Imperial College London
Department of Physics

Group Symmetries and the Moduli
Space Structures of SUSY Quiver

Gauge Theories

Rudolph John Kalveks

Supervised by Professor Amihay Hanany

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Physics of Imperial College London
and the Diploma of Imperial College London



Acknowledgements

I would like to thank my supervisor, Amihay Hanany for his expert guid-
ance in the development of this thesis, along with the theory group faculty
at Imperial College, who have informed and grounded my understanding of
the broader context. I am also indebted to my colleagues, Andrew Thom-
son, Marcus Sperling, Santiago Cabrera and Giulia Ferlito, amongst others,
who have helped me grapple with the many puzzles encountered in this ex-
ploration of quiver theories and their group theoretic connections. Last but
not least, I am grateful to my family for their encouragement and steadfast

support throughout.



Declaration

This thesis draws upon work that was published in the following papers:

e A. Hanany and R. Kalveks, Highest Weight Generating Functions for
Hilbert Series, JHEP 10 (2014) 152, arXiv:1408.4690 [hep-th].

e A. Hanany and R. Kalveks, Construction and Deconstruction of Single
Instanton Hilbert Series, JHEP 12 (2015) 118, arXiv:1509.01294 [hep-
th].

e A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Clas-
sical Group Nilpotent Orbits, JHEP 06 (2016) 130, arXiv:1601.04020
[hep-th].

The work above has not been submitted by me for any other degree,
diploma or similar qualification. Furthermore, I herewith certify that, to
the best of my knowledge, all of the material in this thesis which is not my

own work has been properly acknowledged.

Rudolph John Kalveks

The copyright of this thesis rests with the author and is made available under a Creative
Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,
distribute or transmit the thesis on the condition that they attribute it, that they do not use it
for commercial purposes and that they do not alter, transform or build upon it. For any reuse
or redistribution, researchers must make clear to others the licence terms of this work.



Abstract

This thesis takes steps towards the development of a systematic account of
the relationships between SUSY quiver gauge theories and the structures
of their moduli spaces. Highest Weight Generating functions (“HWGs”),
which concisely encode the field content of a moduli space, are introduced
and developed to augment the established plethystic techniques for the con-
struction and analysis of Hilbert series (“HS”). HWGs are shown to provide
a faithful means of decoding and describing HS in terms of their component
fields, which transform in representations of Classical and/or Exceptional
symmetry groups. These techniques are illustrated in the context of Higgs
branch quiver theories for SQCD and instanton moduli spaces, as a prelude
to an account of the quiver theory constructions for the canonical class of
moduli spaces represented by the nilpotent orbits of Classical and Excep-
tional symmetry groups. The known Higgs and/or Coulomb branch quiver
theory constructions for nilpotent orbits are systematically extended to give
a complete set of Higgs branch quiver theories for Classical group nilpotent
orbits and a set of Coulomb branch constructions for near to minimal orbits
of Classical and Exceptional groups. A localisation formula (“NOL For-
mula”) for the normal nilpotent orbits of Classical and Exceptional groups
based on their Characteristics is proposed and deployed. Dualities and other
relationships between quiver theories, including A series 3d mirror symme-
try, are analysed and discussed. The use of nilpotent orbits, for example
in the form of T'(G) quiver theories, as building blocks for the systematic
(de)construction of moduli spaces is illustrated. The roles of orthogonal
bases, such as characters and Hall Littlewood polynomials, in providing
canonical structures for the the analysis of quiver theories is demonstrated,
along with their potential use as building blocks for more general families

of quiver theories.
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1. Introduction

1.1. Perspective

This study intertwines a number of streams of research that are relevant to
the structures of the moduli spaces of gauge theories set within supersym-
metric (“SUSY”) and string theoretic or supergravity (“SUGRA”) back-
grounds. The central physical questions that this study seeks to address are
those of how to characterise, determine and understand the possible field
content, or “moduli space”, of a field theory whose underlying structure is
determined by the interplay of gauge groups.

Observable fields are, by definition, invariant under gauge group trans-
formations. So, although gauge fields have isometries (or isotropies) under
continuous Lie group transformations, they always occur contracted as sin-
glets, and are not directly observable. Gauge fields manifest themselves
indirectly through their invariants and their imprint on observable fields.
Gauge groups can be semi-simple, or reductive, with Abelian elements. Dis-
crete symmetries associated with finite groups also have a bearing. In the
case of the SUSY quiver gauge theories that form the subject matter of this
study, the moduli spaces typically describe the field content of the SUSY
vacuum.

The characterisation of field content is perhaps the simplest aspect. Rep-
resentation theory provides us with lattice structures in the form of Dynkin
labels that can be used both to describe the irreducible representations ( “ir-
reps”) within which fields transform and also to label the states within ir-
reps. In effect, Dynkin labels provide consistent and complete quantum me-
chanical descriptions, from simple U(1) R-charges and SU(2) spins, through
to high rank Classical or Exceptional groups. It is, of course, possible to
translate between field descriptions in terms of Dynkin labels and those
in terms of tensors and indices. The merits of using Dynkin labels, besides

their ubiquity, include their bijective correspondence with the eigenvalues of
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a commuting system of Casimir and Cartan subalgebra (“CSA”) operators,
which together comprise the observables of a given field theory. Equally im-
portantly, the Dynkin labels of the states within an irrep uniquely specify
its trace or character, which provides a faithful encoding of its symmetry
properties. Furthermore, the character algebra of the tensor products of
representations, which is given by polynomial multiplication and addition,
is often more tractable than the alternative of working with explicit repre-
sentation matrices, with the attendant complications of composing tensor
indices and imposing symmetry and trace conditions.

The determination of the field content of a theory is more involved. Given
some underlying structure, one approach is to identify the relevant symme-
try groups, their basic irreps and their combinatorics. Bosonic fields natu-
rally form symmetric representations and fermionic fields naturally form
antisymmetric representations. However, fields transforming in product
groups exhibit much richer combinatoric behaviour. Often the field com-
binations of interest are gauge invariant (i.e. singlets) under one or more
symmetry group(s) and this places restrictions on the resulting field content.
As an alternative to combining basic field representations, field theories can
result from symmetry breaking, where representations of some parent group
split to those of its subgroups as a result of some perturbation. Either way,
the moduli spaces of possible field representations can in principle be de-
composed into irreps and enumerated by their Dynkin labels. A non-trivial
amount of representation theory may, however, need to be applied to effect
such decompositions and the development of the generating functions and
custom Mathematica routines necessary to carry out such transformations
in an efficient manner has been a major practical exercise within this study.

The most interesting aspect is the development of an understanding of
why particular gauge and flavour group structures, typically described by
quiver theories, give rise to moduli spaces with canonical group theoretic
significance, and of the reasons for highly non-trivial identities between the
moduli spaces of superficially different structures. Much of this study is
devoted to the vacuum moduli spaces of the Higgs branches and Coulomb
branches of SUSY quiver gauge theories. Remarkably, different branches
of different theories can have identical moduli spaces, leading to many du-
alities, including three dimensional (“3d”) mirror symmetry [I], amongst

others. Mappings between these theories can be facilitated by their string
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theoretic interpretation in terms of brane systems [2]. Exploration of the
group theory underlying these relationships leads intriguingly to the math-
ematical topic of nilpotent orbits (or, to be more precise, the closures of
nilpotent orbits). These are canonical combinatoric objects that live in
the root spaces of Classical and Exceptional groups, and which match the
moduli spaces of the Higgs branches and/or Coulomb branches of particular
quiver theories. The understanding of all the mechanisms behind these rela-
tionships remains an open task, but one with which this study would claim
to make interesting progress. Indeed, it would appear that the physics moti-
vated exploration of SUSY quiver theories may shed new light upon matters

that are opaque, when approached from the mathematical Literature.

1.2. Antecedents

This project falls under the broad auspices of the Plethystics Program,
which has its origins in the application of Hilbert series (“HS”) to analyse
the moduli spaces of field theories.

An early use of Hilbert series (also referred to as partition functions or
indices) in the context of SUSY theories, was to describe the moduli spaces
of Classical group instantons and pure spinors [3, 4, [5]. These Hilbert series
were calculated from Higgs branch constructions, by using Weyl integrationlﬂ
and HyperKahler quotients to impose SUSY vacuum conditions [3].

Interestingly, while the use of quiver theories to define such constructions
is a relatively recent development within SUSY, it has roots in the prior
study of moment maps and HyperKahler quotients. Thus, the foundations
for Higgs branch calculations based on quiver theories were laid by geometric
and algebraic analyses in the mathematical Literature [0 7], well before the
linkage to the vacuum moduli spaces of SUSY quiver theories was made in
[8, @].

A systematic and streamlined treatment of plethystic methods, embracing
symmetrisation, anti-symmetrisation and Molien sums, is given in [I0] and
[II]. The motivation there was to study the moduli spaces given by the
chiral rings of mesonic single-trace and multi-trace BPS operators that arise
when D3 branes probe singular Calabi-Yau (“CY”) manifolds. The CY

L This procedure implements averaging over a continuous Lie group to find gauge invari-
ant field or operator combinations, as summarised in Appendix@

16



manifolds analysed include C? orbifolds under finite symmetry groups of
ADE type, and also C? orbifolds. For such orbifolds, with discrete gauge
groups, their Hilbert series, which count invariant polynomials of a given
degree, are constructed by taking gauge group averages using Molien sums.

Importantly, the Plethystics Program approach can in principle be gen-
eralised to any type of gauge theory. As noted in [I1]:

“... the applicability of the plethystic programme is not lim-
ited to world-volume theories of D-brane probes on Calabi-Yau
singularities. Indeed, if we knew the geometry of the classical
moduli space of a gauge theory, ... we could obtain the Hilbert
series and thenceforth use the plethystic exponential to find the

gauge invariants.”

In such early papers, the Hilbert series analysis of continuous symme-
try groups was limited to the prolific U(1) groups implicated in the CY
manifolds of toric, Y?? and delPezzo hypersurfaces. The Hilbert series of
non-Abelian gauge groups SU(2), SU(2) ® SU(2) and SU(3) appear in
[12], which makes the important observations that, for a Lie group G, (i)
a Hilbert series can always be collected into a series in irreps of G and (ii)
group averaging over G can be implemented by Weyl integration in place of
Molien summation.

Subsequent developments within the Plethystics Program include the cal-
culation of Hilbert series, on the Higgs branches of quiver theories of many
different types, without and with superpotentials, but involving continuous
Lie gauge groups. These include, inter alia, (i) /' = 1 SQCD theories, where
the moduli spaces of gauge invariant operators are found to be affine C'Y
cones with palindromic Hilbert series [13] [14), 15] and (ii) constructions for
the moduli spaces of instantons [16], 17, [I8, 19]. The former yield, as by-
products, methods for identifying the invariant tensors of symmetry groups,
which in turn illuminate the structure of the latter.

In parallel with more recent Higgs branch work, and following on from
impetus provided by [20], the Coulomb branches of the vacuum moduli
spaces of quiver theories and their Hilbert series have come in for con-
siderable study. Relationships between these quiver theories and Dynkin
diagrams have been known since [9]. Much subsequent progress has been

made in developing the precise formulae for Coulomb branch quiver theory
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constructions and analysing the Hilbert series of (i) the instanton moduli
spaces of simply laced ADE and non-simply laced BC'F'G series [211, 22], (ii)
T(SU(N)) type quiver theories [23], and (iii) some other types of nilpotent
orbit [24].

These studies have in turn opened up avenues for confirming and exploit-
ing the relationships between Higgs branch and Coulomb branch construc-
tions and their quiver theories. For example, in [25], the Coulomb branch
Hilbert series of T'(SU(N)) quiver theories were calculated from their Higgs
branch mirror theories; and, in [23] and [26], the correspondence between
the Higgs branch Hilbert series of three dimensional Sicilian (star shaped)
quiver theories and the Coulomb branch Hilbert series of their mirrors was
confirmed, via their building blocks in T'(SU (NN)) quiver theories (or A series
modified Hall Littlewood polynomials).

Traditional Hilbert series analysis revolves around the unrefined Hilbert
series, which effectively grades a moduli space, by projecting it onto a lattice
defined by the charges assigned to a “fugacity” or “counting variable”, and
enumerates its field content at each level of charge (typically R-charge).
A Hilbert series is generated by a rational function that is a quotient of
polynomials, and this can be described, using the language of algebraic
geometry and varieties, in terms of dimensions, generators and relations,
amongst other properties. For some purposes, counting of operators or
invariants suffices, for example, [27] uses Hilbert series with multi-graded
fugacities (termed “spurions”) to count invariants of basic fields correspond-
ing to scattering vertices.

More generally, however, issues can arise from birational equivalence and
other ambiguities inherent in unrefined Hilbert series. Thus, different mod-
uli spaces can have the same unrefined HS, or identical moduli spaces can
appear to have different unrefined HS, all depending on the counting and
field grading methods chosen. Such limitations can be avoided, in princi-
ple, by working with character valued (or “refined”) Hilbert series, which
faithfully track the representation content of a field theory; however, the
use of refined Hilbert series to describe field content (rather than as an in-
termediate stage in calculations) has been hampered by their cumbersome
nature.

The development of Highest Weight Generating functions (“HWGs”),

which encode refined Hilbert series in a concise form, using fugacities for the
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highest weights of irreps, rather than their full characters, was a significant
early milestone in the course of this study [28]. HWGs give an efficient and
unambiguous description of a moduli space in terms of its representation
content. If all the quantum fields in a system can be included in a mod-
uli space, then a complete enumeration of their quantum numbers gives a
unique and precise description of the quantum system, and this is what
HWGs are, in principle, able to achieve.

HWGs describe moduli spaces concisely, resolving questions of identity.
While their use requires an orthogonal basis for class functions, such bases
are not limited to the characters of a Lie group G and, indeed, it is feasible
(at some expense in algebraic computation) to define HWGs in in terms
of Hall Littlewood polynomials of G' (or their modifications), in an anal-
ogous manner to characters of irreps of G. These HWG approaches were
applied to the study of the Hilbert series of SQCD in [28] and to instanton
constructions in [29].

Much of this work revolves around the investigation of relationships be-
tween SUSY quiver gauge theories and the closures of nilpotent orbits
(“nilpotent orbits” or “orbits”) of compact Lie groups. This intriguing
avenue of research was opened up by recent papers, such as [20, 30 B1].
In the first of these [20], the S-duality of boundary conditions on four-
dimensional N' = 4 superconformal field theories is related to the action of
mirror symmetry on three-dimensional gauge theories, which can exchange
the Higgs and Coulomb branches of different theories. In many cases, as
will be discussed, the moduli spaces of these Higgs and Coulomb branches
are described in terms of nilpotent orbits. It is known that N' = 4 SUSY
theories have finite beta functions to all orders [32] and such constructions
therefore generate a large class of candidates, parameterised by nilpotent
orbits, for UV-finite theories.

The theory of nilpotent orbits [33] provides a language for classifying and
describing equivalence classes constructed from the nilpotent Lie algebra
matrices or generators of a Classical or Exceptional groupE|

Nilpotent orbits are increasingly being recognised for their relevance to

theoretical physics. Topics range from SUGRA theories involving G/ H coset

2Recall that the nilpotent matrices of a group are nilpotent linear combinations of its
raising and lowering operators, each of which corresponds to one of its roots, relative
to some chosen basis of Cartan operators.
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manifolds, whose field content can be characterised by nilpotent orbits [34],
to the counting of massive vacua in N' =1 Super Yang-Mills (“SYM”) the-
ory [35], where the number of vacua is derived from the structure of the
nilpotent orbits of the Yang-Mills group. In [36], the normalised vacuum
states in N' = 4 SUSY theories are counted, based on the number of distin-
guished nilpotent orbits in the Yang-Mills group, which is shown to equal
the Witten index for the theory. In [37], nilpotent orbits are used as build-
ing blocks in the construction of 3d Sicilian theories and their mirrors. In
a series of papers including [30, B8], [39], nilpotent orbits are used to label
punctures on Riemann spheres, which are used as building blocks (or “fix-
tures”) for 6d N' = (2,0) theories. The status of nilpotent orbits, as a class
of canonical representation theoretic objects, underlies this appearance in
many different contexts; and this in turn motivates the case for developing
a systematic understanding of their constructions, along with their prop-
erties and relationships. The approach herein constructs nilpotent orbits
as moduli spaces of SUSY quiver gauge theories and studies them through
their Hilbert series.

Nilpotent orbits generalise the moduli spaces of (single) G-instantons,
which provide their simplest non-trivial examples. Instantons have attracted
considerable interest since their proposal as self-dual solutions of Yang-Mills
field equations in 1975 [40]. They have also been studied in general relativity
in the form of self-dual (“SD”) and anti-self-dual (“ASD”) Weyl or Riemann
tensors in 4 dimensions [41], where they are related to Einstein Manifolds
[42, 43| [44], [45]. Turning to Yang-Mills theories, the ADHM [46] construction
for instanton fields with classical Yang-Mills groups G has been a foundation
for the study of instanton moduli spaces using SUSY constructions [4]. The
Hilbert series of the moduli spaces of one and two G-instanton theories have
been calculated on the Higgs branches of N' = 2 SUSY theories, for classical
G [16, 19], and on the Coulomb branches of N' = 4 SUSY theories [22] in
3 dimensions. All these theories contain 8 SUSY supercharges. Some other
constructions have also been given for exceptional G-instantons [17, [I8], 20,
211, 29].

An instanton field is defined as a field that is SD or ASD under the action
of the Hodge star dualisation operator. On a real manifold M of dimension
2n, the epsilon tensor has length 2n and the dual of an n—form is also

an n—form. This limits the possibilities for instanton fields to Riemannian
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M of even dimension, including Lorentzian and Euclidean manifolds as
special cases. The instanton fields on a real Euclidean M of fundamental
dimension 2r are associated with pairs of symmetrised SO(2r) spinor irreps,
with one symmetrised spinor irrep being ASD and the other being SD. The
representation structure generalises to Lorentzian M.

Different approaches to the study of manifolds involving instantonic fields
have been followed in the Literature. One school of thought identifies in-
stantons based on symmetries of the Riemann tensor [47, 48| 44, [45]. If
M is four dimensional, the Riemann tensor has two pairs of antisymmetric
indices and can be dualised on one or both pairs. It then follows from Rie-
mann tensor identities, that if the Riemann tensor is SD under dualisation
on both pairs of indices, then M is an Einstein manifold [49] of constant
curvature, with non-vanishing Ricci tensor R, = %ng,. Since M is four
dimensional, this essentially limits the possibilities for non Ricci-flat M to
four dimensional de Sitter and Anti de Sitter space-times and their coun-
terparts with Euclidean signature.

If, however, the Riemann tensor is either (i) SD or ASD under dualisation
of a single pair of indices, or (ii) ASD under dualisation on both pairs, then
M is Ricci flat with R, = 0; such instantons are termed gravitational
instantons. These Ricci-flat manifolds include Fubini-Study and Eguchi-
Hanson metrics [47]. In [45] it is shown how gravitational instantons from
singly SD or singly ASD Riemann tensors, when viewed in local inertial
frame coordinates, can be interpreted as self-gravitating SD or ASD Yang-
Mills fields.

The possibilities for Yang-Mills constructions extend beyond the class of
gravitational instantons. Yang-Mills fields are described by a connection
D = d+ A and field strength F' = D A D. A Yang-Mills field F' has the
action Sy = [vol Tr (F A *F') and an (anti-)self dual field F' satisfies the
relationship F' = &+ x F, so a self dual Yang-Mills field could be expected
to have the action Sgp = [wol Tr (F A F). However, as discussed in [50],
the variation of such an action is trivially zero for any Yang-Mills field
strength, so the construction of an action for an inherently self-dual field is
problematic.

Nonetheless, an algebraic construction of a connection with a SD field
strength was provided in [40]. BPST use the Euclidean manifold R*, with
its SO(4) symmetry. The Yang-Mills connection can be expanded [51 52]
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as:

BPST BPST
Dy =0+ A7,
ABPST _ —a”
Z 12y 2o (1.1)
left

> UV

= 21 a2 wspi
where r is a radial coordinate orthogonal to the SO(4) symmetry and X is
a scale parameter.

Unlike the Christoffel connection, which acts on the tangent vectors of
M, the BPST connection contains a fibre over one only of the Weyl spinors
of M. This is seen most clearly in the gamma matrix notation, where the
SD construction selects a single diagonal block from [y,,,], intertwining
the spatial coordinates with the left Weyl spinors only. (An ASD connection
results from selecting the other diagonal block).

The BPST construction lends itself to generalisation, by splitting the
anti-symmetrised gamma matrices into the contraction of t’Hooft matrices
77uui SDJASD with Pauli matrices o;, and by making the physical assumption
that the SU(2) subalgebra acting on the left or SD Weyl spinor is embedded
in the Lie algebra of some larger symmetry group G. Anticipating the
discussion in section there are many ways of embedding SU(2) into a
larger group and this leads to the concept of a G-instanton.

Although it was pointed out in [53] that the different possible embed-
dings of SU(2) into G correspond to the nilpotent orbits of GG, the ensuing
physics Literature, such as [4], has largely confined itself to a restricted
interpretation of G-instanton, based on the minimal nilpotent orbit of G.

The subject of nilpotent orbits is well covered in the mathematical Lit-
erature, which builds on early work by Dynkin [54], and has a valuable
reference provided by [33]. These mathematical treatments do not, how-
ever, describe nilpotent orbits in the explicit language of Hilbert series, as
would be helpful for a physics interpretation. While steps have been taken
in this direction within the Plethystics Program [22] 31, 55], the systematic
translation of the mathematical treatment of nilpotent orbits into equiva-
lent descriptions in terms of refined Hilbert series forms a key aspect of this
study. Certainly, it is an essential ingredient in the process of defining the

relationships between SUSY quiver theories and nilpotent orbits.
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Viewed as moduli spaces, nilpotent orbits can be constructed by a variety
of methods, including Higgs and Coulomb branch quiver theories [24], as well
as localisation techniques. This is a rich area, which draws on many strands
of the Plethystics Program, including Hilbert series, HWGs, Higgs branch
and Coulomb branch SUSY quivers theories, and localisation methods, all

set against a background of representation and group theory.

1.3. Outline

As a necessary preliminary, Chapter [2] is pedagogical in nature. Its aims
are to lay the theoretical foundations that are common across this study, to
summarise relevant aspects of established theory, to introducing some new
techniques and to set up common frameworks and notation.

The areas of established theory include the use of Hilbert series to describe
moduli spaces, plethystic tools for symmetrisation and anti-symmetrisation,
and aspects of the representation theory of compact Lie group characters
and their branching to subgroups.

The new techniques primarily revolve around the methodology of High-
est Weight Generating functions. These can be used to decode, encode
and/or transform refined (character valued) Hilbert series. The methodol-
ogy encompasses: (i) HWG notation, based around Dynkin labels, which
uses U(1)'#k[C] fugacities for the highest weights of irreps to give a com-
pact notation for character valued Hilbert series; (ii) development (from
the Weyl character formula and its generalisations) of generating functions
for characters, Hall Littlewood polynomials and their modifications, which
together provide alternative or complementary orthogonal bases for decom-
posing class functions; (iii) the combination of Weyl integration with the
appropriate Haar measures and generating functions to transform refined
Hilbert series to HWGs, and vice versa, and; (iv) the use of Weyl group
summation techniques to transform HWGs back to refined Hilbert series.

The supporting materials to Chapter 2] contained in Appendices
and cover plethystic functions, Weyl/Molien integration, and the rela-
tionship between Dynkin diagrams and affine or twisted affine Lie algebras.

As a set of warm up exercises, Chapter [3] deals with the moduli spaces
associated with invariant tensors, and with the gauge invariant operators

(“GIOs”) on the Higgs branches of some SUSY quiver theories, including
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SQCD and SU (N )-instanton theories. HWGs are used to decode how gauge
groups are imprinted onto flavour groups through their invariant tensors,
shedding light on the interplay of group invariants behind the logic of Higgs
and Coulomb branch constructions. The use of HWGs makes it possible
to identify and give a simple description of generalised SQCD for Classical
gauge groups of any rank. Section [3.3| summarises the established Higgs
branch constructions for the moduli spaces of SU(N)-instantons and intro-
duces reduced single instanton moduli spaces (“RSIMS”), which correspond
to minimal nilpotent orbits, as a stepping stone to subsequent Chapters.

Chapter ] provides an introduction to the topic of nilpotent orbits, touch-
ing on the different approaches in the mathematical Literature, as well as the
various methods of classifying the orbits of a group. A consistent narrative is
set out, starting from an enumeration of the possible SU(2) homomorphisms
(or embeddings) into a group G, described in terms of Characteristics or
partitions, that define a nilpotent element of G, and relating these to the
nilpotent orbit dimensions and partitions that supply the parameters for
their Higgs and Coulomb branch quiver theory constructions.

The generalisation of the Higgs branch RSIMS construction to the wider
class of moduli spaces represented by nilpotent orbits is discussed in detail in
Chapter [l This Chapter reviews the known Higgs branch constructions for
minimal, maximal and A series nilpotent orbits and, following [24], sets out
a consistent methodology, starting from Characteristics or character maps,
for identifying quiver theories whose Higgs branch moduli spaces match
each nilpotent orbit of any Classical group G. Key developments include
the incorporation into the Higgs branch formula of group averaging over
the Zs components of orthogonal gauge groups, in order to obtain nilpotent
orbits (rather than their extensions) of BC' D series groups. This is followed
by a complete analysis of the nilpotent orbits of low rank Classical groups -
in terms of Hilbert series, character and mH L HWGs, the identification of
some generalisations regarding their structures, and a discussion of quiver
dualities.

Coulomb branch constructions for RSIMS and other nilpotent orbits are
covered in depth in Chapter [f] This Chapter reviews the known Coulomb
branch constructions for minimal and A series nilpotent orbits and, drawing
on [24], sets out a methodology, starting from Characteristics and/or twisted

affine Dynkin diagrams, for identifying quiver theories whose Coulomb branch
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moduli spaces match near to minimal nilpotent orbits of Classical and Ex-
ceptional groups. The implicit roles played in Coulomb branch constructions
by Dynkin diagrams, the Cartan matrix and the Weyl group, are identified
and discussed. The consistency between Higgs branch and Coulomb branch
constructions of normal Classical nilpotent orbits is verified, and apparent
differences between these constructions for non-normal orbits are reconciled.

Chapter [7| develops a plethystic formula (“Nilpotent Orbit Localisation”
or “NOL”) formula for constructing the normal nilpotent orbits of any group
G, directly from their Characteristics, by drawing on Weyl group symmetries
and localisation techniques. This method of constructing nilpotent orbits
is reconciled to the Higgs branch and Coulomb branch constructions. The
NOL formula extends the range of nilpotent orbits of Exceptional groups
that can be constructed as explicit moduli spaces (subject to practical com-
putation constraints). Their Hilbert series are analysed in terms of unrefined
HS and, where practicable, character and mH L HWGs. The results of this
(as yet incomplete) moduli space analysis of Exceptional group nilpotent
orbits are largely consistent with the findings and claims encountered in the
mathematical Literature; however, some differences emerge and these are
discussed.

Chapter [8] outlines some of the ways in which nilpotent orbits can be
related to, or used as building blocks for, other quiver theories. The top-
ics examined include (i) the deconstruction of star shaped quiver fami-
lies into T'(S(UN)) quivers, using A series mH L functions, (which corre-
spond to maximal nilpotent orbits dressed by background charges), and (ii)
the branching of nilpotent orbits, under symmetry breaking and/or Hyper
Kahler quotients, into the moduli spaces of subgroups.

The concluding Chapter draws together these various threads and findings

and outlines potential avenues for future investigation in this nascent field.
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2. Highest Weight Generating

Functions

2.1. Hilbert Series

The Hilbert series (“HS”) has its origins as a means of enumerating alge-
braic varieties and provides a powerful tool in the study of moduli spaces.
In its simplest form, a Hilbert series is constructed by grading a lattice of
monomials in the coordinates describing a variety, according to their projec-
tion onto a counting fugacity, often taken as . The grading is chosen such
that negative exponents of ¢ do not appear and this yields a power series in
t, with coeflicients determined by the multiplicities in the projection. In this
study we designate this an unrefined Hilbert series, although the distinction
between unrefined and refined HS (to be defined) is not always made in the
Literature.

Following [11], we can arrange such a Hilbert series gig (t) as a quotient
of polynomials P (¢t) and @ (t), in the form:

gus (t) = iant” _ ) (2.1)
n=0

O

(t)’
where the a,, are integers.

Clearly, the polynomials P (¢) and @ (¢) can be multiplied or divided by
a common factor without changing ggs (¢) and this permits the quotient
to be rearranged into a canonical form. It is useful to distinguish certain
types:

[HS]|

A freely generated HS has P (t)=1 and Q (t) = ] (1 — t*i), which gives a
i=1

product of geometric series. Its Plethystic Logarithm (see Appendix

A.1)) is finite and contains positive coefficients only.

A complete intersection HS is a quotient of geometric series defined by
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|E| . |HS|+|R|

Pt) =11 (1 _tji) and Q (t) = ]I (1 —tk"). This rearrange-
=1 i=1

ment is sometimes termed the Euler form [I0]. Its Plethystic Loga-

rithm is finite and contains both positive and negative coefficients. A

freely generated series is trivially a complete intersection.

A non-complete intersection HS. Any quotient of non-trivial polynomi-
als P (t) and @ (t), that is neither a complete intersection nor freely

generated. Its Plethystic Logarithm is not a finite series.

n
An (anti-)palindromic HS is one where the numerator, P (t) = > bk, is
k=0

palindromic (or anti-palindromic). A palindromic (or anti-palindromic)
numerator P (t) of degree n, is one for which Vk : by = + (or —) by,
The significance of an (anti-)palindromic HS follows from a theorem
by Stanley; the numerator of an HS is (anti-)palindromic if and only
if the moduli space is an affine Calabi-Yau variety [13]. Freely gen-
erated series and complete intersections are always (anti-)palindromic
and therefore Calabi-Yau.

The dimension of a moduli space, denoted |H S|, counts the order of the
pole at t = 1 in its Hilbert series. Generally, |HS| equals the order of
the poles contributed by @ (t) less |R|, the number of relations contributed
by P (t). For a complete intersection or freely generated series g(t) the
dimension equals PL[g(1)]. By an extension of terminology, this study
may refer to the order of the poles of a HS, HWG (or other quotient of
polynomials) as its dimension.

Examples of Hilbert series for simple algebraic varieties, such as the com-
plex plane C and conifold C2/Z,, are given by ¢© (t) = ﬁ and ¢C*/22 (t) =
ﬁ, respectively. The complex plane is freely generated of dimension 1
and the conifold is a complete intersection of dimension 2.

Whilst the unrefined Hilbert series gives the overall dimension of a moduli
space and can be a powerful analytic tool, it has an inherent limitation
steming from the grading of the underlying variety in terms of a single
counting fugacity. Clearly, whenever the number of fugacities is less than
the number of independent coordinate degrees of freedom, some information
must be lost, and, moreover, the properties of a Hilbert series can depend

upon the grading method chosen.
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The Hilbert series can, however, be generalised to work with multiple fu-
gacites, whereupon it is termed a refined Hilbert series. By working with a
refined Hilbert series, it is possible to mitigate the limitations of an unre-
fined Hilbert series. For a toric manifold of rank r, it is a straightforward
refinement to use counting fugacities ¢ .. .t, to track the U(1)" coordinate
degrees of freedom, for example as in [56, 57]. For manifolds with non-
Abelian symmetries, the HS can also be refined, in a powerful manner, by
choosing counting fugacities that track the weight space (or root space) lat-
tice of G. Specifically, the monomial elements within the character of a
representation of G' can be constructed from a set of weight space fugacities
T = x1...x, Or OOt space fugacities z = 21 ... 2, as described further in
section 2.2} For compact groups, these CSA coordinates are all unimodular,
with complex modulus 1, and can be combined with counting fugacities, as
desired. Such a refined Hilbert series can also be described as a character
valued Hilbert series.

Hilbert series can be constructed in different ways. Many of these involve
symmetrisations or antisymmetrisations of class functions of characters and

can be carried out using plethystic functions. These are described in Ap-

pendix

2.2. Characters of Representations

The character of a representation of a Classical group G is defined by the
trace of its representation matrix and possesses a number of important com-
binatoric properties. Each character (i) is unique to its representation, (ii)
is invariant, both under the action of G and of the Weyl group of inner
automorphisms W, (iii) decomposes under addition into the characters of
its constituent irreps, and (iv) combines under multiplication into the char-
acters of tensor products of representations. Also, in accordance with the
Peter Weyl Theorem, the characters of a group yield an orthonormal basis
for its class functions, i.e. functions that are invariant under the action
of the group [58]. Taken together, these properties make characters highly
effective for studying the combinatorics of Lie group representations.

The canonical classification of the representations of a Lie group is carried
out using Dynkin labels. These label the states or weights within an irrep

by their charges under the maximal torus of Cartan subalgebra operators;
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each irrep has a unique highest weight and this can also be identified by
its Dynkin labels, properly termed highest weight Dynkin labels. It is natu-
rally useful to parameterise characters in a way that incorporates a simple
relationship with Dynkin labels. Different approaches are possible.

Starting from first principles, one method is to diagonalise a represen-
tation matrix and to find its eigenvalues; analysis of the relations between
the eigenvalues yields information about the weights and hence the Dynkin
labels of the field states in the representation.

For most cases, however, we can draw on the representation theory of
compact groups and use the canonical CSA or weight space coordinates
T = 1...%T,, or alternatively root space coordinates z = z; ...z, to pa-
rameterise the characters a G with rank r. These coordinates are related
by coordinate transformations derived from the Cartan matrix A;; of G, as

- -1 .
2 = fo” and z; = Hz;1 Y. The character X[C:L] for an irrep with high-
J

J
est weight Dynkin labels [n] = [n1,...,n,] expands in terms of coordinate

monomials as:

X[C;;] (l‘) = Z a[n][n/]x? Lo JIZ} "= Z a[n][n/}x[" ], (22)

[n’]€irrep(n] [n’]€irrep[n]

where ap,) are the integer multiplicities of the weights [n'] in [n].

It is possible to identify all the weights [n/] in a character, by starting
from the highest weight in the positive weight space [n], subtracting the
weights of simple roots until all positive Dynkin labels are exhausted, and
then using the Freudenthal multiplicity formula to assign multiplicities [58].

The main method used for obtaining characters in this study, however,
draws on the Weyl character formula [58], which can be stated in two equiv-

alent forms:

X[de (x,t) = Z w - (x["] H 1—120‘>’ (2.3)

weWa acd+

or

X[C:l] (x,t) =ax° H ﬁ Z |w| w - <:v["]:pp), (2.4)

acd+ weWqg

where the product is taken over all roots « in the positive root space ®¥,
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G |G| w W |
U(N) N? SN N!
Ay n(n+2) Sn+1 (n+1)!
B n+1)| S, @z | 2%l
Cn |n@2n+1)| S,®Z" 2"n!
D, | n

o | n2n—1) | S, ®@Zy" | 27 Ip)
Es 78 72.6!
Er 133 8.9!
FEg 248 192.10!
Fy 52 48.4!
Go 14 2.3!

Table 2.1.: Weyl Group Dimensions

T
P = [[ =; is the Weyl vector and |w| denotes the sign (i.e. determinant)
i=1

of a Weyl group matrix w. The Weyl group W¢ acts on all functions of x

and z inside the summation, as w : (f[z], g[z]) = (f[w - 2], g[w - 2]).

Recalling that = = ] 2%/2_ the equivalence of and follows from

acd+
the fact that the product of root differences [] ﬁ transforms in
acd+ =T
the alternating representation of the Weyl group, and can be moved through

the summation if balanced by the sign of the Weyl group matrix.

The Weyl character formula has various features, including generalisabil-
ity to all Classical and Exceptional groups, convertibility to a generating
function form and the explicit treatment of Weyl group symmetries, which
fit naturally with subgroup branching relationships and permit various sim-
plifying rearrangements. Table sets out the dimensions of the Weyl
groups, from which such subgroup relations follow.

To make the fullest use of Highest Weight Generating functions, intro-
duced in the next section, we require a generating function for characters.
First, we map highest weight Dynkin labels [n] onto the complex manifold
C" by introducing the U(1)" Dynkin label counting fugacities m = my ... m,

and establish the correspondence:

”
X[C,T;] < Hm?’ =mit...mpm =m". (2.5)

i=1
If we choose the fugacities {my, ..., m,} each to have absolute values less
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than unity, then each point on the infinite lattice of Dynkin labels corre-
sponds to a unique point lying inside the unit complex disk on C". This
lattice is freely generated since the Dynkin labels can be chosen indepen-
dently of each other.

To formalise the correspondence, we require the generating function that

yields the infinite series:

= ZX[% (z)m", (2.6)

[n]
We obtain this function by combining and

o) =3 Y wwea [

[n] weWg acd+ (w ' Z)
r (2.7)
-y (o) O
e \ir Lmmilwez); | 2g 1= (w-2)

where the Weyl group acts on z and z within the summands. An alternative

form can be obtained from B.4] as:

r

o€ (z,m) =2~ ] ﬁ 3 \wy(w.m)pnw. (2.8)

acd+ weWag =1

The character generating function can also be written using plethystic

notation:

PE

Em,wxz

gX x,m, Z PE
weWeag

> (w- z)—a] . (2.9

acd+

This plethystic form highlights the contributions to the character generating
function from (i) Weyl group averaging to give class functions of G, (ii)
symmetrisations of the root system of G' and (iii) fugacities for the basic
irreps of G, which we define to be those containing a single non-zero unit
Dynkin label in the " slotﬂ

For low rank G, the evaluation of [2.9]is relatively straightforward; Wg can

be generated from the simple reflection matrices {wy,...,w,} of G, which

The basic irreps of G are in turn related by anti-symmetrisations, using the PEF, to
the fundamental/vector/spinor irreps of G.
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follow from the Cartan matrix of G. The CSA coordinate transformation

from the simple Weyl reflection wy, is:
d ik A
Wy - Tj = X5 H y:]_ R (2.10)
j=1

Following evaluation, the character generating functions all take the form:

ZX 1;. ,0] x) m;

where the denominator symmetrises the characters of the basic irreps of G,

9% (x,m) = PE PY (x (z),m), (2.11)

using the highest weight fugacities m, and the numerator P% (x (z),m)

is some polynomial class function of Y and m. By way of example,

P% (x (z),m) is shown for some low rank simple groups in Table

Group P% (x,m)
Ay 2B =20 1
A2 (1 — mlmg)
By (1 —m? +mim3 — mim3) + mimy (my — 1) [0,1]
Cy As By with m; < mgy and [1,0] < [0, 1]
Dy = A1 X A1 1

+my (—mgz + mimg — m%mgmg + mym3m3) [1,0,0]

(1 —m3) (1 — mims + mam3 + mima — mym3ms + mim3m3) [0,0,0]

A
3 +mo ( my + mamg — mymam3 + m1m2m3) [0,0,1]
+mymoms (1 —m3) [0,1,0]
D3 As A3z with my; < mo and [1, 0, 0] = [O, 1, 0}

Table 2.2.: PS for Low Rank Classical Groups

The characters X[% () can be extracted from gg (z,m) by Taylor expan-
sion in m, followed by identification of the coefficient of m'™. Alternatively,
the character generating function can be used in further analytic procedures
or specialised in some way.

Specialisation is possible when the characters sought do not span the
entire lattice of Dynkin labels, such that z' takes a simpler form, for ex-
ample, if n; = 0 for some i, or n; = n; for some {i,5}. In such cases,
the highest weights of the characters have an invariance group that is a

non-trivial subgroup H of G and we can take advantage of this to simplify

2PC (x (z),m) for G2 and A4 are tabulated in [28].
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the Weyl group summation in We introduce the quotient group par-

tition, W = Wg g ® Wy, where Wy is a normal subgroup of W and

W m is a set of coset representatives [59], and apply the Weyl identity
S ]I ———=s =1 to obtain:

1—(w-z)~
weWpg aetbﬁ (w-2)

gf(z,m): Z w-zmng;n H 1_(101'2)a, (2.12)

+
weWeg/u [n] aedf

FE/H (2m)

where fG/H (z,m) is a generating function that interleaves the sub-lattice of
weights  with the highest weight Dynkin label fugacities m. This category
of specialised character generating functions includes, as an example, the
construction for reduced single instanton moduli spaces given in [I7]. The
subject of Weyl group rearrangements is revisited in section [7.1]

Other simplifications of character generating functions can also be useful.
For example, unrefining the character generating function, by setting the
weight space coordinates to unity, yields a generating function gg (1,m) for

the dimensions of irreps of G, as elaborated further in [2§].

2.3. HWGs and Transformations

Suppose we are given some refined Hilbert series gfls (x,t), expressed as
a generating function in terms of weight space coordinates x and counting
fugacity t. This is a class function of G and, by the Peter Weyl Theorem,
has a character expansion with coefficients that are functions of ¢t. The

expansion takes the form of a series, which may be infinite in length:

giis (@) =Y ap (6) x§y (@) (2.13)
[n]

We can find the coefficients ay, (t) by using Weyl integration, as described
in Appendix to project gIG{ g (x,t) onto a character generating function
gg (z*,m) for the conjugate characters X[%,} (z*) of G, and then using char-

acter orthogonality. This yields a generating function ggwc (m,t) in the
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highest weight Dynkin label fugacities m for the coefficients ay,)(?):
o (m,1) = 74 dp o (a*,m) gffs (1)

74 a3 @y Y ag (06 @)

[n'] [n]

[n'][n]

= Z a[n] (t) mn
[n]

(2.14)

The function ggWG (m,t) is termed a Highest Weight Generating function
for the Hilbert series g% ¢ (x,t). In this case, g5y (m,t) lives on the lattice
Cr+1. Since an HWG identifies each irrep by its highest weight only, this
provides a compact notation, compared with a refined Hilbert series, which
includes the full character for each irrep. The approach generalises naturally
to Hilbert series that incorporate multiple counting fugacities.
Importantly, this transformation is faithful, and we can recover the orig-
inal Hilbert series, either by acting on the HWG with the Weyl group, as
in [2.15] or, alternatively, by gluing the HWG to a character generating

function, as in [2.16

1
gfis (@)= > w- (ggwc s | l—z—a> (2.15)

U)EWG acd+

giis (x,t) = j{ " (q) o7 (m)],, o1 dliwe M),y (216)
Uy

The transformation follows from the fact that the Weyl character
formula takes the highest weight of the character as an argument. The
gluing transformation [2.16]is implemented by mapping the fugacities m of
the two generating functions to conjugate U(1)" charges and then gauging
to select U(1)" singlets by Weyl integration. Having recovered gfls (z,t),
this can, if required, be unrefined as gfls (1,¢).

The Hilbert series of a theory can thus be presented in various ways; in
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refined or unrefined form, or as an HWG. Importantly, the HWG captures
all the group theoretic content of the class functions of the theory; if we
encode the information as a HWG series, we can always recover a refined

or unrefined HS, as desired.

2.4. Hall Littlewood Polynomials

While characters provide a basis for the decomposition of any class func-
tion of G, many of the Hilbert series that are generated by quiver theories
are graded by U(1) counting fugacities, such as those tracking R-charges,
and this invites the question as to whether it is possible to find families of
functions, other than characters, that incorporate such additional param-
eters to provide more concise decompositions. Such families of functions
are indeed provided by Hall Littlewood (“HL”) polynomials and the related
modified Hall Littlewood (“mHL”) polynomials (or, strictly speaking, func-
tions) [60]. These have proved a useful tool for describing the Hilbert series
of certain SUSY gauge theories [26] [55]. The aim in this section is to develop
a generating function methodology that enables the deployment of H L and
mH L functions in a systematic manner, comparable to the use of character
decompositions elaborated above.

HL and mHL functions of G are plethystic class functions in weight
space/root space coordinates that are additionally parameterised by a count-
ing fugacity, (say) t. They can be identified conveniently by Dynkin labels,
although other methods, such as partitions, are also used [55]. They are
most helpfully defined to give an orthogonal basis under Weyl integration
using an explicit measure, as in [26]. There are various choices of normalisa-
tion possible: [26] chooses a normalisation under which the Hall Littlewood
polynomials are strictly orthonormal; [60] chooses a normalisation under
which the Hall Littlewood polynomials for U(/N) become symmetric mono-
mial functions for ¢ = 1; we shall use a third normalisation scheme, as in
[55], that yields natural generating functions for orthogonal polynomials.

Table |2.3| compares the HL and mH L measures. These are the products
of the usual Haar measure for G with an additional plethystic function,
parameterised by ¢, on its root space.

The families of orthogonal Hall Littlewood polynomials HL® and mod-
ified Hall Littlewood functions mHL® of a group G, having rank r, root
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Group and Basis Notation Measure
X¢ dp© (x) o e 11 (1 —z )
ae@
HLS duiy (2,t) W%%
mHLC diGprr () o & - )(1—zat>

Table 2.3.: Measures for Orthogonal Bases of G

space @, weight space coordinates x, roots {z% : a« € ®} and Dynkin labels

[n], can be defined as:

HLG (zt)= Y w- ( T 1] iﬁ) (2.17)

wEWG acd+

and

1
mHL Z w - ( @ H T o a)> (2.18)

wGWG aced+

The orthogonality between the (m)H L, and their complex conjugates, un-

der an inner product incorporating the (modified) Hall Littlewood measure

d,uG(m)HL, is given by:
7{ dpGr, HLG, (z*,t) HLE, (2,1) = Spp vi () (2.19)
G
and
j[d,ugHL mHL[C:L} (x*,1) mHL[(fl,] (z,t) = Sy U[C;;] (t). (2.20)
G

The factors ’U[C;;] (t) relate to the symmetric Casimirs of G and its subgroups,

and are determined by any zero Dynkin labels in the irrep [n]:

1— tdegree(C)
— . (2.21)

Go- I (H

CeCasimirs(G/[n])

The subgroup G/[n] is defined by the Dynkin diagram that remains after

eliminating from the Dynkin diagram of G any nodes that correspond to
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non-zero Dynkin labels of [n]. Thus, ’U[C:l] (t) incorporates all the Casimirs of

G if the Dynkin labels of [n] are all zero, and reduces to unity if the Dynkin

_ (=) (1) (110)

labels are all non-zero. For example, 061]7070} (t) = B0k , while
oD _ (=) _
Vio.1,00(t) = “a=pz and “[1 Ly =1

In the limit ¢ — 0, the (modified) Hall Littlewood polynomials reduce to
the characters of G, the (modified) Hall Littlewood measure reduces to the
Haar measure for GG, and the factors v[cfl](O) reduce to unity. In the limit
where t — 1, the Hall Littlewood polynomials reduce to the characters of
U(l)rank[G],

We now introduce the fugacities h = {hi,..., h,} for the highest weight
Dynkin labels of the (modified) Hall Littlewood polynomials and define and

construct their generating functions in a similar manner to characters:

e (i

weWag =1 acd+

(2.22)

and

9%y (z h,t) = ZmHL[CfL] (z,t) A"
[n]

(i)

1
H (I —22t)(1— z—a)>

weWg =1 acd+
1 e
= (H 1— ZO‘t) 9oL (Jﬁ,h,t),
acd

(2.23)

where we have defined h" = H h}t.
=1

Fromand 0l it follows that the generating functions g( VHL (z,t,h)

have the orthogonality property with the (m)H L[(T;Z]

]{ Gy Gy (0o t) (m)HLE) (2, 1) = vf) (t) h™. (2.24)
G
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We can obtain more useful contragredient generating functions g((fn) g (@, hit),

which generate polynomials (m)H LS (z, h,t) that are orthonormal (rather
than just orthogonal) to the (m)H L[G} by gluing together the g( )HL(a: t,h)
with generating functions for the 1/ v[n]( ), as described in [29]. These have

the orthonormality:

j{du(m)HL g(G;n)HL (z,h,t) (m)HL[Gn] (z,t) = ", (2.25)
G

Since the (modified) Hall Littlewood polynomials provide a complete ba-
sis for class functions that combine the characters of a group G with coef-
ficients given by polynomials in the fugacity ¢, we can use these generating
functions and orthonormality relationships to decompose a Hilbert series
9% (7,t) into (modified) Hall Littlewood polynomials. We first define the

decomposition coefficients Cf,)(t) from:

We can then find a HWG for the C/,,; (t), using the contragredient generating

functions:

gfiwa (ht) ZC[n]
(2.27)

= fd:u(Gm)HL m(xa h7t) ggS (.%',t) .
G

Individual Cp,)(t) can be extracted from ggWG (h,t) by Taylor expansion,
followed by selecting the coefficients of the monomials A™.

This study mostly works with mHL functions, rather than HL poly-
nomials, since the former typically provide more concise HWGs for the

decomposition coefficients of Plethystic Exponentials on the root space of

G.
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2.5. Generating Function Notation

It is helpful to consolidate the notational conventions developed in this
section and in Appendix For our purposes, the PE and PEF functions

can be summarised as:

d T d 1
;Ait :H(l—At)
d T d
PE > —Ait.t| =[] (1 Ait),
l(:il - Zzl 1 (228)
PE ;Ait, —t| = 1:[1(+At)
- d - - d d
PEF ZAit = PE —Z EH + Ait),
=1 i =1 =1

where A; are monomials in weight and/or root coordinates.

The characters of G can be presented either in the generic form x(z),
or as [irrep|q, or, using Dynkin labels, as [n]g = [n1,...,n,]q, where r is
rank.

CSA or weight space coordinates are typically labelled by = = (z1...x,)
and root space coordinates by z = (z1...2.), dropping subscripts if no
ambiguities arise. The Cartan matrix A;; is used to define the canonical

relationships between simple roots and CSA coordinates as z; = [ xf” and

—1..
xi =1]] zf 7. The CSA and root space coordinates are all unimodular.

Fieljd counting variables are generally labelled by ¢, adding subscripts
when necessary. In the case of Higgs branch constructions of RSIMS or
nilpotent orbits, these naturally have their non-trivial terms at powers of
t2, whereas in the Coulomb branch and NOL constructions, these terms
naturally arise at integer powers of t, reflecting half integer vs integer con-
ventions for counting R-charges in the Literature. Such conventions do not
affect the dimensions or structure of Hilbert series.

Dynkin label counting variables are typically denoted by m = (my ... m,)
for functions based on characters and by h = (hy ... h,) for functions based
on (modified) Hall Littlewood polynomials, although other letters may also

be used, where this is helpful. All these counting variables are defined to
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have a complex modulus of less than unity and are referred to as “fugacities”,
along with the monomials formed from CSA or root coordinates.

Series, such as 1 + f + f2 + ..., may be referred to by their generating
functions, 1/ (1 — f). Distinct variables are used, as above, to help distin-

guish the many different types of generating function shown in Table

Generating Function Notation Definition
Refined HS (Weight coordinates) 9% s(x,t) §0 ap(z)t"
Refined HS (Root coordinates) 9Gs(z,1) %0 an(2)t"
Unrefined HS 955 (1) i ant; = i an(1)t"
HWG (Character) for HS dSva(m,t) = > a[n]?t:)(;n”
HWG (mHL) for HS ¢S wval(h,t) [;:a[n] (t)h™
Character gfj(az, m) g}xﬁ] (x)m™
(modified) Hall Littlewood ggﬂ)HL(:c, h,t) % (g])HL[CjL] (x,t) h"™

Table 2.4.: Types of Generating Function

2.6. Subgroups and Branching

Many parts of this study draw upon the theory surrounding Dynkin dia-
grams and /or branching (or symmetry breaking) relationships; these include
the theory of nilpotent orbits in Chapter |4, the identification of quivers
whose Coulomb branches correspond to nilpotent orbits in Chapter [6] the
analysis of quotient group constructions for nilpotent orbits in Chapter
the deconstruction of RSIMS in Chapter 8] and the identification of Hy-
perKéhler quotients between nilpotent orbits in Chapter

From a group theoretic perspective, symmetry breaking occurs when some
factor (such as a perturbation) causes a parent group G to split into a
product group. This can be described by a branching map G — G1®. .. G,
which determines a map from the weight space and root space coordinates
of G to those of G1 ® ...Gy.
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Branchings of the form:

k

ladjoint] — Z ladjoint] . ® Z [irreps]g, e, (2.29)
i=1

where the adjoint representation of G splits to the adjoint representations
of {Gy,..., Gy}, with each root of G; being mapped to a distinct root of G,
are termed regular [58]. Subgroup mappings that are not regular are termed
special [58]. Special embeddings involve rank reduction, such that rank[G;®
...Gg] < rank[G]. Special SU(2) subgroups arise in the classification of
nilpotent orbits, as discussed in Chapter [4f Other than these, most of the
branching relationships dealt with herein are regular.

The Haar measure (i.e. volume form) of G similarly decomposes to the
Haar measure of the product group, plus some non-trivial field content that
is a signature of the branching map. Understanding patterns of symmetry
breaking requires the enumeration of the possible subgroup branchings, G —
G1®. .. Gy, and this non-trivial task was first tackled in a systematic manner
by Dynkin in [61] and [54].

A group G has many possible regular subgroup branchings, including
semi-simple branchings and those with one or more Abelian components.
However, as identified in [61] and [54], these can be generated by repeated
application of a small set of regular branching transformations. These basic
transformations can be described and classified most effectively in terms of
their action on the Dynkin diagram of GG, by drawing on the correspondence

between nodes, simple roots and weights. These comprise:

1. The elementary transformation of a simple group G into a semi-simple
subgroup, G1 ® ...Gg, by the elimination of a single node from the
extended (or affine) Dynkin diagram of G. Each simple root of G; ®
... Gk maps either to a distinct simple root {z1,...,2.} of G or to
the extended (i.e. lowest) root zp of G. Rank is preserved, but group
dimension is reduced. The subgroup is termed mazimal if it is not

possible to interpose a proper subgroup between it and G.

2. The Abelian transformation of a simple root k in a Dynkin diagram to
a U(1) = SO(2) root. The group splits to the Levi subgroup U(1)®G,

where G is defined by the Dynkin diagram remaining after node k is
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excluded. The fugacity map,

{z1,. . xpy .ozt — {z1g"™F R g R Y (2.30)

replaces x by a U(1) fugacity ¢”** and shifts the other weight space
coordinates such that {z1,...,2p_1,2Tkt1,...2,} become canonical
weight space coordinates for G. The U (1) charges can be obtained

from the Cartan matrix as v}, = (A_l) Rank is preserved, but

ik’
group dimension is reduced.

3. Folding of the Dynkin diagram of type Ao._1, D,y1 or Eg to give
C., B, or Fy, respectively, by identifying the nodes related by outer-
automorphism, and their fugacities. This gives the non-simply laced
simple group defined by the folded Dynkin diagram. Both rank and

group dimension are reduced.

4. Rank reduction, by the elimination of a node & in the Dynkin diagram
for G, to obtain G, as defined above. This is a special case of uni-
tary transformation with ¢ — 1. Both rank and group dimension are

reduced.

The elementary transformations of simple groups are determined by their
affine Dynkin diagrams [58], which are shown in Figures and [2.2/°| The
elimination of a node from the affine diagram yields a regular Dynkin di-
agram and this defines the subgroup obtained. The result depends on the
node eliminated, with the possibilities summarised in Table

Elementary transformations can be chained by acting on one or more
parts of each subgroup. These chains terminate in A series (product) groups,
which are invariant under elementary transformations.

