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Abstract

This thesis contains work from several different projects linked by the

common goal of understanding the origin of generalized symmetries and

their ’t Hooft anomalies in string theory realizations of quantum field

theories (QFTs).

Beginning in holography, we study the supergravity origin of the 1-form

symmetry of 4d N = 1 SU(N) Super-Yang Mills (SYM). Furthermore we

discuss the imprint of a mixed 0-form/1-form symmetry anomaly in the

associated holographic geometry.

This holographic work was an early precursor to the notion of the Sym-

metry Topological Field Theory (SymTFT), which we study in this the-

sis for 3d QFTs constructed in M-theory. In particular, we derive the

SymTFT for 3d supersymmetric QFTs constructed in M-theory either

via geometric engineering or holography. The SymTFT encodes the sym-

metry structures of the QFTs, including their anomalies. We probe our

general framework with a variety of examples.

We also present an argument that branes, in a certain topological limit,

not only furnish the symmetry generators of generalized symmetries, but

also encode the SymTFT. We derive the SymTFT directly from branes,

and furthermore demonstrate the central role that Hanany-Witten brane

configurations play in this process. After presenting a general analysis, we

study various examples of QFTs realized in both geometric engineering

and holography.
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Chapter 1

Introduction

Symmetry plays a central, governing role in the vast majority of physics research. At a

coarse level, symmetries can be divided into two categories: global and gauge. Gauge

symmetries are ubiqutous in physical theories: for example, they are the key com-

ponent in the description of the fundamental forces in the Standard Model. Global

symmetries can impose selection rules, be spontaneously broken, have ’t Hooft anoma-

lies and can often be gauged. This suite of properties means that studying global

symmetries in quantum field theories (QFTs) offers immense power and possibility.

String/M-theory allows computational access to a range of subtle and complex

QFTs, in particular strong-coupling regimes and higher-dimensional theories. In this

thesis, we are interested in studying the origin, imprint and consequences of symme-

tries in QFTs from the perspective of their string theory realizations.

Throughout this thesis we will be primarily interested in a new type of global

symmetry, called “generalized symmetries” [7], which we review in section 1.1. Fur-

thermore, the central tool we employ throughout this thesis is called the Symmetry

Topological Field Theory (SymTFT), which we review in great depth in chapter 2.

This is a topological field theory in one dimension higher than the QFT we are study-

ing, and it encodes key symmetry properties which are of interest to us. In this work

we explain where the SymTFT sits in string theory realizations of QFTs, how to

compute its couplings, and how branes in string theory play a crucial role.
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1.1 Generalized Symmetries

In this thesis we are particularly interested in a modern development within the area

of global symmetries, known as “generalized global symmetries”. The concept of

generalized symmetries was first introduced in the 2014 paper [7]1, following which

there has been a flurry of activity. The central idea of this work can be neatly

summarized in the statement:

Symmetries in a QFT ↔ Topological Operators (1.1)

This simple relationship, which we will explain in detail below, leads to a range

of exciting consequences and new types of symmetries to be studied. Relevant for

this thesis are: invertible higher-form symmetries, higher-group symmetries and non-

invertible/ categorical higher-form symmetries. We will discuss each of these below.

The first and most natural extension of the notion of global symmetries is to so-

called “higher-form” global symmetries. Before we get there, we must first re-cast

our understanding of “ordinary” symmetries in a new language.

Ordinary Symmetries. An ordinary (pre-2014) symmetry is traditionally en-

coded in a unitary operator

U(t) , (1.2)

which acts on the Hilbert space defined at a time t. Such an operator acts on local

operators O(x, t) by conjugation

U(t)O(x, t)U(t)−1 = O′(x, t) , (1.3)

Here the prime denotes a new local operator defined at the same spacetime location. A

key property of such unitary operators U is their commutation with the Hamiltonian:

U(t1) = U(t2) , ∀t1, t2 , (1.4)

1For greater depth, there are a number of reviews of this topic, including [8–13].
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U(Sd−1)

O(x) O′(x)

U(Sd−1)

=

Figure 1.1: On the left we insert an operator U on Σd−1 = Sd−1 which links with
the local operator O(x). The operator U is topological, as long as it doesn’t cross a
charged operator (according to (1.6)), so we can shrink it. Once we cross U with O,
this changes O(x) → O(x)′. Finally, once U no longer links with anything charged,
it becomes trivial.

A key insight of [7] is to consider placing the operator U on an arbitrary codimension-1

submanifold of d-dimensional spacetime Σd−1

U(Σd−1) . (1.5)

Such an operator is topological : meaning that U(Σd−1) = U(Σ̃d−1) for two manifolds

Σd−1, Σ̃d−1 which are related by topological manipulation. This is the generalization

of (1.4).

The action on local operators is similar:

U(Σd−1)O(x) = O(x)′U(Σ̃d−1) , (1.6)

where crucially O(x) ≡ O(x, t) lies in the d-dimensional submanifold connecting Σd−1

and Σ̃d−1. This action can equivalently be represented using “linking”, see figure 1.1.

Higher-Form Symmetries. We are now ready to introduce higher-form global

symmetries. A p-form global symmetry is defined by the existence of codimension-

(p + 1) operators U which are topological. In other words, they can be inserted on

(d − p − 1)-dimensional submanifolds of spacetime, Σd−p−1. Owing to their smaller

dimension, these operators no longer act on local operators by linking. Instead, they

act on p-dimensional extended operators. See figure 1.2.
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=U(Sd−p−1)

O(Mp) O(Mp)

ϕ ×

Figure 1.2: Here we demonstrate how a p-form symmetry generator U(Sd−p−1) acts
on an extended operator. Initially, U links with a p-dimensional operator O. U
is topological, so we can deform to a configuration where the operators no longer
link. However, analogously to the ordinary case, after un-linking, the operator O is
modified. This time it picks up a phase, ϕ.

In this language, the ordinary symmetries discussed above are therefore 0-form

symmetries, since they act on 0-dimensional local operators.

Fusion Rules. It is well-known that ordinary global symmetries form groups. In

the language of the topological operators, a 0-form symmetry is described by a group

G when:

Ug1(Σd−1)Ug2(Σd−1) = Ug1·g2(Σd−1) , (1.7)

where gi ∈ G are group elements which label the topological operators.

Analogously, codimension-(p+ 1) operators obeying

Ug1(Σd−p−1)Ug2(Σd−p−1) = Ug1·g2(Σd−p−1) , (1.8)

signal the existence of a p-form symmetry group G. Collectively these symmetries

come under the title of invertible higher-form symmetries. The powerful insights

of [7] was that one can use many of the same properties we love about ordinary

symmetries in this new paradigm: these symmetries can be gauged, have anomalies,

and be spontaneously broken.
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It is natural to ask if there exists theories in which such operators do not obey

group-law fusion rules. Examples of these symmetries naturally occur in 2d theories

(e.g. [14–20]), and have recently been shown to exist in higher-dimensional QFTs

[21–23]. Such symmetries are referred to as non-invertible or categorical symmetries.

Schematically, given some generators Ua labelled by S = {a, b, c, . . . }, the fusion rules

can be more general than the group-theoretic case above:

UaUb =
∑
i

Ui . (1.9)

Studying these symmetries, their properties, mathematical structure and physical

consequences is currently an incredibly active area of research [22,24–57].

Higher-Group Symmetries. Two or more invertible higher-form symmetries of

a QFT can generically combine in a non-trivial way (i.e. not just a direct product)

[58–63]. Such symmetries are referred to as higher-group symmetries. For example,

a 0-form and 1-form symmetry can combine non-trivially in a 2-group symmetry.

The “non-trivial” combination of symmetries is often in the form of a mixing of

background fields. Concretely, suppose we begin with a background field Bp+1 for a

U(1) p-form symmetry, with field strength Hp+2 = dBp+1. The presence of a higher-

group symmetry means that Bp+1 may transform under the gauge transformations of

some other higher-form symmetry background fields {Bp1+1, Bp2+1, . . . , Bpn+1}. We

can make Hp+2 gauge-invariant once more by adding extra terms.

Hp+2 = dBp+1 +Θ(Bp1+1, Bp2+1, . . . , Bpn+1) , (1.10)

where Θ is some function of background fields of the other continuous higher-form

symmetries. We say that the theory has a continuous higher-form symmetry group

if a relationship of this type exists. We will now explain the notion of background

fields and anomalies in more detail below.
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1.2 Background Fields and Anomalies

In this section we explain the concept of background fields and anomalies for invertible

higher-form symmetries. An ordinary 0-form symmetry background is a connection

A on a 0-form symmetry group bundle on spacetime. Locally, we write this as a

differential 1-form A1 with field strength F2 = dA1.

Continuous p-Form Symmetries. For a continuous U(1) p-form symmetry, the

background is a (p+ 1)-form Bp+1 with field strength Hp+2 = dBp+1. A small gauge

transformation of this background field is of the form

Bp+1 → Bp+1 + dλp , (1.11)

where λp is a p-form gauge field.

Finite p-Form Symmetries. For a discrete p-form symmetry, the background

gauge field is now a (p + 1)-cochain which takes its values in the p-form symmetry

group. In the presence of no other symmetry backgrounds, this gauge field is flat

δBp+1 = 0 . (1.12)

A small gauge transformation in this case takes the form

Bp+1 → Bp+1 + δλp , (1.13)

where now λp is a group-valued p-cochain. As explained above, in the presence of

other symmetries, the flatness relation may not hold: in which case we say we have a

higher-group symmetry.

’t Hooft Anomalies. ’t Hooft anomalies are features of QFTs involving invariance

under background gauge transformations of symmetries. It is important to note that

the existence of such an anomaly does not imply a problem with the QFT, it is still a

6



consistent theory. In particular, a pure ’t Hooft anomaly of a p-form symmetry arises

when background gauge transformations cause an irreparable change to the partition

function

Z[Bp+1] ̸= Z[Bp+1 + δλp] . (1.14)

Here “irreparable” means that the change cannot be undone by adding a counter-

term which is a function of Bp+1. The existence of such an anomaly signals that one

cannot gauge the p-form symmetry in a consistent way.

Generically, a theory may have two or more higher-form symmetries. Even if these

symmetries are non-anomalous on their own, there can be mixed ’t Hooft anomalies

between the symmetries. For example, if

Z[Bp+1, Bq+1] ̸= Z[Bp+1 + δλp, Bq+1] , (1.15)

but

Z[Bp+1, Bq+1 = 0] = Z[Bp+1 + δλp, Bq+1 = 0] , (1.16)

for some p- and q-form symmetries, the theory is said to have a mixed ’t Hooft

anomaly. This anomaly is an obstruction to gauging both symmetries simultaneously.

1.3 Outline of Thesis

In Chapter 2 we give a long-form introduction to the topic of Symmetry Topological

Field Theories (SymTFT) - the key topic of interest in this thesis. In this chapter we

also present the general analysis and structure which underpins all the applications

in subsequent chapters.

In Chapter 3 we study a particular holographic description of 4d N = 1 SU(N)

Super Yang-Mills, namely the Klebanov-Strassler solution [64]. This field theory has

a ZN global 1-form symmetry and mixed 0/1-form symmetry anomaly. We use the

holographic correspondence to identify the supergravity origin of the global symme-

tries, as well as the imprint of this mixed anomaly.

7



In Chapter 4 we study the SymTFT of 3d QFTs realized in M-theory construc-

tions. Using the differential cohomology paradigm of [65] we demonstrate how the

global symmetries and ’t Hooft anomalies of these QFTs are encoded in the geometries

of the string theory constructions.

In Chapter 5 we study a recently discovered relationship between branes and

generalized global symmetries. We demonstrate that branes encode not only the

symmetry generators of generalized symmetries, but also the SymTFT. We highlight

the power of our work in a variety of examples in four spacetime dimensions.
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Chapter 2

The Symmetry Topological Field
Theory

The symmetry structure of a d-dimensional QFT can be conveniently encoded inside

a topological quantum field theory of one dimension higher, called the Symmetry

Topological Field Theory (SymTFT or Symmetry TFT ) [65–67]. Concretely, the

SymTFT encodes the choice of global structure of the QFT gauge group, as well as

the possible (mixed) ’t Hooft anomalies of the generalized symmetries of the QFT.

In this chapter we describe the general features of the SymTFT, and then give

a detailed description of its origin in string theory realizations of QFTs (both in

holography and geometric engineering). The content of this chapter represents the

backbone of this thesis: it presents an introduction to the ideas and tools applied

across various contexts in chapters 3, 4 and 5.

2.1 General Structure

Let us consider a d-dimensional QFT. The associated (d + 1)-dimensional SymTFT

has topological boundary conditions, denoted Bsym, and non-topological boundary

conditions denoted Bphys. The latter boundary is generically non-topological, but

in instances where the physical d-dimensional theory is topological, it can also be

topological. After reduction along an interval, these boundary conditions give rise

to the d-dimensional QFT: see figure 2.1. The SymTFT is an extension of the more

9



Bsym Bphys

SymTFT QFT,T

Figure 2.1: Here we depict the SymTFT with its two boundaries Bsym,Bphys. After
interval compactification, we obtain the d-dimensional QFT T .

familiar anomaly theory in the following sense. The anomaly theory is an invertible

theory whose gauge variation, when placed on a manifold with boundary, exactly

cancels that of the partition function of the QFT. This invertible theory assigns

a 1-dimensional Hilbert space to closed codimension-1 sub-manifolds in spacetime.

This contains information about the phase of the partition function of the QFT T ,

evaluated on the codimension-1 manifold. Relaxing the invertible condition gives the

SymTFT. This allows for the assignment of a larger-than-one dimensional Hilbert

space. Now the QFT has a vector of partition functions. This set of distinct partition

functions encodes the possible choices of global structures of T . In particular, the

QFTs encoded in these choices will have identical local physics but a distinct spectrum

of extended operators. Picking a boundary condition here amounts to fixing a global

structure, or in other words selecting an absolute QFT.

In this thesis, we will focus specifically on generalized symmetries which are

abelian. In these cases, the SymTFT has an action formulation in terms of the abelian

background fields for these symmetries. The most general symmetry we consider is a

product of higher-form symmetry groups:

S =
∏
p

G(p) , (2.1)

Here we assume that the d-dimensional theory, T , is an absolute theory. The back-

10



ground fields for the individual components of the p-form symmetry group G(p) are

denoted

Bi
p+1 ∈ Hp+1

(
Md,Znp

i

)
, (2.2)

where G(p) =
∏

i Znp
i
for some np

i ∈ Z+. We encode the possible (mixed) ’t Hooft

anomalies of these symmetries in a term A({Bp+1}). In string theory settings, most

generalized symmetries seem to be of this type. For a discussion of the SymTFT in

this more general setting, see [68, 69].

One way of viewing the SymTFT is as a gauging of the p-form symmetries in

(d + 1)-dimensions, i.e. coupling the theory to a Dijkgraaf-Witten type dynamical

discrete gauge theory. This contains the BF-couplings for the now dynamical fields

bip+1 and the dual fields b̂id−p−1, as well as the anomaly term

SSymTFT =

∫
Md+1

∑
p

∑
i,j

np
ij b

i
p+1 ∧ db̂

j
d−p−1 +A

(
{bip+1}

)
. (2.3)

Here we use a continuum field formulation. The fields b are U(1)-valued, with equation

of motion ndb = 0.

The SymTFT has proved incredibly powerful in a variety of contexts. See [20–23,

27,28,30–45,47,68–106] for a selection of recent works.

Topological Defects of the SymTFT. The topological defects of the SymTFT

are given in terms of generalized Wilson lines for the gauge fields. Here we denote

them by Q. Beginning with (2.3), one can determine the defects by exponentiating

the Gauss law constraints (see e.g. [41, 107]). To illustrate the setup we begin in the

absence of any anomaly couplings A = 0. The topological defects are generated by:

Q
(bi)
p+1(Mp+1) = exp

(
2πi

∫
Mp+1

bip+1

)

Q
(̂bi)
d−p−1(Md−p−1) = exp

(
2πi

∫
Md−p−1

b̂id−p−1

)
.

(2.4)

11



These have a non-trivial commutation relation

Q
(bi)
p+1(M)Q

(̂bi)
d−p−1(M

′) = exp

(
2πi

L(Mp+1,M
′
d−p−1)

np
i

)
Q

(̂bi)
d−p−1(M

′)Q
(bi)
p+1(M) . (2.5)

Here L(M,M ′) is the linking of the two manifolds in the (d+1)-dimensional spacetime.

In the presence of non-trivial couplings between the fields bip+1 in A({bip+1}), there

will be additional terms in the above expressions for the topological defects.

The concept of a SymTFT is in principle completely general and can be applied

to capture the global structures of any given QFT.

Condensation Completion of SymTFTs. Whilst the defects in (2.4) represent

the core operators in the SymTFT, one should also include condensation defects.

These arise by condensing the defects of the dual symmetry, generated by Q
(b)
p+1 on

the defect Q
(̂b)
d−p−1 that generates the symmetry G(p):

C
(
Q

(̂b)
d−p−1 (Md−p−1) ,Q

(b)
p+1(Mp+1)

)
=

1

|Hp+1 (Md−p−1,Zn)|
∑

Mp+1∈Hp+1(Md−p−1,Zn)

Q
(b)
p+1 (Mp+1)Q

(̂b)
d−p−1 (Md−p−1) .

(2.6)

We can also condense these on other symmetry generators, up to dimension con-

straints.

These additional defects can also be realized by introducing localized couplings in

the SymTFT, which correspond to coupling lower-dimensional DW type theories to

the SymTFT. Taking into account all possible condensations, this is

SSymTFT ⊃np

∫
Md+1

bp+1 ∧ d b̂d−p−1

+
∑
k≥1

∫
Md−k

(bp+1 ∧ ad−k−p−1 + npad−k−p−1 ∧ dâ p) .
(2.7)

Symmetries. The SymTFT for the theory T is constructed in such a way that the

symmetry boundary Bsym has symmetry S of the theory T . For abelian group-like
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Bsym

Qp+1

Bsym

Proj(Qp+1) ∈ S

Figure 2.2: Projecting a topological defect Q gives rise to a topological defect on
Bsym.

symmetries, given a SymTFT we can recover the symmetry by projecting the bulk

topological operators to the symmetry boundary. See figure 2.2.

In the present instance we can simplify the analysis further, by stating that the

boundary conditions are specified by a subset L of topological defects Q of the

SymTFT, which have Dirichlet boundary conditions on Bsym. This means the topo-

logical defects can end. Furthermore, requiring that this subset is mutually local and

maximal defines a so-called “polarization”.

All the defects in L end on the boundary and will define generalized charges

– which we will discuss in the next subsection. The symmetry generators are the

projections of the bulk topological operators onto the symmetry boundary. An in-

depth analysis of all consistency conditions and possibilities in general was undertaken

in [68].

Generalized Charges. The charges under generalized symmetries were recently

identified as being simply the topological defects of the associated SymTFT [68]. This

applies to several invertible and non-invertible symmetries and has been shown to

hold in many such instances [103,108,109]. Particularly interesting is the observation

that there are generalized charges even for invertible higher-form symmetries. The

SymTFT plays the central role in succinctly characterizing these charges.
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Bsym Bphys

E (Qq+1)
q

SymTFT(S)

Qq+1

T

Oq

Figure 2.3: Here we consider an operator Q which ends on both boundaries. After
interval compactification it gives rise to a genuine q-charge in the absolute theory T .

As proposed in [108], we refer to a q-dimensional, not necessarily topological,

defect operator Oq that is charged under a generalized symmetry as a q-charge. The

statement of [108,109] is that for an invertible higher-form symmetry G(p)

Genuine q-charges Oq ←→ (q + 1)−Rep
(
G(p)

)
, (2.8)

where the right hand side is the fusion higher-category of higher-representations of

G(p) (see e.g. [9, 38, 108] for physics-motivated discussions of these categories). Here

q = 0, · · · , d−2. The genuine q-charges are not attached to (q+1)-dimensional defects

(topological or not), see figure 2.3, and arise after interval compactification as end-

points of bulk topological operators Qq+1 that end on both physical and topological

boundaries1.

In addition to genuine charges, there can be non-genuine (attached at the end of

Oq+1) and twisted sector (attached to the end of topological Sq+1 defects) q-charges.

In the SymTFT picture, the twisted sector charges arise from projecting L-shaped

bulk topological defects, see figure 2.4: we project a bulk topological defect onto

the symmetry boundary in an L-shape, which results in a junction operator E (Qq+1)
p

attached to a topological defect Dq+1 ∈ S. After interval compactification this is a

1Here we employ the standard nomenclature of “genuine” and “non-genuine” operators. A p
dimensional non-genuine operator is one which is attached to a collection of q > p-dimensional
operators. A genuine operator is one which is free from this type of attachment.
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Bsym Bphys

E (Qq+1)
q

Dq+1

SymTFT(S)

Qq+1 ∈ L

T

Oq

Dq+1

Figure 2.4: Here we consider the L-shape projection of a bulk topological defect
Qq+1 onto the symmetry boundary. This creates a junction Ep which is attached to
a topological defect Dq+1. After interval compactification we obtain a q-charge Oq

attached to the topological defect Dq+1.

q-charge Oq, attached to a topological (q+1)-dimensional defect Dq+1, which is thus

a twisted sector operator.

Charges from Linking. Finally let’s consider the action of symmetry defects on

charges. This arises by computing the linking of bulk topological defects projected

onto the symmetry boundary. There is the standard linking action of higher-form

symmetry generators on defects, which follows from the linking in (2.4), where the

mutually non-local defects are either Neumann or Dirichlet:

Proj(Qb̂
d−p−1)(∂Qp+1|Bsym) −→ Dd−p−1(Op) = qOpOp , (2.9)

where the arrow denotes the interval compactification, and q is the charge under the

higher-form symmetry. This is shown in figure 2.5. The configuration shown here has

various generalizations which were discussed in [68]. For the constructions in string

theory, this is the most general setup we will require.

Non-invertible defects can also act by taking an operator in between genuine

and twisted sectors. For example, passing the topological defect for a non-invertible

symmetry through the end of the bulk topological defect, results in a twisted sector

defect, as shown in figure 2.6. This action is well-known in various contexts of non-
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Bsym Bphys

Proj(Qd−q−1)

SymTFT(S)

Qq+1

T

Oq

Dd−q−1

Figure 2.5: Here we demonstrate how a symmetry acts via linking. The topological
operator Qp+1 ends and gives rise to the (genuine) q-charge Oq in T . In turn, Qd−q−1

projects onto the symmetry boundary and gives rise to a symmetry generator after
the interval compactification. The non-trivial linking of these topological defects in
the SymTFT results in the generalized charge.

Dd−q

Qq+1
Oq

Dd−q

Dd−q Qq+1

Oq

Dd−q

Figure 2.6: Here we demonstrate how a non-invertible symmetry can map a genuine
operator to a non-genuine operator. The genuine defect Oq is acted upon by the
topological defect Dd−q, which maps it to a non-genuine operator, with an attachment
of a (q + 1)-dimensional operator.
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invertible symmetries in a variety of dimensions [23, 110] and was realized in terms

of branes as Hanany-Witten moves in [41]. We will provide various generalizations of

this in chapter 5.

The SymTFT is a particularly useful notion in the context of string theory since

recent progress has shown that the SymTFT can be computed independently using

geometric methods. Since their recent inception, generalized symmetries in string

theory and related theories have thus been studied extensively2.This research is most

useful within the context of strong-coupled regimes of theories, either in geometric

engineering or in holography.

2.2 SymTFTs in String Theory: Generalities

Let us first describe how a holographic or geometric engineering construction in string

theory leads to a bulk topological description of the abelian and finite symmetry

sector of a relative QFT living at the boundary. In most cases3 this bulk topological

description will play the role of the SymTFT, once suitable boundary conditions

are imposed to make the theory absolute. In chapter 5 we incorporate branes that

realize symmetry defects and generalized charges into this framework in a very general

fashion.

Flux Sector of Supergravity. First of all we focus on the flux sector of 10/11-

dimensional supergravity (depending on a string or M-theory starting point, respec-

tively), and in particular on the Bianchi identities and equations of motion that the

fluxes will satisfy. In chapter 5 we will also include brane sources, which magnetically

charge branes. This is because the bulk gauge potentials will provide background

2For a sample list of references see [4, 5, 41–43,46,47,49,56,57,70,111–150].
3In some cases from string theory we obtain a theory that is not a SymTFT, because there are

no topological boundary conditions. In these instances one typically cannot have an absolute theory
at the boundary. For instance, this is indeed the case for 6d (2, 0) theories, which can be relative
theories.
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fields for the finite, abelian generalized symmetries. Their holonomies will also give

rise to the topological operators defining the generalized symmetries. This informa-

tion is equivalently encoded in the brane actions [41]. We will not consider the rest of

the supergravity action which includes scalar fields, the metric and other modes. This

is justified by the fact that we will be interested in the physics of flat discrete gauge

fields (vanishing fluxes on-shell), which give non-trivial holonomies. The dilaton and

the metric equations of motion will depend only on modes for which the fluxes are

non-vanishing. The flux action of 10/11-dimensional supergravity has two pieces, a

kinetic term and cubic Chern-Simons topological coupling, which can depend on one

or more fluxes. It will be useful to adopt a formulation in which we include both

the supergravity fluxes and their Hodge duals in 10/11 dimensions in a democratic

way, as detailed below. However before presenting the democratic formulation let us

describe the precise relation between the SymTFT and the bulk theory in holographic

and geometric/brane engineering setups.

Dimensional Reduction of Flux Sector. The second step consists of dimen-

sionally reducing the flux action with brane sources on the geometry dictated by

the holographic description or the boundary at infinity of the geometric engineering

setup. Concretely let

∂XD+1 = LD , (2.10)

where either the holographic solution is Md+1 × LD or the geometric engineering

corresponds to a compactification on XD+1. This is given by specifying the following

geometric background, which is a solution of the supergravity equations of motion

MD+d+1 =Md+1 × LD , (2.11)

where

D+ d+ 1 =

10

11

 = D + 1 , (2.12)
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depending on string or M-theory. The QFT is d-dimensional, and we start with

a D + 1 dimensional supergravity theory. In the resulting lower-dimensional the-

ory we generically obtain an action that consists of kinetic terms as well as cubic

Chern-Simons couplings. This theory is defined on Md+1, which has a d-dimensional

boundary. It can be AdSd+1 or more general spaces with a boundary which sits at

infinity. In chapter 4 we derive a general expression for this reduction in the context

of 3d QFTs constructed in M-theory.

Topological Limit. In this dimensionally reduced theory, we are interested in very

long-distance regimes, which are realized very close to the boundary at infinity [151].

In this sense, we can implement a derivative expansion of the kinetic and topological

couplings of the flux action. The lowest derivatives dominate, which usually con-

sists of topological couplings when they are non-trivial. This is also valid for the

dimensionally reduced brane action at very large-distances, where the kinetic terms

obtained from expanding the DBI part of the action are subleading with respect to

the topological couplings. In addition, the Wess-Zumino part will always provide

topological couplings when non-trivial.

The main reason why we can truncate the dimensionally reduced bulk and brane

action is that we really want to focus on finite, abelian, global symmetries. The gauge

fields of these symmetries in the bulk, which are flat, have vanishing flux on-shell.

The modes which we remove in the truncation do not couple to the symmetry sector

described by flat fields, and therefore can be ignored. For instance, the kinetic term

for the dimensionally reduced fluxes will be non-trivial only for the non-vanishing part

of the fluxes and therefore can be ignored [151]. To reconcile the large-distance limit

and the truncation to the flat finite abelian gauge fields, we can say that from the

point of view of large-distances, i.e. the close to the boundary limit, the modes with

non-vanishing flux are massive, and they can be integrated out, effectively leaving
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only the topological couplings describing the non-trivial fluctuation of flat fields and

their non-trivial holonomies.

Finally, having truncated the dimensionally-reduced bulk and brane action to their

topological sector, which describes the physics of finite abelian flat gauge fields, we

can deform the space without changing its topology such as

Md+1 →Md × R . (2.13)

SymTFT, Boundaries and Holography/String Theory. We can then connect

this to the standard notion of SymTFT. The choice of absolute theory, i.e. a choice

of polarization, will be implemented by partially compactifying the R direction, i.e

the semi-infinite [0,∞) interval [65]

Stop|polarization = SSymTFT . (2.14)

We can then think of the physical boundary (not necessarily gapped boundary) Bphys

as placed at r = 0. Likewise, the symmetry boundary, i.e. topological boundary

condition, Bsym, is at r =∞.

The position of the two boundaries reflects what appears to be the position of

the physical theory and the topological boundary, respectively, both in holography

and string theory geometric engineering. The interpretation of the coordinate r and

therefore of these precise positions, depends on the metric. For simplicity, for AdS

we work in hyper-polar coordinates

ds2(AdSd+1) ∼ r2ds2(R1,d) + r−2dr2 , (2.15)

(the conformal boundary is located at r =∞), while for geometric engineering setups

we identify r with the real cone direction in the space XD+1

ds2XD+1
= dr2 + r2ds2LD(XD+1)

, (2.16)

with the link Ln (r = 0 is the singularity at the tip of the cone).
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In particular, in holographic setups we associate Bphys with the origin of AdS

space (r = 0), and not with the conformal boundary (r = ∞). This might seem

counter-intuitive, since the CFT lives on a spacetime isomorphic to the conformal

boundary. Our perspective stems from the fact that the CFT is dual to the dynamics

of the gravity theory in the bulk of AdS spacetime.

The presence of the conformal boundary on the gravity side teaches us that we

need to supplement the bulk action with boundary conditions for the supergravity

fields, in order to obtain a gravitational system that is holographically dual to a QFT.

This is quantified in the following key relation of the AdS/CFT correspondence [152]

Zsugra[(b.c. for φ) = Jφ] =
〈
e
∫
OφJφ

〉
CFT

, (2.17)

where Oφ is the gauge-invariant operator dual to the supergravity field φ. In the

string theory origin of holography, where we look at the near-horizon limit of some

back-reacted brane system, the theory that we are describing is the one living on the

stack of branes in some low-energy decoupling limit. Therefore we can practically

consider the physical theory to live at r = 0 (radial position of the stack of branes)

and the boundary of AdS to be at r =∞. Once we truncate to the topological sector

the latter becomes Bsym. In geometric engineering, where the compactification space

Xn+1 is a real cone over a link Ln(Xn+1), this works in a very similar way: Bphys is

placed at r = 0 and Bsym at r =∞.

The real difference between the SymTFT and holography/string theory is that in

the latter we cannot really perform the partial compactification of the semi-interval

direction between [0,∞). The main reason is that before truncating to the topological

sector, we have gravity and other fields related to the full string theory construction in

the bulk, as well as non-local excitations. All these are not necessarily related to the

symmetry sector. In particular we cannot deform or compactify the space as we like.

Indeed, in holography the geometry of the radial direction provides the non-trivial

correspondence between the gravitational theory in the bulk and the QFT.
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Rather, we have two different procedures to specify an absolute theory in string

theory/holography, and in the SymTFT: in the former, we choose boundary condi-

tions at r = ∞; in the latter, we perform the interval compactification. Heuristi-

cally, in string theory/holography (quantum) gravity mediates between the topologi-

cal boundary and the choices of the boundary conditions at infinity with the theory

living at r = 0 without the need of an actual interval compactification. Let us em-

phasize, however, that these two procedures can be connected to each other on the

string/holography side, if we perform a truncation to the topological sector. Once the

truncation is performed, we are indeed free to specify Md+1 as in (2.13) and establish

a direct link with the SymTFT interval picture.

Singleton Theory. In many string-theory/holographic setups we have to deal with

the center of mass degree of freedom. For instance we could consider the stack of

branes before taking the near-horizon limit. In this case the theory that is realized on

the brane-stack is an absolute theory (with U(N) gauge group for N D-branes). On

the gravity side, the u(1) in u(N) ∼= su(N) ⊕ u(1) is described by what is called the

singleton mode [107]. This mode has been analyzed in detail in the case of the N = 4

su(N) SYM and its holographic construction. In particular, as it was shown by [153],

this is a mode in the KK supergravity spectrum (entire supersymmetric multiplet,

which contains the two forms B2, C2), which comes from an expansion in spherical

harmonics of S5 and satisfies specific conditions, that are different from the other

bulk fields. This bulk multiplet is dual to a U(1) gauge field in 4d (the center of mass

of the stack of brane). The extra conditions on this bulk multiplet, which we do not

repeat here, make the U(1) gauge field pure gauge that is eaten by the combination of

B2, C2 that has Dirichlet boundary conditions at r =∞. In terms of bulk fields, the

BF topological coupling between (B2, C2) can be seen as Stückelberg mechanism for

the combination of (B2, C2) that becomes Dirichlet, in the spirit of [154]. In [154], the
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standard BF action involving B2 and C2 in the presence of a boundary generically

gives a U(1) gauge field living at the boundary. For example, giving the field B2

Dirichlet boundary conditions forces it to become the field stength of the singleton

gauge field on the boundary, whilst C2 is the field strength for the electromagnetic

dual. Therefore the singleton mode is pure gauge in the bulk and at the topological

boundary, and it is not dual to any propagating physical mode of the N = 4 su(N)

SYM. The near-horizon limit decouples the center of mass mode of a stack of branes

by making it pure gauge and hence non-propagating in the bulk. The mode then

localizes on the boundary at r = ∞. We expect this to generalize in the context

discussed in this work, and it would be insightful to repeat this analysis in other

contexts or to generalize it.

2.3 Symmetries from the Bulk in Holography

Having introduced a general framework above, let us first focus on holographic set-

ups, where the strong-coupled regime of an SQFT is represented by string/M-theory

on AdSd+1×X spacetime. Here, the SymTFT action can be found in the topological

couplings in the bulk supergravity on AdSd+1 (or in more general holographic setups).

The most well-studied example of AdS5×S5 has the bulk coupling N
∫
AdS5

B2 ∧ dC2,

which is an example a BF-coupling for the 1-form symmetries of the dual 4d gauge

theories (with gauge algebra su(N)) [107, 151, 154]. In terms of the formulation as

generalized symmetries and SymTFTs, there has been much recent interest in the

holographic literature [1, 37, 41, 151, 155–161], in particular for AdS4/CFT3 in [157]

and for 3d N = 6 SCFTs of ABJM type [162]. The SymTFT also emerges using

anomaly inflow methods for QFTs realized with branes [158,163,164].

Here we present a short example to demonstrate the salient points of this con-

struction. In chapter 3 we will derive the following 5d bulk supergravity term

SBF

2π
= gcd(N,M)

∫
M5

b2 ∧ dC2 , (2.18)
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for integers N,M and 2-form fields b2, C2. The equations of motion force b2, C2 to be

flat gauge fields. The topological bulk operators ei2π
∮
b2 , ei2π

∮
C2 are mutually non-

local due to the BF-action since the two composite fields are canonically conjugate

[151]. Now suppose the following boundary conditions are chosen:

b2 Dirichlet , C2 Neumann . (2.19)

Then ei2π
∮
C2 are the topological codimension-2 operators in 4d generating a Zgcd(N,M)

1-form symmetry with charged lines given by the operators ei2π
∮
b2 restricted to the

boundary. Alternative choices of boundary conditions correspond to different bound-

ary global symmetries or, equivalently, different choices of global form of the boundary

field theory gauge group.

2.4 Symmetries in Geometric Engineering

Brane constructions in string theory provide a large class of examples of anomaly theo-

ries. Ambient space gauge anomalies are cancelled by worldvolume ’t Hooft anomalies

via so-called ‘anomaly inflow’. In particular, cutting out a neighbourhood around the

branes, which act as sources of flux in the ambient string theory background, induces

a boundary in the 10/11d geometry, rendering the full effective action no longer gauge

invariant. In [158,163] it was explained that these anomalies, described by a (d+ 1)-

dimensional TFT or (d + 2)-dimensional anomaly polynomial, can be obtained by

dimensional reduction of the topological terms of the 10/11d effective action.

