Bruhat in the 1950s based on the
fundamental concepts of global hyperbolicity attributable to Leray [19]. There is a hyperbol-
icity property of the Einstein equations, namely the fact that Einstein’s equations can be
recast in the form

□gαβ = Nαβ(gαβ;∂γ
gαβ), (6)

where Nαβ denote a set of quadratic functions in the derivatives ∂γ
gαβ and □ =

1√−g
∂µ[

√−ggµν∂ν] is the d’Alembertian operator. It should be mentioned that the above

equations are supplemented with the so-called Einstein constraint equations. The latter
amount to giving data on a spacelike hypersurface Σ, namely a 3-dimensional Riemannian
metric gij and a symmetric 2-tensor Kij [20]. The above considerations lead to the following
consequence: there must exist gravitational waves propagating in spacetime. Moreover,
they also demonstrate that the Einstein field equations can be put in a form where they can
be viewed as a well-posed initial problem [21,22]. We now proceed to the investigation
of gravitational waves in the Weyl invariant gravity theory. Our treatment is based on
the weak field approximation, in which the spacetime metric corresponds to a first-order
perturbation of the Minkowski metric in a dimensionless small parameter ε, that is

gαβ = ηαβ + εhαβ, (7)

where ηαβ = diag(1,−1,−1,−1) and hαβ is a symmetric tensor field. In this approximation,
only terms of the first order will be retained. As we shall see, the linearization of the field
equations resulting from this approximation will reveal the existence of gravitational waves
propagating at the speed of light.

3.1. The Propagation of Gravitational Waves

Following the well-known standard procedure, a straightforward calculation gives
the linearized expressions for Γα

βγ, Rαβ and R5:

Γ
α

βγ =
1
2

ε
(

hα
β ,γ + hα

γ , β − hβγ ,
α
)

, (8)

Rαβ =
1
2

ε
(

□hαβ + h , αβ − hγ
α , βγ − hγ

β , αγ

)

, (9)

R =
1
2

ε
(

□h − hγβ
, βγ

)

, (10)

where in this approximation the indices are raised and lowered with the Minkowski metric
ηαβ [23]. At this point, let us briefly recall some basic facts of the weak field approximation
approach. By coordinating transformations of the type

xα = xα + ε ξα(x) (11)
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it is easy to see that the metric tensor transforms as

gαβ = ηαβ + ε hαβ − ε ξα , β − ε ξβ , α
, (12)

which then leads to the following transformation law for hαβ:

hαβ = hαβ − ξα , β − ξβ , α
, (13)

known in the literature as a gauge transformation, where the functions ξα are arbitrary. An
important fact must now be mentioned: the Riemann curvature tensor Rαβγη as well as the
Ricci tensor Rαβ (9) and the curvature scalar R (10) are gauge-invariant, i.e., they do not
change under (11). We now introduce a new tensor ψαβ given by

ψαβ = hαβ −
1
2

ηαβh, (14)

which is called the trace-reversed metric tensor, and is rather useful as it allows the elimination
of terms that involve the trace of hαβ in the expressions of (9) and (10). The Ricci tensor, the
scalar of curvature and the Einstein tensor now written in terms of ψαβ become, respectively,

Rαβ =
1
2

ε
(

□hαβ − ψγ
α , βγ − ψγ

β , αγ

)

, (15)

R =
1
2

ε
(

□h − 2ψγβ
, βγ

)

. (16)

Gαβ =
1
2

ε
(

□hαβ+ηαβψ
γδ

,γδ − ψγ
α , βγ − ψγ

β , αγ

)

On the other hand, they can take a simpler form by just choosing a specific gauge,
namely, the so-called Einstein gauge (also known as the de Donder gauge), defined by

∂αψα
β = 0, (17)

which is the analog of the Lorenz gauge used in electromagnetism. With the choice of this
gauge, Equation (4) becomes

1
2

ε□ψαβ = −Λ

4
ηαβ +

ω

Λ
T
(P)
αβ − κT

(m)
αβ (18)

(It is clear that the Einstein gauge is preserved by the coordinate transformation (11), as
long as the condition □ξβ = 0 holds).

