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We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating 
exponents z, θ at finite temperature. By studying shear gravitational modes in the near-horizon region 
given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an 
appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic 
exponents with d − z − θ > −1, we find that the diffusion constant has power law scaling with the 
temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents 
satisfy d − z − θ = −1, we find logarithmic behaviour. This relation is equivalent to z = 2 + def f where 
def f = di − θ is the effective boundary spatial dimension (and di = d − 1 the actual spatial dimension). 
It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly 
boosted black branes, and we comment on the corresponding analysis in that context.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

The viscosity bound [1] is a universal feature of large families 
of strongly coupled quantum field theories arising in investigations 
using holography [2]. The shear viscosity η satisfies η

s = 1
4π for a 

wide variety of theories, s being the entropy density. A slightly 
different approach to studying hydrodynamics and viscosity was 
studied in [3]. It was observed that metric perturbations governing 
diffusive charge and shear modes in the near horizon region of the 
relevant dual black branes simplify allowing a systematic expan-
sion there, resulting in a diffusion equation on a stretched horizon 
with universal behaviour for the diffusion constant. This is akin to 
the membrane paradigm [4] for black branes, the horizon exhibit-
ing diffusive properties. This approach does not directly assume 
any holographic duality per se, although it is consistent with holo-
graphic results e.g. [5,6] (see e.g. [7] for a review of these aspects 
of hydrodynamics).

In recent years, nonrelativistic generalisations of gauge/grav-
ity duality have been studied extensively. An interesting class 
of non-relativistic theories exhibits so-called hyperscaling viola-
tion. The gravity duals are conformal to Lifshitz spacetimes [8,9]. 
These hyperscaling violating spacetimes arise in effective Einstein–
Maxwell–Dilaton theories e.g. [10–21]. Certain gauge/string reali-
sations of these arise in null x+-reductions of AdS plane waves 
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[22,24], which are large boost, low temperature limits [23] of 
boosted black branes [25]. Various aspects of Lifshitz and hyper-
scaling violating holography appear in e.g. [19,26–30]. Some of 
these exhibit novel scaling for entanglement entropy e.g. [17–19]: 
the string realisations above reflect this [31–34], suggesting corre-
sponding regimes in the gauge theory duals exhibiting this scaling.

It is of interest to study hydrodynamic behaviour in these non-
relativistic generalisations of holography: previous investigations 
include e.g. [35,37–42]. In this paper, we study the shear diffusion 
constant in bulk (d + 1)-dimensional hyperscaling violating theo-
ries (1) with z, θ exponents adapting the membrane-paradigm-like 
analysis of [3]. As in [3], we map the diffusion of shear gravi-
tational modes on a stretched horizon to charge diffusion in an 
auxiliary theory obtained by compactifying one of the di bound-
ary spatial dimensions exhibiting translation invariance. This gives 
a near horizon expansion for perturbations with modifications in-
volving z, θ . We find (sec. 2) that for generic exponents with 

d − z − θ > −1, the shear diffusion constant is D = rz−2
0

d−z−θ−1 , i.e.
power-law scaling (18) with the temperature T ∼ rz

0. Studying var-

ious special cases motivates us to guess (22), i.e. #DT
2−z

z = 1
4π

where # is some (d, z, θ)-dependent constant, suggesting that η
s

has universal behaviour. The condition z < 2 + di − θ representing 
this universal sector appears related to requiring standard quan-
tisation from the point of view of holography. It would be inter-
esting to understand the hydrodynamics and viscosity here more 
systematically.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2016.06.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:narayan@cmi.ac.in
http://dx.doi.org/10.1016/j.physletb.2016.06.046
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.06.046&domain=pdf


K.S. Kolekar et al. / Physics Letters B 760 (2016) 86–93 87
When the exponents satisfy d − z − θ = −1, the diffusion con-
stant exhibits logarithmic behaviour (sec. 2.2), suggesting a break-
down of some sort in this analysis. This condition appears compat-
ible however with various known constraints on the exponents: 
it would be interesting to understand this from other consid-
erations. The exponents arising in null reductions of AdS plane 
waves or highly boosted black branes [22–24] satisfy this con-
dition, which can be written as z = 2 + def f . It is interesting to 
note that highly boosted black branes (or AdS plane waves) give 
rise upon x+-reduction to hyperscaling violating theories with z, θ
exponents leading to novel entanglement scaling, as well as the 
condition z = 2 +def f here. The two appear independent however: 
the entanglement entropy stems from di − 1 ≤ θ ≤ di and does not 
depend on z while the relation here involves both z, θ . We discuss 
(sec. 3) the corresponding picture of hydrodynamics that is likely 
to arise in the null reduction by mapping the perturbations accord-
ingly. Details of the diffusion analysis appear in the Appendix.