In string theory constructions without branes, the notion of inflow becomes less

clear. However it was argued in [65] that for compactifications on a (D−d)-dimensional

cone C(YD−d−1) (with D = 10, 11), dimensional reduction on the link space YD−d−1

remains a powerful tool in determining ’t Hooft anomalies. The cases considered

in [65] are 7d Yang-Mills and 5d SCFTs obtained from M-theory on singular Calabi-

Yau spaces. The SymTFT is derived in both cases from dimensional reduction of
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the topological terms in the 11d supergravity action and is tested with non-trivial

checks with known field theory computations for certain anomalies. For finite group

symmetries, we must employ differential cohomology to capture the appropriate back-

ground fields. Prior applications of differential cohomology to string/M-theory have

appeared in [65, 158, 165–168], and for a mathematical review see [169]. This tech-

nique is demonstrated in depth in chapter 4, including an introduction to differential

cohomology in section 4.2.2

Background Fields from Cohomology. The general-purpose SymTFT intro-

duced in (2.3) is formulated using background fields for the generalized symmetries. In

supergravity, the origin of these fields is massless gauge fields. There are two sources

of such fields: the reduction of the supergravity gauge potentials Cn on the cohomol-

ogy of the internal space YD−d−1, and the gauging of isometries of the geometry. First,

considering continuous symmetries (and specializing to D = 11): expanding the M-

theory C3 field on representatives of the free part of the cohomology Hp
Free(Y10−d;Z)

gives rise to massless (3− p)-form gauge fields. Schematically, we write

G4 = dc3 +
∑
i

dci2 ∧ ωi
1 +

∑
j

dcj1 ∧ ω
j
2 +

∑
k

dck0 ∧ ωk
3 , (2.20)

where subscripts denote form degrees and the forms ωp are representatives of the

free parts of the pth cohomology group. Superscripts represent various components of

the integral cohomology groups Hp
Free(Y10−d;Z). The massless q-form gauge fields cq

furnish background fields for continuous (q − 1)-form symmetries when fixed on the

boundary 4.

4In recent work [170] where the mathematical framework of SymTFTs has been fleshed out, the
authors consider finite symmetries only. However here, and in our general SymTFT reduction in
section 4.2 we allow for continuous global symmetries following the work of [65]. In cases where
the continuous fields participate in BF terms, after a choice of consistent boundary conditions these
become finite. Where the continuous fields do not participate in a BF term, the SymTFT terms they
contribute to represent an additional invertible sector (the anomaly theory for these symmetries).
Additionally, in the holographic contexts we consider, although continuous gauge fields admit non-
topological kinetic terms, these are sub-leading at large distances (at the boundary where the field
theory lives).
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Torsional Contributions. An natural extension is to consider finite higher-form

symmetries that arise from torsional contributions to the cohomology of Y10−d. Man-

ifesting the associated discrete background gauge fields requires a reduction of C3 on

torsional cocycles: a problem beyond the scope of ordinary differential forms 5. This

is where the framework of differential cohomology H̆(Y10−d) can be used to incorpo-

rate more general symmetry structures [65]. We include torsional contributions by

lifting G4 to differential cohomology and expanding as follows

Ğ4 =
∑
α

B̆α
3 ⋆ t̆

α
1 +

∑
β

B̆β
2 ⋆ t̆

β
2 +

∑
γ

B̆γ
1 ⋆ t̆

γ
3 +

∑
δ

b̆δ ⋆ t̆δ4 . (2.21)

Here, t̆αp are differential cohomology lifts of generators of TorHp(Y10−d;Z) of torsional

degree ℓαp ∈ N. We leave a detailed explanation of this notation and technology for

chapter 4. Here, we wish only to demonstrate that the notion of ‘expanding G4 in

cohomology’ is maintained. The fields B̆α
q represent background fields for Zℓαp (q−1)–

form symmetries. Crucially, including gauge fields of this new type allows for a whole

new class of SymTFT couplings upon dimensional reduction. It is terms of this type

in particular that we explore in this chapter 4.

See [41,42,44,55,56,170,173–178] for a selection of recent applications.

5Some attempts towards using standard harmonic forms were made in [171,172].
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Chapter 3

Symmetries in a Confining Theory

In this chapter we study confinement in 4d N = 1 SU(N) Super-Yang Mills (SYM)

from a holographic point of view, focusing on the 1-form symmetry and its relation

to chiral symmetry breaking. In the 5d supergravity dual, obtained by truncation of

the Klebanov-Strassler solution, we identify the topological couplings that determine

the 1-form symmetry and its ’t Hooft anomalies. One such coupling is a mixed 0-

form/1-form symmetry anomaly closely related to chiral symmetry breaking in gapped

confining vacua. From the dual gravity description we also identify the infra-red (IR)

4d topological field theory (TQFT), which realises chiral symmetry breaking and

matches the mixed anomaly.

3.1 Introduction

Global symmetries and their ’t Hooft anomalies can highly constrain the dynamics of

gauge theories. A prime example is the role of the 1-form symmetry in confinement

of N = 1 SU(N) super Yang-Mills (SYM) or adjoint QCD theories. In this case the

1-form symmetry Γ(1) = ZN and corresponds to the center of the gauge group, which

acts on line operators [7, 179] and provides a diagnostic of confinement. The order

parameter for this symmetry is the vacuum expectation value (vev) of the Wilson line

in the fundamental representation, which obeys area law in a confining vacuum. This

implies that an infinitely extended Wilson line has vanishing vev, therefore preserving
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the 1-form symmetry. In addition, N = 1 SU(N) SYM also has a 0-form R-symmetry

U(1)
(0)
R . The Adler-Bell-Jackiw (ABJ) or chiral anomaly breaks U(1)

(0)
R to Γ(0) = Z2N ,

which by chiral symmetry breaking [180] (χSB) further breaks to Z2 in the confining

phase

U(1)
ABJ−→ Z2N

χSB−→ Z2 . (3.1)

There is a 0-/1-form symmetry mixed ’t Hooft anomaly

A[b2, A] = 2π N2

∫
X5

Ab2 b2 , (3.2)

where b2 is the background for Z(1)
N and A for Γ(0), which satisfy

∮
b2 ∈ Z

N
and∮

A ∈ Z
2N

. This anomaly constrains the IR strongly coupled physics [7,181,182]. In a

confining vacuum the 1-form symmetry is unbroken, and the 0-form background has

to satisfy
∮
A ∈ Z

2
and Γ(0) is broken to Γ(0) = Z2. This breaking indicates N distinct

confining vacua, modelled by a gapped TQFT.

The goal of this chapter is to take a holographic perspective, from which we derive

the 1-form symmetry and the mixed anomaly, as well as the TQFT describing the IR

confining vacua. Higher-form symmetries in the AdS/CFT correspondence were dis-

cussed in [151,155,157,183,184]. Our focus here is on holography in a non-conformal

setting, where the dual gauge theory is conjectured to be a confining theory related

to N = 1 SU(N) SYM [185–188]. Concretely, we develop the methods to determine

the 1-form symmetry in the Klebanov-Strassler (KS) [64,189–193] solution. The cen-

tral tool for our analysis is the consistent truncation of supergravity to 5d [194–196].

From this we determine a Stückelberg coupling for the R-symmetry which breaks it

to a discrete subgroup as predicted by the ABJ anomaly in field theory, as well as

5d topological couplings from which we identify the 1-form symmetry and anoma-

lies that will be central to χSB. Finally we show how the 5d supergravity reduction

contains as boundary counterterms the 4d TQFT describing the IR vacua of N = 1
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SU(N) SYM. The approach proposed in this work has a vast number of generaliza-

tions, to holographic setups for confining theories, but also to geometric engineering

constructions of confining theories e.g. [197]. It provides an exciting opportunity to

revisit these setups, and sharpen the predictions, by taking the perspective based on

higher-form symmetries.

3.1.1 Holographic Dual to Confinement

One of the most successful holographic realizations of N = 1 SU(N) SYM theory

is the KS-solution [64]. This construction is realised in 10d IIB supergravity, and it

consists of two main ingredients:

1. N D3-branes probing the conifold C(T 1,1), which is a conical Calabi-Yau with

5d link T 1,1, that is topologically S2×S3. The near-horizon of this brane system

is AdS5 × T 1,1 with 5-form flux
∫
T 1,1 F5 = N .

2. M D5-branes wrapping the S2 ⊂ T 1,1.

The D5s backreact on the external geometry, modifying the AdS5 metric. The solution

at large radial distances, the KS-solution, is

ds210 = ds2M5
+R2(r)ds2T 1,1 , R(r) ∼ ln

(
r

rs

)1/4

, (3.3)

where ds2M5
= r2dx⃗2

R2(r)
+ R2(r)dr2

r2
, and rs = r0e

− 2πN
3gsM2−

1
4 . At large r, the quantization of

fluxes is ∫
S3

F3 =M ,

∫
S2

B2 = L(r) ,∫
T 1,1

F5 = K(r) = N +ML , L =
3gsM

2π
ln(r/r0) ,

(3.4)

where r0 is the UV scale, and we refer to this as the UV KS-solution, valid for r

sufficiently large and gsK(r)≫ 1. Note that F5 is no longer quantised: its integral over

the internal space acquires a radial dependence. The solution has a naked singularity

at R(rs) = 0, and in particular we can consider rs → 0, when N
M2 ≫ 1. Due to
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the naked singularity at small radial distances r → rs, higher curvature corrections

become relevant, and (3.3) is no longer valid. There is a smooth solution describing

this regime, and it requires the full warped, deformed conifold solution [64].

Warped, Deformed Conifold. At small radial distances r → rs of the KS-

solution, higher curvature corrections cause the UV solution (3.3) to break down.

This regime, which we call the IR KS-solution, is sensitive to the deformation of the

conifold induced by the M D5-branes wrapping S2 ⊂ T 1,1. The non-zero F3 flux

threading the S3 prevents this cycle from shrinking to zero volume, whereas the S2

collapses. Here the effective number of D3s is zero and the gauge theory dual is the IR

regime of pure N = 1 SU(M) SYM. The warped, deformed conifold is parametrised

by a new coordinate τ , which, at large τ , is related to r by r2 = 32−5/3ϵ4/3e2τ/3. Near

τ → 0 the metric is approximately R3,1 times the deformed conifold [64]. For the sake

of illustration we include the shrinking S2 in the degenerate metric

ds210 = c1ϵ
−4/3(gsMl2s)

−1dx⃗2 + c2gsMl2sds
2
6 ,

ds26 =
1

2
dτ 2 +

1

2
(g5)2 + (g3)2 + (g4)2 +

1

4
τ 2[(g1)2 + (g2)2] ,

(3.5)

where {gi} are the standard basis of 1-forms on T 1,1 [198] and ci are numerical con-

stants [199]. For gsM ≪ 1 the curvatures are small everywhere, even in the far

IR, such that the supergravity approximation is always reliable. At τ = 0 the flux

background has significant simplifications

F5 = 0 , H3 = 0 , F3 =
l2sM

2
g5 ∧ g3 ∧ g4 . (3.6)

Dual Field Theory. The dual field theory description is given by SU(N +M)×

SU(N) gauge theory and bifundamental matter in (N+M,N)⊕ (N+M,N), where

a combination of the two gauge couplings has flown to strong coupling regimes. In

particular, this theory is not conformal and the gauge couplings of the two factors

run in opposite directions. E.g. when SU(N +M) with NF = 2N becomes strongly
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coupled, we apply Seiberg duality [200], resulting in SU(N −M) with NF = 2N .

This process perpetuates with the new gauge couplings flowing in opposite directions,

giving rise to a ‘duality cascade’. For N = κM , κ ∈ N, the endpoint is N = 1 SU(M)

SYM at strong coupling.

The RG-flow of the gauge theory cascade is mirrored explicitly in the dual gravity

background. Moving from large r to r → re−
2π

3gsM ,
∫
S2 B2 and

∫
T 1,1 F5 change by

L(r)→ L(r)−1, K(r)→ K(r)−M . At the special slices with fixed r = rk = r0e
− 2πk

3gsM ,

where L,K are integer, the supergravity background is dual to the SU(N−(k−1)M)×

SU(N − kM) gauge theory in the baryonic branch [201]. Alternatively we can work

in terms of Page charges defined in [202], where F̂5 = F5 − B2F3 is always integrally

quantized
∫
T 1,1 F̂5 = N−kM , due to large gauge transformations of

∫
S2 B2 → L(r)+k.

For N = κM the endpoint is reached at a value rκ where there are only M units

of F3-flux and no F5-flux. In this regime, r ∼ rκ, the solution (3.3) breaks down

before reaching the r → rs limit, since gsK(rκ) = 0, and the metric in (3.3) is not

smooth. We therefore have the following hierarchy of scales r0 ≫ rk ≫ rκ > rs. The

smooth supergravity solution for r ≤ rκ is instead provided by the warped deformed

conifold [64]. We denote this by the IR KS-solution, which describes the IR regimes

of N = 1 SU(M) SYM.

3.2 1-Form Symmetries from Supergravity

The global form of the gauge group, or put differently, the set of mutually local line

operators, can be determined in holography by considering boundary conditions (b.c.)

of Chern-Simons-like couplings [151, 183, 184]. Put in a more modern language, the

2-form backgrounds for 1-form symmetries of the holographic field theory are deter-

mined by topological couplings in the bulk and specific b.c.s yield absolute theories

(i.e. definite spectra of line operators). On the gauge theory side of the duality cas-

cade, the ZN+M × ZN center symmetry of SU(N +M) × SU(N) is broken by the
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matter to

Γ(1) = Zgcd(N,N+M) = Zgcd(N,M) . (3.7)

This remains constant through each step of the cascade.

In order to derive the 1-form symmetry holographically we study fluctuations

around the UV KS-solution, when r is sufficiently large and gsK(r) ≫ 1, which

describes each step of the cascade until r ∼ rκ. The latter corresponds to the end of

the cascade and the smooth gravity dual is the warped deformed conifold, which we

will investigate momentarily.

We reduce IIB supergravity on T 1,1 and study the topological couplings of the

5d 2-form gauge fields on this background. The strings which couple to these fields

induce line operators on the rk slices, which in turn furnish the 1-form symmetry of the

boundary theory, also known as a ‘singleton theory’ [107,154]. In particular the 1-form

symmetry is deduced from the bulk couplings by imposing a set of consistent b.c.s.

In the continuous supergravity formalism, we obtain discrete higher-form symmetry

groups by fixing subsets of the 2-form gauge potentials within subgroups of U(1).

We derive the equations of motion of the 5d effective theory, obtained from com-

pactifying 10d IIB supergravity on T 1,1. We isolate dominant topological couplings

and determine an effective 5d action, which governs them. To identify the topological

couplings, we expand field strengths Fq along ωp ∈ Hp(T 1,1,Z) as Fq =
∑

p fq−p ∧ωp,

and insert these into the Type IIB equations

dH3 = 0 , d ∗10 H3 = −g2sF5 ∧ F3 ,

dF3 = 0 , d ∗10 F3 = F5 ∧H3 ,

dF5 = H3 ∧ F3 , d ∗10 F5 = F5 .

(3.8)

The couplings obtained in this way can equally be thought of as embedded into some

consistent truncation (e.g. [194]). We will find the following topological term in the

5d reduction in the KS-solution

Stop = 2π

∫
M5

b2 ∧ (Ndc2 −Mda2) . (3.9)
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In this section we focus on the UV regime: large r ∼ r0, dual to the top of the cascade

where both cycles S2 × S3 ⊂ T 1,1 are non-degenerate. We expand the fluctuations

along the volume forms ω2,3 ∈ H∗(T 1,1,Z) (see e.g. [191] for conventions and an

explicit parametrization)

δF3 = g3 + πl2sω2 ∧ g1 , δH3 = h3 ,

δF5 = πl2sω2 ∧ f3 +
2πl2s
6
Rω3 ∧ ∗f3 .

(3.10)

Here, h3, g1,3, f3 are all external fields and in this section we restore pre-factors for

completeness. Self-duality of δF5 implies a choice of frame: we can fix one expansion

component in terms of the other. We use the 3-form piece, since the operators of

the boundary 1-form symmetry are manifest in this frame. The Bianchi identities for

H3, F3 imply that the corresponding 5d fields are closed, so we write h3 = db2, g3 =

dc2, g1 = dc0. We interpret c0 as an axion, whereas b2, c2 couple to F1s and D1s,

respectively. The Bianchi identity for δF5 implies that f3 is not closed

df3 = dL ∧ g3 + h3 ∧ g1 . (3.11)

As such, we shift the field to obtain closure and define a new gauge potential da2 =

f3 − Ldc2 − b2dc0, which couples to D3s wrapping S2 ⊂ T 1,1. The 5d equations of

motion are

d(R ∗5 f3) =
3

2π
Mdb2

d(R5 ∗5 db2) = −27πl4sg2s(Kdc2 −Mf3 +
2π

3
R ∗5 f3 ∧ dc0)

d(R5 ∗5 dc2) = 27πl4s(Kdb2 +
2π

3
R ∗5 f3 ∧ dL)

d(R ∗5 dc0) = −R ∗5 f3 ∧ db2 .

(3.12)

From these equations of motion we extract leading topological contributions

Ndb2 = 0 , Mdb2 = 0 , Ndc2 −Mda2 = 0 , (3.13)

where we ignore c0, which can be gauged away via a Stückelberg mechanism. We

re-package the leading contributions in terms of a field C:

gcd(N,M)dC = 0 , gcd(N,M)db2 = 0 , (3.14)
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where C = q1c2 − q2a2, with gcd(N,M)q1 = N , gcd(N,M)q2 = M , and whereby

we decoupled the center of mass U(1)(1), corresponding to the 1-form symmetry of

the collective motion of the D3s. The couplings are embedded into the consistent

truncation of [194]. One can compare by varying their topological action, changing

duality frame and restricting to the relevant fields. We find that the following topo-

logical term in the 5d supergravity reduction on the UV KS-solution at r = rk ≫ rκ

dominates over higher derivative couplings,

S5d ⊃ 2π gcd(N,M)

∫
M5

b2 ∧ dC . (3.15)

1-form symmetries are generated by topological surface operators [7], which here are

Ub(M2) = e
2πi

∮
M2

b2 and Uc(M2) = e
2πi

∮
M2

C
, where M2 are closed surfaces, ∂M2 = ∅.

Generically, due to non-commutativity of fluxes, these do not commute [151]

Ub(M2)Uc(N2) = Uc(N2)Ub(M2)e
2πiL(M2,N2)

N , (3.16)

where L is the linking of the surfaces. These charge operators generate a 1-form

symmetry, which acts on charged line operators in the 4d field theory. We find these

charged line operators by considering operators of the form Ub(Σ) with ∂Σ ⊂M5|rk .

Similarly, the line operators Ub(Σ) and Uc(Σ) are not mutually local due to their

linking. At each rk slice, a maximal set of mutually local line operators corresponds

to b.c.s of b2 and C.

A possible choice of b.c. for (3.15) is b2 Dirichlet and C Neumann. Since C is

free to vary at the boundary, Uc will correspond to the topological charge operator

for the 1-form symmetry. By varying the topological action we find a condition

gcd(N,M)b2 ∧ δC|rk = 0 , which forces b2 to take fixed values at the boundary. This

implies that we can define a flat connection b1 in 4d taking values in Zgcd(N,M), i.e.

gcd(N,M)b2 = db1 = 0 at the slice r = rk. Therefore, Ub restricted to ∂Σ ⊂ M5|rk

corresponds to the charged line operators of the field theory. As is well known, the

fundamental strings, carrying world-volume b2, ending on the boundary indeed give
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rise to Wilson lines in the 4d theory. They generate the 1-form symmetry Γ(1) of

(3.7). The screening can equally be seen by considering the analog of the ‘baryon

vertex’ [203] in this setup: integrating the Bianchi identities for D5s on T 1,1 and D3s

on S3 yield ∫
T 1,1

dF7 =

∫
T 1,1

H3 ∧ F5 = (N − kM)H3∫
S3

dF5 =

∫
S3

H3 ∧ F3 = MH3 .

(3.17)

Thus D5s on T 1,1 provide the ‘baryon vertex’ that screens N − kM F1s, while D3s

on S3 screen M F1s. In particular, gcd(N,M) F1s is the minimal configuration of

strings that are screened. Alternative b.c.s can be studied1, the IR will fix the one

above.

From here onwards, we consider N = κM , which allows us to connect to confine-

ment. In this case the deformed conifold IR solution holographically describes the

bottom of the cascade for the confining phase of SYM with SU(M) simply-connected

gauge group.

In [41] the authors carefully show that the supergravity solution contains bulk

terms which can be used to describe both the SU(M) and PSU(M) global forms in

the IR. In particular, they also derive the TQFT(s) which describe the IR of these

scenarios.

3.3 Mixed Anomaly and χSB from Holography

All things are now in place to see holographically the mixed anomaly (3.2) and χSB

(3.1). To do this, we need to study the rest of the topological couplings in the 5d

bulk supergravity action. In particular we need to include the R-symmetry of the

dual field theory, which is realized in terms of the U(1)-isometry (Reeb-vector) of the

T 1,1 solution. This can be described by a U(1) 1-form gauge field A, which enters the

1Note that there are other b.c. e.g. C Dirichlet/b2 Neumann, which result in the same 1-form
symmetry. For gcd(M,N) = pq it is also possible to consider mixed b.c. which yield Γ(1) = Zp×Zq.
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metric of T 1,1 as dβ → dβ−A, where β is the coordinate of the Hopf fiber of the S3.

The breaking by the ABJ anomaly to Z2M is realized holographically by a Stückelberg

coupling in the 5d consistent truncation. In addition, we argue that chiral symmetry

breaking is consistent with the mixed 0-/1-form symmetry anomaly, which we derive

from the 5d supergravity, and the KS-solution. In the IR we also derive the TQFT

proposed in [7] which matches the mixed anomaly.

The additional 5d topological terms in the action are (see appendix A.1)

S5d ⊃ 2π

∫
R
2
|dc0 + 2MA|2 −M2b22A+

M

2
b22 dc0 . (3.18)

The first term is the kinetic term for the axion. Since it contains two derivatives it

is subleading when evaluated on the UV KS-solution, when r is large, with respect

to the topological terms. On the other hand its effect is important, since it realises

the Stückelberg mechanism for the U(1)R gauge field A. The shift symmetry of the

axion, c0 ∼ c0 +2π, is gauged by the U(1)R symmetry, so that the action is invariant

under the non-linear transformation

A→ A+ dα , c0 → c0 − 2Mα . (3.19)

We can use this symmetry to completely gauge away the axion, leaving only a mass

term for the gauge field. Fixing c0 = 0, there is still a residual discrete symmetry

generated by α ∈ π
M
Z. This is the direct way to identify the breaking of U(1)R → Z(0)

2M ,

as required by the ABJ anomaly.

The second term in (3.18) corresponds to the anomaly between the 0-form back-

ground A for Z(0)
2M ,

∮
A ∈ Z

2M
, and b2 for Z(1)

M ,
∮
b2 ∈ Z

M

A[b2, A] = −2πM2

∫
M5

b2 b2A , (3.20)

which is a mixed 0-/1-form symmetry anomaly 2. As expected it does not depend on

the energy scale, and therefore this term will survive in the IR. In the IR we expect

2I.e. b2 ∈ H2(M5,ZM ) and A ∈ H1(M5,Z2M ), and using the cup-product instead of wedge
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the theory to be dual to a confining vacuum of SU(M) SYM, so the Z(1)
M should be

unbroken, and this gapped phase should be described by a 4d TQFT. Since A is a

Z2M background, (3.20) does not become integral in general. It was proven in [182]

that unless this term is integral there cannot be a 4d TQFT with Γ(0) = Z2M and

Γ(1) = ZM symmetries in the IR that saturates all the anomalies of the theory in the

UV. On the other hand, integrality of (3.20) and an unbroken Z(1)
M implies∮

A ∈ Z
2
: Z2M → Z2 , (3.21)

implying chiral symmetry breaking in the IR vacuum of SU(M) SYM. We stress

that our analysis shows that the presence of this topological coupling in the UV KS

supergravity solution is already preempting and consistent with the chiral symmetry

breaking in the gapped confining vacuum with Z(0)
2 and Z(1)

M symmetries.

3.4 4d IR TQFT from Holography

Finally, we now turn to the IR description of the theory. 5d supergravity contains

topological terms leading to the IR 4d TQFT, which matches (3.20), and realises a

spontaneous chiral symmetry breaking, Z2M → Z2. From field theory, the IR theory

that matches the anomalies of the UV gauge theory was proposed to be [7]

STQFT4d
=

∫
Mϕ

(
dc3 +

M

2
b22

)
=

∫
MϕF4 . (3.22)

The M vacua, labelled by ⟨eiϕ⟩ = e
2πiℓ
M , ℓ = 0, 1, . . .M − 1, are separated by domain

walls (DWs) [204], ei
∮
c3 .

The smooth IR gravity dual background is the deformed conifold solution, where

τ → 0. In this regime there is no hierarchy between the 5d bulk kinetic and topological

terms, and the former need to be taken into account. Before the S2 degenerates,

the D5s source C6 = ω3 ∧ c3, and in addition since F7 = ∗F3 we consider dc3 =

R
2
∗5 (dc0 + 2MA). Therefore, in the IR the dynamics of c0 becomes relevant. Since
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A corresponds to the true isometry of the IR KS-solution, that is a Z2 gauge field,

c0 does not shift under a gauge transformation of A. The 5d IR topological action

becomes

S ′
5d ⊃ 2π

∫
2MAdc3 + dc0dc3 +

M

2
b22 dc0 . (3.23)

We first notice that the mixed anomaly between Γ(0) = Z2M and Γ(1) = ZM has

disappeared. This is due to an additional topological term |cΩ(r)|2b22A [194,205,206],

which for the UV KS-solution depends on the UV scale r0, but is constant in the IR

cΩ =M . This is consistent with anomaly matching since the IR theory has Γ(0) = Z2,

which is not anomalous on spin manifolds. The third term is a total derivative, and

varying by c0 implies Mdb2 = 0. When this condition is satisfied, the last two terms

give rise to topological counterterms for the 4d theory living at the boundary. This

implies that they are not anomalies, but rather the imprint of the TQFT (3.22) in the

IR, which is precisely obtained by identifying c0 ↔ Mϕ and evaluating these terms

at the boundary. In particular, c0 is related to the presence of DWs given by D5s

wrapping S3. These source
∫
B
F3, where B is the Poincaré dual cycle in the deformed

conifold with S2 boundary at infinity. This entails that
∫
B
F3 ∼

∫
S2 c0ω2, and because

of the presence of the D5 DWs, c0 = ℓ is quantized and corresponds to the number of

D5s. Each vacua is labelled by ⟨eiϕ⟩ = e
2πiℓ
M , ℓ = 0, 1, . . .M − 1. Therefore, under the

identification c0 ↔Mϕ, we observe the above result in each vacua. The UV anomaly

(3.20) in the IR is realised by the action of Γ(0) = Z2M , ℓ→ ℓ + 1, which is however

not a symmetry of the IR vacuum.

The IR theory proposed in [7] is furthermore invariant under 1-form symmetry

transformation B2 → B2 + dλ, and this implies that c3 → c3 −NB2λ − N
2
λdλ. The

transformation of the 1-form symmetry enters in the shift of c3, which signals the

presence of a 3-group [7,207]. This is again supported by the string theory realisation

of these DWs in terms of D5s wrapped on S3 in the deformed conifold. The CS-action

of the D5 is LCS =
∑

pCp ∧ e−B. The DWs extend in the 4d spacetime such that
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F4 =
∫
S3 dLCS = dc3 +

M
2
B2

2 , the 3-group follows from the gauge invariance of the

world-volume action of the D5 and it is analogously consistent with gauge invariance

of (3.23).
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Chapter 4

Symmetry TFTs for 3d QFTs from
M-Theory

In this chapter we derive the Symmetry Topological Field Theories for 3d supersym-

metric quantum field theories constructed in M-theory either via geometric engineer-

ing or holography. These 4d SymTFTs encode the symmetry structures of the 3d

QFTs, for instance the generalized global symmetries and their ’t Hooft anomalies.

Using differential cohomology, we derive the SymTFT by reducing M-theory on a

7-manifold Y7, which either is the link of a conical Calabi-Yau four-fold or part of an

AdS4 × Y7 holographic solution. In the holographic setting we first consider the 3d

N = 6 ABJ(M) theories and derive the BF-couplings, which allow the identification of

the global form of the gauge group, as well as 1-form symmetry anomalies. Secondly,

we compute the SymTFT for 3d N = 2 quiver gauge theories whose holographic du-

als are based on Sasaki-Einstein 7-manifolds of type Y7 = Y p,k(CP2). The SymTFT

encodes 0- and 1-form symmetries, as well as potential ’t Hooft anomalies between

these. Furthermore, by studying the gapped boundary conditions of the SymTFT we

constrain the allowed choices for U(1) Chern-Simons terms in the dual field theory.

4.1 Introduction

The goal of this chapter is to determine the SymTFT for 3d QFTs which either

have a realization as geometric engineering in M-theory on an 8-manifold, or in
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terms of AdS4/CFT3 holographic setups in M-theory. These two constructions are

closely related and we provide a systematic computational approach to determining

the SymTFT in both cases. The main focus will be on conical 8-manifolds (with

special holonomy) X8 = C(Y7) in setups with and without branes. Using differential

cohomology in the supergravity reduction allows us to take into account the effects

of torsion in the homology of Y7, which is associated with a new set of background

fields for finite higher-form symmetries.

For Y7 a Sasakian 7-manifold we provide a prescription for computing the SymTFT

coefficients explicitly, which correspond to secondary invariants in differential co-

homology, from the intersection theory in the non-compact complex 4-fold X8 We

give detailed examples when the cone X8 is toric, in particular for X8 = C4/Zk and

X8 = C(Y p,k(CP2)), where combinatorial formulas for intersection numbers can be

explicitly computed. As such, we explain how physical anomaly coefficients and BF-

terms are encoded in the geometric information of the toric diagram. In summary,

we will derive the SymTFT and give a procedure for computing the coefficients for

1. Geometric engineering: M-theory on a singular, non-compact Calabi-Yau 4-fold

X8 = C(Y7), i.e. Y7 is a Sasaki-Einstein 7-manifold.

2. Holography: AdS4 × Y7 solutions of M-theory, which are dual to M2-branes

probing X8 = C(Y7), where Y7 is a Sasakian 7-manifold (Sasaki-Einstein when

X8 is a Calabi-Yau 4-fold).

For concrete applications, we will mostly focus on the holographic setups, leaving the

exploration of geometrically engineered 3d QFTs for future work. We first compute

the SymTFT in the M-theory models dual to ABJM and ABJ theories. This relatively

simple holographic setup is well-suited to demonstrate these new refined geometric

methods while, at the same time, allowing for a match with known results from type

IIA [157] in the case where discrete background torsional flux is turned off. Finally, we
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apply this machinery in a much more subtle (and not completely fixed) duality of 3d

N = 2 theories realized on M2-branes probing C(Y p,k(CP2)) [208–210]. By computing

the SymTFT from the geometry, we obtain previously unknown anomalies for these

theories. Furthermore, we will see that analysing consistent gapped boundaries of

the SymTFT provides some further checks and balances to the proposed dictionary,

coming from the spectrum of extended operators.

Generalized symmetries and their ’t Hooft anomalies have a rich structure that

has been studied field-theoretically from various angles in e.g. in [137,211–214]. Some

of these results will be used later on to cross-check against our string theoretic results.

The structure of this chapter is as follows: In section 4.2 we provide some back-

ground on differential cohomology and compute a general expression for the SymTFT

for 3d QFTs which can be constructed from M-theory on X8 = C(Y7) with and with-

out branes. We then explain how to compute the coefficients in the SymTFT in

section 4.3, in particular in the case of toric X8. In section 4.4 we apply the above

technology to our first example: the 3d N = 6 ((U(N + b)k × U(N)−k)/Zm ABJ(M)

theories [162, 215, 216]. We next apply our technology to the Y p,k(CP2) 3d N = 2

quiver gauge theories of [208–210] in section 4.5. In section 4.6 we discuss matching

with field theory results of [210]. Finally, in section 4.7 we highlight various possible

future directions. We also provide some appendices. In appendix B.1 we use type

IIA to conjecture the existence of an additional BF-term in the Y p,k case.

4.2 SymTFT from M-Theory on Y7

We derive the SymTFT of any 3d QFT that arises in M-theory, either as compact-

ification on R1,2 × C(Y7), or holographically dual to AdS4 × Y7. This is achieved

by reducing the topological terms of 11d supergravity on both the free and torsional

parts of the cohomology of Y7. A caveat in this analysis is that the symmetries we will
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capture from this approach need to be manifest within the geometric realization. We

focus our main attention on the dimensional reduction using differential cohomology.

4.2.1 Reduction using the Free Part of Cohomology

Let us start by performing the reduction of M-theory onM11 =M4×Y7, using only

the free part of the cohomologyHp
Free(Y7;Z) which gives rise to continuous gauge fields

in the effective 4d theory. As discussed above, these massless modes are obtained by

a Kaluza-Klein expansion of the 4-form flux G4 on representatives of the cohomology

of the internal space with integral periods. Their topological couplings arise from the

11d supergravity term

S11d

2π
=

∫
M11

[
−1

6
C3 ∧G4 ∧G4 − C3 ∧X8

]
. (4.1)

The 8-form characteristic class X8 is constructed from the Pontryagin classes of the

tangent bundle

X8 =
1

192
(p1(TM11) ∧ p1(TM11)− 4p2(TM11)) . (4.2)

To derive the 4d topological couplings we consider the gauge invariant 5-form I5, on

an auxiliary 5d space, which is the derivative of the 4d topological Lagrangian

I5 = dI4 , S4d = 2π

∫
M4

I4 . (4.3)

We identify I5 as

I5 =

∫
Y7

I12 =

∫
Y7

(
−1

6
G4 ∧G4 ∧G4 −G4 ∧X8

)
. (4.4)

Assuming Y7 is connected, the betti numbers br(Y7) = dimHr(Y7,R) satisfy bi(Y7) =

b7−i(Y7). We denote the associated closed p-forms by

ωi
p , p = 0, . . . , 7 , i = 0, . . . , bp(Y7) , (4.5)
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with ω0 ≡ 1. We expand the 4-form flux using these forms

G4 =
4∑

p=0

bp(Y7)∑
i=0

gi4−p ∧ ωi
p . (4.6)

When considering particular solutions it will be convenient to have separated the

background Gbg
4 supporting the vacuum from the dynamical fluctuations G′

4 around

the solution:

G4 = G′
4 +Gbg

4 . (4.7)

Imposing the Bianchi identity, we find that giq can locally be written as

gi0 ≡ N i , giq = dciq−1 , q = 1, 2, 3 , g4 = dc3 + LvolM4 , (4.8)

with the background parametrised by∫
Ci

Gbg
4 = N i ∈ Z ,

∫
M4

Gbg
4 = L ∈ Z , (4.9)

where Ci is a basis of 4-cycles in Y7. It is important to note that in this expression

we are including all possible terms, however we will never have non-trivial L and N

concurrently, as this would amount to imposing quantization conditions on G4 and

G7 simultaneously. For all examples in this work, we will consider non-trivial L only.

We can therefore write the fluctuations

G′
4 =

3∑
p=0

bp(Y7)∑
i=0

dci3−p ∧ ωi
p , (4.10)

and background

Gbg
4 = LvolM4 +

b4(Y7)∑
i=0

N iωi
4 . (4.11)

In the reduction of the CS-term G3
4, the background flux over the external space will

contribute metric-dependent terms (which belong to the scalar potential) that we

neglect. Performing the reduction we find∫
Y7

−1

6
G3

4 =
∑
ijk

(
−1

2
Kijkdci2 ∧ dc

j
0 ∧ dck0 +

1

2
Kijkdci1 ∧ dc

j
1 ∧ dck0 +KijkN idcj1 ∧ dck2

)
(4.12)
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where the intersection numbers are given by

Kijk =

∫
Y7

ωi
1 ∧ ω

j
3 ∧ ωk

3 , Kijk =

∫
Y7

ωi
2 ∧ ω

j
2 ∧ ωk

3 ,

Kij =

∫
Y7

ωi
4 ∧ ω

j
3 , Kijk =

∫
Y7

ωi
4 ∧ ω

j
2 ∧ ωk

1 .

(4.13)

To factorise the characteristic class X8, we can employ the Whitney sum formula for

Pontryagin classes defined on a product manifold [217]. Assuming the external space

M4 is orientable and spin, we obtain

p1(TM11) = p1(TM4) + p1(TY7) ,

p2(TM11) = p2(TM4) + p2(TY7) + p1(TM4)⌣ p1(TY7) .
(4.14)

The second Pontryagin classes vanish on dimensional grounds. We can therefore write

the 8-form characteristic class

X8 = −
1

96
p1(TM4)⌣ p1(TY7) . (4.15)

Together with the expansion (4.6) we find

−
∫
Y7

G4 ∧X8 = −
1

96

b3(Y7)∑
i=1

[∫
Y7

ωi
3 ∧ p1(TY7)

]
dci0 ∧ p1(TM4) . (4.16)

Defining

Ci =
1

96

∫
Y7

ωi
3 ∧ p1(TY7) , (4.17)

the gauge invariant 5-form is

I5 =
∑
ijk

(
−1

2
Kijkdci2 ∧ dc

j
0 ∧ dck0 +

1

2
Kijkdci1 ∧ dc

j
1 ∧ dck0 +KijkN idcj1 ∧ dck2

)
+
∑
ij

KijN idcj0 ∧ dc3 −
∑
i

Cidci0 ∧ p1(TM4) .

