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Abstract

This thesis contains work from several different projects linked by the
common goal of understanding the origin of generalized symmetries and
their 't Hooft anomalies in string theory realizations of quantum field
theories (QFTs).

Beginning in holography, we study the supergravity origin of the 1-form
symmetry of 4d N =1 SU(N) Super-Yang Mills (SYM). Furthermore we
discuss the imprint of a mixed 0-form/1-form symmetry anomaly in the

associated holographic geometry.

This holographic work was an early precursor to the notion of the Sym-
metry Topological Field Theory (SymTFT), which we study in this the-
sis for 3d QFTs constructed in M-theory. In particular, we derive the
SymTFT for 3d supersymmetric QFTs constructed in M-theory either
via geometric engineering or holography. The SymTFT encodes the sym-
metry structures of the QFTs, including their anomalies. We probe our

general framework with a variety of examples.

We also present an argument that branes, in a certain topological limit,
not only furnish the symmetry generators of generalized symmetries, but
also encode the SymTFT. We derive the SymTFT directly from branes,
and furthermore demonstrate the central role that Hanany-Witten brane
configurations play in this process. After presenting a general analysis, we
study various examples of QFTs realized in both geometric engineering

and holography.
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Chapter 1

Introduction

Symmetry plays a central, governing role in the vast majority of physics research. At a
coarse level, symmetries can be divided into two categories: global and gauge. Gauge
symmetries are ubiqutous in physical theories: for example, they are the key com-
ponent in the description of the fundamental forces in the Standard Model. Global
symmetries can impose selection rules, be spontaneously broken, have 't Hooft anoma-
lies and can often be gauged. This suite of properties means that studying global
symmetries in quantum field theories (QFTs) offers immense power and possibility.

String/M-theory allows computational access to a range of subtle and complex
QFTs, in particular strong-coupling regimes and higher-dimensional theories. In this
thesis, we are interested in studying the origin, imprint and consequences of symme-
tries in QFTs from the perspective of their string theory realizations.

Throughout this thesis we will be primarily interested in a new type of global
symmetry, called “generalized symmetries” [7], which we review in section . Fur-
thermore, the central tool we employ throughout this thesis is called the Symmetry
Topological Field Theory (SymTFT), which we review in great depth in chapter .
This is a topological field theory in one dimension higher than the QFT we are study-
ing, and it encodes key symmetry properties which are of interest to us. In this work
we explain where the SymTFT sits in string theory realizations of QFTs, how to

compute its couplings, and how branes in string theory play a crucial role.



1.1 Generalized Symmetries

In this thesis we are particularly interested in a modern development within the area
of global symmetries, known as “generalized global symmetries”. The concept of
generalized symmetries was first introduced in the 2014 paper [7[} following which
there has been a flurry of activity. The central idea of this work can be neatly

summarized in the statement:
Symmetries in a QFT <« Topological Operators (1.1)

This simple relationship, which we will explain in detail below, leads to a range
of exciting consequences and new types of symmetries to be studied. Relevant for
this thesis are: invertible higher-form symmetries, higher-group symmetries and non-
invertible/ categorical higher-form symmetries. We will discuss each of these below.

The first and most natural extension of the notion of global symmetries is to so-
called “higher-form” global symmetries. Before we get there, we must first re-cast

our understanding of “ordinary” symmetries in a new language.

Ordinary Symmetries. An ordinary (pre-2014) symmetry is traditionally en-

coded in a unitary operator

U(t), (1.2)

which acts on the Hilbert space defined at a time ¢. Such an operator acts on local

operators O(z,t) by conjugation
Ut)O(x,t)U(#)™ = O'(x,t), (1.3)

Here the prime denotes a new local operator defined at the same spacetime location. A

key property of such unitary operators U is their commutation with the Hamiltonian:

Ut)) = Ults), Vit ta, (1.4)

IFor greater depth, there are a number of reviews of this topic, including [8H13].
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Figure 1.1: On the left we insert an operator U on ¥4_; = S% ! which links with
the local operator O(x). The operator U is topological, as long as it doesn’t cross a
charged operator (according to ), so we can shrink it. Once we cross U with O,
this changes O(z) — O(z)’. Finally, once U no longer links with anything charged,
it becomes trivial.

A key insight of [7] is to consider placing the operator U on an arbitrary codimension-1

submanifold of d-dimensional spacetime >;_;
U(Sua). (15)

Such an operator is topological: meaning that U(Xq_;) = U(Sq_1) for two manifolds
Yd-1, id—l which are related by topological manipulation. This is the generalization

of (L.4).

The action on local operators is similar:
U(S41)0(x) = O(2)'U(Zq 1), (1.6)

where crucially O(z) = O(x, t) lies in the d-dimensional submanifold connecting ;4

and S,_;. This action can equivalently be represented using “linking”, see figure .

Higher-Form Symmetries. @ We are now ready to introduce higher-form global
symmetries. A p-form global symmetry is defined by the existence of codimension-
(p + 1) operators U which are topological. In other words, they can be inserted on
(d — p — 1)-dimensional submanifolds of spacetime, ¥,_,-1. Owing to their smaller
dimension, these operators no longer act on local operators by linking. Instead, they

act on p-dimensional extended operators. See figure [1.2]

3



Figure 1.2: Here we demonstrate how a p-form symmetry generator U(S97P~1) acts
on an extended operator. Initially, U links with a p-dimensional operator O. U
is topological, so we can deform to a configuration where the operators no longer
link. However, analogously to the ordinary case, after un-linking, the operator O is
modified. This time it picks up a phase, ¢.

In this language, the ordinary symmetries discussed above are therefore 0-form

symmetries, since they act on 0-dimensional local operators.

Fusion Rules. It is well-known that ordinary global symmetries form groups. In
the language of the topological operators, a 0-form symmetry is described by a group

G when:

Ugl (Zd—l)ng (Ed—l) = Ugl'gz(zd—l) ) (17)

where g; € G are group elements which label the topological operators.

Analogously, codimension-(p + 1) operators obeying

U91<Ed—p—1>Ug2<Ed—p—l> - Ugryz (Ed—p—l) ) (1-8)

signal the existence of a p-form symmetry group G. Collectively these symmetries
come under the title of invertible higher-form symmetries. The powerful insights
of [7] was that one can use many of the same properties we love about ordinary
symmetries in this new paradigm: these symmetries can be gauged, have anomalies,

and be spontaneously broken.



It is natural to ask if there exists theories in which such operators do not obey
group-law fusion rules. Examples of these symmetries naturally occur in 2d theories
(e.g. |14-20]), and have recently been shown to exist in higher-dimensional QFTs
[21-23]. Such symmetries are referred to as non-invertible or categorical symmetries.
Schematically, given some generators U, labelled by S = {a, b, c, ... }, the fusion rules

can be more general than the group-theoretic case above:

UUy =Y U;. (1.9)

Studying these symmetries, their properties, mathematical structure and physical

consequences is currently an incredibly active area of research [22,24-57].

Higher-Group Symmetries. Two or more invertible higher-form symmetries of
a QFT can generically combine in a non-trivial way (i.e. not just a direct product)
[58-63]. Such symmetries are referred to as higher-group symmetries. For example,
a 0-form and 1-form symmetry can combine non-trivially in a 2-group symmetry.
The “non-trivial” combination of symmetries is often in the form of a mixing of
background fields. Concretely, suppose we begin with a background field B,;, for a
U(1) p-form symmetry, with field strength H, 5 = dB,+1. The presence of a higher-
group symmetry means that B, 1 may transform under the gauge transformations of
some other higher-form symmetry background fields {B,,+1, Bpy+1,- -+ Bp,+1}. We

can make H, o gauge-invariant once more by adding extra terms.

Hp+2 = dBp+1 + @(Bp1+17 Bp2+17 R Bpn+1) ) (110)

where © is some function of background fields of the other continuous higher-form
symmetries. We say that the theory has a continuous higher-form symmetry group
if a relationship of this type exists. We will now explain the notion of background

fields and anomalies in more detail below.



1.2 Background Fields and Anomalies

In this section we explain the concept of background fields and anomalies for invertible
higher-form symmetries. An ordinary 0-form symmetry background is a connection
A on a O-form symmetry group bundle on spacetime. Locally, we write this as a

differential 1-form A; with field strength Fy = dA;.

Continuous p-Form Symmetries. For a continuous U(1) p-form symmetry, the
background is a (p + 1)-form B, with field strength H, s = dB,+1. A small gauge

transformation of this background field is of the form
Bp+1 — Bp+1 + d)\p, (111)

where ), is a p-form gauge field.

Finite p-Form Symmetries.  For a discrete p-form symmetry, the background
gauge field is now a (p + 1)-cochain which takes its values in the p-form symmetry

group. In the presence of no other symmetry backgrounds, this gauge field is flat
0B,11=0. (1.12)
A small gauge transformation in this case takes the form
Bpi1 — Bpi1 + 60, (1.13)

where now ), is a group-valued p-cochain. As explained above, in the presence of
other symmetries, the flatness relation may not hold: in which case we say we have a

higher-group symmetry.

’t Hooft Anomalies. 't Hooft anomalies are features of QFT's involving invariance
under background gauge transformations of symmetries. It is important to note that

the existence of such an anomaly does not imply a problem with the QFT, it is still a
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consistent theory. In particular, a pure 't Hooft anomaly of a p-form symmetry arises
when background gauge transformations cause an irreparable change to the partition
function

Z[BPH] # Z[Berl + 5)‘10] : (1'14)

Here “irreparable” means that the change cannot be undone by adding a counter-
term which is a function of B,1;. The existence of such an anomaly signals that one
cannot gauge the p-form symmetry in a consistent way.

Generically, a theory may have two or more higher-form symmetries. Even if these
symmetries are non-anomalous on their own, there can be mized 't Hooft anomalies

between the symmetries. For example, if
Z[Bpi1, Byr1] # Z[Bpi1 + 00y, Byi1] (1.15)

but

Z[Bpt1, Bg1 = 0] = Z[Bpi1 + 0Ap, Byrr = 0], (1.16)

for some p- and ¢-form symmetries, the theory is said to have a mixed 't Hooft

anomaly. This anomaly is an obstruction to gauging both symmetries simultaneously.

1.3 Outline of Thesis

In Chapter [2] we give a long-form introduction to the topic of Symmetry Topological
Field Theories (SymTFT) - the key topic of interest in this thesis. In this chapter we
also present the general analysis and structure which underpins all the applications
in subsequent chapters.

In Chapter [3| we study a particular holographic description of 4d N' =1 SU(N)
Super Yang-Mills, namely the Klebanov-Strassler solution [64]. This field theory has
a Zy global 1-form symmetry and mixed 0/1-form symmetry anomaly. We use the
holographic correspondence to identify the supergravity origin of the global symme-

tries, as well as the imprint of this mixed anomaly.

7



In Chapter {4 we study the SymTFT of 3d QFTs realized in M-theory construc-
tions. Using the differential cohomology paradigm of [65] we demonstrate how the
global symmetries and 't Hooft anomalies of these QF T's are encoded in the geometries
of the string theory constructions.

In Chapter 5| we study a recently discovered relationship between branes and
generalized global symmetries. We demonstrate that branes encode not only the
symmetry generators of generalized symmetries, but also the SymTFT. We highlight

the power of our work in a variety of examples in four spacetime dimensions.



Chapter 2

The Symmetry Topological Field
Theory

The symmetry structure of a d-dimensional QFT can be conveniently encoded inside
a topological quantum field theory of one dimension higher, called the Symmetry
Topological Field Theory (SymTFT or Symmetry TFT) [65H67]. Concretely, the
SymTFT encodes the choice of global structure of the QFT gauge group, as well as
the possible (mixed) 't Hooft anomalies of the generalized symmetries of the QFT.
In this chapter we describe the general features of the SymTFT, and then give
a detailed description of its origin in string theory realizations of QFTs (both in
holography and geometric engineering). The content of this chapter represents the
backbone of this thesis: it presents an introduction to the ideas and tools applied

across various contexts in chapters and o]

2.1 General Structure

Let us consider a d-dimensional QFT. The associated (d + 1)-dimensional SymTFT
has topological boundary conditions, denoted B*™, and non-topological boundary
conditions denoted BP™S. The latter boundary is generically non-topological, but
in instances where the physical d-dimensional theory is topological, it can also be
topological. After reduction along an interval, these boundary conditions give rise

to the d-dimensional QFT: see figure 2.1l The SymTFT is an extension of the more



SymTFT —> | QFT,T

Figure 2.1: Here we depict the SymTFT with its two boundaries B%™, BPYs  After
interval compactification, we obtain the d-dimensional QFT T .

familiar anomaly theory in the following sense. The anomaly theory is an invertible
theory whose gauge variation, when placed on a manifold with boundary, exactly
cancels that of the partition function of the QFT. This invertible theory assigns
a 1-dimensional Hilbert space to closed codimension-1 sub-manifolds in spacetime.
This contains information about the phase of the partition function of the QFT T,
evaluated on the codimension-1 manifold. Relaxing the invertible condition gives the
SymTFT. This allows for the assignment of a larger-than-one dimensional Hilbert
space. Now the QFT has a vector of partition functions. This set of distinct partition
functions encodes the possible choices of global structures of 7. In particular, the
QFTs encoded in these choices will have identical local physics but a distinct spectrum
of extended operators. Picking a boundary condition here amounts to fixing a global
structure, or in other words selecting an absolute QFT.

In this thesis, we will focus specifically on generalized symmetries which are
abelian. In these cases, the SymTF'T has an action formulation in terms of the abelian
background fields for these symmetries. The most general symmetry we consider is a
product of higher-form symmetry groups:

s=][c", (2.1)

p

Here we assume that the d-dimensional theory, 7, is an absolute theory. The back-

10



ground fields for the individual components of the p-form symmetry group G® are
denoted

Bi, € H"! (Md,Zn§> , (2.2)

where G® = ], Zyy for some nf € Z,. We encode the possible (mixed) 't Hooft
anomalies of these symmetries in a term A({B,+1}). In string theory settings, most
generalized symmetries seem to be of this type. For a discussion of the SymTFT in
this more general setting, see [68,69].

One way of viewing the SymTFT is as a gauging of the p-form symmetries in
(d 4+ 1)-dimensions, i.e. coupling the theory to a Dijkgraaf-Witten type dynamical
discrete gauge theory. This contains the BF-couplings for the now dynamical fields

b}, and the dual fields /Z;il_p_l, as well as the anomaly term

SSymTFT = Z Z ng by A alszF1 + A ({6 1}) - (2.3)
Mav1
Here we use a continuum field formulation. The fields b are U(1)-valued, with equation
of motion ndb = 0.

The SymTFT has proved incredibly powerful in a variety of contexts. See [20-23|

27,28,130H45,147,68-106] for a selection of recent works.

Topological Defects of the SymTFT. The topological defects of the SymTFT
are given in terms of generalized Wilson lines for the gauge fields. Here we denote
them by Q. Beginning with , one can determine the defects by exponentiating
the Gauss law constraints (see e.g. [41,[107]). To illustrate the setup we begin in the

absence of any anomaly couplings A = 0. The topological defects are generated by:

b . i
Q;()+)1(Mp+1) = €Xp (27”/ bp+1>
Mp11

(2.4)
inli;—l(Md—p—l) = €Xp (27TZ/ il—p—l) .
Mdfpfl

11



These have a non-trivial commutation relation

L(Mp-‘rl)]‘iwclipl)) Qf:;,l(M,)Q;(i)l(M) (2.5)

n;

QLNQY, () = exp (2ri

Here L(M, M’) is the linking of the two manifolds in the (d+1)-dimensional spacetime.
In the presence of non-trivial couplings between the fields b}, , in A({b},}), there
will be additional terms in the above expressions for the topological defects.

The concept of a SymTFT is in principle completely general and can be applied

to capture the global structures of any given QFT.

Condensation Completion of SymTFTs. Whilst the defects in (2.4)) represent
the core operators in the SymTFT, one should also include condensation defects.
These arise by condensing the defects of the dual symmetry, generated by Qgﬁl on
the defect fof)pq that generates the symmetry G®:

C(QP, 1 (M), QU1 (M)

1 o~
- Z Qﬁfﬁl (Mp41) Q((Qp_l (Myg_p1)

Hy1 (My—pr, Z
| p+1( d—p—1; n)|Mp+16Hp+l(Md—:v—17Z")

(2.6)

We can also condense these on other symmetry generators, up to dimension con-
straints.

These additional defects can also be realized by introducing localized couplings in

the SymTF'T, which correspond to coupling lower-dimensional DW type theories to

the SymTFT. Taking into account all possible condensations, this is
SSymTFT DNy / bpy1 AN dbg_p_y

Mg

+ Z (bp+1 A Qa—t—p—1 + Npi——p—1 AN da ) .
E>1 Y Ma—k

(2.7)

Symmetries. The SymTFT for the theory 7 is constructed in such a way that the

symmetry boundary B*™ has symmetry S of the theory 7. For abelian group-like

12



Figure 2.2: Projecting a topological defect @ gives rise to a topological defect on
B,
symmetries, given a SymTFT we can recover the symmetry by projecting the bulk
topological operators to the symmetry boundary. See figure

In the present instance we can simplify the analysis further, by stating that the
boundary conditions are specified by a subset £ of topological defects @ of the
SymTFT, which have Dirichlet boundary conditions on B*¥™. This means the topo-
logical defects can end. Furthermore, requiring that this subset is mutually local and
maximal defines a so-called “polarization”.

All the defects in £ end on the boundary and will define generalized charges
— which we will discuss in the next subsection. The symmetry generators are the
projections of the bulk topological operators onto the symmetry boundary. An in-
depth analysis of all consistency conditions and possibilities in general was undertaken

in [68].

Generalized Charges. The charges under generalized symmetries were recently
identified as being simply the topological defects of the associated SymTFT [68]. This
applies to several invertible and non-invertible symmetries and has been shown to
hold in many such instances [103,108,109]. Particularly interesting is the observation
that there are generalized charges even for invertible higher-form symmetries. The

SymTFT plays the central role in succinctly characterizing these charges.

13



BYy™ SymTFT(S) pphys T

£(Qqt1) Q11 I O,
q

Figure 2.3: Here we consider an operator @ which ends on both boundaries. After
interval compactification it gives rise to a genuine g-charge in the absolute theory 7.

As proposed in [108], we refer to a g-dimensional, not necessarily topological,
defect operator O, that is charged under a generalized symmetry as a g-charge. The

statement of [108,109] is that for an invertible higher-form symmetry G®
Genuine ¢-charges O, <+— (¢+ 1) —Rep (G(p)) , (2.8)

where the right hand side is the fusion higher-category of higher-representations of
G (see e.g. [9,38,108] for physics-motivated discussions of these categories). Here
q=0,---,d—2. The genuine g-charges are not attached to (¢+1)-dimensional defects
(topological or not), see figure , and arise after interval compactification as end-
points of bulk topological operators Q.41 that end on both physical and topological
boundariedl]

In addition to genuine charges, there can be non-genuine (attached at the end of
O,+1) and twisted sector (attached to the end of topological S, defects) g-charges.
In the SymTFT picture, the twisted sector charges arise from projecting L-shaped
bulk topological defects, see figure 2.4 we project a bulk topological defect onto
Qq+1)

the symmetry boundary in an L-shape, which results in a junction operator 5}5

attached to a topological defect D,y € S. After interval compactification this is a

'Here we employ the standard nomenclature of “genuine” and “non-genuine” operators. A p
dimensional non-genuine operator is one which is attached to a collection of ¢ > p-dimensional
operators. A genuine operator is one which is free from this type of attachment.

14



BYy™ SymTFT(S) pphys T
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Figure 2.4: Here we consider the L-shape projection of a bulk topological defect
Q,+1 onto the symmetry boundary. This creates a junction &, which is attached to
a topological defect D,y;. After interval compactification we obtain a g-charge O,
attached to the topological defect D, .

g-charge O,, attached to a topological (g + 1)-dimensional defect D, which is thus

a twisted sector operator.

Charges from Linking. Finally let’s consider the action of symmetry defects on
charges. This arises by computing the linking of bulk topological defects projected
onto the symmetry boundary. There is the standard linking action of higher-form
symmetry generators on defects, which follows from the linking in (2.4)), where the

mutually non-local defects are either Neumann or Dirichlet:

Proj(Qh_, 1) (0Qp|sm) — Day 1(0,) = 40,0, , (2.9)

where the arrow denotes the interval compactification, and ¢ is the charge under the
higher-form symmetry. This is shown in figure 2.5 The configuration shown here has
various generalizations which were discussed in [68]. For the constructions in string
theory, this is the most general setup we will require.

Non-invertible defects can also act by taking an operator in between genuine
and twisted sectors. For example, passing the topological defect for a non-invertible
symmetry through the end of the bulk topological defect, results in a twisted sector

defect, as shown in figure [2.6] This action is well-known in various contexts of non-
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B¥y™ SymTF

PI‘Oj (Qd—q— 1 )

Qq—i—l

T(S) pBphys

Figure 2.5: Here we demonstrate how a symmetry acts via linking. The topological
operator Q,+1 ends and gives rise to the (genuine) g-charge O, in 7. In turn, Qq—,—1
projects onto the symmetry boundary and gives rise to a symmetry generator after
the interval compactification. The non-trivial linking of these topological defects in
the SymTFT results in the generalized charge.

= T

Da_g

Figure 2.6: Here we demonstrate how a non-invertible symmetry can map a genuine
operator to a non-genuine operator. The genuine defect O, is acted upon by the
topological defect Dy_,, which maps it to a non-genuine operator, with an attachment

of a (¢ + 1)-dimensional operator.
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invertible symmetries in a variety of dimensions [23,/110] and was realized in terms
of branes as Hanany-Witten moves in [41]. We will provide various generalizations of
this in chapter [f

The SymTFT is a particularly useful notion in the context of string theory since
recent progress has shown that the SymTFT can be computed independently using
geometric methods. Since their recent inception, generalized symmetries in string
theory and related theories have thus been studied extensively?] This research is most
useful within the context of strong-coupled regimes of theories, either in geometric

engineering or in holography.

2.2 SymTFTs in String Theory: Generalities

Let us first describe how a holographic or geometric engineering construction in string
theory leads to a bulk topological description of the abelian and finite symmetry
sector of a relative QFT living at the boundary. In most cases’| this bulk topological
description will play the role of the SymTFT, once suitable boundary conditions
are imposed to make the theory absolute. In chapter |5| we incorporate branes that
realize symmetry defects and generalized charges into this framework in a very general

fashion.

Flux Sector of Supergravity. First of all we focus on the flux sector of 10/11-
dimensional supergravity (depending on a string or M-theory starting point, respec-
tively), and in particular on the Bianchi identities and equations of motion that the
fluxes will satisfy. In chapter |5| we will also include brane sources, which magnetically

charge branes. This is because the bulk gauge potentials will provide background

2For a sample list of references see [44[5,41-43,46L147,149,56,/57,(70,/111H150].

3In some cases from string theory we obtain a theory that is not a SymTFT, because there are
no topological boundary conditions. In these instances one typically cannot have an absolute theory
at the boundary. For instance, this is indeed the case for 6d (2,0) theories, which can be relative
theories.
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fields for the finite, abelian generalized symmetries. Their holonomies will also give
rise to the topological operators defining the generalized symmetries. This informa-
tion is equivalently encoded in the brane actions [41]. We will not consider the rest of
the supergravity action which includes scalar fields, the metric and other modes. This
is justified by the fact that we will be interested in the physics of flat discrete gauge
fields (vanishing fluxes on-shell), which give non-trivial holonomies. The dilaton and
the metric equations of motion will depend only on modes for which the fluxes are
non-vanishing. The flux action of 10/11-dimensional supergravity has two pieces, a
kinetic term and cubic Chern-Simons topological coupling, which can depend on one
or more fluxes. It will be useful to adopt a formulation in which we include both
the supergravity fluxes and their Hodge duals in 10/11 dimensions in a democratic
way, as detailed below. However before presenting the democratic formulation let us
describe the precise relation between the SymTFT and the bulk theory in holographic

and geometric/brane engineering setups.

Dimensional Reduction of Flux Sector. The second step consists of dimen-
sionally reducing the flux action with brane sources on the geometry dictated by
the holographic description or the boundary at infinity of the geometric engineering
setup. Concretely let

0Xpy1 = Lp, (2.10)

where either the holographic solution is Mg,y X Lp or the geometric engineering
corresponds to a compactification on Xp;. This is given by specifying the following

geometric background, which is a solution of the supergravity equations of motion

MD+d+1 = Md+1 X LD, (211)
where
10
Dtd+1= =D+1, (2.12)
11
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depending on string or M-theory. The QFT is d-dimensional, and we start with
a D + 1 dimensional supergravity theory. In the resulting lower-dimensional the-
ory we generically obtain an action that consists of kinetic terms as well as cubic
Chern-Simons couplings. This theory is defined on My, 1, which has a d-dimensional
boundary. It can be AdSy,; or more general spaces with a boundary which sits at
infinity. In chapter 4 we derive a general expression for this reduction in the context

of 3d QFTs constructed in M-theory.

Topological Limit. In this dimensionally reduced theory, we are interested in very
long-distance regimes, which are realized very close to the boundary at infinity |151].
In this sense, we can implement a derivative expansion of the kinetic and topological
couplings of the flux action. The lowest derivatives dominate, which usually con-
sists of topological couplings when they are non-trivial. This is also valid for the
dimensionally reduced brane action at very large-distances, where the kinetic terms
obtained from expanding the DBI part of the action are subleading with respect to
the topological couplings. In addition, the Wess-Zumino part will always provide
topological couplings when non-trivial.

The main reason why we can truncate the dimensionally reduced bulk and brane
action is that we really want to focus on finite, abelian, global symmetries. The gauge
fields of these symmetries in the bulk, which are flat, have vanishing flux on-shell.
The modes which we remove in the truncation do not couple to the symmetry sector
described by flat fields, and therefore can be ignored. For instance, the kinetic term
for the dimensionally reduced fluxes will be non-trivial only for the non-vanishing part
of the fluxes and therefore can be ignored [151]. To reconcile the large-distance limit
and the truncation to the flat finite abelian gauge fields, we can say that from the
point of view of large-distances, i.e. the close to the boundary limit, the modes with

non-vanishing flux are massive, and they can be integrated out, effectively leaving
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only the topological couplings describing the non-trivial fluctuation of flat fields and
their non-trivial holonomies.

Finally, having truncated the dimensionally-reduced bulk and brane action to their
topological sector, which describes the physics of finite abelian flat gauge fields, we

can deform the space without changing its topology such as

Md+1 — My xR. (213)

SymTFT, Boundaries and Holography/String Theory. We can then connect
this to the standard notion of SymTFT. The choice of absolute theory, i.e. a choice
of polarization, will be implemented by partially compactifying the R direction, i.e

the semi-infinite [0, 00) interval [65]

Stop|polarization - SSymTFT . (214)

We can then think of the physical boundary (not necessarily gapped boundary) BPYs
as placed at » = 0. Likewise, the symmetry boundary, i.e. topological boundary
condition, B%™, is at r = oo.

The position of the two boundaries reflects what appears to be the position of
the physical theory and the topological boundary, respectively, both in holography
and string theory geometric engineering. The interpretation of the coordinate r and
therefore of these precise positions, depends on the metric. For simplicity, for AdS

we work in hyper-polar coordinates
ds?(AdSgyq) ~ r?ds*(RY) + r—2dr?, (2.15)

(the conformal boundary is located at r = c0), while for geometric engineering setups

we identify r with the real cone direction in the space Xp 4
ds%,,, = dr* +7°dsT (xo,.) 5 (2.16)

with the link L, (r = 0 is the singularity at the tip of the cone).

20



In particular, in holographic setups we associate BPY® with the origin of AdS
space (r = 0), and not with the conformal boundary (r = oo). This might seem
counter-intuitive, since the CFT lives on a spacetime isomorphic to the conformal
boundary. Our perspective stems from the fact that the CFT is dual to the dynamics
of the gravity theory in the bulk of AdS spacetime.

The presence of the conformal boundary on the gravity side teaches us that we
need to supplement the bulk action with boundary conditions for the supergravity
fields, in order to obtain a gravitational system that is holographically dual to a QFT.

This is quantified in the following key relation of the AdS/CFT correspondence [152]

Zsugra[(b.(?. fOI QO) = JSO] = <€fO¢J¢> , (2.17)

CFT
where O, is the gauge-invariant operator dual to the supergravity field ¢. In the
string theory origin of holography, where we look at the near-horizon limit of some
back-reacted brane system, the theory that we are describing is the one living on the
stack of branes in some low-energy decoupling limit. Therefore we can practically
consider the physical theory to live at » = 0 (radial position of the stack of branes)
and the boundary of AdS to be at r = co. Once we truncate to the topological sector
the latter becomes B*™. In geometric engineering, where the compactification space
X,,;1 is a real cone over a link L,(X,1), this works in a very similar way: BPM is
placed at r = 0 and B¥™ at r = oo.

The real difference between the SymTFT and holography/string theory is that in
the latter we cannot really perform the partial compactification of the semi-interval
direction between [0, 00). The main reason is that before truncating to the topological
sector, we have gravity and other fields related to the full string theory construction in
the bulk, as well as non-local excitations. All these are not necessarily related to the
symmetry sector. In particular we cannot deform or compactify the space as we like.
Indeed, in holography the geometry of the radial direction provides the non-trivial

correspondence between the gravitational theory in the bulk and the QFT.
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Rather, we have two different procedures to specify an absolute theory in string
theory/holography, and in the SymTFT: in the former, we choose boundary condi-
tions at r = oo; in the latter, we perform the interval compactification. Heuristi-
cally, in string theory/holography (quantum) gravity mediates between the topologi-
cal boundary and the choices of the boundary conditions at infinity with the theory
living at » = 0 without the need of an actual interval compactification. Let us em-
phasize, however, that these two procedures can be connected to each other on the
string /holography side, if we perform a truncation to the topological sector. Once the
truncation is performed, we are indeed free to specify My, as in and establish

a direct link with the SymTFT interval picture.

Singleton Theory. In many string-theory/holographic setups we have to deal with
the center of mass degree of freedom. For instance we could consider the stack of
branes before taking the near-horizon limit. In this case the theory that is realized on
the brane-stack is an absolute theory (with U(N) gauge group for N D-branes). On
the gravity side, the u(1) in u(N) = su(N) & u(1) is described by what is called the
singleton mode [107]. This mode has been analyzed in detail in the case of the N' = 4
su(N) SYM and its holographic construction. In particular, as it was shown by [153],
this is a mode in the KK supergravity spectrum (entire supersymmetric multiplet,
which contains the two forms Bs, C5), which comes from an expansion in spherical
harmonics of S and satisfies specific conditions, that are different from the other
bulk fields. This bulk multiplet is dual to a U(1) gauge field in 4d (the center of mass
of the stack of brane). The extra conditions on this bulk multiplet, which we do not
repeat here, make the U(1) gauge field pure gauge that is eaten by the combination of
By, C5 that has Dirichlet boundary conditions at » = co. In terms of bulk fields, the
BF topological coupling between (Bs, Cy) can be seen as Stiickelberg mechanism for

the combination of (Bsy, Cy) that becomes Dirichlet, in the spirit of [154]. In [154], the
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standard BF action involving Bs and C in the presence of a boundary generically
gives a U(1) gauge field living at the boundary. For example, giving the field B
Dirichlet boundary conditions forces it to become the field stength of the singleton
gauge field on the boundary, whilst C5 is the field strength for the electromagnetic
dual. Therefore the singleton mode is pure gauge in the bulk and at the topological
boundary, and it is not dual to any propagating physical mode of the N' = 4 su(N)
SYM. The near-horizon limit decouples the center of mass mode of a stack of branes
by making it pure gauge and hence non-propagating in the bulk. The mode then
localizes on the boundary at r = oo. We expect this to generalize in the context
discussed in this work, and it would be insightful to repeat this analysis in other

contexts or to generalize it.

