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We review a recipe to produce a lattice construction of fermionic phases of matter in the pres-
ence of time reversal symmetry by extending the fermionization and bosonization known in
(1+1) dimensions to various setups including higher spacetime dimensions in the presence
of global symmetries. As an application, we provide a state sum lattice path integral for a
(1+1)-dimensional topological superconductor with time reversal symmetry generating the Z8

classification of the symmetry-protected topological phase. We also illustrate a state sum path
integral for a (3+1)-dimensional topological superconductor with time reversal symmetry that
generates the Z16 classification.
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1. Introduction

Fermionic topological phases have attracted great interest, since fermionic systems admit novel
phases that have no counterpart in bosonic systems [1,2]. For example, let us consider a fermionic
system with no global symmetry except for the fermion parity (−1)F . In that case, there is a nontrivial
(1+1)-dimensional symmetry-protected topological (SPT) phase realized by a topological supercon-
ductor [3], while in the bosonic case there is no nontrivial (1+1)-dimensional invertible phase in
the absence of global symmetry. The (1+1)-dimensional topological superconductor is called the
Kitaev wire, and generates the Z2 classification in the absence of global symmetry except for the
fermion parity. If we take time reversal (T ) symmetry with T 2 = 1 (symmetry class BDI) into
account, the Kitaev wire instead generates the classification of T -symmetric SPT phase given by
Z8 [4]. As another example, a (3+1)-dimensional SPT phase with time reversal symmetry such that
T 2 = (−1)F (class DIII) is classified by Z16 [5–7], while a (3+1)-dimensional bosonic T -SPT phase
has only Z2 classification [8]. The Z16 classification of the fermionic SPT phase is again generated
by a topological superconductor with T symmetry.

In this review article we introduce lattice path integrals that describe the topological supercon-
ductors in (1+1) and (3+1) dimensions with T symmetry, in terms of the state sum definition of
topological quantum field theory (TQFT), following the author’s collaborations [9,10]. This is done
by generalizing the bosonization and fermionization well known in (1+1) dimensions for various
setups, including higher spacetime dimensions [11–13] and/or in the presence of global symmetry
[9,14]. The fermionization is a map transforming a given bosonic theory to a fermionic theory. For
example, the celebrated Jordan–Wigner transformation in (1+1) dimensions maps a bosonic spin
chain with Z2 spin-flip symmetry to a chain of fermions. One can generalize the Jordan–Wigner
transformation to higher spacetime dimensions, mapping a d-dimensional bosonic theory with a
(d − 2)-form Z2 symmetry to a fermionic theory intrinsically coupled with the spin structure, which
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we call the fermionization. By preparing a suitable bosonic theory on a lattice, we construct a
topological superconductor by utilizing the fermionization.

This review is organized as follows. In Sect. 2 we introduce the concept of fermionization, and
explain a way to obtain a lattice definition of fermionic topological theories in generic spacetime
dimensions. Then, in Sect. 3 we construct a theory called the Gu–Wen Grassmann integral which
is used to describe the fermionic path integral after the fermionization. After these preparations, we
construct a (1+1)-dimensional lattice path integral that generates the Z8 classification of a topological
superconductor in class BDI, and finally sketch the construction of a (3+1)-dimensional lattice path
integral that generates the Z16 classification of a topological superconductor in class DIII.

2. Fermionization and bosonization
2.1. Fermionic phases and spin, pin structure

Before talking about fermionization, let us clarify what we mean by fermionic field theories. In
order to define a Lorentz-invariant field theory that describes a fermionic system, the theory depends
on a choice of spin structure η. Mathematically, a spin structure η is a trivialization of the second
Stiefel–Whitney class, δη = w2, and two distinct spin structures on the spacetime manifold M are
related to each other by H 1(M , Z2). Namely, for a given χ ∈ H 1(M , Z2), we can shift η by χ to
define another spin structure η + χ . The need for a spin structure arises for the following reason.

A relativistic quantum field theory in d spacetime dimensions possesses the Lorentz SO(d) sym-
metry. However, since fermions are spinors, fermions transform according to the double cover of
SO(d), which is Spin(d). To define the field theory on a generic spacetime manifold, one needs to
consider an SO(d) bundle φ : M → BSO(d), which can be thought of as the tangent bundle TM of
an oriented manifold M . In order to have fermions, the transition functions φij ∈ SO(d) between
overlapping patches Ui and Uj must be lifted to φ̃ij ∈ Spin(d). Since Spin(d) is the group extension

Z2 → Spin(d) → SO(d) (2.1)

whose extension is given by w2 ∈ H 2(BSO(d), Z2), Spin(d) is identified as SO(d)× Z2 as a set, so
we can express φ̃ij as a pair (φij, ηij) ∈ SO(d)×Z2. The nontrivial group extension is reflected in the
multiplication law of Z2 elements ηij twisted by w2. Namely, for transition functions φ̃ij ∈ Spin(d),
we have the multiplication law

φ̃ijφ̃jk = (φijφjk , ηij + ηjk + w2(φij,φjk)). (2.2)

Due to the cocycle condition φ̃ijφ̃jk = φ̃ik , we find

ηij + ηjk + ηik = w2(φij,φjk). (2.3)

In coordinate-free notation, this is precisely the equation δη = φ∗w2 = w2(TM ).
When the field theory possesses the time reversal (T ) symmetry that reverses the orientation

of the spacetime, we may put the theory on an unoriented spacetime manifold. In that case, the
Lorentz symmetry is now expressed as O(d), where the time reversal symmetry corresponds to the
Z2 subgroup Z

T
2 ⊂ O(d) generated by the orientation-reversing element. Then, we have the tangent

bundle φ : M → BO(d), and the transition function φij ∈ O(d) will be lifted to its double cover via
the group extension

Z2 → Pin±(d) → O(d), (2.4)
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whose extension is characterized by the element of H 2(BO(d), Z2). Since H 2(BO(d), Z2) = Z2×Z2

generated by w2
1 and w2, there are four possible choices of the symmetry extension of O(d) by Z2.

