Physics Letters B 760 (2016) 86-93

www.elsevier.com/locate/physletb

Contents lists available at ScienceDirect

Physics Letters B

PHYSICS LETTERS B

Hyperscaling violation and the shear diffusion constant

@ CrossMark

Kedar S. Kolekar *, Debangshu Mukherjee *, K. Narayan *

Chennai Mathematical Institute, SIPCOT IT Park, Siruseri 603103, India

ARTICLE INFO ABSTRACT

Article history:

Received 27 April 2016

Received in revised form 16 June 2016
Accepted 20 June 2016

Available online 23 June 2016

Editor: N. Lambert

We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating
exponents z,6 at finite temperature. By studying shear gravitational modes in the near-horizon region
given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an
appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic
exponents with d —z — 6 > —1, we find that the diffusion constant has power law scaling with the

temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents
satisfy d —z — 6 = —1, we find logarithmic behaviour. This relation is equivalent to z =2 + dess where
desr = d; — 0 is the effective boundary spatial dimension (and d; =d — 1 the actual spatial dimension).
It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly
boosted black branes, and we comment on the corresponding analysis in that context.
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1. Introduction and summary

The viscosity bound [1] is a universal feature of large families
of strongly coupled quantum field theories arising in investigations
using holography [2]. The shear viscosity n satisfies g = é for a
wide variety of theories, s being the entropy density. A slightly
different approach to studying hydrodynamics and viscosity was
studied in [3]. It was observed that metric perturbations governing
diffusive charge and shear modes in the near horizon region of the
relevant dual black branes simplify allowing a systematic expan-
sion there, resulting in a diffusion equation on a stretched horizon
with universal behaviour for the diffusion constant. This is akin to
the membrane paradigm [4] for black branes, the horizon exhibit-
ing diffusive properties. This approach does not directly assume
any holographic duality per se, although it is consistent with holo-
graphic results e.g. [5,6] (see e.g. [7] for a review of these aspects
of hydrodynamics).

In recent years, nonrelativistic generalisations of gauge/grav-
ity duality have been studied extensively. An interesting class
of non-relativistic theories exhibits so-called hyperscaling viola-
tion. The gravity duals are conformal to Lifshitz spacetimes [8,9].
These hyperscaling violating spacetimes arise in effective Einstein-
Maxwell-Dilaton theories e.g. [10-21]. Certain gauge/string reali-
sations of these arise in null x™-reductions of AdS plane waves
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[22,24], which are large boost, low temperature limits [23] of
boosted black branes [25]. Various aspects of Lifshitz and hyper-
scaling violating holography appear in e.g. [19,26-30]. Some of
these exhibit novel scaling for entanglement entropy e.g. [17-19]:
the string realisations above reflect this [31-34], suggesting corre-
sponding regimes in the gauge theory duals exhibiting this scaling.

It is of interest to study hydrodynamic behaviour in these non-
relativistic generalisations of holography: previous investigations
include e.g. [35,37-42]. In this paper, we study the shear diffusion
constant in bulk (d + 1)-dimensional hyperscaling violating theo-
ries (1) with z, 6 exponents adapting the membrane-paradigm-like
analysis of [3]. As in [3], we map the diffusion of shear gravi-
tational modes on a stretched horizon to charge diffusion in an
auxiliary theory obtained by compactifying one of the d; bound-
ary spatial dimensions exhibiting translation invariance. This gives
a near horizon expansion for perturbations with modifications in-

volving z,6. We find (sec. 2) that for generic exponents with
z—2

d — z— 0 > —1, the shear diffusion constant is D = (F;{W, ie.

power-law scaling (18) with the temperature T ~ r§. Studying var-

. . . . 2z
ious special cases motivates us to guess (22), ie. #DT T = %

where # is some (d, z, 0)-dependent constant, suggesting that g
has universal behaviour. The condition z < 2 + d; — 0 representing
this universal sector appears related to requiring standard quan-
tisation from the point of view of holography. It would be inter-
esting to understand the hydrodynamics and viscosity here more
systematically.
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When the exponents satisfy d — z — 6§ = —1, the diffusion con-
stant exhibits logarithmic behaviour (sec. 2.2), suggesting a break-
down of some sort in this analysis. This condition appears compat-
ible however with various known constraints on the exponents:
it would be interesting to understand this from other consid-
erations. The exponents arising in null reductions of AdS plane
waves or highly boosted black branes [22-24] satisfy this con-
dition, which can be written as z = 2 4 defy. It is interesting to
note that highly boosted black branes (or AdS plane waves) give
rise upon xT-reduction to hyperscaling violating theories with z, 8
exponents leading to novel entanglement scaling, as well as the
condition z =2+ defs here. The two appear independent however:
the entanglement entropy stems from d; — 1 <6 <d; and does not
depend on z while the relation here involves both z, 8. We discuss
(sec. 3) the corresponding picture of hydrodynamics that is likely
to arise in the null reduction by mapping the perturbations accord-
ingly. Details of the diffusion analysis appear in the Appendix.

