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Abstract

This thesis takes steps towards the development of a systematic account of

the relationships between SUSY quiver gauge theories and the structures

of their moduli spaces. Highest Weight Generating functions (“HWGs”),

which concisely encode the field content of a moduli space, are introduced

and developed to augment the established plethystic techniques for the con-

struction and analysis of Hilbert series (“HS”). HWGs are shown to provide

a faithful means of decoding and describing HS in terms of their component

fields, which transform in representations of Classical and/or Exceptional

symmetry groups. These techniques are illustrated in the context of Higgs

branch quiver theories for SQCD and instanton moduli spaces, as a prelude

to an account of the quiver theory constructions for the canonical class of

moduli spaces represented by the nilpotent orbits of Classical and Excep-

tional symmetry groups. The known Higgs and/or Coulomb branch quiver

theory constructions for nilpotent orbits are systematically extended to give

a complete set of Higgs branch quiver theories for Classical group nilpotent

orbits and a set of Coulomb branch constructions for near to minimal orbits

of Classical and Exceptional groups. A localisation formula (“NOL For-

mula”) for the normal nilpotent orbits of Classical and Exceptional groups

based on their Characteristics is proposed and deployed. Dualities and other

relationships between quiver theories, including A series 3d mirror symme-

try, are analysed and discussed. The use of nilpotent orbits, for example

in the form of T (G) quiver theories, as building blocks for the systematic

(de)construction of moduli spaces is illustrated. The roles of orthogonal

bases, such as characters and Hall Littlewood polynomials, in providing

canonical structures for the the analysis of quiver theories is demonstrated,

along with their potential use as building blocks for more general families

of quiver theories.
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1. Introduction

1.1. Perspective

This study intertwines a number of streams of research that are relevant to

the structures of the moduli spaces of gauge theories set within supersym-

metric (“SUSY”) and string theoretic or supergravity (“SUGRA”) back-

grounds. The central physical questions that this study seeks to address are

those of how to characterise, determine and understand the possible field

content, or “moduli space”, of a field theory whose underlying structure is

determined by the interplay of gauge groups.

Observable fields are, by definition, invariant under gauge group trans-

formations. So, although gauge fields have isometries (or isotropies) under

continuous Lie group transformations, they always occur contracted as sin-

glets, and are not directly observable. Gauge fields manifest themselves

indirectly through their invariants and their imprint on observable fields.

Gauge groups can be semi-simple, or reductive, with Abelian elements. Dis-

crete symmetries associated with finite groups also have a bearing. In the

case of the SUSY quiver gauge theories that form the subject matter of this

study, the moduli spaces typically describe the field content of the SUSY

vacuum.

The characterisation of field content is perhaps the simplest aspect. Rep-

resentation theory provides us with lattice structures in the form of Dynkin

labels that can be used both to describe the irreducible representations (“ir-

reps”) within which fields transform and also to label the states within ir-

reps. In effect, Dynkin labels provide consistent and complete quantum me-

chanical descriptions, from simple U(1) R-charges and SU(2) spins, through

to high rank Classical or Exceptional groups. It is, of course, possible to

translate between field descriptions in terms of Dynkin labels and those

in terms of tensors and indices. The merits of using Dynkin labels, besides

their ubiquity, include their bijective correspondence with the eigenvalues of
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a commuting system of Casimir and Cartan subalgebra (“CSA”) operators,

which together comprise the observables of a given field theory. Equally im-

portantly, the Dynkin labels of the states within an irrep uniquely specify

its trace or character, which provides a faithful encoding of its symmetry

properties. Furthermore, the character algebra of the tensor products of

representations, which is given by polynomial multiplication and addition,

is often more tractable than the alternative of working with explicit repre-

sentation matrices, with the attendant complications of composing tensor

indices and imposing symmetry and trace conditions.

The determination of the field content of a theory is more involved. Given

some underlying structure, one approach is to identify the relevant symme-

try groups, their basic irreps and their combinatorics. Bosonic fields natu-

rally form symmetric representations and fermionic fields naturally form

antisymmetric representations. However, fields transforming in product

groups exhibit much richer combinatoric behaviour. Often the field com-

binations of interest are gauge invariant (i.e. singlets) under one or more

symmetry group(s) and this places restrictions on the resulting field content.

As an alternative to combining basic field representations, field theories can

result from symmetry breaking, where representations of some parent group

split to those of its subgroups as a result of some perturbation. Either way,

the moduli spaces of possible field representations can in principle be de-

composed into irreps and enumerated by their Dynkin labels. A non-trivial

amount of representation theory may, however, need to be applied to effect

such decompositions and the development of the generating functions and

custom Mathematica routines necessary to carry out such transformations

in an efficient manner has been a major practical exercise within this study.

The most interesting aspect is the development of an understanding of

why particular gauge and flavour group structures, typically described by

quiver theories, give rise to moduli spaces with canonical group theoretic

significance, and of the reasons for highly non-trivial identities between the

moduli spaces of superficially different structures. Much of this study is

devoted to the vacuum moduli spaces of the Higgs branches and Coulomb

branches of SUSY quiver gauge theories. Remarkably, different branches

of different theories can have identical moduli spaces, leading to many du-

alities, including three dimensional (“3d”) mirror symmetry [1], amongst

others. Mappings between these theories can be facilitated by their string
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theoretic interpretation in terms of brane systems [2]. Exploration of the

group theory underlying these relationships leads intriguingly to the math-

ematical topic of nilpotent orbits (or, to be more precise, the closures of

nilpotent orbits). These are canonical combinatoric objects that live in

the root spaces of Classical and Exceptional groups, and which match the

moduli spaces of the Higgs branches and/or Coulomb branches of particular

quiver theories. The understanding of all the mechanisms behind these rela-

tionships remains an open task, but one with which this study would claim

to make interesting progress. Indeed, it would appear that the physics moti-

vated exploration of SUSY quiver theories may shed new light upon matters

that are opaque, when approached from the mathematical Literature.

1.2. Antecedents

This project falls under the broad auspices of the Plethystics Program,

which has its origins in the application of Hilbert series (“HS”) to analyse

the moduli spaces of field theories.

An early use of Hilbert series (also referred to as partition functions or

indices) in the context of SUSY theories, was to describe the moduli spaces

of Classical group instantons and pure spinors [3, 4, 5]. These Hilbert series

were calculated from Higgs branch constructions, by using Weyl integration1

and HyperKähler quotients to impose SUSY vacuum conditions [3].

Interestingly, while the use of quiver theories to define such constructions

is a relatively recent development within SUSY, it has roots in the prior

study of moment maps and HyperKähler quotients. Thus, the foundations

for Higgs branch calculations based on quiver theories were laid by geometric

and algebraic analyses in the mathematical Literature [6, 7], well before the

linkage to the vacuum moduli spaces of SUSY quiver theories was made in

[8, 9].

A systematic and streamlined treatment of plethystic methods, embracing

symmetrisation, anti-symmetrisation and Molien sums, is given in [10] and

[11]. The motivation there was to study the moduli spaces given by the

chiral rings of mesonic single-trace and multi-trace BPS operators that arise

when D3 branes probe singular Calabi-Yau (“CY ”) manifolds. The CY

1This procedure implements averaging over a continuous Lie group to find gauge invari-
ant field or operator combinations, as summarised in Appendix A.2.
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manifolds analysed include C2 orbifolds under finite symmetry groups of

ADE type, and also C3 orbifolds. For such orbifolds, with discrete gauge

groups, their Hilbert series, which count invariant polynomials of a given

degree, are constructed by taking gauge group averages using Molien sums.

Importantly, the Plethystics Program approach can in principle be gen-

eralised to any type of gauge theory. As noted in [11]:

“. . . the applicability of the plethystic programme is not lim-

ited to world-volume theories of D-brane probes on Calabi-Yau

singularities. Indeed, if we knew the geometry of the classical

moduli space of a gauge theory, . . . we could obtain the Hilbert

series and thenceforth use the plethystic exponential to find the

gauge invariants.”

In such early papers, the Hilbert series analysis of continuous symme-

try groups was limited to the prolific U(1) groups implicated in the CY

manifolds of toric, Y p,q and delPezzo hypersurfaces. The Hilbert series of

non-Abelian gauge groups SU(2), SU(2) ⊗ SU(2) and SU(3) appear in

[12], which makes the important observations that, for a Lie group G, (i)

a Hilbert series can always be collected into a series in irreps of G and (ii)

group averaging over G can be implemented by Weyl integration in place of

Molien summation.

Subsequent developments within the Plethystics Program include the cal-

culation of Hilbert series, on the Higgs branches of quiver theories of many

different types, without and with superpotentials, but involving continuous

Lie gauge groups. These include, inter alia, (i) N = 1 SQCD theories, where

the moduli spaces of gauge invariant operators are found to be affine CY

cones with palindromic Hilbert series [13, 14, 15] and (ii) constructions for

the moduli spaces of instantons [16, 17, 18, 19]. The former yield, as by-

products, methods for identifying the invariant tensors of symmetry groups,

which in turn illuminate the structure of the latter.

In parallel with more recent Higgs branch work, and following on from

impetus provided by [20], the Coulomb branches of the vacuum moduli

spaces of quiver theories and their Hilbert series have come in for con-

siderable study. Relationships between these quiver theories and Dynkin

diagrams have been known since [9]. Much subsequent progress has been

made in developing the precise formulae for Coulomb branch quiver theory
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constructions and analysing the Hilbert series of (i) the instanton moduli

spaces of simply laced ADE and non-simply laced BCFG series [21, 22], (ii)

T (SU(N)) type quiver theories [23], and (iii) some other types of nilpotent

orbit [24].

These studies have in turn opened up avenues for confirming and exploit-

ing the relationships between Higgs branch and Coulomb branch construc-

tions and their quiver theories. For example, in [25], the Coulomb branch

Hilbert series of T (SU(N)) quiver theories were calculated from their Higgs

branch mirror theories; and, in [23] and [26], the correspondence between

the Higgs branch Hilbert series of three dimensional Sicilian (star shaped)

quiver theories and the Coulomb branch Hilbert series of their mirrors was

confirmed, via their building blocks in T (SU(N)) quiver theories (or A series

modified Hall Littlewood polynomials).

Traditional Hilbert series analysis revolves around the unrefined Hilbert

series, which effectively grades a moduli space, by projecting it onto a lattice

defined by the charges assigned to a “fugacity” or “counting variable”, and

enumerates its field content at each level of charge (typically R-charge).

A Hilbert series is generated by a rational function that is a quotient of

polynomials, and this can be described, using the language of algebraic

geometry and varieties, in terms of dimensions, generators and relations,

amongst other properties. For some purposes, counting of operators or

invariants suffices, for example, [27] uses Hilbert series with multi-graded

fugacities (termed “spurions”) to count invariants of basic fields correspond-

ing to scattering vertices.

More generally, however, issues can arise from birational equivalence and

other ambiguities inherent in unrefined Hilbert series. Thus, different mod-

uli spaces can have the same unrefined HS, or identical moduli spaces can

appear to have different unrefined HS, all depending on the counting and

field grading methods chosen. Such limitations can be avoided, in princi-

ple, by working with character valued (or “refined”) Hilbert series, which

faithfully track the representation content of a field theory; however, the

use of refined Hilbert series to describe field content (rather than as an in-

termediate stage in calculations) has been hampered by their cumbersome

nature.

The development of Highest Weight Generating functions (“HWGs”),

which encode refined Hilbert series in a concise form, using fugacities for the
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highest weights of irreps, rather than their full characters, was a significant

early milestone in the course of this study [28]. HWGs give an efficient and

unambiguous description of a moduli space in terms of its representation

content. If all the quantum fields in a system can be included in a mod-

uli space, then a complete enumeration of their quantum numbers gives a

unique and precise description of the quantum system, and this is what

HWGs are, in principle, able to achieve.

HWGs describe moduli spaces concisely, resolving questions of identity.

While their use requires an orthogonal basis for class functions, such bases

are not limited to the characters of a Lie group G and, indeed, it is feasible

(at some expense in algebraic computation) to define HWGs in in terms

of Hall Littlewood polynomials of G (or their modifications), in an anal-

ogous manner to characters of irreps of G. These HWG approaches were

applied to the study of the Hilbert series of SQCD in [28] and to instanton

constructions in [29].

Much of this work revolves around the investigation of relationships be-

tween SUSY quiver gauge theories and the closures of nilpotent orbits

(“nilpotent orbits” or “orbits”) of compact Lie groups. This intriguing

avenue of research was opened up by recent papers, such as [20, 30, 31].

In the first of these [20], the S-duality of boundary conditions on four-

dimensional N = 4 superconformal field theories is related to the action of

mirror symmetry on three-dimensional gauge theories, which can exchange

the Higgs and Coulomb branches of different theories. In many cases, as

will be discussed, the moduli spaces of these Higgs and Coulomb branches

are described in terms of nilpotent orbits. It is known that N = 4 SUSY

theories have finite beta functions to all orders [32] and such constructions

therefore generate a large class of candidates, parameterised by nilpotent

orbits, for UV-finite theories.

The theory of nilpotent orbits [33] provides a language for classifying and

describing equivalence classes constructed from the nilpotent Lie algebra

matrices or generators of a Classical or Exceptional group.2

Nilpotent orbits are increasingly being recognised for their relevance to

theoretical physics. Topics range from SUGRA theories involvingG/H coset

2Recall that the nilpotent matrices of a group are nilpotent linear combinations of its
raising and lowering operators, each of which corresponds to one of its roots, relative
to some chosen basis of Cartan operators.
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manifolds, whose field content can be characterised by nilpotent orbits [34],

to the counting of massive vacua in N = 1 Super Yang-Mills (“SYM”) the-

ory [35], where the number of vacua is derived from the structure of the

nilpotent orbits of the Yang-Mills group. In [36], the normalised vacuum

states in N = 4 SUSY theories are counted, based on the number of distin-

guished nilpotent orbits in the Yang-Mills group, which is shown to equal

the Witten index for the theory. In [37], nilpotent orbits are used as build-

ing blocks in the construction of 3d Sicilian theories and their mirrors. In

a series of papers including [30, 38, 39], nilpotent orbits are used to label

punctures on Riemann spheres, which are used as building blocks (or “fix-

tures”) for 6d N = (2, 0) theories. The status of nilpotent orbits, as a class

of canonical representation theoretic objects, underlies this appearance in

many different contexts; and this in turn motivates the case for developing

a systematic understanding of their constructions, along with their prop-

erties and relationships. The approach herein constructs nilpotent orbits

as moduli spaces of SUSY quiver gauge theories and studies them through

their Hilbert series.

Nilpotent orbits generalise the moduli spaces of (single) G-instantons,

which provide their simplest non-trivial examples. Instantons have attracted

considerable interest since their proposal as self-dual solutions of Yang-Mills

field equations in 1975 [40]. They have also been studied in general relativity

in the form of self-dual (“SD”) and anti-self-dual (“ASD”) Weyl or Riemann

tensors in 4 dimensions [41], where they are related to Einstein Manifolds

[42, 43, 44, 45]. Turning to Yang-Mills theories, the ADHM [46] construction

for instanton fields with classical Yang-Mills groups G has been a foundation

for the study of instanton moduli spaces using SUSY constructions [4]. The

Hilbert series of the moduli spaces of one and two G-instanton theories have

been calculated on the Higgs branches of N = 2 SUSY theories, for classical

G [16, 19], and on the Coulomb branches of N = 4 SUSY theories [22] in

3 dimensions. All these theories contain 8 SUSY supercharges. Some other

constructions have also been given for exceptional G-instantons [17, 18, 26,

21, 29].

An instanton field is defined as a field that is SD or ASD under the action

of the Hodge star dualisation operator. On a real manifoldM of dimension

2n, the epsilon tensor has length 2n and the dual of an n−form is also

an n−form. This limits the possibilities for instanton fields to Riemannian
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M of even dimension, including Lorentzian and Euclidean manifolds as

special cases. The instanton fields on a real Euclidean M of fundamental

dimension 2r are associated with pairs of symmetrised SO(2r) spinor irreps,

with one symmetrised spinor irrep being ASD and the other being SD. The

representation structure generalises to Lorentzian M.

Different approaches to the study of manifolds involving instantonic fields

have been followed in the Literature. One school of thought identifies in-

stantons based on symmetries of the Riemann tensor [47, 48, 44, 45]. If

M is four dimensional, the Riemann tensor has two pairs of antisymmetric

indices and can be dualised on one or both pairs. It then follows from Rie-

mann tensor identities, that if the Riemann tensor is SD under dualisation

on both pairs of indices, then M is an Einstein manifold [49] of constant

curvature, with non-vanishing Ricci tensor Rµν = 1
4Rgµν . Since M is four

dimensional, this essentially limits the possibilities for non Ricci-flat M to

four dimensional de Sitter and Anti de Sitter space-times and their coun-

terparts with Euclidean signature.

If, however, the Riemann tensor is either (i) SD or ASD under dualisation

of a single pair of indices, or (ii) ASD under dualisation on both pairs, then

M is Ricci flat with Rµν = 0; such instantons are termed gravitational

instantons. These Ricci-flat manifolds include Fubini-Study and Eguchi-

Hanson metrics [47]. In [45] it is shown how gravitational instantons from

singly SD or singly ASD Riemann tensors, when viewed in local inertial

frame coordinates, can be interpreted as self-gravitating SD or ASD Yang-

Mills fields.

The possibilities for Yang-Mills constructions extend beyond the class of

gravitational instantons. Yang-Mills fields are described by a connection

D = d + A and field strength F = D ∧ D. A Yang-Mills field F has the

action SYM =
∫
vol Tr (F ∧ ∗F ) and an (anti-)self dual field F satisfies the

relationship F = ± ∗ F , so a self dual Yang-Mills field could be expected

to have the action SSD =
∫
vol Tr (F ∧ F ). However, as discussed in [50],

the variation of such an action is trivially zero for any Yang-Mills field

strength, so the construction of an action for an inherently self-dual field is

problematic.

Nonetheless, an algebraic construction of a connection with a SD field

strength was provided in [40]. BPST use the Euclidean manifold R4, with

its SO(4) symmetry. The Yang-Mills connection can be expanded [51, 52]
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as:

DBPST
µ = ∂µ +ABPSTµ ,

ABPSTµ =
−xν

4 (r2 + λ2)
[γµ, γν ]︸ ︷︷ ︸

left

=
−ixν

r2 + λ2
ηiµνSDσi,

(1.1)

where r is a radial coordinate orthogonal to the SO(4) symmetry and λ is

a scale parameter.

Unlike the Christoffel connection, which acts on the tangent vectors of

M, the BPST connection contains a fibre over one only of the Weyl spinors

of M. This is seen most clearly in the gamma matrix notation, where the

SD construction selects a single diagonal block from [γµ, γν ], intertwining

the spatial coordinates with the left Weyl spinors only. (An ASD connection

results from selecting the other diagonal block).

The BPST construction lends itself to generalisation, by splitting the

anti-symmetrised gamma matrices into the contraction of t’Hooft matrices

ηµν
i
SD/ASD with Pauli matrices σi, and by making the physical assumption

that the SU(2) subalgebra acting on the left or SD Weyl spinor is embedded

in the Lie algebra of some larger symmetry group G. Anticipating the

discussion in section 2.6, there are many ways of embedding SU(2) into a

larger group and this leads to the concept of a G-instanton.

Although it was pointed out in [53] that the different possible embed-

dings of SU(2) into G correspond to the nilpotent orbits of G, the ensuing

physics Literature, such as [4], has largely confined itself to a restricted

interpretation of G-instanton, based on the minimal nilpotent orbit of G.

The subject of nilpotent orbits is well covered in the mathematical Lit-

erature, which builds on early work by Dynkin [54], and has a valuable

reference provided by [33]. These mathematical treatments do not, how-

ever, describe nilpotent orbits in the explicit language of Hilbert series, as

would be helpful for a physics interpretation. While steps have been taken

in this direction within the Plethystics Program [22, 31, 55], the systematic

translation of the mathematical treatment of nilpotent orbits into equiva-

lent descriptions in terms of refined Hilbert series forms a key aspect of this

study. Certainly, it is an essential ingredient in the process of defining the

relationships between SUSY quiver theories and nilpotent orbits.
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Viewed as moduli spaces, nilpotent orbits can be constructed by a variety

of methods, including Higgs and Coulomb branch quiver theories [24], as well

as localisation techniques. This is a rich area, which draws on many strands

of the Plethystics Program, including Hilbert series, HWGs, Higgs branch

and Coulomb branch SUSY quivers theories, and localisation methods, all

set against a background of representation and group theory.

1.3. Outline

As a necessary preliminary, Chapter 2 is pedagogical in nature. Its aims

are to lay the theoretical foundations that are common across this study, to

summarise relevant aspects of established theory, to introducing some new

techniques and to set up common frameworks and notation.

The areas of established theory include the use of Hilbert series to describe

moduli spaces, plethystic tools for symmetrisation and anti-symmetrisation,

and aspects of the representation theory of compact Lie group characters

and their branching to subgroups.

The new techniques primarily revolve around the methodology of High-

est Weight Generating functions. These can be used to decode, encode

and/or transform refined (character valued) Hilbert series. The methodol-

ogy encompasses: (i) HWG notation, based around Dynkin labels, which

uses U(1)rank[G] fugacities for the highest weights of irreps to give a com-

pact notation for character valued Hilbert series; (ii) development (from

the Weyl character formula and its generalisations) of generating functions

for characters, Hall Littlewood polynomials and their modifications, which

together provide alternative or complementary orthogonal bases for decom-

posing class functions; (iii) the combination of Weyl integration with the

appropriate Haar measures and generating functions to transform refined

Hilbert series to HWGs, and vice versa, and; (iv) the use of Weyl group

summation techniques to transform HWGs back to refined Hilbert series.

The supporting materials to Chapter 2, contained in Appendices A.1, A.2

and A.3, cover plethystic functions, Weyl/Molien integration, and the rela-

tionship between Dynkin diagrams and affine or twisted affine Lie algebras.

As a set of warm up exercises, Chapter 3 deals with the moduli spaces

associated with invariant tensors, and with the gauge invariant operators

(“GIOs”) on the Higgs branches of some SUSY quiver theories, including
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SQCD and SU(N)-instanton theories. HWGs are used to decode how gauge

groups are imprinted onto flavour groups through their invariant tensors,

shedding light on the interplay of group invariants behind the logic of Higgs

and Coulomb branch constructions. The use of HWGs makes it possible

to identify and give a simple description of generalised SQCD for Classical

gauge groups of any rank. Section 3.3 summarises the established Higgs

branch constructions for the moduli spaces of SU(N)-instantons and intro-

duces reduced single instanton moduli spaces (“RSIMS”), which correspond

to minimal nilpotent orbits, as a stepping stone to subsequent Chapters.

Chapter 4 provides an introduction to the topic of nilpotent orbits, touch-

ing on the different approaches in the mathematical Literature, as well as the

various methods of classifying the orbits of a group. A consistent narrative is

set out, starting from an enumeration of the possible SU(2) homomorphisms

(or embeddings) into a group G, described in terms of Characteristics or

partitions, that define a nilpotent element of G, and relating these to the

nilpotent orbit dimensions and partitions that supply the parameters for

their Higgs and Coulomb branch quiver theory constructions.

The generalisation of the Higgs branch RSIMS construction to the wider

class of moduli spaces represented by nilpotent orbits is discussed in detail in

Chapter 5. This Chapter reviews the known Higgs branch constructions for

minimal, maximal and A series nilpotent orbits and, following [24], sets out

a consistent methodology, starting from Characteristics or character maps,

for identifying quiver theories whose Higgs branch moduli spaces match

each nilpotent orbit of any Classical group G. Key developments include

the incorporation into the Higgs branch formula of group averaging over

the Z2 components of orthogonal gauge groups, in order to obtain nilpotent

orbits (rather than their extensions) of BCD series groups. This is followed

by a complete analysis of the nilpotent orbits of low rank Classical groups -

in terms of Hilbert series, character and mHL HWGs, the identification of

some generalisations regarding their structures, and a discussion of quiver

dualities.

Coulomb branch constructions for RSIMS and other nilpotent orbits are

covered in depth in Chapter 6. This Chapter reviews the known Coulomb

branch constructions for minimal and A series nilpotent orbits and, drawing

on [24], sets out a methodology, starting from Characteristics and/or twisted

affine Dynkin diagrams, for identifying quiver theories whose Coulomb branch
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moduli spaces match near to minimal nilpotent orbits of Classical and Ex-

ceptional groups. The implicit roles played in Coulomb branch constructions

by Dynkin diagrams, the Cartan matrix and the Weyl group, are identified

and discussed. The consistency between Higgs branch and Coulomb branch

constructions of normal Classical nilpotent orbits is verified, and apparent

differences between these constructions for non-normal orbits are reconciled.

Chapter 7 develops a plethystic formula (“Nilpotent Orbit Localisation”

or “NOL”) formula for constructing the normal nilpotent orbits of any group

G, directly from their Characteristics, by drawing on Weyl group symmetries

and localisation techniques. This method of constructing nilpotent orbits

is reconciled to the Higgs branch and Coulomb branch constructions. The

NOL formula extends the range of nilpotent orbits of Exceptional groups

that can be constructed as explicit moduli spaces (subject to practical com-

putation constraints). Their Hilbert series are analysed in terms of unrefined

HS and, where practicable, character and mHL HWGs. The results of this

(as yet incomplete) moduli space analysis of Exceptional group nilpotent

orbits are largely consistent with the findings and claims encountered in the

mathematical Literature; however, some differences emerge and these are

discussed.

Chapter 8 outlines some of the ways in which nilpotent orbits can be

related to, or used as building blocks for, other quiver theories. The top-

ics examined include (i) the deconstruction of star shaped quiver fami-

lies into T (S(UN)) quivers, using A series mHL functions, (which corre-

spond to maximal nilpotent orbits dressed by background charges), and (ii)

the branching of nilpotent orbits, under symmetry breaking and/or Hyper

Kähler quotients, into the moduli spaces of subgroups.

The concluding Chapter draws together these various threads and findings

and outlines potential avenues for future investigation in this nascent field.
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2. Highest Weight Generating

Functions

2.1. Hilbert Series

The Hilbert series (“HS”) has its origins as a means of enumerating alge-

braic varieties and provides a powerful tool in the study of moduli spaces.

In its simplest form, a Hilbert series is constructed by grading a lattice of

monomials in the coordinates describing a variety, according to their projec-

tion onto a counting fugacity, often taken as t. The grading is chosen such

that negative exponents of t do not appear and this yields a power series in

t, with coefficients determined by the multiplicities in the projection. In this

study we designate this an unrefined Hilbert series, although the distinction

between unrefined and refined HS (to be defined) is not always made in the

Literature.

Following [11], we can arrange such a Hilbert series gHS (t) as a quotient

of polynomials P (t) and Q (t), in the form:

gHS (t) =
∞∑
n=0

ant
n =

P (t)

Q (t)
, (2.1)

where the an are integers.

Clearly, the polynomials P (t) and Q (t) can be multiplied or divided by

a common factor without changing gHS (t) and this permits the quotient

to be rearranged into a canonical form. It is useful to distinguish certain

types:

A freely generated HS has P (t)=1 and Q (t) =
|HS|∏
i=1

(
1− tki

)
, which gives a

product of geometric series. Its Plethystic Logarithm (see Appendix

A.1) is finite and contains positive coefficients only.

A complete intersection HS is a quotient of geometric series defined by
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P (t) =
|R|∏
i=1

(
1− tji

)
and Q (t) =

|HS|+|R|∏
i=1

(
1− tki

)
. This rearrange-

ment is sometimes termed the Euler form [10]. Its Plethystic Loga-

rithm is finite and contains both positive and negative coefficients. A

freely generated series is trivially a complete intersection.

A non-complete intersection HS. Any quotient of non-trivial polynomi-

als P (t) and Q (t), that is neither a complete intersection nor freely

generated. Its Plethystic Logarithm is not a finite series.

An (anti-)palindromic HS is one where the numerator, P (t) =
n∑
k=0

bkt
k, is

palindromic (or anti-palindromic). A palindromic (or anti-palindromic)

numerator P (t) of degree n, is one for which ∀k : bk = + (or −) bn−k.

The significance of an (anti-)palindromic HS follows from a theorem

by Stanley; the numerator of an HS is (anti-)palindromic if and only

if the moduli space is an affine Calabi-Yau variety [13]. Freely gen-

erated series and complete intersections are always (anti-)palindromic

and therefore Calabi-Yau.

The dimension of a moduli space, denoted |HS|, counts the order of the

pole at t = 1 in its Hilbert series. Generally, |HS| equals the order of

the poles contributed by Q (t) less |R|, the number of relations contributed

by P (t). For a complete intersection or freely generated series g(t) the

dimension equals PL[g(1)]. By an extension of terminology, this study

may refer to the order of the poles of a HS, HWG (or other quotient of

polynomials) as its dimension.

Examples of Hilbert series for simple algebraic varieties, such as the com-

plex plane C and conifold C2/Z2, are given by gC (t) = 1
1−t and gC

2/Z2 (t) =
1−t2

(1−t)3 , respectively. The complex plane is freely generated of dimension 1

and the conifold is a complete intersection of dimension 2.

Whilst the unrefined Hilbert series gives the overall dimension of a moduli

space and can be a powerful analytic tool, it has an inherent limitation

steming from the grading of the underlying variety in terms of a single

counting fugacity. Clearly, whenever the number of fugacities is less than

the number of independent coordinate degrees of freedom, some information

must be lost, and, moreover, the properties of a Hilbert series can depend

upon the grading method chosen.
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The Hilbert series can, however, be generalised to work with multiple fu-

gacites, whereupon it is termed a refined Hilbert series. By working with a

refined Hilbert series, it is possible to mitigate the limitations of an unre-

fined Hilbert series. For a toric manifold of rank r, it is a straightforward

refinement to use counting fugacities t1 . . . tr to track the U(1)r coordinate

degrees of freedom, for example as in [56, 57]. For manifolds with non-

Abelian symmetries, the HS can also be refined, in a powerful manner, by

choosing counting fugacities that track the weight space (or root space) lat-

tice of G. Specifically, the monomial elements within the character of a

representation of G can be constructed from a set of weight space fugacities

x ≡ x1 . . . xr, or root space fugacities z ≡ z1 . . . zr, as described further in

section 2.2. For compact groups, these CSA coordinates are all unimodular,

with complex modulus 1, and can be combined with counting fugacities, as

desired. Such a refined Hilbert series can also be described as a character

valued Hilbert series.

Hilbert series can be constructed in different ways. Many of these involve

symmetrisations or antisymmetrisations of class functions of characters and

can be carried out using plethystic functions. These are described in Ap-

pendix A.1.

2.2. Characters of Representations

The character of a representation of a Classical group G is defined by the

trace of its representation matrix and possesses a number of important com-

binatoric properties. Each character (i) is unique to its representation, (ii)

is invariant, both under the action of G and of the Weyl group of inner

automorphisms WG, (iii) decomposes under addition into the characters of

its constituent irreps, and (iv) combines under multiplication into the char-

acters of tensor products of representations. Also, in accordance with the

Peter Weyl Theorem, the characters of a group yield an orthonormal basis

for its class functions, i.e. functions that are invariant under the action

of the group [58]. Taken together, these properties make characters highly

effective for studying the combinatorics of Lie group representations.

The canonical classification of the representations of a Lie group is carried

out using Dynkin labels. These label the states or weights within an irrep

by their charges under the maximal torus of Cartan subalgebra operators;
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each irrep has a unique highest weight and this can also be identified by

its Dynkin labels, properly termed highest weight Dynkin labels. It is natu-

rally useful to parameterise characters in a way that incorporates a simple

relationship with Dynkin labels. Different approaches are possible.

Starting from first principles, one method is to diagonalise a represen-

tation matrix and to find its eigenvalues; analysis of the relations between

the eigenvalues yields information about the weights and hence the Dynkin

labels of the field states in the representation.

For most cases, however, we can draw on the representation theory of

compact groups and use the canonical CSA or weight space coordinates

x ≡ x1 . . . xr, or alternatively root space coordinates z ≡ z1 . . . zr, to pa-

rameterise the characters a G with rank r. These coordinates are related

by coordinate transformations derived from the Cartan matrix Aij of G, as

zi =
∏
j
x
Aij
j and xi =

∏
j
z
A−1

ij

j . The character χG[n] for an irrep with high-

est weight Dynkin labels [n] ≡ [n1, . . . , nr] expands in terms of coordinate

monomials as:

χG[n] (x) =
∑

[n′]∈irrep[n]

a[n][n′]x
n′1
1 . . . xn

′
r

r ≡
∑

[n′]∈irrep[n]

a[n][n′]x
[n′], (2.2)

where a[n][n′] are the integer multiplicities of the weights [n′] in [n].

It is possible to identify all the weights [n′] in a character, by starting

from the highest weight in the positive weight space [n], subtracting the

weights of simple roots until all positive Dynkin labels are exhausted, and

then using the Freudenthal multiplicity formula to assign multiplicities [58].

The main method used for obtaining characters in this study, however,

draws on the Weyl character formula [58], which can be stated in two equiv-

alent forms:

χG[n] (x, t) =
∑
w∈WG

w ·

(
x[n]

∏
α∈Φ+

1

1− z−α

)
, (2.3)

or

χG[n] (x, t) = x−ρ
∏
α∈Φ+

1

1− z−α
∑
w∈WG

|w|w ·
(
x[n]xρ

)
, (2.4)

where the product is taken over all roots α in the positive root space Φ+,
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G |G| W |W |
U(N) N2 SN N !
An n(n+ 2) Sn+1 (n+ 1)!
Bn n(2n+ 1) Sn ⊗ Z2

n 2nn!
Cn n(2n+ 1) Sn ⊗ Z2

n 2nn!
Dn n(2n− 1) Sn ⊗ Z2

n−1 2n−1n!
E6 78 72.6!
E7 133 8.9!
E8 248 192.10!
F4 52 48.4!
G2 14 2.3!

Table 2.1.: Weyl Group Dimensions

xρ ≡
r∏
i=1

xi is the Weyl vector and |w| denotes the sign (i.e. determinant)

of a Weyl group matrix w. The Weyl group WG acts on all functions of x

and z inside the summation, as w : (f [x], g[z])→ (f [w · x], g[w · z]).
Recalling that xρ =

∏
α∈Φ+

zα/2, the equivalence of 2.3 and 2.4 follows from

the fact that the product of root differences
∏

α∈Φ+

1
zα/2−z−α/2 transforms in

the alternating representation of the Weyl group, and can be moved through

the summation if balanced by the sign of the Weyl group matrix.

The Weyl character formula has various features, including generalisabil-

ity to all Classical and Exceptional groups, convertibility to a generating

function form and the explicit treatment of Weyl group symmetries, which

fit naturally with subgroup branching relationships and permit various sim-

plifying rearrangements. Table 2.1 sets out the dimensions of the Weyl

groups, from which such subgroup relations follow.

To make the fullest use of Highest Weight Generating functions, intro-

duced in the next section, we require a generating function for characters.

First, we map highest weight Dynkin labels [n] onto the complex manifold

Cr by introducing the U(1)r Dynkin label counting fugacities m ≡ m1 . . .mr

and establish the correspondence:

χG[n] ⇔
r∏
i=1

mni
i = mn1

1 . . .mnr
r ≡ mn. (2.5)

If we choose the fugacities {m1, . . . ,mr} each to have absolute values less
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than unity, then each point on the infinite lattice of Dynkin labels corre-

sponds to a unique point lying inside the unit complex disk on Cr. This

lattice is freely generated since the Dynkin labels can be chosen indepen-

dently of each other.

To formalise the correspondence, we require the generating function that

yields the infinite series:

gGχ (x,m) ≡
∑
[n]

χG[n] (x)mn, (2.6)

We obtain this function by combining 2.3 and 2.6:

gGχ (x,m) =
∑
[n]

∑
w∈WG

mn(w · x)n
∏
α∈Φ+

1

1− (w · z)−α

=
∑
w∈WG

(
r∏
i=1

1

1−mi(w · x)i

) ∏
α∈Φ+

1

1− (w · z)−α
,

(2.7)

where the Weyl group acts on x and z within the summands. An alternative

form can be obtained from 2.4 as:

gGχ (x,m) = x−ρ
∏
α∈Φ+

1

1− z−α
∑
w∈WG

|w| (w · x)ρ
r∏
i=1

1

1−mi (w · xi)
. (2.8)

The character generating function 2.7 can also be written using plethystic

notation:

gGχ (x,m, ) =
∑
w∈WG

PE

[
r∑
i=1

mi (w · xi)

]
PE

[ ∑
α∈Φ+

(w · z)−α
]
. (2.9)

This plethystic form highlights the contributions to the character generating

function from (i) Weyl group averaging to give class functions of G, (ii)

symmetrisations of the root system of G and (iii) fugacities for the basic

irreps of G, which we define to be those containing a single non-zero unit

Dynkin label in the ith slot.1

For low rank G, the evaluation of 2.9 is relatively straightforward; WG can

be generated from the simple reflection matrices {w1, . . . , wr} of G, which

1The basic irreps of G are in turn related by anti-symmetrisations, using the PEF, to
the fundamental/vector/spinor irreps of G.
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follow from the Cartan matrix of G. The CSA coordinate transformation

from the simple Weyl reflection wk is:

wk · xi = xi

r∏
j=1

x
−δikAij
j (2.10)

Following evaluation, the character generating functions all take the form:

gGχ (x,m) = PE

[
r∑
i=1

χG[0,...1i...,0] (x) mi

]
PG (χ (x) ,m) , (2.11)

where the denominator symmetrises the characters of the basic irreps of G,

using the highest weight fugacities m, and the numerator PG (χ (x) ,m)

is some polynomial class function of χG and m. By way of example,

PG (χ (x) ,m) is shown for some low rank simple groups in Table 2.2.2

Group PG (χ,m)
A1
∼= B1

∼= C1 1
A2 (1−m1m2)

B2

(
1−m2

1 +m1m
2
2 −m3

1m
2
2

)
+m1m2 (m1 − 1) [0, 1]

C2 As B2 with m1 ⇔ m2 and [1, 0]⇔ [0, 1]
D2
∼= A1 ⊗A1 1

A3

(
1−m2

2

) (
1−m1m3 +m2m

2
3 +m2

1m2 −m1m
2
2m3 +m2

1m
2
2m

2
3

)
[0, 0, 0]

+m2

(
−m3 +m1m2 −m2

1m2m3 +m1m
2
2m

2
3

)
[1, 0, 0]

+m2

(
−m1 +m2m3 −m1m2m

2
3 +m2

1m
2
2m3

)
[0 , 0 , 1]

+m1m2m3

(
1−m2

2

)
[0, 1, 0]

D3 As A3 with m1 ⇔ m2 and [1, 0, 0]⇔ [0, 1, 0]

Table 2.2.: PG for Low Rank Classical Groups

The characters χG[n] (x) can be extracted from gGχ (x,m) by Taylor expan-

sion in m, followed by identification of the coefficient of mn. Alternatively,

the character generating function can be used in further analytic procedures

or specialised in some way.

Specialisation is possible when the characters sought do not span the

entire lattice of Dynkin labels, such that xn takes a simpler form, for ex-

ample, if ni = 0 for some i, or ni = nj for some {i, j}. In such cases,

the highest weights of the characters have an invariance group that is a

non-trivial subgroup H of G and we can take advantage of this to simplify

2PG (χ (x) ,m) for G2 and A4 are tabulated in [28].
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the Weyl group summation in 2.7. We introduce the quotient group par-

tition, WG = WG/H ⊗ WH , where WH is a normal subgroup of WG and

WG/H is a set of coset representatives [59], and apply the Weyl identity∑
w∈WH

∏
α∈Φ+

H

1
1−(w·z)−α = 1 to obtain:

gGχ (x,m) =
∑

w∈WG/H

w ·
∑
[n]

mnxn

︸ ︷︷ ︸
fG/H(x,m)

∏
α∈Φ+

G/H

1

1− (w · z)−α
, (2.12)

where fG/H (x,m) is a generating function that interleaves the sub-lattice of

weights x with the highest weight Dynkin label fugacities m. This category

of specialised character generating functions includes, as an example, the

construction for reduced single instanton moduli spaces given in [17]. The

subject of Weyl group rearrangements is revisited in section 7.1.

Other simplifications of character generating functions can also be useful.

For example, unrefining the character generating function, by setting the

weight space coordinates to unity, yields a generating function gGχ (1,m) for

the dimensions of irreps of G, as elaborated further in [28].

2.3. HWGs and Transformations

Suppose we are given some refined Hilbert series gGHS (x, t), expressed as

a generating function in terms of weight space coordinates x and counting

fugacity t. This is a class function of G and, by the Peter Weyl Theorem,

has a character expansion with coefficients that are functions of t. The

expansion takes the form of a series, which may be infinite in length:

gGHS (x, t) =
∑
[n]

a[n] (t)χG[n] (x) (2.13)

We can find the coefficients a[n] (t) by using Weyl integration, as described

in Appendix A.2, to project gGHS (x, t) onto a character generating function

gGχ (x∗,m) for the conjugate characters χG[n′] (x∗) of G, and then using char-

acter orthogonality. This yields a generating function gGHWG (m, t) in the
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highest weight Dynkin label fugacities m for the coefficients a[n](t):

gGHWG (m, t) ≡
∮
G

dµ gGχ (x∗,m) gGHS (x, t)

=

∮
G

dµ
∑
[n′]

χG[n′] (x∗)mn′
∑
[n]

a[n] (t)χG[n] (x)

=
∑

[n′][n]

mn′a[n] (t) δ[n′][n]

=
∑
[n]

a[n] (t)mn

(2.14)

The function gGHWG (m, t) is termed a Highest Weight Generating function

for the Hilbert series gGHS (x, t). In this case, gGHWG (m, t) lives on the lattice

Cr+1. Since an HWG identifies each irrep by its highest weight only, this

provides a compact notation, compared with a refined Hilbert series, which

includes the full character for each irrep. The approach generalises naturally

to Hilbert series that incorporate multiple counting fugacities.

Importantly, this transformation is faithful, and we can recover the orig-

inal Hilbert series, either by acting on the HWG with the Weyl group, as

in 2.15, or, alternatively, by gluing the HWG to a character generating

function, as in 2.16:

gGHS (x, t) =
∑
w∈WG

w ·

(
gGHWG (m, t)

∣∣
m−>x

∏
α∈Φ+

1

1− z−α

)
(2.15)

gGHS (x, t) =

∮
U(1)r

dµU(1)r(q) gGχ (x,m)
∣∣
m→q−1 gGHWG (m, t)

∣∣
m→q (2.16)

The transformation 2.15 follows from the fact that the Weyl character

formula 2.3 takes the highest weight of the character as an argument. The

gluing transformation 2.16 is implemented by mapping the fugacities m of

the two generating functions to conjugate U(1)r charges and then gauging

to select U(1)r singlets by Weyl integration. Having recovered gGHS (x, t),

this can, if required, be unrefined as gGHS (1, t).

The Hilbert series of a theory can thus be presented in various ways; in
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refined or unrefined form, or as an HWG. Importantly, the HWG captures

all the group theoretic content of the class functions of the theory; if we

encode the information as a HWG series, we can always recover a refined

or unrefined HS, as desired.

2.4. Hall Littlewood Polynomials

While characters provide a basis for the decomposition of any class func-

tion of G, many of the Hilbert series that are generated by quiver theories

are graded by U(1) counting fugacities, such as those tracking R-charges,

and this invites the question as to whether it is possible to find families of

functions, other than characters, that incorporate such additional param-

eters to provide more concise decompositions. Such families of functions

are indeed provided by Hall Littlewood (“HL”) polynomials and the related

modified Hall Littlewood (“mHL”) polynomials (or, strictly speaking, func-

tions) [60]. These have proved a useful tool for describing the Hilbert series

of certain SUSY gauge theories [26, 55]. The aim in this section is to develop

a generating function methodology that enables the deployment of HL and

mHL functions in a systematic manner, comparable to the use of character

decompositions elaborated above.

HL and mHL functions of G are plethystic class functions in weight

space/root space coordinates that are additionally parameterised by a count-

ing fugacity, (say) t. They can be identified conveniently by Dynkin labels,

although other methods, such as partitions, are also used [55]. They are

most helpfully defined to give an orthogonal basis under Weyl integration

using an explicit measure, as in [26]. There are various choices of normalisa-

tion possible: [26] chooses a normalisation under which the Hall Littlewood

polynomials are strictly orthonormal; [60] chooses a normalisation under

which the Hall Littlewood polynomials for U(N) become symmetric mono-

mial functions for t = 1; we shall use a third normalisation scheme, as in

[55], that yields natural generating functions for orthogonal polynomials.

Table 2.3 compares the HL and mHL measures. These are the products

of the usual Haar measure for G with an additional plethystic function,

parameterised by t, on its root space.

The families of orthogonal Hall Littlewood polynomials HLG and mod-

ified Hall Littlewood functions mHLG of a group G, having rank r, root
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Group and Basis Notation Measure

χG dµG (x) 1
|WG|

dx
x

∏
α∈Φ

(1− zα)

HLG dµGHL (x, t) 1
|WG|

dx
x

∏
α∈Φ

1−zα
1−zαt

mHLG dµGmHL (x, t) 1
|WG|

dx
x

∏
α∈Φ

(1− zα) (1− zαt)

Table 2.3.: Measures for Orthogonal Bases of G

space Φ, weight space coordinates x, roots {zα : α ∈ Φ} and Dynkin labels

[n], can be defined as:

HLG[n] (x, t) =
∑
w∈WG

w ·

(
x[n]

∏
α∈Φ+

1− z−αt
1− z−α

)
, (2.17)

and

mHLG[n] (x, t) =
∑
w∈WG

w ·

(
x[n]

∏
α∈Φ+

1

(1− zαt) (1− z−α)

)
, (2.18)

The orthogonality between the (m)HL[n] and their complex conjugates, un-

der an inner product incorporating the (modified) Hall Littlewood measure

dµG(m)HL, is given by:∮
G

dµGHL HL
G
[n] (x∗, t) HLG[n′] (x, t) = δ[n][n′] v

G
[n] (t) , (2.19)

and ∮
G

dµGmHL mHL
G
[n] (x∗, t) mHLG[n′] (x, t) = δ[n][n′] v

G
[n] (t) . (2.20)

The factors vG[n](t) relate to the symmetric Casimirs of G and its subgroups,

and are determined by any zero Dynkin labels in the irrep [n]:

vG[n] (t) =
∏

C∈Casimirs(G/[n])

(
1− tdegree(C)

1− t

)
. (2.21)

The subgroup G/[n] is defined by the Dynkin diagram that remains after

eliminating from the Dynkin diagram of G any nodes that correspond to

36



non-zero Dynkin labels of [n]. Thus, vG[n](t) incorporates all the Casimirs of

G if the Dynkin labels of [n] are all zero, and reduces to unity if the Dynkin

labels are all non-zero. For example, vD4

[0,0,0,0](t) =
(1−t2)(1−t4)

2
(1−t6)

(1−t)4 , while

vD4

[0,1,0,0](t) =
(1−t2)

3

(1−t)3 and vD4

[1,1,1,1](t) = 1.

In the limit t→ 0, the (modified) Hall Littlewood polynomials reduce to

the characters of G, the (modified) Hall Littlewood measure reduces to the

Haar measure for G, and the factors vG[n](0) reduce to unity. In the limit

where t → 1, the Hall Littlewood polynomials reduce to the characters of

U(1)rank[G],

We now introduce the fugacities h ≡ {h1, . . . , hr} for the highest weight

Dynkin labels of the (modified) Hall Littlewood polynomials and define and

construct their generating functions in a similar manner to characters:

gGHL (x, h, t) ≡
∑
[n]

HLG[n] (x, t)hn

=
∑
w∈WG

w ·

((
r∏
i=1

1

1− xihi

) ∏
α∈Φ+

1− z−αt
1− z−α

) (2.22)

and

gGmHL (x, h, t) ≡
∑
[n]

mHLG[n] (x, t)hn

=
∑
w∈WG

w ·

((
r∏
i=1

1

1− xihi

) ∏
α∈Φ+

1

(1− zαt) (1− z−α)

)

=

(∏
α∈Φ

1

1− zαt

)
gGHL (x, h, t) ,

(2.23)

where we have defined hn ≡
r∏
i=1

hnii .

From 2.19 and 2.20, it follows that the generating functions gG(m)HL(x, t, h)

have the orthogonality property with the (m)HLG[n]:∮
G

dµG(m)HL g
G
(m)HL (x∗, h, t) (m)HLG[n] (x, t) = vG[n] (t)hn. (2.24)
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We can obtain more useful contragredient generating functions gG(m)HL (x, h, t),

which generate polynomials (m)HLG (x, h, t) that are orthonormal (rather

than just orthogonal) to the (m)HLG[n], by gluing together the gG(m)HL(x∗, t, h)

with generating functions for the 1/vG[n](t), as described in [29]. These have

the orthonormality:∮
G

dµ(m)HL g
G
(m)HL (x, h, t) (m)HLG[n] (x, t) = hn, (2.25)

Since the (modified) Hall Littlewood polynomials provide a complete ba-

sis for class functions that combine the characters of a group G with coef-

ficients given by polynomials in the fugacity t, we can use these generating

functions and orthonormality relationships to decompose a Hilbert series

gGHS (x, t) into (modified) Hall Littlewood polynomials. We first define the

decomposition coefficients C[n](t) from:

gGHS (x, t) ≡
∑
[n]

C[n] (t) (m)HLG[n] (x, t). (2.26)

We can then find a HWG for the C[n](t), using the contragredient generating

functions:

gGHWG (h, t) ≡
∑
[n]

C[n] (t)hn

=

∮
G

dµG(m)HL g
G
(m)HL (x, h, t) gGHS (x, t) .

(2.27)

Individual C[n](t) can be extracted from gGHWG (h, t) by Taylor expansion,

followed by selecting the coefficients of the monomials hn.

This study mostly works with mHL functions, rather than HL poly-

nomials, since the former typically provide more concise HWGs for the

decomposition coefficients of Plethystic Exponentials on the root space of

G.
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2.5. Generating Function Notation

It is helpful to consolidate the notational conventions developed in this

section and in Appendix A.1. For our purposes, the PE and PEF functions

can be summarised as:

PE

[
d∑
i=1

Ait

]
≡

d∏
i=1

1

(1−Ait)
,

PE

[
d∑
i=1

−Ait, t

]
≡

d∏
i=1

(1−Ait),

PE

[
d∑
i=1

Ait,−t

]
≡

d∏
i=1

1

(1 +Ait)
,

PEF

[
d∑
i=1

Ait

]
≡ PE

[
−

d∑
i=1

Ai,−t

]
≡

d∏
i=1

(1 +Ait),

(2.28)

where Ai are monomials in weight and/or root coordinates.

The characters of G can be presented either in the generic form χG(x),

or as [irrep]G, or, using Dynkin labels, as [n]G ≡ [n1, . . . , nr]G, where r is

rank.

CSA or weight space coordinates are typically labelled by x ≡ (x1 . . . xr)

and root space coordinates by z ≡ (z1 . . . zr), dropping subscripts if no

ambiguities arise. The Cartan matrix Aij is used to define the canonical

relationships between simple roots and CSA coordinates as zi =
∏
j
x
Aij
j and

xi =
∏
j
z
A−1

ij

j . The CSA and root space coordinates are all unimodular.

Field counting variables are generally labelled by t, adding subscripts

when necessary. In the case of Higgs branch constructions of RSIMS or

nilpotent orbits, these naturally have their non-trivial terms at powers of

t2, whereas in the Coulomb branch and NOL constructions, these terms

naturally arise at integer powers of t, reflecting half integer vs integer con-

ventions for counting R-charges in the Literature. Such conventions do not

affect the dimensions or structure of Hilbert series.

Dynkin label counting variables are typically denoted by m ≡ (m1 . . .mr)

for functions based on characters and by h ≡ (h1 . . . hr) for functions based

on (modified) Hall Littlewood polynomials, although other letters may also

be used, where this is helpful. All these counting variables are defined to
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have a complex modulus of less than unity and are referred to as “fugacities”,

along with the monomials formed from CSA or root coordinates.

Series, such as 1 + f + f2 + . . ., may be referred to by their generating

functions, 1/ (1− f). Distinct variables are used, as above, to help distin-

guish the many different types of generating function shown in Table 2.4.

Generating Function Notation Definition

Refined HS (Weight coordinates) gGHS(x, t)
∞∑
n=0

an(x)tn

Refined HS (Root coordinates) gGHS(z, t)
∞∑
n=0

an(z)tn

Unrefined HS gGHS (t)
∞∑
n=0

ant
n ≡

∞∑
n=0

an(1)tn

HWG (Character) for HS gGHWG(m, t)
∑
[n]

a[n](t)m
n

HWG (mHL) for HS gGHWG(h, t)
∑
[n]

a[n](t)h
n

Character gGχ (x,m)
∑
[n]

χG[n](x)mn

(modified) Hall Littlewood gG(m)HL(x, h, t)
∑
[n]

(m)HLG[n] (x, t)hn

Table 2.4.: Types of Generating Function

2.6. Subgroups and Branching

Many parts of this study draw upon the theory surrounding Dynkin dia-

grams and/or branching (or symmetry breaking) relationships; these include

the theory of nilpotent orbits in Chapter 4, the identification of quivers

whose Coulomb branches correspond to nilpotent orbits in Chapter 6, the

analysis of quotient group constructions for nilpotent orbits in Chapter 7,

the deconstruction of RSIMS in Chapter 8, and the identification of Hy-

perKähler quotients between nilpotent orbits in Chapter 8.

From a group theoretic perspective, symmetry breaking occurs when some

factor (such as a perturbation) causes a parent group G to split into a

product group. This can be described by a branching map G→ G1⊗ . . . Gk,
which determines a map from the weight space and root space coordinates

of G to those of G1 ⊗ . . . Gk.
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Branchings of the form:

[adjoint]G →
k∑
i=1

[adjoint]Gi⊕
∑

[irreps]G1⊗...Gk , (2.29)

where the adjoint representation of G splits to the adjoint representations

of {G1, . . . , Gk}, with each root of Gi being mapped to a distinct root of G,

are termed regular [58]. Subgroup mappings that are not regular are termed

special [58]. Special embeddings involve rank reduction, such that rank[G1⊗
. . . Gk] < rank[G]. Special SU(2) subgroups arise in the classification of

nilpotent orbits, as discussed in Chapter 4. Other than these, most of the

branching relationships dealt with herein are regular.

The Haar measure (i.e. volume form) of G similarly decomposes to the

Haar measure of the product group, plus some non-trivial field content that

is a signature of the branching map. Understanding patterns of symmetry

breaking requires the enumeration of the possible subgroup branchings, G→
G1⊗. . . Gk, and this non-trivial task was first tackled in a systematic manner

by Dynkin in [61] and [54].

A group G has many possible regular subgroup branchings, including

semi-simple branchings and those with one or more Abelian components.

However, as identified in [61] and [54], these can be generated by repeated

application of a small set of regular branching transformations. These basic

transformations can be described and classified most effectively in terms of

their action on the Dynkin diagram of G, by drawing on the correspondence

between nodes, simple roots and weights. These comprise:

1. The elementary transformation of a simple group G into a semi-simple

subgroup, G1 ⊗ . . . Gk, by the elimination of a single node from the

extended (or affine) Dynkin diagram of G. Each simple root of G1 ⊗
. . . Gk maps either to a distinct simple root {z1, . . . , zr} of G or to

the extended (i.e. lowest) root z0 of G. Rank is preserved, but group

dimension is reduced. The subgroup is termed maximal if it is not

possible to interpose a proper subgroup between it and G.

2. The Abelian transformation of a simple root k in a Dynkin diagram to

a U(1) ∼= SO(2) root. The group splits to the Levi subgroup U(1)⊗G̃,

where G̃ is defined by the Dynkin diagram remaining after node k is
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excluded. The fugacity map,

{x1, . . . , xk, . . . xr} → {x1q
ν1,k , . . . , qνk,k , . . . xrq

νr,k} , (2.30)

replaces xk by a U(1) fugacity qνk,k and shifts the other weight space

coordinates such that {x1, . . . , xk−1, xk+1, . . . xr} become canonical

weight space coordinates for G̃. The U(1) charges can be obtained

from the Cartan matrix as νi,k =
(
A−1

)
ik

. Rank is preserved, but

group dimension is reduced.

3. Folding of the Dynkin diagram of type A2r−1, Dr+1 or E6 to give

Cr, Br or F4, respectively, by identifying the nodes related by outer-

automorphism, and their fugacities. This gives the non-simply laced

simple group defined by the folded Dynkin diagram. Both rank and

group dimension are reduced.

4. Rank reduction, by the elimination of a node k in the Dynkin diagram

for G, to obtain G̃, as defined above. This is a special case of uni-

tary transformation with q → 1. Both rank and group dimension are

reduced.

The elementary transformations of simple groups are determined by their

affine Dynkin diagrams [58], which are shown in Figures 2.1 and 2.2.3 The

elimination of a node from the affine diagram yields a regular Dynkin di-

agram and this defines the subgroup obtained. The result depends on the

node eliminated, with the possibilities summarised in Table 2.5.

Elementary transformations can be chained by acting on one or more

parts of each subgroup. These chains terminate in A series (product) groups,

which are invariant under elementary transformations.

A general regular subgroup mapping can be obtained by compounding

such a chain of elementary transformations with other basic transformations

(rank reducing, folding, and/or U(1)). Each such mapping defines a CSA

coordinate map M between the weight space {x1, . . . , xr} of the parent

group G and the weight space {x′1, . . . , x′r′} of its subgroup G1 ⊗ . . . Gk.

M is injective and provides a decomposition of the representations of G

in terms of the irreps of G1 ⊗ . . . Gk. However, other than for the usual

3Additional background information on affine Lie algebras is contained in Appendix A.3.
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Figure 2.1.: Extended Dynkin diagrams for simple Classical groups up to
rank 5. Blue nodes denote long roots with length 2. Red nodes
denote short roots. A black node denotes the long root added
in the affine construction. The dual Coxeter labels giving the
U(N) symmetry for each node are also shown.

Figure 2.2.: Extended Dynkin diagrams for Exceptional groups. Blue nodes
denote long roots with length 2. Red nodes denote short roots.
A black node denotes the long root added in the affine construc-
tion. The dual Coxeter labels giving the U(N) symmetry for
each node are also shown.
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Group Proper Semi-Simple Subgroups Type

Ar
Br≥2 Br−2 ⊗D2, . . . , B1 ⊗Dr−1, Dr Maximal

Cr≥2 Cr−1 ⊗ C1, . . . , Cdr/2e ⊗ Cbr/2c Maximal

Dr≥4 Dr−2 ⊗D2, . . . , Ddr/2e ⊗Dbr/2c Maximal

E6 A5 ⊗A1, A2 ⊗A2 ⊗A2 Maximal

E7 D6 ⊗A1, A5 ⊗A2, A7 Maximal

E7 A3 ⊗A3 ⊗A1 Non−maximal
E8 E7 ⊗A1, E6 ⊗A2, A4 ⊗A4, A8, D8 Maximal

E8 A7 ⊗A1, A5 ⊗A2 ⊗A1, D5 ⊗A3 Non−maximal
F4 C3 ⊗A1, A2 ⊗A2, B4 Maximal

F4 A3 ⊗A1 Non−maximal
G2 A1 ⊗A1, A2 Maximal

Table 2.5.: Subgroups from Single Elementary Transformations

isomorphisms, M is not bijective, even if no rank reduction occurs, since

the subgroup has lower group dimension than G, so that not all irreps of

G1 ⊗ . . . Gk can be mapped to representations of G.

Armed with a CSA coordinate map M, we can transform any Hilbert

series from G to one of its subgroups, gGHS(t, x)
M→gG1⊗...Gk

HS (t, x′), and apply

any of the analytical tools outlined in this section. This permits the in-

vestigation of relationships between the Hilbert series and HWGs of quiver

theories with related symmetry group structures.
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3. HWGs of Simple Moduli Spaces

3.1. Hilbert Series and HWGs for Invariant

Tensors

One interesting set of moduli spaces to study is that of the invariant tensors

of simple groups. These are illuminating, since we shall be symmetrising

and/or anti-symmetrising representations of many groups in the course of

this study, and the resulting combinatorics is determined by the symmetry

properties and structure of invariant tensors. A group has numerous in-

variant tensors, such as delta or epsilon tensors, structure constants, sigma

and gamma matrices, or other intertwiners, and these act to contract fields

to create fields transforming in other irreps. All these invariants can be

described using the language of tensor algebra, in terms of their indices and

symmetry. The plethystic method complements this approach by identify-

ing such tensors as singlets within the tensor products of the irreps in which

they transform.

