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The multinucleon transfer process is one promising approach to produce exotic nuclei around the last 
“waiting point” in the r-process. However, the reliable reaction combinations are still ambiguous so far. 
We quantitatively evaluate the relative shell inhibition on production cross sections for producing N =
126 isotones for the first time with definition of a relative shell inhibition factor. The results suggest that 
the combinations characterized by double closed shell structure are unfavorable for producing unknown 
N = 126 isotones. It is demonstrated that the reactions 136Xe + 208Pb and 136Xe + 198Pt are not the 
good candidates. By investigating the yield contributions in main evaporation channels, we find that for 
producing 200W the effects of shell structure on production cross sections are mainly from de-excitation 
process. Also, the weak incident energy dependence of cross sections for producing N = 126 isotones is 
revealed with relevance between evaporation probabilities and excitation energy distributions of primary 
fragments.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The astrophysical r-process is responsible for the synthesis of 
about half of nuclei beyond iron. Understanding the important fea-
tures of the r-process requires the knowledge of nuclei far from 
the stability, especially the nuclei along the N = 126 shell closure, 
which is the last “waiting point” in the r-process [1]. Moreover, 
the properties of these nuclei, unknown so far, are necessary to 
explore the shell structures in the nuclei with large neutron excess 
[2].

How to produce neutron-rich isotopes (NRI) along N = 126? 
The approach of fragmentation has been extensively applied to 
produce neutron-rich heavy nuclei [3–5]. However, the cross sec-
tion decreases strongly when extended to the unknown N = 126
isotones. As one alternative path, the multinucleon transfer (MNT) 
process presents rather broad mass and charge distributions of 
products, which results in the high possibilities for producing ex-
otic isotopes. In past decades, the mechanism of MNT process has 
been extensively investigated and great efforts have been made 
to produce new NRI [6–11]. Many combinations were performed 
experimentally [12–21] and several theoretical models have been 
applied to explore the mechanism of MNT process [22–41]. Nev-
ertheless, no new isotopes with N = 126 have been observed. Be-
cause of low energies for target-like fragments (TLFs) produced in 
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the MNT reactions, it is difficult to detect and identify them di-
rectly using spectrometer [42]. On the other side, the production 
yields are rather low. Therefore, in order to observe the unknown 
isotopes, apart from enhancing the efficiencies of the separation 
and detection system [18,43], the reaction combinations, which are 
at the heart of experiments, should be selected carefully.

The shell effects play an important role in MNT reactions and 
influence the nucleon diffusion process [44–50] as well as the exci-
tation energy of the transfer products [44]. Based on the stabilizing 
effect of the closed neutron shells, the reaction 136Xe + 208Pb was 
proposed as one promising combination [51] and investigated ex-
tensively [15–17]. Recently, it was stated that the reaction 136Xe 
+ 198Pt was more favorable because of larger transfer probabilities 
of neutrons compared to protons [12]. Also, several combinations 
with doubly magic partner, such as 58,64Ni + 208Pb [18–20], are 
widely investigated. However, in Ref. [52], it was observed that the 
magic shell characters unexpectedly suppress the intensity of nu-
cleon diffusion. For the reactions with 208Pb, the attraction of the 
shell closures (Z = 82 and N = 126) could suppress the proba-
bilities of nucleon transfer and then lower the production cross 
sections of exotic nuclei. The shell effects on production cross sec-
tions have been investigated in many works. Nevertheless, it is still 
not clear how much influence of the shell effects on selection of 
optimal reaction systems could be.

In this work, within the framework of dinuclear system (DNS) 
model in combination with GEMINI++ code, we aim to qualita-
tively reveal the relative influence of shell structure on production 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of N = 126 isotones in deep inelastic collisions (DIC) and propose 
one perspective for selecting the favorable reaction systems. The 
DNS model has been successfully used in investigation of MNT re-
actions [22–28]. In Sec. 2, we briefly describe one extended version 
of DNS model (DNS-sysu) [10]. The results and discussion are pre-
sented in Sec. 3. Finally, we summarize the main results in Sec. 4.

