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Abstract. The nonequilibrium properties of the anisotropic quark-gluon plasma are con-

didered from the holographic viewpoint. Lifshitz-like solution is considered as a holo-

graphic dual of anisotropic QGP. The black brane formation in such background is con-

sidered as a thermalization in dual theory. As a probe of thermalization we consider

rectangular spatial Wilson loops with different orientation.

1 Introduction and holographic setup

Gauge/gravity duality is a powerful tool for strong coupling systems equilibration study. The quark-

gluon plasma (QGP) produced in heavy-ion collisions (HIC) [1] and created after a very short time

after the collision (about 0.2 ÷ 1 f m/c) is one of such systems.

The holographic duality provides suitable background for description of this period of evolution

[2, 3]. The anisotropy and anisotropy effects in the holographic description of QGP is also convenient

too [4, 5].

We choose the bottom-up approach for the general AdS/CFT correspondence in background de-

pending on some parameters. This means fitting parameters in background (assuming the dependence

on the minimal number of such parameters) in such a way, that the hologprahic calculations fit the

experimental data.

Holographic description [6] of the HIC modeled by shock wall collisions in the Lifshitz-like back-

ground [10, 11], parametrized by the critical exponent ν is based on background

ds2 =
−dt2 + dx2

z2
+

dy2
1 + dy2

2

z2/ν
+

dz2

z2
. (1)

This background perfectly matches experimental data [6] for holographic multiplicity calculation.

The experimental data is reproduced from holography for the parameter ν = 4. This is the case of

special interest for us. Vaidya solutions in these Lifshitz-like spacetimes have been found in [8]. The

thermalization time of the 2-point correlators and the thermalization of the holographic entanglement

entropy have been estimated in [7, 8].

In this proceedings, based on [9], we investigate numerically spatial Wilson loops behaviour in

the Lifshitz-like background. An infalling shell of matter deforms Lifshitz-like spacetime and this

corresponds to the formation of the black hole in this background. Wilson loops under consideration

�e-mail: ageev@mi.ras.ru

    
  

DOI: 10.1051/,125 12504007EPJ Web of Conferences epjconf/201604007 (2016)
QUARKS-2016

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
 Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



are rectangles with two infinitely long sides. Lifshitz-like spacetime depends on some parameter ν,
controlling the spatial anisotropy. We study (pseudo)potentials calculated from holographic Wilson

loops and their evolution in asymptotically Lifshitz-like backgrounds. We calculate the dependence

of the equilibration time on spatial orientations of Wilson loops. Also we investigate the dependence

on the anisotropy parameter ν.

A non-zero temperature generalization of the Lifshitz-like spacetime (1) is a black brane back-

ground with the metric [8]

ds2 =
− f (z)dt2 + dx2

z2
+

dy2
1 + dy2

2

z2/ν
+

dz2

z2 f (z)
, (2)

where the function f is defined by

f = 1 − mz2+2/ν. (3)

The metric of the black brane in the 5d AdS spacetime corresponds to ν = 1.

The temperature of the black brane solution (2) is

T =
1

π

(ν + 1)

2ν
m

ν
2ν+2 . (4)

A straightforward generalization of the stationary black brane metric is the Lifshitz-Vaidya solution:

ds2 = − f (v, z)dv2 − 2dvdz + dx2

z2
+

dy2
1 + dy2

2

z2/ν
, (5)

with the function f taken in the following form

f (z, v) = 1 − M
2

(
1 + tanh

v

α

)
z

2
ν+2, (6)

where α = 0.2 for all calculations in this paper.

In this work we focus on rectangular spatial Wilson loops with an infinite extent. The basic

formula for the computation of the expectation value of the Wilson loop operator from holography

[12, 13] (specified by the contour C) reads as:

W[C] = 〈TrF ei
∮

C dxμAμ〉 = e−S string[C], (7)

where S is the action of the string with boundary conditions defined by C. The Nambu-Goto action 1

can be represented as

S string =
1

2πα′

∫
dσ1dσ2

√
− det(hαβ), (8)

with the induced metric of the world-sheet hαβ given by

hαβ = gMN∂αXM∂βXN , (9)

where α, β = 1, 2. In (9) gMN is the background metric, M,N = 1, . . . , 5, XM = XM(σ1, σ2) specify

the string worldsheet and σ1, σ2 parametrize the worldsheet.

1We keep α′ in formulas. For all intermediate calculation we set α′ = 1/2π whereas we take its appropriate value in final

results to fit observable data.
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Using a spatial rectangular Wilson loop with a finite extent X one can define the so called pseu-

dopotential V(X) for large Y

W(X,Y) = 〈Trei
∮

X×Y dxμAμ〉 = e−V(X)Y , (10)

So, it is straightforward to write down the expression which relates the pseudopotential and the bulk

string action:

V(X) =
S string

Y
. (11)

2 Non-equilibrium Wilson loops

In [9] we have considered rectangular Wilson loops with different orientations to capture the

anisotropy effect. Here we consider one of the orientation cases in greater details. Cases of orien-

tation considered in [9] are

• a rectangular loop in the xy1 (or xy2) plane with a short side of the length 	

x ∈ [0, 	 < Lx], y1 ∈ [0, Ly1
]; (12)

• a rectangular loop in the xy1 plane with a long side of the length Lx along the longitudinal x direc-

tion,

x ∈ [0, Lx], y1 ∈ [0, 	 < Ly1
]; (13)

• a rectangular loop in the transversal y1y2 plane with a long side of the length Ly2
along the other

transversal direction y2, namely

y1 ∈ [0, 	 < Ly1
], y1 ∈ [0, Ly2

]. (14)

2.1 Rectangular strip infinite along the y1-direction

We consider only this case of orientation in details. For investigation of another orientations see [9].