2. Shear diffusion on the stretched horizon

We are considering nonrelativistic holographic backgrounds de-
scribed by a (d + 1)-dim hyperscaling violating metric at finite 
temperature,

ds2 = r2θ/di

(
− f (r)

r2z
dt2 + dr2

r2 f (r)
+

∑di
i=1 dx2

i

r2

)
,

di = d − 1, def f = di − θ , (1)

where f (r) = 1 − (r0r)d+z−θ−1. di is the boundary spatial dimen-
sion while def f is the effective spatial dimension governing var-
ious properties of these theories, for instance the entropy den-
sity s ∼ T def f /z . The temperature of the boundary field theory (i.e.
Hawking temperature of the black hole) is

T = (d + z − θ − 1)

4π
rz

0 . (2)

These spacetimes are conformal to Lifshitz spacetimes [8,9], and 
exhibit t → λzt , xi → λxi , r → λr, ds → λθ/(d−1)ds. They arise in 
Einstein–Maxwell–Dilaton theories and are sourced by gauge fields 
and scalars. The window di − 1 ≤ θ ≤ di shows novel scaling for 
entanglement entropy [17–19]: these arise in the string realisa-
tions [22–24], with entanglement entropy studies in [31–34]. The 
null energy conditions following from (1) constrain the exponents, 
giving

(d − 1 − θ)
(
(d − 1)(z − 1) − θ

) ≥ 0 ,

(z − 1)(d − 1 + z − θ) ≥ 0 . (3)

We want to study the diffusion of shear gravitational modes 
in these backgrounds as a way of studying shear viscosity. In [3], 
Kovtun, Son and Starinets formulated charge and shear diffusion 
for black brane backgrounds in terms of long-wavelength limits 
of perturbations on an appropriately defined stretched horizon, the 
broad perspective akin to the membrane paradigm [4]. Their anal-
ysis, which is quite general, begins with a background metric of 
the form

ds2 = Gμνdxμdxν = Gtt(r)dt2 + Grr(r)dr2 + Gxx(r)
d−1∑
i=1

dx2
i , (4)

which includes the hyperscaling violating backgrounds (1) as a 
subfamily. Charge diffusion of a gauge field perturbation Aμ in the 
background (4) is encoded by the charge diffusion constant D , de-
fined through Fick’s Law ji = −D∂i jt , where the 4-current jμ is 
defined on the stretched horizon r = rh (with n the normal) as 
jμ = nν F μν |r=rh . Then current conservation ∂μ jμ = 0 leads to the 
diffusion equation ∂t jt = −∂i ji = D∂2

i jt , with D the corresponding 
diffusion constant. Fick’s law in turn can be shown to apply if the 
stretched horizon is localised appropriately with regard to the pa-
rameters �, q, T . Translation invariance along x ∈ {xi} allows con-
sidering plane wave modes for the perturbations ∝ e−�t+iqx , where 
� is the typical time scale of variation and q the x-momentum. In 
the IR regime, the modes vary slowly: this hydrodynamic regime 
is a low frequency, long wavelength regime.

The diffusion of shear gravitational modes can be mapped to 
charge diffusion [3]: under Kaluza–Klein compactification of one 
of the directions along which there is translation invariance, tensor 
perturbations in the original background map to vector perturba-
tions on the compactified background. Here we carry out a similar 
analysis for the shear diffusion constant in the backgrounds (1), 
adapting [3] to the present context. We turn on the metric fluc-
tuations hxy and hty (x ≡ x1, y ≡ x2) around (4), depending only 
on t, r, x, i.e. hty = hty(t, x, r), hxy = hxy(t, r, x). Other fluctuation 
modes can be consistently set to zero. There is translation invari-
ance along the y-direction: thus after a y-compactification, the 
modes hxy and hty become components of a U (1) gauge field in 
the dimensionally reduced d-dim spacetime. The components are 
given by

gμν = Gμν(Gxx)
1

d−2 [μ,ν = 0, . . . ,d − 1];
A0 = (Gxx)

−1hty , Ax = (Gxx)
−1hxy , (5)

where Gμν is the metric given by (4). A part of the gravitational 
action contains the Maxwell action with an r-dependent coupling 
constant, 

√−G R → − 1
4
√−g Fαβ Fγ δ gαγ gβδ(Gxx)

d−1
d−2 .

The gauge field equations following from the action are

∂μ

( 1

g2
eff

√−g F μν
)

= 0 ,
1

g2
eff

= G
d−1
d−2
xx , (6)

where we have read off the r-dependent geff from the com-
pactified action. Analysing these Maxwell equations and the 
Bianchi identity assuming gauge field ansatze Aμ = aμ(r)e−�t+iqx

and radial gauge Ar = 0 as in [3] shows interesting simplifi-
cations in the near-horizon region. When q = 0, these lead to 
∂r

(√−g
g2

eff
grr gtt∂r At

) = 0. We impose the boundary condition that 
the gauge fields vanish at r = rc ∼ 0. As in [3], for q nonzero but 
small, we assume an ansatz for At as a series expansion in q2

T 2/z

At = A(0)
t + A(1)

t + . . . , A(1)
t = O

( q2

T 2/z

)
,

A(0)
t = Ce−�t+iqx

r∫
rc

dr′ gtt(r′)grr(r′)√−g(r′)
· g2

eff(r
′) (7)

= Ce−�t+iqx

r∫
rc

dr′ Gtt(r′)Grr(r′)
Gxx(r′)

√−G(r′)
,

using (5), (6), with C some constant. Making a second assumption

|∂t Ax| � |∂x At | (8)

as in [3], the gauge field component Ax , using the At solution, 
becomes

Ax = A(0)
x + A(1)

x + . . . ,
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A(0)
x = − i�

q
Ce−�t+iqx

r∫
rc

dr′ gxx(r′)grr(r′)√−g(r′)
· g2

eff(r
′) (9)