2. Model

The master equation is one very general linear equation for the 
probability distribution. It is one suitable tool for describing DIC 
as the process of non-equilibrium state [53]. During the evolution 
in mass and charge asymmetry coordinates, the primary fragments 
can be obtained after a short contact time. In the DNS-sysu model, 
the fragment distribution probability can be calculated by solving 
the following master equation [10]:

dP (Z1, N1, β2, J , t)

dt

=
∑

Z ′
1

W Z1,N1,β2;Z ′
1,N1,β2

(t)[dZ1,N1,β2 P (Z ′
1, N1, β2, J , t)

− dZ ′
1,N1,β2

P (Z1, N1, β2, J , t)]
+

∑

N ′
1

W Z1,N1,β2;Z1,N ′
1,β2

(t)[dZ1,N1,β2 P (Z1, N ′
1, β2, J , t)

− dZ1,N ′
1,β2

P (Z1, N1, β2, J , t)]
+

∑

β ′
2

W Z1,N1,β2;Z1,N1,β ′
2
(t)[dZ1,N1,β2 P (Z1, N1, β

′
2, J , t)

− dZ1,N1,β ′
2

P (Z1, N1, β2, J , t)].

(1)

Here, P (Z1, N1, β2, J , t) is the distribution probability for the frag-
ment 1 with proton number Z1 and neutron number N1 at time 
t. J is initial entrance angular momentum. β2 is related to the dy-
namical deformation of the two collision partners [49]. δβ1

2 +δβ2
2 =

2β2, C1δβ
1
2 = C2δβ

2
2 . δβ1

2 and δβ2
2 are dynamical quadrupole de-

formations of fragment 1 (Projectile-like fragment (PLF)) and frag-
ment 2 (TLF), respectively. C1,2 are the LDM stiffness parameters of 
the fragments [54]. dZ1,N1,β2 is the microscopic dimension in the 
state (Z1, N1, β2). W Z1,N1,β2;Z ′

1,N1,β2
is the mean transition proba-

bility from the state (Z1, N1, β2) to (Z ′
1, N1, β2) [55].

The potential energy surface (U ) can be calculated as [45,49]

U (Z1, N1, β2, J , Rcont) = �(Z1, N1) + �(Z2, N2)

+ V (Z1, N1, β2, J , Rcont) + 1

2
C1(δβ

1
2 )2 + 1

2
C2(δβ

2
2 )2.

(2)

The last two terms are dynamical deformation energies of the PLF 
and TLF. �(Zi, Ni) (i = 1, 2) is mass excess of the fragment i. The 
detailed description of �(Zi, Ni) can be seen in Ref. [49].

The shell correction in U is estimated as [56]

Esh(Zi, Ni) = E0
sh(Zi, Ni)e−E∗/Ed . (3)

E0
sh is the shell correction energy on the ground state, which is 

prescribed by Strutinsky [57,58]. The damping parameter Ed =
5.48A1/3

i /(1 + 1.3A−1/3
i ) MeV.

The effective nucleus-nucleus interaction potential V can be 
written as

V (Z1, N1, β2, J , Rcont) = V N(Z1, N1, β2, Rcont)

+ V C(Z1, N1, β2, Rcont) + ( J h̄)2

2ζrel
.

(4)
2

The detailed description of nuclear potential V N and Coulomb po-
tential V C can be seen in Ref. [49,59,60]. ζrel = μ(Rcont)

2 is the 
moment of inertia for relative motion of the DNS. μ is the re-
duced mass of the DNS. In diffusion process (solving the master 
equation), the tip-tip orientation is usually considered for calculat-
ing the potential energy surface in the DNS model [23–25,61].

