SLAC—-PUB —-3765
September 1985

(T/E)

FACTORIZATION PROPERTY OF THE DEUTERON"

STANLEY J. BRODSKY AND CHUENG-RYONG JI

Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94305

ABSTRACT

Using a simple field-theoretic model we show that, in the zero binding limit,
the relativistic deuteron wave function has a cluster decomposition; i.e., factors
into two separate nucleon wave functions convoluted with a body wave function.
The framework of the calculation is a Fock state expansion at equal time on
the light-cone. Assuming a quark interchange mechanism, we then derive the
deuteron reduced form factor at large momentum transfer, while recovering the

standard impulse approximation form at small momentum transfer.
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1. Introduction

From the standpoint of quantum chromodynamics the deuteron is a complex
dynamical system. At large distances the deuteron is evidently well described as
aJ=1,1=0, Q =1 composite of two nucleon clusters with binding energy
~ 2.2 MeV, together with small admixtures of AA and virtual meson compo-
nents. However, at short distances, in the region where all six quarks overlap
within a distance R = 1/Q — 0, one can show rigorously that the deuteron state
in QCD necessarily has “fractional parentage” (1/9)np, (4/45) AA, and 4/5
“hidden color” (nonnuclear) components.!»? In fact, at any momentum scale the
deuteron cannot be described solely in terms of standard nuclear physics degrees
of freedom, and in principle, any physical or dynamical property of the deuteron
is modified by the presence of such non-Abelian components. For example,
the standard “impulse approximation” form for the deuteron form factor

(ignoring spin).
Fy(Q) = F°Y (@) Fo(@Y) (1.1)

where F,, is the on-shell nucleon form factor, cannot be precisely valid at any
momentum transfer scale Q> = —q% # 0 because of hidden color components.
More important, even if only the nucleon—nucleon component were important,
Eq. (1.1) cannot be reliable for composite nucleons since the struck nucleon is
necessarily off-shell in the nuclear wave function: |k — k2| ~ 1Q? (see Fig. 1).
Thus in general one requires knowledge of the nucleon form factors Fy(q?, k%, k’z)
for the case in which one or both nucleon legs are off-shell.2 In QCD such ampli-
tudes have completely different dynamical dependence compared to the on-shell

form factors.



Although Eq. (1.1) has been used extensively in nuclear physics as a starting
point for the analysis of nuclear form factors, its range of validity has never
been seriously questioned. Certainly in the non-relativistic domain where target
recoil and off-shell effects can be neglected, the charge form factor of a composite
system can be computed from the convolution of charge distributions. However,
in the general situation, the struck nucleon must transfer a large fraction of its
momentum to the spectator system, rendering the nucleon state off-shell. As we

shall show here, the region of validity of Eq. (1.1) for the deuteron is very small:
Q2 <2M;eq

i.e., @ S 100 MeV. However, in this region the nucleon form factor does not

deviate significantly from unity,* so eq. (1.1) is of doubtful utility.

The deuteron form factor Fz(Q?), by definition, is the probability amplitude
for the deuteron to stay intact after absorbing momentum transfer Q. If the
deuteron is taken as a lightly-bound cluster of two nucleons, then the form fac-
tor contains the probability amplitudes for each nucleon to remain intact after
absorbing momentum transfer ~ ¢#/2. Thus, it is natural to factorize Fj in

the form®
Fi(Q%) = fa(@%) F3(Q%/4) (1.2)

which defines the “reduced” form factor f;(@%). As shown in Ref. 1, QCD
predicts Q2 f;(¢%) = const [modulo logarithmic modifications due to the running
coupling constant anomalous dimensions of the nuclear wave function], which is
in excellent agreement with experiment for 1 < Q% S 4 GeV? (see Fig. 2). Thus

it is interesting to understand the origin of the reduced form factor factorization,



Eq. (1.2), from a fundamental point of view and to verify for which regime,

if any, the standard impulse approximation form, Eq. (1.1), is valid or useful.