A general regular subgroup mapping can be obtained by compounding
such a chain of elementary transformations with other basic transformations
(rank reducing, folding, and/or U(1)). Each such mapping defines a CSA
coordinate map M between the weight space {xi,...,x,} of the parent
group G and the weight space {z/,...,/,} of its subgroup G; ® ...Gj.
M is injective and provides a decomposition of the representations of GG

in terms of the irreps of G1 ® ...Gg. However, other than for the usual

3 Additional background information on affine Lie algebras is contained in Appendix
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Figure 2.1.: Extended Dynkin diagrams for simple Classical groups up to
rank 5. Blue nodes denote long roots with length 2. Red nodes
denote short roots. A black node denotes the long root added
in the affine construction. The dual Coxeter labels giving the
U(N) symmetry for each node are also shown.
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Figure 2.2.: Extended Dynkin diagrams for Exceptional groups. Blue nodes
denote long roots with length 2. Red nodes denote short roots.
A black node denotes the long root added in the affine construc-
tion. The dual Coxeter labels giving the U(/N) symmetry for
each node are also shown.
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Group Proper Semi-Simple Subgroups Type
A,
B>9 B, o®Dsy,..., By ® D,_1,D, Maximal
CTZQ Cr_1®Cl,...,C[T 2] ®C|_T 2] Maximal
DT24 DT,Q(X)DQ,...,D"T 2] ®DLT 2| Mazximal
FEs As ® Ay, Ao ® Ay ® Ag Maximal
FEr Dg® Ay, A5 ® As, Az Maximal
E; A3 ® A3 ® Ay Non — mazximal
Eg Er® A, Eg® Ag, Ay ® Ay, Ag, Dg Maximal
Eg A7 Q@ A1, A5 ® Ao ® A1, D5 ® As Non — maximal
Fy C3® Al, Ay ® AQ, By Mazximal
Fy A3 ® Aq Non — mazximal
Go AL ® Ay, Ay Mazximal

Table 2.5.: Subgroups from Single Elementary Transformations

isomorphisms, M is not bijective, even if no rank reduction occurs, since
the subgroup has lower group dimension than G, so that not all irreps of
G1 ® ...Gy can be mapped to representations of G.

Armed with a CSA coordinate map M, we can transform any Hilbert

G1®...Gy,
H

any of the analytical tools outlined in this section. This permits the in-

. . M
series from G to one of its subgroups, ggs(t, x)=g

vestigation of relationships between the Hilbert series and HWGs of quiver

theories with related symmetry group structures.
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3. HWGs of Simple Moduli Spaces

3.1. Hilbert Series and HWGs for Invariant

Tensors

One interesting set of moduli spaces to study is that of the invariant tensors
of simple groups. These are illuminating, since we shall be symmetrising
and/or anti-symmetrising representations of many groups in the course of
this study, and the resulting combinatorics is determined by the symmetry
properties and structure of invariant tensors. A group has numerous in-
variant tensors, such as delta or epsilon tensors, structure constants, sigma
and gamma matrices, or other intertwiners, and these act to contract fields
to create fields transforming in other irreps. All these invariants can be
described using the language of tensor algebra, in terms of their indices and
symmetry. The plethystic method complements this approach by identify-
ing such tensors as singlets within the tensor products of the irreps in which
they transform.

An invariant tensor of a group G occurs whenever the decomposition of
a tensor product of representations (i.e. product of characters of repre-
sentations) contains a singlet. This permits a simple plethystic method to
generate the Hilbert series that enumerate the degrees of totally symmetric
or totally antisymmetric invariants of a chosen representation. These series
can be found by using Weyl integration to project out singlets from charac-
ters that have been symmetrised using the PE, or anti-symmetrised using
the PEF. This is a straightforward generalisation to Lie groups of Molien
summation over finite groups [10].

G

Ihrsssym () = 7{ dp® PE[x 1] (3.1)
G
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and
G

S () = § du PEF [x 1] (3:2)
G

A HS for the degrees of symmetric invariants is freely generated, and can

be treated with the Plethystic Logarithm to find its generators t4 . The

exponents of the counting fugacity ¢ in these generators correspond to the

degrees df of the primitive symmetric invariants of y©.

thf =PL [gl)irzzsym (t)} : (3.3)

The degrees of antisymmetric tensors are given by the exponents d? from
0.2l

A G
1+ Z t% = glg.a (1) - (3.4)
i

G
If g%, (t) factorises, the degrees d2* of the AS invariants can also be written

in terms of the degrees df‘P of primitive AS invariants:

I1 (1 + tdiAP) =1+ th? (3.5)

i

The totally symmetric and totally antisymmetric invariant tensors of the
defining (fundamental/vector) and adjoint representations of Classical and
Exceptional Lie groups are summarised in Tables [3.1] and [3.2]

As can be seen from Table each Classical and Exceptional group has
a unique signature in terms of the invariant tensors of its defining represen-
tation [62]. Within these, there is a minimal set of tensors in terms of which
the other invariant tensors can be expressed, termed primitive invariant ten-
sors. If these primitive tensors are symmetric, they can be symmetrised into
symmetric tensors of higher degree. If the primitive tensors are antisym-
metric, they can be anti-symmetrised, up to the degree of the overall volume
form associated with the defining representation. This degree is determined
by the dimension of the defining irrep, which consequently equals the sum
of the degrees of the primitive invariant AS tensors.

A similar analysis applies to the adjoint representation. In this case,
the primitive symmetric tensors are equal in number to the rank of G and
their degrees match those of the Casimirs of G, since each invariant tensor

contracts with the Lie algebra generators of G to give a distinct symmetric
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Casimir operatorﬂ Each symmetric invariant of degree d° is related to
an antisymmetric invariant of degree d® = 2d° — 1. These AS invariants
are forms over the co-cycles of a group manifold [63] and so their Hilbert
series g][;cgj\mﬂc’ (t) encodes information about the cohomology of the group
manifold, and is known as the Poincare polynomial of G. The sum of the
degrees of the AS invariants (i.e. sum of the exponents of the Poincare
polynomial) equals the dimension of the group.

We can similarly treat the the spinors of SO groups as basic irreps and
calculate the degrees of their symmetric and antisymmetric invariant ten-
sors. These are shown in Table [3.3] for orthogonal groups up to rank 5. The
notation used for SO(2r) can be adapted to give the invariants, either for
Dirac spinors, by setting t; = to = ¢, or for Weyl spinors, by setting t1 or to
to zero. The invariant tensors are all of even degree and the degree of the
AS tensors is (naturally) limited by the length of the volume form on the
spinor manifold. Unfortunately, the degrees of spinor invariants do not fall
into simple patterns and are difficult to generalise to higher rank groups.

Symmetric and antisymmetric invariant tensors can be combined into
tensors of mixed symmetry and the number of such possible combinations
compounds with increasing rank and dimension; the defining representa-
tions of exceptional groups, in particular, posses a very complicated set of
invariants once invariant tensors of mixed symmetry are included [64].

It is interesting, therefore, to consider how all the invariant tensors of
some representation(s) might be enumerated in a systematic manner. This
question is closely related to the problem of identification of GIOs in SQCD,
which is the subject of the next section.

Given some defining representation, the identification of its invariant ten-
sors of mixed symmetry requires some way of characterising symmetry, in
addition to tracking the number of indices. One solution is to map the
symmetry properties of each tensor to a Young’s diagram. This in turn
corresponds to a representation of a unitary group of sufficiently high rank,
which can be tracked by its Dynkin labels. This series of Young’s diagrams
can in principle be encoded as an HWG@G, which combines a counting fugac-

ity ¢, to count the number of boxes in each Young’s diagram, with highest

!The Casimir operators of a group form a commuting set of operators whose eigenvalues
identify the irreps in which fields transform. Each set of Casimir eigenvalues is in
bijective correspondence with the highest weight Dynkin labels of an irrep.[62]
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weight fugacities my, ..., m, to describe its symmetry.

One method for finding such HWGs makes use of the pattern of symmetri-
sations that arises when a product group representation is symmetrised or
anti-symmetrised. We apply the plethystic expansions [A.17] and [A.1§ to
the character of a product group representation x(x,y) = x*(z) ® xZ(v),

where yA(z) =z +... + |4 and XBy) =y +... + YjyB|- We take x4
and xZ to be the fundamental representations of unitary groups A and B

and apply standard results from [60] to obtain the following:

Z Sym* [XA ® XB] = PFE [XA ® XB]

k=0
A X

- 11 bt (3.6)
i=1 j=1 (1 — i)

_ A B
= [Z]: Xin] © X[n]

[ ex?|
k=0

| x|

= H H (1 —i—a:iyj) (37)

i=1 j=1

= Z X[ﬁ] ® Xﬁ]T
[n]

The sums over [n] are taken over all non-vanishing irreps X?l 1® X{i  or Xfr‘L 1®
Xﬁ 7> respectively. The Dykin labels [n]T are related to [n] by transposition
of their corresponding partitions or Youngs diagrams [60]. This involution
exchanges symmetric and antisymmetric irreps and so the PE of a product
group representation pairs up irreps with the same symmetry properties,
while the PEF pairs up irreps with opposite symmetry properties.
Suppose now that we wish to enumerate all the invariant tensors of a
representation x¢, which need not be unitary. We set B = U(N), where
N = } XC| so that x? has dimension equal to that of the volume form on
x¢ and B has sufficient Dynkin labels to track the anti-symmetry of any
invariant tensor on x“. We also replace the unitary character x4 within
the PE in by x©. Under this latter substitution, each unitary irrep xﬁl]
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decomposes to representations of C, which may include one or more singlets
corresponding to the invariant tensors of x©. We select these singlets by a

first Weyl integration over C":

C
géS:inv. (y) = j{d/lCPE [XC X XU(N)]

¢ (3.8)
U(N)
= Z A[n) X[p) (¥),
[n]€inv.
where the coefficients ap, track the multiplicities of the invariant tensors.
It is clear that if U(N) is taken as U(1) with fugacity ¢ then reverts to
for totally symmetric invariant tensors.
As a second step, we use a generating function for the characters X%N)
with the Dynkin label fugacities m = my...my to transform the class

function 3.8 into an HWG :

T i, (M) = ]{ AN gUN) () g% (y)
UW) (3.9)
= > agm"
[n]€inv.

Alternatively, by noting the matching symmetry between irreps of U(N)
and representations of C, equations [3.8 and [3.9] can be combined:

C
IHW Geinw. (M) = f du® (') g ™) (y,m)] (3.10)

C

y—=xC (")

where o/ = 2f,... 2] ank[C] AT€ CSA coordinates for C, and the elements
of the character x¢ are substituted for the y; in the character generating
function for U(N).

The HWG series or 3.10] can be presented in terms of Young tableaux
for U(N), with the partitions determined by the Dynkin label fugacities m,
so that m¢ represents a rectangular Young’s sub-diagram with ¢ columns
and r rows, and my! ... mgN represents the Youngs diagram formed by N
sub-diagrams placed side by side.

By way of example, Table[3.4)summarises the HWGs obtained by applying
[3.10]to the defining representations of low rank Classical gauge groups. Each

term in the PL represents a primitive invariant tensor, or generator of invari-
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Gauge Defining Flavour PL [gG@U(J\]) }
Group G Irrep Group HWG:inv.

SU(2) [1] U(2) mo

SU(3) [1,0] U(3) ms

SU(N) [1,0,...] U(N) my

USp(4) [1,0] U(4) ma + my
USp(2r) [1,0,...] U(2r) mo +my + ... ma,

SO(3) 2] U(3) m1? + mo? + ms3

50(4) [1, 1] U(4) m12 + m22 + TTL32 + my

SO(5) [1,0] U(5) mi? 4+ ma? + ma® + my’ + ms
SO(N) [1,0,..] U(N) mi% +mo? +...m3%_; +my

Table 3.4.: Primitive Invariants of Defining Irreps of Classical Groups

ant tensors. It is clear that the defining representations of A and C' series
groups, which lack a symmetric tensor, only contain the wholly antisymmet-
ric tensors previously enumerated in Table[3.1] The defining representations
of SO(N), however, all contain multiple primitive invariant tensors start-

ing from the delta tensor, given by the series mi2, ms?2,.

.. ,m?\,_l, plus the
volume form epsilon tensor my, numbering N primitive invariant tensors
in total. The HWGs are freely generated, so that further invariant tensors
can be identified by forming monomials from products of the generators.
A related procedure can be followed, by working with the PEF in in
place of the PE in In this case the invariant tensors of x¢ are associated

to Young’s diagrams of B that have been transposed.

C
g}CIS:Cinv. (y> = fdMCPEF |:XC ® XU(N)}
¢ (3.11)
_ U(N)
- Z a[”]X[n]T (y)7
[n]Cinv.

The series of invariants given by are finite and incomplete, since the
rank of the unitary flavour group U(N) limits the degree N to which the
symmetrisations of x can be tracked. If U(N) is taken as U(1) with
fugacity t then this method reverts to[3.2|for totally antisymmetric invariant
tensors.

Some equivalent results can also be obtained by decomposition of tensor
products [64], however, the HWG method has the potential advan-
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tage of generating the complete infinite series of invariants from a finite
number of generators, thereby resolving uncertainties about the multiplic-
ities of distinct invariants and/or their appearance at higher orders. For
high dimensioned representations, where calculation with high rank unitary
groups is impractical, can be used to identify invariants, up to some
finite degree of symmetrisation.

Thus, HWGs can be used to explicate how the invariant tensors of the
group representations within a product group structure determine its Hilbert
series. These HWG monomials identify both the orders at which such invari-
ants are formed and the representations in which they transform. The above
series for product groups incorporating U(N) flavour groups are closely re-
lated to the series for the GIOs of SQCD, which are the subject of detailed
examples in the next section.

There are also many invariant tensors that can be formed from com-
binations of representations. These can be analysed by similar plethystic
methods, using refined fugacities t; to label the different representations
being symmetrised/antisymmetrised. This leads to many different moduli

spaces that are outside the focus of this study.

3.2. SQCD

The moduli spaces of SQCD describe the vacuum field content of the Higgs
branches of N/ = 1 supersymmetric extensions of QCD and have been
extensively studied. Treatments under the Plethystics Program include
[13] 14, [15]. The aim here is not to give a full review of SQCD theories, but
to illustrate how HWGs can provide complete and concise descriptions of
their moduli spaces. While complete descriptions can be given for SQCD
theories with Classical gauge groups [13], 14}, 28], the moduli spaces have only
been found for low flavour numbers [28] for SQCD theories with Exceptional
gauge groups.

The Lagrangians for N' = 1 gauge theories are well-known, taking the
form [65]:

L= oo,

1 (0%

where h.c. denotes hermitian conjugation of the 06 terms. The ®; are

o4



chiral superfields, transforming under some global symmetry (acting on the
indices i) and also under some representation of a gauge group G (gauge
indices suppressed). Their multiplets include chiral scalars ¢;. W (®;) is
the chiral superpotential. V is a vector superfield transforming with field
strength W, = —iDDe*VDaeV.

Expanding the Lagrangian, and requiring that its variation with respect
to component fields should be zero, identifies the effective scalar potential
[14]:

owl|* 1 :
1% ((bia ¢I) = Z ‘(%Z + 592 > (Z ¢iTTa¢i> ; (3.13)

where T are the Lie algebra generators for G. At the SUSY vacuum, the

effective scalar potential is minimised, V = 0, giving rise to

F-term conditions, Vi : %V =0, and

D-term conditions, Va : 3 ¢;/T%; = 0 or Tr[T -3 ¢i;T] = 0.

In SQCD theories there is no superpotential, W (®) = 0, so the F-terms
vanish automatically. The D-term conditions require that only gauge in-
variant combinations of scalar fields appear at the vacuum. The vacuum
field content of these theories is given by the chiral ring of gauge invariant
BPS operators (“GIOs”) that can be formed from the chiral scalars ¢;.

Quiver diagrams provide an elegant way of describing theories involving
chiral scalar fields and the structure of their global symmetry (or flavour)
and gauge (or colour) groups. For Classical group SQCD theories, the
relevant quivers are shown in Figure [3.1

In addition to flavour and gauge group charges, the scalar fields can also
carry a variety of U(1) charges. The most important of these is the R-
charge, which counts the number of chiral scalars combined within some
operator.

The moduli spaces of the GIOs of all these theories can be described by
the refined Hilbert series:

G ®Gc c G '®Gc
gH{S‘;G]O (‘Tvt) = fd:uG (y) PE [sz}und (:1:73/) - (314)
Ge

The PE generates the chiral ring of scalar field combinations by symmetris-

ing the character xﬁﬁﬁf (z,y) of the bifundamental fields. z and y are

95



@
Q@
D

Figure 3.1.: Quiver diagrams for Classical Group SQCD. Blue nodes denote
gauge groups. Red nodes denote flavour groups. The links
between nodes correspond to bifundamental fields transforming
under both the flavour and gauge groups. Fundamental and an-
tifundamental fields are distinguished by directed links. Other
U(1) charges are omitted.

weight space fugacities for the flavour and colour groups, respectively, and ¢
is a counting fugacity for the R-charge. The D-term conditions are imposed
by the Weyl integration, as described in Appendix which selects the
colour/gauge group singlets that identify the GIOs.

The refined Hilbert series can most usefully be analysed in terms of its
flavour group representation content by transformation into a highest weight

generating function:

diiveicio mt) = § (@) o @ m) a0 @), (g

Gy
Alternatively, the refined HS[3.14] can be simplified into the unrefined Hilbert
series ggg?gfos (1,t), which provides dimensional information about the
moduli space. The following sections describe and comment on the moduli
spaces of GIOs for some SQCD theories with low rank Classical and Ex-
ceptional groups. Much of the treatment is common between the different

gauge groups.

3.2.1. GIOs of U(Ny)/r ® SU(N,)

It is helpful to start with an explicit statement of the symmetry transfor-

mation properties of the bifundamental fields [I3]. These are summarised
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in Table where the chiral scalars are referred to by their superpart-
ner quarks or antiquarks. For convenience, the U(Ny) flavour groups are
initially decomposed as SU(Ny) @ U(1).

Gauge/Colour Flavour Baryon R
Groups SU(N.) SU(Ny), SUWNs)p UQ), Uy | U)g UQ)
Qr 0, 1] [1,0,..] 1 I 0 1
Qo 1,0,...] [1,0,..] 0 1 1
CSA _
Fug. y TL TR q q t
]:E—I\ll\g l T tl tg

Table 3.5.: SQCD Charge Assignments: U(Ny)r/gr @ SU(N.)

The possible field combinations contain chiral quarks @ and/or anti-
quarks Q¢, transforming in some representation of the product group, where
the indices i range over the fundamentals of the U(Ny); g flavour groups
and the indices a range over the fundamental or anti-fundamental of the
SU(N.) colour group. The GIOs are SU(N,) colour singlets composed of
quarks and/or antiquarks, with their flavour group indices determining the
representation in which they transform. The fields also carry R-symmetry
and baryonic U(1) charges.

To obtain HWGs for these theories, we first form the product group char-
acters of the fields:

U(Ny)p,r®SU(Ne) _
sz'fund. <37L, TR,Y,4, q) = (3 ]_6)
SU(Ny) '

SU(N. SU(Ny) SU(N. _
Xn0...0" (@) X[o,,.(..,o,)ll(y) 4+ Xp0,..0]" (TR) X[l,o(,...,g}(y) a4
While the colour group CSA coordinates y are shared by the quarks and
antiquarks, it is necessary to use different CSA coordinates x; and zpg to
distinguish the L and R flavour groups.

Application of [3.14] yields the refined Hilbert series:

U(Ny) ®SU(N.)
gHS:é;]LO/R (ILazR7t17t2) =
; SU(Ny) SU(N., SU(Ny) SU(N,.
j{ dpSYN) (y) PE [X[l,O,...{O]LX[O”.(..,O,)l] (xL’y)tl}PE [X[1,07.--{OFX[LO(W-,())] (R, ) tQ} ’

SU(N(,)
(3.17)
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where the U(1), /r fugacities ¢ and g for the quarks and anti-quarks have
been combined with the R-charge fugacity as t; = tq and to = tg, for
simplification.

The HWGs follow from by a second Weyl integration, as in [3.15

U(Ng)p  r®SU(N)
IHWG-GI0 (Lr ity t) =

dpSUWVDL (21 dpSUNDr(25) (3.18)
SU(Ny), ®SU(Ng)p,

SU(Ny)

TN (@ 1) g N ()

X g

U(N;), ,®@SU(Ne)
X gl(LIS’:GJ;OL/R )($L>$Rat1at2)~

The highest weight fugacities [ =13 ...In,—1 and 7 =r1...7N,-1 track the
SU(Ny)r/g irreps of the (decomposed) L and R flavour groups. The HWGs

from [3.18] are summarised in Table [3.6] for some low rank groups.

Theory HWG
Ul)r/r®SU(2) 1/(1 — tyta)
U2f)r/r ® SU(2.) /(1 —t12)(1 — t22) (1 — 171ty to)
U(>3)p/r @ SU(2) 1/(1 = Iot1?) (1 — roto®) (1 — lyritits)
U(L)r/r® SU(3c) 1/(1 = tita)
U(2f)L/R & SU(3C) 1/(1 - llTltltg)(l — t12t22)
U<3f)L/R & SU(3C) 1/(1 — t13)(1 — t23)(1 — lﬂ’ltltg)(l — l2T2t12t22)
U(>4)r®SU@Be) | 1/(1—15t1%)(1 — rata®) (1 — liritita) (1 — lorati *t2?)

Table 3.6.: HWGs of U(Ny)r, g ® SU(N.) GIOs

These HWGs are all freely generated and so can be stated more succinctly
in terms of their PLs, as in Table The generators in PL[HW G| encode
the structure of the GIOs of the theory and the flavour group representations
in which they transform.

These flavour group representations can be described either in terms of
U(Ny) or SU(Ny) @ U(1). Recalling that the fugacity ¢ counts boxes in a
Young’s diagram, we can translate between SU(N) ® U(1) highest weight
fugacities {l;,t} and U(N) highest weight fugacities m; by the map:

(liti,tN) — (mi,mN). (3.19)
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PLHWG] PLHWG]

Theory SU(Ny) ® U(1) fugacities U(Ny) fugacities
U(l)L/R®SU(2C) tltg mrmpg
U(Qf)L/]:g@SU(QC) t12+t22+l7"t1t2 mr, MR, + Mg, + Mg,
U(Z 3)L R®SU(2C) Iot12 + roto? + Iy titsy mrp, Mg, +Mmr, + mg,
U(].)L/R@)SU(?)C) tltz mrmpg
U(Qf)L/R®SU(3C) Irtits +t12t22 mr,mgr, + M, MR,
U(3f)L/R®SU(3C) t13+t23+l17”1t1t2—|—l27‘2t12t22 mr, MR, + M, MR, + M, + Mg,
U(>4),r®SU(3.) | lst1® +r3ta® + liritats + lorat %t | mp,mg, + mp,mg, + mr, + mg,

Table 3.7.: PLs of HWGs of U(Ny)/r ® SU(N.) GIOs

Taking U(3f)r/r ® SU(3.) as example, we can map the generators either
to U(3s)r/r irreps, or to SU(3f)r/r @ U(1)rR irreps; these are described
by Dynkin labels in Table 3.8

SUBf)L/r@U) /R Irreps UBf)L/r Irreps
liritits [1,0][1,0]r q¢ | mpymgry  [1,0,0]£[1,0,0]R
laraty*to? 0,1]2[0,1]r ¢*¢* | mromgs  [0,1,0]£[0,1,0]
t3 [0,0]2[0,0]r ¢° mrs [0,0,1]2[0,0,0]r
t23 [0,0]L[0,0]R (j3 MR3 [0,0,0]L[0,0, 1]R

Table 3.8.: Generators of HWGs of U(37) /g ® SU(3.) GIOs

Choosing the SU(3¢) ® U(1) notation, the monomials can be viewed, re-
spectively, as a quark antiquark pair (meson) transforming in the SU(Ny)r, /g
fundamentals, a combination of two quarks and two antiquarks (tetraquark)
transforming in the SU(3y) 1, g anti-fundamentals, and three quarks (baryon)
or three antiquarks (antibaryon) transforming as SU (3y) /g flavour singlets.
In U(3) /R notation, the (anti)-symmetry properties of the representations
are identified by their Dynkin labels; the (anti)baryons contain antisymmet-
ric combinations of the quarks.

There are several points of interest about the structure of the generators.
Most importantly, the HWGs converge for all flavour groups of fundamental
dimension exceeding that of the colour group. We can interpret this in terms
of complete breaking of the gauge group symmetries as Ny reaches N.. Put
another way, the anti-symmetrisation of the flavour group representation
is limited by the degree of the volume form of the colour group irrep, as

discussed in section Secondly, the symmetry of the quiver leads to
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pairing of the L/R flavour group representations.

These observations permit us to extrapolate Table and to generalise
the PLs of HWGs for GIOs of U(Ny)r g ® SU(N.) with arbitrary flavours
and colours in terms of the U(Ny)r, g fugacities {mp, mg} as:

PLIHWG) =

Z mLimRi—}—

min(Ny,N¢)—1 .
i=1 {

If we restrict[3.20] to the left or right flavour group, the GIOs correspond to
colour group antisymmetric invariants only; thus, setting mgr — 0 recovers,
for Ny > N, the invariants my, of SU(N) shown in

If we are primarily interested in counting dimensions of flavour irreps,
the HWGs can be transformed to unrefined HS by replacing the mono-
mial terms in {l;,r;} by the dimensions of the irreps to which they refer.
This is equivalent to setting the CSA fugacities within the characters of
the flavour group in the refined HS to unity, and retaining only the
overall R-charge fugacity t for counting. We then obtain the unrefined HS

gIU{gY&LO/R ®SU(Ne) (1,1,¢,t). Some unrefined Hilbert series are shown in Ta-
ble [3.91
Theory Unrefined Hilbert Series |HS|
U(l)L/R®SU(2C) (1_71,52) 1
U2f)r/r ® SU(2) (11:5)5 5
U3f)1/r® SU(2) GRS ) 9
U4f)L/p ® SU(2:) R A 13
U(5f)L/R ® SU(2.) (1+t2)(1+27t2+16912‘;J:§22)11t$+169t8+27t10+t12) 17
U(1)p/r ® SU(3.) =] 1
U2)1/n® SUG) o 1
U(?’f)L/R ® SU(3c) (1_t)(11:i—2i_)t82(1_t3) 10
U(dy)1/r ® SU(3) (1+t2)(1+3t2+ztt13:;§‘;+(zit:;§i6+4t7+3t8+t10) 16
1+t + 1062 + 23t3 + 68t1 + 135¢5 + 281¢°
(1—¢) ( +446t7 + 6953 +.895t9 +1090¢10 )
U(5f)L/R ® SU(3.) +1115t(111_—:2.).161()i11_11;;1;70me..,+t22 929

Table 3.9.: Unrefined HS of U(Ny)r/gr ® SU(N.) GIOs
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Unlike the HWGs, the unrefined HS are not freely generated for Ny >
N., and indeed, for Ny > N, they are not complete intersections, indi-
cating complicated relations between generators. The unrefined HS have
palindromic numerators, but these do not readily generalise to higher rank
groups.

The dimensions of these unrefined HS are given, as can be verified by
inspection of Table for Ny < N., by N?, and, for Ny > N, by 2NN, —
(N2 — 1), which is the number of bifundamental fields less the number of
gauge group generators [13].

A further interesting observation made in [I3] is that with an SU(2.)
colour group, the left and right flavour groups can be combined into a
U(2Ny) global symmetry. This particular feature arises for SU(2.) because
the quarks and antiquarks share the same SU(2) character. Thus, we can
set up a fugacity map in which the CSA flavour coordinate plus fugacity de-
grees of freedom match between U(Ny)r, pr ® SU(2.) and U(2Ny) ® SU(2.).

Such alternative ways of analysing the same theory give rise to corre-
spondences between Hilbert series and, indeed, can be identified from un-
refined Hilbert series. Thus, for example, the unrefined Hilbert series for
U(2)r/r ® SU(2.) in Table is the same as the unrefined Hilbert series
for U(4) ® SU(2.) (not shown).

3.2.2. GIOs of U(N;) ® SO(N,)

In the case of U(Ny) ® SO(N,), the SQCD theory contains one bifunda-
mental scalar transforming in the fundamental representation of the flavour
group and the vector representation of the colour group. Charge assign-
ments, based on [I4], are as in Table For convenience, the U(Ny)
flavour groups are initially decomposed as SU(Ny) ® U(1).

The theory contains combinations of quarks @’ , where the indices i and
a range over the flavour group fundamental and the colour group vector
representation, respectively. The GIOs are colour singlets composed of
quarks and transform in some flavour group irrep. The fields also carry
U(1) charges, which can be absorbed, for our purposes, into a single count-
ing fugacity t = qt’.

Proceeding as before, the refined HS generating functions are given by:
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Gauge/Colour Flavour R
Groups SO(N,.) SU(Ny) |UM)p |U)rR
[2] for N. =3
Q' [1,1] for N, =4 [1,0,...,0] 1
[1,0,...,0] for N. >4
CSA Fugacity Yy T q t
HW Fugacity f t

Table 3.10.: SQCD Charge Assignments: U(Nf) ® SO(N.)

U(Nf)®SO(Ne . SU(N SO(N,
Guscno ) (x1) = f au%O0D () PRy o (o) ]

SO(N,) 1)
3.21

and the HWGs are given by:

U(N¢)®SO(Ne SU(N * U(N§)®SO(Ne
steno ™ (1= ¢ @) VN @ 1) BN @

SU(Ny) ( )
3.22

Evaluation shows that the HWGs of these theories are are all freely gen-

erated and can be stated concisely in terms of their PLs, as set out in Table

Theory SU(N f)) Ig[lffl(%[g]gacities U EVE)[I;Itgg]ies

U(2) ® SO(3) o m1? 4+ mo?

U(3) ® SO(3) CRZH B my? +my? + ms
U(>4)®50(3) 212+ 3 f5 + 1 o m1% +me? +mg

U(2) ® SO(4) 27+t my? + mg?

U(3) ® SO(4) 2+t 10 m1? + mo? 4+ ms?

U(4)®SO(4) t2f12+t4f22+t6f32 +t4 m12+m22 +m32+m4
U(>5)®50(4) 22+t fa + 10 f52 mi? +mo? + ms? + my

U(2) ® SO(5) 27+t m1? + mo?

U(3) ® SO(5) 224t 10 mi2 4 my? + ms?

U(4) ® SO(5) 224t 10 f3% 48 ma2 + ma? 4+ ma? 4 my>

U(5) ® 50(5) t2f12 + t4f22 + i + t6f32 + t8f42 m12 + m22 + m32 + m42 + ms
U>6)@S0(5) | 2fi% +t1f22 + 0 fs +t0f32 + 3117 | mi? + mo? + ma? + ma? + ms

Table 3.11.: PLs of HWGs of U(Ny) ® SO(N.) GIOs
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Once again, the HWGs of this SQCD theory are the same for all flavour
groups of fundamental dimension exceeding the vector dimension of the
SO(N,.) colour group. This permits us to extrapolate Table and to
generalise the PLs of HWGs to arbitrary numbers of flavours and colours.
We do this concisely, in terms of U(Ny) highest weight fugacities m, using
the map [3.19

PLHWG] = 7 (3.23)
[ ] ; ’lf Nf > Nc oMy

c

min(Ng,Ne)—1 . 9
if Nte < N.: m
m? + { / y ¢ N

Naturally, for Ny > N, the results correspond exactly to the invariants of
SO(N,), as shown in Table

These results are based on taking U(N) as the flavour group; however,
they can be translated to any other flavour group G, which has a representa-
tion x& of dimension N, by using a character map chgszl] — x% and reading
off the representations of GG associated with each monomial in the HWG se-
ries. In this manner, the series of gauge group invariants can be seen to map
explicitly, via their symmetry properties, to flavour group representations.

Unrefined HS for some U(Ny) ® SO(N.) product groups are set out in
Table @ These HS are freely generated for Ny < N, complete inter-
sections for Ny = N, and non-complete intersections for Ny > N.. In all
cases the numerators are palindromic. As can be verified by inspection of
Table the dimensions of these unrefined HS are given, for Ny < N,
by Ny(N¢+1)/2 and, for Ny > N, by NyN. — N.(N. — 1)/2, which is the
number of bifundamental fields less the number of gauge group generators
[14].
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Theory Unrefined Hilbert Series [HS]
T
U(2) ® SO(3) T ;
3
U(3) ® SO(3) (11:;‘,2)6 G
U(4) ® SO(3) JENLES AR 5
(1-2)
U(5) ® SO(3) L+3¢ 4+ 1087+ 6474617 11017437147 15
1—¢2
U(6) ® SO(3) 1+6t2+20t3+21t4+36t5+(56t6l§6t7+21t8+20t9+6t10+t12 5
1—¢2)15
1+ 1087 + 3567 + 557 Sr 1261)65 + 22015 + 22517
U(7) ® SO(3) ( +2251% 4 2201° 4 12610 + 55¢1! + 35612 + 1043 4 15 ) 18
(171&2)18
U(2) ® SO(4) ﬁ
U(3) ® SO(4) (1_11524)6
U(4) @ SO(4) 1174;)10 o
U(5) ® SO(4) TG+ 14
1—¢2
U(6) & 50(4) 1+3t2+21t4J£20t6+)1281t8+3t10+t12 13
(1—¢2)
U(7) @ SO(4) 1+6t2+56t4+126t6+2(11()fi;-)%§6t10+56t12+6t14+t16 59
U(2) ® SO(5) ﬁ
U(3) ® SO(5) ﬁ
T
U(4) © S0(5) e -
5
U(5) ® SO(5) 1174;)15 0
U(6) @ SO(5) IEELEE RN AR NN LR N %
1—¢2
< 1+ 3t? + 6t* + §1t5 Jr)l[)tG Fi5t7 )
8 o 10 11 13 4 415
U(7) @ SO(5) +15¢7 + 10t7 + 2&;2;5616 +3t13 4 ¢ o

Table 3.12.: Unrefined HS of U(N¢) @ SO(N,) GIOs
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3.2.3. GIOs of U(N;) ® USp(N.,)

In the case of U(Ny) ® USp(N.) product groups, the bifundamental scalar
fields transform in the fundamental representation of the flavour group and
in the defining N. = 2r dimensional vector representation of the symplectic
colour group C,. We use the charge assignments in Table based on [14].
For convenience, the U(Ny) flavour groups are decomposed as SU(Ny) ®
U(1).

Gauge/Colour Flavour R
Groups USp(N.) SUNg) (UM |UD)r
Q" [1,0,...,0] | [L,0,...,0] 1
CSA Fugacity Y x q t’
HW Fugacity f t

Table 3.13.: SQCD Charge Assignments: U(Ny) ® USp(N.)

The theory contains combinations of quarks Q°, with indices i and a rang-
ing over the flavour and colour group representations, respectively. The
GIOs are colour singlets composed of quarks and transform in some flavour
group irrep. The fields also carry U(1) charges, which can be absorbed
into a single counting fugacity ¢ = qt’. Often Ny is restricted to be even,
following [66], but we adopt a general treatment here.

Proceeding as before, the refined HS are given by:

U(Nf)QUSp(Ne SU(N USp(N,.
gnsdio "N (@) = 7{ duV5P N (y) PE X[l,os.ﬁx[l,op( 0}) (@ 9)t),

USp(Ne) 324
3.24

and the HWGs are given by:

U(N¢)QUSp(N. SU(N * U(N¢)QUSp(N.
gotNaSUSHN (f 4y = 74 dpSUN () g3V (g7 f) gUNDSUSPING (g, 4

SU(Ny)
(3.25)
Evaluation shows that the HWGs of these theories are are all freely gen-

erated and can be stated concisely in terms of their PLs, as set out in Table

B.I4
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PLIAWG] PLIAWG]

Theory SU(N¢) @ U(1) fugacities U(Ny) fugacities
U(2) @ USp(2) t? mo
U(=3) ® USp(2) E my
U(2) ® USp(4) t2 ma
U(3) ® USp(4) t2f my
U(4) @ USp(4) 2 fy + t ma + my
U(=5)®USp(4) tfa+t'fy ma +my

Table 3.14.: PLs of HWGs of U(Ny) ® USp(N.) GIOs

Thus, for example, the PL t2 fo4t* in Tableindicates that the highest
weight generators of the GIOs of an SU(4) @ U(1) ® USp(4) SQCD theory
consists of an antisymmetric contraction of two quarks transforming in the
[0, 1, 0] irrep of the SU(4) flavour group and an antisymmetric contraction
of 4 quarks transforming as a [0, 0, 0] flavour singlet.

As before, the HWGs of this SQCD theory are the same for all flavour
groups of fundamental dimension exceeding the vector dimension of the
USp(N,) colour group. This permits us to extrapolate Table and to
generalise the HWGs for GIOs of U(Ny) ® USp(N.) to arbitrary flavours
and colours. This is done most concisely by using the map to convert
to U(Ny) fugacities m:

win(| 2] %)

PLIHWG] = Y my (3.26)

Naturally, for Ny = N, the GIOs correspond exactly to the antisymmetric
invariants of USp(N,) as shown in Table

Unrefined Hilbert series for some U(Ny) ® USp(N,.) product groups are
set out in Table These HS are freely generated for Nf < Nc+ 1,
complete intersections for Ny = N, + 2 and non-complete intersections for
Ny > N.+2. In all cases the numerators are palindromic. As can be verified
by inspection of Table the dimensions of these unrefined HS are given,
for Ny < N¢, by Ny(Ny+1)/2, and, for Ny > N., by NyN.— N.(N.+1)/2,
which is the number of bifundamental fields less the number of gauge group

generators [7].
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Theory Unrefined Hilbert Series [HS|
U(2) © USp(2) :
U3) @ USp(2) (171@3 5
U4) @USp(2) o 5
U(5) @ USp(2) 1413_75:;;;4 .
U(6) @ USp(2) % 9
U2 & USp(d) = :
U(3) ® USp(4) - .
() & USp(d) = ,
UB)®USp(4) ﬁ 10
U(6)® USp(4) = -
U(7) @ USp(4) 1+3t2&‘§1;-)i-1?§t6+t8 13
U(8) @ USp(4) 1+6t2+21t4+?8_tf;)r2221t8+6t10+t12 -

(e T )
U(9) @ USp(4) o 06
("t o 3 00 150 4 0 )
U(10) ® USp(4) — 20

Table 3.15.:
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3.2.4. GIOs of U(Ny) ® G

Finally, it is interesting to examine the SQCD moduli space when the colour
group is taken as an exceptional group, of which G2 is the lowest rank
example. We use the charge assignments in Table [3.16] For convenience,
the U(Ny) flavour groups are decomposed as SU(Ny) ® U(1).

Gauge/Colour |  Flavour
Groups G2 SU(Ny) U(1)
QY [0, 1] [1,0,...,0] 1
CSA Fugacity Y x q
HW Fugacity f t

Table 3.16.: SQCD Charge Assignments: U(Ny) ® Go

The bifundamental scalar fields are quarks Q¢ where the indices i and a
range over the fundamental representation of the flavour group and defin-
ing representation [0, 1] of the G5 colour group, respectively. The GIOs are
colour singlets composed of quarks, with some combination of flavour in-
dices determining the irrep in which they transform. The U(1) charges are
absorbed into a single counting fugacity ¢ — t.

The refined HS are given by:

U(N)®G SU(N
gHES’:é)IO (a,t) = j{ducz (y) PE [X[l,os.ﬁ X[GO,QH (@)t (3.27)
G2

and the HWGs are given by:

Giwearo (1) = ]{ dpSUOD () g3V (2 ) gpsdine (. t)
SU(Ny) .
3.28

The PLs of the HWGs for U(Nf) ® G2 SQCD are set out in Table
where notation is shown for both SU(Ny) ® U(1) and the corresponding
U(Ny) highest weight fugacities under the map |3.19

We can identify the G symmetric invariant tensor m2 of order 2 and
the antisymmetric invariant tensors ms and my of order 3 and 4, along with
other invariant tensors of mixed symmetry. The HWGs for U(2) and U(3)
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PLHWG] PLHWG]

Theory SU(Ny) ® U(1) fugacities U(Ny) fugacities
U(2) ® G A2+t m1® + mo?
U(3) ® Ga 122 4+ fo2t 15 4 43 m1? + ma? + ms? 4+ m3
122 4 fo2t* + f3%t5 + 48 mi? + ma? +ms? + my?
U) &G +f3t3 +tt + fit? +ma + my + mimy
| Hfifot™ + fofst? + 22| +mamama + mamama + mo?my?
—f12f22t14 _ f22f32t18 _m12m22m42 o m22m32m42
U(5) ® Go to be calculated to be calculated

Table 3.17.: PLs of HWGs of U(Ny) ® Ga GIOs

are freely generated. As the flavour group is increased in rank it probes
further into the antisymmetric tensors of G3. Relations exist between the
invariant tensors and these manifest themselves in the negative terms in
PLHWG] for U(4), which represents a complete intersection moduli space.

Recalling from section[3.2]that the Go defining representation has a wholly
antisymmetric invariant tensor (volume form) of order 7, these HWGs should
converge for flavour groups U(7) and above, yielding a full enumeration of
the invariant tensors of the defining representation of GGo. However, due to
the complicated structure of the invariants of Go, the contour integrations
for U(5) and above have so far not proved computationally feasible. Thus,
in the case of a U(5) flavour group, the refined Hilbert series can be obtained
in the form of a SU(5) ® U(1) class function, as in but it has so far
not proved feasible to transform this to an HWG.

(1+t° =t —¢2)0,0,0,0]
+t* (1+¢° +¢19) 0,0,0,1]
U(5)aG
giseio (FUO) = (1-19) #0010 |
—t710,1,0,0] ‘
—t5 (14 t° +¢19) [1,0,0,0]

x PE [[2,0,0,0]¢*] PE[[0,0,1,0]¢*].

It is likely that the HWGs for U(5) and above will prove not to be complete
intersections.
The unrefined Hilbert series for U(Nf) ® Ga SQCD are set out in Table

3.18, The HS for U(5) and above are not complete intersections, but are
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Theory Unrefined HS
I
e e UG
1482438346t +-3t5 47t +-8t 7+ 7t8 +-3t9 46610 43¢ 11 4412 414
U(5) ® Ga ( (1—t2)14(1—t3)7 )
Table 3.18.: Unrefined HS of U(Ny) ® G2 GIOs
palindromic.

3.2.5. Geometric Properties of HWGs and HS of SQCD

The HWGs of SQCD explicate the structure of GIOs. In the case of Classical
SQCD, the HWGs are freely generated, reflecting the limited set of invariant
tensors of defining representations of Classical groups. This in turn makes
it possible to extrapolate these HWGs to arbitrary numbers of colours and
flavours, thus providing a full enumeration of the GIOs of any Classical
SQCD theory described by the quiver in Figure [3.1} This includes theories
with groups of high rank for which a direct calculation might not be feasible.
The results in [3.20} [3.23 and [3.26| correspond to observations within [I3], [14],
but are restated concisely in the language of HWGs.

The Hilbert series of the GIOs of SQCD theories with Exceptional gauge

groups are considerably more complicated than those of Classical gauge

groups. It has not yet proved possible, for example, to evaluate the HWGs
for U(Ny¢) ® G2 for 5 or more flavours, as discussed in section

HWGs differ from unrefined HS for all but the simplest theories. The
description of SQCD moduli spaces in terms of unrefined HS only encodes
dimensional information about flavour group representations and this can
facilitate the identification of dualities between theories, as discussed in sec-
tion However, this simplification also leads to HS which are typically
complete intersections only for small Ny.

The dimensions of HWGs for GIOs for SQCD, which follow from
and are lower than those of the corresponding unrefined HS, as
summarised in Table The lower dimension of the HWGs, compared
with the HS, results from the projection of a moduli space on to the rep-

resentation lattice of U(N), which is higher dimensioned than the simple

70



U(1) lattice used by an unrefined HS. We can give a systematic account of
the difference by expanding a given HWG and analysing the structure of its
irreps. For example, the expansion for U(4)r,/r ® SU(3.) in Table 3.7| takes

the form:

PE [lgt:f + 7’375% 4+ liritite + lQ’er%t%] =

s 3.30
Z [nh na, ns] [7117 na, n4]t?1+2n2+3n3 t§1+2”2+3"4, ( )

ni,n2,n3,nag=0

The Dynkin labels in this HWG expansion require four different param-
eters {ni,na,n3,n4}, corresponding to the four generators within the PE
function. The parameters identify the sub-lattice of the flavour group weight
lattice that is spanned by the irreps of the HWG. The dimensions of the
flavour group irreps in the HWG are a polynomial function of the parameters
and the degree of this polynomial indicates the dimension of the sub-lattice.

Now define HWG Irrep Degree as the total degree of the minimal poly-
nomial that gives the dimensions of all the irreps generated by the HWG
[19]. For example, the dimension formula for SU(4) or U(4) irreps E| is:

dimfr, ma, ng) = - (m1-+1) (02 1) (1) (-4 2) (s b 2) (b £3).
(3.31)

The degree of this polynomial is six. Thus the HWG Irrep Degree for
U4)r/r ® SU(5.) is 12, being the sum of the degrees for the L and R
SU(4) flavour groups, and this matches the dimension Ny(Ny—1) = 12 for
Ny < N in Table

As can be seen from Table [3.19] the monomials of HWGs for SQCD
GIOs only span flavour group Dynkin label lattices up to my, at most,
and, in the case of USp gauge groups, only contain even Dynkin labels. In
such HWGs, where some Dynkin labels are fixed at zero, the HWG Irrep
Degree is reduced. In the case of U(4)r,p ® SU(2.), for example, we find
dim[n1, ng, 0] is of degree 5 and so the HWG Irrep Degree is 10; this matches
2NfN. — No(N; + 1) = 10 for Ny > N, in Table

Case by case analysis shows that the HWG Irrep Degree, as defined,

2Recall that the dimensions of U(N) irreps match those of SU(N) irreps with the same
leading Dynkin labels [n1,...,ny_1].
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matches the difference between the dimensions of the HWGs and the unre-
fined HS in Table [28]. We can carry out a reconciliation in a similar
manner for SU(Ny) ® G2 SQCD as summarised in Table

HWG
I HWG| HWG Irrep [HS|
Theory (a) Irrep Degree (a) + (b)
(v

SU(2) ® G 2 [n] 1 3
SU(3) ® G 4 [nl, 77,2] 3 7
SU(4) ® G 8 [n1,n2,n3) 6 14
SU((5) @ G t.b.c. [nl,nz,ng,n4] 10 21

Table 3.20.: Dimensions of Moduli Spaces of SU(Ny) ® Go GIOs

All the HS, and also all the HWGs for GIOs of Classical SQCD are palin-
dromic and therefore Calabi-Yau; the same is true of the Exceptional group
HWGs calculated. This palindromic property of many generating functions
for Hilbert series is shared with the character generating functions discussed
in section 2.2] that are used to derive the HWGs and Hilbert series.

An important demonstration from the HWG analysis is that the (coeffi-
cients of the) unrefined Hilbert series of SQCD are reducible to characters
of flavour group representations. This group theoretic reducibility arises
because (anti-)symmetrisation of characters using the PE (or PEF) gener-
ates class functions, which can in turn always be decomposed into series of
characters with polynomial coefficients. These reduced series correspond to
HWGs, which precisely encode the structure of the symmetry group repre-

sentations underlying a Hilbert series.

3.3. SU(N)-Instanton Moduli Spaces

The aim here is to construct the moduli spaces of some low rank SU(N)
instantons on C? and to show how HWGs can be used to study their struc-
tures. Each instanton moduli space is identified with the Higgs branch of a
quiver theory [§].

As elaborated in [4], [16] these Higgs branch quiver theories can be built
on systems of Dp branes against a background of Dp + 4 branes in type I1

string theories. Taking p = 3, yields a 3+ 1 dimensional space-time spanned
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by D3 branes, with N’ = 2 SUSY. The instantons can be assigned positions
on the transverse directions on the D7 branes, parameterised using C2.

The fields in the quiver theory transform in some representation of a
product group defined by (i) the quiver gauge group, determined by the
number of instantons, (ii) the Yang-Mills (or flavour) symmetry group and
(iii) an SU(2) global symmetry group. The instanton moduli spaces contain
field combinations that are singlets of the quiver gauge group.

Following [16], N' = 2 SUSY quiver theories for the moduli spaces of k
SU(N) instantons on C? can be described using explicit N' = 1 notation
by “flower shaped” quiver diagrams, as in Figure 3.2 with their basic field
content as specified in more detail in Table

u(k)
21

Figure 3.2.: Quiver diagram for the Moduli Space of k SU(N)-Instantons
using A/ = 1 notation. The square node denotes the SU(N)
Yang-Mills symmetry group. The round node denotes the U (k)
instanton quiver gauge group. The links Xjo and Xs; cor-
respond to bifundamental fields transforming under both the
Yang Mills and quiver gauge groups. The fields ¢* transform
in the adjoint of the quiver gauge group and in a global SU(2)
symmetry. The field ® transforms in the adjoint of the quiver

gauge group.

It is helpful to decompose the quiver gauge group U(k) — SU(k)@U(1) ,
by extracting an overall U(1) charge. Then the X9 and X9 bi-fundamental
fields transform in conjugate representations with respect to both the quiver
gauge and Yang-Mills symmetry groups and also carry conjugate U(1)
charges. The fields {®, (¥} transform in the U(k) adjoint, which decom-
poses as an SU(k) adjoint plus a singlet. The fugacity ¢, corresponding to
a global U(1) R-symmetry, is used to count the fields.
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Quiver Yang-Mills Global
Gauge Group o Uk) Group Symmetry R-Charge

Field SU(k) U(1) SU(N) SU(2g) U)gr

) [1,0,...,0,1]+1 (0) 0,...,0] [0] 0
@ | [1,0,...,0,1]+1  (0) [0,...,0] [1] (1)
X1 10,00 (1) | [0,...,0,1] 0] (1)
X0 [0, .. ,07 1] (—1) [1,0...,0] [0] (1)
CSA
Elg wiy, y Wk—1 q Z1y---5,TN-1 Y
HW
Fug. mi,...,MN_1 mg

Table 3.21.: Field Content of Quiver Theory for k SU(N) Instantons on C?

The theory is defined not only by its basic fields, but also by its superpo-
tential [16]:

W="Tr <X21¢’X12 + 5a5¢(a

)cp¢(5)> )

The trace is taken over all unpaired symmetry group indices.

(3.32)

We apply
variational principles, requiring that the superpotential at the SUSY vac-

O _ (). This leads

uum should be extremised with respect to the field ®, FF

to the F-term constraints:

(Xia),d (Xa1)," = 2o (6) “(69) 7,

a

(3.33)

where quiver gauge indices are denoted by (a,b, . .

by (i,7,...)
For a quiver gauge group U (k

.) and Yang-Mills indices

), leads to k? constraints. For k = 1,
the commutator of the ¢(® fields vanishes and the single F-term constraint
is that there should be no SU(N
k > 1, the commutator does not vanish, and the F-term constraints impose
an identity between the SU(N
the SU(24) singlets formed by contracting pairs of #(@ fields; these pairs of

) singlets formed from pairs of X fields. For
) singlets formed from pairs of X fields, and
fields both transform in the adjoint of the quiver gauge group.

Tracing over to obtain singlets (relative to all groups) and applying
the cyclic property of the trace to the ¢(®) yields the F-term constraint:
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(X12),’ (X21);" = €ap (qb(a)): (¢(’8))Ca =0, (3.34)

which excludes all singlets formed from pairs of X fields, or from pairs of ¢
fields, from the moduli space.

In order to find the GIOs (quiver gauge singlets) of the theory, we continue
by identifying the field representations with their characters, which follow

from B.21¢

x(®)=[1,0...,0,sy@ +1
X(6) =11,0...,0, sy Lsve,) + [Usve,) (3.35)
x(X12) =[1,0...,0,0ls01)[0,0..., sy g
X(X21) =[0,0...,0, 500 [1,0. .., 0lsuv) ¢

Symmetrised combinations of the fields {qﬁ(a),Xlg,Xgl}, which are also
singlets of the U(k) gauge group, can be generated from the characters
by applying the PE, followed by Weyl integration over the gauge group,
as in case of SQCD. However, these GIOs must also be subjected to the
F-term constraints and this is done by incorporating a HyperKahler
quotient (“HKQ”) to exclude the disallowed combinations and to avoid over-
counting. The elements of the character x(®), which are equal in number
to the F-term constraints, are symmetrised at order ¢> within the HKQ and
cancel the field pairings identified by [3.33]or The refined Hilbert series

is thus given by the formula:

k,SU(N) SU(k)d,uU(l) PE [(X(Qb(a)) + X(X12) + X(X21)) t]

s = (zy,t) = L%i dp

PE [y (®)t?
SU(k)®U(1) [X( ) ]

—_——
HyperKéhler quotient

(3.36)

™) onto the irreps of the

The HWG can be calculated by projecting gz’gU
SU(N) Yang-Mills symmetry and the global SU(2) symmetry groups:
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’S *
5N (g 1) = 74 dpSUM) () AU () gSUN) (o )

SU(N)®SU(24)

SU(2 « k,SU(N
X gx (”(y,nw)gH ™ (2, y,1).

(3.37)
The refined Hilbert series gng(N) (z,y,t) can also be summarised in un-
refined form as gng(N)(l, 1,t), by replacing the characters of the SU(N)
and SU(2,) symmetry groups by their dimensions.

Instanton moduli spaces invariably contain a component generated by the
fundamental of the global SU(2) symmetry. This component represents the
position of the instanton on the R* = C? manifold. For multiple instanton
theories & > 1, this corresponds to the centre of mass. Instanton moduli
spaces can be presented in reduced form by taking a quotient of the full
moduli space by this SU(2) symmetry. This can lead to simplifications in
the HWGs for the moduli spaces, as will be shown.

The results of such calculations are set out below for one SU(3) instanton

on C? and also for two and three SU(2) instantons on C2.

3.3.1. Moduli Space of One SU(3) Instanton

Noting that, for one instanton, the adjoint of U(k) becomes the adjoint of
U(1), and evaluating we obtain the refined Hilbert series:

a7 P @,y t) = (1= 2)2((1+ 262 + 26 + 268 + 15)[0,0] — £4]1, 1))

x PE [[1,1]t*] PE[[1]4].

(3.38)
For brevity, this plethystic class function has been written using character
notation [n1,ng](z) and [n](y) for the irreps of the SU(3) Yang-Mills and

SU(24) symmetry groups, respectively.
To obtain an HWG, we insert generating functions for the characters
of SU(2) and SU(3), taken from Table using Dynkin label fugacities
{m1,ma} for the Yang-Mills symmetry and mg for the global symmetry,
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into [B.37 and evaluate:

G539 (g mg,my, t) = 74 dpSU® (2)dpSU ) (y) (1 — myms)
SU(3) SU(2)
x PE[[1,0](a*)my + [0, 1] (2" )mo]

x PE[[1)(y")my] gije’  (z,y,1)

1
(1 — mimat?)(1 — mgt)

(3.39)
We can identify the combinations of the fields within the HWG as
shown in Table [3.22]

SU(3);SU(24) | HWG Terms Basic Field Combinations
[1,1;0] mimat? SU(3) adjoint from X2 and Xo;
0,05 1] mgt SU(2,) fundamental from ¢(®)

Table 3.22.: Generators of HWG for One SU(3) Instanton Moduli Space

The Dynkin label fugacities mimse always appear paired and so this is
an example of the general result [16] that, for one SU(N) instanton, the
resulting tensor products between particles and antiparticles always trans-
form in a real representation that is a symmetrisation [n,0,...,0,n| of the
SU(N) adjoint representation. We can also see that no t? singlets appear,
as intended by the HyperKahler quotient.