(4.18)

Acting with an anti-derivative, we find

I4 =
∑
ijk

(
1

2
Kijkdci2 ∧ c

j
0 ∧ dck0 +

1

2
Kijkdci1 ∧ c

j
1 ∧ dck0 +KijkN icj1 ∧ dck2

)
−
∑
ij

KijN idcj0 ∧ c3 −
∑
i

Cici0p1(TM4) .
(4.19)
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Notice in particular the single derivative terms

I4 ⊃
∑
ijk

KijkN icj1 ∧ dck2 −
∑
ij

KijN idcj0 ∧ c3 . (4.20)

Such BF-terms constrain the possible boundary conditions that can be imposed on the

pairs (cj1, c
k
2) and (cj0, c3), which in turn dictates the global symmetries of the resulting

field theory. For example, if KxyzN x ≡ m ̸= 0, giving cy1 Neumann (free) boundary

conditions implies that cz2 must be fixed to a background value in Zm in the boundary

theory, giving rise to a Z(1)
m global 1-form symmetry in the 3d theory. Exchanging

the boundary conditions corresponds to gauging the full Zm 1-form symmetry, and

we obtain a Zm 0-form symmetry instead. After a choice of boundary conditions

consistent with the BF terms, the other terms in (4.18)/(4.19) give rise to mixed

anomalies between the resulting finite higher-form symmetries.

4.2.2 Review of Differential Cohomology

In [65] it was shown, by employing a description in terms of differential cohomology,

that torsion in Hp(Y7;Z) may give rise to additional couplings in the SymTFT. In

this section we recap the introduction of [65] on differential cohomology in order to

introduce both the notation and some of the mathematical machinery we use through-

out this work. For further mathematical details and implementations of differential

cohomology in string/M-theory see e.g. [65, 165–169].

Differential cohomology combines information about the characteristic class of

the gauge bundle and the connection. The pth differential cohomology group H̆p(M)

of an n-dimensional manifold M is a differential refinement of the ordinary integral

cohomology group Hp(M ;Z). Denote by Ωp closed p-forms, and by Ωp
Z the subset

of those with integral periods. The differential cohomology class takes part in the
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commutative diagram, whose diagonals are all short exact sequences 1:

TorHp(M ;Z)

Hp−1(M ;R/Z) Hp(M ;Z)

Hp−1(M ;R)
Hp−1

Free(M ;Z)
H̆p(M) Hp

Free(M ;Z)

Ωp−1(M)

Ωp−1
Z (M)

Ωp
Z(M)

dΩp−1(M)

−β

i ϱI

R

dZ

τ

d

r

(4.22)

Differential cohomology is endowed with a bilinear product

⋆ : H̆p(M)× H̆q(M)→ H̆p+q(M) , (4.23)

with the properties

ă ⋆ b̆ = (−1)pq b̆ ⋆ ă , I(ă ⋆ b̆) = I(ă)⌣ I(b̆) , R(ă ⋆ b̆) = R(ă) ∧R(b̆) , (4.24)

for ă ∈ H̆p(M) and b̆ ∈ H̆q(M). It has two non-trivial integration maps, namely:

• The primary invariant of a differential cohomology class of degree n = dim(M)∫
M

ă =

∫
M

I(ă) =

∫
M

R(ă) ∈ Z , ă ∈ H̆n(M) , (4.25)

• The secondary invariant of a differential cohomology class of degree n+ 1 (see

e.g. [218])∫
M

ă =

∫
M

w mod 1 =

∫
M

u ∈ R/Z , ă ∈ H̆n+1(M) , (4.26)

1An alternative way of describing differential cohomology is as follows. Differential cohomology is
useful to describe the non-trivial topological structure of higher-form gauge fields. A representative
Ă of a class [Ă] ∈ H̆p(M) is specified by a tuple [168]

Ă = (N,A, F ) . (4.21)

Here F is the field strength and is a closed (p+1)-form. A and N are maps from Cp(M), the space
of p-chains, to R and Z respectively. They encode holonomies and the non-trivial interplay between
these holonomies and the field strength. See [168] for more information on differential cohomology
phrased in this way.
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with

τ(w) = ă , w ∈ Ωn(M)

Ωn
Z(M)

, and ă = i(u) , u ∈ Hn(M ;R/Z) . (4.27)

In the setting of M-theory, we can write the action (4.1) as the secondary invariant

of a class Ĭ12 ∈ H̆12(M11),

S

2π
=

∫
M11

Ĭ12 mod 1 , (4.28)

where

Ĭ12 = −
1

6
Ğ4 ⋆ Ğ4 ⋆ Ğ4 − Ğ4 ⋆ X̆8 , (4.29)

with Ğ4 ∈ H̆4(M11) and X̆8 ∈ H̆8(M11).

For a given 7-manifold Y7, the generators of Hp(Y7;Z), p = 0, . . . , 7 are denoted

as follows:

• free generators of Hp(Y7;Z): r(ωi
p) ≡ vip, i = 1, . . . , bp(Y7) with ω

i
p ∈ Ωp

Z(Y7),

• torsion generators of Hp(Y7;Z): tαp , α ∈ Ap for some set of superscripts Ap.

For each torsion generator, there exists a minimal positive number ℓαp ∈ N, such that

ℓαp t
α
p = 0 . (4.30)

We will be particularly interested in the secondary invariant of Ĭ12 on a product space,

which is the compactification space of M-theory. For a set of differential cohomology

classes ă ∈ Hp(M4), b̆ ∈ Hq(Y7) with p+ q = 12 we have

∫
M4×Y7

ă ⋆ b̆ =


(∫

M4
u
)(∫

Y7
R(b̆)

)
if p = 5(∫

M4
R(ă)

)(∫
Y7
s
)

if p = 4

0 otherwise

(4.31)

where

i(u) = ă , i(s) = b̆ . (4.32)
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Now, we can choose the differential cohomology uplifts of the torsion generators t̆ to

be flat [65]

R(t̆) = 0 , (4.33)

which implies that for terms in Ĭ12 involving the torsion generators t̆, only those with

8 internal components will contribute (i.e. with p = 4 in (4.31))

4.2.3 Accounting for Torsion using Differential Cohomology

In this section we expand the differential refinement of G4, Ğ4 ∈ H̆4(M11), on the

product space M11 =M4 × Y7 and derive the topological sector of the effective 4d

supergravity theory, including torsion contributions.

We will take M4 to be connected, so H0(M4;Z) = Z, and assume vanishing

torsion TorH•(M4;Z) = 0. We will furthermore assume that Y7 is closed, connected

and orientable, so that [219]

H0(Y7;Z) = Z , TorH1(Y7;Z) = 0 . (4.34)

Thus, we take v0 ≡ 1 as the generator of H0(Y7). We can expand the ordinary

cohomology class2 G4 ∈ H4(M11;Z) as

G4 =
4∑

p=0

bp(Y7)∑
i=1

F i
4−p ⌣ vip +

4∑
p=2

∑
α∈Ap

Bα
4−p ⌣ tαp . (4.35)

Here, F i
q ∈ Hq(M4;Z) are a set of field strengths related to giq in (4.6) by

ϱ(F i
q) = r(giq) , (4.36)

and Bα
q ∈ Hq(M4;Z) model a set of closed q-form gauge fields. In particular, let

us comment on the 0-forms F i
0 and Bα

0 . Due to flux quantisation (over ordinary

and torsional cycles, respectively), F i
0 and Bα

0 are in fact integers. For F i
0, we have

ϱ(F i
0) = r(N i). We will simply write

F i
0 = N i ∈ Z , (4.37)

2We use G4 both for the cohomology class and for the differential form representing the free part.
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which is background flux over internal 4-cocycles supporting the vacuum. For Bα
0 ∈

H0(M4;Z), commutativity of the righthand diagram in (4.22) for p = 0 implies the

existence of a set of integers bα ∈ Ω0
Z, such that ϱ(Bα

0 ) = r(bα), parametrizing the

background flux over torsion 4-cocycles in Y7. We write

Bα
0 = bα ∈ Z . (4.38)

In order to distinguish this background flux from the fluctuating fields, we will use

bα below.

The uplift to differential cohomology Ğ4 ∈ H̆4(M11) is performed using the surjec-

tive map I : H̆p(M) ↠ Hp(M ;Z) in (4.22), which implies the existence of differential

cohomology classes F̆ i
4−p, B̆

α
4−p ∈ H̆4−p(M4) and v̆

i
p, t̆

α
p ∈ H̆p(Y7) such that

F i
4−p = I(F̆ i

4−p) , Bα
4−p = I(B̆α

4−p) , vip = I(v̆ip) , tαp = I(t̆αp ) . (4.39)

We therefore can write the differential cohomology uplift

Ğ4 =
4∑

p=0

bp(Y7)∑
i=1

F̆ i
4−p ⋆ v̆

i
p +

4∑
p=0

∑
α∈Ap

B̆α
4−p ⋆ t̆

α
p , (4.40)

such that

G4 = I(Ğ4) . (4.41)

The map I only determines Ğ4 up to a topologically trivial element. However the

contribution from this element is accessible through the ordinary cohomology formu-

lation, so we set it to zero in the following.

Dimensional reduction of the CS-term, using the expansion of Ğ4 in (4.40) (and

flatness of t̆) yields a significant number of potential topological couplings, which we

organise by the number of continuous, respectively discrete, gauge fields (i.e. into four

types of the form F 3, F 2B, FB2 and B3). Furthermore, we denote the 8-dimensional

50



secondary invariants of H̆8(Y7) over the internal space by3

Λijk
nm ≡

∫
Y7

v̆in ⋆ v̆
j
8−n−m ⋆ v̆km ,

Λijα
nm ≡

∫
Y7

v̆in ⋆ v̆
j
8−n−m ⋆ t̆αm ,

Λiαβ
nm ≡

∫
Y7

v̆in ⋆ t̆
α
8−n−m ⋆ t̆βm ,

Λαβγ
nm ≡

∫
Y7

t̆αn ⋆ t̆
β
8−n−m ⋆ t̆γm .

(4.42)

For the F 3 component we obtain∫
M11

−1

6
Ğ3

4

∣∣∣∣
F 3

=
∑
ijk

[
−K

ijk

2

∫
M4

F̆ i
3 ⋆ F̆

j
1 ⋆ F̆

k
1 +
Kijk

2

∫
M4

F̆ i
2 ⋆ F̆

j
2 ⋆ F̆

k
1 +KijkN i

∫
M4

F̆ j
2 ⋆ F̆

k
3

+
Λijk

23

2

∫
M4

F̆ i
2 ⋆ F̆

j
1 ⋆ F̆

k
1 +

Λijk
24

2
N k

∫
M4

F̆ i
2 ⋆ F̆

j
2 +

Λijk
14

2
N k

∫
M4

F̆ i
3 ⋆ F̆

j
1

]

+
∑
ij

[
KijN i

∫
M4

F̆ j
1 ⋆ F̆4 −

Λij
40

2
N iN j

∫
M4

F̆4

]
.

(4.43)

Here we notice that the four terms with primary invariants on Y7 are precisely those

captured by the ordinary cohomology reduction (and we therefore use the previous

notation for the coefficients). Using the definition of the primary invariant (4.25) we

have for n,m = 0, . . . , 4 and 3 ≤ n+m ≤ 7∫
Y7

v̆n ⋆ v̆7−n−m ⋆ v̆m =

∫
Y7

R(v̆n) ∧R(v̆7−n−m) ∧R(v̆m)

=

∫
Y7

ωn ∧ ω7−n−m ∧ ωm .

(4.44)

By comparison with (4.13) we conclude that

Kijk =

∫
Y7

v̆i1 ⋆ v̆
j
3 ⋆ v̆

k
3 , Kijk =

∫
Y7

v̆i2 ⋆ v̆
j
2 ⋆ v̆

k
3 ,

Kij =

∫
Y7

v̆i4 ⋆ v̆
j
3 , Kijk =

∫
Y7

v̆i4 ⋆ v̆
j
2 ⋆ v̆

k
1 .

(4.45)

Furthermore, using (4.26) we have (again, for n,m = 0, . . . , 4 and 3 ≤ n+m ≤ 7)∫
M4

F̆4−n ⋆ F̆n+m−3 ⋆ F̆4−m =

∫
M4

wnm mod 1 , wnm ∈
Ω4(M4)

Ω4
Z(M4)

, (4.46)

3Note that the Λ’s containing vi0 ≡ 1 will have one less i, j, k index. E.g. we write Λijk
0m ≡ Λjk

0m.
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where

dZwnm = R(F̆4−n ⋆ F̆n+m−3 ⋆ F̆4−m) = g4−n ∧ gn+m−3 ∧ g4−m . (4.47)

From this we see that (4.43) reproduces all the couplings from the CS-term in I5 (4.18).

The other four terms are new compared to the ordinary cohomology reduction. The

F 2B contribution is∫
M11

−1

6
Ğ3

4

∣∣∣∣
F 2B

=
∑
ijα

[
Λijα

33

∫
M4

F̆ i
1 ⋆ F̆

j
2 ⋆ B̆

α
1 + Λijα

43 N i

∫
M4

F̆ j
3 ⋆ B̆

α
1

− Λijα
42 N i

∫
M4

F̆ j
2 ⋆ B̆

α
2 + Λijα

34 b
α

∫
M4

F̆ i
1 ⋆ F̆

j
3

− Λijα
24

2
bα
∫
M4

F̆ i
2 ⋆ F̆

j
2 +

Λijα
32

2

∫
M4

F̆ i
1 ⋆ F̆

j
1 ⋆ B̆

α
2

]
−
∑
iα

Λiα
44N ibα

∫
M4

F̆4 .

(4.48)

Finally, the FB2 and B3 terms are respectively∫
M11

−1

6
Ğ3

4

∣∣∣∣
FB2

=
∑
iαβ

[
Λiαβ

32

∫
M4

F̆ i
1 ⋆ B̆

α
1 ⋆ B̆

β
2 +

Λiαβ
23

2

∫
M4

F̆ i
2 ⋆ B̆

α
1 ⋆ B̆

β
1

− Λiαβ
22 b

α

∫
M4

F̆ i
2 ⋆ B̆

β
2 + Λiαβ

13 b
α

∫
M4

F̆ i
3 ⋆ B̆

β
1

− Λiαβ
42

2
N i

∫
M4

B̆α
2 ⋆ B̆

β
2

]
−
∑
αβ

Λαβ
04

2
bαbβ

∫
M4

F̆4 ,

(4.49)

and∫
M11

−1

6
Ğ3

4

∣∣∣∣
B3

=
∑
αβγ

[
Λαβγ

23

2

∫
M4

B̆α
2 ⋆ B̆

β
1 ⋆ B̆

γ
1 −

Λαβγ
24

2
bγ
∫
M4

B̆α
2 ⋆ B̆

β
2

]
. (4.50)

Finally, we wish to account for the higher derivative contribution from the M-theory

effective action given by
∫
M11

C3 ∧ X8 with X8 ∈ H8(M11;Z) in (4.15). We can

promote X8 (equivalently, the Pontryagin classes) to a differential cohomology class

X̆8 ∈ H̆8(M11) as described in [220]. We have

X̆8 = −
1

96
p̆1(TM4) ⋆ p̆1(TY7) . (4.51)
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Then ∫
M11

−Ğ4 ⋆ X̆8 =
∑
α

[
1

96

∫
Y7

t̆α4 ⋆ p̆1(TY7)

] ∫
M4

bαp̆1(TM4)

+
∑
i

[
1

96

∫
Y7

v̆i3 ⋆ p̆1(TY7)

] ∫
M4

F̆ i
1 ⋆ p̆1(TM4)

+
∑
i

[
1

96

∫
Y7

v̆i4 ⋆ p̆1(TY7)

] ∫
M4

N ip̆1(TM4) .

(4.52)

The second term again reproduces what we found using the ordinary cohomology

reduction. For the remainder of this work we ignore such contributions. Notice that

the first and third terms above contain no dynamical fields. The second term may

in principle contribute non-trivially, but for all examples we consider these terms are

absent.

Application: Holographic AdS4 Backgrounds. We now turn to

AdS4/CFT3 holographic setups, where the supergravity background is supported by

L units of G4 background flux over AdS4 and the internal space has torsion cycles.

In this case the background flux that we have parametrized by N i in the above will

not be turned on. In addition, all the examples we consider satisfy

H1(Y7;Z) = 0 , H3(Y7;Z) = 0 , (4.53)

for which the topological action in (4.28) simplifies significantly to

Stop

2π
= −

∑
ijα

Λijα
24

2
bα
∫
M4

F̆ i
2 ⋆ F̆

j
2 −

∑
iαβ

Λiαβ
22 b

α

∫
M4

F̆ i
2 ⋆ B̆

β
2

−
∑
αβ

Λαβ
04

2
bαbβ

∫
M4

F̆4 −
∑
αβγ

Λαβγ
24

2
bγ
∫
M4

B̆α
2 ⋆ B̆

β
2 .

(4.54)

We briefly comment on the roles of each term in the above expression. The BF-term

bα
∫
M4

F̆ i
2 ⋆ B̆

β
2 = bα

∫
M4

Bβ
2 ⌣ F i

2 encodes non-commutativity of certain extended

operators and enforces the requirement to pick a polarization in order to obtain an

absolute QFT. After picking a polarization, in certain circumstances terms of this type
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can correspond to a mixed ’t Hooft anomaly polynomial between a discrete 1-form

symmetry Zℓβ with 2-form background gauge field Bβ
2 and a U(1) 0-form symmetry

with field stength F i
2. The BB-term bγ

∫
M4

B̆α
2 ⋆ B̆

β
2 = bγ

∫
M4

Bα
2 ⌣ Bβ

2 is a ’t Hooft

anomaly for the discrete 1-form symmetries Zℓα and Zℓβ . Note that the presence

of discrete background flux bα ̸= 0 for some α is essential for the existence of the

anomalies. We will not discuss the physical effects of the θ-term bα
∫
M4

F̆ i
2 ⋆ F̆

j
2 or

bαbβ
∫
M4

F̆4 in this work4.

4.3 SymTFT Coefficients from Geometry

A crucial aspect of the above analysis is the coefficients Λ. Clearly, the numerical

value of these
∫
Y7

integrals is important: a value of zero implies the absence of a

particular term in the anomaly polynomial, whilst a non-zero coefficient contains

physical information. In this section we determine these explicitly in the case of toric

Calabi-Yau 4-folds.

4.3.1 SymTFT Coefficients from Intersection Theory

The coefficients of the 4d topological action resulting from (4.43), (4.48)-(4.50) are

given by the primary/secondary invariants of elements of H̆p(Y7) with p = 7, 8 over

Y7. In the case where the integrand is an element of H̆7(Y7) we showed that these

are simply the intersection numbers (4.45) that we also obtain from the ordinary

cohomology reduction. On the other hand, when the integrand is an element of

H̆8(Y7) as in (4.42) there is no analogue in ordinary cohomology. Still, we would like

a convenient way to evaluate these coefficients, which, it turns out, can be accessed

by considering a space X8 of which Y7 is the boundary. In holography this notion

is quite natural since the duality is precisely between supergravity compactified on

Y7 and branes probing the tip of the cone over the compactification space, i.e. we

4Such terms in the anomaly polynomial are gauge invariant by themselves, and they do not
change the equation of motion for the bulk gauge fields in the AdS/CFT interpretation.
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can take X8 = C(Y7) to be this cone. It should be clear that the Λ’s in (4.42) are

defined purely in terms of the geometry of Y7, and we resort to the space X8 only for

computational convenience.

In this section we present an extension to the arguments of section 3.3 in [65],

where the coefficients (4.42) are derived from an intersection number computation on

the resolved space X̃8. In the geometric engineering set-up, we will assume that X̃8 is

a non-compact Calabi-Yau 4-fold. However, the Calabi-Yau condition can be relaxed

in the holography setups, such as the ABJ(M) theories in section 4.4.

We will make use of the long exact sequence

· · · → Hp(X̃8;Z)→ Hp(X̃8, Y7;Z)→ Hp−1(Y7;Z)→ Hp−1(X̃8;Z)→ . . . . (4.55)

Note in particular that elements of Hp(X̃8;Z) are compact p-cycles in X̃8 and elements

ofHp(X̃8, Y7;Z) are non-compact p-cycles in X̃8. We assume that there are no compact

(7− n)-cycles in X̃8

H7−n(X̃8;Z) = 0 , (4.56)

for a specific n ∈ {0, . . . , 6}.

This implies that any (7 − n)-cycle in Y7 can be realised as the boundary of an

(8 − n)-chain in X̃8. In the examples we consider, X̃8 is a non-compact toric 4-fold,

and these have no non-trivial odd-dimensional cycles, H2k−1(X̃8;Z) ≡ 0 for k ∈ N.

Using Poincaré duality in Y7, from (4.55) we find

H8−n(X̃8;Z)
A→ H8−n(X̃8, Y7;Z)

f→ Hn(Y7;Z)→ 0 . (4.57)

Since f is surjective, we conclude that every n-cocycle in Y7 can be mapped to a

non-compact (8 − n)-cycle D in X̃8. Furthermore, a torsion class tn ∈ Hn(Y7;Z)

satisfies

ℓtn = 0 , (4.58)
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for some (minimal) ℓ ∈ N. Then exactness of (4.57) implies that there exists a

compact (8− n)-cycle Z ∈ H8−n(X̃8;Z) such that

A(Z) = ℓT , f(T ) = tn , (4.59)

which we use to map a torsion class tn ∈ Hn(Y7;Z) to a compact (8 − n)-cycle Z

in X̃8. Taking A to be the intersection pairing in X̃8, the coefficients (4.42) of the

SymTFT can be computed as follows.

We associate to tαn of torsional degree ℓαn a compact (8− n)-cycle Z8−n
α in X̃8, and

to vim a non-compact (8−m)-cycle D8−m
i in X̃8. The coefficients are then given by

Λijk
nm =

[
D8−n

i ·Dn+m
j ·D8−m

k

]
mod 1

,

Λijα
nm =

[
D8−n

i ·Dn+m
j · Z8−m

α

ℓαm

]
mod 1

,

Λiαβ
nm =

[
D8−n

i · Zn+m
α · Z8−m

β

ℓα8−n−mℓ
β
m

]
mod 1

,

Λαβγ
nm =

[
Z8−n

α · Zn+m
β · Z8−m

γ

ℓαnℓ
β
8−n−mℓ

γ
m

]
mod 1

,

(4.60)

where · denotes intersections in X̃8 = C(Y7).

We must take extra care with the terms in the 4d effective action which come

with a factor of a half. That is, the relevant object to compute is not Λ but rather

Ω ≡ Λ/2. However multiplication by 1/2 is not a well-defined operation due to the

mod 1 in (4.60). We use the approach by Gordon and Litherland [221] employed

in [65] to deal with the refinement by a factor of 1/2. Concretely, this approach

allows for the computation of these secondary invariants - as performed for 3- and

5-dimensional links in [65]. The applicability of this analysis to the current case is

borne out by our matching with known field theory results. We compute these terms
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as follows:

Ωij
n =

1

2

∫
Y7

v̆in ⋆ v̆
i
n ⋆ v̆

j
8−2n =

[
D8−n

i ·D8−n
i ·D2n

j

2

]
mod 1

,

Ωiα
n =

1

2

∫
Y7

v̆in ⋆ v̆
i
n ⋆ t̆

α
8−2n =

[
D8−n

i ·D8−n
i · Z2n

α

2ℓα8−2n

]
mod 1

,

Ωiα
n =

1

2

∫
Y7

v̆i8−2n ⋆ t̆
α
n ⋆ t̆

α
n =

[
D2n

i · Z8−n
α · Z8−n

α

2(ℓαn)
2

]
mod 1

,

Ωαβ
n =

1

2

∫
Y7

t̆αn ⋆ t̆
α
n ⋆ t̆

β
8−2n =

[
Z8−n

α · Z8−n
α · Z2n

β

2(ℓαn)
2ℓβ8−2n

]
mod 1

,

(4.61)

which are R/Z-valued quantities.

4.3.2 Intersection Numbers of Toric 4-Folds

The above subsection explained that the computation of the SymTFT coefficients

reduces to a computation of intersection numbers in X8. In this section we focus

on toric 4-folds. It will become apparent in later sections that the non-trivial coef-

ficients we are particularly interested in are those involving t̆α2 , t̆
α
4 and v̆i2. The key

identifications to make are therefore the compact divisor Z6 corresponding to t̆α2 , the

compact 4-cycles Z4
β corresponding to t̆β4 and the non-compact divisor D6 correspond-

ing to v̆i2. We will address the identifications in turn. First however, we introduce the

technology required to compute intersection numbers of toric 4-folds.

Quadruple Toric Intersections. All non-zero integrals of the type we wish to

consider reduce to a sum of quadruple intersections of toric divisors Ti in the Calabi-

Yau

Ti · Tj · Tk · Tl . (4.62)

We begin with a toric fourfold X̃8, described by a toric diagram with set of rays {vi},

vi = (vxi , v
y
i , v

z
i , v

w
i ) . (4.63)
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Each ray corresponds to a toric divisor vi ↔ Ti, amongst which there exists a set of

linear relations∑
i

vxi Ti = 0 ,
∑
i

vyi Ti = 0
∑
i

vzi Ti = 0 ,
∑
i

vwi Ti = 0 . (4.64)

Furthermore, we triangulate the toric diagram with a set of 4d cones

{vavbvcvd} , (4.65)

which restrict the non-zero quadruple intersections in the following way. The inter-

section of four distinct toric divisors is given by the volume bounded by the rays (we

denote this region Vijkl)

Ti · Tj · Tk · Tl =
1

vol(Vijkl)
, i ̸= j ̸= k ̸= l . (4.66)

The quadruple intersection numbers involving self-intersections can be computed us-

ing (4.66) and the linear equivalence relations (4.64) 56.

Now we consider the case of a toric Calabi-Yau 4-fold X̃8, such that the boundary

7-manifold Y7 is Sasaki-Einstein. The Calabi-Yau condition forces the rays {vi} to

lie in a plane. We enforce this in coordinates by choosing the fourth coordinate of all

rays to be 1

vi = (vi, 1) = (vxi , v
y
i , v

z
i , 1) . (4.67)

For a 4d cone vivkvkvl, the volume of Vijkl takes the form of

vol(Vijkl) = det
(
vj − vi vk − vi vl − vi

)
. (4.68)

5In order to perform such calculations in practise, a computer code is necessary for larger toric
diagrams. Assuming we have computed Ti · Tj · Tk · Tl for all distinct i ̸= j ̸= k ̸= l we can compute
the following intersections in turn

1. Ti · Ti · Tj · Tk i ̸= j ̸= k

2. Ti · Ti · Ti · Tk , i ̸= k and Ti · Ti · Tk · Tk , i ̸= k

3. Ti · Ti · Ti · Ti .

In each step we use the intersections computed in the step prior.
6Note that in the cases of a non-compact toric 4-fold, the quadruple intersection numbers only

involving non-compact divisors are usually not well-defined. Nonetheless, we do not encounter
this issue as we only use the intersection numbers which involve at least one compact divisor, see
analogous computations in the case of CY3 [222,223].
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4.3.3 Differential Cohomology Generators and Toric Divisors

t̆2 generators. From the set of divisors {Ti} and the linear relations between

them, we can obtain a set of linearly indepent divisors. We denote them Ca , Da

for compact and non-compact respectively. From these, we can construct a basis of

compact curves

{Nk} = {Ca ·Db ·Dc , Ca · Cb ·Dc , Ca · Cb · Cc} . (4.69)

In general these curves are not linearly independent. For example, for the case

Y p,k(CP2), the curves Ca ·Db ·Dc already form a complete basis of compact curves.

In order to obtain the central divisors Z6, we compute the SNF of the intersection

matrix Nk · Ca

SNF(Nk · Ca) =



Γ1 0 . . . 0
0 Γ2 . . . 0
...

...
. . .

...
0 0 . . . Γn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


= A · (Nk · Ca) ·B , (4.70)

where A and B are matrices and Γα are a set of integers. The group

Γ = ⊕n
α=1ZΓα , (4.71)

is generated by a set of linear combinations of divisors given by the matrix B.

Thus the change of basis matrices used in the SNF procedure can be used to find

explicit expressions for the compact divisor dual to t̆2 in terms of the basis elements

Ca. For each Γα > 1, there is a differential cohomology class t̆α2 with torsion degree

Γα. Furthermore, it is clear that the group Γ is in fact equal to the 1-form symmetry

Γ(1) = Γ . (4.72)
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In particular, we can read off the generators as follows. The linear combination of

divisors generating the factor Γα is given by

Z6
α =

∑
i

BiαCi . (4.73)

t̆4 generators. Analogously to the above procedure, we wish to identify the ap-

propriate linear combination of 4-cycles Z4
α dual to t̆α4 . We can construct a basis for

compact 4-cycles by {Sk} = {Ca ·Db, Ca · Cb} . Once again we take the SNF of the

intersection matrix

SNF{Sj · Sk} = diag(Γ′
1,Γ

′
2, . . . ) = A′ · {Sj · Sk} ·B′ . (4.74)

We derive that the group

TorH4 = ⊕αΓ
′
α , (4.75)

is generated by the linear combinations

Z4
α =

∑
i

B′
iαSi . (4.76)

We observe that a consistent choice must be made of ordering of columns in the

SNF process when two different Y p,k models are compared. A change of basis of the

matrix corresponds to choosing different diagonal combinations of symmetries inside

the group ⊕iΓ
′
i.

v̆2 generators. In general, the number of independent v̆2 generators is equal to

b3(Y7). One can pick any of the b3(Y7) linearly independent non-compact divisors as

v̆2 generators, and they will give the same physical results.

4.4 SymTFT for Holography: ABJ(M)

We now employ the geometric tools developed in the previous sections to derive

from M-theory the global structure and higher-form symmetries for the 3d N = 6
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U(N+b)k×U(N)−k ABJ(M) theories [162,215]. In the brane picture, the theories arise

on N M2-branes probing a C4/Zk singularity, together with b fractional M2-branes

localised at the orbifold singularity. The 11d supergravity dual is AdS4×S7/Zk with

N units of G4 flux over AdS4 and b units of torsion flux. The 7-manifold S7/Zk is

generally a tri-Sasakian manifold, and it is Sasaki-Einstein only when k = 4. All

3d N = 6 ABJM type theories were classified, up to discrete quotients of the gauge

group, in [224], which was subsequently extended to account for all global forms

in [216]. In [157] it was shown how to realise different global forms of the gauge group

holographically from type IIA supergravity (in the absence of background torsion,

i.e. for b = 0) in the regime k ≪ N ≪ k5 where the M-theory circle is small.

We reproduce these results, taking the perspective of 11d supergravity, where the

technology presented in previous sections is crucial to understand the geometric origin

of the symmetry background fields. Moreover, with b turned on, we determine a ’t

Hooft anomaly for the 1-form symmetry

− b

2k

∫
AdS4

B2 ⌣ B2 . (4.77)

We derive the anomaly from torsional geometric data, and match with field theory

results [216]. The SymTFT, computed using differential cohomology, is precisely the

tool suited to pick up such a torsional effect.

4.4.1 Global Form of the Gauge Group

The global form of the gauge group is associated with a choice of boundary conditions

for the gauge fields of the 4d bulk theory [65, 113–115, 151, 183]. This choice is con-

strained by the fact that, in the presence of torsion in the homology of the internal

space Y7 = S7/Zk, the G4 and G7 fluxes do not commute at the boundary [218,225].

In the SymTFT this non-commutativity of fluxes shows up as a set of BF-couplings

that constrain the consistent set of boundary conditions which can be imposed on the

participating 4d gauge fields. The BF-terms arise from the differential cohomology
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reduction of the kinetic term in the 11d supergravity action, see [174] for a deriva-

tion7. In the following however, we will instead take an operator perspective and

derive the commutation relation.

In holography the procedure for choosing asymptotic values of the fields at the

conformal boundary ofM11 =M4×Y7 is to quantize the theory onM11 = Rt×M10,

by identifying the radial direction with time, and choosing a state in the Hilbert

space of M10 = M3 × Y7, where M3 is the conformal boundary of M4 at infinity

[151, 183]. Consider the operators Φ(T3) and Φ(T6) which detect the periods of the

M-theory gauge potential C3 and the electric-magnetic dual potential C6 over 3- and

6-cycles T3, T6 defining torsion homology classes inM10. As shown in [218,225], these

operators pick up a phase under commutation

Φ(T3)Φ(T6) = Φ(T6)Φ(T3)e2πiL(T3,T6) , (4.78)

where L is the linking pairing. The homology of S7/Zk is

H•(S
7/Zk;Z) = {Z,Zk, 0,Zk, 0,Zk, 0,Z} . (4.79)

Since we are assuming Tor•(M3;Z) = 0, we can apply the Künneth formula to obtain

TorH3(M10;Z) = H2(M3;Z)⊗H1(S
7/Zk;Z)⊕H0(M3;Z)⊗H3(S

7/Zk;Z) ,

TorH6(M10;Z) = H3(M3;Z)⊗H3(S
7/Zk;Z)⊕H1(M3;Z)⊗H5(S

7/Zk;Z) .
(4.80)

This implies that the torsional 3- and 6-cycles ofM10 must be of the form

T3 = Σ2 × T1 , T3 = Σ0 × T3 , (4.81)

and

T6 = Σ3 × T3 , T6 = Σ1 × T5 , (4.82)

where Σp generates Hp(M3;Z) and Tq generates Hq(S
7/Zk;Z) = Zk for q < 7 odd.

Consider the expansion on cohomology of G4 around the ABJ(M) background

G4 = NvolAdS4 +B2 ⌣ t2 + b ⌣ t4 , (4.83)

7We thank Iñaki Garćıa Etxebarria and Saghar Sophie Hosseini for explaining this to us, and
refer the reader to their upcoming work [174] for more details.
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where t2 and t4 are both torsional generators of degree k. The differential cohomology

uplift is

Ğ4 = N v̆olAdS4 + B̆2 ⋆ t̆2 + b̆ ⋆ t̆4 , (4.84)

Here, B̆2 represents a dynamical Zk 2-form gauge field, whereas

I(b̆) = b ∈ Z , (4.85)

is an integer parametrizing background flux over torsion 4-cocyles, as argued around

(4.38). This discrete flux is associated to b M5-branes wrapping the torsion 3-cycle

H3(S
7/Zk;Z) = Zk. In the ABJ paper [215] it was conjectured that we must have

b ≤ k for the superconformal U(N+b)k×U(N)−k theories to exist as unitary theories.

As was also noted in [215], this restriction is consistent with the interpretation of b as

discrete Zk torsion. Without imposing a relation between G4 and G7, we can make a

corresponding cohomology expansion of the latter

G7 = NvolS7/Zk
+B3 ⌣ t4 +B1 ⌣ t6 . (4.86)

In order to quantize on M11 = Rt ×M10, we consider a gauge as in [151] where

the form representatives of the Bp classes do not have components along the radial

direction (or time direction, in terms of the quantization scheme), i.e. they can be

taken to define either degree-p cohomology classes inM4, as in (4.83), (4.86), or in

M3. Then, by Poincaré duality, the integral homology classes Σq are dual to B3−q in

the (torsion-free) cohomology of M3 = R1,2.

For the present, let us ignore the discrete background flux and study the ABJM

theories whose type IIA duals were studied in [157]. Then the non-commuting oper-

ators are Φ(Σ2) and Φ(Σ1), which are push-forwards of the 11d operators Φ(Σ2×T1)

and Φ(Σ1 × T5). Their commutation relation is determined using

L(Σp × Tq,Σp′ × Tq′) = (Σp · Σp′)LS7/Zk
(Tq, Tq′) , (4.87)
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with Σp · Σp′ the intersection in M3 and [114]

LS7/Zk
(T1, T5) =

1

k
. (4.88)

Hence, we have

Φ(Σ2)Φ(Σ1) = Φ(Σ1)Φ(Σ2)e
2πi(Σ1·Σ2)/k . (4.89)

If we consider the form representatives of B2, B1, and abuse notation by denoting

them the same as their corresponding cohomology classes, this commutation relation

is encoded in a BF-coupling

SBF

2π
= k

∫
AdS4

B2 ∧ dB1 . (4.90)

As we remarked above, this coupling can alternatively be derived by considering the

differential cohomology reduction of the kinetic part of the 11d supergravity action,

see [174].

The symmetries of the 3d field theory are determined by imposing boundary

conditions on B2, B1 consistent with the commutation relation (4.89), or equivalently

the action (4.90). Fixing B2 to a background value as we approach the conformal

boundary is associated with a 1-form symmetry, whereas fixing B1 would furnish a

background gauge field for an ordinary 0-form symmetry.