= − i�

q
Ce−�t+iqx

r∫
rc

dr′ Grr(r′)√−G(r′)
,

again as a series expansion. As for At , we impose the boundary 
condition Ax → 0 as r → rc ∼ 0. In Appendix A, B, we show that 
the above series expansions are self-consistent provided certain 
conditions hold on the location rh of the stretched horizon and 
the parameters q, � and T (equivalently r0). This enables us to de-
fine Fick’s law on the stretched horizon, and thereby the diffusion 
equation. The shear diffusion constant then becomes

D =
√−g(rh)

g2
eff(rh)gxx(rh)

√−gtt(rh)grr(rh)

rh∫
rc

dr
−gtt(r)grr(r)g2

eff(r)√−g(r)
,

(10)

where rc is the location of the boundary, and we are evaluating D
at the stretched horizon. The leading solutions A(0)

t,x and D depend 
on the exponents: we analyse this separately below.

2.1. Shear diffusion constant: d − z − θ > −1 (or z < 2 + def f )

Using (1), the expression (7) for A(0)
t becomes

A(0)
t = Ce−�t+iqx

r∫
rc

dr rd−z−θ . (11)

For generic values

d − z − θ > −1 , (12)

the leading solution (11) for A(0)
t has power law behaviour

A(0)
t = C

d − z − θ + 1
e−�t+iqx rd−z−θ+1 . (13)

We expect that the hyperscaling violating phase breaks down close 
to the boundary at rc : for our purposes, strictly speaking we will 
only require that the horizon is well-separated from the bound-
ary, i.e. r0rc � 1, or equivalently that the temperature is suffi-
ciently below the ultraviolet cutoff in the theory. Thus the con-
dition d − z − θ > −1 arises from the boundary condition A(0)

t = 0
at r = rc ∼ 0. This includes various subfamilies of hyperscaling vi-
olating metrics that arise in gauge/string realisations, e.g. through 
dimensional reductions of nonconformal Dp-branes [19] for p ≤ 4
(here θ = p − 9−p

5−p , di = p). The case of d − z − θ = −1, arises in 
the reductions of various D-brane plane waves [22,23,32]: here the 
leading solution has logarithmic behaviour, as we describe later.

From (1), the condition (12) can be written as di −θ − z +2 > 0, 
or z < 2 + def f , i.e. the Lifshitz exponent is not too high. For 
z > 2 + def f , it appears that the perturbations (11) do not die far 
from the horizon. For z = 1, this gives θ > di + 1 which arises e.g.
from the reduction of D6-branes: in such cases, it would appear 
that gravity does not decouple and the asymptotics is not well-
defined. It would be interesting to understand the condition (12)
better from other considerations e.g. holography [26–30]: more 
comments appear later.

The leading solution for Ax likewise is

A(0)
x = − i�

q
Ce−�t+iqx rθ+1−d−z

0

θ + 1 − d − z
log

(
1 − (r0r)d+z−θ−1

)
.

(14)
Self-consistency of (7), (9), (8), when d − z − θ > −1 leads to

e
− T 2/z

q2 �
1
r0

− rh

1
r0

� q2

T 2/z
� 1 . (15)

This means that the stretched horizon has to be sufficiently close 
to the horizon (to O (q2)) but not exponentially close to it. These 
conditions can be simultaneously satisfied in a self-consistent 
manner as we discuss in Appendix A, adapting [3].

Using (5), (6), the shear diffusion constant (10) becomes

D =
√−G(rh)√−Gtt(rh)Grr(rh)

rh∫
rc

dr
−Gtt(r)Grr(r)

Gxx(r)
√−G(r)

= 1

rd−θ−1
h

rh∫
rc

rd−z−θdr . (16)

Thus, for a hyperscaling violating theory with d − z − θ > −1, we 
obtain

D = r2−z
h

d − z − θ + 1

 rz−2

0

d − z − θ + 1
+ O (q2) , (17)

where we have dropped the contribution in the integral from rc
since the UV scale rc � rh is well-separated from the horizon scale. 
The diffusion constant in (16), (17), is evaluated at the stretched 
horizon rh: however rh ∼ 1

r0
+ O (q2) so that to leading order D

is evaluated at the horizon 1
r0

. It is interesting that θ cancels in 
the r0-dependent terms in D, which is essentially the ratio of At
to a field strength component (both of which have nontrivial θ

dependence).
In the present hyperscaling violating case, we have seen that 

T ∼ rz
0 and D ∼ rz−2

0 so the product DT ∼ r2(z−1)
0 is not dimen-

sionless. Using (2), we have

D = 1

d − z − θ + 1

( 4π

d + z − θ − 1

) z−2
z

T
z−2

z , (18)

as the scaling with temperature T of the leading diffusion con-
stant (17). See also e.g. [35,36,38,39,41,42] for previous investiga-
tions including via holography.