The physical interpretation of the HWG is that the term m,t enumerates
the representations of the global SU(2) symmetry that describe the position
of the instanton on C2. For k = 1 the HWG decouples, with the mimat?
term enumerating the holomorphic operators in the reduced single instanton
moduli space (“RSIMS”), given by the one dimensional HWG:

g}i%]é‘g)’md. (mlv ma, t) = PE[mlmQtQ]' (3.40)

We can unrefine the series given by the HWG by Taylor expansion

and replacement of the monomials in the HW fugacities {m1, ma} by the
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dimensions of the corresponding irreducible representations:

1
m1"me"?my" — dim[ni, no] dim[n| = §(n1+1)(n2+1)(n1 +n9+2) (n+1).

(3.41)
The resulting unrefined Hilbert series matches that given in [16]:
1,503 14482 + 4
gris () = (3.42)

(L—)°(1—e2)"

3.3.2. Moduli Space of Two SU(2) Instantons

The analysis for multiple instantons is complicated by the gauge group
symmetry. For k = 2, the characters combine the three separate non-
Abelian product groups; quiver gauge U(2), Yang-Mills SU(2) and the
global SU(2,), in addition to the U(1) charges.

Proceeding as before and evaluating |3.36 we obtain the refined Hilbert

(1 42 tlﬁ) [0; 0]
2,5U(2) o +t3 (1 — ¢19) [0; 1]
gis (v =(1-1) 16 (1 — 4 [2;0]
—t5 (1 —19) [2;1]

x PE [[0; 1]t + [2; 0]* + [0; 2]¢* + [2; 1]¢* — [0; 1]¢%] .

(3.43)
This has been written as a plethystic class function using condensed charac-
ter notation [n1; n|(z, y) = [n1](z)[nle(y) for the irreps of the SU(2)@SU (2,)
product group.
Applying by inserting the character generating functions for gf ve (z*,my)
and giU@) (y*,mg), which use the HW fugacities m; and mg to track the
Yang-Mills SU(2) and SU(2,) irreps, gives the HWG:

Gine (ma, mg, ) = f{ a5V (2)dySU ) ()
SU(2)®SU(2,)
« PE[[1)(z)m] PE[1)w)m,] o2 (x,5,1)
(3.44)

Carrying out the contour integrations, this evaluates as:
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P(my,mg,t)
(1 —mgt) (1 —my?t2) (1 —m2t?) (1 — mgm42t3) (1 — t4)2(1 — 77112154)7

2,5U(2
gHWC(J ) (m1,mg,t) =

(3.45)

where

P(mi,mg,t) =1+ mgt3 + mgm12t5 +mq 2t — m92m12t6 - mgm12t7 - mgm14t9 - mg2m14t12.
(3.46)

Table identifies the combinations of the fields giving rise to the HWG

denominator terms. The exponents of the fugacities {mi,mg,} are the

SU(2);SU(2,) | HWG Terms Basic Field Combinations
[0;0] tt Singlets
[0; 1] mgt SU(2,) fundamental from ¢(*)
[0;2] m2t? SU(2,) adjoint from ¢(®)
[2; 0] my 2t2 SU(2) adjoint from X1 and Xo;
[2, 0] m12t4

SU(2,) fundamental ® SU(2) adjoint

[2; 1] mglets ( g)fI‘OIIl ¢(a), X12 and )((2)1 :

Table 3.23.: Generators of HWG for Two SU(2) Instanton Moduli Space

Dynkin labels that identify the generators of the moduli space according to
the irreps in which they transform. While the SU(2,) generators transform
in both the fundamental and adjoint, the Yang-Mills SU(2) generators are
limited to the adjoint. The generator mgm12t3 gives rise to mixing between
the global and Yang-Mills symmetries.

Interestingly, the polynomial P(mi,mg,t) is anti-palindromic of degree
(4,2,12) in the variables {m, mg,t}. The numerator P(my,mg,t) also con-
tains the monomial term mgt?’7 which is not just a product of the generators.

Some of these generators can be recognised from the refined HS in [3.43]
however, the HWG gives a complete account of the resulting representation
content.

We can easily verify that the HyperKahler quotient has had the desired
effect of excluding Yang-Mills singlets formed from pairs of fields. Thus, if
we specialise the HWG to Yang-Mills singlets, by setting m; to zero,

we obtain:

14 mgyt?
(1—t4)*(1 - mgt)(1 — mg?t?)

2,5U(2
gHWC(J )(O7mg7t) =

(3.47)
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This series does not contain any t?> monomials, confirming that all simple
pairs of fields that are Yang-Mills singlets have been excluded from the
generators. The only singlets are at orders of t4, showing that they only
contain even numbers of pairs of X or ¢ fields [28].

Returning to the HWG given by and we can see that the global
SU(2,) symmetry only appears amongst the generators as m, or m42. This
appears to be part of a more general pattern, where the global symmetry
appears amongst the HWG generating monomials at orders up to mgk,
where k is the instanton number and equals the maximum degree of the
Casimirs of the U(k) quiver gauge group [19].

As for the case of k = 1, we can simplify the moduli space by factoring out
the tensor products that result from PEJ[0; 1]¢]. Physically, the fundamental
of SU(24) corresponds to the centre of mass of a system of instantons, and
so working with such a reduced moduli space corresponds to an analysis in
the instanton rest frame. If we reduce the HS by taking a quotient by
this centre of mass term, the HWG evaluates to the reduced two SU(2)

instanton moduli spacef’]

2,5U(2),red. 1+ mgm12t5

t) = .

awe (MM D) = e T 22) (1 = mym 28) (1 = )
(3.48)
Unlike the HWG for the full moduli space, the reduced HWG

constitutes a complete intersection. The reduced HWG has dimension 4
2 245
t

and includes the monomial terms mgm; t3 and mgmy that mix up the
SU(2) and SU(24) symmetries. Such coupling between global SU(2,) and
Yang-Mills symmetries appears to be an inherent feature of instanton moduli

spaces for k > 1.

3.3.3. Moduli Space of Three SU(2) Instantons

The case k = 3 gives rise to a U(3) quiver gauge symmetry, and the
field characters combine three separate non-Abelian product groups: quiver
gauge SU(3), Yang-Mills SU(2) and the global SU(2,), in addition to the
local and global U(1) symmetries. Application of thus gives rise to a

3This result is equivalent to a character expansion presented in [19], but uses the more
concise HWG notation.
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complicated collection of fields to be symmetrised.
In this case, it is more convenient to work with the Hilbert series for the

reduced 3 instanton moduli space.

,SU(2),red. _ SU
gi]S (2) ($, yv t) == PE [_ [07 1] t] g?{S (2) (l’, y7 t)' (349)

The plethystic class function for the refined Hilbert series gzng)’md' is

nonetheless extremely unwieldy, so is not shown here. The HWG of the

reduced HS follows from [3.37 as:

G g = @) ) PE([1) )]
SU(2)®8U(24)

x PE[[1](y)mg] gba D" (,y,t)

(3.50)

Evaluation yields:

3,5U(2),red. P(my,mg,t)
my, Mg, t) = — 292 3.51
Inwa (m1, mg, t) Qlm1,my, 1) (3.51)

where the denominator is given by:

Q. mgt) =(1— ) (1—#9) (1 - #)
X (1 — m92t2) (1 — mgt3) (1 — m93t3)
X (1 — m12t2) (1 — m12t4) (1 — m16t10)

X (1 — mgm12t3) (1 — m92m12t4) ,

(3.52)

and the numerator P(mq,mgy,t) consists of 1 followed by 248 monomial
terms, being palindromic of degree (12,7,43) in the variables (my, mg, t)E|

Table [3.24] identifies the combinations of the fields in the denominator
Q(m1, mg,t) that are the generators of the HWG. While the generators in-
clude field combinations in the SU(2,) fundamental, the only Yang-Mills
SU(2) irreps that occur are the adjoint and its symmetrisations. The gen-
erators do not include singlets comprised of pairs of fields, so we can verify
that the F-term constraints have been implemented as intended by the Hy-
per Kahler quotient.

4See [28] for details.
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SU(2); SU(24) | HWG Terms Basic Field Combinations
[0; 0] 4,16, ¢8 Singlets
[0;1] mgt®
[0; 2] mg2t? SU(2,) irreps from ¢(®)
[0; 3] mg3t3
[2; 1] mi’mgt? SU(2) adjoint and SU(2,) irreps
[2; 2] m12m92t4 from (@), X195 and X
2; 0] my2t? SU(2) adjoint from X153 and Xo
[2; O] TfL12t4
[6; 0] m1%¢10 SU(2) symmetrised adjoint from X759 and Xoq

Table 3.24.: Generators of HWG for Three SU(2) Instanton Reduced MS

As before, we can also simplify the HWG into an unrefined version by
either (a) setting the Yang-Mills gauge and global SU(2) CSA coordinates
in to unity or (b) replacing monomial terms in the my and m; Dynkin
label fugacities in a Taylor expansion of by the corresponding irrep

dimensions using the mapping:
mg"mi"™ — dim[n] dim[nq] = (n + 1)(n1 + 1). (3.53)

We obtain the palindromic Hilbert seriesf]

54t 4+ 60t'° 4 ... palindrome. .. + t?°

( 1+ 32 + 613 + 124 + 1665 + 3115 + 3617 + 55¢5+ )
t) =
" (1= ) (1 — )3 (1 — 3"

3,5U(2),red.
9us

(3.54)

It is clear from the significant increase in complexity between the moduli

spaces of two and three SU(2)-instanton theories that the mixing between

the Yang-Mills and global SU(2,) irreps becomes highly non-trivial for k& >>

1. This mixing results from the coupling between the fundamental of the

global SU(2,) and the adjoint of the U(k) quiver gauge group, introduced
by the quiver diagram.

5This is consistent with the series obtained by using instanton counting methods set out
in [67].
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3.3.4. Geometric Properties of HWGs and HS of Instantons

As illustrated by the examples above, the representation structures and
HWGs of instanton moduli spaces are generally considerably more com-
plicated than those of SQCD. This arises due to the number of different
symmetry groups involved and because they involve symmetrisations of the
higher dimensioned adjoint representation of the quiver gauge group, in
addition to those of basic irreps. This leads to many relations within the
Hilbert series and so, while the generating functions for the HWGs and HS
of instanton moduli spaces remain palindromic, only some of these moduli
spaces are freely generated. The examples illustrate that while the HWGs
for single instanton theories are freely generated [16], this is not the case for
k > 1 instanton theories.

As in the case of SQCD, it is possible to decompose the dimensions of
instanton moduli spaces into the dimensions of their HWGs and the degrees
of the dimensional polynomials of the HWG irreps. This can be seen from

Table

HWG
HWG HWG Irrep HS
Theory | (a) | Irrep Degree (a‘) + ‘(b)
(b)

One SU(2)-Instanton 2 [2n1,n] 2 4
Two SU (2)-Instantons 6 [2n1;n] 2 8
Three SU(2)-Instantons 10 [2n1;n] 2 12
One SU(3)-Instanton 2 [n1,n1;n] 4 6

Table 3.25.: Dimensions of Moduli Spaces of Selected Instanton Theories

The instanton moduli spaces calculated in Table all include a contri-
bution from global SU(2) symmetries. If this contribution is excluded, we
obtain reduced instanton moduli spaces, as discussed earlier.

As discussed in [I6], when G is a simple Lie group, the Hilbert series for
the reduced moduli spaces of one G-instanton (“RSIMS”) take the form:

o0

g (@, t) = (k] () 2, (3.55)
k=0

where k6 is some multiple of the Dynkin labels 6 of the adjoint representa-
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tion of G. This expression is equivalent to the HWG:

gHVS" (m,t) = PE [m"¢] (3.56)

which is one dimensional. For example, the HWG of the RSIMS for SU(3)
is just mimat?.

This leads to an elegant decomposition of the dimensions of RSIMS for
simple Classical and Exceptional Lie groups into one dimensional HWGs
and the degrees of their dimensional polynomials. These are calculated in
the same manner as previously and are set out in Table All the reduced
one instanton moduli spaces have a HS (complex) dimension equal to twice
the sum of the dual Coxeter labels of G [16]. This important observation
holds the key to the Coulomb branch constructions that will be discussed
for RSIMS and other nilpotent orbits in Chapter [6]

HWG
Series Adjoint HWG [HWG]| Irrep [HS|
Degree
(a) (0) (a) + (b)
A; 1 [2] m*t? 1 1 2
Ay Ag i [1,1] mymat? 1 3 4
As3:[1,0,...,1] mympyt? 1 2n —1 2n
By :[2] m*t? 1 1 2
B, By :[0,2] ma?t? 1 3 4
B>3:100,1,...,0] mot? 1 4n —5 4n —4
Ch: 2] m*t? 1 1 2
o Cy 1 [2,0] mq2t? 1 3 4
C>3:[2,0,...,0] my2t? 1 2n —1 2n
D D5 :[0,1,1] mamst? 1 5 6
" D>4:[0,1,...,0] mot? 1 dn — 7 4n—6
Es [0,0,0,0,0,1] met? 1 21 22
E; [1,0,0,0,0,0,0] mit? 1 33 34
Fg [0,0,0,0,0,0,1,0] myt? 1 57 58
f4 [1,0,0,0] myt? 1 15 16
G [1,0] mqt? 1 5 6

Table 3.26.: Dimensions of RSIMS of Simple Lie Groups

We now turn to the subject of the nilpotent orbits of a Classical or Ex-

ceptional group, of which the RSIMS is the simplest non-trivial example.
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4. Introduction to Nilpotent
Orbits

4.1. Nilpotent Matrices, Nilpositive Elements and
Nilpotent Orbits

The subject of nilpotent orbits can be approached in a variety of ways. Tra-
ditional approaches involve the analysis of the matrices and/or generators
of the Lie algebra g of some Lie group GG. From the perspective of this
study, the closure of a nilpotent orbit can be considered as a moduli space
described by class functions on the representation lattice of G. So, as a
necessary preliminary to motivating the use of SUSY quiver theories and
their moduli spaces in this context, it is useful to review the relationships
between a group G, the nilpotent matrices or generators X of its Lie algebra
g, and the nilpotent orbits Ox to which they give rise.

A nilpotent matrix X over some field (taken as C) is one that vanishes
at some power X* = 0 for k > d, where d is defined as the nilpotent degree
of the matrix. By similarity transformation, all the eigenvalues of X are
zero and all its invariants vanish: det[X] = 0,...,tr[X] = 0. Examples
of nilpotent matrices include strictly upper (or lower) triangular matrices.
Thus, a nilpositive raising operator X of a Lie algebra { H;, EX, E, }, defined
as X = Y uaES, for some coefficients u,, acts as a nilpotent matrix on
the VeCtO? space of representationsE] Importantly, matrices obtained by
applying a similarity transformation to X retain zero eigenvalues and remain
nilpotent. This leads naturally to the concept of a nilpotent orbit defined

as an equivalence class [33]:

Ox ={M:M=AXA""! for AcG}. (4.1)

1See section for Lie algebra notational conventions.
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The simple restriction that a matrix should be nilpotent can be combined
with further restrictions, with respect to nilpotent degree, matrix rank, etc.,
to define a poset (partially ordered set) of equivalence classes of nilpotent
matrices. This poset can be graphed to give a distinct Hasse diagram for
each Lie group. A similar Hasse diagram can be drawn based on the moduli
space inclusion relations between nilpotent orbits.

The boundary of all the nilpotent orbits associated with these equivalence
classes is known as the closure of the maximal nilpotent orbit or nilpotent
cone N. Similarly, each equivalence class gives rise to the closure of a
nilpotent orbit. By a common abuse of terminology, the closures of nilpo-
tent orbits are often referred to simply as nilpotent orbits, and this is the
convention generally adopted in this study.

If we consider the simple condition that a Lie algebra matrix generator
X should be nilpotent, it follows, from the vanishing eigenvalues of X, that
the Casimir operators [62] formed from the traces of symmetrised products
of X should vanish:

Vd : d € {Degrees of Symmetric Casimirs of G} — tr [Xd} =0, (4.2

and this vanishing of Casimir operators generalises to non-matrix groups.
The degrees {d} of symmetric Casimir invariants, which are equal in
number to the rank of G, are shown in Table Viewed as a moduli
space, the nilpotent cone N is therefore the quotient of the moduli space of
Lie algebra generators of G (the PE of the adjoint representation) divided
by the moduli space of Casimir invariants. The resulting Hilbert series takes

the form:
GN PE [X[Cj‘dﬂ t}
s =TI PER
deCasimirs[G]
- II  (-)PE |Gy
deCasimirs|G]|

= mHL[GO,__vO] ()

This exactly matches the definition of the modified Hall Littlewood function

mH L[GO .0 n So, the Hilbert series of the (closure of the) maximal
G

nilpotent orbit is equal to mH L[singlet] and has the dimension:
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V| = |g| — rank[g]. (4.4)

This compares with the dimension |Ox| < |AN/| of the nilpotent orbit
associated with general X, which is given by [33]:

0x| =g — |g], (4.5)

where g~ is the centraliser of X in g, definedas g¥ = {c:c € g & [X,¢] =0}.
Thus |g*| > rank[g].
To give examples, first consider SU(2), which has one non-trivial nilpo-

tent orbit. SU(2) has a three dimensional Lie algebra matrix generator

given by M = ( et iy *~" ). Imposing the nilpotence condition M? = 0
entails 22 4+ y? + 22 = 0, so a general nilpotent matrix from the com-

plexified Lie algebra of SU(2) has two free complex parameters. Turn-

ing to the adjoint representation, the corresponding matrix generator is

0 z -
M =i ( oo ) In both cases, the single SU(2) Casimir invariant is

y —x 0

of degree two, tr[M.M] = 2(z2 +12+ 22), and vanishes under the nilpotence
condition, as expected from From a Lie algebra perspective, the SU(2)
raising operator Efr has itself as a single centraliser, so, in accordance with
[4.5] the dimension of the nilpotent orbit is two.

Or, consider SU(3), which has two non-trivial nilpotent orbits. The nilpo-
tence condition M? = 0 places 4 conditions on the 8 dimensional Lie algebra
and yields a matrix generator with four free complex parameters. From a
Lie algebra perspective, the SU(3) raising operator X = E1+2, has the cen-
traliser g¥ = {E], EJ, Ef;, H — Hs}, so, by the dimension of this
nilpotent orbit is four.

Alternatively, the weaker nilpotence condition M? = 0 places 2 conditions
on the Lie algebra of SU(3) and yields a matrix with siz free parameters.
Taking the SU(3) raising operator as X = E{" + Ej, this has the centraliser
o = {E] + ES, Ef,}, so, by the dimension of this nilpotent orbit is
siz. SU(3) has |g| = 8 and two Casimir invariants, so this is the maximal
nilpotent orbit.

These examples illustrate the correspondence between the degrees of free-
dom of nilpotent matrices and the dimensions of orbits described by equiv-

alence classes of nilpotent Lie algebra elements or their moduli spaces.
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While the general relationship between nilpositive elements and moduli
spaces requires a more thorough account, the principle of analysing the
closures of nilpotent orbits in terms of the moduli spaces of representations
extends in a natural way from Classical groups through Exceptional groups,

as will be shown.

4.2. SU(2) Homomorphisms and Standard Triples

As a further preliminary, it is important to review the means of identifying
and classifying the nilpotent orbits of G. This can be done in terms of
SU(2) homomorphisms, partitions or dimensions, amongst other methods
to be discussed later.

As described in [33], the Jacobson-Morozov theorem shows that each
nilpotent element X of g falls within some standard triple {H,X,Y} of
some SU(2) subalgebra of g. Also, a theorem of Kostant shows that the
map from standard triples to nilpotent elements is injective (or one to one),
up to conjugation of the nilpotent elements. Taken together, these theo-
rems establish a bijection between standard triples and conjugacy classes
of nilpotent elements. By arguing a bijection between conjugacy classes of
nilpotent elements and nilpotent orbits, (Theorem 3.2.10) [33] further claims
a bijection between standard triples and (closures of ) nilpotent orbits Ox.
Each standard triple {H, X,Y} is in turn defined by a homomorphism (or
embedding) p from G to SU(2) and this implies a bijection between SU(2)
homomorphisms p and distinct nilpotent orbits Ox.

The possible embeddings of SU(2) into G were first systematically enu-
merated, for both Classical and Exceptional groups, by Dynkin [54]. The
standard tables of nilpotent orbits in the recent Literature, for example in
[33], are essentially unchanged from the list of SU(2) subalgebras identified
by Dynkin.

4.2.1. SU(2) Homomorphisms

From the perspective of character analysis, each such homomorphism p
corresponds to a fugacity map between the CSA coordinates {x1,...,z,} of
G and {z} of SU(2), under which the character of every representation of

G decomposes into a sum of characters of SU(2) irreps:
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pidry,...,xp} = {a*, .. 2}
®
P¢XG($17---7=T7~)—>Z” an [n] (z),

where the coefficients a,, are non-negative integers. The exponents [w1, . .., w;]

(4.6)

in are referred to as the weight map of p in this study. The enumeration
of nilpotent orbits via SU(2) homomorphisms is therefore equivalent to the
problem of identifying all such valid weight maps.

We can refine the problem as follows. The exponents of x that appear in a
valid map p(R) of some representation R of G are weight space Dynkin labels
of SU(2) and must therefore be integers. Moreover, the highest exponent of
x that can appear must be an integer below |R|, otherwise the monomials
within p(R) could not form a complete representation. Furthermore, once
we establish that a map p is valid for all the basic irreps of G (those with
highest weight Dynkin labels of the form [0,...,1,...,0]), it follows that the
map must be valid for all representations of G' [58]. This limits the number
of possible weight maps at most to the product of the dimensions of the
basic irreps of G.

Indeed, the number of possible homomorphisms can be limited further by
a theorem [54], which entails that p, when expressed in terms of simple root
fugacities {z1,..., 2} of G and {z} of SU(2), must be conjugate under the
action of the Weyl group of G to a map of the form:

dar

p:{21,...zr}—>{zq7l,...,27}, (4.7)

where ¢; € {0,1,2}. The labels [¢1, ..., q,] are termed the Characteristic of
a nilpotent orbit [54]. In this study, the Characteristic is also refered to as

3rank[

the root map of p Thus, there are at most Gl root maps that need to

be tested, which is a straightforward computational procedure for low rank
groupsﬁ
These homomorphisms can also be labelled by the SU(2) decomposition

of p(R), where R is some representation of G. R is usually chosen to be the

2The Literature also refers to a Characteristic G[p] as the Dynkin labels (of a nilpotent
orbit), not to be confused with the weight space Dynkin labels (of irreps) [n]e. Since
the labels in a Characteristic can only be 0, 1 or 2, it can be convenient to omit the
separators ”,”.

3Note that root and weight fugacities and maps are related by the Cartan matrix of G

as z = ¢ and ¢ = Aw, respectively.
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fundamental representation for A series groups, or the vector representation
for BCD series groups. Such decompositions of p(R) are conventionally
expressed using condensed partition notation, under which each SU(2) irrep
[n] with non-zero multiplicity a,, is assigned an element in the partition equal

to its dimension, with an exponent equal to its multiplicity:

R) = m‘”‘an nl,
p(R) 7;) [n] (45)
& ([[Pmax] e [R]* .., 199) .

Additional selection rules are required to ensure that the representations
p(R) assigned to each irrep R of G are consistent with its bilinear invariants.
Recall that an irrep can be classified as (i) real, (ii) pseudo real or (iii)
complex, depending, respectively, on whether it has (i) a symmetric bilinear
invariant with itself, (ii) an antisymmetric bilinear invariant with itself,
or (iii) a bilinear invariant with its contragredient representation (complex
conjugate in the case of unitary representations). As shown in [33], when
R has bilinear symmetric or antisymmetric invariants, this requires irrep
selection rules, to exclude any homomorphisms p under which such bilinears

change type:

1. Real R. If a partition element (i.e. SU(2) irrep) of even dimension
appears, it must appear an even number of times. This ensures that
any pseudo real SU(2) irreps come in pairs. These are often referred

to as B partitions or D partitions.

2. Pseudo real R. If a partition element (i.e. SU(2) irrep) of odd dimen-
sion appears, it must appear an even number of times. This ensures
that any real SU(2) irreps come in pairs. These are often referred to

as C partitions.

3. Complex R. Complex irreps have bilinear invariants with their com-
plex conjugates, rather than with themselves. Conjugate pairs of rep-

resentations have identical SU(2) partitions, so no selection rules ap-

ply.

It is important to appreciate that these irrep selection rules depend on the

type of representation R of the parent group, upon which p acts, and not
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on the parent group series (as implied in some of the Literature). The Real
and Pseudo real rules apply across all representations of both Classical and
Exceptional groups, although they are largely redundant in the case of A
series groups, where the fundamental irreps are complex and not subject to
these restrictions.

Appendix [B] tabulates these homomorphisms for Classical groups up to
rank 5 and for Exceptional groups. The homomorphisms are described by
their dimensions, their Characteristics (or root maps) and weight maps,
and the resulting partitions of the key irreps of G. While partial tables are
often presented in the Literature [33] B0], this fuller presentation, including
vectors/fundamentals, spinors and the adjoint representation, is helpful for
the analysis of nilpotent orbits.

As an example, As has five nilpotent orbits and these can be referred
to uniquely, either by the partition data assigned (under p) to one of its
representations, or by the Characteristic (root map), or by the weight map.
Taking the character of the fundamental of As as [1,0,0] = z1 + zo/x1 +
x3/79 + 1/23 and the simple root fugacities of A3 as {z1 = 2?1 /x9,20 =
12y /w1 /w3, 23 = 23%/22}, the homomorphism p with Characteristic [222]

can be written in any one of the following equivalent ways:

p:(21,22,23) = (2,2,2),
p:(x1,x2,23) — (x3 s )
p: (w1+x2/x1+x3/x2+1/x3)—>(x +z+1/x+1/x ) (4.9)
p:[1,0,0] = [3],
p:[1,0,0] = (4).

Intriguingly, while these SU(2) homomorphisms identify all the Charac-
teristics of Exceptional and Classical group nilpotent orbits that appear in
standard tables, this method also leads to a few extra root maps for some
Exceptional groups, as highlighted in Appendix One extra root map
arises in Fy; there are 3 in Fg, 8 in E7 and 39 in Eg. Their moduli spaces

are examined and discussed in Chapter [7]
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4.2.2. Partitions

For Classical groups, there is a bijective correspondence between SU(2) ho-
momorphisms that satisfy the irrep selection rules and partitions [33]. As
an alternative to finding the partitions of nilpotent orbit from SU(2) homo-
morphisms, they can also be found from partition generating functions that
encapsulate the irrep selection rules. We introduce fugacities {v1,...,vn},
indexed according to the possible dimensions of SU(2) irreps, where N is
the fundamental/vector dimension of G, and use exponents to count the
multiplicities of irreps. For example, p = (4) maps to the monomial v4 and
p = (12,2) maps to the monomial v?v,. We use the overall counting fugacity
t. A short calculation then leads to the generating functions for partitions
set out in Table [4.11

Group Partition Series Generating Function
o0 - o0
SU(N) ZPSU(Vhwono)tz H 171/,'1‘,1' -1
= =
USp(N) Z Pysp (vi,...,Vs0) t" H . H T T 1
i=1 i=1 7=0 7
0 - 0 1 0 1 3 1
SO(N) ZPSO (Vl,...,UOO)tZ H -t H 1+V2jt2j + H W_Q
=1 =1 7j=1 7j=1 J

Table 4.1.: Generating Functions for Partitions of Classical Orbits

For example, to obtain the partitions for the fundamental of SU(4), we

find the coefficient of t* in the Taylor expansion of the generating function

0 .

for 3 Psy (v, ..., Voo) t'. This is v{ 4+ v2vs + 1113 + 12 + vy, corresponding
i=1

to the set of five partitions {(1%), (12,2), (1,3), (22), (4)}.

In the case of Exceptional groups, there is no such bijective correspon-
dence between partitions of the vector/fundamental representation and SU(2)
homomorphisms. For example, both Gy and B3 have 7 dimensional vec-
tor/fundamental representations, but G only has 5 nilpotent orbits, com-
pared with the 7 of Bj.

It is also noteworthy that a description of nilpotent orbits, by partitions
of the vector representation alone, does not give a unique labelling for De¢yer,
groups. Recalling that the spinor is a more fundamental representation than
a vector, we can see in appendix for example, that the (2%) and (4?)

vector partitions of D4 both correspond to pairs of nilpotent orbits that are
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distinguished only by their spinor partitions.

Partitions that only contain pairs of even elements are referred to as very
even. The very even vector partitions of SO(4k) groups all correspond to
spinor pairs of nilpotent orbit moduli spaces and can be encoded in a simple
generating function, as shown in Table

Group Partition Series Generating Function
00 - . ) ES)

SO(4I€) Zpgglnor Pair (V1,~--,Voo) t H #22‘1&42' -1
i=1 i=1 i

Table 4.2.: Generating Functions for Partitions of Spinor Pair Orbits

The partitions of N = 4k are given by the coefficients of . The gener-
ating function can be unrefined, by setting v; — 1, to find the number of

SO(4k) spinor pair nilpotent orbits as a function of the vector dimension.

4.2.3. Standard Triples

It is useful to elaborate on the relationship between SU(2) homomorphisms
and standard triples { H, X, Y'}. Standard triples are defined by the commu-
tation relations [H, X| = 2X,[H,Y]| = —2Y,[X,Y]| = H. These operators
are embedded in the Lie algebra g of GG, which is given by the operators
{H;, Eq+, E_}, as detailed in Appendix

Now, consider a Characteristic [¢] = [q1, - . . , ¢], with corresponding weight
map [w] = [wi,...,w,], related by [¢] = A - [w]. Each root, a = ), a;a,
where {aq,...,a,} are simple roots, is assigned a Characteristic height,

'
[a] = 3 aig;.
i=1
The elements of the standard triple {H, X, Y} are chosen as:
T
H = Z wiHZ-,
i=1
X= > usBay, (4.10)
OLE‘I)G:[Q]ZQ
Y = Z Vo B,
QGQG:[O(]ZQ

for some coefficients u, and v,. X contains only those roots with [a] = 2,

and each of these satisfies the commutation relations [H, Eq4] = 2E,+,
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so [H,X] = 2X. Similarly, Y satisfies [H,Y] = —2Y. The commutation
relation [X,Y] = H determines u, and v,, up to scaling freedoms [54].

As the simplest example, consider the SU(2) homomorphism with the
Characteristic [2]. This maps the positive root of G = SU(2) to the positive
root of an SU(2) subalgebra and so the nilpositive element is just X =
E1+. The relationship between the standard triple {H, X, Y} of the SU(2)
subalgebra and its parent SU(2) algebra {Hy, E1+, Fy_} follows directly, as
set out in Table [£.3] The coefficient of H; in the standard triple matches
the weight map, which is [1].

Parent group Lie algebra
SU(2) [H, Fr4] = +2F1+ [Ery, B = H;
Nilpotent element
Characteristic 2]
Weight map 1]
Positive roots By
{H,X,Y} {H,Er+,E1_}

Table 4.3.: Standard Triple for SU(2) Homomorphism

The analysis for SU(3) in Table [4.4]is more interesting. In this case there
are two non-trivial nilpotent orbits, so that the Characteristic [11] generates
the nilpositive element Ej24, while the Characteristic [22] generates the
nilpositive element (Ej+ + Fs1). Once again, the coefficients of H; and Ha
match the labels [1 1] and [2 2] in the corresponding weight maps. The
standard triples can be verified using the Lie algebra relations.

This analysis generalises to any SU(2) homomorphism of G. The nilpo-
tent operators F, in the standard triple follow directly from the Charac-
teristic. The coefficients u, and v, can, in principle, be determined, up to
scaling freedoms, from the Lie algebra g.

Notwithstanding the received bijective relationship between standard triples
and nilpotent orbits, there is no simple prescription in the Literature for
finding the closure of a nilpotent orbit from its standard triple, although
its dimensions can be obtained from Accordingly, this study focuses
first on methods based on partitions, which lead to the Higgs branch con-
structions of Chapter The Coulomb branch constructions of Chapter [f]

draw directly on Characteristics and weight maps. By way of integrating
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Parent group Lie algebra
[HlvElﬂ:] :izElj: [E1+7E1—] = H,
[Eo+, Eo_| = Hy
[Ha, E11] = FE1+
[Hy, Eas] = ¥ By [Er24, Erg-] = Hi + H
SU(3) b (B, Bot] = £ E124
[H2, Eoy] = £2E04
[Hi or 2, B12+] = £E12+ [Bre, Bro] = FEos
o [Eot, Eroy] = £E1+
other commutators zero
(oth )
Nilpotent elements
Characteristic [11]
Weight map [11]
Positive roots {E12+}
{H,X,Y} {H1 + Hy,E1o4, E12_}
Characteristic [22]
Weight map [22]
Positive roots {E14+,Eay}
(H,X,Y)} {2H, + 2H3, E1 4 + Eyy,2E,_ +2E,_}

Table 4.4.: Standard Triples for SU(3) Homomorphisms

these approaches, a method developed in the course of this study, for cal-
culating the Hilbert series of the closures of nilpotent orbits, based on their

Characteristics, is presented in Chapter

4.3. Dimensions of Nilpotent Orbits

The dimensions |O,| of a nilpotent orbit O, ~ Ox can be found directly by
subtracting from |G| the length of the adjoint partition (i.e. the number of
SU (2) representations into which the adjoint representation of G is split by
% (adj.)):

10,1 = 1G]~ [0 (ad)| (4.11)

This can be checked by inspection of Appendix[Bl Comparing[4.5] it appears
that the dimension of the centralizer g* is equal to the length of the partition
|0 (adj.)|.

For a Classical group, the dimension |O,| can also be calculated, as set out
n [33], from the partition data of the defining fundamental/vector repre-
sentation. Consider the ordered partition (in standard notation) p(def.) =

(p1,...,pn), with p; being the greatest element appearing in p. The trans-
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pose partition ¢ = p’, where 0 = (01,...,0p,), can be obtained using
Young’s diagrams. It is convenient, for our purposes, to restate (6.1.4) of
[33] more simply in terms of rank r and this transposed partition o(def.),
to obtain the dimension formulae shown in Table[4£.5l These dimensions are

based on a lattice over a complex space and are always even.

Group |O,|
A, (r+1)?% -3 02
7

B, 7“(27“4-1)—%201‘(0@—1)—% > oi(oi+1)
i odd i even

C, T(2T+1)7%ZO}(O‘Z‘+1)7% > oi(o;—1)
i odd 1 even

D, [r@2r—1)—3 Y oi(o;—1)—1 oi (o7 + 1)
i odd 1_even

Table 4.5.: Dimension Formulae for Classical Orbits

We can identify within the expressions for |O,|, the dimension of G, re-
duced by a sequence of dimensions of square matrices defined by o. For
the A series, this sequence is associated with unitary matrices, while for
BCD series, this sequence is associated with alternating symmetric and
antisymmetric real matrices.

Importantly, identical dimensions can also be obtained by assigning a
Higgs branch quiver theory to a Classical vector/fundamental partition that
satisfies the Real and Pseudo real rules selection rules, as will be shown in
Chapter

4.4. Terminology

Before proceeding, it is helpful to collect some of the elaborate terminology

that permeates the classification of nilpotent orbits.

4.4.1. Canonical Orbits

The dimensions of nilpotent orbits have a partial ordering, which is often
expressed using Hasse diagrams. Formally, this partial ordering is defined

by inclusion relations amongst the closures O of nilpotent orbits OE] There

4The closures @ correspond to the quiver theory moduli spaces that are calculated in
this study.
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are a number of canonical orbits within this partial ordering:

1.

The trivial orbit. This is associated with the partitions p(R) = (117)

and always has zero dimension.

. The minimal orbit. This is the first orbit with non-zero dimension

and is always unique. Its complex dimension is equal to twice the
sum of the dual Coxeter labels of G. This equals the dimension of the

reduced single instanton moduli space of G.

. The sub-regular orbit. This is the orbit with next to highest dimension.

It is always unique, having a complex dimension equal to the number
of the roots of G, less 2.

The maximal orbit. This is the orbit with highest dimension and
is always unique. Its complex dimension is equal to the number of
roots of G. This equals the dimension of the modified Hall Littlewood

function mHL[Go,...,o]'

The above orbits are not distinct for low rank groups. For example, in A,

the minimal and maximal orbits coincide, as do the trivial and sub-regular.

4.4.2. Distinguished Orbits

A distinguished nilpotent element is associated with an SU(2) homomor-
phism in which p®(adj.) contains no SU(2) singlets [33]. This rule leads to
the following list of distinguished nilpotent orbits{’]

A,: Maximal nilpotent orbit only,

B,

Cy

: Partitions of 2r + 1 into distinct odd parts,

: Partitions of 27 into distinct even parts,

D,.: Partitions of 2r into distinct odd parts,

Ga

: [20] and [22],

Fy: [0200], [0202], [2202] and [2222)],

Es

: [202020] [220222] and [222222)],

The list of distinguished Exceptional group Characteristics appears in Table 23 of [54].
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E7: [0020020], [2020020], [2020220], [2202022], [2202222] and [2222222),

Es: [00020000], [00200020], [00200200], [00200220], [20200200], [20200220],
[20202020], [20202220], [22020222], [22022222] and [22222222].

The vector partitions of SO and USp groups that correspond to distin-
guished nilpotent orbits can be encoded as the simple generating functions
in Table The partitions of N are given by the coefficients of tV, as

Group Partition Series Generating Function
&S . . x .
USp(N) Z P(]})é?; (1/1, AP ,I/oo) t* H (1 + l/Qit2Z)
i=1 i=1

—18

(1 + V2i+1t2i+l)

SO(N) | Y PESE (vy,...,ve0) !
i=1 1=0

Table 4.6.: Generating Functions for Distinguished BC'D Partitions

described in section These generating functions can be unrefined, by
setting v; — 1, to find the number of distinguished nilpotent orbits as a

function of the vector dimension N.

4.4.3. Even Orbits

An even nilpotent orbit is one that has a Characteristic containing the labels

0 or 2 only. All distinguished orbits are even [33].

4.4.4. Richardson Orbits

A Richardson nilpotent orbit is one that can be induced from the the triv-
ial nilpotent orbit of a subgroup [33]. Every nilpotent orbit that has a
Characteristic containing only the labels 0 or 2 has a quotient group G/H
structure and can be induced, as will be explained in section from the
trivial nilpotent orbit of the subgroup H, whose Dynkin diagram is defined
by the 0 labels of the Characteristic. All even orbits are thus Richardson
orbits. In addition, some groups have non-even Richardson orbits, with
the rules for identifying such orbits being given in [68]. Richardson orbits
have polarizations [69] and symplectic resolutions [6§]. The complete set of

Richardson orbits is:

A,: All nilpotent orbits,
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B,.: Partitions of 2r + 1, whose first ¢ parts are odd, where ¢ is odd, with

the remaining parts even,

C,: Partitions of 2r, whose first ¢ parts are odd, where ¢ is even, with the

remaining parts even,

D,: Partitions of 2r, whose first ¢ parts are odd, with the remaining parts
even, and either (i) ¢ is even but ¢ # 2, or (ii) ¢ = 2 and the two odd

parts are located at positions 2k — 1 and 2k for some integer k,
EFG: All even orbits, plus
Fy: [1012],
Es: [100010], [010100], [100012], [110111] and [110112],
E7: [0100011], [1010100], [2010100], [2101101] and [2101021],

Es: [01001002], [101010000], [21010220], [01000120], [10101010], [10101020]
and [20101020].

4.4.5. Rigid vs Non-Rigid Orbits

A non-rigid nilpotent orbit is one that can be induced from some nilpotent
orbit of a subgroup. All Richardson orbits are thus non-rigid, being induced
from a trivial nilpotent orbit. Importantly, any orbit whose Characteristic
contains 2 can be induced from the orbit of the subgroup defined by the
Dynkin diagram and Characteristic that remains after removing one or more
nodes with Characteristic 2 from the parent diagram.

Conversely, a rigid nilpotent orbit is one that cannot be induced from
a nilpotent orbit of a subgroup. A rigid nilpotent orbit has a Character-
istic containing 0 and 1 only, as a necessary, but not sufficient, condition.
Notably, the minimal nilpotent orbits of simple groups, other than those
isomorphic to the A series, are rigid [33]. Also, for example, D4[1011] is
rigid amongst orbits of low rank groups. Rigid orbits of Exceptional groups
are identified in [70].

The inclusion relations between the above types of orbit provide a classi-
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fication scheme:

{Nilpotent Orbits} = {Rigid} U{Non — Rigid}
(4.12)
{Non — Rigid} D {Richardson} D {Even} D {Distinguished}

4.4.6. Special Orbits

A special nilpotent orbit is one that is invariant under two applications of
the Spaltenstein map. For Classical groups the Spaltenstein map is defined
by fundamental/vector partition transposition, followed, if the transpose
partition is not valid under the Real/Pseudo real selection rules, by BC'D-
collapse to a lower partition. The Spaltenstein map d is thus many to one,
often described as d® = d, and can lead to the conflation of distinct nilpotent
orbits, as discussed in [24]. All A series nilpotent orbits are special. A special
BC(C series nilpotent orbit is one whose Spaltenstein map does not require
BC collapse.

A Spaltenstein map can also be defined for Exceptional groups. All
Richardson orbits are special, as is any orbit of a higher rank group in-

duced from a special orbit [33]. Some rigid orbits are also special.

4.4.7. Normal vs Non-Normal Orbits

From the perspective of this study, a more important distinction is that
between normal and non-normal nilpotent orbits. A normal symplectic va-
riety only contains singularities that are rational Gorenstein [71] and this
entails that it is Calabi-Yau with a palindromic Hilbert series [13]. Consis-
tent with this, the normal nilpotent orbits of Classical groups (calculated
up to rank 4, as tabulated in Chapter [5)) were found in [24] to have palin-
dromic Hilbert series; however, non-normal nilpotent orbits were found to
have non-palindromic Hilbert series.

The normalisation of a nilpotent orbit can be defined as a palindromic
moduli space of the same dimension that forms a covering space. A nor-
mal nilpotent orbit is its own normalisation. Normalisations of non-normal
nilpotent orbits contain elements outside the nilpotent cone N.

For Classical groups, it was shown in [6], based on a geometric analysis,
that the vector partition of a non-normal orbit is always related to that of

the orbit immediately below it, by a particular degeneration of its Young’s
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diagram. In this degeneration, a pair of even rows in some sub-diagram,
described by the partition (2r,2r), degenerates to (2r — 1,2r — 1,1,1); all
the rows above and all the columns to the left of the sub-diagram remain
unchanged. Such degenerations result from a Ds, subalgebra of a BC'D
series parent and are termed Ao,._1 U Ao,._1 degenerations. A Do, group
may have several degenerations associated with its spinor pairs, including
Agr_1 U Agr—1 and A1 U A; degenerations.

All A series nilpotent orbits are normal. The Classical non-normal nilpo-

tent orbits up to rank 5 are:
B: [101], [2101],[10001], [22101],
C': [0200], [02000],
D: [02] U [20], [0002] U [0020], [0202] U [0220], [01011].

These are all Richardson orbits of non-distinguished type.

A similar situation arises in Exceptional groups, where non-normal nilpo-
tent orbits are also associated with particular degenerations of their par-
titions [71I]. The non-normal nilpotent orbits of Exceptional groups are
identified in [72], being:

Go: [01],
Fy: [0002], [2001], [0101], [1010], [1012], (5 cases),
Eg: [100011], [200020], [100012], [010101], [200022], (5 cases),

E7: [2000100], [2000020], [1010000], [1001010], [0100011], [0010100], [2000200],
[2000220], [0101021], [2101021], (10 cases),

Es: [10000020], [00001010], [00000220], [0100010], [10001000], [20000020],
[00000121], [10001020], [20001010], [00100020], [00000022], [20000200],
[20000220], [10100010], [01001010], [01000101], [10010100], [00101000],
[10010120], [20002000], [01000121], [00101020], [20002020], [21000121],
[ I, [

]
20002220], [20101020], [20020020], [01010221], [21010221], (29 cases).

The non-normal orbits of Exceptional groups occur amongst all types
other than distinguished and their relationships with their normalisations
are complicated [71]. It is conjectured in [72] that all distinguished nilpotent

orbits are normal.
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5. Higgs Branch Constructions of
Nilpotent Orbits

5.1. Quivers for Minimal Classical Nilpotent
Orbits

This exposition of the Higgs branch constructions of the moduli spaces that
match Classical group nilpotent orbits starts with a review of reduced single
instanton moduli spaces. For a k = 1 G-instanton theory, the SU(2,) global
symmetry decouples, as discussed in section and this permits simple
SUSY quiver theories for the RSIMS of Classical groups, whch coincide
with minimal nilpotent orbits.

These theories are all N' = 2 SUSY theories consisting of (i) hypermul-
tiplets containing bifundamental scalars, transforming in a Classical Yang-
Mills (or flavour) group and a particular gauge group, (ii) a vector multiplet
transforming in the adjoint of the gauge group and (iii) a superpotential.
The theories have interpretations in terms of brane systems, as will be de-
veloped in Chapter [6] The brane constructions corresponding to unitary
theories are straightforward, however, the orthogonal and symplectic the-
ories require the use of orientifold planes [I6]. The quivers are shown in
Figure [5.1 using N’ = 2 notation and the field charges and superpotential
are as specified in Table adapted from [16] by the elimination of the
SU(2,) fields.

These moduli spaces give the refined Hilbert series of GIOs for the various
product groups. Their generating functions are constructed as in section 3.3}
the fields in Table are symmetrised using the PE; the F-term vacuum
constraints are imposed by the HyperKéahler quotient, which contains the
adjoint of the gauge group and takes the form PE[[adj.] t2]. The results are
shown in in Table [5.2

The GIOs (or singlets) of the quiver gauge group are selected through
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Figure 5.1.: Quivers for Classical Reduced Single Instanton Moduli Spaces
using N' = 2 notation. The square nodes denotes the Yang-
Mills symmetry groups. The round nodes denotes the instan-
ton quiver gauge groups. The links correspond to bifundamen-
tal fields transforming under the Yang Mills and quiver gauge
groups. The superpotential fields transforming in the adjoint
of the quiver gauge group are implicit in the gauge nodes.

. Quiver Yang-Mills R-Charge .
Fields Gange Group Group U(1)g Superpotential
SU(N)YM ® U(I)QGUQG ® U(l)gauge :
) 1 [0,...0] (0)
X12 l/q [170] (1) Tr (X21(I)X12)
SO (N)YM ® Usp(Q)gauge :
S 2] [0,...0] 0 b d
Tr (Qae® Spee”
Q 1] 1.0 ) (Qus" S Q)
USp(N)y s ® O(l)gauge :
A 1 [0,...0] 0
Q +1 [1,...0] (1) Tr(QAQ)
CSA Fugacities Y x t
HW Fugacities m t

Table 5.1.: Field Content of Quivers for Classical RSIMS
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Weyl integration or a Molien average (see Appendix . Different quiver
gauge groups are required to yield RSIMS, depending on the Yang-Mills
group. The chosen quiver gauge groups contain bilinear invariants (dis-
cussed in section , that act, via the mediacy of the bifundamental fields,
to contract the vector/fundamental of the Yang-Mills group, giving its ad-
joint. The Molien average for a C series flavour group is taken over the
two characters 1 of the O(1) gauge group; these are reflected in the =+t
fugacities.

Evaluation of the contour integrals gives the refined Hilbert series shown

in Table These are written using class function notation as:

9fis:rsims (X6 (@),t) = PRsrys (X6 (2),t) PE [[adj]%(z) 7] . (5.1)

The refined Hilbert series g5 . pgrars (X©(2), ) can be transformed, through
a further contour integration using a character generating function to give
the HWG g% c.rsrars (M, 1), as in These HWGs are shown in Tables
and and correspond to highest weight symmetrisations of the adjoint
representation [k6%] for k = {0,1,... 00}, where [§%] are the Dynkin labels
of the adjoint representation of G.

As noted in section the unrefined Hilbert series ¢%¢ poyass(t) have
dimensions equal to twice the sum of the dual Coxeter labels of G and
these coincide with the dimensions of minimal nilpotent orbits tabulated in
Appendix [B]

Moreover, it is straightforward to show that the RSIMS of G is included
within the nilpotent cone A/, by comparison with the moduli space defined
by the modified Hall Littlewood function mH Lgnglet’ Such moduli space
inclusion calculations are described in detail later in this Chapter.

This combination of dimensional matching and inclusion relations uniquely
identifies the RSIMS as the minimal nilpotent orbit of G. Thus, the quiver
theories in Figure yield all the minimal nilpotent orbits of Classical
groups. The correspondence between each quiver diagram and a partition
of the vector/fundamental representation under the homomorphism p is de-
scribed in the next section. The accidental isomorphisms between Classical
Lie group algebras give rise to alternative possible Yang-Mills and quiver

gauge group choices.
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Series | 9fwe.rsims Psis(X951%) PE[adj]¢ t?]
A m?t? (1—t")[0,0] PE [[2] #]
-t =8 +¢12 [0,0]
2 ’ 2
As mymat? P PE[[1,0,1] ]
1—tt—¢124416 0,0]
6 — 28 410 0,2]
B ma?t? —t4 16 4+ 10 — 12 [1,0] PE[[0,2]¢?]
t6 — 218 + ¢19 [1,2]
—t4 416+ 10 —#12 [2,0]
Bs mat? PLens PE [[0,1,0]¢]
L—t* =241 [0,0]
—t4 + t6 + th _ t12 [O7 1]
C mq 2t? —t4 46 410 — 12 [0, 2] PE [[2,0]¢?]
t6 — 218 4+ ¢10 2,0]
t6 — 218 4 ¢10 [2,1]
Cs my 2t P PE[[2,0,0]*]
2 —2t1—2¢5 +2¢10 0,0
Dy | my%t2 + mo2t? —t2+tt 108 [0,2] PE [[2,0]¢* 4 [0,2] ¢?]
—t2 4+t 446 -8 [2,0]
Ds mamsat? PR PE[0,1,1] ]
D, mat? PR PE[0,1,0,0]¢?]

As B3 C3 D3 Dy . :
Piénas: Prémusy Prémvs: Premus, Prsmvs are given in [29].

Table 5.3.: HWGs and Refined HS for RSIMS of Classical Groups

Constructions of this type are not known when the Yang-Mills group is
Exceptional; while the adjoint of an Exceptional group can be formed by
anti-symmetrising the fundamental representation, many other irreps are
also generated, so the resulting moduli spaces are not minimal nilpotent

orbits.

5.2. Quivers for General Classical Nilpotent
Orbits

The SUSY quiver theories whose Higgs branches correspond to nilpotent
orbits of unitary groups can all be described by an SU(Ny) flavour node
linked to a linear chain of unitary gauge nodes U(XV;) [7]. Such quivers,
which are shown in Figure using A = 2 notation, contain a descending
sequence of unitary gauge nodes and can be referred to by the mnemonic
INF] = (V1) = - (Nomao).
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Figure 5.2.: Unitary Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The links
represent pairs of bifundamental fields transforming in the fun-
damental and antifundamental representations. The quiver is
ordered such that Ny > N1 > N; > ... > Nyaq.

If we consider the Higgs branch of such a quiver: each link represents
a bifundamental hypermultiplet containing a conjugate pair of scalar fields
X;j and Xj; transforming under the flavour and/or gauge groups associated
with its nodes; each gauge node is associated with a scalar field ®;; trans-
forming in the adjoint representation of the gauge group. A superpotential is
formed from contractions of bifundamental and adjoint fields. The F-terms
obtained by application of vacuum minima conditions to the superpotential
lead to the imposition on each node of a HyperKéhler quotient. The ring of
gauge invariant operators formed by symmetrising the bifundamental fields,
modulo the HKQ, can be enumerated in a Hilbert series.

The Higgs branch formula for this Hilbert series, expressed in terms of
characters x and a counting fugacity t, is:

PE[x (Xi5 + Xji) t]

A — gauge
gHS:Higgs (X(l‘),t) - % dlu’ H U(N; . 5.2

gauge

The integrand is a product of terms similar to those appearing in Table
and the Weyl integration is carried out over each gauge group.

One delicate aspect of this calculation is that of the HyperKé&hler quo-
tient gi. This has the effect of ensuring, for each Weyl integration, that
the flavour group Hilbert series excludes any singlets (or vacuum bubbles),
which would otherwise result, under the PE, from invariants of the gauge
group. As described in section one method of calculation [25] involves
applying vacuum conditions to the superpotential terms that can be con-
structed from the bifundamental fields and adjoint gauge fields. A more
direct route, which we adopt here, is to find the HKQ from the moduli
space of the gauge fields that correspond to the flavour group singlets that

108



we wish to exclude:

9HK (XU(Ni)»t) = 7{ dpV" M) PE [x (X5 + Xji) t]. (5.3)
U(N;)
For a linear A series quiver of the type in fig this HyperKéahler quo-
tient invariably evaluates to the PE of the adjoint of the gauge group:
g (XYW 1) = PE[x(®;) t?]. The Hilbert series for the Higgs branch
is thus given by:

9iis:iges (X(T), 1) = f dp9*9° HPEJD[E([‘EC(?;)XZ;]) d (5.4)

gauge <

The dimension of this Hilbert series, when unrefined by setting all the flavour

group CSA coordinates x to unity, is given by the formula:

ij

i€gauge i€gauge

(5.5)

The last two terms on the RHS follow from the HyperKé&hler quotient and

the Weyl integration over each gauge group, respectively, and have identical
dimensions.

Assuming that the sequence of node dimensions {Nf, Ni,..., Nypasz} is

non-increasing, unordered partition data can be assigned to the quiver as:
U:{Ui:o'l:Nf_NHO'i:Ni—l_Ni;Umax: maaz}' (56)

Note that the o; from this construction are non-negative, but are not nec-
max

essarily ordered. We now use the identity, Ny = ) 0y, to rearrange the
i=1
dimension formula [5.5] as:

maz—1 n—1 n n 2
‘géIS:Higgs (Lt)‘ = Z 2 (Nf—ZO},) (Nf_zaz> -2 (Nf—ZO'Z>
i=1 i=1 i=1

n=1
hypers vec\trors
max
= Nf2 — Z o?;.
i=1
(5.7)

Thus, we have recovered the dimensions of the A series nilpotent orbits in
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Tablefrom the unitary quivers defined by the sequence { Ny, N1, ..., Npaz },
and can use the partition data associated with each A series nilpotent orbit
to identify a unitary linear quiver, whose moduli space has a Hilbert series
of the same dimension as the nilpotent orbit.

The process of matching partition data from the nilpotent orbits of BC'D
series groups to quiver theories is similar, but with some refinements. The
dimension formulae in Table for BC'D groups invite association with
alternating O/USp groups. As a development from diagrams outlined in
[7], it was proposed in [20] that linear quivers for BC'D groups could take
the form of alternating chains of O/USp groups. It is therefore natural to
examine the mapping of partition data from nilpotent orbits to the vec-
tor/fundamental dimensions of an alternating chain of O/USp groups.

One issue that arises is that some partitions require U Sp groups with odd
fundamental dimension; however, homomorphisms p with such partitions
are precisely those excluded by the B/D and C-partition selection rules
described in section The B/D and C-partition selection rules in effect
correspond to the restriction of nilpotent orbit root maps for BC'D groups to
the Characteristics of homomorphisms p that can consistently be described
by an alternating O/USp chain.

