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1. Introduction

The observed recession of galaxies! and the existence of the cosmic microwave
background radiation (CMB)?23 motivated the inspiration and development of the
standard model of cosmology*. According to this theory the universe is well de-
scribed by a Friedmann-Robertson-Walker geometric dynamics all the way back
from the time of electron-positron annihilation (radiation domination period) up to
the present.

More recent measurements of the microwave background temperature
anisotropies in combination with the fact that very distant objects known as super-
novae type-la appear much fainter than what standard matter-dominated cosmo-
logical theory predicts, point to an additional effect, the observed acceleration of
the expansion of the universe, and pose the fundamental problem of what causes
this accelerated expansion and adequately explains the observations. This observed
acceleration in the present phase of the evolution of the universe is in obvious com-
pliance with more recent data for the redshift® and from the Hubble diagram of
Type Ia Supernovae®”, in conjunction with various harmonic analyses of the CMB
fluctuations and anisotropies® 1% with a very adequate level of statistical precision
and confidence 13,

These observations also point, with increasing plausibility, to an earlier, vacuum
energy dominated period in the history of the universe before the radiation period,
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where the universe was expanding with the scale factor growing more or less ex-
ponentially, a period known as cosmological inflation, cf.+1%15. Inflation not only
resolves various of the puzzles of the standard model of cosmology but also explains
beautifully the origin of the CMB anisotropies, leading to a very persuasive theory
of cosmological fluctuations, cf., e.g., #1517, It is generally accepted today that the
standard model of cosmology together with its inflationary extension describe well
the observed properties of the universe and reveal many fundamental aspects of the
universe?.

The success of the standard and inflationary cosmology is not accidental but due
to its reliance on general relativity and the quantum theory of fields respectively,
perhaps two of the most successfully established theories of theoretical physics avail-
able today '®'?. However, and despite all its success, there are two fundamental,
unresolved issues associated with standard cosmological theory lacking a satisfac-
tory explanation within its realm and pointing to conceptual difficulties that lie far
beyond it. These two issues cannot be properly addressed either by the standard
cosmological model or by any of its inflationary extensions, and prevent the stan-
dard, accepted cosmological picture to be the final one, that is a complete theory
that would eventually offer us a more convincing framework to study the structure
and ultimate fate of the universe. These two issues are the cosmological constant
problem, and the singularity problem.

The cosmological constant problem?’ is the question of why the cosmologi-
cally observed value of the total, effective vacuum energy, py ~ 10747GeV*?, is
so much smaller than the expected quantum field theory estimate of the vacuum
energy (empty space), (p)yae ~ 2 x 10"'GeV%. In other words, the Einstein cos-
mological constant, A, contributes a term equal to A\/87G to py, so that when
we solve the equation py = A/87G + (p)yac, we find the unnaturally small value
A/87G = 107118GeV* for the cosmological constant. This is a serious problem
for theoretical physics because, since p) comes from general relativity and (p),ac
from quantum field theory, it follows that there is an unexplained discrepancy be-
tween the two theories, in a regime where both are perfectly valid, unless a severe
fine-tuning of about 120 decimal places is performed.

The second problem is the so-called singularity, or initial state, problem. Ac-
cording to the singularity theorems of general relativity, spacetime singularities are
a generic prediction of the theory under very plausible assumptions of the causal
and matter character (global hyperbolicity, positivity of energy density), usually
accompanied with a blow up in the spacetime curvature and the thermodynami-
cal properties of matter?'. This means that spacetime must come to an end at
generic spacetime singularities and further analyses relating to spacetime structure
and evolution beyond such a point cannot really be made. More recent complete-
22 need to assume that various curvatures are bounded to get geodesic
completeness, and so cannot alleviate the break down of the theory predicted by the
original singularity theorems. It follows that geodesic incompleteness is tied with a

ness theorems
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blow up in the curvature. Therefore according to these theorems classical general
relativity must loose its predictive power as a physical theory near regimes where
the gravitational field is sufficiently strong. (We note that potential-dominated in-
flation has a similar problem, namely it cannot be past eternal??, so the inflationary
extension of the standard model of cosmology cannot solve the singularity problem.)

This state of affairs opens up a host of new possibilities, theories which may
be formulated and studied outside the realm of general relativity in an arbitrary
number of dimensions and have dynamical equations and matter fields ‘arbitrarily’
prescribed (or arbitrarily modified with respect to the standard Einstein equations
and matter fields). The new problem then becomes to examine what these new
models would imply about the ultimate nature, origin and fate of the universe.
Indeed, in this way, mathematical models of cosmological importance have in recent
decades acquired a sparkling diversity. They may be constructed using a wide
variety of cosmological spacetimes, theories of gravitation and possible matter fields,
resulting in an interesting and seemingly legitimate (at least mathematically) web
of theories as the (rather incomplete) Table below shows (cf.?4).

Cosmologies
Theories of gravity | Spacetimes | Matterfields
General Relativity de Sitter Vacuum
Higher Derivative FRW Fluids
Scalar-Tensor, Multi-field Bianchi, Scalar fields
Quantum Cosmology Godel n-form fields
Varying constants Generic Phantoms, tachyons

In the vast literature of cosmological models, one finds choices from this Ta-
ble of the sort GR/generic/vacuum, HD /FRW /vacuum, ST /Bianchi/fluid, and so
on. However, it is not possible that all models constructed in this more or less
ad hoc way be a priori physically realistic. In fact, each choice of a cosmology
(here meant in a somewhat scholastic way a triplet of the form ‘Theory of grav-
ity /Spacetime/Matterfield’), would be based on generally inequivalent physical as-
sumptions than any other, so that it would become impossible for them to be all
viable in the end, irrespectively of their success! To put it in another way, although
there is nothing to stop us pursuing any one of these ‘theories’-choices from the Ta-
ble above (and similarly of course many others not included here), a basic unifying
principle underlying such an approach is totally absent.