The production cross sections of the primary products in trans-
fer reactions can be calculated as follows [61]:

σpr(Z1, N1) = π h̄2

2μEc.m.
×

Jmax∑

J=0

(2 J + 1)[Tcap( J )
∑

β2

P (Z1, N1, β2, J , τint( J ))].
(5)

The contact time τint is determined by deflection function method 
[62,63]. Tcap is the capture probability. For the reactions with po-
tential pockets, Tcap is calculated with Hill-Wheeler formula [64], 
with consideration of Coulomb barrier distribution. The Coulomb 
barrier distribution is related to the orientation effects of deformed 
system. On the other hand, for the heavy systems without poten-
tial pockets (there are no ordinary barriers: the potential energies 
of these nuclei are everywhere repulsive), Tcap is estimated as 
1, when the incident energy is above the interaction potential at 
the contact configuration (V DF) [24,61]. Otherwise, if Ec.m. < V DF, 
Tcap = 0. For the deformed systems, V DF is calculated in the tip-tip 
collisions. The contact position where the nucleon transfer process 
takes place for the heavy system without potential pocket can be 
obtained with the equation: Rcont = R1(1 + β1

2 Y20(θ1)) + R2(1 +
β2

2 Y20(θ2)) + 0.7 fm. Here, R1,2 = 1.16A1/3
1,2 fm. For the prolate de-

formation, θ1,2 = 0. β1
2 = β

p
2 + δβ1

2 and β2
2 = βt

2 + δβ2
2 denote the 

quadrupole deformation of the PLF and TLF, respectively. Here, βp
2

and βt
2 denote the static quadrupole deformation of the projectile 

and target, respectively. For all reactions in this work, the poten-
tial energies are everywhere repulsive and there are no potential 
pockets.

The sharing of the excitation energy between the primary frag-
ments was assumed to be proportional to their masses. The ex-
citation energy of the primary fragment i formed at the entrance 
angular momentum J can be calculated as [65]

E∗
Zi ,Ni , J =

∑
β2

[P (Zi, Ni, β2, J , t =τint)E∗
DNS(Zi, Ni, β2, J , t =τint)]

∑
β2

P (Zi, Ni, β2, J , t = τint)

× Ai

Atot
.

(6)

Ai and Atot are mass numbers of fragment i and whole system, 
respectively. E∗

DNS is the local excitation energy and can be written 
as

E∗
DNS(Z1, N1, β2, J , t) =Ediss( J , t) − [U (Z1, N1, β2, J , Rcont)

− U (Zp, Np, β2, J , Rcont)],
(7)

and

Ediss( J , t) =Ec.m. − V (Zp, Np, β2 = 0, J = 0, Rcont)

− ( J ′(t)h̄)2

2ζrel
− Erad( J , t).

(8)

Here, J ′(t) (= Jst + ( J − Jst)e−t/τ J ) is the angular momentum at 
time t . Jst = ζrel

ζtot
J . ζtot(= ζrel + ζ

p
int + ζ t

int) is the total moment of 
inertia for the DNS. ζ p

int and ζ t
int are intrinsic moments of inertia 

[66] for the projectile and target, respectively. Erad( J , t) = [Ec.m. −
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Fig. 1. Calculated cross sections in the proton pick-up channel in the reaction 136Xe 
+ 198Pt at Ec.m. = 643 MeV. The experimental data [12] is also shown with squares. 
The thick and thin solid lines denote the calculated cross sections of final prod-
ucts and primary fragments, respectively. The red dotted lines denote the calculated 
cross sections of final products without shell corrections.

V (Zp, Np, β2 = 0, J = 0, Rcont) − ( J h̄)2

2ζrel
]e−t/τR . τ J (= 12 × 10−22 s) 

and τR (= 2 ×10−22 s) are respectively the characteristic relaxation 
time of angular momentum and radial energy.

In this work, the GEMINI++ code is applied to describe the 
deexcitation process [67]. The GEMINI++ code could give a good 
description of the spectral shape of evaporation spectra systemati-
cally [67] and unified description of fission in fusion and spallation 
[68]. The successful description of de-excitation process with the 
GEMINI++ code in the MNT reactions has been noticed in com-
bination with the DNS model [69], TDHF approach [35,37] and 
GRAZING model [70]. Beside, based on the comparison with dif-
ferent models, it was noticed that the GEMINI++ was the most 
reliable code [71].