So, the linear BC'D quivers to investigate take the form of chains of
alternating O/USp nodes, with the first node being a flavour node and
the remaining nodes being gauge nodes, ordered with non-increasing vec-
tor/fundamental dimension, as in Figures and

Figure 5.3.: Orthogonal Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The
links represent bifundamental fields transforming in the vec-
tor/fundamental representations. The quiver is ordered such
that Nf ZNI ZNZ 2 ZNmax-

We can calculate the Hilbert series for the Higgs branches of such BCD

series quivers and find their dimensions using a prescription similar to
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USp (Nyr) O (M) USp (N,) EE— , \, ) EESEENN. @

Figure 5.4.: Symplectic Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The
links represent bifundamental fields transforming in the vec-
tor/fundamental representations. The quiver is ordered such
that Nf >N1>N; > ...> Npaz-

B 0 = f o (T] oy 5:9)

gauge

The fields X;, are now half-hypermultiplets, so that there is just one field
X1, between nodes {j, k}. There are complications relating to the structure
of the HyperKahler quotient and the use of orthogonal rather than SO
groups; these do not, however, affect the dimensions of a Hilbert series, so
we defer a discussion of these topics to section The dimensional formula
necessarily reflects both the series of the flavour group and the position of a
node, with the gauge group series matching (or complementing) the flavour
group on even (or odd) indexed N; nodes. Otherwise, the Higgs branch
dimension formula for BC'D quivers follows in a similar manner to that for

A series quivers:

9515 tiggs (1:1) ’ = (Nf - Z%) <Nf - é%)
-y (Nf+ 1— Zak> (Nf - Zak>

n odd
n
-3 (w1 Y] (Nf—zak)
n even
—1N(N 1) 12-(- ! +1)
=9 JACAY: 2 0;\0; — 2 a; Uz
i odd i even
(5.9)
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n—1 n
ggIS:Higgs (17t)|:Z (Nf_zok> (Nf_za'k>
n k=1 k=1
- Z <Nflzak> (Nf20k>
k=1 k=1

n odd
n n
- > (Nf+1—Zak> (Nf—Zak>
n even k=1 k=1
1 1 1
:§Nf(Nf+1)_§ZUi(0'i+1)_§ Z O‘i(O'i—l)
i odd i even

(5.10)
Thus, in a similar manner to the A series, we can recover the dimensions of
the BC'D series nilpotent orbits in Table from quivers with alternating
O/USp nodes. We can, therefore, use the partition data from a BC'D series
nilpotent orbit to identify a linear BC'D quiver, whose moduli space has
a Hilbert series with the same dimension as the nilpotent orbit. Before
concluding that these quiver theories all lead to moduli spaces matching
nilpotent orbits, it remains to establish their inclusion relations.

These moduli spaces are constructed on a case by case basis in the fol-
lowing sections and their structures and inclusion relations are analysed in
terms of their Hilbert series and decompositions into representations of G.
It turns out that both characters and mHL functions of G provide use-
ful bases for these decompositions, with the latter providing a means of
encoding infinite series of class functions as finite polynomials.

Clearly the set of well-ordered partitions does not exhaust the set of all
the possible quivers defined by Figures b.3]and [5.4] It is interesting to
ask whether there are dualities, such that different A or BC'D quivers share
the same moduli space. The dimension formulae in Table do not depend
upon the strict ordering of the partition data, so dualities do indeed arise,
as will be shown in sections [5.3.4l and [5.4.6]

5.3. A Series Orbits from Higgs Branch Moduli

Spaces

Quivers whose Higgs branches have Hilbert series with dimensions corre-
sponding to those of nilpotent orbits are listed in Appendix [B.1l The

constructions are in all cases defined by the partition data for the vec-
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tor/fundamental representation under the homomorphism p. The extremal
quiver diagrams that can be constructed from partitions of N are repre-

sented by the minimal and maximal nilpotent orbits.

5.3.1. Maximal and Minimal A Series Orbits

In the case of the minimal nilpotent orbit of A,, which corresponds to
the reduced single instanton moduli space, the fundamental partition takes
the form p = (2,1"71). The transpose of this partition gives the quiver
increments o = (r, 1), which correspond to the unitary quivers [r 4+ 1] — (1)

shown in Figure 5.5, whose Higgs branches were evaluated in section [5.1

-

Figure 5.5.: Quiver for A Series Minimal Nilpotent Orbit. SU(N) has two
nodes, with square (red) nodes denoting flavour and round
(blue) nodes denoting gauge groups. The links represent pairs
of bifundamental chiral scalars transforming in the fundamental
and anti-fundamental representations.

The maximal nilpotent orbit of A,, which corresponds to the modified

Ar

[singlet] has the fundamental partitions

Hall Littlewood polynomial mHL
p = (N) = (r+1). This transposes to the quiver increments o = (1"+1),

corresponding to the quiver shown in Figure |5.6

Figure 5.6.: Quiver for A Series Maximal Nilpotent Orbit. SU(N) has
N nodes, with square (red) nodes denoting flavour and round
(blue) nodes denoting gauge groups. The links represent pairs
of bifundamental chiral scalars transforming in the fundamental
and anti-fundamental representations.
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5.3.2. Evaluation of A Series Quivers

The refined Hilbert series g%vé:];lgg]\;)f"'(Nm”) of the A series quivers shown in

Figure which include all the A series nilpotent orbits, can be calculated
from [5.41
It is convenient to carry out the Weyl integrations sequentially and, to

this end, can be rearranged into a recursive procedure:

N;]—(N; —...(Nmaz i i1
) (5000 = g0
U(Nit1)

U(N; U(N; U(N; U(N;
PE |:<Xf'u(,nd.) ® XmSn:H) + Xargti.) & Xfis,ndj*—l)) t}
x
PE [xi %]
Nit1]—...(Nmaz ;
X gELISTIéI]iggs( ) (XSU(NPA); t)

(5.11)
The definitions g[I]{VS”f;}”jggs = 1 and U(Ny) = U(Ny) are used. This is an
example of quiver gluing discussed in [25]. Note that gauge invariance under
the U(1) subgroup within each U(N) gauge group entails that each HS
in the sequence contains only the characters of SU(N;). In effect, each
nilpotent orbit in the sequence, [Nyaz] = [Nmaz—1] — (Nmaz) — ... —
[Nf] = (N1) — ... = (Nmaz), induces orbits in groups of higher rank and this
permits efficient calculation of all A, nilpotent orbits up to a given rank.
As discussed in the previous section, the partition data associated with a
nilpotent orbit defines a sequence of dimensions, whose separation is non-
increasing, such that N; — N;11 > N;11 — N;ro. However, these quivers
represent only a subset of those within the more general schema in Figure
Analysis of the full set allows us to examine dualities between quiver

theories and so we include these non-partition quivers in the analysis.

5.3.3. Analysis of A Series Moduli Spaces

Once a generating function g}l}gvﬁﬁ 995 for a refined Hilbert series has been

calculated, this moduli space can be analysed in a number of different ways,
as discussed in Chapter Both characters and modified Hall Littlewood
polynomials provide a basis of orthogonal functions that can be used to
decompose these class functions. For low rank groups, these moduli spaces

often have a simple description in terms of one but not always both bases,
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which thus provide complementary modes of analysis. The following meth-

ods are of most relevance:

1. A refined Hilbert series for a nilpotent orbit can be rearranged into

the canonical form:

gg}gvgzggs (X?t) = PgS:Higgs (X?t) PE [XaGcl]tZ} ) (512)

where PYs. Higgs (X>t) is the character decomposition of some finite
polynomial class function of G. Rearrangements of this form are given
in Table [5.3] for some minimal nilpotent orbits. The expression [4.3] for
a maximal nilpotent orbit is also in this form. However, expressions
for the refined HS of nilpotent orbits can be extremely unwieldy, and
are generally not tabulated in this study, but rather transformed to

more concise forms.

2. A Hilbert series can be unrefined as gg&mgys (1,t) by setting all the
CSA coordinates to unity. This permits the counting of dimensions,

generators and relations.

3. A refined Hilbert series can be decomposed as a character expansion
in irreps of G. These infinite series can be described by an HWG
ggWG:Higgs(m,t) for the coefficients of each irrep, identified by its
Dynkin labels. The HWGs are found using a character generating
function and Weyl integration, as in

4. A refined Hilbert series can be decomposed in terms of mH L functions
of GG. Significantly, these series turn out to be finite for nilpotent
orbits and can be described by an HWG ggWG(mHL):Higgs(h,ﬂ) for
the mHL coefficients. It is necessary to define the Hall Littlewood
polynomials with respect to the counting fugacity > to obtain a match
with the powers of ¢ appearing in the Hilbert series for a Higgs branch.
The HWGs are found by Weyl integration over an orthonormal mHL

generating function, as in [2.2

5. A further important matter concerns the analysis of inclusion rela-
tions between moduli spaces. Consider two moduli spaces defined by
common fugacities f = f; ... fr and carrying positive coefficients a,
and by, such that g1 = > a,f™ and g2 = >_ b, f™. Then:

n n
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The union of the moduli spaces is given by g1Uge = > max[an, b, f"

n

The intersection of the moduli spaces is given by g1Ngs = > min[ay,, by, ] f™
n

A moduli space g1 includes go: g1 2 g9 iff Vn : a,, > by

Knowledge of the unrefined Hilbert series permits an ordering relative
to t, but sums of dimensions are not always sufficient to identify differ-
ences between representations. The definitive analysis of the inclusion
relations amongst the nilpotent orbit moduli spaces is therefore ob-

tained over class functions, using character HWGs with the fugacities

{m,t}. [

Tables [5.4 and [5.5] set out the results of these calculations for A; through
Ay, for quivers associated with descending sequences of unitary gauge nodes

as per Figure Several observations can be made:

1. All the moduli spaces of these Higgs branch quiver theories con-
structed using partition data have dimensions equal to those of the

corresponding nilpotent orbits.

2. All the moduli spaces are contained within the nilpotent cone N.
Furthermore, the moduli spaces observe ordering relations consistent
with those in the Hasse diagrams of nilpotent orbits in the Literature,
e.g. [6, B3], as can be verified by Taylor expansion of the character
HWGs and/or the unrefined HS.

3. The unrefined HS of these moduli spaces are palindromic, indicating
Calabi Yau surfaces, and consistent with the property of being Hy-
perKéhler. The unrefined HS of maximal nilpotent orbits are complete

intersections [25].

4. The character HWGs that are not freely generated or complete inter-

sections are palindromic.

5. The moduli space decompositions into characters identify their gen-
erators, such as the A; generator m?t? or the Ay generator mimat>.

Each generator (or monomial) of these moduli spaces mj*...m}'" is

LOrdering with respect to the mHL HWGs is not helpful since the mHL functions
already encode the fugacity t.
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a root lattice object, with N-ality zero: mod [Z ng, N] = 0, where
i=1

N=r+1.

6. All the moduli spaces decompose into finite sums of mH L functions.
FEach monomial is also a root lattice object with N-ality zero with

respect to the h; fugacities.

7. The character and mH L descriptions are complementary; orbits close
to the minimal nilpotent orbit have character HWGs that are freely
generated or complete intersections; orbits close to the maximal nilpo-

tent orbit decompose to a small number of mH L functions.

8. The canonical A series nilpotent orbits have distinct signatures in
terms of Hilbert series, character HWGs and/or mH L HWGs. These

are summarised in Table [£.6 for future reference.

9. There are several dualities, where multiple quivers correspond to the
same nilpotent orbit. The circumstances under which these arise are

discussed further below.

5.3.4. Dualities of A Series Quivers

It is significant that there are a number of quivers, such as [3]—(2), [4]—(3)—
(1) and [4] — (3) — (2), that cannot be described by partitions, since their
increments o; are not well-ordered. However, the nilpotent orbit dimensions
set out in Table are insensitive to the order of the o;, and so, any such
non-partition quiver with N; > N,y has a Hilbert series with the same
dimension as the quiver obtained by reordering the o; into a partition.
Indeed, calculations using show that in many (but not all) cases, the
refined Hilbert series of non-partition quivers, including the above examples,
match those of the quivers from nilpotent orbit partitions.

There are nonetheless limits to the extent to which the o; can be reordered
to obtain a dual quiver with the same Hilbert series. For example, a calcu-
lation of the Hilbert series of the quiver [4] — (3) yields a non-palindromic
result that does not match [4] — (1).

The concept of quiver balance, defined in section [6.1.1) can be used to
predict when the Higgs branch Hilbert series of a non-partition quiver will

match that of a quiver from a nilpotent orbit partition.
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If all gauge nodes in a quiver have a balance of zero, the quiver is termed
balanced. If one or more gauge nodes have a positive balance and no gauge
nodes have a negative balance, the quiver is described as positively balanced.
If one or more gauge nodes have a balance of —1, the quiver is described
as minimally unbalanced. If one or more gauge nodes have a balance of —2
or less, the quiver is described as very unbalanced. With these definitions,
Tables [5.4] and [£.5] show:

1. A quiver specified by the partition data from a nilpotent orbit is either
balanced or positively balanced. E| Amongst such quivers, only those

for maximal nilpotent orbits are balanced.

2. A quiver that does not correspond to a nilpotent orbit partition is

minimally or very unbalanced.

3. A minimally unbalanced quiver, with increments o;, has a Hilbert
series that matches the quiver from the nilpotent orbit partition given

by a reordering of the o;.

4. Very unbalanced quivers, if evaluated using have Hilbert series
that are non-palindromic and do not match those of the nilpotent

orbit partitions given by a reordering of the o;. E|

This pattern of Higgs branch dualities between A series quivers is consistent
with findings in [73].

A different class of dualities arises between ordered linear quivers of the
type in Figure [5.2] which contain one or more duplicate nodes, such that
N = Npy1 = ... = Niy,. Formula indicates that the dimension of a
Higgs branch moduli space should be unaffected by the addition of duplicate
nodes to any given node. Indeed, calculation indicates that refined Hilbert
series are also unaffected by this addition, providing the duplicate nodes
are added within maximal quiver sub-chains, so that quivers do not become

very unbalanced.

2This condition entails that a quiver gauge theory has a superconformal IR fixed point
[20].

3 As discussed in [31], for the case of [Ny] — (N.) quivers, whenever Ny < 2N, — 1, the
theory becomes very unbalanced, and extra dimensions of the moduli space result from
incomplete breaking of the gauge group. These extra dimensions and non-palindromic
features of the moduli space may be eliminated by the introduction of Fayet-Iliopoulos
terms. [56]
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Thus, for example:

[“4-03)-2)-1) _ [“-3)-(2)-(2)-1) _ [“-(4)-3)-(2)-(1)
gHiggs - gHiggs - gHiggs )

4]—-(2)—(1 4]—(2)—(2)—(1
gl[‘I]igg(s) ():gl[q}igg(s) (2) ()’
but

4]—(2 4]—(2)—(2

(5.13)

Clearly this opens up a large further class of dualities, and, while this
area merits further study, it may be conjectured that any ordered linear A
series quiver, that is not very unbalanced, has the same Higgs branch moduli
space as the nilpotent orbit quiver obtained by reordering increments and/or

eliminating duplicate nodes to give a well formed partition.

5.4. BCD Series Orbits from Higgs Branch
Moduli Spaces

We now turn to the more intricate matter of carrying through a compara-
ble analysis for BC'D series groups. Orthogonal and symplectic groups are
complementary in terms of the symmetry of their matrix generators and
invariants of degree 2, and the interplay between the two series is necessary
to construct moduli spaces that match the dimensions of all B, C' and D
series nilpotent orbits. As shown in section the bilinear invariants of
C series are antisymmetric and therefore act on B/D vectors to generate
the adjoint representation, while the bilinear invariants of the B/D series
are symmetric, and so act on C vectors also to generate the adjoint rep-
resentation. The complementary interplay of these groups, when paired as
gauge/flavour groups, generates representations transforming in the root
space of the flavour group, as required for a nilpotent orbit.

As observed in [20], unitary and orthosymplectic quivers are related by
a Zso orbifold action and the orthogonal and symplectic groups in a quiver
must alternate so that this action can be defined. This does not, however,
entail that a quiver should not contain both B and D series groups and,
accordingly, we proceed with quivers that can be of mixed BC'D type.

These quivers are tabulated, based on vector representation partitions,
for the nilpotent orbits of BC'D groups up to rank 5, in Appendices
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and For brevity, the quivers are shown as BC'D chains, but should
properly be interpreted, for the purpose of Higgs branch calculations, as
chains headed by a flavour group and with O/U Sp gauge groups.

The Higgs branches of all these quivers can be calculated using some ver-
sion of schema however, there are a number of complications relating
to the necessity, in general, of using O(N) gauge groups [7], rather than
SO(N), to obtain moduli spaces that match nilpotent orbits, and also re-
lating to the calculation of HyperKahler quotients for O(N) gauge groups.
These complications are least severe for maximal and minimal nilpotent

orbits and so these are a good place to start.

5.4.1. Maximal and Minimal BC'D Series Orbits

For minimal nilpotent orbits, the vector partitions p and the quiver incre-
ments o = p take the forms in Table with the resulting quivers shown

in Figure [5.7}

Group | Partition p | Quiver Increments o
By>o | (22,17773) (2r —1,2)
Cr>1 | (2,1%772) (2r —1,1)
Dy>o | (22,1774 (2r —2,2)

Table 5.7.: Partition Data for BC'D Series Minimal Nilpotent Orbits

ZOZOMEO

Figure 5.7.: Quivers for BC'D Series Minimal Nilpotent Orbits. Square
(red) nodes denote flavour and round (blue) nodes denote gauge
groups. The links represent bifundamental half-hypermultiplets
with scalar fields transforming in the vector representations.

Consequently, as discussed in section quivers for B/D series minimal
nilpotent orbits have a C; = USp(2) gauge group, while those for C' series
minimal nilpotent orbits have a By = O(1) gauge group. By is a finite group,
with two elements that can be represented by the characters {1, —1}, so the

group average is provided by a Molien sum, rather than by Weyl integration
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[13]. The HyperKéhler quotient in the integrations is given by the adjoint
of the gauge group, with counting fugacity t?, as shown in Table Note
that By has no adjoint representation.

Turning to maximal nilpotent orbits, the vector partitions and quiver in-
crements take the forms in Table with the resulting quivers shown in
Figure 5.8l The maximal nilpotent orbits of BC'D groups are constructed
from quiver chains of O/USp groups with adjacent dimensions, as shown
in Figure In the case of the BC' chain, the fundamental dimension
decreases by one between adjacent nodes, whereas in a DC' chain the fun-
damental dimension decreases by alternating steps of zero or two; it is im-
portant to note the ordering, with C series nodes of a given rank, which

have higher group dimension, taking precedence over D.

Group | Partition p | Quiver Increments o
By>1 | (2r+1) (171

Cr>1 (2r) (1%7)

Dy>o | (2r—1,1) (2,12772)

Table 5.8.: Partition Data for BC'D Series Maximal Nilpotent Orbits

- o 00 0

Figure 5.8.: Quivers for BC'D Series Maximal Nilpotent Orbits. Square
(red) nodes denote flavour and round (blue) nodes denote gauge
groups. The links represent bifundamental fields transforming
in the vector representations. A maximal chain for a symplectic
group can be obtained by truncating either the BC' or DC' chain
and taking the highest rank symplectic group as the new flavour

group.

An interesting situation arises for Bj, where, by isomorphism with A,
the minimal and maximal nilpotent orbits coincide. Figure [5.8] indicates
that this orbit is given by SO(3) — USp(2) — O(1), whereas Figure [5.7| and
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the results of section [5.1] show that the minimal nilpotent orbit of Bj is
given by SO(3) —USp(2). This is another example of quiver duality, where
two different quivers lead to identical moduli spaces.

A further example of duality arises in the case of the maximal nilpotent
orbit of C,.. This can be obtained from either a BC or DC maximal chain in
Figure by truncation to make USp(2r) the flavour group. The partition
for the maximal nilpotent orbit of USp(2r) is given by the quiver increments
of ¢ = (1?") in Table as in a BC chain, however, the dimension formula
for a C series nilpotent orbit in Table shows that the dimension of moduli
space with quiver increments of o = (0,2)", corresponding to a DC' chain,
is the same.

Furthermore, these two types of maximal chain: BC' and DC', represent
special cases, and this gives rise to further quiver dualities, since we can
substitute between C,, — D,, — C,,_1 and C,, — B,,_1 — Cp,_1 links in a maz-
imal chain without affecting the moduli space. The consequence is that
the partitions for maximal nilpotent orbits can be dualised to a variety of
maximal BCD chains.

All the above dualities between maximal nilpotent orbits of BC'D groups
can be confirmed by evaluation of the moduli spaces.

The first link in a maximal BC or DC chain is Cy — By or C1 — D1 =

Ay — U(1). This corresponds to the minimal nilpotent orbit of Cy = Aj,

C

which is also the maximal nilpotent orbit mH L[sin .
glet

](tz). Using recursion
and making use of the identity this leads to some relatively simple

formulae for calculating maximal nilpotent orbits:

PE [x5. @ x5 ]

Iism s (X773 1) = ?é dpcr gSramax  (r t)

C, HS:Higgs
Cr PE [X“dj-tQ]
- I (1 - t2d) 7{ du“"PE [x[r. @ x$i.t]
deCasimirs[Cy| C,

(5.14)
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PE Xz ® xiei
Xvec. & Xvec. B,_1 max (XBT_I,t)

1
Cr Cr _ By_
gHSI:nI?;{ggs (X ’t) - f dlu’ ' 5 Z B } gHS:Higgs

. t={t,—t} PE {Xadrj.i1752

H (1 _ th) 7{ dpBr—1 Z PE XSz @ xin't]
B’!‘—l

deCasimirs[By_1] t={t,—t}

W

N =

(5.15)

- max PE XCT,®XDT¢ . max
gIC{TS:}?iggs (chl’t) - y{duDT [ T D, :60 }gl?lgzh?iggs (XDTJ)
D, PE [Xadj‘t }

- I (1 - th) f{ dpP PE XS @ x. 1]

deCasimirs[ Dy D,
(5. 16)

Cr_
PE {Xﬁfc & Xvec.lt]

s (0) = i (00

9HS:Higgs
Cr_1 9 99
o, PE [\ ]
- I (1—t2d) 7{ dp“ ' PE [0 @ XS0 ']
deCasimirs[Cr_1] Cr_y

(5.17)

As discussed in the next section, each B series gauge group, taken as
O(2r 4 1), requires both a Weyl integration over its SO(2r + 1) subgroup
and a Molien average over the Zo factor corresponding to the sign of the
determinant of the O(2r 4 1) representation matrix. Algebraically, this Zs
factor is introduced in by changing the sign of the fugacity ¢ within the
PE function.

Calculation for BC'D groups of low rank verifies that to cor-
respond to the modified Hall Littlewood functions mH L[Czinglet] (t?), as re-
quired by [£3] It may be reasoned, following from the patterns of BCD
group invariants, that this correspondence holds for BC' D maximal nilpo-
tent orbits of all rank. This is similar to the situation for A series maximal
nilpotent orbits [25].
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5.4.2. Orthogonal Gauge Groups

In order for a moduli space to be HyperKahler, the gauge groups must be
connected [7], which in turn entails that a BC'D quiver should contain O
rather than SO gauge groups.

For a B series gauge group, the sign of the determinant of an O(2r +
1) representation matrix gives a Zs factor that decouples from the vector
representation as XU06(3T+1) - +l® Xfeoc,(zrﬂ). The projection of O(2r + 1)
gauge group singlets therefore requires both the usual Weyl integration over
the SO(2r + 1) subgroup and a Molien average (see Appendix[A.2) over the
Zy factor. This factor is implemented in[5.15]as a sign change in the fugacity

t that couples to the characters in the vector representation.

Gauge Groups O(2r)

Turning to D series gauge groups, the introduction of a Zy factor has no
effect on the Molien-Weyl integrals for quivers of maximal nilpotent orbits,
calculated in the previous section, but is pertinent to the calculation of more

general BC'D nilpotent orbits.

Characters of O(2r)

Recall that an orthogonal representation matrix O obeys the defining iden-
tity O.0T = I and so |O| = £1. A complication arises when constructing
the character of an O(2r) representation matrix, since the Zo factor which
acts to change the sign of its determinant is not a multiple of the identity ma-
trix and therefore does not commute with the matrix. As a consequence, the
character of an O(2r) matrix with negative determinant, denoted O(2r)~,
does not have the same structure as the character of an SO(2r) matrix.
Indeed, it is necessary to calculate the character of an O(2r)~ matrix from
first principles. While the calculation for O(2)~ is relatively straightfor-
ward, the general result for O(2r)™ is surprising, since it involves both a
reduction in rank and a partly symplectic character.

An illuminating method of calculating the character (i.e. sum of the
eigenvalues) of a representation matrix is to find its eigenvalues, or at least
their structure, as encoded in the characteristic polynomial.

Consider the Dy = SO(2) = U(1) matrix, O = ( %/, =4 ). The

characteristic polynomial |O — M| = 0 evaluates as 1— (e +e )X\ 4+-)? = 0,
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and the eigenvalues of O follow as A = e*%

0

, corresponding, under the
substitution e — z, to the Dy character z + 1/x. If we now apply the
Zo factor ( (1’ (1) >, the characteristic polynomial becomes 1 — A\? = 0, with
eigenvalues A = +1. Thus the character for O(2)™ has zero rank and is just
1+ (—1). An equivalent treatment is given in [19].

Now consider O(4) and O(6) matrices acting on the vector representation.
The structures of their eigenvalues differ between SO and O~ matrices, since
the characteristic polynomials of SO(2r) matrices are palindromic, while
those of O(2r)~ are anti-palindromic. Their eigenvalues rearrange to the
forms in Table where we use canonical unimodular CSA coordinates
to indicate the groups from which characters are taken: {z,y,...} for D,

and {a,b,...} for C,. Importantly, this decomposition of the character of

Matrix Characteristic Polynomial Eigenvalues (\)
SO(2) I—aiA+ A =0 {x,1/x}
0(2)” 1-X2=0 {1,-1}
50(4) T—ath+aX? —a X+ A1 =0 {zy, 1/zy,z/y,y/x}
O4)” L—a A+ X3 =\t =0 {1,-1,a,1/a}
SO(6) | 1— A +a2X? = agh® +axXt — N + X0 =0 | {£,%,0,1,2 1}
0(6)~ 1—aA+a)? —aX + A’ — A6 =0 {1,-1,a,1,4 2

Table 5.9.: Characteristic Polynomials and Eigenvalues of O(2r)

an O(2r)” matrix in the vector representation generalises to higher rank

O2r)” ~ . 0(2)" Chr_
O(2T) groups, as Xve(c.r) = Xve(c.) @ Xvec.l-
Before proceeding, it is useful to verify that the use of the characters

X?e(f ) and ng,@r) for the two types of O(2r) vector representation leads to

the required invariants. The Hilbert series for symmetric and antisymmetric
invariants can be found by applying the PE or PEF, respectively, to a
character, in both cases followed by Weyl integration. The Weyl integration
is carried out using the Haar measures for the corresponding D or C groups
and we obtain the results in Table The exponents of the fugacity ¢
give the degrees of the invariants and show that both types of O(2r) vector
representation matrices are associated with symmetric and antisymmetric
invariants in the form of delta and epsilon tensors, but with a change of
sign in the antisymmetric invariants (i.e. determinants). Thus, when we

take a group average over O(2r), the antisymmetric invariants encoded in
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a Hilbert series cancel out.

Matrix | Det. XS $du PE XS, t] | §du PEF [XS.. 1]
SO(2) | +1 a+1/q s 1+ ¢
o2) | -1 1+( 1) = 11—t
SO4) | +1 oyt — 1+t
o)~ | -1 1+ (— 1)+3:+ = 1—t
SO@©) | +1 | s+ T 4o+ +2+17 L 1+1°
06)~ | -1 1+( )+x+ " vy L 116
S0(2r) | +1 S0} _ 142
o@r)~ | -1 1+ (—1) + xSe e 1t

HyperKéahler Quotients for C; — O(2r)

o(2r)~

Table 5.10.: Characters and Invariants of O(2r) Matrices

The peculiar form of character for xyec. © leads to a HyperKéahler quotient

for a quiver with C}, flavour group and O(2r)~
the usual PE|

SO(2
Xd(r)

gauge group that varies from

flavour group, where k > r for the quivers under study:

Carrying out the calculation for O(2r)~

JHIK (Xo(zr)_’t> = f du“*PE {x Sk ® X2 t]

Ch

t2]. We can find this HKQ by integrating over the Cj,

(5.18)

characters up to r = 5 gives the

results in Table Based on these, this study conjectures that the HKQ

for higher rank O(2r)~

characters is as shown.

The structure of the HKQ terms follows from the invariant tensors of the

C, flavour group fundamental, which are antisymmetric of degree 2,4, ..., 2k.

Under the PE of the bifundamental of the C, @ O(2r)~

o(2r)~

product group, these

C} invariants map the character xpee. to a series of characters of C,_;

irreps. The PEs in Table that generate this series contain terms at

t*, in addition to the usual term at t> from the anti-symmetrisation of an

orthogonal group vector representation.

129




Bifundamental gH(I?r) (XCT*l,t)

Cr>1®0(2)” /( + %)

Cr>2®@0(4)” PE[[2]¢, t"]

Ci>3 ® O(6)~ PE[[0,1],#°] PE[[2,0]5 — [0,1] 5, t"]

Cr>4 @ O(8) PEI[[0,1,0],t%] PE[[2,0,0], — [0,1,0], t"]

Ci>s ® O(10)~ PEI[0,1,0, O}C,t2] PE[[Q,O,O,O]C [0,1,0, O]C,t4]

Cr>r ®0(2r)~ | PE [[0, 1,0,...... 70}0,.,17752] PE [[2,0,0, 0 —[0,1,0...,0] ¢

Table 5.11.: HyperKahler Quotients for O(2r)~

Based on the foregoing, we can express the group averaged Weyl integra-
tion over a quiver containing a bifundamental field with C} flavour group

and O(2) gauge group, as:

Cr—0(2 c 1/ ¢.—so@ , ¢ 0(2 c
gHITS'Hz(gg)S (X k’t) = 5 (gH}fS':Higgs) (X k’t) + gHS Hz(gg)s (X g t)) (519)

where
PE [x ® Xoeolt ]
Cr—S0(2 C SO(2 vec.
gHg:HiggS) (X 1) = j{ AW PE [t?] (5.20)
SO(2)
" [t t) PE [x6 ()
- PE [xCk t] PE [xCk (—t
Cr—0 Xvec Xvec.
gHIfS':Hi(gQg)s (X0k7t) = (521)

1/(1+1¢2)
The vector character of D1 = SO(2) is represented as x + 1/x and the
unitary Haar measure 1/x is used, when calculating The action of the
Zo factor encoded in is trivial for the maximal chain C; — Dy, but has
an impact on the Hilbert series for quivers containing non-maximal chains,
from Cy — Dy upwards.

The corresponding Weyl integral for a C}, flavour group and O(2r) gauge
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group where k > r > 1 is:

PE |:Xvec ® xfeoc(%)t}
PE |:XSQ(2T)t2:|

Cp—0 c 1 D,
gH]fS' Hz(ggg (X g t) 2 %du

D'r ad].
_|_ 1 f d C 1 PE [ 'UEC ® X'UEC 1ti| PE |: Ucekc t] PE |: 'UGC (_t)]
_ ur- _
O(2r
207“71 gH(K ) (Xcrflat)

(5.22)
where gIO{(I?nr is as in Table [5.11} These group averaging procedures, which

do not affect the dimensions of a moduli space, but may affect its structure,

are included within the evaluation of general BC' D quivers in the following.

5.4.3. Evaluation of BC'D Series Quivers

Using the averaging procedures over orthogonal gauge groups, as elaborated
in section we can calculate the Hilbert series of a BC'D quiver from
the general formula, adapted from

SO/USp(No) (. SO/USp(No) gSP/SO(Nl)Qa
9HS: Higgs (X pito ) ) 2#0 Z % d’u JUSp(N2)®...
USp/O(N1)®
O/USp(N2)®...
H PE |:X1?e(cN -1 @ Jap(iy } PE [erip(Nl 2 ®Xvoe(c].\]i)t:|
x X
UsS (N) O(N;) O(N;) P
gauge(s) PE [ P tQ} saugeli) GO (Xadj, 7t)
=USp -0
(5.23)

where #0 equals the number of orthogonal gauge groups and the summation
indicates that all possible combinations of SO/O~ gauge group characters
should be evaluated. As before, the calculations can be arranged in a re-
cursive manner, inducing a nilpotent orbit from the orbits defined by the

subchains in a quiver.

5.4.4. Analysis of BCD Series Moduli Spaces

Once the Hilbert series for a BC'D quiver has been calculated, it can be
restated in a similar manner to the A series quivers. The results for BC'D
groups of rank up to 4 are set out in Tables [5.12] to
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It is noteworthy that, for all the BC'D nilpotent orbit partitions, this
construction yields moduli spaces that (i) have the correct dimensions, (ii)
are invariant under the accidental isomorphisms, (iii) have character expan-
sions that are free of singlets (i.e. satisfy the vacuum conditions) and (iv)
decompose into finite sums of modified Hall Littlewood polynomials. The
inclusion relations between the moduli spaces can be read off either from the
character HWGs or from the subgroup relations amongst the quivers. These
inclusion relations confirm that all the lower dimensioned moduli spaces are
contained in both the maximal and sub-regular nilpotent orbits and, more-
over, are consistent with the standard Hasse diagrams of nilpotent orbits in
the Literature [33].

Drawing on the analysis in Tables to the structure and repre-
sentation content of the moduli spaces for certain canonical nilpotent orbits
can be generalised to higher rank groups, as set out in Tables[5.18] [5.19]and
520 In all cases:

1. The minimal nilpotent orbit contains irreps whose highest weight

Dynkin labels are integer multiples of the adjoint representation.

2. The supra-minimal nilpotent orbit has dimension two more than the
minimal. For For B/D groups, its irreps are generated by the adjoint
representation and the graviton. For the C series, the structure of
nilpotent orbits further inside the body of the Hasse diagram can be

generalised.

3. The sub-regular nilpotent orbit has dimension two less than the maxi-
mal. Its mH L decomposition differs from the maximal nilpotent orbit

by mHLﬁ’/O?“]t% or mHLG | o 44,

4. The maximal orbit is a complete intersection [25].

Interestingly, the character HWGs for a O/USp quiver with only two
nodes can also be generalised to any rank. The patterns of HWG generators
for 2-node quivers with SO flavour groups follow from the antisymmetric
invariants of even degree of U Sp fundamentals; the patterns for 2-node quiv-
ers with USp flavour groups follow from the invariants of mixed symmetry
of O vectors [28, (16}, 14]. While there are several similarities between the

forms of these HWGs for B,, and D,, flavour groups, there are differences in
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relation to the appearance of spinors, as can be seen from Tables and
.20

5.4.5. Non-Palindromic Nilpotent Orbits

Almost all the moduli spaces are normal with palindromic Hilbert series
and those that are not fall into two categories.

In the case of Dy, groups, the Higgs branch construction does not yield
palindromic moduli spaces for nilpotent orbits associated with pairs of
spinor partitions. Specifically, as can be seen from appendix [B.4] the vector
partitions {(22), (2%), (4?)} all correspond to pairs of orbits distinguished by
their spinor partitions. While we can identify palindromic moduli spaces
associated with each of the spinors, the unions of these spaces are non-
palindromic. Since the Higgs branch construction, which is based on fields
transforming in the vector representation, does not distinguish between the
spinors, it naturally yields these unions of spinor moduli spaces. In the case
of Do, the palindromic 2 dimensional moduli spaces are provided by the 2
dimensional nilpotent orbits of the Weyl spinors, analysed in section [5.3
In the case of D4, we can obtain the 12 and 20 dimensional palindromic
moduli spaces by applying triality to the orbits from the vector partitions
{3,1°} and {5,13}. These algebraic relations between these moduli spaces
are described in [5.24] [5.25| and [5.26], and hold equally well for all the types of
moduli space description: Hilbert series, character HWG and mH L HWG.

9058 = 903) © 925 + 90k ® 93 — 93k (5.24)

D

D. D D
9(2?1) = 9(3?15) miems T 9(3?15) miemy 9(2%714) (5.25)
h1<hs hi1hy
D D. D D
9(43) = 9(5?13) miems T 9(5?13) miems 9(33,12) (5.26)
h1<:>h3 h1<$h4

These non-palindromic moduli spaces are unions of two palindromic mod-
uli spaces (i.e. their sum less their intersection, given by the palindromic
nilpotent orbit of lower dimension). The vector partitions of Ds, spinor
pair orbits are always very even, as noted in The palindromic spinor
moduli spaces can also be obtained from the Coulomb branch or NOL con-

structions, to be discussed in later Chapters.
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The remaining non-palindromic moduli spaces of BC'D groups up to rank
4 are generated by the quivers B3 — Cy — By, By — C3 — By — C; — By and
C4— Dy — (1. We can identify relationships between these non-palindromic
quivers and the non-palindromic spinor pair quivers of Dy, discussed above.

Specifically,

1. the quivers B3 — Cy — By and By — C3 — By — C| — By are related
to the non-palindromic D4 — Cy and Dg — C'3, under character maps
between vector representations Dy — B3 ® By and Dg — By ® Bj,

and

2. Cy — Dy — (' contains the non-palindromic Dy — C as a subchain.

Both categories of non-normal nilpotent orbit are related to the orbits
below in their Hasse diagrams by particular transitions between partitions
[6], as summarised in section [£.4.7 The Dy and D, examples can be de-
scribed by the Kraft-Procesi degenerations Ay U Ay or As U Ag within Dy
or Dy subalgebras. In the D5 example in section [£.4.7], the non-palindromic
nature of the orbit follows from the A; U A; Kraft-Procesi degeneration of
a Dy subalgebra within the partition (32,22). The other BC'D non-normal
orbits can be analysed in a similar manner. Non-normal nilpotent orbits all
induce families of non-normal orbits of higher rank and so non-palindromic
features occur throughout higher rank BC'D groups.

It can be noted that, while many of the character HWGs calculated for
BCD groups are palindromic, there is no bijective correspondence between
the palindromy of HWGs and Hilbert series. Thus, some non-normal orbits
with Characteristic height 2 or 3, have character HWGs that are complete
intersections, and some normal orbits have character HWGs that are non-
palindromic (for example, C3[210],C4[2100],C4[2010]). The mHL HWGs

are generally not palindromic.

5.4.6. Dualities of BC'D Series Quivers

The pattern of dualities between BC'D quivers differs from that between
A quivers due to the alternation of gauge group types. Consider the gen-
eral case of a USp — O — USp sub-chain described by the partition data
(...,04,0it1,...). It follows from the dimension formulae and that
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the mapping,

(..y0i,0041,--2) = (o 0in1,0, . ) = (oo — Lo+ 1,..),
(5.27)
preserves the dimension of a Hilbert series, while switching between USp —
O(even) — USp and USp — O(odd) — USp, or vice versa. The resulting se-
quence is not a well ordered partition and detailed calculations are required
to see if the moduli spaces are the same and the quivers are dual to each
other.

In the case of (0;,0i41) = (1,1) — (2,0), which arises between maximal
sub-chains, C,.B,_1C,_1 and C,D,C,_1, the duality holds, as discussed in
section Some further examples where calculation confirms that the
duality holds are shown in Table

Quiver Partition Sequence Dual
o o’ Quiver
C1— By (1,1) (0,2) C1— D
y Cy— Dy | 22 | 13 | Cy — By \
Cs— B (3,3) (2,4) Cs — Do
Cs — Dy —C (2,2,2) (1,3,2) Cs — By — ()
C3—Dy—C1 — By (2, , ,1) (1,3,0,2) Cs— By —C1— By

Table 5.21.: Examples of Dual BC'D Quivers

An example where the duality does not hold is given by Cs By, which is
related to C2D2 by the dimension shift (0;,0541) = (3,1) — (0,4). Cal-
culation of further examples indicates that the shifted quiver has the same
Higgs branch moduli space, if the elements of the partition ¢ are shifted
by a single unit, but not if the shift is greater. (This can be viewed as an
analogue of the “not very unbalanced” rule that applies for unitary quivers.)
The constraint on shifts requires that a quiver should contain some equally
spaced pairs of nodes, and, consequently, this dimension shifting duality

only applies between sub-chains of the form:

...—USp(2N) — O(2N — k) — USp(2N — 2k) — ...
“ (5.28)
...—USp(2N) —O(2N +1—k) — USp(2N —2k) — . ..
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This duality allows many, but not all, BCD quivers for nilpotent orbits
to be restated either as a BC or as a DC chain, including all special orbits
up to rank 5 (and perhaps generally). This facilitates brane constructions
using orientifolds [20], since the restriction of gauge theories to BC' or DC
chains avoids QFT parity anomalies.

Similarly to the case of the A series, dimensional calculations using[5.9)and
indicate that Higgs branch dimensions of BC'D quivers are unaffected
by subchain additions of the form Cy — Cy— Dy —C}, or Cy, — Cy— B, —Cl.
Evaluation of Hilbert series, verifies that the Higgs branch moduli spaces
themselves are also unaffected by this addition, providing the subchains are
added within maximal quiver sub-chains. As examples:

)
but (5.29)

Cy—By Co—Do—C2—Bg
gHiggs 7& gHiggs .

Also, as noted in section the moduli spaces of mazimal DC chains
with O(N) and SO(N) gauge groups are the same.

The combination of all these dualities entails that many ordered linear
O/U Sp quivers have the same Higgs branches as one of the BC'D nilpotent
orbit quivers. A more comprehensive analysis of such dualities could be an

interesting area of further study.
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6. Coulomb Branch Constructions
of Nilpotent Orbits

6.1. Monopole Formula

The monopole formula, introduced in [20] and refined in [21I], provides a
systematic method for the construction of the Coulomb branches of partic-
ular SUSY quiver theories, being N' = 4 superconformal gauge theories in
2+1 dimensions. The Coulomb branches of these theories are HyperKahler
manifolds. The formula draws upon a lattice of monopole charges, often
referred to as a GNO lattice [74], that is applied to a linked system of gauge
and flavour nodes defined by a quiver diagram.

Each gauge node carries adjoint valued fields from the vector multiplet
and the links between nodes correspond to complex scalars within the hy-
permultiplets of the theory. The monopole formula generates the Coulomb
branch of the quiver by projecting monopole charge configurations from the
GNO lattice into the root space lattice of GG, according to the monopole
flux over each gauge node, under a grading determined by the conformal
dimension of the overall monopole flux.

The conformal dimension (equivalent to R-charge or the highest weight
of the SU(2)gr global symmetry) of a monopole flux is given by applying

the following general schema [20), 21] to the quiver diagram:

A =3 Y Yle@l— Y la@)] (61)

i=1 p;ER; acd

contribution of N=4 contribution of N=4
hyper multiplets vector multiplets

The positive R-charge contribution in the first term is from the matter
fields that link adjacent nodes in the quiver diagram. These are bifunda-

mental chiral operators within the N' = 4 hypermultiplets. The second
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term describes the negative R-charge contribution from the A/ = 4 vector
multiplets; this arises due to symmetry breaking, whenever the monopole
flux ¢ over a gauge node contains a number of different charges.

The focus here is on Coulomb branch constructions where the gauge
groups are unitary, so it is useful to specialise to a unitary monopole for-
mula, as distinct from versions that have been proposed using other gauge
groups [21].

The relevant quivers can be described by gauge nodes indexed by ¢, where
i runs from 1 to r, with each U(NN;) gauge node carrying a monopole flux q; =
(gi1s---,qiN,) comprising one or more monopole charges g; ;. The fluxes
are assigned the collective coordinate ¢ = (q1,...,q,). A PqU(N) = HP;{(N")
symmetry factor, explained below, is associated to the gauge nodés. The
monopole flux over the gauge nodes is counted by the fugacity z = (z1,..., z;).

The gauge nodes may also be attached to some number f of flavour nodes,
indexed by j, where j runs from 1 to f, with each flavour node having N;
flavours. The flavour nodes may also carry fixed external charges described
by the collective coordinate A = (A1,...,Ay), where \j = (Aj1,.. ., AjN;)-

Conformal dimension A(g, A) is tracked using the counting fugacity t¢.
With these definitions, the unitary monopole formula is given by the schema,
refined from [21]:

9Coulomb ()‘7 = t) = Z PqU(N) (t) Zngb()\)tA(q,)\). (62)
q

The notation in [6.2] requires some further explication:

1. The limits of summation for the monopole charges are co > ¢;1 >

ceoGij > ...qiN, > —oofori=1,...r. (Inthe case of U(1) symmetry

it can be convenient to drop the redundant second index on g; ;.)

2. The monomial z? combines the monopole fluxes ¢; into total charges
Ny
r Z:l ij
for each z; and is expanded as 29 = [] 2]~
i=1
3. The term PqU ™) encodes the degrees d; j of the Casimirs of the residual
U(N) symmetries that remain at the gauge nodes under a monopole

flux q.
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r N; )\z] ‘Zz

PqU(N):H(l_td” HH H 1_tk (6.3)

2, i=175=1 k=1

The determination of residual symmetries follows [21]. We construct

a partition of NV; for each node, which counts how many of the charges
N;

qi,; are equal, such that A(Qz) = ()\i,la e 7)‘i,Ni)’ where Z >\i,j = Nl

Jj=1
and A\;; > A;jy1 > 0. The non-zero terms J;; in the partition

give the ranks of the residual U(N) symmetries associated with each
node, so that it is a straightforward matter to compound the terms in
the degrees of Casimirs, recalling that a U(N) group has Casimirs
of degrees 1 through N. For example, if ¢;; = ¢; for all j,k,
then {d;1,...din,} = {1,...,N;} and if ¢; ; # q;x for all j, k, then
{di1,...din,}={1,...,1}.

4. The conformal dimension A (g, \) associated with each monopole flux

q against a background of external charges A is given by the formula:

r

j>i mmn j>i mmn
gauge - gauge hypers gauge - flavour hypers
r
- E E |Qi,m - Qi,n|a
=1 m>n
gauge vplets

(6.4)
where (i) the summations are taken over all the monopole charges in
the flux ¢ and (ii) the linking pattern between nodes is defined by
the A;; off-diagonal matrix terms, which are only non-zero for linked
nodes [1

5. The external charge factor ¢(\) is zero for nilpotent orbit moduli
spaces. It is relevant for T'(SU(IN)) theories discussed in section

It is instructive to compare the explicit formula with the schema
Importantly, [6.4] specifies a number of matters precisely, including the di-

mensional measures |p;(q)| and |a(q)|, the linking matrices A;; and the

'For theories with simply laced quivers of ADE type, for i # j, A;; = 0 or —1
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pattern of summations over the monopole fluxes. This version of the uni-
tary monopole formula can be applied to a wide variety of quivers to obtain
Coulomb branch moduli spaces.

It is remarkable that with a little further specialisation, the unitary
monopole formula [6.2] together with and exactly generates the
moduli spaces of certain nilpotent orbits of both Classical and Exceptional
groups. This specialisation involves mapping the gauge nodes of a quiver
to the Dynkin diagram of the chosen group G, taking the z as fugacities
for the simple roots of G’ and setting the linking factors A;; to the Cartan
matrix of G, extended to incorporate any flavour nodes. Various choices are
possible for the U(N) charges on the gauge nodes and the number and link-
ing of flavour nodes, providing that the quiver diagrams remain balanced, as
explained in section [6.1.1l The moduli spaces of these theories live in the
root space of G and conformal dimension takes integer values.

Based on early work in [I], it was shown in [21I] how the unitary monopole
formula can be combined with quivers based on the affine Dynkin diagrams
of simply laced ADFE groups, and with their U(N) gauge groups defined by
Coexter labels, to construct RSIMS or minimal nilpotent orbits. In [22] this
program was extended to non-simply laced BCFG groups, by working with
dual Coexter labels and modifying the linking factors to reflect different root
lengths. In [29] it was shown that quivers based on twisted affine Dynkin
diagrams and/or based on the Characteristics of nilpotent orbits can be
used to construct the moduli spaces of near to minimal nilpotent orbits of
Classical groups. One of the findings of this study is that such constructions
extend to near to minimal nilpotent orbits of Exceptional groups. These
matters are summarised in the sections that follow.

There are, however, a number of aspects that are pertinent to all the
monopole constructions of nilpotent orbit moduli spaces and it is useful to

clarify these before proceeding.

6.1.1. Quiver Balance

Since the conformal dimension formula offsets positive half-integer R-charge
shifts from hypermultiplets, by negative integer R-charge shifts from vector
multiplets, this leads to a situation where, depending on the quiver specifi-

cation, conformal dimension could be positive or negative and half-integer
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as well as integer. Clearly, negative conformal dimensions would not be
consistent with ¢ acting as a well-formed counting fugacity.

The desirability of such general quivers is discussed from a field theory
perspective in [20]; broadly speaking, good theories are defined therein as
those with non-negative integer conformal dimension, ugly theories are those
with non-negative half integer conformal dimension and bad theories are
those with zero or negative conformal dimensions. Such potential problems
can be avoided by requiring that a quiver should observe constraints, which
can be expressed effectively in terms of balance.

The concept of balance, introduced in [20] for simply laced groups, can
be adapted to reflect the different root lengths encoded in the off-diagonal
terms of the Cartan matrix for a non-simply laced group. After extending
the Cartan matrix as flij to include links to any flavour nodes, a quiver can

be defined as balanced, if the U(N) charge on each gauge node i obeys the

1 ~
N; = 5 Z ‘Aij
. { adjacent
nodes

rule:

N; (6.5)

where the linking factors |A;;| are taken from the extended Cartan matrix
and the N; include the ranks of any flavour nodes in addition to those of
gauge nodes. Flavour nodes are not required to be balanced.

Since, by definition, A;; = 2 for each gauge node, [6.5] can be rearranged

to define balance for each node 7 as:
Balance(i) = — Z AyNj, (6.6)
J

with the quiver balance condition becoming, Balance(i) = 0, for all gauge
nodes 1.

In the case of an affine Dynkin diagram, the vector NN; of ranks of unitary
groups equals the vector formed by the dual Coxeter labels; these form the
kernel of the affine Cartan matrix, and so Balance(i) = 0 for all nodes,
including the flavour nodes. This corresponds to the degeneracy of an affine
Cartan matrix, which permits branching to other groups, as discussed in
appendix [A.3]

Now consider a monopole flux ¢ with a single non-zero monopole charge

gin = 1. In the absence of external charges A, the conformal dimension is
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given by:
1 ~
A(qu — 1) = 5 Z ‘Al]

. dj
se{ Pdeene (6.7)

1
= §Balance(i) + 1

When a quiver is balanced, any unit monopole gauge charge has a conformal
dimension of 1. When a quiver is minimally unbalanced, with one or more
nodes having Balance(i) = —1, at least one monopole has a conformal
dimension of 1/2. When a quiver is very unbalanced, with one or more nodes
having Balance(i) < —2, at least one monopole has a conformal dimension
that is zero or negative. The quivers whose Coulomb branches correspond
to the moduli spaces of nilpotent orbits all have integer conformal dimension
and are balanced.

A balanced quiver diagram, whose flavour nodes are each simply linked
to a single gauge node, has flavour node dimensions and gauge node dimen-
sions that are mediated by the regular Cartan matrix A of G. Define the
gauge node ranks by the vector N, = (Ny,,..., NNy, ) and the flavour node
dimensions by Ny = (Ny,,..., Ny, ), where both vectors are ordered by the
Dynkin diagram of G, with Ny having zero entries for gauge nodes that do
not have a flavour node attached. It then follows from that, for such a

balanced quiver:

N;=A-N, (6.8)

Almost all the quivers for Coulomb branch constructions of nilpotent orbit

moduli spaces are of this type.

6.1.2. Coulomb Branch Dimension

Consider the unrefined Hilbert series gcouioms (1,t), which is obtained by
setting the z fugacities in[6.2]to unity. Since the number of poles contributed
by each U(NV;) gauge group depends only on rank N;, and is invariant under
gauge group breaking by the monopole flux ¢, the dimension of this moduli

space can be expanded as:

+ H(lit) : (6.9)

2y

Z +A(9)

q

|gHS:Coulomb(1v 7§)| =
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The dimension of each of the RHS terms is determined by the sum of the
ranks of the U(NV;) gauge groups. Hence, the dimension of the Coulomb
branch is equal to twice the sum of the gauge group ranks IV;.

So, in order to find a Coulomb branch construction for a given nilpotent
orbit, based on the unitary monopole formula, it is necessary to identify a
balanced quiver with U(N) gauge group ranks summing to half the (com-
plex) dimension of the orbit. However, not all balanced quivers correspond
to nilpotent orbits. There are several methods for finding those that do, in-
cluding from affine Dynkin diagrams, from nilpotent orbit Characteristics,

and, in the case of the A series, from 3d mirror symmetry.

6.2. Minimal Nilpotent Orbits

The quiver for a Coulomb branch construction of a minimal nilpotent or-
bit or RSIMS of G, is specified by the extended (untwisted affine) Dynkin
diagram of G, as shown in Figures and

The zero central charge of the affine Lie algebra corresponds to an overall
gauge invariance condition on the field combinations. Since the extra affine
root and its Dynkin label are redundant, by virtue of the degeneracy of
the affine Cartan matrix, they can be gauged away. Thus, the affine root,
labelled by ¢ = 0, can be treated as a flavour node and assigned a charge
qgo = Ao of zero; however, the affine node still plays a role in the gauge-
flavour hyper contribution to conformal dimension, in accordance with the
linking pattern of the extended Cartan matrix.

The quiver diagrams follow directly from the extended Dynkin diagrams
by setting the affine node to a single flavour node. The dual Coxeter labels
a; determine the ranks of the U(N;) gauge fields. Applying the unitary
monopole formulae and [6.4] gives a Coulomb branch construction of
the RSIMS for any Classical or Exceptional group. There are other possible
gauge choices, as will be discussed, but these choices all construct the same
moduli space.

The quivers are balanced, in accordance with and so have integer
conformal dimension. Their Coulomb branch has dimension equal to twice
the sum of the dual Coxeter labels, consistent with the dimensions of RSIMS
calculated in [3.3.41

The construction of an RSIMS requires the collection of the root space
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monomials z9, into class functions of G, at the correct positive and neg-
ative integer powers and multiplicities; however, collections of root space
monomials do not necessarily form complete representations. It is an inter-
esting question, therefore, to examine how the Weyl group symmetry of G
is realised by the monopole formula.

For the A and C series, and their isomorphisms, where the gauge nodes
are all U(1), Weyl reflections of the simple roots z; are in one to one corre-
spondence with Weyl reflections of the monopole charges ¢;. In these cases it
is straightforward to show that conformal dimension A(gq) is Weyl invariant.
Conformal dimension thus effects a foliation of the root space monomials 24
into sets of dominant weights and orbits that have the same R-charge.

In the case of other Classical and Exceptional series, however, some U (N;)
gauge groups are of rank greater than one, and Weyl group reflections
of simple roots z; do not map uniquely to linear transformations of the
monopole charges ¢; ;. This makes it difficult to establish the invariance
of the monopole formula under the Weyl group of G, other than by full
calculation of the moduli space. Nonetheless, it appears that the restriction
imposed by building each quiver upon a Dynkin diagram of G is sufficient
to ensure that the moduli space obtained has the necessary Weyl group
symmetries and is a class function of G.

At this time, a proof of the equality between these Coulomb branch mod-
uli spaces and the RSIMS of G, for arbitrary rank, is not known. However,
the equivalence can in principle be verified analytically on on a case by case
basis, and has been carried out in [21) 22 29] for low rank Classical and
Exceptional groups. Checks have also been carried out based on unrefined
Hilbert series and the first few terms of the Taylor expansions of the refined

Hilbert series of these Coulomb branch moduli spaces.