First however, we must also take into account the additional global 0-form sym-

metries that can arise from gauging the isometry group of the internal space. The

isometries of S7/Zk are U(1) × SU(4)R, with the latter realising the R-symmetry

of the 3d N = 6 theory. We can describe S7/Zk as a circle bundle over CP3 with

metric [162]

ds2S7/Zk
=

1

k2
(dφ+ kw)2 + ds2CP3 , (4.91)

with φ ∼ φ + 2π parametrizing the M-theory circle, and dw = J with J the Kähler

form on CP3. The Zk quotient is simply making the M-theory circle smaller, and ∂φ

is generating the U(1) isometry. We can gauge the isometries by lifting the 4-form
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flux to equivariant cohomology, which gives rise to a single 1-form gauge field A1 for

the U(1) isometry

dφ→ dφ+ A1 , (4.92)

and a set of 15 gauge fields for the SU(4)R. We are interested in the fate of the U(1)

global symmetry, and whether it couples to the B2, B1 gauge fields in (4.90). We will

answer this question by conjecturing a map to the type IIA description.

When N ≫ k5 the appropriate supergravity description is 11-dimensional. On

the other hand, when k ≪ N ≪ k5 the M-theory circle becomes very small (in

Planck units) and the relevant description is type IIA supergravity on AdS4 × CP3

with N units of F6-flux over CP3 and k units of F2-flux over CP1 ⊂ CP3. (In the

presence of background torsion flux b ̸= 0 the NSNS 2-form on CP1 ⊂ CP3 has a

discrete holonomy b/k.) Consider the type IIA supergravity analysis in [157], where

a topological term

SIIA

2π
=

∫
AdS4

BNS ∧ d(kAD4 +NAD0) , (4.93)

was identified and the consistent boundary conditions were studied in detail. HereBNS

is the NS-NS 2-form, andAD4, AD0 are U(1) 1-form gauge fields that couple electrically

respectively to D4-branes wrapping CP2 ⊂ CP3 and D0-branes. Under dimensional

reduction from 11d supergravity to type IIA (see e.g. [226]), the U(1) gauge field

A1 associated with the isometry generated by the M-theory circle direction ∂φ gives

rise to the 1-form gauge field AD0 sourced by D0-branes. The 1-form gauge field B1

couples electrically to M5-branes wrapping the torsional 5-cycle, which descends to

D4-branes wrapping CP2 coupled electrically to the 1-form AD4. Finally, B2 couples

electrically to M2-branes wrapping the torsional 1-cycle associated with the M-theory

circle. Under dimensional reduction these M2-branes become fundamental strings

coupling to the NS-NS 2-form. Therefore, we conjecture a map

A1 ↔ AD0 , B1 ↔ AD4 , B2 ↔ BNS . (4.94)
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Using this map implies the existence of a topological coupling between B2 and

F = dA1 in M-theory, to which either equivariant or differential cohomology are

not sensitive by themselves8. The 11d kinetic term is then

Skin

2π
=

∫
AdS4

kB2 ∧ dB1 +NB2 ∧ F . (4.96)

The different global forms of the gauge group are realised holographically by imposing

boundary conditions consistent with this BF-coupling. This part of the analysis is

now completely analogous to [157]. For convenience, we here give a brief summary of

one extreme possibility, namely (U(N)k × U(N)−k)/Zk.

Suppose we apply the conditions

A1, B1 Dirichlet , B2 Neumann , (4.97)

which constrains the boundary values of the 1-forms to satisfy kB1+NA1 = 0. Hence,

the 1-form background gauge field we can specify at the boundary gives rise to Γ(0) =

U(1)× Zgcd(N,k), where the U(1) is supplied by the diagonal combination (B1, A1) =

(pA,−qA), with p · gcd(N, k) = N and q · gcd(N, k) = k, which decouples from the

action. If N = nn′ for some integers n, n′ more complicated boundary conditions are

possible. These realise the gauging of a subgroup of the 1-form symmetry.

4.4.2 ’t Hooft Anomaly for the 1-Form Symmetry

We now turn on the torsion flux b ̸= 0 and see how the theory is modified. From the

differential cohomology reduction of the 11d Chern-Simons term we determine the

Symmetry TFT coupling

Stop

2π
= −Ω

∫
AdS4

B̆2 ⋆ B̆2 ⋆ b̆ mod 1 , (4.98)

8We propose that a full equivariant differential cohomology treatment of the problem will give
rise to an improvement of Geq

4 by a term involving the 2-form B2 and the U(1) field strength F like

Geq
4 = NvolAdS4 +B2 ∧ F + · · · . (4.95)
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with

Ω =
1

2

∫
S7/Zk

t̆2 ⋆ t̆2 ⋆ t̆4 =

[
Z6 · Z6 · Z4

2k3

]
mod 1

, (4.99)

The primary invariant over AdS4 gives

Stop

2π
= −Ωb

∫
AdS4

B2 ⌣ B2 , (4.100)

which signals an anomaly in the Zk 1-form symmetry of U(N + b)k ×U(N)−k, deter-

mined by the coefficient Ω. The 4d term (4.100) constrains the possibility of gauging

a Zm subgroup, with k = mm′, of the Zk 1-form symmetry. That is, the anomaly is

only consistent with B2 having periodicity Zm′ for Ωbm′2 = 0 mod 1
2
(since B2 ⌣ B2

is even on a spin manifold) or, equivalently,

2Ωk2b

m2
= 0 mod 1 . (4.101)

To compute the coefficient Ω geometrically from (4.99), let us consider the resolution

X̃8 of C4/Zk. Note that the singularity C4/Zk has a toric description, with the rays

v1 = (1, 0, 0, 0) , v2 = (0, 1, 0, 0) , v3 = (0, 0, 1, 0) , v4 = (−1,−1,−1, k) (4.102)

and the 4d cone v1v2v3v4. It has a unique toric resolution X̃8 = C̃4/Zk, where the

compact exceptional divisor C corresponds to the new ray v5 = (0, 0, 0, 1)9. The

new set of 4d cones in C̃4/Zk is {v1v2v3v5, v1v2v4v5, v1v3v4v5, v2v3v4v5}. Denote the

non-compact divisor corresponding to v1 by D (which is linearly equivalent to v2, v3

and v4). We can compute the following intersection numbers

D4 = 0 , C ·D3 = 1 , C2 ·D2 = −k , C3 ·D = k2 , C4 = −k3 , (4.103)

from which we obtain the generators Z4 = C · D, Z6 = C . Note that we need

not define the SymTFT in a supersymmetric way, and one can use any (possibly

non-crepant) resolution for the purposes of computing the SymTFT action. Here we

9Restricting to toric varieties, C̃4/Zk is the unique resolution because v5 = (0, 0, 0, 1) is the only
primitive ray inside the cone v1v2v3v4.
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validate this approach by matching with known field theory results. Hence we can

plug (4.103) into (4.99) to get

Ω =
1

2k
mod 1 . (4.104)

Recalling the condition (4.101), the gauging is consistent for

kb

m2
= 0 mod 1 . (4.105)

The anomaly thus implies that gauging a Zm subgroup of the 1-form symmetry of

U(N + b)k × U(N)−k is consistent only for certain choices of m. That is, compared

to the analysis at the end of the previous section, when b is turned on, certain global

forms of the 3d gauge group are no longer consistent. E.g. in the presence of this

anomaly we can only gauge the full 1-form symmetry m = k, if b/k ∈ Z.

Note that this anomaly was also determined from the field theory point of view

in [216], where the authors show that, the anomaly can be measured by the topological

spin of a line of charge m′, where k = mm′. In [216] the anomaly free lines were

determined to be exactly the ones satisfying (4.105).

4.5 SymTFT for Holography: AdS4 × Y p,k(CP2)

We now apply the Symmetry Topological Field Theory technology to a class of holo-

graphic 3d N = 2 QFTs. We study the theories living on the worldvolume of a stack

of M2-branes probing the cone C(Y p,k(CP2)) with torsional G4 flux turned on [210].

The latter phenomenon arises from wrapped M5-branes on the torsional elements of

the third homology group of Y p,k (which is non-trivial). The purpose of this section

is to put into practise the machinery developed in the preceding sections of this chap-

ter in an intricate holographic setup, where the SymTFT can be used to derive new

constraints on the 3d field theory. In particular, we derive SymTFT terms via M-

theory reduction and compute the relevant coefficients using the toric CY4 methods

explained in section 4.3.
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The BF-terms we obtain are

SBF

2π
=

∫
B2 ∧

(
Nf2 + gcd(p, k)g̃2 + Ωp,k

n0,n1
g2
)
, (4.106)

with integral coefficients Ωp,k
n0,n1

which depend on p, k as well as the G4 torsion flux

parameterized by two integers (n0, n1). Furthermore, in many cases we derive new

1-form symmetry anomalies of the form

ΩBB

∫
B2 ⌣ B2 , (4.107)

for 1-form symmetry background fields B2 and some coefficient ΩBB which we com-

pute.

The dual field theories described in [210] are subtle and furthermore not completely

constrained. We discuss the matching of our results with this work in section 4.6,

and comment on how the SymTFT could be used to solve some ambiguities.

It should be noted that more generally one could consider a stack of M2-branes

probing the cone C(Y p,k(B)) for more generic base B [227, 228]. For example, for

B = CP1 × CP1 the SymTFT is almost identical in structure, differing only in the

number of v̆2 generators, and therefore F̆2 background fields.

4.5.1 SymTFT for General p, k

In this section we perform the torsional reduction detailed in section 4.2 here for

M11 = AdS4 × Y p,k(CP2) . (4.108)

The cohomology groups for the 7-dimensional space are

H•(Y p,k(CP2);Z) = {Z , 0 ,Z⊕ Zgcd(p,k) , 0 ,Γ ,Z ,Zgcd(p,k) ,Z} . (4.109)

where Γ is a finite group given by

Γ ∼= Z2/⟨(3k, k), (k, p)⟩ . (4.110)
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We expand Ğ4 on generators for each of these non-trivial elements

Ğ4 = N v̆olAdS4 + F̆2 ⋆ v̆2 + B̆2 ⋆ t̆2 +
2∑

α=1

b̆α ⋆ t̆α4 , (4.111)

where we have included the flux of the M2-branes in the first term and the parameters

b̆α represent the torsion G4 flux.

t̆2 generators. We use methods described in section 4.3.3 to compute the 1-form

symmetry generator (for cases with non-trivial B̆2 field, so gcd(p, k) ̸= 1)

Z6 =

p−1∑
a=1

aCa , (4.112)

where Ca are compact toric divisors associated to the points (0, 0, a, 1) in the toric

diagram.

v̆2 generators. We have b2(Y
p,k(CP2)) = 1, and we can use any one of the non-

compact divisors to represent the single v̆2 generator.

t̆α4 generators. We follow the prescription in section 4.3.3 and construct a basis

of compact 4-cycles. We wish to compute the torsional components of Γ. Again

focusing on cases where gcd(p, k) ̸= 1, we obtain the following formula from the

Smith decomposition of the lattice ⟨(3k, k), (k, p)⟩

H4(Y p,k(CP2);Z) = Γ = Zgcd(p,k) ⊕ Z k(3p−k)
gcd(p,k)

(4.113)

We generically denote these torsional components

Γ = Zk1 ⊕ Zk2 . (4.114)

We can independently turn on G4 flux of varying amounts in both directions. These

flux numbers are denoted (b1, b2), along the directions given in (4.113).

In [210] the authors parametrize G4 flux along the Γ directions with two integers

(n0, n1), which differ from (b1, b2) by a basis change. To make contact with their results
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we require a mapping between (n0, n1) and the torsional flux parameters introduced

in the differential cohomology language above. This basis change can be read off by

the column entries in the matrix B defined as(
gcd(p, k) 0

0 k(3p−k)
gcd(p,k)

)
= SNF

(
3k k
k p

)
= A ·

(
3k k
k p

)
·B . (4.115)

We are able to provide a general expression for Y p,p/c for some c ∈ Z which divides p

b1 = 1× n0 + 0× n1 , b2 = −c× n0 + 1× n1 , (4.116)

but give a selection of numerical values in table B.3.

SymTFT Coefficients. We derive the following Symmetry TFT for general Y p,k(CP2)

geometries with gcd(p, k) non-trivial 10

Stop

2π
=+ αFF (k1)

∫
M4

F̆2 ⋆ F̆2 ⋆ b̆
1 + αFF (k2)

∫
M4

F̆2 ⋆ F̆2 ⋆ b̆
2

− αFB(k1)

∫
M4

F̆2 ⋆ b̆
1 ⋆ B̆2 − αFB(k2)

∫
M4

F̆2 ⋆ b̆
2 ⋆ B̆2

− αBB(k1)

∫
M4

b̆1 ⋆ B̆2 ⋆ B̆2 − αBB(k2)

∫
M4

b̆2 ⋆ B̆2 ⋆ B̆2 .

(4.117)

Given the non-trivial way the t̆4 dual 4-cycles are determined, we do not expect a nice

closed-form expression for general p, k for all coefficients. In table B.2 we summarize

the α coefficients for a large set of values of (p, k).

Since the background torsion flux participates in all the above couplings, this

general SymTFT only contains terms of three types: FF , BF and BB – we are par-

ticularly interested in the latter two11. The BB term is a 1-form symmetry anomaly,

whilst the BF term will be crucial in understanding possible global forms of the gauge

group.

10Note here we do note include F̆4 ⋆ b̆ ⋆ b̆ and p̆1 terms as these contain only one or zero dynamical
fields. The coefficients α are expressible in terms of the Λ...

... of (4.42), but we choose this notation
from now on for compactness.

11With a choice of boundary conditions the FF terms are background Chern-Simons terms for
0-form global symmetry background gauge fields.
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4.5.2 The BF-Term

In this section we focus in particular on terms of BF type, which govern the choice of

gauge group in the 3d SCFT. These terms come from two sources: the first is torsion

in the geometry, as introduced via non-commuting flux operators in section 4.4.1.

The second is from background flux, both continous and discrete. The first type is

standard, appearing already in AdS5 × S5 with N units of F5 flux over the external

space [151], as well as in (2.18) [1]. The latter appears via terms in the differential

cohomology reduction of the 11d topological terms of the form∫
Y7

t̆4 ⋆ t̆2 ⋆ v̆2

∫
M4

F̆2 ⋆ B̆2 ⋆ b̆ . (4.118)

BF-terms from Non-Commuting Fluxes. We follow the procedure outlined

in [65] which we applied in section 4.4.1 to derive a new BF term:

SBF

2π
= gcd(p, k)

∫
AdS4

B2 ∧ dB1 . (4.119)

The origin of the field B1 is exactly the same as that presented in section 4.4.1, and

the derivation of the coefficient follows analogously with minor modifications.

BF-terms from 11d CS-term. From reduction of the 11d CS-term we obtain

the following 4d term of BF-type

Stop

2π
⊃ gcd(p, k)

(
αFB(k1)b

1 + αFB(k2)b
2
)
B2 ∧ g2 . (4.120)

We denote this coefficient as

Ωp,k
n0,n1

≡ gcd(p, k)
(
αFB(k1)b

1 + αFB(k2)b
2
)
, (4.121)

and give values of Ωp,k
n0.n1

for certain (p, k) in table B.4. The coefficient depends

implicitly on the integers (n0, n1), which are linear combinations of (b1, b2) determined

by (4.115).
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Full BF-term. Reduction of the 11d supergravity action on the cohomology of

Y p,k(CP2), with discrete background flux parametrized by (n0, n1), thus yields

SBF

2π
=

∫
B2 ∧ d

(
gcd(p, k)B1 + Ωp,k

n0,n1
c1
)
+ · · · . (4.122)

Here we have left open the possibility for further BF-type terms arising when we turn

on background gauge fields for the isometry group of Y p,k(CP2) which is SU(3) ×

U(1)2. In section 4.4 we used a reduction to type IIA to conjecture that gauging

the M-theory circle direction would furnish a new coupling with the discrete 2-form

B2. In appendix B.1 we derive the analogous coupling from reduction to type IIA for

these geometries. The result is

SBF

2π
=

∫
B2 ∧

(
Nf2 + gcd(p, k)dB1 + Ωp,k

n0,n1
g2
)
, (4.123)

where f2 = da1 is the field strength of the U(1) 1-form gauge field associated with

the M-theory circle direction.

Let us consider the field theory interpretation of the bulk gauge fields at the level

of the SymTFT – i.e. before imposing boundary conditions consistent with the BF-

coupling (4.123), which realise a particular global form of the 3d gauge group. The

gauge fields in this EFT arise respectively from a reduction of C3 on the free part, c1

(with g2 = dc1), and torsion part, B1, B2, of H
•(Y p,k;Z), and from gauging the U(1)

isometry of the M-theory circle, a1. At the boundary, the 2-form gauge field may give

rise to a background for a 1-form symmetry which is a subgroup of U(1)B2 . Fixing

the 1-form gauge fields at the boundary we may realise a 0-form symmetry that sits

inside U(1)3 = U(1)a1 × U(1)B1 × U(1)c1 . In particular, we can parametrize a set of

1-form gauge fields A, A′ for U(1)2 ⊂ U(1)3 defined by

(a1, B1, c1) = (−yA− zA′, xA, xA′) , (4.124)

with

N

x
=

gcd(p, k)

y
=

Ωp,k
n0,n1

z
= gcd(N, p, k,Ωp,k

n0,n1
) , (4.125)
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which decouple entirely from the action (4.123) and so can always be fixed at the

boundary, giving rise to a U(1)(0) × U(1)(0) global symmetry of the dual field theory.

The isometry group of Y p,k is SU(3)× U(1)2. In the UV, we can identify one of the

U(1) factors with the topological U(1) symmetry of the field theory and the other

with the R-symmetry. However, as is well-known, this R-symmetry mixes with the

other U(1) global symmetries at the SCFT fixed point to give the superconformal

R-symmetry. (The exact IR superconformal R-charge can be determined by extrem-

ization of the 3-sphere partition function [229].) The SU(3) isometry group of the

base CP2 corresponds to the baryonic SU(3) that rotates the bifundamental matter

in the quiver. In addition to the M-theory U(1) circle direction associated with the

gauge field c1, we therefore have an SU(3)×U(1) isometry for which we do not turn

on gauge fields.

4.5.3 Boundary Conditions and Global Symmetries

Given the SymTFT, we can now realise a selection of the possible global forms of the

gauge group of the boundary theory (up to ’t Hooft anomalies which obstruct certain

gaugings, which we discuss shortly). From a supergravity perspective, determining

the complete set of boundary conditions would amount to enumerating all boundary

conditions consistent with the bulk topological terms. Imposing a particular set of

boundary conditions on the gauge fields, consistent with the action (4.123), picks out

a specific global structure for the 3d N = 2 quivers.

Standard Boundary Conditions. First consider Dirichlet boundary conditions

on a1, B1 and c1, and Neumann on B2. The action forces the boundary constraint

(
Na1 + gcd(p, k)B1 + Ωp,k

n0,n1
c1
)
= 0 . (4.126)

This corresponds to a 0-form symmetry

G(0) ∼ U(1)× U(1)× Zgcd(N,p,k,Ωp,k
n0,n1

) . (4.127)
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This global 0-form symmetry sits inside the U(1)3 = U(1)a1 × U(1)B1 × U(1)c1 . The

two U(1)’s in G(0) can be parametrized by A and A′ as in (4.124). There is no 1-form

symmetry with this choice of boundary conditions.

Mixed Boundary Conditions. Consider fixing c1 and a1, but letting B1 be free

within Zn ⊂ Zgcd(p,k), with gcd(p, k) = nn′. This is equivalent to saying that B1 is

free in Zgcd(p,k) modulo the relation n′B1 = 0. The global symmetries of this choice

are therefore

G ∼ U(1)(0) × U(1)(0) × Z(0)

gcd(N,Ωp,k
n0,n1

,n′)
× Z(1)

n . (4.128)

Clearly the special case where (n, n′) = (1, gcd(p, k)) is the ‘standard’ choice given

above. Another special case is (n, n′) = (gcd(p, k), 1), which realizes the largest

possible 1-form symmetry group. In this case, the global symmetries are

G ∼ U(1)(0) × U(1)(0) × Z(1)
gcd(p,k) . (4.129)

Here, since B2, a1 and c1 are fixed at the boundary, the following BF term∫
B2 ∧ d

(
Na1 + Ωp,k

n0,n1
c1
)
, (4.130)

corresponds to a 3d mixed anomaly.

General Boundary Conditions. We describe a subset of the allowed boundary

conditions and the resulting global symmetries in tables 4.1 and 4.2 respectively.

BC a1 B1 c1

1 D D N/D; Free mod Zn′ ⊂ ZΩp,k
n0,n1

2 D N/D; Free mod Zm′ ⊂ Zgcd(p,k) D

3 N/D; Free mod Zl′ ⊂ ZN D D

Table 4.1: A selection of the possible boundary conditions consistent with the BF-
action (4.123), where D: Dirichlet and N: Neumann. We take Ωp,k

n0,n1
= nn′, gcd(p, k) =

mm′ and N = ll′. ‘N/D; Free mod Zq’ for a field A means that the field is free to
fluctuate modulo the relation qA = 0.
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Boundary Condition G(0) G(1)

1 U(1)2 × Zgcd(N,p,k,n′) Zn

2 U(1)2 × Zgcd(N,m′,Ωp,k
n0,n1

) Zm

3 U(1)2 × Zgcd(l′,p,k,Ωp,k
n0,n1

) Zl

Table 4.2: 0- and 1-form symmetries for the boundary conditions in table 4.1.

4.5.4 1-Form Symmetry Anomaly

Using the definition of the primary invariant, the BB terms of (4.117) evaluate to

Stop

2π

∣∣∣∣
BB

= ΩBB

∫
M4

B2 ⌣ B2 , (4.131)

with

ΩBB = −αBB(k1)b
1 − αBB(k2)b

2 . (4.132)

The coefficients ΩBB depend on p, k, b1 and b2 (or, equivalently p, k, n0 and n1). This

term is a 1-form symmetry anomaly: it presents an obstruction to gauging certain

subgroups of the 1-form symmetry. In other words, it is an obstruction to selecting

certain boundary conditions of the BF-action (4.123). Suppose gcd(p, k) = mm′

and we consider gauging a subgroup Zm ⊂ Zgcd(p,k) of the 1-form symmetry with

background B2. The anomaly free condition is that

2ΩBBm
′2 = 0 mod 1 . (4.133)

Specific coefficients of this anomaly can be computed using table B.2 (for a parametriza-

tion in terms of (n0, n1) we make use of table B.3 as well).

For example, Y 2,2 with (n0, n1) flux numbers has ΩBB = −3
4
n1. If we consider

gauging the Z2 1-form symmetry, the anomaly free condition is that 3
2
n1 = 0 mod 1.

Hence, we can only gauge the 1-form symmetry if n1 is even. In this way the torsion

flux influences the possible choices of gauge group one can have for a given theory.

Furthermore, we should highlight the presence of many mixed 0-/1-form symmetry

anomalies of the type demonstrated in (4.130).
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4.6 Comparison to the Field Theory dual to Y p,k(CP2)

We now compare our results with the field theory of [210], which is subtle for several

reasons. The proposed quiver gauge theories initially have a parity anomaly which

much be quenched to ensure consistency. The authors provide several mechanisms

through which this could occur. We show that ambiguity in this anomaly resolution

permeates into the global symmetries of the theory: in particular the 1-form symmetry

is sensitive to the anomaly cancellation mechanism one chooses. In this section we

discuss how the SymTFT can be used to constrain this problem.

4.6.1 Quiver Gauge Theories

The quiver gauge theories dual to the AdS4 × Y p,k(CP2) M-theory backgrounds

[210] are defined for three ‘windows’ of parameter values of the G4 torsion flux,

parametrized by integers (n0, n1).

1. −k ≤ n0 ≤ 0 , 0 ≤ 3n1 − n0 ≤ 3p− k

2. 0 ≤ n0 ≤ k , 0 ≤ 3n1 − n0 ≤ 3p− k

3. k ≤ n0 ≤ 2k , 0 ≤ 3n1 − n0 ≤ 3p− k

The field theories for these three cases are

1. U(N + n1 − p− n0)−n0+
3
2
n1
× U(N) 1

2
n0−3n1+

3
2
p−k × U(N − n1) 1

2
n0+

3
2
n1− 3

2
p+k

2. U(N + n1 − p)−n0+
3
2
n1
× U(N)2n0−3n1+

3
2
p−k × U(N − n1)−n0+

3
2
n1− 3

2
p+k

3. U(N+n1−p) 1
2
n0+

3
2
n1− 3

2
q×U(N) 1

2
n0−3n1+

3
2
p+ 1

2
k×U(N−n1+n0−k)−n0+

3
2
n1− 3

2
p+k

with bi-fundamental matter content arranged in a quiver structure shown in figure

4.1.

The theories as they are presented above suffer from a Z2 parity anomaly. The

authors of [210] suggest that there are several mechanisms through which this residual
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U(N1)k1

U(N2)k2U(N3)k3

Figure 4.1: Quiver diagram for theory with gauge group Π3
i=1U(Ni)ki . The triple

arrows denote the fact that the bi-fundamental matter fields transform in the funda-
mental representation of a flavor SU(3).

anomaly could be cancelled. They highlight the simplest: the addition of mixed

Chern-Simons couplings between the U(1) pieces of different U(Ni), U(Nj) factors,

with levels Λij such that [230–232]

ki +
1

2

∑
j

AijNj ∈ Z , Λij −
1

2
Aij ∈ Z . (4.134)

Here ki are the Chern-Simons levels given above, Aij is the quiver adjacency matrix

Aij =

 0 3 −3
−3 0 3
3 −3 0

 . (4.135)

The first condition is satisfied by the above, but the second is not since we have so far

set Λij = 0. In [210], for theories with (n0, n1) = (0, 0), the authors quote a sufficient

choice

Λij =

 0 3
2
−3

2
3
2
−3 3

2

−3
2

3
2

0

 . (4.136)

which does not spoil the matching of the moduli space with the geometry. Considering

only the spectrum of local operators this appears to be an ambiguity in the AdS/CFT

correspondence. We now return to study this ambiguity from the point of view of the

1-form symmetry, which is sensitive to Λij.

4.6.2 1-Form Symmetry of the Quivers

We now compute the 1-form symmetry of these field theories. The key subtlety in this

computation is the presence of monopole operators which can screen Wilson lines. A
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monopole operator in this theory is specificed by its magnetic charges under the U(1)

elements of the Cartan subgroup of each U(Ni) factor

Hi = (mi,1 . . .mi,Ni
) . (4.137)

Crucially, the choice of Chern-Simons levels Λij can influence the gauge charges of

monopoles and therefore the 1-form symmetry.

Electric Charge of Monopoles. In a vacuum where the gauge group ΠiU(Ni)

is broken to its maximal abelian subgroup, the Lagrangian becomes [210]

LCS =
∑
i,m

∑
j,n

kiδijδmn + Λij

4π
Ai,m ∧ dAj,n . (4.138)

Suppose we put the theory (4.138) on R× S2 and integrate over the S2:∫
S2

LCS =

(∑
i,m

ki
4π
mi,m +

∑
i,m

∑
j,n

Λij

4π
mj,n

)∫
Ai,m . (4.139)

From this we observe that a monopole acquires electric gauge charge under each U(1)

Cartan of each U(Ni):

gi,m = kimi,m +
∑
j,l

Λijmj,l . (4.140)

One-Loop Monopole Charge Modifications. This expression is modified at

1-loop [210] due to integrating out bifundamental matter Xij
12:

gi,k = kimi,k + δgi,k +
∑
l

∑
j

Λijmj,l , (4.141)

with

δgi,k = −
1

2

∑
Xij

Nj∑
l=1

|mi,k −mj,l|+
1

2

∑
Xji

Nj∑
l=1

|mi,k −mj,l| . (4.142)

12Note that the formula in [210] contains a third correction term, which for our case of a circular
quiver vanishes.
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Charge under the Center. The charge of a monopole under the central U(1)3 =

Z(G) is

qi =

Ni∑
k

gi,k , (4.143)

The bifundamental matter breaks this to a diagonal U(1) ⊂ U(1)3 under which the

monopole has charge

qdiag =
3∑

i=1

qi . (4.144)

It can be checked explicitly that one can drop the 1-loop correction (δgi,k) contribution

from qdiag due to the quiver’s shape:

qdiag =
3∑

i=1

qi =
3∑
i

Ni∑
k=1

(
kimi,k +

∑
l

∑
j

Λijmj,l

)
. (4.145)

Denoting the topological U(1) charges mi =
∑

lmi,l, we write this as

qdiag =
3∑

i=1

qi =
3∑
i

(
kimi +Ni

∑
j

Λijmj

)
. (4.146)

Y p,k without torsion flux. We now explicitly compute qdiag for an arbitrary

monopole in a general Y p,k theory without torsion flux (n0, n1) = (0, 0), with gauge

group

U(N − p)0 × U(N) 3
2
p−k × U(N)− 3

2
p+k . (4.147)

Furthermore, we consider arbitrary Λij which obeys both the parity anomaly condition

and the moduli space matching condition [210]

Λij −
1

2
Aij ∈ Z ,

3∑
j=1

Λij = 0 . (4.148)

For a monopole with charge (m1,m2,m3), we obtain

qdiag = m1 (−pΛ11) +m2

(
3

2
p− k − pΛ12

)
+m3

(
−3

2
p+ k − pΛ13

)
. (4.149)

In the triangular quiver in question, the adjacency matrix is given in (4.135). Using

the parity anomaly condition, we can rewrite (λi ∈ Z)

Λ11 = λ1 , Λ12 =
3

2
+ λ2 , Λ13 = −

3

2
+ λ3 , (4.150)
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with the futher condition
∑

i λi = 0. We therefore have

qdiag = −pλ1m1 − (λ2p+ k)m2 + (k + (λ1 + λ2)p)m3 . (4.151)

The final 1-form symmetry of the field theory is the subgroup of the diagonal U(1) ⊂

Z(G) which leaves all monopoles invariant:

Γ(1) = Zgcd(pλ1,λ2p+k) . (4.152)

For example, picking λ1 = 1 and leaving λ2 arbitrary gives Γ(1) = Zgcd(p,k). Fur-

thermore, the choice of λi must be compatible with supersymmetry. We have a

supersymmetric solution when the effective FI parameters satisfy [210]

ξeff1 = 0 , ξeff2 = −ξeff3 . (4.153)

Since ξeff1 ∝ λ1, the authors of [210] suggest that a convenient choice is λ1 = 0, and

λ2 = 0. In this case, there is an enhancement of the above 1-form symmetry to

Γ(1) = Zk. We emphasise that this solution is far from unique. Picking λ1 ̸= 0 means

that we must introduce bare FI parameters ξbarei to fulfill the SUSY requirement.

Y p,k with torsion flux. Now consider the general Y p,k with torsion flux (n0, n1) ̸=

(0, 0). For demonstration we consider the first window of torsion space, where the

gauge group is

U(N + n1− p− n0)−n0+
3
2
n1
×U(N) 1

2
n0−3n1+

3
2
p−k ×U(N − n1) 1

2
n0+

3
2
n1− 3

2
p+k . (4.154)

We use the parameterization (for i ̸= j)

Λij = Aij + λij , λij ∈ Z , (4.155)

to derive

qdiag = m1 (−(1 + Λ11)n0 + (Λ11 − λ31)n1 − pΛ11)

+m2 ((−1− λ12)n0 + (λ12 − λ32)n1 + p(−λ12)− k)

+m3 ((−1− λ13)n0 + (3 + λ13 − Λ33)n1 + p(−λ13) + k)

≡
3∑

i=1

mihi .

(4.156)
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Once again we have the condition
∑

j Λij = 0 which enforces some redundancies in

the parameters λij via
∑

j λij = 0. Since all parameters mi, λij,Λii are integers, the

trivially acting subgroup of U(1) ⊂ Z(G) is

Γ(1) = Zgcd(h1,h2,h3) . (4.157)

Again, one must check that any particular choice of Λij preserves supersymmetry.

4.6.3 A Check on the Holographic Dictionary

In this subsection we aim to demonstrate how consistency with the SymTFT can

be used to constrain the field theory. In particular, since the 1-form symmetry is

sensitive to the U(1) CS-levels Λij, the SymTFT predicts that only certain sets of Λij

can potentially be realised. This illustrates in a concrete problem how the study of

higher-form symmetries in AdS/CFT refines the dictionary. We focus on Y p,p with

all G4 torsion flux turned off. The SymTFT is

SBF

2π
=

∫
pB2 ∧ dB1 +NB2 ∧ da1 . (4.158)

The gauge group of the 3d field theory [210] with which we would like to match a

boundary condition of the SymTFT is

U(N − p)0 × U(N) 1
2
p × U(N)− 1

2
p , (4.159)

with 1-form symmetry given by

Γ(1) = Zp·gcd(λ1,λ2+1) . (4.160)

We want to show that not every choice of λ1, λ2 is consistent with (4.158). In more

precise terms, imposing boundary conditions consistent with the BF-term can give

rise to a restricted set of 1-form symmetries. We show that not all values of λ1, λ2

corresponds to field theories whose 1-form symmetry belongs to this set.
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If we pick the Dirichlet boundary condition for a1 and Neumann for B1, the

boundary field theory has 1-form symmetry Γ(1) = Zp. Swapped boundary conditions

would give Γ(1) = ZN 1-form symmetry, whilst any mixed condition would give Γ(1) ⊆

Zgcd(p,N) ⊆ Zp. It is clearly not possible therefore to pick a boundary condition with

Γ(1) = Zl·p, for some l ∈ N for all N . Noticing that the field theory result (4.160) is

valid for all N , we can therefore constrain Λij to be such that

l = gcd(λ1, λ2 + 1) = 1 . (4.161)

Thus compatiblity between the SymTFT and field theory computations can be used

to constrain the U(1) Chern-Simons levels conjectured to resolve the known par-

ity anomalies of these theories. Note that here we take the perspective where the

holographic background and field theory dual are given and fixed - and wish to find

consistent choices of CS levels which retain this duality. Our proposal here is that

there are certain choices of CS levels which would yield slightly different holographic

dualities to field theories which are not contained in [210]. We have focused here on a

simple Y p,p model without torsion flux for concreteness, but claim that this technique

is generically applicable to a broader class of examples. For general (p, k, n0, n1) the

coefficients Ωp,k
n0,n1

are given in table B.4 and the 1-form symmetry is given by (4.157):

with this information one can run a similar analysis in any case of interest.

4.7 Outlook

There are several possible avenues of future work, some of which we summarize now:

The utility of SymTFTs is only being uncovered, and much remains to be under-

stood, both field theoretically, but also in the realization of SymTFTs from string/M-

theory. In this work we derived SymTFT terms from two sources: the differential

cohomology reduction of C3, and from gauged isometries of the internal space Y7.

However, these two sources were kept distinct, whereas, ideally, they would be treated
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in a unified manner. If one could identify the appropriate framework, we expect that

this could yield new topological couplings in many interesting setups.

Although the examples that we considered were based on Calabi-Yau cones and

associated Sasakian 7-manifolds (as well as their holographic counterparts), the meth-

ods should equally apply to other string/M-theory compactifications with special or

exceptional holonomy. A natural extension of the work in this chapter is to con-

sider Spin(7) holonomy spaces, which often are quotients by orientation-reversal of

Calabi-Yau fourfolds.

In view of holography, our main example was to study duals to 3d N = 2 SCFTs,

and we focused on the addition of extra U(1) Chern-Simons terms as a resolution to

the parity anomaly of the N = 2 quiver gauge theories of [210]. One other possibility

is to restrict the gauge group to G ′ = (Π3
i=1SU(Ni)) × U(1). It would be interesting

to examine the full scope of the SymTFT in terms of its constraining power with

regards to the consistency of these field theories.

Another possible future direction is to consider the SO-Sp type 3d SUSY gauge

theories, which are defined as the worldvolume theory of N M2-branes probing a

C4/D̂k singularity [162]. Here D̂k is the binary dihedral group with order 4k, and the

singularity C4/D̂k is the anti-holomorphic involution of the toric singularity C4/Z2k.

To compute the SymTFT in this case, one needs to work out a real resolution of

C4/D̂k. It would be interesting to compare the geometric results with the expected

higher-form, higher-group and non-invertible symmetries from field theory [133,233].

The SymTFT is a powerful tool. In our analysis we have focused on two of its

key features: encoding the choice of the global form of the gauge group, and the

presence of ’t Hooft anomalies for higher-form symmetries. However, by definition,

the SymTFT in all its generality should encode all symmetry information about its

associated QFT(s). Developing this further, field theoretically, and in conjunction

with string/M-theory/holography provides a very exciting future research direction.
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Chapter 5

SymTFTs and Generalized
Charges from Branes

Recently it has been observed that branes in geometric engineering and holography

have a striking connection with generalized global symmetries. In this chapter we ar-

gue that branes, in a certain topological limit, not only furnish the symmetry genera-

tors, but also encode the so-called Symmetry Topological Field Theory (or SymTFT).