2.3 Symmetries from the Bulk in Holography

Having introduced a general framework above, let us first focus on holographic set-
ups, where the strong-coupled regime of an SQFT is represented by string/M-theory
on AdS4.1 x X spacetime. Here, the SymTFT action can be found in the topological
couplings in the bulk supergravity on AdS,y; (or in more general holographic setups).
The most well-studied example of AdSs x S® has the bulk coupling N [ as, B2 N dCs,
which is an example a BF-coupling for the 1-form symmetries of the dual 4d gauge
theories (with gauge algebra su(N)) [107,/151,/154]. In terms of the formulation as
generalized symmetries and SymTFTs, there has been much recent interest in the
holographic literature [1},137,141,|151}/155-161], in particular for AdS,/CFTj3 in [157]
and for 3d N' = 6 SCFTs of ABJM type [162]. The SymTFT also emerges using
anomaly inflow methods for QFTs realized with branes [158}|163.{164].

Here we present a short example to demonstrate the salient points of this con-

struction. In chapter [3] we will derive the following 5d bulk supergravity term

SBE _ ged(N, M)/ by A dCy (2.18)
27T Ms
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for integers N, M and 2-form fields by, Cs. The equations of motion force by, Cy to be

2m fba 21 $C2 are mutually non-

flat gauge fields. The topological bulk operators e
local due to the BF-action since the two composite fields are canonically conjugate

[151]. Now suppose the following boundary conditions are chosen:
by Dirichlet, Cy Neumann. (2.19)

Then €27 $ €2 are the topological codimension-2 operators in 4d generating a Liged(N,M)
1-form symmetry with charged lines given by the operators e’27$ restricted to the
boundary. Alternative choices of boundary conditions correspond to different bound-
ary global symmetries or, equivalently, different choices of global form of the boundary

field theory gauge group.

2.4 Symmetries in Geometric Engineering

Brane constructions in string theory provide a large class of examples of anomaly theo-
ries. Ambient space gauge anomalies are cancelled by worldvolume 't Hooft anomalies
via so-called ‘anomaly inflow’. In particular, cutting out a neighbourhood around the
branes, which act as sources of flux in the ambient string theory background, induces
a boundary in the 10/11d geometry, rendering the full effective action no longer gauge
invariant. In [158,|163] it was explained that these anomalies, described by a (d + 1)-
dimensional TET or (d 4 2)-dimensional anomaly polynomial, can be obtained by
dimensional reduction of the topological terms of the 10/11d effective action.

In string theory constructions without branes, the notion of inflow becomes less
clear. However it was argued in [65] that for compactifications on a (D—d)-dimensional
cone C(Yp_q—1) (with D = 10,11), dimensional reduction on the link space Yp_4_1
remains a powerful tool in determining 't Hooft anomalies. The cases considered
in [65] are 7d Yang-Mills and 5d SCFTs obtained from M-theory on singular Calabi-

Yau spaces. The SymTFT is derived in both cases from dimensional reduction of
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the topological terms in the 11d supergravity action and is tested with non-trivial
checks with known field theory computations for certain anomalies. For finite group
symmetries, we must employ differential cohomology to capture the appropriate back-
ground fields. Prior applications of differential cohomology to string/M-theory have
appeared in [65,/158,/165-168|, and for a mathematical review see [169]. This tech-
nique is demonstrated in depth in chapter [4, including an introduction to differential

cohomology in section 4.2.2

Background Fields from Cohomology. The general-purpose SymTFT intro-
duced in is formulated using background fields for the generalized symmetries. In
supergravity, the origin of these fields is massless gauge fields. There are two sources
of such fields: the reduction of the supergravity gauge potentials C;,, on the cohomol-
ogy of the internal space Yp_4_1, and the gauging of isometries of the geometry. First,

considering continuous symmetries (and specializing to D = 11): expanding the M-

theory Cj field on representatives of the free part of the cohomology HE . (Yio—a; Z)
gives rise to massless (3 — p)-form gauge fields. Schematically, we write
G4:d03+2dcé/\wi+2dc{/\w%%—Zde’S/\wé“, (2.20)
i j k

where subscripts denote form degrees and the forms w, are representatives of the
free parts of the p'® cohomology group. Superscripts represent various components of
the integral cohomology groups Hp,..(Y10-4; Z). The massless ¢-form gauge fields ¢,
furnish background fields for continuous (¢ — 1)-form symmetries when fixed on the

boundary [1

“In recent work [170] where the mathematical framework of SymTFTs has been fleshed out, the
authors consider finite symmetries only. However here, and in our general SymTFT reduction in
section we allow for continuous global symmetries following the work of |65]. In cases where
the continuous fields participate in BF terms, after a choice of consistent boundary conditions these
become finite. Where the continuous fields do not participate in a BF term, the SymTFT terms they
contribute to represent an additional invertible sector (the anomaly theory for these symmetries).
Additionally, in the holographic contexts we consider, although continuous gauge fields admit non-
topological kinetic terms, these are sub-leading at large distances (at the boundary where the field
theory lives).
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Torsional Contributions. An natural extension is to consider finite higher-form
symmetries that arise from torsional contributions to the cohomology of Yj¢_4. Man-
ifesting the associated discrete background gauge fields requires a reduction of C5 on
torsional cocycles: a problem beyond the scope of ordinary differential forms E] This
is where the framework of differential cohomology H (Y10_q) can be used to incorpo-
rate more general symmetry structures [65]. We include torsional contributions by

lifting G4 to differential cohomology and expanding as follows
é4:Zég‘*ff‘+ZB§*£§+ZBY*5§+ZB‘;*EZ. (2.21)
« B ol 1

Here, fg are differential cohomology lifts of generators of Tor H?(Y1o_4; Z) of torsional
degree (; € N. We leave a detailed explanation of this notation and technology for
chapter Here, we wish only to demonstrate that the notion of ‘expanding G, in
cohomology’ is maintained. The fields ég‘ represent background fields for Zgg (g—1)-
form symmetries. Crucially, including gauge fields of this new type allows for a whole
new class of SymTFT couplings upon dimensional reduction. It is terms of this type
in particular that we explore in this chapter [4]

See [41,/42}144. 155,56, 170%/173-178| for a selection of recent applications.

®Some attempts towards using standard harmonic forms were made in [171L[172].
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Chapter 3

Symmetries in a Confining Theory

In this chapter we study confinement in 4d N'=1 SU(N) Super-Yang Mills (SYM)
from a holographic point of view, focusing on the 1-form symmetry and its relation
to chiral symmetry breaking. In the 5d supergravity dual, obtained by truncation of
the Klebanov-Strassler solution, we identify the topological couplings that determine
the 1-form symmetry and its 't Hooft anomalies. One such coupling is a mixed 0-
form /1-form symmetry anomaly closely related to chiral symmetry breaking in gapped
confining vacua. From the dual gravity description we also identify the infra-red (IR)
4d topological field theory (TQFT), which realises chiral symmetry breaking and

matches the mixed anomaly.

3.1 Introduction

Global symmetries and their 't Hooft anomalies can highly constrain the dynamics of
gauge theories. A prime example is the role of the 1-form symmetry in confinement
of N'=1 SU(N) super Yang-Mills (SYM) or adjoint QCD theories. In this case the
1-form symmetry ') = Zy and corresponds to the center of the gauge group, which
acts on line operators [7,[179] and provides a diagnostic of confinement. The order
parameter for this symmetry is the vacuum expectation value (vev) of the Wilson line
in the fundamental representation, which obeys area law in a confining vacuum. This

implies that an infinitely extended Wilson line has vanishing vev, therefore preserving
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the 1-form symmetry. In addition, N' =1 SU(N) SYM also has a 0-form R-symmetry
U(l)g;?). The Adler-Bell-Jackiw (ABJ) or chiral anomaly breaks U(l)g) to IO = Zyy,
which by chiral symmetry breaking [180] (ysg) further breaks to Zs in the confining
phase

Ul 2 7,y X3 7, (3.1)

There is a 0-/1-form symmetry mixed 't Hooft anomaly

Alby, A] = 27 NQ/ Aby by, (3.2)

X5

where b, is the background for Zg\l,) and A for I'©_ which satisfy $by € % and
$§Ac %. This anomaly constrains the IR strongly coupled physics [7,181,182]. In a
confining vacuum the 1-form symmetry is unbroken, and the 0-form background has
to satisfy § A € Z and I'®) is broken to I'® = Z,. This breaking indicates N distinct
confining vacua, modelled by a gapped TQFT.

The goal of this chapter is to take a holographic perspective, from which we derive
the 1-form symmetry and the mixed anomaly, as well as the TQFT describing the IR
confining vacua. Higher-form symmetries in the AdS/CFT correspondence were dis-
cussed in [151}|155|157,|183/|184]. Our focus here is on holography in a non-conformal
setting, where the dual gauge theory is conjectured to be a confining theory related
to N =1 SU(N) SYM [185}{188]. Concretely, we develop the methods to determine
the 1-form symmetry in the Klebanov-Strassler (KS) [64,189-193| solution. The cen-
tral tool for our analysis is the consistent truncation of supergravity to 5d [194-196].
From this we determine a Stiickelberg coupling for the R-symmetry which breaks it
to a discrete subgroup as predicted by the ABJ anomaly in field theory, as well as
5d topological couplings from which we identify the 1-form symmetry and anoma-
lies that will be central to ysg. Finally we show how the 5d supergravity reduction

contains as boundary counterterms the 4d TQFT describing the IR vacua of N =1
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SU(N) SYM. The approach proposed in this work has a vast number of generaliza-
tions, to holographic setups for confining theories, but also to geometric engineering
constructions of confining theories e.g. [197]. It provides an exciting opportunity to
revisit these setups, and sharpen the predictions, by taking the perspective based on

higher-form symmetries.

3.1.1 Holographic Dual to Confinement

One of the most successful holographic realizations of N' =1 SU(N) SYM theory
is the KS-solution [64]. This construction is realised in 10d IIB supergravity, and it

consists of two main ingredients:

1. N D3-branes probing the conifold C(T"'), which is a conical Calabi-Yau with
5d link 75!, that is topologically S? x S3. The near-horizon of this brane system
is AdS; x TH! with 5-form flux le,l 5= N.

2. M D5-branes wrapping the S c Th!,

The D5s backreact on the external geometry, modifying the AdS5 metric. The solution
at large radial distances, the KS-solution, is
N
dsiy = dsiy, + R*(r)dsqa., R(r) ~In (?"_) : (3.3)

_ r2dz? + R2(r)dr?

__2xN__ 1 o
= R0 5, and 7y = rge desM> 4, At large r, the quantization of

where ds%vlf)

fluxes is

/FgZM, BQZE(T),
S3 S2

39, M (3-4)
= In(r/ro),
T

/ Fs=K(r)=N+ML, L
T1,1

where rg is the UV scale, and we refer to this as the UV KS-solution, valid for r
sufficiently large and gs/C(r) > 1. Note that F5 is no longer quantised: its integral over
the internal space acquires a radial dependence. The solution has a naked singularity

at R(rs) = 0, and in particular we can consider r, — 0, when % > 1. Due to
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the naked singularity at small radial distances » — 7, higher curvature corrections
become relevant, and (3.3)) is no longer valid. There is a smooth solution describing

this regime, and it requires the full warped, deformed conifold solution [64].

Warped, Deformed Conifold. At small radial distances r — r4 of the KS-
solution, higher curvature corrections cause the UV solution to break down.
This regime, which we call the IR KS-solution, is sensitive to the deformation of the
conifold induced by the M D5-branes wrapping S? C T*!. The non-zero F3 flux
threading the S® prevents this cycle from shrinking to zero volume, whereas the S?
collapses. Here the effective number of D3s is zero and the gauge theory dual is the IR
regime of pure N' =1 SU(M) SYM. The warped, deformed conifold is parametrised
by a new coordinate 7, which, at large 7, is related to r by r? = 327%/3¢%/3¢27/3_ Near
7 — 0 the metric is approximately R*! times the deformed conifold [64]. For the sake

of illustration we include the shrinking S? in the degenerate metric

ds?y = cre 3 (g, MI*) 122 + cog, M12ds?
o 1,5 1o 50 3\2 a2 L oar 1yo 212 (3.5)
dsg = 5d7° + 5(9°)" +(9°)" + ()" + 7 7°[(g7)" + (¢°)°].
where {¢'} are the standard basis of 1-forms on T [198] and ¢; are numerical con-
stants [199]. For g;M < 1 the curvatures are small everywhere, even in the far

IR, such that the supergravity approximation is always reliable. At 7 = 0 the flux

background has significant simplifications

lgM 5 3 4
F5:0, HgIO, FgITg NG NG . (36)

Dual Field Theory. The dual field theory description is given by SU(N + M) x
SU(N) gauge theory and bifundamental matter in (N + M, N)@® (N + M, N), where
a combination of the two gauge couplings has flown to strong coupling regimes. In
particular, this theory is not conformal and the gauge couplings of the two factors

run in opposite directions. E.g. when SU(N + M) with Ngp = 2N becomes strongly

30



coupled, we apply Seiberg duality [200], resulting in SU(N — M) with Nrp = 2N.
This process perpetuates with the new gauge couplings flowing in opposite directions,
giving rise to a ‘duality cascade’. For N = kM, k € N, the endpoint is N' = 1 SU(M)
SYM at strong coupling.

The RG-flow of the gauge theory cascade is mirrored explicitly in the dual gravity
background. Moving from large r to r — re” Tt Jso B2 and [, F5 change by

27k

L(r) — L(r)—1, K(r) — K(r)—M. At the special slices with fixed r = rj, = roe” 3e:M

where £, C are integer, the supergravity background is dual to the SU(N —(k—1)M) x
SU(N — kM) gauge theory in the baryonic branch [201]. Alternatively we can work
in terms of Page charges defined in [202], where ]35 = F5 — B, F3 is always integrally
quantized [, , Fy = N—kM, due to large gauge transformations of Jg2 B2 = L(r)+k.
For N = kM the endpoint is reached at a value r, where there are only M units
of F3-flux and no Fs-flux. In this regime, r ~ r., the solution breaks down
before reaching the r — r, limit, since g;/C(r,) = 0, and the metric in is not
smooth. We therefore have the following hierarchy of scales ro > rp > r. > r,. The
smooth supergravity solution for » < r, is instead provided by the warped deformed
conifold [64]. We denote this by the IR KS-solution, which describes the IR regimes
of N'=1SU(M) SYM.

3.2 1-Form Symmetries from Supergravity

The global form of the gauge group, or put differently, the set of mutually local line
operators, can be determined in holography by considering boundary conditions (b.c.)
of Chern-Simons-like couplings [151},183,/184]. Put in a more modern language, the
2-form backgrounds for 1-form symmetries of the holographic field theory are deter-
mined by topological couplings in the bulk and specific b.c.s yield absolute theories
(i.e. definite spectra of line operators). On the gauge theory side of the duality cas-

cade, the Zynyy X Zy center symmetry of SU(N 4+ M) x SU(N) is broken by the
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matter to
T = Zgeav.N+m) = Ligea(N,1) - (3.7)
This remains constant through each step of the cascade.

In order to derive the 1-form symmetry holographically we study fluctuations
around the UV KS-solution, when r is sufficiently large and g¢s/C(r) > 1, which
describes each step of the cascade until r» ~ r.. The latter corresponds to the end of
the cascade and the smooth gravity dual is the warped deformed conifold, which we
will investigate momentarily.

We reduce IIB supergravity on 7! and study the topological couplings of the
5d 2-form gauge fields on this background. The strings which couple to these fields
induce line operators on the ry, slices, which in turn furnish the 1-form symmetry of the
boundary theory, also known as a ‘singleton theory’ [107,(154]. In particular the 1-form
symmetry is deduced from the bulk couplings by imposing a set of consistent b.c.s.
In the continuous supergravity formalism, we obtain discrete higher-form symmetry
groups by fixing subsets of the 2-form gauge potentials within subgroups of U(1).

We derive the equations of motion of the 5d effective theory, obtained from com-
pactifying 10d IIB supergravity on T%!. We isolate dominant topological couplings
and determine an effective 5d action, which governs them. To identify the topological
couplings, we expand field strengths F, along w, € H? (T, Z) as Fy = 37 fy—p Awy,

and insert these into the Type IIB equations

dH3 =0, dx19 Hy = —g2F5 A Fy,
ng = 0, d*lO F3 = F5 /\Hg, (38)
dF5:H3/\F3, *10F5:F5.

The couplings obtained in this way can equally be thought of as embedded into some
consistent truncation (e.g. [194]). We will find the following topological term in the

5d reduction in the KS-solution

Stop = 277'/ bg VAN (NdCQ - Mdag) . (39)
Ms
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In this section we focus on the UV regime: large r ~ 1, dual to the top of the cascade
where both cycles S? x S C TH! are non-degenerate. We expand the fluctuations
along the volume forms wy3 € H*(T"',Z) (see e.g. [191] for conventions and an

explicit parametrization)
6Fy = g3+ ml2ws A g1, 0H3 = hs,

5F5 = 7rl§w2 AN fg + %Rw;; VAN >I<f3 .

Here, hs, g1 3, f3 are all external fields and in this section we restore pre-factors for
completeness. Self-duality of § F5 implies a choice of frame: we can fix one expansion
component in terms of the other. We use the 3-form piece, since the operators of
the boundary 1-form symmetry are manifest in this frame. The Bianchi identities for
H;, F3 imply that the corresponding 5d fields are closed, so we write hy = dbsy, g3 =
dco, g1 = dcg. We interpret ¢y as an axion, whereas by, co couple to Fls and Dls,

respectively. The Bianchi identity for d F5 implies that f3 is not closed
dfgzdﬁ/\gg—i—hg/\gl. (311)

As such, we shift the field to obtain closure and define a new gauge potential day =
fs — Ldcy — badcy, which couples to D3s wrapping S? C T%'. The 5d equations of
motion are

3
d(R *5 fg) = %Mdbg

2
d(R® %5 dby) = —277lig? (Kdey — M f3 + %R x5 f3 A dco)

5 (3.12)
d(R? %5 dey) = 27l (Kdby + ?WR x5 f3 A dL)
d(R X5 dCQ) =-R *5 f3 A db2 .
From these equations of motion we extract leading topological contributions
Ndbgzo, Mdb2:0, NdCQ—MdGQZO, (313)

where we ignore ¢y, which can be gauged away via a Stiickelberg mechanism. We

re-package the leading contributions in terms of a field C:
ged(N, M)dC =0, ged(N, M)dby, =0, (3.14)
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where C = qico — qaag, with ged(N, M)q = N, ged(N, M)g, = M, and whereby
we decoupled the center of mass U(1)™), corresponding to the 1-form symmetry of
the collective motion of the D3s. The couplings are embedded into the consistent
truncation of [194]. One can compare by varying their topological action, changing
duality frame and restricting to the relevant fields. We find that the following topo-
logical term in the 5d supergravity reduction on the UV KS-solution at r = ry > r,

dominates over higher derivative couplings,

Ssq D 27 ng(N, M) / by N dC . (3.15)
Ms

1-form symmetries are generated by topological surface operators [7], which here are
Up(Ms) = ¥ %2 and U.(Ms) = X911, where M, are closed surfaces, My = 0).
Generically, due to non-commutativity of fluxes, these do not commute [151]

2miL(Mg,No)

Ub(Mg)UC(NQ) = UC<N2)U1,<M2)€+ s (316)

where L is the linking of the surfaces. These charge operators generate a 1-form
symmetry, which acts on charged line operators in the 4d field theory. We find these
charged line operators by considering operators of the form Uy(¥) with 0¥ C M;|,,.
Similarly, the line operators U,(X) and U.(X) are not mutually local due to their
linking. At each ry slice, a maximal set of mutually local line operators corresponds
to b.c.s of by and C.

A possible choice of b.c. for is by Dirichlet and C Neumann. Since C is
free to vary at the boundary, U, will correspond to the topological charge operator
for the 1-form symmetry. By varying the topological action we find a condition
ged(N, M)by A 6C|,, = 0, which forces by to take fixed values at the boundary. This
implies that we can define a flat connection b; in 4d taking values in Zgeq(n,ar), i-e.
ged(N, M )by = dby = 0 at the slice r = r. Therefore, U, restricted to 0¥ C Ms|,,
corresponds to the charged line operators of the field theory. As is well known, the

fundamental strings, carrying world-volume by, ending on the boundary indeed give
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rise to Wilson lines in the 4d theory. They generate the 1-form symmetry '™ of
(3.7). The screening can equally be seen by considering the analog of the ‘baryon
vertex’ [203] in this setup: integrating the Bianchi identities for D5s on 7! and D3s

on S? yield

/ dF; = Hy A Fy = (N — kM)H,
L m (3.17)

/ dF5: Hg/\FgZMHg.
S3 S3

Thus D5s on T! provide the ‘baryon vertex’ that screens N — kM Fls, while D3s
on S3 screen M Fls. In particular, gcd(N, M) Fls is the minimal configuration of
strings that are screened. Alternative b.c.s can be studied’] the IR will fix the one
above.

From here onwards, we consider N = kM, which allows us to connect to confine-
ment. In this case the deformed conifold IR solution holographically describes the
bottom of the cascade for the confining phase of SYM with SU (M) simply-connected
gauge group.

In |41] the authors carefully show that the supergravity solution contains bulk
terms which can be used to describe both the SU(M) and PSU(M) global forms in
the IR. In particular, they also derive the TQFT(s) which describe the IR of these

scenarios.

3.3 Mixed Anomaly and ysg from Holography

All things are now in place to see holographically the mixed anomaly and Ysp
. To do this, we need to study the rest of the topological couplings in the 5d
bulk supergravity action. In particular we need to include the R-symmetry of the
dual field theory, which is realized in terms of the U(1)-isometry (Reeb-vector) of the

T solution. This can be described by a U(1) 1-form gauge field A, which enters the

!Note that there are other b.c. e.g. C Dirichlet/by Neumann, which result in the same 1-form
symmetry. For ged(M, N) = pq it is also possible to consider mixed b.c. which yield r® = Ly X Ly.
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metric of 7% as df — dB — A, where (3 is the coordinate of the Hopf fiber of the S3.
The breaking by the ABJ anomaly to Zs), is realized holographically by a Stiickelberg
coupling in the 5d consistent truncation. In addition, we argue that chiral symmetry
breaking is consistent with the mixed 0-/1-form symmetry anomaly, which we derive
from the 5d supergravity, and the KS-solution. In the IR we also derive the TQFT
proposed in [7] which matches the mixed anomaly.

The additional 5d topological terms in the action are (see appendix |A.1))
R M
Ssq4 D 2%/5|dco +2MA|?> — M?b3 A + 7193 deg . (3.18)

The first term is the kinetic term for the axion. Since it contains two derivatives it
is subleading when evaluated on the UV KS-solution, when r is large, with respect
to the topological terms. On the other hand its effect is important, since it realises
the Stiickelberg mechanism for the U(1)g gauge field A. The shift symmetry of the
axion, ¢y ~ cg + 27, is gauged by the U(1)r symmetry, so that the action is invariant

under the non-linear transformation
A— A+ da, co — o — 2Mar. (3.19)

We can use this symmetry to completely gauge away the axion, leaving only a mass
term for the gauge field. Fixing ¢y = 0, there is still a residual discrete symmetry
generated by a € §7Z. This is the direct way to identify the breaking of U(1)r — Zg%,
as required by the ABJ anomaly.
The second term in (3.18]) corresponds to the anomaly between the O-form back-
ground A for Z$),, § A € 522, and by for Z8), §by € Z
Alby, A] = —27TM2/ boby A, (3.20)
Ms
which is a mixed 0-/1-form symmetry anomaly E| As expected it does not depend on

the energy scale, and therefore this term will survive in the IR. In the IR we expect

2Le. by € H*(M5,Zy) and A € HY (M3, Zons), and using the cup-product instead of wedge
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the theory to be dual to a confining vacuum of SU(M) SYM, so the Zg\lj should be
unbroken, and this gapped phase should be described by a 4d TQFT. Since A is a
Zopr background, does not become integral in general. It was proven in [182]
that unless this term is integral there cannot be a 4d TQFT with I'®© = Z,,; and
') = Zj,; symmetries in the IR that saturates all the anomalies of the theory in the

UV. On the other hand, integrality of 1) and an unbroken ZS\Z) implies
7
fA S 5 : ZQM — ZQ, (321)

implying chiral symmetry breaking in the IR vacuum of SU(M) SYM. We stress
that our analysis shows that the presence of this topological coupling in the UV KS
supergravity solution is already preempting and consistent with the chiral symmetry

breaking in the gapped confining vacuum with Zgo) and Zg\? symmetries.

3.4 4d IR TQFT from Holography

Finally, we now turn to the IR description of the theory. 5d supergravity contains
topological terms leading to the IR 4d TQFT, which matches (3.20)), and realises a
spontaneous chiral symmetry breaking, Zoy; — Zs. From field theory, the IR theory

that matches the anomalies of the UV gauge theory was proposed to be [7]

STQFT4d = /qu (ng -+ %bg) = /M¢F4 (322)

27l

The M vacua, labelled by (¢) =e™™ , £ =0,1,... M — 1, are separated by domain

walls (DWs) [204], e?$ .

The smooth IR gravity dual background is the deformed conifold solution, where
7 — 0. In this regime there is no hierarchy between the 5d bulk kinetic and topological
terms, and the former need to be taken into account. Before the S? degenerates,
the D5s source Cg = w3 A ¢3, and in addition since F; = xF3 we consider dcz =

% x5 (dcg + 2M A). Therefore, in the IR the dynamics of ¢y becomes relevant. Since
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A corresponds to the true isometry of the IR KS-solution, that is a Zy gauge field,
¢o does not shift under a gauge transformation of A. The 5d IR topological action
becomes

M
Séd D27 / 2M Adcs + deodes + 7[)% deg . (323)

We first notice that the mixed anomaly between I'® = Z, and T® = Z,, has
disappeared. This is due to an additional topological term |c*(r)|?b3 A [194}205,206],
which for the UV KS-solution depends on the UV scale rg, but is constant in the IR
¢’ = M. This is consistent with anomaly matching since the IR theory has I'©) = Z,,
which is not anomalous on spin manifolds. The third term is a total derivative, and
varying by co implies Mdby, = 0. When this condition is satisfied, the last two terms
give rise to topological counterterms for the 4d theory living at the boundary. This
implies that they are not anomalies, but rather the imprint of the TQFT in the
IR, which is precisely obtained by identifying ¢y <+ M ¢ and evaluating these terms
at the boundary. In particular, ¢y is related to the presence of DWs given by D5s
wrapping S®. These source [ 5 I3, where B is the Poincaré dual cycle in the deformed
conifold with S? boundary at infinity. This entails that f gtz ~ f 42 Cowe, and because
of the presence of the D5 DWSs, ¢g = £ is quantized and corresponds to the number of

2mil

D5s. Each vacua is labelled by () = e , £ =0,1,... M — 1. Therefore, under the

identification ¢y <+ M ¢, we observe the above result in each vacua. The UV anomaly
in the IR is realised by the action of I'©) = Zyy;, £ — ¢ + 1, which is however
not a symmetry of the IR vacuum.

The IR theory proposed in [7] is furthermore invariant under 1-form symmetry
transformation By — By + d\, and this implies that ¢ — ¢c3 — NByA — %)\d)\. The
transformation of the 1-form symmetry enters in the shift of c3, which signals the
presence of a 3-group [7,207]. This is again supported by the string theory realisation
of these DWs in terms of D5s wrapped on S® in the deformed conifold. The CS-action

of the D5 is Log = Zp Cp N e B. The DWs extend in the 4d spacetime such that
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Fy = [y dLes = des + &L B3, the 3-group follows from the gauge invariance of the

world-volume action of the D5 and it is analogously consistent with gauge invariance

of G23).
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Chapter 4

Symmetry TFTs for 3d QFTs from
M-Theory

In this chapter we derive the Symmetry Topological Field Theories for 3d supersym-
metric quantum field theories constructed in M-theory either via geometric engineer-
ing or holography. These 4d SymTFTs encode the symmetry structures of the 3d
QFTs, for instance the generalized global symmetries and their 't Hooft anomalies.
Using differential cohomology, we derive the SymTFT by reducing M-theory on a
7-manifold Y7, which either is the link of a conical Calabi-Yau four-fold or part of an
AdS, x Y7 holographic solution. In the holographic setting we first consider the 3d
N =6 ABJ(M) theories and derive the BF-couplings, which allow the identification of
the global form of the gauge group, as well as 1-form symmetry anomalies. Secondly,
we compute the SymTFT for 3d N' = 2 quiver gauge theories whose holographic du-
als are based on Sasaki-Einstein 7-manifolds of type Y7 = YP*(CP?). The SymTFT
encodes 0- and 1-form symmetries, as well as potential 't Hooft anomalies between
these. Furthermore, by studying the gapped boundary conditions of the SymTF'T we

constrain the allowed choices for U(1) Chern-Simons terms in the dual field theory.

4.1 Introduction

The goal of this chapter is to determine the SymTFT for 3d QFTs which either

have a realization as geometric engineering in M-theory on an 8-manifold, or in
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terms of AdS,/CFTj3 holographic setups in M-theory. These two constructions are
closely related and we provide a systematic computational approach to determining
the SymTFT in both cases. The main focus will be on conical 8-manifolds (with
special holonomy) X3 = C(Y7) in setups with and without branes. Using differential
cohomology in the supergravity reduction allows us to take into account the effects
of torsion in the homology of Y7, which is associated with a new set of background
fields for finite higher-form symmetries.

For Y7 a Sasakian 7-manifold we provide a prescription for computing the SymTFT
coefficients explicitly, which correspond to secondary invariants in differential co-
homology, from the intersection theory in the non-compact complex 4-fold Ay We
give detailed examples when the cone Xy is toric, in particular for Xy = C*/Z; and
Xy = C(YP*(CP?)), where combinatorial formulas for intersection numbers can be
explicitly computed. As such, we explain how physical anomaly coefficients and BF-
terms are encoded in the geometric information of the toric diagram. In summary,

we will derive the SymTFT and give a procedure for computing the coefficients for

1. Geometric engineering: M-theory on a singular, non-compact Calabi-Yau 4-fold

Xs = C(Y7), i.e. Y7 is a Sasaki-Einstein 7-manifold.

2. Holography: AdS,; x Y7 solutions of M-theory, which are dual to M2-branes
probing Xy = C(Y7), where Y7 is a Sasakian 7-manifold (Sasaki-Einstein when
AXs is a Calabi-Yau 4-fold).

For concrete applications, we will mostly focus on the holographic setups, leaving the
exploration of geometrically engineered 3d QFTs for future work. We first compute
the SymTFT in the M-theory models dual to ABJM and ABJ theories. This relatively
simple holographic setup is well-suited to demonstrate these new refined geometric
methods while, at the same time, allowing for a match with known results from type

ITA [157] in the case where discrete background torsional flux is turned off. Finally, we
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apply this machinery in a much more subtle (and not completely fixed) duality of 3d
N = 2 theories realized on M2-branes probing C(Y?*(CP?)) [208-210]. By computing
the SymTFT from the geometry, we obtain previously unknown anomalies for these
theories. Furthermore, we will see that analysing consistent gapped boundaries of
the SymTFT provides some further checks and balances to the proposed dictionary,
coming from the spectrum of extended operators.

Generalized symmetries and their 't Hooft anomalies have a rich structure that
has been studied field-theoretically from various angles in e.g. in [137211-214]. Some
of these results will be used later on to cross-check against our string theoretic results.