2. Shear diffusion on the stretched horizon
We are considering nonrelativistic holographic backgrounds de-

scribed by a (d 4+ 1)-dim hyperscaling violating metric at finite
temperature,

rz r2f(r) r2

defr =di — 0, (1)

d;
ds2 — y20/d; (—&dtz n dr? 4 Disy dx?) ’

di=d—-1,

where f(r) =1 — (ror)4t2=9=1_ d; is the boundary spatial dimen-
sion while d.sr is the effective spatial dimension governing var-
ious properties of these theories, for instance the entropy den-
sity s ~ T9s7/2. The temperature of the boundary field theory (i.e.
Hawking temperature of the black hole) is

d+z-60-1)
T=74n r (2)

These spacetimes are conformal to Lifshitz spacetimes [8,9], and
exhibit t — A%t, x; — AXj, T — Ar, ds — A9/@=Dds. They arise in
Einstein-Maxwell-Dilaton theories and are sourced by gauge fields
and scalars. The window d; — 1 < 6 < d; shows novel scaling for
entanglement entropy [17-19]: these arise in the string realisa-
tions [22-24], with entanglement entropy studies in [31-34]|. The
null energy conditions following from (1) constrain the exponents,
giving

@d-1-0)(d-1z-1)—-6)=0,
(z-1){d—-1+z-6)>0. 3)

We want to study the diffusion of shear gravitational modes
in these backgrounds as a way of studying shear viscosity. In [3],
Kovtun, Son and Starinets formulated charge and shear diffusion
for black brane backgrounds in terms of long-wavelength limits
of perturbations on an appropriately defined stretched horizon, the
broad perspective akin to the membrane paradigm [4]. Their anal-
ysis, which is quite general, begins with a background metric of
the form

d—1
ds? = Gudx"dx” = G (Ndt* + G (Ndr® + Gx(r) Y _dx} . (4)
i=1
which includes the hyperscaling violating backgrounds (1) as a
subfamily. Charge diffusion of a gauge field perturbation A, in the

background (4) is encoded by the charge diffusion constant D, de-
fined through Fick’'s Law j' = —Dd;j¢, where the 4-current j* is

defined on the stretched horizon r =, (with n the normal) as
j#* =nyF*’|,—,. Then current conservation 9, j* =0 leads to the
diffusion equation 9; j' = —9; j' = D32 jt, with D the corresponding
diffusion constant. Fick’s law in turn can be shown to apply if the
stretched horizon is localised appropriately with regard to the pa-
rameters I, q, T. Translation invariance along x € {x;} allows con-
sidering plane wave modes for the perturbations o e T+ where
" is the typical time scale of variation and q the x-momentum. In
the IR regime, the modes vary slowly: this hydrodynamic regime
is a low frequency, long wavelength regime.

The diffusion of shear gravitational modes can be mapped to
charge diffusion [3]: under Kaluza-Klein compactification of one
of the directions along which there is translation invariance, tensor
perturbations in the original background map to vector perturba-
tions on the compactified background. Here we carry out a similar
analysis for the shear diffusion constant in the backgrounds (1),
adapting [3] to the present context. We turn on the metric fluc-
tuations hyy, and hyy (x =Xx1, y =x3) around (4), depending only
on t,r,x, ie. hyy = hey(t,x,1), hyy = hyy (¢, 1,%). Other fluctuation
modes can be consistently set to zero. There is translation invari-
ance along the y-direction: thus after a y-compactification, the
modes hy, and h¢, become components of a U(1) gauge field in
the dimensionally reduced d-dim spacetime. The components are
given by

[n,v=0,...,d—1];

Ax = (Gxx)_lhxy s (5)

where G, is the metric given by (4). A part of the gravitational
action contains the Maxwell action with an r-dependent coupling

i
constant, v/—GR — —}14/—gFaﬁFy5g"‘Vgﬂ5(Gxx)ﬁ.
The gauge field equations following from the action are

1
v = Gy (Gxy) -2
AO = (Gxx)_lhty s

1 1 d-1
ou(v=Er) =0, - =Gi’, (6)
Eetr Eetf

where we have read off the r-dependent gef from the com-
pactified action. Analysing these Maxwell equations and the
Bianchi identity assuming gauge field ansatze A, =a (r)e~Tt+iax
and radial gauge Ar = 0 as in [3] shows interesting simplifi-
cations in the near-horizon region. When ¢q = 0, these lead to
HT(‘/__gg”g"BrAt) = 0. We impose the boundary condition that

g2
the geauge fields vanish at r =r. ~ 0. As in [3], for ¢ nonzero but
2

small, we assume an ansatz for A; as a series expansion in qu/z
© () ) q°
Ac=AD + A+ Al =O<T2/Z)’
[ () g ()
© _ —Ft+iqx/ &g () 5
A =Ce drr=———=_ "~ . r 7
t y /_g(r/) gEff( ) ( )