In order to study these questions, we construct a simple covariant and gauge-
invariant dynamical model of the deuteron which allows an analysis of the effects
of nucleon compositeness in the nuclear wave function. Within the framework of
this simple model, which neglects hidden color components, we derive a cluster
decomposition® property of the deuteron wave function and identify a transi-
tion region between forms (1.1) and (1.2). The important conclusion is that
the impulse approximation (1.1) can only be valid in the nonrelativistic regime
Q? S 2M;¢,.

In order to focus on the essential points we will analyze a simple covariant

model” which incorporates elements of the quark structure of the nucleon:

Lr=g ¢a dN ¢N +h €5k dN @' ¢ ¢ . (1.3)

Here g and h are the coupling constants of a deuteron to two nucleons and
a nucleon to three quarks, respectively, and ¢;;; represents the SU(3) color
singlet coupling. The quarks carry the electromagnetic current. This model
gives an effective deuteron wavefunction with a factorized two-nucleon structure

(see Sec. 2.1),

=9 x Yy x YN . (1.4)

Since the relativistic deuteron form factor can be expressed as a convolution

of initial and final light-cone Fock state wavefunctions,® the factorization



of the wavefunction is the origin of form factor factorization in terms of nucleon
form factors. Although the explicit model used here is simple, it will be clear
from the structure of the proofs that the results can be generalized to the full

QCD case.

As we shall show in Sec. 2.2, if Q% is small the standard impulse approxi-
mation result (1.1) is recovered. However, at large Q? the factorization property
(1.4) does not hold simultaneously for the initial and final wavefunctions and (1.1)
fails. However, we can utilize the standard factorization of QCD for exclusive

processes,

Fa(Q%) = /[dz][dy] $a(zi, Q) TH (i vi, Q) Sa(%i, Q) » (1.5)

where T}I is the 6¢ + v* — 6q¢ hard scattering amplitude and®

(k1<Q?)
Ba(zi, Q) = / @2k, ] U9 (2, F.,) (1.6)

is the deuteron distribution amplitude, the probability amplitude to find six
quarks within a distance 1/Q in the deuteron wavefunction. If the hard scattering

amplitude factorizes:
TS =T x TH x tgy, (1.7)
then the reduced form factor factorization Eq. (1.2) immediately follows. The re-

duced amplitude ¢ controls the fall-off of f;(Q?). The hard scattering amplitude

Ty is the perturbative amplitude for the six quarks to scatter from collinear to the



initial two-nucleon configuration to collinear with the final two-nucleon configura-
tion, where each nucleon has roughly equal momentum. We argue the dominant
configuration for this recombination is the quark interchange plus one gluon ex-
change diagram. Note that in the case of color SU(3), where the gluon is a
color octet, single-gluon exchange between the color-singlet nucleons is forbid-
den. Thus at lowest order in a,;(Q?) there must also be an interchange of quarks
between the nucleons in order to satisfy the color selection rules. This quark
interchange model automatically satisfies factorization for the hard scattering
amplitude (1.7), with

L Qs (@%)

ty ———Q2

(L.8)

Using this quark interchange model we derive the reduced form factor defined
in Eq. (1.2). This verifies the transition of the deuteron form factor from the

standard impulse approximation to the reduced form.

One implication of this derivation of the reduced form factor using the quark
interchange model is that the normalization of the reduced form factor can be
approximately calculated in perturbative QCD theory without direct evaluation
of the hard scattering amplitude Ty. Note that over 300,000 diagrams containing
six fermion lines connected by five gluons are required to calculate Ty directly.®
In the present calculation, the normalization of the reduced form factor is related
to the deuteron wave function at small N-N separation® ¢ (0). The relation
between the normalization of the distribution amplitudes of the deuteron (A4;)
and the nucleon (Ay) in principle could be used to determine the value of A,

and predict the normalization of }’d(QZ).