This is precisely where string theory comes in and offers a fresh, new and com-
pletely revolutionary approach to this old subject. For it postulates the missing
unifying principle for all fields and interactions, in that every field interacting with
the string should be contained in the spectrum of states associated with the quan-
tization of its free oscillations, in such a way as to maintain a certain kind of
conformal invariance present in all string models?® 27, As such, string theory bears
a very remarkable relation to both gravitation and cosmology, and, in particular,
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to the two problems mentioned above, namely, the cosmological constant problem
and the singularity problem. But equally important string-theoretic considerations
are for the issue of the initial state of the universe, where general relativity breaks
down and we need a new unifying principle in order to proceed. (Of course string
theory has remarkable connections with particle physics, condensed matter physics
and statistical mechanics, but these are unaffected by the arguments of relevance
here.)

String gravitation and cosmology is then a largely unexplored area of theoretical
physics of remarkable promise, to which the current review intends to shed new light
to a number of basic issues. In this paper, we aim to address systematically the
important issue of infinity inherent in both the cosmological constant problem and
the cosmological singularity problem in the unified context of string-inspired models.

It is truly remarkable that in string theory all major aspects in the web of
theories freely prescribed as discussed above, reappear but in a way that is not
free anymore. They must be consistent with the rules of string quantization and
conformal invariance, and thus are now tightly fixed under these string-theoretic
constraints. We therefore expect that these constraints will lead to interesting new
effects not only for their initial states, but also for the cosmological dynamics of
string models near any regime where the field approaches a ‘singularity’ (an example
of the latter situation arises in the so-called ‘self-tuning’ models, see below).

Hence, in this paper we will be deeply rooted in string cosmology (see3! for
a recent introduction to this general area), and more generally, in string-theoretic
models which most naturally emerge when considering:

A. Tree-level equations both in the string and the Einstein frame
B. First-order o’-corrections

C. M-theory cosmology

D. Braneworlds and self-tuning.

We aim to address below in a series of open problems some of the issues of infinity
and asymptotic structure in all four areas of string theory and cosmology referred
to above. More specifically, we will present a series of open problems relevant to
the string phase of the models and are related to:

i. the nature of cosmological ‘singularities’
ii. the asymptotic properties of regular solutions, and
iii. the genericity of the found solutions,

Before we proceed further, we make the following remark. The quotation marks used
in the word singularity above, mean to underline the fact that in string-theoretic
cosmological considerations the typical general relativistic spacetime singularities
are replaced by other regimes. A typical such asymptotic state in string cosmology
is the so-called string perturbative vacuum??, the exact opposite of a very hot,
highly curved and exceedingly dense big bang of the standard model of cosmology.
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Other string asymptotic regimes correspond to Planckian or trans-Planckian states
which emerge due to the non-perturbative nature of the string models and take
into account quantum gravity effects to all orders®3. A systematic analysis of such
states is almost completely lacking at present in string theory.

In the next sections of this paper, we provide a description in terms of open
problems of various issues associated with infinities in the cosmological evolution of
string-inspired models.

2. Tree-level string and M-theory effective cosmologies: The road
ahead

String effective actions have a scalar-tensor resemblance in zeroth-order o’ expan-
sion. Typical tree-level string actions involve, except for the dilaton and the gravi-
ton, a two-form potential in the NS-NS bosonic sector, a modulus field parametrizing
the volume of the internal dimensions, and a constant term related to the central
charge deficit of string theory. There are a few known special exact solutions of such
a theory describing flat isotropic universes, starting with the so-called linear dilaton
background describing the first exact time-dependent solution of string theory 2839,

However, in general, it is unknown whether these solutions are stable or not,
or whether there exist singularities, or what happens to regimes where some of the
fields involved blow up (cf.3! and Refs. therein). Long-term stability is an issue of
supreme physical importance, and a lack of it implies that any model described by
such an unstable exact solution with respect to perturbations is devoid of physical
interest in the relevant regime. This is especially important for situations involving
strong fields, asymptotic questions, and behaviours near singularities.

A well-studied example is the pre-big bang scenario solution®?, and there are
other important exact solutions known, eg., the so-called dilaton-moduli-vacuum
solution®*, belonging to the class of ‘rolling radii’ solutions3®. There are also some
very preliminary results on cyclic solutions®%37, in addition to well-known solutions
in the standard Brans-Dicke with A (cf.3®, chap. 4). There is also an instability
result known in M-theory3? (apart from the process of ekpyrosis, see below). The
general area of string cosmology up to now is mainly concerned with the study of
effects that are based on these solutions.

However, although there are by now a number of exact homogeneous, isotropic
solutions in vacuum and with various matter fields in scalar-tensor cosmologies and
tree-level string models, questions of asymptotic stability such as the singularity
problem are not yet studied in such models with any serious degree of completeness.