2.1.1. Comments on ηs
We now make a few comments on (17), (18) towards gaining 

insight into η
s :

(1) As a consistency check, we see that for pure AdS with θ = 0, 
z = 1, we obtain D = 1

4π T . This corresponds to a relativistic CFT: 
the shear diffusion constant is D = η

ε+P and thermodynamics gives 
ε + P = T s, where ε, P , s are energy, pressure and entropy densi-
ties. This gives the relation η

s =DT and thereby η
s = 1

4π .
(2) Theories with metric (1) and θ = 0 enjoy the Lifshitz scal-

ing symmetry, xi → λxi , t → λzt: Then the diffusion equation 
∂t jt = D∂2

i jt shows the diffusion constant to have scaling dimen-
sion dim[D] = z − 2, where momentum scaling is [∂i] = 1 (or 
equivalently, [xi] = −1, [t] = −z). With temperature scaling as in-
verse time, we have dim[T ] = z. Thus on scaling grounds, the tem-
perature scaling in (18), which here is

D = 1

d − z + 1

( 4π

d + z − 1

) z−2
z

T
z−2

z , (19)

is expected, upto the d, z-dependent prefactors. For z = 2, the dif-
fusion equation (structurally like a Schrodinger equation) already 
saturates the scaling dimensions, and D has apparently no temper-
ature dependence. As T increases, D decreases for z < 2: however 
D increases with T for z > 2.
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Aspects of Lifshitz hydrodynamics have been studied in e.g. [37,
40]. As discussed in [40], under the Lifshitz symmetry, we have the 
scalings [T ] = z, [ε] = z + d − 1, [P ] = z + d − 1, [s] = d − 1, [η] =
d − 1. Indeed for Lifshitz black branes with horizon rH and tem-

perature (2), the entropy density is s = rd−1
H

4Gd+1
= 1

4Gd+1
( 4π

d+z−1 T )
d−1

z . 
The thermodynamic relations give ε + P = T s. The shear viscosity 
[40] is η = 1

16πGd+1
T

d−1
z satisfying the universal bound η

s = 1
4π . For 

this to arise from (19), we guess that the relation between shear 
viscosity and the shear diffusion constant is

η

s
= (d − z + 1)

4π
Dr2−z

0 = (d − z + 1)

4π

( 4π

d + z − 1

) 2−z
z DT

2−z
z .

(20)

(3) For θ �= 0, the scaling analysis of the Lifshitz case is not 
applicable: however the temperature is θ -independent and the re-
lation (18) continues to hold for generic θ . Towards guessing the 
hydrodynamics from the diffusion constant in this case, we first re-
call from [3] that nonconformal branes give D = 1

4π T , and thereby 
η
s = 1

4π continues to hold. On the other hand, [19] observed that 
nonconformal Dp-branes upon reducing on the sphere S8−p give 
rise to hyperscaling violating theories with z = 1 and θ �= 0. It 
would therefore seem that the near-horizon diffusion analysis con-
tinues to exhibit this universal behaviour since the sphere should 
not affect these long-wavelength diffusive properties.

Happily, we see that (18) for z = 1 gives D = 1
4π T , with the 

θ -dependent prefactors cancelling precisely. Thus all hyperscaling 
violating theories with z = 1 appear to satisfy the universal viscos-
ity bound

η

s
= DT = 1

4π
. (21)

Putting this alongwith the Lifshitz case motivates us to guess the 
universal relation

η

s
= (d − z − θ + 1)

4π
Dr2−z

0

= (d − z − θ + 1)

4π

( 4π

d + z − θ − 1

) 2−z
z DT

2−z
z = 1

4π
(22)

between η, s, D, T , for general exponents z, θ . This reduces to (20)
for the Lifshitz case θ = 0. One might wonder if the prefactors for 
θ �= 0 somehow conspire to violate the universal bound: in this 
regard, it is worth noting that z, θ appear in linear combinations 
in the prefactors. Alongwith the previous subcases, this suggests 
consistency of (22).

Finally we know that the entropy density is s = r
def f
H

4Gd+1
∼

1
4Gd+1

T
di−θ

z in hyperscaling violating theories, with def f = di − θ =
d − 1 − θ the effective spatial dimension. Then (22) gives the shear 
viscosity as η ∼ 1

16πGd+1
T

di−θ

z .
It is fair to say that to study this conjecture in detail, it is im-

portant to systematically understand the thermodynamic/hydrody-
namic relations between the expansion of the energy–momentum 
tensor, the shear viscosity η and the diffusion constant D. Towards 
this, it is worth putting the analysis here leading to (17), (18), and 
the comments above in perspective with the calculation of viscos-
ity via the Kubo formula η = − limω→0

1
ω ImG R

xy,xy(ω), with G R the 
retarded Green’s function [6] (assuming Tij ∼ η(∂i v j + . . .) in the 
dual field theory). Holographically, this is obtained by modelling 
the hx

y perturbation as a massless scalar and thereby gleaning 
the 〈Txy Txy〉 correlation function: for various subfamilies in (1), 
this has been carried out in e.g. [35,39,41]. For instance in [41], 
the appropriate solutions at zero momentum �k = 0 to the scalar 
wave equation in the near and far regions are matched to obtain 
G R = −i ω

16πG
Rdi

rθ
hv

rdi−θ
0 and thereby η, where we have written the 

metric (1) as ds2 = R2( r
rhv

)2θ/di (− f (r) dt2

r2z + . . .), explicitly retain-
ing the dimensionful factors R and the scale rhv inherent in these 
theories [19]. Likewise the entropy density is s = 1

4G
Rdi

rθ
hv

rdi−θ
0 from 

the area of the horizon, recovering η
s = 1

4π in agreement with our 
analysis (and θ cancels1).