2. Factorization of Relativistic Nuclear

Wavefunctions and Form Factors
2.1 THE DEUTERON WAVE FUNCTION

In QCD the deuteron is a color-singlet composite of six-quark fields. Using

light-cone quantization,1©

one can define a consistent Fock state basis at equal
7 =t + 2z/c which defines the deuteron in terms of |6g), |6 + g), |6¢ + ¢7), ...
components. Only one of the five color singlet configurations of six-quark corre-
sponds to the usual | NN) nucleon-nucleon clustering. However, since the bind-
ing energy of the deuteron is very small, we shall assume that this [6¢) = |[NN)
configuration is by far dominant in the natural kinematic domain of the wave-
function. This structure is represented in its simplest form by the Lagrangian of

Eq. (1.3). The resulting deuteron wavefunction is illustrated in Fig. 3. In terms

of the light-cone variables

6 6

-’5;'=M,Z $i=1,ZE¢i=0 ,

0 ¥4
P tp 1=1 1=1

the wave function has the form of a convolution:

6 -,
k%, +m? , g 11
(Mz—z “T'— Yy(ziky;) = = 2 7 1o
i=1 ¢ Mz_el+MN Y y
y(1-y)
1 1

LMy S Fam! o BaMy & B
— _Z:x—i M2 — _J;l—.-

(2.1)



where M, My and m; are the masses of the deuteron, the nucleon, and the
quarks, respectively, and the momentum-conserving delta function fixes
y = Z?:l z;and £, = Z?=1 k ;. If we define the function e(y,[l),

23 + M}

e(y,0,)=M*— LN
(y J_) y(l—y)

(2.2)

then ¢(y, Z 1) measures the deuteron off-shell light-cone energy € = pt - E?=1 k;
The zero binding energy limit implies e(y,ZJ_) — 0. In the e(y,[_,_) — 0 limit,
y — 1/2 and EJ_ — 0 since M? — 4M12V- Thus we obtain approximate delta

function behavior of e_l(y,z 1) near the zero binding energy limit:

- = 1 ~
€ l(y,ZJ_) ~ 6 (y—§> 52(£J_) . (23)
In this limit, the factor inside the parenthesis of the right hand side of Eq. (2.1)
is given by
M2 6 k_Li tm
2 g
1=1
-~
(M2_£1+M2 _23: ﬁ;:_mL> (M2 e+ My 26: _ﬂz)
-Y =1 t j=4 i

(2.4)

The numerator of the right hand side of Eq. (2.4) is cancelled by the
factor on the left hand side of Eq. (2.1), so that in €(y,£,) — 0 limit Wy(z;, k ;)

is given by



Vaon k) =———2—— 1 :
1 1) = )
2 +My v O +My &R+ m?
M2 — N M2 — N _ Nlg T T
y(I—v) fl—yi ,=El Zi
(2.5
1 h )
X T
yM £!+MN 2:lclJan
Zj
Furthermore, if we change the variables:
z,-:% . Kli=ki—zl, (i=1,2,3)
(2.6)
I - — - .
z,-—l_’y . klj=kyij—zt, (4 = 4,5,6) ,
then
0% + M2 2. k%, +m? 1 3. k"% 4+ m?
M2 =i N Ll i, = MZ = Lz 1
(1-y) Z T y \7Y ; zi
(2.7
k2 +m 6 k’2 +m
A B+My Z itmy 1 My -y T
y j=4 i Y Jj=4 7
Thus for € — 0, Eq. (2.5) is reduced to
— g h h
‘I’d(ziykli) = e +M 3 k + k +m
M2 — N MZ — _iz_mz 2 _ L1
yll =) gl o My E, zj
(2.8)



This is the expected factorized form of the deuteron wave function [Eq. (1.4)],
since the last two terms of the right hand side of Eq. (2.8) are the nucleon
wave functions zﬁN(z,-,lz 1) and ¥n(z;, k 1). The new light—cone variables z; and
k ! ; are the light-cone momentum fractions and the transverse momenta in the
nucleon frames. The first term of the right hand side of Eq. (2.8) is the “body”
wave function ¢2°dy (y,[ 1). This proves the factorization of the deuteron wave

function in the zero binding energy limit:

Ua(zi ki) = ¥5°Y (v, €1) ¥n(zi, kL) ‘/’N(ZJ‘,EL') . (2.9)

2.2 THE IMPULSE APPROXIMATION

The form factor of the deuteron is given exactly in terms of the light-cone

Fock state expansion by® (a sum over Fock components is understood)