The structure of this chapter is as follows: In section we provide some back-
ground on differential cohomology and compute a general expression for the SymTFT
for 3d QFTs which can be constructed from M-theory on Ay = C(Y7) with and with-
out branes. We then explain how to compute the coefficients in the SymTFT in
section [4.3] in particular in the case of toric Xs. In section we apply the above
technology to our first example: the 3d N =6 ((U(N + b), x U(N)_y)/Z,,, ABJ(M)
theories [162,215,[216]. We next apply our technology to the Y?*(CP?) 3d N = 2
quiver gauge theories of [208-210] in section [4.5] In section we discuss matching
with field theory results of [210]. Finally, in section we highlight various possible
future directions. We also provide some appendices. In appendix we use type

IIA to conjecture the existence of an additional BF-term in the Y?* case.

4.2 SymTFT from M-Theory on Y7

We derive the SymTFT of any 3d QFT that arises in M-theory, either as compact-
ification on R x C(Y7), or holographically dual to AdS,; x Y7. This is achieved
by reducing the topological terms of 11d supergravity on both the free and torsional

parts of the cohomology of Y7. A caveat in this analysis is that the symmetries we will
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capture from this approach need to be manifest within the geometric realization. We

focus our main attention on the dimensional reduction using differential cohomology.

4.2.1 Reduction using the Free Part of Cohomology

Let us start by performing the reduction of M-theory on My; = My X Y7, using only

the free part of the cohomology Hf, . (Y7; Z) which gives rise to continuous gauge fields

ree

in the effective 4d theory. As discussed above, these massless modes are obtained by
a Kaluza-Klein expansion of the 4-form flux G4 on representatives of the cohomology
of the internal space with integral periods. Their topological couplings arise from the

11d supergravity term

S 1
21—71:‘:/% [—803AG4/\G4—03AX8 . (4.1)

The 8-form characteristic class Xg is constructed from the Pontryagin classes of the

tangent bundle

Xq = Tiz (p (T M) A pr (TMiy) — Apo(TMyy)) - (4.2)

To derive the 4d topological couplings we consider the gauge invariant 5-form I5, on

an auxiliary 5d space, which is the derivative of the 4d topological Lagrangian
]5 = dI4, S4d = 27'('/ 14 . (43)
My
We identify I5 as

1
15:/ 112:/ (—6G4/\G4/\G4—G4/\XS> . (4.4)
Y, Y~

Assuming Y7 is connected, the betti numbers 0" (Y7) = dimH" (Y7, R) satisfy b(Y7) =

b"(Y7). We denote the associated closed p-forms by

Wy, p=0,...,7, i=0,...,0°(Ys), (4.5)
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with wg = 1. We expand the 4-form flux using these forms

4
Gy = Z gfl_p A w; : (4.6)

When considering particular solutions it will be convenient to have separated the
background GZg supporting the vacuum from the dynamical fluctuations G, around
the solution:

Gy=G\+GE. (4.7)

Imposing the Bianchi identity, we find that gfl can locally be written as

g =N, g;:dcfl_l, qg=1,2,3, g4 = dcg + Lvolyy, , (4.8)

with the background parametrised by

/GggzN"eZ, / G¥=Lel, (4.9)
(& My

where C? is a basis of 4-cycles in Y7. It is important to note that in this expression
we are including all possible terms, however we will never have non-trivial £ and N
concurrently, as this would amount to imposing quantization conditions on G4 and
G7 simultaneously. For all examples in this work, we will consider non-trivial £ only.

We can therefore write the fluctuations

3 oP(¥7)
Gi=> dcs_, N, (4.10)
p=0 =0
and background
b*(Y7)
G = Lvoly, + Z Niwi . (4.11)
=0

In the reduction of the CS-term G2, the background flux over the external space will
contribute metric-dependent terms (which belong to the scalar potential) that we

neglect. Performing the reduction we find

1 1 .. . 4 1 ... 4 o
/Y —éGi => <—§K”kdc’2 A dch A del + §ic”kdcg Ade) A dcl + KIPFNde] A dc’;)
7 ijk

(4.12)
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where the intersection numbers are given by

Kijk:/w’iAwg/\wlg, Kijk:/wé/\wg/\wg,
¥ 7 (4.13)
ﬁij:/wi/\w%, Kijk:/wiAngw’f.

Y7 Y7
To factorise the characteristic class Xg, we can employ the Whitney sum formula for
Pontryagin classes defined on a product manifold [217]. Assuming the external space

My, is orientable and spin, we obtain

p1(T M) = p1(TMy) + p1(TY7), 414)
po(TMy1) = pa(TMy) + pa(TYy) + pr(TMy) — pi(TY7). '

The second Pontryagin classes vanish on dimensional grounds. We can therefore write

the 8-form characteristic class

1

Together with the expansion (4.6 we find

b3 (Y7)

— [ GiANXg=—— [/ wy A p1<TY7>‘| deg A p1(TMa) . (4.16)
Y7

i=1
Defining
) 1 )
C' = —/ wg AN pl(TY7), (417)
96 Jy,

the gauge invariant 5-form is

1 ... . . | ) o
I=Y (—iK”’“dCE Adch A def + §/C”kdcz1 Adci A deg + KN de] A dcg)

ijk
+ > CRINTd Ades — > Cldcl Api (T M) .
7 %
(4.18)
Acting with an anti-derivative, we find
1 .. ) . 1 .. ) . . .
L=Y <§K”kdc§ A ch A dck + 5/c”’“dcg A Adcy +KPEN ] A dc’§>
o . (4.19)
=Y RINd) Nes =D Clegp (T M)
i 7
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Notice in particular the single derivative terms

1,5 S KAN G A dds — 3 RN ey (4.20)

ijk ij

Such BF-terms constrain the possible boundary conditions that can be imposed on the
pairs (¢!, c5) and (¢, ¢5), which in turn dictates the global symmetries of the resulting
field theory. For example, if K***N* = m # 0, giving ¢ Neumann (free) boundary
conditions implies that ¢ must be fixed to a background value in Z,, in the boundary
theory, giving rise to a A global 1-form symmetry in the 3d theory. Exchanging
the boundary conditions corresponds to gauging the full Z,, 1-form symmetry, and
we obtain a Z,, 0-form symmetry instead. After a choice of boundary conditions

consistent with the BF terms, the other terms in (4.18))/(4.19) give rise to mixed

anomalies between the resulting finite higher-form symmetries.

4.2.2 Review of Differential Cohomology

In [65] it was shown, by employing a description in terms of differential cohomology,
that torsion in HP(Y7;Z) may give rise to additional couplings in the SymTFT. In
this section we recap the introduction of [65] on differential cohomology in order to
introduce both the notation and some of the mathematical machinery we use through-
out this work. For further mathematical details and implementations of differential
cohomology in string/M-theory see e.g. [65/165-169).

Differential cohomology combines information about the characteristic class of
the gauge bundle and the connection. The p'" differential cohomology group H P(M)
of an n-dimensional manifold M is a differential refinement of the ordinary integral
cohomology group HP(M;Z). Denote by QF closed p-forms, and by QF the subset

of those with integral periods. The differential cohomology class takes part in the
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commutative diagram, whose diagonals are all short exact sequences E|:

% HP(M) HE._(M;Z) (4.22)
(M) d
(M) L Qh(M)
7
~N
AP~ (M)

Differential cohomology is endowed with a bilinear product
%+ HP(M) x HY(M) — HP (M), (4.23)
with the properties
axb=(=1)Pbxa,  I(axb)=1(a)—I(b),  R(axb)=R(@) AR(D), (4.24)
for & € H?(M) and b € HY(M). Tt has two non-trivial integration maps, namely:

e The primary invariant of a differential cohomology class of degree n = dim(M)
/ a:/ () :/ R@)eZ, aeH"(M), (4.25)
M M M

e The secondary invariant of a differential cohomology class of degree n + 1 (see

e.g. [218])

/a:/ wmodlz/ weR/Z, aeHHM), (4.26)
M M M

L An alternative way of describing differential cohomology is as follows. Differential cohomology is
useful to describe the non-trivial topological structure of higher-form gauge fields. A representative
A of a class [A] € HP(M) is specified by a tuple [168]

v

A=(NAF). (4.21)

Here F is the field strength and is a closed (p + 1)-form. A and N are maps from C, (M), the space
of p-chains, to R and Z respectively. They encode holonomies and the non-trivial interplay between
these holonomies and the field strength. See [168] for more information on differential cohomology
phrased in this way.
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and a=i(u), we H"(M;R/Z). (4.27)

In the setting of M-theory, we can write the action (4.1)) as the secondary invariant
of a class I} € H2(My,),

S / [12 mod 1, (4.28)
M

2T

where
v 1. v v v o
112 = _6G4*G4*G4_G4*X87 (429)
with é4 € F[4(M11) and Xg S F[S(Mll).
For a given 7-manifold Y7, the generators of H?(Y7;7Z), p = 0,...,7 are denoted

as follows:

e free generators of H?(Y7;Z): r(wh) = vh, i =1,...,0°(Y7) with w) € Q) (Y7),

p p

e torsion generators of H?(Y7;7Z): t, o € A, for some set of superscripts A,.

For each torsion generator, there exists a minimal positive number £ € N, such that
oty =0. (4.30)

We will be particularly interested in the secondary invariant of [150na product space,
which is the compactification space of M-theory. For a set of differential cohomology

classes & € HP(My), b € HY(Y;) with p + ¢ = 12 we have

) (Jy RB)) i p=5
/M4><Y7 ixh= fM4 R(d)> (fy7 s) it p=4 (4.31)
0

otherwise

where

i(w)y=a, i(s)=b. (4.32)
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Now, we can choose the differential cohomology uplifts of the torsion generators ¢ to
be flat [65]
R(f) =0, (4.33)

which implies that for terms in Ls involving the torsion generators ¢, only those with

8 internal components will contribute (i.e. with p =4 in (4.31))

4.2.3 Accounting for Torsion using Differential Cohomology

In this section we expand the differential refinement of Gy, G4 € H 4(Myy), on the
product space My, = My x Y7 and derive the topological sector of the effective 4d
supergravity theory, including torsion contributions.

We will take M, to be connected, so H(My;Z) = Z, and assume vanishing
torsion TorH®*(My;7Z) = 0. We will furthermore assume that Y7 is closed, connected

and orientable, so that [219]
H(Y#;Z) =17, TorH'(Y7;Z) = 0. (4.34)

Thus, we take vy = 1 as the generator of H°(Y7). We can expand the ordinary
cohomology classE] Gy € H*(My1;7Z) as

4 bP(Y7) ‘ ‘ 4
Go=>_ > Fi,—vi+> > By, —to (4.35)
p=0 i=1 p=2 €A,

Here, Fqi € H9(My;Z) are a set of field strengths related to gf] in 1' by

o(Fy) =r(gy), (4.36)

and By € HY(My;Z) model a set of closed g-form gauge fields. In particular, let
us comment on the O-forms F{ and B§. Due to flux quantisation (over ordinary
and torsional cycles, respectively), F¢ and BS are in fact integers. For F{, we have

o(F}) = r(N"). We will simply write

F,=N'€eZ, (4.37)

2We use G4 both for the cohomology class and for the differential form representing the free part.
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which is background flux over internal 4-cocycles supporting the vacuum. For Bf €
H°(My; Z), commutativity of the righthand diagram in (4.22)) for p = 0 implies the
existence of a set of integers b € QY, such that o(Bg) = r(b*), parametrizing the

background flux over torsion 4-cocycles in Y;. We write
By =b"€Z. (4.38)

In order to distinguish this background flux from the fluctuating fields, we will use
b below.

The uplift to differential cohomology G,eH 4(My,) is performed using the surjec-
tive map I : H?(M) — H?(M;Z) in ([@.22)), which implies the existence of differential
Ei‘_p e H*?(M,) and R ANS H?(Y5) such that

cohomology classes Fj_p,

Fi,=1(Fi_)), By ,=IBy,), v =Iw), =I1). (439

We therefore can write the differential cohomology uplift

4 bP(Y7) 4
Gi=> I D I (4.40)
p=0 i=1 p=0 acA,
such that
Gy =1(Gy). (4.41)

The map I only determines G up to a topologically trivial element. However the
contribution from this element is accessible through the ordinary cohomology formu-
lation, so we set it to zero in the following.

Dimensional reduction of the CS-term, using the expansion of G, in (4.40) (and
flatness of £) yields a significant number of potential topological couplings, which we
organise by the number of continuous, respectively discrete, gauge fields (i.e. into four

types of the form F?, F?B, FB* and B?). Furthermore, we denote the 8-dimensional
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secondary invariants of H®(Y7) over the internal space b
ijk — oi i ok
Anm - / Up % Vg_p—m * Uy
Y7
ijoo — o i you
Anm - / Up % Ug_p—m ¥ tm )
Y;

! (4.42)
iaf — i o by
Anm = / Up, % tanfm * tm )
By _ vy Y oy
AP = / b *t *t) .

For the F'® component we obtain

Kk NPV
= - FixF) x FF+
9 3 1 1
My

F3 gk

ijk

/ Fi s B « FF 4 KIEAT /
My M

4

2

o oo A 9
ﬁ”/\/’/ FJ % Fy — ﬂ/\ﬂ/\/ﬂ/ Fy
My 2 My

+2.
i

(4.43)
Here we notice that the four terms with primary invariants on Y; are precisely those
captured by the ordinary cohomology reduction (and we therefore use the previous
notation for the coefficients). Using the definition of the primary invariant we

have for n,m =0,...,4and3<n+m<7

/ Bk By Ty / R(5.) A R(Br ) A R(t)
Y7 Y7

(4.44)
= / Wn N W7_p—m N\ Wy, -
Y7
By comparison with (4.13)) we conclude that
Kijk:/ 0 x 0+ 05 /cijk:/a;*ag*ag;,
¥ | Y7 | (4.45)
ﬁiﬂ':/ Uy * 15, Kijk:/ﬁi*ﬁg*ﬁf.
Y7 Y7
Furthermore, using (4.26]) we have (again, for n,m =0,...,4and 3 <n+m <7)
L Q1(M,)
By ke By % Fy oy = / W MOd 1, W € —ol | (4.46)
/M4 My Q4Z(M4)

3Note that the A’s containing v = 1 will have one less 4, j, k index. E.g. we write Aé{q’i = Agfn.

o1

A12J3k [ Jj k AZQJALk k i J A21J4k k i -
i SR R NS N W VLR (N o Y 1 e C NV B 0 ) o
2 2
My My My

vi e
Fy % F3




where

danm = R(F4—n * Fn—ﬁ—m—S * F’4—m) = g4-—n A In+m—3 A 94—m - (447)

From this we see that (4.43|) reproduces all the couplings from the CS-term in I (4.18]).

The other four terms are new compared to the ordinary cohomology reduction. The

F?B contribution is

1. : i
/ -Gl =) [A;ﬂ;/ Fi« F} = By + Ay / F{ B}
Mai F2B ijor My My

— AL / Fy x B + A;@aba/ Fy x Fy
My My

A;]f / L. Ao UV o
e N O O = / EFi % F] x B Al ’b“/ Fy.
2 My ? ? 2 My ' ' ? Z My
(4.48)
Finally, the F B? and B? terms are respectively
1 =3 iaf i, pa . Pb Azgﬁ i, pa |, DB
_6G4 :Z Ass Fl*Bl*BZ+T F; % BY % B}
My FB2 a8 My My
A / Fix B + A9 / Fix B (4.49)
My My
A . Ay u
N@/ BS« BY | — &babﬂ/ Fy,
>V 250,
and
1. Aocﬁv 5 g 5 Aocﬁv 5 5
/ —gGi => 223 / B$ « BY « B} — %m/ BS « BY (4.50)
M B3 By My My

Finally, we wish to account for the higher derivative contribution from the M-theory
effective action given by f/vt C3 A Xg with Xg € H8(M;y;Z) in (4.15). We can
promote Xy (equivalently, the Pontryagin classes) to a differential cohomology class

Xg € H3(My,) as described in [220]. We have

9 1
Xg = _%pl (TM4) *pl (TY7) (451)
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Then

/./\/111 _64*)28 - Z |:

«

/ fz‘*pm(m)} / b (T M)
Y7 My

/ﬁé*jﬁl(TYﬁ}/ Fi o pr(TMy) (4.52)
My

gl gl

1 . .

My

The second term again reproduces what we found using the ordinary cohomology
reduction. For the remainder of this work we ignore such contributions. Notice that
the first and third terms above contain no dynamical fields. The second term may
in principle contribute non-trivially, but for all examples we consider these terms are

absent.

Application: = Holographic AdS, Backgrounds. We now turn to
AdS,/CFTj; holographic setups, where the supergravity background is supported by
L units of G4 background flux over AdS, and the internal space has torsion cycles.
In this case the background flux that we have parametrized by N in the above will

not be turned on. In addition, all the examples we consider satisfy
H'(Y;;Z)=0,  H*Y;Z)=0, (4.53)

for which the topological action in (4.28]) simplifies significantly to

o Az]a ) .. 5
Stp:_z 24 b‘”/ FisxFY — Aggﬁba/M Fi% B
ijo iaf 4
NS o (4.54)
Ay babﬂ/ D Zﬂ/ B« BY .
Ma My

aﬂv
We briefly comment on the roles of each term in the above expression. The BF-term
b [ My I:’j * B§ ) My Bg — F¥ encodes non-commutativity of certain extended
operators and enforces the requirement to pick a polarization in order to obtain an

absolute QFT. After picking a polarization, in certain circumstances terms of this type
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can correspond to a mixed 't Hooft anomaly polynomial between a discrete 1-form
symmetry Z,, with 2-form background gauge field Bg and a U(1) O-form symmetry
with field stength Fj. The BB-term b7 [, By * BY = b S, B~ BY is a ’t Hooft
anomaly for the discrete 1-form symmetries Z,, and Z,,. Note that the presence
of discrete background flux b* # 0 for some « is essential for the existence of the

anomalies. We will not discuss the physical effects of the 6-term b [ Fix FJ or

bv? fM4 F4 in this Wor.
4.3 SymTFT Coefficients from Geometry

A crucial aspect of the above analysis is the coefficients A. Clearly, the numerical
value of these fY7 integrals is important: a value of zero implies the absence of a
particular term in the anomaly polynomial, whilst a non-zero coefficient contains

physical information. In this section we determine these explicitly in the case of toric

Calabi-Yau 4-folds.

4.3.1 SymTFT Coefficients from Intersection Theory

The coefficients of the 4d topological action resulting from (4.43)), (4.48)-(4.50) are

given by the primary/secondary invariants of elements of Hr (Y7) with p = 7,8 over
Y. In the case where the integrand is an element of H "(Y7) we showed that these
are simply the intersection numbers that we also obtain from the ordinary
cohomology reduction. On the other hand, when the integrand is an element of
H 8(Y7) as in there is no analogue in ordinary cohomology. Still, we would like
a convenient way to evaluate these coefficients, which, it turns out, can be accessed
by considering a space Xg of which Y7 is the boundary. In holography this notion
is quite natural since the duality is precisely between supergravity compactified on

Y7 and branes probing the tip of the cone over the compactification space, i.e. we

4Such terms in the anomaly polynomial are gauge invariant by themselves, and they do not
change the equation of motion for the bulk gauge fields in the AdS/CFT interpretation.
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can take X3 = C(Y7) to be this cone. It should be clear that the A’s in are
defined purely in terms of the geometry of Y7, and we resort to the space Xy only for
computational convenience.

In this section we present an extension to the arguments of section 3.3 in [65],
where the coefficients are derived from an intersection number computation on
the resolved space 5(;. In the geometric engineering set-up, we will assume that 5(\; is
a non-compact Calabi-Yau 4-fold. However, the Calabi-Yau condition can be relaxed
in the holography setups, such as the ABJ(M) theories in section .

We will make use of the long exact sequence
oo Hy(Xe; Z) — Hy(Xe, Yr: Z) = Hy ((Yr: Z) — Hy ((Xi Z) — ... . (4.55)

Note in particular that elements of Hp(fg; 7)) are compact p-cycles in )?8 and elements
of Hp(.)?g, Y7, Z) are non-compact p-cycles in fs. We assume that there are no compact
(7 — n)-cycles in Xg

Hy_(Xs:Z) =0, (4.56)

for a specific n € {0,...,6}.

This implies that any (7 — n)-cycle in Y7 can be realised as the boundary of an
(8 — n)-chain in 2?8. In the examples we consider, ./'?8 is a non-compact toric 4-fold,
and these have no non-trivial odd-dimensional cycles, Hgk_l(fg; Z) =0 for k € N.

Using Poincaré duality in Y7, from (4.55)) we find
Hy n(Xs; Z) 2 Hy_ (X5, Yo Z) L HM(Y3;Z) — 0. (4.57)

Since f is surjective, we conclude that every n-cocycle in Ys can be mapped to a
non-compact (8 — n)-cycle D in Xs. Furthermore, a torsion class t, € H"(Ys;Z)

satisfies

lt, =0, (4.58)

95



for some (minimal) ¢ € N. Then exactness of (4.57) implies that there exists a

compact (8 — n)-cycle Z € Hy_,(Xs; Z) such that
A(Z)=1tT,  f(T)=t,, (4.59)

which we use to map a torsion class t,, € H"(Y7;Z) to a compact (8 — n)-cycle Z
in X. Taking A to be the intersection pairing in 2?8, the coefficients of the
SymTFT can be computed as follows.

We associate to t2 of torsional degree % a compact (8 —n)-cycle Z3" in X, and

to v¢, a non-compact (8 — m)-cycle D¥~™ in Xs. The coefficients are then given by

Aom = [DF" - Dy - D]

mod 1’

[ 8—n n—+m 8—
Abie — D "D i Za "
nm ~ fo ’
L m mod 1
Aias _ D"z Zgm (4.60)
nm ~ g &/?’n )
L —n—m mod 1
[ 78—n n+m 8—m
Aaﬁ'y — Za ) ZB ) Z’Y
nm ] )
g%fg_n_m[ym mod 1

where - denotes intersections in Xy = C(Y7).

We must take extra care with the terms in the 4d effective action which come
with a factor of a half. That is, the relevant object to compute is not A but rather
2 = A/2. However multiplication by 1/2 is not a well-defined operation due to the
mod 1 in . We use the approach by Gordon and Litherland [221] employed
in [65] to deal with the refinement by a factor of 1/2. Concretely, this approach
allows for the computation of these secondary invariants - as performed for 3- and
5-dimensional links in [65]. The applicability of this analysis to the current case is

borne out by our matching with known field theory results. We compute these terms
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as follows:

N N Dy D8 " po
= [ vl - ,
2 Yz mod 1
) 1 ) DS n D8 n Z2n
Q:La = 5/ T)?Zm * 0 8 on — 5
Y7 8 2n mod 1
Q;a:_/bé TR it It -l
2 Y7 mod 1
1 5 5 ZS n ZS n ZQn
0 =5 [ il - ' ,
2 Y7 ([%)2687%

mod 1

which are R/Z-valued quantities.

4.3.2 Intersection Numbers of Toric 4-Folds

The above subsection explained that the computation of the SymTFT coefficients
reduces to a computation of intersection numbers in Xg. In this section we focus
on toric 4-folds. It will become apparent in later sections that the non-trivial coef-
ficients we are particularly interested in are those involving 4, and @. The key
identifications to make are therefore the compact divisor Z° corresponding to {g, the
compact 4-cycles Zg corresponding to th and the non-compact divisor D® correspond-
ing to v5. We will address the identifications in turn. First however, we introduce the

technology required to compute intersection numbers of toric 4-folds.

Quadruple Toric Intersections.  All non-zero integrals of the type we wish to
consider reduce to a sum of quadruple intersections of toric divisors 7} in the Calabi-
Yau

T T Ty - T (4.62)

We begin with a toric fourfold fg, described by a toric diagram with set of rays {v;},

v; = (vf,vf vF vl (4.63)

19 Y Yo Ve
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Each ray corresponds to a toric divisor v; <> T;, amongst which there exists a set of
linear relations
S iTi=0, Y 0!Ti=0 > viT;=0, > v'T;=0. (4.64)

Furthermore, we triangulate the toric diagram with a set of 4d cones
{vavpvevg} (4.65)

which restrict the non-zero quadruple intersections in the following way. The inter-
section of four distinct toric divisors is given by the volume bounded by the rays (we
denote this region V;jx)

1

J b : VOI(‘/ijkl)

itiAkAL (4.66)

The quadruple intersection numbers involving self-intersections can be computed us-
ing and the linear equivalence relations m
Now we consider the case of a toric Calabi-Yau 4-fold /'?8, such that the boundary
7-manifold Y7 is Sasaki-Einstein. The Calabi-Yau condition forces the rays {v;} to
lie in a plane. We enforce this in coordinates by choosing the fourth coordinate of all
rays to be 1
v; = (v, 1) = (v, 0,07, 1). (4.67)

For a 4d cone v;viviv;, the volume of Vjj; takes the form of

vol(Vijw) = det (v; —v; v —v; v — ;) . (4.68)

5In order to perform such calculations in practise, a computer code is necessary for larger toric
diagrams. Assuming we have computed T; - T - T}, - T} for all distinct ¢ # j # k # | we can compute
the following intersections in turn

LT T, T, T i#j#k
2. TZTZT,TA;, i#kandE'Ti'Tk'Tk, Z#k'
3. ;-1 - T - T

In each step we use the intersections computed in the step prior.

SNote that in the cases of a non-compact toric 4-fold, the quadruple intersection numbers only
involving non-compact divisors are usually not well-defined. Nonetheless, we do not encounter
this issue as we only use the intersection numbers which involve at least one compact divisor, see
analogous computations in the case of CY3 [222,/223].
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4.3.3 Differential Cohomology Generators and Toric Divisors

t, generators. From the set of divisors {7;} and the linear relations between
them, we can obtain a set of linearly indepent divisors. We denote them C,, D,
for compact and non-compact respectively. From these, we can construct a basis of

compact curves
(N} ={C, -Dy-D,, Cy-Cyp-D,., Co-Cp-C,}. (4.69)

In general these curves are not linearly independent. For example, for the case
YP#(CP?), the curves C, - Dy - D, already form a complete basis of compact curves.
In order to obtain the central divisors Z°, we compute the SNF of the intersection

matrix N, - C,

I'n 0 0
0 T, 0
SNFW,-C)=|0 0o ... T.|=4 - -c) B, (4.70)
0 0 0
0 0 0

where A and B are matrices and I',, are a set of integers. The group
I'=&,_Zr, . (4.71)

is generated by a set of linear combinations of divisors given by the matrix B.

Thus the change of basis matrices used in the SNF procedure can be used to find
explicit expressions for the compact divisor dual to £, in terms of the basis elements
C,. For each I'y, > 1, there is a differential cohomology class £ with torsion degree

I',,. Furthermore, it is clear that the group I is in fact equal to the 1-form symmetry

ro—=r. (4.72)
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In particular, we can read off the generators as follows. The linear combination of

divisors generating the factor I, is given by
Z5 =Y BiC;. (4.73)

{4 generators.  Analogously to the above procedure, we wish to identify the ap-
propriate linear combination of 4-cycles Z* dual to £§. We can construct a basis for
compact 4-cycles by {Sx} = {Cy - Dy, C,-Cy} . Once again we take the SNF of the

intersection matrix
SNF{S]- -Si} = diag(F’l, F’Q, )= A {Sj S} B . (4.74)

We derive that the group
TorH* = @,I",, (4.75)

is generated by the linear combinations

Zy=> B,Si. (4.76)

We observe that a consistent choice must be made of ordering of columns in the
SNF process when two different Y?* models are compared. A change of basis of the
matrix corresponds to choosing different diagonal combinations of symmetries inside

the group &,I".

U2 generators.  In general, the number of independent v, generators is equal to
b3(Y7). One can pick any of the b3(Y7) linearly independent non-compact divisors as

U generators, and they will give the same physical results.

4.4 SymTFT for Holography: ABJ(M)

We now employ the geometric tools developed in the previous sections to derive

from M-theory the global structure and higher-form symmetries for the 3d A/ = 6

60



U(N4+b)xU(N)_ ABJ(M) theories |162,215]. In the brane picture, the theories arise
on N M2-branes probing a C*/Z,, singularity, together with b fractional M2-branes
localised at the orbifold singularity. The 11d supergravity dual is AdS, x S7/Z; with
N units of G4 flux over AdS, and b units of torsion flux. The 7-manifold S7/Z; is
generally a tri-Sasakian manifold, and it is Sasaki-Einstein only when k = 4. All
3d N =6 ABJM type theories were classified, up to discrete quotients of the gauge
group, in [224], which was subsequently extended to account for all global forms
in [216]. In [157] it was shown how to realise different global forms of the gauge group
holographically from type ITA supergravity (in the absence of background torsion,
i.e. for b = 0) in the regime k < N < k° where the M-theory circle is small.
We reproduce these results, taking the perspective of 11d supergravity, where the
technology presented in previous sections is crucial to understand the geometric origin
of the symmetry background fields. Moreover, with b turned on, we determine a 't

Hooft anomaly for the 1-form symmetry

b

—— By — Bs. (4.77)
2k AdS,

We derive the anomaly from torsional geometric data, and match with field theory

results [216]. The SymTFT, computed using differential cohomology, is precisely the

tool suited to pick up such a torsional effect.

4.4.1 Global Form of the Gauge Group

The global form of the gauge group is associated with a choice of boundary conditions
for the gauge fields of the 4d bulk theory [65,/113-115,|{151}/183]. This choice is con-
strained by the fact that, in the presence of torsion in the homology of the internal
space Y7 = S7/Zy, the G4 and G fluxes do not commute at the boundary [218]225].
In the SymTFT this non-commutativity of fluxes shows up as a set of BF-couplings
that constrain the consistent set of boundary conditions which can be imposed on the

participating 4d gauge fields. The BF-terms arise from the differential cohomology
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reduction of the kinetic term in the 11d supergravity action, see [174] for a deriva-
tion] In the following however, we will instead take an operator perspective and
derive the commutation relation.

In holography the procedure for choosing asymptotic values of the fields at the
conformal boundary of M, = My x Y7 is to quantize the theory on M1, = R; x M,
by identifying the radial direction with time, and choosing a state in the Hilbert
space of My = M;s x Y7, where M3 is the conformal boundary of M, at infinity
[151},183]. Consider the operators ®(73) and ®(7g) which detect the periods of the
M-theory gauge potential C5 and the electric-magnetic dual potential Cg over 3- and
6-cycles T3, T defining torsion homology classes in Myy. As shown in [218]225], these

operators pick up a phase under commutation
D(T3)B(Ts) = B(T5)®(Ty)e2 T (4.78)
where L is the linking pairing. The homology of S7/Z; is
H,(S")7; 7)) = {7, 74,0, 74,0, 74,0, Z} . (4.79)

Since we are assuming Tore(M3; Z) = 0, we can apply the Kiinneth formula to obtain

TOI'Hg(MlO; Z) = HQ(Mg, Z) ® H1(57/Zk7 Z) b Ho(Mg, Z) X H3(S7/Zk, Z) s

(4.80)
TorHg(Myo; Z) = Hs(Ms; Z) @ Hs(S7)Z4; 7) @ Hy(Ms; Z) @ Hs(S" ) Zy; Z) .
This implies that the torsional 3- and 6-cycles of My must be of the form
%:EQXTl, 7;-3:20XT3, (481)
and
76:23><T3, 7%:21XT5, (482)

where ¥, generates H,(Ms;Z) and T, generates H,(S"/Zy;Z) = Zy for ¢ < 7 odd.