6.2.1. Simply Laced Groups

This section sets out details of the Coulomb branch constructions of refined
HS for ADE series RSIMS from the unitary monopole formula given by
and The treatment is largely taken from [29] and [22].
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A Series

The formal equivalence of Coulomb branch constructions for A; and As
RSIMS to those based on character generating functions is proved below.
The root structure of As is used to illustrate the Weyl group invariance of
conformal dimension for A series groups.

The monopole construction for A series RSIMS is based on the extended
Cartan matrix, defined in accordance with[A-31] and the dual Coxeter labels
of the simple roots (shown as a column vector), where the affine root is

labelled as zp:

21 2 -1 ... 0 0 -1]1
29 -1 2 ... 0 0 0 |1
: (6.10)
zr—1 | 0O o ... 2 -1 0|1
Zr 0 o ... -1 2 -—-1]1
20 -1 0 ... 0 -1 2|1
For Ay, the extended Cartan matrix and dual Coxeter labels are:
2 =211
“ . (6.11)
20| -2 2 |1

Applying and we obtain the monopole formula for an A series
RSIMS:

[e.9]

1
Ay _ VAN
9u's:rsims (%) = =7 > 27U 2p® 20 12D, (6.12)
q1y.--ygr——00

where
1 r—1
Afg) = B <|Q1\ + Z @i — qiv1] + |Qr|) . (6.13)
i=1
The constructions for A; and Ao can be rearranged into the character gen-
erating functions for RSIMS. For A;, where we are working with simple
2

roots expressed as z; in terms of root space fugacities, rather than as x“ in
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terms of weight space fugacities, we have:

Z 2‘11t‘f11

gHS rsias(%:t)

q1=—00
1 (o]
— lt‘h + qlt‘h —
o (XS oo
Q ol
1—¢?

T -0 -—zt) (A —t/2)
= (1-¢*) PE[22]¢].

This yields the minimal nilpotent orbit character generating function for A;
whose Higgs branch calculation is given in Table E|
For As, the rearrangement, which follows the boundaries of Weyl cham-

bers, is more intricate:

1 >, )
A 1 _
9rs:rsims (% t) = T Z 21 2223 (arl+lai =gzl +laa])
(1-1) q1,q2=—00
o0 q2 _
S (PP b Py P 4 2Rl 4 2 B2y ) b2
Q2=(C)>g1—0
= (PRl 4 2y Py )t
— 1 q1=0
2 00
(1-1) - Zo( Vb T2l 4 )t
ql—
+ Z Z ( —q1 q2+zt;(1 _q2)t(q1+q2)+1
q1=0 g2=0

Q- -ttt - (P 28+t (a2 +2)
(L= zt) (1= 20t) (1= zy20t) (1 — 27 1) (1 — 257 1) (1— 27 2 1) (1 — 1)
= (1= —t*+1%)[0,0] — (£* — 263 + ¢*) [1,1]) PE[[1,1] 1.

(6.15)

This matches the minimal nilpotent orbit character generating function for
Ag, as given in Table (up to counting conventions).

Some insight into the complexities of the monopole formula can be ob-

tained by reversing the above procedure and seeking to derive the monopole

formula from the Weyl character generating function2.7] For A; the deriva-

2Note that the Coulomb branch conventionally counts R-charge by orders of ¢ while the
Higgs branch counts by orders of 2.
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tion proceeds as below:

Ay _ 1 1
N (S (e N (R T

o oo 0o oo
:Zztazb—a+zztaza—b

a=0 b=0 a=0 b=0

oo o0 o o0
=N SRRC A S DR

4=—00 b=max(0,—q) q=—00 b=max(0,q)

1 s (6.16)
- max(0,—q)+q max(0,9)—q\ .9
=— > (t S+t )z

g—

1 [oe) o
— lal ,q q
=1 ( Z [ARFAE S Z z>

q=—00 g=—00

1 o

_ t|‘1| q.
1—t¢ i
q=—00

The key steps in the derivation include (i) Taylor expansion of the sum-
mand associated with each long root, (ii) rearrangement of the limits of
summation, such that the summands share the same simple root fugacities
2% and the charges ¢ range from —oco to oo, (iii) implementation of sums
with the respect to the charges that are not carried by the simple roots and
(iv) simplification of the resulting piecewise functions. When boiling down
the latter it is useful to draw on identities that follow from the complex
unimodular nature of the root space coordinates.

While we should in principle be able to find such derivations for higher
rank groups, the simplification of the piecewise functions becomes increas-

ingly non-trivial.
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Thus, for SU(3), we have:

A 1
Irsirsims () = ) < (1 1

(o) (e o) [e o)
— Z Z Z Z Ztlh Zthb+c+q1

—o0 c=max(0,—¢g2) b=max(0,—c—q1)

1 oo o o
= L1 ,92 max(0,c+q1)
Y T S S e
Weyl g1 =—00 g2=—00 c=max(0,—q2)
[e @) oo
:( ) Z Z ZZCHZ(&tmax(O ,a+q1,a+q1—q2)
Weyl g1 =—00 gg=—00 a=0
1 o0 o0
=0 o So0> e (pmex©ana) — (1~ tmin (0, max (a1, 91 — 2)))
Weyl g1 =—00 g2g=—00
1 oo o
= TEnE Z Z z;llz‘IZtmaX(O»m q1—4q2)

(6.17)

where we have used an identity, which is valid for unimodular root fugacities:

Yo Y zfmin(0,max (g1, q1 — ¢2)) = 0. (6.18)

q1=—00 g2=—00

We continue by carrying out the Weyl reflections to obtain:

g?[i@:RSIMS(ZVt) -7 2 Z Z qu Q2 tmaX(O, q1,92—q1) +tm&X(07q17q1 q2)

1=—00 g2=

+ tmaX(Oﬁqzﬁfh) + tmax(oﬁqzyfh*%) + $max(0,g2,92—q1) + tmaX(quzyfh))

=1 Z Z 2015 (Htmu+t|q2|+t|q1—q2\+t2|q1 wl+3lal+3 |q2|)

q1=—00 q2=—00

— Z Z (11 tJ2 (tQ\qlfqzlJr Llgil+3 |q2\>
(1—1) ’

q1=—00 q2=

(6.19)
where we have rearranged the parts of the six piecewise functions and used
identities involving the unimodular fugacities z; to eliminate five of the

resulting functions:

i 2111: _ Z Z quzq2t|q1—Q2| (6.20)
Q1 =—00

q1=—00 g2=—00
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D Series

The Coulomb branch construction for D series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

2 |2 -1 ... 0 0o o0 o0]1
» |-1 2 ... 0 0 0 -1]|2
o 00 2 -1 -1 0 |2} (6.21)
Z_1| 00 ~1 0|1
Z | 0 0 ~1 0 |1
o | 0 -1 0 2 |1

Applying[6.2} [6.3] and [6.4] we obtain the equation for a D,>4 series RSIMS:

& o0
g}?ITS':RSIMS(Z, t) = Z Z Zlql Z2¢12,1+Q2,2 o Zr—QqT_2’1+qT_2’2Z’T_lqr—lzrqr
q1,Gr—1,qr=—00 4 1>dj2>—00
r—2>5>2
x Py O (1) 13,
(6.22)
where
-2
PU(N) (t) _ 1 r g1 =q;2: 1/(1 _ t2) (6 23)
j=2 5,1 7 45,2 ¢
and
2 2 r—3 2
1 Yol + D0 |l —qeil + >0 D0 laki — ket
Alg)==| = =1 k=2i,j=1
2 2 5
+7§1 |@r—2,i — qr—1| + ;1 \Gr—2,i — G| (6.24)

r—2
- Z |qk,1 — 2|
k=2

The construction can, in principle, be rearranged into a character generating
function similar to Table

Interestingly, the gauge choice gy = 0 has alternatives and, indeed, any
one of the monopole charges can be defined to be zero, providing (i) the

limits and summand are modified to include both go and zp, and (ii) care
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is taken over the symmetry factors, since the node with the zero monopole
charge carries the Casimirs of SU(N) rather than U(N). For star shaped
quivers, such as Dy, a particularly convenient choice of gauge is g22 = 0,
and this leads directly to a decomposition into a symmetric sum over all the

representations of four T(SU(2)) quiver theories, discussed in Chapter

E Series

The Coulomb branch construction for EFg RSIMS is based on the extended

Cartan matrix and dual Coxeter labels:

2|2 -1 0 0 0 0 0]1
“»|-1 2 -1 0 0 0 -1]|2
|0 -1 2 -1 0 -1 3
4|0 0 -1 2 -1 0 2 (6.25)
[0 0 0 -1 2 1
x| 0 0 -1 0 0 2 -—1]|2
%[0 0 0 0 0 -1 2|1

Applying the prescription set out in[6.2] [6.3]and [6.4] we obtain the monopole

equation for an Fjg instanton:

oo o0 o

E6 o + q + b + 9 9

gHS:RSIMS(Z7t) — E E E ZIQ122Q2,1 QQ,223%,1 g3,2143,3
q1,g5=—00 4 124d;2>—0 31>43,2>G3,3>—00
j=2,4,6
+ + E A
X Z4Q4,1 Q4,2Z5Q5ZGQG,1 q6,2 PU(6N) (q,t)t (Q)’
(6.26)
where
FEg _ 1
PU(N) (q,t) =

1-6)°1—2)* (1 -3
XIflgs1# as2Vas1 #assVase #ass (1+6+ 752)]
XIflgz1 #a32/Na31 7 @33Nq32 7 q33), (1+1)]

X H Iflgin # qj2, (1 +1)]

§j=2,4,6

(6.27)
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and

1=2,7=3
Z|Q1 @i+ D> D ey - QIHH-ZMM
k=2,4,6 i,j=1
Z Z ki — Q| — Z |93, — G3,51-
k=2,4,6 i>5>1 i>j>1

(6.28)

The RSIMS constructions for F7 and Eg groups follow a similar pattern to
Es.

Again, the gauge choice ¢y = 0 has alternatives. For star shaped quivers,

such as Ejg, a convenient choice of gauge is g3 3 = 0, and this leads directly

to a decomposition into a symmetric sum over all the representations of

three T'(SU(3)) quiver theories, discussed in Chapter
6.2.2. Non-Simply Laced Groups

B Series

The Coulomb branch construction for B series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

21 2 -1 ... 0 0 0 |1

o | -1 2 ... 0 0 -—1]2
2| (6.29)

1| 00 2 -2 0 |2

Zr 0 -1 1

20 —1 0 1

Applying and gives the monopole formula for the RSIMS of
Byo:

By _ § : § : Q. .q2,1+q2,2 Gr—11+qr-1,2 ., q
gHS:RSIMS(Z7t) - 217 %2 RN " Zpt"
q1,4r=—00 4129522 —00
r—1>j>2

B A
PU(N)( t)t (Q)’

(6.30)
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where
T

1:[: Iflgi1 # aj2, (1+1)]

70 = (6.31)
PU(N) (g,t) = (1—4)(1— tz)er
and
1 2 r—2 2
Aq) = 3 Z (g1 — q2.i| + lazil + 12¢r—1 — ar]) + Z Z G0s — ke
= k=2i,j—1
r—1
=30 lawi — -
k=2 i>j
(6.32)

This Coulomb branch construction for By can be rearranged into the Bs
RSIMS in Table 5.3t

1 oo

B o
gH?S:Coulamb(Z’t) = W Z 21q122‘12t2(|2!h q2|+|qz()
q1,42=—00
0 2q1
Z,O 20 (Zlql Z2q2 + Zl_ql 22_q2) ta
QIfoggf -
+ >0 > (1T m® 4 2 TNy TR) tl@2—aq1)
q1=0q2=2q1
o0
— 3 (2 W20 4 2y Ty 20r) g
. 1 450 -
B 1—t?| * 20 20 (219029792 + 2~ T zy®) t(@1+02)
qg 2=
— > (2B F 2 )t
QEO
— Y (224 2 ) 1?
q2=0
+1
L—2 =15+ [0,0]
-2t +45  [0,2]
= | -2+ +¢5—16 [1,00 | PE[0,2]1].
-2t v 15 [1,2]

(6.33)
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The monopole formula for the By RSIMS can also be obtained from the
character generating function [2.12] This permits us to take advantage of
the invariance of the highest root of Bs under the Weyl reflections of an
Ay subgroup and to work with the Wpg, 4, quotient group. This quotient
group has dimension |Wp,,4,| = 4 and transforms amongst the long roots
of By which are {z1, 21202, 2171, 21 " 12272}. We obtain:

1

9us.rsims(%t) = WE;A (1 —t21) (1 =1/21) (1 = 22) (1 = 1/2122)

[o. Sl olue O lNe o}

DD HHHWEREES

Wiy a, @=0b=0 c=0 d=

=0
o (o9} oo [e.¢]
2DV MDD MU
x(0

Wgy/a, 41=—00 g2=—00 d=max(0,—q2) b=max(0,—d—q1)

E E E § 219 25 g2 ymax(0,d+q1,d+q1—q2)

VVBQ/A1 q1=—00 g2=—00 d=0

X Yy e

Why/a, Q1 =—00 q2=—00

1 2 Z Z Z quzqztmax(oﬁh q1— (]2)
—t)

Wp, A, 91 =—00 g2=—00

tmax(07q1,q1—‘12)_
1 — ¢)min(0, max(q1, g1 — ¢2))

(6.34)
where we have used the identity to eliminate piecewise terms. Carrying
out the Weyl reflections and rearranging or eliminating piecewise terms,
using the identities recovers the RSIMS monopole formula [6.33

(20 1) = 1_t2 Z Z 20052 (gex(O—ar.2—a) . max(0.- 01~

q1=—00 g2=—00

+ 4max(0,q1,42—q1) + tmaX(07q1,q1—q2))

t2 Z Z 202 t2\2q1 wl+zlel 4 gla- @l 4 ol 1 7)

q1=—0 g2=—00

— E E quzq2t2|2‘h 2|+ 5a2|
1—t

qQ1=—0 g2=—00

]__

(6.35)
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C Series

The Coulomb branch construction for C series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 -1 ... 0 0 -—-11|1
z | —1 2 ... 0 0 0 |1
1. (6.36)
zZr—1 | O o ... 2 -1 1
2 0 o ... =2 1
zo |2 0 ... 0 1

Applying and we obtain the monopole formula for a Cy>o
RSIMS:

1 oo

gf]%:RSIMS(Zv t) = (1 _ t)r Z 2t z®. . ZTthA(q)’ (637)
qi=—00
where
1 r—2
Alg) =5 (ol + D lai — gival +lar-1 — 2a] ). (6.38)
i=1

The constructions for By and Cs are isomorphic under interchange of root
labels.

G

The Coulomb branch construction for the Go RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

a2l 2 -3 -1]2
-1 2 0|1} (6.39)
wl-1 0 2|1

Applying and we obtain the monopole formula for a G5 RSIMS:

[e.9]

o0
G G
9rs.rsims (1) = Z Z Zlq1’1+q1’2ZQQQPU(QN)tA(q), (6.40)

q1,1>q1,2>—00 q2=—00
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where

Iflg1 # a2, (1+1)]

PC2  (q,t) = 6.41
and
12
Ag) = 5 > (gl + 131 — @2)) = lara — quzl - (6.42)
i1
F4

The Coulomb branch construction for the Fy RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1] 2 -1 0 0 -1
| -1 2 =2 0
zz| 0 -1 2 -1
z4 | O 0 -1
z | —1 0 0

(6.43)

N O O O
o= N W N

Applying and we obtain the monopole formula for a F; RSIMS:

gfl%:RSIMS(Z’t) _ Z Z Z Zlq1,1+tJ1,222QQ‘1+q2,2+qz,323%,1-0-43,2Z4Q4
qjlzr_cl_j,lzgfx G2,1>q2,2>q2,32>—00 q4=—00
Fy A
x Pty t2?,
(6.44)
where
11 1flaj1 # gj2:1 + 1]
Pl g, :J:LB
v (4.1) (1—)*1 —2)* (1 —13)
, (6.45)
X If [3i,5: qoi # qoj, (1 +t+1%)]
X If 13,5 qoi = qo,j, (1 +1)]
and
1 2 2 3 2
Alg) =5 Dolanil + D> (lavi — a2l + 2a25 — as.l) + D las,i — aal
=1 =1 j=1 =1
= > laka = ar2l =Y la2i — g2
k=1,3 i>j
(6.46)
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6.2.3. Root Space Foliation

A key feature of the Coulomb branch construction is the way in which
conformal dimension foliates the root space into sets of Weyl group orbits
of dominant weights. This is illustrated for As, Bs Co and G RSIMS in
Figures[6.1}[6.2] [6.3|and [6.4] Roots are labelled using root space coordinates,

rather than weight space coordinates/Dynkin labels.

4
° ° ° °
2 ° °
° °
2 0 ® ®
° °
-2 ° °
° ° ° °
4 -2 0 2 4

<1

Figure 6.1.: Root Space of Ay Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of 0
for (0,0), 1 for the Weyl orbit of (1,1), 2 for the Weyl orbits of
(2,2), (1,2) and (2,1), and 3 for the Weyl orbits of (3,3), (2,3)
and (3,2). The adjoint representation is given by the orbit of
(1,1) with conformal dimension 1 plus 2 orbits with conformal
dimension 0.

In all cases, the RSIMS can be expressed as sums of orbits of domi-

(V) factors.

nant weights, combined at multiplicities determined by the PY
Conformal dimension remains constant around each orbit. More than one
dominant weight can have the same conformal dimension. For all rank 2
groups, the adjoint is given by the orbits with conformal dimension 1 plus
two orbits with conformal dimension 0. The isomorphism between By and

(5 is evident upon interchange of simple roots.
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22

Figure 6.2.:

22

Figure 6.3.:

°
5 ° °
° °
°® °
° °® °
° °® °® °
0 — — — —
° ° °® °
° ° °
° °®
° °
-5 ° °
°
-4 -2 0 2 4

21

Root Space of Bs Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of
0 for (0,0), 1 for the Weyl orbits of (1,2) and (1,1), 2 for the
Weyl orbits of (2,4), (2,3) and (2,2), and 3 for the Weyl orbits
of (3,6), (3,5), (3,4) and (3,3). The long root of the adjoint
representation is (1,2).

4
o © o 0o 0 0 o
2 ° °
° o o o °
0 e o o ¢ o o o
° e o o °
-2 ° °
e 0o 0o 0 0 0 o
-4

21

Root Space of Cs Foliated by RSIMS Conformal Dimension.The
colour sequence corresponds to conformal dimensions of 0 for
(0,0), 1 for the Weyl orbits of (2,1) and (1,1), 2 for the Weyl or-
bits of (4,2), (3,2) and (2,2), and 3 for the Weyl orbits of (6,3),
(5,3), (4,3) and (3,3). The long root of the adjoint representa-
tion is (2,1).
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° ) °
5 ° )
° ) °
°
)
° °
7z 0 ® ®
° °
)
°
° ) °
-5 ° °
) ° °
-4 -2 0 2 4

21

Figure 6.4.: Root Space of Gy Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of 0
for (0,0), 1 for the Weyl orbits of (2,3) and (1,2), and 2 for the
Weyl orbits of (4,6), (3,6), (3,5) and (2,4). The long root of the
adjoint representation is (2,3).

6.3. Near to Minimal Nilpotent Orbits

6.3.1. Twisted Affine Quivers

Coulomb branch constructions of near to minimal nilpotent orbits from
affine Dynkin diagrams proceed in a similar manner to those for RSIMS.
One option is to replace a node of an untwisted affine diagram, other than
the affine node, by a flavour node. Alternatively, one can start with a twisted
affine Dynkin diagram (see appendix . Both types of affine diagram are
balanced and therefore replacement of any node by a flavour node of equal
U(N) rank leads to a balanced quiver diagram. By judicious choice, we can
obtain a simple algebra of the same rank as the starting algebra. The node
that is replaced becomes a flavour node (with zero background charge) in
the quiver diagram.

Figures and show the branching options for some extended (un-
twisted affine) Classical and Exceptional Dynkin diagrams, expressed in
terms of the quivers to which they give rise. These include, for reference,
the quivers for RSIMS examined in section [6.2

The Classical (untwisted) affine Dynkin diagrams give rise to one class

of quivers over and above those for RSIMS. This class of quivers is derived
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from the B, affine Dynkin diagram and yields Coulomb branch constructions
over D,. Gauge node counting shows that the Coulomb branch dimension
of these quivers is 4r — 4, which is 2 above the dimension of the minimal
nilpotent orbit of D,. This indicates that these moduli spaces correspond

to the next to minimal orbits of D,.

Group|Affine Dynkin Diagram Quivers

Ay 0O—0 Ay Z

'

Figure 6.5.: Quivers from Classical Affine Dynkin Diagrams. Round (blue)
nodes denote gauge nodes in the regular Dynkin diagram. The
affine diagram is obtained by adding a gauge node (black). The
dual Coxeter labels of each node are shown. Square (red) nodes
denote flavour nodes. When a short root attached to a long

root in the affine diagram is taken as a flavour node, its rank is
doubled.

The Exceptional (untwisted) affine Dynkin diagrams also give rise to a
number of quivers over and above those for RSIMS. These extra quivers
provide Coulomb branch constructions for moduli spaces of Ao, By, A7, Ag

and Dg, and these appear to correspond to nilpotent orbits.

1. Gy = As. This quiver gives the Coulomb branch construction for the
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Group Affine Dynkin Diagram Quivers

G, 000 G, A,

2 00000 azga“m“aaz

Ee Ee

. " n—e—o—i—o—o—o
o—o—o—i—o—e—o N o—e—o—z—o—e—o

Eq I Ag 9—0—3—6—0—0—0—0

Ds o—e—o—o—e—c(:_ﬂ

Figure 6.6.: Quivers from Exceptional Affine Dynkin Diagrams. Round
(blue) nodes denote gauge nodes in the regular Dynkin diagram.
The affine diagram is obtained by adding a gauge node (black).
The dual Coxeter labels of each node are shown. Square (red)
nodes denote flavour nodes. When a short root attached to a
long root in the affine diagram is taken as a flavour node, its
rank is doubled or tripled according to the ratio of root lengths.
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6 dimensional maximal nilpotent orbit of As.

2. Fy — Bj. This quiver appears to be the Coulomb branch construction
for the 16 dimensional nilpotent orbit of By, which is two orbits above
the minimal. The quiver diagram is consistent with the Characteristic
of this nilpotent orbit, as discussed in [6.5]

3. By — A7. This quiver gives the Coulomb branch construction for the
32 dimensional nilpotent orbit of A7. This can be established by 3d

mirror duality, as discussed in [6.4]

4. BFg — Ag. This quiver gives the Coulomb branch construction for the
58 dimensional nilpotent orbit of Ag. This can be established by 3d
mirror duality, as discussed in

5. Eg — Dg. This quiver appears to be the Coulomb branch construction
for the 56 dimensional spinor pair nilpotent orbit of Dg, which is
seven above the minimal. The quiver diagram is consistent with the

Characteristic of this nilpotent orbit, as discussed in [6.5

Figure shows the branching options for twisted affine Dynkin dia-
grams. The three infinite families give rise to a series of quivers that provide
Coulomb branch constructions for nilpotent orbits. In addition, Agz)’ Gé?’)

and F f) branch to some further quivers.

1. AgQ) — Aj. This quiver gives the Coulomb branch construction for
the nilpotent orbit of Aj.

2. G;g) — As. This quiver gives the Coulomb branch construction for

the 6 dimensional maximal nilpotent orbit of As.

3. B£2) or Bﬁ” — B,. This quiver gives the Coulomb branch construction

for the 4r — 2 dimensional next to minimal nilpotent orbit of B,.

4. Cﬁz) — D,. This quiver gives the Coulomb branch construction for

the 4r — 4 dimensional next to minimal nilpotent orbit of D,.

5. C7§2) — Cy. This quiver gives the Coulomb branch construction for

the 4r — 2 dimensional next to minimal nilpotent orbit of Ci..

170



6. F 4(2) — (4. This quiver gives the Coulomb branch construction for

the 20 dimensional nilpotent orbit of Cjy.

7. F 4(2) — Fy. This quiver gives the Coulomb branch construction for

the 22 dimensional next to minimal nilpotent orbit of Fj.

Taken together, the affine quivers yield Coulomb branch constructions
for moduli spaces of minimal nilpotent orbits of all groups, next to minimal
nilpotent orbits of all BC'D groups and Fy, plus a number of other near to
minimal nilpotent orbits.

However, calculation shows that a few of the branching options from
twisted affine Dynkin diagrams lead to quivers that do not correspond to

the moduli space of any nilpotent orbit:

1. A§2) — Ajq: The quiver [4] — (2) has a 4 dimensional Coulomb branch,
which is clearly not the A; orbit.

2. Ggg) — Gl2: The quiver (3) => (2)—[1] has a 10 dimensional Coulomb
branch, but this does not match the Gy nilpotent orbit of the same

dimension.

3. B7(n2) or BP) — (). The C, quivers have 4r dimensional Coulomb

branches, but these do not match C,. nilpotent orbits.

The reasons for these exceptions amongst the quivers from twisted affine
branchings are unclear. In practice, therefore, it is necessary to verify,
on a case by case basis, the correspondence between these Coulomb branch

constructions and the Higgs branch constructions for nilpotent orbit moduli

spaces set out in Tables [5.4] to [5.6] and to
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Affine Group Dynkin Diagram Quivers

o (2]
@ (23 21] A, Ay
! o
G;” (3 g2 o 1] Az G2
B4 0=<0>0
B, C2
B, 0>0>0 B, C,
B 0000
B ZM
5, 0+0-0-0 ¢ ZM

<

- c_iM ol Bo- e(: . D_EM

2 e—e—o—e—ou“eaZaeaaE

Figure 6.7.: Quivers from Twisted Affine Dynkin Diagrams. Twisted affine
groups are labelled using the notation of [58]. Round (blue)
nodes denote gauge nodes in the regular Dynkin diagram. The
twisted affine diagram is obtained by adding a gauge node
(black). The dual Coxeter labels of each node are shown.
Square (red) nodes denote flavour nodes. When a short root
attached to a long root in the affine diagram is taken as the
flavour node in a quiver, its rank is multiplied according to the
ratio of root lengths.
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6.3.2. Evaluation of Affine Coulomb Branches

As an example, applying the monopole formula to the quiver [2]—(2) => (1)
from BS? — B, yields the Coulomb branch:

q1,1

0 [e¢)
f A
gH?S:Coulomb(Z7t) = Z Z Z PqU(N) (t) 21q1,1+q1,22,2qz t (q)’

q1,1=—00q1,2=—00 q2=—00

(6.47)
where
1
A(q) = 3 (12q1,1] + 12q1.2] + [2q1,1 — qo| + [2q12 — @2]) — |q1,1 — q1.2]
(6.48)
and
— gy 1 (1—t21—t2)
PqU(N)(t) _ { a1 =q2:1/(( )*( ) ' (6.49)
q1,1 #* q1,2 - 1/(1 - t)3

It is important to note that, under the monopole formula, the quivers
[1] <= (2) = (1) and [2] — (2) = (1) evaluate identically for an uncharged
flavour node. Implementing the summation piecewise and replacing the
simple root fugacities of By by weight space fugacities {z1, 22} — {Z—;, %},
we obtain:

(t + 1)x3y4(t41,y2 + t3xy2 _ t21'2y2 _ t21'2 _ t2y4 _ t2y2 + tI’yQ + I’y2)

it contoms ™) = G o 1) = )P = 1)tz = )@ 03 = )0 = 27

= ((1 = =1 +17)[0,0] + (—t* + > + t* — £7)[1,0]) PE[[0,2]¢]
(6.50)
As before, we can restate this in terms of an unrefined Hilbert series and in
terms of a character HWG:

B (1+t)(1+ 3t +t2)
gH%S':Coulomb(l’ t) = (1 . t)6 9 (6-51)

1
B
gHQVVG:C’oulomb(’rnl7Tn27 t) = (1 _ m22t)(1 _ m12t2) ’ (6.52)

Comparison with Table shows that we have obtained the moduli space
for the 6 dimensional next to minimal nilpotent orbit of Bo, under the
counting fugacity map, Higgs — Coulomb : t? — ¢.

In principle, this calculation can be repeated for the quivers identified in

Figure[6.7] Subject to some qualifications, discussed below, calculations up
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to rank 4 confirm a match between the Coulomb branches of these quivers
and those of the Higgs branches of BC'D quivers corresponding to nilpo-
tent orbits. This match is summarised in Figures [6.8] and giving
the dimensions of the nilpotent orbits, their Higgs branch quivers and the
equivalent Coulomb branch quivers, which are all balanced. The flavour
nodes in these Coulomb branch quivers do not carry external charges.

Turning to the near minimal nilpotent orbits associated with pairs of D,
spinor partitions; calculation shows that their Coulomb branch construc-
tions form a pair of palindromic moduli spaces, according to the choice of
spinor linked to the flavour node. Their Higgs branch constructions are
non-palindromic unions of these two Coulomb branches.

Thus, in the case of Dy, as indicated in Figure the Coulomb branch
quiver for the 12 dimensional D4y — Cy — By nilpotent orbit is related by
triality to a pair of 12 dimensional moduli spaces, and the union of this pair
forms the Dy — Cy I/II nilpotent orbit construction on the Higgs branch,
consistent with

Similarly, it can be anticipated that the Higgs branch construction from
the Dg — C4 quiver of the 56 dimensional nilpotent orbit of Dg equals the
union of the spinor pair Coulomb branch constructions from the Fg affine

Dynkin diagram identified in section [6.3
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Group ([Dimension Higgs Quiver Coulomb Quiver
B: 2 B1-C1-Bo Z
4 B2-C;
B,
6 B2-C1-Bo
8 B,-C;,-B;-C1-By L2
8 B3-C;
B
3 10 B3-C1-Bo
12 B3-C2-Bp
14 B3-C,-Dy >
16 B3-C>-B1-C1-Bg
18 B3-C3-B,-C;-B;1-C1-Bg
12 Bs-Cy !
14 B4-C1-Bg i
B
¢ 16 B4-C; !
20 B4-C2-By
22 B4-C3-Dy
24 B4-C3-B;
24 B4-C32-B;1-C;1-By
26 B4-C3-D-C; R
26 B4-C3-B,-C;-B;1-C1-Bg
28 B4-C3-D;-C1-Bg
30 B4-C3-B,-C;-B;-C;1-Bg
32 B4-C4-B3-C3-B,-C,-B;1-C;-Bg
Figure 6.8.: Higgs/Coulomb Quivers for B Series Nilpotent Orbits up to

rank 4. B/D gauge nodes in a Higgs quiver indicate the cor-
responding O group. Round (blue) nodes denote U(N) gauge
nodes. Square (red) nodes denote flavour nodes. The nilpo-
tent orbits can be calculated from either the Higgs or Coulomb
branches of the dual quivers using the Higgs branch or monopole
formulae, respectively.
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Group |Dimension Higgs Quiver Coulomb Quiver
C; 2 C1-Byp
4 C2-Bo
C2
6 Cz-D;
8 C2-B1-C1-Bg L2
6 C3-Bo
10 C3-D;
Cs
12 C3-B;
14 C3-D2-Cy
14 C3-B1-C1-Bg >
16 C3-D,-C;-Bg AR
18 C3-B2-C2-B1-C1-Bo
8 C4-Bo
14 C4-D3 i
18 C4-B; i
Cy
20 C4-D i
20 C4-B1-C1-Bg
22 C4-D2-Cy
24 C4-B2-Cy
24 C4-D2-C1-Bg
26 C4-B2-C1-Bg L2
28 C4-D3-C2-Dy
28 C4-B2-C2-B2-C1-Bo
30 C4-D3-C2-B1-C1-Bo
32 C4-B3-C3-B,-C,-B;-C;-Bg

Figure 6.9.: Higgs/Coulomb Quivers for C' Series Nilpotent Orbits up to
rank 4. B/D gauge nodes in a Higgs quiver indicate the cor-
responding O group. Round (blue) nodes denote U(N) gauge
nodes. Square (red) nodes denote flavour nodes. The nilpo-
tent orbits can be calculated from either the Higgs or Coulomb
branches of the dual quivers using the Higgs branch or monopole

formulae, respectively.
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Group |Dimension Higgs Quiver Coulomb Quiver

6 D3-C; G

D3
12 D3-C,-B;-C1-Bg q
10 Ds-Cy x

D,-C1-Bg

Dy
12 D,-C, /1T
16 Dys-C3-Bg
18 Dy-C2-Dy
20 D4-C3-D,-C; \
20 B,-C,-B,-C,-B, L2
22 D4-C3-D;-C;1-Bg
24 Dy-C3-B3-C3-B;-C;1-Bg

Figure 6.10.: Higgs/Coulomb Quivers for D Series Nilpotent Orbits up to
rank 4. B/D gauge nodes in a Higgs quiver indicate the
corresponding O group. Round (blue) nodes denote U(N)
gauge nodes. Square (red) nodes denote flavour nodes. The
nilpotent orbits can be calculated from either the Higgs or
Coulomb branches of the dual quivers using the Higgs branch
or monopole formulae, respectively. The three 12 dimensional
nilpotent orbits of Dy are related by triality.
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6.4. 3d Mirror Symmetry

6.4.1. A Series

Since early work in [1I], it has been known that the Higgs branches of A
series quivers have moduli spaces that are identical to those of the Coulomb
branches of certain unitary dual quivers, under 3d mirror symmetry. A pair

of quivers A and B that are 3d mirror dual obeys the relationship:

A _ B
9HS:Higgs = 9JHS:Coulomb (6 53)

géS:Coulomb = ggS:Higgs
Given an A series quiver containing a linear sequence of gauge nodes, its
mirror dual can be calculated using brane combinatorics, as set out in [2
25, 31], and this provides a method of finding A series quivers with Coulomb
branch moduli spaces equal to the Higgs branch constructions of nilpotent
orbits in Tables [5.4] to

Briefly, the brane system can be described in type IIB string theory in
terms of D5, NS5 and D3 branes in 9+ 1 space-time. The branes all extend
along the space-time directions zg, 1 and x2. The D3 branes also extend
along x3. The D5 and NS5 branes extend along x4, x5, x¢ and z7, s, T9,
respectively, being interchanged by S-duality. The D3 branes begin and end
on 5-branes, so moving a D5 and NS5 through each other in the x3 direction
creates or destroys a D3 brane. Each set of D3 branes linking two adjacent
NS5 branes defines a unitary symmetry. The D5 branes carry a flavour
symmetry.

The brane manipulations to transform the quiver for the Higgs branch
construction of the maximal nilpotent orbit of Az into its mirror are shown
in Figure [6.11] The quiver starts with the D5 branes disconnected from
the D3 branes (i.e. with no net left or right linking), with the only links
being between the D3 and NS5 branes. S-duality is used to interchange the
D5 and NS5 branes. Adjacent pairs of D5 and NS5 branes are then moved
through each other, with D3 branes being destroyed, until the D5 branes are
one again disconnected from the D3 branes. In this example, the resulting
quiver matches the initial quiver, and is said to be self-mirror.

Figure displays those quivers that yield the nilpotent orbits for A; to
As on their Higgs branches along with the 3d mirror duals that produce the

178



® ® ®
S Duality |@ ®—R X7,X8 X9
D5 to right | —&) ®—R
X4 .X5 X6
> X3

D5 to right H

®
D5 to left —®

® ®
D5 to left

® ® ®

Figure 6.11.: Mirror Dual A Series Quiver from Brane Transformations.
NS5 branes are denoted by vertical lines, D3 branes by hori-
zontal lines and D5 branes by ®. S-duality interchanges NS5
and D5 branes. When a D5 brane is moved to the right (left)
through an NS5 brane, its net D3 linking from the right (left) is
reduced by one. Unlinked D5 branes are moved to the bottom
of the diagrams. The final quiver matches the initial quiver
under reflection in the x3 direction
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same moduli spaces on on their Coulomb branches. The analysis generalises

to higher ranks.

Group |Nilpotent Orbit|Dimension|Higgs Branch Quiver |Coulomb Branch Quiver

Ay (2) 2

Az (2,1) 4

Ay (3) 6

A3 (2,1%) 6

A3 (22) 8

A3 (4) 12

LEITILgetiie

.
"
o
o
o
a

Figure 6.12.: Mirror Dual A Series Quivers for Nilpotent Orbits. Round
(blue) nodes denote unitary gauge nodes of the indicated rank.
Square (red) nodes denote numbers of flavour nodes.

The quivers of the A series maximal nilpotent orbits are all self-mirror and
their Coulomb branches correspond to T'(SU(N)) quiver theories, discussed
in Chapter [§

6.4.2. BCD Series

As shown in sections and quivers exist whose Coulomb branches
yield the moduli spaces of minimal and near to minimal nilpotent orbits of

BCD groups. Also brane configurations for Higgs branch constructions of
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BCD nilpotent orbits are known. For example, it was shown in [22], how
instantons of BC'D groups can be constructed, using orientifold planes, from
D2 branes against a background of D6 branes[]

However, finding Coulomb branch counterparts of Higgs branch quivers
for general BC'D nilpotent orbits via 3d mirror symmetry remains problem-
atic for a number of reasons. Firstly, the proposals for mirror symmetric
duals of BC'D Higgs branch quivers via brane manipulations involving O3
orientifold planes [75) 21, 3] lead to Coulomb branch quivers with non-
unitary gauge nodes that are not equal in number to the simple roots of the
BCD group, and which cannot, therefore, be calculated using the unitary
monopole formula. Secondly, while versions of the monopole formula for
non-unitary gauge nodes have been proposed [55], these have not been suc-
cessful at generating moduli spaces with refined Hilbert series that match
those of the purported mirrors. Indeed, one method currently used for
working with the maximal nilpotent orbits (T(G) theories) of BC'D series
[55, B1], is simply to bypass the problem, by conjecturing the equivalence
of the Coulomb branches of the unknown quivers to BC'D modified Hall

Littlewood polynomials.

6.5. Quivers from Characteristics

As a final method of finding quivers for the Coulomb branch constructions of
nilpotent orbits, a remarkable match can be observed between the structures
of near to minimal Coulomb branch quivers, and their respective Character-
istics and weight maps (in Appendix . Specifically, the flavour and gauge
nodes of the Coulomb branch quivers in Figures[6.8|to and also several
of the quivers in when ordered as vectors Ny and NN, as per section
6.1.1] match their Characteristics and weight maps. This match only ap-
pears for nilpotent orbits whose complex dimensions are exactly twice the
sum of their weight map labels. (This is because the unitary monopole
formula always leads to a Coulomb branch moduli space whose complex
dimension is twice that of the sum of the ranks of the gauge nodes.)

The observed match extends to the RSIMS and near to minimal nilpotent
orbits of Exceptional Groups and this invites the conjecture that, for any

Classical or Exceptional group G:

3The orientifold planes are required to reproduce the root systems of the Lie algebras.
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“If a nilpotent orbit of G has a complex dimension equal to
twice the sum of the Dynkin labels in its weight map, then appli-
cation of the unitary monopole formula to a quiver defined by the
Dynkin diagram of G, with gauge nodes defined by the weight
map and flavour nodes defined by the Characteristic (root map),
yields a Coulomb branch construction for the moduli space of

the nilpotent orbit”.

Empirically, whenever a Characteristic [¢] obeys this rule, the Character-
istic height [A] (as defined in section [4.2.3)) of the highest root equals 2, so 6
T

is contained in the nilpotent element X. As observed in [76], [0] = > a;q,
i=1

where the a; are taken as the Coxeter labels of G.

All the nilpotent orbits covered by this Characteristic rule have character
HWGs of a freely generated type. In the case of nilpotent orbits higher up a
Hasse diagram, some generators have Characteristic height greater than 2,
so the moduli spaces can be complicated by relations between generators,
with the result that the HWGs are usually not freely generated.

Figure includes the quivers whose Coulomb branches yield the 12 and
18 dimensional nilpotent orbits of C's and Cy, which have been found by this
rule. Figure[6.13|shows the quivers for nilpotent orbits of Exceptional groups
that follow from this rule; these include the orbits that can be found from
affine Dynkin diagrams. Evaluation of the Hilbert series of these Coulomb
branch constructions gives results that are consistent with the NOL formula

calculations carried out in the next Chapter.
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Group| Characteristic |Dimension Quiver
Gz [1,0] 6
[1,0,0,0] 16 !
Fq
[0,0,0,1] 22 !
(0,0,0,0,0,1] 22
Es
(1,0,0,0,1,0] 32 i ! i
[1,0,0,0,0,0,0] 34 i !
Es [0,0,0,0,1,0,0] 52 ! i
[0,0,0,0,0,2,0] 54 i i
[9,0,0,0,0,0,1,0] 58 i i
Esg
4 7 10 8 [ 4 2
(1,0,0,0,0,0,0,0] 92
i | 5

Figure 6.13.: Quivers from Characteristics of Exceptional Groups. Round
(blue) nodes denote unitary gauge nodes of the indicated rank.

Square (red) nodes denote numbers of flavour nodes.

Characteristics coincide with the numbers of flavour nodes
attached to each gauge node. The dimension of a Coulomb
branch nilpotent orbit construction equals twice the sums of

the ranks of its gauge nodes.
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7. Localisation Constructions of
Nilpotent Orbits

7.1. Nilpotent Orbit Localisation formula

This study continues by presenting a generating function for the normali-
sation of a nilpotent orbit, which can in principle be restricted to yield the
nilpotent orbit itself. This is referred to as the Nilpotent Orbit Localisation
(“NOL”) formula in this study and is given in It is defined by the fixed
points under the Weyl group, of plethystic functions, which are parame-
terised by subsets of roots and background charges, over the root space of
G.

By way of motivation, a more general localisation formula, which is an ex-
tension of (4.23) in [31], and from which many relevant generating functions

emerge as special instances, is given by:

s (@t )= D w-[al 11 1—12% 11 1_IZ—B

weWa/n ae@g/HQQ%/H 56@2/1{
(7.1)

A represents

As usual, x represents the weight space fugacities and z = =
the root space fugacities of some Lie group G, with Dynkin labels [n] and
positive root space CIJZS. The group H, with positive root space @E, is a
semi-simple regular subgroup of G, such that the quotient G/H contains
the positive roots @2/}1:@5 o ‘I>JI_}, and @g/H is some subset of @g/H. The
summation is over the action of representative elements w of the cosets
Wa/n ﬂ which act as * — w -z and z(z) — z(w - z). A key requirement of
the construction is that the summand should be invariant under Wy. Since

<I>g /H is Wy invariant by construction, this requires that z[" and ég /H

1See equation for notation surrounding quotient group partition.
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should be Wy invariant.

The NOL formula is part of a family of plethystic functions, which in-
cludes the Weyl character formula and the modified Hall Littlewood formula,
treated in Chapter 2l We can note some special cases of

1. H = (),t = 0 recovers the Weyl formula for the character of the
irrep with Dynkin label [n]:

Xy (@)= > w2 ]] 1_12_5 : (7.2)

+
weWqg geq,G

2. H =10, (IDG o= (IJJCE recovers the formula [2.18[ for the modified Hall
Littlewood of G with Dynkin label [n]:

1
2
mHL[n] (z,1t) E w - || A= a-7 | (7.3)
weWa 66@

3. H = Go,[n] = [0], ég/H

the (highest weight Dynkin labels of the) highest root €, recovers a
character generating function for a RSIMS, specialised from [2.124

= {0}, where Gy is the stability group of

1 1

G

9Rsims (T:1) = Z CR pvn H 1.7 | (7.4)
wEWG/GO //jecpg/co

It is a key finding of this study that, with appropriate choice of param-
eters, the localisation formula can be adapted to yield the normalisa-
tion of a nilpotent orbit. Considerations motivated by the above special
cases, along with explicit checking versus Higgs/Coulomb branch calcula-
tions, identify a Nilpotent Orbit Localisation formula that appears common

to all normal nilpotent orbits.

2The G stability group of § is implemented in an equivalent manner in [I8, [I7], where
the RSIMS generating function is implemented as a sum over long roots.
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NOL formula

Notably, the parameters of the NOL formula can be fixed directly from the
Characteristic of a nilpotent orbit root via a simple algorithm. The basic
NOL formula follows from [7.1], by setting [n] to [0], which selects the singlet
from the more general family of moduli spaces that can be associated to a

given nilpotent orbit, and by precise choices of H and P:

1 1
gff[g]L(%t)E Z w - H 1~ o H 1.7 | (7.5)

5+ +
weWg/q O‘E@G/GO 5e<I>G/GO

where &)J(E 1Go = <I>g /G0@<I>[Cl;], as elaborated below. In principle, the nilpotent

orbit, denoted gg[g], can be found by restricting gg[g]L to the nilpotent cone

NE

gwd (@.t) = gy (x,t)‘ v (7.6)

The SU(2) homomorphism p, introduced in section induces a grading
of the root system of G. Adapting notation introduced in [54], define the

following subsets of roots:

(I)[C’j] = {a € ®/, : Characteristic height [a] = k} . (7.7)

Then:

_ (K] _ k. & _ (K]
(I)g - U (I)G ) (I)g/Go - U ®q (I)Z/Go - U (I)G : (7.8)

k>0 k>1 k>2

Each SU(2) homomorphism selects a subset Cﬁg /Go of positive roots for
symmetrisation with ¢ within the NOL formula. This subset invariably
includes the highest root, plus some system of positive roots connected to
the highest root in the Hasse diagram.

The Weyl denominator identity, > ][] 1;_5 = 1, which follows
wGWGO 5eq>g0

3For Classical groups, this restriction is achievable with the Higgs branch formula; for
Exceptional groups, its analytical implementation can be a non-trivial exercise, as will
be discussed.
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from [7.2], permits rearrangement of [7.5] into the equivalent form:

1 1
go@ty=> w| Il —= I ] @9

5+ +
weWe a€df g, Bedy,

For computational purposes is often simpler, involving smaller denomi-
nator terms and fewer Weyl group reﬂectionsﬁ

We can easily check that the NOL formula matches known results for
canonical types of nilpotent orbit. In particular, choosing a Characteristic
of [22...2] entails that both <I>[g] and <I>[G1] are empty and so reduces to
corresponding to mH L[GO]7 the maximal nilpotent orbit of G. Also, it
is straightforward to check that the Characteristic of a minimal nilpotent

orbit leads to <I>[G2} containing just the highest root, so that i’g Gy = {6}
and [7.9] reduces to [.4l

NOL formula: Even and Richardson Orbits

In the case of an even orbit, whose Characteristic contains only the labels
0 and 2, @g] = () and the NOL formula simplifies:

; 1
INOLeveny @D = > w [ ] 1—zot)(1—z) | (7.10)

weWG/GO aecDJC:‘/GO

All Richardson nilpotent orbits can also be treated within this category.
If the Richardson orbit is even, its H = (G subgroup follows directly from
the zeros of the Characteristic of G. If the Richardson orbit is not even,
one or more H subgroup embeddings still exist, even if these cannot be read

directly from the Characteristic.

NOL formula: Induced Orbits

A different and important rearrangement can be made to the NOL formula

to induce a given nilpotent orbit (or its normalisation) from the nilpotent

4As discussed earlier, the quotient group construction in requires that CID[G” be invari-
ant under W¢,. This appears to be the case for all Characteristics derived from SU(2)
homomorphisms of G. When calculating using the NOL formula, it is a straightfor-
ward matter to check this invariance on a case by case basis. If such invariance did
not apply, @ would remain valid.
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orbit of a subgroup, whenever its Characteristic contains at least one 2.
Essentially, we define a G/H /Gy quotient group structure, by taking H as
the semi-simple subgroup defined by the Dynkin diagram of G that remains
after any nodes corresponding to 2 in the Characteristic have been elimi-
nated. As a result, the Characteristic for the nilpotent orbit in H contains
only 0 and 1.

Starting from we set G/Gy — G/H ® H/Gy, such that @g} falls
within ® . We obtain:

1 1
g]?f[g[, (z,t) = Z w- H 1 — 20 H 1— 28

5+ +
weWg/q, a€dl g BEDE 0

B [p] L
= Z w - gﬁOL (1) H (1—2z9)(1—279)

wEWG/H aecpg/H

where

H 1 1
avor @t =3 w-| T[] —— I —=| (1

Wh/a, ved T, sed T

H/Gy H/Gg

Since takes the same form as the nilpotent orbit (or its normal-
isation) gf,[gL is shown to be induced from the nilpotent orbit gﬁ[op]L. One
feature of the induction method is that it opens the door to hybrid
constructions in which an Exceptional orbit can be induced from a Clas-

sical orbit that has been calculated using the Higgs branch formula. For
F4[1012] B3[101]

example, g; 5 . can be induced in this manner from g 995 which we
write as:
F4[1012 F4[0002 Bs[101
gI:;c[luced] (.@,t) = gN4([)L } (m’t) {gHzégs | (w’t)] ' (713)

The fugacity maps between the weight space x coordinates of G and H
follow from equating the respective simple root fugacities z that are involved
in the branchings, as discussed in section [2.6/)

SWhen carrying out induction calculations it is important to match root space (not
weight space) fugacities of G and H.
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Charged NOL formula

Finally, it is helpful to generalise version of the NOL formula to deal
with root systems that are modulated by background charges, as in [7.1]
Define the charged NOL formula:

1 1
gN[g]L( ,t){x["]]z Z w- e H 1—2% H 1—z8 )

weWa aE@E/GO Bedy,

(7.14)
where 2" is a weight given by the CSA coordinates 2 and Dynkin labels
[n]. Note that the quotient group Wg /G, structure is not used in order to
permit general Dynkin labelsﬁ

The charged functions constitute an orthogonal basis (under an ap-
propriate measure) only in special cases. Specifically, t — 0 yields the Weyl
Character formula and <I>[GO] =)= ‘ID[GH yields charged functions of the max-
imal nilpotent orbit, which equal the modified Hall Littlewood functions.
Unfortunately, the charged functions defined by a nilpotent orbit do not
generally constitute an orthogonal basis. This limits their general utility,
although they can be used to provide a description of relations between

nilpotent orbits.

HWGs from NOL formula

The refined Hilbert series from the NOL formula can be converted either to
character HWGs or to orthogonal mH L HWGs by applying

G
950l (m.1) = fd;ﬁ Hlfml/x 958 (2,1
(7.15)

T

G
~Clpl duC- (1 2o 1 Glol (o
dnor (h 1z Z%t) Hl—h/aj gnor (@,1)
G

a€‘1>+ i=1

Note that the QJC\;,[S]L (h,t) need to be glued to 1/UG (t) normalisation factors

via a further transformation, as discussed in to obtain gN[p ] (h,t).

SA quotient group structure can be introduced if the Weyl group symmetries of [n]
permit.
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Relationship of NOL formula to 7*(G/H) theory

It is instructive to relate the NOL formula to the result that appears in [77]
for the Highest Weight Generating function of the representation content of
a T%(G/H) theory. This moduli space selects a subset of the representations
of G from within the HWG for the characters of GG, by gauging a reductive
subgroup H:

g™ (G (m, fdu y) 95 (y.m), (7.16)

where gg (y,m) is the HWG and du® (y) is the Haar measure for H. It
can be shown that g7 (/) (m) emerges as a special case from the HWG
Gleven]
Inor  (m,t), as follows.
First, we define a Levi subgroup of G, H = Gy ® U(1)““‘1‘[G]*“mk[GO]7
such that H and G have the same rank. This allows us to establish a
diffeomorphism between the weight space coordinates x of G and y of H.

Gleven] (

We then transform the refined Hilbert series gy, ~ (2,t), calculated from

to an HWG by projection onto a character generating function for G:

o™ (m.t) = 7{ duC () g (a*,m) g™ (1) (7.17)
G

The Haar measure du® () for G can be decoupled to separate off the Haar
measure duf? (x) of the H subgroup:

rank[G]

1 dx;
d G rT) = — 71 1 . ZO&
= | 1S 1!( )
rank[G]
= H H 1—2° " H (1—2%)
W -1 BELq, ( ) Wel €26,

(7.18)
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Under the fugacity simplification ¢ — 1, reduces to:

Gleven)] o 1
avor (@)= w-| ] (I—2%)(1—-2"7)
weWg /g, aecbg/co (7 19)
1
SO | e
’LUGWG/GO QG@G/GO
Inserting [7.18] and [7.19] into [7.17], we obtain:
G n * WG a
oS 1) = @) o rom) e T (-2)
aeq)G/Go
1
< X w | I s
WEWG/GO OéEég/GO
7.20)
o Wyl Wal (
0

I
S

=
T
S

K
=Q
s
2

TG (1)

where we have replaced one Weyl group summation Y. by ‘VV; el , as
WEWG/GO ‘ GO‘

discussed in Appendix (equation |A.28)), and transformed the conjugate
z* coordinates of G to the y coordinates of H. Thus, g7 (¢/H) (m) is a

specialisation to ¢t = 1 of gf,[gf"] (m,t).

7.2. Classical Group Orbits from the NOL formula

The Classical group moduli spaces obtained from the NOL formula [7.5
all have palindromic Hilbert series and are similar in this regard to the
Coulomb branch constructions with the unitary monopole formula. For
normal nilpotent orbits, as defined in section [£.4.7, the NOL formula yields
the same moduli spaces as the Higgs branch constructions tabulated in
Chapter [5l For non-normal orbits, the NOL formula yields a moduli space

that is either (i) a normal component, or (ii) a normalisation.
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The cases that require discussion are the non-normal nilpotent orbits.
The number of these increases with rank; their Characteristics are listed in
section [4.4.7, up to rank 5, and the moduli spaces obtained from the NOL
formula are summarised in Table up to rank 4.

In the case of the Dy, spinor pairs of nilpotent orbits, discussed in sec-
tion the NOL formula gives the individual palindromic spinor moduli
spaces, according to the Characteristic chosen. Examples in Table in-
clude D3[20], D4][0020] and D4[0220]. The moduli spaces of the conjugate
spinors have identical unrefined Hilbert series and their HWGs are related
by the exchange of spinor fugacities. These spinor moduli spaces are the
normal components of the non-normal nilpotent orbits, constructed on the

Higgs branch, which are their unions:

Dor[20]I/II  Dop[.02/[/IT D520 | D,[..02]  Doyl...20)NDay[...02]}
Higgs = 9Higgs =9nor.  t9nvorL ~ —9noL :

(7.21)

For all the other non-normal nilpotent orbits, the NOL formula yields

a normalisation. Examples in Table include Bs[101], B4[2101] and
(C4[0200]. Classical non-normal nilpotent orbits are related to their nor-
malisations by some Z quotient [6]. In each case the (non-normal) Higgs
branch construction can be recovered from the normalisation by excluding

those elements that fall outside the nilpotent cone N. Thus:

Bs[101] __ Bs[101] _ B3[200]

IHiggs — INOL Inor  lz1t],

B4[2101] _ B4[2101] B4[2200] 9

Higgs =9gvor  —9nor |1t (7.22)
C4[0200] _ C4[0200] C4[0002] 9

Higgs - gN40L - gN40L [$4t ] .

The moduli spaces outside the nilpotent cone can be described by the
charged NOL formula The nilpotent orbit upon which each of these
charged moduli spaces is built is related to its parent orbit by the Ag._1 U
Agy—1 Kraft-Procesi degeneration, discussed in section £.4.7] and lies be-
neath the parent orbit in the Hasse diagram.