In addition, SO(d) ⊂ O(d) must be lifted to Spin(d) for fermionic theories, so the extension class
in Eq. (2.4) must be w2 or w2 + w2

1. This amounts to two choices of the double cover, Pin+(d) or
Pin−(d):

◦ When the extension class is chosen as w2, we have the Pin+ group by the extension in Eq. (2.4). In
that case, analogously to Eq. (2.3), the pin+ structure is specified by a choice of η ∈ C1(M , Z2)

with δη = w2.
◦ When the extension class is chosen as w2 + w2

1, we have the Pin− group by the extension
in Eq. (2.4). In that case, the pin− structure is specified by a choice of η ∈ C1(M , Z2) with
δη = w2 + w2

1.

Physically, pin− structure differs from pin+ by the action of time reversal symmetry on a fermion.
That is, the subgroup Z

T
2 ∈ O(d) is extended to Z4 in the case of Pin−(d),

Z2 → Z
T
4 → Z

T
2 , (2.5)

while Z
T
2 is not extended for Pin+(d). This means that in the Euclidean spacetime the time reversal

symmetry acts as T 2 = (−1)F for the pin− structure, while T 2 = +1 for the pin+ structure.
When we are interested in the action of T in the Minkowski signature, the above T action should

be Wick-rotated, meaning T 2 = (−1)F for the pin+ structure, while T 2 = +1 for the pin− structure.

2.2. Fermionization: fermion condensation

Now let us illustrate the fermionization. To do this, let us start with a hand-waving description of
fermionization to obtain fermionic topological phases in generic spacetime dimensions, starting with
a bosonic theory. We consider a bosonic topological phase Tb with a (d − 2)-form Z2 symmetry in d
spacetime dimensions; here, “bosonic” means that the theory is independent of the spin structure of
the spacetime. The Z2 symmetry is generated by a one-dimensional line operator, and let us assume
that this line operator has fermionic statistics, i.e. it is interpreted as a worldline of a fermionic
quasiparticleψ . Since the bosonic shadow theory supports a nontrivial quasiparticleψ , Tb realizes a
nontrivial topological ordered state. For example, in the case of a (2+1)-dimensional Z2 gauge theory
(toric code), there is a dyonic line operator generating a Z2 1-form symmetry, which is regarded as
a worldline of a fermion. Tb is sometimes called a “bosonic shadow” theory [12].

The fermionization of the bosonic theory Tb proceeds as follows. We prepare a fermionic theory Tc

that depends on the spin/pin± structure of the spacetime, which has a topologically trivial fermionic
excitation c. Then, the fermionization is carried out by stacking Tb with Tc, and condensing the
composite bosonψc, see Fig. 1. The resulting theory is a fermionic theory that is intrinsically coupled
with the spin/pin± structure. This fermionization is sometimes termed “fermion condensation” in
condensed matter literature [11].

2.3. ’t Hooft anomaly of the bosonic theory

Now we want to formulate the above process of fermion condensation in a precise way. To do this,
we note that the fermionic statistics of a line operator of Tb is characterized by a specific ’t Hooft
anomaly of the (d − 2)-form Z2 symmetry generated by the line. Let us start with the case of the
spacetime dimension d = 3 for simplicity. Then, we consider a partition function Zb(M 3, f2) of Tb
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Fig. 1. Fermion condensation to obtain a fermionic topological phase. We prepare a bosonic shadow theory
Tb with a fermionic anyon quasiparticle ψ and a fermionic theory Tc, and then condense the composite boson
ψc.

Fig. 2. A fermionic line operator ψ (red curve) and its framing v1 (blue arrows) for d = 3. The figure shows a
movie that changes the framing by 1, where the framing is discontinuously changed at the middle of the movie.
The framing defines a perturbation of the line (purple curve), and the change of the framing is characterized
by the intersection between the line operator and the perturbed one. This intersection effect is understood as a
’t Hooft anomaly, Eq. (2.7).

on a 3-manifold M 3, in the presence of the background gauge field f2 ∈ Z2(M 3, Z2) of the 1-form Z2

symmetry. The background gauge field f2 is realized by an insertion of the line operator f ∨
2 Poincaré

dual of f2 in the spacetime. Then, the partition function in the presence of the line operator depends
on a choice of framing of the line operator due to its fermionic statistics; see Fig. 2. The framing of
the line is specified by a choice of a vector field v1 along the line, which is linearly independent of
the tangent of the line. When the spacetime M 3 is oriented, this is equivalent to choosing the section
of the normal bundle of the line, since one can choose the second vector field v2 as the tangent of
the line, and then v3 is determined by the global orientation of M 3; v1, v3 specify the section of the
normal bundle of the line.