An invariant tensor of a group G occurs whenever the decomposition of

a tensor product of representations (i.e. product of characters of repre-

sentations) contains a singlet. This permits a simple plethystic method to

generate the Hilbert series that enumerate the degrees of totally symmetric

or totally antisymmetric invariants of a chosen representation. These series

can be found by using Weyl integration to project out singlets from charac-

ters that have been symmetrised using the PE, or anti-symmetrised using

the PEF. This is a straightforward generalisation to Lie groups of Molien

summation over finite groups [10].

gχ
G

HS:Sym (t) =

∮
G

dµG PE [χ t] (3.1)
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and

gχ
G

HS:Λ (t) =

∮
G

dµG PEF [χ t]. (3.2)

A HS for the degrees of symmetric invariants is freely generated, and can

be treated with the Plethystic Logarithm to find its generators td
S
i . The

exponents of the counting fugacity t in these generators correspond to the

degrees dSi of the primitive symmetric invariants of χG.

∑
i

td
S
i = PL

[
gχ

G

HS:Sym (t)
]
. (3.3)

The degrees of antisymmetric tensors are given by the exponents dΛ
i from

3.2:

1 +
∑
i

td
Λ
i = gχ

G

HS:Λ (t) . (3.4)

If gχ
G

HS:Λ (t) factorises, the degrees dΛ
i of the AS invariants can also be written

in terms of the degrees dΛP
i of primitive AS invariants:

∏
i

(
1 + td

ΛP
i

)
= 1 +

∑
i

td
Λ
i (3.5)

The totally symmetric and totally antisymmetric invariant tensors of the

defining (fundamental/vector) and adjoint representations of Classical and

Exceptional Lie groups are summarised in Tables 3.1 and 3.2.

As can be seen from Table 3.1, each Classical and Exceptional group has

a unique signature in terms of the invariant tensors of its defining represen-

tation [62]. Within these, there is a minimal set of tensors in terms of which

the other invariant tensors can be expressed, termed primitive invariant ten-

sors. If these primitive tensors are symmetric, they can be symmetrised into

symmetric tensors of higher degree. If the primitive tensors are antisym-

metric, they can be anti-symmetrised, up to the degree of the overall volume

form associated with the defining representation. This degree is determined

by the dimension of the defining irrep, which consequently equals the sum

of the degrees of the primitive invariant AS tensors.

A similar analysis applies to the adjoint representation. In this case,

the primitive symmetric tensors are equal in number to the rank of G and

their degrees match those of the Casimirs of G, since each invariant tensor

contracts with the Lie algebra generators of G to give a distinct symmetric
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Casimir operator.1 Each symmetric invariant of degree dS is related to

an antisymmetric invariant of degree dΛ = 2dS − 1. These AS invariants

are forms over the co-cycles of a group manifold [63] and so their Hilbert

series g
[adjoint]G
HS:Λ (t) encodes information about the cohomology of the group

manifold, and is known as the Poincare polynomial of G. The sum of the

degrees of the AS invariants (i.e. sum of the exponents of the Poincare

polynomial) equals the dimension of the group.

We can similarly treat the the spinors of SO groups as basic irreps and

calculate the degrees of their symmetric and antisymmetric invariant ten-

sors. These are shown in Table 3.3 for orthogonal groups up to rank 5. The

notation used for SO(2r) can be adapted to give the invariants, either for

Dirac spinors, by setting t1 = t2 = t, or for Weyl spinors, by setting t1 or t2

to zero. The invariant tensors are all of even degree and the degree of the

AS tensors is (naturally) limited by the length of the volume form on the

spinor manifold. Unfortunately, the degrees of spinor invariants do not fall

into simple patterns and are difficult to generalise to higher rank groups.

Symmetric and antisymmetric invariant tensors can be combined into

tensors of mixed symmetry and the number of such possible combinations

compounds with increasing rank and dimension; the defining representa-

tions of exceptional groups, in particular, posses a very complicated set of

invariants once invariant tensors of mixed symmetry are included [64].

It is interesting, therefore, to consider how all the invariant tensors of

some representation(s) might be enumerated in a systematic manner. This

question is closely related to the problem of identification of GIOs in SQCD,

which is the subject of the next section.

Given some defining representation, the identification of its invariant ten-

sors of mixed symmetry requires some way of characterising symmetry, in

addition to tracking the number of indices. One solution is to map the

symmetry properties of each tensor to a Young’s diagram. This in turn

corresponds to a representation of a unitary group of sufficiently high rank,

which can be tracked by its Dynkin labels. This series of Young’s diagrams

can in principle be encoded as an HWG, which combines a counting fugac-

ity t, to count the number of boxes in each Young’s diagram, with highest

1The Casimir operators of a group form a commuting set of operators whose eigenvalues
identify the irreps in which fields transform. Each set of Casimir eigenvalues is in
bijective correspondence with the highest weight Dynkin labels of an irrep.[62]
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weight fugacities m1, . . . ,mr to describe its symmetry.

One method for finding such HWGs makes use of the pattern of symmetri-

sations that arises when a product group representation is symmetrised or

anti-symmetrised. We apply the plethystic expansions A.17 and A.18 to

the character of a product group representation χG(x, y) = χA(x)⊗ χB(y),

where χA(x) ≡ x1 + . . .+ x|χA|) and χB(y) ≡ y1 + . . .+ y|χB |. We take χA

and χB to be the fundamental representations of unitary groups A and B

and apply standard results from [60] to obtain the following:

∞∑
k=0

Symk
[
χA ⊗ χB

]
= PE

[
χA ⊗ χB

]

=

|χA|∏
i=1

|χB|∏
j=1

1

(1− xiyj)

=
∑
[n]

χA[n] ⊗ χ
B
[n]

(3.6)

|χA⊗χB|∑
k=0

Λk
[
χA ⊗ χB

]
= PEF

[
χA ⊗ χB

]

=

|χA|∏
i=1

|χB|∏
j=1

(1 + xiyj)

=
∑
[n]

χA[n] ⊗ χ
B
[n]T

(3.7)

The sums over [n] are taken over all non-vanishing irreps χA[n]⊗χ
B
[n] or χA[n]⊗

χB
[n]T

, respectively. The Dykin labels [n]T are related to [n] by transposition

of their corresponding partitions or Youngs diagrams [60]. This involution

exchanges symmetric and antisymmetric irreps and so the PE of a product

group representation pairs up irreps with the same symmetry properties,

while the PEF pairs up irreps with opposite symmetry properties.

Suppose now that we wish to enumerate all the invariant tensors of a

representation χC , which need not be unitary. We set B = U(N), where

N =
∣∣χC∣∣ so that χB has dimension equal to that of the volume form on

χC and B has sufficient Dynkin labels to track the anti-symmetry of any

invariant tensor on χC . We also replace the unitary character χA within

the PE in 3.6 by χC . Under this latter substitution, each unitary irrep χA[n]
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decomposes to representations of C, which may include one or more singlets

corresponding to the invariant tensors of χC . We select these singlets by a

first Weyl integration over C:

gχ
C

HS:inv. (y) =

∮
C

dµCPE
[
χC ⊗ χU(N)

]
=

∑
[n]∈inv.

a[n]χ
U(N)
[n] (y),

(3.8)

where the coefficients a[n] track the multiplicities of the invariant tensors.

It is clear that if U(N) is taken as U(1) with fugacity t then 3.8 reverts to

3.1 for totally symmetric invariant tensors.

As a second step, we use a generating function for the characters χ
U(N)
[n]

with the Dynkin label fugacities m ≡ m1 . . .mN to transform the class

function 3.8 into an HWG :

gχ
C

HWG:inv. (m) =

∮
U(N)

dµU(N)gU(N)
χ (y∗,m) gχ

C

HS:inv. (y)

=
∑

[n]∈inv.

a[n]m
[n]

(3.9)

Alternatively, by noting the matching symmetry between irreps of U(N)

and representations of C, equations 3.8 and 3.9 can be combined:

gχ
C

HWG:inv. (m) =

∮
C

dµC(x′)gU(N)
χ (y,m)

∣∣∣
y→χC(x′)

, (3.10)

where x′ ≡ x′1, . . . , x
′
rank[C] are CSA coordinates for C, and the elements

of the character χC are substituted for the yi in the character generating

function for U(N).

The HWG series 3.9 or 3.10 can be presented in terms of Young tableaux

for U(N), with the partitions determined by the Dynkin label fugacities m,

so that mc
r represents a rectangular Young’s sub-diagram with c columns

and r rows, and mc1
r1 . . .m

cN
rN

represents the Youngs diagram formed by N

sub-diagrams placed side by side.

By way of example, Table 3.4 summarises the HWGs obtained by applying

3.10 to the defining representations of low rank Classical gauge groups. Each

term in the PL represents a primitive invariant tensor, or generator of invari-
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Gauge
Group G

Defining
Irrep

Flavour
Group

PL
[
g
G⊗U(N)
HWG:inv.

]
SU(2) [1] U(2) m2

SU(3) [1, 0] U(3) m3

SU(N) [1, 0, . . .] U(N) mN

USp(4) [1, 0] U(4) m2 +m4

USp(2r) [1, 0, . . .] U(2r) m2 +m4 + . . .m2r

SO(3) [2] U(3) m1
2 +m2

2 +m3

SO(4) [1, 1] U(4) m1
2 +m2

2 +m3
2 +m4

SO(5) [1, 0] U(5) m1
2 +m2

2 +m3
2 +m4

2 +m5

SO(N) [1, 0, . . .] U(N) m1
2 +m2

2 + . . .m2
N−1 +mN

Table 3.4.: Primitive Invariants of Defining Irreps of Classical Groups

ant tensors. It is clear that the defining representations of A and C series

groups, which lack a symmetric tensor, only contain the wholly antisymmet-

ric tensors previously enumerated in Table 3.1. The defining representations

of SO(N), however, all contain multiple primitive invariant tensors start-

ing from the delta tensor, given by the series m1
2,m2

2, . . . ,m2
N−1, plus the

volume form epsilon tensor mN , numbering N primitive invariant tensors

in total. The HWGs are freely generated, so that further invariant tensors

can be identified by forming monomials from products of the generators.

A related procedure can be followed, by working with the PEF in 3.7, in

place of the PE in 3.6. In this case the invariant tensors of χC are associated

to Young’s diagrams of B that have been transposed.

gχ
C

HS:⊂inv. (y) =

∮
C

dµCPEF
[
χC ⊗ χU(N)

]
=

∑
[n]⊂inv.

a[n]χ
U(N)

[n]T
(y),

(3.11)

The series of invariants given by 3.11 are finite and incomplete, since the

rank of the unitary flavour group U(N) limits the degree N to which the

symmetrisations of χC can be tracked. If U(N) is taken as U(1) with

fugacity t then this method reverts to 3.2 for totally antisymmetric invariant

tensors.

Some equivalent results can also be obtained by decomposition of tensor

products [64], however, the HWG method 3.10 has the potential advan-
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tage of generating the complete infinite series of invariants from a finite

number of generators, thereby resolving uncertainties about the multiplic-

ities of distinct invariants and/or their appearance at higher orders. For

high dimensioned representations, where calculation with high rank unitary

groups is impractical, 3.11 can be used to identify invariants, up to some

finite degree of symmetrisation.

Thus, HWGs can be used to explicate how the invariant tensors of the

group representations within a product group structure determine its Hilbert

series. These HWG monomials identify both the orders at which such invari-

ants are formed and the representations in which they transform. The above

series for product groups incorporating U(N) flavour groups are closely re-

lated to the series for the GIOs of SQCD, which are the subject of detailed

examples in the next section.

There are also many invariant tensors that can be formed from com-

binations of representations. These can be analysed by similar plethystic

methods, using refined fugacities ti to label the different representations

being symmetrised/antisymmetrised. This leads to many different moduli

spaces that are outside the focus of this study.

3.2. SQCD

The moduli spaces of SQCD describe the vacuum field content of the Higgs

branches of N = 1 supersymmetric extensions of QCD and have been

extensively studied. Treatments under the Plethystics Program include

[13, 14, 15]. The aim here is not to give a full review of SQCD theories, but

to illustrate how HWGs can provide complete and concise descriptions of

their moduli spaces. While complete descriptions can be given for SQCD

theories with Classical gauge groups [13, 14, 28], the moduli spaces have only

been found for low flavour numbers [28] for SQCD theories with Exceptional

gauge groups.

The Lagrangians for N = 1 gauge theories are well-known, taking the

form [65]:

L = Φ†ie
V Φi

∣∣∣
θθθ̄θ̄

+

(
1

16g2
Tr WαWα|θθ + W (Φi)|θθ

)
+ h.c., (3.12)

where h.c. denotes hermitian conjugation of the θθ terms. The Φi are

54



chiral superfields, transforming under some global symmetry (acting on the

indices i) and also under some representation of a gauge group G (gauge

indices suppressed). Their multiplets include chiral scalars φi. W (Φi) is

the chiral superpotential. V is a vector superfield transforming with field

strength Wα = −1
4D̄D̄e

−VDαe
V .

Expanding the Lagrangian, and requiring that its variation with respect

to component fields should be zero, identifies the effective scalar potential

[14]:

V
(
φi, φ

†
i

)
=
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

1

2
g2
∑
a

(∑
i

φi
†T aφi

)2

, (3.13)

where T a are the Lie algebra generators for G. At the SUSY vacuum, the

effective scalar potential is minimised, V = 0, giving rise to

F-term conditions, ∀i : ∂W∂φi = 0, and

D-term conditions, ∀a :
∑
i
φi
†T aφi = 0 or Tr[T ·

∑
i
φiφi

†] = 0.

In SQCD theories there is no superpotential, W (Φ) = 0, so the F-terms

vanish automatically. The D-term conditions require that only gauge in-

variant combinations of scalar fields appear at the vacuum. The vacuum

field content of these theories is given by the chiral ring of gauge invariant

BPS operators (“GIOs”) that can be formed from the chiral scalars φi.

Quiver diagrams provide an elegant way of describing theories involving

chiral scalar fields and the structure of their global symmetry (or flavour)

and gauge (or colour) groups. For Classical group SQCD theories, the

relevant quivers are shown in Figure 3.1.

In addition to flavour and gauge group charges, the scalar fields can also

carry a variety of U(1) charges. The most important of these is the R-

charge, which counts the number of chiral scalars combined within some

operator.

The moduli spaces of the GIOs of all these theories can be described by

the refined Hilbert series:

g
Gf⊗Gc
HS:GIO (x, t) =

∮
Gc

dµGc(y) PE
[
χ
Gf⊗Gc
bifund. (x, y) t

]
. (3.14)

The PE generates the chiral ring of scalar field combinations by symmetris-

ing the character χ
Gf⊗Gc
bifund. (x, y) of the bifundamental fields. x and y are
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Figure 3.1.: Quiver diagrams for Classical Group SQCD. Blue nodes denote
gauge groups. Red nodes denote flavour groups. The links
between nodes correspond to bifundamental fields transforming
under both the flavour and gauge groups. Fundamental and an-
tifundamental fields are distinguished by directed links. Other
U(1) charges are omitted.

weight space fugacities for the flavour and colour groups, respectively, and t

is a counting fugacity for the R-charge. The D-term conditions are imposed

by the Weyl integration, as described in Appendix A.2, which selects the

colour/gauge group singlets that identify the GIOs.

The refined Hilbert series can most usefully be analysed in terms of its

flavour group representation content by transformation into a highest weight

generating function:

g
Gf⊗Gc
HWG:GIO (m, t) =

∮
Gf

dµGf (x) g
Gf
χ (x∗,m) g

Gf⊗Gc
HS:GIO (x, t) ,

(3.15)

Alternatively, the refined HS 3.14 can be simplified into the unrefined Hilbert

series g
Gf⊗Gc
HS:GIOs (1, t), which provides dimensional information about the

moduli space. The following sections describe and comment on the moduli

spaces of GIOs for some SQCD theories with low rank Classical and Ex-

ceptional groups. Much of the treatment is common between the different

gauge groups.

3.2.1. GIOs of U(Nf )L/R ⊗ SU(Nc)

It is helpful to start with an explicit statement of the symmetry transfor-

mation properties of the bifundamental fields [13]. These are summarised
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in Table 3.5, where the chiral scalars are referred to by their superpart-

ner quarks or antiquarks. For convenience, the U(Nf ) flavour groups are

initially decomposed as SU(Nf )⊗ U(1).

Gauge/Colour Flavour Baryon R
Groups SU(Nc) SU(Nf )L SU(Nf )R U(1)L U(1)R U(1)B U(1)
Qia [0, . . . , 1] [1, 0, . . .] 1 1 0 1
Q̄ai [1, 0, . . .] 1 [1, 0, . . .] 0 1 - 1

CSA
Fug.

y xL xR q q̄ t

HW
Fug.

l r t1 t2

Table 3.5.: SQCD Charge Assignments: U(Nf )L/R ⊗ SU(Nc)

The possible field combinations contain chiral quarks Qia and/or anti-

quarks Q̄ai , transforming in some representation of the product group, where

the indices i range over the fundamentals of the U(Nf )L/R flavour groups

and the indices a range over the fundamental or anti-fundamental of the

SU(Nc) colour group. The GIOs are SU(Nc) colour singlets composed of

quarks and/or antiquarks, with their flavour group indices determining the

representation in which they transform. The fields also carry R-symmetry

and baryonic U(1) charges.

To obtain HWGs for these theories, we first form the product group char-

acters of the fields:

χ
U(Nf)L/R⊗SU(Nc)

bifund. (xL, xR, y, q, q̄) =

χ
SU(Nf)L
[1,0,...,0] (xL) χ

SU(Nc)
[0,,...,0,1](y) q + χ

SU(Nf)R
[1,0,...,0] (xR) χ

SU(Nc)
[1,0,...,0](y) q̄.

(3.16)

While the colour group CSA coordinates y are shared by the quarks and

antiquarks, it is necessary to use different CSA coordinates xL and xR to

distinguish the L and R flavour groups.

Application of 3.14 yields the refined Hilbert series:

g
U(Nf )

L/R
⊗SU(Nc)

HS:GIO (xL, xR, t1, t2) =∮
SU(Nc)

dµSU(Nc) (y) PE
[
χ
SU(Nf )

L

[1,0,...,0] χ
SU(Nc)
[0,,...,0,1] (xL, y) t1

]
PE

[
χ
SU(Nf )

R

[1,0,...,0] χ
SU(Nc)
[1,0,...,0] (xR, y) t2

]
,

(3.17)
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where the U(1)L/R fugacities q and q̄ for the quarks and anti-quarks have

been combined with the R-charge fugacity as t1 ≡ tq and t2 ≡ tq̄, for

simplification.

The HWGs follow from 3.17 by a second Weyl integration, as in 3.15:

g
U(Nf )

L/R
⊗SU(Nc)

HWG:GIO (l, r, t1, t2) =

∮
SU(Nf )

L
⊗SU(Nf )

R

dµSU(Nf )
L(xL) dµSU(Nf )

R(xR)

× g
SU(Nf )
χ (x∗L, l) g

SU(Nf )
χ (x∗R, r)

× g
(U(Nf )

L/R
⊗SU(Nc))

HS:GIO (xL, xR, t1, t2) .

(3.18)

The highest weight fugacities l ≡ l1 . . . lNf−1 and r ≡ r1 . . . rNf−1 track the

SU(Nf )L/R irreps of the (decomposed) L and R flavour groups. The HWGs

from 3.18 are summarised in Table 3.6 for some low rank groups.

Theory HWG

U(1)L/R ⊗ SU(2c) 1/(1− t1t2)

U(2f )L/R ⊗ SU(2c) 1/(1− t12)(1− t22)(1− l1r1t1t2)

U(≥ 3)L/R ⊗ SU(2c) 1/(1− l2t12)(1− r2t2
2)(1− l1r1t1t2)

U(1)L/R ⊗ SU(3c) 1/(1− t1t2)

U(2f )L/R ⊗ SU(3c) 1/(1− l1r1t1t2)(1− t12t2
2)

U(3f )L/R ⊗ SU(3c) 1/(1− t13)(1− t23)(1− l1r1t1t2)(1− l2r2t1
2t2

2)

U(≥ 4)L/R ⊗ SU(3c) 1/(1− l3t13)(1− r3t2
3)(1− l1r1t1t2)(1− l2r2t1

2t2
2)

SU(Nf )L/R ⊗ U(1)L/R highest weight fugacity notation is used.

Table 3.6.: HWGs of U(Nf )L/R ⊗ SU(Nc) GIOs

These HWGs are all freely generated and so can be stated more succinctly

in terms of their PLs, as in Table 3.7. The generators in PL[HWG] encode

the structure of the GIOs of the theory and the flavour group representations

in which they transform.

These flavour group representations can be described either in terms of

U(Nf ) or SU(Nf ) ⊗ U(1). Recalling that the fugacity t counts boxes in a

Young’s diagram, we can translate between SU(N) ⊗ U(1) highest weight

fugacities {li, t} and U(N) highest weight fugacities mi by the map:

(lit
i, tN )↔ (mi,mN ). (3.19)
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Theory PL[HWG]
SU(Nf )⊗ U(1) fugacities

PL[HWG]
U(Nf ) fugacities

U(1)L/R ⊗ SU(2c) t1t2 mLmR

U(2f )L/R ⊗ SU(2c) t1
2 + t2

2 + lrt1t2 mL1
mR1

+mL2
+mR2

U(≥ 3)L/R ⊗ SU(2c) l2t1
2 + r2t2

2 + l1r1t1t2 mL1
mR1

+mL2
+mR2

U(1)L/R ⊗ SU(3c) t1t2 mLmR

U(2f )L/R ⊗ SU(3c) lrt1t2 + t1
2t2

2 mL1
mR1

+mL2
mR2

U(3f )L/R ⊗ SU(3c) t1
3 + t2

3 + l1r1t1t2 + l2r2t1
2t2

2 mL1
mR1

+mL2
mR2

+mL3
+mR3

U(≥ 4)L/R ⊗ SU(3c) l3t1
3 + r3t2

3 + l1r1t1t2 + l2r2t1
2t2

2 mL1
mR1

+mL2
mR2

+mL3
+mR3

Table 3.7.: PLs of HWGs of U(Nf )L/R ⊗ SU(Nc) GIOs

Taking U(3f )L/R ⊗ SU(3c) as example, we can map the generators either

to U(3f )L/R irreps, or to SU(3f )L/R ⊗ U(1)L/R irreps; these are described

by Dynkin labels in Table 3.8.

SU(3f )L/R ⊗ U(1)L/R Irreps U(3f )L/R Irreps

l1r1t1t2 [1, 0]L[1, 0]R qq̄ mL1mR1 [1, 0, 0]L[1, 0, 0]R
l2r2t1

2t2
2 [0, 1]L[0, 1]R q2q̄2 mL2mR2 [0, 1, 0]L[0, 1, 0]R

t1
3 [0, 0]L[0, 0]R q3 mL3 [0, 0, 1]L[0, 0, 0]R

t2
3 [0, 0]L[0, 0]R q̄3 mR3 [0, 0, 0]L[0, 0, 1]R

Table 3.8.: Generators of HWGs of U(3f )L/R ⊗ SU(3c) GIOs

Choosing the SU(3f )⊗U(1) notation, the monomials can be viewed, re-

spectively, as a quark antiquark pair (meson) transforming in the SU(Nf )L/R

fundamentals, a combination of two quarks and two antiquarks (tetraquark)

transforming in the SU(3f )L/R anti-fundamentals, and three quarks (baryon)

or three antiquarks (antibaryon) transforming as SU(3f )L/R flavour singlets.

In U(3f )L/R notation, the (anti)-symmetry properties of the representations

are identified by their Dynkin labels; the (anti)baryons contain antisymmet-

ric combinations of the quarks.

There are several points of interest about the structure of the generators.

Most importantly, the HWGs converge for all flavour groups of fundamental

dimension exceeding that of the colour group. We can interpret this in terms

of complete breaking of the gauge group symmetries as Nf reaches Nc. Put

another way, the anti-symmetrisation of the flavour group representation

is limited by the degree of the volume form of the colour group irrep, as

discussed in section 3.1. Secondly, the symmetry of the quiver leads to
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pairing of the L/R flavour group representations.

These observations permit us to extrapolate Table 3.7 and to generalise

the PLs of HWGs for GIOs of U(Nf )L/R ⊗ SU(Nc) with arbitrary flavours

and colours in terms of the U(Nf )L/R fugacities {mL,mR} as:

PL[HWG] =

min(Nf ,Nc)−1∑
i=1

mLimRi +

{
if Nf < Nc : mLNf

mRNf

if Nf ≥ Nc : mLNc
+mRNc

(3.20)

If we restrict 3.20 to the left or right flavour group, the GIOs correspond to

colour group antisymmetric invariants only; thus, setting mR → 0 recovers,

for Nf ≥ Nc, the invariants mNc of SU(N) shown in 3.4.

If we are primarily interested in counting dimensions of flavour irreps,

the HWGs can be transformed to unrefined HS by replacing the mono-

mial terms in {li, rj} by the dimensions of the irreps to which they refer.

This is equivalent to setting the CSA fugacities within the characters of

the flavour group in the refined HS 3.17 to unity, and retaining only the

overall R-charge fugacity t for counting. We then obtain the unrefined HS

g
U(Nf )L/R⊗SU(Nc)

HS:GIO (1, 1, t, t). Some unrefined Hilbert series are shown in Ta-

ble 3.9.

Theory Unrefined Hilbert Series |HS|
U(1)L/R ⊗ SU(2c)

1
(1−t2)

1

U(2f )L/R ⊗ SU(2c)
1+t2

(1−t2)5 5

U(3f )L/R ⊗ SU(2c)
(1+t2)(1+5t2+t4)

(1−t2)9 9

U(4f )L/R ⊗ SU(2c)
(1+t2)(1+14t2+36t4+14t6+t8)

(1−t2)13 13

U(5f )L/R ⊗ SU(2c)
(1+t2)(1+27t2+169t4+321t6+169t8+27t10+t12)

(1−t2)17 17

U(1)L/R ⊗ SU(3c)
1

(1−t2)
1

U(2f )L/R ⊗ SU(3c)
1

(1−t2)4 4

U(3f )L/R ⊗ SU(3c)
1−t+t2

(1−t)(1−t2)8(1−t3)
10

U(4f )L/R ⊗ SU(3c)
(1+t2)(1+3t2+4t3+7t4+4t5+7t6+4t7+3t8+t10)

(1−t2)12(1−t3)4 16

U(5f )L/R ⊗ SU(3c)

(1−t)

 1 + t+ 10t2 + 23t3 + 68t4 + 135t5 + 281t6

+446t7 + 695t8 + 895t9 + 1090t10

+1115t11 + . . . palindrome . . .+ t22


(1−t2)16(1−t3)7 22

Table 3.9.: Unrefined HS of U(Nf )L/R ⊗ SU(Nc) GIOs
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Unlike the HWGs, the unrefined HS are not freely generated for Nf ≥
Nc, and indeed, for Nf > Nc, they are not complete intersections, indi-

cating complicated relations between generators. The unrefined HS have

palindromic numerators, but these do not readily generalise to higher rank

groups.

The dimensions of these unrefined HS are given, as can be verified by

inspection of Table 3.9, for Nf < Nc, by N2
f , and, for Nf ≥ Nc, by 2NfNc−

(N2
c − 1), which is the number of bifundamental fields less the number of

gauge group generators [13].

A further interesting observation made in [13] is that with an SU(2c)

colour group, the left and right flavour groups can be combined into a

U(2Nf ) global symmetry. This particular feature arises for SU(2c) because

the quarks and antiquarks share the same SU(2) character. Thus, we can

set up a fugacity map in which the CSA flavour coordinate plus fugacity de-

grees of freedom match between U(Nf )L/R⊗SU(2c) and U(2Nf )⊗SU(2c).

Such alternative ways of analysing the same theory give rise to corre-

spondences between Hilbert series and, indeed, can be identified from un-

refined Hilbert series. Thus, for example, the unrefined Hilbert series for

U(2)L/R ⊗ SU(2c) in Table 3.9 is the same as the unrefined Hilbert series

for U(4)⊗ SU(2c) (not shown).

3.2.2. GIOs of U(Nf )⊗ SO(Nc)

In the case of U(Nf ) ⊗ SO(Nc), the SQCD theory contains one bifunda-

mental scalar transforming in the fundamental representation of the flavour

group and the vector representation of the colour group. Charge assign-

ments, based on [14], are as in Table 3.10. For convenience, the U(Nf )

flavour groups are initially decomposed as SU(Nf )⊗ U(1).

The theory contains combinations of quarks Qia, where the indices i and

a range over the flavour group fundamental and the colour group vector

representation, respectively. The GIOs are colour singlets composed of

quarks and transform in some flavour group irrep. The fields also carry

U(1) charges, which can be absorbed, for our purposes, into a single count-

ing fugacity t = qt′.

Proceeding as before, the refined HS generating functions are given by:
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Gauge/Colour Flavour R

Groups SO(Nc) SU(Nf ) U(1)B U(1)R

Qia

[2] for Nc = 3
[1, 1] for Nc = 4
[1, 0, . . . , 0] for Nc > 4

[1, 0, . . . , 0] 1

CSA Fugacity y x q t′

HW Fugacity f t

Table 3.10.: SQCD Charge Assignments: U(Nf )⊗ SO(Nc)

g
U(Nf )⊗SO(Nc)
HS:GIO (x, t) =

∮
SO(Nc)

dµSO(Nc) (y) PE

[
χ
SU(Nf)
[1,0,...,0]χ

SO(Nc)
[vec.] (x, y) t

]
,

(3.21)

and the HWGs are given by:

g
U(Nf )⊗SO(Nc)
HWG:GIO (f, t) =

∮
SU(Nf )

dµSU(Nf )(x) g
SU(Nf )
χ (x∗, f) g

U(Nf )⊗SO(Nc)
HS:GIO (x, t)

(3.22)

Evaluation shows that the HWGs of these theories are are all freely gen-

erated and can be stated concisely in terms of their PLs, as set out in Table

3.11.

Theory PL[HWG]
SU(Nf )⊗ U(1) fugacities

PL[HWG]
U(Nf ) fugacities

U(2)⊗ SO(3) t2f2 + t4 m1
2 +m2

2

U(3)⊗ SO(3) t2f1
2 + t3 + t4f2

2 m1
2 +m2

2 +m3

U(≥ 4)⊗ SO(3) t2f1
2 + t3f3 + t4f2

2 m1
2 +m2

2 +m3

U(2)⊗ SO(4) t2f2 + t4 m1
2 +m2

2

U(3)⊗ SO(4) t2f1
2 + t4f2

2 + t6 m1
2 +m2

2 +m3
2

U(4)⊗ SO(4) t2f1
2 + t4f2

2 + t6f3
2 + t4 m1

2 +m2
2 +m3

2 +m4

U(≥ 5)⊗ SO(4) t2f1
2 + t4f2

2 + t4f4 + t6f3
2 m1

2 +m2
2 +m3

2 +m4

U(2)⊗ SO(5) t2f2 + t4 m1
2 +m2

2

U(3)⊗ SO(5) t2f1
2 + t4f2

2 + t6 m1
2 +m2

2 +m3
2

U(4)⊗ SO(5) t2f1
2 + t4f2

2 + t6f3
2 + t8 m1

2 +m2
2 +m3

2 +m4
2

U(5)⊗ SO(5) t2f1
2 + t4f2

2 + t5 + t6f3
2 + t8f4

2 m1
2 +m2

2 +m3
2 +m4

2 +m5

U(≥ 6)⊗ SO(5) t2f1
2 + t4f2

2 + t5f5 + t6f3
2 + t8f4

2 m1
2 +m2

2 +m3
2 +m4

2 +m5

Table 3.11.: PLs of HWGs of U(Nf )⊗ SO(Nc) GIOs
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Once again, the HWGs of this SQCD theory are the same for all flavour

groups of fundamental dimension exceeding the vector dimension of the

SO(Nc) colour group. This permits us to extrapolate Table 3.11 and to

generalise the PLs of HWGs to arbitrary numbers of flavours and colours.

We do this concisely, in terms of U(Nf ) highest weight fugacities m, using

the map 3.19:

PL[HWG] =

min(Nf ,Nc)−1∑
i=1

m2
i +

{
if Nf < Nc : m2

Nf

if Nf ≥ Nc : mNc

(3.23)

Naturally, for Nf ≥ Nc, the results correspond exactly to the invariants of

SO(Nc), as shown in Table 3.4.

These results are based on taking U(N) as the flavour group; however,

they can be translated to any other flavour group G, which has a representa-

tion χG of dimension N , by using a character map χ
U(N)
[fund] → χG and reading

off the representations of G associated with each monomial in the HWG se-

ries. In this manner, the series of gauge group invariants can be seen to map

explicitly, via their symmetry properties, to flavour group representations.

Unrefined HS for some U(Nf ) ⊗ SO(Nc) product groups are set out in

Table 3.12. These HS are freely generated for Nf < Nc, complete inter-

sections for Nf = Nc and non-complete intersections for Nf > Nc. In all

cases the numerators are palindromic. As can be verified by inspection of

Table 3.12, the dimensions of these unrefined HS are given, for Nf < Nc,

by Nf (Nf + 1)/2 and, for Nf ≥ Nc, by NfNc −Nc(Nc − 1)/2, which is the

number of bifundamental fields less the number of gauge group generators

[14].
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Theory Unrefined Hilbert Series |HS|
U(2)⊗ SO(3) 1

(1−t2)3 3

U(3)⊗ SO(3) 1+t3

(1−t2)6 6

U(4)⊗ SO(3) 1+t2+4t3+t4+t6

(1−t2)9 9

U(5)⊗ SO(3) 1+3t2+10t3+6t4+6t5+10t6+3t7+t9

(1−t2)12 12

U(6)⊗ SO(3) 1+6t2+20t3+21t4+36t5+56t6+36t7+21t8+20t9+6t10+t12

(1−t2)15 15

U(7)⊗ SO(3)

(
1 + 10t2 + 35t3 + 55t4 + 126t5 + 220t6 + 225t7

+225t8 + 220t9 + 126t10 + 55t11 + 35t12 + 10t13 + t15

)
(1−t2)18

18

U(2)⊗ SO(4) 1
(1−t2)3 3

U(3)⊗ SO(4) 1
(1−t2)6 6

U(4)⊗ SO(4) 1+t4

(1−t2)10 10

U(5)⊗ SO(4) 1+t2+6t4+t6+t8

(1−t2)14 14

U(6)⊗ SO(4) 1+3t2+21t4+20t6+21t8+3t10+t12

(1−t2)18 18

U(7)⊗ SO(4) 1+6t2+56t4+126t6+210t8+126t10+56t12+6t14+t16

(1−t2)22 22

U(2)⊗ SO(5) 1
(1−t2)3 3

U(3)⊗ SO(5) 1
(1−t2)6 6

U(4)⊗ SO(5) 1
(1−t2)10 10

U(5)⊗ SO(5) 1+t5

(1−t2)15 15

U(6)⊗ SO(5) 1+t2+t4+6t5+t6+t8+t10

(1−t2)20 20

U(7)⊗ SO(5)

(
1 + 3t2 + 6t4 + 21t5 + 10t6 + 15t7

+15t8 + 10t9 + 21t10 + 6t11 + 3t13 + t15

)
(1−t2)25

25

Table 3.12.: Unrefined HS of U(Nf )⊗ SO(Nc) GIOs
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3.2.3. GIOs of U(Nf )⊗ USp(Nc)

In the case of U(Nf )⊗ USp(Nc) product groups, the bifundamental scalar

fields transform in the fundamental representation of the flavour group and

in the defining Nc = 2r dimensional vector representation of the symplectic

colour group Cr. We use the charge assignments in Table 3.13 based on [14].

For convenience, the U(Nf ) flavour groups are decomposed as SU(Nf ) ⊗
U(1).

Gauge/Colour Flavour R

Groups USp(Nc) SU(Nf ) U(1)B U(1)R
Qia [1, 0, . . . , 0] [1, 0, . . . , 0] 1

CSA Fugacity y x q t′

HW Fugacity f t

Table 3.13.: SQCD Charge Assignments: U(Nf )⊗ USp(Nc)

The theory contains combinations of quarks Qia with indices i and a rang-

ing over the flavour and colour group representations, respectively. The

GIOs are colour singlets composed of quarks and transform in some flavour

group irrep. The fields also carry U(1) charges, which can be absorbed

into a single counting fugacity t = qt′. Often Nf is restricted to be even,

following [66], but we adopt a general treatment here.

Proceeding as before, the refined HS are given by:

g
U(Nf )⊗USp(Nc)
HS:GIO (x, t) =

∮
USp(Nc)

dµUSp(Nc) (y) PE

[
χ
SU(Nf)
[1,0,...,0]χ

USp(Nc)
[1,0,...,0] (x, y) t

]
,

(3.24)

and the HWGs are given by:

g
U(Nf )⊗USp(Nc)
HWG:GIO (f, t) =

∮
SU(Nf )

dµSU(Nf )(x) g
SU(Nf )
χ (x∗, f) g

U(Nf )⊗USp(Nc)
GIOs (x, t)

(3.25)

Evaluation shows that the HWGs of these theories are are all freely gen-

erated and can be stated concisely in terms of their PLs, as set out in Table

3.14.
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Theory PL[HWG]
SU(Nf )⊗ U(1) fugacities

PL[HWG]
U(Nf ) fugacities

U(2)⊗ USp(2) t2 m2

U(≥ 3)⊗ USp(2) t2f2 m2

U(2)⊗ USp(4) t2 m2

U(3)⊗ USp(4) t2f2 m2

U(4)⊗ USp(4) t2f2 + t4 m2 +m4

U(≥ 5)⊗ USp(4) t2f2 + t4f4 m2 +m4

Table 3.14.: PLs of HWGs of U(Nf )⊗ USp(Nc) GIOs

Thus, for example, the PL t2f2+t4 in Table 3.14 indicates that the highest

weight generators of the GIOs of an SU(4)⊗ U(1)⊗ USp(4) SQCD theory

consists of an antisymmetric contraction of two quarks transforming in the

[0, 1, 0] irrep of the SU(4) flavour group and an antisymmetric contraction

of 4 quarks transforming as a [0, 0, 0] flavour singlet.

As before, the HWGs of this SQCD theory are the same for all flavour

groups of fundamental dimension exceeding the vector dimension of the

USp(Nc) colour group. This permits us to extrapolate Table 3.14 and to

generalise the HWGs for GIOs of U(Nf ) ⊗ USp(Nc) to arbitrary flavours

and colours. This is done most concisely by using the map 3.19 to convert

to U(Nf ) fugacities m:

PL[HWG] =

min
(⌊

Nf
2

⌋
,Nc

2

)∑
i=1

m2i
(3.26)

Naturally, for Nf = Nc, the GIOs correspond exactly to the antisymmetric

invariants of USp(Nc) as shown in Table 3.4.

Unrefined Hilbert series for some U(Nf ) ⊗ USp(Nc) product groups are

set out in Table 3.15. These HS are freely generated for Nf ≤ Nc + 1,

complete intersections for Nf = Nc + 2 and non-complete intersections for

Nf > Nc+2. In all cases the numerators are palindromic. As can be verified

by inspection of Table 3.15, the dimensions of these unrefined HS are given,

for Nf < Nc, by Nf (Nf + 1)/2, and, for Nf ≥ Nc, by NfNc−Nc(Nc+ 1)/2,

which is the number of bifundamental fields less the number of gauge group

generators [7].
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Theory Unrefined Hilbert Series |HS|
U(2)⊗ USp(2) 1

1−t2 1

U(3)⊗ USp(2) 1
(1−t2)3 3

U(4)⊗ USp(2) 1+t2

(1−t2)5 5

U(5)⊗ USp(2) 1+3t2+t4

(1−t2)7 7

U(6)⊗ USp(2) (1+t2)(1+5t2+t4)

(1−t2)9 9

U(2)⊗ USp(4) 1
(1−t2)

1

U(3)⊗ USp(4) 1
(1−t2)3 3

U(4)⊗ USp(4) 1
(1−t2)6 6

U(5)⊗ USp(4) 1
(1−t2)10 10

U(6)⊗ USp(4) 1−t6
(1−t2)15 14

U(7)⊗ USp(4) 1+3t2+6t4+3t6+t8

(1−t2)18 18

U(8)⊗ USp(4) 1+6t2+21t4+28t6+21t8+6t10+t12

(1−t2)22 22

U(9)⊗ USp(4)

(
1 + 10t2 + 55t4 + 136t6 + 190t8

+136t10 + 55t12 + 10t14 + t16

)
(1−t2)26

26

U(10)⊗ USp(4)

(
1 + 15t2 + 120t4 + 470t6 + 1065t8 + 1377t10+

1065t12 + 470t14 + 120t16 + 15t18 + t20

)
(1−t2)30

30

Table 3.15.: Unrefined HS of U(Nf )⊗ USp(Nc) GIOs
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3.2.4. GIOs of U(Nf )⊗G2

Finally, it is interesting to examine the SQCD moduli space when the colour

group is taken as an exceptional group, of which G2 is the lowest rank

example. We use the charge assignments in Table 3.16. For convenience,

the U(Nf ) flavour groups are decomposed as SU(Nf )⊗ U(1).

Gauge/Colour Flavour

Groups G2 SU(Nf ) U(1)

Qia [0, 1] [1, 0, . . . , 0] 1

CSA Fugacity y x q

HW Fugacity f t

Table 3.16.: SQCD Charge Assignments: U(Nf )⊗G2

The bifundamental scalar fields are quarks Qia, where the indices i and a

range over the fundamental representation of the flavour group and defin-

ing representation [0, 1] of the G2 colour group, respectively. The GIOs are

colour singlets composed of quarks, with some combination of flavour in-

dices determining the irrep in which they transform. The U(1) charges are

absorbed into a single counting fugacity q → t.

The refined HS are given by:

g
U(Nf )⊗G2

HS:GIO (x, t) =

∮
G2

dµG2 (y) PE

[
χ
SU(Nf)
[1,0,...,0] χ

G2

[0,1] (x, y) t

]
, (3.27)

and the HWGs are given by:

g
U(Nf )⊗G2

HWG:GIO (f, t) =

∮
SU(Nf )

dµSU(Nf )(x) g
SU(Nf )
χ (x∗, f) g

U(Nf )⊗G2

HS:GIO (x, t)

(3.28)

The PLs of the HWGs for U(Nf )⊗G2 SQCD are set out in Table 3.17,

where notation is shown for both SU(Nf ) ⊗ U(1) and the corresponding

U(Nf ) highest weight fugacities under the map 3.19.

We can identify the G2 symmetric invariant tensor m1
2 of order 2 and

the antisymmetric invariant tensors m3 and m4 of order 3 and 4, along with

other invariant tensors of mixed symmetry. The HWGs for U(2) and U(3)
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Theory PL[HWG]
SU(Nf )⊗ U(1) fugacities

PL[HWG]
U(Nf ) fugacities

U(2)⊗G2 f2t2 + t4 m1
2 +m2

2

U(3)⊗G2 f1
2t2 + f2

2t4 + t6 + t3 m1
2 +m2

2 +m3
2 +m3

U(4)⊗G2

f1
2t2 + f2

2t4 + f3
2t6 + t8

+f3t
3 + t4 + f1t

5

+f1f2t
7 + f2f3t

9 + f2
2t12

−f1
2f2

2t14 − f2
2f3

2t18

m1
2 +m2

2 +m3
2 +m4

2

+m3 +m4 +m1m4

+m1m2m4 +m2m3m4 +m2
2m4

2

−m1
2m2

2m4
2 −m2

2m3
2m4

2

U(5)⊗G2 to be calculated to be calculated

Table 3.17.: PLs of HWGs of U(Nf )⊗G2 GIOs

are freely generated. As the flavour group is increased in rank it probes

further into the antisymmetric tensors of G2. Relations exist between the

invariant tensors and these manifest themselves in the negative terms in

PL[HWG] for U(4), which represents a complete intersection moduli space.

Recalling from section 3.2 that theG2 defining representation has a wholly

antisymmetric invariant tensor (volume form) of order 7, these HWGs should

converge for flavour groups U(7) and above, yielding a full enumeration of

the invariant tensors of the defining representation of G2. However, due to

the complicated structure of the invariants of G2, the contour integrations

for U(5) and above have so far not proved computationally feasible. Thus,

in the case of a U(5) flavour group, the refined Hilbert series can be obtained

in the form of a SU(5) ⊗ U(1) class function, as in 3.29, but it has so far

not proved feasible to transform this to an HWG.

g
U(5)⊗G2

HS:GIO

(
χSU(5), t

)
=
(
1− t5

)


(
1 + t5 − t15 − t20

)
[0, 0, 0, 0]

+t4
(
1 + t5 + t10

)
[0, 0, 0, 1]

+t13 [0, 0, 1, 0]

−t7 [0, 1, 0, 0]

−t6
(
1 + t5 + t10

)
[1, 0, 0, 0]


× PE

[
[2, 0, 0, 0] t2

]
PE

[
[0, 0, 1, 0] t3

]
.

(3.29)

It is likely that the HWGs for U(5) and above will prove not to be complete

intersections.

The unrefined Hilbert series for U(Nf ) ⊗G2 SQCD are set out in Table

3.18. The HS for U(5) and above are not complete intersections, but are
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Theory Unrefined HS

U(2)⊗G2
1

(1−t2)3

U(3)⊗G2
1

(1−t3)(1−t2)6

U(4)⊗G2
1+t4

(1−t3)4(1−t2)10

U(5)⊗G2
(1+t2+3t3+6t4+3t5+7t6+8t7+7t8+3t9+6t10+3t11+t12+t14)

(1−t2)14(1−t3)7

Table 3.18.: Unrefined HS of U(Nf )⊗G2 GIOs

palindromic.

3.2.5. Geometric Properties of HWGs and HS of SQCD

The HWGs of SQCD explicate the structure of GIOs. In the case of Classical

SQCD, the HWGs are freely generated, reflecting the limited set of invariant

tensors of defining representations of Classical groups. This in turn makes

it possible to extrapolate these HWGs to arbitrary numbers of colours and

flavours, thus providing a full enumeration of the GIOs of any Classical

SQCD theory described by the quiver in Figure 3.1. This includes theories

with groups of high rank for which a direct calculation might not be feasible.

The results in 3.20, 3.23 and 3.26 correspond to observations within [13, 14],

but are restated concisely in the language of HWGs.

The Hilbert series of the GIOs of SQCD theories with Exceptional gauge

groups are considerably more complicated than those of Classical gauge

groups. It has not yet proved possible, for example, to evaluate the HWGs

for U(Nf )⊗G2 for 5 or more flavours, as discussed in section 3.2.4.

HWGs differ from unrefined HS for all but the simplest theories. The

description of SQCD moduli spaces in terms of unrefined HS only encodes

dimensional information about flavour group representations and this can

facilitate the identification of dualities between theories, as discussed in sec-

tion 3.2.1. However, this simplification also leads to HS which are typically

complete intersections only for small Nf .

The dimensions of HWGs for GIOs for SQCD, which follow from 3.20,

3.23 and 3.26, are lower than those of the corresponding unrefined HS, as

summarised in Table 3.19. The lower dimension of the HWGs, compared

with the HS, results from the projection of a moduli space on to the rep-

resentation lattice of U(N), which is higher dimensioned than the simple
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U(1) lattice used by an unrefined HS. We can give a systematic account of

the difference by expanding a given HWG and analysing the structure of its

irreps. For example, the expansion for U(4)L/R ⊗ SU(3c) in Table 3.7 takes

the form:

PE
[
l3t

3
1 + r3t

3
2 + l1r1t1t2 + l2r2t

2
1t

2
2

]
⇔

∞∑
n1,n2,n3,n4=0

[n1, n2, n3] [n1, n2, n4]tn1+2n2+3n3
1 tn1+2n2+3n4

2 .
(3.30)

The Dynkin labels in this HWG expansion require four different param-

eters {n1, n2, n3, n4}, corresponding to the four generators within the PE

function. The parameters identify the sub-lattice of the flavour group weight

lattice that is spanned by the irreps of the HWG. The dimensions of the

flavour group irreps in the HWG are a polynomial function of the parameters

and the degree of this polynomial indicates the dimension of the sub-lattice.

Now define HWG Irrep Degree as the total degree of the minimal poly-

nomial that gives the dimensions of all the irreps generated by the HWG

[19]. For example, the dimension formula for SU(4) or U(4) irreps 2 is:

dim[n1, n2, n3] =
1

12
(n1+1)(n2+1)(n3+1)(n1+n2+2)(n2+n3+2)(n1+n2+n3+3).

(3.31)

The degree of this polynomial is six. Thus the HWG Irrep Degree for

U(4)L/R ⊗ SU(5c) is 12, being the sum of the degrees for the L and R

SU(4) flavour groups, and this matches the dimension Nf (Nf − 1) = 12 for

Nf < Nc in Table 3.19.

As can be seen from Table 3.19, the monomials of HWGs for SQCD

GIOs only span flavour group Dynkin label lattices up to mNc at most,

and, in the case of USp gauge groups, only contain even Dynkin labels. In

such HWGs, where some Dynkin labels are fixed at zero, the HWG Irrep

Degree is reduced. In the case of U(4)L/R ⊗ SU(2c), for example, we find

dim[n1, n2, 0] is of degree 5 and so the HWG Irrep Degree is 10; this matches

2NfNc −Nc(Nc + 1) = 10 for Nf ≥ Nc in Table 3.19.

Case by case analysis shows that the HWG Irrep Degree, as defined,

2Recall that the dimensions of U(N) irreps match those of SU(N) irreps with the same
leading Dynkin labels [n1, . . . , nN−1].
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matches the difference between the dimensions of the HWGs and the unre-

fined HS in Table 3.19 [28]. We can carry out a reconciliation in a similar

manner for SU(Nf )⊗G2 SQCD as summarised in Table 3.20.

Theory
|HWG|

(a)
HWG
Irrep

HWG
Irrep

Degree
(b)

|HS|
(a) + (b)

SU(2)⊗G2 2 [n] 1 3
SU(3)⊗G2 4 [n1, n2] 3 7
SU(4)⊗G2 8 [n1, n2, n3] 6 14
SU(5)⊗G2 t.b.c. [n1, n2, n3, n4] 10 21

Table 3.20.: Dimensions of Moduli Spaces of SU(Nf )⊗G2 GIOs

All the HS, and also all the HWGs for GIOs of Classical SQCD are palin-

dromic and therefore Calabi-Yau; the same is true of the Exceptional group

HWGs calculated. This palindromic property of many generating functions

for Hilbert series is shared with the character generating functions discussed

in section 2.2 that are used to derive the HWGs and Hilbert series.

An important demonstration from the HWG analysis is that the (coeffi-

cients of the) unrefined Hilbert series of SQCD are reducible to characters

of flavour group representations. This group theoretic reducibility arises

because (anti-)symmetrisation of characters using the PE (or PEF) gener-

ates class functions, which can in turn always be decomposed into series of

characters with polynomial coefficients. These reduced series correspond to

HWGs, which precisely encode the structure of the symmetry group repre-

sentations underlying a Hilbert series.

3.3. SU(N)-Instanton Moduli Spaces

The aim here is to construct the moduli spaces of some low rank SU(N)

instantons on C2 and to show how HWGs can be used to study their struc-

tures. Each instanton moduli space is identified with the Higgs branch of a

quiver theory [8].

As elaborated in [4, 16] these Higgs branch quiver theories can be built

on systems of Dp branes against a background of Dp+ 4 branes in type II

string theories. Taking p = 3, yields a 3+1 dimensional space-time spanned
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by D3 branes, with N = 2 SUSY. The instantons can be assigned positions

on the transverse directions on the D7 branes, parameterised using C2.

The fields in the quiver theory transform in some representation of a

product group defined by (i) the quiver gauge group, determined by the

number of instantons, (ii) the Yang-Mills (or flavour) symmetry group and

(iii) an SU(2) global symmetry group. The instanton moduli spaces contain

field combinations that are singlets of the quiver gauge group.

Following [16], N = 2 SUSY quiver theories for the moduli spaces of k

SU(N) instantons on C2 can be described using explicit N = 1 notation

by “flower shaped” quiver diagrams, as in Figure 3.2, with their basic field

content as specified in more detail in Table 3.21.

Figure 3.2.: Quiver diagram for the Moduli Space of k SU(N)-Instantons
using N = 1 notation. The square node denotes the SU(N)
Yang-Mills symmetry group. The round node denotes the U(k)
instanton quiver gauge group. The links X12 and X21 cor-
respond to bifundamental fields transforming under both the
Yang Mills and quiver gauge groups. The fields φα transform
in the adjoint of the quiver gauge group and in a global SU(2)
symmetry. The field Φ transforms in the adjoint of the quiver
gauge group.

It is helpful to decompose the quiver gauge group U(k)→ SU(k)⊗U(1) ,

by extracting an overall U(1) charge. Then the X12 and X21 bi-fundamental

fields transform in conjugate representations with respect to both the quiver

gauge and Yang-Mills symmetry groups and also carry conjugate U(1)

charges. The fields {Φ, φ(a)} transform in the U(k) adjoint, which decom-

poses as an SU(k) adjoint plus a singlet. The fugacity t, corresponding to

a global U(1) R-symmetry, is used to count the fields.
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Quiver
Gauge Group

: U(k)
Yang-Mills

Group
Global

Symmetry
R-Charge

Field SU(k) U(1) SU(N) SU(2g) U(1)R
Φ [1, 0, . . . , 0, 1] + 1 (0) [0, . . . , 0] [0] 0

φ(α) [1, 0, . . . , 0, 1] + 1 (0) [0, . . . , 0] [1] (1)
X12 [1, 0, . . . , 0] (1) [0, . . . , 0, 1] [0] (1)
X21 [0, . . . , 0, 1] (−1) [1, 0 . . . , 0] [0] (1)

CSA
Fug.

w1, . . . , wk−1 q x1, . . . , xN−1 y t

HW
Fug.

m1, . . . ,mN−1 mg t

Table 3.21.: Field Content of Quiver Theory for k SU(N) Instantons on C2

The theory is defined not only by its basic fields, but also by its superpo-

tential [16]:

W = Tr
(
X21ΦX12 + εαβφ

(α)Φφ(β)
)
. (3.32)

The trace is taken over all unpaired symmetry group indices. We apply

variational principles, requiring that the superpotential at the SUSY vac-

uum should be extremised with respect to the field Φ, ∂W
∂Φ = 0. This leads

to the F-term constraints:

(X12) i
a (X21) b

i = εαβ

(
φ(α)

) c

a

(
φ(β)

) b

c
, (3.33)

where quiver gauge indices are denoted by (a, b, . . .) and Yang-Mills indices

by (i, j, . . .)

For a quiver gauge group U(k), 3.33 leads to k2 constraints. For k = 1,

the commutator of the φ(α) fields vanishes and the single F-term constraint

is that there should be no SU(N) singlets formed from pairs of X fields. For

k > 1, the commutator does not vanish, and the F-term constraints impose

an identity between the SU(N) singlets formed from pairs of X fields, and

the SU(2g) singlets formed by contracting pairs of φ(α) fields; these pairs of

fields both transform in the adjoint of the quiver gauge group.

Tracing over 3.33 to obtain singlets (relative to all groups) and applying

the cyclic property of the trace to the φ(α) yields the F-term constraint:
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(X12) i
a (X21) a

i = εαβ

(
φ(α)

) c

a

(
φ(β)

) a

c
= 0, (3.34)

which excludes all singlets formed from pairs of X fields, or from pairs of φ

fields, from the moduli space.

In order to find the GIOs (quiver gauge singlets) of the theory, we continue

by identifying the field representations with their characters, which follow

from 3.21:

χ(Φ) ≡ [1, 0 . . . , 0, 1]SU(k) + 1

χ(φ(α)) ≡ [1, 0 . . . , 0, 1]SU(k)[1]SU(2g) + [1]SU(2g)

χ(X12) ≡ [1, 0 . . . , 0, 0]SU(k)[0, 0 . . . , 1]SU(N) q

χ(X21) ≡ [0, 0 . . . , 0, 1]SU(k)[1, 0 . . . , 0]SU(N) q
−1

(3.35)

Symmetrised combinations of the fields {φ(α), X12, X21}, which are also

singlets of the U(k) gauge group, can be generated from the characters

by applying the PE, followed by Weyl integration over the gauge group,

as in case of SQCD. However, these GIOs must also be subjected to the

F-term constraints 3.33, and this is done by incorporating a HyperKähler

quotient (“HKQ”) to exclude the disallowed combinations and to avoid over-

counting. The elements of the character χ(Φ), which are equal in number

to the F-term constraints, are symmetrised at order t2 within the HKQ and

cancel the field pairings identified by 3.33 or 3.34. The refined Hilbert series

is thus given by the formula:

g
k,SU(N)
HS (x, y, t) ≡

∮
SU(k)⊗U(1)

dµSU(k)dµU(1)PE
[(
χ(φ(α)) + χ(X12) + χ(X21)

)
t
]

PE
[
χ(Φ)t2

]︸ ︷︷ ︸
HyperKähler quotient

.

(3.36)

The HWG can be calculated by projecting g
k,SU(N)
HS onto the irreps of the

SU(N) Yang-Mills symmetry and the global SU(2) symmetry groups:
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g
k,SU(N)
HWG (m,mg, t) =

∮
SU(N)⊗SU(2g)

dµSU(N)(x) dµSU(2g)(y) gSU(N)
χ (x∗,m)

× gSU(2g)
χ (y∗,mg) g

k,SU(N)
HS (x, y, t).

(3.37)

The refined Hilbert series g
k,SU(N)
HS (x, y, t) can also be summarised in un-

refined form as g
k,SU(N)
HS (1, 1, t), by replacing the characters of the SU(N)

and SU(2g) symmetry groups by their dimensions.

Instanton moduli spaces invariably contain a component generated by the

fundamental of the global SU(2) symmetry. This component represents the

position of the instanton on the R4 ∼= C2 manifold. For multiple instanton

theories k > 1, this corresponds to the centre of mass. Instanton moduli

spaces can be presented in reduced form by taking a quotient of the full

moduli space by this SU(2) symmetry. This can lead to simplifications in

the HWGs for the moduli spaces, as will be shown.

The results of such calculations are set out below for one SU(3) instanton

on C2 and also for two and three SU(2) instantons on C2.

3.3.1. Moduli Space of One SU(3) Instanton

Noting that, for one instanton, the adjoint of U(k) becomes the adjoint of

U(1), and evaluating 3.36, we obtain the refined Hilbert series:

g
1,SU(3)
HS (x, y, t) = (1− t2)2((1 + 2t2 + 2t4 + 2t6 + t8)[0, 0]− t4[1, 1])

× PE
[
[1, 1]t2

]
PE [[1]t] .

(3.38)

For brevity, this plethystic class function has been written using character

notation [n1, n2](x) and [n](y) for the irreps of the SU(3) Yang-Mills and

SU(2g) symmetry groups, respectively.

To obtain an HWG, we insert generating functions for the characters

of SU(2) and SU(3), taken from Table 2.2, using Dynkin label fugacities

{m1,m2} for the Yang-Mills symmetry and mg for the global symmetry,
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into 3.37 and evaluate:

g
1,SU(3)
HWG (m1,m2,mg, t) ≡

∮
SU(3)

∮
SU(2)

dµSU(3)(x)dµSU(2g)(y) (1−m1m2)

× PE[[1, 0](x∗)m1 + [0, 1](x∗)m2]

× PE[[1](y∗)mg] g
1,SU(3)
HS (x, y, t)

=
1

(1−m1m2t2)(1−mgt)
.

(3.39)

We can identify the combinations of the fields within the HWG 3.39 as

shown in Table 3.22.

SU(3);SU(2g) HWG Terms Basic Field Combinations

[1, 1; 0] m1m2t
2 SU(3) adjoint from X12 and X21

[0, 0; 1] mgt SU(2g) fundamental from φ(α)

Table 3.22.: Generators of HWG for One SU(3) Instanton Moduli Space

The Dynkin label fugacities m1m2 always appear paired and so this is

an example of the general result [16] that, for one SU(N) instanton, the

resulting tensor products between particles and antiparticles always trans-

form in a real representation that is a symmetrisation [n, 0, . . . , 0, n] of the

SU(N) adjoint representation. We can also see that no t2 singlets appear,

as intended by the HyperKähler quotient.

The physical interpretation of the HWG is that the term mgt enumerates

the representations of the global SU(2) symmetry that describe the position

of the instanton on C2. For k = 1 the HWG decouples, with the m1m2t
2

term enumerating the holomorphic operators in the reduced single instanton

moduli space (“RSIMS”), given by the one dimensional HWG:

g
1,SU(3),red.
HWG (m1,m2, t) = PE[m1m2t

2]. (3.40)

We can unrefine the series given by the HWG 3.40, by Taylor expansion

and replacement of the monomials in the HW fugacities {m1,m2} by the
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dimensions of the corresponding irreducible representations:

m1
n1m2

n2mg
n → dim[n1, n2] dim[n] =

1

2
(n1+1)(n2+1)(n1+n2+2) (n+ 1) .

(3.41)

The resulting unrefined Hilbert series matches that given in [16]:

g
1,SU(3)
HS (t) =

1 + 4t2 + t4

(1− t)2(1− t2)4 . (3.42)

3.3.2. Moduli Space of Two SU(2) Instantons

The analysis for multiple instantons is complicated by the gauge group

symmetry. For k = 2, the characters combine the three separate non-

Abelian product groups; quiver gauge U(2), Yang-Mills SU(2) and the

global SU(2g), in addition to the U(1) charges.