Consider the expansion on cohomology of G4 around the ABJ(M) background

Gy = NVOlAdS4 + By —ty+b— 1y, (483)

"We thank Ifiaki Garcia Etxebarria and Saghar Sophie Hosseini for explaining this to us, and
refer the reader to their upcoming work [174] for more details.
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where t5 and t4 are both torsional generators of degree k. The differential cohomology
uplift is

Gy = Nvolags, + By y + bx iy, (4.84)

Here, B, represents a dynamical Z; 2-form gauge field, whereas
I)=beZ, (4.85)

is an integer parametrizing background flux over torsion 4-cocyles, as argued around
(4.38). This discrete flux is associated to b Mb5-branes wrapping the torsion 3-cycle
H3(S")Zy;Z) = Zy. In the ABJ paper [215] it was conjectured that we must have
b < k for the superconformal U (N +b), x U(N)_j theories to exist as unitary theories.
As was also noted in [215], this restriction is consistent with the interpretation of b as
discrete Zj; torsion. Without imposing a relation between G4 and G, we can make a

corresponding cohomology expansion of the latter
G7 = NV015'7/Zk + Bg ~ t4 + Bl ~ t6 . (486)

In order to quantize on Mj; = R, x Myg, we consider a gauge as in [151] where
the form representatives of the B, classes do not have components along the radial
direction (or time direction, in terms of the quantization scheme), i.e. they can be
taken to define either degree-p cohomology classes in My, as in , , or in
Ms;. Then, by Poincaré duality, the integral homology classes Y, are dual to Bs_, in
the (torsion-free) cohomology of Mz = RY2.

For the present, let us ignore the discrete background flux and study the ABJM
theories whose type IIA duals were studied in [157]. Then the non-commuting oper-
ators are ®(X5) and ®(X;), which are push-forwards of the 11d operators (3 x T7)

and ®(X; x Ts). Their commutation relation is determined using

L(Ep X Tq, Ep/ X Tq/) = (Ep . Ep’)LS7/Zk (Tq, Tq/) , (487)
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with ¥, - ¥,/ the intersection in M3 and [114]
1
Lz, (11, T5) = 7 (4.88)

Hence, we have

B(T)P(B)) = () D(Xy) e ErE2)/k (4.89)

If we consider the form representatives of B, By, and abuse notation by denoting
them the same as their corresponding cohomology classes, this commutation relation

is encoded in a BF-coupling

SBF

27 AdS,

As we remarked above, this coupling can alternatively be derived by considering the
differential cohomology reduction of the kinetic part of the 11d supergravity action,
see [174].

The symmetries of the 3d field theory are determined by imposing boundary
conditions on By, By consistent with the commutation relation , or equivalently
the action (4.90)). Fixing By to a background value as we approach the conformal
boundary is associated with a 1-form symmetry, whereas fixing B; would furnish a
background gauge field for an ordinary 0-form symmetry.

First however, we must also take into account the additional global 0-form sym-
metries that can arise from gauging the isometry group of the internal space. The
isometries of S7/Zy are U(1) x SU(4)g, with the latter realising the R-symmetry
of the 3d N' = 6 theory. We can describe S7/Z as a circle bundle over CP? with
metric [162]

1
dsfrz, = 73 (e + kw)” + dsgps (4.91)

with ¢ ~ ¢ + 27 parametrizing the M-theory circle, and dw = J with J the Kahler
form on CP?. The Z;, quotient is simply making the M-theory circle smaller, and 9,

is generating the U(1) isometry. We can gauge the isometries by lifting the 4-form
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flux to equivariant cohomology, which gives rise to a single 1-form gauge field A; for
the U(1) isometry

do — dp + Ay (4.92)

and a set of 15 gauge fields for the SU(4)r. We are interested in the fate of the U(1)
global symmetry, and whether it couples to the By, By gauge fields in . We will
answer this question by conjecturing a map to the type ITA description.

When N > k° the appropriate supergravity description is 11-dimensional. On
the other hand, when ¥ < N < k° the M-theory circle becomes very small (in
Planck units) and the relevant description is type ITA supergravity on AdS; x CP?
with N units of Fg-flux over CP? and k units of Fy-flux over CP! C CP3. (In the
presence of background torsion flux b # 0 the NSNS 2-form on CP! C CP? has a
discrete holonomy b/k.) Consider the type ITA supergravity analysis in [157], where

a topological term

% _ /A B Md(EApu + NApo), (4.93)
was identified and the consistent boundary conditions were studied in detail. Here Byg
is the NS-NS 2-form, and Apy, Apg are U(1) 1-form gauge fields that couple electrically
respectively to D4-branes wrapping CP? C CP? and DO-branes. Under dimensional
reduction from 11d supergravity to type IIA (see e.g. [226]), the U(1) gauge field
A,y associated with the isometry generated by the M-theory circle direction J,, gives
rise to the 1-form gauge field Apg sourced by DO-branes. The 1-form gauge field B;
couples electrically to M5-branes wrapping the torsional 5-cycle, which descends to
D4-branes wrapping CIP? coupled electrically to the 1-form Ap,. Finally, By couples
electrically to M2-branes wrapping the torsional 1-cycle associated with the M-theory

circle. Under dimensional reduction these M2-branes become fundamental strings

coupling to the NS-NS 2-form. Therefore, we conjecture a map

A1 < AD(), B; & AD4, By BNS . (494)
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Using this map implies the existence of a topological coupling between By and
F = dA; in M-theory, to which either equivariant or differential cohomology are

not sensitive by themselves?] The 11d kinetic term is then

Skin
2T

= / kBy NdBy + NBy A F . (4.96)
AdSy

The different global forms of the gauge group are realised holographically by imposing
boundary conditions consistent with this BF-coupling. This part of the analysis is
now completely analogous to [157]. For convenience, we here give a brief summary of
one extreme possibility, namely (U(N)g x U(N)_y)/Zy.

Suppose we apply the conditions
Ay, By Dirichlet , B; Neumann, (4.97)

which constrains the boundary values of the 1-forms to satisfy kB;+ /N A; = 0. Hence,
the 1-form background gauge field we can specify at the boundary gives rise to I'®) =
U(1) X Zgea(n k), where the U(1) is supplied by the diagonal combination (B, A;) =
(pA, —qA), with p - ged(N, k) = N and ¢ - ged(N, k) = k, which decouples from the
action. If N = nn’ for some integers n,n’ more complicated boundary conditions are

possible. These realise the gauging of a subgroup of the 1-form symmetry.

4.4.2 ’t Hooft Anomaly for the 1-Form Symmetry

We now turn on the torsion flux b # 0 and see how the theory is modified. From the
differential cohomology reduction of the 11d Chern-Simons term we determine the

Symmetry TFT coupling

Sto Bl
ﬂz_g/ By* Byxb mod 1, (4.98)
2m AdSy

8We propose that a full equivariant differential cohomology treatment of the problem will give
rise to an improvement of G§* by a term involving the 2-form By and the U(1) field strength F like

GZQZNVOIAdS4+Bg/\F+--- . (495)
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with
]. v v v Z6 * ZG * Z4
Q:—/ toktoxty = [—} , 4.99
2 57/Zk 2k3 mod 1 ( )

The primary invariant over AdS, gives

% - —Qb/ BQ ~ BQ, (4100)
27 AdS,

which signals an anomaly in the Z; 1-form symmetry of U(N +b) x U(N)_g, deter-
mined by the coefficient 2. The 4d term constrains the possibility of gauging
a Z,, subgroup, with k = mm/, of the Z; 1-form symmetry. That is, the anomaly is
only consistent with By having periodicity Z,, for Qbm’? = 0 mod % (since By — Bs

is even on a spin manifold) or, equivalently,

20k

m2

=0 mod 1. (4.101)

To compute the coefficient 2 geometrically from (4.99)), let us consider the resolution

/fg of C*/Z;. Note that the singularity C*/Z;, has a toric description, with the rays

v = (1,0,0,0) , vy = (0,1,0,0) , vy =(0,0,1,0) , vy = (—1,—1,—-1,k) (4.102)

—_—

and the 4d cone vyvov3v4. It has a unique toric resolution 2?8 = C*/Zy., where the
compact exceptional divisor C' corresponds to the new ray vs = (0,0,0, 1)ﬂ The
new set of 4d cones in C*/Zy, is {v1vov3v5, V1V2V4V5, V1V3V4V5, VaV3V4V5 }. Denote the

non-compact divisor corresponding to v; by D (which is linearly equivalent to v, v3

and vy). We can compute the following intersection numbers
D*=0, C-D*=1, C*-D*=—k, C* D=k, C*'=-k, (4.103)

from which we obtain the generators Z* = C' - D, Z® = C'. Note that we need
not define the SymTFT in a supersymmetric way, and one can use any (possibly

non-crepant) resolution for the purposes of computing the SymTFT action. Here we

—_~—

9Restricting to toric varieties, C*/Zy is the unique resolution because vs = (0,0,0,1) is the only
primitive ray inside the cone vvov3v4.
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validate this approach by matching with known field theory results. Hence we can

plug (4.103) into (4.99) to get

1
0= o mod 1. (4.104)

Recalling the condition (4.101)), the gauging is consistent for

% =0 mod 1. (4.105)

The anomaly thus implies that gauging a Z,, subgroup of the 1-form symmetry of
U(N +b); x U(N)_g is consistent only for certain choices of m. That is, compared
to the analysis at the end of the previous section, when b is turned on, certain global
forms of the 3d gauge group are no longer consistent. E.g. in the presence of this
anomaly we can only gauge the full 1-form symmetry m = k, if b/k € Z.

Note that this anomaly was also determined from the field theory point of view
in [216], where the authors show that, the anomaly can be measured by the topological
spin of a line of charge m’, where £k = mm’. In [216] the anomaly free lines were

determined to be exactly the ones satisfying (4.105]).

4.5 SymTFT for Holography: AdS, x Y?*(CP?)

We now apply the Symmetry Topological Field Theory technology to a class of holo-
graphic 3d N = 2 QFTs. We study the theories living on the worldvolume of a stack
of M2-branes probing the cone C(Y?*(CP?)) with torsional G4 flux turned on [210].
The latter phenomenon arises from wrapped Mb5-branes on the torsional elements of
the third homology group of Y?* (which is non-trivial). The purpose of this section
is to put into practise the machinery developed in the preceding sections of this chap-
ter in an intricate holographic setup, where the SymTFT can be used to derive new
constraints on the 3d field theory. In particular, we derive SymTFT terms via M-
theory reduction and compute the relevant coefficients using the toric CY, methods

explained in section |4.3|
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The BF-terms we obtain are

S ~
Er /32 N (N f2+ ged(p, k)g2 + i, 92) (4.106)

D,k

P n, Which depend on p,k as well as the G4 torsion flux

with integral coefficients (2
parameterized by two integers (ng,n1). Furthermore, in many cases we derive new

1-form symmetry anomalies of the form

QBB/BQ — By, (4.107)

for 1-form symmetry background fields By and some coefficient {2pp which we com-
pute.

The dual field theories described in [210] are subtle and furthermore not completely
constrained. We discuss the matching of our results with this work in section 4.6,
and comment on how the SymTFT could be used to solve some ambiguities.

It should be noted that more generally one could consider a stack of M2-branes
probing the cone C(YP*(B)) for more generic base B [227,1228]. For example, for
B = CP! x CP! the SymTFT is almost identical in structure, differing only in the

number of ¥ generators, and therefore £ background fields.

4.5.1 SymTFT for General p, k

In this section we perform the torsional reduction detailed in section here for
My = AdS, x YP*(CP?). (4.108)
The cohomology groups for the 7-dimensional space are
H*(YPH(CP?);Z) = {Z,0,Z ® Zgcapry 0. T, Z, Zgeagppy » Z} - (4.109)
where ' is a finite group given by
I = 72/((3k, k), (k,p)). (4.110)
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We expand G4 on generators for each of these non-trivial elements

2
é4:NVZ)lAdS4+Fg*ﬁ2+é2*fg+zza*fz, (4111)

a=1

where we have included the flux of the M2-branes in the first term and the parameters

b represent the torsion G, flux.

t, generators.  We use methods described in section to compute the 1-form

symmetry generator (for cases with non-trivial B, field, so ged(p, k) # 1)

p—1

78 = "aC,, (4.112)

a=1
where C, are compact toric divisors associated to the points (0,0,a,1) in the toric

diagram.

Uy generators.  We have by(YP*(CP?)) = 1, and we can use any one of the non-

compact divisors to represent the single 5 generator.

{2 generators. ~ We follow the prescription in section and construct a basis
of compact 4-cycles. We wish to compute the torsional components of I'.  Again
focusing on cases where ged(p, k) # 1, we obtain the following formula from the

Smith decomposition of the lattice ((3k, k), (k,p))

HYYPH(CP?*);Z) =T = Zgeap) ® Z k) (4.113)

ged(p,k)

We generically denote these torsional components
I'="7Z & Zy, . (4.114)

We can independently turn on G4 flux of varying amounts in both directions. These
flux numbers are denoted (b, %), along the directions given in (4.113)).
In [210] the authors parametrize G4 flux along the I' directions with two integers

(no,n1), which differ from (b, b%) by a basis change. To make contact with their results
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we require a mapping between (ng,n;) and the torsional flux parameters introduced
in the differential cohomology language above. This basis change can be read off by
the column entries in the matrix B defined as

ged(p, k) 0 3k k 3k k
< 0 k(3p—k) | = SNF kop =A- kop -B. (4.115)

ged(p,k)

We are able to provide a general expression for Y?#/¢ for some ¢ € Z which divides p
l=1xny+0xn, b>=—-cxng+1xny, (4.116)

but give a selection of numerical values in table

SymTFT Coefficients. We derive the following Symmetry TFT for general Y?**(CP?)
geometries with ged(p, k) non-trivial [

Stop
21

:+05FF(I<:1)/ FQ*FQ*51+QFF(k2)/ #2*}%2*52
My My
—OéFB(kl)/ FQ*Bl*éz—OéFB(kg)/ Fy xb* % By (4.117)
My My

_OCBB(kl)/ Bl*ég*ég—aBB(]Q)/ BZ*EQ*EQ.
My My

Given the non-trivial way the £, dual 4-cycles are determined, we do not expect a nice
closed-form expression for general p, k for all coefficients. In table we summarize
the « coefficients for a large set of values of (p, k).

Since the background torsion flux participates in all the above couplings, this
general SymTFT only contains terms of three types: F'F', BF and BB — we are par-
ticularly interested in the latter ton. The BB term is a 1-form symmetry anomaly,

whilst the BF term will be crucial in understanding possible global forms of the gauge

group.

10Note here we do note include Fy+b*b and p1 terms as these contain only one or zero dynamical
fields. The coefficients « are expressible in terms of the A= of , but we choose this notation
from now on for compactness.

11With a choice of boundary conditions the FF terms are background Chern-Simons terms for
0-form global symmetry background gauge fields.
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4.5.2 The BF-Term

In this section we focus in particular on terms of BF type, which govern the choice of
gauge group in the 3d SCFT. These terms come from two sources: the first is torsion
in the geometry, as introduced via non-commuting flux operators in section {4.4.1
The second is from background flux, both continous and discrete. The first type is
standard, appearing already in AdSs; x S° with N units of Iy flux over the external
space [151], as well as in [1]. The latter appears via terms in the differential

cohomology reduction of the 11d topological terms of the form
/ 54*52*52/ Fy% Byxb. (4.118)
Y~ My

BF-terms from Non-Commuting Fluxes. @ We follow the procedure outlined

in [65] which we applied in section to derive a new BF term:

SBF

2m AdSy

The origin of the field B; is exactly the same as that presented in section |4.4.1, and

the derivation of the coefficient follows analogously with minor modifications.

BF-terms from 11d CS-term. From reduction of the 11d CS-term we obtain

the following 4d term of BF-type

Sto
2t—7rp D ged(p, k) (aFB(kl)bl + aFB(k2)bQ) By A go. (4.120)

We denote this coeflicient as
vk =ged(p, k) (arpe)b' + arpm)b?) (4.121)

and give values of QF for certain (p,k) in table B.4 The coefficient depends

ng.n

implicitly on the integers (ng, n1), which are linear combinations of (b, b*) determined

by (EIT3).
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Full BF-term. Reduction of the 11d supergravity action on the cohomology of

YP*(CP?), with discrete background flux parametrized by (ng, n;), thus yields

SBF
? = /BQ Ad (ng(p, k?)Bl + Qgrjzl)k,nlcl) 4+ (4122)
Here we have left open the possibility for further BF-type terms arising when we turn
on background gauge fields for the isometry group of Y?*(CP?) which is SU(3) x
U(1)?. In section we used a reduction to type ITA to conjecture that gauging
the M-theory circle direction would furnish a new coupling with the discrete 2-form

B,. In appendix we derive the analogous coupling from reduction to type ITA for

these geometries. The result is

S
% — /32 A (N fo + ged(p, k)dBy + Q2F | ga) | (4.123)

where fo = day is the field strength of the U(1) 1-form gauge field associated with
the M-theory circle direction.

Let us consider the field theory interpretation of the bulk gauge fields at the level
of the SymTFT — i.e. before imposing boundary conditions consistent with the BF-
coupling , which realise a particular global form of the 3d gauge group. The
gauge fields in this EFT arise respectively from a reduction of C3 on the free part, c¢;
(with g, = decy), and torsion part, By, By, of H*(YP*;7Z), and from gauging the U(1)
isometry of the M-theory circle, a;. At the boundary, the 2-form gauge field may give
rise to a background for a 1-form symmetry which is a subgroup of U(1)g,. Fixing
the 1-form gauge fields at the boundary we may realise a 0-form symmetry that sits
inside U(1)3 = U(1),, x U(1)p, x U(1),,. In particular, we can parametrize a set of

1-form gauge fields A, A’ for U(1)? C U(1)? defined by

(ala Bla Cl) = (_yA - ZA/a an ._'['A/) ) (4124)
with
N d(p, k) Q&k
A gc (pa ) _ "~ nom ng(N,p, k,7 Qfll)knl) , (4125)
x Y z ’
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which decouple entirely from the action and so can always be fixed at the
boundary, giving rise to a U(1)(® x U(1)® global symmetry of the dual field theory.
The isometry group of YP* is SU(3) x U(1)2. In the UV, we can identify one of the
U(1) factors with the topological U(1) symmetry of the field theory and the other
with the R-symmetry. However, as is well-known, this R-symmetry mixes with the
other U(1) global symmetries at the SCFT fixed point to give the superconformal
R-symmetry. (The exact IR superconformal R-charge can be determined by extrem-
ization of the 3-sphere partition function [229].) The SU(3) isometry group of the
base CP? corresponds to the baryonic SU(3) that rotates the bifundamental matter
in the quiver. In addition to the M-theory U(1) circle direction associated with the
gauge field ¢;, we therefore have an SU(3) x U(1) isometry for which we do not turn

on gauge fields.

4.5.3 Boundary Conditions and Global Symmetries

Given the SymTFT, we can now realise a selection of the possible global forms of the
gauge group of the boundary theory (up to 't Hooft anomalies which obstruct certain
gaugings, which we discuss shortly). From a supergravity perspective, determining
the complete set of boundary conditions would amount to enumerating all boundary
conditions consistent with the bulk topological terms. Imposing a particular set of
boundary conditions on the gauge fields, consistent with the action , picks out

a specific global structure for the 3d N = 2 quivers.

Standard Boundary Conditions. First consider Dirichlet boundary conditions

on ai, By and ¢q, and Neumann on Bs. The action forces the boundary constraint

(Nay + ged(p, k) By + Q2F, ¢1) = 0. (4.126)

no,n1

This corresponds to a O-form symmetry

GO ~U1)xUQ1)XZ (4.127)

ged(N,p,k,Q0F )

74



This global 0-form symmetry sits inside the U(1)* = U(1),, x U(1)p, x U(1).,. The
two U(1)’s in G can be parametrized by A and A’ as in (#.124). There is no 1-form

symmetry with this choice of boundary conditions.

Mixed Boundary Conditions. Consider fixing ¢; and aq, but letting B; be free
within Z,, C Zgea(p,k), With ged(p, k) = nn’. This is equivalent to saying that B is
free in Zged(p,ry modulo the relation n'B; = 0. The global symmetries of this choice

are therefore

G~ U1 xU1)© xz? zv . (4.128)

gcd(N,QZ’(inl,n’) X Ly
Clearly the special case where (n,n') = (1,ged(p, k)) is the ‘standard’ choice given
above. Another special case is (n,n’) = (ged(p, k), 1), which realizes the largest

possible 1-form symmetry group. In this case, the global symmetries are

G~ U1 xU1)® xz (4.129)

ged(p,k)

Here, since B, a; and ¢, are fixed at the boundary, the following BF term

/ By Nd (Nay + QF c1) (4.130)

no,n1

corresponds to a 3d mixed anomaly.

General Boundary Conditions. = We describe a subset of the allowed boundary

conditions and the resulting global symmetries in tables and respectively.

‘ BC ‘ @ ‘ By ‘ 2
1 D D N/D; Free mod Zy C Zoys
2 D N/D; Free mod Zy, C Zgeap,r) D
3 | N/D; Free mod Zy C Zy D D

Table 4.1: A selection of the possible boundary conditions consistent with the BF-
action (4.123)), where D: Dirichlet and N: Neumann. We take Q2% = nn/, ged(p, k) =

mm' and N = [l'. ‘N/D; Free mod Z,” for a field A means that the field is free to
fluctuate modulo the relation gA = 0.
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Boundary Condition G© Gt
1 U(1)? X Zigea(N pein) Zn
2 U(1)? x LN 02 ) | Lo
3 U(1)* x Lyeaw prsnt,) | L

Table 4.2: 0- and 1-form symmetries for the boundary conditions in table [4.1]

4.5.4 1-Form Symmetry Anomaly

Using the definition of the primary invariant, the BB terms of (4.117)) evaluate to

Sto
Ztop :QBB/ By — Bs, (4.131)
27 |pp My
with
QBB = —CYBB(kl)bl — aBB(k2)b2 . (4132)

The coefficients Qpp depend on p, k, b! and b? (or, equivalently p, k, ng and ny). This
term is a 1-form symmetry anomaly: it presents an obstruction to gauging certain
subgroups of the 1-form symmetry. In other words, it is an obstruction to selecting
certain boundary conditions of the BF-action ([£.123). Suppose ged(p, k) = mm/
and we consider gauging a subgroup Z,, C Zgcq(pr) of the 1-form symmetry with

background B;. The anomaly free condition is that
2Qppm™? =0 mod 1. (4.133)

Specific coefficients of this anomaly can be computed using table (for a parametriza-
tion in terms of (ng,n;) we make use of table as well).

For example, Y22 with (ng,n;) flux numbers has Qpp = —%nl. If we consider
gauging the Zy 1-form symmetry, the anomaly free condition is that %nl =0 mod 1.
Hence, we can only gauge the 1-form symmetry if n; is even. In this way the torsion
flux influences the possible choices of gauge group one can have for a given theory.

Furthermore, we should highlight the presence of many mixed 0-/1-form symmetry

anomalies of the type demonstrated in (4.130)).
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4.6 Comparison to the Field Theory dual to Y?*(CP?)

We now compare our results with the field theory of [210], which is subtle for several
reasons. The proposed quiver gauge theories initially have a parity anomaly which
much be quenched to ensure consistency. The authors provide several mechanisms
through which this could occur. We show that ambiguity in this anomaly resolution
permeates into the global symmetries of the theory: in particular the 1-form symmetry
is sensitive to the anomaly cancellation mechanism one chooses. In this section we

discuss how the SymTFT can be used to constrain this problem.

4.6.1 Quiver Gauge Theories

The quiver gauge theories dual to the AdS; x YP*(CP?) M-theory backgrounds
[210] are defined for three ‘windows’ of parameter values of the G4 torsion flux,

parametrized by integers (ng, ny).
1. —k<ng <0, 0<3n1—ny<3p—=~&
2.0<ng <k, 0<3n—ng<3p—=~k
3. k<ny <2k, 0<3n;—ng<3p—=~k
The field theories for these three cases are

L. U<N +ny—p— no)—no—l-%nl X U<N)%n0—3n1+%p—k X U(N - nl)%ng—l—%nl—%p—kk

2. U<N +n _p>—n0+%n1 X U(N)Qno—?ml—‘r%p—k X U(N - nl)—no—i—%nl—%p—kk

3. U(N—i—m _p)%no—i-%m—%q X U<N)%no—3n1+%p+%k X U(N—n1+n0—k)_n0+%nl_%p+k
with bi-fundamental matter content arranged in a quiver structure shown in figure
41l

The theories as they are presented above suffer from a Z, parity anomaly. The

authors of [210] suggest that there are several mechanisms through which this residual
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Figure 4.1: Quiver diagram for theory with gauge group IT3_,U(N;),. The triple
arrows denote the fact that the bi-fundamental matter fields transform in the funda-
mental representation of a flavor SU(3).

anomaly could be cancelled. They highlight the simplest: the addition of mixed
Chern-Simons couplings between the U(1) pieces of different U(N;), U(N;) factors,

with levels A;; such that [230-232]

1

ij — 51413 €. (4.134)

1
ki+§zj:Aiij €7, A

Here k; are the Chern-Simons levels given above, A;; is the quiver adjacency matrix

0 3 =3
3 =3 0

The first condition is satisfied by the above, but the second is not since we have so far
set A;; = 0. In [210], for theories with (ng,n;) = (0,0), the authors quote a sufficient

choice

o 3 3
2 2
Ay=132 -3 2]. (4.136)
-3 3
2 2 0

which does not spoil the matching of the moduli space with the geometry. Considering
only the spectrum of local operators this appears to be an ambiguity in the AdS/CFT
correspondence. We now return to study this ambiguity from the point of view of the

1-form symmetry, which is sensitive to A;;.

4.6.2 1-Form Symmetry of the Quivers

We now compute the 1-form symmetry of these field theories. The key subtlety in this

computation is the presence of monopole operators which can screen Wilson lines. A
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monopole operator in this theory is specificed by its magnetic charges under the U(1)

elements of the Cartan subgroup of each U(N;) factor

Crucially, the choice of Chern-Simons levels A;; can influence the gauge charges of

monopoles and therefore the 1-form symmetry.

Electric Charge of Monopoles. In a vacuum where the gauge group IL;U(1V;)

is broken to its maximal abelian subgroup, the Lagrangian becomes [210]

Ei0ij0mn + Nij
Log = Z Z e Ay A dAj (4.138)
iwm  j,n

Suppose we put the theory (4.138) on R x S? and integrate over the S

k; Ay
[ (S S5 ) [

i,m nwm j,n
From this we observe that a monopole acquires electric gauge charge under each U (1)

Cartan of each U(NV;):

Gim = kimim + Z Ayymjy . (4.140)

4l
One-Loop Monopole Charge Modifications. = This expression is modified at

1-loop [210] due to integrating out bifundamental matter X;; Ez

Gin = ki + 0gin + > Y Aigmyy, (4.141)

L

with

N, N,
0Gik = —% Z Z |m ) — mjg| + % Z Z |mi g —mj| . (4.142)

Xij =1 Xj,' =1

12Note that the formula in [210] contains a third correction term, which for our case of a circular
quiver vanishes.
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Charge under the Center.  The charge of a monopole under the central U(1)3 =
Z(G) is
N;
G =Y Gik, (4.143)
k
The bifundamental matter breaks this to a diagonal U(1) C U(1)® under which the

monopole has charge
3
Qaiog = ) i (4.144)
i=1
It can be checked explicitly that one can drop the 1-loop correction (dg; ;) contribution
from gqiag due to the quiver’s shape:
3 3 N;
Qdiag = Z q; = Z Z (kzml,k + Z ZAijm%l) . (4145)
i=1 i k=1 1
Denoting the topological U(1) charges m; = ), m;;, we write this as

3 3
Qdiag = Z q; = Z <k’1m@ + N; Z Aijmj) . (4.146)
=1 7

7

YP* without torsion flux. We now explicitly compute ggiag for an arbitrary
monopole in a general YP* theory without torsion flux (ng,n1) = (0,0), with gauge
group
U(N —p)o X U(N)%p_,C X U(N)_%p+k. (4.147)
Furthermore, we consider arbitrary A;; which obeys both the parity anomaly condition
and the moduli space matching condition [210]
1 3

=1

For a monopole with charge (m, ms, m3), we obtain

3 3
Qdiag = M1 (—pA11) + mo (ép — k- pAm) + mg (—ip + k- pA13> . (4.149)
In the triangular quiver in question, the adjacency matrix is given in (4.135)). Using

the parity anomaly condition, we can rewrite (\; € Z)

3 3
A=A, A12=§+)\2, A13:—§+)\3, (4.150)
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with the futher condition ), A\; = 0. We therefore have
qdiag = —p/\1m1 — ()\2]9 + kZ>MQ + (l{? + ()\1 + Ag)p)mg . (4151)

The final 1-form symmetry of the field theory is the subgroup of the diagonal U(1) C

Z(G) which leaves all monopoles invariant:

IO = Zeaon sapih - (4.152)

For example, picking \; = 1 and leaving \, arbitrary gives I'D = Ligea(p,r)- Fur-
thermore, the choice of \; must be compatible with supersymmetry. We have a

supersymmetric solution when the effective FI parameters satisfy [210]
=0, &T=-g" (4.153)

Since & o A, the authors of [210] suggest that a convenient choice is \; = 0, and
A2 = 0. In this case, there is an enhancement of the above 1-form symmetry to
' = Z,. We emphasise that this solution is far from unique. Picking A\; # 0 means

that we must introduce bare FI parameters £P° to fulfill the SUSY requirement.

Y?* with torsion flux.  Now consider the general Y?* with torsion flux (ng, n;) #
(0,0). For demonstration we consider the first window of torsion space, where the

gauge group is

U(N +ny—p—nop) x U(N) kXU(N—nl)%noJr%m_%erk. (4.154)

3 1 3
—no+35n1 sno—3ni1+5p—

We use the parameterization (for i # j)
N =Aij+XNij, Ny €L, (4.155)

to derive
Qdiag = M (—(1 + Ay1)ng + (A1 — Ag1)ng — pAq)

+ma ((—=1 = Aig)no + (M2 — As2)ng + p(=Ai2) — k)

4.1
—+ ms ((—1 — >\13>TLO + (3 + )\13 — A33)n1 +p(—)\13) -+ ]{3) ( 56)

3
i=1
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Once again we have the condition ;Aij = 0 which enforces some redundancies in
the parameters \;; via > i Aij = 0. Since all parameters m;, A;;, A;; are integers, the

trivially acting subgroup of U(1) C Z(G) is

F(l) = chd(h1,h2,h3) : (4157)

Again, one must check that any particular choice of A;; preserves supersymmetry.

4.6.3 A Check on the Holographic Dictionary

In this subsection we aim to demonstrate how consistency with the SymTFT can
be used to constrain the field theory. In particular, since the 1-form symmetry is
sensitive to the U(1) CS-levels A;;, the SymTFT predicts that only certain sets of A;;
can potentially be realised. This illustrates in a concrete problem how the study of
higher-form symmetries in AdS/CFT refines the dictionary. We focus on Y?? with
all G4 torsion flux turned off. The SymTFT is

S
% = /p32 AdB; + NBy Ada, . (4.158)
m

The gauge group of the 3d field theory [210] with which we would like to match a

boundary condition of the SymTFT is

U(N — p)o X U(N)%p X U(N)_1

1) (4.159)
with 1-form symmetry given by

T'W = Z ed(na ot 1) - (4.160)

We want to show that not every choice of Aj, Ay is consistent with (4.158)). In more
precise terms, imposing boundary conditions consistent with the BF-term can give
rise to a restricted set of 1-form symmetries. We show that not all values of Aq, g

corresponds to field theories whose 1-form symmetry belongs to this set.
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If we pick the Dirichlet boundary condition for a; and Neumann for Bj, the
boundary field theory has 1-form symmetry I'V) = Z,. Swapped boundary conditions
would give ') = Zy 1-form symmetry, whilst any mixed condition would give ') C
Zigea(p,N) € Zy. 1t is clearly not possible therefore to pick a boundary condition with
re = Zy.p, for some [ € N for all V. Noticing that the field theory result is

valid for all N, we can therefore constrain A;; to be such that
[ =ged(A, A2+ 1)=1. (4.161)

Thus compatiblity between the SymTFT and field theory computations can be used
to constrain the U(1) Chern-Simons levels conjectured to resolve the known par-
ity anomalies of these theories. Note that here we take the perspective where the
holographic background and field theory dual are given and fixed - and wish to find
consistent choices of CS levels which retain this duality. Our proposal here is that
there are certain choices of CS levels which would yield slightly different holographic
dualities to field theories which are not contained in [210]. We have focused here on a
simple YPP model without torsion flux for concreteness, but claim that this technique
is generically applicable to a broader class of examples. For general (p, k,ng,n;) the
coefficients Qﬁ})k,n , are given in table and the 1-form symmetry is given by :

with this information one can run a similar analysis in any case of interest.