Gxx(r)/=G(1")

Te
using (5), (6), with C some constant. Making a second assumption
[0r Ax| < |0xA¢] (8)

as in [3], the gauge field component Ay, using the A; solution,
becomes

Av=AY + A0 +
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r
(0) ir 71‘t+in/  &x(Mgn () 5
A, =——0Ce dr'2=—22— = . g%.(1) (9)
* q / J—g) o
r
it . rewi Grr(r')
——_ Ce 't+igx dr’ m ,
q V=G

Tc

again as a series expansion. As for A;, we impose the boundary
condition Ay — 0 as r — r. ~ 0. In Appendix A, B, we show that
the above series expansions are self-consistent provided certain
conditions hold on the location ry of the stretched horizon and
the parameters q, I and T (equivalently rq). This enables us to de-
fine Fick’s law on the stretched horizon, and thereby the diffusion
equation. The shear diffusion constant then becomes

Do V—g@ry) — 81t (N grr (1N g2(1)
82 (Tn) &xx )~/ = 8ot 1) &rr (Th) ; NETI0)
(10)

where . is the location of the boundary, and we are evaluating D
at the stretched horizon. The leading solutions Aﬁ?,f and D depend

on the exponents: we analyse this separately below.

2.1. Shear diffusion constant: d —z — 0 > —1 (or z < 2 + deff)

Using (1), the expression (7) for AEO) becomes
r
A = Ce—[‘t+iqx/dr 20 (11)
e

For generic values
d—z—60> -1, (12)

the leading solution (11) for A§°> has power law behaviour
C

d—z—0+1
We expect that the hyperscaling violating phase breaks down close
to the boundary at r.: for our purposes, strictly speaking we will
only require that the horizon is well-separated from the bound-
ary, ie. rorc < 1, or equivalently that the temperature is suffi-
ciently below the ultraviolet cutoff in the theory. Thus the con-
dition d —z — 60 > —1 arises from the boundary condition Aﬁo) =0
at r =r. ~ 0. This includes various subfamilies of hyperscaling vi-
olating metrics that arise in gauge/string realisations, e.g. through
dimensional reductions of nonconformal Dp-branes [19] for p <4
(here 6 =p — 2:—5, di = p). The case of d — z — 6 = —1, arises in
the reductions of various D-brane plane waves [22,23,32]: here the
leading solution has logarithmic behaviour, as we describe later.

From (1), the condition (12) can be written as dj —0 —z+2 > 0,
or z < 2 + defy, ie. the Lifshitz exponent is not too high. For
Z > 2 +defy, it appears that the perturbations (11) do not die far
from the horizon. For z =1, this gives 6 > d; + 1 which arises e.g.
from the reduction of D6-branes: in such cases, it would appear
that gravity does not decouple and the asymptotics is not well-
defined. It would be interesting to understand the condition (12)
better from other considerations e.g. holography [26-30]: more
comments appear later.

The leading solution for Ay likewise is

A§O) — —I't+igx rd—z—9+1 . (13)

) i reti rg+l_d_z dtz—6—1
Ay =——Ce TtHax_0___ g (1 — (ror)3T%=0= ) )
X q 0+1—-d—z g (ror)

(14)

Self-consistency of (7), (9), (8), when d —z — 6 > —1 leads to

2/z 1 _ 2
_T T q

T2/z

122 h
e 7 K0k
o

<1. (15)

This means that the stretched horizon has to be sufficiently close
to the horizon (to O(q?)) but not exponentially close to it. These
conditions can be simultaneously satisfied in a self-consistent
manner as we discuss in Appendix A, adapting [3].

Using (5), (6), the shear diffusion constant (10) becomes

_ v —=G(rp) . =Gt (NG (1)
=Gt (rp) Grr (Th) K Gxx(N)/—G(1)

Th

1 d—2—9
= d—0—1/r “dr. (16)
Th

e

Th

Thus, for a hyperscaling violating theory with d —z — 6 > —1, we
obtain
2—z z—2

D = rh ~ ro

d—z—0+1 d—z—60+1
where we have dropped the contribution in the integral from r,
since the UV scale ro <« ry, is well-separated from the horizon scale.
The diffusion constant in (16), (17), is evaluated at the stretched
horizon r,: however ry ~ % + 0(g%) so that to leading order D

+ 0@, (17)

is evaluated at the horizon % It is interesting that 6 cancels in
the ro-dependent terms in D, which is essentially the ratio of A;
to a field strength component (both of which have nontrivial 6
dependence).