In this work we derive the SymTFT and its topological defects directly from branes.

Central to the identification of these are Hanany-Witten brane configurations, which

encode both topological couplings in the SymTFT and the generalized charges under

the symmetries. We exemplify the general analysis with examples of QFTs realized

in geometric engineering and holography.

5.1 Introduction

Branes play a central role in string/M-theory: as carriers of gauge degrees of freedom,

non-perturbative defects, and as the origin of holographic dualities when back-reacted.

Recently it has been observed that in a particular, non-dynamical, limit they give rise

to generators of generalized global symmetries (topological defects) in holography

[41,42] and in geometric engineering of QFTs [43,83].

Much is known about higher-form and higher-group symmetries in the context

of geometric/brane engineering and holography [4, 5, 70, 111–122, 124–127, 129, 133–
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139, 141, 142, 144–146]. However, most of this work focuses on the (not necessarily

topological) extended defect operators, i.e. the generalized (or higher-) charges, which

are constructed by wrapping branes on non-compact cycles. These extended objects

then mimic infinitely heavy probes in space-time. In turn, relatively little had been

known about the symmetry generators in the context of geometric constructions –

see however [113, 114] for some discussion in terms of flux operators. The recent

identification of symmetry generators with branes [41–43, 83] in a topological limit1

provides a systematic way to study the symmetries of a given theory.

SymTFTs and Generalized Charges. Recent developments in the realm of gen-

eralized symmetries have lead to the idea that separating symmetries from physical

theories can be insightful. The structure that allows for this is the SymTFT. The

SymTFT is invariant under gauging of global symmetries (i.e. symmetries that are

related by gauging have the same SymTFT), and perhaps physically most relevant,

its topological defects encode the generalized charges [68, 108]. The separation that

seems to have emerged in string theory constructions, into symmetry generators and

generalized charges is therefore somewhat artificial. There should be a unified pre-

scription that derives from the string theory construction (geometric engineering or

holography) of the SymTFT directly.

SymTFT and Supergravity. In string/M-theory the initial constructions of the

SymTFT were closely related to various topological sectors of dimensionally reduced

supergravity theories, as explained in chapter 2.

Given the recent proposal [41–43,83] relating symmetry generators and branes in

string theoretic settings, it is natural to ask whether branes also provide a realization

of the SymTFT, in particular the topological defects of the SymTFT, as well as

1We will equivalently use both “topological limit” or “topological truncation”. The procedure
we adopt is a truncation to the topological sector [151], which will be explained in more details in
section 5.2.
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the generalized charges. In this work we propose a general framework for this, and

substantiate it in various setups in both geometric engineering and holography. This

connects also to the general philosophy, that the symmetry and generalized charges

should all have a unified construction in terms of the SymTFT topological defects.

Summary of Results. In this work we will argue that branes (in a certain topo-

logical limit) encode the SymTFT of QFTs that are realized in terms of geometric

engineering or in holographic dualities. As geometric engineering and holographic

theories mostly admit abelian generalized symmetries, we will focus on these sym-

metries. Restricting to these symmetries, this amounts to showing that branes give

rise to BF-terms and (mixed) ’t Hooft anomalies at the level of SymTFT topological

couplings. At the level of defects of the SymTFT, we use brane effects to determine

generalized charges of higher-form symmetries (which are the topological defects of

the SymTFT). In the process we also identify condensation defects in terms of branes.

BF-terms for abelian finite higher-form symmetries will be shown to be encoded

in the topological sector of 10/11d supergravity once we also include source terms for

wrapped branes. These have the interpretation of generating the associated symme-

tries. Terms of this type derive from two origins: either from Chern-Simons terms or

kinetic terms in the supergravity action. By including sources, these terms describe

how the geometric linking of wrapped branes in the bulk corresponds to the action

of symmetry generators, i.e. topological defects, on (extended) charged operators of

the QFT.

Including brane sources induces further topological couplings in the SymTFT,

which in some global forms can have the interpretation of (mixed) ’t Hooft anomalies.

We will refer to these topological couplings in the SymTFT as anomaly couplings.

They are encoded in various linking configurations of branes in the bulk. We first

give a general procedure for deriving anomaly couplings from the 10/11d supergravity
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topological sector and Bianchi identities in terms of background fields. Re-phrasing

these relations in terms of brane sources allows us to re-write anomaly couplings as

linking configurations of the branes which generate the associated symmetries.

An important aspect of the categorical description of symmetries is the notion of

condensation completion [234]: i.e. all symmetries can be condensed on topological

defects that are generically defined on submanifolds of spacetime (as opposed to the

whole spacetime). So far the conjectured identification of branes with symmetry gen-

erators [41,42] does not incorporate condensation defects. In this work we argue that

condensation defects can be constructed from a “condensation completed” SymTFT,

where in addition to the BF-couplings in the (d + 1)-dimensional spacetime of the

SymTFT, we also include couplings to either lower dimensional discrete gauge the-

ories (possibly with theta angles), which realize standard condensation defects, or

more generally lower-dimensional TQFTs which give rise to so-called (twisted) theta

defects [68].

In the string theoretic setting we will obtain such couplings by considering brane-

anti-brane pairs (in a topological limit), where the standard Dp-brane charge cancels

out, but topological couplings on the world-volumes survive, which live in lower than

p+ 1 dimensions.

The topological defects of the SymTFT encode the generalized charges of a cat-

egorical symmetry [68]. In particular the linking in the SymTFT (for abelian sym-

metries) provides a way to compute the charges. It was already shown in [41] that

in a specific 4d N = 1 Super-Yang-Mills theory setting, the action of generalized

symmetries on branes can be realized in terms of Hanany-Witten moves on brane-

configurations. This realizes the action of the non-invertible symmetries on ’t Hooft

lines in the PSU(N) SYM theory. In this work we show that more generally, the

action of generalized symmetries on generalized charges has as its origin the Hanany-

Witten configuration and moves for branes.
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The general considerations of this work will be illustrated with numerous exam-

ples, both in geometric engineering and holography.

In 4d N = 4 SYM with algebra su(N) we show how Hanany-Witten configu-

rations can be used to diagnose the intrinsic/ non-intrinsic nature of non-invertible

symmetries. The brane mechanism imposes a simple constraint which allows a classi-

fication of the type of these non-invertible symmetries for arbitrary gauge group rank,

extending previous results [73].

5.2 SymTFT and its Topological Defects from Branes

5.2.1 A Democratic Formulation for Fluxes and Brane Sources

It is convenient to work in a democratic formulation, including both the fluxes and

their Hodge duals. Let us describe our notation in a general setting, for a theory

defined in D + 1 dimensions. Here D + 1 = 10, 11 depending on string or M-theory.

Magnetic Sources. Let F (i) denote the entire collection of fluxes in D+1 dimen-

sions, labeled by (i) (unrelated to the form degree). In order to avoid redundancies,

we consider only magnetic sources. (An electric source for a given flux F (i) is a mag-

netic source for the Hodge dual of F (i).) We denote the magnetic source for F (i) by

J (i). If the source is localized, J (i) is delta-function supported on a submanifoldW(i).

The magnetic source modifies the Bianchi identity for F (i),

dF (i) = J (i) = δ(W(i)) , D + 1− dimW(i) = deg J (i) = degF (i) + 1 . (5.1)

At the moment, we are neglecting the effect of possible Chern-Simons terms. Those

will be considered below.

Linking. The (D + 1)-dimensional linking number between two magnetic sources

J (i) = δ(W(i)) and J (j) = δ(W(j)) is defined as

LD+1(W(i),W(j)) =

∫
MD+1

J (i) ∧ d−1J (j) =

∫
MD+1

dF (i) ∧ F (j) , (5.2)
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where the dimensions ofW(i), W(j) inside the total (D+1)-dimensional space satisfy

dimW(i) + dimW(j) = D . (5.3)

The linking number has the symmetry property

LD+1(W(i),W(j)) = (−1)1+dimW(i) dimW(j) LD+1(W(j),W(i)) , (5.4)

which follows from integration by parts in the last integral in (5.2), together with

(5.3).

The compact notation with the symbol d−1 introduced in (5.2), and used below, is

understood as follows. We assume that W(i), W(j) are homologically trivial, W(i) =

∂S(i), W(j) = ∂S(j). The chains S(i), S(j) are usually called Seifert (hyper)surfaces

[235]. We can then write δ(W(i)) = dδ(S(i)), δ(W(j)) = dδ(S(j)) and interpret (5.2)

as

LD+1(W(i),W(j)) =

∫
MD+1

dδ(S(i))∧δ(S(j)) =

∫
MD+1

δ(W(i))∧δ(S(j)) =W(i)·MD+1
S(j) ,

(5.5)

where W(i) ·MD+1
S(j) is the number of intersection points of W(i) and S(j) inside

MD+1, counted with signs depending on orientation.

It is also useful to consider a slight generalization of the notion of linking discussed

above, along the following lines. Let’s suppose that the supportsW(i),W(j) span some

common directions along some space V , while extending in distinct directions in the

rest of spacetime, i.e. W(i,j) = V × U (i,j). We can define the linking of W(i) and

W(j) using the same formula as above, but focusing on the U (i) and U (j) parts, whose

dimensions are such that

dim(W(i) ∪W(j)) = D . (5.6)

This notion of linking is naturally associated to Hanany-Witten moves in string/M-

theory, as we discuss in greater detail in section 5.3.
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Topological Action in D + 2 dimensions. The Bianchi identities (5.1) can be

derived from a topological action in D + 2 dimensions,

SD+2 =
∑
i,j

∫
MD+2

[
1

2
κijF

(i) ∧ dF (j) − κijF (i) ∧ J (j)

]
. (5.7)

This is regarded as a functional of the fluxes F (i) (as opposed to the associated gauge

potentials). Extending fromD+1 toD+2 dimensions allows us to deal efficiently with

gauge invariance. The quantity κij is a constant non-degenerate matrix, satisfying

κij = 0 if degF (i) + degF (j) ̸= D + 1

κij = (−1)[degF (i)+1][degF (i)+1]κji .
(5.8)

The symmetry property in the second equality reflects the freedom to integrate by

parts in the F (i) ∧ dF (j) term. It also ensures that, upon variation of F (i), the

topological action yields ∑
j

κij
(
dF (j) − J (j)

)
= 0 , (5.9)

which, by non-degeneracy of κij, is equivalent to dF
(j) = J (j), in agreement with our

parametrization of magnetic sources.

Let us stress that the relations obtained upon variation of the (D+2)-dimensional

topological action are still to be supplemented by Hodge duality relations in D + 1

dimensions. This is illustrated in the following example.

Example: Generalized Maxwell in D + 1 dimensions. Let us consider a gen-

eralized Maxwell theory in D+1 dimensions, with a single p-form gauge potential a,

with field strength f . In the absence of sources, the action reads

SD+1 =

∫
MD+1

1

2e2
f ∧ ∗f , deg f = p+ 1 . (5.10)

The Bianchi identity and equation of motion read

df = ∗J (m) , e−2d ∗ f = ∗J (e) , (5.11)
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where e is the gauge coupling, ∗ is the Hodge star in D + 1 dimensions, J (e) is

the electric source for a, and J (m) is the magnetic source for a. In the democratic

formulation we introduce two field strengths and two magnetic currents,2

F (1) = f , F (2) = e−2 ∗ f , J (1) = ∗J (m) , J (2) = ∗J (e) . (5.12)

The topological action in d+2 dimensions is of the form quoted above, with labels i,

j ranging from 1 to 2, and with κij matrix

κij =

(
0 1

(−)(p+2)(D+1−p) 0

)
. (5.13)

More explicitly,

SD+2 =

∫
MD+2

[
F (1) ∧ dF (2) − F (1) ∧ J (2) − (−)(p+2)(D+1−p)F (2) ∧ J (1)

]
, (5.14)

which, upon variation with respect to F (1), F (2) reproduces dF (1) = J (1), dF (2) = J (2).

The (D + 1)-dimensional Hodge duality relation that has to be supplemented is

∗F (1) = e2F (2) . (5.15)

Note that in the treatment of [236] such duality relations follow automatically.

Inclusion of Chern-Simons terms. We can include non-trivial Chern-Simons

terms by modifying the (D + 2)-dimensional topological action. The required modi-

fication is a polynomial in the F (i) fluxes, denoted CS({F (i)}),

SD+2 =

∫
MD+2

[
1

2

∑
i,j

κijF
(i) ∧ dF (j) + CS({F (i)})−

∑
i,j

κijF
(i) ∧ J (j)

]
. (5.16)

Note that here, the terminology “CS” stems from the fact that CS({F (i)}) is a closed

(D + 2)-form which is related to the physical Chern-Simons couplings in D + 1 di-

mensions by descent,

Stop
D+1 =

∫
MD+1

I
(0)
D+1 , dI

(0)
D+1 = CS({F (i)}) . (5.17)

2Notice in particular that in our notation the currents J (i) are closed forms, as opposed to co-
closed forms, which is perhaps a more common convention for conserved currents in the literature.
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Remember here that F (i) are the full set of magnetic fluxes dF (i) = J (i). Varying

(5.16) with respect to F (i) we get∑
j

κij(dF
(j) − J (j)) +

∂CS({F (k)})
∂F (i)

= 0 . (5.18)

The notation introduced in this section is summarized in table 5.1.

Actions for Type II and M-theory. To make the above discussion more concrete,

let us describe the (D + 2)-dimensional topological actions for type II (D + 1 = 10)

and M-theory (D + 1 = 11). They are of the form (5.16) with

IIA:


F (i) =(F0, F2, F4, F6, F8, F10, H3, H7) ,

S11 =

∫
M11

[
F0dF10 − F2dF8 + F4dF6 +H3dH7 −H3

(
F0F8 − F2F6 +

1

2
F 2
4 +X8

)]
,

IIB:


F (i) =(F1, F3, F5, F7, F9, H3, H7) ,

S11=

∫
M11

[
F1dF9 − F3dF7 +

1

2
F5dF5 +H3dH7 +H3(F1F7 − F3F5)

]
,

(5.19)

M:


F (i) =(G4, G7) ,

S12 =

∫
M12

[
G4dG7 −

1

6
G3

4 −G4X8

]
.

For simplicity, we have recorded the actions without the source terms. We refer the

reader to the appendix of [3] for further details and for a discussion of the sources

J (i). The 8-form X8 is a higher-derivative correction constructed with the curvature

form [237,238]. The topological actions (5.19), in D+2 dimensions are supplemented

by Hodge duality relations in D + 1 dimensions:

Type II: H7 = e−2ϕ ∗10 H3 , Fp = (−1)⌊
p
2
⌋ ∗10 F10−p

M-theory: G7 = − ∗11 G4 ,
(5.20)

where in Type II, ϕ is the dilaton and we work in string frame in natural units. A

democratic formulation for type II based on 11d Chern-Simons theories is presented

in [239]; a democratic formulation based on a non-topological 10d (pseudo)action is

presented in [240].
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Dimensions
QFT dim = d; SymTFT dim = d+ 1; sugra dim = D + 1 = 10, 11

internal space dim = D; D + 1 = D+ d+ 1

Top Action S =

∫
MD+2

[
1

2

∑
i,j

κijF
(i) ∧ dF (j) + CS({F (i)})−

∑
i,j

κijF
(i) ∧ J (j)

]

Magnetic Sources
dF (i) −

∑
j

(κ−1)ij
CS({F (k)})
∂F (j)

= J (i) , J (i) supported on W(i)

D + 1− dimW(i) = deg J (i) = degF (i) + 1

Linking
LD+1(W(i),W(j)) =

∫
MD+1

J (i) ∧ d−1J (j) =

∫
MD+1

dF (i) ∧ F (j)

dimW(i) + dimW(j) = D,
(
dim(W(i) ∪W(j)) = D for HW linking

)
Table 5.1: Summary of Notation: we consider a supergravity theory in D+1 = 10, 11,
dimensions with fluxes F (i). The auxiliary topological action is formulated in D + 2
dimensions. The magnetic source for F (i) is denoted by J (i).

(D+2)-dimensional Topological Action and Dimensional Reduction. Recall

that we are interested in studying setups in which the physical spacetime in 10/11

dimensions is of the form (2.11). This corresponds to D = d + D. The auxiliary

topological action in D + 2 dimensions is formulated on a spacetime of the form

MD+2 =Md+2 × LD , (5.21)

where the external spacetime Md+1 has been extended to an auxiliary Md+2, while

the internal geometry remains LD. Our task is to integrate SD+2 on LD to obtain a

topological action Sd+2. Next, we reconstruct the physical SymTFT action Sd+1 from

Sd+2,

auxiliary top. action Sd+2 =

∫
LD

SD+2 −−−→ SymTFT action Sd+1 .

(5.22)

This arrow represents the descent process demonstrated around (5.17). These steps

are exemplified below in a variety of setups.
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5.2.2 BF-Terms from Branes

The first aspect to address is how to generate the BF terms of the SymTFT.3 We

adopt the strategy described at the end of the previous section: we work on a (D+2)-

dimensional spacetime of the form (5.21). The fluxes can have background values on

topologically non-trivial cohomologies of the internal manifold LD, and in the reduc-

tion ansatz they are generically expanded along representatives of these cohomologies.

Generically we face two possibilities that generate BF-terms:

1. BF-terms from the term CS({F (i)}) in (5.16)

2. BF-terms from the term κijF
(i) ∧ dF (j) in (5.16).

Let us analyze each possibility in turn.

BF-terms from CS({F (i)}). The first possibility is when the Chern-Simons func-

tional descend to a non-trivial quadratic wedge product of two fluxes upon compact-

ification on LD. For instance this is the case when there are non-trivial background

fluxes on LD or F (i) are expanded on non-trivial cohomologies representatives.

Let us describe schematically the general mechanism for generating BF-terms in

this case. The relevant ansatz for the higher-dimensional fluxes and sources reads

F (i) = F
(i)
bkrg +

∑
a

f (ia) ∧ ω(a) , J (i) =
∑
a

j(ia) ∧ ω(a) . (5.23)

Here ω(a) are closed internal forms, with integral periods, representing cohomology

classes on LD, enumerated by the label a. The quantities f (ia) are external fluxes,

while F
(i)
bkrg denotes a possible non-zero background value for the F (i) flux. The latter

is also proportional to the volume form of cycles of LD and always integrates to an

integer on these cycles because of flux quantization. Finally, we use j(ia) to denote

the external parts of the higher-dimensional sources J (i).

3In some cases these can be pure Chern-Simons term like c3dc3 in 7d. When this happens the
theory is not properly defined as a SymTFT, because of the absence of gapped boundary conditions.
An example of this is provided by 6d (2, 0) theories.
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If we start from the topological action (5.16) in D + 2 dimensions and integrate

over LD, we obtain a topological action in d+2 dimensions with couplings of the form

(we suppress wedge products for brevity)

Sd+2 =

∫
Md+2

∑
i,j,a,b

[
1

2
κ(ia)(jb)f

(ia)df (jb) − κ(ia)(jb)f (ia)j(jb) + α(ia)(jb)f
(ia)f (jb)

]
+ · · · .

(5.24)

On the one hand, the constants κ(ia)(ib) are determined from the original constants κij

in (5.16) and the intersection pairing of the ω(a) forms on LD. On the other hand, the

terms α(ia)(jb)f
(ia)f (jb) originate from cubic terms in CS({F (i)}) in (5.16), with the

constants α(ia)(jb) determined as integrals over LD of internal top forms constructed

with the background fluxes F
(i)
bkgr and with the forms ω(a). Integrality of F

(i)
bkgr, ω

(a)

implies integrality of α(ia)(jb).

The first two terms in the auxiliary (d+ 2)-dimensional action (5.24) correspond

to kinetic terms in the physical action on Md+1. As we describe at the beginning of

this section, the kinetic terms of the gauge potential do not capture the fluctuations

of finite discrete Abelian gauge field, and therefore can be ignored in the truncation

to the topological sector. We are left with

SBF+sources
d+2 =

∫
Md+2

∑
i,j,a,b

[
α(ia)(jb)f

(ia) ∧ f (jb) − κ(ia)(jb)f (ia) ∧ j(jb)
]
. (5.25)

This action reproduces the physical consequences of BF term in (d+ 1)-dimensions.

Example. For illustration purposes, let us consider the simple case in which we

only have two relevant external fluxes, denoted f (1), f (2), and one α constant,

SBF+sources
d+2 =

∫
Md+2

[
αf (1) ∧ f (2) − f (1) ∧ j(1) − f (2) ∧ j(2)

]
, (5.26)

where we have performed a linear redefinition of the external currents to reabsorb

the κ constants. An action of this form appears for example in many holographic

setups like AdS5 × S5 or AdS7 × S4 in IIB or M-theory respectively, where the we
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have background fluxes such that α =
∫
S5 F5 = N and α =

∫
S4 G4 = N . The Bianchi

identities read

αf (2) = j(1) , (−1)deg f (1) deg f (2)

αf (1) = j(2) . (5.27)

Plugging this back into the action and evaluating the exponential of the action with

brane sources we get

⟨e2πi
∫
M(1) f

(1)

e2πi
∫
M(2) f

(2)⟩ = exp

(
2πi

α

∫
Md+1

j(1)(Σ(1)) ∧ d−1j(2)(Σ(2))

)

= exp

(
2πi

α
Ld+1(Σ

(1),Σ(2))

)
,

(5.28)

where Σ(1) = ∂M(1), Σ(2) = ∂M(2) are (homologically trivial) cycles in Md+1 and we

have used (5.2) with D replaced by d.

Flux Non-Commutativity. We can now relate the above to flux non-commutativity.

By inserting the above operators on alternative Σ̃(1) = ∂M̃(1), Σ̃(2) = ∂M̃(2):

〈
e2πi

∫
M̃(1) f

(2)

e2πi
∫
M̃(2) f

(1)
〉
= exp

(
2πi

α

∫
Md+1

j(2)(Σ̃(1)) ∧ d−1j(1)(Σ̃2)

)

= exp

(
2πi

α
Ld+1(Σ̃

(2), Σ̃(1))

)
.

(5.29)

This implies that

〈
e
2πi

∮
Σ1

f (1)

e
∮
Σ2

f (2)
〉
=
〈
e
∮
Σ̃1

f (2)

e
∮
Σ̃2

f (1)
〉
e2πi

L−L̃
α , (5.30)

where L, L̃ are short-hand for the linking numbers Ld+1 for Σ
(i) and Σ̃(i) respectively.

If the two branes unlink in the second configuration, i.e. L̃ = 0, we exactly get flux

non-commutativity as a consequence of the two branes linking in d+ 1 dimensions.

Example: 4d N = 1 SYM with g = su(M). To exemplify this, consider the holo-

graphic realization of pure super-Yang-Mills (SYM). We first consider the Klebanov-

Strassler solution [64] dual to 4d g = su(M) N = 1 SYM. This is the back-reacted

configuration of N D3-branes probing the resolved conifold, i.e. the cone of the T 1,1
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Sasaki-Einstein space, C(T 1,1) and M D5-branes wrapping S2 ⊂ T 1,1. The relevant

flux quantization is ∫
S3

F3 =M . (5.31)

The ansatz for the higher-dimensional fluxes is

F (1) = F3 =MvolS3 + f (1,1) ∧ volS2+f (1,2) ,

F (2) = H3 = f (2) ,

F (3) = F5 = F
(3)
bkrg + f (3,1) ∧ volS2 + f (3,2) ∧ volS3 .

(5.32)

From the IIB topological action, we derive the term

Sd+2 =

∫
Md+2

Mf (2) ∧ f (3,1) . (5.33)

where d = 4. We must also include sources for the external fluxes

dH7 = J (2) : J (2) = j(2,1) ∧ volT 1,1 . . .

dF5 = J (3) : J (3) = j(3,1) ∧ volS3 + . . . ,
(5.34)

where we recall that the labels on top of the F (i), f and j do not reflect the form

degrees, which can instead be read off from the identification with the IIB fluxes

F3, H3, F5 in (5.32) and from their derivatives in (5.34). We then obtain

SBF+sources
d+2 =

∫
Md+2

Mf (2) ∧ f (3,1) − j(2,1) ∧ f (2) − j(3,1) ∧ f (3,1) . (5.35)

This is the IR BF term which describes flux non-commutativity [1].

BF-terms from κijF
(i)∧dF (j). The second case is when the BF-terms or quadratic

terms in the topological action, after compactification on Lint, are generated by one

of the F (i) ∧ dF (j) terms in (5.16). For ease of exposition, instead of considering the

general action (5.16) we can consider a simpler action in D+2 dimensions, with only

two fluxes and no Chern-Simons interactions,

SD+2 =

∫
MD+2

[
F (1) ∧ dF (2) + (sources)

]
. (5.36)
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For simplicity we also assume that there is only one pair of relevant cycles onto which

F (1), F (2) are expanded, so that the relevant terms in the reduction ansatz are

F (1) = f ∧ ϕ , F (2) = f̃ ∧ ϕ̃ . (5.37)

In the previous expressions the internal forms ϕ, ϕ̃ are not closed. Rather, they

represent torsional cohomology elements in H•(Lint,Z) [171, 172], as explained in

greater detail below. The degrees of the forms f , f̃ , ϕ, ϕ̃ must satisfy

deg f + deg f̃ = d+ 2 , deg ϕ+ deg ϕ̃ = D− 1 . (5.38)

The reduction of (5.36) yields a (d+ 2)-dimensional action of the form

SBF+sources
d+2 =

∫
Md+2

[
αf ∧ f̃ − f ∧ j − f̃ ∧ j̃

]
. (5.39)

Here the coefficient α is given by

α = (−1)(1+deg f̃)(1+deg ϕ)

∫
LD

dϕ ∧ ϕ̃ . (5.40)

The external source terms j, j̃ originate from the source terms in (5.36). From dF (2)

we also get a term in which the derivative acts on f̃ . This term, however, yields f∧df̃

in d+ 2 dimensions. Such terms will lead to kinetic terms in the (d+ 1)-dimensional

action that we ignore once we consider the theory of flat gauge potentials only, as it

was for the first case.

The integral in the α coefficient can be interpreted as linking in the internal

space: this is illustrated below. We then see how the BF-terms as well as flux non-

commutativity are directly equivalent to the brane and its magnetic dual brane linking

also in external space as it was for the first case. Notice here the branes link doubly,

i.e. both internally and externally. The internal linking of the branes leads to the

coefficient of the BF-term. On top of this the external linking leads to flux non-

commutativity.
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As anticipated above, the non-closed forms ϕ, ϕ̃ encode torsional cohomology

classes. More precisely, let us consider the pairs (ϕ,Φ), (ϕ̃, Φ̃) with [171,172]

ℓΦ = dϕ , ℓ̃Φ̃ = dϕ̃ , (5.41)

where ℓ, ℓ̃ are positive integers. 4 The pair (ϕ,Φ) models an element ofHdeg ϕ+1(LD,Z)

of torsional degree ℓ, while the pair (ϕ̃, Φ̃) models an element of Hdeg ϕ̃+1(LD,Z) of

torsional degree ℓ̃. The relation ℓΦ = dϕ corresponds to a statement of the form

ℓΣ = ∂M, where Σ is the cycle dual to the closed form Φ, hence of dimension

D−deg ϕ−1, andM is a chain of dimension D−deg ϕ. Similarly, ℓ̃Φ̃ = dϕ̃ translates

to ℓ̃Σ̃ = ∂M̃, where Σ̃ is a cycle of dimension D− deg ϕ̃− 1. The torsional pairing of

the cycles Σ, Σ̃ can be computed by taking the intersection number between Σ and

M̃ and dividing by ℓ̃, the torsional order of Σ̃,

TLD
(Σ, Σ̃) =

1

ℓ̃
Σ ·LD

M̃ mod Z . (5.42)

Using Σ ·LD
M̃ =

∫
LD

Φ ∧ ϕ̃ and (5.40), (5.41), we can write

(−1)(1+deg f̃)(1+deg ϕ)α =

∫
Lint

dϕ ∧ ϕ̃ = ℓΣ ·LD
M̃ = ℓℓ̃ TLD

(Σ, Σ̃) . (5.43)

We have thus established a general relation between the BF coefficient α, the torsional

pairing TLint
(Σ(1), Σ̃(1)), and the torsional orders ℓ, ℓ̃. We also confirm the integrality

of the BF coefficient α.

To make this approach more concrete, consider the simple example of S3/Zk. We

write the metric in Hopf coordinates as follows:

g =
1

k2
(dψ + A)2 +

1

4
(dβ2 + sin2 βdθ2) , (5.44)

4Note that this prescription is less geometrically interpretable than the differential cohomology
framework. We employ it here to highlight the physical interpretation of brane linking associated
with various couplings. However, when directly computing integrals we will map such expressions
into linking numbers or differential cohomology integrals which are easier to calculate.
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where both ψ and θ have period 2π and A = k
2
cos βdθ. In the above notation, we

construct two forms

ϕ =
1

2π
(dψ + A) , Φ = − 1

4π
sin βdβdθ , (5.45)

such that

dϕ = kΦ . (5.46)

We can then compute integrals directly, such as∫
S3/Zk

ϕ ∧ dϕ = k . (5.47)

BF-terms from Both Mechanisms. Finally, we can consider cases where both

situations show up, namely where we have non-zero background fluxes as well as

non-trivial torsional pairings. Examples are furnished by AdS5×RP5 in type IIB [90]

or AdS7 × RP4 in M-theory [241] (the fluxes are F5 and G4, respectively). In the

standard setting (case 2 above), torsional flux non-commutativity applies to branes

that are electro-magnetic duals in the original D + 1 dimensional theory. In the

hybrid case, the non-zero background flux induces torsional flux non-commutativity

for branes that are not duals in D+1 dimensions. As a result, some technical aspects

of the computation of BF couplings in this class of scenarios require a more refined

analysis; we refer the reader to the references above.

5.2.3 Topological Couplings in the SymTFT from Branes

So far we have been focusing on how to get the BF-terms of the SymTFT from

the branes in the holographic or geometric constructions. Dimensional reduction of

the 10/11-dimensional flux sector with brane sources can lead to additional topolog-

ical couplings, which, upon choosing suitable gapped boundary conditions, provides

an invertible topological theory. This corresponds to the anomalies involving finite,

abelian symmetries of an absolute QFT at the boundary. We refer to such couplings
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in the SymTFT as anomaly couplings (with the understanding that these couplings

result in ’t Hooft anomalies after certain choices of boundary conditions).

The strategy to obtain these extra topological (non BF-type) couplings is similar

to the one implemented for identifying the BF-terms as linking of branes. It consists

of dimensionally reducing the action (5.16) on LD and then applying the (dimension-

ally reduced) Bianchi identities, with sources, (5.18)5. By substituting the fluxes in

terms of brane sources, we can directly connect the extra topological couplings to

brane linking. We now describe how this works in general, where we limit though

to quadratic or cubic couplings, which are the cases of interest for us. On the other

hand, extending to higher topological coupling is straightforward.

The extra topological (non BF-type) couplings of interest are couplings in the

SymTFT in d + 1 dimensions. As in the previous section, however, we find it con-

venient to describe these couplings using an action in d + 2 dimensions, since this is

what we naturally get from (5.16). We use j(i) to denote external currents. Their

form degrees are left unspecified. In each case, it is assumed that they are such that

the integrals we write can be non-zero.

5.2.3.1 Quadratic Couplings

For the quadratic couplings there are two types of extra topological couplings, de-

pending on their expression in terms of the brane sources.

Quadratic Couplings 1. The first case is

Sextra = a

∫
Md+2

j(1) ∧ d−1j(2) . (5.48)

5Alternatively one can reduce the Bianchi identities with brane sources directly and construct
the lower-dimensional action from this. The two procedures are equivalent.
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These sorts of terms in d+2 dimensions are expected to combine into a total derivative,

which we can rewrite as an integral in Md+1, of the form

Sextra = a

∫
Md+1

d−1j(1) ∧ d−1j(2) . (5.49)

In this case the branes can link in Md, where the QFT lives.

Example. A Pontryagin square P(b2) coupling in the 4d SymTFT for a QFT in

3d is an example of such a coupling. The finite 2-form gauge field b2 is BF-dual to

b̂1 in 3d. The topological operators realized by the dimensionally reduced branes, are

identified with the holonomies of b̂1. They are lines that can link in the 3d spacetime,

where the QFT lives. For example, this coupling can be found in setups where a stack

of M5-branes is wrapped on a compact 3-manifold Σ3 with an appropriate topological

twist to preserve 3d N = 2 or N = 1 supersymmetry. In this case, the link geometry

L7 is an S4 fibration over Σ3. Depending on the geometry of Σ3, L7 can admit non-

trivial torsional cohomology classes of degree 2. Expansion of G4 onto such classes

yields both discrete gauge fields 2-forms as b2, and P(b2) couplings in the SymTFT,

by applying the techniques of [65], see [242] where this will be utilized. Couplings of

the form P(b2) are also found in the SymTFTs of supersymmetric 3d QFTs realized

in M-theory using geometric engineering or M2-branes [2].

Quadratic couplings 2. The second case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) = (−)deg j(1)a
∫
Mdext

j(1) ∧ d−1j(2) . (5.50)

This is instead a case where the two branes link in Md+1, where the SymTFT lives.

Example. A coupling

b2 ∪ Bock(b′2) , (5.51)

in a 5d SymTFT for a 4d QFT is of this type. We explain how Bockstein terms

in anomalies appear in our brane-linking picture around (5.69). Here, we motivate
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this term on physical grounds - the associated topological generators have dimensions

such that their linking pairing must be of this form. Here b2, b
′
2 are ZN 2-form fields,

and Bock is the Bockstein homomorphism associated to the short exact sequence

0→ ZN
×N−−→ ZN2 → ZN → 0 . (5.52)

The dimensionally reduced branes are identified with the holonomies of b̂2, b̂
′
2, the 5d

BF-duals of b2, b
′
2. Thus the brane sources are 2d surfaces, and indeed can link in the

5d spacetime where the SymTFT lives.

In both these quadratic couplings, a is an integer constant coupling coefficient

which is determined by an integral over LD of non-trivial fluxes components over the

internal space. It depends on the representatives of non-trivial cohomology or non-

trivial geometric linking of cycles in the internal space, wherever we face the first or

the second situation described in the previous section, respectively. In addition a is

an integer because of flux quantization.

5.2.3.2 Cubic Couplings

For cubic couplings we face three distinct possibilities.

Cubic Couplings 1. The first case is

Sextra = a

∫
Md+2

j(1) ∧ d−1j(2) ∧ d−1j(3) . (5.53)

Terms of this form correspond to an integral in Md+1 of the form

Sextra = a

∫
Md+1

d−1j(1) ∧ d−1j(2) ∧ d−1j(3) . (5.54)

This is a triple linking configuration (cf. Milnor’s triple intersection number [243]).

We can formally recast it as a standard linking in Md+1, namely a quantity of the

form
∫
Md+1

j(12) ∧ d−1j(3), with the identification

j(12) = d−1j(1) ∧ d−1j(2) . (5.55)
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Recall that j(i) is supported on a cycle Σ(i) that is the boundary of a chain M(i),

which is usually referred to as Seifert (hyper)surface [235]. Then the RHS of (5.55)

represents the intersection inside Md+1 of the Seifert surfacesM(1),M(2) associated

to j(1), j(2).

Example: B3 Anomaly in 5d. A cubic coupling b2b2b2 in the 6d SymTFT of a

QFT in d = 5 dimensions, such as have appeared in [65,244]. Here b2 is a ZN discrete

2-form. The dimensionally reduced branes are again identified with the holonomies of

the BF-dual field b̂3 in six dimensions, which arise from M5-branes wrapping torsional

3-cycles of Ln. They are therefore 3d surfaces, which in six dimensions can form a

non-trivial triple linking configuration as in (5.54).

Example: 4d N = 1 SYM with G = SU(M). This theory has mixed ’t Hooft

anomaly

A = −2π 1

M

∫
A1 ∪

P(B2)

2
, (5.56)

where B2 is the background for a Z(1)
M 1-form symmetry and A1 is the background for a

Z(0)
2M 0-form symmetry. Using the Klebanov-Strassler solution, a detailed supergravity

origin of this anomaly is given in [1, 41].

We continue with the field notation introduced around (5.35). The generator of

the 0-form symmetry was identified with a D5-brane wrapped on S3 ⊂ T 1,1 in [41].

We introduce a source for the external field corresponding to background for this

symmetry via

dF3 = J (1) , J (1) = j(1,1) ∧ volS2 + . . . , (5.57)

where we use the expansion in (5.32), and with (5.34) we can rewrite the anomaly as

follows

1

2M

∫
Md+2

j(1,1) ∧ d−1j(3,1) ∧ d−1j(3,1) , (5.58)
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where d = 4 and the form degrees of j(3,1) and j(1,1) are 3 and 2 respectively, and they

can be read off from (5.32), (5.34) and (5.57).