Ideally one wishes to know the global stability behaviour of known exact string
cosmologies from every possible asymptotic point of view. Namely, a complete
qualitative classification of the various asymptotic profiles including behaviour near
singularities, the study of long-term asymptotics, and finally the question of gener-
icity of the solutions, namely, their behaviour under suitable forms of perturbation.
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We are particularly interested in classifying past singularities of string cosmolo-
gies and their behaviour at early times, where all exact solutions are dominated by
a scalar field and so it is like having a vacuum. It will also be useful to compare
this with the analogous situation in general relativity, perhaps using the conformal
equivalence between the string frame dynamics and the Einstein frame models.

We expect to have remarkable results here, both with respect to theorems giv-
ing sufficient and necessary conditions for singularity formation in FRW or simple
anisotropic models, thus leading to a classification of the possible singularity forms
(according to their Bel-Robinson energies etc), as well as with respect to the struc-
ture of infinity in these models, that is how the various fields decompose and balance
near singularities, eventually to obtain detailed information as to what their global
phase portraits look like (Poincaré method of central projection).

Armed with a classification of possible asymptotic forms, another important di-
rection for future studies is to include interacting fluids in the basic string actions
(using both the viewpoint of the asymptotic splittings and that of the central pro-
jection methods) in an effort to obtain valuable asymptotic information at early
times, in particular, in regimes where the scalar field that couples nonminimally (as
predicted by string theory) to the curvature dominates. This resembles the evolu-
tion in vacuum, and it is particularly important that it is analyzed thoroughly first.
It will be very interesting to see how the various known exact solutions fit into this
scheme.

We further note that most scalar-tensor cosmologies utilize the standard cou-
pling of the scalar field ¢ to the curvature R in the action, but in string theory
the scalar field is not universally coupled to all matter fields present in the theory.
However, the conformal transformation of these theories to the Einstein frame usu-
ally introduces such a coupling, and the matter lagrangian becomes a function of
the scalar field ¢ as well as the rest of the matter components, cf.4°.

There are exact solutions corresponding to flat universes in this case*!, but due
to non-geodesic motion of test particles (due to possible violations of the equiva-
lence principle) one has to very carefully choose the couplings of ¢ to the matter,
something which is a prerequisite in string theory. The interest here is in obtaining
general results about the early and late time attractors to these string cosmologies,
through the application of asymptotic methods, in an effort to see whether or not,
and in what sense, they tend to known limits.

One would also like to know the degree of genericity of the stable string cos-
mology solutions obtained from previous asymptotic analyses. An obvious first
candidate to perturb is the pre-big bang solution®', or the cyclic universe*?, or
other singular solutions which are long suspected to be generic*3. The aim here is
to use the degree of genericity of the aforementioned exact solutions as a means to
decide about their physical significance. In general relativity, such decisions have
been made using experimental facts such as the synthesis of light elements in the
early universe and their manifestations in the standard solar system tests of general
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relativity 4. In our string-theoretic framework, we propose the relative degree of
genericity of two solutions as a measure of their physical usefulness.
We expect the discussion in this section to naturally break in parts as follows:

A. Classification of extreme states
B. Asymptotics of tree-level cosmologies
C. Asymptotics of universes in M-theory
D. Genericity of string cosmologies

We may further formulate specific problems related to the discussion so far.

2.1. Asymptotics of specific tree-level string actions I

The aim here is to describe the detailed asymptotic limits of universes obeying the
basic gravi-dilaton effective string action, neglecting higher order and loop correc-
tions. The plan to give a complete asymptotic analysis of the NS-NS models and
first results about the asymptotic stability of the known solutions (dilaton-moduli-
vacuum and axion solutions). This is a first necessary step in order to study the
more advanced asymptotic analysis problems given below.

2.2. Asymptotics of specific tree-level string actions IT

The problem here is to study the asymptotic properties of universes with RR fields.
This asymptotic analysis will tell us about the stability of the known solutions,
whether they are unique. It is possible that there are solutions which exist only sub-
dominantly asymptotically and these are expected to be identified by our analysis.
This conjecture relates to a similar phenomenon previously observed in cosmologies
with interacting fluids, namely, the so-called curvature exchange term entering sub-
dominantly during the evolution to strong field states, cf4>46. This would constraint
the types of singular asymptotic solutions.

2.3. Asymptotics of specific tree-level string actions II1

The next step is to incorporate anisotropies into the asymptotic regimes and study
simple anisotropic models with NS-NS and/or RR fields. There will be many de-
compositions of the vector field asymptotically and there may be solutions with a
smaller number of arbitrary constants which still attract other families of solutions.
We expect here the phenomenon of asymptotic cancellations to occur, an effect first
noticed in Ref4” (see also*®). This will provide a detailed map of the solution space
of string cosmologies.

2.4. Asymptotics of M-theory cosmology

It is very important that there are some exact cosmological solutions in heterotic
M-theory and Horava-Witten cosmology (with nontrivial Ramond fields) found in
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the papers of Lucas-Ovrut-Waldram (cf. 4 and references therein), and so there are
some basic regimes to perturb. An asymptotic analysis along the lines mentioned
in this paper is expected to reveal for the first time the full significance of these
solutions and especially the dimension of the asymptotic attractor they form.

2.5. Asymptotics of M-theory cosmology IT

This is an extension of the previous problem in a different direction. The plan is
to examine the stability of those cosmological solutions that are associated with a
BPS state cf.®®. This requires the solutions to be inhomogeneous, and so may also
have a significant role to play in the ambient cosmological construction (cf. below).

