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Holographic Wilson loops in anisotropic quark-gluon plasma.
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Abstract. The nonequilibrium properties of the anisotropic quark-gluon plasma are con-
didered from the holographic viewpoint. Lifshitz-like solution is considered as a holo-
graphic dual of anisotropic QGP. The black brane formation in such background is con-
sidered as a thermalization in dual theory. As a probe of thermalization we consider
rectangular spatial Wilson loops with different orientation.

1 Introduction and holographic setup

Gauge/gravity duality is a powerful tool for strong coupling systems equilibration study. The quark-
gluon plasma (QGP) produced in heavy-ion collisions (HIC) [1] and created after a very short time
after the collision (about 0.2 + 1 fm/c) is one of such systems.

The holographic duality provides suitable background for description of this period of evolution
[2, 3]. The anisotropy and anisotropy effects in the holographic description of QGP is also convenient
too [4, 5].

We choose the bottom-up approach for the general AdS/CFT correspondence in background de-
pending on some parameters. This means fitting parameters in background (assuming the dependence
on the minimal number of such parameters) in such a way, that the hologprahic calculations fit the
experimental data.

Holographic description [6] of the HIC modeled by shock wall collisions in the Lifshitz-like back-
ground [10, 11], parametrized by the critical exponent v is based on background
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This background perfectly matches experimental data [6] for holographic multiplicity calculation.
The experimental data is reproduced from holography for the parameter v = 4. This is the case of
special interest for us. Vaidya solutions in these Lifshitz-like spacetimes have been found in [8]. The
thermalization time of the 2-point correlators and the thermalization of the holographic entanglement
entropy have been estimated in [7, 8].

In this proceedings, based on [9], we investigate numerically spatial Wilson loops behaviour in
the Lifshitz-like background. An infalling shell of matter deforms Lifshitz-like spacetime and this
corresponds to the formation of the black hole in this background. Wilson loops under consideration
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are rectangles with two infinitely long sides. Lifshitz-like spacetime depends on some parameter v,
controlling the spatial anisotropy. We study (pseudo)potentials calculated from holographic Wilson
loops and their evolution in asymptotically Lifshitz-like backgrounds. We calculate the dependence
of the equilibration time on spatial orientations of Wilson loops. Also we investigate the dependence
on the anisotropy parameter v.

A non-zero temperature generalization of the Lifshitz-like spacetime (1) is a black brane back-
ground with the metric [8]
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Z 2 2f(2) @
where the function f is defined by
f — l _ m22+2/v' (3)
The metric of the black brane in the 5d AdS spacetime corresponds to v = 1.
The temperature of the black brane solution (2) is
1 1 v
T 2y

A straightforward generalization of the stationary black brane metric is the Lifshitz-Vaidya solution:

_f, Ddv? - 2dvdz + dx*  dy? +dy)
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with the function f taken in the following form

M 2
fzv)=1- > (1 + tanh g)ﬁ”, (6)

where @ = 0.2 for all calculations in this paper.

In this work we focus on rectangular spatial Wilson loops with an infinite extent. The basic
formula for the computation of the expectation value of the Wilson loop operator from holography
[12, 13] (specified by the contour C) reads as:

WIC] = (Trp ei§c dX;AAy> =¢S5 vlrmg[C]’ @)

where S is the action of the string with boundary conditions defined by C. The Nambu-Goto action !
can be represented as

1 [
Sstring = ﬁ fdo—ldo-z _det(hozﬁ)s (®

with the induced metric of the world-sheet 4,4 given by
hap = gMNaaXMaﬁXN, 9

where @, 8 = 1,2. In (9) gy is the background metric, M,N = 1,...,5, XM = XM(c', o) specify
the string worldsheet and o, o? parametrize the worldsheet.

IWe keep ¢’ in formulas. For all intermediate calculation we set @’ = 1/27 whereas we take its appropriate value in final
results to fit observable data.
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Using a spatial rectangular Wilson loop with a finite extent X one can define the so called pseu-
dopotential V(X) for large Y

W(X, Y) = (Tre foor Pty = o= VOV (10)

So, it is straightforward to write down the expression which relates the pseudopotential and the bulk
string action:

S strin,
V(X) =

7 an

2 Non-equilibrium Wilson loops

In [9] we have considered rectangular Wilson loops with different orientations to capture the
anisotropy effect. Here we consider one of the orientation cases in greater details. Cases of orien-
tation considered in [9] are

e arectangular loop in the xy; (or xy,) plane with a short side of the length £
x€[0,6 <Ly, yi1€l0,L,]; 12)
e arectangular loop in the xy; plane with a long side of the length L, along the longitudinal x direc-
tion,
x€[0,Ly], y1€[0,€<Ly]; 13)

e a rectangular loop in the transversal y;y, plane with a long side of the length L,, along the other
transversal direction y,, namely

y1 €10, <L,1, yi€[0,L,] 14)

2.1 Rectangular strip infinite along the y,-direction

We consider only this case of orientation in details. For investigation of another orientations see [9].
The orientation of interest is the rectangular Wilson loop on the xy;-plane, case (12). We choose
the following worldsheet parametrization

ol=x, o=y, (15)

assuming v = v(x), z = z(x) and z(x£/2) = 0.
The Nambu-Goto action in this case can be written as

27ra'Sxy1( ) dx

Jle0) _ 2 _ Y

- _f TRV e 2 (16)
Y1 <

The equations of motion of dynamical system with the action (16) are

10 1
Vo= ——fv'2 + w(l - fur=20'7), a7
2 0z vz
. v+1lf v+1f2% 10f ,
7 = - ~+ - ==
vV z % z 2 v
1 ,0f of v+1)
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and the boundary conditions of interest are

2(£6) =0, v(=xl) =1, (18)

where ¢ is the length of the Wilson loop along the x-direction.
To solve these equations numerically we set the initial value problem instead in form

20) = z (19)
v0) = v, (20)
7)) = J0)=0. 20

and then define the values of z, and v, that satisfy boundary conditions (18).

Let us briefly consider the structure of the boundary condition/initial value parameters space. In
Fig.1 we plot the constant level lines of z({) = 0 and ¢ beign fixed in parametric space z, and v, on
the left plot, and the same for v(£) on the right plot. We see, that generally for each ¢ and ¢ one can
find the unique values pair fixing the values z. and v. so that boundary conditions (18) are satysfied.
White curve on each plot is the kind of "attractor” for constant level lines. In the parametric space the
parameter values lying upper than this curve corresponds to the geodisics refracting from the shell and
going to the singularity. So one should neglect these parameters values as they does not correspond
to right boundary conditions.

Figure 1. Left plot: parametric space for the value z(£). Parameter v = 2 is fixed. Right plot: parametric space
for the value v(£), time t. Parameter v = 2 is fixed.

We solve equations of motion (17) numerically and show the example of solution in Fig.2.
The renormalized action (16) can be represented as
2708 vyyren (% [DE) = bo)] | VB(z0)

dz +
1+1 1 ’
Lyl 20 ™ v Z*/V

where we have introduced the quantity b defined by

1 [z \1+1/Y
b= (%) 22)
7 \z
and the pseudopotential is expressed as :
S XY 1(c0),TEN
(Vx,yl(o@ = e (23)

L.’/l
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Figure 2. Profile of the string z(x), z(2) = 0 at different moments of the boundary time for v = 4. In (6) we take
M=1.

It is also instructive to define and study the following quantity
5(V1 (-x7 t) = (Vx,yl(oo) (-x7 t) - (Vx,yl(w)(xv tf)? (24)
expressing the deviation of V from thermal equilibrium.

Evaluating (24) on numerical solutions of (17) we can see the dynamics of pseudopotential equi-
libration (see Fig.3 and Fig.4)

s w liml

Figure 3. The pseudopotential V., as a function of ¢ at fixed values of ¢ for v = 1 and v = 4. ((a) and (b),
respectively). Different curves correspond to time ¢ = 0.1,0.5,0.9, 1.4, 2 (from down to top, respectively). In (6)
we take M = 1.
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Figure 4. a. The time dependence of the quantity —6V,(x, t), given by (24), for different values of the length ¢,
v = 4. b. The quantity -6V (x, t) as a function of r at £ = 2 for v = 1,2, 3,4 (from top to down, respectively). In
(6) we take M = 1.
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3 Conclusion

The equilibration process of Wilson loop in the anisotropic quark-gluon plasma using the
gauge/gravity duality is analysed. Lifshitz-like background is taken on the gravity side and the criti-
cal exponent v controls the anisotropy. The expectation values of Wilson loops and their dynamic is
considered for certain orientation of contour. Numerical issues, concerning the solution of equation
of motion for the Nambu-Goto string are discussed.

The pseudopotential out of equilibrium has the universal behaviour: it tends to achievement of the
saturation corresponding to large values of the boundary time. The dynamical exponent influences
the thermalization process of Wilson loops: this behavior described above strengthen as the value of
v increases.
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