Cubic Couplings 2. The second case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) ∧ d−1j(3) , (5.59)

with corresponding term in Md+1 of the form

Sextra = a

∫
Md+1

j(1) ∧ d−1j(2) ∧ d−1j(3) . (5.60)

Again this is interpreted as suitable triple linking configuration. We can formally

recast it as a standard linking in Md+1, namely a quantity of the form
∫
Md+1

j(12) ∧

d−1j(3), with the identification

j(12) = j(1) ∧ d−1j(2) . (5.61)

The RHS represent the intersection inside Md+1 of the cycle associated to j(1) with

the Seifert surface associated to j(2).

Example. The coupling b2b2Bock(a1) in the 6d SymTFT of a QFT in d = 5 di-

mensions. Here b2 is a ZN 2-form field, a1 a ZM 1-form field, and the Bockstein

homomorphism is analogous to the one introduced above in the b2Bock(b
′
2) example.6

The dimensionally reduced branes provide the holonomies of the BF-dual fields in

six dimensions, b̂3 and â4, and are therefore 3d and 4d surfaces, respectively. Such

3d-3d-4d system in 6d can exhibit the triple linking described in (5.60).

6This example may be realized using 5d gauge theories. More precisely, we may start with a 5d
gauge theory in which the U(1) instanton 0-form symmetry and the center 1-form symmetry have a
mixed anomaly, encoded in a coupling b2b2f2 in the 6d SymTFT, where f2 is the field strength of a
continuous 1-form gauge field. If we restrict to a ZM subgroup, this coupling becomes b2b2Bock(a1).
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Cubic Couplings 3. The third case is

Sextra = a

∫
Md+2

j(1) ∧ j(2) ∧ j(3) , (5.62)

corresponding to the following in Md+1,

Sextra = a

∫
Md+1

j(1) ∧ j(2) ∧ d−1j(3) , (5.63)

This is again a suitable triple linking configuration. We can formally recast it as a

standard linking in Md+1, namely a quantity of the form
∫
Md+1

j(12) ∧ d−1j(3), with

the identification

j(12) = j(1) ∧ j(2) . (5.64)

The RHS represent the intersection inside Md+1 of the cycles associated to j(1), j(2).

Example. An example is the coupling a1Bock(a1)Bock(a1) in the 5d SymTFT of

a 4d QFT. Here a1 is a ZN 1-form gauge field, and Bock is the same Bockstein

homomorphism as in the previous examples of this section. The dimensionally reduced

branes give the holonomies of â3, the BF-dual of a1 in 5d, and are therefore 3d surfaces.

Three such branes can link as in (5.63).

Example: G(0) Anomaly of 4d N = 1 SYM with G = SU(M). There is a pure

0-form symmetry anomaly [41]

Stop ⊃
∫
−κ

2M2

4
F3

2 , (5.65)

where F2 = dA1 is the field strength of a background gauge field for the 0-form

symmetry and N = κM is the number of D3-branes. In terms of brane sources, this

is a pure 0-form symmetry anomaly of the third type

κ2

32M
j(1,1) ∧ j(1,1) ∧ j(1,1) , (5.66)
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where using (5.32) and with df (1,1) = 2MF2 (see Appendix A of [41]), we find

F2 =
j(1,1)

2M
. (5.67)

It would be interesting to compare this with a direct field theory analysis, in the large

rank limit.

For the cubic coupling the coefficient, a, is integer and constant because of flux

quantization and depends on the internal sources and how they integrate on LD non-

trivially. In particular, a can originate from either situation listed in the previous

section depending on how the fluxes and their Bianchi identities get compactified.

We notice that the three cases 1, 2, 3 listed above correspond to triple linkings of

type 0, 1, 2, respectively, in the notation of [87], see also [235].

5.2.4 Anomaly Couplings as Charges of Defect Junctions
from Branes

These extra topological couplings in the SymTFT can lead to anomalies of an absolute

QFT once suitable boundary conditions are chosen. This is also true for the BF-

couplings, there are some choice of boundary condition for which some left over BF-

couplings can lead to a quadratic anomaly. The choice of boundary condition depends

on the specific theory itself. In terms of branes these corresponds to picking a radial

direction of the SymTFT and understanding how the branes providing topological and

charged defects can extend in Md+1. For instance charged defects come from branes

extended in the radial direction (the direction perpendicular to the boundary where

the relative QFT lives), i.e. the field electrically charging the branes has Dirichlet

boundary condition.

Whereas topological operators comes from branes parallel to the boundary, i.e. the

field which electrically charge the brane is freely varying. From this point of view it

is easy to interpret the quadratic anomaly as the charge of a brane, corresponding to

a topological defect, with respect to the same or a different brane, corresponding to
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the same or a different topological defect. These correspond to a pure or a mixed ’t

Hooft anomaly, respectively. A cubic anomaly can be interpreted as charges of a brane

intersection, corresponding to a junction of topological defects (equal or different, for

pure or mixed ’t Hooft anomalies respectively), with respect to the same or another

brane, corresponding to the same or another topological defect (for pure or mixed ’t

Hooft anomalies respectively). The charges computed here correspond to the number

a which is an integral over the internal manifold times the linking of the branes in

the external space as specified for the different cases of quadratic and cubic extra

topological couplings above. The anomalies can be interpreted as an ambiguity of

the topological defects whenever they link or unlink in the radial direction.

Example 1. We now illustrate the above ideas for two concrete classes of mixed

anomalies for discrete p-form symmetries. Firstly, let us consider an anomaly action

of the schematic form

A = α

∫
Md+1

A(1)
p1
. . . A(n)

pn ,
n∑

j=1

pj = d+ 1 . (5.68)

Each A
(j)
pj is a discrete background field for a global symmetry, a cohomology class

of degree pj. The constant α is the anomaly coefficient. We denote the topological

defect implementing the global symmetry associated to A
(j)
pj as D

(j)
d−pj

. (Notice that

these topological defects live in d dimensions.) Let us consider topological defects

D
(2)
p2 , . . . , D

(n)
pn in generic positions in d-dimensional spacetime. They intersect along

a locus of dimension p1 − 1. The mixed anomaly (5.68) means that this intersection

has non-zero charge (proportional to α) under the topological operator D
(1)
d−p1

. For

ease of discussion, we have singled out the symmetry associated to A
(1)
p1 , but clearly

analogous statements can be made by singling out any other A
(j)
pj .
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Example 2. Next, let us consider a mixed anomaly for two finite global symmetries,

of the form

A = α

∫
Wd+1

Ad−pBock(Bp) . (5.69)

We denote the topological defects operator generating the global symmetries asso-

ciated to the background fields Ad−p, Bp as D
(A)
p , D

(B)
d−p, respectively. For sim-

plicity, we assume that Bp is associated to a Zk (p − 1)-form symmetry. Then

Bock denotes the Bockstein homomorphism associated to the short exact sequence

0 → Z k−→ Z → Zk → 0. This anomaly can only be detected on spacetimes with

torsion, because Bock(Bp) lies in the torsion subgroup of Hp+1(Wd+1,Z). An inter-

pretation in terms of junctions of topological defects can be given along the lines of

appendix F of [7] (and many subsequent works). The relevant torsion in d dimensions

is in Hp+1(Wd,Z), or Hd−p−1(Wd,Z) by Poincaré duality. We thus consider a torsional

(d − p − 1)-dimensional cycle Md−p−1 in d dimensions, satisfying rMd−p−1 = ∂Nd−p.

We may insert a topological defect D
(B)
d−p supported on Nd−p, withMd−p−1 regarded as

a codimension one junction inside D
(B)
d−p. The anomaly (5.69) means that this junction

onMd−p−1 has non-zero charge (proportional to α) under the topological defects D
(A)
p

(indeed, they link in d dimensions). In the action (5.69) of the anomaly theory, the

Bockstein map can be “integrated by parts” and the roles of A and B in the previous

discussion can be exchanged. This sort of anomaly can be found, for example, in 4d

gauge theory with gauge algebra su(N), with N = ℓℓ′ for integers ℓ > 1, ℓ′ > 1. We

can specify a global form of the theory with both non-trivial electric and magnetic

1-form symmetries. The mixed anomaly between the latter is of the form (5.69) with

d = 4, p = 2.

5.2.5 Condensation Defects from Branes

From a symmetry categorical point of view the condensation completion (or Karoubi

completion) corresponds to adding all possible condensation defects. We have seen
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how this is realized in terms of the SymTFT by including the couplings to lower-

dimensional DW-theories in (2.7).

We now turn to the string theory interpretation. For definiteness we work in type

II, but similar remarks apply to M-theory. Let us consider a Dp-brane on Mp+1.

We are interested in writing down a topological action, formulated on an auxiliary

manifold Mp+2 in one dimension higher, that captures the topological couplings on

the Dp-brane. Moreover, we also want to capture the kinetic term f2 ∧ ∗f2 from the

DBI action using the auxiliary topological action. We propose the following,

SDp
p+2 =

∫
Mp+2

[
f̂p−1 ∧ df2 +

(
ef2
∑
q

Fq

√
Â(T )

Â(N)

)
p+2

]
. (5.70)

Here f2 is the field strength of the gauge field on the Dp-brane and f̂p−1 is its Hodge

dual in Mp+1. The quantities Fq are the RR fluxes, pulled back from the bulk, and

we have also included the standard A-roof terms from the Wess-Zumino couplings,

for the tangent and normal bundles, respectively. If we consider an anti Dp-brane,

we flip the sign of action (5.70)7.

We want to argue that considering a combined Dp/Dp system provides a possible

stringy origin for the condensation-completed SymTFT action (2.7). We proceed by

considering a couple of illustrative examples.

Example: 4d N = 1Holographic dual. We continue with the Klebanov-Strassler

example 5.2.2. For this we need to consider the action of D5-branes. Their action is

given by

SD5
7 =

∫
M7

[
f̂4 ∧ df2 + F7 + f2F5 +

(
1

2
f 2
2 +

p1(N)− p1(T )
48

)
F3

+

(
1

3!
f 3
2 + f2

p1(N)− p1(T )
48

)
F1

]
. (5.71)

7The sign of the DBI term for a brane and an antibrane is the same. The flip in sign in the BF
term reformulation of the DBI kinetic term is compensated by a flip in sign in the Hodge duality
relation between f2 and f̂p−1.
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As a result, the combined action for a D5-brane/anti-D5-brane reads

S
D5/D5
7 =

∫
M7

[
f̂4 ∧ df2 − f̂ ′

4 ∧ df ′
2 + (f2 − f ′

2)F5 +
1

2
(f2 − f ′

2)(f2 + f ′
2)F3

+ (f2 − f ′
2)

(
f 2
2 + f2f

′
2 + f ′2

2

6
+
p1(N)− p1(T )

48

)
F1

]
. (5.72)

We have used a prime to denote the gauge field f ′
2 on the anti-D5-brane and its

partner f̂ ′
4.

In the Klebanov-Strassler holographic setup, the D5/D5 system is wrapped on

M7 = M4 × S3 with M units of F3 through the S3. Our task is to integrate the

7d topological action on S3. The discussion parallels exactly the two cases discussed

in section 5.2.2. The terms f̂4 ∧ df2 would correspond to kinetic terms in the lower-

dimensional theory on M4, which we neglect because we are studying the topological

sector. Next, the terms quadratic in f2, f
′
2 yield a 4d description of a set of abelian CS-

terms in 3d. Moreover, F5 admits a non-trivial component along S3: from (f2−f ′
2)F5

on S3 we get a coupling of (f2 − f ′
2) to a 2-form bulk field, denoted g2. In summary,

the relevant terms are

SD5/D5 =

∫
M4

[
M

2
(f2 − f ′

2)(f2 + f ′
2) + (f2 − f ′

2)g2

]
. (5.73)

We suggest the following interpretation, making contact with the general expression

(2.7) for the condensation-completed SymTFT. The combination f2− f ′
2 is identified

with the localized field a1 in the lower-dimensional DW type theory in the SymTFT

that accounts for a class of condensation defects. The combination f2+f
′
2 corresponds

instead to â1, the BF-dual to a1 in the lower-dimensional DW type theory, Finally,

g2 corresponds to one of the bulk fields bp+1 (here p = 1). This can be seen more

explicitly in the case of M odd. We perform a field redefinition implemented by an

integral, unimodular matrix, and we rename g2,(
f2
f ′
2

)
=

(
1 1
0 1

)(
da1
dâ1

)
, g2 = b2 . (5.74)
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We get the action∫
M3

[
Mâ1 ∧ da1 + a1 ∧ b2 +

K

2
a1 ∧ da1

]
, K =M . (5.75)

The Lagrangian in bracket describes the (ZM)K discrete gauge theory [212], coupled

to the bulk field b2. On a spin manifold, K can be any integer and the periodicity is

K ∼ K + 2M if M is even and K ∼ K +M if M is odd. We then see that, for M

odd, the Lagrangian (5.75) on a spin manifold is equivalent to∫
M3

[
Mâ1 ∧ da1 + a1 ∧ b2

]
, (5.76)

which matches (2.7). For M even, (5.75) still describes a condensation defect, but

with non-trivial discrete torsion K =M , see e.g. appendix B of [32].

Example: 4d N = 4 so(4n) SYM. Let us now discuss an example that illustrates

the importance of the terms f̂p−1df2 in (5.70) in the presence of torsion. The action

(5.70) for a D3-brane reads

SD3
5 =

∫
M5

[
f̂2 ∧ df2 + F5 + f2F3 +

(
1

2
f 2
2 +

p1(N)− p1(T )
48

)
F1

]
, (5.77)

and therefore a D3/D3 system is described by

S
D3/D3
5 =

∫
M5

[
f̂2 ∧ df2 − f̂ ′

2 ∧ df ′
2 + (f2 − f ′

2)F3 +
1

2
(f2 − f ′

2)(f2 + f ′
2)F1

]
. (5.78)

We consider the holographic dual setup to 4dN = 4 SYM with gauge algebra so(4N).

In this case M5 = M4 × RP1, with RP1 regarded as an element of H1(RP5,Z) ∼= Z2.

From the point of view of M5, the RP1 factor provides a torsional class of degree one

t1, of torsional order 2. Following the approach of [171, 172], we can model this by

introducing a pair of differential forms on RP1,

2Φ1 = dϕ0 , (5.79)

see (5.41). We expand f2 and f̂2 onto ϕ0,

f2 = F2ϕ0 + . . . , f̂2 = F̂2ϕ0 + . . . (5.80)
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and similarly for the primed fields, and we have∫
M4×RP1

[
f̂2df2 − f̂ ′

2df
′
2

]
=

[ ∫
RP1

dϕ0ϕ0

] ∫
M4

[
F̂2F2 − F̂ ′

2F ′
2 + . . .

]
. (5.81)

As in section 5.2.2, the terms where the derivative acts on the F ’s can be neglected,

because they describe kinetic terms after integrating over RP1. The integral of dϕ0ϕ0

encodes the torsional self-pairing of t1,∫
RP1

dϕ0ϕ0 = 2 . (5.82)

We compute this integral, and similar expressions throughout this work, using the

methodology described around (5.43) by mapping to a linking number computation,

or equivalently using the known result in differential cohomology. Finally, we also

expand the bulk field F3 onto (Φ1, ϕ0): the relevant term is F3 = g2 ∧ Φ1. As a

result, the term (f2 − f ′
2)F3, after integration on RP1, yields a term (F2 − F ′

2)g2. In

conclusion, we arrive at the following set of couplings,

SD3/D3 =

∫
M4

[
2F̂2 ∧ F2 − 2F̂ ′

2 ∧ F ′
2 + (F2 −F ′

2) ∧ g2
]
. (5.83)

Because of S-duality, however, we know that the presence of a coupling of f2 to C2

implies the presence of a f̂2 (which is the electromagnetic dual of f2) to B2. We then

expect the full set of relevant couplings to be

SD3/D3 =

∫
M4

[
2F̂2 ∧ F2 − 2F̂ ′

2 ∧ F ′
2 + (F2 −F ′

2) ∧ g2 + (F̂2 − F̂ ′
2) ∧ h2

]
. (5.84)

Here we have expanded H3 onto Φ1 as H3 = h2∧Φ1. The full action might be derived

using the SL(2,Z)-covariant formulation of [245].

To make contact with (2.7) we perform a redefinition implemented a matrix in

GL(4,Z), and we rename g2 and h2,
F2

F ′
2

F̂2

F̂ ′
2

 =


1 0 1 1
0 0 1 1
1 1 0 0
1 1 −1 0



da1
dâ1
da′1
dâ′1

 , g2 = b2 , h2 = b̂2 . (5.85)
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We obtain the action∫
M3

[(
2â1da1+a1b2+

K

2
a1da1

)
+

(
2â′1da

′
1+a

′
1b̂2+

K ′

2
a1da

′
1

)]
,

K = 4 ,
K ′ = 4 .

(5.86)

We recognize two copies of a (ZM)K discrete gauge theory [212] with M = 2, K = 4.

On a spin manifold with M even, K ∼ K + 2M and hence the above action is

equivalent to ∫
M3

[(
2â1da1 + a1b2

)
+

(
2â′1da

′
1 + a′1b̂2

)]
, (5.87)

matching with (2.7).

5.2.6 Non-Genuine and Twisted Sector Operators

Non-genuine or twisted sector operators arise from branes that couple to backgrounds

which cannot necessarily end on the boundary, i.e. do not have Dirichlet boundary

conditions.

Lets see how this is encoded in terms of the branes. If we were to end a brane

that is electrically charged under a (p + q + 1)-form field Cp+q+1 on the boundary,

then imposing Neumann boundary conditions on Bsym reads

Neumann: ∂[rCij...]

∣∣
Bsym ∧ ω(Σq) = 0 , (5.88)

where r is the direction transverse to the boundary (i.e. the radial direction), i, j =

1 . . . p + 1 denote the direction parallel to Bsym, the brane can also wrap internal

submanifold of Σq ⊂ L(X), and ω(Σq) is transverse to the SymTFT. The internal

manifold Σq is important to determine properties of the (p + 1)-dimensional defect

of the SymTFT, but it is a spectator with respect to the boundary conditions, hence

we can put ω(Σq) aside for the moment.

Expanding out the Neumann boundary conditions along the direction of the

SymTFT and restricting to the symmetry boundary we obtain

(∂rCij... − ∂iCrj...)|Bsym = 0 . (5.89)

There are various configurations we can consider:
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• Symmetry generators: for a brane without a radial component, this means we

simply have

∂rCij... = 0 , (5.90)

which corresponds to the projection in figure 2.2 of the brane parallel to the

boundary. This gives rise to (p+1)-dimensional (topological) symmetry defects.

• Twisted Sector: if the second term in (5.89) is present, it electrically charges a

(p+q)-brane ((p+1)-dimensional operator when integrated on ω(Σq)) extended

along the radial direction ending at the boundary in a p-dimensional operator,

which forms a junction with a (p+ q)-brane ((p+1)-dimensional operator when

integrated on ω(Σq)) extending along Bsym. When we consider the first term

as well, this correspond exactly to the L-shaped configuration, where the gauge

transformation of the first term is cancelled by the gauge transformation of the

second, in figure 2.4.

Example: BF-couplings in AdS5. The simplest example to consider is the BF-

theory for ZN 2-form fields in 5d, which is the SymTFT for the 4d SU(N) maximal

SYM theory

SSymTFT = N

∫
M5

b2 ∧ dc2 . (5.91)

For example, imposing the boundary conditions

b2 Dirichlet , c2 Neumann , (5.92)

the topological defects Q
(b)
2 , which are realized in terms of F1-strings, can end on the

physical boundary and give rise to line operators in the gauge theory. On the other

hand the D1-strings, which give rise to the bulk topological defects Q
(c)
2 , cannot end.

There are two configurations:

• Q
(c)
2 project parallel to the boundary as in figure 2.2 and give rise to the topo-

logical defects D2 that generate the Z(1)
N 1-form symmetry.
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• Q
(c)
2 project in an L-shape as in figure 2.4, and give rise (after interval compact-

ification) to twisted sector ’t Hooft lines, i.e. non-genuine, in this case, twisted

sector, line operators that are attached to a topological surface.

This is of course well-known in the context of this standard holographic setup [7,151]

and was recently expanded upon in [246].

5.2.7 Example: 4d N = 4 so(4n) SYM

It is known that theories with an array of global structures based on the algebra

so(4n) contain non-invertible topological operators [28]. In this section we will use

the holographic dual of these theories to study the SymTFT, in particular the BF

terms.

Holographic Dual. The holographic solution relevant for these theories is IIB

on AdS5 × RP5 [203]. The various global forms of the gauge group correspond to

different choices of boundary conditions for various bulk gauge fields [246].

We refer the reader to [90] for more details on this setup. For convenience we

collect the co/homology groups of the internal space RP5 with un/twisted coefficients

below

H•(RP5,Z) = {Z, 0,Z2, 0,Z2,Z} , H•(RP5, Z̃) = {0,Z2, 0,Z2, 0,Z2}

H•(RP5,Z) = {Z,Z2, 0,Z2, 0,Z} , H•(RP5, Z̃) = {Z2, 0,Z2, 0,Z2, 0} .
(5.93)

For so(4n) the dual supergravity solution contains 5-form flux∫
RP5

F5 = 2n . (5.94)

BF Terms. Before we begin, we introduce notation for the forms on which we

will be expanding fluxes and sources

Hi(RP5, Z̃) : (ϕ̃i, Φ̃i), dϕ̃i = 2Φ̃i , i ∈ {0, 2, 4}

Hi(RP5,Z) : (ϕi,Φi), dϕi = 2Φi , i ∈ {1, 3}
(5.95)
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The BF terms come from more than one source in this case since we have both flux

and torsion in the internal space.

First, we consider terms coming from the IIB Chern-Simons term. For this we

require the fluxes:

F (1) = F3 = f (1) ∧ ϕ̃4 + . . . ,

F (2) = H3 = f (2) ∧ ϕ̃4 + . . . .
(5.96)

Due to (5.94), we obtain a term

SBF
d+2 ⊃

∫
Md+2

2nf (1) ∧ f (2) . (5.97)

Including sources

dF7 = J (1) : J (1) = j(1) ∧ Φ̃0 + . . . ,

dH7 = J (2) : J (2) = j(2) ∧ Φ̃0 + . . . .
(5.98)

We recall that the form degrees of F (i), f and j are not specified by their labels on

top, but they can be read off from (5.96) and (5.98), as well as from (5.100), (5.102)

and (5.106) for what follows, once identified with the IIB fluxes H3, F3, F5, F7, H7 and

derivatives thereof. We then have

SBF+sources
d+2 ⊃

∫
Md+2

2nf (1) ∧ f (2) − f (1) ∧ j(1) − f (2) ∧ j(2) , (5.99)

where d = 4. Now we look to BF terms coming from κijF
(i)dF (j) terms. There are

three such terms. We reduce the IIB kinetic terms H3 ∧ dH7, F3 ∧ dF7 and F5 ∧ dF5

in turn.

Beginning with the first,

F (3) = H7 = f̃ (3,ϕ̃0) ∧ ϕ̃0 + . . . , (5.100)

The new BF term coefficient comes from the integral identity∫
RP5

dϕ̃0 ∧ ϕ̃4 = 2 . (5.101)

Including the F1 string source for H7

dH3 = J (3) : J (3) = j(3) ∧ Φ̃4 . (5.102)
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Finally, we obtain the new contributions:

SBF+sources
d+2 ⊃

∫
Md+2

2f (2) ∧ f̃ (3,ϕ̃) + f̃ (3,ϕ̃) ∧ j(3) . (5.103)

For F3 there is also the Bianchi identity

dF3 = J (4) : J (4) = j(4) ∧ Φ̃4 . (5.104)

There is an identical contribution from the F3 ∧ F7 term which we denote with (4)

superscripts

SBF+sources
d+2 ⊃ −

∫
Md+2

2f (1) ∧ f̃ (4,ϕ̃) + f̃ (4,ϕ̃) ∧ j(4) . (5.105)

Lastly we also consider the dF5 ∧ FD
5 term:

F (5) = F5 = f (5,1) ∧ ϕ1 + f (5,3) ∧ ϕ3 ,

dF5 = J (5) : J (5) = j(5,1) ∧ Φ3 + j(5,3) ∧ Φ1 ,
(5.106)

such that we obtain

SBF+sources
d+2 ⊃

∫
Md+2

2f (5,1) ∧ f (5,3) − f (5,3) ∧ j(5,3) − f (5,1) ∧ j(5,1) . (5.107)

Putting all of these pieces together, we match the BF terms of [90, 246].

The so(4n) theory also has an additional topological coupling, which depending

on boundary conditions lead to a mixed anomaly,

A =
1

2

∫
Md+1

A1C
′
2B2 , (5.108)

where A1 is a background for Z(0)
2 and C ′

2, B2 are both Z(1)
2 backgrounds. We can

re-write this coupling in terms of sources using the identifications (e.g. using table

5.3)

f (2) ↔ dB2 , f (1) ↔ dC ′
2 , f (5,1) ↔ dA1 . (5.109)

The anomaly term comes from the IIB cubic Chern-Simons coupling which by using

the Bianchi identities (5.102), (5.104) and (5.106) can be re-written in terms of brane

sources as

A =
1

2

∫
Md+1

d−1j(3) ∧ d−1j(4) ∧ d−1j(5,3) , (5.110)

119



where the coefficient is given by the following integration on RP5, 8

1

8

∫
RP5

dϕ̃4 ∧ dϕ̃4 ∧ ϕ1 =

∫
RP5

Φ̃4 ∧ Φ̃4 ∧ d−1Φ1 =
1

2
(5.111)

This is cubic coupling of type 1 (5.54) coming from three type of brane sources: NS5

on RP4, D5 on RP4 and D3 on RP1, which model the topological defects once properly

compactified on the torsional cycles.

5.2.8 Example: Duality and Triality Defects for N = 2 [A2, D4]
Theory

In this section we use our general setup to construct symmetry defects as branes in

the isolated hypersurface singularity (IHS) (Calabi-Yau threefold) describing the 4d

N = 2 [A2, D4] SCFT in IIB string theory. This theory admits generalized sym-

metries [93, 117, 120, 129, 247]. In particular, we will propose a new construction of

symmetry defects as lower-dimensional branes induced by world-volume flux for a

higher-dimensional brane. The singularity X is described by the following hypersur-

face equation [117],

x21 + x32 + x33 + x34 = 0 ⊂ C4 . (5.112)

We construct now the symmetry defects wrapping topological cycles of the link ge-

ometry, ∂X = L(X). There is no flux in the background, but L(X) has non-trivial

torsional cycles [117]

H2(L(X),Z) = f⊕ f′ = Z2 ⊕ Z′
2 . (5.113)

In the last equality we specialize to [A2, D4]. Wrapping D3-branes on these torsion

cycles results in the topological defects of the SymTFT.

8Where
∫
RP5 Φ̃4 ∧ Φ̃4 ∧ d−1Φ1 is identified with the differential cohomology integral of [90], i.e.∫

RP5 ŭ4 ⋆ t̆RR
1 ⋆ t̆NSNS

1 . This identification similarly holds for the coefficients of the BF couplings,∫
RP5 dϕ̃0 ∧ ϕ̃4 = 2 means that

∫
RP5 Φ̃0 ∧ d−1Φ̃4 = 1

2 , the latter is identified in differential cohomology∫
RP5 ŭ4 ⋆ ŭ2 = 1

2 .
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There is a non-trivial linking of the generators obtained by wrapping D3s on the

two Z2 factors

LinkL(X)(γ, γ
′) =

1

2
, γ ∈ Z2 , γ′ ∈ Z′

2 . (5.114)

Depending on the symmetry boundary conditions on Bsym, these branes become sym-

metry generators or generalized charges.

We now apply the general procedure described in section 5.2.2 for the case of

torsional cycles. For instance we have that

JD3 = dF5 = g3 ∧ dϕf − g′3 ∧ dϕf′ + . . . , (5.115)

where g3, g
′
3 are flat in the space where the SymTFT lives, M4+1, and we describe the

torsional cohomology in the continuum as

2Φf = dϕf, 2Φf′ = dϕf′ (5.116)

and from (5.38) and (5.39) we get the following BF action

SBF = α

∫
M4+2

g3 ∧ g′3 , (5.117)

where

α = −
∫
L(X)

ϕf ∧ dϕf′= 2 , (5.118)

which is exactly analogous to the BF-action for the bulk theory ofN = 4 su(2) theory.

Let us now go back to the IHS equation (5.112) and look at the complex struc-

ture deformation that corresponds to the marginal coupling of the theory [93]. The

deformed equation reads

x21 + x32 + x33 + x34 + τx2x3x4 = 0 ⊂ C4 , (5.119)

where τ corresponds to the marginal coupling of the SCFT and therefore does not

desingularize the geometry, as expected when activating the deformation correspond-

ing to marginal couplings of the theory. This τ also corresponds to the complexified
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gauge coupling of the su(2) when we think of this AD theory as a gauging of three

AD[A1, A3] theories, and it is identified with the complex structure of the torus when

the theory is constructed via compactification of the E6 minimal 6d N = (1, 0) SCFT

on T 2 [93]. We now exploit the identification of the complex structure deformation

parameter with τ in (5.119) and use how S-duality, S, and the ST transformations

act on it, to argue that S and ST are symmetries of the IHS equation, hence of the

geometry, when τ = eiπ/2, eiπ/3, respectively. For instance, the S-duality action by

definition exchanges the magnetic 1-form symmetry with the electric one at an 5d

effective topological field theory (BF-theory) level. This is indeed achieved when S

and ST act on the torsional two cycles as follows

(Φf,Φf′) 7→MS(Φf,Φf′), (Φf,Φf′) 7→MST (Φf,Φf′) (5.120)

where MS and MST are the monodromies defined by

MS =

(
0 1
−1 0

)
, MST =

(
0 1
−1 −1

)
. (5.121)

At this level the symmetry acts geometrically, and the topological defect generating

self-duality and -triality in this frame are hard to engineer as branes 9. However, we

can activate world-volume fluxes on torsional cycles that induces (p, q)-string on the

D3-brane.

Induced (p, q)-String Charges on D3-branes and Symmetry Generators.

In this section we will draw a connection between two symmetry actions. Above, we

demonstrated that there is a geometric symmetry action which acts on the torsional

two cycles. Below, we will show that by turning on different (p, q)-string charges on

D3-branes wrapping these cycles - there is a second symmetry which acts in the same

way, namely the one generated by 7-branes. Combining these two symmetries gives

duality/ triality symmetries of the field theory.

9See [83], for a geometric construction of these defects as degeneration of the link geometry at
the boundary.
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Instead of expanding the 5-form fluxes on torsional cycles we consider (p, q)-string

charges on the D3-branes. In terms of magnetic sources we have

JD1 = fD3δ(D3), JF1 = (f ′)D3δ(D3) , (5.122)

and we choose

fD3 = dϕf, (f ′)D3 = dϕf′ . (5.123)

where the torsional pairs (ϕf,Φf) and (ϕf′ ,Φf′) have been introduced in (5.116). This

induces the backgrounds for the 3-forms H3, F3,

H3 = h3 + dϕf, F3 = f3 + dϕf′ , (5.124)

where the second identity follows from the SL(2,Z) covariant formalism [245], and

we also turned on flat f3, h3 in M4+1. Now the magnetically sourced Bianchi identity

(5.115) gets modified,

JD3 = dF5 = g3 ∧ dϕf − g′3 ∧ dϕf′ = f3 ∧ dϕf − h3 ∧ dϕf′ . (5.125)

This implies that we can identify

g3 ↔ f3, g′3 ↔ h3 . (5.126)

It is now easy to verify that in this frame the action of S and ST on the torsional

cycles (5.120) is equivalent to the action of the monodromy matrices MS and MST

on the (f3, h3) pair and hence on the electrically charged (p, q)-strings. As we know

from N = 4 and its holographic construction, the self-duality and self-triality defects

are engineered by 7-branes where the corresponding monodromy matrices act on

the (p, q)-strings that generate the 1-form symmetries. In the next section, we will

study properties of the SymTFT, the topological defects that generate the 1-form

symmetries of the theory at the boundary from (p, q)-strings, and the self-dualities and

-trialities topological defects from 7-branes. To summarize and conclude, mapping a
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Stringy Origin Symmetries

D3 on H2(L(X),Z) Isometry acting on
f⊕ f′ ∈ H2(L(X),Z)

(p, q)-strings induced by 7-branes with monodromies
fD3 = dϕf, (f

′)D3 = dϕf′ on D3 MS,MST ∈ SL(2,Z)

Table 5.2: Summary of topological defects construction in [A2, D4] via IIB branes on
L(X) where X is the IHS defined in (5.112). D3-branes with and without world-
volume flux provide two alternative but equivalent description of topological defects
which generate the same symmetry action.

discrete isometry of the geometry, which generates duality and triality defects for the

engineered QFT, to the standard action of SL(2,Z) on (p, q)-strings via monodromy

matrices generated by 7-branes wrapping L(X) is possible only when a world-volume

flux on the D3-brane along torsional cycles is turned on, see table 5.2.

Example: 4d N = 4 from Type IIB. In addition, as a cross check of our proposal,

we can also apply this construction directly to the 4d N = 4 SYM theories engineered

in IIB on X = T 2×C2/ΓADE, with link L = T 2×S3/Γ. Consider the A-type theories,

then L(X) has non-trivial torsion link homology

Tor(H2(L(X),Z)) = f⊕ f′ = ZN ⊕ Z′
N , (5.127)

where

f = Σ1 ⊗ γ1, f′ = Σ′
1 ⊗ γ1 , (5.128)

with torsional γ1 ∈ H1(S
3/ZN ,Z) and Σ′

1⊕Σ′
2 = H1(T

2,Z). We can wrap D3-branes

to generate topological surface defects of the SymTFT. The action of duality and

triality defects corresponds to a finite subset of large diffeomorphisms of the T 2 acting

on its complex structure. For fixed values of the complex structure τ = eiπ/2, eiπ/3

they provide symmetries of the 4d QFT, where the action on the 1-cycles of the torus

induces an action on the torsional part of H2(L(X),Z) via (5.128). We can then turn

on fluxes on the D3-brane world-volume to map the topological defect to induced
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(p, q)-strings and to 7-branes with monodromies acting on the strings like for the

[A2, D4] theory case.

We can extend this also to more complicated examples, straightforwardly when

the dimension of the conformal manifold is 1, or when we are able to identify the

action of S and ST on a 1-dimensional subspace of the conformal manifold, [93].

It would be also interesting to generalize these to theories with a more complicated

conformal manifold. We leave this to future work.

5.3 Hanany-Witten Effect: Generalized Charges

and Anomalies

We have so far introduced the notion of charges of topological defects in terms of

brane linking. In all of the above, we explained the brane origin of the action of

codimension-(q+1) topological defects on charged q-dimensional extended operators,

i.e. q-charges.

Generalized Charges. It is however also known field theoretically that codimension-

(p + 1) topological defects can act on extended operators of dimension q ̸= p as

higher-representations [108, 109]. In this section we demonstrate how branes know

about this generalized concept of q-charges through the so-called Hanany-Witten ef-

fect [248]. We will furthermore show that this effect is intimately related to additional

couplings in the topological bulk theory, corresponding to ’t Hooft anomalies of the

symmetries generated by these same branes, depending on the boundary conditions,

or leading to a twisted DW theory.

Our earlier notion of charge had two origins: either via the d-dimensional flux

sector dimensionally reduced on Lint or the Bianchi identities, where we truncate

everything to the topological sector that describes the behaviour of finite flat abelian

fields.
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j(2)

j(3)

=
j(1)

Figure 5.1: Passing two branes corresponding to magnetic sources j(2) and j(3) through
each other can result in the creation of a new brane, stretching between them, corre-
sponding to magnetic source j(1), if the currents are linked by relation (5.130).

The starting point of our present discussion is one particular case of interest when

the dimensionally reduced Bianchi identities feature three external fluxes satisfying

df (1) = f (2) ∧ f (3) + j(1) , df (2) = j(2) , df (3) = j(3) , (5.129)

with the f (2) ∧ f (3) term in the first relation originates from a non-trivial Chern-

Simons term in the original (D + 1)-dimensional action (5.16). These are exactly

the type of Bianchi identities that lead to Hanany-Witten transitions [248]. One can

quickly notice the potential for non-trivial physics in this situation by differentiating

the above equation

0 = j(2) ∧ d−1j(3) + (−1)(deg f (2)+1)(deg f (3)+1)j(3) ∧ d−1j(2) + dj(1) . (5.130)

The first consequence of this relation is that the two branes corresponding to magnetic

sources j(2) and j(3) link in the (d + 1)-dimensional space-time. Exchanging the

position of the two branes in the linking direction generates a difference in the total

linking number. This number must be fixed, due to the Bianchi identity realizing

charge conservation, by the creation of branes corresponding to the j(1) magnetic

source extending along the linking direction10 (see figure 5.1), see [249]. The crucial

insight we provide in this work is how to interpret this bulk property of branes in

10See [248] for the electric point of view on how the change of linking leads to the creation of a
brane.
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terms of the symmetry generators which they correspond to in the field theory. The

Hanany-Witten (HW) effect can be interpreted in two ways depending on the allowed

topological boundary conditions, which concretely means how we place the branes in

MdQFT+1: this encodes

1. The q-charges (or generalized charges) of a symmetry. This occurs when the

branes in the HW-configuration are such that one wraps the radial direction,

and the other does not.