Proceeding as before and evaluating 3.36, we obtain the refined Hilbert

series:

g
2,SU(2)
HS (x, y, t) =

(
1− t2

)

(
1 + t2 − t14 − t16

)
[0; 0]

+t3
(
1− t10

)
[0; 1]

−t6
(
1− t4

)
[2; 0]

−t5
(
1− t6

)
[2; 1]


× PE

[
[0; 1]t+ [2; 0]t2 + [0; 2]t2 + [2; 1]t3 − [0; 1]t3

]
.

(3.43)

This has been written as a plethystic class function using condensed charac-

ter notation [n1;n](x, y) ≡ [n1](x)[n]g(y) for the irreps of the SU(2)⊗SU(2g)

product group.

Applying 3.37,by inserting the character generating functions for g
SU(2)
χ (x∗,m1)

and g
SU(2)
χ (y∗,mg), which use the HW fugacities m1 and mg to track the

Yang-Mills SU(2) and SU(2g) irreps, gives the HWG:

g
2,SU(2)
HWG (m1,mg, t) ≡

∮
SU(2)⊗SU(2g)

dµSU(2)(x)dµSU(2g)(y)

× PE [[1](x)m1] PE [[1](y)mg] g
2,SU(2)
HS (x, y, t)

(3.44)

Carrying out the contour integrations, this evaluates as:
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g
2,SU(2)
HWG (m1,mg, t) =

P (m1,mg, t)

(1−mgt) (1−mg
2t2) (1−m1

2t2) (1−mgm1
2t3) (1− t4)

2
(1−m1

2t4)
,

(3.45)

where

P (m1,mg, t) = 1 +mgt
3 +mgm1

2t5 +m1
2t6 −mg

2m1
2t6 −mgm1

2t7 −mgm1
4t9 −mg

2m1
4t12.

(3.46)

Table 3.23 identifies the combinations of the fields giving rise to the HWG

denominator terms. The exponents of the fugacities {m1,mg} are the

SU(2);SU(2g) HWG Terms Basic Field Combinations
[0; 0] t4 Singlets

[0; 1] mgt SU(2g) fundamental from φ(α)

[0; 2] mg
2t2 SU(2g) adjoint from φ(α)

[2; 0] m1
2t2 SU(2) adjoint from X12 and X21

[2; 0] m1
2t4

[2; 1] mgm1
2t3

SU(2g) fundamental ⊗ SU(2) adjoint
from φ(a), X12 and X21

Table 3.23.: Generators of HWG for Two SU(2) Instanton Moduli Space

Dynkin labels that identify the generators of the moduli space according to

the irreps in which they transform. While the SU(2g) generators transform

in both the fundamental and adjoint, the Yang-Mills SU(2) generators are

limited to the adjoint. The generator mgm1
2t3 gives rise to mixing between

the global and Yang-Mills symmetries.

Interestingly, the polynomial P (m1,mg, t) is anti-palindromic of degree

(4,2,12) in the variables {m1,mg, t}. The numerator P (m1,mg, t) also con-

tains the monomial term mgt
3, which is not just a product of the generators.

Some of these generators can be recognised from the refined HS in 3.43,

however, the HWG gives a complete account of the resulting representation

content.

We can easily verify that the HyperKähler quotient has had the desired

effect of excluding Yang-Mills singlets formed from pairs of fields. Thus, if

we specialise the HWG 3.45 to Yang-Mills singlets, by setting m1 to zero,

we obtain:

g
2,SU(2)
HWG (0,mg, t) =

1 +mgt
3

(1− t4)2(1−mgt)(1−mg
2t2)

. (3.47)
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This series does not contain any t2 monomials, confirming that all simple

pairs of fields that are Yang-Mills singlets have been excluded from the

generators. The only singlets are at orders of t4, showing that they only

contain even numbers of pairs of X or φ fields [28].

Returning to the HWG given by 3.45 and 3.46, we can see that the global

SU(2g) symmetry only appears amongst the generators as mg or mg
2. This

appears to be part of a more general pattern, where the global symmetry

appears amongst the HWG generating monomials at orders up to mg
k,

where k is the instanton number and equals the maximum degree of the

Casimirs of the U(k) quiver gauge group [19].

As for the case of k = 1, we can simplify the moduli space by factoring out

the tensor products that result from PE[[0; 1]t]. Physically, the fundamental

of SU(2g) corresponds to the centre of mass of a system of instantons, and

so working with such a reduced moduli space corresponds to an analysis in

the instanton rest frame. If we reduce the HS 3.43 by taking a quotient by

this centre of mass term, the HWG 3.45 evaluates to the reduced two SU(2)

instanton moduli space:3

g
2,SU(2),red.
HWG (m1,mg, t) =

1 +mgm1
2t5

(1−mg
2t2) (1−m1

2t2) (1−mgm1
2t3) (1− t4)

.

(3.48)

Unlike the HWG 3.45 for the full moduli space, the reduced HWG 3.48

constitutes a complete intersection. The reduced HWG has dimension 4

and includes the monomial terms mgm1
2t3 and mgm1

2t5 that mix up the

SU(2) and SU(2g) symmetries. Such coupling between global SU(2g) and

Yang-Mills symmetries appears to be an inherent feature of instanton moduli

spaces for k > 1.

3.3.3. Moduli Space of Three SU(2) Instantons

The case k = 3 gives rise to a U(3) quiver gauge symmetry, and the

field characters combine three separate non-Abelian product groups: quiver

gauge SU(3), Yang-Mills SU(2) and the global SU(2g), in addition to the

local and global U(1) symmetries. Application of 3.35 thus gives rise to a

3This result is equivalent to a character expansion presented in [19], but uses the more
concise HWG notation.
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complicated collection of fields to be symmetrised.

In this case, it is more convenient to work with the Hilbert series for the

reduced 3 instanton moduli space.

g
3,SU(2),red.
HS (x, y, t) ≡ PE [− [0; 1] t] g

3,SU(2)
HS (x, y, t). (3.49)

The plethystic class function for the refined Hilbert series g
3,SU(2),red.
HS is

nonetheless extremely unwieldy, so is not shown here. The HWG of the

reduced HS follows from 3.37 as:

g
3,SU(2),red.
HWG (m1,mg, t) ≡

∮
SU(2)⊗SU(2g)

dµSU(2)(x)dµSU(2g)(y) PE [[1](x)m1]

× PE [[1](y)mg] g
3,SU(2),red.
HS (x, y, t)

(3.50)

Evaluation yields:

g
3,SU(2),red.
HWG (m1,mg, t) =

P (m1,mg, t)

Q(m1,mg, t)
, (3.51)

where the denominator is given by:

Q(m1,mg, t) =
(
1− t4

)2 (
1− t6

) (
1− t8

)
×
(
1−mg

2t2
) (

1−mgt
3
) (

1−mg
3t3
)

×
(
1−m1

2t2
) (

1−m1
2t4
) (

1−m1
6t10

)
×
(
1−mgm1

2t3
) (

1−mg
2m1

2t4
)
,

(3.52)

and the numerator P (m1,mg, t) consists of 1 followed by 248 monomial

terms, being palindromic of degree (12,7,43) in the variables (m1,mg, t).
4

Table 3.24 identifies the combinations of the fields in the denominator

Q(m1,mg, t) that are the generators of the HWG. While the generators in-

clude field combinations in the SU(2g) fundamental, the only Yang-Mills

SU(2) irreps that occur are the adjoint and its symmetrisations. The gen-

erators do not include singlets comprised of pairs of fields, so we can verify

that the F-term constraints have been implemented as intended by the Hy-

per Kähler quotient.

4See [28] for details.
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SU(2);SU(2g) HWG Terms Basic Field Combinations

[0; 0] t4, t6, t8 Singlets

[0; 1] mgt
3

[0; 2] mg
2t2 SU(2g) irreps from φ(α)

[0; 3] mg
3t3

[2; 1] m1
2mgt

3 SU(2) adjoint and SU(2g) irreps

[2; 2] m1
2mg

2t4 from φ(α), X12 and X21

[2; 0] m1
2t2 SU(2) adjoint from X12 and X21

[2; 0] m1
2t4

[6; 0] m1
6t10 SU(2) symmetrised adjoint from X12 and X21

Table 3.24.: Generators of HWG for Three SU(2) Instanton Reduced MS

As before, we can also simplify the HWG into an unrefined version by

either (a) setting the Yang-Mills gauge and global SU(2) CSA coordinates

in 3.49 to unity or (b) replacing monomial terms in the mg and m1 Dynkin

label fugacities in a Taylor expansion of 3.51 by the corresponding irrep

dimensions using the mapping:

mg
nm1

n1 → dim[n] dim[n1] = (n+ 1)(n1 + 1). (3.53)

We obtain the palindromic Hilbert series:5

g
3,SU(2),red.
HS (t) =

(
1 + 3t2 + 6t3 + 12t4 + 16t5 + 31t6 + 36t7 + 55t8+

54t9 + 60t10 + . . . palindrome . . .+ t20

)
(1− t2)3(1− t3)4(1− t4)3 .

(3.54)

It is clear from the significant increase in complexity between the moduli

spaces of two and three SU(2)-instanton theories that the mixing between

the Yang-Mills and global SU(2g) irreps becomes highly non-trivial for k >>

1. This mixing results from the coupling between the fundamental of the

global SU(2g) and the adjoint of the U(k) quiver gauge group, introduced

by the quiver diagram.

5This is consistent with the series obtained by using instanton counting methods set out
in [67].
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3.3.4. Geometric Properties of HWGs and HS of Instantons

As illustrated by the examples above, the representation structures and

HWGs of instanton moduli spaces are generally considerably more com-

plicated than those of SQCD. This arises due to the number of different

symmetry groups involved and because they involve symmetrisations of the

higher dimensioned adjoint representation of the quiver gauge group, in

addition to those of basic irreps. This leads to many relations within the

Hilbert series and so, while the generating functions for the HWGs and HS

of instanton moduli spaces remain palindromic, only some of these moduli

spaces are freely generated. The examples illustrate that while the HWGs

for single instanton theories are freely generated [16], this is not the case for

k > 1 instanton theories.

As in the case of SQCD, it is possible to decompose the dimensions of

instanton moduli spaces into the dimensions of their HWGs and the degrees

of the dimensional polynomials of the HWG irreps. This can be seen from

Table 3.25.

Theory
|HWG|

(a)
HWG
Irrep

HWG
Irrep

Degree
(b)

|HS|
(a) + (b)

One SU(2)-Instanton 2 [2n1, n] 2 4
Two SU(2)-Instantons 6 [2n1;n] 2 8

Three SU(2)-Instantons 10 [2n1;n] 2 12

One SU(3)-Instanton 2 [n1, n1;n] 4 6

Table 3.25.: Dimensions of Moduli Spaces of Selected Instanton Theories

The instanton moduli spaces calculated in Table 3.25 all include a contri-

bution from global SU(2) symmetries. If this contribution is excluded, we

obtain reduced instanton moduli spaces, as discussed earlier.

As discussed in [16], when G is a simple Lie group, the Hilbert series for

the reduced moduli spaces of one G-instanton (“RSIMS”) take the form:

g1,G,red.
HS (x, t) =

∞∑
k=0

[kθ] (x) t2k, (3.55)

where kθ is some multiple of the Dynkin labels θ of the adjoint representa-
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tion of G. This expression is equivalent to the HWG:

g1,G,red.
HWG (m, t) = PE

[
mθt2

]
, (3.56)

which is one dimensional. For example, the HWG of the RSIMS for SU(3)

is just m1m2t
2.

This leads to an elegant decomposition of the dimensions of RSIMS for

simple Classical and Exceptional Lie groups into one dimensional HWGs

and the degrees of their dimensional polynomials. These are calculated in

the same manner as previously and are set out in Table 3.26. All the reduced

one instanton moduli spaces have a HS (complex) dimension equal to twice

the sum of the dual Coxeter labels of G [16]. This important observation

holds the key to the Coulomb branch constructions that will be discussed

for RSIMS and other nilpotent orbits in Chapter 6.

Series Adjoint HWG |HWG|
HWG
Irrep

Degree
|HS|

(a) (b) (a) + (b)

An

A1 : [2]
A2 : [1, 1]
A≥3 : [1, 0, . . . , 1]

m2t2

m1m2t
2

m1mnt
2

1
1
1

1
3

2n− 1

2
4

2n

Bn

B1 : [2]
B2 : [0, 2]
B≥3 : [0, 1, . . . , 0]

m2t2

m2
2t2

m2t
2

1
1
1

1
3

4n− 5

2
4

4n− 4

Cn

C1 : [2]
C2 : [2, 0]
C≥3 : [2, 0, . . . , 0]

m2t2

m1
2t2

m1
2t2

1
1
1

1
3

2n− 1

2
4

2n

Dn
D3 : [0, 1, 1]
D≥4 : [0, 1, . . . , 0]

m2m3t
2

m2t
2

1
1

5
4n− 7

6
4n− 6

E6 [0, 0, 0, 0, 0, 1] m6t
2 1 21 22

E7 [1, 0, 0, 0, 0, 0, 0] m1t
2 1 33 34

E8 [0, 0, 0, 0, 0, 0, 1, 0] m7t
2 1 57 58

f4 [1, 0, 0, 0] m1t
2 1 15 16

G2 [1, 0] m1t
2 1 5 6

Table 3.26.: Dimensions of RSIMS of Simple Lie Groups

We now turn to the subject of the nilpotent orbits of a Classical or Ex-

ceptional group, of which the RSIMS is the simplest non-trivial example.
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4. Introduction to Nilpotent

Orbits

4.1. Nilpotent Matrices, Nilpositive Elements and

Nilpotent Orbits

The subject of nilpotent orbits can be approached in a variety of ways. Tra-

ditional approaches involve the analysis of the matrices and/or generators

of the Lie algebra g of some Lie group G. From the perspective of this

study, the closure of a nilpotent orbit can be considered as a moduli space

described by class functions on the representation lattice of G. So, as a

necessary preliminary to motivating the use of SUSY quiver theories and

their moduli spaces in this context, it is useful to review the relationships

between a group G, the nilpotent matrices or generators X of its Lie algebra

g, and the nilpotent orbits OX to which they give rise.

A nilpotent matrix X over some field (taken as C) is one that vanishes

at some power Xk = 0 for k ≥ d, where d is defined as the nilpotent degree

of the matrix. By similarity transformation, all the eigenvalues of X are

zero and all its invariants vanish: det[X] = 0, . . . , tr[X] = 0. Examples

of nilpotent matrices include strictly upper (or lower) triangular matrices.

Thus, a nilpositive raising operator X of a Lie algebra {Hi, E
+
α , E

−
α }, defined

as X ≡
∑
α
uαE

+
α , for some coefficients uα, acts as a nilpotent matrix on

the vector space of representations.1 Importantly, matrices obtained by

applying a similarity transformation toX retain zero eigenvalues and remain

nilpotent. This leads naturally to the concept of a nilpotent orbit defined

as an equivalence class [33]:

OX = {M : M = AXA−1 for A ∈ G}. (4.1)

1See section 4.2.3 for Lie algebra notational conventions.
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The simple restriction that a matrix should be nilpotent can be combined

with further restrictions, with respect to nilpotent degree, matrix rank, etc.,

to define a poset (partially ordered set) of equivalence classes of nilpotent

matrices. This poset can be graphed to give a distinct Hasse diagram for

each Lie group. A similar Hasse diagram can be drawn based on the moduli

space inclusion relations between nilpotent orbits.

The boundary of all the nilpotent orbits associated with these equivalence

classes is known as the closure of the maximal nilpotent orbit or nilpotent

cone N . Similarly, each equivalence class gives rise to the closure of a

nilpotent orbit. By a common abuse of terminology, the closures of nilpo-

tent orbits are often referred to simply as nilpotent orbits, and this is the

convention generally adopted in this study.

If we consider the simple condition that a Lie algebra matrix generator

X should be nilpotent, it follows, from the vanishing eigenvalues of X, that

the Casimir operators [62] formed from the traces of symmetrised products

of X should vanish:

∀d : d ∈ {Degrees of Symmetric Casimirs of G} → tr
[
Xd
]

= 0, (4.2)

and this vanishing of Casimir operators generalises to non-matrix groups.

The degrees {d} of symmetric Casimir invariants, which are equal in

number to the rank of G, are shown in Table 3.2. Viewed as a moduli

space, the nilpotent cone N is therefore the quotient of the moduli space of

Lie algebra generators of G (the PE of the adjoint representation) divided

by the moduli space of Casimir invariants. The resulting Hilbert series takes

the form:

gG,NHS =
PE

[
χG[adj.]t

]
∏

d∈Casimirs[G]

PE [td]

=
∏

d∈Casimirs[G]

(
1− td

)
PE

[
χG[adj.]t

]
= mHLG[0,...,0](t)

(4.3)

This exactly matches the definition of the modified Hall Littlewood function

mHLG[0,...,0] in 2.17. So, the Hilbert series of the (closure of the) maximal

nilpotent orbit is equal to mHLG[singlet] and has the dimension:
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|N | = |g| − rank[g]. (4.4)

This compares with the dimension |OX | ≤ |N | of the nilpotent orbit

associated with general X, which is given by [33]:

|OX | = |g| − |gX |, (4.5)

where gX is the centraliser ofX in g, defined as gX ≡ {c : c ∈ g & [X, c] = 0}.
Thus |gX | ≥ rank[g].

To give examples, first consider SU(2), which has one non-trivial nilpo-

tent orbit. SU(2) has a three dimensional Lie algebra matrix generator

given by M =
(

z x− iy
x + iy −z

)
. Imposing the nilpotence condition M2 = 0

entails x2 + y2 + z2 = 0, so a general nilpotent matrix from the com-

plexified Lie algebra of SU(2) has two free complex parameters. Turn-

ing to the adjoint representation, the corresponding matrix generator is

M = i

(
0 z −y
−z 0 x

y −x 0

)
. In both cases, the single SU(2) Casimir invariant is

of degree two, tr[M.M ] = 2(x2 +y2 +z2), and vanishes under the nilpotence

condition, as expected from 4.2. From a Lie algebra perspective, the SU(2)

raising operator E+
1 has itself as a single centraliser, so, in accordance with

4.5, the dimension of the nilpotent orbit is two.

Or, consider SU(3), which has two non-trivial nilpotent orbits. The nilpo-

tence condition M2 = 0 places 4 conditions on the 8 dimensional Lie algebra

and yields a matrix generator with four free complex parameters. From a

Lie algebra perspective, the SU(3) raising operator X = E+
12, has the cen-

traliser gX = {E+
1 , E

+
2 , E

+
12, H1 − H2}, so, by 4.5, the dimension of this

nilpotent orbit is four.

Alternatively, the weaker nilpotence condition M3 = 0 places 2 conditions

on the Lie algebra of SU(3) and yields a matrix with six free parameters.

Taking the SU(3) raising operator as X = E+
1 +E+

2 , this has the centraliser

gX = {E+
1 + E+

2 , E
+
12}, so, by 4.5, the dimension of this nilpotent orbit is

six. SU(3) has |g| = 8 and two Casimir invariants, so this is the maximal

nilpotent orbit.

These examples illustrate the correspondence between the degrees of free-

dom of nilpotent matrices and the dimensions of orbits described by equiv-

alence classes of nilpotent Lie algebra elements or their moduli spaces.
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While the general relationship between nilpositive elements and moduli

spaces requires a more thorough account, the principle of analysing the

closures of nilpotent orbits in terms of the moduli spaces of representations

extends in a natural way from Classical groups through Exceptional groups,

as will be shown.

4.2. SU(2) Homomorphisms and Standard Triples

As a further preliminary, it is important to review the means of identifying

and classifying the nilpotent orbits of G. This can be done in terms of

SU(2) homomorphisms, partitions or dimensions, amongst other methods

to be discussed later.

As described in [33], the Jacobson-Morozov theorem shows that each

nilpotent element X of g falls within some standard triple {H,X, Y } of

some SU(2) subalgebra of g. Also, a theorem of Kostant shows that the

map from standard triples to nilpotent elements is injective (or one to one),

up to conjugation of the nilpotent elements. Taken together, these theo-

rems establish a bijection between standard triples and conjugacy classes

of nilpotent elements. By arguing a bijection between conjugacy classes of

nilpotent elements and nilpotent orbits, (Theorem 3.2.10) [33] further claims

a bijection between standard triples and (closures of ) nilpotent orbits OX .

Each standard triple {H,X, Y } is in turn defined by a homomorphism (or

embedding) ρ from G to SU(2) and this implies a bijection between SU(2)

homomorphisms ρ and distinct nilpotent orbits OX .

The possible embeddings of SU(2) into G were first systematically enu-

merated, for both Classical and Exceptional groups, by Dynkin [54]. The

standard tables of nilpotent orbits in the recent Literature, for example in

[33], are essentially unchanged from the list of SU(2) subalgebras identified

by Dynkin.

4.2.1. SU(2) Homomorphisms

From the perspective of character analysis, each such homomorphism ρ

corresponds to a fugacity map between the CSA coordinates {x1, . . . , xr} of

G and {x} of SU(2), under which the character of every representation of

G decomposes into a sum of characters of SU(2) irreps:
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ρ : {x1, . . . , xr} → {xω1 , . . . , xωr} ,

ρ : χG (x1, . . . , xr)→
∑⊕

n
an [n] (x) ,

(4.6)

where the coefficients an are non-negative integers. The exponents [ω1, . . . , ωr]

in 4.6 are referred to as the weight map of ρ in this study. The enumeration

of nilpotent orbits via SU(2) homomorphisms is therefore equivalent to the

problem of identifying all such valid weight maps.

We can refine the problem as follows. The exponents of x that appear in a

valid map ρ(R) of some representation R ofG are weight space Dynkin labels

of SU(2) and must therefore be integers. Moreover, the highest exponent of

x that can appear must be an integer below |R|, otherwise the monomials

within ρ(R) could not form a complete representation. Furthermore, once

we establish that a map ρ is valid for all the basic irreps of G (those with

highest weight Dynkin labels of the form [0, . . . , 1, . . . , 0]), it follows that the

map must be valid for all representations of G [58]. This limits the number

of possible weight maps at most to the product of the dimensions of the

basic irreps of G.

Indeed, the number of possible homomorphisms can be limited further by

a theorem [54], which entails that ρ, when expressed in terms of simple root

fugacities {z1, . . . , zr} of G and {z} of SU(2), must be conjugate under the

action of the Weyl group of G to a map of the form:

ρ : {z1, . . . zr} → {z
q1
2 , . . . , z

qr
2 }, (4.7)

where qi ∈ {0, 1, 2}. The labels [q1, . . . , qr] are termed the Characteristic of

a nilpotent orbit [54]. In this study, the Characteristic is also refered to as

the root map of ρ.2 Thus, there are at most 3rank[G] root maps that need to

be tested, which is a straightforward computational procedure for low rank

groups.3

These homomorphisms can also be labelled by the SU(2) decomposition

of ρ(R), where R is some representation of G. R is usually chosen to be the

2The Literature also refers to a Characteristic G[ρ] as the Dynkin labels (of a nilpotent
orbit), not to be confused with the weight space Dynkin labels (of irreps) [n]G. Since
the labels in a Characteristic can only be 0, 1 or 2, it can be convenient to omit the
separators ”,”.

3Note that root and weight fugacities and maps are related by the Cartan matrix of G
as z = xA and q = Aω, respectively.
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fundamental representation for A series groups, or the vector representation

for BCD series groups. Such decompositions of ρ(R) are conventionally

expressed using condensed partition notation, under which each SU(2) irrep

[n] with non-zero multiplicity an is assigned an element in the partition equal

to its dimension, with an exponent equal to its multiplicity:

ρ(R) =

nmax∑
n=0

an [n],

⇔ (|[nmax]|anmax , . . . , |[n]|an , . . . , 1a0) .

(4.8)

Additional selection rules are required to ensure that the representations

ρ(R) assigned to each irrep R of G are consistent with its bilinear invariants.

Recall that an irrep can be classified as (i) real, (ii) pseudo real or (iii)

complex, depending, respectively, on whether it has (i) a symmetric bilinear

invariant with itself, (ii) an antisymmetric bilinear invariant with itself,

or (iii) a bilinear invariant with its contragredient representation (complex

conjugate in the case of unitary representations). As shown in [33], when

R has bilinear symmetric or antisymmetric invariants, this requires irrep

selection rules, to exclude any homomorphisms ρ under which such bilinears

change type:

1. Real R. If a partition element (i.e. SU(2) irrep) of even dimension

appears, it must appear an even number of times. This ensures that

any pseudo real SU(2) irreps come in pairs. These are often referred

to as B partitions or D partitions.

2. Pseudo real R. If a partition element (i.e. SU(2) irrep) of odd dimen-

sion appears, it must appear an even number of times. This ensures

that any real SU(2) irreps come in pairs. These are often referred to

as C partitions.

3. Complex R. Complex irreps have bilinear invariants with their com-

plex conjugates, rather than with themselves. Conjugate pairs of rep-

resentations have identical SU(2) partitions, so no selection rules ap-

ply.

It is important to appreciate that these irrep selection rules depend on the

type of representation R of the parent group, upon which ρ acts, and not
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on the parent group series (as implied in some of the Literature). The Real

and Pseudo real rules apply across all representations of both Classical and

Exceptional groups, although they are largely redundant in the case of A

series groups, where the fundamental irreps are complex and not subject to

these restrictions.

Appendix B tabulates these homomorphisms for Classical groups up to

rank 5 and for Exceptional groups. The homomorphisms are described by

their dimensions, their Characteristics (or root maps) and weight maps,

and the resulting partitions of the key irreps of G. While partial tables are

often presented in the Literature [33, 30], this fuller presentation, including

vectors/fundamentals, spinors and the adjoint representation, is helpful for

the analysis of nilpotent orbits.

As an example, A3 has five nilpotent orbits and these can be referred

to uniquely, either by the partition data assigned (under ρ) to one of its

representations, or by the Characteristic (root map), or by the weight map.

Taking the character of the fundamental of A3 as [1, 0, 0] = x1 + x2/x1 +

x3/x2 + 1/x3 and the simple root fugacities of A3 as {z1 = x2
1/x2, z2 =

x2
2/x1/x3, z3 = x3

2/x2}, the homomorphism ρ with Characteristic [222]

can be written in any one of the following equivalent ways:

ρ : (z1, z2, z3)→ (z, z, z) ,

ρ : (x1, x2, x3)→
(
x3, x4, x3

)
,

ρ : (x1 + x2/x1 + x3/x2 + 1/x3)→
(
x3 + x+ 1/x+ 1/x3

)
,

ρ : [1, 0, 0]→ [3],

ρ : [1, 0, 0]→ (4).

(4.9)

Intriguingly, while these SU(2) homomorphisms identify all the Charac-

teristics of Exceptional and Classical group nilpotent orbits that appear in

standard tables, this method also leads to a few extra root maps for some

Exceptional groups, as highlighted in Appendix B.5. One extra root map

arises in F4; there are 3 in E6, 8 in E7 and 39 in E8. Their moduli spaces

are examined and discussed in Chapter 7.
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4.2.2. Partitions

For Classical groups, there is a bijective correspondence between SU(2) ho-

momorphisms that satisfy the irrep selection rules and partitions [33]. As

an alternative to finding the partitions of nilpotent orbit from SU(2) homo-

morphisms, they can also be found from partition generating functions that

encapsulate the irrep selection rules. We introduce fugacities {ν1, . . . , νN},
indexed according to the possible dimensions of SU(2) irreps, where N is

the fundamental/vector dimension of G, and use exponents to count the

multiplicities of irreps. For example, ρ ≡ (4) maps to the monomial ν4 and

ρ ≡ (12, 2) maps to the monomial ν2
1ν2. We use the overall counting fugacity

t. A short calculation then leads to the generating functions for partitions

set out in Table 4.1.

Group Partition Series Generating Function

SU(N)
∞∑
i=1

PSU (ν1, . . . , ν∞) ti
∞∏
i=1

1
1−νiti − 1

USp(N)
∞∑
i=1

PUSp (ν1, . . . , ν∞) ti
∞∏
i=1

1
1−νiti

∞∏
j=0

1
1+ν2j+1t2j+1 − 1

SO(N)
∞∑
i=1

PSO (ν1, . . . , ν∞) ti
∞∏
i=1

1
1−νiti

∞∏
j=1

1
1+ν2jt2j

+
∞∏
j=1

1
1+ν2

2jt
4j − 2

Table 4.1.: Generating Functions for Partitions of Classical Orbits

For example, to obtain the partitions for the fundamental of SU(4), we

find the coefficient of t4 in the Taylor expansion of the generating function

for
∞∑
i=1

PSU (ν1, . . . , ν∞) ti. This is ν4
1 + ν2

1ν2 + ν1ν3 + ν2
2 + ν4, corresponding

to the set of five partitions {(14), (12, 2), (1, 3), (22), (4)}.
In the case of Exceptional groups, there is no such bijective correspon-

dence between partitions of the vector/fundamental representation and SU(2)

homomorphisms. For example, both G2 and B3 have 7 dimensional vec-

tor/fundamental representations, but G2 only has 5 nilpotent orbits, com-

pared with the 7 of B3.

It is also noteworthy that a description of nilpotent orbits, by partitions

of the vector representation alone, does not give a unique labelling for Deven

groups. Recalling that the spinor is a more fundamental representation than

a vector, we can see in appendix B.4, for example, that the (24) and (42)

vector partitions of D4 both correspond to pairs of nilpotent orbits that are
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distinguished only by their spinor partitions.

Partitions that only contain pairs of even elements are referred to as very

even. The very even vector partitions of SO(4k) groups all correspond to

spinor pairs of nilpotent orbit moduli spaces and can be encoded in a simple

generating function, as shown in Table 4.2.

Group Partition Series Generating Function

SO(4k)
∞∑
i=1

P Spinor Pair
SO (ν1, . . . , ν∞) ti

∞∏
i=1

1
1−ν2

2it
4i − 1

Table 4.2.: Generating Functions for Partitions of Spinor Pair Orbits

The partitions of N = 4k are given by the coefficients of tN . The gener-

ating function can be unrefined, by setting νi → 1, to find the number of

SO(4k) spinor pair nilpotent orbits as a function of the vector dimension.

4.2.3. Standard Triples

It is useful to elaborate on the relationship between SU(2) homomorphisms

and standard triples {H,X, Y }. Standard triples are defined by the commu-

tation relations [H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. These operators

are embedded in the Lie algebra g of G, which is given by the operators

{Hi, Eα+, Eα−}, as detailed in Appendix A.4.

Now, consider a Characteristic [q] ≡ [q1, . . . , qr], with corresponding weight

map [w] ≡ [w1, . . . , wr], related by [q] = A · [w]. Each root, α =
∑

i aiαi,

where {α1, . . . , αr} are simple roots, is assigned a Characteristic height,

[α] ≡
r∑
i=1

aiqi.

The elements of the standard triple {H,X, Y } are chosen as:

H =
r∑
i=1

wiHi,

X =
∑

α∈ΦG:[α]=2

uαEα+,

Y =
∑

α∈ΦG:[α]=2

vαEα−,

(4.10)

for some coefficients uα and vα. X contains only those roots with [α] = 2,

and each of these satisfies the commutation relations [H,Eα+] = 2Eα+,
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so [H,X] = 2X. Similarly, Y satisfies [H,Y ] = −2Y . The commutation

relation [X,Y ] = H determines uα and vα, up to scaling freedoms [54].

As the simplest example, consider the SU(2) homomorphism with the

Characteristic [2]. This maps the positive root of G = SU(2) to the positive

root of an SU(2) subalgebra and so the nilpositive element is just X =

E1+. The relationship between the standard triple {H,X, Y } of the SU(2)

subalgebra and its parent SU(2) algebra {H1, E1+, E1−} follows directly, as

set out in Table 4.3. The coefficient of H1 in the standard triple matches

the weight map, which is [1].

Parent group Lie algebra

SU(2) [H1, E1±] = ±2E1± [E1+, E1−] = H1

Nilpotent element

Characteristic [2]
Weight map [1]

Positive roots E1+

{H,X, Y } {H1, E1+, E1−}

Table 4.3.: Standard Triple for SU(2) Homomorphism

The analysis for SU(3) in Table 4.4 is more interesting. In this case there

are two non-trivial nilpotent orbits, so that the Characteristic [11] generates

the nilpositive element E12+, while the Characteristic [22] generates the

nilpositive element (E1+ + E2+). Once again, the coefficients of H1 and H2

match the labels [1 1] and [2 2] in the corresponding weight maps. The

standard triples can be verified using the Lie algebra relations.

This analysis generalises to any SU(2) homomorphism of G. The nilpo-

tent operators Eα in the standard triple follow directly from the Charac-

teristic. The coefficients uα and vα can, in principle, be determined, up to

scaling freedoms, from the Lie algebra g.

Notwithstanding the received bijective relationship between standard triples

and nilpotent orbits, there is no simple prescription in the Literature for

finding the closure of a nilpotent orbit from its standard triple, although

its dimensions can be obtained from 4.5. Accordingly, this study focuses

first on methods based on partitions, which lead to the Higgs branch con-

structions of Chapter 5. The Coulomb branch constructions of Chapter 6

draw directly on Characteristics and weight maps. By way of integrating
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Parent group Lie algebra

SU(3)

[H1, E1±] = ±2E1±
[H2, E1±] = ∓E1±
[H1, E2±] = ∓E2±
[H2, E2±] = ±2E2±
[H1 or 2, E12±] = ±E12±

[E1+, E1−] = H1

[E2+, E2−] = H2

[E12+, E12−] = H1 +H2

[E1±, E2±] = ±E12±
[E1±, E12∓] = ∓E2∓
[E2±, E12∓] = ±E1∓

(other commutators zero)

Nilpotent elements

Characteristic
Weight map

Positive roots
{H,X, Y }

[11]
[11]
{E12+}

{H1 +H2, E12+, E12−}
Characteristic
Weight map

Positive roots
{H,X, Y }

[22]
[22]

{E1+, E2+}
{2H1 + 2H2, E1+ + E2+, 2E1− + 2E2−}

Table 4.4.: Standard Triples for SU(3) Homomorphisms

these approaches, a method developed in the course of this study, for cal-

culating the Hilbert series of the closures of nilpotent orbits, based on their

Characteristics, is presented in Chapter 7.

4.3. Dimensions of Nilpotent Orbits

The dimensions |Oρ| of a nilpotent orbit Oρ ∼ OX can be found directly by

subtracting from |G| the length of the adjoint partition (i.e. the number of

SU(2) representations into which the adjoint representation of G is split by

ρG (adj.)):

|Oρ| = |G| −
∣∣ρG (adj.)

∣∣ . (4.11)

This can be checked by inspection of Appendix B. Comparing 4.5, it appears

that the dimension of the centralizer gX is equal to the length of the partition∣∣ρG (adj.)
∣∣.

For a Classical group, the dimension |Oρ| can also be calculated, as set out

in [33], from the partition data of the defining fundamental/vector repre-

sentation. Consider the ordered partition (in standard notation) ρ(def.) =

(ρ1, . . . , ρn), with ρ1 being the greatest element appearing in ρ. The trans-

96



pose partition σ ≡ ρT , where σ = (σ1, . . . , σρ1), can be obtained using

Young’s diagrams. It is convenient, for our purposes, to restate (6.1.4) of

[33] more simply in terms of rank r and this transposed partition σ(def.),

to obtain the dimension formulae shown in Table 4.5. These dimensions are

based on a lattice over a complex space and are always even.

Group |Oρ|
Ar (r + 1)2 −

∑
i
σ2
i

Br r (2r + 1)− 1
2

∑
i odd

σi (σi − 1)− 1
2

∑
i even

σi (σi + 1)

Cr r (2r + 1)− 1
2

∑
i odd

σi (σi + 1)− 1
2

∑
i even

σi (σi − 1)

Dr r (2r − 1)− 1
2

∑
i odd

σi (σi − 1)− 1
2

∑
i even

σi (σi + 1)

Table 4.5.: Dimension Formulae for Classical Orbits

We can identify within the expressions for |Oρ|, the dimension of G, re-

duced by a sequence of dimensions of square matrices defined by σ. For

the A series, this sequence is associated with unitary matrices, while for

BCD series, this sequence is associated with alternating symmetric and

antisymmetric real matrices.

Importantly, identical dimensions can also be obtained by assigning a

Higgs branch quiver theory to a Classical vector/fundamental partition that

satisfies the Real and Pseudo real rules selection rules, as will be shown in

Chapter 5.

4.4. Terminology

Before proceeding, it is helpful to collect some of the elaborate terminology

that permeates the classification of nilpotent orbits.

4.4.1. Canonical Orbits

The dimensions of nilpotent orbits have a partial ordering, which is often

expressed using Hasse diagrams. Formally, this partial ordering is defined

by inclusion relations amongst the closures Ō of nilpotent orbits O.4 There

4The closures Ō correspond to the quiver theory moduli spaces that are calculated in
this study.
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are a number of canonical orbits within this partial ordering:

1. The trivial orbit. This is associated with the partitions ρG(R) = (1|R|)

and always has zero dimension.

2. The minimal orbit. This is the first orbit with non-zero dimension

and is always unique. Its complex dimension is equal to twice the

sum of the dual Coxeter labels of G. This equals the dimension of the

reduced single instanton moduli space of G.

3. The sub-regular orbit. This is the orbit with next to highest dimension.

It is always unique, having a complex dimension equal to the number

of the roots of G, less 2.

4. The maximal orbit. This is the orbit with highest dimension and

is always unique. Its complex dimension is equal to the number of

roots of G. This equals the dimension of the modified Hall Littlewood

function mHLG[0,...,0].

The above orbits are not distinct for low rank groups. For example, in A1,

the minimal and maximal orbits coincide, as do the trivial and sub-regular.

4.4.2. Distinguished Orbits

A distinguished nilpotent element is associated with an SU(2) homomor-

phism in which ρG(adj.) contains no SU(2) singlets [33]. This rule leads to

the following list of distinguished nilpotent orbits:5

Ar: Maximal nilpotent orbit only,

Br: Partitions of 2r + 1 into distinct odd parts,

Cr: Partitions of 2r into distinct even parts,

Dr: Partitions of 2r into distinct odd parts,

G2: [20] and [22],

F4: [0200], [0202], [2202] and [2222],

E6: [202020] [220222] and [222222],

5The list of distinguished Exceptional group Characteristics appears in Table 23 of [54].
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E7: [0020020], [2020020], [2020220], [2202022], [2202222] and [2222222],

E8: [00020000], [00200020], [00200200], [00200220], [20200200], [20200220],

[20202020], [20202220], [22020222], [22022222] and [22222222].

The vector partitions of SO and USp groups that correspond to distin-

guished nilpotent orbits can be encoded as the simple generating functions

in Table 4.6. The partitions of N are given by the coefficients of tN , as

Group Partition Series Generating Function

USp(N)
∞∑
i=1

PDist.
USp (ν1, . . . , ν∞) ti

∞∏
i=1

(
1 + ν2it

2i
)

SO(N)
∞∑
i=1

PDist.
SO (ν1, . . . , ν∞) ti

∞∏
i=0

(
1 + ν2i+1t

2i+1
)

Table 4.6.: Generating Functions for Distinguished BCD Partitions

described in section 4.2.2. These generating functions can be unrefined, by

setting νi → 1, to find the number of distinguished nilpotent orbits as a

function of the vector dimension N .

4.4.3. Even Orbits

An even nilpotent orbit is one that has a Characteristic containing the labels

0 or 2 only. All distinguished orbits are even [33].

4.4.4. Richardson Orbits

A Richardson nilpotent orbit is one that can be induced from the the triv-

ial nilpotent orbit of a subgroup [33]. Every nilpotent orbit that has a

Characteristic containing only the labels 0 or 2 has a quotient group G/H

structure and can be induced, as will be explained in section 7.1, from the

trivial nilpotent orbit of the subgroup H, whose Dynkin diagram is defined

by the 0 labels of the Characteristic. All even orbits are thus Richardson

orbits. In addition, some groups have non-even Richardson orbits, with

the rules for identifying such orbits being given in [68]. Richardson orbits

have polarizations [69] and symplectic resolutions [68]. The complete set of

Richardson orbits is:

Ar: All nilpotent orbits,
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Br: Partitions of 2r + 1, whose first q parts are odd, where q is odd, with

the remaining parts even,

Cr: Partitions of 2r, whose first q parts are odd, where q is even, with the

remaining parts even,

Dr: Partitions of 2r, whose first q parts are odd, with the remaining parts

even, and either (i) q is even but q 6= 2, or (ii) q = 2 and the two odd

parts are located at positions 2k − 1 and 2k for some integer k,

EFG: All even orbits, plus

F4: [1012],

E6: [100010], [010100], [100012], [110111] and [110112],

E7: [0100011], [1010100], [2010100], [2101101] and [2101021],

E8: [01001002], [101010000], [21010220], [01000120], [10101010], [10101020]

and [20101020].

4.4.5. Rigid vs Non-Rigid Orbits

A non-rigid nilpotent orbit is one that can be induced from some nilpotent

orbit of a subgroup. All Richardson orbits are thus non-rigid, being induced

from a trivial nilpotent orbit. Importantly, any orbit whose Characteristic

contains 2 can be induced from the orbit of the subgroup defined by the

Dynkin diagram and Characteristic that remains after removing one or more

nodes with Characteristic 2 from the parent diagram.

Conversely, a rigid nilpotent orbit is one that cannot be induced from

a nilpotent orbit of a subgroup. A rigid nilpotent orbit has a Character-

istic containing 0 and 1 only, as a necessary, but not sufficient, condition.

Notably, the minimal nilpotent orbits of simple groups, other than those

isomorphic to the A series, are rigid [33]. Also, for example, D4[1011] is

rigid amongst orbits of low rank groups. Rigid orbits of Exceptional groups

are identified in [70].

The inclusion relations between the above types of orbit provide a classi-
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fication scheme:

{Nilpotent Orbits} = {Rigid} ∪ {Non−Rigid}

{Non−Rigid} ⊃ {Richardson} ⊃ {Even} ⊃ {Distinguished}
(4.12)

4.4.6. Special Orbits

A special nilpotent orbit is one that is invariant under two applications of

the Spaltenstein map. For Classical groups the Spaltenstein map is defined

by fundamental/vector partition transposition, followed, if the transpose

partition is not valid under the Real/Pseudo real selection rules, by BCD-

collapse to a lower partition. The Spaltenstein map d is thus many to one,

often described as d3 = d, and can lead to the conflation of distinct nilpotent

orbits, as discussed in [24]. AllA series nilpotent orbits are special. A special

BC series nilpotent orbit is one whose Spaltenstein map does not require

BC collapse.

A Spaltenstein map can also be defined for Exceptional groups. All

Richardson orbits are special, as is any orbit of a higher rank group in-

duced from a special orbit [33]. Some rigid orbits are also special.

4.4.7. Normal vs Non-Normal Orbits

From the perspective of this study, a more important distinction is that

between normal and non-normal nilpotent orbits. A normal symplectic va-

riety only contains singularities that are rational Gorenstein [71] and this

entails that it is Calabi-Yau with a palindromic Hilbert series [13]. Consis-

tent with this, the normal nilpotent orbits of Classical groups (calculated

up to rank 4, as tabulated in Chapter 5) were found in [24] to have palin-

dromic Hilbert series; however, non-normal nilpotent orbits were found to

have non-palindromic Hilbert series.

The normalisation of a nilpotent orbit can be defined as a palindromic

moduli space of the same dimension that forms a covering space. A nor-

mal nilpotent orbit is its own normalisation. Normalisations of non-normal

nilpotent orbits contain elements outside the nilpotent cone N .

For Classical groups, it was shown in [6], based on a geometric analysis,

that the vector partition of a non-normal orbit is always related to that of

the orbit immediately below it, by a particular degeneration of its Young’s
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diagram. In this degeneration, a pair of even rows in some sub-diagram,

described by the partition (2r, 2r), degenerates to (2r − 1, 2r − 1, 1, 1); all

the rows above and all the columns to the left of the sub-diagram remain

unchanged. Such degenerations result from a D2r subalgebra of a BCD

series parent and are termed A2r−1 ∪ A2r−1 degenerations. A D2r group

may have several degenerations associated with its spinor pairs, including

A2r−1 ∪A2r−1 and A1 ∪A1 degenerations.

All A series nilpotent orbits are normal. The Classical non-normal nilpo-

tent orbits up to rank 5 are:

B: [101], [2101], [10001], [22101],

C: [0200], [02000],

D: [02] ∪ [20], [0002] ∪ [0020], [0202] ∪ [0220], [01011].

These are all Richardson orbits of non-distinguished type.

A similar situation arises in Exceptional groups, where non-normal nilpo-

tent orbits are also associated with particular degenerations of their par-

titions [71]. The non-normal nilpotent orbits of Exceptional groups are

identified in [72], being:

G2: [01],

F4: [0002], [2001], [0101], [1010], [1012], (5 cases),

E6: [100011], [200020], [100012], [010101], [200022], (5 cases),

E7: [2000100], [2000020], [1010000], [1001010], [0100011], [0010100], [2000200],

[2000220], [0101021], [2101021], (10 cases),

E8: [10000020], [00001010], [00000220], [0100010], [10001000], [20000020],

[00000121], [10001020], [20001010], [00100020], [00000022], [20000200],

[20000220], [10100010], [01001010], [01000101], [10010100], [00101000],

[10010120], [20002000], [01000121], [00101020], [20002020], [21000121],

[20002220], [20101020], [20020020], [01010221], [21010221], (29 cases).

The non-normal orbits of Exceptional groups occur amongst all types

other than distinguished and their relationships with their normalisations

are complicated [71]. It is conjectured in [72] that all distinguished nilpotent

orbits are normal.
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5. Higgs Branch Constructions of

Nilpotent Orbits

5.1. Quivers for Minimal Classical Nilpotent

Orbits

This exposition of the Higgs branch constructions of the moduli spaces that

match Classical group nilpotent orbits starts with a review of reduced single

instanton moduli spaces. For a k = 1 G-instanton theory, the SU(2g) global

symmetry decouples, as discussed in section 3.3, and this permits simple

SUSY quiver theories for the RSIMS of Classical groups, whch coincide

with minimal nilpotent orbits.

These theories are all N = 2 SUSY theories consisting of (i) hypermul-

tiplets containing bifundamental scalars, transforming in a Classical Yang-

Mills (or flavour) group and a particular gauge group, (ii) a vector multiplet

transforming in the adjoint of the gauge group and (iii) a superpotential.

The theories have interpretations in terms of brane systems, as will be de-

veloped in Chapter 6. The brane constructions corresponding to unitary

theories are straightforward, however, the orthogonal and symplectic the-

ories require the use of orientifold planes [16]. The quivers are shown in

Figure 5.1 using N = 2 notation and the field charges and superpotential

are as specified in Table 5.1, adapted from [16] by the elimination of the

SU(2g) fields.

These moduli spaces give the refined Hilbert series of GIOs for the various

product groups. Their generating functions are constructed as in section 3.3:

the fields in Table 5.1 are symmetrised using the PE; the F-term vacuum

constraints are imposed by the HyperKähler quotient, which contains the

adjoint of the gauge group and takes the form PE[[adj.] t2]. The results are

shown in in Table 5.2.

The GIOs (or singlets) of the quiver gauge group are selected through
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Figure 5.1.: Quivers for Classical Reduced Single Instanton Moduli Spaces
using N = 2 notation. The square nodes denotes the Yang-
Mills symmetry groups. The round nodes denotes the instan-
ton quiver gauge groups. The links correspond to bifundamen-
tal fields transforming under the Yang Mills and quiver gauge
groups. The superpotential fields transforming in the adjoint
of the quiver gauge group are implicit in the gauge nodes.

Fields
Quiver

Gauge Group
Yang-Mills

Group
R-Charge
U(1)R

Superpotential

SU(N)YM ⊗ U(1)gauge ⊗ Ū(1)gauge :

Φ
X12

X21

1
1/q
q

[0, . . . 0]
[1, . . . 0]
[0, . . . 1]

(0)
(1)
(1)

Tr (X21ΦX12)

SO (N)YM ⊗ USp(2)gauge :

S
Q

[2]
[1]

[0, . . . 0]
[1, . . . 0]

0
(1)

Tr
(
Qaε

abSbcε
cdQd

)
USp (N)YM ⊗O(1)gauge :

A
Q

1
±1

[0, . . . 0]
[1, . . . 0]

0
(1)

Tr (QAQ)

CSA Fugacities y x t
HW Fugacities m t

Table 5.1.: Field Content of Quivers for Classical RSIMS
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Weyl integration or a Molien average (see Appendix A.2). Different quiver

gauge groups are required to yield RSIMS, depending on the Yang-Mills

group. The chosen quiver gauge groups contain bilinear invariants (dis-

cussed in section 3.1), that act, via the mediacy of the bifundamental fields,

to contract the vector/fundamental of the Yang-Mills group, giving its ad-

joint. The Molien average for a C series flavour group is taken over the

two characters ±1 of the O(1) gauge group; these are reflected in the ±t
fugacities.

Evaluation of the contour integrals gives the refined Hilbert series shown

in Table 5.3. These are written using class function notation as:

gGHS:RSIMS

(
χG(x), t

)
= PGRSIMS

(
χG(x), t

)
PE

[
[adj.]G(x) t2

]
. (5.1)

The refined Hilbert series gGHS:RSIMS

(
χG(x), t

)
can be transformed, through

a further contour integration using a character generating function to give

the HWG gGHWG:RSIMS (m, t), as in 2.14. These HWGs are shown in Tables

5.2 and 5.3 and correspond to highest weight symmetrisations of the adjoint

representation [kθG] for k = {0, 1, . . .∞}, where [θG] are the Dynkin labels

of the adjoint representation of G.

As noted in section 3.3, the unrefined Hilbert series gGHS:RSIMS(t) have

dimensions equal to twice the sum of the dual Coxeter labels of G and

these coincide with the dimensions of minimal nilpotent orbits tabulated in

Appendix B.

Moreover, it is straightforward to show that the RSIMS of G is included

within the nilpotent cone N , by comparison with the moduli space defined

by the modified Hall Littlewood function mHLGsinglet. Such moduli space

inclusion calculations are described in detail later in this Chapter.

This combination of dimensional matching and inclusion relations uniquely

identifies the RSIMS as the minimal nilpotent orbit of G. Thus, the quiver

theories in Figure 5.1 yield all the minimal nilpotent orbits of Classical

groups. The correspondence between each quiver diagram and a partition

of the vector/fundamental representation under the homomorphism ρ is de-

scribed in the next section. The accidental isomorphisms between Classical

Lie group algebras give rise to alternative possible Yang-Mills and quiver

gauge group choices.
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Series gGHWG:RSIMS PGRSIMS(χG, t2) PE[[adj.]G t2]

A1 m2t2
(
1− t4

)
[0, 0] PE

[
[2] t2

]
A2 m1m2t

2

(
1− t4 − t8 + t12 [0, 0]
−t4 + 2t6 − t8 [1, 1]

)
PE

[
[1, 1] t2

]
A3 m1m3t

2 PA3

RSIMS PE
[
[1, 0, 1] t2

]
B2 m2

2t2


1− t4 − t12 + t16 [0, 0]
t6 − 2t8 + t10 [0, 2]

−t4 + t6 + t10 − t12 [1, 0]
t6 − 2t8 + t10 [1, 2]

−t4 + t6 + t10 − t12 [2, 0]

 PE
[
[0, 2] t2

]
B3 m2t

2 PB3

RSIMS PE
[
[0, 1, 0] t2

]
C2 m1

2t2


1− t4 − t12 + t16 [0, 0]
−t4 + t6 + t10 − t12 [0, 1]
−t4 + t6 + t10 − t12 [0, 2]

t6 − 2t8 + t10 [2, 0]
t6 − 2t8 + t10 [2, 1]

 PE
[
[2, 0] t2

]
C3 m1

2t2 PC3

RSIMS PE
[
[2, 0, 0] t2

]
D2 m1

2t2 +m2
2t2

 2− 2t4 − 2t6 + 2t10 [0, 0]
−t2 + t4 + t6 − t8 [0, 2]
−t2 + t4 + t6 − t8 [2, 0]

 PE
[
[2, 0] t2 + [0, 2] t2

]
D3 m2m3t

2 PD3

RSIMS PE
[
[0, 1, 1] t2

]
D4 m2t

2 PD4

RSIMS PE
[
[0, 1, 0, 0] t2

]
PA3

RSIMS, PB3

RSIMS, PC3

RSIMS, PD3

RSIMS, PD4

RSIMS are given in [29].

Table 5.3.: HWGs and Refined HS for RSIMS of Classical Groups

Constructions of this type are not known when the Yang-Mills group is

Exceptional; while the adjoint of an Exceptional group can be formed by

anti-symmetrising the fundamental representation, many other irreps are

also generated, so the resulting moduli spaces are not minimal nilpotent

orbits.

5.2. Quivers for General Classical Nilpotent

Orbits

The SUSY quiver theories whose Higgs branches correspond to nilpotent

orbits of unitary groups can all be described by an SU(Nf ) flavour node

linked to a linear chain of unitary gauge nodes U(Ni) [7]. Such quivers,

which are shown in Figure 5.2 using N = 2 notation, contain a descending

sequence of unitary gauge nodes and can be referred to by the mnemonic

[Nf ]− (N1)− . . . (Nmax).
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Figure 5.2.: Unitary Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The links
represent pairs of bifundamental fields transforming in the fun-
damental and antifundamental representations. The quiver is
ordered such that Nf ≥ N1 ≥ Ni ≥ . . . ≥ Nmax.

If we consider the Higgs branch of such a quiver: each link represents

a bifundamental hypermultiplet containing a conjugate pair of scalar fields

Xij and Xji transforming under the flavour and/or gauge groups associated

with its nodes; each gauge node is associated with a scalar field Φii trans-

forming in the adjoint representation of the gauge group. A superpotential is

formed from contractions of bifundamental and adjoint fields. The F-terms

obtained by application of vacuum minima conditions to the superpotential

lead to the imposition on each node of a HyperKähler quotient. The ring of

gauge invariant operators formed by symmetrising the bifundamental fields,

modulo the HKQ, can be enumerated in a Hilbert series.

The Higgs branch formula for this Hilbert series, expressed in terms of

characters χ and a counting fugacity t, is:

gAHS:Higgs (χ(x), t) =

∮
gauge

dµgauge
∏
j<i

PE [χ (Xij +Xji) t]

gHK(χU(Ni), t)
. (5.2)

The integrand is a product of terms similar to those appearing in Table 5.2

and the Weyl integration is carried out over each gauge group.

One delicate aspect of this calculation is that of the HyperKähler quo-

tient gHK . This has the effect of ensuring, for each Weyl integration, that

the flavour group Hilbert series excludes any singlets (or vacuum bubbles),

which would otherwise result, under the PE, from invariants of the gauge

group. As described in section 3.3, one method of calculation [25] involves

applying vacuum conditions to the superpotential terms that can be con-

structed from the bifundamental fields and adjoint gauge fields. A more

direct route, which we adopt here, is to find the HKQ from the moduli

space of the gauge fields that correspond to the flavour group singlets that
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we wish to exclude:

gHK

(
χU(Ni), t

)
=

∮
U(Nj)

dµU(Nj) PE [χ (Xij +Xji) t] . (5.3)

For a linear A series quiver of the type in fig 5.2, this HyperKähler quo-

tient invariably evaluates to the PE of the adjoint of the gauge group:

gHK(χU(Ni), t) = PE[χ(Φii) t
2]. The Hilbert series for the Higgs branch

is thus given by:

gAHS:Higgs (χ(x), t) =

∮
gauge

dµgauge

∏
j<i

PE [χ (Xij +Xji) t]

PE [χ (Φii) t2]

 (5.4)

The dimension of this Hilbert series, when unrefined by setting all the flavour

group CSA coordinates x to unity, is given by the formula:

∣∣gAHS:Higgs (χ(1), t)
∣∣ =

∑
ij

|χ (Xij)| −
∑

i∈gauge
|χ (Φii)| −

∑
i∈gauge

∣∣∣[adj.]U(Ni)
∣∣∣

(5.5)

The last two terms on the RHS follow from the HyperKähler quotient and

the Weyl integration over each gauge group, respectively, and have identical

dimensions.

Assuming that the sequence of node dimensions {Nf , N1, . . . , Nmax} is

non-increasing, unordered partition data can be assigned to the quiver as:

σ = {σi : σ1 = Nf −N1;σi = Ni−1 −Ni;σmax = Nmax} . (5.6)

Note that the σi from this construction are non-negative, but are not nec-

essarily ordered. We now use the identity, Nf =
max∑
i=1

σi, to rearrange the

dimension formula 5.5 as:

∣∣gAHS:Higgs (1, t)
∣∣ =

max−1∑
n=1

2

(
Nf −

n−1∑
i=1

σi

)(
Nf −

n∑
i=1

σi

)
︸ ︷︷ ︸

hypers

−2

(
Nf −

n∑
i=1

σi

)2

︸ ︷︷ ︸
vectors

= Nf
2 −

max∑
i=1

σ2
i.

(5.7)

Thus, we have recovered the dimensions of the A series nilpotent orbits in
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Table 4.5 from the unitary quivers defined by the sequence {Nf , N1, . . . , Nmax},
and can use the partition data associated with each A series nilpotent orbit

to identify a unitary linear quiver, whose moduli space has a Hilbert series

of the same dimension as the nilpotent orbit.

The process of matching partition data from the nilpotent orbits of BCD

series groups to quiver theories is similar, but with some refinements. The

dimension formulae in Table 4.5 for BCD groups invite association with

alternating O/USp groups. As a development from diagrams outlined in

[7], it was proposed in [20] that linear quivers for BCD groups could take

the form of alternating chains of O/USp groups. It is therefore natural to

examine the mapping of partition data from nilpotent orbits to the vec-

tor/fundamental dimensions of an alternating chain of O/USp groups.

One issue that arises is that some partitions require USp groups with odd

fundamental dimension; however, homomorphisms ρ with such partitions

are precisely those excluded by the B/D and C-partition selection rules

described in section 4.2. The B/D and C-partition selection rules in effect

correspond to the restriction of nilpotent orbit root maps for BCD groups to

the Characteristics of homomorphisms ρ that can consistently be described

by an alternating O/USp chain.

So, the linear BCD quivers to investigate take the form of chains of

alternating O/USp nodes, with the first node being a flavour node and

the remaining nodes being gauge nodes, ordered with non-increasing vec-

tor/fundamental dimension, as in Figures 5.3 and 5.4.

Figure 5.3.: Orthogonal Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The
links represent bifundamental fields transforming in the vec-
tor/fundamental representations. The quiver is ordered such
that Nf ≥ N1 ≥ Ni ≥ . . . ≥ Nmax.

We can calculate the Hilbert series for the Higgs branches of such BCD

series quivers and find their dimensions using a prescription similar to 5.4.
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Figure 5.4.: Symplectic Linear Quiver. Square (red) nodes denote flavour
nodes. Round (blue) nodes denote gauge nodes. The
links represent bifundamental fields transforming in the vec-
tor/fundamental representations. The quiver is ordered such
that Nf ≥ N1 ≥ Ni ≥ . . . ≥ Nmax.

gBCDHS:Higgs (χ(x), t) =

∮
gauge

dµgauge

∏
j<i

PE [χ (Xij) t]

PE [χ (Φii) t2]

 (5.8)

The fields Xjk are now half-hypermultiplets, so that there is just one field

Xjk between nodes {j, k}. There are complications relating to the structure

of the HyperKähler quotient and the use of orthogonal rather than SO

groups; these do not, however, affect the dimensions of a Hilbert series, so

we defer a discussion of these topics to section 5.4. The dimensional formula

necessarily reflects both the series of the flavour group and the position of a

node, with the gauge group series matching (or complementing) the flavour

group on even (or odd) indexed Ni nodes. Otherwise, the Higgs branch

dimension formula for BCD quivers follows in a similar manner to that for

A series quivers:

∣∣∣gB/DHS:Higgs (1, t)
∣∣∣ =

∑
n

(
Nf −

n−1∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

−
∑
n odd

(
Nf + 1−

n∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

−
∑
n even

(
Nf − 1−

n∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

=
1

2
Nf (Nf − 1)− 1

2

∑
i odd

σi (σi − 1)− 1

2

∑
i even

σi (σi + 1)

(5.9)
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∣∣gCHS:Higgs (1, t)
∣∣ =

∑
n

(
Nf −

n−1∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

−
∑
n odd

(
Nf − 1−

n∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

−
∑
n even

(
Nf + 1−

n∑
k=1

σk

)(
Nf −

n∑
k=1

σk

)

=
1

2
Nf (Nf + 1)− 1

2

∑
i odd

σi (σi + 1)− 1

2

∑
i even

σi (σi − 1)

(5.10)

Thus, in a similar manner to the A series, we can recover the dimensions of

the BCD series nilpotent orbits in Table 4.5 from quivers with alternating

O/USp nodes. We can, therefore, use the partition data from a BCD series

nilpotent orbit to identify a linear BCD quiver, whose moduli space has

a Hilbert series with the same dimension as the nilpotent orbit. Before

concluding that these quiver theories all lead to moduli spaces matching

nilpotent orbits, it remains to establish their inclusion relations.