Let us now consider the linearized form of the Weyl field equation. At this point, it
would seem quite natural to consider the Proca field also of the same order of approximation
assumed for the metric field, that is, σα = εAα, where Aα plays the same role as hαβ. It
turns out, however, that in this order of approximation the above field Equations (4) and (5)

become uncoupled as T
(P)
αβ is of the second order in ε, meaning, in this case, that the metric

field and the Proca field would not interact with each other. Therefore, if we want a more
realistic situation we must go to a higher order of approximation for σα. Therefore, in what
follows we shall take, instead,

σα =
√

εAα, (19)

which then guarantees that the components of the tensor T
(P)
αβ are of the first order in ε. We

shall also assume that the cosmological constant is a higher-order term in ε and therefore
should be neglected. In this case, the equation for the metric field (18) becomes6

□ψαβ = 2
ω

Λ
θ
(P)
αβ − 2 κT

(m)
αβ , (20)
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where θ
(P)
αβ simply denotes the linearized form of T

(P)
αβ after taking into account (19).

The above equation describes how perturbations of the metric field ψαβ propagate
in spacetime. It is important to note the presence of a term representing the energy–

momentum tensor of the Weyl field in its linearized form θ
(P)
αβ , which is also responsible for

the gravitational perturbations. In other words, even in the case where matter is absent
there remains the Weyl field acting as a source of the metric field. If the Weyl field is zero
and the cosmological constant is taken into account, then the above equation reduces to the
well-known linearized Einstein equation in the presence of the cosmological constant, a
problem that was considered in [24,25].

3.2. The Linearized Equation of the Weyl Field

It is easy to verify that the Weyl field Equation (5) in its linearized form, i.e., in the
weak-field regime, takes the form

(

1 − εh

2

){

∂β∂βσα − ∂α∂βσβ + ∂β

[

εh

2

(

∂βσα − ∂ασβ
)

]}

= −m2σα.

On the other hand, it is not difficult to verify that, in the lower-order approximation in
ε, the “Lorenz condition” for the Proca field, i.e., ∂βσβ = 0, is satisfied, which then leads to
the following:

□ Aα + m2 Aα = 0, (21)

where □ = ηµβ∂µ∂β = ∂2

∂t2 −∇2 again denotes the d’Alembertian operator in Minkowski
spacetime7. This equation reveals that in the weak-field regime, the Weyl field behaves as a
wave in massive (or Proca) electrodynamics, and, ipso facto, it does not propagate with the
speed of light.

Therefore, we conclude that the Equations (20) and (21) taken together describe the prop-
agation of perturbations in the spacetime geometry in the context of Weyl invariant gravity.

3.3. Solving the Weyl Field Equation

In the previous section, we obtained the Equations (20) and (21), which resulted from
a process of linearization of the field equations of Weyl invariant gravity. We shall now
consider in detail the equation for the Proca field. Thus, let us start with Equation (21),
which gives the dynamics of the Proca field/Weyl field. The solution of this equation is
well known. We first write Aα as a superposition of plane waves:

A α(xµ) =
1

(2π)4

∫

∞

−∞

Aα(kµ)e
i(kµxµ)d4k (22)

where Aα represents the amplitude of each wave with wave vector kα = (ω0,
−→
k ), which

describes the direction of propagation and the frequency of the wave. Following the usual
procedure, we substitute (22) into (21), obtaining the dispersion relation kαkα = m2, that is

−ω2
0 + k2 + m2 = 0, (23)

where we denote k =
∣

∣

∣

−→
k
∣

∣

∣
. If we have a packet of Weyl waves, then the phase velocity of

each wave is then given by

vp =
ω0
∣

∣

∣

−→
k
∣

∣

∣

=

(

1 − m2

ω2
0

)− 1
2

,
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whereas the group velocity, that is, the velocity of the envelope, will be given by

vg =
dω0

dk
=

(

1 − m2

ω2
0

)
1
2

.