In the present hyperscaling violating case, we have seen that
T ~rf and D~ r(z)_2 so the product DT ~ ré(zfl) is not dimen-
sionless. Using (2), we have

z—=2
_ 1 ( % ) z T¥7 (18)
d—z—-0+1\d+z-0-1

as the scaling with temperature T of the leading diffusion con-
stant (17). See also e.g. [35,36,38,39,41,42] for previous investiga-
tions including via holography.

2.1.1. Comments on

We now make a few comments on (17), (18) towards gaining
insight into 2

(1) As a consistency check, we see that for pure AdS with 6 =0,
z=1, we obtain D = ﬁ. This corresponds to a relativistic CFT:
the shear diffusion constant is D = HLP and thermodynamics gives
¢+ P =Ts, where &, P,s are energy, pressure and entropy densi-
ties. This gives the relation = DT and thereby % = ;L.

(2) Theories with metric (1) and 6 =0 enjoy the Lifshitz scal-
ing symmetry, x; — Axj, t — A*t: Then the diffusion equation
o jt = D8i2 j* shows the diffusion constant to have scaling dimen-
sion dim[D] = z — 2, where momentum scaling is [9;] =1 (or
equivalently, [x;] = —1, [t] = —z). With temperature scaling as in-
verse time, we have dim[T] = z. Thus on scaling grounds, the tem-
perature scaling in (18), which here is

z=2
_ 1 ( 4T ) z T¥ ’ (19)
d—z+1\d+z-1
is expected, upto the d, z-dependent prefactors. For z = 2, the dif-
fusion equation (structurally like a Schrodinger equation) already
saturates the scaling dimensions, and D has apparently no temper-
ature dependence. As T increases, D decreases for z < 2: however

D increases with T for z > 2.
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Aspects of Lifshitz hydrodynamics have been studied in e.g. [37,
40]. As discussed in [40], under the Lifshitz symmetry, we have the
scalings [T]=2z [e]=z+d—1,[P]=z4+d—1,[s]=d—1, [n] =
d — 1. Indeed for Lifshitz black branes with horizon ry and tem-

e o T _ 1 47 a1
perature (2), the entropy density is s = 4(’;*“] = e (75D 7 -
The thermodynamic relations give € + P = Ts. The shear viscosity

. - . .
[40]is n = w;—GdHTT] satisfying the universal bound g = %.
this to arise from (19), we guess that the relation between shear
viscosity and the shear diffusion constant is

For

47 )% DTE
d+z-1 '
(20)

no_ (d—2+1)Dr2_z _ (d—z+1)(

s 4 0 47

(3) For 0 # 0, the scaling analysis of the Lifshitz case is not
applicable: however the temperature is #-independent and the re-
lation (18) continues to hold for generic 6. Towards guessing the
hydrodynamics from the diffusion constant in this case, we first re-
call from [3] that nonconformal branes give D = ﬁ, and thereby

g = é continues to hold. On the other hand, [19] observed that
nonconformal Dp-branes upon reducing on the sphere 8P give
rise to hyperscaling violating theories with z=1 and 6 # 0. It
would therefore seem that the near-horizon diffusion analysis con-
tinues to exhibit this universal behaviour since the sphere should
not affect these long-wavelength diffusive properties.

Happily, we see that (18) for z=1 gives D = %, with the
6-dependent prefactors cancelling precisely. Thus all hyperscaling
violating theories with z=1 appear to satisfy the universal viscos-
ity bound

1
T—pr=—.
S 4

(21)
Putting this alongwith the Lifshitz case motivates us to guess the
universal relation

n d—z—60+ D'DT’S_Z
S 4w
2—z

(d—z—9+l)( 4 )z DT%ZL (22)

54 d+z—-6-1 %4
between 7, s, D, T, for general exponents z, 6. This reduces to (20)
for the Lifshitz case & = 0. One might wonder if the prefactors for
6 # 0 somehow conspire to violate the universal bound: in this
regard, it is worth noting that z, 6 appear in linear combinations
in the prefactors. Alongwith the previous subcases, this suggests
consistency of (22).

[eff

Finally we know that the entropy density is s = 4(’;"d+] ~

d;j—6
4G17+1TIT in hyperscaling violating theories, with deff =d; — 6 =

d — 1 — 6 the effective spatial dimension. Then (22) gives the shear
viscosity as n ~ mTu