It can be seen from Table that 956[3020] and gflz?glggl] have the same
unrefined Hilbert series. This is an example of a branching relationship

between two nilpotent orbits; these are discussed further in Chapter
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7.3. Exceptional Group Orbits

The construction of Exceptional group nilpotent orbits poses a number of
challenges. Firstly, Exceptional groups do not act in a similar manner to
SL(n,R/C) rotation matrices on their fundamental vector spaces, so the
Higgs branch method is not available [6]. This limits the construction meth-
ods to those based on the Coulomb branch or NOL formulae. These in turn
have their own limitations; the unitary monopole formula only works for
minimal and near minimal orbits; and the NOL formula yields the nor-
malisation of a nilpotent orbit, which only equals the orbit if it is normal.
Finally, the high dimensions of the Weyl groups of the E series entail that
explicit calculations, using the methods developed during this study, are not
always feasible in terms of computing memory and/or time.

In principle, however, those Exceptional group Characteristics for which
the NOL formula does yield nilpotent orbits can be identified by verifying
that the moduli spaces are entirely contained within the nilpotent cone N/,
which is known for every group. Such results can be cross-checked for com-
pleteness by comparison with the known non-normal orbits listed in section
Moreover, even without a systematic formula for calculating the non-
normal Exceptional group orbits, it is often possible to find candidates on
a case by case basis, by restricting their normalisations to exclude charged
nilpotent orbits of lower dimension, as will be shown. The findings pre-
sented below are derived from a combination of established results, full HS
and HWG calculations, and inferences based on unrefined HS expansions,
checked to the highest order practicable.

In this study, Exceptional group nilpotent orbits are labelled by their
Characteristics for various reasons. Firstly, a Characteristic provides the
structure and parameters of the Coulomb branch and NOL formulae. Sec-
ondly, while a Characteristic provides a clear and unambiguous specification
of a nilpotent element X, the same is not true of the various alternative la-
belling methods based on sub-groups, developed, inter alia, by Dynkin [54],
Bala-Carter [78] [79], Hesselink [69]. Amongst these, the method that is
closest to the use of Characteristics is given by Hesselink, who identifies the
semi-simple subgroup Gy under which a nilpotent element X is invariant;
this labelling method works for most Richardson orbits, but not for other

types. The Bala-Carter labelling method, which does not play a role in the
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NOL formula, is summarised and discussed in Appendix

As is clear from the discussion on the variants of the NOL formula in
section there is often a choice to be made as to whether an orbit is cal-
culated directly from the roots of G, or induced from an orbit of a subgroup
H, using Either choice leads to the same refined HS under the NOL
formula, but the induction method permits the incorporation, for example,
of a non-normal nilpotent orbit of H calculated on the Higgs branch.

The following sub-sections analyse the nilpotent orbits of Exceptional
groups, starting from the Characteristics of SU(2) homomorphisms, clas-
sifying the type of each orbit, giving its constructions, calculating, where
practicable, unrefined HS, character HWGs and mH L HWGs, and identi-
fying whether the moduli spaces are nilpotent orbits or normalisations of
non-normal orbits. For G, Fy and FEg, nilpotent orbit Hasse diagrams are

drawn, based on moduli space inclusion relations.

7.3.1. Orbits of G,

Table[7.2] classifies the 5 nilpotent orbits of G2 and gives their unrefined HS.
Table gives the character and mH L HWGs, calculated from the refined

HS. To comment on the various orbits:

[10]: 6 dimensional nilpotent orbit. This is the minimal nilpotent orbit and
is both rigid and normal. It can be calculated either from a Coulomb
branch quiver theory built on the affine Dynkin diagram, as discussed
in section or from the NOL formula. Both its HS and character
HWG are palindromic.

[01]: 8 dimensional nilpotent orbit. This next to minimal orbit is rigid, but
not normal, and does not have a Coulomb branch construction['] The
NOL formula yields a normalisation. The non-normal orbit is found
by excluding from this normalisation a subspace expressed in terms of

the charged NOL formula for the minimal nilpotent orbit:

g2 (@, 1) = g (2, ) — g (@, 1) [ot]. (7.23)

If the G2 twisted affine Dynkin diagram is used as a Coulomb branch quiver, it leads
to a moduli space that is not a nilpotent orbit, since the Characteristic does not have
the correct sum of gauge node ranks to yield an 8 dimensional HS.

195



[20]: 10 dimensional nilpotent orbit. The sub-regular nilpotent orbit is
distinguished and has an invariant subgroup Gg = Aj. It can be
calculated from the NOL formula [.I0l Both its HS and character
HWG are palindromic.

[22]: 12 dimensional nilpotent orbit. The maximal nilpotent orbit is dis-
tinguished. It can be calculated from the NOL formula. Both its HS
and character HWG are palindromic, in the latter case with degree
m13m25t18.

It can easily be checked, both from the unrefined HS and the character
HWGs, that these nilpotent orbits satisfy the expected inclusion relations
ggzb[oo] C gffo[m] C g](\;fo[m} C g](\izo[m] C gffo[zz], providing that the non-normal
8 dimensional nilpotent orbit is used. These inclusion relations are graphed

in the Hasse diagram in Figure
[ 2 ]
Lo ]
KN

Figure 7.1.: Hasse Diagram of G2 Nilpotent Orbits. The diagram is derived
from Hilbert series inclusion relations, with the yellow node
indicating a non-normal nilpotent orbit.

It is worth commenting that the normalisation gﬁ%)[%l] has the same unre-

fined Hilbert series as ggf’;g;o] in Table |5.12| (up to ¢ counting conventions)

and can be obtained from this using a character map that folds the Bg

vector and spinor together [80].
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7.3.2. Orbits of F)

The 16 nilpotent orbits of Fy are described in Tables to which
give their classification, constructions, unrefined HS and, where practicable,
character HWGs and modified Hall Littlewood HWGs. Tables [7.9 and [7.10]
contain similar information for the normalisations of the non-normal orbits.

Many of the orbits have distinctive features:

[1000] and [0001]: 16 dimensional minimal and 22 dimensional next to min-
imal nilpotent orbits. These orbits are rigid and have the invariant
subgroups C3 and Bs, respectively. The Hilbert series can be calcu-
lated either (i) from the Coulomb branch of a quiver theory built,
respectively, on the affine or twisted affine Dynkin diagram of Fy, or
(ii) from the NOL formula Their HS and character HWGs are

palindromic.

[0100]: 28 dimensional nilpotent orbit. This orbit is rigid and has the
invariant subgroup A; ® As. Its Hilbert series can be calculated either
from the NOL formula, or as the intersection of the two 30 dimensional
orbits. Both the HS and character HWG are palindromic.

[2000]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant
subgroup (3, and is normal. Its Hilbert Series can be calculated from
the NOL formula. Both the HS and character HWG are palindromic.

[0002]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant
subgroup Bs, and is non-normal. The NOL formula yields a normali-
sation. The candidate for the non-normal orbit is found by excluding
from this normalisation a subspace expressed in terms of the charged
NOL formula for the 28 dimensional orbit:

F4[0002 F4[0002 F4[0100
ghil000% (g gy = R0 g gy — gFIOLOOT 4y [egt®], (7.24)

with notation as per Both the HS and character HWG are non-

palindromic.

[0010]: 34 dimensional nilpotent orbit. This orbit is rigid and has the in-
variant subgroup Ao® A;. It can be calculated from the NOL formula.
The HS and character HWG (not shown) are palindromic.
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[2001]: 36 dimensional nilpotent orbit. This orbit is non-rigid, has the
invariant subgroup By =2 (5, and is non-normal. Its normalisation
can be calculated from the NOL formula. The candidate for the non-
normal nilpotent orbit is found by excluding from its normalisation a
subspace expressed by applying the charged NOL formula to the 34

dimensional orbit:
F, F, F,
ghil2O0 (g gy = gRAEIO (g gy — B0 4y [20#3] . (7.25)

The HS is non-palindromic.

[0101]: 36 dimensional nilpotent orbit. This orbit is rigid, has the invari-
ant subgroup A; ® Ai, and is non-normal. Its normalisation can be
calculated from the NOL formula. The candidate for the non-normal
nilpotent orbit is found by excluding from its normalisation a subspace
expressed by applying the charged NOL formula to the 34 dimensional
orbit:

F4[0101 Fy[0101 F4[0010
gvo (@ t) = gnop (@) —gnor (@ d) [wa?] . (7.26)
Note the difference in charges between and The HS is non-

palindromic.

[1010]: 38 dimensional nilpotent orbit. This orbit is non-rigid, has the
invariant subgroup A; ® Aj, and is non-normal. Its normalisation
is found from the NOL formula. The candidate for the non-normal
nilpotent orbit is found by excluding from this normalisation a sub-
space expressed in terms of charged NOL formulae for the two 36

dimensional orbits:

S 0,0) = 50 0, ) - o (o) e 4]
F4[0101] (7.27)

—dnop (1) [3241°]
Its HS is non-palindromic.

[1012]: 42 dimensional nilpotent orbit. This orbit is Richardson, has the
invariant subgroup Ai, and is non-normal. Its normalisation can be
calculated from the NOL formula. Possible candidates for the non-

normal nilpotent orbit can be found either (i) by excluding from its
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normalisation a subspace expressed in terms of the charged NOL for-

mula for the 40 dimensional orbit g§40[0200}7 or (ii) by induction (using

Bs[101]
Higgs *

7.11)) from g

F4[1012 F4[1012 F4[0200
g0 (g ty = gRIDDV (o 4y — gRIO200T () [gt? 4 2519

(7.28)
Fy[1012 F4[0002 B3[101
gl:ilucec} (l’,t) = gN4([)L ! (l"t) |: Higggs ]:|

The former is taken as the candidate for the non-normal orbit g,
on the grounds that it is consistent with the restriction method de-
tailed below, and that it includes [0200], as in the standard Hasse

diagram. Its HS is non-palindromic.

[0200], [0202], [2202] and [2222]: 40 dimensional , 44 dimensional, 46 di-
mensional sub-regular, and 48 dimensional maximal nilpotent orbits.
These orbits are distinguished and contain the invariant subgroups
A1 ® Ay, A1 ® Ay, Ay and 0, respectively. They are found from the
NOL formula. Their HS are palindromic.

The above list excludes the moduli space defined by the SU(2) homomor-
phism with the root map [2002]. Detailed calculation of Hilbert series shows

that 911340[2502] is not a nilpotent orbit, but is an extension of the distinguished

g§4é0200], which can be described using the charged NOL formula:

ghil200%T 4y = RO (1 4y [1 4 208 + wat?] (7.29)

It is necessary to make some caveats in relation to the non-normal or-
bits. Firstly, the method of finding the charged NOL formula descriptions
that restrict their normalisations to N is partly empirical, guided by unre-
fined HS and character HWGs, where known. The restricted NOL method
used for Fj has been (i) to fix the moduli space inclusion relations below
a non-normal orbit using its normalisation and (ii) to exclude from the
normalisation a subspace containing one (or sometimes more) charged nor-
malisations of orbits lying immediately below in the Hasse diagram. The
charges are selected such that the resulting non-normal moduli spaces lie
within the nilpotent cone. This method is consistent with the Higgs branch
constructions of non-normal Classical orbits studied in [Z.2] and has been

sufficient to specify candidates for the non-normal orbits of Fy. For exam-
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ple, the calculation of the restriction of the non-normal F4[0002] to N is
outlined in Appendix

Secondly, since the charged NOL formula does not generally yield an or-
thogonal basis, there may be alternative charged NOL formula descriptions
of the non-normal orbits that give the same result.

Finally, it has only proved possible to calculate character HWGs and
to use their Taylor series expansions to check the irrep inclusion relations
explicitly up to the 34 dimensional nilpotent orbit; for the 36 dimensional
and 38 dimensional non-normal orbits, in particular, the analysis has been
largely dimensional in nature and therefore should not be taken as definitive.

It is interesting to compare the inclusion relations obtained from this
analysis of moduli spaces with the standard Hasse diagrams of nilpotent
orbits in the mathematical Literature [33], [70, [71], which are based on earlier
work in [81]. Figure[7.2]compares the Hasse diagram defined by the inclusion
relations amongst the Hilbert series of nilpotent orbits 9]@40 to the standard

Hasse diagram.

Figure 7.2.: Hasse Diagram of Fj Nilpotent Orbits. The left hand diagram
is derived from Hilbert series and HWG inclusion relations. The
right hand diagram is taken from the mathematical Literature
[70L [71]. Yellow nodes indicate non-normal nilpotent orbits.

Unlike the case of Classical group nilpotent orbits, where there is an
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exact correspondence between the Hasse diagrams (not shown) based upon
Hilbert Series inclusion relations and the standard diagrams [33, 6], there is
a discrepancy involving the linking pattern between F4[2000] and F4[0010],
where the restricted NOL method yields an inclusion relationship that is
absent in the standard diagram. One possibility could be that the subtle
distinction between normal and non-normal orbits has not been consistently
treated in the analyses in the Literature upon which the standard Hasse

diagrams are based. In this context, it is worth noting that 9]1\0[4([)0010] does

not include g?([)QLooo]’ which is the normalisation of gff‘omoo].
The nilpotent orbits of F} include some special orbits, as defined in section
4.4.6] These are summarised in Table along with their duals under the

Spaltenstein map.

Spaltenstein Dual Orbits
[0000] < [2222]

Table 7.4.: Fy Special Nilpotent Orbits

The special orbit [0200] is self dual. The non-normal orbits [0002] and
[1012] are special and dual to each other. The other non-normal orbits
[2001], [0101] and [1010] are not special. It is clear that the symmetries of
the left hand Hasse diagram based on Hilbert series and HWG inclusion

relations are a better fit for the symmetries of the Spaltenstein map.

203



(V) seLeg eqI pue suonansuo) 3910 74 G L o[qRL,

=+ Dot — 1)

[eULIOU-UON

¢ TONg[ _ ¢ TON
0179% — ¢1TE — 179861 — 166G — £ 7ST6L— 9¢ | L") 02 foroon® — () rorfra® pISTyg [T010]
1176698 + (1118€TS + FT9TE6 + #T09T6 + ,26T9LC+
g?LBVST + o1CGL8 + 1 209VT + #VLS + 290T + T + 1
1=(+ Do — 1) 1 ‘ TONg ‘ 10Ng | [BULIOU-UON
11z| (2 — (72
L 111G — or#CTL — qr#EG0S — p11TIE6T — gr209TLE — £12LT6ET— 9¢ [e#2] G2) foroor” ~ ) (rooz]a pr8u-uoN [T00z]
1111L99L + 1 #TCVIGT + G1TCIETT + gIVLETS + ,98CL9T+
g#1860T + ¢T00L + 70TLT + 7089 + 202T + 9T + 1
=0+ D -1) . TON
14z 6 131
A g1+ -oworpuied - + 9P0COL + ,HPVT6S + olLLYGET v ve #°2) foorovr [t [oT00]
I20ST + LIG6VY + £1696 + €91 + LT+ 1
e — 1) v (1¢ TONg _ (4 10Ng | [BULIOU-UON
e (1T 1’z
0179T — ¢17G¥G — 51#18SY — £179GT6T — 711CE68E — [ IVIIT— U3 [2#72] 2 0107517 = #®) feonoiva PG| [2000]
01#G9E8 + 7869LLT + #GTI9T + ,200L86 + §?SES0T+
(F00E8T + 78869 + £16CLT + o#65C + 16T + 1
1=+ Do —1) n TONg
A prt+ewoIpued 4 ,97269€ + 6208V0E+ v o ) 000271 oAl [0002]
HVESIT + 176129 + 186V + 16T + 11 + 1
=3+ 1Dg(3—-1) ¢ TON
14 6 13T
g+ 36T + gI8TT + 7957+ v § 8¢ 4°2) fooroler piotd [0010]
PIOTL + 1GGF + 81T + 26T + 1
(24 16+ 26T+ 26+ 1) o
1‘c b
H\@ + vawﬁ -1 w0 e ﬂwoo_ “ ﬂuﬁmﬁm :OOO_
A o1} T 26T + gIGEV + ,78V6T + 478668+ v (3 @) 10105 o
G1696T1 + 18668 + I8F6T + 1GEY + 262 + T :owﬂ M
011 —1) ('z) o001 % g ﬁ _
I0 10T
A gt + 129 + g1TPE + 18031+ v ot (3@) TeImo0g Pty 000T
$10T8T + ¢1808T + LATPE + 798 + T [ooot] et
I 0 (%) ool ® UOAT] [0000]
GQH peuyau) Wi UOT)OTLIISTO)) odAf, o1SLIOjORIRY))

204



(1) soLI9G IO PUe STONONIISIO) NATQ) ¥ '9"L OIRL

21— 1) ‘ TON
1w b QUSINSUI)ST
G- D(g— Dt —-D(@ -1 oy (%) feeeelva paysmsunsI(y 4ded!
1= =D (#=D1- (=D = 1) ‘ TON
A it -omoapuied 4 v v (') 0zeina® peysm3unSsIq [coze]
197 + 176 + o8 + 29T + 10T + 29 H2E + 1
(2= D+ D0 —1) () TONg
QUSTNSUT)ST
A grf T owopuIed T+ J0E8 + GIETL + LH0EG + ol9EET v 44 (#°7) fzogolva poysILauSI( [coz0]
T8 + (116 + 21F + 291 + 198 + T o
v €x b—
=1+ Dt —1) (272 + 917 fgocry [BULIOU-TUON] ﬁ _
61+ T g7T#16C — , 170891 — v Gx), TONg TOSPIRYOTY ¢clot
017868V — ¢ #669 — ;1#G6T — ¢12LLTOT + £1#S68CC+ lerot]er
1THLTEIT + o118L01T + ¢1EL6ET + gI1608 + ,186TV+
91280T + 1076 + 2L9E + 1821 + L6 + I8 + 1
1-(?1 =D+ D0 — 1) ‘ 10N
A prt -+ owoipured 4 269 + 43166+ v r %) foocern® UoAH [00z]
GILBE + LIETT + 116 + 96T + 1L+ 1
=+ Do —1) )y TONg
QUSTNSUT)ST
A g+ reworpurred - (37RI0T + 15696 + ,18T0L+ v U (%) o0z0]r PoYSIatRSI(] [00z0]
QICLTY + GI9V6T + pISTL + 1088 + 229G + 20T + 1
[e772 + 112 (1°2) 1oy~
3+ Dee—1) - . TONF_ [EULIOU-UO N
2zt — 1270V + z#0LT + ¢1706— 8¢ [s#7ata] (2'2) foroojr.r” PIStI-uoN [otoT]
Qr1GGT — 1997291 + o 7GHETG + o 1ET88— (') TONG
p1ICILTET — ¢1799G20C — 4 2LLEVBT + (178L08TH+ [oToT]%t
o 1BLOFLE + ISTFEOT + 198998 + ,1068ST + o16G87 1+
JIFTSE + pIP6LL + £19SF + 16 + 16T + 1
QI peuyeIup) geiitq) UOTIONIISUO)) odAT, OT}SLIOYORIRY)

205



(V) SDMH PUe s3qIQ % =L, 9lqRL,

"£}1A91q I0J UWMOT[S JOU OIe SIOAIMD oUW0S 10} SO 7 F W 10 I0RILTD 9T,
(1) 10907 e soqouop 1 Jo HMWH THW wy

et UEY T = b PUTY A MUY — o 1TY Y TY
TP U B TYTY — oYY 2T
Fo YR Y — 1YY A o 1Y Y A Y e TY Y
T TYEY YT — Y — YT — g EYy a [T010]
F Y+ TR TY — YRy — ATy Ty — Y Ty
|TOH%N£T£ + oﬁwmﬁﬁ - mwmwﬁ - mwms\ + mwmﬁaﬂ\ + www@
—HRYY 4 Y+ 1Y+ MY — MY — Y —

uMOys jou e [100Z]

vﬁﬁvﬁmmﬁ
—yr U g dg U o U+ T IYE
|mﬂwm\£m~\ + mﬁwms\:\ — mﬁwws\m@ﬁﬁm — mli&m@
TP U = Y TR = YR+ 1YY
T YT = 15 o b TY ot Y o T TY
Fort U+ oYY o U = RS IO
— el "UEY A+ 1Y — VR — VYR — 7y 1Y
Tt fU + PFUTYT — #5Y + I YT — Ty
|ww§\ — wwm\ﬁ\:\ — wwm@ + Nwmwe\ — nwv@ms\ + nwv\Q:\
TR+ 1Y A IR+ Y — Y — Y T

uMOys j0u [0T00]

("t — 1) (grfw — 1) (2% — 1) (1" — 1) (17w — 1) ('we — 1)

umoys jou A sl T WL WL — JPuL S — 3 VuwtwL — v S 4 3 FuEwut v [2000]
e e
moys jou 97g vlz i N%NEHSMA [dad Socﬁ
(=) (2w —1) (gl "= GTw—1)

ANprE\HﬁvQHE\C SOHO_

—— [1000)

—I— [0001]

ﬁ [0000]

OMH THW HMH Iererey) OTJSLISYORIBY))

206




() sOMH pue s1qI0 7

8L S[qRL

(11097 fpus soyouep 1 Jo HMWH THW Y

T

Y —1

Y+ Y — Ty — T

U — YTy
n_vawNwQ:\ + :wmﬁ + OHNNS& - www@ - N.w:& =1

Hﬁﬁmﬁ + mwmwﬁ - www@\ - wwmﬁ + ﬂwﬂ@ - H

ethY YT — Y oYY
A R A R e

bﬁwmwﬁmﬁs\ — fﬁﬁ&mﬁm@
—orFEUTY Y + 1 TY VY A+ VY Y+ VY Y Y
.J%T&mﬁms\ - fwmmﬁé + w%mwcmﬁ - iwmi\mcs\
+ENN§\N\£ — Eﬁvdmﬁmﬁ + Ewﬁ\mdmﬁ@ — ﬁwvﬁm\&:\
oty — gt CU g B TR — Y MY
—ep Y BY — o ATYEYTY 4 PTYTYTY — 1 8y TY
Ter? Y BT A g PUEY — g T
F ot "YU + o 3 VY Y — YR 4 8y 1Y
Fote®U = o FoU 2 TY Y TR A VY By
Tt UEY T = PO =TT = B 28T
F Y A G PTYEY Y — YRy — ATy Ty — 8Ty
ot G TYRY — 2T — R T — g1 Y
TR + Y+ 18y 4 N — Y — Y —

[010T]

OMH THW

DM I910eIey)

OT)SIIdYORIRY))

207



SOLIOG 19T PUR SUOIJRSI[RULION J1qI() YUl0d(IN 7.J '’ 9.l

"(3x99 998) WMOYS SI [g00g] ¥ TOISUIXD o1} ‘S31I0 JU9jod[IU [RULIOU-TOU JO SUOTJRSI[RULIOU Y[} 0} UOTIIPPR U]

(=D —De-G+ 1 —-1)

UOT)RST[RULION

‘r TONf[
A pr# + 7 roworpurred -+ ,9966¢ + ¢2190€+ v ¢r (+'x) [cTot1] %t UOSPIRYPDIY [z101]
GIOPST + L2118 + ¢1APG + 7168 + 7L + 1
=1+ 1D —1) o7 (34) TON I9A0)) 12002]
A gt + *rowoapurred - - + 7F)TL + ¢2069€9 + ,180VEY + ¢1STSIT+ v [2002] 7t UOAG]
¢75GT8 + $180¥G + ¢191G + ;768 + 701 + T
-1+ T)ge(@—1) g6 (342) TON UOT}RSI[RULIO N o101]
A gr# + - ewoapurred - + 0VE6VT + 1L6S6CT + L1TVIVS + I TEVIV v [oToT] " PISLI-UON
GHTLTGT + L#TGTY + 2618 + ALTT + 981 + T
=3+ 1Dt —1) . TON UOT}RSI[RULION
T b
A ot} + 7 -oworpurred 4 GIT9TLL + ,IGLGVI + oI0V6LEF v 96 | (o) [rotol7t pSry [to10]
G1SGIGT + 78CST + ¢1G16 + 1381 + 41 + 1
=1+ Doer—1) . TON UOIYESI[BULION
T b
A or? + - oworpured - + gIRTY + ,26998€ + ¢16991C+ v 9e ) [T00T] "1 PISLI-uON [T002]
S1€986 + $3TT8T + £1929 + 7901 + T + 1
-0+ 1Deelt—1) . TON UOT}ESI[RULION
T b
A pp? + 7 -oworpurred - + 976999 + ¢218L€G+ v 0¢ (o) [2000] 71 USAG] [2000]
G119T8T + 76456 + £1810T + ;160 + 110+ 1
SH pougeIup) W] | UOIONIISUO)) odAT, O1sLIDIORIRY )

208



SOMH PUe SUOESIRILION J1q10) Jue3od[IN . 0T°L O[q8L

"(1x99 99s) UMOUS SI [g00g]7] UOISua)Xe oY) ‘S11qI0 Juaj0d[IU [RULIOU-UOU JO SUOIRSI[RULIOU [} 01 UOIIPPe U]

1?8y + 2%y + g1 1Yy — g1y
— 1Y + 2Ty — 38Y — ATY — VY + T

[z10T]

AL AL
Forte U+ g%+ TR — Ty — oy Ty
— 11 8Y + o ?PYEY — G 2VYTY — (19%YT — 1.7y
—6le 'Y — ?VUEY + g?VYTYT + 78y + 570U + g1, 1Y
—IYEY + IVYTYT + 1Y — 18y + 1%y 4,1, 7Y
+,2%Y — 18y — 28YZ — YT — VY — Y+ vy + T

[z00¢]

er?8UTY + o 18y TY — 12 VYTY + 37y TY + 4190y
FoUEY = 1YY VYT — 28y sy Ty
|Hﬁwm£ + Oﬁwﬂdm\& - oﬁﬂwdmd - Oawﬂ@f& - Oﬁwmﬁai
|O#%NQN - mwmws\ - @wmwﬁ - @ww\w\:\N + mwmﬁ\:\
—618Y + 1Y + 1.1y — VY EY + Py lyg + 17y
—18Y + 1%y + 2. VY + VY Ey + 37y Ty + g1ty
—8YT — YT — 7Y — VY — ATy + VY + T

[010T]

wﬁﬁu@m@:& - wﬁwmdmi + mﬁwf\ms\ﬁdm
|mﬁwm\£:\ + mﬁwmﬁﬁs\ - Nﬁﬁws\m@:‘\ - Nﬁwwﬁmdw
+NHwN£ + Hﬂwmwﬁmﬁ + Hﬂwwﬁmc - ﬁﬁvaNﬁ\ + Hﬁwwﬁ\mﬁﬁ
FPUTY = 38 38 Y TY A+ 3 7YY
+oﬁﬁ¢\£m£ - OﬁvaN:\ + Oﬁﬁwcs\\ - CmeQ:\N
\oﬁwmﬁ — @wmvﬁﬁﬁ — mﬁmw\& — mww\&mﬁ — @wwdmc
—et"YU MY + 1Y YT — G18Y + 610U + g1 MY — gt VU Y
—ITYTY 4 17Y — 18y + 3%y + 3.7y — 3. 7Y
+,37yEyg + 1y Ty + 38y + 9%y + G217y EY + 18y
— MY Y — 28y — TYZ — 3Ty — VY — ATy 4 1

[toT0]

erte VU Y + PV USYTY — 130y Ty — L3 VY Ty
FortTUEY Y — g1V + i Y+ 3T+ 7YY
— e B P8 — 28y 28Ty A+ 27y
—ort "YU + o 1Y — o AVUTY — 3.5y + o8y Ty
—or?eU — 1T — g TUEY + g1 "U — 6HTUEY
— 6 PUTY + GIEYTY — GIEY + h YT — gITYEY
+o1PYTy — VY ly + VY — 1€y + 3VyEy + 3y ly
nThwmtﬁ@ + mwms\ _ mw:\ _ wwmvd - wwwt — mw:\ +1

[T00Z]

umoys jou

(

(18w — 1) (g1fw — 1)(g2%w — 1) X
Amwmﬁs - Sﬁmwwg —D'w—1)

)

wwvsms +1

[z000]

DMH THW

OMH I910eIey)

OT)STI9YORIRY))

209



7.3.3. Orbits of Ejg

The 21 nilpotent orbits of Eg are described in Tables[7.11]to[7.13], which give
their classification, constructions and unrefined HS. Table contains the
same information for the normalisations of the non-normal nilpotent orbits.
Table analyses the three extra root maps that were identified in section
421

Unlike Fy, it has not proved practicable to resolve many Hilbert series
into HWGs, other than for near minimal and maximal orbits, so much of
the analysis is based upon unrefined HS. In Table[7.16] the character HWGs
and mHL HWGs are given for those orbits where it has been possible to
complete the calculations.

The non-normal orbits exactly match those listed in [72] (see section
4.4.7). The tables contain candidates for the constructions of the non-
normal orbits. These have been obtained by restricting their normalisations
to the nilpotent cone N through the subtraction of sub-spaces, similar to the
method used for gjc\’;zo and gf,‘*o. Much of the analysis is, however, based on
unrefined Hilbert series and should not be taken as definitive. The picture

that emerges can be summarised:

[000001] and [100010]: 22 dimensional minimal and 32 dimensional next to
minimal nilpotent orbits. These orbits have the invariant subgroups
As and Dy respectively. The orbits can be calculated either (i) from
the Coulomb branch of a quiver theory built on the affine or twisted
affine Dynkin diagram, or (ii) from the NOL formula. The HS and

character HWGs are palindromic, and the latter are freely generated.

[001000] and [000002]: 40 and 42 dimensional nilpotent orbits. These orbits
have the invariant subgroups As ® As ® A1 and Aj, respectively. The
orbits are calculated from the NOL formula. The HS and character
HWGs are palindromic, and the latter are freely generated or complete

intersections.

[100011], [200020], [100012], [010101] and [200022]: 46, 48, 52, 56 and
60 dimensional nilpotent orbits. These orbits have the invariant sub-
groups As, Dy, Az, A3 and Aj respectively. The orbits are non-normal

and candidates for the orbits are found by excluding sub-spaces, as
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shown in the tables, from their normalisations obtained from the NOL

formula. The Hilbert series are non-palindromic.

The remaining orbits are normal, with palindromic Hilbert series. The
decompositions into mH L functions are shown for the 66 dimensional

orbit upwards.

The Hasse diagram based on the inclusion relationships between unrefined
Hilbert series is compared in Figure [7.3| with the standard diagram in the
mathematical Literature [70} [71].

The two diagrams are broadly consistent. Some of the extra links ap-
pearing in the left hand diagram might disappear if the moduli space cal-
culations could be repeated with refined (rather than unrefined) Hilbert
series, or with character HWGs. However, the left hand diagram does not
have a link (i.e. inclusion relation) between the non-normal [200022] and
the normal [110111]; considering that unrefined Hilbert series cannot miss
an inclusion relation, this may indicate an anomaly in the standard dia-
gram; alternatively, there may be other restrictions of the normalisation of
[200022] that should be considered.

Turning to the three extra root maps, whose unrefined HS are set out
in Table two of these maps, [111110] and [020202], have identical
refined Hilbert series to the nilpotent orbits with Characteristics [110111]
and [202020], respectively; these provide examples of dualities, with different
SU(2) homomorphisms generating the same nilpotent orbit. The third map,
[110110], is non-normal, containing elements outside the nilpotent cone; it
can be restricted to the nilpotent cone, by excluding a subspace defined
by the charged NOL formula, whereupon it appears to be an extension of
[002000], the distinguished nilpotent orbit of the same dimension:

9560[210110] (x,t) = gﬁ%OLOZOOO] (z,t) [1 + z6t? + :1:3756] (7.30)

The Weyl group of Eg has 25 irreps and conjugacy classes. In [82], the
21 nilpotent orbits are identified as these conjugacy classes, modulo some
actions of the symmetric groups Sz or S3. Two of the three extra root
maps, [110110] and [020202], appear to correspond to other members of
these conjugacy classes; however, these are identified in [82] by Bala Carter

labels, so the correspondence with root maps or Characteristics is unclear.
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Figure 7.3.: Hasse Diagram of Eg Nilpotent Orbits. The left hand diagram
is indicative, being partly derived from unrefined Hilbert series,
with arrows indicating inclusion relations and yellow nodes in-
dicating non-normal nilpotent orbits. The right hand diagram
is taken from the mathematical Literature.
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7.3.4. Orbits of E; and Ejg

A comparable analysis for the 45 nilpotent orbits of E7 and 70 orbits of Fg
poses computational challenges and it is only possible to present a partial
picture. Tables to set out those Hilbert series and HWGs that
have been calculated, along with details of the constructions. Unrefined HS
for normal nilpotent orbits of E; and Eg are shown in Tables to
and [7.27] to [7.28} the normalisations of the 10 non-normal nilpotent orbits
of E7 are shown in Tables and the 8 extra root maps of E; are
analysed in Tables[7.25| and [7.26} and the character HWGs for near minimal
orbits of E7 and Fg are shown in Tables and respectively.

The pattern of results is similar to that for Fg. The near-minimal or-
bits are normal, with palindromic Hilbert series, and have character HWGs
that are freely generated or complete intersections. All these orbits can be
constructed using the NOL formula. In addition, the minimal and next to
minimal orbits (and the next to next to minimal E7 orbit), have Coulomb
branch constructions. In all the cases calculated, the non-normal orbits are
consistent with the established classification, described in section [4.4.7]

Turning to the 8 extra root maps of E7. Amongst these: FE7[2020000]
and F7[0110100] are normal, with their unrefined HS matching E7[0200200]
and F7[0020000], respectively; E7[2000002] appears to be non-normal, with
its unrefined HS matching FE7[0100011]; of the others, four generate exten-
sions that do not match either the orbits or their normalisations; and the
unrefined HS of one remains to be calculated. Once again, these appear
to provide examples of dualities, with at least three of the extra root maps
from SU(2) homomorphisms giving copies of nilpotent orbits.

The Weyl group of E7 has 60 irreps and conjugacy classes. In [82], the
45 nilpotent orbits are identified as these conjugacy classes, modulo some
actions of the symmetric groups Sy or S3. Six of the eight extra root maps,
appear to correspond to other members of these conjugacy classes; however,
these are identified in [82] by Bala Carter labels, so their root maps or
Characteristics are not clear. The Weyl group of Fg has 112 irreps and
conjugacy classes. In [82], the 70 nilpotent orbits are identified as these
conjugacy classes, modulo some actions of the symmetric groups Ss, Ss
or S5. It can be anticipated that most of the 39 extra root maps of Ejg

correspond to other members of these conjugacy classes.
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8. Deconstructions

A considerable portion of this study has been devoted to examining the
relationship between the moduli spaces of quiver theories and the nilpotent
orbits of GG. Nilpotent orbits provide a structured context for the explo-
ration of many relationships between quiver theories, beyond the 3d mirror
symmetry and other dualities examined thus far. Such relationships can re-
sult from various mechanisms, including, inter alia, branchings to subgroups
of G and HyperKéhler quotients by gauge groups.

Under some types of branching relationship (introduced in section , a
quiver theory is equivalent to a combination of glued quiver theories. Such
branchings can be thought of as deconstructions, in which no information
is lost and the original moduli space can be reassembled. Deconstructions
are facilitated by standard building blocks and these can be provided by
modified Hall Littlewood functions, which form an orthogonal basis.

Importantly, while singlet modified Hall Littlewood functions correspond
to (uncharged) maximal nilpotent orbits, all A series modified Hall Little-
wood functions correspond to Coulomb branches of (a class of) T'(SU(N))
quiver theories with background flavour charges. In the brane view of
T(SU(N)) theories [31], the D5 branes carry these monopole flavour charges,
while the NS5 and D3 branes supply the U(NN) gauge group structure.

Under a HyperKéhler quotient, which gauges away a subgroup, for exam-
ple, after symmetry breaking through subgroup branching, a quiver theory
for a nilpotent orbit of G may reduce to a quiver theory for a nilpotent orbit
of a subgroup of G.

We can use the methods described in Chapter 2] to decompose the refined
Hilbert series of nilpotent orbit quiver theories into representations and/or
modified Hall Littlewood functions of subgroups and thereby explore such

types of relationship.
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Figure 8.1.: The T;(SU(N)) quiver consists of a SU(N) flavour node
connected to gauge nodes U(Nj) through U(Npax), where
the increments are described by the partition p = (N —
Ni,..., Nmax-1 — Nmax). The flavour node carries fixed
monopole charges described by a second partition A.

8.1. mHL Functions and T(SU(N))

One of the remarkable aspects of the A series mH L functions is that they
correspond to the Coulomb branches of certain N'= 4 SUSY quiver gauge
theories in 2+ 1 dimensions, within the class known as T3 (SU(V)) [31, 53],
(where p is used to denote the transpose of p).

When o = (1¥), the quivers take the linear form in Figure and the
Higgs branches of these theories correspond to the A series nilpotent orbits
defined by p. The case p = (1V) + p = N gives the maximal nilpotent
orbit. If these quivers are generalised, by assigning external charges A to
the flavour node, then the Coulomb branches of the family of quivers with
p = (1V) correspond to the mHL basis functions, defined in with
quivers carrying zero charge giving mH L singlets (i.e. maximal nilpotent
orbits). These theories, in which o = p = (1Y), are often simply referred to
as T(SU(N)).

Following [55], the Coulomb branch formula [6.2] can be adapted to attach
fixed monopole charges to the flavour node. These charges are described by a
partition A = (A1,..., An), where Ay = 0, and the partitions map to SU(N)
highest weight Dynkin labels [n] = [n1,...,n,| through the relationship

r

Aj = Z n;.
=]
The monopole formula for T'(SU(N)) becomes[l:

T(SU(N)) (A, z,t) = Y PUN) () zg M zmaghad), (8.1)

Note the signs of the exponents of the roots; these are chosen for consistency with the
mH L definitions used herein.
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N

where |A\| = Y \;, and zp can be chosen by an overall gauge invariance
i=1

condition:

T

2 [ =1 (8.2)
=1

The Cartan matrix relationship between fugacities for SU (V) weights and

1 )
simple roots, ¥ = H ZZN_l, entails that zo_l = 21.

=1
With a little work, [B.I] can be rearranged into a recursive set of relations:

S _N
T(SU(N)) (A, 2,t) = ) 3 PUGND (1) g V115860
q12>...>2qN_1>—00 (8‘3)

x T(SU(N —1))(q,22,...,2nN-1,1),

where z = (21,...,28v-1), ¢ = (1, --,qN-1), and
1 N N-1 N—1i-1
A(qv)\)=§ZZ|)\i*qJ’|*ZZKH*%’L (8.4)
i=1 j=1 i=1 j=1

The U(N) Casimir symmetry factors, which depend, as before, on the par-

tition ¢ of monopole charges on each node, are given by:

N

1

UN) _ -

P} H TR (8.5)
i=1

The recursion relations [8.3] assume the ¢ form an ordered partition, but

may range over both positive and negative integers. Each summation cor-

responds to one of the gauge nodes.

We set T'(SU (1)) = 1 and the second member of the series follows as:

1 [e.9]
T (SU (2)) (A1, A2, 21, 1) :x@l“?)(l_t) S nhalkteal

q1=—00
(8.6)

where z1 = x%
As shown in [55], the T'(SU(N)) Hilbert series correspond to modified
Hall-Littlewood polynomials of SU(N). The correspondence is modulated

by a pre-factor in ¢, so that:
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mH Ly, (z,t) = t =917 (SU (N)) (A (), 2,1). (8.7)

The exponent of the pre-factor equals the contraction of the Weyl vector
Pw, which is (1,...,1) in a canonical basis of CSA coordinates, with the
Dynkin labels of the mH L polynomial, using the group metric tensor G E|

In principle, as discussed in [29], any refined Hilbert series, expressed in
terms of class functions of GG, can be branched to a semi-simple subgroup
of G that consists solely of A series groups. It can then be decomposed into
A series modified Hall Littlewood polynomials and thereby expressed as a

summation over a series of T'(SU(N)) quiver theories.

8.1.1. T(SU(N)) and Star Shaped Quivers

Some of these deconstructions are more elegant than others, with interesting
examples being provided by families of star-shaped quivers. For example,
the deconstructions of certain nilpotent orbits of Classical and Exceptional
groups into A series mH L polynomials follow the structural relationships
between their Coulomb branch quiver theories (which are based on Dynkin
diagrams) and the linear quivers of T'(SU(N)). Figure 8.2/ shows the quiver
diagrams involved in these family relationships; the Dynkin diagrams can
be constructed by identifying the flavour nodes of the T'(SU(NV)) quivers.

The non-trivial aspect of these deconstructions is that of finding the
branching coefficients into mH L functions; while these can be expected
to reflect the symmetries of the diagrams, they can also incorporate non-
obvious patterns, particularly for the non-simply laced diagrams.

One way of finding the branching coefficients for the simply laced Dy —
A%M and Fg — A%z’?’ deconstructions is to rearrange the Coulomb branch
constructions (discussed in section[6.2)) for the RSIMS (or minimal nilpotent
orbits), under a gauge choice that sets the lowest U(1) monopole charge of
the central node of the Dy or Eg extended Dynkin diagram to zero, such
that the contributions of each leg can be separated from the residual gluing
coefficients.

The more general method, however, for deconstructing a refined Hilbert

2While mH L polynomials with similar properties can be defined for other groups, the
T(G) quiver theories that have been proposed for these functions, other than for
isomorphisms with the A series, face some critical issues.
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Orbit Quiver Diagram T(SU(N))
5220) O« = oa Bo
) 0—0-90
B3[010] z
o8 B0
D4[0100] X
G220 ®0-0 H0-0
i) | 0—0—0+0—0 | 0-0-H H-0-0
E6[000001]
008 EHO00
Figure 8.2.: Quivers for Nilpotent Orbit deconstructions to T'(SU(N)). Blue

nodes denote simple roots. Affine Dynkin diagrams are labelled
with black nodes indicating the affine root. The dual Coxeter
numbers of each node are shown. The quiver diagram for G»[20]
is a hybrid in which the SU(3) gauge node is self linking and
contains the flavour node. T'(SU(N)) quivers are labelled as in

Figure
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series into mH L functions, is to find the Cp,; = C) branching coefficients,
defined as in by using As an example, the calculation of the
Clp for the deconstruction of the RSIMS of Dy into mH L functions of the
semi-simple 4;%* = 4; ® 4; ® A; ® A; subgroup proceeds as follows.

We wish to calculate the coefficients Ciy, .1 n 5], nel,inp] (£) Such that:

D ®4
915 rsims (W, z,y,2,t) = g™ (a,b,¢,d,t) R
(a,b,c,d)—)(w@,y,z)

where
®4
gA1 (a, b,c,d, t) = Z C[nA],[nB],[nc],[nD] (t) mHL?LIA] (a, t)
[nal.[ngl[nclnp]
x mHL{! (b, t) mHL,! (e,t) mHLGY (d,1).
(8.8)

We start with the expansio for ggg:RSIMS (w,z,y,z,t), obtained by one
of the methods in sections or where {w, z,vy, z,t} are CSA co-
ordinates for D4. By eliminating the second node in the extended Cartan
matrix of Dy, and using the relationships between roots and weights en-
coded and the Cartan matrices of A; and Dy, we obtain the root and CSA
coordinate mappings in Table [8.1]

Table 8.1.: Dy to A;%* Simple Root and CSA Coordinate Mappings

D 4 D 4 A 1®4 A1®4
roots CSA coords roots CSA coords

21 w?x Za a’

29 22 Jwyz - -

23 v?/z 2 b2

24 22/x Ze 2

20 1/z 24 d?

We solve the root mapping {z1 <> 24, 23 <> 2p, 24 <> 2¢, 20 <> 24} to obtain
the CSA coordinate mapping {w <> §,z < d%,y “ %, z ¢ S} and use this
to transform ggfngSIMS (w,z,y,z,t) to gAi®4 (a,b,c,d,t). We then intro-

duce generating functions for the g,,77 using the Dynkin label fugacities

3The refined Hilbert series is not shown here since it is rather lengthy.
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ha,hg, hc, hp and specialise as:

o0

A®4 n n n. n
Irwe (ht) = > Clualinslinclnp) (8) ha™*hp"?he™hp"P

[nal,lnglincl,inp]=[0]
4®4 . .
j{ deHL gmHL (a yha, t) gmHL (b hp,t)
AP
X g (¢ het) g (dF hpt) g (aib,e,d,t).
(8.9)
The Hall-Littlewood polynomials of Aj, follow from and can be ex-

pressed in terms of characters [n] as:

HL (x,1) = n;l [1] : (8.10)
n>2:[n]—tn-—2]

Their generating function follows from and can be encoded as a highest
weight generating function, using h as the H L Dynkin label fugacity:

gy (¢ h,t) = (1+t—[1]ht) PE[1]R]. (8.11)

The generating function gﬁ,lL for the conjugate orthonormal Hall-Littlewood

polynomials H L{‘l differs from gA1 in its numerator, as discussed in section
n) HL ’

24

gt (0 hot) = (1= h%) PE[[1]h]. (8.12)

The modified Hall-Littlewood polynomials mH LAl, mHL? and their gen-

[ [n]

erating functions all differ from the above by the pre-factor, PE[[2]t — t]:

o

g (¢ hot) = PE[[2]t — 1] gty (x, hit),
g (6 hot) = PE[[2]t — ] gty (x, hit).

(8.13)

We evaluate by taking the conjugate generating functions from [8.13
expanding the characters, and applying Weyl integration using the mHL

Haar measure, to obtain:

Ay |~ WAL A2
HWG (1 — t2)(1 — hAhthth)(l — hAhththz).

(8.14)
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Family mHL HWG for Cpy
BQ[QO] Bg ZhEhAhB
Gg[lO] A ®r 1—h2¢4 G2 h= hihB
Bs[010] ! (I=2)(1=ht)(1-hi?) Bz :h = hah%he
D4[0100] D4 ch= hAhthhD
G2[20] ) 5 5 5 5 G2 : hi = hAi
FA[1000] 5 — A/ | HRa s et Ey: i = hailiy,
E[000001] FEg : hi = haihpihci

Table 8.2.: mHL HWGs for Nilpotent Orbits of T'(SU(N)) families

This simple HWG is of a diagonal form, in which the Dynkin label fugacities
of different subgroups always appear with matching exponents. Taylor series

expansion yields the explicit non-zero Cf,(t) coefficients:

n=0:(1-)"

n>1:t"1—1¢) " (8.15)

Clallnlmin) () = {
These can be checked by substitution back into followed by Taylor
expansion or gluing to recover the RSIMS for D4. The coefficients follow a
pattern related to the SU(2) Casimir symmetry factors discussed in Chapter
(61
We can repeat the procedure described for Dy for a selection of lower rank
Classical and Exceptional groups. The low dimensions of the HWGs built on
mH L polynomials can lead to particularly simple decompositions of RSIMS
into A series subgroups. These include two families, By, Go, B3, Dy — A1®"
and G, Fy, Fg — A5%7/2 that have simple HWGs of dimension 2 and 4
respectively, as shown in Table The A; family shares D4[0100] = A%M
and B»[20] = AY? with the quivers constructed from SU(2) tri-fundamental
fields, against a background of N’ =2 SUSY in (3 4+ 1) dimensions in [33].
As the limiting case of a star shaped quiver with a single arm, it is no-
table that the 10 dimensional G nilpotent orbit can be deconstructed into
mHLA? functions, equivalent to T(SU(3)) quivers. The Gy orbit is ob-
tained, after an elementary transformation from Gs to As, by summing
over the flavour nodes of the T'(SU(3)) quiver. The Cj, coefficients can
be found from the refined Hilbert series for G2[20] by projection methods,

similar to the D4 RSIMS example above, and turn out to complete the
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T(SU(3)) family in Table This nilpotent orbit can also be constructed
directly, as shown in [23], on the Coulomb branch of the quiver in Figure

in which one of the gauge nodes is self-linking.

8.1.2. T¢(SU(N)) Theories

A more substantial class of modifications to the Hall-Littlewood polynomi-
als is implemented in [26], where these (heavily) modified Hall-Littlewood
functions are used to construct the RSIMS of Eg, E7 and Eg. In the
case of FEg, the result is equivalent to that obtained by the mH L decon-
struction described above. For E7 and Eg RSIMS, the (heavily) mod-
ified Hall-Littlewood functions incorporate elements of the broader class
of T7(SU(N)) theories, introduced above. The quivers for the Coulomb
branch constructions of Exceptional group nilpotent orbits in Figure [6.13]
all contain linear sub-quivers, such as [4] — (2), [6] — (3) and [6] — (4) — (2),
that correspond to 77 (SU(N)) theories, where o = (1M), and p = (22) or
(3%) or (23), respectively.

The (heavy) modifications involve subjecting the Hall-Littlewood poly-
nomials to a branching map that, at the risk of introducing divergences,
treats t as a unimodular SU(2) fugacity; the resulting functions are pre-
fixed by a number of factors and glued together with Cjj,)n) branching
coefficients. The constructions are guided by a conjectured characterisation
of punctures on Riemann spheres wrapped by M5 branes, which helps to
identify those combinations of A series (heavily) modified Hall-Littlewood
polynomials that yield the desired moduli spaces.

These (heavily) modified Hall-Littlewood polynomials provide alternative
building blocks to the monopole formula for some Coulomb branches. Their
usage presupposes that the quiver diagram symmetries are readily identi-
fiable; they can be used on quivers that are simply laced, with a central
gauge node, single flavour node, and linear arms, even if some of these do
not obey p = (1V).

While the (heavily) modified Hall-Littlewood polynomials can facilitate
Coulomb branch calculations, their drawback is that they do not form a
set of orthogonal basis functions; so the resulting deconstructions do not
uniquely decode the moduli spaces, and their branching coefficients cannot

readily be found by the projection methods developed herein.
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8.2. Subgroup Branching of Nilpotent Orbits

The nilpotent orbits of a group G have relationships with those of its sub-
groups; indeed this follows from the fact that orbits can be induced from
subgroup orbits using the NOL formula (version [7.11)). Naturally, the pro-
cess can be reversed and the subgroup orbits can be recovered from the par-
ent. The regular semi-simple branchings discussed in section map the
adjoint of G to representations of its semi-simple product groups; gauging
away the unwanted members of the product group leaves a representation
of a simple subgroup Gy that includes the adjoint of Gg. Consequently,
any nilpotent orbit of G maps to a representation space of Gy that contains
some nilpotent orbit of Gy, although this is quite often combined with other

representations.

8.2.1. RSIMS Branching

A variety of branchings of RSIMS of Classical and Exceptional groups were
investigated in [29]. Given a coordinate map M from a parent group G
of rank r to a subgroup Gy ® ... ® G,, of equal rank, the refined Hilbert
series g§5: rsims(@,t) can be expressed in terms of the CSA coordinates
{y1,...,yr} of its subgroup. Then, following the methods laid out in Chap-
ter[2 a character generating function g&o®-Gm

X
gg(g'@Gm (y,t) onto the irreps of the subgroup; these are tracked using the

(y,m) can be used to project

Dynkin label fugacities {my1, ..., m,}. The projection coefficients, which are

polynomials in the fugacity ¢, are encoded in the HWG gg‘%;[;gGm (m, t):

G Go..®Cm G ®Cim
9 s:rsis(@,t) = g% Eom (y,t) = gt e (myt) (8.16)

Specialising to G of the type SO or U Sp, with branching to a product group
with two constituents of the same type, the HWGs gg({f?gl(m, t) take the
same form. This can be shown using notation where the highest weight
fugacities for the adjoint, vector and graviton representations of the two
(primed and unprimed) subgroups are replaced by {6,v,g} respectively;
thus, for B/D,>3 : {m1 — v,ma — 0,m? — g}, and for C, : {m; —
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v,m3 — 0}. The generalised HWGs follow the pattern:

Ilemsinrs = 9S85 = PE[(0+0 +0@0)t+(1+g+4d +v0v) > —godt],

95 sirsivs = 9awer =PE[(0+60 +vev)t— 02017,
(8.17)
The dimensions of these generalised HWGs vary from two in the case of
the C series to six for the B/D series. The Hilbert series only contain
representations whose Dynkin labels are monomials of the singlet, vector,
adjoint and graviton labels. Importantly, since their form does not change
for higher rank, these expressions encode such RSIMS deconstructions for
any BCD group. The deconstructions contain all the information in the
original RSIMS, which can be recovered by applying the inverse coordinate
map ML
If the HWGs are gauged by selecting singlets of one of the subgroups -
easily carried out by eliminating those HWG monomials that are not its
singlets - then the connection from the minimal nilpotent orbit of G to the

nilpotent orbits of Gy is manifest:

gfI/S:DRSIMS - gg(I)/VG =PE [9t + gtz] PE [tQ] (8.18)

c G
gus:rsims — 9awa:rsivs = PE 0],

While the RSIMS of a C' parent maps to the minimal nilpotent orbit of a C'
subgroup, the RSIMS of a B/D parent maps to the next to minimal orbit
of a B/D subgroup, multiplied by a series of singlets. In order to eliminate
singlets and to obtain exact B/D mappings to subgroup nilpotent orbits, it
is necessary to incorporate a Hyper Kéhler quotient by the gauge subgroup,

similar to the procedures in Chapter

8.2.2. Hyper Kahler Quotients

Hyper Kéhler quotients between nilpotent orbits were treated in [7], albeit
from a geometric rather than representation theoretic perspective. Table
8.3|sets out a selection of pairs of nilpotent orbits of groups that are related
by Hyper Kahler quotients. The Classical cases are largely drawn from
[7], with the orbits described by their Higgs branch quivers, which typically
follow the subgroup branching. The logic behind the Hyper Kéahler quotients
follows the discussion in section [5.4.3] The Exceptional cases are drawn

from the covering spaces identified in [80]; the branchings are to maximal
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subgroups, based on elementary transformations or folding maps, and quiver
descriptions are not available.

The relationship between each pair {Og = gJC\T}O,(’)GO = gffb} can be
described by a character map Y& — yG0@G1®--Gm  followed by a HKQ by
the subgroup H = G| ® ...G,y; this may include the discrete action of a
finite group [6]:

gy (X9, 1) Z f " gNO X
'Z | H PE [(adj]; . 17]

1=

G0®H’ t)

(8.19)

Table contains only a sample of the possible HyperKéahler quotients
between nilpotent orbits, but these serve to exemplify particular types of

relationship. These include:

1. 2-node quivers (9 examples). The fundamental of the flavour group is
broken to a sum of fundamentals of groups of the same type (O/Sp/U).
The HKQ is taken over the lower rank group, with the quotient for
By = O(1) given by a Zsg factor. There are conditions that follow from
the requirement that the new quiver should be based on a well ordered
partition. Possibilities for Classical flavour groups are shown in Table
[B:4] In all cases the reduction in complex dimension of the nilpotent

orbit is equal to twice the dimension of the HKQ gauge group.

2. SU(2k) RSIMS folding to the supra minimal nilpotent orbit of Cj
(1 example). Consider the RSIMS quiver SU(2k) — U(1). The com-
plex character of the flavour group fundamental representation can be

mapped to the pseudo real C fundamental. The gauge group maps
from U(1) to O(2). The HKQ is a Zy factor, as shown in Table

3. The other types of Classical subgroup branching include special branch-
ings, such as those from SU(8) and SU(10), in addition to regular
ones. Considering that the subgroup may contain Abelian compo-
nents, there are many possibilities for branching a group into its sub-

groups [54]; these are compounded by the alternative choices of HKQ.

A

4Not all combinations lead to nilpotent orbits of the new flavour group; many lead to
covering spaces.
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4. The branchings from/to the nilpotent orbits of Exceptional groups
require Hyper Kéahler quotients by finite groups, as shown, to recover
orbits of lower rank groups, rather than covering spaces. These are
not discussed in [80], but can be identified from the HWGs of the

various orbits and moduli spaces.