These moduli spaces are constructed on a case by case basis in the fol-

lowing sections and their structures and inclusion relations are analysed in

terms of their Hilbert series and decompositions into representations of G.

It turns out that both characters and mHL functions of G provide use-

ful bases for these decompositions, with the latter providing a means of

encoding infinite series of class functions as finite polynomials.

Clearly the set of well-ordered partitions does not exhaust the set of all

the possible quivers defined by Figures 5.2, 5.3 and 5.4. It is interesting to

ask whether there are dualities, such that different A or BCD quivers share

the same moduli space. The dimension formulae in Table 4.5 do not depend

upon the strict ordering of the partition data, so dualities do indeed arise,

as will be shown in sections 5.3.4 and 5.4.6.

5.3. A Series Orbits from Higgs Branch Moduli

Spaces

Quivers whose Higgs branches have Hilbert series with dimensions corre-

sponding to those of nilpotent orbits are listed in Appendix B.1. The

constructions are in all cases defined by the partition data for the vec-
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tor/fundamental representation under the homomorphism ρ. The extremal

quiver diagrams that can be constructed from partitions of N are repre-

sented by the minimal and maximal nilpotent orbits.

5.3.1. Maximal and Minimal A Series Orbits

In the case of the minimal nilpotent orbit of Ar, which corresponds to

the reduced single instanton moduli space, the fundamental partition takes

the form ρ = (2, 1r−1). The transpose of this partition gives the quiver

increments σ = (r, 1), which correspond to the unitary quivers [r + 1]− (1)

shown in Figure 5.5, whose Higgs branches were evaluated in section 5.1.

Figure 5.5.: Quiver for A Series Minimal Nilpotent Orbit. SU(N) has two
nodes, with square (red) nodes denoting flavour and round
(blue) nodes denoting gauge groups. The links represent pairs
of bifundamental chiral scalars transforming in the fundamental
and anti-fundamental representations.

The maximal nilpotent orbit of Ar, which corresponds to the modified

Hall Littlewood polynomial mHLAr[singlet], has the fundamental partitions

ρ = (N) = (r + 1). This transposes to the quiver increments σ = (1r+1),

corresponding to the quiver shown in Figure 5.6.

Figure 5.6.: Quiver for A Series Maximal Nilpotent Orbit. SU(N) has
N nodes, with square (red) nodes denoting flavour and round
(blue) nodes denoting gauge groups. The links represent pairs
of bifundamental chiral scalars transforming in the fundamental
and anti-fundamental representations.
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5.3.2. Evaluation of A Series Quivers

The refined Hilbert series g
[Nf ]−(N1)−...(Nmax)
HS:Higgs of the A series quivers shown in

Figure 5.2, which include all the A series nilpotent orbits, can be calculated

from 5.4.

It is convenient to carry out the Weyl integrations sequentially and, to

this end, 5.4 can be rearranged into a recursive procedure:

g
[Ni]−(Ni+1)−...(Nmax)
HS:Higgs

(
χSU(Ni), t

)
=

∮
U(Ni+1)

dµU(Ni+1)

×
PE

[(
χ
U(Ni)
fund. ⊗ χ

U(Ni+1)
anti. + χ

U(Ni)
anti. ⊗ χ

U(Ni+1)
fund.

)
t
]

PE
[
χ
U(Ni+1)
adj. t2

]
× g[Ni+1]−...(Nmax)

HS:Higgs

(
χSU(Ni+1), t

)
.

(5.11)

The definitions g
[Nmax]
HS:Higgs = 1 and U(N0) ≡ U(Nf ) are used. This is an

example of quiver gluing discussed in [25]. Note that gauge invariance under

the U(1) subgroup within each U(N) gauge group entails that each HS

in the sequence contains only the characters of SU(Ni). In effect, each

nilpotent orbit in the sequence, [Nmax] → [Nmax−1] − (Nmax) → . . . →
[Nf ]− (N1)− . . .− (Nmax), induces orbits in groups of higher rank and this

permits efficient calculation of all Ar nilpotent orbits up to a given rank.

As discussed in the previous section, the partition data associated with a

nilpotent orbit defines a sequence of dimensions, whose separation is non-

increasing, such that Ni − Ni+1 ≥ Ni+1 − Ni+2. However, these quivers

represent only a subset of those within the more general schema in Figure

5.2. Analysis of the full set allows us to examine dualities between quiver

theories and so we include these non-partition quivers in the analysis.

5.3.3. Analysis of A Series Moduli Spaces

Once a generating function gquiverHS:Higgs for a refined Hilbert series has been

calculated, this moduli space can be analysed in a number of different ways,

as discussed in Chapter 2. Both characters and modified Hall Littlewood

polynomials provide a basis of orthogonal functions that can be used to

decompose these class functions. For low rank groups, these moduli spaces

often have a simple description in terms of one but not always both bases,
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which thus provide complementary modes of analysis. The following meth-

ods are of most relevance:

1. A refined Hilbert series for a nilpotent orbit can be rearranged into

the canonical form:

gquiverHS:Higgs (χ, t) ≡ PGHS:Higgs (χ, t) PE
[
χGadj.t

2
]
, (5.12)

where PGHS:Higgs (χ, t) is the character decomposition of some finite

polynomial class function of G. Rearrangements of this form are given

in Table 5.3 for some minimal nilpotent orbits. The expression 4.3 for

a maximal nilpotent orbit is also in this form. However, expressions

for the refined HS of nilpotent orbits can be extremely unwieldy, and

are generally not tabulated in this study, but rather transformed to

more concise forms.

2. A Hilbert series can be unrefined as gGHS:Higgs (1, t) by setting all the

CSA coordinates to unity. This permits the counting of dimensions,

generators and relations.

3. A refined Hilbert series can be decomposed as a character expansion

in irreps of G. These infinite series can be described by an HWG

gGHWG:Higgs(m, t) for the coefficients of each irrep, identified by its

Dynkin labels. The HWGs are found using a character generating

function and Weyl integration, as in 2.14.

4. A refined Hilbert series can be decomposed in terms of mHL functions

of G. Significantly, these series turn out to be finite for nilpotent

orbits and can be described by an HWG gGHWG(mHL):Higgs(h, t
2) for

the mHL coefficients. It is necessary to define the Hall Littlewood

polynomials with respect to the counting fugacity t2 to obtain a match

with the powers of t appearing in the Hilbert series for a Higgs branch.

The HWGs are found by Weyl integration over an orthonormal mHL

generating function, as in 2.27.

5. A further important matter concerns the analysis of inclusion rela-

tions between moduli spaces. Consider two moduli spaces defined by

common fugacities f ≡ f1 . . . fk and carrying positive coefficients an

and bn, such that g1 ≡
∑
n
anf

n and g2 ≡
∑
n
bnf

n. Then:
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The union of the moduli spaces is given by g1∪g2 =
∑
n

max[an, bn]fn

The intersection of the moduli spaces is given by g1∩g2 =
∑
n

min[an, bn]fn

A moduli space g1 includes g2: g1 ⊇ g2 iff ∀n : an ≥ bn

Knowledge of the unrefined Hilbert series permits an ordering relative

to t, but sums of dimensions are not always sufficient to identify differ-

ences between representations. The definitive analysis of the inclusion

relations amongst the nilpotent orbit moduli spaces is therefore ob-

tained over class functions, using character HWGs with the fugacities

{m, t}. 1

Tables 5.4 and 5.5 set out the results of these calculations for A1 through

A4, for quivers associated with descending sequences of unitary gauge nodes

as per Figure 5.2. Several observations can be made:

1. All the moduli spaces of these Higgs branch quiver theories con-

structed using partition data have dimensions equal to those of the

corresponding nilpotent orbits.

2. All the moduli spaces are contained within the nilpotent cone N .

Furthermore, the moduli spaces observe ordering relations consistent

with those in the Hasse diagrams of nilpotent orbits in the Literature,

e.g. [6, 33], as can be verified by Taylor expansion of the character

HWGs and/or the unrefined HS.

3. The unrefined HS of these moduli spaces are palindromic, indicating

Calabi Yau surfaces, and consistent with the property of being Hy-

perKähler. The unrefined HS of maximal nilpotent orbits are complete

intersections [25].

4. The character HWGs that are not freely generated or complete inter-

sections are palindromic.

5. The moduli space decompositions into characters identify their gen-

erators, such as the A1 generator m2t2 or the A2 generator m1m2t
2.

Each generator (or monomial) of these moduli spaces mn1
1 . . .mnr

r is

1Ordering with respect to the mHL HWGs is not helpful since the mHL functions
already encode the fugacity t.
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a root lattice object, with N-ality zero: mod

[
r∑
i=1

ini, N

]
= 0, where

N = r + 1.

6. All the moduli spaces decompose into finite sums of mHL functions.

Each monomial is also a root lattice object with N-ality zero with

respect to the hi fugacities.

7. The character and mHL descriptions are complementary; orbits close

to the minimal nilpotent orbit have character HWGs that are freely

generated or complete intersections; orbits close to the maximal nilpo-

tent orbit decompose to a small number of mHL functions.

8. The canonical A series nilpotent orbits have distinct signatures in

terms of Hilbert series, character HWGs and/or mHL HWGs. These

are summarised in Table 5.6 for future reference.

9. There are several dualities, where multiple quivers correspond to the

same nilpotent orbit. The circumstances under which these arise are

discussed further below.

5.3.4. Dualities of A Series Quivers

It is significant that there are a number of quivers, such as [3]−(2), [4]−(3)−
(1) and [4] − (3) − (2), that cannot be described by partitions, since their

increments σi are not well-ordered. However, the nilpotent orbit dimensions

set out in Table 4.5 are insensitive to the order of the σi, and so, any such

non-partition quiver with Ni ≥ Ni+1 has a Hilbert series with the same

dimension as the quiver obtained by reordering the σi into a partition.

Indeed, calculations using 5.4 show that in many (but not all) cases, the

refined Hilbert series of non-partition quivers, including the above examples,

match those of the quivers from nilpotent orbit partitions.

There are nonetheless limits to the extent to which the σi can be reordered

to obtain a dual quiver with the same Hilbert series. For example, a calcu-

lation of the Hilbert series of the quiver [4] − (3) yields a non-palindromic

result that does not match [4]− (1).

The concept of quiver balance, defined in section 6.1.1, can be used to

predict when the Higgs branch Hilbert series of a non-partition quiver will

match that of a quiver from a nilpotent orbit partition.
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If all gauge nodes in a quiver have a balance of zero, the quiver is termed

balanced. If one or more gauge nodes have a positive balance and no gauge

nodes have a negative balance, the quiver is described as positively balanced.

If one or more gauge nodes have a balance of −1, the quiver is described

as minimally unbalanced. If one or more gauge nodes have a balance of −2

or less, the quiver is described as very unbalanced. With these definitions,

Tables 5.4 and 5.5 show:

1. A quiver specified by the partition data from a nilpotent orbit is either

balanced or positively balanced. 2 Amongst such quivers, only those

for maximal nilpotent orbits are balanced.

2. A quiver that does not correspond to a nilpotent orbit partition is

minimally or very unbalanced.

3. A minimally unbalanced quiver, with increments σi, has a Hilbert

series that matches the quiver from the nilpotent orbit partition given

by a reordering of the σi.

4. Very unbalanced quivers, if evaluated using 5.4, have Hilbert series

that are non-palindromic and do not match those of the nilpotent

orbit partitions given by a reordering of the σi.
3

This pattern of Higgs branch dualities between A series quivers is consistent

with findings in [73].

A different class of dualities arises between ordered linear quivers of the

type in Figure 5.2, which contain one or more duplicate nodes, such that

Nk = Nk+1 = . . . = Nk+i. Formula 5.7 indicates that the dimension of a

Higgs branch moduli space should be unaffected by the addition of duplicate

nodes to any given node. Indeed, calculation indicates that refined Hilbert

series are also unaffected by this addition, providing the duplicate nodes

are added within maximal quiver sub-chains, so that quivers do not become

very unbalanced.

2This condition entails that a quiver gauge theory has a superconformal IR fixed point
[20].

3As discussed in [31], for the case of [Nf ] − (Nc) quivers, whenever Nf < 2Nc − 1, the
theory becomes very unbalanced, and extra dimensions of the moduli space result from
incomplete breaking of the gauge group. These extra dimensions and non-palindromic
features of the moduli space may be eliminated by the introduction of Fayet-Iliopoulos
terms.[56]
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Thus, for example:

g
[4]−(3)−(2)−(1)
Higgs = g

[4]−(3)−(2)−(2)−(1)
Higgs = g

[4]−(4)−(3)−(2)−(1)
Higgs ,

g
[4]−(2)−(1)
Higgs = g

[4]−(2)−(2)−(1)
Higgs ,

but

g
[4]−(2)
Higgs 6= g

[4]−(2)−(2)
Higgs .

(5.13)

Clearly this opens up a large further class of dualities, and, while this

area merits further study, it may be conjectured that any ordered linear A

series quiver, that is not very unbalanced, has the same Higgs branch moduli

space as the nilpotent orbit quiver obtained by reordering increments and/or

eliminating duplicate nodes to give a well formed partition.

5.4. BCD Series Orbits from Higgs Branch

Moduli Spaces

We now turn to the more intricate matter of carrying through a compara-

ble analysis for BCD series groups. Orthogonal and symplectic groups are

complementary in terms of the symmetry of their matrix generators and

invariants of degree 2, and the interplay between the two series is necessary

to construct moduli spaces that match the dimensions of all B, C and D

series nilpotent orbits. As shown in section 3.1, the bilinear invariants of

C series are antisymmetric and therefore act on B/D vectors to generate

the adjoint representation, while the bilinear invariants of the B/D series

are symmetric, and so act on C vectors also to generate the adjoint rep-

resentation. The complementary interplay of these groups, when paired as

gauge/flavour groups, generates representations transforming in the root

space of the flavour group, as required for a nilpotent orbit.

As observed in [20], unitary and orthosymplectic quivers are related by

a Z2 orbifold action and the orthogonal and symplectic groups in a quiver

must alternate so that this action can be defined. This does not, however,

entail that a quiver should not contain both B and D series groups and,

accordingly, we proceed with quivers that can be of mixed BCD type.

These quivers are tabulated, based on vector representation partitions,

for the nilpotent orbits of BCD groups up to rank 5, in Appendices B.2,
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B.3 and B.4. For brevity, the quivers are shown as BCD chains, but should

properly be interpreted, for the purpose of Higgs branch calculations, as

chains headed by a flavour group and with O/USp gauge groups.

The Higgs branches of all these quivers can be calculated using some ver-

sion of schema 5.8, however, there are a number of complications relating

to the necessity, in general, of using O(N) gauge groups [7], rather than

SO(N), to obtain moduli spaces that match nilpotent orbits, and also re-

lating to the calculation of HyperKähler quotients for O(N) gauge groups.

These complications are least severe for maximal and minimal nilpotent

orbits and so these are a good place to start.

5.4.1. Maximal and Minimal BCD Series Orbits

For minimal nilpotent orbits, the vector partitions ρ and the quiver incre-

ments σ = ρT take the forms in Table 5.7, with the resulting quivers shown

in Figure 5.7.

Group Partition ρ Quiver Increments σ

Br≥2 (22, 12r−3) (2r − 1, 2)
Cr≥1 (2, 12r−2) (2r − 1, 1)
Dr≥2 (22, 12r−4) (2r − 2, 2)

Table 5.7.: Partition Data for BCD Series Minimal Nilpotent Orbits

Figure 5.7.: Quivers for BCD Series Minimal Nilpotent Orbits. Square
(red) nodes denote flavour and round (blue) nodes denote gauge
groups. The links represent bifundamental half-hypermultiplets
with scalar fields transforming in the vector representations.

Consequently, as discussed in section 5.1, quivers for B/D series minimal

nilpotent orbits have a C1
∼= USp(2) gauge group, while those for C series

minimal nilpotent orbits have a B0
∼= O(1) gauge group. B0 is a finite group,

with two elements that can be represented by the characters {1,−1}, so the

group average is provided by a Molien sum, rather than by Weyl integration
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[13]. The HyperKähler quotient in the integrations is given by the adjoint

of the gauge group, with counting fugacity t2, as shown in Table 5.2. Note

that B0 has no adjoint representation.

Turning to maximal nilpotent orbits, the vector partitions and quiver in-

crements take the forms in Table 5.8, with the resulting quivers shown in

Figure 5.8. The maximal nilpotent orbits of BCD groups are constructed

from quiver chains of O/USp groups with adjacent dimensions, as shown

in Figure 5.8. In the case of the BC chain, the fundamental dimension

decreases by one between adjacent nodes, whereas in a DC chain the fun-

damental dimension decreases by alternating steps of zero or two; it is im-

portant to note the ordering, with C series nodes of a given rank, which

have higher group dimension, taking precedence over D.

Group Partition ρ Quiver Increments σ

Br≥1 (2r + 1) (12r+1)
Cr≥1 (2r) (12r)
Dr≥2 (2r − 1, 1) (2, 12r−2)

Table 5.8.: Partition Data for BCD Series Maximal Nilpotent Orbits

Figure 5.8.: Quivers for BCD Series Maximal Nilpotent Orbits. Square
(red) nodes denote flavour and round (blue) nodes denote gauge
groups. The links represent bifundamental fields transforming
in the vector representations. A maximal chain for a symplectic
group can be obtained by truncating either the BC or DC chain
and taking the highest rank symplectic group as the new flavour
group.

An interesting situation arises for B1, where, by isomorphism with A1,

the minimal and maximal nilpotent orbits coincide. Figure 5.8, indicates

that this orbit is given by SO(3)− USp(2)−O(1), whereas Figure 5.7 and
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the results of section 5.1 show that the minimal nilpotent orbit of B1 is

given by SO(3)−USp(2). This is another example of quiver duality, where

two different quivers lead to identical moduli spaces.

A further example of duality arises in the case of the maximal nilpotent

orbit of Cr. This can be obtained from either a BC or DC maximal chain in

Figure 5.8, by truncation to make USp(2r) the flavour group. The partition

for the maximal nilpotent orbit of USp(2r) is given by the quiver increments

of σ = (12r) in Table 5.8, as in a BC chain, however, the dimension formula

for a C series nilpotent orbit in Table 4.5 shows that the dimension of moduli

space with quiver increments of σ = (0, 2)r, corresponding to a DC chain,

is the same.

Furthermore, these two types of maximal chain: BC and DC, represent

special cases, and this gives rise to further quiver dualities, since we can

substitute between Cn −Dn −Cn−1 and Cn −Bn−1 −Cn−1 links in a max-

imal chain without affecting the moduli space. The consequence is that

the partitions for maximal nilpotent orbits can be dualised to a variety of

maximal BCD chains.

All the above dualities between maximal nilpotent orbits of BCD groups

can be confirmed by evaluation of the moduli spaces.

The first link in a maximal BC or DC chain is C1 − B0 or C1 − D1
∼=

A1 − U(1). This corresponds to the minimal nilpotent orbit of C1
∼= A1,

which is also the maximal nilpotent orbit mHLC1

[singlet](t
2). Using recursion

and making use of the identity 4.3, this leads to some relatively simple

formulae for calculating maximal nilpotent orbits:

gBr max
HS:Higgs

(
χBr , t

)
=

∮
Cr

dµCr
PE

[
χBrvec. ⊗ χCrvec.t

]
PE

[
χCradj.t

2
] gCr max

HS:Higgs

(
χCr , t

)
=

∏
d∈Casimirs[Cr]

(
1− t2d

)∮
Cr

dµCrPE
[
χBrvec. ⊗ χCrvec.t

]
(5.14)
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gCr max
HS:Higgs

(
χCr , t

)
=

∮
Br−1

dµBr−1
1

2

∑
t={t,−t}

PE
[
χCrvec. ⊗ χ

Br−1
vec. t

]
PE

[
χ
Br−1

adj. t
2
] g

Br−1 max
HS:Higgs

(
χBr−1 , t

)
=

1

2

∏
d∈Casimirs[Br−1]

(
1− t2d

) ∮
Br−1

dµBr−1
∑

t={t,−t}

PE
[
χCrvec. ⊗ χBr−1

vec. t
]

(5.15)

gCr max
HS:Higgs

(
χCr , t

)
=

∮
Dr

dµDr
PE

[
χCrvec. ⊗ χDrvec.t

]
PE

[
χDradj.t

2
] gDr max

HS:Higgs

(
χDr , t

)
=

∏
d∈Casimirs[Dr]

(
1− t2d

) ∮
Dr

dµDrPE
[
χCrvec. ⊗ χDrvec.t

]
(5.16)

gDr max
HS:Higgs

(
χDr , t

)
=

∮
Cr−1

dµCr−1

PE
[
χDrvec. ⊗ χ

Cr−1
vec. t

]
PE

[
χ
Cr−1

adj. t
2
] g

Cr−1 max
HS:Higgs

(
χCr−1 , t

)
=

∏
d∈Casimirs[Cr−1]

(
1− t2d

) ∮
Cr−1

dµCr−1PE
[
χDrvec. ⊗ χCr−1

vec. t
]

(5.17)

As discussed in the next section, each B series gauge group, taken as

O(2r + 1), requires both a Weyl integration over its SO(2r + 1) subgroup

and a Molien average over the Z2 factor corresponding to the sign of the

determinant of the O(2r + 1) representation matrix. Algebraically, this Z2

factor is introduced in 5.15 by changing the sign of the fugacity t within the

PE function.

Calculation for BCD groups of low rank verifies that 5.14 to 5.17 cor-

respond to the modified Hall Littlewood functions mHLG[singlet](t
2), as re-

quired by 4.3. It may be reasoned, following from the patterns of BCD

group invariants, that this correspondence holds for BCD maximal nilpo-

tent orbits of all rank. This is similar to the situation for A series maximal

nilpotent orbits [25].
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5.4.2. Orthogonal Gauge Groups

In order for a moduli space to be HyperKähler, the gauge groups must be

connected [7], which in turn entails that a BCD quiver should contain O

rather than SO gauge groups.

For a B series gauge group, the sign of the determinant of an O(2r +

1) representation matrix gives a Z2 factor that decouples from the vector

representation as χ
O(2r+1)
vec. → ±1⊗ χSO(2r+1)

vec. . The projection of O(2r + 1)

gauge group singlets therefore requires both the usual Weyl integration over

the SO(2r+1) subgroup and a Molien average (see Appendix A.2) over the

Z2 factor. This factor is implemented in 5.15 as a sign change in the fugacity

t that couples to the characters in the vector representation.

Gauge Groups O(2r)

Turning to D series gauge groups, the introduction of a Z2 factor has no

effect on the Molien-Weyl integrals for quivers of maximal nilpotent orbits,

calculated in the previous section, but is pertinent to the calculation of more

general BCD nilpotent orbits.

Characters of O(2r)

Recall that an orthogonal representation matrix O obeys the defining iden-

tity O.OT = I and so |O| = ±1. A complication arises when constructing

the character of an O(2r) representation matrix, since the Z2 factor which

acts to change the sign of its determinant is not a multiple of the identity ma-

trix and therefore does not commute with the matrix. As a consequence, the

character of an O(2r) matrix with negative determinant, denoted O(2r)−,

does not have the same structure as the character of an SO(2r) matrix.

Indeed, it is necessary to calculate the character of an O(2r)− matrix from

first principles. While the calculation for O(2)− is relatively straightfor-

ward, the general result for O(2r)− is surprising, since it involves both a

reduction in rank and a partly symplectic character.

An illuminating method of calculating the character (i.e. sum of the

eigenvalues) of a representation matrix is to find its eigenvalues, or at least

their structure, as encoded in the characteristic polynomial.

Consider the D1
∼= SO(2) ∼= U(1) matrix, O =

(
cos θ sin θ

− sin θ cos θ

)
. The

characteristic polynomial |O − λI| = 0 evaluates as 1−(eiθ+e−iθ)λ+λ2 = 0,
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and the eigenvalues of O follow as λ = e±iθ, corresponding, under the

substitution eiθ → x, to the D1 character x + 1/x. If we now apply the

Z2 factor
(

0 1

1 0

)
, the characteristic polynomial becomes 1− λ2 = 0, with

eigenvalues λ = ±1. Thus the character for O(2)− has zero rank and is just

1 + (−1). An equivalent treatment is given in [19].

Now consider O(4) and O(6) matrices acting on the vector representation.

The structures of their eigenvalues differ between SO and O− matrices, since

the characteristic polynomials of SO(2r) matrices are palindromic, while

those of O(2r)− are anti-palindromic. Their eigenvalues rearrange to the

forms in Table 5.9, where we use canonical unimodular CSA coordinates

to indicate the groups from which characters are taken: {x, y, . . .} for Dr

and {a, b, . . .} for Cr. Importantly, this decomposition of the character of

Matrix Characteristic Polynomial Eigenvalues (λ)

SO(2) 1− a1λ+ λ2 = 0 {x, 1/x}
O(2)− 1− λ2 = 0 {1,−1}
SO(4) 1− a1λ+ a2λ

2 − a1λ
3 + λ4 = 0 {xy, 1/xy, x/y, y/x}

O(4)− 1− a1λ+ a1λ
3 − λ4 = 0 {1,−1, a, 1/a}

SO(6) 1− a1λ+ a2λ
2 − a3λ

3 + a2λ
4 − a1λ

5 + λ6 = 0
{
x
yz ,

yz
x , x,

1
x ,

z
y ,

y
z

}
O(6)− 1− a1λ+ a2λ

2 − a2λ
4 + a1λ

5 − λ6 = 0
{

1,−1, a, 1
a ,

a
b ,

b
a

}
Table 5.9.: Characteristic Polynomials and Eigenvalues of O(2r)

an O(2r)− matrix in the vector representation generalises to higher rank

O(2r) groups, as χ
O(2r)−

vec.
∼= χ

O(2)−

vec. ⊕ χCr−1
vec. .

Before proceeding, it is useful to verify that the use of the characters

χ
O(2r)−

vec. and χ
SO(2r)
vec. for the two types of O(2r) vector representation leads to

the required invariants. The Hilbert series for symmetric and antisymmetric

invariants can be found by applying the PE or PEF, respectively, to a

character, in both cases followed by Weyl integration. The Weyl integration

is carried out using the Haar measures for the corresponding D or C groups

and we obtain the results in Table 5.10. The exponents of the fugacity t

give the degrees of the invariants and show that both types of O(2r) vector

representation matrices are associated with symmetric and antisymmetric

invariants in the form of delta and epsilon tensors, but with a change of

sign in the antisymmetric invariants (i.e. determinants). Thus, when we

take a group average over O(2r), the antisymmetric invariants encoded in
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a Hilbert series cancel out.

Matrix Det. χOvec.
∮
dµ PE

[
χOvec.t

] ∮
dµ PEF

[
χOvec.t

]
SO(2) +1 q + 1/q 1

1−t2 1 + t2

O(2)− −1 1 + (−1) 1
1−t2 1− t2

SO(4) +1 xy + 1
xy + x

y + y
x

1
1−t2 1 + t4

O(4)− −1 1 + (−1) + x+ 1
x

1
1−t2 1− t4

SO(6) +1 x
yz + yz

x + x+ 1
x + z

y + y
z

1
1−t2 1 + t6

O(6)− −1 1 + (−1) + x+ 1
x + x

y + y
x

1
1−t2 1− t6

SO(2r) +1 χ
SO(2r)
vec.

1
1−t2 1 + t2r

O(2r)− −1 1 + (−1) + χ
Cr−1
vec.

1
1−t2 1− t2r

Table 5.10.: Characters and Invariants of O(2r) Matrices

HyperKähler Quotients for Ck −O(2r)

The peculiar form of character for χ
O(2r)−
vec. leads to a HyperKähler quotient

for a quiver with Ck flavour group and O(2r)− gauge group that varies from

the usual PE[χ
SO(2r)
adj. t2]. We can find this HKQ by integrating over the Ck

flavour group, where k ≥ r for the quivers under study:

gHK

(
χO(2r)− , t

)
=

∮
Ck

dµCkPE
[
χCkvec. ⊗ χO(2r)−

vec. t
]

(5.18)

Carrying out the calculation for O(2r)− characters up to r = 5 gives the

results in Table 5.11. Based on these, this study conjectures that the HKQ

for higher rank O(2r)− characters is as shown.

The structure of the HKQ terms follows from the invariant tensors of the

Ck flavour group fundamental, which are antisymmetric of degree 2, 4, . . . , 2k.

Under the PE of the bifundamental of the Ck⊗O(2r)− product group, these

Ck invariants map the character χ
O(2r)−
vec. to a series of characters of Cr−1

irreps. The PEs in Table 5.11 that generate this series contain terms at

t4, in addition to the usual term at t2 from the anti-symmetrisation of an

orthogonal group vector representation.
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Bifundamental g
O(2r)−

HK

(
χCr−1 , t

)
Ck≥1 ⊗O(2)− 1/(1 + t2)

Ck≥2 ⊗O(4)− PE[[2]C , t
4]

Ck≥3 ⊗O(6)− PE[[0, 1]C , t
2] PE[[2, 0]C − [0, 1]C , t

4]

Ck≥4 ⊗O(8)− PE[[0, 1, 0]C , t
2] PE[[2, 0, 0]C − [0, 1, 0]C , t

4]

Ck≥5 ⊗O(10)− PE[[0, 1, 0, 0]C , t
2] PE[[2, 0, 0, 0]C − [0, 1, 0, 0]C , t

4]

Ck≥r ⊗O(2r)− PE
[
[0, 1, 0, . . . . . . , 0]Cr−1

, t2
]
PE

[
[2, 0, 0, . . . , 0]Cr−1

− [0, 1, 0 . . . , 0]Cr−1
, t4

]

Table 5.11.: HyperKähler Quotients for O(2r)−

Based on the foregoing, we can express the group averaged Weyl integra-

tion over a quiver containing a bifundamental field with Ck flavour group

and O(2) gauge group, as:

g
Ck−O(2)
HS:Higgs

(
χCk , t

)
=

1

2

(
g
Ck−SO(2)
HS:Higgs

(
χCk , t

)
+ g

Ck−O(2)−

HS:Higgs

(
χCk , t

))
, (5.19)

where

g
Ck−SO(2)
HS:Higgs

(
χCk , t

)
=

∮
SO(2)

dµSO(2)
PE

[
χCkvec. ⊗ χ

SO(2)
vec. t

]
PE [t2]

(5.20)

and

g
Ck−O(2)−

HS:Higgs

(
χCk , t

)
=
PE

[
χCkvec.t

]
PE

[
χCkvec.(−t)

]
1/ (1 + t2)

. (5.21)

The vector character of D1
∼= SO(2) is represented as x + 1/x and the

unitary Haar measure 1/x is used, when calculating 5.20. The action of the

Z2 factor encoded in 5.21 is trivial for the maximal chain C1 −D1, but has

an impact on the Hilbert series for quivers containing non-maximal chains,

from C2 −D1 upwards.

The corresponding Weyl integral for a Ck flavour group and O(2r) gauge
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group where k ≥ r > 1 is:

g
Ck−O(2r)
HS:Higgs

(
χCk , t

)
=

1

2

∮
Dr

dµDr
PE

[
χCkvec. ⊗ χ

SO(2r)
vec. t

]
PE

[
χ
SO(2r)
adj. t2

]
+

1

2

∮
Cr−1

dµCr−1

PE
[
χCkvec. ⊗ χ

Cr−1
vec. t

]
PE

[
χCkvec.t

]
PE

[
χCkvec. (−t)

]
g
O(2r)−

HK (χCr−1 , t)

(5.22)

where g
O(2r)−

HK is as in Table 5.11. These group averaging procedures, which

do not affect the dimensions of a moduli space, but may affect its structure,

are included within the evaluation of general BCD quivers in the following.

5.4.3. Evaluation of BCD Series Quivers

Using the averaging procedures over orthogonal gauge groups, as elaborated

in section 5.4.2, we can calculate the Hilbert series of a BCD quiver from

the general formula, adapted from 5.8:

g
SO/USp(N0)
HS:Higgs

(
χSO/USp(N0), t

)
=

1

2#O

∑
O±

∮
USp/O(N1)⊗
O/USp(N2)⊗...

dµ
USp/O(N1)⊗
O/USp(N2)⊗...

×
∏

gauge(i)
=USp

PE
[
χ
O(Ni−1)
vec. ⊗ χUSp(Ni)

vec. t
]

PE
[
χ
USp(Ni)
adj. t2

] ×
∏

gauge(i)
=O

PE
[
χ
USp(Ni−1)
vec. ⊗ χO(Ni)

vec. t
]

g
O(Ni)
HK

(
χ
O(Ni)
adj. , t

) ,

(5.23)

where #O equals the number of orthogonal gauge groups and the summation

indicates that all possible combinations of SO/O− gauge group characters

should be evaluated. As before, the calculations can be arranged in a re-

cursive manner, inducing a nilpotent orbit from the orbits defined by the

subchains in a quiver.

5.4.4. Analysis of BCD Series Moduli Spaces

Once the Hilbert series for a BCD quiver has been calculated, it can be

restated in a similar manner to the A series quivers. The results for BCD

groups of rank up to 4 are set out in Tables 5.12 to 5.17.
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It is noteworthy that, for all the BCD nilpotent orbit partitions, this

construction yields moduli spaces that (i) have the correct dimensions, (ii)

are invariant under the accidental isomorphisms, (iii) have character expan-

sions that are free of singlets (i.e. satisfy the vacuum conditions) and (iv)

decompose into finite sums of modified Hall Littlewood polynomials. The

inclusion relations between the moduli spaces can be read off either from the

character HWGs or from the subgroup relations amongst the quivers. These

inclusion relations confirm that all the lower dimensioned moduli spaces are

contained in both the maximal and sub-regular nilpotent orbits and, more-

over, are consistent with the standard Hasse diagrams of nilpotent orbits in

the Literature [33].

Drawing on the analysis in Tables 5.12 to 5.17, the structure and repre-

sentation content of the moduli spaces for certain canonical nilpotent orbits

can be generalised to higher rank groups, as set out in Tables 5.18, 5.19 and

5.20. In all cases:

1. The minimal nilpotent orbit contains irreps whose highest weight

Dynkin labels are integer multiples of the adjoint representation.

2. The supra-minimal nilpotent orbit has dimension two more than the

minimal. For For B/D groups, its irreps are generated by the adjoint

representation and the graviton. For the C series, the structure of

nilpotent orbits further inside the body of the Hasse diagram can be

generalised.

3. The sub-regular nilpotent orbit has dimension two less than the maxi-

mal. Its mHL decomposition differs from the maximal nilpotent orbit

by mHL
B/D
[1,0,...]t

2n or mHLC[0,1,0,...]t
4n−4.

4. The maximal orbit is a complete intersection [25].

Interestingly, the character HWGs for a O/USp quiver with only two

nodes can also be generalised to any rank. The patterns of HWG generators

for 2-node quivers with SO flavour groups follow from the antisymmetric

invariants of even degree of USp fundamentals; the patterns for 2-node quiv-

ers with USp flavour groups follow from the invariants of mixed symmetry

of O vectors [28, 16, 14]. While there are several similarities between the

forms of these HWGs for Bn and Dn flavour groups, there are differences in
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relation to the appearance of spinors, as can be seen from Tables 5.18 and

5.20.

5.4.5. Non-Palindromic Nilpotent Orbits

Almost all the moduli spaces are normal with palindromic Hilbert series

and those that are not fall into two categories.

In the case of D2r groups, the Higgs branch construction does not yield

palindromic moduli spaces for nilpotent orbits associated with pairs of

spinor partitions. Specifically, as can be seen from appendix B.4, the vector

partitions {(22), (24), (42)} all correspond to pairs of orbits distinguished by

their spinor partitions. While we can identify palindromic moduli spaces

associated with each of the spinors, the unions of these spaces are non-

palindromic. Since the Higgs branch construction, which is based on fields

transforming in the vector representation, does not distinguish between the

spinors, it naturally yields these unions of spinor moduli spaces. In the case

of D2, the palindromic 2 dimensional moduli spaces are provided by the 2

dimensional nilpotent orbits of the Weyl spinors, analysed in section 5.3.

In the case of D4, we can obtain the 12 and 20 dimensional palindromic

moduli spaces by applying triality to the orbits from the vector partitions

{3, 15} and {5, 13}. These algebraic relations between these moduli spaces

are described in 5.24, 5.25 and 5.26, and hold equally well for all the types of

moduli space description: Hilbert series, character HWG and mHL HWG.

gD2

(22)
= gA1

(2) ⊗ g
A1

(12)
+ gA1

(12)
⊗ gA1

(2) − g
D2

(14)
(5.24)

gD4

(24)
= gD4

(3,15)

∣∣∣m1⇔m3
h1⇔h3

+ gD4

(3,15)

∣∣∣m1⇔m4
h1⇔h4

− gD4

(22,14) (5.25)

gD4

(42)
= gD4

(5,13)

∣∣∣m1⇔m3
h1⇔h3

+ gD4

(5,13)

∣∣∣m1⇔m4
h1⇔h4

− gD4

(32,12) (5.26)

These non-palindromic moduli spaces are unions of two palindromic mod-

uli spaces (i.e. their sum less their intersection, given by the palindromic

nilpotent orbit of lower dimension). The vector partitions of D2r spinor

pair orbits are always very even, as noted in 4.2.2. The palindromic spinor

moduli spaces can also be obtained from the Coulomb branch or NOL con-

structions, to be discussed in later Chapters.
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The remaining non-palindromic moduli spaces of BCD groups up to rank

4 are generated by the quivers B3 −C2 −B0, B4 −C3 −B1 −C1 −B0 and

C4−D2−C1. We can identify relationships between these non-palindromic

quivers and the non-palindromic spinor pair quivers of D2r discussed above.

Specifically,

1. the quivers B3 − C2 − B0 and B4 − C3 − B1 − C1 − B0 are related

to the non-palindromic D4 − C2 and D6 − C3, under character maps

between vector representations D4 → B3 ⊗ B0 and D6 → B4 ⊗ B1,

and

2. C4 −D2 − C1 contains the non-palindromic D2 − C1 as a subchain.

Both categories of non-normal nilpotent orbit are related to the orbits

below in their Hasse diagrams by particular transitions between partitions

[6], as summarised in section 4.4.7. The D2 and D4 examples can be de-

scribed by the Kraft-Procesi degenerations A1 ∪ A1 or A3 ∪ A3 within D2

or D4 subalgebras. In the D5 example in section 4.4.7, the non-palindromic

nature of the orbit follows from the A1 ∪ A1 Kraft-Procesi degeneration of

a D2 subalgebra within the partition (32, 22). The other BCD non-normal

orbits can be analysed in a similar manner. Non-normal nilpotent orbits all

induce families of non-normal orbits of higher rank and so non-palindromic

features occur throughout higher rank BCD groups.

It can be noted that, while many of the character HWGs calculated for

BCD groups are palindromic, there is no bijective correspondence between

the palindromy of HWGs and Hilbert series. Thus, some non-normal orbits

with Characteristic height 2 or 3, have character HWGs that are complete

intersections, and some normal orbits have character HWGs that are non-

palindromic (for example, C3[210], C4[2100], C4[2010]). The mHL HWGs

are generally not palindromic.

5.4.6. Dualities of BCD Series Quivers

The pattern of dualities between BCD quivers differs from that between

A quivers due to the alternation of gauge group types. Consider the gen-

eral case of a USp − O − USp sub-chain described by the partition data

(. . . , σi, σi+1, . . .). It follows from the dimension formulae 5.9 and 5.10 that

143



the mapping,

(. . . , σi, σi+1, . . .)→ (. . . , σ′i+1, σ
′
i, . . .) = (. . . , σi+1 − 1, σi + 1, . . .),

(5.27)

preserves the dimension of a Hilbert series, while switching between USp−
O(even)− USp and USp−O(odd)− USp, or vice versa. The resulting se-

quence is not a well ordered partition and detailed calculations are required

to see if the moduli spaces are the same and the quivers are dual to each

other.

In the case of (σi, σi+1) = (1, 1) → (2, 0), which arises between maximal

sub-chains, CrBr−1Cr−1 and CrDrCr−1, the duality holds, as discussed in

section 5.4.1. Some further examples where calculation confirms that the

duality holds are shown in Table 5.21.

Quiver
Partition

σ
Sequence

σ′
Dual

Quiver

C1 −B0 (1, 1) (0, 2) C1 −D1

C2 −D1 (2, 2) (1, 3) C2 −B1

C3 −B1 (3, 3) (2, 4) C3 −D2

C3 −D2 − C1 (2, 2, 2) (1, 3, 2) C3 −B2 − C1

C3 −D2 − C1 −B0 (2, 2, 1, 1) (1, 3, 0, 2) C3 −B2 − C1 −B0

Table 5.21.: Examples of Dual BCD Quivers

An example where the duality does not hold is given by C2B0, which is

related to C2D2 by the dimension shift (σi, σi+1) = (3, 1) → (0, 4). Cal-

culation of further examples indicates that the shifted quiver has the same

Higgs branch moduli space, if the elements of the partition σ are shifted

by a single unit, but not if the shift is greater. (This can be viewed as an

analogue of the “not very unbalanced” rule that applies for unitary quivers.)

The constraint on shifts requires that a quiver should contain some equally

spaced pairs of nodes, and, consequently, this dimension shifting duality

only applies between sub-chains of the form:

. . .− USp(2N)−O(2N − k)− USp(2N − 2k)− . . .

↔

. . .− USp(2N)−O(2N + 1− k)− USp(2N − 2k)− . . .

(5.28)
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This duality allows many, but not all, BCD quivers for nilpotent orbits

to be restated either as a BC or as a DC chain, including all special orbits

up to rank 5 (and perhaps generally). This facilitates brane constructions

using orientifolds [20], since the restriction of gauge theories to BC or DC

chains avoids QFT parity anomalies.

Similarly to the case of the A series, dimensional calculations using 5.9 and

5.10 indicate that Higgs branch dimensions of BCD quivers are unaffected

by subchain additions of the form Ck → Ck−Dk−Ck or Ck → Ck−Bk−Ck.
Evaluation of Hilbert series, verifies that the Higgs branch moduli spaces

themselves are also unaffected by this addition, providing the subchains are

added within maximal quiver sub-chains. As examples:

gC2−D2−C1−D1
Higgs = gC2−D2−C2−D2−C1−D1

Higgs ,

but

gC2−B0
Higgs 6= gC2−D2−C2−B0

Higgs .

(5.29)

Also, as noted in section 5.4.2, the moduli spaces of maximal DC chains

with O(N) and SO(N) gauge groups are the same.

The combination of all these dualities entails that many ordered linear

O/USp quivers have the same Higgs branches as one of the BCD nilpotent

orbit quivers. A more comprehensive analysis of such dualities could be an

interesting area of further study.
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6. Coulomb Branch Constructions

of Nilpotent Orbits

6.1. Monopole Formula

The monopole formula, introduced in [20] and refined in [21], provides a

systematic method for the construction of the Coulomb branches of partic-

ular SUSY quiver theories, being N = 4 superconformal gauge theories in

2+1 dimensions. The Coulomb branches of these theories are HyperKähler

manifolds. The formula draws upon a lattice of monopole charges, often

referred to as a GNO lattice [74], that is applied to a linked system of gauge

and flavour nodes defined by a quiver diagram.

Each gauge node carries adjoint valued fields from the vector multiplet

and the links between nodes correspond to complex scalars within the hy-

permultiplets of the theory. The monopole formula generates the Coulomb

branch of the quiver by projecting monopole charge configurations from the

GNO lattice into the root space lattice of G, according to the monopole

flux over each gauge node, under a grading determined by the conformal

dimension of the overall monopole flux.

The conformal dimension (equivalent to R-charge or the highest weight

of the SU(2)R global symmetry) of a monopole flux is given by applying

the following general schema [20, 21] to the quiver diagram:

∆ (q) =
1

2

r∑
i=1

∑
ρi∈Ri

|ρi(q)|︸ ︷︷ ︸
contribution of N=4
hyper multiplets

−
∑
α∈Φ+

|α(q)|

︸ ︷︷ ︸
contribution of N=4
vector multiplets

. (6.1)

The positive R-charge contribution in the first term is from the matter

fields that link adjacent nodes in the quiver diagram. These are bifunda-

mental chiral operators within the N = 4 hypermultiplets. The second

146



term describes the negative R-charge contribution from the N = 4 vector

multiplets; this arises due to symmetry breaking, whenever the monopole

flux q over a gauge node contains a number of different charges.

The focus here is on Coulomb branch constructions where the gauge

groups are unitary, so it is useful to specialise to a unitary monopole for-

mula, as distinct from versions that have been proposed using other gauge

groups [21].

The relevant quivers can be described by gauge nodes indexed by i, where

i runs from 1 to r, with each U(Ni) gauge node carrying a monopole flux qi ≡
(qi,1, . . . , qi,Ni) comprising one or more monopole charges qi,j . The fluxes

are assigned the collective coordinate q ≡ (q1, . . . , qr). A P
U(N)
q ≡

∏
i

P
U(Ni)
qi

symmetry factor, explained below, is associated to the gauge nodes. The

monopole flux over the gauge nodes is counted by the fugacity z ≡ (z1, . . . , zr).

The gauge nodes may also be attached to some number f of flavour nodes,

indexed by j, where j runs from 1 to f , with each flavour node having Nj

flavours. The flavour nodes may also carry fixed external charges described

by the collective coordinate λ ≡ (λ1, . . . , λf ), where λj ≡ (λj,1, . . . , λj,Nj ).

Conformal dimension ∆(q, λ) is tracked using the counting fugacity t.

With these definitions, the unitary monopole formula is given by the schema,

refined from [21]:

gCoulomb (λ, z, t) ≡
∑
q

PU(N)
q (t) zqzφ(λ)t∆(q,λ). (6.2)

The notation in 6.2 requires some further explication:

1. The limits of summation for the monopole charges are ∞ ≥ qi,1 ≥
. . . qi,j ≥ . . . qi,Ni ≥ −∞ for i = 1, . . . r. (In the case of U(1) symmetry

it can be convenient to drop the redundant second index on qi,j .)

2. The monomial zq combines the monopole fluxes qi into total charges

for each zi and is expanded as zq ≡
r∏
i=1

z

Ni∑
j=1

qi,j

i .

3. The term P
U(N)
q encodes the degrees di,j of the Casimirs of the residual

U(N) symmetries that remain at the gauge nodes under a monopole

flux q.
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PU(N)
q ≡

∏
i,j

1(
1− tdi,j(q)

) =
r∏
i=1

Ni∏
j=1

λij(qi)∏
k=1

1

1− tk
. (6.3)

The determination of residual symmetries follows [21]. We construct

a partition of Ni for each node, which counts how many of the charges

qi,j are equal, such that λ(qi) = (λi,1, . . . , λi,Ni), where
Ni∑
j=1

λi,j = Ni

and λi,j ≥ λi,j+1 ≥ 0. The non-zero terms λi,j in the partition

give the ranks of the residual U(N) symmetries associated with each

node, so that it is a straightforward matter to compound the terms in

the degrees of Casimirs, recalling that a U(N) group has Casimirs

of degrees 1 through N . For example, if qi,j = qi,k for all j, k,

then {di,1, . . . di,Ni} = {1, . . . , Ni} and if qi,j 6= qi,k for all j, k, then

{di,1, . . . di,Ni} = {1, . . . , 1}.

4. The conformal dimension ∆ (q, λ) associated with each monopole flux

q against a background of external charges λ is given by the formula:

∆ (q, λ) =
1

2

r∑
j>i

∑
m,n

|qi,mAij − qj,nAji|︸ ︷︷ ︸
gauge - gauge hypers

+
1

2

∑
j>i

∑
m,n

|qi,mAij − λj,nAji|︸ ︷︷ ︸
gauge - flavour hypers

−
r∑
i=1

∑
m>n

|qi,m − qi,n|︸ ︷︷ ︸
gauge vplets

,

(6.4)

where (i) the summations are taken over all the monopole charges in

the flux q and (ii) the linking pattern between nodes is defined by

the Aij off-diagonal matrix terms, which are only non-zero for linked

nodes 1.

5. The external charge factor φ(λ) is zero for nilpotent orbit moduli

spaces. It is relevant for T (SU(N)) theories discussed in section 8.1.

It is instructive to compare the explicit formula 6.4 with the schema 6.1.

Importantly, 6.4 specifies a number of matters precisely, including the di-

mensional measures |ρi(q)| and |α(q)|, the linking matrices Aij and the

1For theories with simply laced quivers of ADE type, for i 6= j, Aij = 0 or −1
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pattern of summations over the monopole fluxes. This version of the uni-

tary monopole formula can be applied to a wide variety of quivers to obtain

Coulomb branch moduli spaces.

It is remarkable that with a little further specialisation, the unitary

monopole formula 6.2, together with 6.3 and 6.4, exactly generates the

moduli spaces of certain nilpotent orbits of both Classical and Exceptional

groups. This specialisation involves mapping the gauge nodes of a quiver

to the Dynkin diagram of the chosen group G, taking the z as fugacities

for the simple roots of G and setting the linking factors Aij to the Cartan

matrix of G, extended to incorporate any flavour nodes. Various choices are

possible for the U(N) charges on the gauge nodes and the number and link-

ing of flavour nodes, providing that the quiver diagrams remain balanced, as

explained in section 6.1.1. The moduli spaces of these theories live in the

root space of G and conformal dimension takes integer values.

Based on early work in [1], it was shown in [21] how the unitary monopole

formula can be combined with quivers based on the affine Dynkin diagrams

of simply laced ADE groups, and with their U(N) gauge groups defined by

Coexter labels, to construct RSIMS or minimal nilpotent orbits. In [22] this

program was extended to non-simply laced BCFG groups, by working with

dual Coexter labels and modifying the linking factors to reflect different root

lengths. In [29] it was shown that quivers based on twisted affine Dynkin

diagrams and/or based on the Characteristics of nilpotent orbits can be

used to construct the moduli spaces of near to minimal nilpotent orbits of

Classical groups. One of the findings of this study is that such constructions

extend to near to minimal nilpotent orbits of Exceptional groups. These

matters are summarised in the sections that follow.

There are, however, a number of aspects that are pertinent to all the

monopole constructions of nilpotent orbit moduli spaces and it is useful to

clarify these before proceeding.

6.1.1. Quiver Balance

Since the conformal dimension formula offsets positive half-integer R-charge

shifts from hypermultiplets, by negative integer R-charge shifts from vector

multiplets, this leads to a situation where, depending on the quiver specifi-

cation, conformal dimension could be positive or negative and half-integer
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as well as integer. Clearly, negative conformal dimensions would not be

consistent with t acting as a well-formed counting fugacity.

The desirability of such general quivers is discussed from a field theory

perspective in [20]; broadly speaking, good theories are defined therein as

those with non-negative integer conformal dimension, ugly theories are those

with non-negative half integer conformal dimension and bad theories are

those with zero or negative conformal dimensions. Such potential problems

can be avoided by requiring that a quiver should observe constraints, which

can be expressed effectively in terms of balance.

The concept of balance, introduced in [20] for simply laced groups, can

be adapted to reflect the different root lengths encoded in the off-diagonal

terms of the Cartan matrix for a non-simply laced group. After extending

the Cartan matrix as Ãij to include links to any flavour nodes, a quiver can

be defined as balanced, if the U(N) charge on each gauge node i obeys the

rule:

Ni =
1

2

∑
j∈
{

adjacent
nodes

}
∣∣∣Ãij∣∣∣Nj , (6.5)

where the linking factors |Ãij | are taken from the extended Cartan matrix

and the Nj include the ranks of any flavour nodes in addition to those of

gauge nodes. Flavour nodes are not required to be balanced.

Since, by definition, Aii = 2 for each gauge node, 6.5 can be rearranged

to define balance for each node i as:

Balance(i) ≡ −
∑
j

ÃijNj , (6.6)

with the quiver balance condition becoming, Balance(i) = 0, for all gauge

nodes i.

In the case of an affine Dynkin diagram, the vector Nj of ranks of unitary

groups equals the vector formed by the dual Coxeter labels; these form the

kernel of the affine Cartan matrix, and so Balance(i) = 0 for all nodes,

including the flavour nodes. This corresponds to the degeneracy of an affine

Cartan matrix, which permits branching to other groups, as discussed in

appendix A.3.

Now consider a monopole flux q with a single non-zero monopole charge

qi,1 = 1. In the absence of external charges λ, the conformal dimension is
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given by:

∆(qi,1 → 1) =
1

2

∑
j∈
{

adjacent
nodes

}
∣∣∣Ãij∣∣∣Nj − (Ni − 1)

=
1

2
Balance(i) + 1.

(6.7)

When a quiver is balanced, any unit monopole gauge charge has a conformal

dimension of 1. When a quiver is minimally unbalanced, with one or more

nodes having Balance(i) = −1, at least one monopole has a conformal

dimension of 1/2. When a quiver is very unbalanced, with one or more nodes

having Balance(i) ≤ −2, at least one monopole has a conformal dimension

that is zero or negative. The quivers whose Coulomb branches correspond

to the moduli spaces of nilpotent orbits all have integer conformal dimension

and are balanced.

A balanced quiver diagram, whose flavour nodes are each simply linked

to a single gauge node, has flavour node dimensions and gauge node dimen-

sions that are mediated by the regular Cartan matrix A of G. Define the

gauge node ranks by the vector Ng ≡ (Ng1 , . . . , Ngr) and the flavour node

dimensions by Nf ≡ (Nf1 , . . . , Nfr), where both vectors are ordered by the

Dynkin diagram of G, with Nf having zero entries for gauge nodes that do

not have a flavour node attached. It then follows from 6.6 that, for such a

balanced quiver:

Nf = A ·Ng (6.8)

Almost all the quivers for Coulomb branch constructions of nilpotent orbit

moduli spaces are of this type.

6.1.2. Coulomb Branch Dimension

Consider the unrefined Hilbert series gCoulomb (1, t), which is obtained by

setting the z fugacities in 6.2 to unity. Since the number of poles contributed

by each U(Ni) gauge group depends only on rank Ni, and is invariant under

gauge group breaking by the monopole flux q, the dimension of this moduli

space can be expanded as:

|gHS:Coulomb(1, t)| =

∣∣∣∣∣∑
q

t∆(q)

∣∣∣∣∣+

∣∣∣∣∣∣
∏
i,j

1

(1− t)

∣∣∣∣∣∣ . (6.9)
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The dimension of each of the RHS terms is determined by the sum of the

ranks of the U(Ni) gauge groups. Hence, the dimension of the Coulomb

branch is equal to twice the sum of the gauge group ranks Ni.

So, in order to find a Coulomb branch construction for a given nilpotent

orbit, based on the unitary monopole formula, it is necessary to identify a

balanced quiver with U(N) gauge group ranks summing to half the (com-

plex) dimension of the orbit. However, not all balanced quivers correspond

to nilpotent orbits. There are several methods for finding those that do, in-

cluding from affine Dynkin diagrams, from nilpotent orbit Characteristics,

and, in the case of the A series, from 3d mirror symmetry.

6.2. Minimal Nilpotent Orbits

The quiver for a Coulomb branch construction of a minimal nilpotent or-

bit or RSIMS of G, is specified by the extended (untwisted affine) Dynkin

diagram of G, as shown in Figures 2.1 and 2.2.

The zero central charge of the affine Lie algebra corresponds to an overall

gauge invariance condition on the field combinations. Since the extra affine

root and its Dynkin label are redundant, by virtue of the degeneracy of

the affine Cartan matrix, they can be gauged away. Thus, the affine root,

labelled by i = 0, can be treated as a flavour node and assigned a charge

q0 ≡ λ0 of zero; however, the affine node still plays a role in the gauge-

flavour hyper contribution to conformal dimension, in accordance with the

linking pattern of the extended Cartan matrix.

The quiver diagrams follow directly from the extended Dynkin diagrams

by setting the affine node to a single flavour node. The dual Coxeter labels
^
ai determine the ranks of the U(Ni) gauge fields. Applying the unitary

monopole formulae 6.2, 6.3 and 6.4 gives a Coulomb branch construction of

the RSIMS for any Classical or Exceptional group. There are other possible

gauge choices, as will be discussed, but these choices all construct the same

moduli space.

The quivers are balanced, in accordance with 6.8, and so have integer

conformal dimension. Their Coulomb branch has dimension equal to twice

the sum of the dual Coxeter labels, consistent with the dimensions of RSIMS

calculated in 3.3.4.

The construction of an RSIMS requires the collection of the root space
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monomials zq, into class functions of G, at the correct positive and neg-

ative integer powers and multiplicities; however, collections of root space

monomials do not necessarily form complete representations. It is an inter-

esting question, therefore, to examine how the Weyl group symmetry of G

is realised by the monopole formula.

For the A and C series, and their isomorphisms, where the gauge nodes

are all U(1), Weyl reflections of the simple roots zi are in one to one corre-

spondence with Weyl reflections of the monopole charges qi. In these cases it

is straightforward to show that conformal dimension ∆(q) is Weyl invariant.

Conformal dimension thus effects a foliation of the root space monomials zq

into sets of dominant weights and orbits that have the same R-charge.

In the case of other Classical and Exceptional series, however, some U(Ni)

gauge groups are of rank greater than one, and Weyl group reflections

of simple roots zi do not map uniquely to linear transformations of the

monopole charges qi,j . This makes it difficult to establish the invariance

of the monopole formula under the Weyl group of G, other than by full

calculation of the moduli space. Nonetheless, it appears that the restriction

imposed by building each quiver upon a Dynkin diagram of G is sufficient

to ensure that the moduli space obtained has the necessary Weyl group

symmetries and is a class function of G.

At this time, a proof of the equality between these Coulomb branch mod-

uli spaces and the RSIMS of G, for arbitrary rank, is not known. However,

the equivalence can in principle be verified analytically on on a case by case

basis, and has been carried out in [21, 22, 29] for low rank Classical and

Exceptional groups. Checks have also been carried out based on unrefined

Hilbert series and the first few terms of the Taylor expansions of the refined

Hilbert series of these Coulomb branch moduli spaces.

6.2.1. Simply Laced Groups

This section sets out details of the Coulomb branch constructions of refined

HS for ADE series RSIMS from the unitary monopole formula given by 6.2,

6.3 and 6.4. The treatment is largely taken from [29] and [22].
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A Series

The formal equivalence of Coulomb branch constructions for A1 and A2

RSIMS to those based on character generating functions is proved below.

The root structure of A2 is used to illustrate the Weyl group invariance of

conformal dimension for A series groups.

The monopole construction for A series RSIMS is based on the extended

Cartan matrix, defined in accordance with A.31, and the dual Coxeter labels

of the simple roots (shown as a column vector), where the affine root is

labelled as z0:

z1 2 −1 . . . 0 0 −1 1

z2 −1 2 . . . 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . 1

zr−1 0 0 . . . 2 −1 0 1

zr 0 0 . . . −1 2 −1 1

z0 −1 0 . . . 0 −1 2 1

. (6.10)

For A1, the extended Cartan matrix and dual Coxeter labels are:

z1 2 −2 1

z0 −2 2 1
. (6.11)

Applying 6.2, 6.3 and 6.4, we obtain the monopole formula for an A series

RSIMS:

gArHS:RSIMS(z, t) =
1

(1− t)r
∞∑

q1,...,qr=−∞
z1
q1z2

q2 . . . zr
qr t∆(q), (6.12)

where

∆ (q) =
1

2

(
|q1|+

r−1∑
i=1

|qi − qi+1|+ |qr|

)
. (6.13)

The constructions for A1 and A2 can be rearranged into the character gen-

erating functions for RSIMS. For A1, where we are working with simple

roots expressed as z1 in terms of root space fugacities, rather than as x2 in
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terms of weight space fugacities, we have:

gA1
HS:RSIMS(z, t) =

1

(1− t)

∞∑
q1=−∞

zq11 t
|q1|

=
1

(1− t)

 ∞∑
q1=0

zq11 t
q1 +

∞∑
q1=0

z−q11 tq1 − 1


=

1− t2

(1− t) (1− z1t) (1− t/z1)

=
(
1− t2

)
PE [[2] t] .