2. The (mixed) ’t Hooft anomalies or the topological coupling leading to a twisted

DW theory: this occurs when none of the branes extend along the radial direc-

tion.

These implications will be discussed in subsequent sections.

5.3.1 The Hanany-Witten Effect

We will now discuss the relevant Hanany-Witten (HW) transitions, following the

original effect discussed in [248]. For our symmetry considerations we will require

various HW-setups, in type II and M-theory.

Before exploring generalizations, we first illustrate the effect in a simple example.

Motivating Example. Consider the following configuration of branes in type IIA

on a generic 10d spacetime parameterized by coordinates {xi : i = 0, . . . , 9}.

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D8 X X X X X X X X X

(5.131)

The NS5-brane is a magnetic source for the NS-NS gauge field B2 with field strength

H3. Using this fact, one can consider the concept of linking between the two branes

by computing the flux ∫
x6,x7,x8

H3 . (5.132)
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x8

x9

x7

D8

D6NS5 NS5

Figure 5.2: The D8/ NS5 Hanany-Witten configuration projected onto {x7, x8, x9}
directions. The NS5 brane is a point and the D8 is a plane in the {x7, x8} directions.
Passing the NS5 brane through the D8 brane generates a D6 brane attachment (a
line along the x9 direction).

This computes the total linking number of D8-branes with all NS5-branes, in a way

we will shortly explain.

The key observation is that the NS-NS 3-form flux H3, pulled back to the world-

volume of the D8-brane, is trivial in cohomology. Indeed, let a1 denote the U(1) gauge

field localized on the D8-brane, and let f2 denote its field strength. The pullback of

the NS-NS 2-form B2 to the D8-brane world-volume combines with f2 in the gauge-

invariant and globally defined combination F2 = f2 −B2. Making use of the Bianchi

identity df2 = 0, we see that H3 = −dF2. Näıvely, we may conclude that the linking

number defined above is therefore always necessarily zero, if the space spanned by

x6, x7, x8 is a closed, compact, oriented 3-manifold. If this were the case, it would

not be possible to move the NS5-brane across the D8-brane. Such a move is allowed,

however at the cost of creating a D6-brane in the process (see figure 5.2).

Recall that a D6-brane ending on a D8-brane acts as a magnetic source for the

a1 gauge field on the D8-brane, modifying the Bianchi identity for f2 to df2 = ±δ3,

where δ3 represents the locus inside the D8-brane where the D6-brane ends, and the

sign keeps track of orientation.

We will utilize tables of the following type as a compact way of summarizing
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Hanany-Witten configurations:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D8 X X X X X X X X X
NS5 X X X X X X
D6 X X X X X X X

(5.133)

We now look to find general classes of brane configurations which undergo HW tran-

sitions.

Using Brane Linking. A natural language to discuss these transitions in gener-

ality is the notion of string theoretic linking of two magnetic sources introduced in

section 5.2.1

Ld(W(i),W(j)) =

∫
Md

J (i) ∧ d−1J (i) =

∫
Md

dF (i) ∧ F (j) . (5.134)

Recall that this is a topological property associated to two branes, whose magnetic

sources are localized on sub-manifolds W(i),W(j). Notice that since dF (i) = δ(W(i)),

this integral is readily re-written in terms of a lower-dimensional integral as in (5.132)

Let us consider two branes in string/M-theory. We look for configurations in

which a subset of the directions in the world-volumes of the branes link (in the above

sense) inside a subset of the total directions of spacetime. The general situation we

face in this section is indeed such that the dimension formula reads (5.6). We have

several cases.

Direct Linking in Spacetime. In the simplest case, all world-volume directions

of both branes link inside the entire spacetime. An example is furnished by an NS5-

brane and a D2-brane in Type IIA string theory:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D2 X X X

(5.135)

The integer linking number for this configuration is

LinkX10(M
NS5
6 ,MD2

3 ) , X10 = {x0, . . . , x9}, MNS5
6 = {x0, . . . , x5} , MD2

3 = {x6, . . . , x8} .

(5.136)
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This case is however not relevant for the applications in this work.

HW-Configurations for Symmetries. Next, we have the case in which the two

branes are simultaneously extending along a subset of the directions of spacetime.

The problem is effectively reduced from D = 10 or 11 to a smaller dimensionality

D′, in which the remaining world-volume directions of the branes link. This type of

configuration corresponds to setups of HW type, which we classify below. An example

is furnished by the original HW configuration of an NS5-brane and a D5-brane:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 X X X X X X
D5 X X X X X X

(5.137)

The common directions are x0,1,2 and the relevant linking number is

LinkX7(M
NS5
3 ,MD5

3 ) , X7 = {x3, . . . , x9}, MNS5
3 = {x3, . . . , x5} , MD5

3 = {x6, . . . , x8} .

(5.138)

HW-Configurations for Generalized Charges. Finally, for completeness we

tabulate all possible Hanany-Witten setups in type II and M-theory, which are rele-

vant for computing generalized charges. An example appeared already in [41]. These

configurations can be grouped together as follows:

1. The first class is realized in IIB or IIA and is given by the following brane
system:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Dp X X X X X X X X

Dp′ X X

F1 X X

(5.139)

where 8 = p+ p′, and we can apply T-duality in the x1,2,3,4,5,6,7,8 directions. In
addition when p = 7 and p′ = 1, the role of F1 and the D1 can be exchanged,
and in generalised to (p, q)-strings and 7-branes.

2. The second class is a special case in IIB given by the following system:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

[p, q]7-brane X X X X X X X X

(p′, q′)5-brane X X X X X p′x8 = q′x9
(r, s)5-brane X X X X X rx8 = sx9
(p, q)5-brane X X X X X px8 = qx9

(5.140)
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where px8 = qx9 means that the 5-brane extend along this locus. The last
5-brane is the one created once the 7-brane crosses the junction between the
(p′, q′) 5-brane and the (r, s) 5-brane. Finally the total 5-brane charge must be
conserved, i.e. p+ p′ + r = 0 and q + q′ + s = 0.

3. The third class is related to the original Hanany-Witten setup by T-dualities:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Dp X X X X X X

NS5 X X X X X X

Dp′ X X X X

(5.141)

where p′ = p− 2 and we can apply T-duality11 in the x1,2,6,7,8 directions. In the
case p = 5, p′ = 3 we also have a generalization, with a (p, q) 5-brane in the
first row, a (p′, q′) 5-brane in the second row, and pq′ − p′q D3-branes in the
third row [251].

4. The fourth class is a single brane system in M-theory:

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 X X X X X X

M5’ X X X X X X

M2 X X X

(5.142)

Details of HW-configurations. We have already discussed class (III) above. We

note that similar remarks apply in general to D(p− 2) branes ending on Dp-branes,

and refer the reader to [251] for a generalization of the setup of class (III), involving

the creation of pq′ − p′q D3-branes when a (p, q) 5-brane and a (p′, q′) 5-brane are

passed across each other.

Let us now turn to setups of class (IV) in M-theory. This Hanany-Witten setup

is discussed in [252] and can be derived in a way analogous to the argument for class

(III). In this case, we use the fact that the world-volume of an M5-brane supports a

localized 2-form field b2, with self-dual field strength h3. The latter combines with

the pullback of the M-theory 3-form C3 into the gauge-invariant and globally defined

combination H3 = h3−C3. As a result, on the world-volume of the M5-brane we have

G4 = −dH3, where we have made use of the Bianchi identity dh3 = 0. Once again,

11Note that T-duality along the NS5-brane world-volume results in another NS5-brane, whereas
transverse to it, results in a KK-monopole [250].
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this would näıvely suggest the vanishing of the linking number
∫
M4
G4 computed on

the orthogonal directions of the second M5-brane M4. The correct conclusion is that,

when the two M5-branes are passed across each other, an M2-brane is generated. In

fact, this is the correct object to modify the Bianchi identity for h3 from dh3 = 0

to dh3 = ±δ4, where δ4 represent the locus inside the M5-brane where the M2-brane

ends, and the sign keeps track of orientation.

The brane setups of classes (I) may be derived from those of class (III) with the

help of S- and T-dualities. Let us start from the class (III) setup with p = 3, p′ = 1,

describing a Hanany-Witten move in which a D1-brane is generated when an NS5-

brane and a D3-brane are passed across each other. By S-duality, this is mapped to a

setup of class (I) with p = 3, p′ = 5: an F1-string is generated when a D5-brane and a

D3-brane are passed across each other [252]. This can also be seen as follows. The D5-

brane is a magnetic source for the RR 3-form field strength F3. The relevant linking

is then measured by integrating F3 on the world-volume of the D3-brane. Invariance

of the D3-brane under S-duality, however, implies that the electromagnetic dual ã1 of

the gauge field a1 on the brane combines with the pullback of the RR 2-form into the

gauge-invariant combination F̃2 = f̃2−C2, where f̃2 is the field strength of ã1. Setting

C0 = 0 for simplicity, on the world-volume of the D3-brane we have F3 = −dF̃2. The

argument then proceeds as for class (III). Once the setup of class (I) is established

for p = 3, other values for p are derived by T-duality.

5.3.2 Generalized Charges

Let us denote the HW brane pair (brane1, brane2). Passing one through the other

generates the third brane brane3. Suppose that we pick brane1 to be parallel to the

boundary, and brane2 to wrap the radial direction. Field theoretically, brane1 cor-

responds to a topological symmetry generator Dp, whilst brane2 is a non-topological

(extended) defect Oq.
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Figure 5.3: In this figure dots and lines are defects in the boundary QFT of interest
(this could be thought of as a (1+1)d system or a 2d projection of a higher-dimensional
analogue). In the higher-dimensional configuration, dragging the point-like operator
through the extended line operator generates a non-genuine operator (or twisted
sector, if the line defect is topological).

The HW transition implies that passing Oq defect through Dp creates a third

topological operator Dl (brane3 necessarily does not wrap the radial direction) which

is attached to Oq. Generically this process maps a genuine operator to non-genuine

one (see figure 5.3 for an example of this effect). This is precisely the charge of a non-

invertible abelian categorical symmetry on charged defects, which does not preserve

the dimensionality of the defects [23,32,41].

Example: Klebanov-Strassler. From the Bianchi identity dF5 +H3F3 = J (D3)

we learn that there is a Hanany-Witten effect between a D3 brane and a D5 on S3

which generates an F1 string stretched between the two.

It is known that the G = PSU(M) theory has a non-invertible 0-form symmetry.

In [41] the non-invertible 0-form topological operator was given a string theory origin

as a D5-brane wrapped on S3 ⊂ T 1,1. Furthermore, its non-invertible action on ’t

Hooft lines was explained using the Hanany-Witten effect. Now the wrapped D3

is perpendicular to the boundary (the 1-form symmetry is gauged), and the brane

creation turns a genuine line operator into a non-genuine one. We refer the reader to

appendix C for a field theory analysis of non-invertible actions on line operators.

Example: Maldacena-Nunez. A second description (MN) of 4d N = 1 SYM is

given in [253]. We begin with the 6d N = (1, 1) LST living on M NS5 branes in IIB.

The four-dimensional theory is obtained via a topologically twisted S2 reduction.
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For the sake of brevity, we use the fact that the for the purposes of our computa-

tions the above background is S-dual to that of Klebanov Strassler, in the sense that

we replace ∫
S3

F3 =M ↔
∫
S3

H3 =M . (5.143)

The derivations of the BF terms and anomalies proceed identically. We therefore

identify the brane responsible for the non-invertible 0-form symmetry as

D3(M
NS5
3 )↔ NS5(MNS5

3 × S3) . (5.144)

On the LHS we use the notation for topological defects Dq(Mq), i.e. a q-dimensional

topological defect on the spacetime manifold Mq, whereas on the RHS we use the

notation of a brane (NS5 or Dp or Mp wrapped on an internal cycle anMq). Following

an analogous procedure as appendix B of [41] it is easy to see that this brane’s

topological world-volume terms correctly reproduce the expected TQFT stacking and

therefore fusion rules known from field theory [22].

Once again we consider the three brane origins of 2-surfaces in the 5d bulk: F1-,

D1- and wrapped D3-branes. However, since in this setup there is only H3 flux over

the S3, the linking configurations are simpler. Only the D1 and D3 wrapped on S2

link in the 5d bulk. We can therefore identify

D2(M
D3
2 )↔ D3(MD3

2 × S2) ,

D̂2(M
D1
2 )↔ D1(MD1

2 ) ,
(5.145)

as the generators of the electric (magnetic) 1-form symmetries in the SU(N)(PSU(N))

theories respectively.

The D3/ D5 Hanany-Witten effect responsible for generalized charges in the

Klebanov-Strassler solution has an S-dual partner involving a D3/ NS5 transition.

Consider a boundary condition such that the NS5 and stretched D1-brane are

topological, and the D3 is not (G = PSU(N)). The HW transition describes the

non-invertible action of D3 on the charged ’t Hooft line (the wrapped D3-brane) by

attaching a topological 2-surface (the D1-brane).
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Example: M-theory on G2. M-theory on the singular G2 holonomy manifold

C2/ZN → S3 models the UV of 4d N = 1 pure SYM [197, 254–256]. The boundary

geometry is S3/ZN → S3. The link L6 therefore has homology groups

H•(L6,Z) = {Z,ZN , 0,Z⊕ Z,ZN , 0,Z} . (5.146)

We propose that the branes generating the 1- and 0-form symmetries respectively are

12

M5(Σ2 × γ1 × S3)↔ D2(Σ2) ,

M5(M3 × S3/ZN)↔ D3(M3) .
(5.147)

From the Bianchi identity

dG7 −
1

2
G2

4 = JG7 , (5.148)

one can see there is a Hanany-Witten transition involving two M5 branes, generating

an M2 brane, as demonstrated in (5.142).

The global variant G = PSU(N) corresponds to picking the M5-brane wrapping

the torsional 4-cycle to be perpendicular to the boundary, whilst the other is parallel.

In this case, the Hanany-Witten effect produces a topological attachment to the non-

topological string charged under the 1-form symmetry: turning it from a genuine to

non-genuine line operator.

5.3.3 Hanany-Witten and ’t Hooft Anomalies

Now suppose that both (brane1, brane2) are parallel to the boundary. They there-

fore both correspond to topological defects Dp, Dp′ whose non-trivial linking forces

the creation of a brane in the radial direction, corresponding to a non-topological

(extended) defect Oq.

We will now argue that such a configuration indicates the existence of certain ’t

Hooft anomalies using two complimentary approaches.

12Identifying geometrically U(1)R symmetry and its breaking to Z2N is still a challenge in the
geometric engineering in M-theory [257].
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1. The first is that the created brane wrapped along the radial direction creates a

non-topological ambiguity in terms of how the topological defects are separated

in the bulk. When we push these to infinity we argue that this signals the

presence of an anomaly.

2. The second involves directly projecting the bulk Hanany-Witten configuration

to the boundary. The bulk picture becomes a junction in the boundary, which

the Hanany-Witten computation tells us must be charged under certain sym-

metries. This is another hallmark of a ’t Hooft anomaly.

The anomalies are computed using suitable intersections of branes which depend on

the spacetime dimension. In particular, we look for intersections such that one of

the participating branes links with the intersection of the other two, as discussed in

section 5.2.4.

Anomalies from Topological Defects. Coupling a theory to a background for a

higher-form symmetry amounts to inserting a mesh of the corresponding topological

defects. This mesh contains junctions, inconsistencies of which can signal the presence

of anomalies [7].

For example, consider a theory with both a p and (d− p− 1)-form symmetry. If

the codimension-p topological operators generating the former symmetry are charged

under the codimension-(d−p−1) topological operators generating the latter, the two

symmetries participate in a mixed ’t Hooft anomaly [7]. This is because two related

meshes of these defects may differ by a phase.

The above is a special case where the two participating symmetries have appropri-

ate dimension such that their operators link in spacetime. However, it is generically

possible that a codimension−(p + 1) operator can also act on an extended operator

of dimension q ̸= p. In this way, we are able to explore ’t Hooft anomalies involving
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higher-form symmetries of different degrees from the perspective of their topological

operators and their junctions.

In general, a mixed ’t Hooft anomaly between two (or more) higher-form symme-

tries is encoded in the junctions of their corresponding defects. We argue that this

information is naturally encoded in our understanding of branes. For example, two

branes may intersect and generate a third (by Hanany-Witten). If this third brane

is charged under one of the symmetries generated by one of the intersecting branes -

this junction signals a mixed ’t Hooft anomaly.

Example: N = 1 SYM. In the three presentations of 4d N = 1 su(M) SYM

presented earlier, in each case there was a Hanany-Witten configuration of branes

which in the G = PSU(M) variant described a generalized charge. By the above

argument, in the frame where we pick boundary conditions such that G = SU(M),

these configurations also signal the mixed ’t Hooft anomaly in these models.

5.3.4 Example: 4d N = 4 so(4n) SYM

In this section we demonstrate that the HW effect is responsible for generalized

charges in several global variants of the so(4n) theory, and the mixed anomaly

A =
1

2

∫
A1C

′
2B2 , (5.149)

in the G = SO(4n) theory, where A1 is a background for Z(0)
2 and C ′

2, B2 are both Z(1)
2

backgrounds. From the SymTFT/ Gauss law perspective we can read off the brane

origins of the topological symmetry generators [90]. For convenience we summarize

these findings in table 5.3.

G =SO(4n). For G =SO(4n), the brane identification is [90]

D2(M2)↔ D5(M2 × RP4) ,

D3(M3)↔ D3(M3 × RP1) ,
(5.150)
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Symmetry Background Field Brane Origin of Sym Generator

Z(0)
2 A1 D3 on RP1

SO(4n) Z(1)
2 C ′

2 D5 on RP4

Z(1)
2 B2 NS5 on RP4

Z(0)
2 A1 D3 on RP1

Spin(4n) Z(1,s)
2 C2 D1 on pt ∈ RP5

Z(1,c)
2 B2 NS5 on RP4⊕ D1 on pt ∈ RP5

Z(1,v)
2 NS5 on RP4

Z(2)
2 A3 D3 on RP3

PO(4n) Z(1)
2 C ′

2 D5 on RP4⊕F1 on pt ∈ RP5 +
∫
A1B2

Z(1)
2 B′

2 F1 on pt ∈ RP5

Z(2)
2 A3 D3 on RP3

Pin+(4n) Z(1)
2 C2 D1 on pt ∈ RP5

Z(1)
2 B2 NS5 on RP4⊕D1 on pt ∈ RP5 +

∫
A1C

′
2

Z(0)
2 A1 D3 on RP1 +

∫
B2C

′
2

Sc(4n) Z(1)
2 C2 D1 on pt ∈ RP5

Z(1)
2 B′

2 F1 on pt ∈ RP5

Table 5.3: SymTFT and brane origins of symmetry generators in various global forms
of so(4n) 4d SYM theories.
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whereD2, D3 are the generators of Z(1,C′)
2 ⊂ Z(1,C′)

2 ×Z(1,B)
2 = Γ(1) and Z(0)

2 respectively.

The charged lines under the Z(1,B)
2 1-form symmetry factor are

O1(Σ1)↔ F1(Σ1 × R>0) . (5.151)

These three wrapped branes form a HW configuration, from which we observe that

the Z(1,C′)
2 and Z(0)

2 symmetry defects intersect in 4d in a line which is charged under

Z(1,B)
2 factor: this signals the presence of the mixed ’t Hooft anomaly between all three

symmetries. One can derive a similar result using the S-dual branes: pulling the NS5-

brane, which generates Z(1,B)
2 , across D3 generates a D1-brane which is charged under

Z(1,C′)
2 .

The theory with gauge group G = Spin(4n) is related to G =SO(4n) via gauging

of the 1-form symmetry (for more details also the categorical structure, see [28]).

This maps the mixed anomly to a split 2-group symmetry. In this way the HW brane

configuration explained above also encodes this split 2-group global symmetry.

G =Sc(4n). We now consider how the non-invertible 0-form symmetry in the

G =Sc(4n) variant acts on the charged lines of the theory. The 0-form symmetry is

generated by

D3(M3)↔ D3(M3 × RP1) . (5.152)

Meanwhile the invertible 1-form symmetries have non-topological charged lines

O1(Σ1)↔ D5(Σ1 × R>0 × RP4) ,

O′
1(Σ

′
1)↔ NS5(Σ′

1 × R>0 × RP4) .
(5.153)

If we pass O1 or O1′ through D3(M3), there is a non-trivial Hanany-Witten move

which generates an F1 or D1 brane respectively. These are topological operators which

respectively generate the invertible 1-form symmetry which acts on the other charged

line. These results agree with the complementary field theory analysis, reported in

appendix C.
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G =PO(4n). Now we look at how the non-invertible 1-form symmetry in the

G =PO(4n) variant acts on the 2-surfaces charged under the invertible 2-form sym-

metry.

In this case there are a number of non-invertible actions we should consider. The

non-invertible 1-form symmetry is generated by

D2(M2)↔ D5(M2 × RP4) . (5.154)

On the other hand, the charged 2-surfaces are given by

O2(Σ2)↔ D3(R>0 × Σ2 × RP1) ,

O2′(Σ2)↔ NS5(R>0 × Σ′
2 × RP3) .

(5.155)

There is a non-trivial Hanany-Witten move for both of these. First, passing O2

through D2 generates an F1-string stretched between the two: this is the generator

of the invertible 2-form symmetry under which O′
2 is charged. On the other hand,

passing O′
2 through D2 generates a D3-brane: this is the generator of the other

invertible 2-form symmetry which acts on O2.

G =Pin+(4n). The non-invertible 1-form symmetry in this case is generated by

D2(M2)↔ NS5(M2 × RP4) . (5.156)

On the other hand, the charged 2-surfaces are given by

O2(Σ2)↔ D3(R>0 × Σ2 × RP1) ,

O′
2(Σ2)↔ D5(R>0 × Σ′

2 × RP3) ,
(5.157)

There is also a non-trivial Hanany-Witten move for both of these. First, passing O2

through D2 generates an D1-string stretched between the two: this is the generator

of the invertible 2-form symmetry under which O′
2 is charged. On the other hand,

passing O′
2 through D2 generates a D3-brane: this is the generator of the other

invertible 2-form symmetry which acts on O2.
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Outer-Automorphism Action on G = Spin(4n). There is also a brane origin to

the Z(0)
2 outer-automorphism in the G = Spin(4n) theory which exchanges

O(s)
1 ↔ O

(c)
1 , (5.158)

where O(s,c)
1 are the spinor/co-spinor Wilson lines. An equivalent way of describing

this action is shown in figure 5.4. In terms of branes, these lines are [42]

O(s)
1 ↔ D5(M1 × R>0 × RP4) ,

O(c)
1 ↔ D5(M1 × R>0 × RP4)⊕ F1(M1 × R>0) .

(5.159)

Furthermore, it is known that the brane generating the outer-automorphism symme-

try is

D3(M3)↔ D3(M3 × RP1) . (5.160)

We now discuss the action of this operator at the level of the branes. In the arrange-

ment shown in figure 5.5, we consider what happens when the wrapped D5 pierces

through the wrapped D3 representing the outer-automorphism generator. Since the

D3-brane is a source for the RR C4 field, as we pass from left to right there is a flux

jump which induces a non-trivial F1 charge via the 6d 5-brane world-volume coupling∫
B2C4 , (5.161)

such that an F1 string (which couples to B2) emanates from the defect. This is exactly

the outer-automorphism action we expect from field theory.

Now consider the arrangement in figure 5.6. In this case the F1 string passes

through the brane un-changed, there are not enough dimensions to run the same

argument as above. This is exactly the invariance of the operator O(v)
1 (the vector

Wilson line) under the outer-automorphism.

5.3.5 Example: Generalized Charges for Duality/Triality De-
fects in 4d

In this section we study duality and triality defects which generate non-invertible

symmetries that arise from subgroups of SL(2,Z). They provide 0-form symmetries
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S S

V

Z(0)
2

Figure 5.4: Z(0)
2 outer-automorphism action, depicted in terms of defects: the outer

automorphism acts as S maps to C. It is useful in the following to write C = V ⊗ S,
as this is how the branes will realize the action.

D5(M1 × R>0 × RP4) D5(M1 × R>0 × RP4)

F1(M1 × R>0)

D3(M3 × RP1)

Figure 5.5: The same Z(0)
2 outer-autmorphism action as in figure 5.4, now in terms

of branes. The wrapped D3 brane induces a jump in F1 flux which is absorbed by
emitting an F1 string.
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F1(M1 × R>0) F1(M1 × R>0)

D3(M3 × RP1)

Figure 5.6: The F1-brane, that realizes the vector Wilson line is invariant under the
outer-automorphism.

at certain fixed loci under these groups on the conformal manifold of 4d SCFTs. Field

theoretically these defects have been studied in [22, 30, 31, 47, 73, 258]. For the bulk

theory we refer to [44, 71], and the realization of the topological defects in term of

branes to [83].

In string theory the self-duality or triality symmetries are generated by [p, q]-7-

branes as first observed in [41] and subsequently studied in detail in [83]. We will

exemplify this brane-approach for N = 4 su(N) SYM. Moreover, since we have

analogously constructed topological defects for the N = 2 Argyres Douglas theory

of type [A2, D4] via geometric engineering in IIB, the properties highlighted in this

section will be valid also for that case.

In this section we will put these defects into the context of the SymTFT and

derive the generalized charges (in terms of the topological defects of the SymTFT)

realized again in terms of “branes” and Hanany-Witten transitions among them.

The (p, q)-strings give rise to topological defects in the SymTFT, which depending

on the Bsym boundary conditions give rise to either topological defects that generate

the 1-form symmetry or to the line operators, i.e. generalized charges.

The Hanany-Witten effect between (p, q)-strings and [p, q]-7-branes encodes whether

the resulting non-invertible symmetry is gauge equivalent to an invertible symmetry
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or not. In terms of the SymTFT couplings this was analyzed in [44, 71]. This allows

the distinction between intrinsic and non-intrinsic non-invertible symmetries – if one

wishes to use this formulation. More categorically, the SymTFT is either the same

as for an invertible (i.e. higher group) symmetry or not.

We will focus on generalized charges via the Hanany-Witten effect between (p, q)-

strings and [p, q]-7-branes. In particular, from the brane realization and the Hanany-

Witten phenomenon we will be able to provide a diagnostic for intrinsic versus non-

intrinsic non-invertible symmetries, even beyond su(p) with p prime.

Duality and triality defects for N = 4 SYM arise for fixed values of τ = eiπ/2, eiπ/3,

respectively, i.e. the values that are invariant under Z4 or Z6 subgroups of SL(2,Z)

[30, 31, 71, 73, 83]. Our convention for the monodromy matrices labelled by (p, q)

charges are

Mp,q =

(
pq + 1 p2

−q2 1− pq

)
(5.162)

and we take the basis

a =M1,0 =

(
1 1
0 1

)
, b =M1,1 =

(
2 1
−1 0

)
, c =M1,−1 =

(
0 1
−1 2

)
.

(5.163)

We summarize the fixed values of τ and associated monodromy matrices in table 5.4

13.

Hanany-Witten Setups with [p, q]-7-branes and (r, s)-strings

We now describe in more detail the specific Hanany-Witten configuration already

introduced in (5.139) that is relevant for this example. Let us consider the origi-

nal Hanany-Witten brane configuration, consisting of an NS5-brane extended along

x0,1,2,3,4,5 and a D5-brane extended along x0,1,2,6,7,8; when these are moved past each

other, a D3-brane extended along x0,1,2,9 is created. By applying T-duality in the

13We use the conventions of [259], but act on tau from the right as to give rise to the canonical
choice of fixed values of τ as e.g. in [260].
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Kodaira Type τ G Monodromy Matrix M

II eπi/3 Z6 ab =

(
1 1
−1 0

)
II∗ eπi/3 Z6 a6bcba =

(
0 −1
1 1

)
III eπi/2 Z4 a2b =

(
0 1
−1 0

)
III∗ eπi/2 Z4 a6bcb =

(
0 −1
1 0

)
IV eπi/3 Z3 a2ba =

(
0 1
−1 −1

)
IV ∗ eπi/3 Z3 a5bcb =

(
−1 −1
1 0

)
I∗0 τ Z2 a4bc =

(
−1 0
0 −1

)

Table 5.4: The Kodaira singularities, associated constant values of τ , the monodromy
group and the monodromy matrix M .

x1,2 directions, followed by an S-duality S transformation, followed by T-duality in

the x6,7 directions, we reach a Hanany-Witten setup with a D7-brane extended along

x0,...,7 and a D1-brane extended along x0,8. When these are moved past each other,

an F1-string extended along x0,9 is created. This configuration conserves both the

linking number between the D7-brane and the D1-brane, and the (r, s)-string charge

of the system. The latter observation stems from the relation

(1 0)M1,0 = (1 0) + (0 1) . (5.164)

In our conventions the charges of an (r, s)-string are collected in the row vector (s r).

Thus, in the above relation, (1 0) represents the D1-brane, (0 1) the F1-string, while

M1,0 is the monodromy matrix of the D7-brane (see figure 5.7).

The generalization of (5.164) is the identity

(s r)Mp,q = (s r) + n(q p) , n := ps− qr . (5.165)

We interpret this relation as follows. Start with a configuration with a [p, q]-7-brane

extended along x0,...,7, and an (r, s)-string extended along x0,8. If we move the (r, s)-
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M1,0

(1 0) (1 1)
(0 1)

(1 0) (1 1)

Figure 5.7: Conservation of charge during a Hanany-Witten move involving a D1 and
D7 brane. On the left hand side; passing the D1 through the monodromy cut for the
D7 brane modifies the charge from (1, 0)→ (1, 1). On the right hand side; sliding the
configuration off the cut must preserve charge, meaning an F1 string is created.

string across the [p, q]-7-brane, n copies of a (p, q)-string are generated, extended

along x0,9. If n is negative, this is understood as |n| copies of a (−p,−q)-string.

In the special case n = 0, the (r, s)-string and the [p, q]-7-brane are mutually local

and the (r, s)-string can end on the [p, q]-7-brane; there is no Hanany-Witten brane

creation effect if these two objects are passed across each other.

It is important to study the generalized charges, i.e. SymTFT topological defects,

coming from (r, s)-strings and the 7-branes with monodromy M , which we take par-

allel to the boundary. In the spirit of section 5.3.3, instead of being directly related

to a mixed ’t Hooft anomaly, it has a SymTFT that is a DW theory with twisted

cocyles. Let us now consider a 7-brane with monodromy matrix M , written as a

product M = Mp1,q1Mp2,q2Mp3,q3 . . . . A repeated application of the basic Hanany-

Witten move encoded in (5.165) yields the configuration depicted in the figure, where

the multiplicities n1, n2, n3, . . . , of the created strings are determined by the charges

of the (r, s)-string and by the [pk, qk]-7-brane labels,

n1 = p1s− q1r , (5.166)

n2 = p2(s+ n1q1)− q2(r + n1p1) , (5.167)

n3 = p3(s+ n1q1 + n2q2)− q3(r + n1p1 + n2p1) , (5.168)

and so on. In general due to M = Mp1,q1Mp2,q2Mp3,q3 . . . , we will not have a single
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Mp1,q1 Mp2,q2 Mp3,q3

(r, s) n1(p1, q1)n2(p2, q2)n3(p3, q3)

=

(r, s)

Figure 5.8: Hanany-Witten transitions for a general 7-brane configuration with no
fixed [p, q] charge as usually appear in F-theory and (r, s)-strings.

string creation event. If we have multiple string creation events, even modulo N , it

signals that something more general than a mixed ’t Hooft anomaly is at play. This

indeed generically corresponds to a twisted cocycle in the SymTFT.

Examples. Let us consider the Kodaira type IV ∗ monodromy matrixM = ( −1 −1
1 0 ).

We use the decomposition M = a5bcb, a =M1,0, b =M1,1, c =M1,−1. The multiplic-

ities n1, . . . , n8 of the created strings are

(n1, . . . , n8) = (s, s, s, s, s,−r − 4s,−r − 2s, r) . (5.169)

Alternatively we can use the decomposition M = A5BC2, A = M1,0, B = M3,1,

C =M1,1. In this case the multiplicities are

(n1, . . . , n8) = (s, s, s, s, s,−r − 2s, r, r) . (5.170)

Next, let us consider the Kodaira type IV withM = ( 0 1
−1 −1 ). We can writeM = a2ba.

The four multiplicities are

(n1, . . . , n4) = (s, s,−r − s,−r) . (5.171)

In passing we note that it is not possible to write M = AxByCz with non-negative x,

y, z.

If we consider again Kodaira Type IV , but we work modulo N = 3, we can write

M = M1,2 = M1,1 = c mod 3. In this case there is a single event of string creation,
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with multiplicity

n1 = r + s mod 3 . (5.172)

In this case the HW transition is related to a mixed ’t Hooft anomaly between self-

triality and the 1-form symmetry.

Intrinsic vs. Non-Intrinsic

Let us recall the notion of intrinsic non-invertible symmetry [31]. Suppose T is a QFT

that admits a non-invertible symmetry. We say that the non-invertible symmetry is

of non-intrinsic type if T can be connected by gauging of a global symmetry to a

QFT T ′ that only admits invertible symmetries (i.e. higher-form or higher-group

symmetries). We say that the non-invertible symmetry of T is of intrinsic type if

such T ′ does not exist.

Global Forms of SYM. The global variants of 4d N = 4 su(N) SYM are SU(N)

and (SU(N)/Zk)n, where k ̸= 1 is a divisor of N and n = 0, 1, . . . , k−1 [179]. Global

variants can be acted upon by topological manipulations (gauging 1-form symmetry,

stacking with SPT). They all form a unique orbit under topological manipulations.

Indeed, we can start from SU(N) and reach (SU(N)/Zk)n by selecting a Zk subgroup

of the ZN center 1-form symmetry of SU(N), and gauging it with a discrete torsion

given by n.14 Let LT denote the set of line operators of the global variant T . Explicitly

[179]

T = SU(N) , LT = {a(1, 0) mod N, a ∈ Z} ,

T = (SU(N)/Zk)n , LT = {a(n,N/k) + b(k, 0) mod N, a, b ∈ Z} .
(5.173)

In terms of topological defects of the symmetry TFT and their brane realization, these

are provided by the full set of (p, q)-strings that can end on the boundary depending

on the choice of the Bsym boundary conditions.

14In contrast, the set of global forms can split into disjoint non-empty orbits under the action of
the SL(2,Z) duality group, depending on N [7, 179,246].

148



We want to study when a duality/triality symmetry associated to one of the

monodromy matrices of table 5.4 is of intrinsic/non-intrinsic type, depending on N .

This is equivalent to asking: for a given N and a given monodromy matrix, is there

a global variant in which the associated duality/triality defect acts invertibly on all

line operators?

Hanany-Witten Diagnostic of Intrinsicality. This question can be addressed

in terms of Hanany-Witten moves, as follows. The duality/triality defect specified by

the monodromy matrixM acts invertibly on all lines of the global variant T if the

following condition holds,15

(M − I2×2) · (r, s) ∈ LT , for all (r, s) ∈ LT . (5.174)

The quantity (M − I2×2) · (r, s) is the total (p, q)-string charge created, when a line

operator with charges (r, s) crosses the 7-brane implementing the duality/triality

defect. We demand that the total (p, q)-string charge that is created can be written

as a combination of the same charges as those of the lines in LT . This is because, in

the global variant T , a string with those charges, projected parallel to the boundary,

yields the trivial surface defect. As a result, we are guaranteed an invertible action

on all line operators of T , as desired.

The condition (5.174) can be analyzed explicitly for each of the monodromy ma-

trices in table 5.4, for some small values of N . We report the results of our analysis

in table 5.5. For each monodromy matrix and N , we indicate the global variant(s)

that satisfy (5.174); if none is found, the duality/triality symmetry is intrinsically

non-invertible. The fact that the global variants indicated in the table are invariant

15The notation (r′, s′) = M · (r, s) stands for the matrix equation (s′ r′) = (s r)M in our
conventions.
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under S or ST can also be checked directly making use of [179]

T : (SU(N)/Zk)n → (SU(N)/Zk)n+N/k

S : (SU(N)/Zk)0 → (SU(N)/ZN/k)0

(SU(N)/Zk)n → (SU(N)/Zk∗)n∗ (n ̸= 0) .