The above equations give the phase velocity and the group velocity in terms of the angular
frequency ω0, the speed of light c and the mass m of the Weyl/Proca field. We see that if
the angular frequency increases, then the phase velocity also increases, whereas the group
velocity decreases, which means that we shall have dispersion of the wave packet. On the
other hand, although the Weyl/Proca waves propagate with a speed less than the speed
of light, a wave with a very large frequency propagates with a speed close to the speed
of light.

As we have already mentioned, the Weyl field satisfies the condition ∂ασα = 0, which
implies kα Aα = 0, meaning that the Proca field Aα has three degrees of freedom, which
implies that we have two transversal polarizations and a longitudinal polarization, the
latter meaning that there is a component of the field that varies in the same direction as the
wave propagation.

3.4. Solving the Metric Field Equation

In this section, we investigate the propagation of a gravitational field in the absence of
baryonic matter, which in this case is given by the equation

□ψαβ = 2
ω

Λ
θ
(P)
αβ , (24)

where θ
(P)
αβ is the energy–momentum tensor of the Weyl field Aα, which here appears as the

source of perturbation of the metric. We already know that the Weyl field Aα propagates
as waves in spacetime. We may assume that these waves were possibly produced in the
inflation period. In analogy with the cosmic background radiation, one would expect that
they should permeate the universe.

In what follows, we present a very simplified model, that is, a toy model, so to speak,
in which these primordial Weyl waves could generate a perturbation in the metric field.
Our idea here is that by examining this model, we could take a first step in the further
development of a more realistic scenario.

Let us then consider a particular solution of the Equation (21), in which the Weyl field
corresponds to the plane wave

Aα = ξα cos(kρxρ), (25)

where the Lorenz gauge ∂α Aα = 0 implies that kαξα = 0. (Clearly, this condition implies
that the amplitude ξα is a space-like 4-vector).

On the other hand, the energy-momentum tensor is given (to the first order in ε) by

θ
(P)
αβ = FαµF

µ
β +

1
4

ηαβFµνFµν + m2
(

Aα Aβ −
1
2

ηαβ Aµ Aµ

)

, (26)

where Fαµ =
(

∂µ Aα − ∂α Aµ

)

. From (25), we obtain the linearized energy–momentum θ
(P)
αβ

corresponding to the Weyl plane wave, where we use the dispersion relation kαkα = m2

and the Lorenz gauge kαξα = 0, which is given by

θ
(P)
αβ = −1

2
kαkβξµξµ + cos(2kρxρ)

[

1
2

kαkβξµξµ + m2
(

ξαξβ −
1
2

ηαβξµξµ

)]

.

The above equation can be written as

θ
(P)
αβ = −1

2
kαkβξµξµ + Θαβ cos(2kρxρ), (27)
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where Θαβ = kαkβξµξµ +2m2
(

ξαξβ − 1
2 ηαβξµξµ

)

. (Incidentally, it is not difficult to verify

that ∂αθ
α(P)
β = 0.)

The equation for the metric field will then become

□ψαβ = − ω

Λ
kαkβξ2 + 2

ω

Λ
Θαβ cos(2kρxρ).

The general solution of this equation may be separated into three components:

ψαβ = ψ
(H)
αβ + ψ

(P1)
αβ + ψ

(P2)
αβ , (28)

where ψ
(H)
αβ is the solution of the homogeneous equation, ψ

(P1)
αβ is a particular solution

of the equation associated with the constant term ω
Λ

kαkβξ2 and ψ
(P2)
αβ solves the equation

associated with the oscillating term 2 ω
Λ

Θαβ cos(2kρxρ). In other words, we are considering
separately the following three equations:

□ψ
(H)
αβ = 0, (29)

□ψ
(P1)
αβ = −ω

Λ
kαkβξ2, (30)

□ψ
(P2)
αβ = 2

ω

Λ
Θαβ cos(2kρxρ). (31)

An interesting solution to the homogeneous Equation (29) is well known and corre-
sponds to gravitational waves propagating at the speed of light. It can be written in the

form ψ
(H)
αβ = Sαβ cos

(

kµxµ
)

, where kµ = (ω0, ki) is the wave 4-vector, with kαk
α
= 0. This

solution may describe the propagation of gravitational waves produced by an astrophysical
source (such as a binary system). Therefore, it shows that these gravitational waves will
travel with the speed of light, even propagating through the background medium created
by the Weyl field, in this order of approximation.