In Fig. 1, the calculated production cross sections of PLF pro-
duced in the reaction 136Xe + 198Pt from the proton pick-up chan-
nel, which is the pathway of producing the unknown N = 126
isotones, are compared with the experimental data [12]. It can be 
seen that the calculated results (denoted with thick solid lines) 
are in good agreement with the experimental data. It is worth to 
emphasize that parameters in the DNS model are fixed in the re-
lated works. The default parameter set of the GEMINI++ code is 
used. The thin solid lines denote the cross sections of primary 
product. One can see that several neutrons are evaporated in the 
de-excitation process. We also show the calculated cross sections 
of final products without shell corrections in the potential energy 
surface (denoted with red dotted lines). The inclusion of shell cor-
rections strongly improves description of experimental data, which 
gives us a definite confidence for investigating the shell inhibition 
on production cross sections.

3. Results and discussion

In Fig. 2, we show the production cross sections of 200W as a 
function of incident energy in the reactions 136Xe + 198Pt, 136Xe + 
208Pb, 186W + 238U, and 208Pb + 238U. For each reaction, the cross 
section first increases strongly with the increasing incident energy. 
Then, the behavior of weak energy dependence is noticed after 
reaching a relatively high level of cross sections. This is because 
the main events are quasielastic collisions at low incident energy 
region. With increase of incident energy, the contact time of DNS 
increases, which enhances the contributions of DIC. Therefore, the 
cross sections of primary fragments contributing to the yields of 
200W will increase strongly. As the incident energy continues to 
3

Fig. 2. Cross sections as a function of incident energy for producing unknown iso-
tope 200W in the MNT reactions 136Xe + 198Pt, 136Xe + 208Pb, 186W + 238U, and 
208Pb + 238U.

increase, the suppressed evaporation probabilities counteract the 
enhanced cross sections of primary fragments, which gives rise to 
the saturation of cross section of final product. The similar behav-
ior is also noticed based on a Langevin-type approach [33].

In comparison to the 136Xe induced reactions, the 238U tar-
get shows great advantages for producing 200W. The effects of 
mass asymmetry relaxation [61,72], N/Z equilibration [19,20,73], 
and shell closures [45–49] play an important role in DIC. With in-
vestigation of these effects, the advantages of the 238U target for 
producing NRI have been shown in Ref. [61]. Also, the unknown 
exotic isotopes could be observed from projectile-like products. 
Hence, we choose the combinations with 238U target as candidates 
for producing NRI around N = 126. As well known, the incident 
energy plays an important role on successful observation of new 
NRI. Based on the results shown in Fig. 2, the optimal incident en-
ergies of 1.3 times interaction barrier (VDF), which is calculated 
with double folding potential, in the entrance channel are esti-
mated and studied in the following. V DF = 399, 422, 555, 573, 618, 
637, and 656 MeV, respectively, for the reactions 136Xe + 198Pt, 
136Xe + 208Pb, 182Hf + 238U, 186W + 238U, 198Pt + 238U, 204Hg + 
238U, and 208Pb + 238U.

In Fig. 2, it can be seen that the production cross sections of 
200W in the reaction 186W + 238U are several orders of magnitude 
higher than those in the reaction 208Pb + 238U. In the combina-
tions with 208Pb, the protons are supposed to transfer from 208Pb 
to another partner. By contrast, the 186W pick-up neutrons in the 
collisions for producing 200W. The N/Z ratio of 186W is 1.51, which 
is close to 1.54 of 208Pb. Hence, the effect of N/Z equilibration is 
weak. Is this phenomenon mainly due to the lower transfer proba-
bilities of protons? Intriguingly, beyond expectation, the cross sec-
tions in the reactions 136Xe + 198Pt and 136Xe + 208Pb are close, 
although the number of stripping protons from 208Pb is twice over 
that from 198Pt. The yields of the final products not only depend 
on the cross sections of primary fragments, but also depend on 
the evaporation probabilities in the specific channels. Furthermore, 
the behaviors inspire us to make conjecture that the shell closures 
in the above combinations could remarkably suppress the produc-
tion cross sections of 200W. We will gain a deep insight into above 
behaviors in the following.