The generalisations in Table[8.4]extend the results of [7] and [80] to a wide
class of relationships involving nilpotent orbits based on the Higgs branches

of 2-node quivers.
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9. Conclusions and Outlook

9.1. Reflections

This study set out with the aim of understanding and explicating the re-
lationships between the structure of SUSY quiver gauge theories and sym-
metry groups. While much has been accomplished, the progress has been
greatest with those quiver theories that possess natural decodings in terms
of canonical objects from Lie groups and their representation theory. This
is illustrated nicely by the symmetries of the invariant tensors of GG, which
manifest in flavour group representations on the Higgs branches of SQCD
quiver theories; and by the (closures of) nilpotent orbits of Classical G,
which appear on the Higgs branches of linear quiver chains built from G
and its subgroups; and by the nilpotent orbits of Classical or Exceptional
G, which appear on the Coulomb branches of quivers built from Dynkin
diagrams of G.

The rationale for focusing on certain SUSY backgrounds (N = 2 theories
in the case of Higgs branch constructions and N' = 4 3d theories in the
case of Coulomb branch constructions) has been that these backgrounds,
with 8 SUSY supercharges, support quiver theories with rich gauge group
structures; the tools and methods developed in this context should, however,
be equally useful in the analysis of any SUSY (or other physical) theory with
a non-trivial gauge group content.

This study would claim to have made useful progress in two areas. The
first is the development of the Highest Weight Generating function method-
ology for decoding the representation content of a refined Hilbert series.
This methodology draws systematically on the group theoretic relation-
ships between various families of generating functions, including Hilbert
series, HWGs, and generating functions for characters of Lie group repre-
sentations, Hall-Littlewood polynomials, modified Hall Littlewood functions

and their orthonormal conjugates. The end result is a toolbox for faithfully
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transforming and/or combining the Hilbert series of moduli spaces, such
that their properties and relationships with other moduli spaces can be
concisely and unambiguously defined and understood.

It is a central theme in this study that the systematic use of refined Hilbert
series, concisely encapsulated as HWGs, provides a faithful encoding of any
moduli space that can be expressed over the class functions of some sym-
metry group. This opens the door to identifying and analysing, in a precise
and systematic manner, the structures of and relationships between a wide
variety of field theories. While SUSY quiver gauge theories have formed the
centre piece herein, SUSY backgrounds are not a prerequisite for the use of
Hilbert series and HWGs. Indeed, the treatment in Chapter [7| of nilpotent
orbits, through the refined Hilbert series and HWGs of moduli spaces gen-
erated by the background independent NOL formula, indicates that these
methods should have broad physics and/or mathematical applicability.

The second area has been the application of HWG methodology, aug-
mented by established Plethystics Program techniques, to develop an im-
proved understanding of the moduli spaces of SUSY quiver theories, from a
representation theoretical perspective; this has included systematising many
of the non-trivial relationships between the Higgs and Coulomb branch vac-
uum moduli spaces of quiver theories for the closures of nilpotent orbits.
Findings in relation to SQCD and instanton moduli spaces are given within
Chapter[3] The main findings, which relate to nilpotent orbits generally, are
summarised in the sections below. Findings in relation to deconstructions
of nilpotent orbits are given in Chapter

In the course of research, some categories of quiver theory were found
to have moduli spaces that do not have simple decompositions in terms
of HWGs, whether using characters, HL polynomials or mH L functions
as a basis. Examples include multiple instanton moduli spaces, touched
on in section and Masterspace quiver theories [57, [56]. In the case of
Masterspace theories, which deal with Calabi-Yau spaces defined by brane
tilings, such as delPezzo surfaces, the multiple Abelian symmetries of the
manifolds mostly preclude the description of their Hilbert series in terms of
simple HWGs. In the case of multiple instanton theories, the interlacing of
global SU(2), instanton gauge and Yang-Mills symmetry groups also, thus
far, frustrates a general description in terms of simple HWGs. These quiver

theories were not explored further in this study.
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When decoding recent Literature involving nilpotent orbits, it has proved
invaluable to be able to draw on the seminal papers by Dynkin [61], 54],
which not only introduced some powerful group theoretic tools, such as
Dynkin diagrams, but also developed many of the concepts, such as Char-
acteristics, which are essential for an effective analysis of nilpotent orbits.
The interplay between recent ideas from SUSY quiver theory and founda-
tional mathematical frameworks has played an important role in facilitating
the resolution of many puzzles in the course of this study.

This study also identifies a few tensions between the theoretical narra-
tive surrounding nilpotent orbits in the mathematical Literature and direct
computations of their properties as moduli spaces. This suggests that there
could be future benefits from a dialogue between the strands of mathemat-
ical and theoretical physics research in this field.

The study has made much use of Mathematica, supported by the LieArt
add-in [84], to calculate refined Hilbert series and their HWGs. To do this,
it has also proved necessary to build a number of custom algorithms to im-
plement the often complicated and lengthy group theoretic transformations,
which typically involve Weyl integration and/or Weyl group summation, be-
tween different types of generating function. While every effort has been
made to describe and/or state the key formulae deployed, either in the text
or in the Appendices, progress has also depended on the formulation of effi-
cient algorithmic procedures; necessarily, these live within the Mathematica

workbooks designed during this study rather than in this document.

9.2. Findings - Nilpotent Orbits

9.2.1. Higgs Branch

Every nilpotent orbit of a Classical group has a canonical Higgs branch
quiver theory that can be identified from its Characteristic. A Higgs branch
formula for A series nilpotent orbits is given by[5.4] A detailed formula, [5.23
for the closure of a BC'D group nilpotent orbits was obtained in Chapter
This caters for the group averaging that is necessary over the components
of orthogonal subgroups, to construct nilpotent orbits rather than their
normalisations. Hilbert series, calculated up to rank 4, and analysed both
as unrefined HS and in terms of HWGs, using both character and mH L
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bases, are set out in Tables to and to A generalised
analysis for certain types of orbit at any rank is given in Tables and

to

While all the moduli spaces are HyperKahler, not all are Calabi-Yau
with palindromic Hilbert series. The Higgs branch formula precisely iden-
tifies the non-normal nilpotent orbits of the BC'D series through their non-
palindromic HS; and the moduli space inclusion (and union) relations be-
tween the calculated orbits are consistent with the Hasse diagrams presented
in the Mathematical Literature [33 [6].

Taken together, these results, which appeared in [24], provide a system-
atic analysis of the Higgs branch Hilbert series of quivers for Classical group
nilpotent orbits of low rank. While refined Hilbert series for some A series
orbits had been obtained in [25], the prior work on BC'D series had been
limited to selective calculations of some unrefined Hilbert series, [31], and
an identification of the representation structure of the minimal and maxi-
mal nilpotent orbits [16, [55]. The results show that a convoluted narrative,
involving GNO dual groups and Spaltenstein dual orbits, whilst perhaps rel-
evant for other purposes, is not necessary for the Higgs branch construction
of the full set of BCD series nilpotent orbits.

There exist many dual quivers that have the same Higgs branch moduli
spaces as the canonical quivers. For the A series, such dual quivers are
provided by ordered linear quivers that are not very unbalanced; these can
be transformed to canonical quivers by reordering partition data and/or by
eliminating duplicate nodes, as elaborated in section [5.3.4 For the BC'D
series, dual quivers can be obtained from the canonical quivers by dimension
shifting within the partition data and/or by extending maximal subchains,
as elaborated in section Many, but not all, BCD quivers can be
rearranged as pure BC' or DC chains, which can help avoid parity anomalies
in certain field theoretic embeddings.

Higgs branch constructions are not available for Exceptional group nilpo-
tent orbits, since the relationship between their vector and adjoint represen-
tations does not just involve bilinear invariants and singlets (which can be
eliminated by a Hyper Kéahler quotient) [6]. The construction of Exceptional
group nilpotent orbits requires either the Coulomb branch method, which
is available for near to minimal orbits, or a different plethystic approach,
such as the NOL formula.
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9.2.2. Coulomb Branch

The nilpotent orbits of A series groups, as well as the minimal and near
to minimal nilpotent orbits of Classical and Exceptional groups, can be
constructed on the Coulomb branches of quiver theories with unitary gauge
nodes, using the unitary monopole formula [20, 22], as elaborated in Chapter
[fl The number of flavour nodes and the dimensions of the unitary gauge
groups in a quiver, as well as their linking pattern, can be determined by
one or more of a variety of methods.

A quiver for the Coulomb branch construction of any A series nilpotent
orbit, can be obtained from the corresponding Higgs branch quiver through
brane manipulations, as described in section [6.4] according to the principles
of 3d mirror symmetry [I].

Also, the quiver for a near to minimal nilpotent orbit can be identified
from its Characteristic, as discussed in section providing the (complex)
dimension of the nilpotent orbit is equal to twice the sum of the U(N) gauge
node ranks in the quiver. In the case of minimal nilpotent orbits, such
quivers correspond to those obtained from affine Dynkin diagrams, both for
simply laced ADE groups [9] and for non simply laced BCFG groups [22],
with the U(V) gauge node ranks being equal to the dual Coxeter numbers
of G. In the case of next to minimal nilpotent orbits of BC'D groups, these
quivers correspond to those obtained from twisted affine Dynkin diagrams
[24]. All the quivers in this category assign a Characteristic height of 2 to
the highest root.

All the Coulomb branch quivers for nilpotent orbits are balanced, as dis-
cussed in section [6.1.1] and this imposes a particular form of overall gauge
invariance on the gauge and flavour nodes; nevertheless, the monopole for-
mula permits a gauge choice as to which monopole charge should be de-
fined as zero, and this choice can simplify calculations, for example, of the
Coulomb branches of star-shaped quivers and/or their deconstructions into
T(SU(N)) quiver theories.

This gauge invariance imposes the Weyl group symmetries of G on the
moduli space, by encoding the Cartan matrix into the structure of the quiver
(and hence the GNO lattice of U(N) topological symmetries). In the case of
the RSIMS of low rank groups, these Weyl group symmetries are manifest

in the measure of conformal dimension A(g), which serves to grade Weyl
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group orbits. The unitary monopole formula collects these Weyl group
orbits, which consist of sets of root space monomials z9, into a moduli space
graded by powers of ¢ that combine conformal dimension A(g) with the
degrees and multiplicity of the U(N) Casimirs of each monopole charge
configuration q.

From a SUSY perspective, the conformal dimension grading of the GNO
lattice of monopole charges corresponds to R-charge, with the hypermulti-
plets between gauge nodes each contributing a half unit of R-charge, while
the vector fields within each gauge node each contribute a negative unit of
R-charge.

One of the features of these Coulomb branch moduli spaces is that they all
have palindromic Hilbert series. These reconcile to non-normal BC' D series
nilpotent orbits, as discussed in[6.3.2} in the case of a pair of spinor orbits of
Dy,., the Coulomb branch construction yields the palindromic spinor moduli
spaces, while the Higgs branch construction yields their non-palindromic
union; other BC'D non-normal orbits are not near minimal, so Coulomb

branch constructions are not available, and the issue does not arise.

9.2.3. NOL Formula

In the absence of a quiver theory construction for Exceptional group nilpo-
tent orbits beyond the near to minimal category, it is a significant finding
that a direct plethystic calculation of the closure of any normal nilpotent
orbit is possible, by the Nilpotent Orbit Localisation formula developed in
Chapter [7] One of the attractions of the NOL formula is that it explicates,
in a direct manner, the relationship between an SU(2) homomorphism, as
defined by its Characteristic, its nilpotent element X and its nilpotent orbit
(or normalisation).

Like the Coulomb branch formula, the NOL formula yields a moduli space
with a palindromic Hilbert series, so the situation surrounding non-normal
nilpotent orbits needs consideration; however, for normal orbits, the Higgs
branch, Coulomb branch (where available) and NOL methods all construct
the same canonical moduli spaces.

Turning to the established list of non-normal orbits; in all the cases cal-
culated, the NOL formula leads to moduli spaces, with palindromic Hilbert

series, containing elements outside the nilpotent cone N
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For Classical non-normal orbits, the NOL formula either yields the normal
components of those orbits that are unions, as in the case of Dy, spinor pairs,
or it yields their normalisations. These normalisations can be restricted to
equal the non-normal orbits by excluding sub-spaces described by charged
orbits of lower dimension.

In the case of Exceptional non-normal orbits, there are no spinor pairs,
and the NOL formula yields their normalisations. By conjecturing rela-
tionships, similar to those between Classical non-normal orbits and their
normalisations, it has been possible to find restrictions of the normalisa-
tions in G9, Fy and Eg, that yield Hilbert series lying within A/, and which,
subject to a more definitive analysis, can be viewed as candidates for the

non-normal orbits.

9.3. Puzzles from the Mathematical Literature

By working with characters, quivers and refined Hilbert series, this study
has found some precise and direct routes through a subject that can be
treated in an arcane manner in the mathematical Literature.

This study has not made significant use of Bala-Carter labels. The per-
spective herein is that a nilpotent element X is more naturally charac-
terised by an extension of the quotient group structure G/Gy that applies
to Richardson orbits. The NOL formula generalises this structure to non-

] from the

Richardson orbits, by defining ® /G, to exclude the roots in <I>[G1
positive roots in ®g/g,; this appears to be permissible due to the Weyl
group invariance of @g} under the subset W, of reflections of ®¢.

The analysis does, however, leave a few residual puzzles in relation to the
narrative in the mathematical Literature regarding the nilpotent orbits of

Exceptional groups. Specifically:

1. A small number of extra root maps, which are not listed amongst the
Characteristics in standard tables, appear to be consistent with the
SU(2) homomorphisms of EF groups, and also to correspond to conju-
gacy classes of their Weyl groups. Some of these extra root maps, such
as Eg[111110], E¢[020202], E7[2020000], E7[0110100], E7][2000002] and
FE7[2020000], generate refined Hilbert series that are identical to those

of the standard Characteristics; others give rise to moduli spaces,
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with palindromic HS, that are extensions of nilpotent orbits outside
N. Although several cases for E; and Eg remain to be calculated,
no new nilpotent orbits have been identified. This appears consis-
tent with the perspective that these extra root maps are members of
Weyl group conjugacy classes that are equivalent to nilpotent orbits,

modulo certain symmetric group actions [82].

Nonetheless, these extra roots maps provide examples of dualities,
such that SU(2) embeddings in G with different root maps or Char-
acteristics lead to identical nilpotent orbits of GG; such dualities would
conflict with the standard narrative surrounding the Jacoboson-Morozov
theorem in the Literature [33], which claims a bijection, not just be-
tween SU(2) embeddings and nilpotent elements X, but also between
SU(2) embeddings and nilpotent orbits Ox.

2. When defining the partial ordering (or topology) of nilpotent orbits
within the nilpotent cone N/, it is important to deal with the orbits,
rather than their normalisations. The Hasse diagrams of inclusion re-
lations depend on whether non-normal nilpotent orbits, or their nor-
malisations, are used. This may account for the differences in linking
patterns (to or from non-normal orbits) between the F; and Fg Hasse
diagrams obtained from the moduli space analysis in this study and
the standard diagrams in the Literature. Whereas the standard dia-
grams date from [81], the listing of non-normal orbits of Exceptional
groups appears some years later in [72]. It would be interesting to
be able to give a precise account of the source of the differences be-
tween the topologies of orbits calculated from the NOL formula and

the standard diagrams.

3. It is also somewhat perplexing to note the view expressed in [78§],

“the main disadvantage of Dynkin’s classification is that
there is no simple algorithm to determine whether or not a
given weighted Dynkin diagram [Characteristic| represents

a nilpotent class.”

This study of moduli spaces via Hilbert series has essentially established
the contrary perspective that, subject to a limited number of complica-

tions surrounding the non-normal orbits and extra root maps of Exceptional
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groups, (i) whether or not a given Characteristic of G represents an SU(2)
embedding can be determined by a simple character mapping technique,
augmented by the Real and Pseudo real selection rules, and (ii) whether or
not a given Characteristic of G represents a nilpotent orbit can, in principle,
be determined from its Higgs branch construction (for G Classical) and/or
the NOL formula.

9.4. Open Questions

The moduli space calculations for Exceptional groups, in particular, have
been limited by practical computing constraints and so several tables herein
are incomplete, more so in terms of HWG descriptions than unrefined HS.
Given continuing developments in computing power, in terms of memory,
speed and standard algorithms for polynomial algebra, it should eventually
be possible to fill in the gaps in this analysis of the moduli spaces of quiver
theories. This may resolve the open questions about the structures of the
refined Hilbert series of SQCD theories and nilpotent orbits of Exceptional
groups.

Setting aside those matters which may simply require computational ad-
vances, this study of quiver theories and nilpotent orbits also leaves open a
number of questions that are more conceptual in nature.

Firstly, the only nilpotent orbits for which Coulomb branch quiver theory
constructions are known, are A series or near minimal orbits, and these all
use the unitary monopole formula. Is a broader class of Coulomb branch
constructions of nilpotent orbits feasible? There would seem to be various

avenues for further exploration.

1. Are there balanced unitary quivers (other than those defined by Char-
acteristics), whose Coulomb branches correspond to BC'D or Excep-

tional group nilpotent orbits beyond the near to minimal cases?

2. Can the rules of 3d mirror symmetry for the A series be translated
to a simple rule for finding all the A series Coulomb branch quivers

directly from the Characteristics of nilpotent orbits?

3. Can a modified version of the monopole formula be found that incor-

porates the relations necessary to restrict the Coulomb branch moduli
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spaces from quivers with Characteristic height greater than 2 to their

nilpotent orbits?

4. The rules of 3d mirror symmetry for the BC'D series [31] transform
Higgs branch quivers (for nilpotent orbits) of G into mirrors with
alternating O/U Sp gauge nodes that are not equal in number to the
simple roots of G. The problem in studies to date [2I], has been how
to map the topological symmetries of such gauge nodes to the simple
roots of G. Can a modified Coulomb branch formula be found that

encodes an effective mapping?

5. Both the NOL and monopole formulae work with the root system
of G and encode Weyl group symmetries - albeit in very different
ways. Can the NOL formula be transformed into a general Coulomb
branch monopole formula, along with some family of quiver theories,
for nilpotent orbits?]

Within the above, the task of finding a general (beyond the A series)
Coulomb branch quiver theory construction for T'(G) theories would appear
to be an interesting priority, in order to validate the conjectured equivalence
between these quiver theories and mH L functions [31] [55].

Secondly, there remains the problem of how to formulate an analytic
method for restricting the normalisation of a non-normal Exceptional group
nilpotent orbit to the nilpotent cone N, as required by The analysis for
Classical orbits, drawing on Higgs branch results, describes the difference
between a non-normal orbit and its normalisation in terms of the charged
NOL formula for orbits lower down the Hasse diagram; but what determines
the particular charges and coefficients that appear? The solution may be
related to the type of degeneration between adjacent orbits, where it is
known from [71] that for Exceptional group orbits this is considerably more
complicated than the Kraft-Procesi transitions [6] between Classical group
orbits.

As discussed, it is unlikely that Higgs branch constructions for Excep-
tional group nilpotent orbits can be found due to the interplay between

Exceptional group defining representations and their invariants.

'Building, for example, on the calculations for low rank RSIMS in section
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9.5. Generalised Quiver Theories

Naturally, quiver theories for the canonical Higgs branch and Coulomb
branch constructions of nilpotent orbits comprise only a small subset of
possible quiver theories. These canonical quivers can, however, be viewed
as building blocks from which many other quiver theories can be con-
structed. There are many and varied composing mechanisms, including
(i) background charges, (ii) quiver dualities (as discussed in sections [5.3.4]
and , (iii) flavour node gluing of Higgs branches, as used in the recur-
sive construction of Higgs branches in Chapter [5| (iv) flavour node gluing
of Coulomb branches (as touched on in section [8.1)), and/or (v) subgroup
branching, with or without gauge group HyperKé&hler quotients (as touched
on in section .

More general types of quiver that could be approached with this build-
ing block approach include linear quivers with multiple flavour nodes, star
shaped quivers, quivers with internal loops, .... Studies of many different
quiver types, touched on herein, have been carried out with comparable
motivation, for example in [83] 26, B0, B1], [55]. However, the absence of a
systematic reference to orthogonal bases has sometimes lead to a lack of
clarity regarding results.

It has been helpful in this study to work with orthogonal bases, prin-
cipally in the form of class functions based on Lie group characters and
(modified) Hall Littlewood polynomials, to guide the systematic construc-
tion and analysis of quiver theories. The modified Hall Littlewood functions
of the A series correspond to T'(SU(N)) theories, and, indeed, in [55] it is
conjectured that the Coulomb branches of Tj(G) theories correspond to
mHL® functions, with theories for p = (1,1,...,1) corresponding to max-
imal nilpotent orbits. While the quivers for such T;(G) theories are not
known beyond the A series, the use of mH L functions may anticipate their
eventual construction; in such an event, any nilpotent orbit would posses
a description as some combination of (Coulomb branches of) T'(G) quivers
in the presence of background charges, essentially as detailed in the tables
herein. It may be that the eventual construction of T'(G) quiver theories can
be guided by the NOL formula, since both types of construction work with
root systems and background charges. Also, T(G) quiver theories would

shed light on the open Coulomb branch questions.
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One useful next step in such a building block approach could be to de-
velop a systematic account of charged nilpotent orbits, their decompositions
in terms of characters and mH L bases, and their relationships, such as du-
alities or orthogonality.

Nilpotent orbits can be assigned background charges in various ways; di-
rectly, as in the NOL or Coulomb branch formulae, or by ungauging U(1) or
O nodes in Higgs branch quivers. When U(1) nodes in a unitary quiver are
ungauged, the mesonic moduli spaces acquire baryonic branches defined by
the antisymmetric invariant tensors of the gauge group. Physically, these
U(1) charges correspond to the introduction of Fayet-Iliopoulos terms into
the SUSY action [56]. When O nodes in a BC'D quiver are ungauged, to be-
come SO nodes, the moduli spaces may also acquire additional branches. A
systematic account could help to address open questions relating to the rela-
tionship between the NOL formula and the closures of non-normal nilpotent
orbits and to the relationship between charged nilpotent orbits and Tg(G)
theories.

This study has made progress in bringing a systematic analysis to bear on
the representation structure of the closures of nilpotent orbits, which include
reduced single instanton moduli spaces; however, the preliminary work in
section indicates that the moduli spaces of multiple instanton theories
are less tractable and may benefit from some basis, other than characters
or mH L functions, for their efficient decomposition.

It could be interesting, therefore, to investigate other classes of orthogo-
nal functions that incorporate Lie group symmetries. Several avenues open
up. For example, both characters and Hall Littlewood polynomials are spe-
cialisations of Macdonald polynomials [60]. Also, we have also seen how
orthogonal bases can be obtained as specialisations of a general localisation
formula, such as There may be other orthogonal bases, yet to be ex-
ploited, that could assist in the tasks of decoding quiver theories into their
underlying representation theoretic content and unravelling their interrela-

tionships.
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A. Appendices

A.1. Plethystic Functions

Plethystic functions can be used to symmetrise or antisymmetrise polyno-
mials, such as characters of representations. The Plethystic Exponential
(“PE”) is a symmetrising function and the Fermionic Plethystic Exponen-
tial (“PEF”) is an antisymmetrising function. They have inverse functions
given respectively by the Plethystic Logarithm (“PL”) and the Fermionic
Plethystic Logarithm (“PLE”) [60] 111 13, 28§].

Consider a function in some variable t, which can be expressed as a power

series:

&)= ant™ (A1)
n=0

The Plethystic Exponential for such a function is defined as:

PE[f(t),t] = exp (Z f<t’“>k—f(0>>
k=1

i
_
Ha=m

The PE can be generalised for power series of more than one variable, so
that for:

o~ N
f(tla ce >tN) = Z Zamt?v (A?’)

n=0 =1
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we obtain the PE:

PE[f(tr,. . tx), (F1re o tx)] = o5 (i f(tlf""’t?v)_f(o""’o)>

(A.4)

In order to avoid ambiguities, we shall, where necessary, use the notation:

PE[f(t1, ... tx), (ts. - 8], (A.5)

to distinguish the variables, with respect to which the PE is being taken,
from their coefficients (and similarly for the PL); where no ambiguity arises,
the notation PE[f(t1,...,tx)] may be used.

The Plethystic Logarithm makes use of the Mobius function p(k) , which
is defined as (—1)™ for an integer that is the product of n distinct primes
other than unity, and zero otherwise, such that u(1) = 1,u(2) = u(3) =
—1,... etc. For the general case, the PL is defined as:

PL[g(ty...,tn), (t1 ... tx)] = w(k)log g(t*y, ... t* ). (A.6)

1
k

WE

B
Il

1

If we set g(t1...,tn) = PE[f(t1...,tn)], we then obtain f(t1...,tx) =
PLlg(t1,...,tN), (t1,...,tN)], as required. The identity can be proved by
manipulation of the various series using the properties of the Mobius func-

tion [II], which include the key simplifying identity:
oo oo
l
Sy D pm e (A7)
Im
=1 m=1
The Fermionic Plethystic Exponential is defined as:

[e.e]

PEF[f(t1, ... tx), (t, .., tN)] = exp (Z(Dkﬂf(tlf?...,t?v) — (0,

k=1
00

N
L1

n=1i=1

1+ t)"m,

(A.8)
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The Fermionic Plethystic Logarithm is given by:

PL[g#3", .. 13, (2", ... t3)]

M

PLF[g(t1,...,tn), (t1, .. tN)]

m=0
=33 pnklog (e F )
m=0 k=1
(A.9)
The PE and PEF have the useful properties that:
PE[fi + fo] = PE[fi]PEL[f,] (A.10)
PEF[fi + f2] = PEF[f1]PEF(f5]
and the PL and PLF have the related properties that:
PL = PL|g1| + PL
[9192] [91] [g2] (A.11)

PLF(gigs) = PLF[g1] + PLF]ga).

We can use the Plethystic Exponential to symmetrise the character of
an irrep of some group G as follows. Suppose the character x of the irrep
is composed of monomials A;(x1,...,z,), where the x; are CSA coordi-
nates ranging over the rank r of the group and the index 7 ranges over the

dimension |y| of the irrep:
Ix|

X=_ Ai(z1,....z). (A.12)
=1

We form a generating function g%(x,t) by taking the PE of the sum of
fugacities t; = tA;, which are given by the products of each coordinate

monomial with a fugacity ¢, where 0 < [t| < 1:

9%(x.t) = PE[x ]

Ix|
=PFE ti,(tl,...,t‘ |)

; X (A.13)
- Ix| 1
B lHl (1—tA;)

The Taylor expansion of g%(x,t) generates an infinite polynomial in the
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fugacity t, whose coefficients are all symmetric functions of the coordinate
monomials. Importantly, the PE of a character is a class function and the
Peter Weyl Theorem [58] entails that the characters of a compact group
form a complete basis for its class functions, so this Taylor expansion can
be decomposed as a sum of characters of irreps, identified by Dynkin labels

[n], each with a coefficient in the form of a series in the fugacity t:

= apt)xm = Zzt Ak [n) X[n] (A.14)
[n]

k=0 [n]

We can use the PEF in a similar manner to form antisymmetric combina-

tions of the monomials within the character x of an irrep.

95 (x,t) = PEF|x ]
x|

= PEF ti, (t1, -5 tpy))
; X (A.15)

x|

=@ +t4).
=1

Following similar reasoning, the PEF of x can also be expanded as a finite

sum of characters:

x|

k=0 [n]

Collecting the above results, we obtain the key relationships for symmetris-

ing and antisymmetrising characters and similar functions:

x| o)

1
ZtkSym =PE|[x t] = H (1 —yw Z Ztkak[n]x[n] (A.17)
k=0 [n]
Ix| x| Ix|
S A =PEF[x t] = [T (1 +14) =D > thagpxp  (A18)
k=0 i=1 k=0 [n]
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A.2. Weyl Integration

Weyl integration and the Reynolds operator provide methods for obtain-
ing invariants by taking group averages over continuous and finite groups
respectively.

In the case of a finite group, invariant objects can be constructed from a

function by group averaging using the Reynolds operator [10]:
1
RE[fl]l = @ZG-M], (A.19)
G

where v € G. This operator can be used to construct Molien sums that
enumerate the invariants of finite groups [10].

In the case of continuous groups, the role of the Reynolds operator is
played by Weyl integration. Any continuous group has a manifold, metric
and volume form, and it is possible to integrate a function over the group

volume in the usual manner [58]:

1= / dE () (), (A.20)

G

where du®(7) is the Haar measure. Normally this requires taking the in-
tegral over all the dimensions |G| of the group. In Weyl integration the
integral is simplified to one over the maximal torus of the group by conju-
gating the class function f[y] with other elements of the Group, such that it
is always represented by an element of the maximal torus. This conjugation
reduces the number of integrations required from |G| to rank[G]. To do this
consistently, the Haar measure, which is effectively a volume element, has
to be modified by scaling to reflect the projection of the entire group onto
its maximal torus [58, 85].

Tables of modified Haar measures for U(r) and the Classical groups are
given in [86]. It is convenient, however, to rewrite the Haar measures in a
simple form, for use within contour integrals, that generalises to any group.
This makes use of the unimodular weight space and root space coordinates,
introduced in section and the Weyl group:

o__1 [dv _ e
y{du = |WG|CZ§ - ae]‘!pu ). (A.21)

G
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For brevity, a factor of 1/(2m7)" has been omitted from the residues and the
definition ‘i—x = H dx; is used. This form of the Weyl integral lends itself

to explicit evaluatlon using the residue theorem.
We can verify the orthonormality of characters under the Weyl integral

as defined above. Consider the integral:

= § i X () X 2) (A.22)

G

Inserting terms from[A:2T)and 2.4]into[A:22] the terms involving roots cancel

with the Haar measure and we obtain:

I:W1G|zfdf Z |w"w'~ Tz Z |lwlw - (z™zf).  (A.23)

w' eWa weWg

r

Considering this as a U(1)" contour integral, a non-zero contribution only

arises when w’ = w, so:

G weEWq (A.24)

since |w|? = 1 and w- (2") = 1 only if [m] = [n]. As a corollary, the Weyl
integral of a single character is zero for any irrep other than the singlet and
the Weyl integral can be used to form an inner product that projects out
the singlet content of products of characters or class functions of characters.

A simpler form of the Haar measure is noted in [15], which gives the Haar
measure in terms of the positive (or negative) root space only. In some

circumstances this produces simpler expressions that can be evaluated more

fdu(”/— ?{dm T a-= (A.25)

acd+/—

quickly:

The full form of the Haar measure however, has the feature of be-
ing invariant under the Weyl group and can participate in other Weyl group
simplifications, unlike which transforms in the alternating representa-
tion.

Consider, for example, a typical Weyl integration to find the inner product
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of two class functions, gfl g1 and gfl g9, one of which has an explicit expression

as a sum over the Weyl group:

Fm,m) = § du© gy (") gffss (@), (A.26)
G
where
9H51 (2", m) Z st1 w-z*,m). (A.27)
weWqg

Clearly, the integrand of taken as a whole, is invariant under conju-
gation by the Weyl group. Moreover, the full Haar measure du® in is
invariant under the Weyl group, as is the class function gg g9, S0 each ele-
ment w of the Weyl group sum over fgsq can be conjugated to the identity

and we obtain:

I (m,n) = Wl 74 S fGg, (2" m) gfsa(mn)  (A.28)

This reduces the number of terms to be evaluated by the order of the Weyl

group of G. For example, a typical HWG evaluation can be rearranged:

G (m.t) = f dpC 4@ (2", m) ¢S (.1)

fu

weWa

(Hl_jni/xi 11 1_12a> gffs (@.)

=1 acd+

— IWel 74 i H g I i s
:?éd;: IT -2 Hl—szi/xigHS(x’t)

duS~ & xz,t
G%M Hl—ml/,gHS( )

(A.29)

Further simplifications of such contour integrals can be found by exploit-

ing any invariance subgroups of the Weyl group within g% g (z,t), asin m
and for example.
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At some point, however, it is necessary to carry out explicit residue cal-
culations to determine the integrals. In this study Mathematica is used to
carry out the residue calculations and summations. The summation can
generally be done most efficiently by first summing over any multiple poles
contributed by each factor in a denominator, as indicated in Table
The sum for each factor is then necessarily a real polynomial (or quotient
of polynomials) in the various fugacities. This minimises the computational
difficulties encountered by Mathematica in the simplification of sums of quo-

tients of complex functions with fractional exponents.

) Order No. .
Function of Pole of Poles Residue
oo 1 1 f (a)
f(z) 1 d" 1 f(x)
@a)" n 1 (I T
L S~ w—al/memik/m
(z™—a) 1 m = T —q f (.Z') o gl/mganik/m
f(=) 1 mn dn—1 [ p_ql/me2mik/m n
(mm_a)n " m (nfl)! kgl dan—1 ( z"—a ) f (.CU) r=agl/me2mik/m

Factors of (27i) omitted for brevity
Table A.1.: Calculation of Residues

A.3. Affine and Twisted Affine Lie Algebras

It is useful to give a brief summary of the relationship between a simple Lie
algebra and its related untwisted affine (or extended) and twisted affine Lie
algebras. The defining feature of an affine Lie algebra is that its Cartan
matrix is positive semi-definite, having a zero determinant and one zero
eigenvalue. This is achieved by generalising a regular Cartan matrix A%
through the addition of an extra row and column, corresponding to an
extra simple root and an extra CSA operator, and equivalent to an extra
node on the Dynkin diagram. The additional root and eigenvalue operators
are chosen to be linear combinations of the other operators. Naturally, the
rank is unchanged.

The linear relationship between the operators is encapsulated in the Cox-

eter labels a; and dual Coxeter labels a; of each node. These labels are,
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respectively, the left and right eigenvectors with zero eigenvalue of an affine

Cartan matrix:

ZT: a;AY =0 = Z AYa;. (A.30)
i=0 j=0

The two types of Coxeter label differ according to the length of the simple
root to which they refer: the ratio between the dual Coxeter and Coxeter
labels of a root is equal to the ratio of its length to that of the longest root
58]

The Dynkin diagrams of affine Lie algebras are obtained by attaching a
single extra node to a regular Dynkin diagram, subject to the constraints
(i) that the links are of a type permitted in a regular Dynkin diagram and
(ii) that the resulting Cartan matrix is positive semi-definite.

Each simple group has an untwisted affine Dynkin diagram, with the extra
node attached to the adjoint node of the regular Dynkin diagram, as shown
in Figures and The Cartan matrix A% is thus modified according

to the schema:
ii AY [col]
Aejxtended = .. ’ (A31)
— ladjoint] 2

where the column vector [col] is obtained by transposing the Dynkin labels
of the adjoint representation and replacing all non-zero entries with —1 or
—2, such that Ag:tended becomes degenerate. The dual Coxter labels of
existing nodes are unchanged, with the new node acquiring a dual Coxeter
label of 1. This follows from the dual Coxeter labels of the affine Dynkin
diagram being the kernel (i.e. column eigenvector with zero eigenvalue) of
the affine Cartan matrix.

In a twisted affine Dynkin diagram, the extra node is attached to some

other node of the regular Dynkin diagram. A twisted affine Cartan matrix

ii A4 [col]
Atzm'sted = ( > ) (A32)

takes the form:

—[irrep] 2

where the column vector [col] is obtained by transposing the Dynkin labels
of [irrep| and replacing any non-zero entries with one of {—1, -2, —3, —4},
such that A%

twisted

by the kernel of the twisted affine Cartan matrix.

becomes degenerate. The dual Coxeter labels are given

There are six permissible types of twisted affine Dynkin diagram, with
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three of these, B7(12) By(f) and C’,(LZ), forming infinite families, plus three
unique cases, ASQ), F, f) and Ggs). Figure shows the BC'F' twisted affine
Dynkin diagrams using the naming convention in [58].

The degeneracy of an affine Dynkin diagram permits a gauge choice to
eliminate one of the nodes. The other nodes become the nodes of a regular
Dynkin diagram. Correspondingly, the Cartan matrix for an affine Lie alge-
bra can be reduced to that for a regular Lie algebra by the elimination of a
row and its corresponding column. The dual Coxeter and Coxeter labels of
other nodes are invariant under this addition or subtraction of affine nodes.

For further detail the reader is referred to [58].

A.4. Chevalley Serre Basis of Lie Algebra

The Lie algebra g of a group G of rank r, consisting of operators { H;, Eqo+, Eq—},
can be expressed in terms of the basis {H;, F;;, E;_}, where i = 1,...,r,
and the roots a € ® are expressed in the basis of simple roots (aq, ..., ).
The simple root operators F;+ combine into the root operators E,+, in ac-
cordance with the Chevalley-Serre relations [58, [87], and the Lie algebra g,

can be reconstructed from the Cartan matrix A:

(A.33)

[Hi, H;] =0,
[H;,Ej+] = +A;Ej+,
[Eit, Ei-] = H;,
]

where 7 is the maximum integer such that o + 8 — ma € @, (so that 7 is
the length of the root string starting at o + 8 and passing through «). A

consistent conventional choice is necessary regarding the signs of N,g.

278



A.5. Bala-Carter Labels

Bala-Carter theory [33] 87, [78] [79] leads to a system of labels for nilpotent
orbits (“BC labels”), that do not relate in a simple manner to the invariant
subgroups of G and Wy deployed in the NOL formula; nonetheless, the
labels are widely used in the Literature, in particular for Exceptional groups,
and require comment.

The initial motivation for the Bala-Carter approach was [7§],

“[to] give an alternative way of describing the unipotent classes
of G which, while being quite close to Dynkin’s methodﬂ never-
theless gives a conceptually fairly simple way of describing the

classes.”

The selection of a Bala-Carter label for a nilpotent orbit starts from a given
Characteristic and proceeds by Lie algebra and dimensional reasoning. A
simplified account, drawing on [33, 64| 87, 78, [79], can be given as follows.

The aim is to classify a nilpotent element X (in a standard triple) of the
algebra g of (G, based on the identity of the minimal regular semi-simple
subalgebra [ C g within which X is distinguished. In [78], Bala-Carter
establish a bijection between the (conjugacy classes of) distinguished nilpo-
tent elements X% of g and the distinguished parabolic subalgebras p? of g.
In [79], Bala-Carter seek to extend this bijection to all nilpotent elements X
of g, by positing minimal regular semi-simple Levi subalgebras [ C g, whose
distinguished parabolic subalgebras pfl contain X. The restriction to dis-
tinguished parabolic subalgebras is motivated by a group G having 227kC]
parabolic subalgebras, which are too many for a bijective map to nilpotent
elements. The reconciliation in [79] between BC labels of Levi subalgebras
[ and Characteristics p© involves reference to work on centralisers in [87],
which in turn draws on a subalgebra labelling scheme introduced in [54]E|

To examine the logic of the Bala-Carter labelling method in more detail,
recall that a parabolic subalgebra p of g contains a Borel subalgebra b C p C
g, where by, =bh+mn,,_, the CSA of g is b, and n,,_ are the nilradicals
of g.

The method referred to is the labelling of Characteristics with regular and special
subalgebras of G.

2A consistent reconciliation is not helped by Bala-Carter’s caution [79] that there are
errors in the tables in [54] and in [87].
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Certain parabolic subalgebras p = g — n correspond to the nilpotent sub-
algebras n of nilpotent orbits, with p = b_ and n = ny corresponding to the
maximal nilpotent orbit, and p = g and n = () to the trivial nilpotent orbit.
A distinguished nilpotent orbit of g has a parabolic subalgebra p? D b_ and
nd Cng.

Now, consider the adjoint partition of G under the homomorphism p.
This can be written as <b7fb1, 1nf1 - ,b:b’“ , f:f’“, 1”0>, with integers n; > 0,
where b; denote (dimensions of ) non-singlet bosonic SU(2) irreps, f; denote
(dimensions of) fermionic SU(2) irreps and 1 identifies SU(2) singlets.

It follows from@, that the dimension of the nilpotent orbit O ¢ is given
by:

’Opg‘ = |G| — (n2 +n1 + no), (A.34)

where n; = i ny, and ng = i ny,. In effect, each SU(2) representation
removes one ld?gree of freedoml:rlom the dimension of the orbit. The nilpos-
itive element X for p€ is built from @g}, which contains ng positive roots of
G, one from each non-singlet bosonic SU(2) irrep in the adjoint partition.

The subalgebra ¢ of g transforming in the singlet representation of SU(2)
lies within the centralizer ¢ of the nilpotent element X. ¢y has dimension
no and is identifiable as a subgroup C' of G by dimensional arguments.

From amongst the possible branchings of G into subgroups, Bala-Carter
assume* subgroups C' and L can be found, such that rank[G] = rank[C] +
rank[L], |C| = ng, and L is a minimal (lowest dimensioned) semi-simple
subgroup, whose Lie algebra [ contains the nilpotent element X.

Then, X is reasoned to be an element within the distinguished parabolic
subalgebra pfl since, by construction, the partition of the adjoint of L does
not contain any SU(2) singlets. Thus, the nilpositive element X from p© is
both a distinguished nilpotent element of L and a nilpotent element of G.

The Bala-Carter label L(a;) for p© is given by L, augmented by labels to
identify the embedding of L in G (where ambiguity would otherwise exist)
and/or to specify the distinguished orbit of L; if this is less than maximal,
the indices ¢ count the number of zeros in its Characteristic and the letters
{a,b, ...} select amongst orbits with the same number of zeros.

By way of examples, the SU(3) orbits [22] and [11], analysed in Table
map to the BC labels As and Aj, respectively and BC labels for £}
Characteristics are shown in Table There are, however, drawbacks.
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1. There are often inequivalent ways of embedding subgroups into G and
these need to be identified as distinct in order for the BC labels L to
map to the full set of nilpotent orbit Characteristics. Thus, BC labels
require additional markings to select between (i) subgroups containing
long and short roots, (ii) some E7 nilpotent orbits, (iii) spinor pair
orbits arising in Ds, (or the triplets of orbits related by Dy triality)
and (iv) distinguished orbits (as above). In all such cases, knowledge
of the Characteristic is necessary to recover a unique description of

the nilpotent element X.

2. The mapping from a Characteristic to its BC label L, and its inverse,
are not straightforward. While the identification of the centraliser C'
and the rank of L may follow easily from a Characteristic, via the
adjoint partition, on dimensional considerations, the identification of

L generally requires analysis of the embeddings of X in g and [.

3. Importantly, the embedding of SU(2) into G under the homomor-
phism p is special, rather than regular. This entails that the nilpotent
element X is generally a linear combination of multiple roots in n,
[54], which complicates the structure of its centraliser. For orbits
where C' and L have regular embeddings into G, the unambiguous
identification of the minimal subalgebra [ that contains X as a distin-
guished element can often be carried out; however, for other orbits,

this exercise can become problematic, as illustrated below.

4. Although standard tables exist, for example in [33], there is no guar-
antee that BC labels are treated consistently across the Literaturef]
Furthermore, the BC labels of orbits partially match those of the
prior labelling scheme developed in [54] and it is necessary to recog-

nise which are being used.

Considering the possible group branchings from F; (detailed in section
[2.6), the analysis in Table shows that the Characteristics [0002], [0001],
[0010], [0101] and [2200] do not have mappings to regular semi-simple sub-
groups of equal rank Fy — C'® L that resolve the BC labels. For example,
G2 and Bs can only be obtained from Fjy via folding maps.

3Indeed, the tables presented in [79] contain errors: examples include the duplicated E¢
Characteristic with BC label A4 on p.9. and the duplicated E7 Characteristic with
BC label Ds on p.11. These errors are corrected in [33].
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Characteristic | Dimension | Adjoint Partition C BC label - L
[0000] 0 (1°2) Fy 0
[1000] 16 (3,214,121 Cs Ay
[0001] 22 (37,28, 119) As A,
[0100] 28 (42,36,21016) A @A A+ A
[2000] 30 (5,313,18) Ay Ay
[0002] 30 (57,3,1) Gs Ay
[0010] 34 (53,4235 24 13) A Ay + Ay
[2001] 36 (7,5%,4%3,1%) Ao Ay By
[0101] 36 (62,5%,4% 32 24 13) A A+ Ay
[1010] 38 (7,62,5,4% 33, 13) Ay Cs(ay)
[0200] 40 (7%,5%,39) — Fy(a3)
[2200] 42 (11,75,3,1%) A Bs

1012 42 (11,10%,7,4%,3,13) A, Cs
0202 44 (112,9,7,5,3%) - Fy(az)
2202 46 (15,112,7,5,3) — Fy(ay)
2222 48 (23,15,11,3) - Fy

C and L are subgroups of Fy, such that |C| = ng and rank[G] = rank[C] + rank[L].
Red highlighting indicates cases where there is no regular branching from Fy to C ® L.

Table A.2.: F, Orbits and Bala-Carter Labels

Furthermore, the non-singlet bosonic SU(2) irreps in the adjoint parti-
tions of the Fj orbits require mapping, at the correct multiplicities, to the
bosonic SU(2) irreps in the adjoint partitions of the distinguished orbits of
L (as listed in Appendix Bl The reconciliation is straightforward for Char-
acteristics [0000], [1000], [1010], [0200], [1012], [0202], [2202], [2222], as can be
verified by inspection of adjoint partitions; however, it is problematic in the
other cases. By way of example, we can compare the regular subgroup

mapping for [1010], with the problematic mapping for [2200]:

[1010] : (7,62,5,42,3%,13) — (7,5,3%) & (1%) @ (6%, 4%)
—_— N =

C5[202] Ay CseA (A.35)
2200] : (11,7°,3,13) — (11,7,3) @ (13) @ (7%) . '

—_———— =

Bs[222] Ax B3s®A1

The latter does not include, within the distinguished B3[222] orbit, all the
non-singlet bosonic SU(2) irreps that contain elements of X; some elements
of X are contained within a B3 ® A; subalgebra.

Whenever the multiplicities of a non-singlet bosonic SU(2) irrep within
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the partition p“[adjoint] are not replicated within the adjoint partition of
a distinguished orbit of L, this indicates that the nilpotent element X must
contain some roots that lie outside [, contrary to the Bala-Carter assumption

(*). This in turn undermines the significance of the BC label.

Relationship to NOL formula

In order to construct nilpotent orbits, rather than just to describe the sub-
algebra relations surrounding nilpotent elements, we require the nilpotent
subalgebra n of g, rather than the parabolic subalgebra pfl of [, and there
is no simple relation between the two. Fortunately, all the complications

surrounding the decomposition of G — C ® L can be avoided, by noting:

|(I)G0| =2 ‘(I)[CUT‘]‘ = (n2 +mno — rank[G]),

N (A.36)
‘q)G ‘ = ny,
where @g] is defined in and rearranging as:
0,6] = 1@6] — 1®c,| - | @] (A.37)

In this form, suggests the construction of the nilpotent subalgebra
n={E,:a € ®}} of anilpotent orbit of g using an extension of the G//Gy

coset group structure applicable to Richardson orbits:

of = ah — ol — ol (A.38)

which is precisely the prescription used in the NOL formula [7.5

If @g] = (), the complement p of n is a parabolic subalgebra of g, corre-
sponding to a Richardson orbit. Thus, each even Characteristic corresponds
to a different parabolic subalgebra of g, including the distinguished orbits
as a subset. If <I>[Gl] # (), then p is only parabolic if the orbit is a (non-even)
Richardson orbit [69].

To summarise the difference in approach, whereas the Bala-Carter de-
composition G — C'® L aims to identify a distinguished parabolic minimal
subalgebra p}i that contains X, the NOL formula for Richardson nilpotent
orbits uses the nilpotent subalgebra n, which is the complement in g of the

mazximal parabolic subalgebra p that does not contain X.
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A.6. Non-normal Orbit: F;[0002]

Moduli Space Unrefined HS
F4[2222] 1-t2)(1—t0)(1_t5) (112
gN4O (t) (a) ! I (12(,5)52 X )
1+ 21t + 2572 + 20183 + 9573t* + 282617
F4[0002] (t) (b) +53781t5 4 66651t7 + ... palindrome.. . . + t14
dnor (1—)301+1) 1
gﬁ“([)ofm] (t) ¢ N (c) 26t2 + 1053t3 + 19474t* + 205803t> + 1064233t5
( 26 + 598t + 5773t2 + 30482t3 + 96398t* + 190046t°
F4[0100] 2 +237874t% 4 . .. palindrome. . . + 26t12
gnor  (8) [z4t?] (d) t=2(1—1t)8
+26t2 + 1326t3 4 33073t 4 540474t° + 65397025 4+ O(t7)
1+ 22t + 252t% + 1729¢3 + 6988t* + 183005
+40835t% + 92700t7 + 166252t® + 1776987 + 8365410
F4[0002] B —16141t11 — 38932t12 — 1925613 — 4581t1* — 545¢15 — 26¢16
gno (1) (e)=(b)-(d) =%
() -
(c) consists of those terms in (b)-(a) with positive coefficients
(d) is a charged orbit built on F4[0100]; the charge is identified from the leading term of (c)
(e) contains no terms outside A/, as required for the F4[0002] non-normal orbit
(f) consists of those terms in (e)-(a) with positive coefficients

Table A.3.: Non-Normal Orbit Construction using HS: F4[0002]
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Moduli Space

HWG

F4[2222
9N4o[ ] (m,1)

1+ m4t4 =+ m15t5 =+ m12m3t5 + m1m32t5 —+ mQM4t5
+m13ma2t® + mima?t® + m1%t% + m13mats 4+ 2mo2t6
+m13m3t6 + m2m3t6 + m12m32t6 + m12m4t6
+mimamat® + mi12mamat® + ma2mat® + mitmy
+mimama?t® + mimama2tS + ma2ma2¢6 + 2my3¢6
+7n3m43t6 + m12m44t6 + m46t6 + mq (t + t5)
+m13(t3 +t5) + ma(t3 4+ t5) + ma2(t* + 15) + mat (¢4 + ¢)
+m12m2 (t5 —+ t6) + m1m4(t5 + t6)
+mama?(t® 4+ t8) + mama?(t® + t8) + ma(t3 + > +19)
+mima(tt + 12 +8) + mama (t* + > + 15)
+mima?(t3 4 2t5 + 16) + myimg(t* + 2t6)
+m12(t2 4+t + 2t0) + my2(t2 + t* + 2t8) + mimama (15 + 2t9)
+m32(t* 4 3t8) + m12ma?(t* + 3t6) + O(t7)

246

F4[0002
9N4([)L ](m,t)

(1+mamgt?)
A=—m (= ma ) (1=m262) (1= mp ) (1= mgt®) (I —mg 2t1)

F4[0002
g0 (1) ¢ N

H’L4t2 + m1m4t3 —+ m12m4t4 + mg°t* + mi1°mgt
+m1ma3t® + m14mat® + mi2ma3t® + madt + O(t7)

gnorn (m.t) [at?]

(ma+mat+mamyt?)t?
(1-m1t)(1-m42t2)(1-m2t3)(1-m32t?)

m4t2 + mgt3 + m1m4t3 —+ m1m3t4 =+ m12m4t4
+mgmat? + ma3t* + m12mat® + mi3mgt®

+m2m4t5 + m1m3m4t5 + m3m42t5 + m1m43t5

—i—77113m3t6 + m2m3t6 + m14m4t6 + m1m2m4t6
+m12m3m4t6 + m32m4t6 + m1m3m42t6
+m12m43t® + mama3t6 + ma5t6 + O(t7)

F4[0002
gN4O[ ! (m7 t)

1 — matZ — mat® + ma2t* + 2msmat®
+m3m42t6 — m3m42t7 + m32t6
+m32m4t7 — m32m4t8 — m32m42t9

A—m ) A=m4t?)(1=m4?t?) (1=mot3) A =m3t3) (1—mz2t1)

o(t")

a) is the series expansion of the HWG up to t°

(
(c) consists of those terms in (b)-(a) with positive coefficients

(d) is a charged orbit built on F4[0100]; the charge is identified from the leading term of (c)
(e) contains no terms outside A/, as required for the F4;[0002] non-normal orbit

(f)

f) consists of those terms in (e)-(a) with positive coefficients

Table A.4.: Non-Normal Orbit Construction using HWGs: F4[0002]
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B. SU(2) Homomorphisms

B.1. A Series

Dimension| Quiver | [1] | [2] |Root Map|Weight Map
0 (A} {12} [{23}] (e} {0}
2 {A1, Ui} | {2} | {3} {2} {1}
Dimension Quiver [1,0] | [0,1] [1,1] Root Map|Weight Map
0 (A} {13} | {23} {18} {0, 0} {0, 0}
4 {A2, U1} |{2, 1}|{2, 1} {3, 2%, 1}| {1, 1} (1, 1}
6 {Ay, Up, Ui} | {3} (3} {5, 3} {2, 2} (2, 2}

Dimension Quiver [1,0,0]][0,1,0]([0,0,1] [1,0,1] |Root Map|Weight Map
0 (A3} {14} {1¢} {14} {125} {0,0,0} (0,0, 0}
6 {As, Uy} {2, 12} [{22, 12} {2, 12} |{3, 2%, 1*}|{1, 0, 1}| {1, 1, 1)}
8 {As, Us} {22} {3, 3} {2%} {34, 13} (o, 2,0} (1,2, 1}
10 {As, Uy, Uy} (3, 1} {32} {3, 1} | {5, 3%, 1} |{2, 0, 2}| {2, 2,2}
12 {As, Us, Uy, Ui} | (4} (5, 1} (4} (7,5, 3} [{2,2,2}] (3,4, 3}
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Dimension Quiver [1,0,0,0]|[0,0,0,1] [1,0,0,1] Root Map |[Weight Map
0 (Aq) {15} {15} {124} (0, 0,0,0})[(0,0,0,0}
8 {As, U1} {2, 22} | {2, 1%} {3, 2¢, 1%} {1, 0,0, 1}|{1, 1, 1, 1}
12 {Ag, Uz} {22, 1} {22, 1} {34, 2%, 1%} (0,1, 1,0)](1, 2,2, 1}
14 (A4, Uy, Uy} {3, 12} (3,12} {5, 3%, 1%} (2,0,0, 2|2, 2,2,2)
16 (A4, Us, Uy} (3, 2} 3,2} |{5, 4% 3%, 22, 1}|(1, 1, 1, 1}|(2, 3, 3, 2}
18 {Ag, Uz, Uy, Up) (4, 1) (4, 1) {7,5,42,3,1} [{2,1,1,2}[(3, 4, 4, 3}
20 {As, Us, U3, Uy, Up} (5} (5} {9, 7,5, 3} (2,2,2,2}))4, 6, 6, 4}
Dimension Quiver [1,0,0,0,0]|[0,0,0,0,1] [1,0,0,0,1] Root Map Weight Map
0 {As} {18} {1¢} {13} {0, 0,0,0,0}[{0,0,0,0,0}
10 {As, Uy} {2, 1%} {2, 1%} {3, 28, 126} {1,0,0,0,1}]{1,1,1, 1,1}
16 {As, Uy} {22, 12} {22, 1%} {34, 28,17} (6,1,0,1,0}](1, 2, 2,2, 1}
18 {As, Us} {23} {23} {3°, 18} (6,0,2,0,0}](1, 2, 3, 2, 1}
18 {As, Uz, Uy} {3, 13} {3, 13} {5, 37, 1°} {2,0,0,0,2)((2,2,2,2,2)
22 {As, Us, Uy} (3,2, 1} (3,2,1} |{5,4%, 3% 2%, 12} [(1,1,0,1,1}|{2,3,3,3,2}
24 {As, Us, Uy} {32} {32} {54, 34, 13} {0,2,0,2,0}|({2, 4, 4, 4, 2}
24 {As, Uz, Uy, Up} {4, 12} {4, 12} (7,5, 4%, 3, 1% |{2,1,0,1,2}|(3, 4, 4, 4, 3}
26 {As, Ug, Uz, Up} (4, 2) (4, 2} {7,5% 3% 1} |[12,0,2,0,2}((3,4,5,4,3)}
28 {As, Us, Us, Uy, Uy} (5, 1) (5, 1} {9,7,5% 3,1} |(2,2,0,2,2}|(4,6,6,6, 4}
30 {As, Us, Us, Us, Uy, U} (6} (6} (11,9, 7,5, 3} |{2,2,2,2,2}|(5,8,9,8,5)

Partitions are shown under each homomorphism for the fundamental, anti-

fundamental and adjoint representations. For As, the vector representation

partitions are also shown.

