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The data for the elastic scattering of 288, 340, and 386 MeV alpha particles on 58Ni was analyzed
using the McIntyre parametrization for the phase shift. The calculated differential cross sections
for the α + 58Ni system fit the experimental data fairly well. The diffractive oscillatory structures
observed in the angular distributions were explained as being due to the strong interference between
the near-side and the far-side scattering amplitudes. The corresponding optical potentials were
predicted by using the inversion procedure of the McIntyre phase shift. The inversion potentials
were then compared with the available ones obtained from optical model analyses.
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I. INTRODUCTION

One of the measuring quantities in the elastic scatter-
ing between heavy-ions is the differential cross section.
The important element in describing the elastic differen-
tial cross section is the nuclear phase shift. Since this
nuclear phase shift can be expressed as a parametrized
form, the parametrized phase shift model has been used
as a convenient tool in interpreting the elastic scattering
data. Until now, several forms for parametrized phase
shift model are known [1]. There has been a great deal of
efforts [2–7] in describing the heavy-ion elastic scattering
within the framework of parametrized phase shift model.
For instance, the elastic data of 1503 MeV 16O scatter-
ings on 12C, 40Ca, 90Zr, and 208Pb target nuclei and 12C
+ 12C system at 360 and 1016 MeV have been analyzed
[2] successfully by using phase shift based on McIntyre
parametrization [8]. Further, a systematic study of elas-
tic scattering for the 12C + 12C system in the range
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Elab = 240 to 2400 MeV has been done [6] with the
parametrized phase shift model.

In addition to the differential cross section, optical
potential is one of the central subjects in the study of
heavy-ion elastic scattering. The connection between the
optical potential and elastic data (primarily differential
cross section) is the nuclear phase shift. The parameters
of nuclear phase shift are employed to determine the op-
tical potential by solving the inverse scattering problem.
Several attempts [9–14] have been made to evaluate the
optical potential from the parametrized phase shift. By
solving the inversion problem at high energies, Fayyad
et al. [9] related the parameters of McIntyre phase shift
to the ones of Woods-Saxon type optical potential. The
inversion potentials [14] for the 12C + 12C system in the
range Elab = 240 to 2400 MeV were obtained, and com-
pared with other works.

In our earlier paper [15], we reported a phase shift
analysis based on the McIntyre parametrization for 12C
+ 90Zr and 12C + 208Pb elastic scatterings at Elab =
35 MeV per nucleon. Using a phase shift analysis based
on McIntyre parametrization of S−matrix, we analyzed
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the 16O + 28Si elastic scattering at Elab = 1503 MeV,
calculated the optical potential by inversion, and dis-
cussed the first-order eikonal correction effect on this in-
version potential [16]. Recently, the elastic scattering
of the α particles on 16O, 24Mg, 28Si, 58Ni, 116Sn, and
197Au targets at Elab = 240 MeV have been analyzed
[17] by using the parametrized phase shift model. In
this paper, we present a phase shift analysis based on
McIntyre parametrization for the α + 58Ni elastic scat-
tering at Elab = 288, 340, and 386 MeV, respectively.
The parameter values of McIntyre phase shift obtained
from fitting the elastic data are used for extracting the
optical potential by inversion. Then, the inversion po-
tentials are compared with the available optical model
ones. In the following section, we recall the expression of
the McIntyre phase shift. The formalism related with the
inversion potential is briefly presented in Sec. III. Sec-
tion IV is devoted to the results and discussion, in which
we perform a phase shift analysis of α + 58Ni elastic
scattering and calculate optical potential by inversion.
Finally, we provide the concluding remarks in Sec. V.

II. MCINTYRE PARAMETRIZATION FOR
NUCLEAR PHASE SHIFT

The elastic scattering amplitude for spin-zero charged
particle from a target nucleus may be written as

f(θ) = fR(θ)+
1

ik

∞∑
L=0

(L+
1

2
) exp(2iσL)(SL−1)PL(cos θ),

(1)
where fR(θ) is the usual Rutherford scattering ampli-
tude, k is the wave number and σL denotes the Coulomb
phase shift. The nuclear S-matrix element, SL, is related
to the nuclear phase shift χ(L) through the relation

SL = exp[iχ(L)] = exp[i{χR(L) + iχI(L)}]. (2)

In the McIntyre parametrization [8] for nuclear phase
shift, the real and imaginary parts of χ(L) are expressed
as

χR(L) = 2µ

[
1 + exp(

L− L′
g

∆′
g

)

]−1

(3)

and

χI(L) = ln
[
1 + exp(Lg − L

∆g
)