On the other hand, the direct effects of the Weyl plane wave on the geometry can be
obtained from the Equations (30) and (31). A solution to (30), which satisfies the Einstein
gauge, is given by

ψ
(P1)
αβ = −ω

Λ
kαkβ

(

(

ξµxµ
)2

2

)

, (32)

recalling that ξαkα = 0.

Finally, a solution to (31) ψ
(P2)
αβ is given by

ψ
(P2)
αβ = Cαβ cos(2kρxρ), (33)

where Cαβ = −ω
Λ

Θαβ

2 m2 . As m2 = − 3Λ

2ω ; this solution can be written as

ψ
(P2)
αβ =

3Θαβ

4m4 cos(2kρxρ).

Thus, the general solution (28) will be given by

ψαβ = Sαβ cos
(

kµxµ
)

+
3

4m2 kαkβ

(

ξµxµ
)2

+
3Θαβ

4m4 cos(2kρxρ),

recalling that Θαβ = kαkβξ2 +2m2
(

ξαξβ − 1
2 ηαβξ2

)

. It is worth noting the presence of an

oscillating term due to the oscillation of the Weyl field. It is also interesting to remark
that the oscillating terms of the this solution have different frequencies, which is to be
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expected since they correspond to distinct sources. Finally, we note that the Einstein gauge
implies that

∂αψα
β = ∂α

{

Sα
β cos

(

kµxµ
)

+
3

4m2 kαkβ

(

ξµxµ
)2

+
3

4m4

[

kαkβξ2 + 2m2
(

ξαξβ −
1
2

δα
βξ2
)]

cos(2kρxρ)

}

= 0,

where by using kαkα = m2 and kαξα = 0 we obtain kαSα
β = 0, meaning that part of the wave

has a transversal character.
In terms of hαβ = ψαβ − 1

2 ηαβψ, where hαβ denotes the perturbation of the metric in
the first-order perturbation of the Minkowski metric, we finally write

hαβ = ζαβ cos
(

kµxµ
)

+
3

4m2 Bαβ

(

ξµxµ
)2

+
3

4m4 Dαβ cos(2kρxρ)

where ψ, the trace of ψαβ, is given by

ψ = S cos
(

kµxµ
)

+
3
4

(

ξµxµ
)2 − 3

4m2 ξ2 cos(2kρxρ), (34)

where we are defining ζαβ =
(

Sαβ − 1
2 ηαβS

)

, Bαβ =
(

kαkβ − 1
2 ηαβm2

)

and Dαβ =
[

kαkβξ2 + m2
(

2ξαξβ − 1
2 ηαβξ2

)]

.

4. Primordial Gravitational Waves

To date, the gravitational waves we expect to detect with detectors such as LIGO are
those which were generated by astrophysical sources (neutron stars, black holes, super-
novae, etc.). On the other hand, inflation theory predicts that gravitational waves must
have been generated in the primordial universe. It is believed that the origin of these
primordial gravitational waves is similar to the origin of primordial density fluctuations. In
other words, the primordial gravitational waves would have been produced by quantum
fluctuations in the geometry of spacetime, their wavelength being stretched to astronomical
sizes by the rapid inflationary expansion [26,27]. According inflation theory, the energy
released when a false vacuum decays is converted into a hot fireball of particles. On
the other hand, some cosmologists believe that a potential source of dark matter comes
from particle physics, such as axions, massive neutrinos, etc. We know that, in modern
quantum field theory, the Proca equation describes massive gauge fields, the so-called Z
and W bosons. It is hoped that the discovery of these waves could shed some light on the
unification of gravitation theory and quantum mechanics.