We have seen the condition z < 2 + di − θ arising naturally 
from the perturbations falling off asymptotically (11) in our case. 
It is worth noting that although we implicitly regard hyperscaling 
violating theories as infrared phases arising from e.g. string realisa-
tions in the ultraviolet, z < 2 + di − θ in the analysis here ensures 
that the ultraviolet structure of these theories is essentially unim-
portant: the diffusion constant arises solely from the near horizon 
long-wavelength modes. The theories satisfying this condition are 
in some sense continuously connected to AdS-like relativistic the-
ories (z = 1, θ = 0), as the analysis in Appendix A suggests. Iden-
tifying this condition from the point of view of holographic calcu-
lations appears more subtle. While a detailed analysis is ongoing, 
we outline a few comments here, in part following discussions in 
[26] for Lifshitz theories. Bulk field modes have asymptotic fall-offs 
φ ∼ r�− (φ− + . . .) +r�+ (φ+ + . . .) near the boundary r → rc , where 
�− + �+ = di − θ + z [19] (see also [28,30]). If �− < �+ , the 
φ− fall-off near the boundary r → rc ∼ 0 is slower (thus dominat-
ing), leading to fixed φ− boundary conditions relevant for standard 
quantisation (φ− taken as source). In particular, the momentum 
density operator P i has dimension di −θ +1 (while energy density 
has dimension di −θ + z): taking �+ = di −θ +1 gives �− = z −1, 
so that �− < �+ implies z < 2 + di − θ , which is precisely our 
condition (12). When this condition is violated in a reasonable the-
ory,2 it would seem that the analog of alternative quantisation [43]
will be applicable, with fixed φ+ boundary conditions. The case 
z = 2 + def f discussed in the remainder of the paper may be in-
teresting, with �− = �+ . In these cases, θ may not disappear. We 
hope to explore these issues further.

2.2. Shear diffusion constant: d − z − θ = −1 (or z = 2 + def f )

Now we consider the family of hyperscaling violating back-
grounds (1) with d − z − θ = −1. In this case, the leading solution 
(11) for A(0)

t has logarithmic behaviour,

A(0)
t = Ce−�t+iqx log

( r

rc

)
, d − z − θ = −1 . (23)

Then working through, we have from (16)

D = rd−θ−1
0 log

( 1

r0rc

)
= rz−2

0 log
( 1

r0rc

)
. (24)

This implies that in the low temperature limit r0 → 0, the diffu-
sion constant becomes vanishingly small if di − θ > 0, or equiva-
lently z > 2. The energy conditions (3) eliminating θ = d − z + 1
give (z − 2)

(
(d − 1)z − 2d + z

) ≥ 0, (z − 1)(z − 2) ≥ 0. When 
θ = 0, we obtain Lifshitz theories: the energy conditions become 
(z − 1)(d − 1 + z) ≥ 0. Then the condition here is z = d + 1 = 2 +di . 
Since we are considering theories in d + 1 ≥ 3 bulk dimensions, 

1 We have seen that θ disappears from the temperature dependence of D in (18). 
It would be inconsistent if θ remained, at least in cases where the hyperscaling 
violating phase arises from string constructions such as nonconformal branes which 
are known to have universal η

s behaviour, as discussed in comment (3) above.
2 Unlike e.g. di = 6, z = 1, θ = 9, arising from the reduction of e.g. D6-branes 

where the asymptotics is ill-defined with gravity not decoupling.
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z ≥ 3 consistent with the energy conditions above. With θ �= 0, we 
have z = 2 + def f . In [19], it was noted that the entropy scaling 
S ∼ T (di−θ)/z implies that the specific heat is positive if di−θ

z ≥ 0. 

Here we have S ∼ T
def f

2+def f so that positivity of the specific heat 
gives def f

2+def f
> 0 if def f > 0. Relatedly, we recall that entanglement 

entropy has novel scaling behaviour in the window di − 1 ≤ θ ≤ di , 
which does not involve z. The entangling surface has been ob-
served to have some instabilities for θ > di . The present condition 
z = 2 + def f is thus distinct from and compatible with them.

We show in Appendix B that the conditions (15) on the 
stretched horizon now become

exp
(

− T 2/z

q2

1

log 1
r0rc

)
�

1
r0

− rh

1
r0

� q2

T 2/z
log2 1

r0rc
. (25)

In the generic cases (15), the power law behaviour ensured that 
the short distance cutoff decoupled from the near-horizon be-
haviour (e.g. since 1

r#
0

� r#
c ). Here the solution A(0)

t contains a 
logarithm which requires a scale, which filters through to (25). 
While it is unusual for the UV cutoff rc to appear in what is man-
ifestly a hydrodynamic or long-wavelength regime that we have 
restricted our analysis to, (15) implies (25) since rc � 1

r0
implies 

log 1
r0rc

� 1 so that the window for the stretched horizon is not 
over-constrained. However, the subleading corrections (48) to the 
gauge field perturbations again contain terms involving log 1

r0rc
fac-

tors affecting the validity of the series expansion in q2

T 2/z .
It appears reasonable to conclude that the series expansion is 

perhaps breaking down in this case. Towards gaining some in-
sight into this, it is useful to look for gauge/string embeddings 
of these effective gravity theories. In this regard, we recall that 
AdS plane waves (equivalently, highly boosted black branes) upon 
x+-reduction give rise to hyperscaling violating spacetimes with 
certain values for the z, θ -exponents [22–24]. It turns out that the 
exponents satisfy d − z − θ = −1. We will discuss this in what fol-
lows.