2.6. Genericity issues in string and M-theory cosmology

For stable solutions found in the previous two problems, a genericity analysis to
the full inhomogeneous perturbations may be applied. One expects in this way
to discover what any generic solution sharing such characteristics will look like,
at least for the analytic case. The genericity question in cosmology has a long
history, starting with the studies of Khalatnikov-Lifshitz°'*2, and continuing with
Starobinski et al®¥ % for inflationary and other fluids. In higher-order gravity, a
first analysis using Fuchsian series of arbitrary expansions for the metric was done
in®0 in the context of sudden singularity theory. A complete analysis along these
lines for a higher-order gravitational action in vacuum was performed in Ref.%".

3. Universes with o’ corrections

Perturbing to the linear order the low-energy equations, string theory predicts the
appearances of o (higher-derivative) corrections modifying the effective action by
adding terms proportional to

Sar ~ ol [ duge™(REs — (V0)") 1)

where R%; = R? — 4Ric® + Riem? is the Gauss-Bonnet invariant®®. For an FRW
metric, this has been recently examined for asymptotic stability (without the dilaton
term and coupling, but with curved universes allowed) as an R+ o’ R? theory in the
cases of radiation and vacuum in“7*°, The results in this context show that there
are basically two attractors, the t'/2 solution, and a Milne-type solution.

There are two ‘obvious’ extensions of these results to the following directions:
First to include the dilaton term and couplings in the string effective action, and
secondly, to do the asymptotic analysis for any admissible value of the fluid param-
eter, p = wp. We note that already in vacuum, tracing the asymptotes was a highly
nontrivial asymptotic problem, because one needed to choose the right variables for
the vacuum to dominate asymptotically, cf. e.g., .

There are also a number of situations in string cosmology, for instance during
the passage from pre- to post-big bang, that require, in addition to tree-level and
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a3l 60

o’ terms, interaction matter terms as well as quantum loop correction terms
in the string action. We can, however, imitate some the effects of such terms as two
or more interacting fluids present in the string action and study the asymptotics of
solutions by adding two interacting arbitrary fluids in the theory (1) that exchange
energy at rates depending linearly on their densities and expansion rate. Only
partial results are known4%46:61-63 for the behaviour of particular exact solutions
in general relativity. Any results here will be the first known ever to a similar
situation in string cosmology. Useful tools for such qualitative and exact geometric
asymptotics include the method of asymptotic splittings and the dynamical system
method of Poincaré compactification, suitable for these strong coupling corrections.

The various problems relevant to the marerial in this section fall naturally in
the following three areas:

A. Dilaton case asymptotics
B. General fluid
C. Interactions

3.1. Asymptotics of gravi-dilaton flat FRW cosmologies

The plan in this project is to extend relevant asymptotic analysis and stability
results known separately in general relativity, higher-order gravity or pure scalar-
tensor actions relating to the flat and curved FRW universes, to the case of the full
action (1), that is including the dilaton term and its coupling to the higher-order
curvature terms. This will provide especially important results for the stability of
the vacuum in this effective string theory.

3.2. Extensions to general tree-level cosmology for any fluid
parameter

For the basic string effective theory with quantum corrections, find all stable asymp-
totic solutions with a general fluid coupled to the dilaton. This involves several
technical difficulties because of the nonlinearity of the equations, but we expect
remarkable physical results to emerge from this project.

3.3. Interacting fluids in flat string cosmology

The aim of this project is to examine how all known single fluid results in flat string
cosmologies generalize to the case of two interacting, more or less general fluids
which exchange energy. This is very important because it will reveal which results
remain in such a generalized situation, thus offering another clue to the physical
viability of string cosmology. It will also compare with first results of interacting

bulk fluids in brane theory as in* (see the work on mixtures in%4).

aSuch terms are also typically generated in the Einstein frame representation of a string effective
theory that contains matter terms.
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3.4. Curved string cosmologies with interactions

This deals with the important case of curved universes with interacting fluids in
string cosmologies with higher order curvature corrections. We expect to see the
effects of dominant as well as subdominant curvature asymptotically (cf. Ref.%® for
the situation without a dilaton).

3.5. Stability of 11-dimensional supergravity cosmology I

The aim of this project is to see whether the properties of M-theory cosmologies
studied in other projects above are stable with respect to perturbations formed
when the M-theory action contains higher order corrections. We know that when
the M-theory action is further deformed to include Lovelock and Weyl terms%5-66,
there are several exact solutions not present in standard M-theory cosmologies. Are
these solutions stable? In this problem one expects to trace all possible asymptotic
modes of the fields, and in this way to give the first reliable results about the
possibility of a no-hair theorem for an inflationary stage in M-theory.

3.6. Stability of 11-dimensional supergravity cosmology I1

Here the plan is to study the asymptotic stability of the deformed M-theory power-
law cosmological solutions%%®. This is especially important for the naturalness of
inflation in M-theory cosmology.