Of course, the origin of the Proca field in this theoretical setting is still uncertain,
although the possibility that it might have been created together with baryonic matter in
the inflationary period cannot be ruled out. Moreover, in this hypothetical scenario one

would be inclined to associate T
(m)
αβ with the energy–momentum of the primordial scalar

field during the slow-roll regime.
As is well known, one expects to detect primordial gravitational waves by searching

for a possible change in the polarization of cosmic background radiation. In the present
theoretical setting, we would also have a new ingredient to be taken into account, namely,
the possibility of Proca waves leaving their signature on the metric hαβ. It is plausible to
expect that the primordial Proca waves would propagate in all directions in space, and
as such could well be modeled as a kind of massive photon [28]. Moreover, it should be
mentioned that Proca waves have three polarizations: two transversal and one longitudinal,
the latter being a feature to be taken into account in their detection.

With our present knowledge of the primordial universe, it is not easy to devise a
concrete model that would take into account the generation of Proca waves. In particular, it
is still not clear how to set the initial conditions for the distribution of dark matter before
and during the inflation regime. It is this lack of information that still prevent us from
providing initial conditions for Equation (22) in order to obtain an explicit solution for the
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Proca field. Without such an input, it is difficult to build a tentative model of primordial
Proca waves. However, we believe that these initial difficulties should not discourage us
from speculating about the possible existence of this kind of wave, which may be predicted
in some modified theories of gravity.

5. Final Remarks

The history of gravitational waves is very rich and fascinating, with interest in the
subject being growing exponentially since the first evidence of their existence given by the
discovery of Hulse–Taylor binary pulsars in 1974 [29]. However, direct evidence of them
was delayed until 2015, when then the LIGO team announced the detection of a wave which
is believed to have been produced by the merging of two binary black holes [30]. In 2017,
the LIGO and VIRGO detectors detected gravitational waves after only two seconds of
gamma rays and optical telescopes observing signals from the same direction. This almost
exact coincidences in the arrival time of the two waves has been interpreted as evidence
that the speed of propagation of the gravitational waves is the same as the speed of light.
We would like to remark that in the framework of the theory examined here, although
they can be produced by the same sources, almost exact simultaneous detection of gravity
waves and Proca waves would, in principle, not occur unless for very large frequencies of
the latter and short distances from the sources.

It should be noted that the both the energy–momentum tensor T
(P)
αβ of the Proca field

and the energy–momentum tensor of matter T
(m)
αβ are conserved separately, which means

that the Proca field does not interact with matter. This simple fact seems to suggest that the
Proca field could be a possible candidate to describe dark matter.

Finally, as there are some conjectures regarding the Weyl/Proca field as a possible
candidate to account for dark matter, we speculate that primordial gravitational waves
may have a component originated by this massive vector field [3].
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Abbreviation

The following abbreviations are used in this manuscript:

LIGO Laser Interferometer Gravitational-Wave Observatory

Notes

1 It is important to recall that Weyl theory is invariant under the Weyl transformations, in which, in addition to a conformal
transformation in the metric, we have to take into account the gauge transformation of the vector field. It is not conformally
invariant in the sense that, for instance, Mannheimer’s conformal gravity is (see, for instance, [7]).

2 It is important to recall that the original Weyl theory is invariant under the so-called Weyl transformations, in which, in addition
to a conformal transformation in the metric, there is also a gauge transformation of the vector field. These two transformations
must be carried out simultaneously. It is not conformally invariant in the sense that, for instance, Mannheimer’s conformal
gravity is (see, for instance, [7]).

3 If Λ > 0 is interpreted as the cosmological constant, then we must set ω < 0.



Universe 2024, 10, 361 11 of 11

4 The proof of this assertion follows exactly the same reasoning one uses in general relativity. The simplest way to achieve this
is to assume a congruence of a pressureless perfect fluid (“dust”) and impose the equation ∇αT(m)αβ = 0. It then follows in a
straightforward manner that the dust particles follow metric geodesics.

5 Here, we are adopting the following convention for the Riemann tensor: R̃α
βγη = Γα

γβ ,η − Γα
ηβ ,γ + Γα

δηΓδ
ηβ − Γα

δγ Γδ
ηβ.

6 Just for convenience, we now absorb the parameter ε by redefining ψαβ → εψαβ.
7 Here, we are setting c = 1.
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