(6.14)

This yields the minimal nilpotent orbit character generating function for A1

whose Higgs branch calculation is given in Table 5.3. 2

For A2, the rearrangement, which follows the boundaries of Weyl cham-

bers, is more intricate:

gA2

HS:RSIMS(z, t) =
1

(1− t)2

∞∑
q1,q2=−∞

zq11 z
q2
2 t

1
2 (|q1|+|q1−q2|+|q2|)

=
1

(1− t)2



∞∑
q2=0

q2∑
q1=0

(
zq11 z

q2
2 + z−q11 z−q22 + zq21 z

q1
2 + z−q21 z−q12

)
tq2

−
∞∑
q1=0

(
zq11 z

q1
2 + z−q11 z−q12

)
tq1

−
∞∑
q1=0

(
zq11 + z−q11 + zq12 + z−q12

)
tq1

+
∞∑
q1=0

∞∑
q2=0

(
z−q11 zq22 + zq11 z

−q2
2

)
t(q1+q2) + 1


=

(1− t2 − t4 + t6)−
(
t2 − 2t3 + t4

) (
z1 + z2 + z1z2 + z−1

1 + z−1
2 + z−1

1 z−1
2 + 2

)
(1− z1t) (1− z2t) (1− z1z2t)

(
1− z−1

1 t
) (

1− z−1
2 t
) (

1− z−1
1 z−1

2 t
)

(1− t)2

=
(
(1− t2 − t4 + t6) [0, 0]−

(
t2 − 2t3 + t4

)
[1, 1]

)
PE[[1, 1] t].

(6.15)

This matches the minimal nilpotent orbit character generating function for

A2, as given in Table 5.3 (up to counting conventions).

Some insight into the complexities of the monopole formula can be ob-

tained by reversing the above procedure and seeking to derive the monopole

formula from the Weyl character generating function 2.7. For A1 the deriva-

2Note that the Coulomb branch conventionally counts R-charge by orders of t while the
Higgs branch counts by orders of t2.
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tion proceeds as below:

gA1
HS:RSIMS(z, t) =

1

(1− z)
(
1− t

z

) +
1(

1− 1
z

)
(1− tz)

=

∞∑
a=0

∞∑
b=0

tazb−a +

∞∑
a=0

∞∑
b=0

taza−b

=

∞∑
q=−∞

∞∑
b=max(0,−q)

tb+qzq +

∞∑
q=−∞

∞∑
b=max(0,q)

tb−qzq

=
1

1− t

∞∑
q=−∞

(
tmax(0,−q)+q + tmax(0,q)−q

)
zq

=
1

1− t

( ∞∑
q=−∞

t|q|zq +
∞∑

q=−∞
zq

)

=
1

1− t

∞∑
q=−∞

t|q|zq.

(6.16)

The key steps in the derivation include (i) Taylor expansion of the sum-

mand associated with each long root, (ii) rearrangement of the limits of

summation, such that the summands share the same simple root fugacities

zq and the charges q range from −∞ to ∞, (iii) implementation of sums

with the respect to the charges that are not carried by the simple roots and

(iv) simplification of the resulting piecewise functions. When boiling down

the latter it is useful to draw on identities that follow from the complex

unimodular nature of the root space coordinates.

While we should in principle be able to find such derivations for higher

rank groups, the simplification of the piecewise functions becomes increas-

ingly non-trivial.
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Thus, for SU(3), we have:

gA2
HS:RSIMS(z, t) =

∑
Weyl

1(
1− 1

z1

)(
1− 1

z1z2

)
(1− z2) (1− tz1)

=
∑
Weyl

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

taza−b−c1 zd−c2

=
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
c=max(0,−q2)

∞∑
b=max(0,−c−q1)

zq11 zq22 tb+c+q1

=
1

(1− t)
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
c=max(0,−q2)

zq11 zq22 tmax(0,c+q1)

=
1

(1− t)
∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
a=0

zq11 zq22 tmax(0,a+q1,a+q1−q2)

=
1

(1− t)2

∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

zq11 zq22

(
tmax(0,q1,q1−q2) − (1− t)min (0,max (q1, q1 − q2))

)

=
1

(1− t)2

∑
Weyl

∞∑
q1=−∞

∞∑
q2=−∞

zq11 zq22 tmax(0,q1,q1−q2),

(6.17)

where we have used an identity, which is valid for unimodular root fugacities:

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 min (0,max (q1, q1 − q2)) = 0. (6.18)

We continue by carrying out the Weyl reflections to obtain:

gA2

HS:RSIMS(z, t) =
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (tmax(0,−q1,q2−q1) + tmax(0,q1,q1−q2)

+ tmax(0,−q2,−q1) + tmax(0,−q2,q1−q2) + tmax(0,q2,q2−q1) + tmax(0,q2,q1))

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2

(
2 + t|q1| + t|q2| + t|q1−q2| + t

1
2 |q1−q2|+

1
2 |q1|+

1
2 |q2|

)
=

1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2

(
t
1
2 |q1−q2|+

1
2 |q1|+

1
2 |q2|

)
,

(6.19)

where we have rearranged the parts of the six piecewise functions and used

identities involving the unimodular fugacities zi to eliminate five of the

resulting functions:

∞∑
q1=−∞

zq11 = 0 =

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t
|q1−q2|. (6.20)
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D Series

The Coulomb branch construction for D series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 −1 . . . 0 0 0 0 1

z2 −1 2 . . . 0 0 0 −1 2

. . . . . . . . . . . . . . . . . . . . . . . . 2

zr−2 0 0 . . . 2 −1 −1 0 2

zr−1 0 0 . . . −1 2 0 0 1

zr 0 0 . . . −1 0 2 0 1

z0 0 −1 . . . 0 0 0 2 1

. (6.21)

Applying 6.2, 6.3 and 6.4, we obtain the equation for a Dr≥4 series RSIMS:

gDrHS:RSIMS(z, t) =

∞∑
q1,qr−1,qr=−∞

∞∑
qj,1≥qj,2≥−∞
r−2≥j≥2

z1
q1z2

q2,1+q2,2 . . . zr−2
qr−2,1+qr−2,2zr−1

qr−1zr
qr

× PU(N)
q (t) t∆(q),

(6.22)

where

PU(N)
q (t) =

1

(1− t)r
r−2∏
j=2

{
qj,1 = qj,2 : 1/(1− t2)

qj,1 6= qj,2 : 1/(1− t)
(6.23)

and

∆(q) =
1

2


2∑
i=1
|q2,i|+

2∑
i=1
|q1 − q2,i|+

r−3∑
k=2

2∑
i,j=1
|qk,i − qk+1,j |

+
2∑
i=1
|qr−2,i − qr−1|+

2∑
i=1
|qr−2,i − qr|


−

r−2∑
k=2

|qk,1 − qk,2|

(6.24)

The construction can, in principle, be rearranged into a character generating

function similar to Table 5.3.

Interestingly, the gauge choice q0 = 0 has alternatives and, indeed, any

one of the monopole charges can be defined to be zero, providing (i) the

limits and summand are modified to include both q0 and z0, and (ii) care
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is taken over the symmetry factors, since the node with the zero monopole

charge carries the Casimirs of SU(N) rather than U(N). For star shaped

quivers, such as D4, a particularly convenient choice of gauge is q2,2 = 0,

and this leads directly to a decomposition into a symmetric sum over all the

representations of four T (SU(2)) quiver theories, discussed in Chapter 8.

E Series

The Coulomb branch construction for E6 RSIMS is based on the extended

Cartan matrix and dual Coxeter labels:

z1 2 −1 0 0 0 0 0 1

z2 −1 2 −1 0 0 0 −1 2

z3 0 −1 2 −1 0 −1 0 3

z4 0 0 −1 2 −1 0 0 2

z5 0 0 0 −1 2 0 0 1

z6 0 0 −1 0 0 2 −1 2

z0 0 0 0 0 0 −1 2 1

. (6.25)

Applying the prescription set out in 6.2, 6.3 and 6.4, we obtain the monopole

equation for an E6 instanton:

gE6
HS:RSIMS(z, t) =

∞∑
q1,q5=−∞

∞∑
qj,1≥qj,2≥−∞

j=2,4,6

∞∑
q3,1≥q3,2≥q3,3≥−∞

z1
q1z2

q2,1+q2,2z3
q3,1+q3,2+q3,3

× z4
q4,1+q4,2z5

q5z6
q6,1+q6,2 PE6

U(N) (q, t) t∆(q),

(6.26)

where

PE6

U(N) (q, t) =
1

(1− t)6(1− t2)4 (1− t3)

× If
[
q3,1 6= q3,2 ∨ q3,1 6= q3,3 ∨ q3,2 6= q3,3,

(
1 + t+ t2

)]
× If [q3,1 6= q3,2 ∧ q3,1 6= q3,3 ∧ q3,2 6= q3,3), (1 + t)]

×
∏

j=2,4,6

If [qj,1 6= qj,2, (1 + t)]

(6.27)
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and

∆(q) =
1

2

 2∑
i=1

|q1 − q2,i|+
∑

k=2,4,6

i=2,j=3∑
i,j=1

|q3,j − qk,i|+
2∑
i=1

|q4,i − q5|+
2∑
i=1

|q6,i|


−

∑
k=2,4,6

2∑
i>j≥1

|qk,i − qk,j | −
3∑

i>j≥1

|q3,i − q3,j |.

(6.28)

The RSIMS constructions for E7 and E8 groups follow a similar pattern to

E6.

Again, the gauge choice q0 = 0 has alternatives. For star shaped quivers,

such as E6, a convenient choice of gauge is q3,3 = 0, and this leads directly

to a decomposition into a symmetric sum over all the representations of

three T (SU(3)) quiver theories, discussed in Chapter 8.

6.2.2. Non-Simply Laced Groups

B Series

The Coulomb branch construction for B series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 −1 . . . 0 0 0 1

z2 −1 2 . . . 0 0 −1 2

. . . . . . . . . . . . . . . . . . . . . 2

zr−1 0 0 . . . 2 −2 0 2

zr 0 0 . . . −1 2 0 1

z0 0 −1 . . . 0 0 2 1

. (6.29)

Applying 6.2, 6.3 and 6.4, gives the monopole formula for the RSIMS of

Br>2:

gBrHS:RSIMS(z, t) =

∞∑
q1,qr=−∞

∞∑
qj,1≥qj,2≥−∞
r−1≥j≥2

z1
q1z2

q2,1+q2,2 . . . zr−1
qr−1,1+qr−1,2zr

qr

× PBrU(N) (q, t) t∆(q),

(6.30)
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where

PBrU(N) (q, t) =

r−1∏
j=2

If [qj,1 6= qj,2, (1 + t)]

(1− t)r(1− t2)r−2

(6.31)

and

∆(q) =
1

2

 2∑
i=1

(|q1 − q2,i|+ |q2,i|+ |2qr−1,i − qr|) +

r−2∑
k=2

2∑
i,j=1

|qk,i − qk+1,j |


−

r−1∑
k=2

∑
i>j

|qk,i − qk,j |.

(6.32)

This Coulomb branch construction for B2 can be rearranged into the B2

RSIMS in Table 5.3:

gB2
HS:Coulomb(z, t) =

1

(1− t)2

∞∑
q1,q2=−∞

z1
q1z2

q2t
1
2

(|2q1−q2|+|q2|)

=
1

(1− t)2



∞∑
q1=0

2q1∑
q2=0

(z1
q1z2

q2 + z1
−q1z2

−q2) tq1

+
∞∑
q1=0

∞∑
q2=2q1

(z1
q1z2

q2 + z1
−q1z2

−q2) t(q2−q1)

−
∞∑
q1=0

(
z1
q1z2

2q1 + z1
−q1z2

−2q1
)
tq1

+
∞∑
q1=0

∞∑
q2=0

(z1
q1z2

−q2 + z1
−q1z2

q2) t(q1+q2)

−
∞∑
q1=0

(z1
q1 + z1

−q1) tq1

−
∞∑
q2=0

(z2
q2 + z2

−q2) tq2

+1


. . .

=


1− t2 − t6 + t8 [0, 0]

t3 − 2t4 + t5 [0, 2]

−t2 + t3 + t5 − t6 [1, 0]

t3 − 2t4 + t5 [1, 2]

−t2 + t3 + t5 − t6 [2, 0]

PE [[0, 2] t] .

(6.33)
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The monopole formula for the B2 RSIMS can also be obtained from the

character generating function 2.12. This permits us to take advantage of

the invariance of the highest root of B2 under the Weyl reflections of an

A1 subgroup and to work with the WB2/A1
quotient group. This quotient

group has dimension |WB2/A1
| = 4 and transforms amongst the long roots

of B2 which are {z1, z1z2
2, z1

−1, z1
−1z2

−2}. We obtain:

gB2

HS:RSIMS(z, t) =
∑

WB2/A1

1

(1− tz1) (1− 1/z1) (1− z2) (1− 1/z1z2)

=
∑

WB2/A1

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

taza−b−d1 zc−d2

=
∑

WB2/A1

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
d=max(0,−q2)

∞∑
b=max(0,−d−q1)

z1
q1z2

q2tb+d+q1

=
1

(1− t)
∑

WB2/A1

∞∑
q1=−∞

∞∑
q2=−∞

∞∑
d=0

z1
q1z2

q2tmax(0,d+q1,d+q1−q2)

=
1

(1− t)2

∑
WB2/A1

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2

(
tmax(0,q1,q1−q2)−

(1− t)min(0,max(q1, q1 − q2))

)

=
1

(1− t)2

∑
WB2/A1

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t

max(0,q1,q1−q2),

(6.34)

where we have used the identity 6.18 to eliminate piecewise terms. Carrying

out the Weyl reflections and rearranging or eliminating piecewise terms,

using the identities 6.20, recovers the RSIMS monopole formula 6.33:

gB2
HS:RSIMS(z, t) =

1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (tmax(0,−q1,q2−q1) + tmax(0,−q1,q1−q2)

+ tmax(0,q1,q2−q1) + tmax(0,q1,q1−q2))

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 (t

1
2
|2q1−q2|+ 1

2
|q2| + t|q1−q2| + t|q1| + 1)

=
1

(1− t)2

∞∑
q1=−∞

∞∑
q2=−∞

zq11 z
q2
2 t

1
2
|2q1−q2|+ 1

2
|q2|.

(6.35)
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C Series

The Coulomb branch construction for C series RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 −1 . . . 0 0 −1 1

z2 −1 2 . . . 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . 1

zr−1 0 0 . . . 2 −1 0 1

zr 0 0 . . . −2 2 0 1

z0 −2 0 . . . 0 0 2 1

. (6.36)

Applying 6.2, 6.3 and 6.4, we obtain the monopole formula for a Cr≥2

RSIMS:

gCrHS:RSIMS(z, t) =
1

(1− t)r
∞∑

qi=−∞
z1
q1z2

q2 . . . zr
qr t∆(q), (6.37)

where

∆(q) =
1

2

(
|q1|+

r−2∑
i=1

|qi − qi+1|+ |qr−1 − 2qr|

)
. (6.38)

The constructions for B2 and C2 are isomorphic under interchange of root

labels.

G2

The Coulomb branch construction for the G2 RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 −3 −1 2

z2 −1 2 0 1

z0 −1 0 2 1

. (6.39)

Applying 6.2, 6.3 and 6.4, we obtain the monopole formula for a G2 RSIMS:

gG2
HS:RSIMS(z, t) =

∞∑
q1,1≥q1,2≥−∞

∞∑
q2=−∞

z1
q1,1+q1,2z2

q2PG2

U(N)t
∆(q), (6.40)
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where

PG2

U(N) (q, t) =
If [q1,1 6= q1,2, (1 + t)]

(1− t)2 (1− t2)
(6.41)

and

∆(q) =
1

2

2∑
i=1

(|q1,i|+ |3q1,i − q2|)− |q1,1 − q1,2| . (6.42)

F4

The Coulomb branch construction for the F4 RSIMS is based on the ex-

tended Cartan matrix and dual Coxeter labels:

z1 2 −1 0 0 −1 2

z2 −1 2 −2 0 0 3

z3 0 −1 2 −1 0 2

z4 0 0 −1 2 0 1

z0 −1 0 0 0 2 1

. (6.43)

Applying 6.2, 6.3 and 6.4, we obtain the monopole formula for a F4 RSIMS:

gF4

HS:RSIMS(z, t) =

∞∑
qj1≥qj,2≥−∞

j=1,3

∞∑
q2,1≥q2,2≥q2,3≥−∞

∞∑
q4=−∞

z1
q1,1+q1,2z2

q2,1+q2,2+q2,3z3
q3,1+q3,2z4

q4

× PF4

U(N)t
∆(q),

(6.44)

where

PF4

U(N) (q, t) =

∏
j=1,3

If [qj,1 6= qj,2, 1 + t]

(1− t)4
(1− t2)

3
(1− t3)

× If
[
∃i, j : q2i 6= q2j , (1 + t+ t2)

]
× If [!∃i, j : q2,i = q2,j , (1 + t)]

(6.45)

and

∆(q) =
1

2

 2∑
i=1

|q1,i|+
2∑
i=1

3∑
j=1

(|q1,i − q2,j |+ |2q2,j − q3,i|) +

2∑
i=1

|q3,i − q4|


−
∑
k=1,3

|qk,1 − qk,2| −
∑
i>j

|q2,i − q2,j |.

(6.46)
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6.2.3. Root Space Foliation

A key feature of the Coulomb branch construction is the way in which

conformal dimension foliates the root space into sets of Weyl group orbits

of dominant weights. This is illustrated for A2, B2 C2 and G2 RSIMS in

Figures 6.1, 6.2, 6.3 and 6.4. Roots are labelled using root space coordinates,

rather than weight space coordinates/Dynkin labels.

Figure 6.1.: Root Space of A2 Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of 0
for (0,0), 1 for the Weyl orbit of (1,1), 2 for the Weyl orbits of
(2,2), (1,2) and (2,1), and 3 for the Weyl orbits of (3,3), (2,3)
and (3,2). The adjoint representation is given by the orbit of
(1,1) with conformal dimension 1 plus 2 orbits with conformal
dimension 0.

In all cases, the RSIMS can be expressed as sums of orbits of domi-

nant weights, combined at multiplicities determined by the PU(N) factors.

Conformal dimension remains constant around each orbit. More than one

dominant weight can have the same conformal dimension. For all rank 2

groups, the adjoint is given by the orbits with conformal dimension 1 plus

two orbits with conformal dimension 0. The isomorphism between B2 and

C2 is evident upon interchange of simple roots.
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Figure 6.2.: Root Space of B2 Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of
0 for (0,0), 1 for the Weyl orbits of (1,2) and (1,1), 2 for the
Weyl orbits of (2,4), (2,3) and (2,2), and 3 for the Weyl orbits
of (3,6), (3,5), (3,4) and (3,3). The long root of the adjoint
representation is (1,2).

Figure 6.3.: Root Space of C2 Foliated by RSIMS Conformal Dimension.The
colour sequence corresponds to conformal dimensions of 0 for
(0,0), 1 for the Weyl orbits of (2,1) and (1,1), 2 for the Weyl or-
bits of (4,2), (3,2) and (2,2), and 3 for the Weyl orbits of (6,3),
(5,3), (4,3) and (3,3). The long root of the adjoint representa-
tion is (2,1).
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Figure 6.4.: Root Space of G2 Foliated by RSIMS Conformal Dimension.
The colour sequence corresponds to conformal dimensions of 0
for (0,0), 1 for the Weyl orbits of (2,3) and (1,2), and 2 for the
Weyl orbits of (4,6), (3,6), (3,5) and (2,4). The long root of the
adjoint representation is (2,3).

6.3. Near to Minimal Nilpotent Orbits

6.3.1. Twisted Affine Quivers

Coulomb branch constructions of near to minimal nilpotent orbits from

affine Dynkin diagrams proceed in a similar manner to those for RSIMS.

One option is to replace a node of an untwisted affine diagram, other than

the affine node, by a flavour node. Alternatively, one can start with a twisted

affine Dynkin diagram (see appendix A.3). Both types of affine diagram are

balanced and therefore replacement of any node by a flavour node of equal

U(N) rank leads to a balanced quiver diagram. By judicious choice, we can

obtain a simple algebra of the same rank as the starting algebra. The node

that is replaced becomes a flavour node (with zero background charge) in

the quiver diagram.

Figures 6.5 and 6.6 show the branching options for some extended (un-

twisted affine) Classical and Exceptional Dynkin diagrams, expressed in

terms of the quivers to which they give rise. These include, for reference,

the quivers for RSIMS examined in section 6.2.

The Classical (untwisted) affine Dynkin diagrams give rise to one class

of quivers over and above those for RSIMS. This class of quivers is derived
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from theBr affine Dynkin diagram and yields Coulomb branch constructions

over Dr. Gauge node counting shows that the Coulomb branch dimension

of these quivers is 4r − 4, which is 2 above the dimension of the minimal

nilpotent orbit of Dr. This indicates that these moduli spaces correspond

to the next to minimal orbits of Dr.

Figure 6.5.: Quivers from Classical Affine Dynkin Diagrams. Round (blue)
nodes denote gauge nodes in the regular Dynkin diagram. The
affine diagram is obtained by adding a gauge node (black). The
dual Coxeter labels of each node are shown. Square (red) nodes
denote flavour nodes. When a short root attached to a long
root in the affine diagram is taken as a flavour node, its rank is
doubled.

The Exceptional (untwisted) affine Dynkin diagrams also give rise to a

number of quivers over and above those for RSIMS. These extra quivers

provide Coulomb branch constructions for moduli spaces of A2, B4, A7, A8

and D8, and these appear to correspond to nilpotent orbits.

1. G2 → A2. This quiver gives the Coulomb branch construction for the
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Figure 6.6.: Quivers from Exceptional Affine Dynkin Diagrams. Round
(blue) nodes denote gauge nodes in the regular Dynkin diagram.
The affine diagram is obtained by adding a gauge node (black).
The dual Coxeter labels of each node are shown. Square (red)
nodes denote flavour nodes. When a short root attached to a
long root in the affine diagram is taken as a flavour node, its
rank is doubled or tripled according to the ratio of root lengths.
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6 dimensional maximal nilpotent orbit of A2.

2. F4 → B4. This quiver appears to be the Coulomb branch construction

for the 16 dimensional nilpotent orbit of B4, which is two orbits above

the minimal. The quiver diagram is consistent with the Characteristic

of this nilpotent orbit, as discussed in 6.5.

3. E7 → A7. This quiver gives the Coulomb branch construction for the

32 dimensional nilpotent orbit of A7. This can be established by 3d

mirror duality, as discussed in 6.4.

4. E8 → A8. This quiver gives the Coulomb branch construction for the

58 dimensional nilpotent orbit of A8. This can be established by 3d

mirror duality, as discussed in 6.4.

5. E8 → D8. This quiver appears to be the Coulomb branch construction

for the 56 dimensional spinor pair nilpotent orbit of D8, which is

seven above the minimal. The quiver diagram is consistent with the

Characteristic of this nilpotent orbit, as discussed in 6.5.

Figure 6.7 shows the branching options for twisted affine Dynkin dia-

grams. The three infinite families give rise to a series of quivers that provide

Coulomb branch constructions for nilpotent orbits. In addition, A
(2)
1 , G

(3)
2

and F
(2)
4 branch to some further quivers.

1. A
(2)
1 → A1. This quiver gives the Coulomb branch construction for

the nilpotent orbit of A1.

2. G
(3)
2 → A2. This quiver gives the Coulomb branch construction for

the 6 dimensional maximal nilpotent orbit of A2.

3. B
(2)
r or B̃

(2)
r → Br. This quiver gives the Coulomb branch construction

for the 4r − 2 dimensional next to minimal nilpotent orbit of Br.

4. C
(2)
r → Dr. This quiver gives the Coulomb branch construction for

the 4r − 4 dimensional next to minimal nilpotent orbit of Dr.

5. C
(2)
r → Cr. This quiver gives the Coulomb branch construction for

the 4r − 2 dimensional next to minimal nilpotent orbit of Cr.

170



6. F
(2)
4 → C4. This quiver gives the Coulomb branch construction for

the 20 dimensional nilpotent orbit of C4.

7. F
(2)
4 → F4. This quiver gives the Coulomb branch construction for

the 22 dimensional next to minimal nilpotent orbit of F4.

Taken together, the affine quivers yield Coulomb branch constructions

for moduli spaces of minimal nilpotent orbits of all groups, next to minimal

nilpotent orbits of all BCD groups and F4, plus a number of other near to

minimal nilpotent orbits.

However, calculation shows that a few of the branching options from

twisted affine Dynkin diagrams lead to quivers that do not correspond to

the moduli space of any nilpotent orbit:

1. A
(2)
1 → A1: The quiver [4]− (2) has a 4 dimensional Coulomb branch,

which is clearly not the A1 orbit.

2. G
(3)
2 → G2: The quiver (3) ≡> (2)−[1] has a 10 dimensional Coulomb

branch, but this does not match the G2 nilpotent orbit of the same

dimension.

3. B
(2)
r or B̃

(2)
r → Cr: The Cr quivers have 4r dimensional Coulomb

branches, but these do not match Cr nilpotent orbits.

The reasons for these exceptions amongst the quivers from twisted affine

branchings are unclear. In practice, therefore, it is necessary to verify,

on a case by case basis, the correspondence between these Coulomb branch

constructions and the Higgs branch constructions for nilpotent orbit moduli

spaces set out in Tables 5.4 to 5.6 and 5.12 to 5.20.
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Figure 6.7.: Quivers from Twisted Affine Dynkin Diagrams. Twisted affine
groups are labelled using the notation of [58]. Round (blue)
nodes denote gauge nodes in the regular Dynkin diagram. The
twisted affine diagram is obtained by adding a gauge node
(black). The dual Coxeter labels of each node are shown.
Square (red) nodes denote flavour nodes. When a short root
attached to a long root in the affine diagram is taken as the
flavour node in a quiver, its rank is multiplied according to the
ratio of root lengths.
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6.3.2. Evaluation of Affine Coulomb Branches

As an example, applying the monopole formula to the quiver [2]−(2) => (1)

from B
(2)
2 → B2 yields the Coulomb branch:

gB2
HS:Coulomb(z, t) =

∞∑
q1,1=−∞

q1,1∑
q1,2=−∞

∞∑
q2=−∞

PU(N)
q (t) z1

q1,1+q1,2z2
q2 t∆(q),

(6.47)

where

∆(q) =
1

2
(|2q1,1|+ |2q1,2|+ |2q1,1 − q2|+ |2q1,2 − q2|)− |q1,1 − q1,2|

(6.48)

and

PU(N)
q (t) =

{
q1,1 = q1,2 : 1/

(
(1− t)2(1− t2)

)
q1,1 6= q1,2 : 1/(1− t)3

. (6.49)

It is important to note that, under the monopole formula, the quivers

[1]⇐ (2)⇒ (1) and [2]− (2)⇒ (1) evaluate identically for an uncharged

flavour node. Implementing the summation piecewise and replacing the

simple root fugacities of B2 by weight space fugacities {z1, z2} →
{
x2

y2 ,
y2

x

}
,

we obtain:

gB2

HS:Coulomb(x, y, t) =
(t+ 1)x3y4(t4xy2 + t3xy2 − t2x2y2 − t2x2 − t2y4 − t2y2 + txy2 + xy2)

(t− x)(tx− 1)(t− y2)(ty2 − 1)(tx− y2)(tx2 − y2)(ty2 − x)(ty2 − x2)

=
(
(1− t2 − t5 + t7)[0, 0] + (−t2 + t3 + t4 − t5)[1, 0]

)
PE [[0, 2]t]

(6.50)

As before, we can restate this in terms of an unrefined Hilbert series and in

terms of a character HWG:

gB2
HS:Coulomb(1, t) =

(1 + t)(1 + 3t+ t2)

(1− t)6
, (6.51)

gB2
HWG:Coulomb(m1,m2, t) =

1

(1−m2
2t)(1−m1

2t2)
, (6.52)

Comparison with Table 5.12, shows that we have obtained the moduli space

for the 6 dimensional next to minimal nilpotent orbit of B2, under the

counting fugacity map, Higgs→ Coulomb : t2 → t.

In principle, this calculation can be repeated for the quivers identified in

Figure 6.7. Subject to some qualifications, discussed below, calculations up
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to rank 4 confirm a match between the Coulomb branches of these quivers

and those of the Higgs branches of BCD quivers corresponding to nilpo-

tent orbits. This match is summarised in Figures 6.8, 6.9 and 6.10, giving

the dimensions of the nilpotent orbits, their Higgs branch quivers and the

equivalent Coulomb branch quivers, which are all balanced. The flavour

nodes in these Coulomb branch quivers do not carry external charges.

Turning to the near minimal nilpotent orbits associated with pairs of Dn

spinor partitions; calculation shows that their Coulomb branch construc-

tions form a pair of palindromic moduli spaces, according to the choice of

spinor linked to the flavour node. Their Higgs branch constructions are

non-palindromic unions of these two Coulomb branches.

Thus, in the case of D4, as indicated in Figure 6.10, the Coulomb branch

quiver for the 12 dimensional D4 − C1 − B0 nilpotent orbit is related by

triality to a pair of 12 dimensional moduli spaces, and the union of this pair

forms the D4 − C2 I/II nilpotent orbit construction on the Higgs branch,

consistent with 5.25.

Similarly, it can be anticipated that the Higgs branch construction from

the D8 − C4 quiver of the 56 dimensional nilpotent orbit of D8 equals the

union of the spinor pair Coulomb branch constructions from the E8 affine

Dynkin diagram identified in section 6.3.
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Figure 6.8.: Higgs/Coulomb Quivers for B Series Nilpotent Orbits up to
rank 4. B/D gauge nodes in a Higgs quiver indicate the cor-
responding O group. Round (blue) nodes denote U(N) gauge
nodes. Square (red) nodes denote flavour nodes. The nilpo-
tent orbits can be calculated from either the Higgs or Coulomb
branches of the dual quivers using the Higgs branch or monopole
formulae, respectively.
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Figure 6.9.: Higgs/Coulomb Quivers for C Series Nilpotent Orbits up to
rank 4. B/D gauge nodes in a Higgs quiver indicate the cor-
responding O group. Round (blue) nodes denote U(N) gauge
nodes. Square (red) nodes denote flavour nodes. The nilpo-
tent orbits can be calculated from either the Higgs or Coulomb
branches of the dual quivers using the Higgs branch or monopole
formulae, respectively.
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Figure 6.10.: Higgs/Coulomb Quivers for D Series Nilpotent Orbits up to
rank 4. B/D gauge nodes in a Higgs quiver indicate the
corresponding O group. Round (blue) nodes denote U(N)
gauge nodes. Square (red) nodes denote flavour nodes. The
nilpotent orbits can be calculated from either the Higgs or
Coulomb branches of the dual quivers using the Higgs branch
or monopole formulae, respectively. The three 12 dimensional
nilpotent orbits of D4 are related by triality.
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6.4. 3d Mirror Symmetry

6.4.1. A Series

Since early work in [1], it has been known that the Higgs branches of A

series quivers have moduli spaces that are identical to those of the Coulomb

branches of certain unitary dual quivers, under 3d mirror symmetry. A pair

of quivers A and B that are 3d mirror dual obeys the relationship:

gAHS:Higgs = gBHS:Coulomb

gAHS:Coulomb = gBHS:Higgs

(6.53)

Given an A series quiver containing a linear sequence of gauge nodes, its

mirror dual can be calculated using brane combinatorics, as set out in [2,

25, 31], and this provides a method of finding A series quivers with Coulomb

branch moduli spaces equal to the Higgs branch constructions of nilpotent

orbits in Tables 5.4 to 5.6.

Briefly, the brane system can be described in type IIB string theory in

terms of D5, NS5 and D3 branes in 9 + 1 space-time. The branes all extend

along the space-time directions x0, x1 and x2. The D3 branes also extend

along x3. The D5 and NS5 branes extend along x4, x5, x6 and x7, x8, x9,

respectively, being interchanged by S-duality. The D3 branes begin and end

on 5-branes, so moving a D5 and NS5 through each other in the x3 direction

creates or destroys a D3 brane. Each set of D3 branes linking two adjacent

NS5 branes defines a unitary symmetry. The D5 branes carry a flavour

symmetry.

The brane manipulations to transform the quiver for the Higgs branch

construction of the maximal nilpotent orbit of A3 into its mirror are shown

in Figure 6.11. The quiver starts with the D5 branes disconnected from

the D3 branes (i.e. with no net left or right linking), with the only links

being between the D3 and NS5 branes. S-duality is used to interchange the

D5 and NS5 branes. Adjacent pairs of D5 and NS5 branes are then moved

through each other, with D3 branes being destroyed, until the D5 branes are

one again disconnected from the D3 branes. In this example, the resulting

quiver matches the initial quiver, and is said to be self-mirror.

Figure 6.12 displays those quivers that yield the nilpotent orbits for A1 to

A3 on their Higgs branches along with the 3d mirror duals that produce the
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Figure 6.11.: Mirror Dual A Series Quiver from Brane Transformations.
NS5 branes are denoted by vertical lines, D3 branes by hori-
zontal lines and D5 branes by ⊗. S-duality interchanges NS5
and D5 branes. When a D5 brane is moved to the right (left)
through an NS5 brane, its net D3 linking from the right (left) is
reduced by one. Unlinked D5 branes are moved to the bottom
of the diagrams. The final quiver matches the initial quiver
under reflection in the x3 direction
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same moduli spaces on on their Coulomb branches. The analysis generalises

to higher ranks.

Figure 6.12.: Mirror Dual A Series Quivers for Nilpotent Orbits. Round
(blue) nodes denote unitary gauge nodes of the indicated rank.
Square (red) nodes denote numbers of flavour nodes.

The quivers of the A series maximal nilpotent orbits are all self-mirror and

their Coulomb branches correspond to T (SU(N)) quiver theories, discussed

in Chapter 8.

6.4.2. BCD Series

As shown in sections 6.2 and 6.3, quivers exist whose Coulomb branches

yield the moduli spaces of minimal and near to minimal nilpotent orbits of

BCD groups. Also brane configurations for Higgs branch constructions of
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BCD nilpotent orbits are known. For example, it was shown in [22], how

instantons of BCD groups can be constructed, using orientifold planes, from

D2 branes against a background of D6 branes.3

However, finding Coulomb branch counterparts of Higgs branch quivers

for general BCD nilpotent orbits via 3d mirror symmetry remains problem-

atic for a number of reasons. Firstly, the proposals for mirror symmetric

duals of BCD Higgs branch quivers via brane manipulations involving O3

orientifold planes [75, 21, 31] lead to Coulomb branch quivers with non-

unitary gauge nodes that are not equal in number to the simple roots of the

BCD group, and which cannot, therefore, be calculated using the unitary

monopole formula. Secondly, while versions of the monopole formula for

non-unitary gauge nodes have been proposed [55], these have not been suc-

cessful at generating moduli spaces with refined Hilbert series that match

those of the purported mirrors. Indeed, one method currently used for

working with the maximal nilpotent orbits (T (G) theories) of BCD series

[55, 31], is simply to bypass the problem, by conjecturing the equivalence

of the Coulomb branches of the unknown quivers to BCD modified Hall

Littlewood polynomials.

6.5. Quivers from Characteristics

As a final method of finding quivers for the Coulomb branch constructions of

nilpotent orbits, a remarkable match can be observed between the structures

of near to minimal Coulomb branch quivers, and their respective Character-

istics and weight maps (in Appendix B). Specifically, the flavour and gauge

nodes of the Coulomb branch quivers in Figures 6.8 to 6.10, and also several

of the quivers in 6.12, when ordered as vectors Nf and Ng, as per section

6.1.1, match their Characteristics and weight maps. This match only ap-

pears for nilpotent orbits whose complex dimensions are exactly twice the

sum of their weight map labels. (This is because the unitary monopole

formula always leads to a Coulomb branch moduli space whose complex

dimension is twice that of the sum of the ranks of the gauge nodes.)

The observed match extends to the RSIMS and near to minimal nilpotent

orbits of Exceptional Groups and this invites the conjecture that, for any

Classical or Exceptional group G:

3The orientifold planes are required to reproduce the root systems of the Lie algebras.
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“If a nilpotent orbit of G has a complex dimension equal to

twice the sum of the Dynkin labels in its weight map, then appli-

cation of the unitary monopole formula to a quiver defined by the

Dynkin diagram of G, with gauge nodes defined by the weight

map and flavour nodes defined by the Characteristic (root map),

yields a Coulomb branch construction for the moduli space of

the nilpotent orbit”.

Empirically, whenever a Characteristic [q] obeys this rule, the Character-

istic height [θ] (as defined in section 4.2.3) of the highest root equals 2, so θ

is contained in the nilpotent element X. As observed in [76], [θ] ≡
r∑
i=1

aiqi,

where the ai are taken as the Coxeter labels of G.

All the nilpotent orbits covered by this Characteristic rule have character

HWGs of a freely generated type. In the case of nilpotent orbits higher up a

Hasse diagram, some generators have Characteristic height greater than 2,

so the moduli spaces can be complicated by relations between generators,

with the result that the HWGs are usually not freely generated.

Figure 6.9 includes the quivers whose Coulomb branches yield the 12 and

18 dimensional nilpotent orbits of C3 and C4, which have been found by this

rule. Figure 6.13 shows the quivers for nilpotent orbits of Exceptional groups

that follow from this rule; these include the orbits that can be found from

affine Dynkin diagrams. Evaluation of the Hilbert series of these Coulomb

branch constructions gives results that are consistent with the NOL formula

calculations carried out in the next Chapter.
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Figure 6.13.: Quivers from Characteristics of Exceptional Groups. Round
(blue) nodes denote unitary gauge nodes of the indicated rank.
Square (red) nodes denote numbers of flavour nodes. The
Characteristics coincide with the numbers of flavour nodes
attached to each gauge node. The dimension of a Coulomb
branch nilpotent orbit construction equals twice the sums of
the ranks of its gauge nodes.
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7. Localisation Constructions of

Nilpotent Orbits

7.1. Nilpotent Orbit Localisation formula

This study continues by presenting a generating function for the normali-

sation of a nilpotent orbit, which can in principle be restricted to yield the

nilpotent orbit itself. This is referred to as the Nilpotent Orbit Localisation

(“NOL”) formula in this study and is given in 7.5. It is defined by the fixed

points under the Weyl group, of plethystic functions, which are parame-

terised by subsets of roots and background charges, over the root space of

G.

By way of motivation, a more general localisation formula, which is an ex-

tension of (4.23) in [31], and from which many relevant generating functions

emerge as special instances, is given by:

gGHS (x, t, [n]) ≡
∑

w∈WG/H

w ·

x[n]
∏

α∈Φ̃+
G/H
⊆Φ+

G/H

1

1− zαt
∏

β∈Φ+
G/H

1

1− z−β

.
(7.1)

As usual, x represents the weight space fugacities and z = xA represents

the root space fugacities of some Lie group G, with Dynkin labels [n] and

positive root space Φ+
G. The group H, with positive root space Φ+

H , is a

semi-simple regular subgroup of G, such that the quotient G/H contains

the positive roots Φ+
G/H=Φ+

G	Φ+
H , and Φ̃+

G/H is some subset of Φ+
G/H . The

summation is over the action of representative elements w of the cosets

WG/H
1, which act as x→ w · x and z(x)→ z(w · x). A key requirement of

the construction is that the summand should be invariant under WH . Since

Φ+
G/H is WH invariant by construction, this requires that x[n] and Φ̃+

G/H

1See equation 2.12 for notation surrounding quotient group partition.
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should be WH invariant.

The NOL formula is part of a family of plethystic functions, which in-

cludes the Weyl character formula and the modified Hall Littlewood formula,

treated in Chapter 2. We can note some special cases of 7.1:

1. H = ∅, t = 0 recovers the Weyl formula 2.3 for the character of the

irrep with Dynkin label [n]:

χG[n] (x) =
∑
w∈WG

w ·

x[n]
∏
β∈Φ+

G

1

1− z−β

. (7.2)

2. H = ∅, Φ̃+
G/H = Φ+

G recovers the formula 2.18 for the modified Hall

Littlewood of G with Dynkin label [n]:

mHLG[n] (x, t) =
∑
w∈WG

w ·

x[n]
∏
β∈Φ+

G

1

(1− zβt) (1− z−β)

. (7.3)

3. H = G0, [n] = [0], Φ̃+
G/H = {θ}, where G0 is the stability group of

the (highest weight Dynkin labels of the) highest root θ, recovers a

character generating function for a RSIMS, specialised from 2.12:2

gGRSIMS (x, t) =
∑

w∈WG/G0

w ·

 1

1− zθt
∏

β∈Φ+
G/G0

1

1− z−β

. (7.4)

It is a key finding of this study that, with appropriate choice of param-

eters, the localisation formula 7.1 can be adapted to yield the normalisa-

tion of a nilpotent orbit. Considerations motivated by the above special

cases, along with explicit checking versus Higgs/Coulomb branch calcula-

tions, identify a Nilpotent Orbit Localisation formula that appears common

to all normal nilpotent orbits.

2The G0 stability group of θ is implemented in an equivalent manner in [18, 17], where
the RSIMS generating function is implemented as a sum over long roots.
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NOL formula

Notably, the parameters of the NOL formula can be fixed directly from the

Characteristic of a nilpotent orbit root via a simple algorithm. The basic

NOL formula follows from 7.1, by setting [n] to [0], which selects the singlet

from the more general family of moduli spaces that can be associated to a

given nilpotent orbit, and by precise choices of H and Φ̃:

g
G[ρ]
NOL (x, t) ≡

∑
w∈WG/G0

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏

β∈Φ+
G/G0

1

1− z−β

, (7.5)

where Φ̃+
G/G0

≡ Φ+
G/G0

	Φ
[1]
G , as elaborated below. In principle, the nilpotent

orbit, denoted g
G[ρ]
NO , can be found by restricting g

G[ρ]
NOL to the nilpotent cone

N 3:

g
G[ρ]
NO (x, t) = g

G[ρ]
NOL (x, t)

∣∣∣
N
. (7.6)

The SU(2) homomorphism ρ, introduced in section 4.1, induces a grading

of the root system of G. Adapting notation introduced in [54], define the

following subsets of roots:

Φ
[k]
G ≡

{
α ∈ Φ+

G : Characteristic height [α] = k
}
. (7.7)

Then:

Φ+
G =

⋃
k≥0

Φ
[k]
G ; Φ+

G/G0
=
⋃
k≥1

Φ
[k]
G ; Φ̃+

G/G0
=
⋃
k≥2

Φ
[k]
G . (7.8)

Each SU(2) homomorphism selects a subset Φ̃+
G/G0

of positive roots for

symmetrisation with t within the NOL formula. This subset invariably

includes the highest root, plus some system of positive roots connected to

the highest root in the Hasse diagram.

The Weyl denominator identity,
∑

w∈WG0

∏
β∈Φ+

G0

1
1−z−β = 1, which follows

3For Classical groups, this restriction is achievable with the Higgs branch formula; for
Exceptional groups, its analytical implementation can be a non-trivial exercise, as will
be discussed.
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from 7.2, permits rearrangement of 7.5 into the equivalent form:

g
G[ρ]
NOL (x, t) =

∑
w∈WG

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏
β∈Φ+

G

1

1− z−β

. (7.9)

For computational purposes 7.5 is often simpler, involving smaller denomi-

nator terms and fewer Weyl group reflections.4

We can easily check that the NOL formula matches known results for

canonical types of nilpotent orbit. In particular, choosing a Characteristic

of [22 . . . 2] entails that both Φ
[0]
G and Φ

[1]
G are empty and so 7.5 reduces to

7.3, corresponding to mHLG[0], the maximal nilpotent orbit of G. Also, it

is straightforward to check that the Characteristic of a minimal nilpotent

orbit leads to Φ
[2]
G containing just the highest root, so that Φ̃+

G/G0
= {θ}

and 7.9 reduces to 7.4.

NOL formula: Even and Richardson Orbits

In the case of an even orbit, whose Characteristic contains only the labels

0 and 2, Φ
[1]
G = ∅ and the NOL formula simplifies:

g
G[ρ]
NOL(even) (x, t) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ+

G/G0

1

(1− zαt) (1− z−α)

. (7.10)

All Richardson nilpotent orbits can also be treated within this category.

If the Richardson orbit is even, its H ≡ G0 subgroup follows directly from

the zeros of the Characteristic of G. If the Richardson orbit is not even,

one or more H subgroup embeddings still exist, even if these cannot be read

directly from the Characteristic.

NOL formula: Induced Orbits

A different and important rearrangement can be made to the NOL formula

to induce a given nilpotent orbit (or its normalisation) from the nilpotent

4As discussed earlier, the quotient group construction in 7.5 requires that Φ
[1]
G be invari-

ant under WG0 . This appears to be the case for all Characteristics derived from SU(2)
homomorphisms of G. When calculating using the NOL formula, it is a straightfor-
ward matter to check this invariance on a case by case basis. If such invariance did
not apply, 7.9 would remain valid.
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orbit of a subgroup, whenever its Characteristic contains at least one 2.

Essentially, we define a G/H/G0 quotient group structure, by taking H as

the semi-simple subgroup defined by the Dynkin diagram of G that remains

after any nodes corresponding to 2 in the Characteristic have been elimi-

nated. As a result, the Characteristic for the nilpotent orbit in H contains

only 0 and 1.

Starting from 7.5, we set G/G0 → G/H ⊗ H/G0, such that Φ
[1]
G falls

within ΦH . We obtain:

g
G[ρ]
NOL (x, t) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏

β∈Φ+
G/G0

1

1− z−β


=

∑
w∈WG/H

w ·

gH[ρ]
NOL (x, t)

∏
α∈Φ+

G/H

1

(1− zαt) (1− z−α)


(7.11)

where

g
H[ρ]
NOL (x, t) =

∑
WH/G0

w ·

 ∏
γ∈Φ̃+

H/G0

1

1− zγt
∏

δ∈Φ+
H/G0

1

1− z−δ

. (7.12)

Since 7.12 takes the same form as 7.5, the nilpotent orbit (or its normal-

isation) g
G[ρ]
NOL is shown to be induced from the nilpotent orbit g

H[ρ]
NOL. One

feature of the induction method 7.11 is that it opens the door to hybrid

constructions in which an Exceptional orbit can be induced from a Clas-

sical orbit that has been calculated using the Higgs branch formula. For

example, g
F4[1012]
Induced can be induced in this manner from g

B3[101]
Higgs , which we

write as:

g
F4[1012]
Induced (x, t) = g

F4[0002]
NOL (x, t)

[
g
B3[101]
Higgs (x, t)

]
. (7.13)

The fugacity maps between the weight space x coordinates of G and H

follow from equating the respective simple root fugacities z that are involved

in the branchings, as discussed in section 2.6.5

5When carrying out induction calculations it is important to match root space (not
weight space) fugacities of G and H.
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Charged NOL formula

Finally, it is helpful to generalise version 7.9 of the NOL formula to deal

with root systems that are modulated by background charges, as in 7.1.

Define the charged NOL formula:

g
G[ρ]
NOL (x, t)

[
x[n]
]
≡
∑
w∈WG

w ·

x[n]
∏

α∈Φ̃+
G/G0

1

1− zαt
∏
β∈Φ+

G

1

1− z−β

,
(7.14)

where x[n] is a weight given by the CSA coordinates x and Dynkin labels

[n]. Note that the quotient group WG/G0
structure is not used in order to

permit general Dynkin labels.6

The charged functions 7.14 constitute an orthogonal basis (under an ap-

propriate measure) only in special cases. Specifically, t→ 0 yields the Weyl

Character formula and Φ
[0]
G = ∅ = Φ

[1]
G yields charged functions of the max-

imal nilpotent orbit, which equal the modified Hall Littlewood functions.

Unfortunately, the charged functions defined by a nilpotent orbit do not

generally constitute an orthogonal basis. This limits their general utility,

although they can be used to provide a description of relations between

nilpotent orbits.

HWGs from NOL formula

The refined Hilbert series from the NOL formula can be converted either to

character HWGs or to orthogonal mHL HWGs by applying A.29:

g
G[ρ]
NOL (m, t) =

∮
G

dµG−
r∏
i=1

1

1−mi/xi
g
G[ρ]
NOL (x, t)

g̃
G[ρ]
NOL (h, t) =

∮
G

dµG−
∏
α∈Φ+

(1− zαt)
r∏
i=1

1

1− hi/xi
g
G[ρ]
NOL (x, t)

(7.15)

Note that the g̃
G[ρ]
NOL (h, t) need to be glued to 1/vG[n](t) normalisation factors

via a further transformation, as discussed in 2.4, to obtain g
G[ρ]
NOL (h, t).

6A quotient group structure can be introduced if the Weyl group symmetries of [n]
permit.
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Relationship of NOL formula to T ∗(G/H) theory

It is instructive to relate the NOL formula to the result that appears in [77]

for the Highest Weight Generating function of the representation content of

a T ∗(G/H) theory. This moduli space selects a subset of the representations

of G from within the HWG for the characters of G, by gauging a reductive

subgroup H:

gT
∗(G/H) (m) ≡

∮
H

dµH(y) gGχ (y,m), (7.16)

where gGχ (y,m) is the HWG and dµH(y) is the Haar measure for H. It

can be shown that gT
∗(G/H) (m) emerges as a special case from the HWG

g
G[even]
NOL (m, t), as follows.

First, we define a Levi subgroup of G, H ≡ G0 ⊗ U(1)rank[G]−rank[G0],

such that H and G have the same rank. This allows us to establish a

diffeomorphism between the weight space coordinates x of G and y of H.

We then transform the refined Hilbert series g
G[even]
NOL (x, t), calculated from

7.10, to an HWG by projection onto a character generating function for G:

g
G[even]
NOL (m, t) =

∮
G

dµG (x) gGχ (x∗,m) g
G[even]
NOL (x, t) (7.17)

The Haar measure dµG (x) for G can be decoupled to separate off the Haar

measure dµH (x) of the H subgroup:

dµG (x) =
1

|WG|

rank[G]∏
i=1

dxi
xi

 ∏
α∈ΦG

(1− zα)


=

1

|WG0 |

rank[G]∏
i=1

dxi
xi

 ∏
β∈ΦG0

(
1− zβ

) |WG0 |
|WG|

 ∏
α∈Φ

G/G0

(1− zα)


= dµH (x)

|WG0 |
|WG|

 ∏
α∈Φ

G/G0

(1− zα)

 .

(7.18)
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Under the fugacity simplification t→ 1, 7.10 reduces to:

g
G[even]
NOL (x, 1) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ+

G/G0

1

(1− zα) (1− z−α)


=

∑
w∈WG/G0

w ·

 ∏
α∈Φ

G/G0

1

(1− zα)


(7.19)

Inserting 7.18 and 7.19 into 7.17, we obtain:

g
G[even]
NOL (m, 1) =

∮
dµH (x) gGχ (x∗,m)

|WG0 |
|WG|

∏
α∈Φ

G/G0

(1− zα)

×
∑

w∈WG/G0

w ·

 ∏
α∈Φ

G/G0

1

(1− zα)


=

∮
dµH (x) gGχ (x∗,m)

|WG0 |
|WG|

|WG|
|WG0 |

=

∮
H

dµH (y) gGχ (y,m)

= gT
∗(G/H) (m) ,

(7.20)

where we have replaced one Weyl group summation
∑

w∈WG/G0

by |WG|
|WG0 |

, as

discussed in Appendix A.2 (equation A.28), and transformed the conjugate

x∗ coordinates of G to the y coordinates of H. Thus, gT
∗(G/H) (m) is a

specialisation to t = 1 of g
G[even]
NOL (m, t).

7.2. Classical Group Orbits from the NOL formula

The Classical group moduli spaces obtained from the NOL formula 7.5

all have palindromic Hilbert series and are similar in this regard to the

Coulomb branch constructions with the unitary monopole formula. For

normal nilpotent orbits, as defined in section 4.4.7, the NOL formula yields

the same moduli spaces as the Higgs branch constructions tabulated in

Chapter 5. For non-normal orbits, the NOL formula yields a moduli space

that is either (i) a normal component, or (ii) a normalisation.
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The cases that require discussion are the non-normal nilpotent orbits.

The number of these increases with rank; their Characteristics are listed in

section 4.4.7, up to rank 5, and the moduli spaces obtained from the NOL

formula are summarised in Table 7.1, up to rank 4.

In the case of the D2r spinor pairs of nilpotent orbits, discussed in sec-

tion 5.4.5, the NOL formula gives the individual palindromic spinor moduli

spaces, according to the Characteristic chosen. Examples in Table 7.1 in-

clude D2[20], D4[0020] and D4[0220]. The moduli spaces of the conjugate

spinors have identical unrefined Hilbert series and their HWGs are related

by the exchange of spinor fugacities. These spinor moduli spaces are the

normal components of the non-normal nilpotent orbits, constructed on the

Higgs branch, which are their unions:

g
D2r[...20]I/II
Higgs = g

D2r[...02]I/II
Higgs = g

D2r[...20]
NOL + g

D2r[...02]
NOL − gD2r[...20]∩D2r[...02]}

NOL .

(7.21)

For all the other non-normal nilpotent orbits, the NOL formula yields

a normalisation. Examples in Table 7.1 include B3[101], B4[2101] and

C4[0200]. Classical non-normal nilpotent orbits are related to their nor-

malisations by some Z2 quotient [6]. In each case the (non-normal) Higgs

branch construction can be recovered from the normalisation by excluding

those elements that fall outside the nilpotent cone N . Thus:

g
B3[101]
Higgs = g

B3[101]
NOL − gB3[200]

NOL [x1t] ,

g
B4[2101]
Higgs = g

B4[2101]
NOL − gB4[2200]

NOL

[
x1t

2
]
,

g
C4[0200]
Higgs = g

C4[0200]
NOL − gC4[0002]

NOL

[
x4t

2
]
.

(7.22)

The moduli spaces outside the nilpotent cone can be described by the

charged NOL formula 7.14. The nilpotent orbit upon which each of these

charged moduli spaces is built is related to its parent orbit by the A2r−1 ∪
A2r−1 Kraft-Procesi degeneration, discussed in section 4.4.7, and lies be-

neath the parent orbit in the Hasse diagram.

It can be seen from Table 7.1, that g
D4[0020]
NOL and g

B3[101]
Higgs have the same

unrefined Hilbert series. This is an example of a branching relationship

between two nilpotent orbits; these are discussed further in Chapter 8.
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7.3. Exceptional Group Orbits

The construction of Exceptional group nilpotent orbits poses a number of

challenges. Firstly, Exceptional groups do not act in a similar manner to

SL(n,R/C) rotation matrices on their fundamental vector spaces, so the

Higgs branch method is not available [6]. This limits the construction meth-

ods to those based on the Coulomb branch or NOL formulae. These in turn

have their own limitations; the unitary monopole formula only works for

minimal and near minimal orbits; and the NOL formula yields the nor-

malisation of a nilpotent orbit, which only equals the orbit if it is normal.

Finally, the high dimensions of the Weyl groups of the E series entail that

explicit calculations, using the methods developed during this study, are not

always feasible in terms of computing memory and/or time.

In principle, however, those Exceptional group Characteristics for which

the NOL formula does yield nilpotent orbits can be identified by verifying

that the moduli spaces are entirely contained within the nilpotent cone N ,

which is known for every group. Such results can be cross-checked for com-

pleteness by comparison with the known non-normal orbits listed in section

4.4.7. Moreover, even without a systematic formula for calculating the non-

normal Exceptional group orbits, it is often possible to find candidates on

a case by case basis, by restricting their normalisations to exclude charged

nilpotent orbits of lower dimension, as will be shown. The findings pre-

sented below are derived from a combination of established results, full HS

and HWG calculations, and inferences based on unrefined HS expansions,

checked to the highest order practicable.

In this study, Exceptional group nilpotent orbits are labelled by their

Characteristics for various reasons. Firstly, a Characteristic provides the

structure and parameters of the Coulomb branch and NOL formulae. Sec-

ondly, while a Characteristic provides a clear and unambiguous specification

of a nilpotent element X, the same is not true of the various alternative la-

belling methods based on sub-groups, developed, inter alia, by Dynkin [54],

Bala-Carter [78, 79], Hesselink [69]. Amongst these, the method that is

closest to the use of Characteristics is given by Hesselink, who identifies the

semi-simple subgroup G0 under which a nilpotent element X is invariant;

this labelling method works for most Richardson orbits, but not for other

types. The Bala-Carter labelling method, which does not play a role in the
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NOL formula, is summarised and discussed in Appendix A.5.

As is clear from the discussion on the variants of the NOL formula in

section 7.1, there is often a choice to be made as to whether an orbit is cal-

culated directly from the roots of G, or induced from an orbit of a subgroup

H, using 7.11. Either choice leads to the same refined HS under the NOL

formula, but the induction method permits the incorporation, for example,

of a non-normal nilpotent orbit of H calculated on the Higgs branch.

The following sub-sections analyse the nilpotent orbits of Exceptional

groups, starting from the Characteristics of SU(2) homomorphisms, clas-

sifying the type of each orbit, giving its constructions, calculating, where

practicable, unrefined HS, character HWGs and mHL HWGs, and identi-

fying whether the moduli spaces are nilpotent orbits or normalisations of

non-normal orbits. For G2, F4 and E6, nilpotent orbit Hasse diagrams are

drawn, based on moduli space inclusion relations.

7.3.1. Orbits of G2

Table 7.2 classifies the 5 nilpotent orbits of G2 and gives their unrefined HS.

Table 7.3 gives the character and mHL HWGs, calculated from the refined

HS. To comment on the various orbits:

[10]: 6 dimensional nilpotent orbit. This is the minimal nilpotent orbit and

is both rigid and normal. It can be calculated either from a Coulomb

branch quiver theory built on the affine Dynkin diagram, as discussed

in section 6.2.2, or from the NOL formula. Both its HS and character

HWG are palindromic.

[01]: 8 dimensional nilpotent orbit. This next to minimal orbit is rigid, but

not normal, and does not have a Coulomb branch construction.7 The

NOL formula yields a normalisation. The non-normal orbit is found

by excluding from this normalisation a subspace expressed in terms of

the charged NOL formula for the minimal nilpotent orbit:

g
G2[01]
NO (x, t) = g

G2[01]
NOL (x, t)− gG2[10]

NOL (x, t) [x2t] . (7.23)

7If the G2 twisted affine Dynkin diagram is used as a Coulomb branch quiver, it leads
to a moduli space that is not a nilpotent orbit, since the Characteristic does not have
the correct sum of gauge node ranks to yield an 8 dimensional HS.
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[20]: 10 dimensional nilpotent orbit. The sub-regular nilpotent orbit is

distinguished and has an invariant subgroup G0 = A1. It can be

calculated from the NOL formula 7.10. Both its HS and character

HWG are palindromic.

[22]: 12 dimensional nilpotent orbit. The maximal nilpotent orbit is dis-

tinguished. It can be calculated from the NOL formula. Both its HS

and character HWG are palindromic, in the latter case with degree

m1
3m2

5t18.

It can easily be checked, both from the unrefined HS and the character

HWGs, that these nilpotent orbits satisfy the expected inclusion relations

g
G2[00]
NO ⊂ gG2[10]

NO ⊂ gG2[01]
NO ⊂ gG2[20]

NO ⊂ gG2[22]
NO , providing that the non-normal

8 dimensional nilpotent orbit is used. These inclusion relations are graphed

in the Hasse diagram in Figure 7.1.

Figure 7.1.: Hasse Diagram of G2 Nilpotent Orbits. The diagram is derived
from Hilbert series inclusion relations, with the yellow node
indicating a non-normal nilpotent orbit.

It is worth commenting that the normalisation g
G2[01]
NOL has the same unre-

fined Hilbert series as g
B3[010]
Higgs in Table 5.12 (up to t counting conventions)

and can be obtained from this using a character map that folds the B3

vector and spinor together [80].
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7.3.2. Orbits of F4

The 16 nilpotent orbits of F4 are described in Tables 7.5 to 7.8, which

give their classification, constructions, unrefined HS and, where practicable,

character HWGs and modified Hall Littlewood HWGs. Tables 7.9 and 7.10

contain similar information for the normalisations of the non-normal orbits.

Many of the orbits have distinctive features:

[1000] and [0001]: 16 dimensional minimal and 22 dimensional next to min-

imal nilpotent orbits. These orbits are rigid and have the invariant

subgroups C3 and B3, respectively. The Hilbert series can be calcu-

lated either (i) from the Coulomb branch of a quiver theory built,

respectively, on the affine or twisted affine Dynkin diagram of F4, or

(ii) from the NOL formula 7.5. Their HS and character HWGs are

palindromic.

[0100]: 28 dimensional nilpotent orbit. This orbit is rigid and has the

invariant subgroup A1⊗A2. Its Hilbert series can be calculated either

from the NOL formula, or as the intersection of the two 30 dimensional

orbits. Both the HS and character HWG are palindromic.

[2000]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant

subgroup C3, and is normal. Its Hilbert Series can be calculated from

the NOL formula. Both the HS and character HWG are palindromic.

[0002]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant

subgroup B3, and is non-normal. The NOL formula yields a normali-

sation. The candidate for the non-normal orbit is found by excluding

from this normalisation a subspace expressed in terms of the charged

NOL formula for the 28 dimensional orbit:

g
F4[0002]
NO (x, t) = g

F4[0002]
NOL (x, t)− gF4[0100]

NOL (x, t)
[
x4t

2
]
, (7.24)

with notation as per 7.14. Both the HS and character HWG are non-

palindromic.

[0010]: 34 dimensional nilpotent orbit. This orbit is rigid and has the in-

variant subgroup A2⊗A1. It can be calculated from the NOL formula.