To make a connection with the ’t Hooft anomaly, suppose that we initially have a framing at the
time t = 0, and then consider a movie during 0 ≤ t ≤ 1 to get a different framing at t = 1; see Fig. 2.
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For a two-dimensional worldsheet f̃ ∨
2 of the line f ∨

2 , we consider a shifted two-dimensional object
f̃ ∨
shift by perturbing it along the direction of v1. When the framing is changed during the movie, we

can see that the worldsheet of the line operator f̃ ∨
2 intersects with the shifted version f̃ ∨

shift, where the
vector fields become degenerate at the intersection point. Then, the fermionic statistics of the line
operator is characterized by the phase shift of the partition function by −1 at the intersection,

Zb(M
3, f2)

∣∣
t=0 = (−1)�int(̃f ∨

2 ,̃f ∨
shift) · Zb(M

3, f2)
∣∣
t=1. (2.6)

Physically, the phase shift corresponds to the topological spin of the fermionic quasiparticle. In
particular, when d = 3 the phase shift is controlled by the intersection of f̃ ∨

2 with its shifted version,
since we do not have a nontrivial thickening process in d = 3. In that case, it is well known that the
intersection is the Poincaré dual of the cup product of f̃2 with itself, f̃2 ∪ f̃2. Hence, in d = 3 we can
say that the ’t Hooft anomaly in Eq. (2.6) is controlled by the response action f̃2 ∪ f̃2,

Zb(M
3, f2)

∣∣
t=0 = (−1)

∫
M3×[0,1] f̃2∪̃f2 · Zb(M

3, f2)
∣∣
t=1. (2.7)

In higher spacetime dimensions d > 3, the framing of f ∨
d−1 is specified by the choice of independent

(d − 2) vector fields v1, v2, . . . , vd−2 which are linearly independent of the tangent of f ∨
d−1. We think

of a (d − 1)-dimensional object f̃ ∨
thicken,shift given by thickening the f̃d−1 in (d − 3) directions

v1, v2, . . . , vd−3, and then shifting it in the direction of vd−2. Then, the fermionic statistics is again
expressed as the anomaly given by the intersection of f̃ ∨

d−1 and f̃ ∨
thicken,shift,

Zb(M
d , fd−1)

∣∣
t=0 = (−1)�int(̃f ∨

d−1,̃f ∨
shift) · Zb(M

d , fd−1)
∣∣
t=1. (2.8)

It is also known that the intersection of f̃ ∨
d−1 and f̃ ∨

thicken,shift admits an expression in terms of the
action expressed by the Steenrod square [10,15],

Zb(M
d , fd−1)

∣∣
t=0 = (−1)

∫
Md ×[0,1] Sq2 (̃fd−1) · Zb(M

d , fd−1)
∣∣
t=1, (2.9)

where Sq2(̃fd−1) := f̃d−1 ∪d−3 f̃d−1 using the higher cup product ∪i reviewed in Appendix A. See
also Refs. [11,15] for references on the higher cup product. In particular, since ∪0 = ∪ it reduces to
Eq. (2.7) when d = 3.

Apart from the framing anomaly given by the response action f̃2 ∪ f̃2, there can also be a ’t Hooft
anomaly when the theory has an orientation-reversing symmetry like time reversal, regarded as a
mixed anomaly between the orientation-reversing symmetry R and the (d − 2)-form Z2 symmetry.
This anomaly encodes how the fermionic quasiparticle ψ is acted on by the orientation-reversing
symmetry. Concretely, when the ψ acts as the Kramers doublet under the orientation-reversing
symmetry R2 = (−1)F , the corresponding (d − 2)-form Z2 symmetry has an anomaly given by the
response action [10,16]

(−1)
∫

w̃2
1∪̃fd−1 . (2.10)

Here, w̃1 ∈ Z1(W d+1, Z2) denotes the first Stiefel–Whitney class of the bulk (d + 1)-dimensional
manifold W d+1, which is regarded as the symmetry defect for the orientation-reversing symmetry.
That is, the Poincaré dual w∨

1 of w1 is a codimension-1 submanifold that reverses the orientation of the
spacetime. Accordingly, the fermion ψ is acted on by R when ψ goes across w∨

1 . When the fermion
transforms as R2 = (−1)F under the orientation reversal, R no longer acts as the Z2 symmetry on the
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Fig. 3. When the reflection symmetry acts on the fermion ψ as a Kramers doublet R2 = (−1)F , the symmetry
defect w∨

1 should be directed by a vector perpendicular to the defect, since R = R · (−1)F 
= R. The vector then
defines the perturbation w∨

1,shift, and the intersection between w∨
1 and w∨

1,shift defines w2,∨
1 , which is the Poincaré

dual of w2
1. When the fermion ψ goes around w2,∨

1 , ψ is acted on by R2 = (−1)F .

fermion, and R should be distinguished from its inverse R−1 = R · (−1)F . Hence, the orientation-
reversing defect should be directed by an arrow perpendicular to the defect, to specify whether the
defect carries R or R−1; see Fig. 3. The direction of the defect then defines the perturbation w∨

1,shift
of w∨

1 . The intersection between w∨
1,shift and w∨

1 defines the Poincaré dual of w2
1. When ψ transforms

as R2 = (−1)F , the phase of the partition function in the presence of the line operator f ∨
d−1 is shifted

by −1 if f ∨
d−1 is moved across w2,∨

1 . This phase shift under moving f ∨
d−1 is expressed as the ’t Hooft

anomaly

Zb(M
d , fd−1)

∣∣
t=0 = (−1)�int(w̃1

2,∨ ,̃f ∨
d−1) · Zb(M

d , fd−1)
∣∣
t=1. (2.11)

Hence, the response action is expressed as Eq. (2.10).
Summarizing, the (d − 2)-form Z2 symmetry has a ’t Hooft anomaly that encodes the fermionic

statistics and the transformation property under the orientation-reversing symmetry. If the fermionic
quasiparticle ψ transforms as R2 = (−1)F , then the anomaly is given by the response action

(−1)
∫

Sq2 (̃fd−1)+w̃2
1∪̃fd−1 . (2.12)

Instead, in the case of R2 = 1, the anomaly is given by the response action

(−1)
∫

Sq2 (̃fd−1). (2.13)

2.4. Fermionization: coupling with the pin structure

We then couple the bosonic theory Tb with the fermionic theory Tc and perform the fermion
condensation. The partition function of the fermionic theory consists of two parts,

zc(M
d , fd−1, η) = σ(M d , fd−1)(−1)

∫
Md η∪fd−1 . (2.14)

Here, η ∈ C1(M d , Z2) is the pin± structure of the spacetime. This gives the trivialization of the
obstruction class, and we have{

δη = w2 for the pin+ structure,

δη = w2 + w2
1 for the pin− structure.