We show the ratio of cross sections for producing 200W in the 
reaction 208Pb + 238U to those in the reaction 186W + 238U (de-
noted with σPb-induced/σW-induced) in Fig. 3 (a). It is shown that 
with increasing incident energy the value of σPb-induced/σW-induced
increases strongly and reaches the saturated value of 0.05. In order 
to clarify this behavior, the results without shell corrections are 
also shown. For the case of without shell corrections, the ratio of 
σPb-induced/σW-induced is strongly enhanced, especially for the inci-
dent energy around VDF. With increase of incident energy, the shell 
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Fig. 3. (a) Ratios of production cross sections of 200W in the reaction 208Pb + 238U to 
those in the reaction 186W + 238U (σPb-induced/σW-induced) as a function of incident 
energy. The open squares show the results without shell effects. (b) Relative shell 
inhibition factor Is for producing unknown N = 126 isotones 200W, 201Re, and 202Os 
in different combination pairs at Ec.m. = 1.3 × V DF.

effects are weakened because of the high temperature of the DNS 
system during the evolution. Therefore, the shell inhibition plays 
a significant role for producing N = 126 isotones in the 208Pb in-
duced reaction, especially with incident energy around VDF.

To investigate the relative shell inhibition effect in the MNT re-
actions for producing NRI around N = 126 and provide a guidance 
for selecting the favorable combinations, we define a relative shell 
inhibition factor Is , which can be written as

Is = (σX/σY)with-shell

(σX/σY)without-shell
. (9)

Is denotes the relative shell inhibition magnitude between the re-
actions X and Y . In Fig. 3 (b), we show the values of Is for several 
combination pairs. It is noticed that the factor Is could sensitively 
present the shell discrepancies in different reactions. The incident 
energy of Ec.m. = 1.3 × V DF is used for each reaction. It can be seen 
that the values of Is for producing 200W, 201Re, and 202Os are lower 
than 1 for the combination pairs 208Pb/182Hf + 238U, 208Pb/186W + 
238U, and 208Pb/198Pt + 238U. It means that the shell inhibition ef-
fect is much stronger in the reaction 208Pb + 238U in comparison to 
the 182Hf, 186W, and 198Pt induced ones. Also, from 182Hf to 208Pb, 
the neutron and proton numbers get closer to the shell closures 
Z = 82 and N = 126, which results in stronger shell effects and 
enhancement of Is values closer to 1. Interestingly, the Is values for 
the reactions 136Xe + 208Pb/198Pt are larger than 1, which means 
the reaction 136Xe + 198Pt shows stronger shell inhibition than the 
reaction 136Xe + 208Pb for producing 200W, 201Re, and 202Os. The 
reasons for this phenomenon are as follows. (i) There is neutron 
shell closure N = 82 for the projectile 136Xe. For producing 200W, 
201Re, and 202Os in the reaction 136Xe + 198Pt, the main pathway 
is neutron transfer. The neutron shell closure N = 82 also inhibits 
the neutron transfer and suppresses the yields of exotic nuclei. (ii) 
The proton and neutron numbers of 198Pt are close to the shell 
closures of Z = 82 and N = 126. The effects of shell closures still 
exist. Therefore, the conjecture made in Fig. 2 is testified. Over-
all, from the factor Is , the strong shell inhibition for the reactions 
involving 208Pb is clearly shown.