It is fair to say that to study this conjecture in detail, it is im-
portant to systematically understand the thermodynamic/hydrody-
namic relations between the expansion of the energy-momentum
tensor, the shear viscosity 1 and the diffusion constant D. Towards
this, it is worth putting the analysis here leading to (17), (18), and
the comments above in perspective with the calculation of viscos-
ity via the Kubo formula n = —lim,,_.¢ %lmcfy’xy(a)), with GR the
retarded Green’s function [6] (assuming T ~ n(d;v; +...) in the
dual field theory). Holographically, this is obtained by modelling
the h’J‘, perturbation as a massless scalar and thereby gleaning
the (TxyTxy) correlation function: for various subfamilies in (1),
this has been carried out in e.g. [35,39,41]. For instance in [41],

the appropriate solutions at zero momentum k=0 to the scalar
wave equation in the near and far regions are matched to obtain

d; P .
GR = —i—@ Ri 40 454 thereby 1, where we have written the

—— 2

167G 17 To
. , 2 - .
metric (1) as ds? = Rz(%)z"/d* (—f(r)‘r% +...), explicitly retain-
v
ing the dimensionful factors R and the scale rp, inherent in these

. . . . . di o
theories [19]. Likewise the entropy density is s = %’:T’rg’ ? from
hv
the area of the horizon, recovering % = lﬂ in agreement with our

analysis (and 6 cancels').

We have seen the condition z < 2 4+ d; — 6 arising naturally
from the perturbations falling off asymptotically (11) in our case.
It is worth noting that although we implicitly regard hyperscaling
violating theories as infrared phases arising from e.g. string realisa-
tions in the ultraviolet, z < 2 4+ d; — 0 in the analysis here ensures
that the ultraviolet structure of these theories is essentially unim-
portant: the diffusion constant arises solely from the near horizon
long-wavelength modes. The theories satisfying this condition are
in some sense continuously connected to AdS-like relativistic the-
ories (z=1, # =0), as the analysis in Appendix A suggests. Iden-
tifying this condition from the point of view of holographic calcu-
lations appears more subtle. While a detailed analysis is ongoing,
we outline a few comments here, in part following discussions in
[26] for Lifshitz theories. Bulk field modes have asymptotic fall-offs
¢ ~12=(p_+...)+r2 (¢4 +...) near the boundary r — r., where
A_+ Ay =di — 0+ z [19] (see also [28,30]). If A_ < A4, the
¢_ fall-off near the boundary r — r. ~ 0 is slower (thus dominat-
ing), leading to fixed ¢_ boundary conditions relevant for standard
quantisation (¢_ taken as source). In particular, the momentum
density operator P! has dimension d; —6 + 1 (while energy density
has dimension d; —0 4 z): taking Ay =d; —6+1 gives A_=z—1,
so that A_ < A, implies z < 2 +d; — 6, which is precisely our
condition (12). When this condition is violated in a reasonable the-
ory,? it would seem that the analog of alternative quantisation [43]
will be applicable, with fixed ¢, boundary conditions. The case
z =2 +d,f discussed in the remainder of the paper may be in-
teresting, with A_ = A . In these cases, # may not disappear. We
hope to explore these issues further.

2.2. Shear diffusion constant: d —z — 6 = —1 (or z=2 4 defy)

Now we consider the family of hyperscaling violating back-
grounds (1) with d — z — & = —1. In this case, the leading solution
(11) for AEO) has logarithmic behaviour,

. r
AP = Ce " log () . d—z—-0=—1. (23)
C

Then working through, we have from (16)

1 1
D:rg -1 log(ﬁ):ré 2 log(ﬁ) . (24)
This implies that in the low temperature limit ro — 0, the diffu-
sion constant becomes vanishingly small if d; — 6 > 0, or equiva-
lently z > 2. The energy conditions (3) eliminating 6 =d —z+ 1
give (z—2)(d—-1z—-2d+2) >0, (z—1)(z—2) > 0. When
6 = 0, we obtain Lifshitz theories: the energy conditions become
(z—1)(d—1+42z) > 0. Then the condition here is z=d+1=2+d;.
Since we are considering theories in d + 1 > 3 bulk dimensions,

T We have seen that @ disappears from the temperature dependence of D in (18).
It would be inconsistent if & remained, at least in cases where the hyperscaling
violating phase arises from string constructions such as nonconformal branes which
are known to have universal ? behaviour, as discussed in comment (3) above.

2 Unlike eg. dj =6, z=1, 0 =9, arising from the reduction of e.g. D6-branes
where the asymptotics is ill-defined with gravity not decoupling.
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z > 3 consistent with the energy conditions above. With 6 # 0, we

have z =2 +desr. In [19], it was noted that the entropy scaling

S ~ T@i=9/z jmplies that the specific heat is positive if ”"’T’e > 0.
defy

Here we have S ~ T*%f so that positivity of the specific heat

zjfgf” > 0 if defr > 0. Relatedly, we recall that entanglement

entropy has novel scaling behaviour in the window d; — 1 <6 <d;,
which does not involve z. The entangling surface has been ob-
served to have some instabilities for 6 > d;. The present condition
Z =2+ defy is thus distinct from and compatible with them.