]
. (4)

The reduced radius r1/2 and the diffusivity ds are related
with the grazing angular momentum Lg and the angular
momentum width ∆g through the following semiclassical
relationship [2]:

Lg = kR1/2(1−
2η

kR1/2
)1/2 (5)

and

∆g = kds(1−
η

kR1/2
)(1− 2η

kR1/2
)−1/2, (6)

where R1/2 = r1/2(A
1/3
P + A

1/3
T ) and η the Sommerfeld

parameter. Similarly, the grazing angular momentum
L′
g and its width ∆′

g in Eq. (3) can be obtained from the
phase radius rph and the phase diffusivity dph instead of
r1/2 and ds in Eqs. (5) and (6).

By using the relations kb = L + 1/2, kb0 = Lg + 1/2,
kb′0 = L′

g + 1/2, d = ∆g/k, and d′ = ∆′
g/k, the nuclear

phase shift given in Eqs. (3) and (4) can also be written
in terms of impact parameters b, b0, and b′0:

χR(b) =
2µ

1 + exp[(b− b′0)/d
′]

(7)

and

χI(b) = ln[1 + exp(b0 − b

d
)]. (8)

III. OPTICAL POTENTIAL BY
INVERSION

The inversion solution to Woods-Saxon type optical
model potential Uop(r) = V (r)+ iW (r) determined from
the McIntyre parametrization of the S−matrix was re-
ported by Fayyad et al. [9]. The obtained results are

V (r) = − V0

1 + exp[(r −R′)/∆′]
(9)

and

W (r) = − W0

1 + exp[(r −R)/∆]
, (10)

where V0 and W0 denote the depths of the optical model
potential given by [9]

V0 =
4µE

πkα
(11)
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Table 1. Input parameters and χ2/N values in the McIntyre phase shift analysis for the α + 58Ni elastic scatterings
at Elab = 288, 340, and 386 MeV, respectively.

Elab (MeV) Lg ∆g L′
g ∆′

g µ χ2/Na

288 41.9360 4.2031 31.8862 6.2956 4.277 5.98
340 45.9064 5.3589 32.9280 7.1266 4.086 1.87
386 48.8616 5.7097 33.9365 7.7135 4.073 2.01

a10% error bars, χ2/N = (1/N)
∑N

i=1

[
σth(θi)−σex(θi)

∆σex(θi)

]2

and

W0 =
2E

πkβ
(12)

with

α =
2

π
· [1 + exp(−b′0

d′
)]I0(R

′,∆′), (13)

β =
2

π
· I0(R,∆)

ln[1 + exp(b0/d)]
. (14)

In Eq. (13), I0(R′, ∆′) is given by

I0(R
′,∆′) = R′ +∆′ ln[1 + exp(−R′

∆′ )] (15)

and I0(R,∆) in Eq. (14) is obtained in a similar manner
in terms of R and ∆. The remaining four potential pa-
rameters R′, ∆′, R, and ∆ are obtained by solving the
following two sets of nonlinear simultaneous equations of
Ref. [9]. For the parameters (R′ and ∆′) related with
the real potential

I4(R
′,∆′)

I2(R′,∆′)
=

3

2

I3(b
′
0, d

′)

I1(b′0, d
′)

(16)

and
I6(R

′,∆′)

I4(R′,∆′)
=

5

4

I5(b
′
0, d

′)

I3(b′0, d
′)
. (17)

For the parameters (R and ∆) related with the imaginary
potential

I4(R,∆)

I2(R,∆)
=

3

4

I4(b0, d)

I2(b0, d)
(18)

and
I6(R,∆)

I4(R,∆)
=

5

6

I6(b0, d)

I4(b0, d)
, (19)

where Iν(x0, a0) is an integral given by

Iν(x0, a0) =

∫ ∞

0

xν

1 + exp[(x− x0)/a0]
dx (20)

which can be evaluated analytically [18].