4. Braneworlds

The possibility that our universe is described by a braneworld (brane in a large,
higher dimensional bulk), motivated by the mass hierarchy within string theory,
was instated in Ref.%7. There are at least two areas here where interesting research
programs may be grounded. The first is the extension of the works %869 (
Section for a brief description of that work) from Minkowski (or dS or AdS) branes
to general Robertson-Walker ones (for a background on the latter cf.™, where em-
beddings, geodesics and fluctuations are worked out in detail). Since the equations
of an RW brane in a 5-dimensional bulk are not envelopable by singular solutions,

see next

it is expected that they will in general contain regular asymptotic solutions. First
promising results in this direction were presented in7!, first for the scalar field case
and then for more general fluids. In all cases, one needs to perform detailed stud-
ies of asymptotic stability of the solutions using generalized asymptotic methods
7L A stable, regular solution which would respect the energy
conditions and localize gravity on the brane would be important and open the way
to possible genericity questions, that is stability under generic perturbations.
Secondly, it is very well-known that the existence of higher-order terms plays
an important role in the process of ekpyrosis, in particular, in deciding about the
asymptotic stability of the cyclic universe in string theory>!'. In the work*” it was

similar to those in
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shown that the existence of the Milne singularity and the attractor properties of
our solutions bear a potential significance for the ekpyrotic scenario and its cyclic
extension. In that regime, the passage through the singularity, ‘the linchpin of
the cyclic picture’, depends on the stability of a Milne-type state under various
kinds of perturbations™ 7. In particular, during the brane collision, it is found
that spacetime asymptotes to Milne and so it is expected that higher derivative
corrections will be small during such a phase, cf.” 78, The results of the work*”
implies that such Milne states may indeed dynamically emerge as stable asymptotes
during the evolution, in any theory with higher-order corrections in vacuum or
with a radiation content. What remains is an interesting issue (that can be fully
addressed with the asymptotic methods used in Ref.%7) as follows: Find whether
the ‘compactified Milne mod Zs x R3 space’ monitoring the reversal phase in the
ekpyrotic and cyclic scenarios, also emerges asymptotically as a stable attractor
in the dynamics of higher-order gravity when the matter content is a fluid with a
general equation of state.
The following research problems fall into categories as follows:

A. Asymptotics of scalar field RW branes
B. Asymptotics perfect fluid RW branes
C. Genericity and stabiblity of ekpyrotic and cyclic scenarios

4.1. RW branes and scalar fields

The singularity structure and the corresponding asymptotic behavior of a 3D RW
brane coupled to a scalar field in a five-dimensional bulk can be analyzed in full
generality using the method of asymptotic splittings. One central issue is to examine
the existence of regular solutions, and in accordance with the self-tuning proposal,
to address the cosmological constant problem. Here the effects of curvature will
play a role to see whether such solutions exist or whether the situation resembles
that of a Minkowski brane which we referred to above.

4.2. RW branes with perfect fluid

This is a continuation of the previous problem to the case of the inclusion of a
perfect fluid. This is a more general case which in the Einstein frame representation
(meaning the brane action we considered previously), brane cosmology includes, for
a special choice of the fluid parameter, the previous case of scalar field. New results
in this direction are given in”?. However, the issue of finding a regular bulk solution
is further complicated by the existence of extra constraints, namely, how to localize
gravity on the brane and at the same time meet the requirements of the null energy
condition in the bulk. The content of the paper” shows that this is not possible
for single fliuds, a result that points to our next problem.



The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/27/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

768

4.3. RW branes with interactions

In this project we consider the standard gravi-dilaton string affective bulk action
in the S-frame, in this case the vacuum is inequivalent to a p = —p fluid and so we
may have interactions. We may also take the Einstein frame representation of the
theory and directly couple the scalar field with the fluid. This project will search the
question as to whether regular asymptotics are the result of the interactions between
the scalar field and the fluid. It would be interesting to test whether interacting
fluids can meet all three conditions discussed in the previous problem.

4.4. Genericity of the asymptotic solutions

In this project the aim is to examine, through a generic perturbation analysis,
whether the found solutions are stable when we consider general inhomogeneous
perturbations. Through function counting, we may be able to conclude about the
degree of generality of the found brane asymptotics. We note that the Landau-
Lifshitz perturbation method discussed in previous sections can be applied to both
regular as well as singular asymptotics.

4.5. Ekpyrosis and the Milne state with asymptotically
subdominant higher-order terms

This project aims to examine the global asymptotic stability of the Milne state in
string theories with higher-order corrections in an effort to decide as to whether or
not this state is a viable representative of the passage through the singularity in
models with an ekpyrotic or cyclic phase. In the prospective asymptotic analysis
of this problem there will be hundreds of decompositions and dominant balances
to consider one-by-one due to the combined effects of the general fluid and brane
geometry. The plan is to start here covering first separately all those cases that
have the relevant terms entering subdominantly. This will give a first indication of
the possible stability. Subdominant evolution is more subthe than having all terms
dominant, and it is known that it generally leads to surprising results.

4.6. Ekpyrosis and the M:ilne state with asymptotically dominant
higher-order terms

This is a continuation of the previous problem concerning the asymptotic global
stability of the Milne state in the Ekpyrotic and cyclic scenarios in M-theory. How-
ever, this time one is interested in the effects of the higher-order terms now entering
dominantly in the evolution. This is the most nonlinear case. Upon completion,
this project will bring new light not only to the process of ekpyrosis but one hopes
to the whole of M-theory cosmology.
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5. Miscellanious results

To appreciate the ambient construction and related issues developed in the following
Sections, we outline here several distinct pieces of background, namely, various
results from AdSs/CFT, geometry, and more generally the ambient construction
in conformal geometry, as well as various asymptotic limits of braneworlds. These
results also have an independent interest and importance in their own right.