To further clarify the shell inhibition effect and inferiority of 
cross sections in 208Pb induced reactions, we show the yield con-
4

Fig. 4. (a) Yields of primary fragments A W∗ produced in the reactions 186W + 238U 
(745 MeV) and 208Pb + 238U (850 MeV). (b) Contributions of cross sections from the 
primary Tungsten fragments for producing 200W in xn evaporation channels in the 
reactions 186W + 238U (745 MeV) and 208Pb + 238U (850 MeV). The results without 
shell corrections are denoted with open circles and squares in the reactions 186W + 
238U (745 MeV) and 208Pb + 238U (850 MeV), respectively. The dotted lines indicate 
the results at Ec.m. = 918 MeV for 208Pb + 238U. (c) The incident energy dependence 
of yields of primary fragments 202W∗ and 204W∗ produced in the reactions 186W + 
238U and 208Pb + 238U. (d) Probabilities of evaporation channels 202W∗ → 200W+2n 
as a function of excitation energy, calculated within GEMINI++ code. The spin an-
gular momentum is set to 0. (e) The excitation energy distributions for the primary 
fragments 202W∗ formed in the reactions 208Pb + 238U and 186W + 238U. The olive 
dash-dotted line denotes the result in the reaction 208Pb + 238U (850 MeV) with-
out shell corrections. The vertical arrows denote the average values of the excitation 
energies.

tributions in xn evaporation channels for producing 200W in the 
reactions 186W + 238U (745 MeV) and 208Pb + 238U (850 MeV) 
in Fig. 4 (b). The main evaporation channel (2n) is denoted with 
vertical dashed line, which bridges the final yields contribution for 
producing 200W with the corresponding yields of the primary frag-
ments shown in Fig. 4 (a). One can see that the yield contribution 
in the 2n channel for the reaction 208Pb + 238U is about two or-
ders of magnitude lower than that for the reaction 186W + 238U. 
However, the cross sections of the primary fragments 202W∗ are 
close. Therefore, the discrepancy of yields in two reactions mainly 
results from evaporation process. Fig. 4 (c) shows the yields of pri-
mary fragments 202W∗ and 204W∗ as a function of Ec.m./V DF in the 
reactions 186W + 238U and 208Pb + 238U. It is found that the advan-
tages of the reaction 186W + 238U are weakened with increasing 
incident energy. This is because the inferiority of probability for 



L. Zhu Physics Letters B 816 (2021) 136226
Fig. 5. Predicted production cross sections of 200W, 201Re, and 202Os in the reac-
tions 182Hf, 186W, 198Pt, 208Pb + 238U, 136Xe + 208Pb, and 136Xe + 198Pt. The open 
triangles and open squares denote the results without shell effects in the reactions 
182Hf + 238U and 208Pb + 238U, respectively. Ec.m. = 1.3 × V DF.

proton transfer (due to Coulomb barrier inhibition) in comparison 
to neutron transfer is reduced with increasing incident energy.

Furthermore, if the shell corrections in the PES are removed, 
the strong enhancement of yield for the reaction 208Pb + 238U can 
be seen in Fig. 4 (b) and only slight increase of yields is shown 
for the reaction 186W + 238U. As shown in Fig. 4 (a), the produc-
tion cross section of the primary fragments 202W∗ in the reactions 
208Pb + 238U is 0.7 μb, which is a little lower than 0.9 μb of the 
case without shell corrections. Hence, the shell effects not only in-
fluence the probability of the nucleon transfer, but also play an 
important role in the second stage of reaction (de-excitation pro-
cess) with influence of the excitation energy distribution of the 
primary fragments. In Fig. 4 (b), we also show the result in the 
reaction 208Pb + 238U at Ec.m. = 918 MeV with red dotted line. In-
terestingly, the behavior of weak energy dependence is displayed 
in each single evaporation channel.