The HS and character HWG (not shown) are palindromic.
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[2001]: 36 dimensional nilpotent orbit. This orbit is non-rigid, has the

invariant subgroup B2
∼= C2, and is non-normal. Its normalisation

can be calculated from the NOL formula. The candidate for the non-

normal nilpotent orbit is found by excluding from its normalisation a

subspace expressed by applying the charged NOL formula to the 34

dimensional orbit:

g
F4[2001]
NO (x, t) = g

F4[2001]
NOL (x, t)− gF4[0010]

NOL (x, t)
[
x1t

3
]
. (7.25)

The HS is non-palindromic.

[0101]: 36 dimensional nilpotent orbit. This orbit is rigid, has the invari-

ant subgroup A1 ⊗ A1, and is non-normal. Its normalisation can be

calculated from the NOL formula. The candidate for the non-normal

nilpotent orbit is found by excluding from its normalisation a subspace

expressed by applying the charged NOL formula to the 34 dimensional

orbit:

g
F4[0101]
NO (x, t) = g

F4[0101]
NOL (x, t)− gF4[0010]

NOL (x, t)
[
x4t

2
]
. (7.26)

Note the difference in charges between 7.26 and 7.25. The HS is non-

palindromic.

[1010]: 38 dimensional nilpotent orbit. This orbit is non-rigid, has the

invariant subgroup A1 ⊗ A1, and is non-normal. Its normalisation

is found from the NOL formula. The candidate for the non-normal

nilpotent orbit is found by excluding from this normalisation a sub-

space expressed in terms of charged NOL formulae for the two 36

dimensional orbits:

g
F4[1010]
NO (x, t) = g

F4[1010]
NOL (x, t)− gF4[2001]

NOL (x, t)
[
x1t

3 + x4t
2
]

− gF4[0101]
NOL (x, t)

[
x3x4t

6
] (7.27)

Its HS is non-palindromic.

[1012]: 42 dimensional nilpotent orbit. This orbit is Richardson, has the

invariant subgroup A1, and is non-normal. Its normalisation can be

calculated from the NOL formula. Possible candidates for the non-

normal nilpotent orbit can be found either (i) by excluding from its
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normalisation a subspace expressed in terms of the charged NOL for-

mula for the 40 dimensional orbit g
F4[0200]
NO , or (ii) by induction (using

7.11) from g
B3[101]
Higgs :

g
F4[1012]
NO (x, t) = g

F4[1012]
NOL (x, t)− gF4[0200]

NOL (x, t)
[
x4t

2 + x3t
6
]

g
F4[1012]
Induced (x, t) = g

F4[0002]
NOL (x, t)

[
g
B3[101]
Higgs

] (7.28)

The former is taken as the candidate for the non-normal orbit g
F4[1012]
NO (x, t),

on the grounds that it is consistent with the restriction method de-

tailed below, and that it includes [0200], as in the standard Hasse

diagram. Its HS is non-palindromic.

[0200], [0202], [2202] and [2222]: 40 dimensional , 44 dimensional, 46 di-

mensional sub-regular, and 48 dimensional maximal nilpotent orbits.

These orbits are distinguished and contain the invariant subgroups

A1 ⊗ A2, A1 ⊗ A1, A1 and ∅, respectively. They are found from the

NOL formula. Their HS are palindromic.

The above list excludes the moduli space defined by the SU(2) homomor-

phism with the root map [2002]. Detailed calculation of Hilbert series shows

that g
F4[2002]
NOL is not a nilpotent orbit, but is an extension of the distinguished

g
F4[0200]
NO , which can be described using the charged NOL formula:

g
F4[2002]
NOL (x, t) = g

F4[0200]
NO (x, t)

[
1 + x1t

3 + x4t
2
]
. (7.29)

It is necessary to make some caveats in relation to the non-normal or-

bits. Firstly, the method of finding the charged NOL formula descriptions

that restrict their normalisations to N is partly empirical, guided by unre-

fined HS and character HWGs, where known. The restricted NOL method

used for F4 has been (i) to fix the moduli space inclusion relations below

a non-normal orbit using its normalisation and (ii) to exclude from the

normalisation a subspace containing one (or sometimes more) charged nor-

malisations of orbits lying immediately below in the Hasse diagram. The

charges are selected such that the resulting non-normal moduli spaces lie

within the nilpotent cone. This method is consistent with the Higgs branch

constructions of non-normal Classical orbits studied in 7.2 and has been

sufficient to specify candidates for the non-normal orbits of F4. For exam-
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ple, the calculation of the restriction of the non-normal F4[0002] to N is

outlined in Appendix A.6.

Secondly, since the charged NOL formula does not generally yield an or-

thogonal basis, there may be alternative charged NOL formula descriptions

of the non-normal orbits that give the same result.

Finally, it has only proved possible to calculate character HWGs and

to use their Taylor series expansions to check the irrep inclusion relations

explicitly up to the 34 dimensional nilpotent orbit; for the 36 dimensional

and 38 dimensional non-normal orbits, in particular, the analysis has been

largely dimensional in nature and therefore should not be taken as definitive.

It is interesting to compare the inclusion relations obtained from this

analysis of moduli spaces with the standard Hasse diagrams of nilpotent

orbits in the mathematical Literature [33, 70, 71], which are based on earlier

work in [81]. Figure 7.2 compares the Hasse diagram defined by the inclusion

relations amongst the Hilbert series of nilpotent orbits gF4
NO to the standard

Hasse diagram.

Figure 7.2.: Hasse Diagram of F4 Nilpotent Orbits. The left hand diagram
is derived from Hilbert series and HWG inclusion relations. The
right hand diagram is taken from the mathematical Literature
[70, 71]. Yellow nodes indicate non-normal nilpotent orbits.

Unlike the case of Classical group nilpotent orbits, where there is an
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exact correspondence between the Hasse diagrams (not shown) based upon

Hilbert Series inclusion relations and the standard diagrams [33, 6], there is

a discrepancy involving the linking pattern between F4[2000] and F4[0010],

where the restricted NOL method yields an inclusion relationship that is

absent in the standard diagram. One possibility could be that the subtle

distinction between normal and non-normal orbits has not been consistently

treated in the analyses in the Literature upon which the standard Hasse

diagrams are based. In this context, it is worth noting that g
F4[0010]
NO does

not include g
F4[2000]
NOL , which is the normalisation of g

F4[2000]
NO .

The nilpotent orbits of F4 include some special orbits, as defined in section

4.4.6. These are summarised in Table 7.4, along with their duals under the

Spaltenstein map.

Spaltenstein Dual Orbits

[0000]⇔ [2222]
[0001]⇔ [2202]
[0100]⇔ [0202]
[0002]⇔ [1012]
[2000]⇔ [2200]
[0200]⇔ [0200]

Table 7.4.: F4 Special Nilpotent Orbits

The special orbit [0200] is self dual. The non-normal orbits [0002] and

[1012] are special and dual to each other. The other non-normal orbits

[2001], [0101] and [1010] are not special. It is clear that the symmetries of

the left hand Hasse diagram based on Hilbert series and HWG inclusion

relations are a better fit for the symmetries of the Spaltenstein map.

203



C
h

ar
ac

te
ri

st
ic

T
y
p

e
C

on
st

ru
ct

io
n

D
im

.
U

n
re

fi
n

ed
H

S

[0
00

0]
E

ve
n

g
F
4
[0

0
0
0
]

N
O
L

(x
,t

)
0

1

[1
00

0]
R

ig
id

g
F
4
[1

0
0
0
]

C
o
u
lo
m
b

(x
,t

)
o
r

g
F
4
[1

0
0
0
]

N
O
L

(x
,t

)

1
6

( 1
+

3
6
t

+
3
4
1
t2

+
1
2
0
8
t3

+
1
8
2
0
t4

+
1
2
0
8
t5

+
3
4
1
t6

+
3
6
t7

+
t8

)
(1
−
t)

1
6

[0
00

1]
R

ig
id

g
F
4
[0

0
0
1
]

C
o
u
lo
m
b

(x
,t

)
o
r

g
F
4
[0

0
0
1
]

N
O
L

(x
,t

)

2
2

( 1
+

2
9
t

+
4
3
5
t2

+
2
9
4
8
t3

+
8
9
9
8
t4

+
1
2
9
6
9
t5

+
8
9
9
8
t6

+
2
9
4
8
t7

+
4
3
5
t8

+
2
9
t9

+
t1

0

)
(1
−
t)

2
2
(1

+
t)
−

1

[0
10

0]
R

ig
id

g
F
4
[0

1
0
0
]

N
O
L

(x
,t

)
2
8

( 1
+

9
t

+
1
9
t2

+
9
t3

+
t4
)

×
( 1

+
1
3
t

+
1
1
8
t2

+
4
5
5
t3

+
7
1
6
t4

+
4
5
5
t5

+
1
1
8
t6

+
1
3
t7

+
t8

)
(1
−
t)

2
8
(1

+
t)
−

2

[2
00

0]
E

ve
n

g
F
4
[2

0
0
0
]

N
O
L

(x
,t

)
3
0

(
1

+
2
1
t

+
2
3
1
t2

+
1
4
9
8
t3

+
6
2
1
9
t4

+
1
6
8
3
4
t5

+
3
0
4
2
0
t6

+
3
6
9
7
2
t7

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

4

)
(1
−
t)

3
0
(1

+
t)
−

1

[0
00

2]
E

ve
n

N
on

-n
or

m
al

g
F
4
[0

0
0
2
]

N
O
L

(x
,t

)
−
g
F
4
[0

1
0
0
]

N
O
L

(x
,t

)
[ x 4t

2
]

3
0

   
1

+
2
2
t

+
2
5
2
t2

+
1
7
2
9
t3

+
6
9
8
8
t4

+
1
8
3
0
0
t5

+
4
0
8
3
5
t6

+
9
2
7
0
0
t7

+
1
6
6
2
5
2
t8

+
1
7
7
6
9
8
t9

+
8
3
6
5
4
t1

0

−
1
6
1
4
1
t1

1
−

3
8
9
3
2
t1

2
−

1
9
2
5
6
t1

3
−

4
5
8
1
t1

4
−

5
4
5
t1

5
−

2
6
t1

6

   
(1
−
t)

3
0

[0
01

0]
R

ig
id

g
F
4
[0

1
0
0
]

N
O
L

(x
,t

)
3
4

(
1

+
1
7
t

+
1
5
3
t2

+
9
6
9
t3

+
4
4
9
5
t4

+
1
5
0
2
2
t5

+
3
5
4
7
7
t6

+
5
9
2
4
4
t7

+
7
0
2
0
4
t8

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

6

)
(1
−
t)

3
4
(1

+
t)
−

1

[2
00

1]
N

on
-r

ig
id

N
on

-n
or

m
al

g
F
4
[2

0
0
1
]

N
O
L

(x
,t

)
−
g
F
4
[0

0
1
0
]

N
O
L

(x
,t

)
[ x 1t

3
]

3
6

   
1

+
1
5
t

+
1
2
0
t2

+
6
8
0
t3

+
2
7
1
0
t4

+
7
0
0
1
t5

+
1
0
9
8
1
t6

+
1
6
7
2
8
t7

+
5
1
3
7
4
t8

+
1
2
3
1
2
1
t9

+
1
5
1
4
2
1
t1

0
+

7
6
6
7
1
t1

1

−
1
3
9
2
7
t1

2
−

3
7
1
6
0
t1

3
−

1
9
3
1
2
t1

4
−

5
0
5
3
t1

5
−

7
1
2
t1

6
−

5
1
t1

7

   
(1
−
t)

3
6
(1

+
t)
−

1

[0
10

1]
R

ig
id

N
on

-n
or

m
al

g
F
4
[0

1
0
1
]

N
O
L

(x
,t

)
−
g
F
4
[0

0
1
0
]

N
O
L

(x
,t

)
[ x 4t

2
]

3
6

   1
+

1
4
t

+
1
0
6
t2

+
5
7
4
t3

+
2
4
6
0
t4

+
8
7
5
2
t5

+
2
5
4
9
7
t6

+
5
7
6
1
9
t7

+
9
1
6
0
2
t8

+
9
3
1
6
1
t9

+
5
2
3
8
1
t1

0
+

8
6
9
9
t1

1

−
7
9
1
5
t1

2
−

5
9
9
1
t1

3
−

1
9
3
6
t1

4
−

3
2
4
t1

5
−

2
5
t1

6

   
(1
−
t)

3
6
(1

+
t)
−

2

T
ab

le
7.

5.
:
F

4
O

rb
it

C
on

st
ru

ct
io

n
s

an
d

H
il

b
er

t
S

er
ie

s
(A

)

204



C
h

ar
ac

te
ri

st
ic

T
y
p

e
C

on
st

ru
ct

io
n

D
im

.
U

n
re

fi
n

ed
H

S

[1
01

0]
N

on
-r

ig
id

N
on

-n
or

m
al

g
F
4
[1

0
1
0
]

N
O
L

(x
,t

)

−
g
F
4
[0

0
1
0
]

N
O
L

(x
,t

)
[ x 3x

4
t6
]

−
g
F
4
[2

0
0
1
]

N
O
L

(x
,t

)
[ x 1t

3
+
x

4
t2
]

3
8

       

1
+

1
3
t

+
9
1
t2

+
4
5
5
t3

+
1
7
9
4
t4

+
5
8
2
4
t5

+
1
4
8
5
9
t6

+
2
5
8
3
0
t7

+
3
6
6
8
6
t8

+
1
0
3
4
1
5
t9

+
2
7
4
0
7
9
t1

0

+
4
1
8
0
7
8
t1

1
+

1
9
4
3
7
7
t1

2
−

2
0
2
5
6
6
t1

3
−

2
3
1
7
1
2
t1

4

−
8
8
1
3
t1

5
+

5
2
2
4
5
t1

6
+

1
6
7
4
6
t1

7
−

4
5
5
t1

8

−
9
2
t1

9
+

1
7
0
t2

0
+

4
0
t2

1
−
t2

2

       
(1
−
t)

3
8
(1

+
t)
−

1

[0
20

0]
D

is
ti

n
gu

is
h

ed
g
F
4
[0

2
0
0
]

N
O
L

(x
,t

)
4
0

(
1

+
1
0
t

+
5
6
t2

+
2
3
0
t3

+
7
4
5
t4

+
1
9
4
6
t5

+
4
1
1
2
t6

+
7
0
2
8
t7

+
9
6
9
2
t8

+
1
0
7
8
2
t9

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

8

)
(1
−
t)

4
0
(1

+
t)
−

2

[2
20

0]
E

ve
n

g
F
4
[2

2
0
0
]

N
O
L

(x
,t

)
4
2

(
1

+
7
t

+
2
9
t2

+
9
1
t3

+
2
1
3
t4

+
3
9
7
t5

+
5
9
1
t6

+
6
5
7
t7

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

4

)
(1
−
t)

4
3
(1

+
t)
−

2
(1
−
t6

)−
1

[1
01

2]
R

ic
h

ar
d

so
n

N
on

-n
or

m
al

g
F
4
[1

0
1
2
]

N
O
L

(x
,t

)

−
g
F
4
[0

2
0
0
]

N
O
L

[ x 3t
6

+
x

4
t2
]

4
2

     
1

+
8
t

+
3
7
t2

+
1
2
8
t3

+
3
6
7
t4

+
9
2
0
t5

+
2
0
8
2
t6

+
4
2
9
2
t7

+
8
0
9
1
t8

+
1
3
9
7
3
t9

+
2
1
0
7
8
t1

0
+

2
6
3
2
7
t1

1

+
2
2
8
9
5
t1

2
+

1
0
1
7
7
t1

3
−

2
9
5
4
t1

4
−

6
9
9
4
t1

5
−

4
8
5
8
t1

6

−
1
6
8
0
t1

7
−

2
9
1
t1

8
+
t1

9

     
(1
−
t)

4
2
(1

+
t)
−

2

[0
20

2]
D

is
ti

n
gu

is
h

ed
g
F
4
[0

2
0
2
]

N
O
L

(x
,t

)
4
4

(
1

+
5
t

+
1
6
t2

+
4
1
t3

+
9
1
t4

+
1
8
2
t5

+
3
3
6
t6

+
5
3
0
t7

+
7
2
3
t8

+
8
3
0
t9

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

8

)
(1
−
t)

4
5
(1

+
t)
−

2
(1
−
t3

)−
1

[2
20

2]
D

is
ti

n
gu

is
h

ed
g
F
4
[2

2
0
2
]

N
O
L

(x
,t

)
4
6

( 1
+

3
t

+
6
t2

+
1
0
t3

+
1
6
t4

+
2
4
t5

+
3
4
t6

+
4
6
t7

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

4

)
(1
−
t)

4
9
(1
−
t2

)−
1
(1
−
t4

)−
1
(1
−
t6

)−
1

[2
22

2]
D

is
ti

n
gu

is
h

ed
g
F
4
[2

2
2
2
]

N
O
L

(x
,t

)
4
6

(1
−
t2

)(
1
−
t6

)(
1
−
t8

)(
1
−
t1

2
)

(1
−
t)

5
2

T
ab

le
7.

6.
:
F

4
O

rb
it

C
on

st
ru

ct
io

n
s

an
d

H
il

b
er

t
S

er
ie

s
(B

)

205



C
h

ar
ac

te
ri

st
ic

C
h

ar
a
ct

er
H

W
G

m
H
L

H
W

G

[0
00

0]
1

..
.

[1
00

0]
1

1
−
m

1
t

..
.

[0
00

1]
1

(1
−
m

1
t)

(1
−
m

4
2
t2

)
..
.

[0
10

0]
1

(1
−
m

1
t)

(1
−
m

4
2
t2

)(
1
−
m

2
t3

)(
1
−
m

3
2
t4

)
..
.

[2
00

0]
1
+
m

1
m

2
t5

(1
−
m

1
t)

(1
−
m

4
2
t2

)(
1
−
m

2
t3

)(
1
−
m

1
2
t4

)(
1
−
m

3
2
t4

)(
1
−
m

2
2
t6

)
n

o
t

sh
ow

n

[0
00

2]

 
1
−
m

4
t2
−
m

3
t3

+
m

4
2
t4

+
2
m

3
m

4
t5

+
m

3
2
t6

+
m

3
m

4
2
t6

+
m

3
2
m

4
t7
−
m

3
m

4
2
t7
−
m

3
2
m

4
t8
−
m

3
2
m

4
2
t9

 
(1
−
m

1
t)

(1
−
m

4
t2

)(
1
−
m

4
2
t2

)(
1
−
m

2
t3

)(
1
−
m

3
t3

)(
1
−
m

3
2
t4

)
n

o
t

sh
ow

n

[0
01

0]
n

o
t

sh
ow

n

1
−
h

4
t4
−
h

4
2
t4
−
h

1
t5

+
h

3
h

4
t6

+
h

2
t7

+
h

3
t7

+
h

1
h

4
t7

+
h

3
h

4
t7
−
h

4
3
t7

+
h

3
t8
−
h

1
h

3
t8
−
h

4
t8
−

h
2
h

4
t8
−
h

1
h

4
2
t8

+
h

3
t9
−

2
h

1
h

3
t9

+
h

3
2
t9

+
h

1
2
h

4
t9
−
h

2
h

4
t9
−
h

3
h

4
t9
−
h

4
2
t9

+
h

3
h

4
2
t9
−

h
1
h

3
t1

0
+
h

3
2
t1

0
−
h

1
h

4
t1

0
+
h

1
2
h

4
t1

0
+
h

2
h

4
t1

0
+

h
1
h

4
2
t1

0
+
h

3
h

4
2
t1

0
−
h

4
4
t1

0
+
h

3
t1

1
−
h

1
h

4
t1

1
+

h
1
2
h

4
t1

1
+
h

2
h

4
t1

1
−
h

1
h

3
h

4
t1

1
+
h

2
t1

2
−
h

1
h

2
t1

2
+

h
2
h

4
t1

2
−

2
h

1
h

3
h

4
t1

2
−
h

1
h

2
t1

3
+
h

2
h

3
t1

3
−

2
h

1
h

3
h

4
t1

3
+
h

2
h

4
2
t1

3
+
h

1
h

4
3
t1

3
+
h

2
h

3
t1

4
−

h
3
2
h

4
t1

4

[2
00

1]
..
.

n
o
t

sh
ow

n

[0
10

1]
..
.

1
−
h

4
t4
−
h

1
t5
−
h

1
2
t6

+
h

3
t7

+
h

3
t8

+
h

1
h

3
t8
−

h
4
t8

+
h

1
h

2
t9

+
h

3
t9
−
h

4
2
t9
−
h

1
3
t1

0
+
h

1
h

2
t1

0
+

h
1
h

3
t1

0
−
h

1
h

4
t1

0
−
h

2
h

4
t1

0
−
h

1
h

3
h

4
t1

0
+
h

3
t1

1
+

h
3
2
t1

1
−
h

1
h

4
t1

1
−
h

2
h

4
t1

1
−

2
h

1
h

3
h

4
t1

1
+

h
1
h

4
3
t1

1
+
h

2
t1

2
+
h

1
2
h

3
t1

2
+
h

2
h

3
t1

2
−
h

1
h

3
h

4
t1

2
+

h
1
h

4
3
t1

2
+
h

2
h

3
t1

3
−
h

2
h

4
2
t1

3
+
h

1
2
h

3
t1

4
−

h
1
h

2
h

4
t1

4
−
h

2
h

4
2
t1

4
+
h

1
h

3
2
t1

5
−
h

1
h

2
h

4
t1

5

A
n
m
H
L

H
W

G
of

1
d

en
ot

es
m
H
L
F

4

[0
0
0
0
](
t)

.

T
h

e
ch

ar
ac

te
r

or
m
H
L

H
W

G
s

fo
r

so
m

e
q
u

iv
er

s
ar

e
n

o
t

sh
ow

n
fo

r
b

re
v
it

y.

T
ab

le
7.

7.
:
F

4
O

rb
it

s
an

d
H

W
G

s
(A

)

206



C
h

ar
ac

te
ri

st
ic

C
h

a
ra

ct
er

H
W

G
m
H
L

H
W

G

[1
01

0]
..
.

1
−
h

4
t4
−
h

1
t5
−
h

1
2
t6

+
h

3
t7

+
h

3
t8

+
h

1
h

3
t8

+
h

3
2
t8
−
h

4
t8

+
h

3
t9
−
h

4
2
t9
−
h

3
h

4
2
t9

+
h

1
h

3
t1

0
−

h
2
h

3
t1

0
−
h

1
h

4
t1

0
−
h

2
h

4
t1

0
−
h

1
h

3
h

4
t1

0
+
h

3
t1

1
+

h
1
2
h

3
t1

1
+
h

3
2
t1

1
−
h

1
h

4
t1

1
−
h

2
h

4
t1

1
−
h

1
h

3
h

4
t1

1
+

h
3
2
h

4
t1

1
+
h

2
h

4
2
t1

1
+
h

1
h

4
3
t1

1
+
h

2
t1

2
−
h

2
2
t1

2
+

h
1
2
h

3
t1

2
+
h

2
h

3
t1

2
−
h

1
2
h

4
2
t1

2
+
h

2
h

4
2
t1

2
+

h
1
h

4
3
t1

2
−
h

3
h

4
3
t1

2
+
h

1
2
h

2
t1

3
+
h

2
h

3
t1

3
−

h
1
h

3
2
t1

3
−
h

1
h

2
h

4
t1

3
+
h

2
h

3
h

4
t1

3
−
h

3
2
h

4
t1

3
−

h
1
2
h

4
2
t1

3
−
h

2
h

4
2
t1

3
+
h

2
2
t1

4
−
h

3
3
t1

4
−

h
1
h

2
h

4
t1

4
−
h

1
2
h

3
h

4
t1

4
+
h

2
h

3
h

4
t1

4
−
h

2
h

4
2
t1

4
+

h
1
h

3
h

4
2
t1

4
−
h

2
h

4
3
t1

4
+
h

1
h

3
2
t1

5
−
h

1
2
h

3
h

4
t1

5
+

h
1
h

3
h

4
2
t1

5
+
h

3
2
h

4
2
t1

5
+
h

1
2
h

4
3
t1

5
+
h

1
h

2
h

3
t1

6
−

h
2
h

3
h

4
t1

6
−
h

1
h

2
h

4
2
t1

7

[0
20

0]
..
.

1
−
h

4
t4
−
h

1
t5

+
h

3
t7

+
h

3
t8
−
h

4
t8

+
h

3
t9
−
h

4
2
t9
−

h
1
h

4
t1

0
+
h

3
t1

1
−
h

1
h

4
t1

1
+
h

2
t1

2

[2
20

0]
..
.

1
−
h

4
t4

+
h

3
t8
−
h

4
t8
−
h

4
2
t9

+
h

3
t1

1

[1
01

2]
..
.

1
−
h

1
t7
−
h

4
t8
−
h

1
2
t1

0
+
h

3
t1

1
+
h

1
h

4
2
t1

3
+

h
1
h

3
t1

4
−
h

2
h

4
t1

5

[0
20

2]
..
.

1
−
h

1
t7
−
h

4
t8

+
h

3
t1

1

[2
20

2]
..
.

1
−
h

4
t8

[2
22

2]
..
.

1

A
n
m
H
L

H
W

G
of

1
d

en
ot

es
m
H
L
F

4

[0
0
0
0
](
t)

.

T
ab

le
7.

8.
:
F

4
O

rb
it

s
an

d
H

W
G

s
(B

)

207



C
h

ar
ac

te
ri

st
ic

T
y
p

e
C

on
st

ru
ct

io
n

D
im

.
U

n
re

fi
n

ed
H

S

[0
00

2]
E

ve
n

N
or

m
al

is
at

io
n

g
F

4
[0

0
0
2
]

N
O
L

(x
,t

)
3
0

(
1

+
2
1
t

+
2
5
7
t2

+
2
0
1
8
t3

+
9
5
7
3
t4

+
2
8
2
6
1
t5

+
5
3
7
8
1
t6

+
6
6
6
5
1
t7

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

4

)
(1
−
t)

3
0
(1

+
t)
−

1

[2
00

1]
N

on
-r

ig
id

N
or

m
al

is
at

io
n

g
F

4
[2

0
0
1
]

N
O
L

(x
,t

)
3
6

(
1

+
1
4
t

+
1
0
6
t2

+
6
2
6
t3

+
2
8
1
1
t4

+
9
3
6
3
t5

+
2
1
6
6
2
t6

+
3
5
6
6
3
t7

+
4
1
8
1
2
t8

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

6

)
(1
−
t)

3
6
(1

+
t)
−

2

[0
10

1]
R

ig
id

N
or

m
al

is
at

io
n

g
F

4
[0

1
0
1
]

N
O
L

(x
,t

)
3
6

(
1

+
1
4
t

+
1
3
2
t2

+
9
1
2
t3

+
4
5
2
8
t4

+
1
5
6
5
5
t5

+
3
7
9
4
0
t6

+
6
4
5
7
5
t7

+
7
7
1
6
1
t8

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

6

)
(1
−
t)

3
6
(1

+
t)
−

2

[1
01

0]
N

on
-r

ig
id

N
or

m
al

is
at

io
n

g
F

4
[1

0
1
0
]

N
O
L

(x
,t

)
3
8

(
1

+
1
3
t

+
1
1
7
t2

+
8
1
9
t3

+
4
1
2
1
t4

+
1
5
1
7
1
t5

+
4
1
4
3
1
t6

+
8
4
6
4
2
t7

+
1
2
9
5
9
7
t8

+
1
4
9
2
4
0
t9

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

8

)
(1
−
t)

3
8
(1

+
t)
−

1

[2
00

2]
E

ve
n

C
ov

er
g
F

4
[2

0
0
2
]

N
O
L

(x
,t

)
4
0

(
1

+
1
0
t

+
8
2
t2

+
5
1
6
t3

+
2
4
0
8
t4

+
8
2
5
5
t5

+
2
1
5
2
5
t6

+
4
2
4
0
8
t7

+
6
3
6
9
0
t8

+
7
2
7
4
2
t9

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

8

)
(1
−
t)

4
0
(1

+
t)
−

2

[1
01

2]
R

ic
h

ar
d

so
n

N
or

m
al

is
at

io
n

g
F

4
[1

0
1
2
]

N
O
L

(x
,t

)
4
2

(
1

+
7
t

+
5
5
t2

+
2
4
7
t3

+
8
1
1
t4

+
1
8
4
0
t5

+
3
0
6
1
t6

+
3
5
5
6
t7

+
..
.p

a
li
n

d
ro

m
e
..
.
+
t1

4

)
(1
−
t)

4
2
(1

+
t)
−

3
(1
−
t2

)(
1
−
t6

)−
1

In
ad

d
it

io
n

to
th

e
n

or
m

al
is

at
io

n
s

of
n

o
n

-n
o
rm

a
l

n
il

p
o
te

n
t

o
rb

it
s,

th
e

ex
te

n
si

o
n
F

4
[2

0
0
2
]

is
sh

ow
n

(s
ee

te
x
t)

.

T
a
b

le
7
.9

.:
F

4
N

il
p

ot
en

t
O

rb
it

N
or

m
al

is
at

io
n

s
an

d
H

il
b

er
t

S
er

ie
s

208



C
h

ar
ac

te
ri

st
ic

C
h

a
ra

ct
er

H
W

G
m
H
L

H
W

G

[0
00

2]
1

+
m

3
m

4
t4

(
(1
−
m

1
t)

(1
−
m

4
t2

)(
1
−
m

4
2
t2

)
×

(1
−
m

2
t3

)(
1
−
m

3
t3

)(
1
−
m

3
2
t4

)

)
n

o
t

sh
ow

n

[2
00

1]
..
.

1
+
h

1
t3
−
h

4
t4
−
h

4
2
t4
−
h

1
t5
−
h

3
t5

+
h

1
h

3
t7

+
h

1
h

4
t7

+
h

3
h

4
t7

+
h

3
t8
−
h

4
t8

+
h

1
h

4
t8
−
h

2
h

4
t8

+
h

3
h

4
t8
−
h

1
h

4
2
t8

+
h

3
t9
−
h

1
h

3
t9

+
h

1
h

4
t9
−

h
2
h

4
t9
−
h

4
2
t9

+
h

3
h

4
2
t9
−
h

4
3
t9
−
h

2
t1

0
−

h
1
h

3
t1

0
+
h

3
2
t1

0
−
h

1
h

4
t1

0
−
h

2
h

4
t1

0
+
h

3
h

4
2
t1

0
−

h
4
4
t1

0
+
h

1
h

2
t1

1
+
h

3
t1

1
−
h

1
h

3
t1

1
+
h

3
2
t1

1
−

h
1
h

4
t1

1
+
h

1
2
h

4
t1

1
+
h

2
t1

2
+
h

2
h

4
t1

2
−
h

1
h

3
h

4
t1

2
+

h
1
h

4
2
t1

2
−
h

1
h

2
t1

3
−
h

1
h

3
h

4
t1

3
+
h

1
h

4
3
t1

3

[0
10

1]
..
.

1
+
h

4
t2
−
h

4
t4
−
h

4
2
t4
−

2
h

1
t5
−
h

3
t5
−
h

1
h

4
t5
−

h
3
t6

+
h

3
h

4
t6

+
2
h

2
t7

+
h

3
t7

+
h

1
h

4
t7

+
2
h

3
h

4
t7

+
h

4
2
t7
−
h

4
3
t7

+
h

2
t8

+
h

3
t8
−
h

4
t8

+
h

1
h

4
t8
−

h
1
h

4
2
t8
−
h

1
2
t9

+
h

2
t9

+
h

3
t9
−

2
h

1
h

3
t9

+
h

1
h

4
t9
−

h
2
h

4
t9
−
h

3
h

4
t9
−
h

4
2
t9
−
h

1
h

4
2
t9
−
h

2
t1

0
−

2
h

1
h

3
t1

0
−
h

1
h

4
t1

0
+
h

1
2
h

4
t1

0
−
h

3
h

4
t1

0
+

h
3
h

4
2
t1

0
+
h

1
h

2
t1

1
+
h

3
t1

1
+
h

3
2
t1

1
−
h

1
h

4
t1

1
+

h
1
2
h

4
t1

1
+
h

2
h

4
t1

1
−
h

3
h

4
t1

1
+
h

3
h

4
2
t1

1
+
h

2
t1

2
+

2
h

2
h

4
t1

2
−
h

1
h

3
h

4
t1

2
−
h

1
h

2
t1

3
+
h

1
h

3
t1

3
−

2
h

1
h

3
h

4
t1

3
+
h

2
h

3
t1

4
−
h

1
h

3
h

4
t1

4

[1
01

0]
..
.

1
+
h

4
t2

+
h

1
t3
−
h

4
t4
−
h

4
2
t4
−

2
h

1
t5
−

2
h

3
t5
−

h
3
t6

+
h

1
h

4
t7

+
h

3
h

4
t7

+
h

4
2
t7

+
h

2
t8

+
h

3
t8
−

h
4
t8

+
2
h

1
h

4
t8

+
h

3
h

4
t8
−
h

1
2
t9

+
h

2
t9

+
h

3
t9
−

h
1
h

3
t9

+
2
h

1
h

4
t9
−
h

4
2
t9
−
h

4
3
t9
−

2
h

2
t1

0
−

h
1
h

3
t1

0
−
h

1
h

4
t1

0
−
h

2
h

4
t1

0
−
h

3
h

4
t1

0
+
h

3
t1

1
−

h
1
h

3
t1

1
+
h

3
2
t1

1
−
h

1
h

4
t1

1
+
h

1
2
h

4
t1

1
−
h

3
h

4
t1

1
+

h
2
t1

2
+
h

2
h

4
t1

2
+
h

1
h

4
2
t1

2
−
h

1
h

2
t1

3
+
h

1
h

3
t1

3

[2
00

2]
..
.

1
+
h

4
t2

+
h

1
t3
−
h

4
t4
−

2
h

1
t5
−

2
h

3
t5
−
h

3
t6
−
h

2
t7

+
h

4
2
t7

+
h

2
t8

+
h

3
t8
−
h

4
t8

+
2
h

1
h

4
t8

+
h

3
h

4
t8
−

h
1
2
t9

+
h

2
t9

+
h

3
t9

+
2
h

1
h

4
t9

+
h

3
h

4
t9
−
h

4
2
t9
−

h
4
3
t9
−

2
h

2
t1

0
−
h

1
h

4
t1

0
−
h

3
h

4
t1

0
+
h

3
t1

1
−

h
1
h

3
t1

1
−
h

1
h

4
t1

1
−
h

3
h

4
t1

1
+
h

2
t1

2
+
h

1
h

4
2
t1

2
+

h
1
h

3
t1

3

[1
01

2]
..
.

1
+
h

4
t2
−
h

1
t5
−
h

3
t5
−
h

1
t7

+
h

2
t8
−

h
4
t8
−
h

1
2
t9

+
h

2
t1

1
+
h

3
t1

1

In
ad

d
it

io
n

to
th

e
n

o
rm

al
is

a
ti

o
n

s
o
f

n
on

-n
or

m
al

n
il

p
ot

en
t

or
b

it
s,

th
e

ex
te

n
si

on
F

4
[2

00
2]

is
sh

ow
n

(s
ee

te
x
t)

.

T
a
b

le
7
.1

0.
:
F

4
N

il
p

ot
en

t
O

rb
it

N
or

m
al

is
at

io
n

s
an

d
H

W
G

s

209



7.3.3. Orbits of E6

The 21 nilpotent orbits of E6 are described in Tables 7.11 to 7.13, which give

their classification, constructions and unrefined HS. Table 7.14 contains the

same information for the normalisations of the non-normal nilpotent orbits.

Table 7.15 analyses the three extra root maps that were identified in section

4.2.1.

Unlike F4, it has not proved practicable to resolve many Hilbert series

into HWGs, other than for near minimal and maximal orbits, so much of

the analysis is based upon unrefined HS. In Table 7.16, the character HWGs

and mHL HWGs are given for those orbits where it has been possible to

complete the calculations.

The non-normal orbits exactly match those listed in [72] (see section

4.4.7). The tables contain candidates for the constructions of the non-

normal orbits. These have been obtained by restricting their normalisations

to the nilpotent coneN through the subtraction of sub-spaces, similar to the

method used for gG2
NO and gF4

NO. Much of the analysis is, however, based on

unrefined Hilbert series and should not be taken as definitive. The picture

that emerges can be summarised:

[000001] and [100010]: 22 dimensional minimal and 32 dimensional next to

minimal nilpotent orbits. These orbits have the invariant subgroups

A5 and D4 respectively. The orbits can be calculated either (i) from

the Coulomb branch of a quiver theory built on the affine or twisted

affine Dynkin diagram, or (ii) from the NOL formula. The HS and

character HWGs are palindromic, and the latter are freely generated.

[001000] and [000002]: 40 and 42 dimensional nilpotent orbits. These orbits

have the invariant subgroups A2⊗A2⊗A1 and A5, respectively. The

orbits are calculated from the NOL formula. The HS and character

HWGs are palindromic, and the latter are freely generated or complete

intersections.

[100011], [200020], [100012], [010101] and [200022]: 46, 48, 52, 56 and

60 dimensional nilpotent orbits. These orbits have the invariant sub-

groups A3, D4, A3, A3
1 and A3 respectively. The orbits are non-normal

and candidates for the orbits are found by excluding sub-spaces, as
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shown in the tables, from their normalisations obtained from the NOL

formula. The Hilbert series are non-palindromic.

The remaining orbits are normal, with palindromic Hilbert series. The

decompositions into mHL functions are shown for the 66 dimensional

orbit upwards.

The Hasse diagram based on the inclusion relationships between unrefined

Hilbert series is compared in Figure 7.3 with the standard diagram in the

mathematical Literature [70, 71].

The two diagrams are broadly consistent. Some of the extra links ap-

pearing in the left hand diagram might disappear if the moduli space cal-

culations could be repeated with refined (rather than unrefined) Hilbert

series, or with character HWGs. However, the left hand diagram does not

have a link (i.e. inclusion relation) between the non-normal [200022] and

the normal [110111]; considering that unrefined Hilbert series cannot miss

an inclusion relation, this may indicate an anomaly in the standard dia-

gram; alternatively, there may be other restrictions of the normalisation of

[200022] that should be considered.

Turning to the three extra root maps, whose unrefined HS are set out

in Table 7.15: two of these maps, [111110] and [020202], have identical

refined Hilbert series to the nilpotent orbits with Characteristics [110111]

and [202020], respectively; these provide examples of dualities, with different

SU(2) homomorphisms generating the same nilpotent orbit. The third map,

[110110], is non-normal, containing elements outside the nilpotent cone; it

can be restricted to the nilpotent cone, by excluding a subspace defined

by the charged NOL formula, whereupon it appears to be an extension of

[002000], the distinguished nilpotent orbit of the same dimension:

g
E6[110110]
NOL (x, t) = g

E6[002000]
NOL (x, t)

[
1 + x6t

3 + x3t
6
]

(7.30)

The Weyl group of E6 has 25 irreps and conjugacy classes. In [82], the

21 nilpotent orbits are identified as these conjugacy classes, modulo some

actions of the symmetric groups S2 or S3. Two of the three extra root

maps, [110110] and [020202], appear to correspond to other members of

these conjugacy classes; however, these are identified in [82] by Bala Carter

labels, so the correspondence with root maps or Characteristics is unclear.
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Figure 7.3.: Hasse Diagram of E6 Nilpotent Orbits. The left hand diagram
is indicative, being partly derived from unrefined Hilbert series,
with arrows indicating inclusion relations and yellow nodes in-
dicating non-normal nilpotent orbits. The right hand diagram
is taken from the mathematical Literature.
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7.3.4. Orbits of E7 and E8

A comparable analysis for the 45 nilpotent orbits of E7 and 70 orbits of E8

poses computational challenges and it is only possible to present a partial

picture. Tables 7.17 to 7.30 set out those Hilbert series and HWGs that

have been calculated, along with details of the constructions. Unrefined HS

for normal nilpotent orbits of E7 and E8 are shown in Tables 7.17 to 7.22

and 7.27 to 7.28; the normalisations of the 10 non-normal nilpotent orbits

of E7 are shown in Tables 7.23 and 7.24; the 8 extra root maps of E7 are

analysed in Tables 7.25 and 7.26; and the character HWGs for near minimal

orbits of E7 and E8 are shown in Tables 7.29 and 7.30, respectively.

The pattern of results is similar to that for E6. The near-minimal or-

bits are normal, with palindromic Hilbert series, and have character HWGs

that are freely generated or complete intersections. All these orbits can be

constructed using the NOL formula. In addition, the minimal and next to

minimal orbits (and the next to next to minimal E7 orbit), have Coulomb

branch constructions. In all the cases calculated, the non-normal orbits are

consistent with the established classification, described in section 4.4.7.

Turning to the 8 extra root maps of E7. Amongst these: E7[2020000]

and E7[0110100] are normal, with their unrefined HS matching E7[0200200]

and E7[0020000], respectively; E7[2000002] appears to be non-normal, with

its unrefined HS matching E7[0100011]; of the others, four generate exten-

sions that do not match either the orbits or their normalisations; and the

unrefined HS of one remains to be calculated. Once again, these appear

to provide examples of dualities, with at least three of the extra root maps

from SU(2) homomorphisms giving copies of nilpotent orbits.

The Weyl group of E7 has 60 irreps and conjugacy classes. In [82], the

45 nilpotent orbits are identified as these conjugacy classes, modulo some

actions of the symmetric groups S2 or S3. Six of the eight extra root maps,

appear to correspond to other members of these conjugacy classes; however,

these are identified in [82] by Bala Carter labels, so their root maps or

Characteristics are not clear. The Weyl group of E8 has 112 irreps and

conjugacy classes. In [82], the 70 nilpotent orbits are identified as these

conjugacy classes, modulo some actions of the symmetric groups S2, S3

or S5. It can be anticipated that most of the 39 extra root maps of E8

correspond to other members of these conjugacy classes.
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8. Deconstructions

A considerable portion of this study has been devoted to examining the

relationship between the moduli spaces of quiver theories and the nilpotent

orbits of G. Nilpotent orbits provide a structured context for the explo-

ration of many relationships between quiver theories, beyond the 3d mirror

symmetry and other dualities examined thus far. Such relationships can re-

sult from various mechanisms, including, inter alia, branchings to subgroups

of G and HyperKähler quotients by gauge groups.

Under some types of branching relationship (introduced in section 2.6), a

quiver theory is equivalent to a combination of glued quiver theories. Such

branchings can be thought of as deconstructions, in which no information

is lost and the original moduli space can be reassembled. Deconstructions

are facilitated by standard building blocks and these can be provided by

modified Hall Littlewood functions, which form an orthogonal basis.

Importantly, while singlet modified Hall Littlewood functions correspond

to (uncharged) maximal nilpotent orbits, all A series modified Hall Little-

wood functions correspond to Coulomb branches of (a class of) T (SU(N))

quiver theories with background flavour charges. In the brane view of

T (SU(N)) theories [31], theD5 branes carry these monopole flavour charges,

while the NS5 and D3 branes supply the U(N) gauge group structure.

Under a HyperKähler quotient, which gauges away a subgroup, for exam-

ple, after symmetry breaking through subgroup branching, a quiver theory

for a nilpotent orbit of G may reduce to a quiver theory for a nilpotent orbit

of a subgroup of G.

We can use the methods described in Chapter 2 to decompose the refined

Hilbert series of nilpotent orbit quiver theories into representations and/or

modified Hall Littlewood functions of subgroups and thereby explore such

types of relationship.
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Figure 8.1.: The Tρ̂(SU(N)) quiver consists of a SU(N) flavour node
connected to gauge nodes U(N1) through U(Nmax), where
the increments are described by the partition ρ̂ = (N −
N1, . . . , Nmax−1 − Nmax). The flavour node carries fixed
monopole charges described by a second partition λ.

8.1. mHL Functions and T (SU(N))

One of the remarkable aspects of the A series mHL functions is that they

correspond to the Coulomb branches of certain N = 4 SUSY quiver gauge

theories in 2+1 dimensions, within the class known as T σρ̂ (SU(N)) [31, 55],

(where ρ̂ is used to denote the transpose of ρ).

When σ = (1N ), the quivers take the linear form in Figure 8.1 and the

Higgs branches of these theories correspond to the A series nilpotent orbits

defined by ρ. The case ρ̂ = (1N ) ↔ ρ = N gives the maximal nilpotent

orbit. If these quivers are generalised, by assigning external charges λ to

the flavour node, then the Coulomb branches of the family of quivers with

ρ̂ = (1N ) correspond to the mHL basis functions, defined in 2.18, with

quivers carrying zero charge giving mHL singlets (i.e. maximal nilpotent

orbits). These theories, in which σ = ρ̂ = (1N ), are often simply referred to

as T (SU(N)).

Following [55], the Coulomb branch formula 6.2 can be adapted to attach

fixed monopole charges to the flavour node. These charges are described by a

partition λ ≡ (λ1, . . . , λN ), where λN = 0, and the partitions map to SU(N)

highest weight Dynkin labels [n] ≡ [n1, . . . , nr] through the relationship

λj =
r∑
i=j

ni.

The monopole formula for T (SU(N)) becomes1:

T (SU(N)) (λ, z, t) ≡
∑
q

PU(N)
q (t) z

−|λ|
0 z−qt∆(q,λ), (8.1)

1Note the signs of the exponents of the roots; these are chosen for consistency with the
mHL definitions used herein.
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where |λ| ≡
N∑
i=1

λi, and z0 can be chosen by an overall gauge invariance

condition:

zN0

r∏
i=1

zNii = 1. (8.2)

The Cartan matrix relationship between fugacities for SU(N) weights and

simple roots, xN1 =
N−1∏
i=1

zN−ii , entails that z−1
0 = x1.

With a little work, 8.1 can be rearranged into a recursive set of relations:

T (SU(N)) (λ, z, t) = x
|λ|
1

∞∑
q1≥...≥qN−1≥−∞

PU(N−1)
q (t)x

− N
N−1

|q|
1 t∆(q,λ)

× T (SU (N − 1)) (q, z2, . . . , zN−1, t) ,

(8.3)

where z ≡ (z1, . . . , zN−1), q ≡ (q1, . . . , qN−1), and

∆(q, λ) =
1

2

N∑
i=1

N−1∑
j=1

|λi − qj | −
N−1∑
i=1

i−1∑
j=1

|qi − qj |. (8.4)

The U(N) Casimir symmetry factors, which depend, as before, on the par-

tition q of monopole charges on each node, are given by:

PU(N)
q =

N∏
i=1

1

1− tdi(q)
. (8.5)

The recursion relations 8.3 assume the q form an ordered partition, but

may range over both positive and negative integers. Each summation cor-

responds to one of the gauge nodes.

We set T (SU (1)) = 1 and the second member of the series follows as:

T (SU (2)) (λ1, λ2, z1, t) = x
(λ1+λ2)
1

1

(1− t)

∞∑
q1=−∞

z−q11 t
1
2
|λ1−q1|+ 1

2
|λ2−q1|,

(8.6)

where z1 = x2
1.

As shown in [55], the T (SU(N)) Hilbert series correspond to modified

Hall-Littlewood polynomials of SU(N). The correspondence is modulated

by a pre-factor in t, so that:
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mHL[n] (z, t) = t−ρw.G.[n]T (SU (N)) (λ (n) , z, t) . (8.7)

The exponent of the pre-factor equals the contraction of the Weyl vector

ρw, which is (1, . . . , 1) in a canonical basis of CSA coordinates, with the

Dynkin labels of the mHL polynomial, using the group metric tensor G.2

In principle, as discussed in [29], any refined Hilbert series, expressed in

terms of class functions of G, can be branched to a semi-simple subgroup

of G that consists solely of A series groups. It can then be decomposed into

A series modified Hall Littlewood polynomials and thereby expressed as a

summation over a series of T (SU(N)) quiver theories.

8.1.1. T (SU(N)) and Star Shaped Quivers

Some of these deconstructions are more elegant than others, with interesting

examples being provided by families of star-shaped quivers. For example,

the deconstructions of certain nilpotent orbits of Classical and Exceptional

groups into A series mHL polynomials follow the structural relationships

between their Coulomb branch quiver theories (which are based on Dynkin

diagrams) and the linear quivers of T (SU(N)). Figure 8.2 shows the quiver

diagrams involved in these family relationships; the Dynkin diagrams can

be constructed by identifying the flavour nodes of the T (SU(N)) quivers.

The non-trivial aspect of these deconstructions is that of finding the

branching coefficients into mHL functions; while these can be expected

to reflect the symmetries of the diagrams, they can also incorporate non-

obvious patterns, particularly for the non-simply laced diagrams.

One way of finding the branching coefficients for the simply laced D4 →
A⊗4

1 and E6 → A⊗3
2 deconstructions is to rearrange the Coulomb branch

constructions (discussed in section 6.2) for the RSIMS (or minimal nilpotent

orbits), under a gauge choice that sets the lowest U(1) monopole charge of

the central node of the D4 or E6 extended Dynkin diagram to zero, such

that the contributions of each leg can be separated from the residual gluing

coefficients.

The more general method, however, for deconstructing a refined Hilbert

2While mHL polynomials with similar properties can be defined for other groups, the
T (G) quiver theories that have been proposed for these functions, other than for
isomorphisms with the A series, face some critical issues.
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Figure 8.2.: Quivers for Nilpotent Orbit deconstructions to T (SU(N)). Blue
nodes denote simple roots. Affine Dynkin diagrams are labelled
with black nodes indicating the affine root. The dual Coxeter
numbers of each node are shown. The quiver diagram for G2[20]
is a hybrid in which the SU(3) gauge node is self linking and
contains the flavour node. T (SU(N)) quivers are labelled as in
Figure 8.1.
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series into mHL functions, is to find the C[n]
∼= Cλ branching coefficients,

defined as in 2.26, by using 2.27. As an example, the calculation of the

C[n] for the deconstruction of the RSIMS of D4 into mHL functions of the

semi-simple A1
⊗4 ≡ A1 ⊗A1 ⊗A1 ⊗A1 subgroup proceeds as follows.

We wish to calculate the coefficients C[nA],[nB ],[nC ],[nD](t) such that:

gD4

HS:RSIMS (w, x, y, z, t) = gA
⊗4
1 (a, b, c, d, t)

∣∣∣
(a,b,c,d)→(w,x,y,z)

,

where

gA
⊗4
1 (a, b, c, d, t) =

∑
[nA],[nB ],[nC ],[nD]

C[nA],[nB ],[nC ],[nD] (t) mHLA1

[nA] (a, t)

× mHLA1

[nB ](b, t) mHL
A1

[nC ](c, t) mHL
A1

[nD](d, t).

(8.8)

We start with the expansion3 for gD4
HS:RSIMS (w, x, y, z, t), obtained by one

of the methods in sections 2.2, 5.1 or 6.2, where {w, x, y, z, t} are CSA co-

ordinates for D4. By eliminating the second node in the extended Cartan

matrix of D4, and using the relationships between roots and weights en-

coded and the Cartan matrices of A1 and D4, we obtain the root and CSA

coordinate mappings in Table 8.1.

Table 8.1.: D4 to A1
⊗4 Simple Root and CSA Coordinate Mappings

D4

roots
D4

CSA coords
A1
⊗4

roots
A1
⊗4

CSA coords

z1 w2x za a2

z2 x2/wyz − −
z3 y2/x zb b2

z4 z2/x zc c2

z0 1/x zd d2

We solve the root mapping {z1 ↔ za, z3 ↔ zb, z4 ↔ zc, z0 ↔ zd} to obtain

the CSA coordinate mapping {w ↔ a
d , x↔

1
d2 , y ↔ b

d , z ↔
c
d} and use this

to transform gD4
HS:RSIMS (w, x, y, z, t) to gA

⊗4
1 (a, b, c, d, t). We then intro-

duce generating functions for the gmHL using the Dynkin label fugacities

3The refined Hilbert series is not shown here since it is rather lengthy.
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hA, hB, hC , hD and specialise 2.27 as:

g
A⊗4

1
HWG (h, t) ≡

∞∑
[nA],[nB ],[nC ],[nD]=[0]

C[nA][nB ][nC ][nD] (t) hA
nAhB

nBhC
nChD

nD

=

∮
A⊗4

1

dµ
A⊗4

1
mHL g

A1
mHL (a∗, hA, t) gA1

mHL (b∗, hB, t)

× gA1
mHL (c∗, hC , t) gA1

mHL (d∗, hD, t) gA
⊗4
1 (a, b, c, d, t) .

(8.9)

The Hall-Littlewood polynomials of A1, follow from 2.17 and can be ex-

pressed in terms of characters [n] as:

HLA1

[n] (χ, t) =


n = 0 : 1 + t

n = 1 : [1]

n ≥ 2 : [n]− t [n− 2]

. (8.10)

Their generating function follows from 2.22 and can be encoded as a highest

weight generating function, using h as the HL Dynkin label fugacity:

gA1
HL (χ, h, t) = (1 + t− [1]ht) PE [[1]h] . (8.11)

The generating function gA1
HL for the conjugate orthonormal Hall-Littlewood

polynomials HLA1

[n] differs from gA1
HL in its numerator, as discussed in section

2.4:

gA1
HL (χ, h, t) =

(
1− h2t

)
PE [[1]h] . (8.12)

The modified Hall-Littlewood polynomials mHLA1

[n] , mHL
A1

[n] and their gen-

erating functions all differ from the above by the pre-factor, PE[[2]t− t]:

gA1
mHL (χ, h, t) = PE[[2]t− t] gA1

HL (χ, h, t) ,

gA1
mHL (χ, h, t) = PE[[2]t− t] gA1

HL (χ, h, t) .
(8.13)

We evaluate 8.9, by taking the conjugate generating functions from 8.13,

expanding the characters, and applying Weyl integration using the mHL

Haar measure, to obtain:

g
A⊗4

1
HWG (h, t) =

1− h2
Ah

2
Bh

2
Ch

2
Dt

4

(1− t2)(1− hAhBhChDt)(1− hAhBhChDt2)
. (8.14)
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Family mHL HWG for C[n]

B2[20]
G2[10]
B3[010]
D4[0100]

→ A1
⊗r 1−h2t4

(1−t2)(1−ht)(1−ht2)


B2 : h ≡ hAhB
G2 : h ≡ h3

AhB
B3 : h ≡ hAh2

BhC
D4 : h ≡ hAhBhChD

G2[20]
F4[1000]

E6[000001]

→ A2
⊗r/2 1+h1t2+h2t2+h1t3+h2t3+h1h2t5

(1−t2)(1−t3)(1−h1t)(1−h2t)


G2 : hi ≡ hAi
F4 : hi ≡ hAih2

Bi

E6 : hi ≡ hAihBihCi

Table 8.2.: mHL HWGs for Nilpotent Orbits of T (SU(N)) families

This simple HWG is of a diagonal form, in which the Dynkin label fugacities

of different subgroups always appear with matching exponents. Taylor series

expansion yields the explicit non-zero C[n](t) coefficients:

C[n][n][n][n] (t) =

{
n = 0 :

(
1− t2

)−1

n ≥ 1 : tn(1− t)−1.
(8.15)

These can be checked by substitution back into 8.8 followed by Taylor

expansion or gluing to recover the RSIMS for D4. The coefficients follow a

pattern related to the SU(2) Casimir symmetry factors discussed in Chapter

6.

We can repeat the procedure described for D4 for a selection of lower rank

Classical and Exceptional groups. The low dimensions of the HWGs built on

mHL polynomials can lead to particularly simple decompositions of RSIMS

into A series subgroups. These include two families, B2, G2, B3, D4 → A1
⊗r

and G2, F4, E6 → A2
⊗r/2 that have simple HWGs of dimension 2 and 4

respectively, as shown in Table 8.2. The A1 family shares D4[0100] ∼= A⊗4
1

and B2[20] ∼= A⊗2
1 with the quivers constructed from SU(2) tri-fundamental

fields, against a background of N = 2 SUSY in (3 + 1) dimensions in [83].

As the limiting case of a star shaped quiver with a single arm, it is no-

table that the 10 dimensional G2 nilpotent orbit can be deconstructed into

mHLA2 functions, equivalent to T (SU(3)) quivers. The G2 orbit is ob-

tained, after an elementary transformation from G2 to A2, by summing

over the flavour nodes of the T (SU(3)) quiver. The C[n] coefficients can

be found from the refined Hilbert series for G2[20] by projection methods,

similar to the D4 RSIMS example above, and turn out to complete the
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T (SU(3)) family in Table 8.2. This nilpotent orbit can also be constructed

directly, as shown in [23], on the Coulomb branch of the quiver in Figure

8.2, in which one of the gauge nodes is self-linking.

8.1.2. T σ
ρ̂ (SU(N)) Theories

A more substantial class of modifications to the Hall-Littlewood polynomi-

als is implemented in [26], where these (heavily) modified Hall-Littlewood

functions are used to construct the RSIMS of E6, E7 and E8. In the

case of E6, the result is equivalent to that obtained by the mHL decon-

struction described above. For E7 and E8 RSIMS, the (heavily) mod-

ified Hall-Littlewood functions incorporate elements of the broader class

of T σρ̂ (SU(N)) theories, introduced above. The quivers for the Coulomb

branch constructions of Exceptional group nilpotent orbits in Figure 6.13

all contain linear sub-quivers, such as [4]− (2), [6]− (3) and [6]− (4)− (2),

that correspond to T σρ̂ (SU(N)) theories, where σ = (1N ), and ρ̂ = (22) or

(32) or (23), respectively.

The (heavy) modifications involve subjecting the Hall-Littlewood poly-

nomials to a branching map that, at the risk of introducing divergences,

treats t as a unimodular SU(2) fugacity; the resulting functions are pre-

fixed by a number of factors and glued together with C[n][n][n] branching

coefficients. The constructions are guided by a conjectured characterisation

of punctures on Riemann spheres wrapped by M5 branes, which helps to

identify those combinations of A series (heavily) modified Hall-Littlewood

polynomials that yield the desired moduli spaces.

These (heavily) modified Hall-Littlewood polynomials provide alternative

building blocks to the monopole formula for some Coulomb branches. Their

usage presupposes that the quiver diagram symmetries are readily identi-

fiable; they can be used on quivers that are simply laced, with a central

gauge node, single flavour node, and linear arms, even if some of these do

not obey ρ = (1N ).

While the (heavily) modified Hall-Littlewood polynomials can facilitate

Coulomb branch calculations, their drawback is that they do not form a

set of orthogonal basis functions; so the resulting deconstructions do not

uniquely decode the moduli spaces, and their branching coefficients cannot

readily be found by the projection methods developed herein.
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8.2. Subgroup Branching of Nilpotent Orbits

The nilpotent orbits of a group G have relationships with those of its sub-

groups; indeed this follows from the fact that orbits can be induced from

subgroup orbits using the NOL formula (version 7.11). Naturally, the pro-

cess can be reversed and the subgroup orbits can be recovered from the par-

ent. The regular semi-simple branchings discussed in section 2.6 map the

adjoint of G to representations of its semi-simple product groups; gauging

away the unwanted members of the product group leaves a representation

of a simple subgroup G0 that includes the adjoint of G0. Consequently,

any nilpotent orbit of G maps to a representation space of G0 that contains

some nilpotent orbit of G0, although this is quite often combined with other

representations.

8.2.1. RSIMS Branching

A variety of branchings of RSIMS of Classical and Exceptional groups were

investigated in [29]. Given a coordinate map M from a parent group G

of rank r to a subgroup G0 ⊗ . . . ⊗ Gm of equal rank, the refined Hilbert

series gGHS:RSIMS(x, t) can be expressed in terms of the CSA coordinates

{y1, . . . , yr} of its subgroup. Then, following the methods laid out in Chap-

ter 2, a character generating function gG0⊗...Gm
χ (y,m) can be used to project

gG0...⊗Gm
HS (y, t) onto the irreps of the subgroup; these are tracked using the

Dynkin label fugacities {m1, . . . ,mr}. The projection coefficients, which are

polynomials in the fugacity t, are encoded in the HWG gG0...⊗Gm
HWG (m, t):

gGHS:RSIMS(x, t)→ gG0...⊗Gm
HS (y, t)→ gG0...⊗Gm

HWG (m, t) (8.16)

Specialising to G of the type SO or USp, with branching to a product group

with two constituents of the same type, the HWGs gG0⊗G1
HWG (m, t) take the

same form. This can be shown using notation where the highest weight

fugacities for the adjoint, vector and graviton representations of the two

(primed and unprimed) subgroups are replaced by {θ, v, g} respectively;

thus, for B/Dr≥3 : {m1 → v,m2 → θ,m2
1 → g}, and for Cr : {m1 →
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v,m2
1 → θ}. The generalised HWGs follow the pattern:

g
B/D
HS:RSIMS → gG0⊗G1

HWG = PE
[
(θ + θ′ + v ⊗ v′) t+ (1 + g + g′ + v ⊗ v′) t2 − g ⊗ g′t4

]
,

gCHS:RSIMS → gG0⊗G1

HWG = PE
[
(θ + θ′ + v ⊗ v′) t− θ ⊗ θ′t2

]
,

(8.17)

The dimensions of these generalised HWGs vary from two in the case of

the C series to six for the B/D series. The Hilbert series only contain

representations whose Dynkin labels are monomials of the singlet, vector,

adjoint and graviton labels. Importantly, since their form does not change

for higher rank, these expressions encode such RSIMS deconstructions for

any BCD group. The deconstructions contain all the information in the

original RSIMS, which can be recovered by applying the inverse coordinate

map M−1.