(2.15)

So, the anomaly of the second term is given by (−1)
∫
δη̃∪̃fd−1 . Meanwhile, the first term, σ(M d , fd−1),

has a ’t Hooft anomaly given by

(−1)
∫

Sq2 (̃fd−1)+(w̃2+w̃2
1)∪̃fd−1 . (2.16)
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The first term, σ(M d , fd−1), is a bosonic theory realized by a path integral of Grassmann variables
in the spacetime, as reviewed in Sect. 3. We note that due to the Wu relation [17], we have

(−1)
∫

W d+1 (Sq2 (̃fd−1)+(w̃2+w̃2
1)∪̃fd−1) = +1 (2.17)

when W d+1 is a closed manifold and fd−1 is a cocycle. This means that
∫

W d+1(Sq2(̃fd−1)+(w̃2+w̃2
1)∪

f̃d−1) represents a trivial phase in (d +1) dimensions, and therefore there should be a trivial boundary
in d dimensions. We can think of the theory σ(M d , fd−1) as providing an explicit formula for such a
trivial boundary. Combining the anomalies of (−1)

∫
Md η∪fd−1 and σ(M d , fd−1), the response action

for the ’t Hooft anomaly of zc(M d , fd−1, η) is given by{
(−1)

∫
Sq2 (̃fd−1)+w̃2

1∪̃fd−1 for the pin+ structure,

(−1)
∫

Sq2 (̃fd−1) for the pin− structure.
(2.18)

These response actions are identical to those of the bosonic theories in Eqs. (2.12) and (2.13). Thus,
if we want a pin+ theory, the fermion condensation is performed by the following procedure:

(1) We prepare a bosonic theory Tb with a fermionic quasiparticle ψ that transforms as R2 =
(−1)F under the orientation-reversing symmetry, i.e. with a (d −2)-form Z2 symmetry whose
anomaly is expressed by the response action

(−1)
∫

Sq2 (̃fd−1)+w̃2
1∪̃fd−1 . (2.19)

(2) Then, we couple Tb with a pin+ theory Tc, and gauge the diagonal (d −2)-form Z2 symmetry

Z(M d , η) ∝
∑

[fd−1]∈Zd−1(M d ,Z2)

Zb(M
d , fd−1)σ (M

d , fd−1)(−1)
∫

Md η∪fd−1 . (2.20)

Note that the ’t Hooft anomaly of this combination is vanishing, since those of Zb(M d , fd−1)

and zc(M d , fd−1, η) are canceled out.

Analogously, the fermion condensation for the pin− theory proceeds as follows:

(1) We prepare a bosonic theory Tb with a fermionic quasiparticle ψ that transforms as R2 =
1 under the orientation-reversing symmetry, i.e. with a (d − 2)-form Z2 symmetry whose
anomaly is expressed by the response action

(−1)
∫

Sq2 (̃fd−1). (2.21)

(2) Then, we couple Tb with a pin− theory Tc, and gauge the diagonal (d −2)-form Z2 symmetry

Z(M d , η) ∝
∑

[fd−1]∈Zd−1(M d ,Z2)

Zb(M
d , fd−1)σ (M

d , fd−1)(−1)
∫

Md η∪fd−1 . (2.22)

3. Grassmann integral

Now let us construct the Grassmann integral σ(M d , fd−1) on a d-dimensional manifold M d which
might be unoriented, following Ref. [9]. We construct an unoriented manifold by picking locally
oriented patches and then gluing them along codimension-one loci by transition functions. The locus
where the transition functions are orientation reversing constitutes a representative w∨

1 of the Poincaré
dual of the first Stiefel–Whitney class w1. We will sometimes call the locus an “orientation-reversing
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Fig. 4. Assignment of Grassmann variables on 1-simplices in the case of d = 2. θ (resp. θ ) is represented as
a black (resp. white) dot.

wall.” In addition, we take the barycentric subdivision for the triangulation of M d . Namely, each
d-simplex in the initial triangulation of M d is subdivided into (d + 1)! simplices, whose vertices are
barycenters of the subsets of vertices in the d-simplex. We further assign a local ordering to vertices
of the barycentric subdivision, such that a vertex on the barycenter of i vertices is labeled by i. Each
simplex can then be either a + simplex or a − simplex, depending on whether the ordering agrees
with the orientation or not. We assign a pair of Grassmann variables θe, θe on each (d − 1)-simplex
e of M d such that fd−1(e) = 1 for a given fd−1 ∈ Zd−1(M d , Z2).

For a d-simplex t = (01 . . . d), we label a (d − 1)-simplex (01 . . .̂ i . . . d) (i.e. a (d − 1)-simplex
given by omitting a vertex i) simply as î. If the (d −1)-simplex e is located away from the orientation-
reversing wall, we choose the assignment of θ and θ on each e such that a d-simplex t contains θe

when e is labeled by an odd (respectively even) number if t is a + (resp. −) simplex; see Fig. 4.
We remark that the above assignment rule of θ , θ fails when e lies on the orientation-reversing wall.

In this case, we would have to assign Grassmann variables of the same color on both sides of e (i.e.
both are black (θ ) or white (θ )), since the two d-simplices sharing e have identical signs when e is on
the orientation-reversing wall; see Fig. 5(a). Hence, we need to slightly modify the construction of
the Grassmann integral on the orientation-reversing wall. To do this, instead of specifying a canonical
rule to assign Grassmann variables on the wall, we just place a pair θe, θe on the wall in an arbitrary
fashion. We then define the Grassmann integral in the form

σ(M d , fd−1) =
∫ ∏

e|fd−1(e)=1

dθedθe

∏
t

u(t)
∏

e|wall

(±i)fd−1(e), (3.1)

where t denotes a d-simplex, and u(t) is the product of Grassmann variables contained in t. For
instance, for d = 2, u(t) on t = (012) is the product of ϑ fd−1(12)

12 , ϑ fd−1(01)
01 , and ϑ fd−1(02)

02 . Here, ϑ
denotes θ or θ depending on the choice of the assignment rule, which will be discussed later. The
order of Grassmann variables in u(t) will also be defined shortly. We note that u(t) is ensured to be
Grassmann-even when fd−1 is closed.