4.7 Outlook

There are several possible avenues of future work, some of which we summarize now:

The utility of SymTFTs is only being uncovered, and much remains to be under-
stood, both field theoretically, but also in the realization of SymTFTs from string/M-
theory. In this work we derived SymTFT terms from two sources: the differential
cohomology reduction of Cj3, and from gauged isometries of the internal space Y7.

However, these two sources were kept distinct, whereas, ideally, they would be treated
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in a unified manner. If one could identify the appropriate framework, we expect that
this could yield new topological couplings in many interesting setups.

Although the examples that we considered were based on Calabi-Yau cones and
associated Sasakian 7-manifolds (as well as their holographic counterparts), the meth-
ods should equally apply to other string/M-theory compactifications with special or
exceptional holonomy. A natural extension of the work in this chapter is to con-
sider Spin(7) holonomy spaces, which often are quotients by orientation-reversal of
Calabi-Yau fourfolds.

In view of holography, our main example was to study duals to 3d N = 2 SCFTs,
and we focused on the addition of extra U(1) Chern-Simons terms as a resolution to
the parity anomaly of the N' = 2 quiver gauge theories of [210]. One other possibility
is to restrict the gauge group to G’ = (I3, SU(N;)) x U(1). It would be interesting
to examine the full scope of the SymTFT in terms of its constraining power with
regards to the consistency of these field theories.

Another possible future direction is to consider the SO-Sp type 3d SUSY gauge
theories, which are defined as the worldvolume theory of N M2-branes probing a
ct/ Dy, singularity |162]. Here Dy, is the binary dihedral group with order 4k, and the
singularity C*/ ZA?k is the anti-holomorphic involution of the toric singularity C*/Zoy.
To compute the SymTFT in this case, one needs to work out a real resolution of
ct/ f)k It would be interesting to compare the geometric results with the expected
higher-form, higher-group and non-invertible symmetries from field theory [133}233].

The SymTFT is a powerful tool. In our analysis we have focused on two of its
key features: encoding the choice of the global form of the gauge group, and the
presence of 't Hooft anomalies for higher-form symmetries. However, by definition,
the SymTFT in all its generality should encode all symmetry information about its
associated QFT(s). Developing this further, field theoretically, and in conjunction

with string/M-theory/holography provides a very exciting future research direction.
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Chapter 5

SymTFTs and Generalized
Charges from Branes

Recently it has been observed that branes in geometric engineering and holography
have a striking connection with generalized global symmetries. In this chapter we ar-
gue that branes, in a certain topological limit, not only furnish the symmetry genera-
tors, but also encode the so-called Symmetry Topological Field Theory (or SymTET).
In this work we derive the SymTFT and its topological defects directly from branes.
Central to the identification of these are Hanany-Witten brane configurations, which
encode both topological couplings in the SymTFT and the generalized charges under
the symmetries. We exemplify the general analysis with examples of QFT's realized

in geometric engineering and holography.

5.1 Introduction

Branes play a central role in string/M-theory: as carriers of gauge degrees of freedom,
non-perturbative defects, and as the origin of holographic dualities when back-reacted.
Recently it has been observed that in a particular, non-dynamical, limit they give rise
to generators of generalized global symmetries (topological defects) in holography
[41,42] and in geometric engineering of QFTs [43,83].

Much is known about higher-form and higher-group symmetries in the context

of geometric/brane engineering and holography [4,5]70,/111-122,/124-127,/129,|133}-
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139,/141,/142,|144H146]. However, most of this work focuses on the (not necessarily
topological) extended defect operators, i.e. the generalized (or higher-) charges, which
are constructed by wrapping branes on non-compact cycles. These extended objects
then mimic infinitely heavy probes in space-time. In turn, relatively little had been
known about the symmetry generators in the context of geometric constructions —
see however [113,/114] for some discussion in terms of flux operators. The recent
identification of symmetry generators with branes [41-43,83] in a topological limilﬂ

provides a systematic way to study the symmetries of a given theory.

SymTFTs and Generalized Charges. Recent developments in the realm of gen-
eralized symmetries have lead to the idea that separating symmetries from physical
theories can be insightful. The structure that allows for this is the SymTFT. The
SymTFT is invariant under gauging of global symmetries (i.e. symmetries that are
related by gauging have the same SymTFT), and perhaps physically most relevant,
its topological defects encode the generalized charges [68,108]. The separation that
seems to have emerged in string theory constructions, into symmetry generators and
generalized charges is therefore somewhat artificial. There should be a unified pre-
scription that derives from the string theory construction (geometric engineering or

holography) of the SymTFT directly.

SymTFT and Supergravity. In string/M-theory the initial constructions of the
SymTFT were closely related to various topological sectors of dimensionally reduced
supergravity theories, as explained in chapter [2]

Given the recent proposal [41-43,83] relating symmetry generators and branes in
string theoretic settings, it is natural to ask whether branes also provide a realization

of the SymTFT, in particular the topological defects of the SymTFT, as well as

'We will equivalently use both “topological limit” or “topological truncation”. The procedure
we adopt is a truncation to the topological sector [151], which will be explained in more details in

section [52}
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the generalized charges. In this work we propose a general framework for this, and
substantiate it in various setups in both geometric engineering and holography. This
connects also to the general philosophy, that the symmetry and generalized charges

should all have a unified construction in terms of the SymTFT topological defects.

Summary of Results. In this work we will argue that branes (in a certain topo-
logical limit) encode the SymTFT of QFTs that are realized in terms of geometric
engineering or in holographic dualities. As geometric engineering and holographic
theories mostly admit abelian generalized symmetries, we will focus on these sym-
metries. Restricting to these symmetries, this amounts to showing that branes give
rise to BF-terms and (mixed) 't Hooft anomalies at the level of SymTFT topological
couplings. At the level of defects of the SymTFT, we use brane effects to determine
generalized charges of higher-form symmetries (which are the topological defects of
the SymTFT). In the process we also identify condensation defects in terms of branes.

BF-terms for abelian finite higher-form symmetries will be shown to be encoded
in the topological sector of 10/11d supergravity once we also include source terms for
wrapped branes. These have the interpretation of generating the associated symme-
tries. Terms of this type derive from two origins: either from Chern-Simons terms or
kinetic terms in the supergravity action. By including sources, these terms describe
how the geometric linking of wrapped branes in the bulk corresponds to the action
of symmetry generators, i.e. topological defects, on (extended) charged operators of
the QFT.

Including brane sources induces further topological couplings in the SymTFT,
which in some global forms can have the interpretation of (mixed) 't Hooft anomalies.
We will refer to these topological couplings in the SymTFT as anomaly couplings.
They are encoded in various linking configurations of branes in the bulk. We first

give a general procedure for deriving anomaly couplings from the 10/11d supergravity

87



topological sector and Bianchi identities in terms of background fields. Re-phrasing
these relations in terms of brane sources allows us to re-write anomaly couplings as
linking configurations of the branes which generate the associated symmetries.

An important aspect of the categorical description of symmetries is the notion of
condensation completion [234]: i.e. all symmetries can be condensed on topological
defects that are generically defined on submanifolds of spacetime (as opposed to the
whole spacetime). So far the conjectured identification of branes with symmetry gen-
erators [41,42] does not incorporate condensation defects. In this work we argue that
condensation defects can be constructed from a “condensation completed” SymTFT,
where in addition to the BF-couplings in the (d + 1)-dimensional spacetime of the
SymTFT, we also include couplings to either lower dimensional discrete gauge the-
ories (possibly with theta angles), which realize standard condensation defects, or
more generally lower-dimensional TQFTs which give rise to so-called (twisted) theta
defects [68].

In the string theoretic setting we will obtain such couplings by considering brane-
anti-brane pairs (in a topological limit), where the standard Dp-brane charge cancels
out, but topological couplings on the world-volumes survive, which live in lower than
p + 1 dimensions.

The topological defects of the SymTFT encode the generalized charges of a cat-
egorical symmetry [68]. In particular the linking in the SymTFT (for abelian sym-
metries) provides a way to compute the charges. It was already shown in [41] that
in a specific 4d N' = 1 Super-Yang-Mills theory setting, the action of generalized
symmetries on branes can be realized in terms of Hanany-Witten moves on brane-
configurations. This realizes the action of the non-invertible symmetries on 't Hooft
lines in the PSU(N) SYM theory. In this work we show that more generally, the
action of generalized symmetries on generalized charges has as its origin the Hanany-

Witten configuration and moves for branes.
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The general considerations of this work will be illustrated with numerous exam-
ples, both in geometric engineering and holography.

In 4d NV = 4 SYM with algebra su(N) we show how Hanany-Witten configu-
rations can be used to diagnose the intrinsic/ non-intrinsic nature of non-invertible
symmetries. The brane mechanism imposes a simple constraint which allows a classi-
fication of the type of these non-invertible symmetries for arbitrary gauge group rank,

extending previous results |73].

5.2 SymTFT and its Topological Defects from Branes

5.2.1 A Democratic Formulation for Fluxes and Brane Sources

It is convenient to work in a democratic formulation, including both the fluxes and
their Hodge duals. Let us describe our notation in a general setting, for a theory

defined in D + 1 dimensions. Here D + 1 = 10, 11 depending on string or M-theory.

Magnetic Sources. Let F'®) denote the entire collection of fluxes in D + 1 dimen-
sions, labeled by (7) (unrelated to the form degree). In order to avoid redundancies,
we consider only magnetic sources. (An electric source for a given flux F® is a mag-
netic source for the Hodge dual of F(V.) We denote the magnetic source for F¥) by
J@  If the source is localized, J® is delta-function supported on a submanifold W®.

The magnetic source modifies the Bianchi identity for F®),
dFYD = JD =swW®) . D+ 1—dimW9 =degJ =deg FD +1.  (5.1)

At the moment, we are neglecting the effect of possible Chern-Simons terms. Those

will be considered below.

Linking. The (D + 1)-dimensional linking number between two magnetic sources

JO =sW%) and JU) = §(WW) is defined as

Lo (WO, W) = / J0 A g1g0) _ / 4FO A p) (5.2)
Mpy1

Mp i1
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where the dimensions of W® WU) inside the total (D 4+ 1)-dimensional space satisfy
dim W% + dim WY = D | (5.3)

The linking number has the symmetry property
£D+1<W(i)7w(j)> _ (_1)1+dimw<i> dim W) £D+1(W(j)’w(i)) ’ (5.4)

which follows from integration by parts in the last integral in , together with
63).

The compact notation with the symbol d~! introduced in , and used below, is
understood as follows. We assume that W@ WU) are homologically trivial, W® =
oS, WU) = 98U). The chains S®, SU) are usually called Seifert (hyper)surfaces
[235]. We can then write J(W®) = d§(S®), (W) = d§(SY) and interpret
as
Lo (WO, W) = / d5(SDYAS(SW)) = / SVASSD) = WOy 86

Mpa Mpi
(5.5)

where W SU) is the number of intersection points of W® and SY inside

"Mp
Mp.1, counted with signs depending on orientation.

It is also useful to consider a slight generalization of the notion of linking discussed
above, along the following lines. Let’s suppose that the supports W@ WU) span some
common directions along some space V, while extending in distinct directions in the
rest of spacetime, i.e. W) = VY x (). We can define the linking of W® and
WU) using the same formula as above, but focusing on the 4 and YY) parts, whose

dimensions are such that

dim(WO uwbl)) =D . (5.6)

This notion of linking is naturally associated to Hanany-Witten moves in string/M-

theory, as we discuss in greater detail in section [5.3]
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Topological Action in D + 2 dimensions. The Bianchi identities (5.1)) can be

derived from a topological action in D + 2 dimensions,
1 , ) ) )
Spr2 =Y / l “kgFDNAFD — g, FO A JO) | (5.7)
i, Mpyo 2

This is regarded as a functional of the fluxes F(V) (as opposed to the associated gauge
potentials). Extending from D+1 to D+2 dimensions allows us to deal efficiently with

gauge invariance. The quantity x;; is a constant non-degenerate matrix, satisfying

kij =0 if deg FO + deg FY) £ D + 1

5.8
_ (_1)[deg F41][deg F(i)+1]/€ji' ( )

Rij
The symmetry property in the second equality reflects the freedom to integrate by
parts in the F) A dFU) term. It also ensures that, upon variation of F@ the

topological action yields

> ki (dFW - J9) =0, (5.9)
J

which, by non-degeneracy of x;;, is equivalent to dF' () = JU) | in agreement with our
parametrization of magnetic sources.

Let us stress that the relations obtained upon variation of the (D +2)-dimensional
topological action are still to be supplemented by Hodge duality relations in D + 1

dimensions. This is illustrated in the following example.

Example: Generalized Maxwell in D 4 1 dimensions. Let us consider a gen-
eralized Maxwell theory in D + 1 dimensions, with a single p-form gauge potential a,

with field strength f. In the absence of sources, the action reads

2¢2

1
Spr= | gafAxl.  desf—p+l. (5.10)
Mp1

The Bianchi identity and equation of motion read

df = »Jm™ e 2dx f=xT (5.11)
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where e is the gauge coupling, * is the Hodge star in D + 1 dimensions, J© is
the electric source for a, and J™ is the magnetic source for a. In the democratic

formulation we introduce two field strengths and two magnetic currentsﬂ
FO=f  FO—¢e24f  JO=—sgm — J& 7€ (5.12)

The topological action in d + 2 dimensions is of the form quoted above, with labels 7,

J ranging from 1 to 2, and with ;; matrix
0 1
Rij = ((_)(p+2)(D+1—p) 0) : (5.13)
More explicitly,
Spia :/ {F(l) ANdF® — p) A J©2) _ (_)(:D+2)(D+1—p)p(2) AJO| (5.14)
Mpyo

which, upon variation with respect to £, F?) reproduces dFV) = JU) dF®? = j@),

The (D + 1)-dimensional Hodge duality relation that has to be supplemented is
«FO = 2F® (5.15)

Note that in the treatment of [236] such duality relations follow automatically.

Inclusion of Chern-Simons terms. We can include non-trivial Chern-Simons

terms by modifying the (D + 2)-dimensional topological action. The required modi-

fication is a polynomial in the F(® fluxes, denoted CS({F®}),
SD+2=/ [ Zmlﬂ ANdFD + CS({FY}) — Z/@ FO A JU } (5.16)
Mpyo

Note that here, the terminology “CS” stems from the fact that CS({F®¥}) is a closed
(D + 2)-form which is related to the physical Chern-Simons couplings in D + 1 di-

mensions by descent,

Spto= [ I il = osqEe). (517
Mp1

2Notice in particular that in our notation the currents J* are closed forms, as opposed to co-
closed forms, which is perhaps a more common convention for conserved currents in the literature.
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Remember here that F®) are the full set of magnetic fluxes dF® = J@.  Varying

(5.16) with respect to F®) we get

: N OCS({F®
Z kij(dF9) — JWy 4 % =0. (5.18)
J

The notation introduced in this section is summarized in table (5.1

Actions for Type IT and M-theory. To make the above discussion more concrete,
let us describe the (D + 2)-dimensional topological actions for type II (D + 1 = 10)

and M-theory (D + 1 = 11). They are of the form (5.16) with
(F(i):(F07F2)F47F67F87F107H37H7) )

ITIA: r 1
S, = / FydFyo — FydFs + FydFy + HsdHr — Hy <F0F8 — RFy+ 5Fi+ Xg) } ,
\ M1

(F(l) = (F17F3,F5,F7,F97H37H7) )

I1B: < r 1
St :/ FidFy — F3dF; + §F5dF5 + HsdH; + H3(F1 F; — F3F5)] ,
\ M11 L

(5.19)

M: 1
S = / {G4dG7 C G GuXs
M2 6

For simplicity, we have recorded the actions without the source terms. We refer the
reader to the appendix of [3] for further details and for a discussion of the sources
J@ . The 8-form Xg is a higher-derivative correction constructed with the curvature
form [237,[238]. The topological actions (5.19)), in D + 2 dimensions are supplemented

by Hodge duality relations in D + 1 dimensions:
Type II: H7 = €72¢ *10 H3 , Fp = (—1)|‘gJ *10 Fl()fp
(5.20)
M-theory: Gr; = — %11 Gy,
where in Type II, ¢ is the dilaton and we work in string frame in natural units. A
democratic formulation for type II based on 11d Chern-Simons theories is presented

in [239]; a democratic formulation based on a non-topological 10d (pseudo)action is

presented in [240].
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Dimensions
internal space dim =D; D+1=D+d+1

QFT dim = d; SymTFT dim = d + 1; sugra dim = D + 1 = 10, 11

. S:/ [_Zm.p(l)/\dp(ﬂ)_f_cs X0 _Zﬁi.F(l)/\J(J):|
Top Action Mipes | 2 = j {F}) - j

; CS({F®) . . ,
dF® — Z("J_l)z]% =JO J@ supported on W®
Magnetic Sources 5 OFU

D+1—dimW® =deg JW = deg F©) 41

£D+1(W(i)7 W(j)) - /

Mpi1

J0 A g-1g0) _ / JFO A pO)

Mpi1

Linking

dim WO +dimWW = D, (dim(W® U W) = D for HW linking)

Table 5.1: Summary of Notation: we consider a supergravity theory in D41 = 10, 11,
dimensions with fluxes F®. The auxiliary topological action is formulated in D + 2
dimensions. The magnetic source for F is denoted by J®.

(D+2)-dimensional Topological Action and Dimensional Reduction. Recall
that we are interested in studying setups in which the physical spacetime in 10/11

dimensions is of the form (2.11). This corresponds to D = d + D. The auxiliary

topological action in D + 2 dimensions is formulated on a spacetime of the form
MD+2 = Md+2 X LD , (521)

where the external spacetime M, has been extended to an auxiliary Mg, o, while
the internal geometry remains Lp. Our task is to integrate Sp.o on Lp to obtain a
topological action S;,o. Next, we reconstruct the physical SymTFT action S;y; from

Sd+27

auxiliary top. action Syyo = / Spia — SymTFT action Sgyq .
Lp

(5.22)

This arrow represents the descent process demonstrated around (5.17)). These steps

are exemplified below in a variety of setups.
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5.2.2 BF-Terms from Branes

The first aspect to address is how to generate the BF terms of the SymTFTﬂ We
adopt the strategy described at the end of the previous section: we work on a (D +2)-
dimensional spacetime of the form ([5.21)). The fluxes can have background values on
topologically non-trivial cohomologies of the internal manifold Lp, and in the reduc-
tion ansatz they are generically expanded along representatives of these cohomologies.

Generically we face two possibilities that generate BF-terms:

1. BF-terms from the term CS({F®}) in ([5.16)

2. BF-terms from the term x;; F'Y A dFY) in (5.16)).

Let us analyze each possibility in turn.

BF-terms from CS({F®}). The first possibility is when the Chern-Simons func-
tional descend to a non-trivial quadratic wedge product of two fluxes upon compact-
ification on Lp. For instance this is the case when there are non-trivial background
fluxes on Lp or F® are expanded on non-trivial cohomologies representatives.

Let us describe schematically the general mechanism for generating BF-terms in

this case. The relevant ansatz for the higher-dimensional fluxes and sources reads
O — Fé}gg + Zf(ia) A w@ ’ JO = Zj(ia) Aw@ (5.23)

Here w(® are closed internal forms, with integral periods, representing cohomology
classes on Lp, enumerated by the label a. The quantities (% are external fluxes,
while Fél?rg denotes a possible non-zero background value for the F® flux. The latter
is also proportional to the volume form of cycles of Lp and always integrates to an
integer on these cycles because of flux quantization. Finally, we use j%® to denote

the external parts of the higher-dimensional sources J@.

3In some cases these can be pure Chern-Simons term like czdes in 7d. When this happens the
theory is not properly defined as a SymTFT, because of the absence of gapped boundary conditions.
An example of this is provided by 6d (2,0) theories.
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If we start from the topological action (5.16]) in D + 2 dimensions and integrate
over Lp, we obtain a topological action in d+ 2 dimensions with couplings of the form

(we suppress wedge products for brevity)

Saro = U/
My

On the one hand, the constants &, i) are determined from the original constants x;;

1 ia ib ia) :(jb ia ib
[f(ia)(jb)f AT — ko oy S5 + iy £ FOD
+2 4,5,a,b

(5.24)

in (5.16) and the intersection pairing of the w(® forms on Lp. On the other hand, the
terms ov(iq)(jp)f " fU?) originate from cubic terms in CS({F®}) in (5.16]), with the
constants avq)(j») determined as integrals over Lp of internal top forms constructed
with the background fluxes Féi)gr and with the forms w®. Integrality of Fbkgr, w(®
implies integrality of a(iq)(jp)-

The first two terms in the auxiliary (d + 2)-dimensional action (5.24]) correspond
to kinetic terms in the physical action on My,1. As we describe at the beginning of
this section, the kinetic terms of the gauge potential do not capture the fluctuations
of finite discrete Abelian gauge field, and therefore can be ignored in the truncation
to the topological sector. We are left with

Siyz " / > [%a o NI = Ky SO NG (5.25)
Mat2  jabp

This action reproduces the physical consequences of BF term in (d + 1)-dimensions.

Example. For illustration purposes, let us consider the simple case in which we

only have two relevant external fluxes, denoted f(, f® and one o constant,

otz — [ Lo a0 - pengel e
Mgy2

where we have performed a linear redefinition of the external currents to reabsorb
the k constants. An action of this form appears for example in many holographic

setups like AdSs x S® or AdS; x S* in IIB or M-theory respectively, where the we
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have background fluxes such that a = fss Fs=Nand a= fs4 G4 = N. The Bianchi
identities read

af® = ;0 (_1)degf(1)degf(2)af(1) = ;@ (5.27)

Plugging this back into the action and evaluating the exponential of the action with

brane sources we get

. . i
(2™ S 1V 2 ) 1Py = exp (%/ FOEO) A d_lj(2)(2(2))>
Mg

(5.28)
271
= exp (chﬂ(z“), 2<2>)) :

where M) = goM® | £ = 9M@ are (homologically trivial) cycles in My, and we

have used (5.2)) with D replaced by d.

Flux Non-Commutativity. We can now relate the above to flux non-commutativity.

By inserting the above operators on alternative 20 = 9MD 5@ = gA@:

(T 192 1Y — e (2_ [ oEm) A d1j<1>@2>>
Mg

« (5.29)
21 S0 S
= exp <ﬂ£d+1(2(2)7 Zm)) :
Q
This implies that
<€27ri§21 f(1)6§22 f(2)> _ <6§51 f(2)6§§32 f(1)> 627ri£;5 7 (530)

where £, £ are short-hand for the linking numbers £q,, for ¥ and 50 respectively.

If the two branes unlink in the second configuration, i.e. £ = 0, we exactly get flux

non-commutativity as a consequence of the two branes linking in d 4+ 1 dimensions.

Example: 4d N =1 SYM with g = su(M). To exemplify this, consider the holo-
graphic realization of pure super-Yang-Mills (SYM). We first consider the Klebanov-
Strassler solution [64] dual to 4d g = su(AM) N = 1 SYM. This is the back-reacted

configuration of N D3-branes probing the resolved conifold, i.e. the cone of the T"!
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Sasaki-Einstein space, C(T"!) and M D5-branes wrapping S? C T™!. The relevant

flux quantization is
/ F3=M. (5.31)
S3
The ansatz for the higher-dimensional fluxes is
FY = Fy = Mvolgs + fOD A volge+ f1?
F® = Hy = f& (5.32)
FO = F=F}) + &Y Avolge + & Avolgs.
From the IIB topological action, we derive the term
Sapo = Mf@a FBL (5.33)
Mgy

where d = 4. We must also include sources for the external fluxes

dH; = J@ . J® = ;@D Avolp ...
(5.34)
dFs = J® 0 J® = 6D Avolgs + ...,

where we recall that the labels on top of the F®), f and j do not reflect the form
degrees, which can instead be read off from the identification with the IIB fluxes
F3, Hs, F5 in (5.32)) and from their derivatives in (5.34). We then obtain
Sﬂ]?f;sources _ Mf(Q) A f(371) _j(z»l) A f(2) _ j(?’:l) A f(371) . (535)
Mgyo

This is the IR BF term which describes flux non-commutativity [1].

BF-terms from x;; F' OAdFW,  The second case is when the BF-terms or quadratic
terms in the topological action, after compactification on L, are generated by one
of the F A dFY terms in (5.16]). For ease of exposition, instead of considering the
general action we can consider a simpler action in D + 2 dimensions, with only

two fluxes and no Chern-Simons interactions,
Spie = / [F(l) A dF® + (sources) | . (5.36)
Mpy2
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For simplicity we also assume that there is only one pair of relevant cycles onto which

FM F® are expanded, so that the relevant terms in the reduction ansatz are
FO=fAg, FI=FfAg. (5.37)

In the previous expressions the internal forms ¢, ¢ are not closed. Rather, they
represent torsional cohomology elements in H®(Liy, Z) |171,|172], as explained in

greater detail below. The degrees of the forms f, f, ¢, ¢ must satisfy
deg f+degf=d+2, degp+degdp=D—1. (5.38)

The reduction of (5.36)) yields a (d + 2)-dimensional action of the form

supewe = [ agnfopai-ini]. (539
Mgyo
Here the coefficient « is given by
a = (—1)(Hdeg)(1+degd) / dp Ao . (5.40)
Lp

The external source terms j, j originate from the source terms in . From dF(®)
we also get a term in which the derivative acts on f . This term, however, yields f Ad f
in d 4+ 2 dimensions. Such terms will lead to kinetic terms in the (d 4 1)-dimensional
action that we ignore once we consider the theory of flat gauge potentials only, as it
was for the first case.

The integral in the a coefficient can be interpreted as linking in the internal
space: this is illustrated below. We then see how the BF-terms as well as flux non-
commutativity are directly equivalent to the brane and its magnetic dual brane linking
also in external space as it was for the first case. Notice here the branes link doubly,
i.e. both internally and externally. The internal linking of the branes leads to the
coefficient of the BF-term. On top of this the external linking leads to flux non-

commutativity.
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As anticipated above, the non-closed forms ¢, qg encode torsional cohomology

classes. More precisely, let us consider the pairs (¢, @), (gz;, é) with [171,[172]
(d=do, (D=dgp, (5.41)

where ¢, { are positive integers. [!| The pair (¢, ®) models an element of H%+1 (L, 7Z)
of torsional degree ¢, while the pair (¢, ®) models an element of HY%+ (L. 7Z) of
torsional degree {. The relation (® = d¢ corresponds to a statement of the form
3 = OM, where ¥ is the cycle dual to the closed form @, hence of dimension
D—deg¢—1, and M is a chain of dimension D — deg ¢. Similarly, /® = d¢ translates
to /% = OM, where X is a cycle of dimension D — deg ¢ — 1. The torsional pairing of
the cycles &, ¥ can be computed by taking the intersection number between ¥ and

M and dividing by ¢, the torsional order of 3,

Tio(2,3) = %z e M modZ. (5.42)

Using ¥ -, M = fLD ® A ¢ and (5.40), (5.41)), we can write

(1) (des D)1es ), _ / dONG =5 1, M= 00T (5,5) . (5.43)

Ling
We have thus established a general relation between the BF coefficient «, the torsional
pairing 77, (XM, 1), and the torsional orders £, /. We also confirm the integrality
of the BF coefficient a.
To make this approach more concrete, consider the simple example of S%/Z;. We

write the metric in Hopf coordinates as follows:

g= %(dw + AP+ i(dﬁQ + sin? 3d6?) , (5.44)

“Note that this prescription is less geometrically interpretable than the differential cohomology
framework. We employ it here to highlight the physical interpretation of brane linking associated
with various couplings. However, when directly computing integrals we will map such expressions
into linking numbers or differential cohomology integrals which are easier to calculate.
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where both ¢ and 6 have period 27 and A = gcos £df. In the above notation, we

such that

dp = k. (5.46)

We can then compute integrals directly, such as
/‘ bAdD = k. (5.47)
S3 /Ly,

BF-terms from Both Mechanisms. Finally, we can consider cases where both
situations show up, namely where we have non-zero background fluxes as well as
non-trivial torsional pairings. Examples are furnished by AdSs x RP® in type IIB [90]
or AdS; x RP?* in M-theory [241] (the fluxes are F5 and Gy, respectively). In the
standard setting (case 2 above), torsional flux non-commutativity applies to branes
that are electro-magnetic duals in the original D + 1 dimensional theory. In the
hybrid case, the non-zero background flux induces torsional flux non-commutativity
for branes that are not duals in D+ 1 dimensions. As a result, some technical aspects
of the computation of BF couplings in this class of scenarios require a more refined

analysis; we refer the reader to the references above.

5.2.3 Topological Couplings in the SymTFT from Branes

So far we have been focusing on how to get the BF-terms of the SymTFT from
the branes in the holographic or geometric constructions. Dimensional reduction of
the 10/11-dimensional flux sector with brane sources can lead to additional topolog-
ical couplings, which, upon choosing suitable gapped boundary conditions, provides
an invertible topological theory. This corresponds to the anomalies involving finite,

abelian symmetries of an absolute QFT at the boundary. We refer to such couplings
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in the SymTFT as anomaly couplings (with the understanding that these couplings
result in 't Hooft anomalies after certain choices of boundary conditions).

The strategy to obtain these extra topological (non BF-type) couplings is similar
to the one implemented for identifying the BF-terms as linking of branes. It consists
of dimensionally reducing the action on Lp and then applying the (dimension-
ally reduced) Bianchi identities, with sources, E| By substituting the fluxes in
terms of brane sources, we can directly connect the extra topological couplings to
brane linking. We now describe how this works in general, where we limit though
to quadratic or cubic couplings, which are the cases of interest for us. On the other
hand, extending to higher topological coupling is straightforward.

The extra topological (non BF-type) couplings of interest are couplings in the
SymTFT in d + 1 dimensions. As in the previous section, however, we find it con-
venient to describe these couplings using an action in d + 2 dimensions, since this is
what we naturally get from . We use 7@ to denote external currents. Their
form degrees are left unspecified. In each case, it is assumed that they are such that

the integrals we write can be non-zero.
5.2.3.1 Quadratic Couplings

For the quadratic couplings there are two types of extra topological couplings, de-

pending on their expression in terms of the brane sources.

Quadratic Couplings 1. The first case is

[ a/ GO ANaP (5.48)
Mgy2

5 Alternatively one can reduce the Bianchi identities with brane sources directly and construct
the lower-dimensional action from this. The two procedures are equivalent.
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These sorts of terms in d+2 dimensions are expected to combine into a total derivative,

which we can rewrite as an integral in M, of the form

Sextra = a/ dj O Ad@ (5.49)
Mgia

In this case the branes can link in My, where the QFT lives.

Example. A Pontryagin square (by) coupling in the 4d SymTFT for a QFT in
3d is an example of such a coupling. The finite 2-form gauge field b, is BF-dual to
61 in 3d. The topological operators realized by the dimensionally reduced branes, are
identified with the holonomies of /b\l. They are lines that can link in the 3d spacetime,
where the QFT lives. For example, this coupling can be found in setups where a stack
of M5-branes is wrapped on a compact 3-manifold >3 with an appropriate topological
twist to preserve 3d N = 2 or N/ = 1 supersymmetry. In this case, the link geometry
L, is an S* fibration over ¥3. Depending on the geometry of X3, L; can admit non-
trivial torsional cohomology classes of degree 2. Expansion of G4 onto such classes
yields both discrete gauge fields 2-forms as by, and PB(by) couplings in the SymTFT,
by applying the techniques of [65], see [242] where this will be utilized. Couplings of
the form PB(b2) are also found in the SymTFTs of supersymmetric 3d QFTs realized

in M-theory using geometric engineering or M2-branes [2].