3. Diffusion constant: highly boosted black branes

A simple subclass of (zero temperature) hyperscaling violat-
ing theories can be constructed from the dimensional reduction 
of AdSd+2 plane wave spacetimes [22,24]

ds2 = R2

r2
[−2dx+dx− + dx2

i + dr2]
+ R2 Q rd−1(dx+)2 + R2d�2

S −→ (26)

ds2 = r
2θ
di

(
− dt2

r2z
+

∑di
i=1 dx2

i + dr2

r2

)
,

z = d + 3

2
, θ = d − 1

2
, di = d − 1. (27)

These can be obtained from a low-temperature, large boost limit 
[23] of boosted black branes [25] arising from the near horizon 
limits of the conformal D3-, M2- and M5-branes. Similar features 
arise from reductions of nonconformal Dp-brane plane waves [32,
23], with exponents

z = 2(p − 6)

p − 5
, θ = p2 − 6p + 7

p − 5
, di = p − 1 , (28)

where the Dp-brane theory after dimensional reduction on the 
sphere S8−p and the x+-direction has bulk spacetime dimension 
d + 1 ≡ p + 1. The holographic entanglement entropy in these the-
ories exhibits interesting scaling behaviour [31–34].

To obtain the finite temperature theory, let us for simplicity 
consider the AdS5 black brane

ds2 = R2

r2

(
− (1 − r4

0r4)dt2 + dx2
3 +

2∑
i=1

dx2
i

)
+ R2 dr2

r2(1 − r4
0r4)

,

(29)

which is a solution to the action S = 1
16πG5

∫
d5x

√−g(5)(R(5) −
2�). Rewriting (29) in lightcone coordinates and boosting as 
x± → λ±x± , we obtain

ds2 = R2

r2

(
− 2dx+dx− + r4

0r4

2
(λdx+ + λ−1dx−)2 +

2∑
i=1

dx2
i

)

+ R2dr2

r2(1 − r4
0r4)

. (30)

Writing in Kaluza–Klein form

ds2 = R2

r2

[
− (1 − r4

0r4)

Q r4
(dx−)2 + dx2 + dy2 + dr2

(1 − r4
0r4)

]

+ Q R2r2

⎛
⎝dx+ − (1 − r4

0r4

2 )

Q r4
dx−

⎞
⎠

2

, (31)

where Q = λ2r4
0

2
and compactifying along the x+ direction gives

ds2 = (Q 1/2 R3)r
[
− (1 − r4

0r4)

Q r6
(dx−)2 + dx2 + dy2

r2

+ dr2

r2(1 − r4
0r4)

]
. (32)

This is simply the hyperscaling violating metric (1) with z = 3, 
θ = 1, di = 2, in [22], but now at finite temperature. It is a 
solution to the equations stemming from the 4-dim Einstein–
Maxwell–Dilaton action S = 1

16πG4

∫
d4x

√−g(4) (R(4) − 2�e−φ −
3
2 gμν∂μφ∂νφ − 1

4 e3φ F μν Fμν) which arises upon dimensional re-
duction along the x+-direction of the 5-dim Einstein action S =

1
16πG5

∫
d5x

√−g(5)(R(5) − 2�). The scalar field has the profile 
e2φ = R2 Q r2 while the gauge field is At = − 1+ f

2Q r4 , Ai = 0 with 
f = 1 − r4

0r4. The finite temperature theory is of course obtained 
by taking the boost λ to be large but finite, and the temperature r0

to be small but nonzero, while holding Q = λ2r4
0

2 fixed. The boost 
simply serves to create a hierarchy of scales in the energy mo-

mentum components T++ ∼ λ2r4
0 ∼ Q , T−− ∼ r4

0
λ2 ∼ r8

0
Q , T+− ∼ r4

0 , 
Tij ∼ r4

0δi j , while keeping them nonzero.
The z, θ -exponents (27) arising in these reductions satisfy d −

z − θ = −1, coinciding with the special case discussed earlier. This 
is also true for nonconformal Dp-brane plane waves (28). It is 
worth noting that this relation between the exponents is distinct 
from the window di − 1 ≤ θ ≤ di where the holographic entangle-
ment entropy exhibits novel scaling behaviour: in particular the 
present relation involves the Lifshitz exponent. The diffusion con-
stant for this class of hyperscaling violating theories then has the 
logarithmic behaviour (24) described earlier, provided we restrict 
to modes that describe the lower dimensional theory.

In the above x+-compactification, we see that x− above maps 
to the time coordinate t below. Thus mapping the perturbations 
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between the higher dimensional description and the hyperscaling 
violating one, we see that the metric in KK-form (31) including 
the shear gravitational perturbations is of the form (with gauge 
condition h̃μr, ̃hrr = 0)

ds2 = g̃−−(dx−)2 + g̃iidx2
i + g̃rrdr2 + 2h̃−ydx−dy

+ 2h̃xydxdy + g̃++(dx+ + A−dx−)2 , (33)

where A− is the background gauge field in the lower dimen-
sional description. In other words, the perturbations map as 
h̃−y → hty , h̃xy → hxy , upto the conformal factor arising from the 
x+-reduction. In addition, the x+-reduction requires that the per-
turbations h̃−y, ̃hxy are x+-independent. This in turn translates to 
the statement that the near horizon diffusive modes are of the 
form

hμy(r)e−k−x−+ikxx , k+ = 0 , [μ = x−, x] , (34)

i.e. the nontrivial dynamics in the lower dimensional description 
arises entirely from the zero mode sector k+ = 0 of the full theory.