Due to the fermionic sign of Grassmann variables, σ(fd−1) becomes a quadratic function whose
quadratic property depends on the order of Grassmann variables in u(t). We will adopt the order
used in Ref. [11], which is defined as follows:

◦ The order of ϑ̂i = ϑ01...̂i...d for a + d-simplex t is defined by first assigning even (d−1)-simplices
in ascending order, then odd simplices in ascending order again:

0̂ → 2̂ → 4̂ → · · · → 1̂ → 3̂ → 5̂ → · · · (3.2)
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Fig. 5. (a) The signs of d-simplices near the orientation-reversing wall, which is represented as a red line.
(b) Assignment of Grassmann variables on the wall specifies a perturbation of the wall that intersects the wall
transversally at (d − 2)-simplices.

◦ For − d-simplices, the order is defined in the opposite way:

· · · → 5̂ → 3̂ → 1̂ → · · · → 4̂ → 2̂ → 0̂. (3.3)

For example, for d = 2, u(012) = ϑ
fd−1(12)
12 ϑ

fd−1(01)
01 ϑ

fd−1(02)
02 when (012) is a + triangle, and

u(012) = ϑ
fd−1(02)
02 ϑ

fd−1(01)
01 ϑ

fd−1(12)
12 for a − triangle.

The
∏

e|wall(±i)fd−1(e) term in Eq. (3.1) assigns weight +ifd−1(e) (resp. −ifd−1(e)) on each (d − 1)-
simplex e on the orientation-reversing wall, when e is shared with + (resp. −) d-simplices. There is
no ambiguity in such a definition, since both d-simplices on the side of e have the same sign. This
factor makes the Grassmann integral a Z4-valued function of fd−1 ∈ Zd−1(M d , Z2).

3.1. Properties of the Grassmann integral

Now we discuss the ’t Hooft anomaly of the Grassmann integral under the gauge transformation of
the (d − 2)-form Z2 symmetry. The effect of the gauge transformation is determined by a couple of
key formulae:

◦ The quadratic property governed by the higher cup product ∪d−2,

σ(fd−1)σ (f
′

d−1) = σ(fd−1 + f ′
d−1)(−1)

∫
fd−1∪d−2f ′

d−1 . (3.4)

◦ When fd−1 = δλ for some λ ∈ Cd−2(M , Z2), the Grassmann integral is explicitly computed as

σ(δλ) = (−1)
∫

w2+w2
1
λ
(−1)

∫
M λ∪d−3δλ+λ∪d−4λ, (3.5)

where the integral over w2 + w2
1 means that we sum λ over a (d − 2)-cycle S ∈ Zd−2(M , Z2)

Poincaré dual of the Stiefel–Whitney class w2 + w2
1.

Here, the (d −2)-cycle S Poincaré dual of w2 +w2
1 in Eq. (3.5) is specified as follows. First, the set of

all (d −2)-simplices in the barycentric subdivision of the triangulation is known to represent the dual
of w2. Second, w2

1 is determined via an assignment of the Grassmann variables on the orientation-
reversing wall. That is, the choice of the assignment of Grassmann variables on the wall corresponds
to choosing a slight perturbation of the wall such that the perturbation intersects transversally with
the wall at (d − 2)-simplices. Concretely, we deform the wall on each (d − 1)-simplex of the wall
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to the side where θ (black dot) is contained, see Fig. 5(b). Then, the Poincaré dual of w2
1 is given

by the intersection of the wall w∨
1 and the perturbed one w∨

1,shift, w∨
1 ∩ w∨

1,shift. We then take S as the
set of all (d − 2)-simplices of the barycentric subdivision, plus extra (d − 2)-simplices given by the
intersection w∨

1 ∩ w∨
1,shift. As such, we provide a combinatorial representation of w2 and w2

1, which
is also used to formulate a combinatorial pin structure as a choice of a cochain η with δη = w2 + w2

1
or δη = w2.

3.2. ’t Hooft anomaly of the Grassmann integral

To see the ’t Hooft anomaly of σ(M d , fd−1), we introduce an expression of σ(M d , fd−1) convenient
for our purpose. Let us assume that the spacetime manifold M d equipped with the background
gauge field fd−1 ∈ Zd−1(M , Z2) is null-bordant, i.e. M d is a boundary of some (d + 1)-dimensional
manifold Kd+1 and fd−1 is extended to Kd+1. Then, we can consider the Wess–Zumino–Witten-like
(WZW-like) expression of the Grassmann integral

σ(M d , fd−1) = (−1)
∫

Kd+1 Sq2 fd−1(−1)
∑

SK
fd−1 , (3.6)

where SK represents the dual of w2 + w2
1, that is, a set of all (d − 1)-simplices of Kd+1 plus extra

(d − 1)-simplices that represent the dual of w2
1 in Kd+1. Due to the Wu relation [17], Sq2(fd−1) +

(w2 +w2
1)∪ fd−1 is exact for an arbitrary (d +1)-dimensional manifold. Hence, the above expression

does not depend on the extending manifold Kd+1. We can explicitly check that Eq. (3.6) satisfies the
properties of the Grassmann integral in Eqs. (3.4) and (3.5). First, let us check the quadratic property,

σ(fd−1)σ (f
′

d−1) = (−1)
∫

Kd+1 (fd−1∪d−3f ′
d−1+f ′

d−1∪d−3fd−1)σ (fd−1 + f ′
d−1)

= (−1)
∫

Md fd−1∪d−2f ′
d−1σ(fd−1 + f ′

d−1), (3.7)

where ∪i is the higher cup product; see Appendix A for a review. Next, when fd−1 = δλ for some
λ ∈ Cd−2(K , Z2), we have

σ ′(δλ) = (−1)
∫

K Sq2 δλ(−1)
∑

SK
δλ

= (−1)
∫

M λ∪d−3δλ+λ∪d−4λ(−1)
∑

S λ, (3.8)

where we used ∂SK = S, namely the boundary of SK again gives the dual of w2 + w2
1 on M d [18].