Quadratic couplings 2. The second case is

Sextra = @ / JO AP = (=) / FONa P (5.50)
Mo

My

ext

This is instead a case where the two branes link in M1, where the SymTFT lives.

Example. A coupling
by U Bock(by) (5.51)

in a 5d SymTFT for a 4d QFT is of this type. We explain how Bockstein terms

in anomalies appear in our brane-linking picture around ([5.69). Here, we motivate
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this term on physical grounds - the associated topological generators have dimensions
such that their linking pairing must be of this form. Here by, b}, are Zy 2-form fields,

and Bock is the Bockstein homomorphism associated to the short exact sequence
0= Zy = Zne = Zy — 0. (5.52)

The dimensionally reduced branes are identified with the holonomies of 32, 3’2, the 5d
BF-duals of by, t),. Thus the brane sources are 2d surfaces, and indeed can link in the

5d spacetime where the SymTFT lives.

In both these quadratic couplings, a is an integer constant coupling coefficient
which is determined by an integral over Lp of non-trivial fluxes components over the
internal space. It depends on the representatives of non-trivial cohomology or non-
trivial geometric linking of cycles in the internal space, wherever we face the first or
the second situation described in the previous section, respectively. In addition a is

an integer because of flux quantization.
5.2.3.2 Cubic Couplings

For cubic couplings we face three distinct possibilities.

Cubic Couplings 1. The first case is
Sextra = a/ GO AdTE A6 (5.53)
Mgi2
Terms of this form correspond to an integral in My, of the form
Sextra = a/ d YO AT O A a O (5.54)
Mgy

This is a triple linking configuration (cf. Milnor’s triple intersection number [243]).
We can formally recast it as a standard linking in M., namely a quantity of the
form fMd+1 792 A d=153) with the identification

§12) = g7 A g3 (5.55)
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Recall that j is supported on a cycle £ that is the boundary of a chain M,
which is usually referred to as Seifert (hyper)surface [235]. Then the RHS of
represents the intersection inside My, of the Seifert surfaces M, M@ associated
to ;1. 5@,

Example: B? Anomaly in 5d. A cubic coupling bybyb, in the 6d SymTFT of a
QFT in d = 5 dimensions, such as have appeared in [65[244]. Here by is a Zy discrete
2-form. The dimensionally reduced branes are again identified with the holonomies of
the BF-dual field 33 in six dimensions, which arise from M5-branes wrapping torsional
3-cycles of L,,. They are therefore 3d surfaces, which in six dimensions can form a

non-trivial triple linking configuration as in ((5.54)).

Example: 4d N =1 SYM with G = SU(M). This theory has mixed 't Hooft

anomaly

1 B
A:—27TM/A1UQ3(2 2),

where B, is the background for a Zg\lj) 1-form symmetry and A; is the background for a

(5.56)

Zg}& 0-form symmetry. Using the Klebanov-Strassler solution, a detailed supergravity
origin of this anomaly is given in [1},41].

We continue with the field notation introduced around . The generator of
the O-form symmetry was identified with a D5-brane wrapped on S* C T! in [41].
We introduce a source for the external field corresponding to background for this
symmetry via

dFy =JY g0 = 30D Avolge + ..., (5.57)

where we use the expansion in ([5.32)), and with (5.34) we can rewrite the anomaly as

follows
1

1 (L) A g-15BD) A =13 5.58

Mgy
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where d = 4 and the form degrees of j*1) and 71 are 3 and 2 respectively, and they

can be read off from ((5.32)), (5.34)) and (5.57)).

Cubic Couplings 2. The second case is

Sotra — / JO NGO A (5.59)
Mgy2

with corresponding term in My, of the form
Sextra = a/ FOANdD A O) (5.60)
Mgt

Again this is interpreted as suitable triple linking configuration. We can formally
recast it as a standard linking in Mgy, namely a quantity of the form [, Mys J (12) A

d='j® with the identification
§12) = 5 A g=15@) (5.61)

The RHS represent the intersection inside M 1 of the cycle associated to V) with

the Seifert surface associated to 5.

Example. The coupling bybyBock(a;) in the 6d SymTFT of a QFT in d = 5 di-
mensions. Here by is a Zy 2-form field, a; a Z); 1-form field, and the Bockstein
homomorphism is analogous to the one introduced above in the byBock(b}) example[f]
The dimensionally reduced branes provide the holonomies of the BF-dual fields in

six dimensions, 33 and ay, and are therefore 3d and 4d surfaces, respectively. Such

3d-3d-4d system in 6d can exhibit the triple linking described in ([5.60)).

6This example may be realized using 5d gauge theories. More precisely, we may start with a 5d
gauge theory in which the U(1) instanton 0-form symmetry and the center 1-form symmetry have a
mixed anomaly, encoded in a coupling bobs fo in the 6d SymTFT, where f5 is the field strength of a
continuous 1-form gauge field. If we restrict to a Zjy; subgroup, this coupling becomes bobsBock(ay).
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Cubic Couplings 3. The third case is

Sextra = CL/ ](1) A ](2) A ](3) ) (562)
Mgy2

corresponding to the following in My, 4,

Sotra = / JO NGO A (5.63)
Mgt

This is again a suitable triple linking configuration. We can formally recast it as a
standard linking in My,,, namely a quantity of the form fMd+1 FI2 A d7150) ) with
the identification

§12 = j A 5O (5.64)

The RHS represent the intersection inside My, of the cycles associated to j(1), 2.

Example. An example is the coupling a;Bock(a;)Bock(a;) in the 5d SymTFT of
a 4d QFT. Here a; is a Zy 1-form gauge field, and Bock is the same Bockstein
homomorphism as in the previous examples of this section. The dimensionally reduced

branes give the holonomies of a3, the BF-dual of a; in 5d, and are therefore 3d surfaces.

Three such branes can link as in (5.63).

Example: G Anomaly of 4d N'=1 SYM with G = SU(M). There is a pure

O-form symmetry anomaly [41]

2M2
&W:{/—“4 F3, (5.65)

where Fy, = dA; is the field strength of a background gauge field for the 0-form
symmetry and N = kM is the number of D3-branes. In terms of brane sources, this

is a pure O-form symmetry anomaly of the third type

2

K
+(1,1) A -(1,1) A +(1,1) 5.66
300 J 7 (5:66)
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where using (5.32) and with df ")) = 2MF, (see Appendix A of [41]), we find

j(l,l)
Jo = N (5.67)

It would be interesting to compare this with a direct field theory analysis, in the large

rank limit.

For the cubic coupling the coefficient, a, is integer and constant because of flux
quantization and depends on the internal sources and how they integrate on Lp non-
trivially. In particular, a can originate from either situation listed in the previous
section depending on how the fluxes and their Bianchi identities get compactified.
We notice that the three cases 1, 2, 3 listed above correspond to triple linkings of

type 0, 1, 2, respectively, in the notation of [87], see also [235].

5.2.4 Anomaly Couplings as Charges of Defect Junctions
from Branes

These extra topological couplings in the SymTFT can lead to anomalies of an absolute
QFT once suitable boundary conditions are chosen. This is also true for the BF-
couplings, there are some choice of boundary condition for which some left over BF-
couplings can lead to a quadratic anomaly. The choice of boundary condition depends
on the specific theory itself. In terms of branes these corresponds to picking a radial
direction of the SymTFT and understanding how the branes providing topological and
charged defects can extend in My, ;. For instance charged defects come from branes
extended in the radial direction (the direction perpendicular to the boundary where
the relative QFT lives), i.e. the field electrically charging the branes has Dirichlet
boundary condition.

Whereas topological operators comes from branes parallel to the boundary, i.e. the
field which electrically charge the brane is freely varying. From this point of view it
is easy to interpret the quadratic anomaly as the charge of a brane, corresponding to

a topological defect, with respect to the same or a different brane, corresponding to
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the same or a different topological defect. These correspond to a pure or a mixed 't
Hooft anomaly, respectively. A cubic anomaly can be interpreted as charges of a brane
intersection, corresponding to a junction of topological defects (equal or different, for
pure or mixed 't Hooft anomalies respectively), with respect to the same or another
brane, corresponding to the same or another topological defect (for pure or mixed ’t
Hooft anomalies respectively). The charges computed here correspond to the number
a which is an integral over the internal manifold times the linking of the branes in
the external space as specified for the different cases of quadratic and cubic extra
topological couplings above. The anomalies can be interpreted as an ambiguity of

the topological defects whenever they link or unlink in the radial direction.

Example 1. We now illustrate the above ideas for two concrete classes of mixed
anomalies for discrete p-form symmetries. Firstly, let us consider an anomaly action

of the schematic form
A:a/ AQ AW S Tpi=d 41 (5.68)
Mgy j=1

Each Ag) is a discrete background field for a global symmetry, a cohomology class
of degree p;. The constant « is the anomaly coefficient. We denote the topological
defect implementing the global symmetry associated to Aé? as Dc(lj_) Py (Notice that
these topological defects live in d dimensions.) Let us consider topological defects
Dg), cee D,(,Z) in generic positions in d-dimensional spacetime. They intersect along
a locus of dimension p; — 1. The mixed anomaly means that this intersection
has non-zero charge (proportional to a/) under the topological operator Dfll_)pl. For

ease of discussion, we have singled out the symmetry associated to Aéll), but clearly

analogous statements can be made by singling out any other AI(DJJ'.).
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Example 2. Next, let us consider a mixed anomaly for two finite global symmetries,

of the form
A= a/ Aq—pBock(B,) . (5.69)
Wit
We denote the topological defects operator generating the global symmetries asso-
ciated to the background fields A;_,, B, as DI(,A), Dfﬁ;, respectively. For sim-

plicity, we assume that B, is associated to a Zj (p — 1)-form symmetry. Then
Bock denotes the Bockstein homomorphism associated to the short exact sequence
/RN AN Zi — 0. This anomaly can only be detected on spacetimes with
torsion, because Bock(B,) lies in the torsion subgroup of HP™ (W, 1,7Z). An inter-
pretation in terms of junctions of topological defects can be given along the lines of
appendix F of [7] (and many subsequent works). The relevant torsion in d dimensions
is in HP*Y(Wy,Z), or Hy_,_1(W4, Z) by Poincaré duality. We thus consider a torsional
(d — p — 1)-dimensional cycle M,_,—1 in d dimensions, satisfying rMy_,—1 = ONg4_p.
We may insert a topological defect Dfﬁ; supported on Ny_,, with M,_,_; regarded as
a codimension one junction inside DEE) . The anomaly means that this junction

p

on M,_,—1 has non-zero charge (proportional to ) under the topological defects Di(,A)
(indeed, they link in d dimensions). In the action of the anomaly theory, the
Bockstein map can be “integrated by parts” and the roles of A and B in the previous
discussion can be exchanged. This sort of anomaly can be found, for example, in 4d
gauge theory with gauge algebra su(N), with N = ¢/ for integers ¢ > 1, ¢/ > 1. We
can specify a global form of the theory with both non-trivial electric and magnetic
1-form symmetries. The mixed anomaly between the latter is of the form with

d=4,p=2.
5.2.5 Condensation Defects from Branes

From a symmetry categorical point of view the condensation completion (or Karoubi

completion) corresponds to adding all possible condensation defects. We have seen
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how this is realized in terms of the SymTFT by including the couplings to lower-
dimensional DW-theories in (2.7)).

We now turn to the string theory interpretation. For definiteness we work in type
II, but similar remarks apply to M-theory. Let us consider a Dp-brane on Mp,.
We are interested in writing down a topological action, formulated on an auxiliary
manifold M,,5 in one dimension higher, that captures the topological couplings on
the Dp-brane. Moreover, we also want to capture the kinetic term fy A xfy from the

DBI action using the auxiliary topological action. We propose the following,

~

SoP, = /M » {fpl A dfy + (efzqu %)Hj . (5.70)

q

Here f, is the field strength of the gauge field on the Dp-brane and f;_l is its Hodge
dual in M,;;. The quantities F}, are the RR fluxes, pulled back from the bulk, and
we have also included the standard A-roof terms from the Wess-Zumino couplings,
for the tangent and normal bundles, respectively. If we consider an anti Dp-brane,
we flip the sign of action |Z|

We want to argue that considering a combined Dp/Dp system provides a possible
stringy origin for the condensation-completed SymTFT action . We proceed by

considering a couple of illustrative examples.

Example: 4d N' = 1 Holographic dual. We continue with the Klebanov-Strassler
example [5.2.2l For this we need to consider the action of D5-branes. Their action is

given by

5%35 = /M {J?zl Ndfy + Fr + foF 5 + (%fz2 + pl(N)4;pl(T))F3

i (%f?’ 1 2@ 4;]’1(T>)F1} | (5.71)

"The sign of the DBI term for a brane and an antibrane is the same. The flip in sign in the BF
term reformulation of the DBI kinetic term is compensated by a flip in sign in the Hodge duality
relation between fy and f,_;.
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As a result, the combined action for a D5-brane/anti-D5-brane reads

s [ {}a Ny — Ty hdfy+ (= )P+ 5o~ F)(fa+ 1)y

I3 + fofs + [ +P1(N) —p1(T)>F1} _
6 48

+(f2 - fé)( (5.72)

We have used a prime to denote the gauge field f; on the anti-D5-brane and its
partner ]/Z.

In the Klebanov-Strassler holographic setup, the D5/D5 system is wrapped on
M; = M, x S® with M units of F3 through the S3. Our task is to integrate the
7d topological action on S%. The discussion parallels exactly the two cases discussed
in section . The terms ]?4 A dfy would correspond to kinetic terms in the lower-
dimensional theory on My, which we neglect because we are studying the topological
sector. Next, the terms quadratic in fo, f5 yield a 4d description of a set of abelian CS-
terms in 3d. Moreover, Fy admits a non-trivial component along S3: from (fy — f3)F5s
on S we get a coupling of (fo — f4) to a 2-form bulk field, denoted go. In summary,

the relevant terms are

59— [ |G = Bt £+ (e~ B (5.73)

We suggest the following interpretation, making contact with the general expression
for the condensation-completed SymTFT. The combination f, — f; is identified
with the localized field a; in the lower-dimensional DW type theory in the SymTFT
that accounts for a class of condensation defects. The combination fs+ f5 corresponds
instead to a;, the BF-dual to a; in the lower-dimensional DW type theory, Finally,
g2 corresponds to one of the bulk fields b,41 (here p = 1). This can be seen more
explicitly in the case of M odd. We perform a field redefinition implemented by an

integral, unimodular matrix, and we rename g,

(@ - ((1) D (3%1) g2 =br (5.74)

112



We get the action
~ K
/ {Mal/\dal—kal/\bg+§a1/\da1 s K=M. (575)
M3

The Lagrangian in bracket describes the (Z,,)x discrete gauge theory [212], coupled
to the bulk field . On a spin manifold, K can be any integer and the periodicity is
K~ K+ 2M if M is even and K ~ K + M if M is odd. We then see that, for M
odd, the Lagrangian on a spin manifold is equivalent to

/ [M&l N dCLl + a1 A bg s (576)
M3

which matches (2.7). For M even, (5.75) still describes a condensation defect, but

with non-trivial discrete torsion K = M, see e.g. appendix B of [32].

Example: 4d N =4 s0(4n) SYM. Let us now discuss an example that illustrates

the importance of the terms ]?p,ldfg in (5.70)) in the presence of torsion. The action
(5.70) for a D3-brane reads

5?3:/1\4 {Ll?z/\df2+F5+f2F3+ (%f22+p1(N)4;p1(T)>Fl} ; (5.77)

and therefore a D3/D3 system is described by

SSD?’/D?’:/M |:.]?2/\df2—fé/\dfé‘i‘(f2_fé)F3+%(f2_fé)(f2+fé)F1:|~ (5.78)

We consider the holographic dual setup to 4d ' = 4 SYM with gauge algebra so(4V).
In this case M5 = My x RP!, with RP! regarded as an element of H;(RP?,Z) = Z,.
From the point of view of Mj5, the RP! factor provides a torsional class of degree one
t1, of torsional order 2. Following the approach of [171}/172], we can model this by

introducing a pair of differential forms on RIP!,
20, = ddo , (5.79)
see (5.41). We expand f; and J/C; onto ¢y,

fo=Fado+..., fo=Tato+... (5.80)
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and similarly for the primed fields, and we have

/ [fzdfrﬁédfé}:[ / d%%] / [fm—féfé+--- C (581)
My xRP? RP? My

As in section [5.2.2] the terms where the derivative acts on the F’s can be neglected,
because they describe kinetic terms after integrating over RP'. The integral of d¢odg

encodes the torsional self-pairing of ¢,

/ ddodo = 2 . (5.82)
RP!

We compute this integral, and similar expressions throughout this work, using the
methodology described around by mapping to a linking number computation,
or equivalently using the known result in differential cohomology. Finally, we also
expand the bulk field F3 onto (P, ¢g): the relevant term is Fy = go A ®1. As a
result, the term (fy — f})F3, after integration on RP!, yields a term (Fy — Fp)ge. In

conclusion, we arrive at the following set of couplings,
§P3/D3 — / {2@ NFy— 2Fy NFy+ (Fo— Fo) N gal - (5.83)
My

Because of S-duality, however, we know that the presence of a coupling of fo to Cs
implies the presence of a ]?2 (which is the electromagnetic dual of f5) to By. We then

expect the full set of relevant couplings to be
SP3/D3 / [zﬁz NFo=2F5NFy+ (Fa— Fo) N go+ (Fo— F3) Aha| . (5.84)
My

Here we have expanded Hs onto ®; as Hy = hy A ®;. The full action might be derived
using the SL(2,Z)-covariant formulation of [245].
To make contact with (2.7) we perform a redefinition implemented a matrix in

GL(4,7), and we rename go and ho,

Fa 1 0 1 1 daq

5 00 1 1| |da -
El7(t1 0 ofldg | TR =k (5.85)
F 11 -1 0/ \da,
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We obtain the action

K ~ K’ =
/ KQ&ldm +a1b2+3a1da1) + <2&’1da’1+a’lbg+7a1da’l)} , f((, _ i " (5.86)
M3 :

We recognize two copies of a (Z))x discrete gauge theory [212] with M =2, K = 4.

On a spin manifold with M even, K ~ K + 2M and hence the above action is

/ {(261da1 + albg) + <2Eillda'1 + a'{b})} y (587)
M-

matching with (2.7)).

equivalent to

5.2.6 Non-Genuine and Twisted Sector Operators

Non-genuine or twisted sector operators arise from branes that couple to backgrounds
which cannot necessarily end on the boundary, i.e. do not have Dirichlet boundary
conditions.

Lets see how this is encoded in terms of the branes. If we were to end a brane
that is electrically charged under a (p 4+ ¢ + 1)-form field C, 4,41 on the boundary,

then imposing Neumann boundary conditions on B%™ reads

Neumann: 0 Ciji.] ANw(E,) =0, (5.88)

Bsym
where 7 is the direction transverse to the boundary (i.e. the radial direction), i,j =
1...p 4+ 1 denote the direction parallel to B®*™, the brane can also wrap internal
submanifold of ¥, C L(X), and w(¥,) is transverse to the SymTFT. The internal
manifold ¥, is important to determine properties of the (p + 1)-dimensional defect
of the SymTFT, but it is a spectator with respect to the boundary conditions, hence
we can put w(X,) aside for the moment.

Expanding out the Neumann boundary conditions along the direction of the

SymTFT and restricting to the symmetry boundary we obtain

(arCZJ - a’LCTj)

There are various configurations we can consider:
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e Symmetry generators: for a brane without a radial component, this means we
simply have

0,Cij.. =0, (5.90)

which corresponds to the projection in figure of the brane parallel to the

boundary. This gives rise to (p+1)-dimensional (topological) symmetry defects.

e Twisted Sector: if the second term in is present, it electrically charges a
(p+q)-brane ((p+ 1)-dimensional operator when integrated on w(3,)) extended
along the radial direction ending at the boundary in a p-dimensional operator,
which forms a junction with a (p+ g)-brane ((p+ 1)-dimensional operator when
integrated on w(X,)) extending along B¥™. When we consider the first term
as well, this correspond exactly to the L-shaped configuration, where the gauge
transformation of the first term is cancelled by the gauge transformation of the

second, in figure [2.4]

Example: BF-couplings in AdS;. The simplest example to consider is the BF-
theory for Zy 2-form fields in 5d, which is the SymTFT for the 4d SU(NN) maximal
SYM theory

SSymTFT =N bg A dCQ . (591)
Ms

For example, imposing the boundary conditions
by Dirichlet , ¢2 Neumann, (5.92)

the topological defects ng), which are realized in terms of F1-strings, can end on the
physical boundary and give rise to line operators in the gauge theory. On the other
hand the D1-strings, which give rise to the bulk topological defects Qéc), cannot end.

There are two configurations:

. Qgc) project parallel to the boundary as in figure and give rise to the topo-

logical defects D, that generate the Zg\l,) 1-form symmetry.
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. Qgc) project in an L-shape as in figure and give rise (after interval compact-
ification) to twisted sector 't Hooft lines, i.e. non-genuine, in this case, twisted

sector, line operators that are attached to a topological surface.

This is of course well-known in the context of this standard holographic setup [7,[151]

and was recently expanded upon in |246].

5.2.7 Example: 4d N =4 so(4n) SYM

It is known that theories with an array of global structures based on the algebra
s0(4n) contain non-invertible topological operators [28]. In this section we will use
the holographic dual of these theories to study the SymTFT, in particular the BF

terms.

Holographic Dual. The holographic solution relevant for these theories is 11B
on AdS; x RP® [203]. The various global forms of the gauge group correspond to
different choices of boundary conditions for various bulk gauge fields [246].

We refer the reader to [90] for more details on this setup. For convenience we
collect the co/homology groups of the internal space RP® with un/twisted coefficients
below

H*(RP®,Z) = {Z,0,75,0, 75,7}, H*(RP*,Z) = {0,Zs,0,Z,0, 75}

_ (5.93)
H,(RP*,Z) = {Z,74,0,75,0,Z} , H RP* Z) = {Zy,0,Z5,0, 75,0} .

For so(4n) the dual supergravity solution contains 5-form flux

/ Fs=2n. (5.94)
RP5
BF Terms.  Before we begin, we introduce notation for the forms on which we
will be expanding fluxes and sources
Hy(RPSZ): (s, D), doy =2, ie{0,2,4}

(5.95)

H;(RP°,Z) : (¢, ®;), do; =2®;, i€{l,3}
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The BF terms come from more than one source in this case since we have both flux
and torsion in the internal space.
First, we consider terms coming from the IIB Chern-Simons term. For this we

require the fluxes: _
FO=Fy=fOANgp + ...,

_ (5.96)
F® =Hy=fO AN+ ....
Due to (5.94)), we obtain a term
Siis D / onfO A f@ (5.97)
Mgy2
Including sources _
df, = JW . g = jO APy + ...,
(5.98)

dH, = J® . J® = @O AQ,+ ... .
We recall that the form degrees of | f and j are not specified by their labels on

top, but they can be read off from ((5.96]) and (5.98)), as well as from (5.100)), ((5.102)
and (5.106|) for what follows, once identified with the II1B fluxes Hs, F3, F5, F7, H; and

derivatives thereof. We then have
S;Sf;—sources D/ 2nf(1) A f(2) _ f(l) /\j(l) _ f(2) /\j(2), (599)
Mgy2

where d = 4. Now we look to BF terms coming from r;; FOdF terms. There are
three such terms. We reduce the IIB kinetic terms H3 A dH7, F3 A dF; and F5 A dF5
in turn.

Beginning with the first,
F® = Hy = [0 A g+ ..., (5.100)
The new BF term coefficient comes from the integral identity
/ doo A by = 2. (5.101)
RP5
Including the F1 string source for Hy;
dHy = J® :  JO® = j® A . (5.102)
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Finally, we obtain the new contributions:
ng;sources D) / 2f(2) A f(?):‘g) + }V(&g) AN j(3) . (5103)
Mgy
For Fj there is also the Bianchi identity
dFy =JW . JW =W A, (5.104)

There is an identical contribution from the F3 A F; term which we denote with (4)
superscripts

S{]?f;—sources 5 _/ 2f(1) A }*(4,5) + f(4,$) /\](4) ] (5105)
My+2

Lastly we also consider the dF5 A FP term:

FO = Fy =[O N g+ [OD N s,
(5.106)
dFs = J® 0 J® = jGD A D+ jOI N D

such that we obtain
Scl?f;sources S / 2f(571) A f(513) _ f(5v3) /\j(5v3) _ f(571) /\j(5’1) . (5107)
Mgy

Putting all of these pieces together, we match the BF terms of [90}246].
The so0(4n) theory also has an additional topological coupling, which depending
on boundary conditions lead to a mixed anomaly,

1

./4 - = / AlcéBg ; (5108)
2 Mgi1

where A; is a background for Z§°> and CY, By are both Zgl) backgrounds. We can
re-write this coupling in terms of sources using the identifications (e.g. using table

.3)
f@ o dBy, fOwdoy, fOU o dA;. (5.109)

The anomaly term comes from the IIB cubic Chern-Simons coupling which by using

the Bianchi identities ((5.102)), (5.104]) and (5.106|) can be re-written in terms of brane

sources as

1
A= —/ d O A GO A g8 (5.110)
2 Mgy
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where the coefficient is given by the following integration on RP?,
1 ~ ~ ~ ~ 4 1
- d¢4/\d¢4/\¢1 = (I)4ACI)4/\d q)l = — (5111)
8 RP® RP® 2
This is cubic coupling of type 1 (5.54) coming from three type of brane sources: NS5
on RP*, D5 on RP* and D3 on RP!, which model the topological defects once properly

compactified on the torsional cycles.

5.2.8 Example: Duality and Triality Defects for N’ = 2 [As, D]
Theory

In this section we use our general setup to construct symmetry defects as branes in
the isolated hypersurface singularity (IHS) (Calabi-Yau threefold) describing the 4d
N = 2 [Ay, Dy] SCFT in IIB string theory. This theory admits generalized sym-
metries [93],117,/120,|129,247). In particular, we will propose a new construction of
symmetry defects as lower-dimensional branes induced by world-volume flux for a
higher-dimensional brane. The singularity X is described by the following hypersur-
face equation [117],

2]+ 25+ a4+ a2 =0cCC. (5.112)
We construct now the symmetry defects wrapping topological cycles of the link ge-
ometry, 0X = L(X). There is no flux in the background, but L(X) has non-trivial

torsional cycles [117]

Ho(L(X),Z) =& f = Z, BT . (5.113)

In the last equality we specialize to [As, D4]. Wrapping D3-branes on these torsion

cycles results in the topological defects of the SymTFT.

SWhere [pps Dy A Dy Ad-'®; is identified with the differential cohomology integral of [90], i.e.
fmﬁ lg % 18R & #NSNS - This identification similarly holds for the coefficients of the BF couplings,
fR]P’5 d(EO A 54 = 2 means that fmﬁ 50 A d_1<f>4 = %, the latter is identified in differential cohomology
Jops ta * iz = 3.

120



There is a non-trivial linking of the generators obtained by wrapping D3s on the
two Zsq factors

1
Lll’lkL(X)(’}/,’}//> = 5 y v e ZQ, ’)// S Zl2 . (5114)

Depending on the symmetry boundary conditions on B*™, these branes become sym-
metry generators or generalized charges.
We now apply the general procedure described in section for the case of

torsional cycles. For instance we have that
I = dFs = gy Ndoy — gy Adgy + ..., (5.115)

where g3, g5 are flat in the space where the SymTFT lives, My, and we describe the

torsional cohomology in the continuum as
and from (5.38)) and ([5.39) we get the following BF action

SBF:Oé/ gg/\gé, (5117)
Myto

where
o = —/ ¢f/\d¢f/:2, (5118)
L(X)

which is exactly analogous to the BF-action for the bulk theory of N” = 4 su(2) theory.
Let us now go back to the IHS equation (5.112) and look at the complex struc-
ture deformation that corresponds to the marginal coupling of the theory [93]. The

deformed equation reads
o34+ o+ 2+ 23+ Taowsry =0 C CH (5.119)

where 7 corresponds to the marginal coupling of the SCFT and therefore does not
desingularize the geometry, as expected when activating the deformation correspond-

ing to marginal couplings of the theory. This 7 also corresponds to the complexified
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gauge coupling of the su(2) when we think of this AD theory as a gauging of three
AD[A;, A3 theories, and it is identified with the complex structure of the torus when
the theory is constructed via compactification of the EFg minimal 6d N' = (1,0) SCFT
on T2 |93]. We now exploit the identification of the complex structure deformation
parameter with 7 in (5.119) and use how S-duality, S, and the ST transformations
act on it, to argue that S and ST are symmetries of the IHS equation, hence of the
geometry, when 7 = €2 ¢"™/3 respectively. For instance, the S-duality action by
definition exchanges the magnetic 1-form symmetry with the electric one at an 5d

effective topological field theory (BF-theory) level. This is indeed achieved when S

and ST act on the torsional two cycles as follows
(@f, CIDf/) — Ms(q)f, (I)f/), (q)f, q)f/) — MST(qu, CIDf/) (5120)

where Mg and Mgy are the monodromies defined by

0 1 0 1
e (O ) e (9 1), 5

At this level the symmetry acts geometrically, and the topological defect generating
self-duality and -triality in this frame are hard to engineer as branes ]| However, we
can activate world-volume fluxes on torsional cycles that induces (p, ¢)-string on the

D3-brane.

Induced (p,q)-String Charges on D3-branes and Symmetry Generators.
In this section we will draw a connection between two symmetry actions. Above, we
demonstrated that there is a geometric symmetry action which acts on the torsional
two cycles. Below, we will show that by turning on different (p, ¢)-string charges on
D3-branes wrapping these cycles - there is a second symmetry which acts in the same
way, namely the one generated by 7-branes. Combining these two symmetries gives

duality/ triality symmetries of the field theory.

9See [83], for a geometric construction of these defects as degeneration of the link geometry at
the boundary.
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Instead of expanding the 5-form fluxes on torsional cycles we consider (p, q)-string

charges on the D3-branes. In terms of magnetic sources we have
JDl — fD3(5(D3), JFI — (f/)D36<D3) , (5122>

and we choose
f2? = dgy, (f)P? = doy . (5.123)

where the torsional pairs (¢, ®5) and (¢y, Py) have been introduced in (5.116). This

induces the backgrounds for the 3-forms Hj, F3,
H3 - h3 + d¢f, Fg - f3 + d(bf/ 5 (5124)

where the second identity follows from the SL(2,7Z) covariant formalism [245], and

we also turned on flat f3, hg in M, ;. Now the magnetically sourced Bianchi identity

gets modified,
% = APy = g3 Nddy — gy Adey = fo A ddy — hy A doy (5.125)
This implies that we can identify
g3 [z, g3 ha. (5.126)

It is now easy to verify that in this frame the action of S and ST on the torsional
cycles is equivalent to the action of the monodromy matrices Mg and Mgr
on the (f3, h3) pair and hence on the electrically charged (p, q)-strings. As we know
from N = 4 and its holographic construction, the self-duality and self-triality defects
are engineered by 7-branes where the corresponding monodromy matrices act on
the (p, q)-strings that generate the 1-form symmetries. In the next section, we will
study properties of the SymTFT, the topological defects that generate the 1-form
symmetries of the theory at the boundary from (p, ¢)-strings, and the self-dualities and

-trialities topological defects from 7-branes. To summarize and conclude, mapping a
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’ Stringy Origin \ Symmetries ‘

[sometry acting on
jef € Hy(L(X).Z)
P, q)-strings induced by -branes with monodromies
i induced b 7-b ith dromi
fD3 = d(bf, (f/>D3 = d¢f! on D3 Ms, MST S SL(Q,Z)

D3 on Hy(L(X),Z)

Table 5.2: Summary of topological defects construction in [Ay, Dy4| via IIB branes on
L(X) where X is the IHS defined in (5.112). D3-branes with and without world-
volume flux provide two alternative but equivalent description of topological defects
which generate the same symmetry action.

discrete isometry of the geometry, which generates duality and triality defects for the
engineered QFT, to the standard action of SL(2,Z) on (p, q)-strings via monodromy

matrices generated by 7-branes wrapping L(X) is possible only when a world-volume

flux on the D3-brane along torsional cycles is turned on, see table [5.2]

Example: 4d N = 4 from Type IIB. In addition, as a cross check of our proposal,
we can also apply this construction directly to the 4d ' = 4 SYM theories engineered
in IIB on X = T?xC?/T apg, with link L = T%x S3/T". Consider the A-type theories,

then L(X) has non-trivial torsion link homology
Tor(Hy(L(X),Z)) = f & § = Zy & Zly, (5.127)

where

f=%10m, §f=%8®mnm, (5.128)

with torsional v, € H,(S/Zy,Z) and X} & ¥, = H,(T? Z). We can wrap D3-branes
to generate topological surface defects of the SymTFT. The action of duality and
triality defects corresponds to a finite subset of large diffeomorphisms of the T2 acting
on its complex structure. For fixed values of the complex structure 7 = ™2, ¢i/3
they provide symmetries of the 4d QFT, where the action on the 1-cycles of the torus
induces an action on the torsional part of Hy(L(X),Z) via (5.128). We can then turn

on fluxes on the D3-brane world-volume to map the topological defect to induced
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(p, q)-strings and to 7-branes with monodromies acting on the strings like for the
[Ay, Dy theory case.