B.2. B Series

Dimension Quiver [2] | [1] |Root Map|Weight Map
0 {B1} {B3}[{2?2}] (o} {0}
2 {B1, C1, Bo} | {3} | {2} {2} {1}
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Dimension Quiver [1,0] [0,1] [0,2] Root Map|Weight Map
0 {By} {1°} {14} {120} {0, 0} {0, 0}
4 {B2, C1} {22, 1}|{2, 12} |{3, 22, 1*}| (0, 1} {1, 1}
6 {B2, C1, Bo} {3, 12} {22} {33, 1} {2, 0} {2, 1}
8 {BZ’CZ’BI; Cl; BO} {5} {4} {7; 3} {2; 2} {4: 3}
Dimension Quiver [1,0,0] [0,1,0] [0,0,1] [Root Map|Weight Map
0 (B3} {17} {121} {18} {0, 0, 0}| {0, 0, 0}
8 {Bs, C1} {22, 13} {3, 2°,1°} | {22, 1%} |10, 1, 0} {1, 2, 1}
10 {Bs, C1, Bo} {3, 14} {35, 1} {2*} {2, 0,0}] (2,2,1}
12 {B3, Cz, Bo} {3, 22} [{42, 32, 22, 13}|{3, 22, 1}|(1, 0, 1} {2, 3, 2}
14 {Bs, C2, D1} {32, 1} {5, 3%, 1} {32, 12} 1o, 2, 0} (2,4, 2}
16 {Bs, Ca, B1, C1, Bo} {5, 12} | {7, 5%, 3,1} {42} |12, 2,0} (4,6, 3}
18 {Bs, C3, By, Co, B1, Ci, Bo)| {7} {11, 7, 3} {7, 1}y |{2, 2,2} {6, 10, 6}
Dimension Quiver [1,0,0,0] [0,1,0,0] [0,0,0,1] Root Map Weight Map
[0} (B4} {1°} {13} {16} (0, 0, 0,0} (0,0,0,0}
12 {Ba, C1} {22, 1%} {3, 2%, 113} 24,18} [0, 1,0,03[ (1,2,2,1)
14 {Ba, C1, Bo} {3, 15} {37, 175} {28} (2,0,0,0} {2,2,2,1}
16 (B4, C2} {24, 1} {38, 2%, 119} {3, 2%, 1%} |{0, 0,0, 1}| {1,2,3,2}
20 {Ba, Ca, Bo} {3, 22, 12} {42, 3%, 25, 1%} |{32, 2%, 1?}|{1, 0,1, 0}| {2,3,4,2}
22 {Ba, Ca, D1} {32, 17} {5, 3% 1%} {3*, 1%} |(0,2,0,0}]| (2,4,4,2)
24 {B4, C3, B} {3%} {5%, 3¢, 13} {4%, 2%} {0, 0,2,0}| {(2,4,6,3}
24 {Ba, C3, B1, C1, Bo} {5, 1%} {7, 5% 3, 1%} {4%} (2,2,0,0}| {4,6,6, 3}
26 (B4, C3, D2, C1} 42,1} [ {7, 5%, 4%,3,1% | (5,42, 1%} |[{0,2,0,1}]| (3,6,7,4}
26 {Bs, Cs3, B1, C1, Bo} (5,22} |{7,62, 4%, 3% 13}| {5,4%,3} [(2,1,0,1}]| (4,6,7,4)}
28 {Bay C3, Dy, C1, Bo} (5,3, 1} {72, 52, 3%} {5%,32} [(2,0,2,0}]| (4,6,8,4}
30 {Bs4, C3, B2, Cy, By, C1, Bg} {7, 1%} {11, 72, 3, 1} {72, 12} |12, 2, 2, 0} (6, 10, 12, 6}
32 {Ba, Ca, B3, C3, B, Gy By, Ciy Bo) {9} (15, 11, 7, 3} (11, 5} |(2, 2, 2, 2}|{(8, 14, 18, 10}
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Dimension Quiver [1,0,0,0,0] [0,1,0,0,0] [0,0,0,0,1] Root Map Weight Map
0 (Bs) {11} {1%5} {132} (0,0, 0,0,0) {0,0,0,0,0}
16 {Bs, C1} {22, 17} (3,21, 124} {28, 1%} 0,1,0,0,0} (1,2,2,2,1)
18 {Bs, C1, Bo} (3, 18} {39, 128} {2} 2,0,0,0, 0} {2,2,2,2,1}
24 {Bs, C3} {2%, 13} {38, 212, 113} {32, 28, 129} {6,0,0,1, 0} {1, 2,3, 4,2}
28 {Bs, Cy, Bo} (3,22, 1%} 36,219, 1°} {34, 28, 1%} {(1,0,1,0, 0} {2,3,4,4,2)
30 {Bs, C3, Bo} (3, 2%} {44, 37, 2%, 119} (4,3%2°,1%} [(1,0,0,0,1) {2,3,4,5,3)
30 {Bs, Cz, D1} {32, 1%} {5, 313, 111} (38, 1%} {0,2,0,0, 0} (2,4,4,4,2)
32 {Bs, Cy, By, C1, Bo} (5, 1°} {7, 5°, 3, 1%} {48} {2,2,0,0,0} {4,6,6,6, 3}
34 {Bs, C3, Dy} {32, 22,1} {5, 4%, 3¢, 2, 1%} {42, 3%, 2%, 1%} |(0,1,0,1,0) {2,4,5,6,3)
36 {Bs, C3, By} {33, 12} {5%, 312, 14} (4%, 28} 0,0,2,0,0} {2, 4,6,6, 3}
38 {Bs, C3, D2, C;} {42, 13} {7, 5%, 4%, 3, 1%} {52, 4%, 15} {0,2,0,1, 0} {3,6,7,8,4)
38 {Bs, C3, By, C1, Bo) (5, 2%, 12} |{7, 62, 5%, 42, 3%, 2%, 1%} {57, 4%, 3%} (2,1,0,1,0) (4,6,7,8,4)
40 (Bs, Cs, B2, C1} (42,3} |{7, 6%, 5%, 42,32, 22, 1%} |{s, 52, 4, 32, 2°} ({0, 1, 1, 0, 1) (3,6,8,9,5]}
40 {Bs, C3, D2, Cy, Bo} {5, 3,13} {72, 5%, 3%, 13} (5%, 3%} 2,0,2,0,0) {4,6,8,8,4)
42 {Bs, C4, By, C1, Bg) (s, 32} 3¢, 1} {62, 4%, 22} 2,0,0,2,0}| {4,6,8,10,5}
42 (Bs, C3, By, Ca, By, Cy, By} {7, 1%} {11, 7%, 3, 18} {74, 1%} 2,2,2,0,0}| {6, 10, 12, 12, 6}
44 {Bs, Ca, D3, Cy, Dy} (5%, 1} {9, 7%, 5%, 3%, 1} {72, 52, 3%, 12} [(0, 2,0, 2,0} (4,8, 10,12, 6}
44 (Bs, Cay By, Coy By, Cyy Bo) {7, 2%} {11, 82,7, 62,32, 13} |(8,7%,6,2,1%}|(2,2,1,0,1}| {6, 10, 12, 13, 7}
46 {Bs, Ca, D3, C3, By, Cy, Bo} (7,3, 1} (11,9, 7%, 5, 3%} (8%, 62, 27} {2,2,0,2,0)| {6, 10, 12, 14, 7}
48 {Bs, C4, B3, C3, By, Cy, By, Cy, Bo} {9,11} {15, 11, 92, 7, 3, 1} {111,52] {2,2,2,2,0}]| (8, 14, 18, 20, 10}
50 {Bs, Cs, Ba, Ca, B3, C3, By, Cz, By, Ci, Bo) {11} {19, 15, 11, 7, 3} (16, 10, 6} (2,2,2,2,2)|(10, 18, 24, 28, 15}

Partitions are shown under each homomorphism for the vector,

spinor representations.

B.3. C Series

Dimension| Quiver | [1] | [2] |Root Map|Weight Map
0 {Ciy {12} [{®}| (& {0)
2 {C1, Bo}| {2} [ (3} {2} {1}
Dimension Quiver [1,0] [0,1] [2,0] Root Map|Weight Map

0 {Cy} {14} {1} {120} {0, 0} {0, 0}
4 {Cz, Bo} {2, 12} {22, 1}|{3, 2%, 1*}| (1, 0} (1, 1}
6 {Cs, D1} {22} |{3, 12}| {33, 1} {0, 2} (1, 2}
8 {Ca, B1, C1, Bo}| (4} (5} (7, 3} (2,2} (3, 4}
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Dimension Quiver [1,0,0] [2,0,0] Root Map [Weight Map

0 (C3} {15} {121} (0, 0,0}] (0,0, 0}

6 {Cs, Bo} {2, 1%} | {3, 2%, 1%°} |{1, 0,0} {1, 1, 1}

10 {C3, D1} {22, 12} {33, 2%, 1*} |{0, 1, 0}| (1,2, 2}

12 {Cs, By} {23} {3¢, 1%} (0,0, 2} {1, 2, 3}

14 {Cs, Dy, Cy1} {32} {5%, 3,13} [{0,2,0}| {2, 4, 4)

14 {Cs, By, Cy1, Bo} {4, 12} |{7, 4%, 3, 13} |{2, 1, 0} | {3, 4, 4}

16 {Csz, Dy, C1, Bg} (4, 2) {7,5,3%} [(2,0,2}] (3,4,5)

18 {C3, By, Ca, By, C1, Bo} {6} {11, 7,3}y |{2,2,2}| {5,8,9)}

Dimension Quiver [1,0,0,0] [2,0,0,0] Root Map Weight Map

0 {C4} {18} {13} (6,0, 0,0} (0,0,0,0)
8 {Ca, Bo} {2, 1%} {3, 25, 122} {1,0,0,0}| (1,1,1,1)
14 {Cay D1} {22, 1%} {33, 28, 111} (0, 1,0, 0}| (1,2,2,2)
18 {Cay By} {22, 17} (3%, 2°, 15} (0,0, 1,0} (1,2,3,3)
20 {C4, Dy} {24} {3, 1%} {0,0,0,2}| {1,2,3,4}
20 {C4, By, C1, Bo} {4, 14} {7, 4%, 3,11 {2,1,0,0}| (3,4,4,4)
22 {C4, D2, C1} {32, 12} (5%, 3%, 15} {0,2,0,0}| (2,4,4,4)
24 {C4, B2, C1} (3%, 2} (5%, 4%, 32, 22, 13} {0, 1,1,0}| {2,4,5,5)
24 {C4, D2, C1, Bo} {4, 2,12} |{7, 5, 42, 3%, 22, 1%} [{2, 0, 1, 0} | {3, 4,5, 5}
26 {C4, B2, C1, Bo} {4, 22} {7, 5%, 3% 1} {2,0,0,2} (3,4,5,6)}
28 {Cq, D3, Cy, D1} {42} {73, 5,3% 1} {0,2,0,2}] {3,6,7,8)
28 {C4, B2, C2, By, Cy1, Bo} {6, 12} {11, 7, 62,3, 1%} [{2,2,1,0}] {5,8,9,9}
30 {C4, D3, Ca, By, C1, Bo} (6,2} {11, 72, 5, 3%} (2,2,0,2)| (5,8,9, 10}
32 {Ca, B3, C3, By, Cy, By, C1, Bo) (8} (15, 11, 7, 3} (2,2, 2, 2}|(7, 12, 15, 16}
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Dimension Quiver [1,0,0,0,0] [2,0,0,0,0] Root Map Weight Map
0 {Cs} {11} {15} {0,0,0,0,0}] {0,0,0,0,0}
10 {Cs, Bo} {2, 18} {3, 28, 1%} {(1,0,0,0,0}| {(1,1,1,1,1)
18 {Cs, Dy} {22, 15} {32, 212, 122} {0,1,0,0,0)| (1,2,2,2,2)
24 {Cs, B1} {23, 11} {38, 212, 113} {0,0,1,0,0}| {1,2,3,3,3)
26 (Cs, By, C1, Bo} {4, 1%} {7, 4%, 3,12} (2,1,0,0,01| (3,4,4,4,4)
28 {Cs, Dy} {24, 12} {310, 28, 1%} {0,0,0,1,0}| {1,2,3,4,4)
30 {Cs, By} {2°} {35, 120} (0,0,0,0,2} {1,2,3,4,5)
30 {Cs, D2, C1} {32, 14} {52, 39, 113} (0,2,0,0,01| (2,4,4,4,4
32 {Cs, Dy, C1, Bo} {4, 2,14} {7,5,4%, 3% 2%, 1%} 1{2,0,1,0,0}| {3,4,5,5,5}
34 {Cs, B2, C1} {32, 2, 1%} (5%, 42, 3%, 2%, 1} (0,1,1,0,0}| (2,4,5,5,5)
36 {Cs, D3, C1} {32, 22} {53, 4, 34, 2%, 1%} {0,1,0,1,0}| {2,4,5,6,6)}
36 (Cs, By, C1, Bo} {4, 22, 1%} {7,52,4%,3% 24, 1%} |{2,0,0,1,0}| {3,4,5,6,6}
38 {Cs, D3, Cy, Bo} {4, 2%} {7, 5%, 3%, 1%} (2,0,0,0,2)| (3,4,5,6,7)
38 {Cs, Bz, C2, By, Ciy Bo) {6, 1%} {11, 7, 6%, 3, 1%} (2,2,1,0,0) ¢(5,8,9,9,9)
40 (Cs, B3, Cz, By} {4, 3%} {7, 62, 5%, 4%, 32,22, 1°} [{1, 0,1, 1,0} {(3,5,7,8,8}
40 {Cs, D3, C2, D1} {42, 12} {7, 5, 4%, 3%, 1%} {0,2,0,1,0}| ¢(3,6,7,8,38)
42 (Cs, B3, Cz, D1} {42, 2} {73, 52, 3%, 1} (0,2,0,0,2}| {3,6,7,8,9)
42 {Cs, D3, Cz, By, C1, Bo} {6, 2,12} {11, 72, 62, 5, 32, 22, 1%} |(2, 2, 0, 1, 0} {5, 8,9, 10, 10}
44 {Cs, D4, C3, Dy, C1} {52} {93, 7, 5% 3, 1% (0,2,0,2,0}| (4, 8, 10, 12, 12}
44 {Cs, B3, Cz, By, C1, Bo} {6, 22} {11, 7%, 52, 3%, 1} (2,2,0,0,2}| (5,8,09, 10, 11}
46 {Cs, D4, C3, Dy, Cy, Bo} {6, 4} {11, 9, 7%, 5, 3%} {2,0,2,0,2}| (5,8, 11, 12, 13}
46 (Cs, B3, Ca, By, Ca, By, Cq, Bo} {8, 1%} {15, 11, 82,7, 3, 1°} |(2,2, 2,1, 0}|{7, 12, 15, 16, 16}
48 {Cs, D4, C3, By, Cy, By, C1, Bg} (8, 2} {15, 11, 9, 72, 32} {2,2,2,0,2}|(7, 12, 15, 16, 17}
50 {Cs, Ba, Ca, B3, C3, Bz, Ca, By, Ci, Bo} {10} (19, 15, 11, 7, 3} (2,2,2,2,2)|(9, 16, 21, 24, 25}

Partitions are shown under each homomorphism for the symplectic vector

and adjoint representations. For Cy, the partition of the [0, 1] representation

is also shown.
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B.4. D Series

Dimension Quiver [1,1] {r1,0110,171172,01][0,2] |Root Map|Weight Map
0 {Dy} (s | {a2) | {22} [ {23} [ {23} | (e, 0} {0, 0}
2 {D2, Cu} | {22} | {22} | 23 [ {23} | (3} | (0, 2} {0, 1}
2 (D2, C1} | {22} | (23 [ {22} | 3y [ {23} | (2,0} {1, 0}
4 {D2, C1, Bo} [{3, 1} | {2} {2} {3} {3} {2, 2} {1, 1}
Dimension Quiver [1,0,0]1([0,1,0]][0,0,1] [0,1,1] |Root Map|Weight Map
0 (D3} {18} {14} {14} {125} (0, 0, 0}| (0,0, 0}
6 (D3, C1} {22, 12} {2, 12} [ {2, 12} |{3, 2%, 1*}|(0, 1, 1}| (1,1, 1}
8 {Ds, C1, Bo} {3, 23} | {22} {22} {3%, 1%} |{2,0,0}| (2,1, 1}
10 {Ds, C;, D1} {32} | 3,1y | 3,11 |{5,3% 1} |(0, 2,2} {2,2,2)
12 {D37 CZ)BlaclﬁBG} {57 l} {4} {4} {77 51 3) {27 2: 2} {47 3’ 3}
Dimension Quiver [1,0,0,0] [0,1,0,0] [0,0,1,0]][0,0,0,1]| Root Map Weight Map
0 (D4} {18} {128} {18} {18} {0, 0,0,0}]| (0,0,0,0)}
10 (D4, Cy1} {22, 14} {3, 28, 1°} {22, 1%} | {22, 1%} |10, 1,0, 0}]{1,2,1, 1}
12 (D4, Cy} {24} {38, 119} {24} {3,1°} [te,0,0,2}](1,2,1,2)
12 (D4, Cy} {24} {38, 119} {3, 1%} {2%} {0, 0,2,0}|(1,2,2,1}
12 {D4, C1, Bo} {3,15} {36,110} {24} {24} {(2,0,0,0}|(2,2,1, 1}
16 {Da, C2, Bo} (3,22, 1} {47, 33, 2%, 1%} ({3, 22, 1} {3, 2%, 1} |(1, 0, 1, 1} (2, 3, 2, 2}
18 {Da4, C2, D1} {32, 12} {5, 37, 1%} {32, 12} | {32, 12} [{0,2,0,0}]| (2,4, 2,2}
20 {D4; Cs, Dy, C1} {42} {7, 5%, 3, 1%} (4%} {5, 1*} |10, 2,0,2}](3,6, 3,4}
20 {D4, Cs, Dy, Ci1} (4%} {7,5% 3,13} | {5, 1%} {42} |10,2,2,0}]|13,6,4,3)
20 {Da, Co, By, Cy, Bo) {5, 1%} [ {7,5% 3,1} (4%} {42} |(2,2,0,0}]| (4,8, 3,3}
22 {D4, C3, D2, Cy, Bo} {5, 3} {7?, 5, 3%} {5, 3} {5,3} [{2,0,2,2}] (4,6, 4,4}
24 {D4, C3, Bz, C3, By, Cy, Bo} | ({7, 1} {12, 72, 3} {7, 1} {7, 1}y [{2,2,2,2}{6, 10, 6, 6}
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Dimension Quiver [1,0,0,0,0] 0,1,0,0,0] 0,0,0,1,0] [0,0,0,0,1 Root Map Weight Map
<] {Ds} {12} {1%} {12} {12} {6,0,0,0, 0} {6,0,0,0, 0}
14 {Ds, C1} {22, 18} (3,212, 128} {2, 18} {24, 18} {0,1,0,0,0}| (1,2,2,1,1}
16 {Ds, Cy, By} (3,17} {38, 121} {28} {28} {2,0,0,0,0)| (2,2,2,1,1}
20 {Ds, Cy} {24, 17} {39, 28, 111} (3, 2%, 1%} (3, 2%, 1%} |0,0,0,1,1} (1,2,3,2,2)
24 {Ds, C2, Bo} (3, 2%, 1%} {42, 3%, 28, 1%} {32, 2%, 1%} {32,2%, 12} |{1,0,1,0,0}| (2,3,4,2,2)
26 {Ds, Ca, D1} {32, 1%} {5, 3%, 17} (3%, 1%} {3%, 1%} {0,2,0,0,0)| (2,4,4,2,2)
28 {Ds, C3, D1} {32, 22} {5, 4%, 3%, 2%, 1%} {4, 3%, 22,12} |{4, 32, 22, 1%} |(0, 1, 0, 1, 1}| (2,4,5,3,3)
28 (Ds, Cz, By, C1, Bo} {5, 1°} {7,5°, 3, 1%} {4%} {4%} {2,2,0,0,0}| (4,6,6,3,3)
30 (Ds, C3, By} (33, 1} {5, 3%, 13} {42, 24} {42, 24} {0,0,2,0,0}| (2,4,86,3,3)
32 {Ds, C3, Dy, C1} {42, 17} {7, 5%, 4%, 3, 1%} {5, 42, 17} (5,42, 1%} |{0,2,0,1,1} (3,6,7,4,4)
32 {Ds, C3, By, C1, Bo} {5, 22,1} |{7, 62,5, 4%, 32, 22, 13} (5, 4%, 3} {5, 42, 3} {2,1,0,1, 1} (4,6,7,4,4)
34 {Ds, C3, Dz, C1, Bo} {5, 3,12} {72, 5%, 3% 1} (52, 3%} {52, 32} {2,0,2,0,0}| (4,6,8,4,4)
36 {Ds, C4, D3, Cz, Dy} {52} {9,7%,5,3%, 1} {7, 5,3, 1} {7, 5,3, 1} |{6,2,0,2,2}| {4,8,10,6, 6}
36 {Ds, C3, By, C3, By, C1, Bo} (7, 13} {11, 7%, 3, 17} {72, 12} {72, 12} {2,2,2,0,0}| {6, 10, 12, 6, 6}
38 {Ds, Ca, D3, Ca, By, C1, Bo} (7,3} {11, 9, 72, 5, 3%} 8,6, 2) 8,6,2) |[(2,2,0,2,2}] (6,10,12,7,7)
40 (Ds, C4, B3, C3, By, C2, By, 1, Bo) 9,1} (15,11, 9, 7, 3} (11, 5) (11, 5} (2, 2,2,2,2}|(8, 14, 18, 10, 10}

Partitions are shown under each homomorphism for the vector, spinor and

adjoint representations.
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B.5. Exceptional Groups

B.5.1. G,
Dimension [1,0] [0,1] |Root Map|Weight Map
0 {134} {17} {0, 0} {0, 0}
6 {3, 2%, 13} [{22, 13}] {1, 0} (2, 1)
8 {42,3, 13} (3,22} | {0, 1} (3,2}
10 (5,3 |{3% 1} | (2,0} {4, 2}
12 {11, 3} (7} (2,2} (10, 6}
B.5.2. F,
Dimension [1,0,0,0] [0,0,0,1] Root Map Weight Map
0 {1%2} {1%¢} {0,0,0,0}] {0,0,0,0}
16 {3, 214, 121} {28, 1%} {1,0,0,0}| {2,3,2,1}
22 {37, 28, 125} {3, 28, 17} {0,0,0, 1} (2,4,3,2)
28 {42, 3%, 210, 16} {33, 2%, 15} {0,1,0,0}| {(3,6,4,2}
30 {5, 313, 18} (3¢, 18} {2,0,0,0}| (4,6,4,2)
30 {57, 3, 11} {5, 37} (0,0, 0,2} (4,8,6,4)
34 (5%, 42, 3¢, 24, 13} {4%, 3%, 2%, 1} |{0,0,1,0}| {4,8,6,3)}
36 {7, 5%, 4%, 3, 1°} {5, 4%, 1%} {2,0,0,1}| {6,10,7, 4}
36 {62, 5%, 42, 32, 24, 1°}| {5, 42, 3%, 22} |(0, 1,0, 1}| (5, 10,7, 4}
38 {7, 6%, 5, 4%, 3%, 1%} |{52, 4%, 3, 22, 1}|{1, 0, 1, 0}| (6, 11, 8, 4}
40 {72, 5%, 3%} {52, 3%, 12} {0,2,0,0}| (6,12,8, 4}
40 {9, 7%, 3%, 13} {7,5% 3,1} |{2,0,0,2}] (8,14, 10, 6}
42 {11, 75, 3, 13} {73, 1%} {2,2,0,0}] {10, 18, 12, 6}
42 {11, 102, 7, 4%, 3, 13} {9, 62, 5} {1, 0,1, 23| (10, 19, 14, 8}
44 {112, 9, 7, 5, 33} {9, 7, 5%} {0, 2,0, 21| (10, 20, 14, 8}
46 {15, 112, 7, 5, 3} {11, 9,5, 1} |{2, 2,0, 2}|{14, 26, 18, 16}
48 {23, 15, 11, 3} (17, 9} {2, 2,2, 2|22, 42, 30, 16}

Partitions are shown for the F, adjoint and vector representations only.
Homomorphisms identified include one root map which is not a nilpotent
orbit: 40: [2,0,0,2]. This is highlighted in red.
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B.5.3. Es

Dimension [1,0,0,0,0,0] [0,0,0,0,0,1] Root Map Weight Map

0 {127} {178} (0, 0,0, 0,0, 0} {0, 0,0,0,0,0}

22 {28, 125} {3, 2%, 1%} {0, 0,0,0,0,1} {1,2,3,2,1,2}

32 {3, 28, 18} {38, 216, 122} {1,0,0,0,1, 0} {2,3,4,3,2,2)
40 {32, 2¢, 1%} {42, 3%, 216, 111} {(0,0,1,0,0,0} {2, 4,6,4,2,3)
42 {3¢, 1°} {5, 319, 176} {0, 0,0, 0,0, 2} (2,4,6,4,2,4)
46 {4, 34, 2%, 13} {5, 4%, 3%, 28,19} {1,0,0,0,1, 1} {(3,5,7,5, 3, 4}
48 {5,37, 1} {58, 3%, 114} {(2,0,0,0,2,0} (4,6,8,6,4,4)

50 {42, 33, 24, 17} {5%, 4%, 39, 28, 1%} {0,1,0,1,0,0) {3,6,8,6, 3, 4)

52 {5, 4%, 15} {7, 5%, 4%, 3, 111} {1,0,0,0,1, 2} {4,7,10,7, 4, 6}
54 {5, 4%, 3% 2%, 1} {62, 54, 44, 3%, 2¢, 13} {1,0,1,0,1, 0} {4,7,10,7, 4,5}
56 {52, 42, 3, 22, 12} {7, 6%, 5%, 45,34, 22, 14} (6,1,0,1,0, 1) {4, 8,11, 8, 4, 6}
58 {5°%, 3%, 13} {72, 57, 3°, 12} (0,0,2,0,0,0) (4,8,12,8, 4, 6}
58 {6, 5,42, 32, 2} {73, 62, 52, 4%, 3%, 22, 13} {(1,1,0,1,1, 0} (5,9, 12,9, 5, 6}
60 {73, 1%} {11, 78, 3, 18} (0, 0,2,0,0,2}| (6,12, 18, 12, 6, 10}
60 {7, 5% 3,12} {9, 7%, 5%, 35, 1%} (2,0,0,0,2,2}| (6,10, 14, 10, 6, 8}
62 {7,6,5,4,3,2} {9,82,7,62,53,42,32,22,1} {(1,1,0,1,1,1}| (6,11, 15,11, 6, 8}
64 {9, 6%, 5,1} {11, 10%, 9, 7, 62, 5, 4%, 3, 1°}[{2, 1, 0, 1, 2, 1} (8, 14, 19, 14, 8, 10}
64 (8, 7,5, 4,3} {102,9,72,62,52,42,3,12} (1,1,1,1,1,0y| (7,13, 18, 13,7, 9}
64 (8,7,6,3,2,1} {11, 9, 82, 7%, 6%, 5, 3%, 22, 1} [{1, 1, 0, 1, 1, 2}| {7, 13, 18, 13, 7, 10}
66 {9, 7,52, 1} {112, 92, 72, 5%, 3%} (2,0,2,0,2,0}| (8, 14, 20, 14, 8, 10}
66 {92, 5,3, 1} {13, 11, 92, 74, 32, 12} (0,2,0,2,0,2}| {8, 16, 22, 16, 8, 12}
68 {11, 9, 5, 12} {15, 113, 9, 7, 52, 3, 1} (2,0,2,0,2,2}|{10, 18, 26, 18, 10, 14}
70 {13, 9, 5} {17, 15, 112, 9, 7, 5, 3} (2,2,0,2,2,2}y|{12, 22, 30, 22, 12, 16}
72 (17, 9, 1} (23, 17, 15, 11, 9, 3} (2,2,2,2,2,2}|{16, 30, 42, 30, 16, 22}

Partitions are shown for the Fg adjoint and fundamental representations
only. Homomorphisms identified include three root maps which are not

recognised Characteristics of nilpotent orbits: these are highlighted in red.
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B.5.4. B,

Dimension [1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

0 {1133} {1%¢} (0,0,0,0,0,0,0} (0,0,0,0,0,0,0)
34 {3, 2%2, 1%¢} {212, 122} {1,0,0,0,0,0,0} {2,3,4,3,2,1,2)
52 {30, 222, 139} {32, 215, 118} (6,0,0,0,1,0,0} {(2,4,6,5,4,2,3)
54 {377, 1%2} {4, 22¢} {0, 0,0,0,0,2,0} (2,4,6,5,4,3,3)
64 {42, 315, 228, 124} 3¢, 212, 124} {0,1,0,0,0,0,0} {(3,6,8,6,4,2,4)
66 {5, 33, 1%} {322, 120} {(2,0,0,0,0,0,0} (4,6,8,6,4,2,4)
70 {48, 316, 220, 121} {4, 3%, 214, 15} {0,0,0,0,0,1,1} (3,6,9,7,5,3,5)
76 {5, 48, 316, 216, 116} {42, 38, 28, 18} (1,0,0,0,1,0, 0} (4,7,10,8,6,3,5)
82 {52, 48, 315, 216, 1°} {44, 3¢, 28, 16} {0,0,1,0,0,0,0} (4,8,12,9,6, 3, 6}
84 {57, 328, 11} {47, 214} {0,0,0,0,0,0,2) (4,8,12,9,6,3,7)}
84 {5, 322, 127} {52, 314, 11} (0,0,0,0,2,0,0}| {4,8,12,10,8,4,6)
84 {7, 57, 4%, 3, 124} {52, 48, 114} {2,0,0,0,1,0,0}| (6,10, 14,11,8, 4,7}
86 {7, 5's, 3%, 12} {6, 4°, 27} (2,0,0,0,0,2,0}| (6,10,14,11,8,5,7)}
920 {62, 5, 48, 311, 210, 16} {52, 4%, 3°, 2%, 14} {0,1,0,0,1,0,0}| (5,10, 14, 11,8, 4, 7}
92 {7,6%,57,4%,35, 26,19} {5%, 4, 32, 2%, 1°} {1,0,1,0,0,0,0}| (6,11, 16, 12, 8, 4, 8}
94 {72, 52, 315, 19} {5°, 3¢, 18} (6,2,0,0,0,0,0}| (6,12,16, 12,8, 4, 8}
94 {7, 6%, 57,45, 37,28, 15} {6, 5%, 4%, 3%, 23, 12} {1, 0,0,1,0,1,0}| {6,11,16,13,9,5, 8}
96 {11, 724, 3, 121} {78, 124} (2,2,0,0,0,0,0}|{10, 18, 24, 18, 12, 6, 12}
96 {9, 7%, 5%, 3, 116} (6%, 4, 28} (2,0,0,0,0,0,2}|(8, 14, 20, 15, 10, 5, 11}
96 {72, 6%, 5°, 4%, 3%, 24, 16} {6, 5%, 42, 3%, 2%} {0,1,0,0,0,1,1}| {(6,12,17,13,9,5, 9}
98 {73, 6%, 5%, 48, 3%, 24, 14} (6%, 52, 4%, 3%, 22,12} (e, 0,1,0,1,0,0}| (6,12, 18, 14, 10, 5, 9}
100 {7°, 510, 315, 13} {63, 47, 25} {0, 0,0,2,0,0,0}| (6,12, 18, 15, 10, 5, 9}
100 {9, 77, 5%, 37, 1%} {72, 5°, 32, 15} (2,0,0,0, 2,0, 0}| (8, 14, 20, 16, 12, 6, 10}
102 {11, 97, 7,57, 3, 114} {10, 67, 4} {2,0,0,0,2,2,0}|{10, 18, 26, 21, 16, 9, 13}
102 {11, 8%, 7°, 6%, 32, 24, 110} {8, 7%, 6, 2, 1%} {2,1,0,0,0,1,1}|{10, 18, 25, 19, 13, 7, 13}
104 {9, 72, 513, 1%} (8%, 6%, 45, 2} {0,0,0,0,2,0,2}| (8, 16, 24, 19, 14, 7, 13}
104 {92, 78, 5%, 319, 1%} {8, 6%, 4%, 22} {0,2,0,0,0,2,0}]|(8,16,22,17, 12, 7, 11}
104 {9, 82, 7%, 6%, 55, 4%, 3%, 24, 12} {72, 62, 52, 42, 32, 22, 1?}|(1, 0, 1,0, 1, 0, 0} | {8, 15, 22, 17, 12, 6, 11}
106 {13, 99, 5%, 3, 11} {10, 8%, 4, 2%} (2,2,0,0,0,2,0}|{12, 22, 30, 23, 16, 9, 15}
106 {93, 75, 51°, 3¢, 1%} {74, 52, 3%} {0,0,2,0,0,0,0}|(8, 16, 24, 18, 12, 6, 12}
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Dimension (1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

106 {11, 9, 8%, 7%, 6%, 5, 3%, 2%, 1} {82, 72, 62, 32, 22, 1%} [{2, 0, 1, 0, 1, 0, 0} | {10, 18, 26, 20, 14, 7, 13}
108 {11, 9%, 78 37, 13} (8%, 6, 4, 25} (2,0,0,2,0, 0, 0}| (10, 18, 26, 21, 14, 7, 13}
108 {102, 9, 82, 74, 62, 5%, 44, 3%, 13} [82, 72, 52, 42 32,1? (0,1, 1,0,1,0,0}| (9, 18, 26, 20, 14, 7, 13}

108 {11, 102, 9%, 7, 6°, 5%, 42, 3, 1°} {92, 6%, 52, 1%} {1,0,1,0,2,0,0}]| {10, 19, 28, 22, 16, 8, 14}
108 {11, 102, 9°, 82, 7, 62, 5%, 42, 32, 2%, 1*}| ({1e, 7%, 6%, 52,4} [{1,0,1,0,1,2,0}({16, 19, 28, 22, 16, 9, 14}
110 {112,94,7‘,57,33,13} {91,71,54,1“} {0,2,0,0,2,0,0}] {10, 20, 28, 22, 16, 8, 14}
110 {13, 11, 96, 7%, 52, 3%, 15} {9%, 52, 32, 1%} {2,0,2,0,0,0,0}| (12, 22, 32, 24, 16, 8, 16}
110 {112, 102, 9, 82, 73, 62, 5, 4%, 3%, 1%} {10, 8, 72, 6, 52, 4%} ({0, 1, 0, 1, 0, 2, 1}| {10, 20, 29, 23, 16, 9, 15}
112 {112, 93, 75, 54, 3¢} {10, 82, 6%, 4%} {0, 0,2,0,0,2,0}]| {10, 20, 30, 23, 16, 9, 15}
112 {13, 113,92, 77, 5, 3%, 13} {102,82,6,43,2; (2,0,0,0,2,0, 2}]| (12, 22, 32, 25, 18, 9, 17}
112 {15,115,93,7,54,3,16} {111,91,52,15} {2,2,0,0,2,0,0}]|{14, 26, 36, 28, 20, 10, 18}
112 (13, 11, 102, 9? 62, 52, 3%, 12} {10, 92, 72, 42, 2%} |{2,0,1,1,0,1,0}| (12, 22, 32, 25, 17, 9, 16)
114 {132, 11, 93, 7%, 5%, 3, 1%} {112, 74, 32} {0, 0,2,0,2,0,0}]{12, 24, 36, 28, 20, 10, 18}
114 {15, 122, 11, 102, 9, 7, 62, 42, 3%, 13} {112, 10, 8, 5%, 2°} {2, 1,0,1,1,0,1}|{(14, 26, 37, 29, 20, 10, 19}
114 {15, 122, 112, 102, 9, 72, 6%, 42, 32, 1%} | {12, 10, 92, 6, 4, 3%} [(2, 1,0, 1, 0, 2, 1} {14, 26, 37, 29, 20, 11, 19}
116 {15, 13, 11*%, 92, 73, 52, 34} {12, 10%, 8, 6, 42, 2} |{2, 0, 2, 0, 0, 2, 0} {14, 26, 38, 29, 20, 11, 19}
118 {17, 15, 132, 112, 93, 7, 5%, 3, 1} {132, 92, 52, 12} (2,0,2,0,2,0, 0} {16, 30, 44, 34, 24, 12, 22}
118 {19, 16?2, 15, 112, 102, 7, 6%, 3, 1°} {16, 112, 10, 6, 1%} [(2, 1,0, 1,2,2,1}|({18, 34, 49, 39, 28, 15, 25}
120 {23, 173, 15, 11, 9%, 3, 13} {172, 92, 17} {2,2,2,0,2,0, 0}]({22, 42, 60, 46, 32, 16, 30}
120 {19, 17, 152, 113, 9, 72, 5, 3?} {16, 12, 10%, 6, 2} [{2, 0, 2,0, 2,2, 0}|{18, 34, 50, 39, 28, 15, 25}
122 {23, 19, 17, 152, 112, 9, 7, 32} (18, 16, 10, 8, 4} |{2, 2, 0,2, 0, 2, 2}|{22, 42, 60, 47, 32, 17, 31}
124 {27, 23, 19, 17, 15, 112, 7, 3} (22, 16, 12, 6) (2,2,0,2,2,2,2}|(26, 50, 72, 57, 40, 21, 37}
126 (35, 27, 23, 19, 15, 11, 3} (28, 18, 10} (2,2,2,2,2,2,2})|(34, 66, 96, 75, 52, 27, 49}

Partitions are shown for the E7 adjoint and vector representations only.

Homomorphisms identified include eight root maps which are not recognised

Characteristics of nilpotent orbits: these are highlighted in red.
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B.5.5. Ejg

Dimension [0,0,0,0,0,1,0] Root Map Weight Map

0 {1248} {0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)}

58 (3, 2%, 1133} {0,0,0,0,0,0,1, 0} {2,4,6,5,4,3,2,3}

92 {314, 254, 178} {1,0,0,0,0,0,0, 0} (4,7,10,8,6,4,2,5}
112 {42,327,252,155} {0,0,0,0,0,1,0, 0} (4, 8, 12, 10, 8, 6, 3, 6}
114 {5, 3%, 178} {0,0,0,0,0,0,2,0) {4,8,12,10,8,6, 4, 6)
128 {48,328,245,136} {0,0,0,0,0,0,0, 1) {5, 10, 15, 12, 9, 6, 3, 8}
136 {5,412,332,232,135} {1,0,0,0,0,0,1, 0} (6, 11, 16, 13, 10, 7, 4, 8}
146 {53, at°, 377, 232, 124} {0,0,0,0,1,0,0, 0} {6, 12, 18, 15, 12, 8, 4, 9}
148 {7, 51, 4%2, 3, 15} {1,0,0,0,0,0,2,0}| (8,15, 22, 18, 14, 10, 6, 11}
154 {57,4“,318,228,117} {0,1,0,0,0,0,0,0)| (7,14, 20, 16, 12, 8, 4, 10}
156 {514, 3%, 128} (2,0,0,0,0,0,0,0}| (8,14, 20, 16, 12, 8, 4, 10}
162 {62, 519, 416, 323, 218 117} {1,0,0,0,0,1,0,0}| (8,15, 22, 18, 14, 10, 5, 11}
164 {7, 62, 515, 418, 310, 714 124} (0,0,0,0,1,0,1,0}| (8,16, 24, 20, 16, 11, 6, 12}
166 {72, 525, 377, 128} {0,0,0,0,0,2,0,0}| (8, 16, 24, 20, 16, 12, 6, 12}
168 {11, 778, 3, 192} (0, 0,0,0,0,2,2,0}|(12, 24, 36, 30, 24, 18, 10, 18}
168 {64,519,416,32@,220,110} {0,0,0,1,0,0,0,0}| (8,16, 24, 20, 15, 10, 5, 12}
172 {7, 65, 511, 416, 315, 214, 113} (0,1,0,0,0,0,1,0}| (9,18, 26, 21, 16, 11, 6, 13}
176 {72,65,5‘3,412,3‘6,2“,19} {0,0,0,0,0,1,0, 1}| (9, 18, 27, 22, 17, 12, 6, 14}
178 {73, 6%, 58, 416, 316, 28, 111} {1,0,0,0,1,0,0,0}| (10, 19, 28, 23, 18, 12, 6, 14}
178 (9, 75, 612, 514 42 3, 216 119 (0,1,0,0,0,0,2,0}| {11, 22, 32, 26, 20, 14, 8, 16
180 {9, 74, 521, 311, 124} (2,0,0,0,0,0,2,0}| (12, 22, 32, 26, 20, 14, 8, 16}
182 {75,65,510,4“,3‘5,210,15} {0,0,1,0,0,0,0,0}]| {10, 20, 30, 24, 18, 12, 6, 15}
184 {78, 5%, 3%8, 18} (0,0,0,0,0,0,0,2}| (10, 20, 30, 24, 18, 12, 6, 16}
184 {11,86,714,65,32,214,121} {0,0,0,0,0,1,2,1}|(13, 26, 39, 32, 25, 18, 10, 20}
186 82, 75, 68, 5%, 412 311 28 17 0,1,0,0,0,1,0,0 11, 22, 32, 26, 20, 14, 7, 16
188 {s",76,64,510,416,36,24,110} {1,0,0,1,0,0,0,0}| {12, 23, 34, 28, 21, 14, 7, 17}
188 {9,81,77,63,59,43,35,23,19} {1,0,0,0,1,0, 1,0} (12, 23, 34, 28, 22, 15, 8, 17}
190 {11,9,88,78,68,5,38,28,115} {1,0,0,0,1,0,2,0}|{14, 27, 40, 33, 26, 18, 10, 20}
192 {9, 8%, 7°, 6%, 5%, 48, 3%, 28, 1%} |(e,0,1,0,0,0,1,0}| (12, 24, 36, 29, 22, 15, 8, 18}
192 (92, 82, 78, 6%, 55, 419, 31°, 24,17} |{0, 0, 0, 1, 0, 1, 0, 0}| {12, 24, 36, 30, 23, 16, 8, 18
194 {93, 713, 514, 318, 1°} (6,0,0,0,2,0,0,0)| (12, 24, 36, 30, 24, 16, 8, 18)
194 95, 84, 72, 65, 513, 410 2 12| 1,0,1,0,0,0,0,0 14, 27, 40, 32, 24, 16, 8, 20
196 97, 77, 521,37, 110 0,2,0,0,0,0,0,0 14, 28, 40, 32, 24, 16, 8, 20
196 (102, 9, 85, 78, 62, 5%, 4%, 37, 1%°} |1, 0, 0, 0, 1, 1, 0, 0}| {14, 27, 40, 33, 26, 18, 9, 20
196 {11, 102, 97, 7, 6%, 57, 42, 3, 1'7} |{2, 0, 0, 0, 1, 0, 1, 0} |{16, 30, 44, 36, 28, 19, 10, 22}
196 (13, 10?, 99, 8%, 5°, 42, 3, 21°, 114} (0, 0, 0, 1, 0, 1, 2, 0} [{16, 32, 48, 40, 31, 22, 12, 24)
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Dimension

[0,0,0,0,0,1,0]

Weight Map

196

{93, 84, 75, 65, 510, 48 37 26, 13}

0}

(13, 26, 38, 31, 24, 16, 8, 19}

196

{11, 9%, 8%, 7%, 6°, 52, 42, 37, 210, 16}

0

(14, 28, 42, 34, 26, 18, 10,

21}

198

{11, 96, 714, 57 314, 18}

2

(14, 28, 42, 34, 26, 18,

22}

198

{112, 98, 78, 515, 33, 114}

0]

(16, 30, 44, 36, 28, 20,

22}

198

{13, 11, 91, 74, 5¢, 3%, 16}

(16, 32, 48, 40, 32, 22,

24}

200

{15, 119, 97, 7, 5%, 3, 12!}

0]

(20, 38, 56, 46, 36, 26,

28}

200

{102, 93, 8%, 79, 6°, 5°, 4%, 3%, 24, 13}

0}

{14, 28, 42, 34, 26, 18,

9, 21}

202

{10%, 93, 82, 75, 6%, 5%, 44, 36, 22 14}

(15, 30, 44, 36, 27, 18,

9, 22}

202

{11, 102, 93, 8°, 74, 6°, 5°, 4%, 37, 24, 1}

0]

(15, 30, 44, 36, 28, 19,

22}

202

{11, 104, 9%, 82, 7°, 6%, 57, 4%, 32, 24, 1°}

0}

(16, 31, 46, 37,

28, 19,

23)

204

{112, 104, 9, 8%, 77, 67, 5°, 4%, 3, 16}

1

(16, 32, 47, 38,

29, 20,

24}

204

(112, 102, 94, 8%, 74, 65, 57, 44, 34, 24, 13}

0}

{16, 31, 46, 38,

29, 20,

23}

204

(13, 11, 10%, 9°, 84, 7%, 6, 52, 4%, 35, 2, 15}

(17, 34, 50, 41,

32, 22,

25)

206

{13, 112, 104, 92, 8%, 6%, 5%, 311, 1%}

1}

(17, 34, 51, 42,

32, 22,

26}

206

{112, 102, 93, 8%, 7°, 6°, 5%, 4°, 3°, 13}

0

(16, 32, 48, 39,

30, 20,

24}

206

{13, 113, 10%, 92, 8%, 77, 62, 5, 4°, 34, 22, 1°}

0]

(18, 35, 52, 42,

32, 22,

26}

208

{114] 96, 710 510, 31@}

0

(16, 32, 48, 40,

30, 20,

24)

208

{13, 11°%, 9°, 719, 5%, 3%, 14}

0]

(18, 36, 52, 42,

32, 22,

26}

208

{132, 114, 99, 73, 512, 3, 18}

{18, 36, 54, 44,

34, 24,

208

{142, 11°, 10%, 92, 7, 6'°, 5%, 3, 111}

0

(20, 39, 58, 48,

37, 26,

29}

208

{122, 112, 102, 9%, 8%, 75, 62, 5°, 4%, 32, 1}

(17, 34, 51, 42,

32, 22,

26}

208

{122, 113, 102, 92, 8%, 75, 6°, 5°, 42, 32, 2%, 17}

(18, 35, 52, 42,

32, 22,

26}

208

{15, 122, 11°, 10%, 9°, 82, 7, 62, 5%, 42, 32, 2°, 1°}

0]

(20, 39, 58, 48,

37, 26,

29}

210

{17, 15°%, 11, 9%, 3, 119}

(26, 50, 72, 58,

44, 30,

36}

210

{132, 11°, 93, 713, 5%, 35, 16}

0

(20, 38, 56, 46,

36, 24,

28)

210

{15, 13°%, 11, 9°, 75, 5, 111}

(22, 42, 62, 50,

38, 26,

210

(15, 124, 112, 10%, 95, 72, 6%, 44, 35, 16}

1

(20, 40, 59, 48,

37, 26,

30}

210

(13, 122, 11, 10%, 9*, 82, 7°, 6%, 57, 4°, 3%, 13}

(18, 36, 54, 44,

34, 23,

27}

212

{13, 11, 92, 7%, 51°, 1%}

(20, 40, 60, 48,

36, 24,

212

{132, 122, 11, 10%, 92, 8%, 7, 6, 5%, 42, 3%, 17}

(19, 38, 56, 46,

35, 24,

28}

212

{132, 122, 11, 102, 9%, 8%, 7°, 6%, 5°, 42, 32, 22, 13}

0]

(20, 39, 58, 47,

36, 24,

29}

212

(15, 13, 122, 114, 10°%, 92, 82, 7%, 62, 52, 44, 3%, 22, 13}

0}

{20, 40, 60, 49,

38, 26,

30}

214

{15, 132, 117, 9%, 7°, 5%, 3%, 1}

0]

(20, 40, 60, 50,

38, 26,

30}

214

{17, 15, 136, 112, 97, 7, 57, 3, 18}

0]

(24, 46, 68, 56,

44, 30,

34}

214

{142, 133, 11, 10%, 93, 82, 75, 62, 52, 4%, 3, 1%}

(21, 42, 62, 50,

38, 26,

31}

216

{23, 177, 15, 11, 97, 3, 1%}

(32, 62, 92, 76,

60, 42,

216

{152, 133, 115, 9%, 78, 5%, 35, 12}

(22, 44, 64, 52,

40, 28,

32}
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Dimension [0,0,0,0,0,1,0] Root Map Weight Map

216 {19, 16%, 15, 11°, 104, 7, 6%, 3, 11°} (2,1,0,0,0,1,2,1) (28, 54, 79, 64, 49, 34, 18, 40)
216 {162, 133, 124, 112, 92, 82, 7%, 62, 5%, 3, 22, 1%} (0,1,0,1,0,2,0,0) (23, 46, 68, 56, 43, 30, 15, 34}
216 :17, 142,132,124,112,1@2,9,82,72,62,53,35,22,12} (0,1,0,1,0,1,2, 0} (23, 46, 68, 56, 43, 30, 16, 34)
216 {15,142,13,121,112,101,93,84,73,62,53,42,32,22,1} {1,0,1,0,1,0, 1, 0} {22, 43, 64, 52, 40, 27, 14, 32}
218 :172,153,13,115,93,77,33,15} (2,0,0,0,0,2,0, 2} (26, 50, 74, 60, 46, 32, 16, 38)
218 {19, 154, 13°, 112, 92, 76, 36, 14} (0,2,0,0,0,2,2,0) (26, 52, 76, 62, 48, 34, 18, 38}
218 {162, 152, 13, 122, 112, 104, 92, 7, 6%, 5, 4%, 1%} {(0,1,0,1,0,1,0, 1) (24, 48, 71, 58, 44, 30, 15, 36}
218 {162,15,133,122,11,102,93,84,7,61,53,42,3,13} {1,0,1,0,1,1,0, 0} {24, 47, 70, 57, 44, 30, 15, 35}
218 {17, 15, 142, 132, 122, 112, 102, 9°, 82, 7, 6%, 5%, 4%, 32, 22, 1} ({1, 0, 1, 0, 1, 0, 2, 0} (24, 47, 70, 57, 44, 30, 16, 35}
220 {17,153,132,116,93,75,54,34} {(0,0,2,0,0,0,2,0} {24, 48, 72, 58, 44, 30, 16, 36}
220 {21,17“,15,135,95,7,54,17} (2,0,0,0,0,2,2,2) (30, 58, 86, 70, 54, 38, 20, 44)
220 {182, 15, 14%, 132, 11, 107, 9%, 7°, 5%, 3, 1%} {0,0,1,1,0,2,0,0) {26, 52, 78, 64, 49, 34, 17, 39}
220 {19, 17, 162, 152, 122, 113, 10%, 9, 7%, 62, 5, 32, 22, 13} (2,0,1,0,1,0,2,0) (28, 54, 80, 65, 50, 34, 18, 40}
220 {17, 162, 15, 132, 122, 112, 102, 93, 8%, 72, 62, 5%, 42, 3, 1?2} |{0,1,1,0,1,0, 1, 0} (25, 50, 74, 60, 46, 31, 16, 37}
222 {19, 172, 15%, 13, 11°, 93, 73, 52, 3%, 1} (2,0,0,2,0,0,2,0) (28, 54, 80, 66, 50, 34, 18, 40}
222 {23,182,173,162,15,11,102,93,82,32,24,13} (1,0,1,0,1,2,2,0)} (32, 63, 94, 77, 60, 42, 22, 47}
222 {182, 17, 15, 142, 132, 113, 102, 92, 82, 7, 6%, 5%, 3, 12} {0,1,1,0,1,1,0, 0} {27, 54, 80, 65, 50, 34, 17, 40}
224 {192,17,153,133,113,93,75,5,33} (0,0,2,0,0,2,0,0)} (28, 56, 84, 68, 52, 36, 18, 42}
224 {21, 19, 172, 15%, 11°, 74, 53, 3, 1%} {6,2,0,0,2,0,2,0) {30, 60, 88, 72, 56, 38, 20, 44}
224 {21, 193, 152, 133, 11°, 92, 72, 34, 12} (2,0,2,0,0,0,2,0) (32, 62, 92, 74, 56, 38, 20, 46}
224 {202, 17, 162, 152, 13, 122, 112, 9°, 82, 7, 53, 3, 12} (1,0,1,1,0,2,0, 0} {30, 59, 88, 72, 55, 38, 19, 44}
224 {23,19,182,17,162,152,112,102,9,82,7,42,32,13} (60,1,0,1,0,2,2,1} (32, 64, 95, 78, 60, 42, 22, 48}
226 {23,192,173,153,113,93,71,5,34} (0,0,2,0,0,2,2,0} {32, 64, 96, 78, 60, 42, 22, 48}
226 {25, 21, 194, 15%, 114, 9, 72, 5, 32, 13} (2,0,0,2,0,2,2,0) (36, 70, 104, 86, 66, 46, 24, 52}
226 {23, 21, 192, 17, 15%, 132, 113, 9, 74, 32, 12} (2,0,0,0,2,0,2,2) {34, 66, 98, 80, 62, 42, 22, 50}
226 {23,222,19,162,15,133,122,11,102,7,42,3,13} (2,1,0,1,1,0,1, 1} {36, 70, 103, 84, 64, 43, 22, 52}
228 {232,21,19,17,153,132,11A,9,7,5,33} (2,0,2,0,0,2,0,0) {36, 70, 104, 84, 64, 44, 22, 52}
228 {27,23,222,19,17,162, 15,122,112,7,62,3,13} (2,1,0,1,0,2,2,1} {40, 78, 115, 94, 72, 50, 26, 58}
230 {27,232,21,19,172,152,13,113,72,5,32} {2,0,2,0,0,2,2,0} {40, 78, 116, 94, 72, 50, 26, 58}
232 {29, 27, 232, 192, 17, 153, 112, 9, 7, 5, 3} (2,0,2,0,2,0,2,0)| {44, 86, 128, 104, 80, 54, 28, 64}
232 {35,281,27,23,19,182,15,11,102,3,13} {2,1,0,1,2,2,2,1}| (52,102, 151, 124, 96, 66, 34, 76}
232 (31, 27, 25, 23, 21, 192, 152, 13, 112, 72, 3, 1} (2,0,0,2,0,2,2,2) (46, 90, 134, 110, 84, 58, 30, 68}
234 {35, 29, 272, 23, 192, 17, 15, 11?, 9, 3?} {2,0,2,0,2,2,2,0}| {52,102, 152, 124, 96, 66, 34, 76}
236 (39, 35, 29, 27, 232, 19, 17, 15, 11, 7, 3} (2,2,0,2,0,2,2,2)| {60, 118, 174, 142, 108, 74, 38, 88}
238 (47, 39, 35, 29, 27, 23, 19, 15, 11, 3} (2,2,0,2,2,2,2,2)]| {72, 142, 210, 172, 132, 90, 46, 106}
240 (59, 47, 39, 35, 27, 23, 15, 3} (2,2,2,2,2,2,2,2}|{92, 182, 270, 220, 168, 114, 58, 136}

Partitions are shown for the adjoint representation only. Homomorphisms
identified include 39 root maps which are not recognised Characteristics of

nilpotent orbits: these are highlighted in red.
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