We show in Appendix B that the conditions (15) on the
stretched horizon now become

gives

T2 1 %—rh q>
R ) <=«
o

Tore

1
TZ/Z 10g2 ro—r . (25)
C

exp(—

In the generic cases (15), the power law behaviour ensured that
the short distance cutoff decoupled from the near-horizon be-

haviour (e.g. since rl# > rf). Here the solution A;O) contains a

logarithm which req?lires a scale, which filters through to (25).
While it is unusual for the UV cutoff r. to appear in what is man-
ifestly a hydrodynamic or long-wavelength regime that we have
restricted our analysis to, (15) implies (25) since r. < % implies
log# > 1 so that the window for the stretched horizon is not
over-constrained. However, the subleading corrections (48) to the
gauge field perturbations again contain terms involving log rol—rc fac-
tors affecting the validity of the series expansion in quz/z.

It appears reasonable to conclude that the series expansion is
perhaps breaking down in this case. Towards gaining some in-
sight into this, it is useful to look for gauge/string embeddings
of these effective gravity theories. In this regard, we recall that
AdS plane waves (equivalently, highly boosted black branes) upon
x*-reduction give rise to hyperscaling violating spacetimes with
certain values for the z, f-exponents [22-24]. It turns out that the
exponents satisfy d —z — 6 = —1. We will discuss this in what fol-
lows.

3. Diffusion constant: highly boosted black branes
A simple subclass of (zero temperature) hyperscaling violat-

ing theories can be constructed from the dimensional reduction
of AdSy4> plane wave spacetimes [22,24]

R2
ds®> = r—z[—zdx+dx_ +dx? +dr?]

+R2Qri 1 dxh)? + R2dQE2 — (26)
d; 2 2
2 wood? YL dxd +dr
ds =Td’(—z+7l r21 ),
d+3 d—1
2= 42 o Cdi=d—1. 27)
2 2

These can be obtained from a low-temperature, large boost limit
[23] of boosted black branes [25] arising from the near horizon
limits of the conformal D3-, M2- and M5-branes. Similar features
arise from reductions of nonconformal Dp-brane plane waves [32,
23], with exponents

2(p—6 Z_6p+7

,_2P—6 g=P P71 g—p-1, (28)
p—5 p—5

where the Dp-brane theory after dimensional reduction on the

sphere $8~P and the xT-direction has bulk spacetime dimension

’

d+ 1= p+ 1. The holographic entanglement entropy in these the-
ories exhibits interesting scaling behaviour [31-34].

To obtain the finite temperature theory, let us for simplicity
consider the AdSs black brane

dr?
r2(1 —rgrd)
(29)

which is a solution to the action S = 16;65 [d5%/—g® RO —
2A). Rewriting (29) in lightcone coordinates and boosting as

R? 2
ds* = (= —rirtde +dd + Y dx?) + R?
i=1

x* — A%x*, we obtain
R2 T4T4 2
as? = — ( —2dxtdx + -G 427 dx ) + del?)
i=1
R?dr?
- 30
r2(1 —rgr4) (30)
Writing in Kaluza-Klein form
RZ| (=13 dr?
ds? = — | ——% (@ dx")? +dx® +dy* + ———
r2 [ ori ) Yras rort)
1- ﬁ) ?
+QR*? [ dx* — Tjdx— , (31)
2.4

AT
where Q = TO and compactifying along the x* direction gives

1— 4.4 2 2
ds? = (Q1/2R3)r[— a=rr) Q;gr )(dx’)2+ dx” +dy” ;dy
dr?
—_— . 32
* r2(1 — rgr“)] (32)

This is simply the hyperscaling violating metric (1) with z =3,
6 =1, di =2, in [22], but now at finite temperature. It is a
solution to the equations stemming from the 4-dim Einstein-
Maxwell-Dilaton action S = (zig [d*x/—g® (R® —2Ae7? —

3g1v3,¢9,¢ — Le>? FHVF,,,) which arises upon dimensional re-
duction along the xT-direction of the 5-dim Einstein action S =
lejlf—csfdsx,/—g(S)(R@ — 2A). The scalar field has the profile

e2® = RZQr? while the gauge field is A; = —;g—rf‘t. A; =0 with

f=1—rgr*. The finite temperature theory is of course obtained
by taking the boost A to be large but finite, and the temperature rg

to be small but nonzero, while holding Q = @ fixed. The boost
simply serves to create a hierarchy of scales in the energy mo-
mentum components T4 ~A%rg ~Q, T__ ~ ;—6; ~ g T, ~rg,
Tjj ~ rgsij, while keeping them nonzero.

The z, #-exponents (27) arising in these reductions satisfy d —
z— 60 = —1, coinciding with the special case discussed earlier. This
is also true for nonconformal Dp-brane plane waves (28). It is
worth noting that this relation between the exponents is distinct
from the window d; — 1 <6 < d; where the holographic entangle-
ment entropy exhibits novel scaling behaviour: in particular the
present relation involves the Lifshitz exponent. The diffusion con-
stant for this class of hyperscaling violating theories then has the
logarithmic behaviour (24) described earlier, provided we restrict
to modes that describe the lower dimensional theory.