To explain the above phenomena, we show the probability of 
evaporation channel 202W∗ → 200W + 2n as a function of ex-
citation energy in Fig. 4 (d). It can be seen that the probability 
decreases strongly with increasing excitation energy. Correspond-
ingly, the excitation energy distributions for the fragments 202W∗
are displayed in Fig. 4 (e). The average value of excitation en-
ergy for the 202W∗ fragments in the reaction 186W + 238U (745 
MeV) is 73.8 MeV, which is lower than 82.3 MeV produced in the 
reaction 208Pb + 238U (850 MeV). The excitation energy distribu-
tion for 202W∗ produced in the reaction 186W + 238U locates at 
the relatively low energy region, which corresponds to the higher 
evaporation probability. This is because the production of 202W∗ is 
associated with a lot of protons transfer and large amount of en-
ergy dissipation in the reaction 208Pb + 238U. The olive dash-dotted 
line denotes the result without shell corrections for the reaction 
208Pb + 238U (850 MeV). Although the total cross sections of 202W∗
are close, the advantage of 202W∗ yields for the case without shell 
effects in low excitation energy region strongly enhances the final 
yield of 200W. The excitation energy distribution in 208Pb + 238U 
at Ec.m. = 918 MeV is also presented. The increase of incident en-
ergy enhances the total cross section of primary 202W∗ fragment. 
However, the extra yields are highly excited, which corresponds to 
the very low survival probability through the channel of 2n evap-
oration. Consequently, the cross section contribution to 200W from 
the extra yields of 202W∗ would be negligible, which successfully 
accounts for the behavior of weak energy dependence, as shown 
in Fig. 2, Fig. 4 (b), and in Refs. [33,26].

Fig. 5 shows the comparison of the cross sections for produc-
ing 200W, 201Re, and 202Os among several MNT reactions based on 
the 238U target. The inferiority of cross section can be clearly seen 
in the reaction 208Pb + 238U. The production cross section of 202Os 
5

in the reaction 208Pb + 238U is 39 nb, which is lower than 55 nb 
in the reactions 182Hf + 238U. We also present the results without 
shell effects in the reactions 208Pb + 238U and 182Hf + 238U. For 
producing 202Os, the reversal of cross section is clearly shown. As 
shown in 3 (b), in comparison to the reaction 182Hf + 238U, the 
shell inhibition in the reaction 208Pb + 238U is strong (Is = 0.24 for 
202Os), which results into unfavorable property for producing 202Os 
in 208Pb induced reaction. The results in the reactions 136Xe + 198Pt 
and 136Xe + 208Pb are also shown. The yields are at least 2 orders 
of magnitude lower than the reactions based on the 238U target. 
The beam intensities for 136Xe and 208Pb at GSI reach 1010 and 
0.5 × 1010 p/s, respectively. The values of factor “cross section ×
beam intensity” for producing 202Os, 201Re, and 200W in the reac-
tion 136Xe + 198Pt are 3.8 × 103, 184, and 3.2 mb·p/s, respectively, 
which is much lower than 1.5 × 105, 4 × 103, and 80 mb·p/s in the 
reaction 208Pb + 238U. Therefore, from the relative comparisons, it 
is shown that the reactions 136Xe + 198Pt and 136Xe + 208Pb are 
not the good candidates for producing unknown N = 126 isotones.

4. Summary

In summary, it is necessary to explore the optimal conditions 
for producing N = 126 isotones. The relative shell inhibition on 
production yields of N = 126 isotones is investigated within the 
DNS-sysu model in combination with the GEMINI++ code. For the 
first time, with definition of the relative shell inhibition factor, we 
quantitatively evaluate and compare the shell effects on produc-
tion yield of the N = 126 isotones between different combinations, 
which provides a perspective for selecting the optimal reactions. 
The reactions 208Pb + 238U and 186W + 238U for producing 200W, 
in which the pathways of proton and neutron transfer are charac-
terized respectively, in main evaporation channels are studied. It 
is found that the effect of shell inhibition is mainly related to the 
excitation energy distribution of the primary fragments and the 
corresponding neutron evaporation probabilities. Also, the weak 
energy dependence of cross sections for producing NRI around 
N = 126, which have been noticed in many works, is revealed with 
relevance between evaporation probabilities and excitation energy 
distributions of primary fragments. The results in this work sug-
gest that the combinations with double closed shell structure, such 
as 208Pb are unfavorable for producing unknown NRI. It is also 
demonstrated that the reactions 136Xe + 198Pt and 136Xe + 208Pb 
are not the good candidates.
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