The orientation of interest is the rectangular Wilson loop on the xy1-plane, case (12). We choose

the following worldsheet parametrization

σ1 = x, σ2 = y1, (15)

assuming v = v(x), z = z(x) and z(±	/2) = 0.

The Nambu-Goto action in this case can be written as

2πα
′
S x,y1(∞)

Ly1

=

∫
dx

z1+1/ν

√
1 − f v′2 − 2v′z′. (16)

The equations of motion of dynamical system with the action (16) are

v′′ =
1

2

∂ f
∂z
v′2 +

(ν + 1)

νz
(1 − f v′2 − 2v′z′), (17)

z′′ = −ν + 1

ν

f
z
+
ν + 1

ν

f 2v′2

z
− 1

2

∂ f
∂v
v′2

− 1

2
f v′2
∂ f
∂z

− v′z′ ∂ f
∂z
+ 2

(ν + 1)

νz
f v′z′,
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and the boundary conditions of interest are

z(±	) = 0, v(±	) = t, (18)

where 	 is the length of the Wilson loop along the x-direction.

To solve these equations numerically we set the initial value problem instead in form

z(0) = z∗ (19)

v(0) = v∗ (20)

z′(0) = v′(0) = 0. (21)

and then define the values of z∗ and v∗ that satisfy boundary conditions (18).

Let us briefly consider the structure of the boundary condition/initial value parameters space. In

Fig.1 we plot the constant level lines of z(	) = 0 and 	 beign fixed in parametric space z∗ and v∗ on

the left plot, and the same for v(	) on the right plot. We see, that generally for each 	 and t one can

find the unique values pair fixing the values z∗ and v∗ so that boundary conditions (18) are satysfied.

White curve on each plot is the kind of "attractor" for constant level lines. In the parametric space the

parameter values lying upper than this curve corresponds to the geodisics refracting from the shell and

going to the singularity. So one should neglect these parameters values as they does not correspond

to right boundary conditions.
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Figure 1. Left plot: parametric space for the value z(	). Parameter ν = 2 is fixed. Right plot: parametric space

for the value v(	), time t. Parameter ν = 2 is fixed.

We solve equations of motion (17) numerically and show the example of solution in Fig.2.

The renormalized action (16) can be represented as

2πα
′
S x,y1(∞),ren

Ly1

= −
∫ z∗

z0

[b(z) − b(z0)]

z1+1/ν
dz +

νb(z0)

z1/ν
∗
,

where we have introduced the quantity b defined by

b(z) =
1

z′
( z∗

z

)1+1/ν

. (22)

and the pseudopotential is expressed as :

Vx,y1(∞)
=

S x,y1(∞),ren

Ly1

. (23)
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Figure 2. Profile of the string z(x), z(2) = 0 at different moments of the boundary time for ν = 4. In (6) we take

M = 1.

It is also instructive to define and study the following quantity

δV1(x, t) = Vx,y1(∞)
(x, t) −Vx,y1(∞)

(x, t f ), (24)

expressing the deviation of V from thermal equilibrium.

Evaluating (24) on numerical solutions of (17) we can see the dynamics of pseudopotential equi-

libration (see Fig.3 and Fig.4)
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Figure 3. The pseudopotential Vx,y1(∞)
as a function of 	 at fixed values of t for ν = 1 and ν = 4. ((a) and (b),

respectively). Different curves correspond to time t = 0.1, 0.5, 0.9, 1.4, 2 (from down to top, respectively). In (6)

we take M = 1.
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Figure 4. a. The time dependence of the quantity −δV1(x, t), given by (24), for different values of the length 	,

ν = 4. b. The quantity −δV1(x, t) as a function of t at 	 = 2 for ν = 1, 2, 3, 4 (from top to down, respectively). In

(6) we take M = 1.
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3 Conclusion

The equilibration process of Wilson loop in the anisotropic quark-gluon plasma using the

gauge/gravity duality is analysed. Lifshitz-like background is taken on the gravity side and the criti-

cal exponent ν controls the anisotropy. The expectation values of Wilson loops and their dynamic is

considered for certain orientation of contour. Numerical issues, concerning the solution of equation

of motion for the Nambu-Goto string are discussed.

The pseudopotential out of equilibrium has the universal behaviour: it tends to achievement of the

saturation corresponding to large values of the boundary time. The dynamical exponent influences

the thermalization process of Wilson loops: this behavior described above strengthen as the value of

ν increases.
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