Then, the above WZW definition σ(M d , fd−1) is identified as σ(M , fd−1), up to a gauge-invariant
counterterm which does not affect the ’t Hooft anomaly of the theory.

Based on the WZW expression, we immediately find the formula for the ’t Hooft anomaly as
follows. Suppose we have two configurations of fd−1, orientation-reversing walls and triangulations
on M d ×{0} and M d ×{1} interpolated by K = M d ×[0, 1]. Then, according to the WZW expression
for σ(M d × {0})σ (M d × {1}), up to gauge-invariant counterterms, σ(M d × {0}) is given by

σ(M d × {0}) = (−1)
∫

K Sq2(fd−1)(−1)
∑

SK
fd−1 · σ(M d × {1}), (3.9)

where Kd+1 = M d × [0, 1], and fd−1 on M d × {0}, M d × {1} is extended to Kd+1. This expression
directly shows that the effect of gauge transformation and retriangulation ofσ(M d , fd−1) is controlled
by the bulk response action

(−1)
∫

Kd+1 Sq2 fd−1(−1)
∑

SK
fd−1 . (3.10)

This is the expected anomaly of the Grassmann integral in Eq. (2.16), since SK represents the Poincaré
dual of w2 + w2

1.
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4. (1+1)-dimensional topological superconductor: Arf–Brown–Kervaire invariant

In this section we construct a lattice path integral for a field theory that describes a (1+1)-dimensional
topological superconductor called a Kitaev wire. In the presence of a time reversal symmetry with
T 2 = 1, the Kitaev wire generates the SPT phase classified by Z8 [4]. The SPT classification
corresponds to the pin− cobordism group 
2

pin− = Z8, and its generator is known as an invertible
topological field theory whose partition function on a closed manifold becomes the Arf–Brown–
Kervaire (ABK) invariant [19].

This is done by fermionizing a bosonic theory by coupling with the Grassmann integral on a lattice,
utilizing the fermionization procedure in the pin− case.

The weight for the bosonic theory on a two-dimensional triangulated manifold M 2 is assigned
in the same manner as the case of the Arf invariant for oriented spin manifolds [11], described as
follows. For a given configuration f1 ∈ C1(M 2, Z2), we assign weight 1/2 to each 1-simplex e, and
also assign weight 2 to each 2-simplex t when δf1 = 0 at t, otherwise 0. Let us denote the product of
the whole weight as Z̃(f1). Then, we consider a pin− theory obtained by gauging the Z2 symmetry,

Z(M 2, η) =
∑

f1∈Z1(M 2,Z2)

σ (M 2, f1)(−1)
∫

M2 η∪f1 Z̃(f1)

= 2|T |−|E| ·
∑

f1∈Z1(M 2,Z2)

σ (M 2, f1)(−1)
∫

M2 η∪f1

= 2χ(M
2)−1 ·

∑
[f1]∈H 1(M 2,Z2)

σ (M 2, f1)(−1)
∫

M2 η∪f1

= √
2
χ(M 2)

ABK[M 2, η], (4.1)

where |T | and |E| denote the number of 2-simplices and 1-simplices in M 2, respectively. χ(M 2)

denotes the Euler number of M 2, and ABK[M 2, η] is the ABK invariant,

ABK[M 2, η] = 1√|H 1(M 2, Z2)|
∑

[f1]∈H 1(M 2,Z2)

iQη[f1]. (4.2)

Here, iQη[f1] = σ(M 2, f1)(−1)
∫

M2 η∪f1 is a Z4-valued quadratic function that satisfies

Qη[f1] + Qη[f ′
1] = Qη[f1 + f ′

1] + 2
∫

M 2
f1 ∪ f ′

1 . (4.3)

The ABK invariant determines the pin− bordism class of two-dimensional manifolds
pin−
2 = Z8,

which is generated by RP
2 [19]. To compute the partition function on RP

2, let f1 be a nontrivial 1-
cocyle that generates H 1(RP

2, Z2) = Z2. Then, using the quadratic property for f1 = f ′
1 in Eq. (4.3),

one can see that Qη[f1] takes values of ±1, since Qη[0] = 0 and
∫

M 2 f1 ∪ f ′
1 = 1 mod 2. Qη[f1] = ±1

corresponds to two possible choices of pin− structure on RP
2. Then, the ABK invariant is computed

as an eighth root of unity,

ABK[RP
2, η] = 1 ± i√

2
= e±2π i/8. (4.4)
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5. (3+1)-dimensional topological superconductor: eta invariant for pin+ Dirac
operator

In this section we talk about a lattice state-sum path integral that describes a (3+1)-dimensional topo-
logical superconductor with the time reversal symmetry T 2 = (−1)F . The symmetry corresponds
to the pin+ structure, and is classified by the pin+ cobordism group 
4

pin+ = Z16. Our path integral
produces a (3+1)-dimensional T -SPT phase that corresponds to 3 ∈ Z16 of the classification. As
such, our path integral carries the same information as the eta invariant of the pin+ Dirac opera-
tor, which also generates the Z16 classification. Here we outline the rough idea of the construction
and introduce properties of the path integral. The whole construction of the path integral requires a
massive description, which is found in Ref. [10].