6
Fa@) =) ea /[di’?] /[d2E¢i] ¥ (mi,’;u + (650 — z3) ql) (i, k13)
a=1

(2.10)
where ¢ is absorbed by a'® quark, ¢2 = Q?, and
[dz] =6 (1—2 x~> I1 dz;
i B T
1=1 1=1
(2.11)

10



In the last section we demonstrated the factorization of W4(z;, k 1;) for small
e(y,[l). If |¢’, | is the order of I[J_I or |k 4|, then ¥* (zi,lzl,- + (650 — ;) q_l) is fac-
torized in the same way as ¢(z;, k ;) since €(y, Z + (1—y)qL) is almost the same
as e(y,ZJ_). Thus for small ¢? the factorization of XG: vy (z,-, ki;+ (6ia — ) q'j_)

a=1
is given by

6
> (zi:E_Li +(6i0 — 1) 1) = 93V (y,él +(1- y)tﬁ)

a=1

3
X [Z N (zi’kii + (6ia — 2i) 41) ¥ (2> k1) (2.12)
a=1
6 — -
+ Z (2, kL) v (zj’k_’l_j + (650 — 25) ‘fl)] .
a=4

[This result becomes invalid if || is much larger than |€,] since e(y, &, +
(1 — y)q,) is then non-negligible.] The integrating weight is also simply

decomposed:

[idal [l - /1 e / ey [1ask [1@k) [ias); [10%2);
’ (2.13)

where

11



dz
|de)i = 6 (I—Z zi) >
i=1 i=1
6 6 dz
[de); =6 [1-) 2 H;— :
7=4 =4 7
(2.14)
3 3 P
@R = 16m%62 [ 30 &L, | ] s
L Lo T 1673’
=1 =1
2 3 £2 : . ° d2];—’|-]
! — [
[d%k}]; = 1676 24 i 1'14 s
]: ]:

Thus Eq. (2.10) becomes

1

dy d*L1 ibod - =\ . body(, 7

2\ +xbody _ y

Fa(q1) = /y(l_y) /167r3 ¥y (y,£¢+(1 y)ql) g (y,£1)
0

3

X [Z €a /[dZ]i /[dzii]i YN (zi’lz_'l_i‘*‘(&i - z;) él) YN (2, kL)
a=1

x [tdsly [10%RL); wivlas, RLy) o L)

3] - - -
+ ) / [dz]; / [d%k1); ¥ (2i,klLs) ¥ (zis k1)

a=4
X eq / [dz); / [d%k1); i (zj’i‘;_ll_j + (650 — 25) ‘31) sz(zj,ic"“)}

= 3" Fn(@) FpP¥ @)
- |
(2.15)

12



where the body form factor F ; ody (¢%) is defined by

1
o dy dz[ *bo > o
F¥(gt) = /y(l_y) /167:;; 63" (v 2L+ (1-9)F 1) YR (y, L)
0
(2.16)

Equation (2.16) is the same form as Eq. (1.1). This proves the impulse approxi-

mation at small |7, | for ¢ of order of |[}_| or |E§_,|

2.3 REDUCED FORM FACTOR

When |q| | becomes large, |7 | > IZ 1| or |E 15|, then the impulse approxima-
tion (2.15) breaks down since | € (y,[l + (1 - y)(j]_) | becomes large and
v (zi,E_L,- + (6i0 — ;) (ﬁ_) cannot be factorized in the same way as '(/)(:z:,',l;J_,-).
However, even in the case || > |€,] or |k 1|, the deuteron after absorbing §|
must be a bound state of two nucleons since the target remains intact by the
definition of the form factor. Thus the quarks of the deuteron must exchange
momentum so that a large fraction of ¢| can be transferred from the quark which
absorbs ¢ to the quarks of the other nucleon. In QCD theory, the momentum
transfer is due to gluon exchange. The dominant lowest order contribution to
the evolution kernel is represented by the one gluon exchange diagrams shown
in Fig. 4. Since the gluon is a color octet in SU(3) color group, quarks must be

interchanged between the nucleons in order to satisfy the color selection rules.