IV. RESULTS AND DISCUSSION

Following the approach outlined in Sec. II, we have cal-
culated the elastic differential cross sections of α + 58Ni
system at Elab = 288, 340, and 386 MeV by using the
phase shift based on McIntyre parametrization. The five
input parameters (Lg, L′

g, ∆g, ∆′
g, and µ) are obtained

from the χ2-fit and are listed in Table 1, together with
the χ2/N values. The characteristics appearing in this
Table are: (1) the grazing angular momentum L′

g for the
real phase shift is smaller than the one Lg for the imag-
inary phase shift, (2) the two grazing angular momen-
tum L′

gs and the corresponding widths ∆′
gs increase as

the incident energy increases. The calculated elastic an-
gular distributions are presented in Fig. 1 together with
the experimental data [19,20]. In this figure, the solid
curves and solid circles with error bars denote the cal-
culated results and the experimental data, respectively.
Our calculations reproduced satisfactorily the diffractive
oscillatory structures appearing on the angular distribu-
tions, and showed fairly good agreement with the ex-
perimental data over the whole angular range, though
there exists some mismatches around 10◦ ∼ 20◦ for Elab

= 288 MeV. We can see that the phase shift based on
McIntyre parametrization works well in the description
of α + 58Ni elastic scatterings at 288, 340, and 386 MeV,
respectively.

The near-side and the far-side decompositions of the
elastic scattering amplitude [21] have been carried out to
understand the nature of elastic cross sections. The con-
tributions of the near-side (dotted curves) and the far-
side (dashed curves) components to the elastic scattering
cross sections are shown in Fig. 2 along with the differen-
tial cross sections (solid curves). This figure shows that
a near-side contribution dominates at small angles and a
far-side one at large angles. The differential cross section
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Fig. 1. Elastic scattering angular distributions for the α
+ 58Ni system at 288, 340, and 386 MeV, respectively.
The solid circles denote the experimental data taken from
Ref. [19] (for Elab = 288 and 340 MeV) and Ref. [20]
(for Elab = 386 MeV). The solid curves are the calculated
results from McIntyre phase shift.

is not just a sum of the near-side and the far-side cross
sections, but contains an interference between the near-
side and the far-side amplitudes. The diffractive oscilla-
tory structures observed in the elastic cross sections are
considered to be due to the strong interference between
the near-side and the far-side components. As Fig. 2 and
Table 2 show, the near-side and the far-side contributions
have a same magnitude at the crossing angles θcross =
4.90◦, 4.60◦, and 4.30◦ for Elab = 288, 340, and 386 MeV,
respectively, indicating that θcross is found to decrease
as the incident energy increases. However, the far-side
cross sections become important as the scattering angle
increases from θcross. The structureless exponential fall-

Fig. 2. (Color online) Differential cross sections (solid
curves), near-side contributions (dotted curves) and far-
side contributions (dashed curves) following the Fuller’s
formalism [21] by using the McIntyre phase shift for the
α + 58Ni elastic scatterings at 288, 340, and 386 MeV,
respectively.

off behaviors of the large-angle cross sections are mainly
determined by the far-side amplitude.

The results of phase shift analysis based on McIntyre
parametrization are collected in Table 2. In this Ta-
ble, θn.r. is the nuclear rainbow angle corresponding to
minimum in the deflection function given by the formula
θL = (d/dL)[2σL + χR(L)]. The nuclear rainbow angles
are -15.73◦, -13.10◦, and -12.10◦ for α + 58Ni system
at Elab = 288, 340, and 386 MeV, respectively, indi-
cating that nuclear rainbow is clearly presented. The
L1/2 is the critical angular momentum corresponding
to | exp(−χI(L1/2))|2 = 1/2, and is found to show an
increase as the incident energy increases. The critical
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Table 2. Results of McIntyre phase shift analysis for the α + 58Ni elastic scatterings at Elab = 288, 340, and 386 MeV,
respectively.

Elab r1/2 ds rph dph θcross θn.r. L1/2 Rs σRs σR

(MeV) (fm) (fm) (fm) (fm) (deg) (deg) (fm) (mb) (mb)

288 1.134 0.605 0.869 0.906 4.90 -15.73 45.64 6.79 1450 1443
340 1.138 0.710 0.823 0.944 4.60 -13.10 50.63 6.90 1497 1515
386 1.134 0.710 0.794 0.959 4.30 -12.10 53.89 6.88 1486 1510

Table 3. Optical potential parameter values obtained from the inversion method for the α + 58Ni elastic scatterings
at Elab = 288, 340, and 386 MeV, respectively.

Elab (MeV) R′(fm) ∆′(fm) R(fm) ∆(fm) V0(MeV ) W0(MeV )

288 5.27073 0.833804 4.72171 0.722836 62.5745 82.9313
340 4.9819 0.876459 4.71911 0.801828 68.4693 77.3103
386 4.80287 0.893549 4.71061 0.801356 75.2393 82.3846

angular momentum has an influence on the strong ab-
sorption radius Rs. The Rs is defined as the distance
of closest approach determined from the formula Rs =
{η +

√
η2 + L1/2(L1/2 + 1)}/k, and also reflected in the

reaction cross section. Table 2 shows, the geometrical
reaction cross sections (σRs = πR2

s) are comparable to
the ones (σR) obtained from partial wave sum.