We can extend this also to more complicated examples, straightforwardly when
the dimension of the conformal manifold is 1, or when we are able to identify the
action of S and ST on a l-dimensional subspace of the conformal manifold, [93].
It would be also interesting to generalize these to theories with a more complicated

conformal manifold. We leave this to future work.

5.3 Hanany-Witten Effect: Generalized Charges
and Anomalies

We have so far introduced the notion of charges of topological defects in terms of
brane linking. In all of the above, we explained the brane origin of the action of
codimension-(g+ 1) topological defects on charged ¢g-dimensional extended operators,

i.e. g-charges.

Generalized Charges. It is however also known field theoretically that codimension-
(p + 1) topological defects can act on extended operators of dimension ¢ # p as
higher-representations [108,/109]. In this section we demonstrate how branes know
about this generalized concept of ¢g-charges through the so-called Hanany-Witten ef-
fect [248]. We will furthermore show that this effect is intimately related to additional
couplings in the topological bulk theory, corresponding to 't Hooft anomalies of the
symmetries generated by these same branes, depending on the boundary conditions,
or leading to a twisted DW theory.

Our earlier notion of charge had two origins: either via the d-dimensional flux
sector dimensionally reduced on L;, or the Bianchi identities, where we truncate
everything to the topological sector that describes the behaviour of finite flat abelian

fields.
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Figure 5.1: Passing two branes corresponding to magnetic sources j and 7 through
each other can result in the creation of a new brane, stretching between them, corre-
sponding to magnetic source jV), if the currents are linked by relation (5.130)).

The starting point of our present discussion is one particular case of interest when

the dimensionally reduced Bianchi identities feature three external fluxes satisfying
dfV = fO NS 40 af® =4O df® = (5.129)

with the f® A f® term in the first relation originates from a non-trivial Chern-
Simons term in the original (D + 1)-dimensional action (5.16|). These are exactly
the type of Bianchi identities that lead to Hanany-Witten transitions [248]. One can
quickly notice the potential for non-trivial physics in this situation by differentiating

the above equation
0= j(2) A dflj(?)) + (_1)(degf(2)+1)(degf(3)+1)j(3) A dflj(2) + dj(l) ' (5.130)

The first consequence of this relation is that the two branes corresponding to magnetic
sources j and j® link in the (d + 1)-dimensional space-time. Exchanging the
position of the two branes in the linking direction generates a difference in the total
linking number. This number must be fixed, due to the Bianchi identity realizing
charge conservation, by the creation of branes corresponding to the 5 magnetic
source extending along the linking directionm (see figure , see [249]. The crucial

insight we provide in this work is how to interpret this bulk property of branes in

10See [248] for the electric point of view on how the change of linking leads to the creation of a
brane.
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terms of the symmetry generators which they correspond to in the field theory. The
Hanany-Witten (HW) effect can be interpreted in two ways depending on the allowed
topological boundary conditions, which concretely means how we place the branes in

Mgqpr+1: this encodes

1. The g-charges (or generalized charges) of a symmetry. This occurs when the
branes in the HW-configuration are such that one wraps the radial direction,

and the other does not.

2. The (mixed) 't Hooft anomalies or the topological coupling leading to a twisted
DW theory: this occurs when none of the branes extend along the radial direc-

tion.
These implications will be discussed in subsequent sections.

5.3.1 The Hanany-Witten Effect

We will now discuss the relevant Hanany-Witten (HW) transitions, following the
original effect discussed in [248]. For our symmetry considerations we will require
various HW-setups, in type II and M-theory.

Before exploring generalizations, we first illustrate the effect in a simple example.

Motivating Example. Consider the following configuration of branes in type ITA

on a generic 10d spacetime parameterized by coordinates {z; : i =0,...,9}.

’ Brane H To ‘ T ‘ ) ‘ XT3 ‘ Ty ‘ Ty ‘ T ‘ XT7 ‘ T ‘ Tg ‘
NSO | X [ X | X | X | X | X (5.131)
D8 X X[ XXX | XX | X]|X

The NS5-brane is a magnetic source for the NS-NS gauge field By with field strength
Hj;. Using this fact, one can consider the concept of linking between the two branes

by computing the flux

/ Hj. (5.132)
T6,LT7,L8
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Figure 5.2: The D8/ NS5 Hanany-Witten configuration projected onto {z7,zs,xg}
directions. The NS5 brane is a point and the D8 is a plane in the {x7, 23} directions.
Passing the NS5 brane through the D8 brane generates a D6 brane attachment (a
line along the xg direction).

This computes the total linking number of D8-branes with all NS5-branes, in a way
we will shortly explain.

The key observation is that the NS-NS 3-form flux Hj, pulled back to the world-
volume of the D8-brane, is trivial in cohomology. Indeed, let a; denote the U(1) gauge
field localized on the D8-brane, and let f; denote its field strength. The pullback of
the NS-NS 2-form B, to the D8-brane world-volume combines with f5 in the gauge-
invariant and globally defined combination F, = f; — Bs. Making use of the Bianchi
identity dfy = 0, we see that Hy = —dJF;. Nalvely, we may conclude that the linking
number defined above is therefore always necessarily zero, if the space spanned by
Zg, T7, Tg is a closed, compact, oriented 3-manifold. If this were the case, it would
not be possible to move the NS5-brane across the D8-brane. Such a move is allowed,
however at the cost of creating a D6-brane in the process (see figure .

Recall that a D6-brane ending on a D8-brane acts as a magnetic source for the
a; gauge field on the D8-brane, modifying the Bianchi identity for fo to dfs = 403,
where 03 represents the locus inside the D8-brane where the D6-brane ends, and the
sign keeps track of orientation.

We will utilize tables of the following type as a compact way of summarizing
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Hanany-Witten configurations:

]Braneon\xl\1:2\xg\x”xﬂxﬁ\xﬂxg\a:g‘
D8 XXX X|X]|X]|X]|X]|X
NS5 XX | X | X|X]|X
D6 XX | X | X|X]|X X

We now look to find general classes of brane configurations which undergo HW tran-

(5.133)

sitions.

Using Brane Linking. A natural language to discuss these transitions in gener-

ality is the notion of string theoretic linking of two magnetic sources introduced in

section (.2.1]

LW Wy = / JONdTD = / dFO A FO (5.134)
My

My

Recall that this is a topological property associated to two branes, whose magnetic
sources are localized on sub-manifolds W® WU). Notice that since dF'¥ = §(W®),
this integral is readily re-written in terms of a lower-dimensional integral as in ((5.132)

Let us consider two branes in string/M-theory. We look for configurations in
which a subset of the directions in the world-volumes of the branes link (in the above
sense) inside a subset of the total directions of spacetime. The general situation we
face in this section is indeed such that the dimension formula reads (5.6). We have

several cases.

Direct Linking in Spacetime. In the simplest case, all world-volume directions
of both branes link inside the entire spacetime. An example is furnished by an NS5-

brane and a D2-brane in Type ITA string theory:

]Braneon\xl\xg\xg\:al\x5\x6\x7\x8\x9\
NS5 XX | X | X | X|X (5.135)
D2 X | X | X

The integer linking number for this configuration is

LinleO(Mé\ISS,Mi?Q) s X10 = {[L’(),...,Ig}, Mé\ISS = {ZL‘Q,...,I’5}, M:?Q = {fL‘e,,...

(5.136)
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This case is however not relevant for the applications in this work.

HW-Configurations for Symmetries. Next, we have the case in which the two
branes are simultaneously extending along a subset of the directions of spacetime.
The problem is effectively reduced from D = 10 or 11 to a smaller dimensionality
D', in which the remaining world-volume directions of the branes link. This type of
configuration corresponds to setups of HW type, which we classify below. An example

is furnished by the original HW configuration of an NS5-brane and a D5-brane:

‘BranerBo‘ﬁl‘1’2‘$3‘$4‘$5‘$6‘I7‘I‘8‘$9‘
NSh [ X [ X[ X[ X[X]X (5.137)
D5 X | XX X | XX

The common directions are x¢ ;2 and the relevant linking number is

Linky, (M3 M%) X7 ={as,..., 20}, M3 ={as,... 25}, M= {uxs,...

(5.138)

HW-Configurations for Generalized Charges. Finally, for completeness we
tabulate all possible Hanany-Witten setups in type II and M-theory, which are rele-
vant for computing generalized charges. An example appeared already in [41]. These

configurations can be grouped together as follows:

1. The first class is realized in IIB or ITA and is given by the following brane
system:

’BraneH .%0‘331‘1’2‘563‘164‘335‘.’L’G‘(E7‘x8‘l’9‘
Dp X[ XXX ]| X ]| X | X|X
Dy’ X X
F1 X X

(5.139)

where 8 = p+ p/, and we can apply T-duality in the z1 2345675 directions. In
addition when p = 7 and p’ = 1, the role of F1 and the D1 can be exchanged,
and in generalised to (p, ¢)-strings and 7-branes.

2. The second class is a special case in IIB given by the following system:

’ Brane H o ‘ Tl ‘ ) ‘ I3 ‘ T4 ‘ I5 ‘ Te ‘ xT7 ‘ s ‘ ZI9 ‘
[p,q|7-brane | X [ X [ X | X [ X [ X | X | X \
(p',¢")5-brane || X | X | X | X | X p'rg = q' 19 (5.140)
(r,s)b-brane || X | X | X | X | X rIy = STy
(p,q)5-brane || X | X | X | X | X PITY = qTg
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where prgs = qrg means that the b-brane extend along this locus. The last
5-brane is the one created once the 7-brane crosses the junction between the
(p',q') 5-brane and the (r, s) 5-brane. Finally the total 5-brane charge must be
conserved, i.e. p+p' +r=0and ¢+ ¢ +s=0.

3. The third class is related to the original Hanany-Witten setup by T-dualities:

’BraneHxO‘xl‘xg‘a:g‘:c4‘x5‘xg‘aw‘xg‘xg‘
Dp [ X[ X[X[X[X][]X
NS5 X | X | X X | X | X
Dy || X | XX X

(5.141)

where p’ = p— 2 and we can apply T-duality"]in the 15675 directions. In the
case p = 5, p’ = 3 we also have a generalization, with a (p,q) 5-brane in the
first row, a (p/,¢’) 5-brane in the second row, and pqg’ — p’q D3-branes in the
third row [251].

4. The fourth class is a single brane system in M-theory:

’ Brane H o ‘ o) ‘ 2 ‘ I3 ‘ T4 ‘ Ty ‘ Te ‘ X7 ‘ g ‘ Hifs) ‘ 11310‘
M5 XX | X | X | XX
M5’ X | X X | X | X | X
M2 X | X X

(5.142)

Details of HW-configurations. We have already discussed class (III) above. We
note that similar remarks apply in general to D(p — 2) branes ending on Dp-branes,
and refer the reader to [251] for a generalization of the setup of class (III), involving
the creation of pg’ — p’q D3-branes when a (p,q) 5-brane and a (p/,¢’) 5-brane are
passed across each other.

Let us now turn to setups of class (IV) in M-theory. This Hanany-Witten setup
is discussed in [252] and can be derived in a way analogous to the argument for class
(III). In this case, we use the fact that the world-volume of an M5-brane supports a
localized 2-form field by, with self-dual field strength hz. The latter combines with
the pullback of the M-theory 3-form Cj into the gauge-invariant and globally defined
combination Hz = hs —C3. As a result, on the world-volume of the M5-brane we have

G4 = —dHs3, where we have made use of the Bianchi identity dhz = 0. Once again,

"Note that T-duality along the NS5-brane world-volume results in another NS5-brane, whereas
transverse to it, results in a KK-monopole [250].
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this would naively suggest the vanishing of the linking number [ v, G4 computed on
the orthogonal directions of the second M5-brane M,. The correct conclusion is that,
when the two Mb5-branes are passed across each other, an M2-brane is generated. In
fact, this is the correct object to modify the Bianchi identity for Az from dhsz = 0
to dhs = +0d4, where &4 represent the locus inside the M5-brane where the M2-brane
ends, and the sign keeps track of orientation.

The brane setups of classes (I) may be derived from those of class (III) with the
help of S- and T-dualities. Let us start from the class (III) setup with p =3, p’ =1,
describing a Hanany-Witten move in which a D1-brane is generated when an NS5-
brane and a D3-brane are passed across each other. By S-duality, this is mapped to a
setup of class (I) with p = 3, p’ = 5: an Fl-string is generated when a D5-brane and a
D3-brane are passed across each other [252]. This can also be seen as follows. The D5-
brane is a magnetic source for the RR 3-form field strength Fj. The relevant linking
is then measured by integrating Fj on the world-volume of the D3-brane. Invariance
of the D3-brane under S-duality, however, implies that the electromagnetic dual a; of
the gauge field a; on the brane combines with the pullback of the RR 2-form into the
gauge-invariant combination F» = fo—Cs, where f5 is the field strength of ;. Setting
Cy = 0 for simplicity, on the world-volume of the D3-brane we have Fy = —dF,. The
argument then proceeds as for class (III). Once the setup of class (I) is established

for p = 3, other values for p are derived by T-duality.

5.3.2 Generalized Charges

Let us denote the HW brane pair (brane;, brane,). Passing one through the other
generates the third brane branes. Suppose that we pick brane; to be parallel to the
boundary, and brane, to wrap the radial direction. Field theoretically, brane; cor-
responds to a topological symmetry generator D,,, whilst branes is a non-topological

(extended) defect O,.
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Figure 5.3: In this figure dots and lines are defects in the boundary QFT of interest
(this could be thought of as a (1+1)d system or a 2d projection of a higher-dimensional
analogue). In the higher-dimensional configuration, dragging the point-like operator
through the extended line operator generates a non-genuine operator (or twisted
sector, if the line defect is topological).

The HW transition implies that passing O, defect through D, creates a third
topological operator D; (branes necessarily does not wrap the radial direction) which
is attached to O,. Generically this process maps a genuine operator to non-genuine
one (see figure for an example of this effect). This is precisely the charge of a non-

invertible abelian categorical symmetry on charged defects, which does not preserve

the dimensionality of the defects [23.32,/41].

Example: Klebanov-Strassler. From the Bianchi identity dFs + H3F3 = J (D3)
we learn that there is a Hanany-Witten effect between a D3 brane and a D5 on S3
which generates an F'1 string stretched between the two.

It is known that the G = PSU (M) theory has a non-invertible 0-form symmetry.
In [41] the non-invertible 0-form topological operator was given a string theory origin
as a D5-brane wrapped on S® C TU!. Furthermore, its non-invertible action on 't
Hooft lines was explained using the Hanany-Witten effect. Now the wrapped D3
is perpendicular to the boundary (the 1-form symmetry is gauged), and the brane
creation turns a genuine line operator into a non-genuine one. We refer the reader to

appendix [C] for a field theory analysis of non-invertible actions on line operators.

Example: Maldacena-Nunez. A second description (MN) of 4d N/ =1 SYM is
given in [253]. We begin with the 6d ' = (1,1) LST living on M NS5 branes in IIB.

The four-dimensional theory is obtained via a topologically twisted S? reduction.
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For the sake of brevity, we use the fact that the for the purposes of our computa-
tions the above background is S-dual to that of Klebanov Strassler, in the sense that

we replace

33 53

The derivations of the BF terms and anomalies proceed identically. We therefore

identify the brane responsible for the non-invertible 0-form symmetry as
Dy( M) ¢ NS5(MN5 x 53). (5.144)

On the LHS we use the notation for topological defects D,(M,), i.e. a g-dimensional
topological defect on the spacetime manifold M,, whereas on the RHS we use the
notation of a brane (NS5 or Dp or Mp wrapped on an internal cycle an M,,). Following
an analogous procedure as appendix B of [41] it is easy to see that this brane’s
topological world-volume terms correctly reproduce the expected TQFT stacking and
therefore fusion rules known from field theory [22].

Once again we consider the three brane origins of 2-surfaces in the 5d bulk: F1-,
D1- and wrapped D3-branes. However, since in this setup there is only Hj flux over
the S3, the linking configurations are simpler. Only the D1 and D3 wrapped on S?

link in the 5d bulk. We can therefore identify
Dy(My®) <+ D3(M;? x S?),
e (5.145)
Do (My") » D1(M)
as the generators of the electric (magnetic) 1-form symmetries in the SU(N)(PSU(N))
theories respectively.
The D3/ D5 Hanany-Witten effect responsible for generalized charges in the
Klebanov-Strassler solution has an S-dual partner involving a D3/ NS5 transition.
Consider a boundary condition such that the NS5 and stretched D1-brane are
topological, and the D3 is not (G = PSU(N)). The HW transition describes the
non-invertible action of D3 on the charged 't Hooft line (the wrapped D3-brane) by

attaching a topological 2-surface (the D1-brane).
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Example: M-theory on G,.  M-theory on the singular G5 holonomy manifold
C?/Zy — S® models the UV of 4d N/ = 1 pure SYM [197,254/256]. The boundary

geometry is S%/Zy — S3. The link Lg therefore has homology groups
HJ(Ls,Z) ={Z2,7Zn,0,Z® Z,7ZN,0,Z} . (5.146)

We propose that the branes generating the 1- and 0-form symmetries respectively are

[ 3
M5<22 X 7 X S ) — DQ(EQ)a

(5.147)
M5(M; x S*/Zx) <> Ds(Ms).

From the Bianchi identity
1
dGy; — EGi = Jor, (5.148)

one can see there is a Hanany-Witten transition involving two M5 branes, generating
an M2 brane, as demonstrated in (5.142)).

The global variant G = PSU(N) corresponds to picking the M5-brane wrapping
the torsional 4-cycle to be perpendicular to the boundary, whilst the other is parallel.
In this case, the Hanany-Witten effect produces a topological attachment to the non-
topological string charged under the 1-form symmetry: turning it from a genuine to

non-genuine line operator.

5.3.3 Hanany-Witten and ’t Hooft Anomalies

Now suppose that both (brane;, braney) are parallel to the boundary. They there-
fore both correspond to topological defects D,, D,y whose non-trivial linking forces
the creation of a brane in the radial direction, corresponding to a non-topological
(extended) defect O,.

We will now argue that such a configuration indicates the existence of certain 't

Hooft anomalies using two complimentary approaches.

121dentifying geometrically U(1)r symmetry and its breaking to Zoy is still a challenge in the
geometric engineering in M-theory [257].
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1. The first is that the created brane wrapped along the radial direction creates a
non-topological ambiguity in terms of how the topological defects are separated
in the bulk. When we push these to infinity we argue that this signals the

presence of an anomaly.

2. The second involves directly projecting the bulk Hanany-Witten configuration
to the boundary. The bulk picture becomes a junction in the boundary, which
the Hanany-Witten computation tells us must be charged under certain sym-

metries. This is another hallmark of a 't Hooft anomaly.

The anomalies are computed using suitable intersections of branes which depend on
the spacetime dimension. In particular, we look for intersections such that one of

the participating branes links with the intersection of the other two, as discussed in

section [5.2.4]

Anomalies from Topological Defects.  Coupling a theory to a background for a
higher-form symmetry amounts to inserting a mesh of the corresponding topological
defects. This mesh contains junctions, inconsistencies of which can signal the presence
of anomalies [7].

For example, consider a theory with both a p and (d — p — 1)-form symmetry. If
the codimension-p topological operators generating the former symmetry are charged
under the codimension-(d —p— 1) topological operators generating the latter, the two
symmetries participate in a mixed 't Hooft anomaly [7]. This is because two related
meshes of these defects may differ by a phase.

The above is a special case where the two participating symmetries have appropri-
ate dimension such that their operators link in spacetime. However, it is generically
possible that a codimension—(p + 1) operator can also act on an extended operator

of dimension ¢ # p. In this way, we are able to explore 't Hooft anomalies involving
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higher-form symmetries of different degrees from the perspective of their topological
operators and their junctions.

In general, a mixed 't Hooft anomaly between two (or more) higher-form symme-
tries is encoded in the junctions of their corresponding defects. We argue that this
information is naturally encoded in our understanding of branes. For example, two
branes may intersect and generate a third (by Hanany-Witten). If this third brane
is charged under one of the symmetries generated by one of the intersecting branes -

this junction signals a mixed 't Hooft anomaly.

Example: N/ =1 SYM. In the three presentations of 4d N/ = 1 su(M) SYM
presented earlier, in each case there was a Hanany-Witten configuration of branes
which in the G = PSU(M) variant described a generalized charge. By the above
argument, in the frame where we pick boundary conditions such that G = SU(M),

these configurations also signal the mixed 't Hooft anomaly in these models.

5.3.4 Example: 4d N =4 so(4n) SYM

In this section we demonstrate that the HW effect is responsible for generalized

charges in several global variants of the so(4n) theory, and the mixed anomaly
1 !
./4 - 5 A102B2 5 (5149)

in the G = SO(4n) theory, where A, is a background for Zg)) and CY, By are both Zg)
backgrounds. From the SymTFT/ Gauss law perspective we can read off the brane
origins of the topological symmetry generators [90]. For convenience we summarize

these findings in table [5.3]

G =SO(4n). For G =SO(4n), the brane identification is [90]
Dy(My) <> D5(My x RP*)

(5.150)
D3<M3) — D3<M3 X R]P)l) ,

137



’ ‘ Symmetry ‘ Background Field ‘

Brane Origin of Sym Generator

70 A D3 on RP!

SO(4n) z cl D5 on RP*
A Bs NS5 on RP*
7Y A D3 on RP!

Spin(4n) z3) Cy D1 on pt € RP?
7 B, NS5 on RP4& D1 on pt € RPS
AR NS5 on RP
7% As D3 on RP?

PO(4n) A ) D5 on RP*@GF1 on pt € RP® + [ A, B,
zM B, F1 on pt € RP?
7% As D3 on RP3

Pin* (4n) A Cy D1 on pt € RP?
AR B, NS5 on RP*@D1 on pt € RPS + [ A,C
zy Ay D3 on RP! + [ ByC}

Sc(4n) zd Cs D1 on pt € RP
zM B, F1 on pt € RP?

Table 5.3: SymTFT and brane origins of symmetry generators in various global forms

of so(4n) 4d SYM theories.
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where D, D3 are the generators of ng) C ZS’C') XZS’B ) =T and Zgo) respectively.

The charged lines under the Zgl’B) 1-form symmetry factor are
01(%1) < F1(Z; x R7?). (5.151)

These three wrapped branes form a HW configuration, from which we observe that
the ZQ’C') and Zéo) symmetry defects intersect in 4d in a line which is charged under
Zgl’B) factor: this signals the presence of the mixed 't Hooft anomaly between all three
symmetries. One can derive a similar result using the S-dual branes: pulling the NS5-
brane, which generates Zgl’B), across D3 generates a D1-brane which is charged under
ASES

The theory with gauge group G = Spin(4n) is related to G =SO(4n) via gauging
of the 1-form symmetry (for more details also the categorical structure, see [28]).
This maps the mixed anomly to a split 2-group symmetry. In this way the HW brane

configuration explained above also encodes this split 2-group global symmetry.

G =Sc(4n). We now consider how the non-invertible 0-form symmetry in the
G =Sc(4n) variant acts on the charged lines of the theory. The 0-form symmetry is
generated by

Ds(Ms) <+ D3(M;z x RP'). (5.152)

Meanwhile the invertible 1-form symmetries have non-topological charged lines
O1(%1) «» D5(X; x R™? x RP*),
(5.153)
O} (X)) < NS5(%) x R”Y x RP*).
If we pass O1 or O1' through D3(M;), there is a non-trivial Hanany-Witten move
which generates an F'1 or D1 brane respectively. These are topological operators which
respectively generate the invertible 1-form symmetry which acts on the other charged

line. These results agree with the complementary field theory analysis, reported in

appendix [C]
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G =PO(4n). Now we look at how the non-invertible 1-form symmetry in the
G =PO(4n) variant acts on the 2-surfaces charged under the invertible 2-form sym-
metry.

In this case there are a number of non-invertible actions we should consider. The

non-invertible 1-form symmetry is generated by
Dy(My) <> D5(My x RP*) . (5.154)

On the other hand, the charged 2-surfaces are given by

02(%3) <+ D3(R™? x ¥, x RPY),

(5.155)

02 (3,) +» NS5(R™? x ¥, x RP?).
There is a non-trivial Hanany-Witten move for both of these. First, passing O,
through D, generates an F1-string stretched between the two: this is the generator
of the invertible 2-form symmetry under which Q) is charged. On the other hand,
passing O) through D, generates a D3-brane: this is the generator of the other

invertible 2-form symmetry which acts on O,.

G =Pin"(4n).  The non-invertible 1-form symmetry in this case is generated by
Dy(My) <> NS5(M;y x RPY). (5.156)

On the other hand, the charged 2-surfaces are given by
0y(3,) +» D3(R™ x ¥y x RPY),
(5.157)
04(3,) +» D5(R™ x ¥y x RP?),
There is also a non-trivial Hanany-Witten move for both of these. First, passing O,
through D, generates an D1-string stretched between the two: this is the generator
of the invertible 2-form symmetry under which Q) is charged. On the other hand,
passing O) through D, generates a D3-brane: this is the generator of the other

invertible 2-form symmetry which acts on O,.
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Outer-Automorphism Action on G = Spin(4n). There is also a brane origin to

the Zgo) outer-automorphism in the G = Spin(4n) theory which exchanges
0 & 0l (5.158)

where Of’c) are the spinor/co-spinor Wilson lines. An equivalent way of describing

this action is shown in figure . In terms of branes, these lines are [42]

0 & D5(M; x R*? x RPY),
(5.159)
0% & D5(M,; x R™ x RP*) @ F1(M,; x R>?).

Furthermore, it is known that the brane generating the outer-automorphism symme-
try is

D3(M3) <> D3(M; x RP). (5.160)
We now discuss the action of this operator at the level of the branes. In the arrange-
ment shown in figure we consider what happens when the wrapped D5 pierces
through the wrapped D3 representing the outer-automorphism generator. Since the
D3-brane is a source for the RR C} field, as we pass from left to right there is a flux

jump which induces a non-trivial F1 charge via the 6d 5-brane world-volume coupling

/ BoCy (5.161)

such that an F1 string (which couples to By) emanates from the defect. This is exactly
the outer-automorphism action we expect from field theory.

Now consider the arrangement in figure [5.6] In this case the F1 string passes
through the brane un-changed, there are not enough dimensions to run the same
argument as above. This is exactly the invariance of the operator (9@ (the vector

Wilson line) under the outer-automorphism.

5.3.5 Example: Generalized Charges for Duality /Triality De-
fects in 4d

In this section we study duality and triality defects which generate non-invertible

symmetries that arise from subgroups of SL(2,7Z). They provide 0-form symmetries
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Figure 5.4: Zéo) outer-automorphism action, depicted in terms of defects: the outer

automorphism acts as .S maps to C. It is useful
as this is how the branes will realize the action.

D3(M;

D5(M; x R™Y x RP*)

in the following to write C' =V ® S,

x RPY)

D5(M; x R>? x RPY)

F1(M; x R>0)

Figure 5.5: The same Z;O)

outer-autmorphism action as in figure now in terms

of branes. The wrapped D3 brane induces a jump in F1 flux which is absorbed by

emitting an F1 string.
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D3(M; x RP')

F1(M, x R>) F1(M; x R>?)

Figure 5.6: The F1-brane, that realizes the vector Wilson line is invariant under the
outer-automorphism.

at certain fixed loci under these groups on the conformal manifold of 4d SCFTs. Field
theoretically these defects have been studied in [2230,31},47,73},258]. For the bulk
theory we refer to [44,|71], and the realization of the topological defects in term of
branes to [83].

In string theory the self-duality or triality symmetries are generated by [p, ¢]-7-
branes as first observed in [41] and subsequently studied in detail in [83]. We will
exemplify this brane-approach for N' = 4 su(N) SYM. Moreover, since we have
analogously constructed topological defects for the A/ = 2 Argyres Douglas theory
of type [As, Dy] via geometric engineering in IIB, the properties highlighted in this
section will be valid also for that case.

In this section we will put these defects into the context of the SymTFT and
derive the generalized charges (in terms of the topological defects of the SymTFT)
realized again in terms of “branes” and Hanany-Witten transitions among them.

The (p, q)-strings give rise to topological defects in the SymTFT, which depending
on the B%¥™ boundary conditions give rise to either topological defects that generate
the 1-form symmetry or to the line operators, i.e. generalized charges.

The Hanany-Witten effect between (p, ¢)-strings and [p, ¢]-7-branes encodes whether

the resulting non-invertible symmetry is gauge equivalent to an invertible symmetry
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or not. In terms of the SymTFT couplings this was analyzed in [44.|71]. This allows
the distinction between intrinsic and non-intrinsic non-invertible symmetries — if one
wishes to use this formulation. More categorically, the SymTFT is either the same
as for an invertible (i.e. higher group) symmetry or not.

We will focus on generalized charges via the Hanany-Witten effect between (p, ¢)-
strings and [p, g]-7-branes. In particular, from the brane realization and the Hanany-
Witten phenomenon we will be able to provide a diagnostic for intrinsic versus non-
intrinsic non-invertible symmetries, even beyond su(p) with p prime.

Duality and triality defects for N' = 4 SYM arise for fixed values of 7 = e™/2, ¢'™/3,
respectively, i.e. the values that are invariant under Z, or Zg subgroups of SL(2,7Z)
[30,131,71,/73,/83]. Our convention for the monodromy matrices labelled by (p,q)
charges are

pg+1 P’ )
M,, = 5.162
P ( @ 1-—pg ( )

and we take the basis

11 2 1 0 1
CL:MLOZ(O 1), b:MLl:(_l O)’ C:Ml,—1:(_1 2)-

(5.163)
We summarize the fixed values of 7 and associated monodromy matrices in table

L
Hanany-Witten Setups with [p, ¢|-7-branes and (r, s)-strings

We now describe in more detail the specific Hanany-Witten configuration already
introduced in ([5.139) that is relevant for this example. Let us consider the origi-

nal Hanany-Witten brane configuration, consisting of an NS5-brane extended along

0,1,2,3,4,5 0.1,26.78. when these are moved past each

x and a Db-brane extended along z

0,1,2,9

other, a D3-brane extended along x is created. By applying T-duality in the

13We use the conventions of [259], but act on tau from the right as to give rise to the canonical
choice of fixed values of 7 as e.g. in [260].
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’ Kodaira Type \ T \ G \ Monodromy Matrix M ‘

. 1 1
11 3| Zg| ab= ( 10 )
1 e™/3 | 7 | aSbcba = 0 -1 >
1 1
. 0 1
111 e\ Zy | aPb= ( 10 )
. 0 —1
1T ™2 | Zy | abch = 10 )
. 0 1
1V ™3| 7 | aba = ( 1 1 )
. 1 -1
A% e™/3 | Zs | aPbeb = {0 )
I T | Zy| a*bc= ( 0 —1 )

Table 5.4: The Kodaira singularities, associated constant values of 7, the monodromy
group and the monodromy matrix M.