5.1. AdS5/CFT, geometry: The simplest ambient metric

Witten in his work®? gives various proofs and implications of the following basic
result: The 4—dimensional Minkowski spacetime My is the boundary of AdSs;. A
summary of the simplest properties associated with this construction is given below
in a sequence of steps.

e The symmetry groups of bulk and brane agree on the boundary of bulk.
e Counstruct (AdSs, g+) metric as the Poincaré (hyperbolic) metric on unit
open ball Bs of R5 (37_ 42 < 1 there),

9 4
gt = %, ly|? = Zdy?, Y0, Y1, - Y4 coordinates of R®. (2)
(1= [y?)? 2

e g, does not extend everywhere on Bs U S*, because it is singular on the
boundary 0Bs = S*.

e Pick a function Q2 =1 — |y|?> > 0 on Bs, and Q = 0 on S*.

e g, is conformal to a complete metric § = Q%g, that extends smoothly on
0AdSs = S*.

® §|ss is a metric in [g4]. The conformal infinity Fags, = S?, that is its
boundary.

e While Bs has a unique, well-defined metric, its boundary 9B5 = S* has only
a conformal structure (both preserved under the actions of their symmetry
groups).

e Any function on S* extends uniquely to AdSs5 that has the given boundary
values and satisfies the field equation.

e A conformal field theory on (S, [g4]) should be well-behaved.

e Maldacena conjecture: A string theory on AdSs x S° is equivalent to a
certain SUSY Yang-Mills theory defined on 44, .

e A black hole is then defined as a thermal state on the boundary, and the
whole construction makes calculations easier because S* is conformally flat.

We conclude from this that one may proceed from the Poincaré metric gaqs, =
4(1—|yl?)"%gE, to § = Q%gaas., and then restricting §|gs to finally get a conformal
structure on the boundary spacetime.
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5.2. The Fefferman-Graham fundamental theorem

We now consider the inverse problem: Starting from a conformal space-time mani-
fold (M, [g4]), is there a metric on V such that when we perform the construction
we get the given conformal structure that we started with? This is the problem
that occupied the fundamental work Ref. 83, concerned with the construction of
conformal invariants. It was shown in Ref. 83 that there exists a well-defined am-
bient metric (this is the Feflerman-Graham metric) gy on M x R (points (z#,y))
with the following properties (cf. Ref. 83):

e Locally around M x {0} in M x R, there is a smooth (non-unique) function
Q with Q@ > 0 on V, Q = 0 on M, and such that Q%g, extends smoothly
on V.

o (22g.)|7as is non-degenerate on M (that is its signature remains (—-++-++)
on M).

o (9294)|ram € [g4]. (M is the conformal infinity of V.)

e ¢, satisfies the Einstein equations with a cosmological constant A to infinite
order on M.

e ¢, is in normal form with respect to g4:

g+ =y gy + dy®).

Here, g, stands for a suitable formal power series with go = g4. (We may
also use y as ).)

e g, is unique: Given any two ambient metrics g}, g% for (M, [ga]), their
difference g3 — g2 vanishes to infinite order everywhere along M x {0}.

5.3. Braneworld solutions, asymptotic limits

As we discussed in previous sections of this paper, it is possible to have a complete
profile of all asymptotic situations that emerge when we have a bulk 5-geometry
(V, g5) containing an embedded 4-dimensional braneworld (M, g4) that is either a
4-dimensional Minkowski, or de Sitter, or Anti-de Sitter spacetime, cf. Ref. 64. In
general, all asymptotic solutions have a form dictated by the method of asymptotic
splittings®*. This may be described in a series of steps:

e We have bulk space (V, g5) (coordinates A = (z#,y)) containing embedded
4-dimensional braneworld (M, g4) (coordinates x*, signature (— + ++))
filled with an analogue of perfect fluid p(y) = vp(y) and satisfying the
5-dimensional Einstein equations in the bulk, Gap = k5T aB.

e We then assume the ansatz,

gs = a*(y)gs + dy*, for g5 solutions on V,

and look for solutions with (M, g4) being either a MINKOWSKI, or DE SIT-
TER, or ANTI-DE SITTER spacetime.
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e In this case, the Einstein equations reduce to the generic form & = f(x),
where f is a smooth vector field and the solution vector is such that x =
(a,a,p)

e Solutions are then of the general form given by method of asymptotic split-
tings:

o0
a(y) =y* > cy’*, y—0, peQseN¢eR,
1=0

and similarly for the density p.

e g5 cannot be continued to arbitrary values in the y-dimension without some
sort of matching; all flat brane solutions are singular at a finite, arbitrary
y—distance from the position of the brane located at y = 0. The generic
curved problem is under investigation.

From these results, it is not difficult to conclude that the following properties apply
in fact to a great variety of different models of braneworlds (cf. e.g., Refs. 85-91
and refs. therein):

e The properties of the metric g4 do not follow from those of the bulk metric
gs but are dictated by field equations valid on the 4-‘brane’ itself.

e There is no conformal infinity for the 5-dimensional geometry (the brane is
certainly a kind of boundary to the bulk, but it can never be a conformal
boundary).

e No holographic interpretation is possible and there is no way to realize a
boundary CFT.

In what follows, we present a novel approach in which all of the above difficulties
are absent. For more details and developments, the reader is advised to look at
Refs. 80, 81.

6. Ambient cosmology

We have discussed in previous Sections of this paper, various research problems
which if studied will shed lights in tree-level string cosmology, in M-theory models
of the universe, as well as in higher-order correction terms in the string action, and
lastly in the extension to braneworlds. However, this is one more step to take and
this is a further recent extension of brane theory to a regime where all defaults
mentioned above are absent. This is a geometric construction we call ambient
cosmology.