We have calculated the optical potential through
the inversion procedure mentioned in Sec. III. Using
the parameters (Lg,L

′
g, ∆g, ∆′

g, and µ) of McIntyre
parametrization for phase shift, we obtained the impact
parameters (b0 and b′0) and the diffusivity quantities (d
and d′). Note that Coulomb effects were not taken into
account in evaluating the parameters cited above. The
inversion potential parameters (R, ∆, R′, and ∆′) were
calculated from Eqs. (16)-(19), which can be solved by
an iteration procedure such as Newton Method. The
parameters α and β needed for evaluating the potential
depths are determined from Eqs. (13) and (14). Finally,
the inversion potential depths (V0 and W0) are directly
obtained from Eqs. (11) and (12). The parameter values
of inversion potential are given in Table 3.

The calculated inversion potentials are displayed by
the solid curves in Figs. 3 and 4. Meanwhile, the dot-
ted, dashed-dotted and dashed curves in these figures
are the Woods-Saxon optical potentials obtained with
the parameter Set 1, Set 2, and Set 3 of Table 2 in Ref.
[19]. In the case of Elab = 386 MeV, we presented only

the inversion potential because the Woods-Saxon opti-
cal potential was not available. As a whole, the inver-
sion optical potentials agree with the ones from the op-
tical model analysis [19] in the surface region around the
strong absorption radius. We found that the real poten-
tials obtained from inversion procedure provide better
agreements with the Woods-Saxon type optical poten-
tials from optical model analysis [19] than the imaginary
ones. From Figs. 3 and 4, it is seen that both the real and
imaginary parts of the inversion potential differ greatly
from those of the Woods-Saxon optical potentials in the
interior region. Of course, the dotted, dashed-dotted and
dashed curves were shown to be different in small r re-
gions. Such large disagreements between four curves are
hardly surprising. Since the elastic scattering data are
sensitive mainly to the surface region, somewhat big dis-
crepancies at small r regions between optical potentials
from the inversion method and optical model are of little
significance.

V. CONCLUDING REMARKS

In this paper, we have studied the elastic scattering of
α + 58Ni system at Elab = 288, 340, and 386 MeV by us-
ing the phase shift based on McIntyre parametrization.
The calculated elastic cross sections reproduced satisfac-
torily the diffractive oscillatory structures (at small an-
gles) and refractive patterns (at large angles) observed
in the α + 58Ni elastic scatterings. The calculations
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Fig. 3. (Color online) Real parts of optical potential for
α + 58Ni elastic scatterings at 288, 340, and 386 MeV, re-
spectively. The dotted, dashed-dotted and dashed curves
are the potentials obtained from Set 1, Set 2, and Set 3
listed in Table 2 of Ref. [19]. The solid curves denote
the calculated inversion potentials. The arrows indicate
the position of the strong absorption radius.

were in fairly good agreement with the experimental data
over the whole angular and energy ranges. We can see
that nuclear rainbow is evidently presented from neg-
ative minimum in the deflection functions. The mag-
nitude of reaction cross section could be estimated by
strong absorption radius. The near-side and the far-
side decompositions of the scattering amplitudes have
also been performed by following the Fuller’s formalism.
The diffractive oscillatory structures observed at small
angles have been explained due to the strong interfer-
ence between the near-side and the far-side scattering
amplitudes. However, the structureless exponential fall-
off behaviors of the large-angle cross sections are mainly

Fig. 4. (Color online) Same as Fig. 3, but for the imagi-
nary parts of optical potential for α + 58Ni elastic scat-
terings at 288, 340, and 386 MeV, respectively.

determined by the far-side amplitude.
From the inversion procedure with the relation of

McIntyre phase shift and a Woods-Saxon type optical
potential, we predicted inversion potentials for α + 58Ni
elastic scatterings at 288, 340, and 386 MeV, respec-
tively. As a whole, calculated inversion potentials were
found to be in reasonable agreements with the optical
model potential in the surface region around the strong
absorption radius, but quite different in the interior re-
gions. This implies that the elastic scattering cross sec-
tions are mainly sensitive to the surface regions rather
than the interior regions. The radial extensions and the
radial behaviors of the inversion optical potentials in the
surface region are similar to the ones of Woods-Saxon
type potential obtained from optical model analysis. We
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can further see that the agreements of the real inversion
potentials with optical model analysis results are fairly
good, in comparison with the ones of the imaginary po-
tentials.