In the above xT-compactification, we see that x~ above maps
to the time coordinate t below. Thus mapping the perturbations
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between the higher dimensional description and the hyperscaling
violating one, we see that the metric in KK-form (31) including
the shear gravitational perturbations is of the form (with gauge
condition h/m hrr =0)

ds? = g__(dx)? + Ziidx? + Zprdr® + ZE,ydxfdy
+ 2hyydxdy + g4 (dxt + A_dx7)?, (33)

where A_ is the background gauge field in the lower dimen-
sional description. In other words, the perturbations map as
h_y — hey, hyy — hyy, upto the conformal factor arising from the
x*-reduction. In_addition, the x*-reduction requires that the per-
turbations h_ s hxy are xT-independent. This in turn translates to
the statement that the near horizon diffusive modes are of the
form

—kx” kx| ky=0, [u=x",x], (34)

i.e. the nontrivial dynamics in the lower dimensional description
arises entirely from the zero mode sector k; =0 of the full theory.

Likewise, vector perturbations §A;,§Ay in the lower dimen-
sional theory arise in (33) as

huye

oA g (dxT + A_dxT +hy_dx +hyydy)?

We see that these arise from gravitational perturbations fl+_, f1+y.

To ensure that the massive KK-modes from the x*-reduction
decouple from these perturbations, it suffices to take the xT-circle
size L, to be small relative to the scale set by the horizon,
ie. Ly < %: equivalently, the temperature is small compared

to the KK-scale ﬁ The ultraviolet cutoff near the boundary is
re~Q V< L
rzQ
Finally to map (32) to (1) precisely, we absorb the factors of
the energy scale Q by redefining X~ = % Now the shear diffu-

sion constant can be studied as in the hyperscaling violating theory
previously discussed, by mapping it to charge diffusion in an aux-
iliary theory obtained from the finite temperature x*-compactified
theory by compactifying along say the y-direction. This requires
mapping the shear gravitational perturbations to the lower dimen-
sional auxiliary gauge fields as A; oc h_y, Ay o< hyy, which can
then be set up in a series expansion in the near horizon region.
Thus finally the shear diffusion constant follows from (24) giving
D=ry log(roQ%m). For Q fixed, as appropriate for the lower di-
mensional theory, we see that the low temperature limit ro — 0
gives a vanishing shear diffusion constant suggesting a violation
of the viscosity bound. It is worth noting that the diffusion equa-
tion here is 93- j~ = 1381.2 j~ where X~ = % reflecting the Lifshitz
exponent z = 3.
Noting that Q ~

the upstairs theory are

: the hyperscaling violating phase is valid for

ro. the diffusion equation and constant in

. 2 _ D N 1
Oy—J J_al , mro . log X . (35)
The ro — 0 limit of the lower dimensional theory (where T ~ rg)
implies a highly boosted limit A — oo of the black brane for
fixed Q: here Dry vanishes. However this appears to be a sub-
tle limit of hydrodynamics. From the point of view of the upstairs
theory of the unboosted black brane, shear gravitational modes
are hgy, hyy. Upon boosting, it would appear that these mix with
other perturbation modes as well, suggesting some mixing be-
tween shear and bulk viscosity. From the point of view of the
boosted frame, this system has anisotropy generated by the boost

Drg ~

direction. Previous studies of anisotropic systems and shear viscos-
ity include e.g. [44-50]. (See also e.g. [51] for a review of the vis-
cosity bound.) In the present case, the shear viscosity tensor can be
analysed from a systematic study of the expansion of the energy-
momentum tensor of the finite temperature Yang-Mills fluid in the
highly boosted regime. However the scaling (35) is likely to be re-
alised only after phrasing the boosted black brane theory in terms
of the variables appropriate for the lower dimensional hyperscaling
violating theory (which arises in the k. = 0 subsector as discussed
above). It would be interesting to understand the hydrodynamics
in the lower dimensional theory better, as a null reduction of the
boosted black brane theory, perhaps similar in spirit to noncon-
formal brane hydrodynamics [52,53] as a reduction of nonlinear
hydrodynamics [54] of black branes in M-theory. We hope to ex-
plore this further.
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Appendix A. Diffusion analysis details: generic case

In the near-horizon region, the metric (1) is approximated as
g(r) ~ —yo(5 — 1), &N ~ . gu(r) ~ const, for constants
o
Y0, ¥r: the Maxwell equations (6) simplify substantially here, as a

series expansion in m for the gauge fields. Here we only men-
tion the modifications in the analysis of [3] arising in the present
context. An intermediate step in the self-consistent analysis gives

Fyp ~ 12D q /ro)—rp
rd L
r 1/ro

al’FtX ) (36)

which is then used to obtain a wave equation for F;y: we choose
the solution that is ingoing at the horizon, and then solve for the
various gauge field components. Self-consistency constrains the lo-
cation of the stretched horizon

1/rg) — 1 1 r2
( /10/)r h L (37)
0 o q
For thermal AdS (z=1), this becomes (l/r") Th << as in [3].