21?2 directions, followed by an S-duality S transformation, followed by T-duality in
the 2%7 directions, we reach a Hanany-Witten setup with a D7-brane extended along
%7 and a D1-brane extended along z°®. When these are moved past each other,
an Fl-string extended along z%? is created. This configuration conserves both the
linking number between the D7-brane and the D1-brane, and the (r, s)-string charge

of the system. The latter observation stems from the relation
(1 0)Myp=(10)+(0 1). (5.164)

In our conventions the charges of an (r, s)-string are collected in the row vector (s 7).
Thus, in the above relation, (1 0) represents the D1-brane, (0 1) the Fl-string, while
M, o is the monodromy matrix of the D7-brane (see figure .

The generalization of is the identity

(s r)M,,=(s r)+n(qg p), n:i=ps—qr. (5.165)

We interpret this relation as follows. Start with a configuration with a [p, ¢]-7-brane
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Figure 5.7: Conservation of charge during a Hanany-Witten move involving a D1 and
D7 brane. On the left hand side; passing the D1 through the monodromy cut for the
D7 brane modifies the charge from (1,0) — (1,1). On the right hand side; sliding the
configuration off the cut must preserve charge, meaning an F1 string is created.

string across the [p, q]-7-brane, n copies of a (p,q)-string are generated, extended

along %9,

If n is negative, this is understood as |n| copies of a (—p, —q)-string.
In the special case n = 0, the (r,s)-string and the [p, g]-7-brane are mutually local
and the (r, s)-string can end on the [p, ¢]-7-brane; there is no Hanany-Witten brane
creation effect if these two objects are passed across each other.

It is important to study the generalized charges, i.e. SymTFT topological defects,
coming from (r, s)-strings and the 7-branes with monodromy M, which we take par-
allel to the boundary. In the spirit of section instead of being directly related
to a mixed 't Hooft anomaly, it has a SymTFT that is a DW theory with twisted
cocyles. Let us now consider a 7-brane with monodromy matrix M, written as a
product M = My, o, My, 4o Mpsqs - .. A repeated application of the basic Hanany-
Witten move encoded in yields the configuration depicted in the figure, where

the multiplicities nq, ng, ngs, ..., of the created strings are determined by the charges

of the (r, s)-string and by the [pg, gx]-7-brane labels,

ni = pis —qr, (5.166)
ny = pa(s +n1q1) — @(r +mip1) (5.167)
ng = pS(S + niqr + n2Q2) - Q3(7’ + nip1 + n2p1) , (5.168)
and so on. In general due to M = M, , M,, 4o Mp, 4, -- ., we will not have a single
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M,

P1,91

M,

D2,92
?

(r;s)

P

E /[;11 (p1, m;l;lz (p2, qu[;ls (p3,43)

Figure 5.8: Hanany-Witten transitions for a general 7-brane configuration with no
fixed [p, q] charge as usually appear in F-theory and (r, s)-strings.

string creation event. If we have multiple string creation events, even modulo N, it
signals that something more general than a mixed 't Hooft anomaly is at play. This

indeed generically corresponds to a twisted cocycle in the SymTFT.

Examples. Let us consider the Kodaira type IV* monodromy matrix M = (' ').

We use the decomposition M = a’bch, a = My o, b = M1, ¢ = M;_;. The multiplic-

ities nq, ..., ng of the created strings are
(n1,...,n8) =(s,8,8,8,8, —r —4s,—r —2s,7) . (5.169)

Alternatively we can use the decomposition M = A’BC? A = My, B = Mz,

C = M; . In this case the multiplicities are
(n1,...,n8) = (8,8,8,8,8, —r —28,1,7) . (5.170)

Next, let us consider the Kodaira type I'V with M = ( % 1,). We can write M = a?ba.

The four multiplicities are
(ny,...,ng) = (8,8, —1r—s,—71) . (5.171)

In passing we note that it is not possible to write M = A* BYC* with non-negative z,

Y, z.

If we consider again Kodaira Type I'V, but we work modulo N = 3, we can write

M = My, = M;; = ¢ mod 3. In this case there is a single event of string creation,
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with multiplicity
ny=r+s mod3. (5.172)

In this case the HW transition is related to a mixed 't Hooft anomaly between self-

triality and the 1-form symmetry.
Intrinsic vs. Non-Intrinsic

Let us recall the notion of intrinsic non-invertible symmetry [31]. Suppose T is a QFT
that admits a non-invertible symmetry. We say that the non-invertible symmetry is
of non-intrinsic type if 7 can be connected by gauging of a global symmetry to a
QFT 77 that only admits invertible symmetries (i.e. higher-form or higher-group
symmetries). We say that the non-invertible symmetry of 7 is of intrinsic type if

such 7' does not exist.

Global Forms of SYM. The global variants of 4d N' = 4 su(N) SYM are SU(N)
and (SU(N)/Zy)n, where k # 1 is a divisor of N and n =0,1,...,k—1 [179]. Global
variants can be acted upon by topological manipulations (gauging 1-form symmetry,
stacking with SPT). They all form a unique orbit under topological manipulations.
Indeed, we can start from SU(N) and reach (SU(N)/Zy),, by selecting a Zj, subgroup
of the Zy center 1-form symmetry of SU(N), and gauging it with a discrete torsion
given by nE Let L+ denote the set of line operators of the global variant 7. Explicitly
[179]

T =SU(N), L7 ={a(1,0) mod N,a€Z},

(5.173)

T = (SU(N)/Z)n , L7 ={a(n,N/k)+b(k,0) mod N,a,be Z} .
In terms of topological defects of the symmetry TFT and their brane realization, these
are provided by the full set of (p, ¢)-strings that can end on the boundary depending

on the choice of the B%¥™ boundary conditions.

141n contrast, the set of global forms can split into disjoint non-empty orbits under the action of
the SL(2,Z) duality group, depending on N [7},/179}/246].
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We want to study when a duality/triality symmetry associated to one of the
monodromy matrices of table is of intrinsic/non-intrinsic type, depending on N.
This is equivalent to asking: for a given N and a given monodromy matrix, is there
a global variant in which the associated duality/triality defect acts invertibly on all

line operators?

Hanany-Witten Diagnostic of Intrinsicality. This question can be addressed
in terms of Hanany-Witten moves, as follows. The duality /triality defect specified by
the monodromy matrix M acts invertibly on all lines of the global variant 7 if the

following condition holds[!]
(M —Tgy2) - (r,8) € L1, for all (r,s) € Lt . (5.174)

The quantity (M — Iyxs) - (1, s) is the total (p, ¢)-string charge created, when a line
operator with charges (r,s) crosses the 7-brane implementing the duality/triality
defect. We demand that the total (p, g)-string charge that is created can be written
as a combination of the same charges as those of the lines in Ly . This is because, in
the global variant T, a string with those charges, projected parallel to the boundary,
yields the trivial surface defect. As a result, we are guaranteed an invertible action
on all line operators of T, as desired.

The condition can be analyzed explicitly for each of the monodromy ma-
trices in table [5.4] for some small values of N. We report the results of our analysis
in table 5.5l For each monodromy matrix and N, we indicate the global variant(s)
that satisfy ; if none is found, the duality/triality symmetry is intrinsically

non-invertible. The fact that the global variants indicated in the table are invariant

5The notation (r',s’) = M - (r,s) stands for the matrix equation (s’ ) = (s )M in our
conventions.
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under S or ST can also be checked directly making use of [179]
T : (SU(N)/Zi)n — (SU(N)/Zy)nsnyk
S+ (SUN)/Zi)o — (SU(N)/Znyi)o (5.175)
(SU(N)/Z)n — (SU(N)/Z+ ) (n#0).
In the above relations we let k£ be any divisor of N, including k =1 and £ = N. The

label n is understood mod k (if £ = 1, then n = 0; this is the SU(N) variant). The

new labels k*, n* are given by

N N
Er=—-— k = ged(n, k f=—p0— d k™. 176

The global forms under the second column in table [5.5] are invariant under the action
of S, followed by 7', in our conventions.

For N a prime number, we reproduce the results of [73]. This can also be seen
from table [5.5] and algebraically as follows. If N = p is prime, the global variants are
SU(p), PSU(p)n, n=0,1,...,p— 1. For each of them, the corresponding set of lines
L7 consists of multiples of a single line: (1,0) for SU(p) and (n, 1) for PSU(p),. As
a result, the condition boils down to the eigenvalue problem

M- (r,s) = Ar,s) mod p, (5.177)

where (r,s) = (1,0) for T = SU(p) and (r,s) = (n,1) for T = PSU(p),. In fact, as
soon as admits a non-trivial solution (r, s), the latter can be identified as the
line generating L for one of the global variants 7. Thus, for N = p prime,
is a necessary and sufficient condition for finding a global variant 7 in which the

duality /triality defects acts invertibly on all lines.

5.4 Conclusions and Outlook

We constructed the SymTFT for QFT's realized either holographically or in geometric

engineering, in terms of branes. The main results are as follows: in section [5.2 we
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N | S=1I1 | ST =1V, (ST)? =1V*, S*(ST) =1I*, S*(ST)* =11 |
2 PSU(2), intrinsic

3 intrinsic PSU(3),

4 (SU(4)/Z2)o (SU(4)/Z2)o
5 PSU(5)20r3 intrinsic

6 intrinsic intrinsic

7 intrinsic PSU(T)3 015
8 (SU(8)/Zy4) intrinsic

9 (SU(9)/Zs)o (SU(9)/Zs)o
10 PSU(10)3 or 7 intrinsic

11 intrinsic intrinsic

12 intrinsic (SU(12)/Z)4
13 PSU(13)5OY8 PSU(13)401' 10
14 intrinsic intrinsic

15 intrinsic intrinsic

16 (SU(16)/Z4)o (SU(16)/Z4)o
17 PSU(17)4 or 13 intrinsic

18 (SU(18)/Z¢)s intrinsic

19 intrinsic PSU(19)8 or 12
20 (SU(20)/Z10)4 or 6 intrinsic

21 intrinsic PSU(21)5 or 17
22 intrinsic intrinsic

23 intrinsic intrinsic

24 intrinsic intrinsic

25 || (SU(25)/Zs)o, PSU(25)1 or 15 (SU(25)/Zs)o
26 PSU(26)5 or 21 intrinsic

27 intrinsic (SU(27)/Zg)s
28 intrinsic (SU(ZS)/Zm)(; or 10
29 PSU(29)12 or 17 intrinsic

Table 5.5: For each monodromy matrix and each N, we indicate the global variant(s)
on which the associated duality/triality defect acts invertibly on all line operators.
If no such global variant exists, the non-invertible symmetry is of intrinsic type. In
labeling global variants, we do not keep track of background fields and their coun-
terterms. We do not include the monodromy S? = [} because every global variant is
invariant under S2.
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demonstrated that branes encode the topological couplings of the SymTFT, and in
section [5.3| we highlighted that our proposal also incorporates a notion of generalized
charges via the Hanany-Witten effect.
Whilst presenting a general framework in both cases, we gave evidence for our
proposal in various geometric and holographic examples, including 4d SYM theories.
In section we use our general approach to give a brane origin to the symmetry
generators in the 4d N/ = 2 [Ay, D4 SCFT and in section we use the general-
ized charge/ Hanany-Witten relationship to propose a sharp criterion to distinguish
intrinsic and non-intrinsic non-invertible symmetries, for rank beyond su(p = prime).
Studying properties of topological symmetry generators from the perspective of
branes is a new and exciting area of research. It would be interesting to apply our
general approach to more exotic non-Lagrangian QFTs where the use of standard field
theory tools to study generalized symmetries is either obstructed or non-existent.
The study of generalized charges is another interesting avenue to pursue. In this
work we demonstrated that the Hanany-Witten effect encodes the case where a non-
invertible p symmetry acts on extended operators of dimension ¢ = p + 1. It would
be interesting to explore the full suite of generalized charges for invertible symmetry
and non-invertible symmetries, e.g. understanding symmetry fractionalization from
a brane perspective, as well as generalized charges for genuine and non-genuine op-
erators, see [68]. The brane-perspective will be key to studying theories at strong

coupling and in holographic settings E

6Note: A paper [46] by Ibou Bah, Enoch Leung and Thomas Waddleton with some related, but
complementary, content was published at the same time as our work. We thank these authors for
coordination.
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Appendix A

5d Consistent Truncation

A.1 5d Consistent Truncation

An important component of the analysis presented in chapter (3| is the consistent
truncation of IIB supergravity to 5d for conifold solutions. In [194] such a consistent
truncation was found which encompasses both the UV and IR KS-solutions, and
where we show, the holographic realization of the ABJ anomaly and the mixed 0-/1-
form symmetry anomaly are both manifest. In what proceeds, we present the map
required to translate between our work and their notation. The KS flux background

is parametrised as
Fs=q® A, By = 1%, Fy=—(k—qg®)®AD A, (A1)

where ®,n are left-invariant forms on T%!. They are related to the volume forms of

5% and S? as @ = jwy, P An = —jws. We rescale the IIB fields by

912
F3—>—78F3, By — —371'[?32, F—

F, (A.2)

which ensures that the background is quantised as

F3 F3
_ge7 —kez |
/53 ar2 1% /T Grlyi  FET (A-3)

and furthermore gives the identifications




Notice that the rescalings are consistent: they give rise to the same factor on either
side of the Bianchi identity for F5. These normalisations also imply that we should
identify the fluctuation de® = —2Tdco. Finally, we rescale the U(1) gauge field in [194]
A— %”A so that it is normalised as in [261]. The 5d topological couplings obtained

in [194] are

1
Lsq = R|gf’|2—§f§>A(—qb2 A A+by A Dc®) Lo qby, g > Dc®, Dc®=dc®—qA.
(A.5)

Using the map detailed above gives the action (3.18]).
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Appendix B
BF-Terms from Type ITA

B.1 BF-Terms from Type IIA for y Pk

In this section we utilize a reduction to type ITA to derive an extra BF-term con-
tribution on top of those computed via M-theory methods in section In |210]
the authors reduce the M-theory solution on AdS, x Y?* background to ITA along a

circle. The ITA supergravity background is
AdSy X, Mg, (B.1)
where Mg is a S? bundle over CP2. The homology groups of Mg are
H,=1{Z,0,7%0,7* 0,7} . (B.2)

The RR field strengths and Kalb-Ramond field are parametrized as
[Fy] = pD" — kD,
[Bns] = —boD™ + b1 D, (B.3)
[Fs) = ND-C*.
Here, {D, D", D~} are an over-complete basis of 4-cycles. There is a dual set of

2-cycles {C,C*,C~} which is also overcomplete. They are related by
Dt=D +3D, Ct=C +3C. (B.4)

Their mutual intersections are given in table [B.1] We write a set of Poincaré dual 2-
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[ Jc ¢t c[D DY D |
DJo 1 1]|C ¢t C
D1 3 0 |ct 3¢t 0
D1 0 -3|c 0 -3

Table B.1: Intersections between 4-cycles {D, D*, D~} and 2-cycles {C,C*,C~} [210].

and 4-forms
{D,D*, D™} + {wy,wy ,wy },

(B.5)
{C,CT,C} & {wy,w,wy }.
Let us consider fluctuations around this background in this basis
Fy = Fy+ fo = pwy — kwy + fo,
Bls = Bns + by = —bowy + b7 ws + by (B.6)

F§=Fo+ fo = Nus Awf +gf Awf + 90 Aws+ g5 Awyp +g5° Aws.
We now look for single derivative terms in the ITA equations of motion [1,65], which
will dominate at long distances, i.e. near the conformal boundary of AdS. In partic-
ular, we are interested in couplings involving b, and 1-form gauge fields
d %19 Fy = H3 N\ Fg = dby A Nvol(Mg) + - -+ = Ndby Avol(Mg) + - - .
Ao Hy = Fy A Fy = <pg§°> — kgy + Nf2> A vol(Mg) + - - - (B.7)
dx19 Fs = H3 N Fy = dby A (pwy — kwy) + -+ -
The Bianchi identities are dFg = H3AFy, dFy = H3AFy, dH3 = 0 are trivially satisfied

given our expansion. At the boundary, we are left with the following topological

equations of motion

Ndbg = O
pdbg =0
(B.8)
kdby =0
(pot” = kgz + Nf2) =0.
These equations of motion are reproduced by
Stua 0) _
o by N (Nf2 + PYs _k92> : (B.9)
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If we package up

(3p — k)gi + pgs”) = ged(p, k) <QI92_ + qag§0)> = ged(p, k)3s , (B.10)
we can rewrite
S ~
21—;‘* = /b2 A (N fy + ged(p, k)32) - (B.11)

Let us compare with the M-theory analysis of section , in particular .
As discussed in section {.4.1], we conjecture that by, which couples electrically to the
fundamental string, uplifts to By which couples to M2-branes wrapping the torsional
1-cycle. The field a; sourced by D0-branes with field strength f, uplifts to the U(1)
isometry gauge field A; associated with the M-theory circle direction. In IIA, the
1-form gauge field ¢; with field strength go couples electrically to D4-branes wrapping
the two 4-cycles in the Mg geometry. We expect that the linear combination ¢; maps
to By upon uplift to M-theory, which couples electrically to M5-branes wrapping the
torsional b-cycle.

The NBy A fy coupling is precisely the one we do not have access to from M-
theory. We claim that this would be visible if we combined the equivariant cohomology
description with differential cohomology, analogously to the matching we did in the

ABJM example. On the other hand, IIA does not see the QP

no,n1

By A go term of
(4.122)), at the level of our analysis. We use this to conjecture an additional term in

the M-theory BF-coupling:

S
% = /Bz A (N f2+ ged(p, k)dBy + Q57 g2) - (B.12)
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p| k || aBBk) | ABB(ks) | AFB1) | AFB(ko)
351 BN T
313 2 2 3 0
4| 2 0 : 0 1
1S N A I I '
406 o 1 0 1
sls | s |1 |4 |
123 IS I O O O
eSO O O
olaf 2 |+ | 4| o
slo| uw |z |+ | o
6|8 | 3 ; 2 3
619 0 % % %
| w8 |
s|2| o : 0 1
slal o | g |y |
s|6| o : 0 1
sle m e | 4| o
gl10] o 3 0 !
8|12 0 5 3 S

Table B.2: A selection of the YP*(CP?) SymTFT coefficients obtained for selected
p, k values with non-trivial ged(p, k). Note we have also not included pairs of ged(p, k)
values related by (p, k) — (p,3p — k).
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D 6 6 6 8 8 8 9 9

k 4 8 9 6 10 12 6 12

bl ny —nNo 3711 - 2TLO 2711 — Ny ny —No 4711 - 377,0 27’L1 — Ny ny —No 3711 - 277,0

b2 2711 - 3710 4711 - 3TLO 3711 - QTLQ 377,1 - 4710 5711 - 4710 37’11 - 2710 2n1 - 3710 477,1 - 377,0

Table B.3: Mappings from (ng, n;) torsion flux numbers to (b', b*) flux numbers. Here
we give cases where k # £ for some ¢ € Z.

D D 4 4 6 6 6 6
k D 2 6 2 3 4 8
‘ Qﬁfm H o ‘ —2n9 + nq ‘ —2n9 + 3ny ‘ —2ng + N ‘ —2n9 + 2ny ‘ ny — Ng ‘ Ty — dng ‘
D 6 8 8 8 8 8
k 9 2 4 6 10 12
‘ Qek || 100y — 6ng ‘ —4ng +ny ‘ —4Ang + ny ‘ 3ny — 4no ‘ 5nq — 4ng ‘ 13n1 — 8ny ‘ ‘

Table B.4: Values of Q& = coefficients for various values of p and k. These were

computed by using values in table and mapping (b',b%) to (ng,n;) (table [B.3).

Notice in the first column we give a general expression for Y7,
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Appendix C

Non-Invertible Symmetry Actions
on Line Operators

C.1 Non-invertible Symmetries Acting on Line Op-
erators

To complement the analysis in the main text using branes, we provide a field theoretic
alternative to the derivation of the action of non-invertible 0-form symmetries on
line operators in 4d QFTSs, using half-space gauging as in [22,32]. We consider two

examples: 4d N =1 SYM with gauge algebra su(M), and 4d pure YM with gauge

algebra so(4n), which are discussed in the main text in sections [5.3.2] and [5.3.4]

respectively.

C.1.1 4d N =1 SYM with Gauge Algebra su(M)

We want to study the non-invertible O-form symmetry of the global variant PSU (M ).
To this end, we use the SU(M) global variant as starting point. It has a Zgs 0-
form symmetry (background field: A; € HY(Wy; Zoys)) and a Zy, 1-form symmetry
(background field: By € H?(Wy;Zy)) with mixed anomaly

A = exp <2m_ﬁl /W5 A U %(232)) . (C.1)
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We introduce the usual stacking operation 7 and gauging operation o

.1 P(B2)
Z,7(Bs] = Zy[Bsle™™ 3 w2

Zor[Ba = Y Zplbg)e® 2P (C.2)

bo€ H2(WasZny)
where 7 denotes a global variant of 4d N/ = 1 SYM with gauge algebra su(M).
For simplicity, throughout this appendix we omit normalization factors in partition
functions and we work on a Spin manifold up to gravitational counterterms. We also

make use of the compact notation

SU(M), == SU(M) , SU(M), == 7*SU(M) ,
PSU(M)yno = PSU(M), , PSU(M),, =" PSU(M), . 9
One verifies the following identities,
(0SU(M),)[Bs] = PSU(M)po[Bs]
(0 PSU(M)n0)[Bs] = SU(M)n|—Bs] , (C.4)

(cPSU(M)pp)[Be) = PSU(M),_p1_p|—p ' Bo] , if peZy, .
We notice that, for any integer M > 2, +£1 € Z),; if p = £1, p~! = £1. A special

case of the last relation is therefore
(O'PSU(M)H’,l)[BQ] = PSU<M)TL+1,1[B2] . (C5)

The anomaly (C.1)) implies that (perform a 0-form gauge transformation)

i =L B(B2) .
Zsuan|Bal = Zsvn[Ba)e?™ ™ i 725 e SU(M)o[By] = SU(M)_1[Ba] .
(C.6)

By applying 7 repeatedly on both sides, we get
SU(M),[Bs) = SU(M),—1[Bo] . (C.7)

We may now apply o on both sides, followed by repeated applications of 7, and get

PSU(M)np|Bs] = PSU(M)_1,[Bs) . (C.8)
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By combining and , we conclude that
(cPSU(M),,—1)[Bs) = PSU(M),,1[Bo] . (C.9)
This can also be written as
(17 o7 PSU(M )y0)[Bs] = PSU(M )y 0[Bo) - (C.10)

We conclude that the PSU(M),,o theory is invariant under the combined operation

T lor L

Half-space gauging and action on lines. As anticipated above, we want to
study the global variant PSU(M)y,. This theory has 't Hooft lines, charged under
a magnetic 1-form symmetry. Let us now use (5 for the associated background field,
and Dék) (M) for the topological defects implementing the symmetry. We can describe
ng)(Mg) explicitly if we think of PSU(M )y as originating from gauging of SU(M)o,

ZPSU(M)OYO [02] _ Z ZSU(M)O[bQ]QQWiﬁ fW4 b2C : Dék)(MQ) _ 6271'7:% fMQ b ) (Cll)
b

We observed above that PSU(M ) is invariant under 77 'or='. We can therefore

perform this operation in the half-space region x > 0, sschematically

x <0 : Zpsu(M)oolCal
200 RN o anlelemid I B i Tac (ca2)

Cc2

We impose Dirichlet boundary conditions for ¢, at © = 0. The locus x = 0 realizes
the topological operators implementing the non-invertible 0-form symmetry of the
PSU(M )0 theory. Next, let H(vy) denote a 't Hooft line of minimal charge, supported
on a contractible loop v bounded by a disk D. In the region x < 0, H(7) is a genuine
line operator, but it is not invariant under gauge transformations of the magnetic

1-form symmetry background C5. The gauge invariant combination is

r<0 : H(y)e_%iﬁ IpC2 (C.13)
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The analog of this quantity in the x > 0 region is written with ¢y, as opposed to Cs,
x>0 : H(y)e > Jpez (C.14)
Let us recast the theory in the region > 0 in terms of SU(M)o,

.1 PB(co) P(C2)
200 S Zayan,lbaler S e B3] )

Upon varying ¢y in the exponent, we get the following on-shell relation in the x > 0

region,
o =by+Cy . (C.16)
If we use this in , we obtain
x>0 :  H(ye aulobe 2w /o = H(y) DS (D)e 23 o - (C.17)

We conclude that the non-invertible defects of the PSU(M )0 theory act on the
minimal-charge 't Hooft line by attaching a 1-form symmetry surface defect to the
line. The additional C'y contribution is a c-number that drops away if we turn off the
Cs background field.

We can also rephrase the argument above in the continuum formulation. The

continuum counterpart of ((C.15) contains the following topological action,

/DbQIDﬂllDCQD’}/l exp 271'2/

M M
|:Mbgdﬁ1 +M02d’}/1—|—Mb202—70202+M0202—70202
Wy

(C.18)
The quantities by, 81, ¢o, 71 are p-form gauge fields whose field strengths have integral
periods, while (5 is a closed 2-form with integral periods. In the simpler case in which

(5 is turned off, the gauge transformations are

b/2:b2+d>\1, ﬁi:ﬁl—i-d)\o—i-/ﬁl, C/2262+du1, ’)/1:71+d,uo—)\1—u1.
(C.19)

The BF pair by, 51 couples to the SU(M ), theory, while ¢, and 7, only enter via the

topological terms spelled out above. The equations of motion for ~;, ¢, read
MdCQ =0 i MCQ = M(d% + b2 + CQ) . (C20)
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In the normalization relevant for the continuum formulation, the gauge invariant

combination in the x > 0 region is
H(y)e > /pez (C.21)

while the topological defect implementing the magnetic 1-form symmetry of PSU (M )o
is

Dék)(M2) _ 2k oy bo _ 2mik [y, (batd) (C.22)
In the second step we have observed that dv; is a globally defined 2-form with integral

periods. We can thus add it in the exponent without affecting the result. We thus
see that the continuum formulation confirms (C.17)).

C.1.2 4d pure YM with Gauge Algebra so(4n)

We are interested in studying the non-invertible 0-form symmetry of the global vari-
ant Sc(4n). We find it convenient to adopt the SO(4n) variant as our starting point.
It has a Zy O-form symmetry and a Zy X Zs 1-form symmetry. We denote the cor-
responding background fields as A; € HY(Wy;Zy) and By, Cy € H*(Wy;Zy). The

theory has the mixed anomaly

1
A = exXp 27”5 / Al U BQ U CQ . (023)
Wi

The anomaly implies the following relation,
il
Zs0(an) [ B2, Ca] = Zso(an) [ B2, 02]62 2wy B2 (C.24)

The theory Se(4n) is obtained by gauging both By and Cs.
Given any theory T coupled to two background fields EQ, Cy € H 2(Wy; Zy), we
define the following three operations:
ZTT[B\Q) 62] = ZT[§2, 62]627”% vy BaCo ;
Za7[§2, 62] = Z ZT[EQ, 5'2]627”% fW4(§2§2+5262) )
By,C
ZKT[BQ, Cg] - ZT[CQ, BQ] . (C25)
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Making use of the anomaly relation ((C.24]), one may then verify the identity
(K7o7S5c(4n))[Bs, Co] = (Sc(4n))[Bs, Co) . (C.26)

Indeed, we have (always up to prefactors and gravitational counterterms, working on

a Spin manifold)

5 A5 A5 A Do 2wk [ Byl
ZKTUTSC(4n) [327 02] = ZTO'TSC(4n) [027 BQ] - ZaTSc(4n) [027 32]62 2 fW4 B2

~ o~ . = A AD 1 5 A
= E ZTSc(4n)[BQ,02]627”5fW4(BQC2+CQBQ)62m§fW43202
Bs,Co
= E Zse(an) | B2 52]627”% Jur, (B2Cart Bt CoBat BaC)
- c(4n Y
Bs,Cs

o z : ZSO(4 )[32 02]627”:% fW4(Bgéz-‘rCzéz+§252+§262+62§2+§262)
n Y *

B3,C2,B2,C»
(C.27)
To proceed we perform the redefinitions
§2—>§2+§2+Cg, 62-)62+62+Bg. (028)
We get
ZKTJTSC(4n) [EQ’ 62] = Z ZSO(4n) [B27 02]62772'% fW4 (B2Ca+ByBa+C2Ca+B2Ch)
B3,C2,B2,0>
= Z ZSO(4n)[32702]€2m% Juy (B2Cort BaBot CoCh) (C.29)
Bs,Cs
Now we make use of the anomaly relation ((C.24)) inside the sum,
ZKTO’TSC(4TL) [EQ, 62} — Z ZSO(4n) [BQ, 02]627”% fW4 (B2B2+C2C))
B2,Cs
= ZSC(4n) [BQa 02] 5 (030)

as claimed above.

Half-space gauging and action on lines. Let us regard the Sc(4n) theory as

coming from gauging the SO(4n) theory. This allows us to write the topological
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defects generating the 1-form symmetries of the Sc(4n) in terms of discrete gauge

fields. More precisely,

ZSC(4n 32702 Z ZSO 4n) B2a ] 27”% fW4(BQ§2+0262)7 (031)
B2,Co

where we identify
~ D .1
By & DéB)(M2> _ 627”5 Jar, B2
R N N (C.32)
02 o DéC)(M2> _ 6271'15 fng Co )

We consider a half-space gauging configuration, in which the region x < 0 has the

Sc(4n) theory, and the region x > 0 the Kto1Sc(4n) theory,

r <0 : ZSc(4n) [§27 62] s
x>0 : Z ZSc(an) [Ez,éﬂehi% fW4(§262+§262+62§2+§262) . (C.33)
B,Ch

We impose Dirichlet boundary conditions for EQ, 52 at x = 0. The locus x = 0 realizes
the codimension-1 topological defects generating the non-invertible symmetry of the
Sc(4n) theory.

In the Sc(4n) theory we have line operators of charges (1,0) and (0, 1) under the
1-form symmetries generated by Déﬁ)(Mz) and Déa)(Mg). In the region = > 0 we

have the gauge invariant combinations

x>0 : L(l’o)(fy)e%i% Ip B> : L(O’l)(fy)e%”% Ip , (C.34)
where 0D = . These combinations in the region x > 0 become

x>0 : L(l’o)(v)e%i% Ip B> : L(O’l)(v)e%”% InC (C.35)
To proceed, we write the theory in the region x > 0 in terms of the SO(4n) theory,

>0 : Z ZSO(4n) [BQ, CQ]GQM% fw4(BQEQ-FCQ52+§26’2+§252+52§2+§262) ) (036)

B3,02,B2,Co

Varying the exponent with respect to Eg, Cy yields
By=DBy+Cy, Cy=Cy+B,. (C.37)
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We can ignore signs because these are Zs classes. Using these relations in (C.35)) and
recalling (C.31]), we find

20 LUO)DO(D)eizfoB: | LOU) DB (D)t oC(C.38)

We thus learn that, if the line LM passes through the non-invertible defect, it

emerges attached to a Déc) surface, and analogously for the other line.
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