13



The equation of motion for (:z:,-, k 1i+ (6ia — z5) q1 ) is given by

6 {ic' + (8 z)"}2+ 2
. . m?
Z—Z 1i ia i) 4L 5

=1

L ¥ (zi, ki + (60 — i) @1 )

i
= /[dw] (&5, V (zi,ELi + (6ia — zi)qL; wj’fJ_j) Wa(ws,515) -
(2.17)

The factorization of \Ild(wj,flj) for low relative momenta is already proved in

Sec. 2.1 [see Eq. (2.9)];

3
- - wq - wy -
Ua(wi, 715) = ¥53°Y (v,£1) ¥n — TS Y Ju

3 3
E Wy Z w; =1
1=1 1=1
(2.18)
w w, 6
X YN 3 ! » J1i — 5 : Z 1j
> w; > wj J=4
j=1 j=4

The body wave function d)};°dy (y,[ 1) behaves like a delta function near the zero

binding energy limit [see Eq. (2.3)]

W) =16r6 (y-3) £ a0 . o)
where
d ,
P& r(0) = / 16% bOdy(y,Zl) . (2.20)

14



Thus the integration in Eq. (2.17) is trivial and the variables w,-,f_L,- are fixed for

the quark interchange model:

Wi = Iy ’
(2.21)
=kt {yb+1 - —z}q

where a and b are indices of two interchanged quarks. Using Eq. (2.21), we can

prove that Eq. (2.18) reduces to
Ua(wi, 715) = ¥2°Y (v,£))
X YN (Zi, kL + (8ai — 2) (ﬁ) (2.22)
X YN <zJ" EJI_J + (65 — 2)) (1 —y) 4L )

By substituting Eq. (2.22) into Eq. (2.17), we obtain the factorization of:

6 3 6 6 3
Z\I’d <xi,5¢i+(5ia—xi) fil) = (Z Z+ZZ) zazil

a=1

97 (2.23)

X YN (Zi, k! + (8ia — 2)ydL )

x ¥ (2K + (85— 2) (1~ )1 ) vhe@

15



where the kernel V' can be obtained by calculating the diagrams shown in Fig. 4.
The weak binding of the deuteron forces y ~ % On the average we expect the
struck and interchanged quark to have roughly the same z. Using this approxi-

mation we obtain the factorization of the form factor from Eq. (2.10):

. c
F(g}) = 7 | %R (0) |2
3 — = q —
X [Z /[dZ]i IR (zi,ki,-+(6¢ —zi)%> N (2, k1)
a=1

6 -
X Y / (d2]; [d®kL); ¥ (zj’Eij + (855 — Zj)%) YN (2, k}) + (a < b)
b=4

= fa@}) F& (%/4)

(2.24)
where the reduced form factor fj ((j’f) is defined by
oy _ C 4 2
faldy) = F) | 9% (0) | ) (2.25)
1

and C is determined by value of the kernel V. More generally, we may iterate the
wavefunction wherever large momentum transfer is required and in this way build
up the entire Ty contribution to the form factor, as in Eq. (1.6). Equation (2.2)
is thus the same form as Eq. (1.2). This proves the transition of the form factor
at large |q1| (|qL| > |Z 1| or |I€ 15|) from the impulse approximation form to the
reduced form.

In the full QCD analysis, the iteration of the gluon exchange kernel leads

to a logarithmically evoluting distribution amplitude which replaces 1/)}{,12(6).

16



At large Q? the gluon exchange kernel generates other color singlet configuration
of six quarks, so that the approximation that the deuteron only consists of a
nucleon pair breaks down. The complete calculation of the deuteron form factor
thus requires the inclusion of these other components. The reduced form factor
prediction is useful for incorporating non-leading power law corrections, but it
does not include the hidden color contributions of the deuteron wavefunction
(see Fig. 5).