With small but nonzero g, we write At, Ax as serles expansions

. 2
(7), (9), in 77z
A¢, Ay > 0 at r =1 ~ 0. Using the Ago),Af(O) solutions (7), (9),
©)
(13), (14), in the near horizon region :—0 —-rK % shows % ~
t

and impose (8) and the boundary conditions that

Z(Z 5 L log(l//r" ). Thus (8) is valid only if

22D

1/r
ALEE (38)

(1/rg) —1p
Combining (37), (38), gives the window

2,2(z

21
o o) -y 1 1
1/ro rae b g?’

(39)

for the stretched horizon ry in terms of the perturbation parame-
2
ters g—z <1
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We define the following gauge field currents on the stretched
horizon

Frx
Exx/ —8tt '

1

—F
gtt«/ 8Err o
(40)

The assumption (8) implies we can approximate the field strength
Frx & —0xA¢, and 8rth ~ 0xFy in radial gauge. This gives 9yj¢ =

szansz_ ]'t:ansz_

—g[%maxﬂr rm Farth Further, multiplying and dividing by
Fix and using the definition of j*, we get dj‘ = J% a’Ff:"] ,
ie.
v — F,
jx:_ig" tx ajt = —Daj', (41)
8xx O Fex
which is Fick’s Law.> From the solutions to A; and Ay, we have
_ Fu A
arth I Ftr Ty

~/—g&(n)
eff(rh)gtt(rh)grr(rh)

gn () grr (1) g2 (1’ )
V—g()

Thus from Fick’s Law (41), we read off the shear diffusion constant

_ V=8u(ngrr(rn)  Ac
Exx(rn) Ftr

evaluated at the stretched horizon ry, where the boundary is
re < rp. Using (42) gives (10).

For generic exponents, the diffusion constant (17) becomes D ~
ri™2 ~ T@=2/2_0n the other hand, the diffusion equation gives
I = Dg?. These give the condition
I q

q T3 '

Using this estimate, (3

(42)

, (43)

r=rp

(44)

) becomes (15), which is always satisfied

. In partlcular for thermal AdS we have

z=1,D~T 1 s0(15) becomes e q_ < (1/{%) h g—z, the condi-
tion obtained in [3].

Using the expansion over g2 for A; and A, in the gauge field
equations, it can be checked that the leading 0 (q®) terms are con-
sistent with the ansatz for A(O) A(O) in the regime (15). Likewise
the subleading terms can be evaluated: collecting terms of 0(q?)
consistently, using (44) and simplifying gives

AN ~

T2/z (1/ro) —1/ T4z (1/ro) —r

(45)

Using (15), we see that BTAP) < A§°>, and after integrating, that

Agl) < A§°>, verifying that these are indeed subleading. Likewise,
we find

A~ [ s (A2 ) 8o (0

(46)

3 The antisymmetry of F,y implies ny, j* =0, ie. the current is parallel to
the stretched horizon (only n, is nonzero with g"nf = 1). Contracting gives
n\,i),t(—vg;g FMVY =0 = n (9 FM') = 0, with M = t, x;. This gives current conser-

eff

vation 3y, j* = du (ny FMV) = n(3y FM") = 0.

o - tog (L0 ) 4 9 o2 (L0 )]a0,

)]A <A@

Appendix B. Diffusion analysis details: special case
1/
1 rlegy /ror0 7)
26D q log(--)

rorc

©
For the case d —z — 6 = —1, we obtain —ﬁfm ~
t

so that imposing (8) gives

1 12 log(yi)

- (47)
2z—1) g2
Iy q log(ror
From the estimates obtained for D from the diffusion equa-
tion and the diffusion integral, we obtain % Fore

instead of (44). Using this in (37), we obtain the modified
bound (1”3) Th &

TZ/z log? (ror) Likewise, (38) also changes to

12 7 log(m) log - o K 1. The subleading terms now give

2
a q 1/rg
oA rO[Tz/Z log ((1 /10) — r)

4
q 2 1/ro 1 )

lo (7) lo (—)]A . 48

* garz 08 (/o) —r/ S \rorc /1% (48)

Within the regime (25), it would appear that 9, A; AV « A(O) how-

ever rorc < 1 implies that log( ) is large so that the O(q4) term

need not be small even if TZZ/Z << 1, suggesting a breakdown of the
series expansion.
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