In this Section, we present a brief summary of the main points of this construc-
tion to produce a situation where generic spacetimes will end up having improved
properties over those we may meet in the theory of hypersurfaces in general relativ-
ity (or in its higher-dimensional extensions as above). In the proposal below, a new
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bounding hypersurface, the conformal infinity of a new cosmological metric in 5-
dimensional ‘ambient’ space will be the result. One aspect of our results developed
in Refs. 80, 81 may be stated as follows:

Theorem 6.1. Let (M, [g4]) be a 4-dimensional spacetime with a conformal struc-
ture. Any 4-metric g € [g4] has an ambient 5-metric g4 on spacetime V.= M x R
such that:

o [t satisfies the 5-dimensional Einstein equations with a fluid source on 'V

o V has M as its conformal infinity, (Z4.,g|n)

o Any two conformally related 4-metrics on M, g1 = Q2gs, have ambient
metrics differing by g1|a(0) — g2/ (0) = g1. Hence, Z,, has a homothetic
symmetry, §lp = cga

6.1. The ambient cosmological metric

Our construction is generally one belonging to conformal geometry (cf. Ref. 92),
and may be summarized as follows (cf. 80 for more discussion).

(1) Take a 4-dimensional, non-degenerate ‘initial’ metric g;y(z*) on spacetime M.
This step essentially involves the Penrose conformal method.

(2) Conformally deform g to a new metric g4 = Q2g;y by choosing a suitable
conformal factor 2. This step connects the ‘bad’ metric gy with the ‘nice’,
non-degenerate, and non-singular metric g4 (z#).

(3) Using the method of asymptotic splittings for the 5-dimensional Einstein equa-
tions with an arbitrary (with respect to the fluid parameter ) fluid, solve for
the 5-dimensional metric g5 = a®(y)gs4 + dy? and the matter density ps.

(4) Transform the solutions of step 3 to suitable factored forms of the general type,
(divegent part) x (smooth part).

(5) Construct the ‘ambient’ metric in normal form, g, for the 5-dimensional Ein-
stein equations with a fluid. This is given by the following form,

g+ = w " (0% (w)ga(a") + dw?) ,

n € QT, as w — 0, with o(w) a smooth (infinitely differentiable) function such
that ¢(0) is a nonzero constant.

(6) (M, ]g4]) is the conformal infinity of (V, g4 ), that is & = 9V = M.

(7) The metric g4 is conformally compact. This means that a suitable metric ¢
constructed from g4 extends smoothly to V', and its restriction to M, g, is
non-degenerate (i.e., maintains the same signature also on M).

(8) The conformal infinity M of the ambient metric g4 of any metric in the confor-
mal class [g4] is controlled by the behaviour of a constant rescaling of the ‘nice’
metric gy.

However, uniqueness of the ambient cosmological metric is not achieved like in the
Fefferman-Graham construction®3. Instead, we find®® an asymptotic condition valid
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on the conformal infinity of the ambient space after taking suitable limits of the
various possible geometric asymptotics of the problem. This method lies in the
heart of the whole construction, and is treated briefly in the next subsection.

6.2. The asymptotic condition

For any two conformally related 4-metrics g1, g2 in the conformal geometry of M,
g1 being the ‘good’ (roughly meaning ‘regular’) and go the ‘bad’ metric on the
boundary, their ambient metrics g1 |ar, g2|p differ by a homothetic transformation,

G2|ar(0) = cd1|ar(0), ¢ const. (3)

CONCLUSION: Starting from a conformal geometry on the spacetime M, the
ambient cosmological metric returns a 4-geometry on M (its conformal infinity
metric g|ps) that has a homothetic symmetry.

Therefore according to our proposal, as this is substantiated by the asymptotic
condition, our 4-dimensional world is the conformal infinity of the ambient 5-space
discussed above. What are the basic implications of this proposal? We may sum-
marize some of them as follows.

(1) As a conformal manifold, (M, [g4]) can have no singularities.

(2) Cosmic censorship on (M, [g4]) is equivalent to the validity of ambient 5-metric
construction, the asymptotic condition satisfied by the ambient metric g|as.

(3) Global stability, asymptotic flatness.

(4) Relation to PN twistor space.

Below, we treat (1) in some detail, and give a few comments about the rest towards
the end of this paper.

6.3. The Zeeman topology on the boundary

Let us first state a celebrated result of C. Zeeman about the true topology of
93

Minkowski space
Theorem 6.2. For Minkowski spacetime M, the group of homothetic symmetries
(that is Lorentz transformations with dilatations) coincides with the group of all
homeomorphisms of M provided that its topology is not the usual Euclidean metric
topology (that is M is locally Euclidean) but a new one, called the fine topology Z.

The Zeeman topology has the following properties:

e [t is strictly finer than the Euclidean topology
e It possesses improved properties
e [t extends to curved spacetimes

DESCRIPTION:
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e For x € M, an open ball in Z has the form
Bz(w;r) = (Be(x;r) \ N(2)) U {z},
where Bg(x;r) is the Euclidean-open ball, and N(x) the null cone at = (we
remove N (x) and put back only the point ).
e Then Bz(x;r) is Z-open, but not -open.
e Hence, a set A C M is Z-open if AN B as a subset of B is £-open, for every
spacelike plane and timelike line B.