The construction of our path integral is based on the fermionization for the pin+ theory in Eq. (2.20),
so we need a four-dimensional bosonic theory Zb(M 4, f3) coupled with a 3-form Z2 gauge field
f3 ∈ Z3(M 4, Z2) with a ’t Hooft anomaly

(−1)
∫

Sq2 (̃f3)+w̃2
1∪̃f3 . (5.1)

This bosonic theory Zb(M 4, f3) can be realized by a version of (3+1)-dimensional Crane–Yetter
TQFT [20], which is described by a bosonic state-sum path integral based on the input data of a
braided fusion category C [21]. The braided fusion category is an algebraic theory that describes the
fusion and braiding of anyons in (2+1)-dimensional TQFT. In particular, for our purpose we need a
braided fusion category C that describes the bosonic dual of the SO(3)3 Chern–Simons theory. The
Crane–Yetter TQFT then defines a (3+1)-dimensional bosonic theory with a gapped boundary, and
fermionizing the theory yields a (3+1)-dimensional fermionic SPT phase whose gapped boundary
is given by the SO(3)3 Chern–Simons theory [5].

For the SO(3)3 Chern–Simons theory, its bosonic dual C contains four anyons including the trivial
one, which we label as {1, s, s̃,ψ}. In particular, since C describes a bosonic dual of a (2+1)-
dimensional fermionic topological phase, it contains a fermionic anyon ψ generating the 1-form
Z2 symmetry as reviewed in Sect. 2.3. This fermionic anyon ψ is transparent, which means that the
braiding phases betweenψ and all other anyons in C are trivial. In the presence of such a transparent
fermion ψ in C, the (3+1)-dimensional Crane–Yetter TQFT has a single fermionic quasiparticle ψ
in the (3+1)-dimensional bulk, and its line operator generates a Z2 2-form symmetry with a ’t Hooft
anomaly

(−1)
∫

Sq2 (̃f3), (5.2)

which produces the first term of Eq. (5.1).
One can endow the Crane–Yetter TQFT with a global T symmetry by utilizing a (2+1)-dimsensional

TQFT C with a T symmetry. In particular, SO(3)3 Chern–Simons theory has an anomalous T sym-
metry labeled by 3 ∈ Z16, and this T symmetry is encoded in the braided fusion category C in terms
of an invertible map ϕT : C → C that acts on all physical properties of C (e.g. spins of anyons,
braiding, etc.) in anti-unitary fashion [22]. Once we fix the map ϕT : C → C, we can define the
symmetry fractionalization data that dictates how the global symmetry acts on the state with anyons
of C. In particular, the symmetry fractionalization controls the T action on the transparent fermion
ψ , which can be Kramers singlet or doublet. As reviewed in Sect. 2.3, we want the T action on ψ to
be a Kramers doublet T 2 = −1, in order to have the desired anomaly, Eq. (5.1).
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Then, one can fermionize the Crane–Yetter TQFT Zb as

Z(M 4, η) ∝
∑

[f3]∈Z3(M 4,Z2)

Zb(M
4, f3)σ (M

4, f3)(−1)
∫

M4 η∪f3 , (5.3)

with a pin+ structure ηwith δη = w2. This gives a topologically invariant path integral that describes
a topological superconductor with the time reversal symmetry T 2 = (−1)F . The Z16 classification of
this theory is diagnosed by computing the partition function Z(M 4, η) on RP

4, which generates the

pin+ bordism group
pin+
4 = Z16. This is explicitly computed in Ref. [10] as Z(M 4, η) = e±3·2π i/16,

where the ± signs correspond to two possible choices of the pin+ structure η on RP
4. This implies

that the (3+1)-dimensional fermionic theory obtained corresponds to the 3 ∈ Z16 phase.
Finally, with standard mathematical assumptions we note that the above construction gives a state

sum for an unoriented pin+ TQFT that can detect certain exotic smooth structure. That is, there exists
a manifold Q4 called a “fake RP

4” which is homeomorphic but not diffeomorphic to RP
4. Q4 admits

a pin+ structure, and then Q4 is pin+ bordant to nine copies of RP
4 [23,24]. So far we do not have a

fully rigorous proof for the bordism invariance of Z(M 4, η) (while topological invariance is proven
rigorously), but it is strongly expected that our theory Z(M 4, η) has the property that distinguishes
two manifolds RP

4 and Q4 in the pin+ bordism group.

6. Discussions

In this review we discussed a way to construct a fermionic topological phase by starting with a
bosonic topological phase with a fermionic quasiparticle and then condensing it by coupling with a
fermionic theory. The utility of fermion condensation is not limited to the construction of topological
superconductors with time reversal symmetry. In Ref. [10], starting with the data C of a (2+1)-
dimensional fermionic topological ordered phase enriched by any ordinary (0-form) global symmetry,
we construct a state sum path integral of a (3+1)-dimensional fermionic SPT phase whose boundary is
realized by a given fermionic topological order. This is done by constructing a bosonic shadow theory
realized by a Crane–Yetter TQFT and then condensing the fermionic quasiparticle of the theory, as
illustrated in Sect. 5. This gives us a systematic way to compute the ’t Hooft anomaly of the fermionic
topological order by evaluating the path integral of a (3+1)-dimensional SPT phase on an appropriate
closed manifold. For example, we derive a complete formula that evaluates the Z16-valued T anomaly
of a given (2+1)-dimensional fermionic topological ordered phase. Our construction allows us to
obtain an arbitrary (3+1)-dimensional SPT phase as long as it admits a symmetry-preserving gapped
boundary realized by a (2+1)-dimensional topological ordered phase.