The definition of f3(Q?) = F4(Q?)/F%(Q?/4) provides a convenient tool for
comparing QCD with experiment since it correctly removes the effects of nucleon
compositeness for the part of the deuteron wavefunction which consists of two
nucleons. More generally QCD predicts at large Q2

asé?Z) ian (Zn Qz/Az)r" X [1+ O0(es(@?),m?/Q%)] ,

n=0

fa(@*) =

where the T',, are determined from the difference of deuteron and nucleon
anomalous dimensions. Here I'y = —% %‘i Since (£,Q?%/A?) is slowly varying,
the essential test of QCD in the deuteron is the prediction f3(Q?) ~ 1/Q? for
the leading helicity zero to helicity zero form factor, and that the other non-
zero helicity deuteron form factors are relatively power law suppressed at large

momentum transfer.
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3. Discussion and Conclusion

In the zero binding limit, the light-cone Fock state wavefunction naturally
decomposes into a product form of cluster wavefunctions. This result (Eq. (2.9))
is closely related to the cluster decomposition theorem for scattering amplitudes
proved in Ref. 5. Thus the nuclear wavefunction to a good approximation con-
tains as factors a product of on-shell nucleon wavefunctions, but only in the near
on-shell regime where the relative momentum of the nucleons is small. The fac-
torization of light-cone wavefunctions leads, as we have shown, to various forms of
factorization for the nuclear form factor. At low Q% < 2Mj¢,, the usual impulse
approximation result is valid. The region of validity of this form though is limited
to momentum transfers smaller than the inverse size of the nucleons where the
struck nucleon can remain nearly on-shell by virtue of the nuclear Fermi motion.
In this domain, the nucleon form factor is still nearly point-like Fiy(Q?) ~ 1. At
larger Q2%, the kinematics of the boosted recoil nucleus forces the struck nucleon
off-shell and the traditional form of factorization becomes useless. Fortunately, in
this domain the reduced form factor result becomes approximately valid, replac-
ing the impulse approximation as a valid starting point for QCD phenomenology.
We have also discussed a simple quark interchange model. Using this model one
can not only avoid the enormous labor® (300,000 diagrams) required to calculate
the hard scattering amplitude directly, but it also allows one to connect the re-
duced form factor with the phenomenological value 1/1}{, R((f), the deuteron body
wave function at origin.
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Fig. 3.

Fig. 4.

Fig. 5.

Figure Captions

Representation of the deuteron form factor according to the stan-
dard nuclear physics impulse approximation. Here [k’2 — k2| =

|2k-q+q?| ~ Q%/2 since k ~ p/2 or k' ~ L(p + g).

(2) Comparison of the asymptotic QCD prediction f;(Q?) « 1/Q?
[€n(Q?/A%)]~1+T° with data for the reduced deuteron form factor,
where Fn(Q?) = (1 + Q%/0.71 GeV?)~2. The normalization is
fixed at the Q? = 4 GeV? data point. [ (b) Comparison of the
prediction [1+(Q2%/m?)] f2(Q?) x [£n(Q?/A%)]~1*Te with the above
data. The value mZ = 0.28 GeV? is used.

The diagrammatic kernel equation of the relativistic deuteron wave
function in the light—cone frame. The effective ¢3—type interaction

[see Eq. (1.3)] provides the clustering of two separate nucleons.
The lowest order diagrams of the quark interchange model.

QCD contribution included in analysis of the reduced form factor.
The gluon contributions to the deuteron wave function indicated by

dotted lines lead to hidden color components and are not included.

20



7-85 4647A4

Fig. 1



14Q2) (x1073)

2-83

6.0

4.0

2.0

0.2

O.1

Fig. 2

6

4475C2



Xi= yzi, k= kpj+2z; 4

\/\L 7

Fj: ST

— e — e e d -

Xj: “"y)zj’k.l.j:klj "Zj I.L

;

v

T

P e N

- e

9~83 I
4647A0

Fig. 3

~
e

w Mol
™Mo
+
™Mo
Mo

S

g

> XarKpa +(¥~Xg)ay
I b=4 a=4 b=|

e = - Xa:Klg + (""o)a.l.
Xg=Xp =L, K o=k p +(y-Alg, - R +
X(ﬁlb‘qui

Xp Kyp + (I=y=Xp) dy

>,
-~

~
7

N

L rd

> .

re >
b

7~

Y
N

9-B3
4647A2

Y
Y

Fig. 4



(I-y)p (1-w)(p+q)

7-85
4647A5

Fig. 5