Likewise, vector perturbations δAt , δA y in the lower dimen-
sional theory arise in (33) as

. . . + g++(dx+ + A−dx− + h̃+−dx− + h̃+ydy)2.

We see that these arise from gravitational perturbations h̃+−, ̃h+y .
To ensure that the massive KK-modes from the x+-reduction 

decouple from these perturbations, it suffices to take the x+-circle 
size L+ to be small relative to the scale set by the horizon, 
i.e. L+ � 1

r0
: equivalently, the temperature is small compared 

to the KK-scale 1
L+ . The ultraviolet cutoff near the boundary is 

rc ∼ Q −1/4 � 1
r0

: the hyperscaling violating phase is valid for 
r � Q −1/4.

Finally to map (32) to (1) precisely, we absorb the factors of 
the energy scale Q by redefining x̃− = x−√

Q
. Now the shear diffu-

sion constant can be studied as in the hyperscaling violating theory 
previously discussed, by mapping it to charge diffusion in an aux-
iliary theory obtained from the finite temperature x+-compactified 
theory by compactifying along say the y-direction. This requires 
mapping the shear gravitational perturbations to the lower dimen-
sional auxiliary gauge fields as At ∝ h̃−y , A y ∝ h̃xy , which can 
then be set up in a series expansion in the near horizon region. 
Thus finally the shear diffusion constant follows from (24) giving 
D = r0 log( 1

r0 Q −1/4 ). For Q fixed, as appropriate for the lower di-

mensional theory, we see that the low temperature limit r0 → 0
gives a vanishing shear diffusion constant suggesting a violation 
of the viscosity bound. It is worth noting that the diffusion equa-
tion here is ∂x̃− j− = D̃∂2

i j− where x̃− = x−√
Q

reflecting the Lifshitz 
exponent z = 3.

Noting that Q ∼ λ2r4
0 , the diffusion equation and constant in 

the upstairs theory are

∂x− j− ∼ D̃√
Q

∂2
i j− , Dr0 ∼ D̃√

Q
r0 ∼ 1

λ
log λ . (35)

The r0 → 0 limit of the lower dimensional theory (where T ∼ r3
0) 

implies a highly boosted limit λ → ∞ of the black brane for 
fixed Q : here Dr0 vanishes. However this appears to be a sub-
tle limit of hydrodynamics. From the point of view of the upstairs 
theory of the unboosted black brane, shear gravitational modes 
are hty, hxy . Upon boosting, it would appear that these mix with 
other perturbation modes as well, suggesting some mixing be-
tween shear and bulk viscosity. From the point of view of the 
boosted frame, this system has anisotropy generated by the boost 
direction. Previous studies of anisotropic systems and shear viscos-
ity include e.g. [44–50]. (See also e.g. [51] for a review of the vis-
cosity bound.) In the present case, the shear viscosity tensor can be 
analysed from a systematic study of the expansion of the energy–
momentum tensor of the finite temperature Yang–Mills fluid in the 
highly boosted regime. However the scaling (35) is likely to be re-
alised only after phrasing the boosted black brane theory in terms 
of the variables appropriate for the lower dimensional hyperscaling 
violating theory (which arises in the k+ = 0 subsector as discussed 
above). It would be interesting to understand the hydrodynamics 
in the lower dimensional theory better, as a null reduction of the 
boosted black brane theory, perhaps similar in spirit to noncon-
formal brane hydrodynamics [52,53] as a reduction of nonlinear 
hydrodynamics [54] of black branes in M-theory. We hope to ex-
plore this further.
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Appendix A. Diffusion analysis details: generic case

In the near-horizon region, the metric (1) is approximated as 
gtt(r) ≈ −γ0(

1
r0

− r), grr(r) ≈ γr

( 1
r0

−r)
, gxx(r) ≈ const, for constants 

γ0, γr : the Maxwell equations (6) simplify substantially here, as a 
series expansion in q2

T 2/z for the gauge fields. Here we only men-
tion the modifications in the analysis of [3] arising in the present 
context. An intermediate step in the self-consistent analysis gives

Ftr ∼ r2(z−1)
0 · q

�2
· (1/r0) − rh

1/r0
∂r Ftx , (36)

which is then used to obtain a wave equation for Ftx: we choose 
the solution that is ingoing at the horizon, and then solve for the 
various gauge field components. Self-consistency constrains the lo-
cation of the stretched horizon

(1/r0) − rh

1/r0
� 1

r2(z−1)
0

· �2

q2
. (37)

For thermal AdS (z = 1), this becomes (1/r0)−rh
1/r0

� �2

q2 as in [3].