(5.175)

In the above relations we let k be any divisor of N , including k = 1 and k = N . The

label n is understood mod k (if k = 1, then n = 0; this is the SU(N) variant). The

new labels k∗, n∗ are given by

k∗ =
N

gcd(n, k)
, αk + βn = gcd(n, k) , n∗ = −βN

k
mod k∗ . (5.176)

The global forms under the second column in table 5.5 are invariant under the action

of S, followed by T , in our conventions.

For N a prime number, we reproduce the results of [73]. This can also be seen

from table 5.5 and algebraically as follows. If N = p is prime, the global variants are

SU(p), PSU(p)n, n = 0, 1, . . . , p− 1. For each of them, the corresponding set of lines

LT consists of multiples of a single line: (1, 0) for SU(p) and (n, 1) for PSU(p)n. As

a result, the condition (5.174) boils down to the eigenvalue problem

M · (r, s) = λ(r, s) mod p , (5.177)

where (r, s) = (1, 0) for T = SU(p) and (r, s) = (n, 1) for T = PSU(p)n. In fact, as

soon as (5.177) admits a non-trivial solution (r, s), the latter can be identified as the

line generating LT for one of the global variants T . Thus, for N = p prime, (5.177)

is a necessary and sufficient condition for finding a global variant T in which the

duality/triality defects acts invertibly on all lines.

5.4 Conclusions and Outlook

We constructed the SymTFT for QFTs realized either holographically or in geometric

engineering, in terms of branes. The main results are as follows: in section 5.2 we
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N S = III ST = IV , (ST )2 = IV ∗, S2(ST ) = II∗, S2(ST )2 = II

2 PSU(2)1 intrinsic
3 intrinsic PSU(3)2
4 (SU(4)/Z2)0 (SU(4)/Z2)0
5 PSU(5)2 or 3 intrinsic
6 intrinsic intrinsic
7 intrinsic PSU(7)3 or 5

8 (SU(8)/Z4)2 intrinsic
9 (SU(9)/Z3)0 (SU(9)/Z3)0
10 PSU(10)3 or 7 intrinsic
11 intrinsic intrinsic
12 intrinsic (SU(12)/Z6)4
13 PSU(13)5 or 8 PSU(13)4 or 10

14 intrinsic intrinsic
15 intrinsic intrinsic
16 (SU(16)/Z4)0 (SU(16)/Z4)0
17 PSU(17)4 or 13 intrinsic
18 (SU(18)/Z6)3 intrinsic
19 intrinsic PSU(19)8 or 12

20 (SU(20)/Z10)4 or 6 intrinsic
21 intrinsic PSU(21)5 or 17

22 intrinsic intrinsic
23 intrinsic intrinsic
24 intrinsic intrinsic
25 (SU(25)/Z5)0, PSU(25)7 or 18 (SU(25)/Z5)0
26 PSU(26)5 or 21 intrinsic
27 intrinsic (SU(27)/Z9)6
28 intrinsic (SU(28)/Z14)6 or 10

29 PSU(29)12 or 17 intrinsic

Table 5.5: For each monodromy matrix and each N , we indicate the global variant(s)
on which the associated duality/triality defect acts invertibly on all line operators.
If no such global variant exists, the non-invertible symmetry is of intrinsic type. In
labeling global variants, we do not keep track of background fields and their coun-
terterms. We do not include the monodromy S2 = I∗0 because every global variant is
invariant under S2.
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demonstrated that branes encode the topological couplings of the SymTFT, and in

section 5.3 we highlighted that our proposal also incorporates a notion of generalized

charges via the Hanany-Witten effect.

Whilst presenting a general framework in both cases, we gave evidence for our

proposal in various geometric and holographic examples, including 4d SYM theories.

In section 5.2.8 we use our general approach to give a brane origin to the symmetry

generators in the 4d N = 2 [A2, D4] SCFT and in section 5.3.5 we use the general-

ized charge/ Hanany-Witten relationship to propose a sharp criterion to distinguish

intrinsic and non-intrinsic non-invertible symmetries, for rank beyond su(p = prime).

Studying properties of topological symmetry generators from the perspective of

branes is a new and exciting area of research. It would be interesting to apply our

general approach to more exotic non-Lagrangian QFTs where the use of standard field

theory tools to study generalized symmetries is either obstructed or non-existent.

The study of generalized charges is another interesting avenue to pursue. In this

work we demonstrated that the Hanany-Witten effect encodes the case where a non-

invertible p symmetry acts on extended operators of dimension q = p + 1. It would

be interesting to explore the full suite of generalized charges for invertible symmetry

and non-invertible symmetries, e.g. understanding symmetry fractionalization from

a brane perspective, as well as generalized charges for genuine and non-genuine op-

erators, see [68]. The brane-perspective will be key to studying theories at strong

coupling and in holographic settings 16.

16Note: A paper [46] by Ibou Bah, Enoch Leung and Thomas Waddleton with some related, but
complementary, content was published at the same time as our work. We thank these authors for
coordination.
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Appendix A

5d Consistent Truncation

A.1 5d Consistent Truncation

An important component of the analysis presented in chapter 3 is the consistent

truncation of IIB supergravity to 5d for conifold solutions. In [194] such a consistent

truncation was found which encompasses both the UV and IR KS-solutions, and

where we show, the holographic realization of the ABJ anomaly and the mixed 0-/1-

form symmetry anomaly are both manifest. In what proceeds, we present the map

required to translate between our work and their notation. The KS flux background

is parametrised as

F3 = qΦ ∧ η , B2 = bΦΦ , F5 = −(k − qbΦ)Φ ∧ Φ ∧ η , (A.1)

where Φ, η are left-invariant forms on T 1,1. They are related to the volume forms of

S2 and S3 as Φ = 1
3
ω2 , Φ ∧ η = −1

9
ω3. We rescale the IIB fields by

F3 → −
9l2s
2
F3 , B2 → −3πl2sB2 , F5 →

27πl42
2

F5 , (A.2)

which ensures that the background is quantised as∫
S3

F3

(2πls)2
= q ∈ Z ,

∫
T 1,1

F5

(2πls)4
= k ∈ Z , (A.3)

and furthermore gives the identifications

q =M , bΦ = −L , k = N . (A.4)
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Notice that the rescalings are consistent: they give rise to the same factor on either

side of the Bianchi identity for F5. These normalisations also imply that we should

identify the fluctuation dcΦ = −2π
3
dc0. Finally, we rescale the U(1) gauge field in [194]

A→ 4π
3
A so that it is normalised as in [261]. The 5d topological couplings obtained

in [194] are

L5d = R|gΦ1 |2−
1

2
fΦ
2 ∧
(
−qb2 ∧ A+ b2 ∧DcΦ

)
, fΦ

2 ⊃ qb2 , gΦ1 ⊃ DcΦ , DcΦ = dcΦ−qA .

(A.5)

Using the map detailed above gives the action (3.18).

154



Appendix B

BF-Terms from Type IIA

B.1 BF-Terms from Type IIA for Y p,k

In this section we utilize a reduction to type IIA to derive an extra BF-term con-

tribution on top of those computed via M-theory methods in section 4.5.2. In [210]

the authors reduce the M-theory solution on AdS4 × Y p,k background to IIA along a

circle. The IIA supergravity background is

AdS4 ×w M6 , (B.1)

where M6 is a S2 bundle over CP2. The homology groups of M6 are

H• = {Z, 0,Z2, 0,Z2, 0,Z} . (B.2)

The RR field strengths and Kalb-Ramond field are parametrized as

[F2] = pD+ − kD ,

[BNS] = −b0D− + b+D ,

[F6] = ND · C+ .

(B.3)

Here, {D,D+, D−} are an over-complete basis of 4-cycles. There is a dual set of

2-cycles {C, C+, C−} which is also overcomplete. They are related by

D+ = D− + 3D , C+ = C− + 3C . (B.4)

Their mutual intersections are given in table B.1. We write a set of Poincaré dual 2-
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C C+ C− D D+ D−

D 0 1 1 C C+ C−
D+ 1 3 0 C+ 3C+ 0
D− 1 0 −3 C− 0 −3C−

Table B.1: Intersections between 4-cycles {D,D+, D−} and 2-cycles {C, C+, C−} [210].

and 4-forms
{D,D+, D−} ↔ {ω2, ω

+
2 , ω

−
2 } ,

{C, C+, C−} ↔ {ω4, ω
+
4 , ω

−
4 } .

(B.5)

Let us consider fluctuations around this background in this basis

F ′
2 = F2 + f2 = pω+

2 − kω2 + f2 ,

B′
NS = BNS + b2 = −b0ω−

2 + b+ω2 + b2

F ′
6 = F6 + f6 = Nω2 ∧ ω+

4 + g+4 ∧ ω+
2 + g

(0)
4 ∧ ω2 + g−2 ∧ ω−

4 + g
(0)
2 ∧ ω4 .

(B.6)

We now look for single derivative terms in the IIA equations of motion [1,65], which

will dominate at long distances, i.e. near the conformal boundary of AdS. In partic-

ular, we are interested in couplings involving b2 and 1-form gauge fields

d ⋆10 F2 = H3 ∧ F6 = db2 ∧Nvol(M6) + · · · = Ndb2 ∧ vol(M6) + · · · .

d ⋆10 H3 = F2 ∧ F6 =
(
pg

(0)
2 − kg−2 +Nf2

)
∧ vol(M6) + · · ·

d ⋆10 F6 = H3 ∧ F2 = db2 ∧ (pω+
2 − kω2) + · · ·

(B.7)

The Bianchi identities are dF6 = H3∧F4, dF2 = H3∧F0, dH3 = 0 are trivially satisfied

given our expansion. At the boundary, we are left with the following topological

equations of motion
Ndb2 = 0

pdb2 = 0

kdb2 = 0(
pg

(0)
2 − kg−2 +Nf2

)
= 0 .

(B.8)

These equations of motion are reproduced by

SIIA

2π
=

∫
b2 ∧

(
Nf2 + pg

(0)
2 − kg−2

)
. (B.9)

156



If we package up

(3p− k)g+2 + pg
(0)
2 ≡ gcd(p, k)

(
q1g

−
2 + q2g

(0)
2

)
≡ gcd(p, k)g̃2 , (B.10)

we can rewrite

SIIA

2π
=

∫
b2 ∧ (Nf2 + gcd(p, k)g̃2) . (B.11)

Let us compare with the M-theory analysis of section 4.5.2, in particular (4.122).

As discussed in section 4.4.1, we conjecture that b2, which couples electrically to the

fundamental string, uplifts to B2 which couples to M2-branes wrapping the torsional

1-cycle. The field a1 sourced by D0-branes with field strength f2 uplifts to the U(1)

isometry gauge field A1 associated with the M-theory circle direction. In IIA, the

1-form gauge field c̃1 with field strength g̃2 couples electrically to D4-branes wrapping

the two 4-cycles in the M6 geometry. We expect that the linear combination c̃1 maps

to B1 upon uplift to M-theory, which couples electrically to M5-branes wrapping the

torsional 5-cycle.

The NB2 ∧ f2 coupling is precisely the one we do not have access to from M-

theory. We claim that this would be visible if we combined the equivariant cohomology

description with differential cohomology, analogously to the matching we did in the

ABJM example. On the other hand, IIA does not see the Ωp,k
n0,n1

B2 ∧ g2 term of

(4.122), at the level of our analysis. We use this to conjecture an additional term in

the M-theory BF-coupling:

SBF

2π
=

∫
B2 ∧

(
Nf2 + gcd(p, k)dB1 + Ωp,k

n0,n1
g2
)
. (B.12)
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p k αBB(k1) αBB(k2) αFB(k1) αFB(k2)

2 2 3
4

3
4

1
2

0

3 3 5
6

2
3

1
3

0

4 2 0 1
4

0 1
2

4 4 7
8

5
8

1
4

0

4 6 0 1
4

0 1
2

5 5 9
10

3
5

1
5

0

6 2 3
4

1
2

1
2

1
2

6 3 2
3

5
6

2
3

2
3

6 4 3
4

1
4

1
2

0

6 6 11
12

7
12

1
6

0

6 8 3
4

1
2

1
2

1
2

6 9 0 1
6

2
3

2
3

7 7 13
14

4
7

1
7

0

8 2 0 3
4

0 1
2

8 4 0 5
8

1
2

3
4

8 6 0 3
4

0 1
2

8 8 15
16

9
16

1
8

0

8 10 0 3
4

0 1
2

8 12 0 1
8

1
2

3
4

Table B.2: A selection of the Y p,k(CP2) SymTFT coefficients obtained for selected
p, k values with non-trivial gcd(p, k). Note we have also not included pairs of gcd(p, k)
values related by (p, k)→ (p, 3p− k).
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p 6 6 6 8 8 8 9 9

k 4 8 9 6 10 12 6 12

b1 n1 − n0 3n1 − 2n0 2n1 − n0 n1 − n0 4n1 − 3n0 2n1 − n0 n1 − n0 3n1 − 2n0

b2 2n1 − 3n0 4n1 − 3n0 3n1 − 2n0 3n1 − 4n0 5n1 − 4n0 3n1 − 2n0 2n1 − 3n0 4n1 − 3n0

Table B.3: Mappings from (n0, n1) torsion flux numbers to (b1, b2) flux numbers. Here
we give cases where k ̸= p

c
for some c ∈ Z.

p p 4 4 6 6 6 6

k p 2 6 2 3 4 8

Ωp,k
n0,n1

n0 −2n0 + n1 −2n0 + 3n1 −2n0 + n1 −2n0 + 2n1 n1 − n0 7n1 − 5n0

p 6 8 8 8 8 8

k 9 2 4 6 10 12

Ωp,k
n0,n1

10n1 − 6n0 −4n0 + n1 −4n0 + n1 3n1 − 4n0 5n1 − 4n0 13n1 − 8n0

Table B.4: Values of Ωp,k
n0,n1

coefficients for various values of p and k. These were
computed by using values in table B.2 and mapping (b1, b2) to (n0, n1) (table B.3).
Notice in the first column we give a general expression for Y p,p.
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Appendix C

Non-Invertible Symmetry Actions
on Line Operators

C.1 Non-invertible Symmetries Acting on Line Op-

erators

To complement the analysis in the main text using branes, we provide a field theoretic

alternative to the derivation of the action of non-invertible 0-form symmetries on

line operators in 4d QFTs, using half-space gauging as in [22, 32]. We consider two

examples: 4d N = 1 SYM with gauge algebra su(M), and 4d pure YM with gauge

algebra so(4n), which are discussed in the main text in sections 5.3.2 and 5.3.4,

respectively.

C.1.1 4d N = 1 SYM with Gauge Algebra su(M)

We want to study the non-invertible 0-form symmetry of the global variant PSU(M)0.

To this end, we use the SU(M) global variant as starting point. It has a Z2M 0-

form symmetry (background field: A1 ∈ H1(W4;Z2M)) and a ZM 1-form symmetry

(background field: B2 ∈ H2(W4;ZM)) with mixed anomaly

A = exp

(
2πi
−1
M

∫
W5

A1 ∪
P(B2)

2

)
. (C.1)
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We introduce the usual stacking operation τ and gauging operation σ

ZτT [B2] = ZT [B2]e
2πi 1

M

∫
W4

P(B2)
2 ,

ZσT [B2] =
∑

b2∈H2(W4;ZM )

ZT [b2]e
2πi 1

M

∫
W4

b2B2 , (C.2)

where T denotes a global variant of 4d N = 1 SYM with gauge algebra su(M).

For simplicity, throughout this appendix we omit normalization factors in partition

functions and we work on a Spin manifold up to gravitational counterterms. We also

make use of the compact notation

SU(M)0 := SU(M) , SU(M)p := τ pSU(M) ,

PSU(M)n,0 := PSU(M)n , PSU(M)n,p := τ pPSU(M)n .
(C.3)

One verifies the following identities,

(σSU(M)p)[B2] = PSU(M)p,0[B2] ,

(σPSU(M)n,0)[B2] = SU(M)n[−B2] ,

(σPSU(M)n,p)[B2] = PSU(M)n−p−1,−p[−p−1B2] , if p ∈ Z×
M .

(C.4)

We notice that, for any integer M ≥ 2, ±1 ∈ Z×
M ; if p = ±1, p−1 = ±1. A special

case of the last relation is therefore

(σPSU(M)n,−1)[B2] = PSU(M)n+1,1[B2] . (C.5)

The anomaly (C.1) implies that (perform a 0-form gauge transformation)

ZSU(M)[B2] = ZSU(M)[B2]e
2πi−1

M

∫
W4

P(B2)
2 , i.e. SU(M)0[B2] = SU(M)−1[B2] .

(C.6)

By applying τ repeatedly on both sides, we get

SU(M)p[B2] = SU(M)p−1[B2] . (C.7)

We may now apply σ on both sides, followed by repeated applications of τ , and get

PSU(M)n,p[B2] = PSU(M)n−1,p[B2] . (C.8)
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By combining (C.5) and (C.8), we conclude that

(σPSU(M)n,−1)[B2] = PSU(M)n,1[B2] . (C.9)

This can also be written as

(τ−1στ−1PSU(M)n,0)[B2] = PSU(M)n,0[B2] . (C.10)

We conclude that the PSU(M)n,0 theory is invariant under the combined operation

τ−1στ−1.

Half-space gauging and action on lines. As anticipated above, we want to

study the global variant PSU(M)0,0. This theory has ’t Hooft lines, charged under

a magnetic 1-form symmetry. Let us now use C2 for the associated background field,

andD
(k)
2 (M2) for the topological defects implementing the symmetry. We can describe

D
(k)
2 (M2) explicitly if we think of PSU(M)0,0 as originating from gauging of SU(M)0,

ZPSU(M)0,0 [C2] =
∑
b2

ZSU(M)0 [b2]e
2πi 1

M

∫
W4

b2C2 , D
(k)
2 (M2) = e

2πi k
M

∫
M2

b2 . (C.11)

We observed above that PSU(M)0,0 is invariant under τ−1στ−1. We can therefore

perform this operation in the half-space region x > 0, sschematically

x < 0 : ZPSU(M)0,0 [C2] ,

x > 0 : e2πi
−1
M

∫ P(C2)
2

∑
c2

ZPSU(M)0,0 [c2]e
2πi−1

M

∫ P(c2)
2 e2πi

1
M

∫
c2C2 . (C.12)

We impose Dirichlet boundary conditions for c2 at x = 0. The locus x = 0 realizes

the topological operators implementing the non-invertible 0-form symmetry of the

PSU(M)0,0 theory. Next, letH(γ) denote a ’t Hooft line of minimal charge, supported

on a contractible loop γ bounded by a disk D. In the region x < 0, H(γ) is a genuine

line operator, but it is not invariant under gauge transformations of the magnetic

1-form symmetry background C2. The gauge invariant combination is

x < 0 : H(γ)e−2πi 1
M

∫
D C2 . (C.13)
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The analog of this quantity in the x > 0 region is written with c2, as opposed to C2,

x > 0 : H(γ)e−2πi 1
M

∫
D c2 . (C.14)

Let us recast the theory in the region x > 0 in terms of SU(M)0,

x > 0 :
∑
b2,c2

ZSU(M)0 [b2]e
2πi 1

M

∫ [
b2c2−P(c2)

2
+c2C2−P(C2)

2

]
. (C.15)

Upon varying c2 in the exponent, we get the following on-shell relation in the x > 0

region,

c2 = b2 + C2 . (C.16)

If we use this in (C.14), we obtain

x > 0 : H(γ)e−2πi 1
M

∫
D b2e−2πi 1

M

∫
D C2 = H(γ)D

(−1)
2 (D)e−2πi 1

M

∫
D C2 . (C.17)

We conclude that the non-invertible defects of the PSU(M)0,0 theory act on the

minimal-charge ’t Hooft line by attaching a 1-form symmetry surface defect to the

line. The additional C2 contribution is a c-number that drops away if we turn off the

C2 background field.

We can also rephrase the argument above in the continuum formulation. The

continuum counterpart of (C.15) contains the following topological action,∫
Db2Dβ1Dc2Dγ1 exp 2πi

∫
W4

[
Mb2dβ1+Mc2dγ1+Mb2c2−

M

2
c2c2+Mc2C2−

M

2
C2C2

]
.

(C.18)

The quantities b2, β1, c2, γ1 are p-form gauge fields whose field strengths have integral

periods, while C2 is a closed 2-form with integral periods. In the simpler case in which

C2 is turned off, the gauge transformations are

b′2 = b2 + dλ1 , β′
1 = β1 + dλ0 + µ1 , c′2 = c2 + dµ1 , γ′1 = γ1 + dµ0 − λ1 − µ1 .

(C.19)

The BF pair b2, β1 couples to the SU(M)0 theory, while c2 and γ1 only enter via the

topological terms spelled out above. The equations of motion for γ1, c2 read

Mdc2 = 0 , Mc2 =M(dγ1 + b2 + C2) . (C.20)
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In the normalization relevant for the continuum formulation, the gauge invariant

combination in the x > 0 region is

H(γ)e−2πi
∫
D c2 , (C.21)

while the topological defect implementing the magnetic 1-form symmetry of PSU(M)0,0

is

D
(k)
2 (M2) = e

2πik
∫
M2

b2 = e
2πik

∫
M2

(b2+dγ1) . (C.22)

In the second step we have observed that dγ1 is a globally defined 2-form with integral

periods. We can thus add it in the exponent without affecting the result. We thus

see that the continuum formulation confirms (C.17).

C.1.2 4d pure YM with Gauge Algebra so(4n)

We are interested in studying the non-invertible 0-form symmetry of the global vari-

ant Sc(4n). We find it convenient to adopt the SO(4n) variant as our starting point.

It has a Z2 0-form symmetry and a Z2 × Z2 1-form symmetry. We denote the cor-

responding background fields as A1 ∈ H1(W4;Z2) and B2, C2 ∈ H2(W4;Z2). The

theory has the mixed anomaly

A = exp 2πi
1

2

∫
W5

A1 ∪B2 ∪ C2 . (C.23)

The anomaly implies the following relation,

ZSO(4n)[B2, C2] = ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

B2C2 . (C.24)

The theory Sc(4n) is obtained by gauging both B2 and C2.

Given any theory T coupled to two background fields B̂2, Ĉ2 ∈ H2(W4;Z2), we

define the following three operations:

ZτT [B̂2, Ĉ2] = ZT [B̂2, Ĉ2]e
2πi 1

2

∫
W4

B̂2Ĉ2 ,

ZσT [B̂2, Ĉ2] =
∑
B̃2,C̃2

ZT [B̃2, C̃2]e
2πi 1

2

∫
W4

(B̃2B̂2+C̃2Ĉ2) ,

ZKT [B̂2, Ĉ2] = ZT [Ĉ2, B̂2] . (C.25)
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Making use of the anomaly relation (C.24), one may then verify the identity

(KτστSc(4n))[B̂2, Ĉ2] = (Sc(4n))[B̂2, Ĉ2] . (C.26)

Indeed, we have (always up to prefactors and gravitational counterterms, working on

a Spin manifold)

ZKτστSc(4n)[B̂2, Ĉ2] = ZτστSc(4n)[Ĉ2, B̂2] = ZστSc(4n)[Ĉ2, B̂2]e
2πi 1

2

∫
W4

B̂2Ĉ2

=
∑
B̃2,C̃2

ZτSc(4n)[B̃2, C̃2]e
2πi 1

2

∫
W4

(B̃2Ĉ2+C̃2B̂2)e
2πi 1

2

∫
W4

B̂2Ĉ2

=
∑
B̃2,C̃2

ZSc(4n)[B̃2, C̃2]e
2πi 1

2

∫
W4

(B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2)

=
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2B̃2+C2C̃2+B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2) .

(C.27)

To proceed we perform the redefinitions

B̃2 → B̃2 + B̂2 + C2 , C̃2 → C̃2 + Ĉ2 +B2 . (C.28)

We get

ZKτστSc(4n)[B̂2, Ĉ2] =
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2C2+B2B̂2+C2Ĉ2+B̃2C̃2)

=
∑
B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2C2+B2B̂2+C2Ĉ2) . (C.29)

Now we make use of the anomaly relation (C.24) inside the sum,

ZKτστSc(4n)[B̂2, Ĉ2] =
∑
B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2B̂2+C2Ĉ2)

= ZSc(4n)[B̂2, Ĉ2] , (C.30)

as claimed above.

Half-space gauging and action on lines. Let us regard the Sc(4n) theory as

coming from gauging the SO(4n) theory. This allows us to write the topological
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defects generating the 1-form symmetries of the Sc(4n) in terms of discrete gauge

fields. More precisely,

ZSc(4n)[B̂2, Ĉ2] =
∑
B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2B̂2+C2Ĉ2) , (C.31)

where we identify

B̂2 ↔ D
(B̂)
2 (M2) = e

2πi 1
2

∫
M2

B2

Ĉ2 ↔ D
(Ĉ)
2 (M2) = e

2πi 1
2

∫
M2

C2 .

(C.32)

We consider a half-space gauging configuration, in which the region x < 0 has the

Sc(4n) theory, and the region x > 0 the KτστSc(4n) theory,

x < 0 : ZSc(4n)[B̂2, Ĉ2] ,

x > 0 :
∑
B̃2,C̃2

ZSc(4n)[B̃2, C̃2]e
2πi 1

2

∫
W4

(B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2) . (C.33)

We impose Dirichlet boundary conditions for B̃2, C̃2 at x = 0. The locus x = 0 realizes

the codimension-1 topological defects generating the non-invertible symmetry of the

Sc(4n) theory.

In the Sc(4n) theory we have line operators of charges (1, 0) and (0, 1) under the

1-form symmetries generated by D
(B̂)
2 (M2) and D

(Ĉ)
2 (M2). In the region x > 0 we

have the gauge invariant combinations

x > 0 : L(1,0)(γ)e2πi
1
2

∫
D B̂2 , L(0,1)(γ)e2πi

1
2

∫
D Ĉ2 , (C.34)

where ∂D = γ. These combinations in the region x > 0 become

x > 0 : L(1,0)(γ)e2πi
1
2

∫
D B̃2 , L(0,1)(γ)e2πi

1
2

∫
D C̃2 . (C.35)

To proceed, we write the theory in the region x > 0 in terms of the SO(4n) theory,

x > 0 :
∑

B̃2,C̃2,B2,C2

ZSO(4n)[B2, C2]e
2πi 1

2

∫
W4

(B2B̃2+C2C̃2+B̃2C̃2+B̃2Ĉ2+C̃2B̂2+B̂2Ĉ2) . (C.36)

Varying the exponent with respect to B̃2, C̃2 yields

B̃2 = B̂2 + C2 , C̃2 = Ĉ2 +B2 . (C.37)
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We can ignore signs because these are Z2 classes. Using these relations in (C.35) and

recalling (C.31), we find

x > 0 : L(1,0)(γ)D
(Ĉ)
2 (D)e2πi

1
2

∫
D B̂2 , L(0,1)(γ)D

(B̂)
2 (D)e2πi

1
2

∫
D Ĉ2 . (C.38)

We thus learn that, if the line L(1,0) passes through the non-invertible defect, it

emerges attached to a D
(Ĉ)
2 surface, and analogously for the other line.
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[42] I. n. Garćıa Etxebarria, Branes and Non-Invertible Symmetries, Fortsch.
Phys. 70 (2022) 2200154, [2208.07508].
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[49] M. Cvetic, J. J. Heckman, M. Hübner and E. Torres, Generalized symmetries,
gravity, and the swampland, Phys. Rev. D 109 (2024) 026012, [2307.13027].

[50] Z. Sun and Y. Zheng, When are Duality Defects Group-Theoretical?,
2307.14428.

170

http://dx.doi.org/10.1103/PhysRevLett.129.161601
https://arxiv.org/abs/2205.05086
http://dx.doi.org/10.1103/PhysRevX.13.011034
https://arxiv.org/abs/2205.06243
https://arxiv.org/abs/2206.07073
http://dx.doi.org/10.1007/JHEP12(2022)061
https://arxiv.org/abs/2206.05646
http://dx.doi.org/10.1103/PhysRevLett.130.131602
https://arxiv.org/abs/2208.04331
http://dx.doi.org/10.21468/SciPostPhys.14.4.067
https://arxiv.org/abs/2207.02831
http://dx.doi.org/10.1002/prop.202200143
https://arxiv.org/abs/2208.05973
http://dx.doi.org/10.1002/prop.202200130
https://arxiv.org/abs/2208.05982
https://arxiv.org/abs/2208.05993
http://dx.doi.org/10.1103/PhysRevLett.130.121601
https://arxiv.org/abs/2208.07373
http://dx.doi.org/10.1002/prop.202200154
http://dx.doi.org/10.1002/prop.202200154
https://arxiv.org/abs/2208.07508
http://dx.doi.org/10.1002/prop.202200180
https://arxiv.org/abs/2209.03343
https://arxiv.org/abs/2209.11062
http://dx.doi.org/10.1007/JHEP03(2023)005
https://arxiv.org/abs/2209.11166
http://dx.doi.org/10.1007/JHEP01(2024)117
https://arxiv.org/abs/2306.15783
https://arxiv.org/abs/2306.11783
https://arxiv.org/abs/2306.07318
http://dx.doi.org/10.1103/PhysRevD.109.026012
https://arxiv.org/abs/2307.13027
https://arxiv.org/abs/2307.14428


[51] C. Cordova, P.-S. Hsin and C. Zhang, Anomalies of Non-Invertible
Symmetries in (3+1)d, 2308.11706.

[52] A. Antinucci, F. Benini, C. Copetti, G. Galati and G. Rizi, Anomalies of
non-invertible self-duality symmetries: fractionalization and gauging,
2308.11707.

[53] L. Bhardwaj, L. E. Bottini, D. Pajer and S. Schäfer-Nameki, Gapped Phases
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[223] J. Eckhard, S. Schäfer-Nameki and Y.-N. Wang, Trifectas for TN in 5d, JHEP
07 (2020) 199, [2004.15007].

[224] M. Schnabl and Y. Tachikawa, Classification of N=6 superconformal theories
of ABJM type, JHEP 09 (2010) 103, [0807.1102].

[225] D. S. Freed, G. W. Moore and G. Segal, The Uncertainty of Fluxes, Commun.
Math. Phys. 271 (2007) 247–274, [hep-th/0605198].

[226] K. Becker, M. Becker and J. H. Schwarz, String theory and M-theory: A
modern introduction. Cambridge University Press, 12, 2006,
10.1017/CBO9780511816086.

[227] C. Closset and S. Cremonesi, Toric Fano varieties and Chern-Simons quivers,
JHEP 05 (2012) 060, [1201.2431].

[228] F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric
CY4 singularities, JHEP 02 (2010) 036, [0911.4127].

180

http://dx.doi.org/10.21468/SciPostPhys.4.4.021
https://arxiv.org/abs/1711.10008
http://dx.doi.org/10.21468/SciPostPhys.6.3.039
https://arxiv.org/abs/1812.04716
http://dx.doi.org/10.1007/JHEP01(2020)101
http://dx.doi.org/10.1007/JHEP01(2020)101
https://arxiv.org/abs/1910.14086
http://dx.doi.org/10.21468/SciPostPhys.10.2.032
https://arxiv.org/abs/2007.05915
http://dx.doi.org/10.1088/1126-6708/2008/11/043
http://dx.doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
http://dx.doi.org/10.1007/JHEP12(2019)176
http://dx.doi.org/10.1007/JHEP12(2019)176
https://arxiv.org/abs/1908.03346
http://dx.doi.org/10.1016/j.aop.2006.07.014
https://arxiv.org/abs/hep-th/0605200
http://dx.doi.org/10.1007/JHEP06(2017)134
https://arxiv.org/abs/1704.00799
http://dx.doi.org/10.1007/JHEP07(2020)199
http://dx.doi.org/10.1007/JHEP07(2020)199
https://arxiv.org/abs/2004.15007
http://dx.doi.org/10.1007/JHEP09(2010)103
https://arxiv.org/abs/0807.1102
http://dx.doi.org/10.1007/s00220-006-0181-3
http://dx.doi.org/10.1007/s00220-006-0181-3
https://arxiv.org/abs/hep-th/0605198
http://dx.doi.org/10.1017/CBO9780511816086
http://dx.doi.org/10.1007/JHEP05(2012)060
https://arxiv.org/abs/1201.2431
http://dx.doi.org/10.1007/JHEP02(2010)036
https://arxiv.org/abs/0911.4127


[229] D. L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05
(2012) 159, [1012.3210].

[230] A. N. Redlich, Parity Violation and Gauge Noninvariance of the Effective
Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366–2374.

[231] A. N. Redlich, Gauge Noninvariance and Parity Violation of
Three-Dimensional Fermions, Phys. Rev. Lett. 52 (1984) 18.

[232] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg and M. J. Strassler,
Aspects of N=2 supersymmetric gauge theories in three-dimensions, Nucl.
Phys. B 499 (1997) 67–99, [hep-th/9703110].

[233] N. Mekareeya and M. Sacchi, Mixed Anomalies, Two-groups, Non-Invertible
Symmetries, and 3d Superconformal Indices, 2210.02466.

[234] D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories,
1905.09566.

[235] P. Putrov, J. Wang and S.-T. Yau, Braiding Statistics and Link Invariants of
Bosonic/Fermionic Topological Quantum Matter in 2+1 and 3+1 dimensions,
Annals Phys. 384 (2017) 254–287, [1612.09298].

[236] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly of the Electromagnetic
Duality of Maxwell Theory, Phys. Rev. Lett. 123 (2019) 161601, [1905.08943].

[237] C. Vafa and E. Witten, A One loop test of string duality, Nucl. Phys. B 447
(1995) 261–270, [hep-th/9505053].

[238] M. J. Duff, J. T. Liu and R. Minasian, Eleven-dimensional origin of
string-string duality: A One loop test, Nucl. Phys. B 452 (1995) 261–282,
[hep-th/9506126].

[239] D. M. Belov and G. W. Moore, Type II Actions from 11-Dimensional
Chern-Simons Theories, hep-th/0611020.

[240] E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, New
formulations of D = 10 supersymmetry and D8 - O8 domain walls, Class.
Quant. Grav. 18 (2001) 3359–3382, [hep-th/0103233].

[241] F. Bonetti, M. Del Zotto and R. Minasian, to appear.

[242] F. Bonetti, S. Schafer-Nameki and J. Wu, MTC from M3, .

[243] B. Mellor and P. Melvin, A geometric interpretation of milnor’s triple linking
numbers, Algebraic and Geometric Topology 3 (jun, 2003) 557–568.

[244] S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T [M ]
theories. Part I, JHEP 04 (2021) 232, [2010.15890].

[245] E. A. Bergshoeff, M. de Roo, S. F. Kerstan, T. Ortin and F. Riccioni,
SL(2,R)-invariant IIB Brane Actions, JHEP 02 (2007) 007,
[hep-th/0611036].

[246] O. Bergman and S. Hirano, The holography of duality in N = 4
Super-Yang-Mills theory, 2208.09396.

181

http://dx.doi.org/10.1007/JHEP05(2012)159
http://dx.doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
http://dx.doi.org/10.1103/PhysRevD.29.2366
http://dx.doi.org/10.1103/PhysRevLett.52.18
http://dx.doi.org/10.1016/S0550-3213(97)00323-4
http://dx.doi.org/10.1016/S0550-3213(97)00323-4
https://arxiv.org/abs/hep-th/9703110
https://arxiv.org/abs/2210.02466
https://arxiv.org/abs/1905.09566
http://dx.doi.org/10.1016/j.aop.2017.06.019
https://arxiv.org/abs/1612.09298
http://dx.doi.org/10.1103/PhysRevLett.123.161601
https://arxiv.org/abs/1905.08943
http://dx.doi.org/10.1016/0550-3213(95)00280-6
http://dx.doi.org/10.1016/0550-3213(95)00280-6
https://arxiv.org/abs/hep-th/9505053
http://dx.doi.org/10.1016/0550-3213(95)00368-3
https://arxiv.org/abs/hep-th/9506126
https://arxiv.org/abs/hep-th/0611020
http://dx.doi.org/10.1088/0264-9381/18/17/303
http://dx.doi.org/10.1088/0264-9381/18/17/303
https://arxiv.org/abs/hep-th/0103233
http://dx.doi.org/10.2140/agt.2003.3.557
http://dx.doi.org/10.1007/JHEP04(2021)232
https://arxiv.org/abs/2010.15890
http://dx.doi.org/10.1088/1126-6708/2007/02/007
https://arxiv.org/abs/hep-th/0611036
https://arxiv.org/abs/2208.09396
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