If the HWGs are gauged by selecting singlets of one of the subgroups -

easily carried out by eliminating those HWG monomials that are not its

singlets - then the connection from the minimal nilpotent orbit of G to the

nilpotent orbits of G0 is manifest:

g
B/D
HS:RSIMS → gG0

HWG = PE
[
θt+ gt2

]
PE

[
t2
]

gCHS:RSIMS → gG0
HWG:RSIMS = PE [θt] ,

(8.18)

While the RSIMS of a C parent maps to the minimal nilpotent orbit of a C

subgroup, the RSIMS of a B/D parent maps to the next to minimal orbit

of a B/D subgroup, multiplied by a series of singlets. In order to eliminate

singlets and to obtain exact B/D mappings to subgroup nilpotent orbits, it

is necessary to incorporate a Hyper Kähler quotient by the gauge subgroup,

similar to the procedures in Chapter 5.

8.2.2. Hyper Kähler Quotients

Hyper Kähler quotients between nilpotent orbits were treated in [7], albeit

from a geometric rather than representation theoretic perspective. Table

8.3 sets out a selection of pairs of nilpotent orbits of groups that are related

by Hyper Kähler quotients. The Classical cases are largely drawn from

[7], with the orbits described by their Higgs branch quivers, which typically

follow the subgroup branching. The logic behind the Hyper Kähler quotients

follows the discussion in section 5.4.3. The Exceptional cases are drawn

from the covering spaces identified in [80]; the branchings are to maximal
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subgroups, based on elementary transformations or folding maps, and quiver

descriptions are not available.

The relationship between each pair {OG ≡ gGNO,OG0 ≡ gG0
NO} can be

described by a character map χG → χG0⊗G1⊗...Gm , followed by a HKQ by

the subgroup H ≡ G1 ⊗ . . . Gm; this may include the discrete action of a

finite group [6]:

gG0
NO

(
χG0 , t

)
=

1

|Zn|
∑
Zn

∮
H

dµH
gGNO

(
χG0⊗H , t

)
m∏
i=1

PE
[
[adj]Gi , t

2
] (8.19)

Table 8.3 contains only a sample of the possible HyperKähler quotients

between nilpotent orbits, but these serve to exemplify particular types of

relationship. These include:

1. 2-node quivers (9 examples). The fundamental of the flavour group is

broken to a sum of fundamentals of groups of the same type (O/Sp/U).

The HKQ is taken over the lower rank group, with the quotient for

B0
∼= O(1) given by a Z2 factor. There are conditions that follow from

the requirement that the new quiver should be based on a well ordered

partition. Possibilities for Classical flavour groups are shown in Table

8.4. In all cases the reduction in complex dimension of the nilpotent

orbit is equal to twice the dimension of the HKQ gauge group.

2. SU(2k) RSIMS folding to the supra minimal nilpotent orbit of Ck

(1 example). Consider the RSIMS quiver SU(2k) − U(1). The com-

plex character of the flavour group fundamental representation can be

mapped to the pseudo real Ck fundamental. The gauge group maps

from U(1) to O(2). The HKQ is a Z2 factor, as shown in Table 8.4.

3. The other types of Classical subgroup branching include special branch-

ings, such as those from SU(8) and SU(10), in addition to regular

ones. Considering that the subgroup may contain Abelian compo-

nents, there are many possibilities for branching a group into its sub-

groups [54]; these are compounded by the alternative choices of HKQ.
4

4Not all combinations lead to nilpotent orbits of the new flavour group; many lead to
covering spaces.
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4. The branchings from/to the nilpotent orbits of Exceptional groups

require Hyper Kähler quotients by finite groups, as shown, to recover

orbits of lower rank groups, rather than covering spaces. These are

not discussed in [80], but can be identified from the HWGs of the

various orbits and moduli spaces.

The generalisations in Table 8.4 extend the results of [7] and [80] to a wide

class of relationships involving nilpotent orbits based on the Higgs branches

of 2-node quivers.
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9. Conclusions and Outlook

9.1. Reflections

This study set out with the aim of understanding and explicating the re-

lationships between the structure of SUSY quiver gauge theories and sym-

metry groups. While much has been accomplished, the progress has been

greatest with those quiver theories that possess natural decodings in terms

of canonical objects from Lie groups and their representation theory. This

is illustrated nicely by the symmetries of the invariant tensors of G, which

manifest in flavour group representations on the Higgs branches of SQCD

quiver theories; and by the (closures of) nilpotent orbits of Classical G,

which appear on the Higgs branches of linear quiver chains built from G

and its subgroups; and by the nilpotent orbits of Classical or Exceptional

G, which appear on the Coulomb branches of quivers built from Dynkin

diagrams of G.

The rationale for focusing on certain SUSY backgrounds (N = 2 theories

in the case of Higgs branch constructions and N = 4 3d theories in the

case of Coulomb branch constructions) has been that these backgrounds,

with 8 SUSY supercharges, support quiver theories with rich gauge group

structures; the tools and methods developed in this context should, however,

be equally useful in the analysis of any SUSY (or other physical) theory with

a non-trivial gauge group content.

This study would claim to have made useful progress in two areas. The

first is the development of the Highest Weight Generating function method-

ology for decoding the representation content of a refined Hilbert series.

This methodology draws systematically on the group theoretic relation-

ships between various families of generating functions, including Hilbert

series, HWGs, and generating functions for characters of Lie group repre-

sentations, Hall-Littlewood polynomials, modified Hall Littlewood functions

and their orthonormal conjugates. The end result is a toolbox for faithfully
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transforming and/or combining the Hilbert series of moduli spaces, such

that their properties and relationships with other moduli spaces can be

concisely and unambiguously defined and understood.

It is a central theme in this study that the systematic use of refined Hilbert

series, concisely encapsulated as HWGs, provides a faithful encoding of any

moduli space that can be expressed over the class functions of some sym-

metry group. This opens the door to identifying and analysing, in a precise

and systematic manner, the structures of and relationships between a wide

variety of field theories. While SUSY quiver gauge theories have formed the

centre piece herein, SUSY backgrounds are not a prerequisite for the use of

Hilbert series and HWGs. Indeed, the treatment in Chapter 7 of nilpotent

orbits, through the refined Hilbert series and HWGs of moduli spaces gen-

erated by the background independent NOL formula, indicates that these

methods should have broad physics and/or mathematical applicability.

The second area has been the application of HWG methodology, aug-

mented by established Plethystics Program techniques, to develop an im-

proved understanding of the moduli spaces of SUSY quiver theories, from a

representation theoretical perspective; this has included systematising many

of the non-trivial relationships between the Higgs and Coulomb branch vac-

uum moduli spaces of quiver theories for the closures of nilpotent orbits.

Findings in relation to SQCD and instanton moduli spaces are given within

Chapter 3. The main findings, which relate to nilpotent orbits generally, are

summarised in the sections below. Findings in relation to deconstructions

of nilpotent orbits are given in Chapter 8.

In the course of research, some categories of quiver theory were found

to have moduli spaces that do not have simple decompositions in terms

of HWGs, whether using characters, HL polynomials or mHL functions

as a basis. Examples include multiple instanton moduli spaces, touched

on in section 3.3, and Masterspace quiver theories [57, 56]. In the case of

Masterspace theories, which deal with Calabi-Yau spaces defined by brane

tilings, such as delPezzo surfaces, the multiple Abelian symmetries of the

manifolds mostly preclude the description of their Hilbert series in terms of

simple HWGs. In the case of multiple instanton theories, the interlacing of

global SU(2), instanton gauge and Yang-Mills symmetry groups also, thus

far, frustrates a general description in terms of simple HWGs. These quiver

theories were not explored further in this study.
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When decoding recent Literature involving nilpotent orbits, it has proved

invaluable to be able to draw on the seminal papers by Dynkin [61, 54],

which not only introduced some powerful group theoretic tools, such as

Dynkin diagrams, but also developed many of the concepts, such as Char-

acteristics, which are essential for an effective analysis of nilpotent orbits.

The interplay between recent ideas from SUSY quiver theory and founda-

tional mathematical frameworks has played an important role in facilitating

the resolution of many puzzles in the course of this study.

This study also identifies a few tensions between the theoretical narra-

tive surrounding nilpotent orbits in the mathematical Literature and direct

computations of their properties as moduli spaces. This suggests that there

could be future benefits from a dialogue between the strands of mathemat-

ical and theoretical physics research in this field.

The study has made much use of Mathematica, supported by the LieArt

add-in [84], to calculate refined Hilbert series and their HWGs. To do this,

it has also proved necessary to build a number of custom algorithms to im-

plement the often complicated and lengthy group theoretic transformations,

which typically involve Weyl integration and/or Weyl group summation, be-

tween different types of generating function. While every effort has been

made to describe and/or state the key formulae deployed, either in the text

or in the Appendices, progress has also depended on the formulation of effi-

cient algorithmic procedures; necessarily, these live within the Mathematica

workbooks designed during this study rather than in this document.

9.2. Findings - Nilpotent Orbits

9.2.1. Higgs Branch

Every nilpotent orbit of a Classical group has a canonical Higgs branch

quiver theory that can be identified from its Characteristic. A Higgs branch

formula for A series nilpotent orbits is given by 5.4. A detailed formula, 5.23,

for the closure of a BCD group nilpotent orbits was obtained in Chapter 5.

This caters for the group averaging that is necessary over the components

of orthogonal subgroups, to construct nilpotent orbits rather than their

normalisations. Hilbert series, calculated up to rank 4, and analysed both

as unrefined HS and in terms of HWGs, using both character and mHL
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bases, are set out in Tables 5.4 to 5.5 and 5.12 to 5.17. A generalised

analysis for certain types of orbit at any rank is given in Tables 5.6 and 5.18

to 5.20.

While all the moduli spaces are HyperKähler, not all are Calabi-Yau

with palindromic Hilbert series. The Higgs branch formula precisely iden-

tifies the non-normal nilpotent orbits of the BCD series through their non-

palindromic HS; and the moduli space inclusion (and union) relations be-

tween the calculated orbits are consistent with the Hasse diagrams presented

in the Mathematical Literature [33, 6].

Taken together, these results, which appeared in [24], provide a system-

atic analysis of the Higgs branch Hilbert series of quivers for Classical group

nilpotent orbits of low rank. While refined Hilbert series for some A series

orbits had been obtained in [25], the prior work on BCD series had been

limited to selective calculations of some unrefined Hilbert series, [31], and

an identification of the representation structure of the minimal and maxi-

mal nilpotent orbits [16, 55]. The results show that a convoluted narrative,

involving GNO dual groups and Spaltenstein dual orbits, whilst perhaps rel-

evant for other purposes, is not necessary for the Higgs branch construction

of the full set of BCD series nilpotent orbits.

There exist many dual quivers that have the same Higgs branch moduli

spaces as the canonical quivers. For the A series, such dual quivers are

provided by ordered linear quivers that are not very unbalanced ; these can

be transformed to canonical quivers by reordering partition data and/or by

eliminating duplicate nodes, as elaborated in section 5.3.4. For the BCD

series, dual quivers can be obtained from the canonical quivers by dimension

shifting within the partition data and/or by extending maximal subchains,

as elaborated in section 5.4.6. Many, but not all, BCD quivers can be

rearranged as pure BC or DC chains, which can help avoid parity anomalies

in certain field theoretic embeddings.

Higgs branch constructions are not available for Exceptional group nilpo-

tent orbits, since the relationship between their vector and adjoint represen-

tations does not just involve bilinear invariants and singlets (which can be

eliminated by a Hyper Kähler quotient) [6]. The construction of Exceptional

group nilpotent orbits requires either the Coulomb branch method, which

is available for near to minimal orbits, or a different plethystic approach,

such as the NOL formula.
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9.2.2. Coulomb Branch

The nilpotent orbits of A series groups, as well as the minimal and near

to minimal nilpotent orbits of Classical and Exceptional groups, can be

constructed on the Coulomb branches of quiver theories with unitary gauge

nodes, using the unitary monopole formula [20, 22], as elaborated in Chapter

6. The number of flavour nodes and the dimensions of the unitary gauge

groups in a quiver, as well as their linking pattern, can be determined by

one or more of a variety of methods.

A quiver for the Coulomb branch construction of any A series nilpotent

orbit, can be obtained from the corresponding Higgs branch quiver through

brane manipulations, as described in section 6.4, according to the principles

of 3d mirror symmetry [1].

Also, the quiver for a near to minimal nilpotent orbit can be identified

from its Characteristic, as discussed in section 6.5, providing the (complex)

dimension of the nilpotent orbit is equal to twice the sum of the U(N) gauge

node ranks in the quiver. In the case of minimal nilpotent orbits, such

quivers correspond to those obtained from affine Dynkin diagrams, both for

simply laced ADE groups [9] and for non simply laced BCFG groups [22],

with the U(N) gauge node ranks being equal to the dual Coxeter numbers

of G. In the case of next to minimal nilpotent orbits of BCD groups, these

quivers correspond to those obtained from twisted affine Dynkin diagrams

[24]. All the quivers in this category assign a Characteristic height of 2 to

the highest root.

All the Coulomb branch quivers for nilpotent orbits are balanced, as dis-

cussed in section 6.1.1, and this imposes a particular form of overall gauge

invariance on the gauge and flavour nodes; nevertheless, the monopole for-

mula permits a gauge choice as to which monopole charge should be de-

fined as zero, and this choice can simplify calculations, for example, of the

Coulomb branches of star-shaped quivers and/or their deconstructions into

T (SU(N)) quiver theories.

This gauge invariance imposes the Weyl group symmetries of G on the

moduli space, by encoding the Cartan matrix into the structure of the quiver

(and hence the GNO lattice of U(N) topological symmetries). In the case of

the RSIMS of low rank groups, these Weyl group symmetries are manifest

in the measure of conformal dimension ∆(q), which serves to grade Weyl
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group orbits. The unitary monopole formula collects these Weyl group

orbits, which consist of sets of root space monomials zq, into a moduli space

graded by powers of t that combine conformal dimension ∆(q) with the

degrees and multiplicity of the U(N) Casimirs of each monopole charge

configuration q.

From a SUSY perspective, the conformal dimension grading of the GNO

lattice of monopole charges corresponds to R-charge, with the hypermulti-

plets between gauge nodes each contributing a half unit of R-charge, while

the vector fields within each gauge node each contribute a negative unit of

R-charge.

One of the features of these Coulomb branch moduli spaces is that they all

have palindromic Hilbert series. These reconcile to non-normal BCD series

nilpotent orbits, as discussed in 6.3.2: in the case of a pair of spinor orbits of

D2r, the Coulomb branch construction yields the palindromic spinor moduli

spaces, while the Higgs branch construction yields their non-palindromic

union; other BCD non-normal orbits are not near minimal, so Coulomb

branch constructions are not available, and the issue does not arise.

9.2.3. NOL Formula

In the absence of a quiver theory construction for Exceptional group nilpo-

tent orbits beyond the near to minimal category, it is a significant finding

that a direct plethystic calculation of the closure of any normal nilpotent

orbit is possible, by the Nilpotent Orbit Localisation formula developed in

Chapter 7. One of the attractions of the NOL formula is that it explicates,

in a direct manner, the relationship between an SU(2) homomorphism, as

defined by its Characteristic, its nilpotent element X and its nilpotent orbit

(or normalisation).

Like the Coulomb branch formula, the NOL formula yields a moduli space

with a palindromic Hilbert series, so the situation surrounding non-normal

nilpotent orbits needs consideration; however, for normal orbits, the Higgs

branch, Coulomb branch (where available) and NOL methods all construct

the same canonical moduli spaces.

Turning to the established list of non-normal orbits; in all the cases cal-

culated, the NOL formula leads to moduli spaces, with palindromic Hilbert

series, containing elements outside the nilpotent cone N .
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For Classical non-normal orbits, the NOL formula either yields the normal

components of those orbits that are unions, as in the case of D2r spinor pairs,

or it yields their normalisations. These normalisations can be restricted to

equal the non-normal orbits by excluding sub-spaces described by charged

orbits of lower dimension.

In the case of Exceptional non-normal orbits, there are no spinor pairs,

and the NOL formula yields their normalisations. By conjecturing rela-

tionships, similar to those between Classical non-normal orbits and their

normalisations, it has been possible to find restrictions of the normalisa-

tions in G2, F4 and E6, that yield Hilbert series lying within N , and which,

subject to a more definitive analysis, can be viewed as candidates for the

non-normal orbits.

9.3. Puzzles from the Mathematical Literature

By working with characters, quivers and refined Hilbert series, this study

has found some precise and direct routes through a subject that can be

treated in an arcane manner in the mathematical Literature.

This study has not made significant use of Bala-Carter labels. The per-

spective herein is that a nilpotent element X is more naturally charac-

terised by an extension of the quotient group structure G/G0 that applies

to Richardson orbits. The NOL formula generalises this structure to non-

Richardson orbits, by defining Φ̃G/G0
to exclude the roots in Φ

[1]
G from the

positive roots in ΦG/G0
; this appears to be permissible due to the Weyl

group invariance of Φ
[1]
G under the subset WG0 of reflections of ΦG.

The analysis does, however, leave a few residual puzzles in relation to the

narrative in the mathematical Literature regarding the nilpotent orbits of

Exceptional groups. Specifically:

1. A small number of extra root maps, which are not listed amongst the

Characteristics in standard tables, appear to be consistent with the

SU(2) homomorphisms of EF groups, and also to correspond to conju-

gacy classes of their Weyl groups. Some of these extra root maps, such

as E6[111110], E6[020202], E7[2020000], E7[0110100], E7[2000002] and

E7[2020000], generate refined Hilbert series that are identical to those

of the standard Characteristics; others give rise to moduli spaces,
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with palindromic HS, that are extensions of nilpotent orbits outside

N . Although several cases for E7 and E8 remain to be calculated,

no new nilpotent orbits have been identified. This appears consis-

tent with the perspective that these extra root maps are members of

Weyl group conjugacy classes that are equivalent to nilpotent orbits,

modulo certain symmetric group actions [82].

Nonetheless, these extra roots maps provide examples of dualities,

such that SU(2) embeddings in G with different root maps or Char-

acteristics lead to identical nilpotent orbits of G; such dualities would

conflict with the standard narrative surrounding the Jacoboson-Morozov

theorem in the Literature [33], which claims a bijection, not just be-

tween SU(2) embeddings and nilpotent elements X, but also between

SU(2) embeddings and nilpotent orbits OX .

2. When defining the partial ordering (or topology) of nilpotent orbits

within the nilpotent cone N , it is important to deal with the orbits,

rather than their normalisations. The Hasse diagrams of inclusion re-

lations depend on whether non-normal nilpotent orbits, or their nor-

malisations, are used. This may account for the differences in linking

patterns (to or from non-normal orbits) between the F4 and E6 Hasse

diagrams obtained from the moduli space analysis in this study and

the standard diagrams in the Literature. Whereas the standard dia-

grams date from [81], the listing of non-normal orbits of Exceptional

groups appears some years later in [72]. It would be interesting to

be able to give a precise account of the source of the differences be-

tween the topologies of orbits calculated from the NOL formula and

the standard diagrams.

3. It is also somewhat perplexing to note the view expressed in [78],

“the main disadvantage of Dynkin’s classification is that

there is no simple algorithm to determine whether or not a

given weighted Dynkin diagram [Characteristic] represents

a nilpotent class.”

This study of moduli spaces via Hilbert series has essentially established

the contrary perspective that, subject to a limited number of complica-

tions surrounding the non-normal orbits and extra root maps of Exceptional
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groups, (i) whether or not a given Characteristic of G represents an SU(2)

embedding can be determined by a simple character mapping technique,

augmented by the Real and Pseudo real selection rules, and (ii) whether or

not a given Characteristic of G represents a nilpotent orbit can, in principle,

be determined from its Higgs branch construction (for G Classical) and/or

the NOL formula.

9.4. Open Questions

The moduli space calculations for Exceptional groups, in particular, have

been limited by practical computing constraints and so several tables herein

are incomplete, more so in terms of HWG descriptions than unrefined HS.

Given continuing developments in computing power, in terms of memory,

speed and standard algorithms for polynomial algebra, it should eventually

be possible to fill in the gaps in this analysis of the moduli spaces of quiver

theories. This may resolve the open questions about the structures of the

refined Hilbert series of SQCD theories and nilpotent orbits of Exceptional

groups.

Setting aside those matters which may simply require computational ad-

vances, this study of quiver theories and nilpotent orbits also leaves open a

number of questions that are more conceptual in nature.

Firstly, the only nilpotent orbits for which Coulomb branch quiver theory

constructions are known, are A series or near minimal orbits, and these all

use the unitary monopole formula. Is a broader class of Coulomb branch

constructions of nilpotent orbits feasible? There would seem to be various

avenues for further exploration.

1. Are there balanced unitary quivers (other than those defined by Char-

acteristics), whose Coulomb branches correspond to BCD or Excep-

tional group nilpotent orbits beyond the near to minimal cases?

2. Can the rules of 3d mirror symmetry for the A series be translated

to a simple rule for finding all the A series Coulomb branch quivers

directly from the Characteristics of nilpotent orbits?

3. Can a modified version of the monopole formula be found that incor-

porates the relations necessary to restrict the Coulomb branch moduli
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spaces from quivers with Characteristic height greater than 2 to their

nilpotent orbits?

4. The rules of 3d mirror symmetry for the BCD series [31] transform

Higgs branch quivers (for nilpotent orbits) of G into mirrors with

alternating O/USp gauge nodes that are not equal in number to the

simple roots of G. The problem in studies to date [21], has been how

to map the topological symmetries of such gauge nodes to the simple

roots of G. Can a modified Coulomb branch formula be found that

encodes an effective mapping?

5. Both the NOL and monopole formulae work with the root system

of G and encode Weyl group symmetries - albeit in very different

ways. Can the NOL formula be transformed into a general Coulomb

branch monopole formula, along with some family of quiver theories,

for nilpotent orbits?1

Within the above, the task of finding a general (beyond the A series)

Coulomb branch quiver theory construction for T (G) theories would appear

to be an interesting priority, in order to validate the conjectured equivalence

between these quiver theories and mHL functions [31, 55].

Secondly, there remains the problem of how to formulate an analytic

method for restricting the normalisation of a non-normal Exceptional group

nilpotent orbit to the nilpotent cone N , as required by 7.6. The analysis for

Classical orbits, drawing on Higgs branch results, describes the difference

between a non-normal orbit and its normalisation in terms of the charged

NOL formula for orbits lower down the Hasse diagram; but what determines

the particular charges and coefficients that appear? The solution may be

related to the type of degeneration between adjacent orbits, where it is

known from [71] that for Exceptional group orbits this is considerably more

complicated than the Kraft-Procesi transitions [6] between Classical group

orbits.

As discussed, it is unlikely that Higgs branch constructions for Excep-

tional group nilpotent orbits can be found due to the interplay between

Exceptional group defining representations and their invariants.

1Building, for example, on the calculations for low rank RSIMS in section 6.2.
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9.5. Generalised Quiver Theories

Naturally, quiver theories for the canonical Higgs branch and Coulomb

branch constructions of nilpotent orbits comprise only a small subset of

possible quiver theories. These canonical quivers can, however, be viewed

as building blocks from which many other quiver theories can be con-

structed. There are many and varied composing mechanisms, including

(i) background charges, (ii) quiver dualities (as discussed in sections 5.3.4

and 5.4.6), (iii) flavour node gluing of Higgs branches, as used in the recur-

sive construction of Higgs branches in Chapter 5, (iv) flavour node gluing

of Coulomb branches (as touched on in section 8.1), and/or (v) subgroup

branching, with or without gauge group HyperKähler quotients (as touched

on in section 8.2).

More general types of quiver that could be approached with this build-

ing block approach include linear quivers with multiple flavour nodes, star

shaped quivers, quivers with internal loops, . . .. Studies of many different

quiver types, touched on herein, have been carried out with comparable

motivation, for example in [83, 26, 30, 31, 55]. However, the absence of a

systematic reference to orthogonal bases has sometimes lead to a lack of

clarity regarding results.

It has been helpful in this study to work with orthogonal bases, prin-

cipally in the form of class functions based on Lie group characters and

(modified) Hall Littlewood polynomials, to guide the systematic construc-

tion and analysis of quiver theories. The modified Hall Littlewood functions

of the A series correspond to T (SU(N)) theories, and, indeed, in [55] it is

conjectured that the Coulomb branches of Tρ̂(G) theories correspond to

mHLG functions, with theories for ρ̂ = (1, 1, . . . , 1) corresponding to max-

imal nilpotent orbits. While the quivers for such Tρ̂(G) theories are not

known beyond the A series, the use of mHL functions may anticipate their

eventual construction; in such an event, any nilpotent orbit would posses

a description as some combination of (Coulomb branches of) T (G) quivers

in the presence of background charges, essentially as detailed in the tables

herein. It may be that the eventual construction of T (G) quiver theories can

be guided by the NOL formula, since both types of construction work with

root systems and background charges. Also, T (G) quiver theories would

shed light on the open Coulomb branch questions.
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One useful next step in such a building block approach could be to de-

velop a systematic account of charged nilpotent orbits, their decompositions

in terms of characters and mHL bases, and their relationships, such as du-

alities or orthogonality.

Nilpotent orbits can be assigned background charges in various ways; di-

rectly, as in the NOL or Coulomb branch formulae, or by ungauging U(1) or

O nodes in Higgs branch quivers. When U(1) nodes in a unitary quiver are

ungauged, the mesonic moduli spaces acquire baryonic branches defined by

the antisymmetric invariant tensors of the gauge group. Physically, these

U(1) charges correspond to the introduction of Fayet-Iliopoulos terms into

the SUSY action [56]. When O nodes in a BCD quiver are ungauged, to be-

come SO nodes, the moduli spaces may also acquire additional branches. A

systematic account could help to address open questions relating to the rela-

tionship between the NOL formula and the closures of non-normal nilpotent

orbits and to the relationship between charged nilpotent orbits and T σρ̂ (G)

theories.

This study has made progress in bringing a systematic analysis to bear on

the representation structure of the closures of nilpotent orbits, which include

reduced single instanton moduli spaces; however, the preliminary work in

section 3.3 indicates that the moduli spaces of multiple instanton theories

are less tractable and may benefit from some basis, other than characters

or mHL functions, for their efficient decomposition.

It could be interesting, therefore, to investigate other classes of orthogo-

nal functions that incorporate Lie group symmetries. Several avenues open

up. For example, both characters and Hall Littlewood polynomials are spe-

cialisations of Macdonald polynomials [60]. Also, we have also seen how

orthogonal bases can be obtained as specialisations of a general localisation

formula, such as 7.1. There may be other orthogonal bases, yet to be ex-

ploited, that could assist in the tasks of decoding quiver theories into their

underlying representation theoretic content and unravelling their interrela-

tionships.
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A. Appendices

A.1. Plethystic Functions

Plethystic functions can be used to symmetrise or antisymmetrise polyno-

mials, such as characters of representations. The Plethystic Exponential

(“PE”) is a symmetrising function and the Fermionic Plethystic Exponen-

tial (“PEF”) is an antisymmetrising function. They have inverse functions

given respectively by the Plethystic Logarithm (“PL”) and the Fermionic

Plethystic Logarithm (“PLF”) [60, 11, 13, 28].

Consider a function in some variable t, which can be expressed as a power

series:

f(t) ≡
∞∑
n=0

ant
n. (A.1)

The Plethystic Exponential for such a function is defined as:

PE [f(t), t] ≡ exp

( ∞∑
k=1

f(tk)− f(0)

k

)

=
∞∏
n=1

1

(1− tn)an
.

(A.2)

The PE can be generalised for power series of more than one variable, so

that for:

f(t1, . . . , tN ) ≡
∞∑
n=0

N∑
i=1

anit
n
i , (A.3)

269



we obtain the PE:

PE[f(t1, . . . , tN ), (t1, . . . , tN )] ≡ exp

( ∞∑
k=1

f(tk1, . . . , t
k
N )− f(0, . . . , 0)

k

)

=
∞∏
n=1

N∏
i=1

1

(1− tni )ani
.

(A.4)

In order to avoid ambiguities, we shall, where necessary, use the notation:

PE[f(t1, . . . , tN ), (t1, . . . , tN )], (A.5)

to distinguish the variables, with respect to which the PE is being taken,

from their coefficients (and similarly for the PL); where no ambiguity arises,

the notation PE[f(t1, . . . , tN )] may be used.

The Plethystic Logarithm makes use of the Mobius function µ(k) , which

is defined as (−1)n for an integer that is the product of n distinct primes

other than unity, and zero otherwise, such that µ(1) = 1, µ(2) = µ(3) =

−1, . . . etc. For the general case, the PL is defined as:

PL[g(t1 . . . , tN ), (t1 . . . , tN )] ≡
∞∑
k=1

1

k
µ(k) log g(tk1, . . . , t

k
N ). (A.6)

If we set g(t1 . . . , tN ) = PE[f(t1 . . . , tN )], we then obtain f(t1 . . . , tN ) =

PL[g(t1, . . . , tN ), (t1, . . . , tN )], as required. The identity can be proved by

manipulation of the various series using the properties of the Mobius func-

tion [11], which include the key simplifying identity:

∞∑
l=1

∞∑
m=1

µ(l)

lm
tklm =tk. (A.7)

The Fermionic Plethystic Exponential is defined as:

PEF [f(t1, . . . , tN ), (t1, . . . , tN )] ≡ exp

( ∞∑
k=1

(−1)k+1 f(tk1, . . . , t
k
N )− f(0, . . . , 0)

k

)

=

∞∏
n=1

N∏
i=1

(1 + tni )ani .

(A.8)

270



The Fermionic Plethystic Logarithm is given by:

PLF [g(t1, . . . , tN ), (t1, . . . , tN )] =

∞∑
m=0

PL[g(t2
m

1 , . . . , t2
m

N ), (t2
m

1 , . . . , t2
m

N )]

=
∞∑
m=0

∞∑
k=1

1

k
µ(k) log g(t

(2m)k
1 . . . , t

(2m)k
N ).

(A.9)

The PE and PEF have the useful properties that:

PE[f1 + f2] = PE[f1]PE[f2]

PEF [f1 + f2] = PEF [f1]PEF [f2]
(A.10)

and the PL and PLF have the related properties that:

PL[g1g2] = PL[g1] + PL[g2]

PLF [g1g2] = PLF [g1] + PLF [g2].
(A.11)

We can use the Plethystic Exponential to symmetrise the character of

an irrep of some group G as follows. Suppose the character χ of the irrep

is composed of monomials Ai(x1, . . . , xr), where the xj are CSA coordi-

nates ranging over the rank r of the group and the index i ranges over the

dimension |χ| of the irrep:

χ =

|χ|∑
i=1

Ai(x1, . . . , xr). (A.12)

We form a generating function gG(χ, t) by taking the PE of the sum of

fugacities ti ≡ tAi, which are given by the products of each coordinate

monomial with a fugacity t, where 0 < |t| < 1:

gG(χ, t) ≡ PE [χ t]

≡ PE

 |χ|∑
i=1

ti, (t1, . . . , t|χ|)


=

|χ|∏
i=1

1

(1− tAi)
.

(A.13)

The Taylor expansion of gG(χ, t) generates an infinite polynomial in the
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fugacity t, whose coefficients are all symmetric functions of the coordinate

monomials. Importantly, the PE of a character is a class function and the

Peter Weyl Theorem [58] entails that the characters of a compact group

form a complete basis for its class functions, so this Taylor expansion can

be decomposed as a sum of characters of irreps, identified by Dynkin labels

[n], each with a coefficient in the form of a series in the fugacity t:

PE[χ t] =
∑
[n]

a[n](t)χ[n] =
∞∑
k=0

∑
[n]

tkak[n]χ[n]. (A.14)

We can use the PEF in a similar manner to form antisymmetric combina-

tions of the monomials within the character χ of an irrep.

gGΛ (χ, t) ≡ PEF [χ t]

≡ PEF

 |χ|∑
i=1

ti, (t1, . . . , t|χ|)


=

|χ|∏
i=1

(1 + tAi).

(A.15)

Following similar reasoning, the PEF of χ can also be expanded as a finite

sum of characters:

PEF [χ t] =
∑
[n]

ã[n](t)χ[n] =

|χ|∑
k=0

∑
[n]

tkãk[n]χ[n]. (A.16)

Collecting the above results, we obtain the key relationships for symmetris-

ing and antisymmetrising characters and similar functions:

∞∑
k=0

tkSymk [χ] = PE [χ t] =

|χ|∏
i=1

1

(1− tAi)
=

∞∑
k=0

∑
[n]

tkak[n]χ[n] (A.17)

|χ|∑
k=0

tkΛk [χ] = PEF [χ t] =

|χ|∏
i=1

(1 + tAi) =

|χ|∑
k=0

∑
[n]

tkãk[n]χ[n] (A.18)
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A.2. Weyl Integration

Weyl integration and the Reynolds operator provide methods for obtain-

ing invariants by taking group averages over continuous and finite groups

respectively.

In the case of a finite group, invariant objects can be constructed from a

function by group averaging using the Reynolds operator [10]:

RG [f [γ]] ≡ 1

|G|
∑
G

G · f [γ], (A.19)

where γ ∈ G. This operator can be used to construct Molien sums that

enumerate the invariants of finite groups [10].

In the case of continuous groups, the role of the Reynolds operator is

played by Weyl integration. Any continuous group has a manifold, metric

and volume form, and it is possible to integrate a function over the group

volume in the usual manner [58]:

I =

∫
G

dµG(γ)f(γ), (A.20)

where dµG(γ) is the Haar measure. Normally this requires taking the in-

tegral over all the dimensions |G| of the group. In Weyl integration the

integral is simplified to one over the maximal torus of the group by conju-

gating the class function f [γ] with other elements of the Group, such that it

is always represented by an element of the maximal torus. This conjugation

reduces the number of integrations required from |G| to rank[G]. To do this

consistently, the Haar measure, which is effectively a volume element, has

to be modified by scaling to reflect the projection of the entire group onto

its maximal torus [58, 85].

Tables of modified Haar measures for U(r) and the Classical groups are

given in [86]. It is convenient, however, to rewrite the Haar measures in a

simple form, for use within contour integrals, that generalises to any group.

This makes use of the unimodular weight space and root space coordinates,

introduced in section 2.2, and the Weyl group:∮
G

dµG =
1

|WG|

∮
G

dx

x

∏
α∈Φ

(1− zα). (A.21)
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For brevity, a factor of 1/(2πi)r has been omitted from the residues and the

definition dx
x ≡

r∏
i=1

dxi
xi

is used. This form of the Weyl integral lends itself

to explicit evaluation using the residue theorem.

We can verify the orthonormality of characters under the Weyl integral

as defined above. Consider the integral:

I =

∮
G

dµG χ[n] (x∗)χ[m] (x) (A.22)

Inserting terms from A.21 and 2.4 into A.22, the terms involving roots cancel

with the Haar measure and we obtain:

I =
1

|WG|

∮
G

dx

x

∑
w′∈WG

∣∣w′∣∣w′ · (x−nx−ρ) ∑
w∈WG

|w|w · (xmxρ). (A.23)

Considering this as a U(1)r contour integral, a non-zero contribution only

arises when w′ = w, so:

I =
1

|WG|

∮
G

dx

x

∑
w∈WG

|w|2w ·
(
xm−n

)
= δ[m][n],

(A.24)

since |w|2 = 1 and w · (xm−n) = 1 only if [m] = [n]. As a corollary, the Weyl

integral of a single character is zero for any irrep other than the singlet and

the Weyl integral can be used to form an inner product that projects out

the singlet content of products of characters or class functions of characters.

A simpler form of the Haar measure is noted in [15], which gives the Haar

measure in terms of the positive (or negative) root space only. In some

circumstances this produces simpler expressions that can be evaluated more

quickly: ∮
G

dµG+/− ≡
∮
G

dx

x

∏
α∈Φ+/−

(1− zα). (A.25)

The full form of the Haar measure A.21, however, has the feature of be-

ing invariant under the Weyl group and can participate in other Weyl group

simplifications, unlike A.25 which transforms in the alternating representa-

tion.

Consider, for example, a typical Weyl integration to find the inner product
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of two class functions, gGHS1 and gGHS2, one of which has an explicit expression

as a sum over the Weyl group:

I (m,n) =

∮
G

dµG gGHS1 (x∗,m) gGHS2 (x, n) , (A.26)

where

gGHS1 (x∗,m) =
∑
w∈WG

fGHS1 (w · x∗,m). (A.27)

Clearly, the integrand of A.26, taken as a whole, is invariant under conju-

gation by the Weyl group. Moreover, the full Haar measure dµG in A.21 is

invariant under the Weyl group, as is the class function gGHS2, so each ele-

ment w of the Weyl group sum over fGHS1 can be conjugated to the identity

and we obtain:

I (m,n) = |WG|
∮
G

dµG fGHS1 (x∗,m) gGHS2 (x, n) (A.28)

This reduces the number of terms to be evaluated by the order of the Weyl

group of G. For example, a typical HWG evaluation can be rearranged:

gGHWG (m, t) ≡
∮
G

dµG gGχ (x∗,m) gGHS (x, t)

=

∮
G

dµG
∑
w∈WG

w ·

(
r∏
i=1

1

1−mi/xi

∏
α∈Φ+

1

1− zα

)
gGHS (x, t)

= |WG|
∮
G

dµG
r∏
i=1

1

1−mi/xi

∏
α∈Φ+

1

1− zα
gGHS (x, t)

=

∮
G

dx

x

∏
α∈Φ+

(
1− z−α

) r∏
i=1

1

1−mi/xi
gGHS (x, t)

=

∮
G

dµG−
r∏
i=1

1

1−mi/xi
gGHS (x, t)

(A.29)

Further simplifications of such contour integrals can be found by exploit-

ing any invariance subgroups of the Weyl group within gGHS (x, t), as in 2.12

and 7.5, for example.
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At some point, however, it is necessary to carry out explicit residue cal-

culations to determine the integrals. In this study Mathematica is used to

carry out the residue calculations and summations. The summation can

generally be done most efficiently by first summing over any multiple poles

contributed by each factor in a denominator, as indicated in Table A.1.

The sum for each factor is then necessarily a real polynomial (or quotient

of polynomials) in the various fugacities. This minimises the computational

difficulties encountered by Mathematica in the simplification of sums of quo-

tients of complex functions with fractional exponents.

Function
Order
of Pole

No.
of Poles

Residue

f(x)
(x−a) 1 1 f (a)
f(x)

(x−a)n
n 1 1

(n−1)!
dn−1f(x)
dxn−1

∣∣∣
x=a

f(x)
(xm−a) 1 m

m∑
k=1

x−a1/me2πik/m

xm−a f (x)
∣∣∣
x=a1/me2πik/m

f(x)
(xm−a)n

n m 1
(n−1)!

m∑
k=1

dn−1

dxn−1

(
x−a1/me2πik/m

xm−a

)n
f (x)

∣∣∣
x=a1/me2πik/m

Factors of (2πi) omitted for brevity

Table A.1.: Calculation of Residues

A.3. Affine and Twisted Affine Lie Algebras

It is useful to give a brief summary of the relationship between a simple Lie

algebra and its related untwisted affine (or extended) and twisted affine Lie

algebras. The defining feature of an affine Lie algebra is that its Cartan

matrix is positive semi-definite, having a zero determinant and one zero

eigenvalue. This is achieved by generalising a regular Cartan matrix Aij

through the addition of an extra row and column, corresponding to an

extra simple root and an extra CSA operator, and equivalent to an extra

node on the Dynkin diagram. The additional root and eigenvalue operators

are chosen to be linear combinations of the other operators. Naturally, the

rank is unchanged.

The linear relationship between the operators is encapsulated in the Cox-

eter labels aj and dual Coxeter labels
^
ai of each node. These labels are,
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respectively, the left and right eigenvectors with zero eigenvalue of an affine

Cartan matrix:
r∑
i=0

aiA
ij = 0 =

r∑
j=0

Aij
^
aj . (A.30)

The two types of Coxeter label differ according to the length of the simple

root to which they refer: the ratio between the dual Coxeter and Coxeter

labels of a root is equal to the ratio of its length to that of the longest root

[58].

The Dynkin diagrams of affine Lie algebras are obtained by attaching a

single extra node to a regular Dynkin diagram, subject to the constraints

(i) that the links are of a type permitted in a regular Dynkin diagram and

(ii) that the resulting Cartan matrix is positive semi-definite.

Each simple group has an untwisted affine Dynkin diagram, with the extra

node attached to the adjoint node of the regular Dynkin diagram, as shown

in Figures 2.1 and 2.2. The Cartan matrix Aij is thus modified according

to the schema:

Aijextended =

(
Aij [col]

− [adjoint] 2

)
, (A.31)

where the column vector [col] is obtained by transposing the Dynkin labels

of the adjoint representation and replacing all non-zero entries with −1 or

−2, such that Aijextended becomes degenerate. The dual Coxter labels of

existing nodes are unchanged, with the new node acquiring a dual Coxeter

label of 1. This follows from the dual Coxeter labels of the affine Dynkin

diagram being the kernel (i.e. column eigenvector with zero eigenvalue) of

the affine Cartan matrix.

In a twisted affine Dynkin diagram, the extra node is attached to some

other node of the regular Dynkin diagram. A twisted affine Cartan matrix

takes the form:

Aijtwisted =

(
Aij [col]

−[irrep] 2

)
, (A.32)

where the column vector [col] is obtained by transposing the Dynkin labels

of [irrep] and replacing any non-zero entries with one of {−1,−2,−3,−4},
such that Aijtwisted becomes degenerate. The dual Coxeter labels are given

by the kernel of the twisted affine Cartan matrix.

There are six permissible types of twisted affine Dynkin diagram, with
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three of these, B
(2)
n , B̃

(2)
n and C

(2)
n , forming infinite families, plus three

unique cases, A
(2)
1 , F

(2)
4 and G

(3)
2 . Figure 6.7 shows the BCF twisted affine

Dynkin diagrams using the naming convention in [58].

The degeneracy of an affine Dynkin diagram permits a gauge choice to

eliminate one of the nodes. The other nodes become the nodes of a regular

Dynkin diagram. Correspondingly, the Cartan matrix for an affine Lie alge-

bra can be reduced to that for a regular Lie algebra by the elimination of a

row and its corresponding column. The dual Coxeter and Coxeter labels of

other nodes are invariant under this addition or subtraction of affine nodes.

For further detail the reader is referred to [58].

A.4. Chevalley Serre Basis of Lie Algebra

The Lie algebra g of a groupG of rank r, consisting of operators {Hi, Eα+, Eα−},
can be expressed in terms of the basis {Hi, Ei+, Ei−}, where i = 1, . . . , r,

and the roots α ∈ Φ are expressed in the basis of simple roots (α1, . . . , αr).

The simple root operators Ei± combine into the root operators Eα±, in ac-

cordance with the Chevalley-Serre relations [58, 87], and the Lie algebra g,

can be reconstructed from the Cartan matrix A:

[Hi, Hj ] = 0,

[Hi, Ej±] = ±AjiEj±,

[Ei+, Ei−] = Hi,

[Eα, Eβ] = NαβEα+β,

Nαβ = ±

{
α+ β ∈ Φ : π

α+ β /∈ Φ : 0
,

(A.33)

where π is the maximum integer such that α + β − πα ∈ Φ, (so that π is

the length of the root string starting at α + β and passing through α). A

consistent conventional choice is necessary regarding the signs of Nαβ.
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A.5. Bala-Carter Labels

Bala-Carter theory [33, 87, 78, 79] leads to a system of labels for nilpotent

orbits (“BC labels”), that do not relate in a simple manner to the invariant

subgroups of G and WG deployed in the NOL formula; nonetheless, the

labels are widely used in the Literature, in particular for Exceptional groups,

and require comment.

The initial motivation for the Bala-Carter approach was [78],

“[to] give an alternative way of describing the unipotent classes

of G which, while being quite close to Dynkin’s method1, never-

theless gives a conceptually fairly simple way of describing the

classes.”

The selection of a Bala-Carter label for a nilpotent orbit starts from a given

Characteristic and proceeds by Lie algebra and dimensional reasoning. A

simplified account, drawing on [33, 54, 87, 78, 79], can be given as follows.

The aim is to classify a nilpotent element X (in a standard triple) of the

algebra g of G, based on the identity of the minimal regular semi-simple

subalgebra l ⊆ g within which X is distinguished. In [78], Bala-Carter

establish a bijection between the (conjugacy classes of) distinguished nilpo-

tent elements Xd of g and the distinguished parabolic subalgebras pd of g.

In [79], Bala-Carter seek to extend this bijection to all nilpotent elements X

of g, by positing minimal regular semi-simple Levi subalgebras l ⊆ g, whose

distinguished parabolic subalgebras pdl contain X. The restriction to dis-

tinguished parabolic subalgebras is motivated by a group G having 2rank[G]

parabolic subalgebras, which are too many for a bijective map to nilpotent

elements. The reconciliation in [79] between BC labels of Levi subalgebras

l and Characteristics ρG involves reference to work on centralisers in [87],

which in turn draws on a subalgebra labelling scheme introduced in [54].2

To examine the logic of the Bala-Carter labelling method in more detail,

recall that a parabolic subalgebra p of g contains a Borel subalgebra b ⊆ p ⊆
g, where b+/− ≡ h + n+/−, the CSA of g is h, and n+/− are the nilradicals

of g.

1The method referred to is the labelling of Characteristics with regular and special
subalgebras of G.

2A consistent reconciliation is not helped by Bala-Carter’s caution [79] that there are
errors in the tables in [54] and in [87].
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Certain parabolic subalgebras p ≡ g− n correspond to the nilpotent sub-

algebras n of nilpotent orbits, with p = b− and n = n+ corresponding to the

maximal nilpotent orbit, and p = g and n = ∅ to the trivial nilpotent orbit.

A distinguished nilpotent orbit of g has a parabolic subalgebra pd ⊇ b− and

nd ⊆ n+.

Now, consider the adjoint partition of G under the homomorphism ρ.

This can be written as
(
b
nb1
1 , f

nf1
1 , . . . , b

nbk
k , f

nfk
k , 1n0

)
, with integers nj ≥ 0,

where bi denote (dimensions of) non-singlet bosonic SU(2) irreps, fi denote

(dimensions of) fermionic SU(2) irreps and 1 identifies SU(2) singlets.

It follows from 4.10, that the dimension of the nilpotent orbit OρG is given

by: ∣∣OρG ∣∣ = |G| − (n2 + n1 + n0) , (A.34)

where n1 =
k∑
i=1

nfi and n2 =
k∑
i=1

nbi . In effect, each SU(2) representation

removes one degree of freedom from the dimension of the orbit. The nilpos-

itive element X for ρG is built from Φ
[2]
G , which contains n2 positive roots of

G, one from each non-singlet bosonic SU(2) irrep in the adjoint partition.

The subalgebra c0 of g transforming in the singlet representation of SU(2)

lies within the centralizer c of the nilpotent element X. c0 has dimension

n0 and is identifiable as a subgroup C of G by dimensional arguments.

From amongst the possible branchings of G into subgroups, Bala-Carter

assume* subgroups C and L can be found, such that rank[G] = rank[C] +

rank[L], |C| = n0, and L is a minimal (lowest dimensioned) semi-simple

subgroup, whose Lie algebra l contains the nilpotent element X.

Then, X is reasoned to be an element within the distinguished parabolic

subalgebra pdl since, by construction, the partition of the adjoint of L does

not contain any SU(2) singlets. Thus, the nilpositive element X from ρG is

both a distinguished nilpotent element of L and a nilpotent element of G.

The Bala-Carter label L(ai) for ρG is given by L, augmented by labels to

identify the embedding of L in G (where ambiguity would otherwise exist)

and/or to specify the distinguished orbit of L; if this is less than maximal,

the indices i count the number of zeros in its Characteristic and the letters

{a, b, . . .} select amongst orbits with the same number of zeros.

By way of examples, the SU(3) orbits [22] and [11], analysed in Table

4.4, map to the BC labels A2 and A1, respectively and BC labels for F4

Characteristics are shown in Table A.2. There are, however, drawbacks.
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1. There are often inequivalent ways of embedding subgroups into G and

these need to be identified as distinct in order for the BC labels L to

map to the full set of nilpotent orbit Characteristics. Thus, BC labels

require additional markings to select between (i) subgroups containing

long and short roots, (ii) some E7 nilpotent orbits, (iii) spinor pair

orbits arising in D2r (or the triplets of orbits related by D4 triality)

and (iv) distinguished orbits (as above). In all such cases, knowledge

of the Characteristic is necessary to recover a unique description of

the nilpotent element X.

2. The mapping from a Characteristic to its BC label L, and its inverse,

are not straightforward. While the identification of the centraliser C

and the rank of L may follow easily from a Characteristic, via the

adjoint partition, on dimensional considerations, the identification of

L generally requires analysis of the embeddings of X in g and l.

3. Importantly, the embedding of SU(2) into G under the homomor-

phism ρ is special, rather than regular. This entails that the nilpotent

element X is generally a linear combination of multiple roots in n+

[54], which complicates the structure of its centraliser. For orbits

where C and L have regular embeddings into G, the unambiguous

identification of the minimal subalgebra l that contains X as a distin-

guished element can often be carried out; however, for other orbits,

this exercise can become problematic, as illustrated below.

4. Although standard tables exist, for example in [33], there is no guar-

antee that BC labels are treated consistently across the Literature.3

Furthermore, the BC labels of orbits partially match those of the

prior labelling scheme developed in [54] and it is necessary to recog-

nise which are being used.

Considering the possible group branchings from F4 (detailed in section

2.6), the analysis in Table A.2 shows that the Characteristics [0002], [0001],

[0010], [0101] and [2200] do not have mappings to regular semi-simple sub-

groups of equal rank F4 → C ⊗ L that resolve the BC labels. For example,

G2 and B3 can only be obtained from F4 via folding maps.

3Indeed, the tables presented in [79] contain errors: examples include the duplicated E6

Characteristic with BC label A4 on p.9. and the duplicated E7 Characteristic with
BC label D5 on p.11. These errors are corrected in [33].
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Characteristic Dimension Adjoint Partition C BC label - L
[0000] 0 (152) F4 0
[1000] 16 (3, 214, 121) C3 A1

[0001] 22 (37, 28, 115) A3 Ã1

[0100] 28 (42, 36, 210, 16) A1 ⊕A1 A1 + Ã1

[2000] 30 (5, 313, 18) A2 A2

[0002] 30 (57, 3, 114) G2 Ã2

[0010] 34 (53, 42, 36, 24, 13) A1 A2 + Ã1

[2001] 36 (7, 54, 44, 3, 16) A1 ⊕A1 B2

[0101] 36 (62, 53, 42, 32, 24, 13) A1 A1 + Ã2

[1010] 38 (7, 62, 5, 44, 33, 13) A1 C3(a1)
[0200] 40 (72, 54, 36) − F4(a3)
[2200] 42 (11, 75, 3, 13) A1 B3

[1012] 42 (11, 102, 7, 42, 3, 13) A1 C3

[0202] 44 (112, 9, 7, 5, 33) − F4(a2)
[2202] 46 (15, 112, 7, 5, 3) − F4(a1)
[2222] 48 (23, 15, 11, 3) − F4

C and L are subgroups of F4, such that |C| = n0 and rank[G] = rank[C] + rank[L].

Red highlighting indicates cases where there is no regular branching from F4 to C ⊗ L.

Table A.2.: F4 Orbits and Bala-Carter Labels

Furthermore, the non-singlet bosonic SU(2) irreps in the adjoint parti-

tions of the F4 orbits require mapping, at the correct multiplicities, to the

bosonic SU(2) irreps in the adjoint partitions of the distinguished orbits of

L (as listed in Appendix B. The reconciliation is straightforward for Char-

acteristics [0000], [1000], [1010], [0200], [1012], [0202], [2202], [2222], as can be

verified by inspection of adjoint partitions; however, it is problematic in the

other cases. By way of example, we can compare the regular subgroup

mapping for [1010], with the problematic mapping for [2200]:

[1010] : (7, 62, 5, 42, 32, 13)→ (7, 5, 33)︸ ︷︷ ︸
C3[202]

⊕ (13)︸︷︷︸
A1

⊕ (62, 42)︸ ︷︷ ︸
C3⊗A1

[2200] : (11, 75, 3, 13)→ (11, 7, 3)︸ ︷︷ ︸
B3[222]

⊕ (13)︸︷︷︸
A1

⊕ (74)︸︷︷︸
B3⊗A1

.
(A.35)

The latter does not include, within the distinguished B3[222] orbit, all the

non-singlet bosonic SU(2) irreps that contain elements of X; some elements

of X are contained within a B3 ⊗A1 subalgebra.

Whenever the multiplicities of a non-singlet bosonic SU(2) irrep within
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the partition ρG[adjoint] are not replicated within the adjoint partition of

a distinguished orbit of L, this indicates that the nilpotent element X must

contain some roots that lie outside l, contrary to the Bala-Carter assumption

(*). This in turn undermines the significance of the BC label.

Relationship to NOL formula

In order to construct nilpotent orbits, rather than just to describe the sub-

algebra relations surrounding nilpotent elements, we require the nilpotent

subalgebra n of g, rather than the parabolic subalgebra pdl of l, and there

is no simple relation between the two. Fortunately, all the complications

surrounding the decomposition of G→ C ⊗ L can be avoided, by noting:

|ΦG0 | = 2
∣∣∣Φ[0]

G

∣∣∣ = (n2 + n0 − rank[G]),∣∣∣Φ[1]
G

∣∣∣ = n1,
(A.36)

where Φ
[k]
G is defined in 7.7, and rearranging A.34 as:

∣∣OρG∣∣ = |ΦG| − |ΦG0 | −
∣∣∣Φ[1]

G

∣∣∣ . (A.37)

In this form, A.37 suggests the construction of the nilpotent subalgebra

n = {Eα : α ∈ Φ̃+
G} of a nilpotent orbit of g using an extension of the G/G0

coset group structure applicable to Richardson orbits:

Φ̃+
G = Φ+

G − Φ
[0]
G − Φ

[1]
G , (A.38)

which is precisely the prescription used in the NOL formula 7.5.

If Φ
[1]
G = ∅, the complement p of n is a parabolic subalgebra of g, corre-

sponding to a Richardson orbit. Thus, each even Characteristic corresponds

to a different parabolic subalgebra of g, including the distinguished orbits

as a subset. If Φ
[1]
G 6= ∅, then p is only parabolic if the orbit is a (non-even)

Richardson orbit [69].

To summarise the difference in approach, whereas the Bala-Carter de-

composition G→ C ⊗L aims to identify a distinguished parabolic minimal

subalgebra pdl that contains X, the NOL formula for Richardson nilpotent

orbits uses the nilpotent subalgebra n, which is the complement in g of the

maximal parabolic subalgebra p that does not contain X.
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A.6. Non-normal Orbit: F4[0002]

Moduli Space Unrefined HS

g
F4[2222]
NO (t) (a) (1−t2)(1−t6)(1−t8)(1−t12)

(1−t)52

g
F4[0002]
NOL (t) (b)

(
1 + 21t+ 257t2 + 2018t3 + 9573t4 + 28261t5

+53781t6 + 66651t7 + . . . palindrome . . .+ t14

)
(1− t)30(1 + t)−1

g
F4[0002]
NOL (t) /∈ N (c) 26t2 + 1053t3 + 19474t4 + 205803t5 + 1064233t6

g
F4[0100]
NOL (t)

[
x4t

2
]

(d)

(
26 + 598t+ 5773t2 + 30482t3 + 96398t4 + 190046t5

+237874t6 + . . . palindrome . . .+ 26t12

)
t−2(1− t)28

=
+26t2 + 1326t3 + 33073t4 + 540474t5 + 6539702t6 +O(t7)

g
F4[0002]
NO (t) (e)=(b)-(d)


1 + 22t+ 252t2 + 1729t3 + 6988t4 + 18300t5

+40835t6 + 92700t7 + 166252t8 + 177698t9 + 83654t10

−16141t11 − 38932t12 − 19256t13 − 4581t14 − 545t15 − 26t16


(1− t)30

(f) −

(c) consists of those terms in (b)-(a) with positive coefficients

(d) is a charged orbit built on F4[0100]; the charge is identified from the leading term of (c)

(e) contains no terms outside N , as required for the F4[0002] non-normal orbit

(f) consists of those terms in (e)-(a) with positive coefficients

Table A.3.: Non-Normal Orbit Construction using HS: F4[0002]
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Moduli Space HWG

g
F4[2222]
NO (m, t) (a)

1 +m4t4 +m1
5t5 +m1

2m3t5 +m1m3
2t5 +m2m4t5

+m1
3m4

2t5 +m1m4
4t5 +m1

6t6 +m1
3m2t6 + 2m2

2t6

+m1
3m3t6 +m2m3t6 +m1

2m3
2t6 +m1

2m4t6

+m1m2m4t6 +m1
2m3m4t6 +m3

2m4t6 +m1
4m4

2t6

+m1m2m4
2t6 +m1m3m4

2t6 +m3
2m4

2t6 + 2m4
3t6

+m3m4
3t6 +m1

2m4
4t6 +m4

6t6 +m1(t+ t5)
+m1

3(t3 + t5) +m3(t3 + t5) +m1
4(t4 + t6) +m4

4(t4 + t6)
+m1

2m2(t5 + t6) +m1m4(t5 + t6)
+m2m4

2(t5 + t6) +m3m4
2(t5 + t6) +m2(t3 + t5 + t6)

+m1m2(t4 + t5 + t6) +m3m4(t4 + t5 + t6)
+m1m4

2(t3 + 2t5 + t6) +m1m3(t4 + 2t6)
+m1

2(t2 + t4 + 2t6) +m4
2(t2 + t4 + 2t6) +m1m3m4(t5 + 2t6)

+m3
2(t4 + 3t6) +m1

2m4
2(t4 + 3t6) +O(t7)

g
F4[0002]
NOL (m, t) (b) (1+m3m4t

4)

(1−m1t)(1−m4t2)(1−m4
2t2)(1−m2t3)(1−m3t3)(1−m3

2t4)

g
F4[0002]
NOL (m, t) /∈ N (c) m4t2 +m1m4t3 +m1

2m4t4 +m4
3t4 +m1

3m4t5

+m1m4
3t5 +m1

4m4t6 +m1
2m4

3t6 +m4
5t6 +O(t7)

g
F4[0100]
NOL (m, t)

[
x4t

2
]

(d) (m4+m3t+m3m4t
2)t2

(1−m1t)(1−m4
2t2)(1−m2t3)(1−m3

2t4)

=
m4t2 +m3t3 +m1m4t3 +m1m3t4 +m1

2m4t4

+m3m4t4 +m4
3t4 +m1

2m3t5 +m1
3m4t5

+m2m4t5 +m1m3m4t5 +m3m4
2t5 +m1m4

3t5

+m1
3m3t6 +m2m3t6 +m1

4m4t6 +m1m2m4t6

+m1
2m3m4t6 +m3

2m4t6 +m1m3m4
2t6

+m1
2m4

3t6 +m3m4
3t6 +m4

5t6 +O(t7)

g
F4[0002]
NO (m, t) (e)=(b)-(d)


1−m4t2 −m3t3 +m4

2t4 + 2m3m4t5

+m3m4
2t6 −m3m4

2t7 +m3
2t6

+m3
2m4t7 −m3

2m4t8 −m3
2m4

2t9


(1−m1t)(1−m4t2)(1−m4

2t2)(1−m2t3)(1−m3t3)(1−m3
2t4)

(f) O(t7)

(a) is the series expansion of the HWG up to t6

(c) consists of those terms in (b)-(a) with positive coefficients

(d) is a charged orbit built on F4[0100]; the charge is identified from the leading term of (c)

(e) contains no terms outside N , as required for the F4[0002] non-normal orbit

(f) consists of those terms in (e)-(a) with positive coefficients

Table A.4.: Non-Normal Orbit Construction using HWGs: F4[0002]
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B. SU(2) Homomorphisms

B.1. A Series

Dimension Quiver [1] [2] Root Map Weight Map

0 {A1} 12 13 {0} {0}

2 {A1, U1} {2} {3} {2} {1}

Dimension Quiver [1,0] [0,1] [1,1] Root Map Weight Map

0 {A2} 13 13 18 {0, 0} {0, 0}

4 {A2, U1} {2, 1} {2, 1} 3, 22, 1 {1, 1} {1, 1}

6 {A2, U2, U1} {3} {3} {5, 3} {2, 2} {2, 2}

Dimension Quiver [1,0,0] [0,1,0] [0,0,1] [1,0,1] Root Map Weight Map

0 {A3} 14 16 14 115 {0, 0, 0} {0, 0, 0}

6 {A3, U1} 2, 12 22, 12 2, 12 3, 24, 14 {1, 0, 1} {1, 1, 1}

8 {A3, U2} 22 3, 13 22 34, 13 {0, 2, 0} {1, 2, 1}

10 {A3, U2, U1} {3, 1} 32 {3, 1} 5, 33, 1 {2, 0, 2} {2, 2, 2}

12 {A3, U3, U2, U1} {4} {5, 1} {4} {7, 5, 3} {2, 2, 2} {3, 4, 3}
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Dimension Quiver [1,0,0,0] [0,0,0,1] [1,0,0,1] Root Map Weight Map

0 {A4} 15 15 124 {0, 0, 0, 0} {0, 0, 0, 0}

8 {A4, U1} 2, 13 2, 13 3, 26, 19 {1, 0, 0, 1} {1, 1, 1, 1}

12 {A4, U2} 22, 1 22, 1 34, 24, 14 {0, 1, 1, 0} {1, 2, 2, 1}

14 {A4, U2, U1} 3, 12 3, 12 5, 35, 14 {2, 0, 0, 2} {2, 2, 2, 2}

16 {A4, U3, U1} {3, 2} {3, 2} 5, 42, 32, 22, 1 {1, 1, 1, 1} {2, 3, 3, 2}

18 {A4, U3, U2, U1} {4, 1} {4, 1} 7, 5, 42, 3, 1 {2, 1, 1, 2} {3, 4, 4, 3}

20 {A4, U4, U3, U2, U1} {5} {5} {9, 7, 5, 3} {2, 2, 2, 2} {4, 6, 6, 4}

Dimension Quiver [1,0,0,0,0] [0,0,0,0,1] [1,0,0,0,1] Root Map Weight Map

0 {A5} 16 16 135 {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}

10 {A5, U1} 2, 14 2, 14 3, 28, 116 {1, 0, 0, 0, 1} {1, 1, 1, 1, 1}

16 {A5, U2} 22, 12 22, 12 34, 28, 17 {0, 1, 0, 1, 0} {1, 2, 2, 2, 1}

18 {A5, U3} 23 23 39, 18 {0, 0, 2, 0, 0} {1, 2, 3, 2, 1}

18 {A5, U2, U1} 3, 13 3, 13 5, 37, 19 {2, 0, 0, 0, 2} {2, 2, 2, 2, 2}

22 {A5, U3, U1} {3, 2, 1} {3, 2, 1} 5, 42, 34, 24, 12 {1, 1, 0, 1, 1} {2, 3, 3, 3, 2}

24 {A5, U4, U2} 32 32 54, 34, 13 {0, 2, 0, 2, 0} {2, 4, 4, 4, 2}

24 {A5, U3, U2, U1} 4, 12 4, 12 7, 5, 44, 3, 14 {2, 1, 0, 1, 2} {3, 4, 4, 4, 3}

26 {A5, U4, U2, U1} {4, 2} {4, 2} 7, 53, 34, 1 {2, 0, 2, 0, 2} {3, 4, 5, 4, 3}

28 {A5, U4, U3, U2, U1} {5, 1} {5, 1} 9, 7, 53, 3, 1 {2, 2, 0, 2, 2} {4, 6, 6, 6, 4}

30 {A5, U5, U4, U3, U2, U1} {6} {6} {11, 9, 7, 5, 3} {2, 2, 2, 2, 2} {5, 8, 9, 8, 5}

Partitions are shown under each homomorphism for the fundamental, anti-

fundamental and adjoint representations. For A3, the vector representation

partitions are also shown.