One possible direction is to extend the prescription of fermion condensation to a more exotic space-
time structure other than spin structure for fermionic systems. For example, it was recently proposed
in Ref. [25] that there are nontrivial invertible topological field theories based on the spacetime struc-
ture called Wu structure, which is inequivalent to any (possibly twisted) oriented or spin structure
previously discussed in the literature, and thus gives a new class of invertible field theories which are
phrased as neither bosonic nor fermionic. The topological phases that depend on the spacetime Wu
structure are called exotic topological phases. Wu structure in d spacetime dimensions corresponds to
the global symmetry given by a specific nontrivial mixture of the spacetime Lorentz symmetry O(d)
and the 1-form Z2 symmetry. Since the Lorentz group is taken as O(d), the exotic topological phases
possess time reversal symmetry. Mathematically, the symmetry is described by a specific 2-group
that corresponds to a sort of extension of O(d) by the 1-form Z2 symmetry. This generalizes the
spin/pin structure required for fermionic systems, where one extends the Lorentz symmetry SO(d) or
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O(d) by the ordinary (0-form) Z2 symmetry that corresponds to the Z2 fermion parity. In Ref. [26],
we discussed a systematic way to obtain a state sum path integral for such exotic topological phases,
by generalizing the fermion condensation in the spin case. It would be interesting to consider such
novel spacetime structures realized by the higher group involving Lorentz O(d) symmetry.

Appendix A. Cup product and higher cup product

A branching structure on a triangulation is a local ordering of vertices, which can be specified
by an arrow on each 1-simplex 〈ij〉, such that there are no closed loops on any 2-simplices. This
defines a total ordering of vertices on every single d-simplex 〈0 . . . d〉. In this appendix we review
the cochain-level product operation called higher cup product, whose definitions are based on the
branching structure of the triangulation. Here we limit ourselves to the Z2-valued cochains for
simplicity. See also Ref. [15] for a nice reference on the higher cup product.

Let M be a triangulated d-dimensional manifold. First, the cup product gives the product of
cochains

− ∪ − : Ck(M , Z2)× Cl(M , Z2) → Ck+l(M , Z2), (A.1)

whose explicit form is written as

(α ∪ β)(0, . . . , k + l) = α(0, . . . , k)β(k , . . . , k + l). (A.2)

Note that this definition of cup product depends on the branching structure on the triangulation,
where the ordering of vertices on each (k + l)-simplex is specified as 0 → 1 → · · · → k + l. The
cup product satisfies the Leibniz rule at the cochain level,

δ(α ∪ β) = δα ∪ β + α ∪ δβ. (A.3)

According to the Leibniz rule, one can show that the cup product defines the product of cohomologies
H k(M , Z2)× H l(M , Z2) → H k+l(M , Z2). Actually, for given α ∈ Zk(M , Z2), β ∈ Zl(M , Z2), the
shift of these cocycles by coboundaries is evaluated as

(α + δA) ∪ (β + δB) = α ∪ β + δ(α ∪ B + A ∪ β + A ∪ δB), (A.4)

so this also shifts α ∪ β by a coboundary, and thus defines a map between cohomologies. Such a
product operation defined on cohomologies is called a cohomology operation.

It is known that the cup product has a geometrical interpretation in the picture of the Poincaré dual.
That is, for given cochains α ∈ Ck(M , Z2) and β ∈ Cl(M , Z2), the cup product α∪β is the Poincaré
dual to the intersection of Poincaré duals α∨ ∩ β∨, for α∨ ∈ Cd−k(M∨, Z2), β∨ ∈ Cd−l(M∨, Z2).
This can be understood as follows. Let us consider a shifted version of the Poincaré dual β∨

shift, where
the shifting vector is determined by the branching structure. See Fig. 6 for two dimensions. Then,
the intersection of α∨ and β∨

shifted corresponds to the dual of α ∪ β.
As a generalization of the cup product, the higher cup product ∪i gives

− ∪i − : Ck(M , Z2)× Cl(M , Z2) → Ck+l−i(M , Z2), (A.5)

whose explicit form is written as

(α ∪i β)(0, . . . , k + l − i) =
∑

0≤j0<···<ji≤k+l−i

α(0 → j0, j1 → j2, . . . )β(j0 → j1, j1 → j3, . . . ).

(A.6)
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Fig. 6. The cup product (α ∪ β)(012) = α(01)β(12) can be understood as the intersection of the dual chains
in the Poincaré dual picture.

Here, the notation i → j denotes all vertices from i to j, {i, i + 1, . . . , i + j}. In particular, ∪0

is identified as the cup product ∪ defined in Eq. (A.2). The higher cup product is subject to the
generalized Leibniz rule,

δ(α ∪i β) = (δα) ∪i β + α ∪i (δβ)+ α ∪i−1 β + β ∪i−1 α, (A.7)

which is regarded as the noncommutative property of ∪i−1 being controlled by the ∪i product.
According to the above Leibniz rule, for closed α and β one can see that α ∪i β is not necessarily
closed, δ(α ∪i β) = α ∪i−1 β + β ∪i−1 α for α ∈ Zk(M , Z2), β ∈ Zl(M , Z2). Hence, the product
∪i does not give a cohomology operation for i > 0.

However, it turns out that the map

Sqd−i(α) : Zk(M , Z2) → Zk+d−i(M , Z2),

Sqd−i(α) := α ∪i+k−d α (A.8)

does give a cohomology operation. Actually, one can check that Sqd−i(α + δA) = Sqd−i(α) +
δ(α ∪i+k−d A + A ∪i+k−d α+ A ∪i+k−d−1 A + A ∪i+k−d δA) by using the generalized Leibniz rule.
This shows that Sqd−i defines a map H k(M , Z2) → H k+d−i(M , Z2).
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