Zeeman also conjectured in”?? that an extension to the curved spacetimes of gen-
eral relativity should be possible, that is for a general spacetime the homothetic
group must be isomorphic to the homeomorphism group of the Zeeman topology, a
conjecture that was shown to be correct by Gbel %4,

6.4. Zeeman-Gobel theorem

Theorem 6.3. For a general spacetime, the homothetic group is isomorphic to the
group of homeomorphisms of the Zeeman topology.

We make the following comments.

e Amongst all possible generalized topologies, the Zeeman topology is the unique
one having this property, all others having homeomorphism groups isomorphic
to the conformal group.

e For any spacetime M in general relativity we have the freedom to choose either
the standard FEuclidean metric topology, giving M the usual manifold topology,
or the Zeeman topology. It is of course the former that is used in all standard
discussions of relativity.

e For our bounding spacetime M - the conformal infinity of the ambient space V'
- however, we do not have this freedom because we have shown the existence of
a homothetic symmetry on M.

6.5. Non-convergence of causal curves

One notion that plays a key role in many theorems in global causal structure and
the singularity thorems in general relativity is the convergence of a sequence of
causal curves. Looking carefully at the proofs of various such results, we note the
following (cf.8! for a more complete discussion of this).

e For the convergence of a sequence of causal curves to a limit curve, one uses
in an essential way the Euclidean balls with their Euclidean metric and their
compactness in order to extract the necessary limits.

e Since the Zeeman topology is strictly finer than the Euclidean metric
topology, such sequences will be Zeno sequences and their convergence in the
Euclidean topology will not guarantee the existence of a limit curve in the
Zeeman topology.
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6.6. Impossibility of singularities on M

The non-convergence of sequences of causal curves has the following implication,
81
cf.®.

e In the proofs of the singularity theorems, a contradiction appears when assum-
ing the existence of a curve of length greater than some maximum starting
from a spacelike Cauchy surface ¥ (on which the mean curvature is negative)
downwards to the past.

e One extracts a limit curve v (which locally maximizes the length between X
and an event p), and no curve can have length greater than that of .

e Here we cannot extract such a limit.

This result and also the more elaborate work® along these lines, opens the way
for the construction of complete spacetimes as the conformal infinities of physical
theories in higher dimensional ambient space.

6.7. Cosmic censorship

We propose that the choice of metric in the conformal class [g4] (g4 is the metric
obtained after the conformal ‘cleaning’ of the initial metric on M (the latter is taken
to satisfy the constraints of the Penrose conformal method), must be made such
that it does not spoil the non-degeneracy of the g metric when restricted along the
boundary M. The only way then left for which the five-dimensional ambient metric
will lose its non-degeneracy on M is when a timelike or null hypersurface forms
somewhere in §|as, that is when there are naked points at infinity on the boundary
spacetime. This would then make the ambient cosmological metric |y degenerate,
contradicting the asymptotic condition. Therefore it seems that a choice must be
made of those metrics g4 in step 2 of the ambient procedure that respect cosmic
censorship.

Conversely, the absence of naked singularities that follows from the validity of
the asymptotic condition on the ambient cosmological metric (in the sense of being
valid on #y) has important implications, for it follows that a naked singularity
may not be the end product of the process of Hawking evaporation of a black hole
through thermal radiation. In this case, future null infinity will generically meet
the vertical line coming out of the spacelike singularity of the black hole due to the
evaporation in the suitable Penrose diagrams, thus allowing material from inside the
spacelike singularity to be seen by an observer sitting at infinity. This is sometimes
interpreted, as is well-known, as a possible violation of cosmic censorship at the
quantum level. The deeper reason of why this works in the ambient framework we
have developed is presently unknown.
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6.8. Global stability issues

In this work, we have reviewed the idea (firstly advanced in Refs. 80, 81) that
towards the Planck epoch classical spacetime becomes the conformal infinity of the
ambient cosmological 5-metric, its conformal boundary. According to our proposal,
spacetime achieves this by gradually (as we approach the Planck time) acquiring a
conformal structure, this might correspond to some kind of conformal invariant -
for instance the Weyl curvature - developed on M. In our construction, as we have
already discussed, this is directly possible because of the existence of one extra
dimension, the appearance of the ambient metric.

The key result here is the validity of the asymptotic condition (3), instead of
the usual uniqueness of the standard Fefferman-Graham ambient metric. This then
is obviously related to some kind of stability of the original spacetime M endowed
with some metric away from the Planck time. For, any other metric gj conformally
related to g4 is a perturbation of g4 keeping the ambient construction unspoiled.

If, for instance, we are interested in the global stability of the Minkowski space,
and consider some perturbation of it, then what we have shown here implies that
we may replace it with any other, conformally related perturbation of it without
disturbing the ambient construction. Therefore it seems that our construction is
admitted by all conformally related perturbations of Minkowski space. This is
something left to future work.

6.9. Relation to twistors

It is possible (although not clear at present) that our construction bears some
relation to twistor space, in particular, the space PN - the null projective twistor
H-space.

There are also other known constructions in twistor theory, like the H-space
with cosmological constant, cf. [96], where a real 3-manifold with a spacetime
metric becomes the conformal infinity of another 4-manifold that satisfies the self-
dual Einstein equations with a cosmological constant —1.

In our case, we have a fluid in the 5-space, not a A, and the validity of the
asymptotic condition is not so clear. Also the meaning of non-locality on our am-
bient space is not yet clear.
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