B.2. B Series

Dimension Quiver [2] [1] Root Map Weight Map

0 {B1} 13 12 {0} {0}

2 {B1, C1, B0} {3} {2} {2} {1}
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Dimension Quiver [1,0] [0,1] [0,2] Root Map Weight Map

0 {B2} 15 14 110 {0, 0} {0, 0}

4 {B2, C1} 22, 1 2, 12 3, 22, 13 {0, 1} {1, 1}

6 {B2, C1, B0} 3, 12 22 33, 1 {2, 0} {2, 1}

8 {B2, C2, B1, C1, B0} {5} {4} {7, 3} {2, 2} {4, 3}

Dimension Quiver [1,0,0] [0,1,0] [0,0,1] Root Map Weight Map

0 {B3} 17 121 18 {0, 0, 0} {0, 0, 0}

8 {B3, C1} 22, 13 3, 26, 16 22, 14 {0, 1, 0} {1, 2, 1}

10 {B3, C1, B0} 3, 14 35, 16 24 {2, 0, 0} {2, 2, 1}

12 {B3, C2, B0} 3, 22 42, 32, 22, 13 3, 22, 1 {1, 0, 1} {2, 3, 2}

14 {B3, C2, D1} 32, 1 5, 35, 1 32, 12 {0, 2, 0} {2, 4, 2}

16 {B3, C2, B1, C1, B0} 5, 12 7, 52, 3, 1 42 {2, 2, 0} {4, 6, 3}

18 {B3, C3, B2, C2, B1, C1, B0} {7} {11, 7, 3} {7, 1} {2, 2, 2} {6, 10, 6}

Dimension Quiver [1,0,0,0] [0,1,0,0] [0,0,0,1] Root Map Weight Map

0 {B4} 19 136 116 {0, 0, 0, 0} {0, 0, 0, 0}

12 {B4, C1} 22, 15 3, 210, 113 24, 18 {0, 1, 0, 0} {1, 2, 2, 1}

14 {B4, C1, B0} 3, 16 37, 115 28 {2, 0, 0, 0} {2, 2, 2, 1}

16 {B4, C2} 24, 1 36, 24, 110 3, 24, 15 {0, 0, 0, 1} {1, 2, 3, 2}

20 {B4, C2, B0} 3, 22, 12 42, 34, 26, 14 32, 24, 12 {1, 0, 1, 0} {2, 3, 4, 2}

22 {B4, C2, D1} 32, 13 5, 39, 14 34, 14 {0, 2, 0, 0} {2, 4, 4, 2}

24 {B4, C3, B1} 33 53, 36, 13 42, 24 {0, 0, 2, 0} {2, 4, 6, 3}

24 {B4, C2, B1, C1, B0} 5, 14 7, 54, 3, 16 44 {2, 2, 0, 0} {4, 6, 6, 3}

26 {B4, C3, D2, C1} 42, 1 7, 53, 42, 3, 13 5, 42, 13 {0, 2, 0, 1} {3, 6, 7, 4}

26 {B4, C3, B1, C1, B0} 5, 22 7, 62, 42, 32, 13 5, 42, 3 {2, 1, 0, 1} {4, 6, 7, 4}

28 {B4, C3, D2, C1, B0} {5, 3, 1} 72, 52, 34 52, 32 {2, 0, 2, 0} {4, 6, 8, 4}

30 {B4, C3, B2, C2, B1, C1, B0} 7, 12 11, 73, 3, 1 72, 12 {2, 2, 2, 0} {6, 10, 12, 6}

32 {B4, C4, B3, C3, B2, C2, B1, C1, B0} {9} {15, 11, 7, 3} {11, 5} {2, 2, 2, 2} {8, 14, 18, 10}
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Dimension Quiver [1,0,0,0,0] [0,1,0,0,0] [0,0,0,0,1] Root Map Weight Map

0 {B5} 111 155 132 {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}

16 {B5, C1} 22, 17 3, 214, 124 28, 116 {0, 1, 0, 0, 0} {1, 2, 2, 2, 1}

18 {B5, C1, B0} 3, 18 39, 128 216 {2, 0, 0, 0, 0} {2, 2, 2, 2, 1}

24 {B5, C2} 24, 13 36, 212, 113 32, 28, 110 {0, 0, 0, 1, 0} {1, 2, 3, 4, 2}

28 {B5, C2, B0} 3, 22, 14 42, 36, 210, 19 34, 28, 14 {1, 0, 1, 0, 0} {2, 3, 4, 4, 2}

30 {B5, C3, B0} 3, 24 44, 37, 24, 110 4, 34, 26, 14 {1, 0, 0, 0, 1} {2, 3, 4, 5, 3}

30 {B5, C2, D1} 32, 15 5, 313, 111 38, 18 {0, 2, 0, 0, 0} {2, 4, 4, 4, 2}

32 {B5, C2, B1, C1, B0} 5, 16 7, 56, 3, 115 48 {2, 2, 0, 0, 0} {4, 6, 6, 6, 3}

34 {B5, C3, D1} 32, 22, 1 5, 44, 36, 26, 14 42, 34, 24, 14 {0, 1, 0, 1, 0} {2, 4, 5, 6, 3}

36 {B5, C3, B1} 33, 12 53, 312, 14 44, 28 {0, 0, 2, 0, 0} {2, 4, 6, 6, 3}

38 {B5, C3, D2, C1} 42, 13 7, 53, 46, 3, 16 52, 44, 16 {0, 2, 0, 1, 0} {3, 6, 7, 8, 4}

38 {B5, C3, B1, C1, B0} 5, 22, 12 7, 62, 52, 42, 32, 24, 14 52, 44, 32 {2, 1, 0, 1, 0} {4, 6, 7, 8, 4}

40 {B5, C4, B2, C1} 42, 3 7, 62, 53, 42, 32, 22, 13 6, 52, 4, 32, 23 {0, 1, 1, 0, 1} {3, 6, 8, 9, 5}

40 {B5, C3, D2, C1, B0} 5, 3, 13 72, 54, 36, 13 54, 34 {2, 0, 2, 0, 0} {4, 6, 8, 8, 4}

42 {B5, C4, B2, C1, B0} 5, 32 73, 53, 36, 1 62, 44, 22 {2, 0, 0, 2, 0} {4, 6, 8, 10, 5}

42 {B5, C3, B2, C2, B1, C1, B0} 7, 14 11, 75, 3, 16 74, 14 {2, 2, 2, 0, 0} {6, 10, 12, 12, 6}

44 {B5, C4, D3, C2, D1} 52, 1 9, 73, 53, 33, 1 72, 52, 32, 12 {0, 2, 0, 2, 0} {4, 8, 10, 12, 6}

44 {B5, C4, B2, C2, B1, C1, B0} 7, 22 11, 82, 7, 62, 32, 13 8, 72, 6, 2, 12 {2, 2, 1, 0, 1} {6, 10, 12, 13, 7}

46 {B5, C4, D3, C2, B1, C1, B0} {7, 3, 1} 11, 9, 73, 5, 33 82, 62, 22 {2, 2, 0, 2, 0} {6, 10, 12, 14, 7}

48 {B5, C4, B3, C3, B2, C2, B1, C1, B0} 9, 12 15, 11, 92, 7, 3, 1 112, 52 {2, 2, 2, 2, 0} {8, 14, 18, 20, 10}

50 {B5, C5, B4, C4, B3, C3, B2, C2, B1, C1, B0} {11} {19, 15, 11, 7, 3} {16, 10, 6} {2, 2, 2, 2, 2} {10, 18, 24, 28, 15}

Partitions are shown under each homomorphism for the vector, adjoint and

spinor representations.

B.3. C Series

Dimension Quiver [1] [2] Root Map Weight Map

0 {C1} 12 13 {0} {0}

2 {C1, B0} {2} {3} {2} {1}

Dimension Quiver [1,0] [0,1] [2,0] Root Map Weight Map

0 {C2} 14 15 110 {0, 0} {0, 0}

4 {C2, B0} 2, 12 22, 1 3, 22, 13 {1, 0} {1, 1}

6 {C2, D1} 22 3, 12 33, 1 {0, 2} {1, 2}

8 {C2, B1, C1, B0} {4} {5} {7, 3} {2, 2} {3, 4}
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Dimension Quiver [1,0,0] [2,0,0] Root Map Weight Map

0 {C3} 16 121 {0, 0, 0} {0, 0, 0}

6 {C3, B0} 2, 14 3, 24, 110 {1, 0, 0} {1, 1, 1}

10 {C3, D1} 22, 12 33, 24, 14 {0, 1, 0} {1, 2, 2}

12 {C3, B1} 23 36, 13 {0, 0, 2} {1, 2, 3}

14 {C3, D2, C1} 32 53, 3, 13 {0, 2, 0} {2, 4, 4}

14 {C3, B1, C1, B0} 4, 12 7, 42, 3, 13 {2, 1, 0} {3, 4, 4}

16 {C3, D2, C1, B0} {4, 2} 7, 5, 33 {2, 0, 2} {3, 4, 5}

18 {C3, B2, C2, B1, C1, B0} {6} {11, 7, 3} {2, 2, 2} {5, 8, 9}

Dimension Quiver [1,0,0,0] [2,0,0,0] Root Map Weight Map

0 {C4} 18 136 {0, 0, 0, 0} {0, 0, 0, 0}

8 {C4, B0} 2, 16 3, 26, 121 {1, 0, 0, 0} {1, 1, 1, 1}

14 {C4, D1} 22, 14 33, 28, 111 {0, 1, 0, 0} {1, 2, 2, 2}

18 {C4, B1} 23, 12 36, 26, 16 {0, 0, 1, 0} {1, 2, 3, 3}

20 {C4, D2} 24 310, 16 {0, 0, 0, 2} {1, 2, 3, 4}

20 {C4, B1, C1, B0} 4, 14 7, 44, 3, 110 {2, 1, 0, 0} {3, 4, 4, 4}

22 {C4, D2, C1} 32, 12 53, 35, 16 {0, 2, 0, 0} {2, 4, 4, 4}

24 {C4, B2, C1} 32, 2 53, 42, 32, 22, 13 {0, 1, 1, 0} {2, 4, 5, 5}

24 {C4, D2, C1, B0} 4, 2, 12 7, 5, 42, 33, 22, 13 {2, 0, 1, 0} {3, 4, 5, 5}

26 {C4, B2, C1, B0} 4, 22 7, 52, 36, 1 {2, 0, 0, 2} {3, 4, 5, 6}

28 {C4, D3, C2, D1} 42 73, 5, 33, 1 {0, 2, 0, 2} {3, 6, 7, 8}

28 {C4, B2, C2, B1, C1, B0} 6, 12 11, 7, 62, 3, 13 {2, 2, 1, 0} {5, 8, 9, 9}

30 {C4, D3, C2, B1, C1, B0} {6, 2} 11, 72, 5, 32 {2, 2, 0, 2} {5, 8, 9, 10}

32 {C4, B3, C3, B2, C2, B1, C1, B0} {8} {15, 11, 7, 3} {2, 2, 2, 2} {7, 12, 15, 16}
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Dimension Quiver [1,0,0,0,0] [2,0,0,0,0] Root Map Weight Map

0 {C5} 110 155 {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}

10 {C5, B0} 2, 18 3, 28, 136 {1, 0, 0, 0, 0} {1, 1, 1, 1, 1}

18 {C5, D1} 22, 16 33, 212, 122 {0, 1, 0, 0, 0} {1, 2, 2, 2, 2}

24 {C5, B1} 23, 14 36, 212, 113 {0, 0, 1, 0, 0} {1, 2, 3, 3, 3}

26 {C5, B1, C1, B0} 4, 16 7, 46, 3, 121 {2, 1, 0, 0, 0} {3, 4, 4, 4, 4}

28 {C5, D2} 24, 12 310, 28, 19 {0, 0, 0, 1, 0} {1, 2, 3, 4, 4}

30 {C5, B2} 25 315, 110 {0, 0, 0, 0, 2} {1, 2, 3, 4, 5}

30 {C5, D2, C1} 32, 14 53, 39, 113 {0, 2, 0, 0, 0} {2, 4, 4, 4, 4}

32 {C5, D2, C1, B0} 4, 2, 14 7, 5, 44, 33, 24, 110 {2, 0, 1, 0, 0} {3, 4, 5, 5, 5}

34 {C5, B2, C1} 32, 2, 12 53, 42, 36, 24, 16 {0, 1, 1, 0, 0} {2, 4, 5, 5, 5}

36 {C5, D3, C1} 32, 22 53, 44, 34, 24, 14 {0, 1, 0, 1, 0} {2, 4, 5, 6, 6}

36 {C5, B2, C1, B0} 4, 22, 12 7, 52, 42, 36, 24, 14 {2, 0, 0, 1, 0} {3, 4, 5, 6, 6}

38 {C5, D3, C1, B0} 4, 23 7, 53, 310, 13 {2, 0, 0, 0, 2} {3, 4, 5, 6, 7}

38 {C5, B2, C2, B1, C1, B0} 6, 14 11, 7, 64, 3, 110 {2, 2, 1, 0, 0} {5, 8, 9, 9, 9}

40 {C5, B3, C2, B0} 4, 32 7, 62, 53, 42, 32, 22, 13 {1, 0, 1, 1, 0} {3, 5, 7, 8, 8}

40 {C5, D3, C2, D1} 42, 12 73, 5, 44, 33, 14 {0, 2, 0, 1, 0} {3, 6, 7, 8, 8}

42 {C5, B3, C2, D1} 42, 2 73, 53, 36, 1 {0, 2, 0, 0, 2} {3, 6, 7, 8, 9}

42 {C5, D3, C2, B1, C1, B0} 6, 2, 12 11, 72, 62, 5, 32, 22, 13 {2, 2, 0, 1, 0} {5, 8, 9, 10, 10}

44 {C5, D4, C3, D2, C1} 52 93, 7, 53, 3, 13 {0, 2, 0, 2, 0} {4, 8, 10, 12, 12}

44 {C5, B3, C2, B1, C1, B0} 6, 22 11, 73, 52, 34, 1 {2, 2, 0, 0, 2} {5, 8, 9, 10, 11}

46 {C5, D4, C3, D2, C1, B0} {6, 4} 11, 9, 73, 5, 33 {2, 0, 2, 0, 2} {5, 8, 11, 12, 13}

46 {C5, B3, C3, B2, C2, B1, C1, B0} 8, 12 15, 11, 82, 7, 3, 13 {2, 2, 2, 1, 0} {7, 12, 15, 16, 16}

48 {C5, D4, C3, B2, C2, B1, C1, B0} {8, 2} 15, 11, 9, 72, 32 {2, 2, 2, 0, 2} {7, 12, 15, 16, 17}

50 {C5, B4, C4, B3, C3, B2, C2, B1, C1, B0} {10} {19, 15, 11, 7, 3} {2, 2, 2, 2, 2} {9, 16, 21, 24, 25}

Partitions are shown under each homomorphism for the symplectic vector

and adjoint representations. For C2, the partition of the [0, 1] representation

is also shown.
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B.4. D Series

Dimension Quiver [1,1] [1,0] [0,1] [2,0] [0,2] Root Map Weight Map

0 {D2} 14 12 12 13 13 {0, 0} {0, 0}

2 {D2, C1} 22 12 {2} 13 {3} {0, 2} {0, 1}

2 {D2, C1} 22 {2} 12 {3} 13 {2, 0} {1, 0}

4 {D2, C1, B0} {3, 1} {2} {2} {3} {3} {2, 2} {1, 1}

Dimension Quiver [1,0,0] [0,1,0] [0,0,1] [0,1,1] Root Map Weight Map

0 {D3} 16 14 14 115 {0, 0, 0} {0, 0, 0}

6 {D3, C1} 22, 12 2, 12 2, 12 3, 24, 14 {0, 1, 1} {1, 1, 1}

8 {D3, C1, B0} 3, 13 22 22 34, 13 {2, 0, 0} {2, 1, 1}

10 {D3, C2, D1} 32 {3, 1} {3, 1} 5, 33, 1 {0, 2, 2} {2, 2, 2}

12 {D3, C2, B1, C1, B0} {5, 1} {4} {4} {7, 5, 3} {2, 2, 2} {4, 3, 3}

Dimension Quiver [1,0,0,0] [0,1,0,0] [0,0,1,0] [0,0,0,1] Root Map Weight Map

0 {D4} 18 128 18 18 {0, 0, 0, 0} {0, 0, 0, 0}

10 {D4, C1} 22, 14 3, 28, 19 22, 14 22, 14 {0, 1, 0, 0} {1, 2, 1, 1}

12 {D4, C2} 24 36, 110 24 3, 15 {0, 0, 0, 2} {1, 2, 1, 2}

12 {D4, C2} 24 36, 110 3, 15 24 {0, 0, 2, 0} {1, 2, 2, 1}

12 {D4, C1, B0} 3, 15 36, 110 24 24 {2, 0, 0, 0} {2, 2, 1, 1}

16 {D4, C2, B0} 3, 22, 1 42, 33, 24, 13 3, 22, 1 3, 22, 1 {1, 0, 1, 1} {2, 3, 2, 2}

18 {D4, C2, D1} 32, 12 5, 37, 12 32, 12 32, 12 {0, 2, 0, 0} {2, 4, 2, 2}

20 {D4, C3, D2, C1} 42 7, 53, 3, 13 42 5, 13 {0, 2, 0, 2} {3, 6, 3, 4}

20 {D4, C3, D2, C1} 42 7, 53, 3, 13 5, 13 42 {0, 2, 2, 0} {3, 6, 4, 3}

20 {D4, C2, B1, C1, B0} 5, 13 7, 53, 3, 13 42 42 {2, 2, 0, 0} {4, 6, 3, 3}

22 {D4, C3, D2, C1, B0} {5, 3} 72, 5, 33 {5, 3} {5, 3} {2, 0, 2, 2} {4, 6, 4, 4}

24 {D4, C3, B2, C2, B1, C1, B0} {7, 1} 11, 72, 3 {7, 1} {7, 1} {2, 2, 2, 2} {6, 10, 6, 6}
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Dimension Quiver [1,0,0,0,0] [0,1,0,0,0] [0,0,0,1,0] [0,0,0,0,1] Root Map Weight Map

0 {D5} 110 145 116 116 {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}

14 {D5, C1} 22, 16 3, 212, 118 24, 18 24, 18 {0, 1, 0, 0, 0} {1, 2, 2, 1, 1}

16 {D5, C1, B0} 3, 17 38, 121 28 28 {2, 0, 0, 0, 0} {2, 2, 2, 1, 1}

20 {D5, C2} 24, 12 36, 28, 111 3, 24, 15 3, 24, 15 {0, 0, 0, 1, 1} {1, 2, 3, 2, 2}

24 {D5, C2, B0} 3, 22, 13 42, 35, 28, 16 32, 24, 12 32, 24, 12 {1, 0, 1, 0, 0} {2, 3, 4, 2, 2}

26 {D5, C2, D1} 32, 14 5, 311, 17 34, 14 34, 14 {0, 2, 0, 0, 0} {2, 4, 4, 2, 2}

28 {D5, C3, D1} 32, 22 5, 44, 34, 24, 14 4, 32, 22, 12 4, 32, 22, 12 {0, 1, 0, 1, 1} {2, 4, 5, 3, 3}

28 {D5, C2, B1, C1, B0} 5, 15 7, 55, 3, 110 44 44 {2, 2, 0, 0, 0} {4, 6, 6, 3, 3}

30 {D5, C3, B1} 33, 1 53, 39, 13 42, 24 42, 24 {0, 0, 2, 0, 0} {2, 4, 6, 3, 3}

32 {D5, C3, D2, C1} 42, 12 7, 53, 44, 3, 14 5, 42, 13 5, 42, 13 {0, 2, 0, 1, 1} {3, 6, 7, 4, 4}

32 {D5, C3, B1, C1, B0} 5, 22, 1 7, 62, 5, 42, 32, 22, 13 5, 42, 3 5, 42, 3 {2, 1, 0, 1, 1} {4, 6, 7, 4, 4}

34 {D5, C3, D2, C1, B0} 5, 3, 12 72, 53, 35, 1 52, 32 52, 32 {2, 0, 2, 0, 0} {4, 6, 8, 4, 4}

36 {D5, C4, D3, C2, D1} 52 9, 73, 5, 33, 1 {7, 5, 3, 1} {7, 5, 3, 1} {0, 2, 0, 2, 2} {4, 8, 10, 6, 6}

36 {D5, C3, B2, C2, B1, C1, B0} 7, 13 11, 74, 3, 13 72, 12 72, 12 {2, 2, 2, 0, 0} {6, 10, 12, 6, 6}

38 {D5, C4, D3, C2, B1, C1, B0} {7, 3} 11, 9, 72, 5, 32 {8, 6, 2} {8, 6, 2} {2, 2, 0, 2, 2} {6, 10, 12, 7, 7}

40 {D5, C4, B3, C3, B2, C2, B1, C1, B0} {9, 1} {15, 11, 9, 7, 3} {11, 5} {11, 5} {2, 2, 2, 2, 2} {8, 14, 18, 10, 10}

Partitions are shown under each homomorphism for the vector, spinor and

adjoint representations.

293



B.5. Exceptional Groups

B.5.1. G2

Dimension [1,0] [0,1] Root Map Weight Map

0 114 17 {0, 0} {0, 0}

6 3, 24, 13 22, 13 {1, 0} {2, 1}

8 42, 3, 13 3, 22 {0, 1} {3, 2}

10 5, 33 32, 1 {2, 0} {4, 2}

12 {11, 3} {7} {2, 2} {10, 6}

B.5.2. F4

Dimension [1,0,0,0] [0,0,0,1] Root Map Weight Map

0 152 126 {0, 0, 0, 0} {0, 0, 0, 0}

16 3, 214, 121 26, 114 {1, 0, 0, 0} {2, 3, 2, 1}

22 37, 28, 115 3, 28, 17 {0, 0, 0, 1} {2, 4, 3, 2}

28 42, 36, 210, 16 33, 26, 15 {0, 1, 0, 0} {3, 6, 4, 2}

30 5, 313, 18 36, 18 {2, 0, 0, 0} {4, 6, 4, 2}

30 57, 3, 114 5, 37 {0, 0, 0, 2} {4, 8, 6, 4}

34 53, 42, 36, 24, 13 42, 33, 24, 1 {0, 0, 1, 0} {4, 8, 6, 3}

36 7, 54, 44, 3, 16 5, 44, 15 {2, 0, 0, 1} {6, 10, 7, 4}

36 62, 53, 42, 32, 24, 13 5, 42, 33, 22 {0, 1, 0, 1} {5, 10, 7, 4}

38 7, 62, 5, 44, 33, 13 52, 42, 3, 22, 1 {1, 0, 1, 0} {6, 11, 8, 4}

40 72, 54, 36 53, 33, 12 {0, 2, 0, 0} {6, 12, 8, 4}

40 9, 74, 34, 13 7, 53, 3, 1 {2, 0, 0, 2} {8, 14, 10, 6}

42 11, 75, 3, 13 73, 15 {2, 2, 0, 0} {10, 18, 12, 6}

42 11, 102, 7, 42, 3, 13 9, 62, 5 {1, 0, 1, 2} {10, 19, 14, 8}

44 112, 9, 7, 5, 33 9, 7, 52 {0, 2, 0, 2} {10, 20, 14, 8}

46 15, 112, 7, 5, 3 {11, 9, 5, 1} {2, 2, 0, 2} {14, 26, 18, 10}

48 {23, 15, 11, 3} {17, 9} {2, 2, 2, 2} {22, 42, 30, 16}

Partitions are shown for the F4 adjoint and vector representations only.

Homomorphisms identified include one root map which is not a nilpotent

orbit: 40: [2,0,0,2]. This is highlighted in red.
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B.5.3. E6

Dimension [1,0,0,0,0,0] [0,0,0,0,0,1] Root Map Weight Map

0 127 178 {0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0}

22 26, 115 3, 220, 135 {0, 0, 0, 0, 0, 1} {1, 2, 3, 2, 1, 2}

32 3, 28, 18 38, 216, 122 {1, 0, 0, 0, 1, 0} {2, 3, 4, 3, 2, 2}

40 33, 26, 16 42, 39, 216, 111 {0, 0, 1, 0, 0, 0} {2, 4, 6, 4, 2, 3}

42 36, 19 5, 319, 116 {0, 0, 0, 0, 0, 2} {2, 4, 6, 4, 2, 4}

46 4, 34, 24, 13 5, 46, 38, 28, 19 {1, 0, 0, 0, 1, 1} {3, 5, 7, 5, 3, 4}

48 5, 37, 1 58, 38, 114 {2, 0, 0, 0, 2, 0} {4, 6, 8, 6, 4, 4}

50 42, 33, 24, 12 53, 44, 39, 28, 14 {0, 1, 0, 1, 0, 0} {3, 6, 8, 6, 3, 4}

52 5, 44, 16 7, 55, 48, 3, 111 {1, 0, 0, 0, 1, 2} {4, 7, 10, 7, 4, 6}

54 5, 42, 33, 22, 1 62, 54, 44, 35, 26, 13 {1, 0, 1, 0, 1, 0} {4, 7, 10, 7, 4, 5}

56 52, 42, 3, 22, 12 7, 62, 53, 46, 34, 22, 14 {0, 1, 0, 1, 0, 1} {4, 8, 11, 8, 4, 6}

58 53, 33, 13 72, 57, 39, 12 {0, 0, 2, 0, 0, 0} {4, 8, 12, 8, 4, 6}

58 6, 5, 42, 32, 2 73, 62, 52, 44, 34, 22, 13 {1, 1, 0, 1, 1, 0} {5, 9, 12, 9, 5, 6}

60 73, 16 11, 78, 3, 18 {0, 0, 2, 0, 0, 2} {6, 12, 18, 12, 6, 10}

60 7, 53, 3, 12 9, 75, 53, 35, 14 {2, 0, 0, 0, 2, 2} {6, 10, 14, 10, 6, 8}

62 {7, 6, 5, 4, 3, 2} 9, 82, 7, 62, 53, 42, 32, 22, 1 {1, 1, 0, 1, 1, 1} {6, 11, 15, 11, 6, 8}

64 9, 62, 5, 1 11, 102, 9, 7, 62, 5, 42, 3, 13 {2, 1, 0, 1, 2, 1} {8, 14, 19, 14, 8, 10}

64 {8, 7, 5, 4, 3} 102, 9, 72, 62, 52, 42, 3, 12 {1, 1, 1, 1, 1, 0} {7, 13, 18, 13, 7, 9}

64 {8, 7, 6, 3, 2, 1} 11, 9, 82, 72, 62, 5, 32, 22, 1 {1, 1, 0, 1, 1, 2} {7, 13, 18, 13, 7, 10}

66 9, 7, 52, 1 112, 92, 72, 53, 33 {2, 0, 2, 0, 2, 0} {8, 14, 20, 14, 8, 10}

66 92, 5, 3, 1 13, 11, 92, 74, 32, 12 {0, 2, 0, 2, 0, 2} {8, 16, 22, 16, 8, 12}

68 11, 9, 5, 12 15, 113, 9, 7, 52, 3, 1 {2, 0, 2, 0, 2, 2} {10, 18, 26, 18, 10, 14}

70 {13, 9, 5} 17, 15, 112, 9, 7, 5, 3 {2, 2, 0, 2, 2, 2} {12, 22, 30, 22, 12, 16}

72 {17, 9, 1} {23, 17, 15, 11, 9, 3} {2, 2, 2, 2, 2, 2} {16, 30, 42, 30, 16, 22}

Partitions are shown for the E6 adjoint and fundamental representations

only. Homomorphisms identified include three root maps which are not

recognised Characteristics of nilpotent orbits: these are highlighted in red.
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B.5.4. E7

Dimension [1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

0 1133 156 {0, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0}

34 3, 232, 166 212, 132 {1, 0, 0, 0, 0, 0, 0} {2, 3, 4, 3, 2, 1, 2}

52 310, 232, 139 32, 216, 118 {0, 0, 0, 0, 1, 0, 0} {2, 4, 6, 5, 4, 2, 3}

54 327, 152 4, 226 {0, 0, 0, 0, 0, 2, 0} {2, 4, 6, 5, 4, 3, 3}

64 42, 315, 228, 124 36, 212, 114 {0, 1, 0, 0, 0, 0, 0} {3, 6, 8, 6, 4, 2, 4}

66 5, 331, 135 312, 120 {2, 0, 0, 0, 0, 0, 0} {4, 6, 8, 6, 4, 2, 4}

70 46, 316, 220, 121 4, 36, 214, 16 {0, 0, 0, 0, 0, 1, 1} {3, 6, 9, 7, 5, 3, 5}

76 5, 48, 316, 216, 116 42, 38, 28, 18 {1, 0, 0, 0, 1, 0, 0} {4, 7, 10, 8, 6, 3, 5}

82 53, 48, 315, 216, 19 44, 36, 28, 16 {0, 0, 1, 0, 0, 0, 0} {4, 8, 12, 9, 6, 3, 6}

84 57, 328, 114 47, 214 {0, 0, 0, 0, 0, 0, 2} {4, 8, 12, 9, 6, 3, 7}

84 510, 322, 117 52, 314, 14 {0, 0, 0, 0, 2, 0, 0} {4, 8, 12, 10, 8, 4, 6}

84 7, 57, 416, 3, 124 52, 48, 114 {2, 0, 0, 0, 1, 0, 0} {6, 10, 14, 11, 8, 4, 7}

86 7, 515, 310, 121 6, 49, 27 {2, 0, 0, 0, 0, 2, 0} {6, 10, 14, 11, 8, 5, 7}

90 62, 56, 48, 311, 210, 16 52, 44, 36, 24, 14 {0, 1, 0, 0, 1, 0, 0} {5, 10, 14, 11, 8, 4, 7}

92 7, 62, 57, 410, 36, 26, 19 54, 44, 32, 24, 16 {1, 0, 1, 0, 0, 0, 0} {6, 11, 16, 12, 8, 4, 8}

94 72, 513, 315, 19 56, 36, 18 {0, 2, 0, 0, 0, 0, 0} {6, 12, 16, 12, 8, 4, 8}

94 7, 64, 57, 46, 37, 28, 16 6, 52, 45, 34, 23, 12 {1, 0, 0, 1, 0, 1, 0} {6, 11, 16, 13, 9, 5, 8}

96 11, 714, 3, 121 76, 114 {2, 2, 0, 0, 0, 0, 0} {10, 18, 24, 18, 12, 6, 12}

96 9, 75, 514, 3, 116 66, 4, 28 {2, 0, 0, 0, 0, 0, 2} {8, 14, 20, 15, 10, 5, 11}

96 72, 64, 55, 48, 38, 24, 16 6, 54, 42, 34, 25 {0, 1, 0, 0, 0, 1, 1} {6, 12, 17, 13, 9, 5, 9}

98 73, 64, 54, 48, 38, 24, 14 62, 52, 44, 34, 22, 12 {0, 0, 1, 0, 1, 0, 0} {6, 12, 18, 14, 10, 5, 9}

100 75, 510, 315, 13 63, 47, 25 {0, 0, 0, 2, 0, 0, 0} {6, 12, 18, 15, 10, 5, 9}

100 9, 77, 59, 37, 19 72, 56, 32, 16 {2, 0, 0, 0, 2, 0, 0} {8, 14, 20, 16, 12, 6, 10}

102 11, 97, 7, 57, 3, 114 10, 67, 4 {2, 0, 0, 0, 2, 2, 0} {10, 18, 26, 21, 16, 9, 13}

102 11, 84, 76, 64, 32, 24, 110 8, 74, 6, 25, 14 {2, 1, 0, 0, 0, 1, 1} {10, 18, 25, 19, 13, 7, 13}

104 95, 72, 513, 19 82, 63, 45, 2 {0, 0, 0, 0, 2, 0, 2} {8, 16, 24, 19, 14, 7, 13}

104 92, 78, 55, 310, 14 8, 64, 45, 22 {0, 2, 0, 0, 0, 2, 0} {8, 16, 22, 17, 12, 7, 11}

104 9, 82, 73, 64, 55, 44, 34, 24, 12 72, 62, 52, 42, 32, 22, 12 {1, 0, 1, 0, 1, 0, 0} {8, 15, 22, 17, 12, 6, 11}

106 13, 99, 55, 3, 111 10, 84, 4, 25 {2, 2, 0, 0, 0, 2, 0} {12, 22, 30, 23, 16, 9, 15}

106 93, 75, 510, 36, 13 74, 52, 36 {0, 0, 2, 0, 0, 0, 0} {8, 16, 24, 18, 12, 6, 12}
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Dimension [1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

106 11, 9, 84, 74, 64, 5, 34, 24, 14 82, 72, 62, 32, 22, 14 {2, 0, 1, 0, 1, 0, 0} {10, 18, 26, 20, 14, 7, 13}

108 11, 93, 78, 53, 37, 13 83, 63, 4, 25 {2, 0, 0, 2, 0, 0, 0} {10, 18, 26, 21, 14, 7, 13}

108 102, 9, 82, 74, 62, 54, 44, 33, 13 82, 72, 52, 42, 32, 12 {0, 1, 1, 0, 1, 0, 0} {9, 18, 26, 20, 14, 7, 13}

108 11, 102, 93, 7, 66, 53, 42, 3, 16 92, 64, 52, 14 {1, 0, 1, 0, 2, 0, 0} {10, 19, 28, 22, 16, 8, 14}

108 11, 102, 93, 82, 7, 62, 53, 42, 32, 24, 13 10, 72, 63, 52, 4 {1, 0, 1, 0, 1, 2, 0} {10, 19, 28, 22, 16, 9, 14}

110 112, 94, 74, 57, 33, 13 92, 72, 54, 14 {0, 2, 0, 0, 2, 0, 0} {10, 20, 28, 22, 16, 8, 14}

110 13, 11, 96, 74, 52, 34, 15 94, 52, 32, 14 {2, 0, 2, 0, 0, 0, 0} {12, 22, 32, 24, 16, 8, 16}

110 112, 102, 9, 82, 73, 62, 5, 44, 33, 13 10, 8, 72, 6, 52, 42 {0, 1, 0, 1, 0, 2, 1} {10, 20, 29, 23, 16, 9, 15}

112 113, 93, 75, 54, 36 10, 82, 63, 43 {0, 0, 2, 0, 0, 2, 0} {10, 20, 30, 23, 16, 9, 15}

112 13, 113, 92, 77, 5, 34, 13 102, 82, 6, 43, 2 {2, 0, 0, 0, 2, 0, 2} {12, 22, 32, 25, 18, 9, 17}

112 15, 115, 93, 7, 54, 3, 16 112, 92, 52, 16 {2, 2, 0, 0, 2, 0, 0} {14, 26, 36, 28, 20, 10, 18}

112 13, 11, 102, 92, 84, 62, 52, 35, 12 10, 92, 72, 42, 23 {2, 0, 1, 1, 0, 1, 0} {12, 22, 32, 25, 17, 9, 16}

114 133, 11, 93, 75, 53, 3, 13 112, 74, 32 {0, 0, 2, 0, 2, 0, 0} {12, 24, 36, 28, 20, 10, 18}

114 15, 122, 11, 102, 93, 7, 62, 42, 32, 13 112, 10, 8, 52, 23 {2, 1, 0, 1, 1, 0, 1} {14, 26, 37, 29, 20, 10, 19}

114 15, 122, 112, 102, 9, 72, 62, 42, 32, 13 12, 10, 92, 6, 4, 32 {2, 1, 0, 1, 0, 2, 1} {14, 26, 37, 29, 20, 11, 19}

116 15, 13, 114, 92, 73, 52, 34 12, 102, 8, 6, 42, 2 {2, 0, 2, 0, 0, 2, 0} {14, 26, 38, 29, 20, 11, 19}

118 17, 15, 132, 112, 93, 7, 53, 3, 1 132, 92, 52, 12 {2, 0, 2, 0, 2, 0, 0} {16, 30, 44, 34, 24, 12, 22}

118 19, 162, 15, 112, 102, 7, 62, 3, 13 16, 112, 10, 6, 12 {2, 1, 0, 1, 2, 2, 1} {18, 34, 49, 39, 28, 15, 25}

120 23, 173, 15, 11, 93, 3, 13 172, 92, 14 {2, 2, 2, 0, 2, 0, 0} {22, 42, 60, 46, 32, 16, 30}

120 19, 17, 152, 113, 9, 72, 5, 32 16, 12, 102, 6, 2 {2, 0, 2, 0, 2, 2, 0} {18, 34, 50, 39, 28, 15, 25}

122 23, 19, 17, 152, 112, 9, 7, 32 {18, 16, 10, 8, 4} {2, 2, 0, 2, 0, 2, 2} {22, 42, 60, 47, 32, 17, 31}

124 27, 23, 19, 17, 15, 112, 7, 3 {22, 16, 12, 6} {2, 2, 0, 2, 2, 2, 2} {26, 50, 72, 57, 40, 21, 37}

126 {35, 27, 23, 19, 15, 11, 3} {28, 18, 10} {2, 2, 2, 2, 2, 2, 2} {34, 66, 96, 75, 52, 27, 49}

Partitions are shown for the E7 adjoint and vector representations only.

Homomorphisms identified include eight root maps which are not recognised

Characteristics of nilpotent orbits: these are highlighted in red.
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B.5.5. E8

Dimension [0,0,0,0,0,1,0] Root Map Weight Map

0 1248 {0, 0, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0, 0}

58 3, 256, 1133 {0, 0, 0, 0, 0, 0, 1, 0} {2, 4, 6, 5, 4, 3, 2, 3}

92 314, 264, 178 {1, 0, 0, 0, 0, 0, 0, 0} {4, 7, 10, 8, 6, 4, 2, 5}

112 42, 327, 252, 155 {0, 0, 0, 0, 0, 1, 0, 0} {4, 8, 12, 10, 8, 6, 3, 6}

114 5, 355, 178 {0, 0, 0, 0, 0, 0, 2, 0} {4, 8, 12, 10, 8, 6, 4, 6}

128 48, 328, 248, 136 {0, 0, 0, 0, 0, 0, 0, 1} {5, 10, 15, 12, 9, 6, 3, 8}

136 5, 412, 332, 232, 135 {1, 0, 0, 0, 0, 0, 1, 0} {6, 11, 16, 13, 10, 7, 4, 8}

146 53, 416, 327, 232, 124 {0, 0, 0, 0, 1, 0, 0, 0} {6, 12, 18, 15, 12, 8, 4, 9}

148 7, 511, 432, 3, 155 {1, 0, 0, 0, 0, 0, 2, 0} {8, 15, 22, 18, 14, 10, 6, 11}

154 57, 414, 328, 228, 117 {0, 1, 0, 0, 0, 0, 0, 0} {7, 14, 20, 16, 12, 8, 4, 10}

156 514, 350, 128 {2, 0, 0, 0, 0, 0, 0, 0} {8, 14, 20, 16, 12, 8, 4, 10}

162 62, 510, 416, 323, 218, 117 {1, 0, 0, 0, 0, 1, 0, 0} {8, 15, 22, 18, 14, 10, 5, 11}

164 7, 62, 515, 418, 310, 214, 124 {0, 0, 0, 0, 1, 0, 1, 0} {8, 16, 24, 20, 16, 11, 6, 12}

166 72, 525, 327, 128 {0, 0, 0, 0, 0, 2, 0, 0} {8, 16, 24, 20, 16, 12, 6, 12}

168 11, 726, 3, 152 {0, 0, 0, 0, 0, 2, 2, 0} {12, 24, 36, 30, 24, 18, 10, 18}

168 64, 510, 416, 320, 220, 110 {0, 0, 0, 1, 0, 0, 0, 0} {8, 16, 24, 20, 15, 10, 5, 12}

172 7, 66, 511, 416, 315, 214, 113 {0, 1, 0, 0, 0, 0, 1, 0} {9, 18, 26, 21, 16, 11, 6, 13}

176 72, 66, 513, 412, 316, 214, 19 {0, 0, 0, 0, 0, 1, 0, 1} {9, 18, 27, 22, 17, 12, 6, 14}

178 73, 68, 58, 416, 316, 28, 111 {1, 0, 0, 0, 1, 0, 0, 0} {10, 19, 28, 23, 18, 12, 6, 14}

178 9, 75, 612, 514, 42, 3, 216, 119 {0, 1, 0, 0, 0, 0, 2, 0} {11, 22, 32, 26, 20, 14, 8, 16}

180 9, 711, 521, 311, 124 {2, 0, 0, 0, 0, 0, 2, 0} {12, 22, 32, 26, 20, 14, 8, 16}

182 75, 66, 510, 414, 315, 210, 16 {0, 0, 1, 0, 0, 0, 0, 0} {10, 20, 30, 24, 18, 12, 6, 15}

184 78, 520, 328, 18 {0, 0, 0, 0, 0, 0, 0, 2} {10, 20, 30, 24, 18, 12, 6, 16}

184 11, 86, 714, 66, 32, 214, 121 {0, 0, 0, 0, 0, 1, 2, 1} {13, 26, 39, 32, 25, 18, 10, 20}

186 82, 75, 68, 59, 412, 311, 28, 17 {0, 1, 0, 0, 0, 1, 0, 0} {11, 22, 32, 26, 20, 14, 7, 16}

188 84, 76, 64, 510, 416, 36, 24, 110 {1, 0, 0, 1, 0, 0, 0, 0} {12, 23, 34, 28, 21, 14, 7, 17}

188 9, 82, 77, 68, 59, 48, 38, 28, 19 {1, 0, 0, 0, 1, 0, 1, 0} {12, 23, 34, 28, 22, 15, 8, 17}

190 11, 9, 88, 78, 68, 5, 38, 28, 115 {1, 0, 0, 0, 1, 0, 2, 0} {14, 27, 40, 33, 26, 18, 10, 20}

192 9, 84, 75, 68, 59, 48, 39, 28, 14 {0, 0, 1, 0, 0, 0, 1, 0} {12, 24, 36, 29, 22, 15, 8, 18}

192 92, 82, 78, 68, 55, 410, 310, 24, 17 {0, 0, 0, 1, 0, 1, 0, 0} {12, 24, 36, 30, 23, 16, 8, 18}

194 93, 713, 514, 318, 16 {0, 0, 0, 0, 2, 0, 0, 0} {12, 24, 36, 30, 24, 16, 8, 18}

194 95, 84, 72, 66, 513, 410, 22, 112 {1, 0, 1, 0, 0, 0, 0, 0} {14, 27, 40, 32, 24, 16, 8, 20}

196 97, 77, 521, 37, 110 {0, 2, 0, 0, 0, 0, 0, 0} {14, 28, 40, 32, 24, 16, 8, 20}

196 102, 9, 86, 78, 62, 58, 48, 37, 110 {1, 0, 0, 0, 1, 1, 0, 0} {14, 27, 40, 33, 26, 18, 9, 20}

196 11, 102, 97, 7, 614, 57, 42, 3, 117 {2, 0, 0, 0, 1, 0, 1, 0} {16, 30, 44, 36, 28, 19, 10, 22}

196 13, 102, 99, 88, 55, 42, 3, 210, 114 {0, 0, 0, 1, 0, 1, 2, 0} {16, 32, 48, 40, 31, 22, 12, 24}
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Dimension [0,0,0,0,0,1,0] Root Map Weight Map

196 93, 84, 75, 66, 510, 48, 37, 26, 13 {0, 1, 0, 0, 1, 0, 0, 0} {13, 26, 38, 31, 24, 16, 8, 19}

196 11, 93, 86, 78, 66, 53, 42, 37, 210, 16 {0, 0, 1, 0, 0, 0, 2, 0} {14, 28, 42, 34, 26, 18, 10, 21}

198 11, 96, 714, 57, 314, 18 {0, 0, 0, 0, 0, 0, 2, 2} {14, 28, 42, 34, 26, 18, 10, 22}

198 112, 98, 78, 515, 33, 114 {2, 0, 0, 0, 0, 2, 0, 0} {16, 30, 44, 36, 28, 20, 10, 22}

198 13, 11, 914, 74, 56, 38, 116 {0, 0, 0, 0, 2, 0, 2, 0} {16, 32, 48, 40, 32, 22, 12, 24}

200 15, 119, 97, 7, 58, 3, 121 {2, 0, 0, 0, 0, 2, 2, 0} {20, 38, 56, 46, 36, 26, 14, 28}

200 102, 93, 84, 76, 66, 56, 48, 36, 24, 13 {0, 0, 1, 0, 0, 1, 0, 0} {14, 28, 42, 34, 26, 18, 9, 21}

202 104, 93, 82, 76, 66, 59, 44, 36, 22, 14 {0, 1, 0, 1, 0, 0, 0, 0} {15, 30, 44, 36, 27, 18, 9, 22}

202 11, 102, 93, 86, 74, 66, 56, 44, 37, 24, 13 {0, 1, 0, 0, 1, 0, 1, 0} {15, 30, 44, 36, 28, 19, 10, 22}

202 11, 104, 93, 82, 75, 68, 57, 44, 32, 24, 16 {1, 0, 1, 0, 0, 0, 1, 0} {16, 31, 46, 37, 28, 19, 10, 23}

204 112, 104, 9, 84, 77, 64, 55, 48, 33, 16 {0, 1, 0, 0, 0, 1, 0, 1} {16, 32, 47, 38, 29, 20, 10, 24}

204 112, 102, 94, 84, 74, 66, 57, 44, 34, 24, 13 {1, 0, 0, 1, 0, 1, 0, 0} {16, 31, 46, 38, 29, 20, 10, 23}

204 13, 11, 104, 96, 84, 74, 62, 52, 44, 35, 26, 15 {0, 1, 0, 0, 1, 0, 2, 0} {17, 34, 50, 41, 32, 22, 12, 25}

206 13, 112, 104, 93, 88, 64, 54, 311, 15 {0, 0, 0, 1, 0, 0, 2, 1} {17, 34, 51, 42, 32, 22, 12, 26}

206 113, 102, 93, 84, 75, 66, 54, 46, 36, 13 {0, 0, 1, 0, 1, 0, 0, 0} {16, 32, 48, 39, 30, 20, 10, 24}

206 13, 113, 104, 92, 84, 77, 62, 5, 46, 34, 22, 16 {1, 0, 1, 0, 0, 0, 2, 0} {18, 35, 52, 42, 32, 22, 12, 26}

208 114, 96, 710, 510, 310 {0, 0, 0, 2, 0, 0, 0, 0} {16, 32, 48, 40, 30, 20, 10, 24}

208 13, 115, 96, 710, 55, 39, 14 {0, 2, 0, 0, 0, 0, 2, 0} {18, 36, 52, 42, 32, 22, 12, 26}

208 132, 114, 99, 73, 513, 3, 18 {0, 0, 0, 0, 0, 2, 0, 2} {18, 36, 54, 44, 34, 24, 12, 28}

208 142, 116, 104, 92, 7, 610, 53, 3, 111 {1, 0, 0, 1, 0, 2, 0, 0} {20, 39, 58, 48, 37, 26, 13, 29}

208 122, 112, 102, 94, 84, 75, 62, 56, 46, 33, 14 {0, 0, 0, 1, 0, 1, 0, 1} {17, 34, 51, 42, 32, 22, 11, 26}

208 122, 113, 102, 92, 84, 75, 66, 55, 42, 32, 24, 13 {1, 0, 1, 0, 0, 1, 0, 0} {18, 35, 52, 42, 32, 22, 11, 26}

208 15, 122, 115, 104, 93, 82, 7, 62, 54, 42, 32, 26, 16 {1, 0, 0, 1, 0, 1, 2, 0} {20, 39, 58, 48, 37, 26, 14, 29}

210 17, 155, 11, 914, 3, 116 {2, 2, 0, 0, 0, 0, 2, 0} {26, 50, 72, 58, 44, 30, 16, 36}

210 133, 115, 93, 713, 53, 35, 16 {2, 0, 0, 0, 2, 0, 0, 0} {20, 38, 56, 46, 36, 24, 12, 28}

210 15, 135, 11, 99, 75, 56, 111 {2, 0, 0, 0, 0, 0, 2, 2} {22, 42, 62, 50, 38, 26, 14, 32}

210 15, 124, 112, 104, 95, 72, 64, 44, 36, 16 {0, 1, 0, 0, 0, 1, 2, 1} {20, 40, 59, 48, 37, 26, 14, 30}

210 13, 122, 11, 104, 94, 82, 75, 64, 52, 46, 34, 13 {0, 0, 1, 0, 1, 0, 1, 0} {18, 36, 54, 44, 34, 23, 12, 27}

212 135, 11, 99, 75, 510, 16 {0, 0, 2, 0, 0, 0, 0, 0} {20, 40, 60, 48, 36, 24, 12, 30}

212 132, 122, 11, 104, 92, 84, 74, 64, 54, 42, 35, 12 {0, 1, 0, 1, 0, 1, 0, 0} {19, 38, 56, 46, 35, 24, 12, 28}

212 133, 122, 11, 102, 93, 84, 75, 64, 53, 42, 32, 22, 13 {1, 0, 1, 0, 1, 0, 0, 0} {20, 39, 58, 47, 36, 24, 12, 29}

212 15, 13, 122, 114, 104, 92, 82, 73, 62, 52, 44, 34, 22, 13 {0, 0, 1, 0, 1, 0, 2, 0} {20, 40, 60, 49, 38, 26, 14, 30}

214 15, 132, 117, 95, 75, 55, 38, 1 {0, 0, 0, 2, 0, 0, 2, 0} {20, 40, 60, 50, 38, 26, 14, 30}

214 17, 15, 136, 112, 97, 7, 57, 3, 18 {2, 0, 0, 0, 2, 0, 2, 0} {24, 46, 68, 56, 44, 30, 16, 34}

214 142, 133, 11, 104, 93, 82, 76, 62, 52, 44, 3, 14 {0, 1, 1, 0, 0, 1, 0, 0} {21, 42, 62, 50, 38, 26, 13, 31}

216 23, 177, 15, 11, 97, 3, 114 {2, 0, 0, 0, 2, 2, 2, 0} {32, 62, 92, 76, 60, 42, 22, 46}

216 152, 133, 115, 94, 78, 53, 35, 12 {0, 2, 0, 0, 0, 2, 0, 0} {22, 44, 64, 52, 40, 28, 14, 32}
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216 19, 164, 15, 116, 104, 7, 64, 3, 110 {2, 1, 0, 0, 0, 1, 2, 1} {28, 54, 79, 64, 49, 34, 18, 40}

216 162, 133, 124, 112, 92, 82, 75, 62, 53, 3, 22, 14 {0, 1, 0, 1, 0, 2, 0, 0} {23, 46, 68, 56, 43, 30, 15, 34}

216 17, 142, 132, 124, 112, 102, 9, 82, 72, 62, 53, 35, 22, 12 {0, 1, 0, 1, 0, 1, 2, 0} {23, 46, 68, 56, 43, 30, 16, 34}

216 15, 142, 13, 122, 112, 102, 93, 84, 73, 62, 53, 42, 32, 22, 1 {1, 0, 1, 0, 1, 0, 1, 0} {22, 43, 64, 52, 40, 27, 14, 32}

218 172, 153, 13, 116, 93, 77, 33, 15 {2, 0, 0, 0, 0, 2, 0, 2} {26, 50, 74, 60, 46, 32, 16, 38}

218 19, 154, 135, 112, 92, 76, 36, 14 {0, 2, 0, 0, 0, 2, 2, 0} {26, 52, 76, 62, 48, 34, 18, 38}

218 162, 152, 13, 122, 112, 104, 92, 74, 64, 5, 42, 14 {0, 1, 0, 1, 0, 1, 0, 1} {24, 48, 71, 58, 44, 30, 15, 36}

218 162, 15, 133, 122, 11, 102, 93, 84, 7, 62, 53, 42, 3, 13 {1, 0, 1, 0, 1, 1, 0, 0} {24, 47, 70, 57, 44, 30, 15, 35}

218 17, 15, 142, 132, 122, 112, 102, 93, 82, 7, 62, 53, 42, 32, 22, 1 {1, 0, 1, 0, 1, 0, 2, 0} {24, 47, 70, 57, 44, 30, 16, 35}

220 17, 153, 132, 116, 93, 75, 54, 34 {0, 0, 2, 0, 0, 0, 2, 0} {24, 48, 72, 58, 44, 30, 16, 36}

220 21, 174, 15, 135, 95, 7, 54, 17 {2, 0, 0, 0, 0, 2, 2, 2} {30, 58, 86, 70, 54, 38, 20, 44}

220 182, 15, 144, 132, 11, 102, 93, 75, 53, 3, 14 {0, 0, 1, 1, 0, 2, 0, 0} {26, 52, 78, 64, 49, 34, 17, 39}

220 19, 17, 162, 152, 122, 113, 104, 9, 72, 62, 5, 32, 22, 13 {2, 0, 1, 0, 1, 0, 2, 0} {28, 54, 80, 65, 50, 34, 18, 40}

220 17, 162, 15, 132, 122, 112, 102, 93, 82, 72, 62, 52, 42, 3, 12 {0, 1, 1, 0, 1, 0, 1, 0} {25, 50, 74, 60, 46, 31, 16, 37}

222 19, 172, 153, 13, 116, 93, 73, 52, 34, 1 {2, 0, 0, 2, 0, 0, 2, 0} {28, 54, 80, 66, 50, 34, 18, 40}

222 23, 182, 173, 162, 15, 11, 102, 93, 82, 32, 24, 13 {1, 0, 1, 0, 1, 2, 2, 0} {32, 63, 94, 77, 60, 42, 22, 47}

222 182, 17, 15, 142, 132, 113, 102, 92, 82, 7, 62, 53, 3, 12 {0, 1, 1, 0, 1, 1, 0, 0} {27, 54, 80, 65, 50, 34, 17, 40}

224 192, 17, 153, 133, 113, 93, 75, 5, 33 {0, 0, 2, 0, 0, 2, 0, 0} {28, 56, 84, 68, 52, 36, 18, 42}

224 21, 19, 172, 154, 116, 74, 53, 3, 12 {0, 2, 0, 0, 2, 0, 2, 0} {30, 60, 88, 72, 56, 38, 20, 44}

224 21, 193, 152, 133, 115, 92, 72, 34, 12 {2, 0, 2, 0, 0, 0, 2, 0} {32, 62, 92, 74, 56, 38, 20, 46}

224 202, 17, 162, 152, 13, 122, 112, 93, 82, 7, 53, 3, 12 {1, 0, 1, 1, 0, 2, 0, 0} {30, 59, 88, 72, 55, 38, 19, 44}

224 23, 19, 182, 17, 162, 152, 112, 102, 9, 82, 7, 42, 32, 13 {0, 1, 0, 1, 0, 2, 2, 1} {32, 64, 95, 78, 60, 42, 22, 48}

226 23, 192, 173, 153, 113, 93, 72, 5, 34 {0, 0, 2, 0, 0, 2, 2, 0} {32, 64, 96, 78, 60, 42, 22, 48}

226 25, 21, 194, 153, 114, 9, 72, 5, 32, 13 {2, 0, 0, 2, 0, 2, 2, 0} {36, 70, 104, 86, 66, 46, 24, 52}

226 23, 21, 192, 17, 153, 132, 113, 9, 74, 32, 12 {2, 0, 0, 0, 2, 0, 2, 2} {34, 66, 98, 80, 62, 42, 22, 50}

226 23, 222, 19, 162, 15, 133, 122, 11, 102, 7, 42, 3, 13 {2, 1, 0, 1, 1, 0, 1, 1} {36, 70, 103, 84, 64, 43, 22, 52}

228 232, 21, 19, 17, 153, 132, 114, 9, 7, 5, 33 {2, 0, 2, 0, 0, 2, 0, 0} {36, 70, 104, 84, 64, 44, 22, 52}

228 27, 23, 222, 19, 17, 162, 15, 122, 112, 7, 62, 3, 13 {2, 1, 0, 1, 0, 2, 2, 1} {40, 78, 115, 94, 72, 50, 26, 58}

230 27, 232, 21, 19, 172, 152, 13, 113, 72, 5, 32 {2, 0, 2, 0, 0, 2, 2, 0} {40, 78, 116, 94, 72, 50, 26, 58}

232 29, 27, 232, 192, 17, 153, 112, 9, 7, 5, 3 {2, 0, 2, 0, 2, 0, 2, 0} {44, 86, 128, 104, 80, 54, 28, 64}

232 35, 282, 27, 23, 19, 182, 15, 11, 102, 3, 13 {2, 1, 0, 1, 2, 2, 2, 1} {52, 102, 151, 124, 96, 66, 34, 76}

232 31, 27, 25, 23, 21, 192, 152, 13, 112, 72, 3, 1 {2, 0, 0, 2, 0, 2, 2, 2} {46, 90, 134, 110, 84, 58, 30, 68}

234 35, 29, 272, 23, 192, 17, 15, 112, 9, 32 {2, 0, 2, 0, 2, 2, 2, 0} {52, 102, 152, 124, 96, 66, 34, 76}

236 39, 35, 29, 27, 232, 19, 17, 15, 11, 7, 3 {2, 2, 0, 2, 0, 2, 2, 2} {60, 118, 174, 142, 108, 74, 38, 88}

238 {47, 39, 35, 29, 27, 23, 19, 15, 11, 3} {2, 2, 0, 2, 2, 2, 2, 2} {72, 142, 210, 172, 132, 90, 46, 106}

240 {59, 47, 39, 35, 27, 23, 15, 3} {2, 2, 2, 2, 2, 2, 2, 2} {92, 182, 270, 220, 168, 114, 58, 136}

Partitions are shown for the adjoint representation only. Homomorphisms

identified include 39 root maps which are not recognised Characteristics of

nilpotent orbits: these are highlighted in red.
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