ACKNOWLEDGMENTS

This research was supported by the 2017 scientific pro-
motion program funded by Jeju National University.

REFERENCES

[1] D. M. Brink, Semi-Classical Methods for Nucleus-
Nucleus Scattering (Cambridge Univ. Press, Cam-
bridge, 1985).

[2] M. C. Mermaz, Z. Phys. A 321, 613 (1985).
[3] M. C. Mermaz, B. Bonin, M. Buenerd and J. Y.

Hostachy, Phys. Rev. C 34, 1988 (1986).
[4] D. C. Choudhury and M. A. Scura, Phys. Rev. C

47, 2404 (1993).
[5] S. K. Charagi, S. K. Gupta, M. G. Betigeri, C. V.

Fernandes and Kuldeep, Phys. Rev. C 48, 1152
(1993).

[6] M. H. Cha, J. Korean Phys. Soc. 49, 1389 (2006).
[7] R. I. Badran, H. Badahdah, M. Arafah and R. Kha-

lidi, Int. J. Mod. Phys. E 19, 2199 (2010).

[8] J. A. McIntyre, K. H. Wang and L. C. Becker, Phys.
Rev. 117, 1337 (1960).

[9] H. M. Fayyad, T. H. Rihan and A. M. Awin, Phys.
Rev. C 53, 2334 (1996).

[10] N. M. Eldebawi and M. H. Simbel, Phys. Rev. C
53, 2973 (1996).

[11] I. Ahmad, J. H. Madani and M. A. Abdulmomen,
J. Phys. G: Nucl. Part. Phys. 24, 899 (1998).

[12] Y. J. Kim and M. H. Cha, Int. J. Mod. Phys. E 9,
299 (2000).

[13] I. Ahmad, M. A. Abdulmomen and G. A. Hamra,
Pramana-J. Phys. 65, 523 (2005).

[14] S. A. Aldenfariya and A. M. Awin, J. Korean Phys.
Soc. 64, 1788 (2014).

[15] M. H. Cha and Y. J. Kim, J. Phys. G: Nucl. Part.
Phys. 16, L281 (1990).

[16] Y. J. Kim and M. H. Cha, Int. J. Mod. Phys. E 8,
311 (1999).

[17] Y. J. Kim, New Phys.: Sae Mulli 67, 162 (2017).
[18] K. M. Maung, P. A. Deutchman and W. D. Royalty,

Can. J. Phys. 67, 95 (1989).
[19] B. Bonin, N. Alamanos, B. Berthier, G. Bruce and

H. Faraggi et al., Nucl. Phys. A 445, 381 (1985).
[20] B. K. Nayak, U. Garg, M. Hedden, M. Koss and T.

Li et al., Phys. Lett. B 637, 43 (2006).
[21] R. C. Fuller, Phys. Rev. C 12, 1561 (1975).

http://dx.doi.org/10.1007/BF01432438
http://dx.doi.org/10.1103/PhysRevC.34.1988
http://dx.doi.org/10.1103/PhysRevC.47.2404
http://dx.doi.org/10.1103/PhysRevC.47.2404
http://dx.doi.org/10.1103/PhysRevC.48.1152
http://dx.doi.org/10.1103/PhysRevC.48.1152
http://dx.doi.org/10.1142/S0218301310016600
http://dx.doi.org/10.1103/PhysRev.117.1337
http://dx.doi.org/10.1103/PhysRev.117.1337
http://dx.doi.org/10.1103/PhysRevC.53.2334
http://dx.doi.org/10.1103/PhysRevC.53.2334
http://dx.doi.org/10.1103/PhysRevC.53.2973
http://dx.doi.org/10.1103/PhysRevC.53.2973
http://dx.doi.org/10.1088/0954-3899/24/4/017
http://dx.doi.org/10.1142/S0218301300000210
http://dx.doi.org/10.1142/S0218301300000210
http://dx.doi.org/10.3938/jkps.64.1788
http://dx.doi.org/10.3938/jkps.64.1788
http://dx.doi.org/10.1088/0954-3899/16/11/008
http://dx.doi.org/10.1088/0954-3899/16/11/008
http://dx.doi.org/10.1142/S0218301399000227
http://dx.doi.org/10.1142/S0218301399000227
http://dx.doi.org/10.3938/NPSM.67.162
http://dx.doi.org/10.1139/p89-014
http://dx.doi.org/10.1016/0375-9474(85)90448-8
http://dx.doi.org/10.1016/j.physletb.2006.03.034
http://dx.doi.org/10.1103/PhysRevC.12.1561