With small but nonzero q, we write At , Ax as series expansions 
(7), (9), in q2

T 2/z and impose (8) and the boundary conditions that 
At , Ax → 0 at r = rc ∼ 0. Using the A(0)

t , A(0)
x solutions (7), (9), 

(13), (14), in the near horizon region 1
r0

− r � 1
r0

shows A(0)
x

A(0)
t

∼
1

r2(z−1)
0

�
q log(

1/r0
1/r0−r ). Thus (8) is valid only if

1/r0

(1/r0) − rh
� e

q2r2(z−1)
0
�2 . (38)

Combining (37), (38), gives the window

e
− q2r

2(z−1)
0
�2 � (1/r0) − rh

1/r0
� 1

r2(z−1)
0

�2

q2
, (39)

for the stretched horizon rh in terms of the perturbation parame-
ters �2

2 � 1.

q
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We define the following gauge field currents on the stretched 
horizon

jx = nr F xr = − Ftx

gxx
√−gtt

, jt = nr F tr = − 1

gtt
√

grr
Ftr .

(40)

The assumption (8) implies we can approximate the field strength 
Ftx ≈ −∂x At , and ∂r Ftx ≈ ∂x Ftr in radial gauge. This gives ∂x jt =
− 1

gtt
√

grr
∂x Ftr = − 1

gtt
√

grr
∂r Ftx . Further, multiplying and dividing by 

Ftx and using the definition of jx , we get ∂x jt = − gxx√−gtt grr

∂r Ftx
Ftx

jx , 
i.e.

jx = −
√−gtt grr

gxx

Ftx

∂r Ftx
∂x jt ≡ −D∂x jt , (41)

which is Fick’s Law.3 From the solutions to At and Ax , we have

− Ftx

∂r Ftx

∣∣∣∣
r≈rh

≈ − At

Ftr

∣∣∣∣
r≈rh

=
√−g(rh)

g2
eff(rh)gtt(rh)grr(rh)

rh∫
rc

gtt(r′)grr(r′)g2
eff(r

′)√−g(r′)
dr′ . (42)

Thus from Fick’s Law (41), we read off the shear diffusion constant

D =
√−gtt(rh)grr(rh)

gxx(rh)
· At

Ftr

∣∣∣∣
r=rh

, (43)

evaluated at the stretched horizon rh , where the boundary is 
rc � rh . Using (42) gives (10).

For generic exponents, the diffusion constant (17) becomes D ∼
rz−2

0 ∼ T (z−2)/z . On the other hand, the diffusion equation gives 
� = Dq2. These give the condition

�

q
∼ q

T
2
z −1

. (44)

Using this estimate, (39) becomes (15), which is always satisfied 
for sufficiently small q2

T 2/z . In particular for thermal AdS we have 

z = 1, D ∼ T −1 so (15) becomes e
− T 2

q2 � (1/r0)−rh
1/r0

� q2

T 2 , the condi-
tion obtained in [3].

Using the expansion over q2 for At and Ax in the gauge field 
equations, it can be checked that the leading O (q0) terms are con-
sistent with the ansatz for A(0)

t , A(0)
x in the regime (15). Likewise 

the subleading terms can be evaluated: collecting terms of O (q2)

consistently, using (44) and simplifying gives

∂r A(1)
t ∼ r0

[ q2

T 2/z
log

( 1/r0

(1/r0) − r

)
+ q4

T 4/z
log2

( 1/r0

(1/r0) − r

)]
A(0)

t .

(45)

Using (15), we see that ∂r A(1)
t � A(0)

t , and after integrating, that 
A(1)

t � A(0)
t , verifying that these are indeed subleading. Likewise, 

we find

A(1)
x ∼

[ q2

T 2/z
log

( 1/r0

1/r0 − r

)
+ q4

T 4/z
log2

( 1/r0

1/r0 − r

)]
A(0)

x � A(0)
x .

(46)

3 The antisymmetry of Fμν implies nμ jμ = 0, i.e. the current is parallel to 
the stretched horizon (only nr is nonzero with grrn2

r = 1). Contracting gives 
nν∂μ(

√−g
g2

eff
F μν) = 0 ⇒ nr(∂M F Mr) = 0, with M = t, xi . This gives current conser-

vation ∂μ jμ = ∂M (nν F Mν ) = nr(∂M F Mr) = 0.
Appendix B. Diffusion analysis details: special case

For the case d − z − θ = −1, we obtain A(0)
x

A(0)
t

∼ 1
r2(z−1)

0

�
q

log(
1/r0

1/r0−r )

log( 1
r0rc

)

so that imposing (8) gives

1

r2(z−1)
0

· �2

q2
· log(

1/r0
1/r0−r )

log( 1
r0rc

)
� 1 . (47)

From the estimates obtained for D from the diffusion equa-
tion and the diffusion integral, we obtain �

q ∼ q

T
2
z −1

log( 1
r0rc

)

instead of (44). Using this in (37), we obtain the modified 
bound (1/r0)−rh

1/r0
� q2

T 2/z log2( 1
r0rc

). Likewise, (38) also changes to 
q2

T 2/z log(
1/r0

(1/r0)−rh
) log 1

r0rc
� 1. The subleading terms now give

∂r A(1)
t ∼ r0

[ q2

T 2/z
log

( 1/r0

(1/r0) − r

)

+ q4

T 4/z
log2

( 1/r0

(1/r0) − r

)
log

( 1

r0rc

)]
A(0)

t . (48)

Within the regime (25), it would appear that ∂r A(1)
t � A(0)

t : how-
ever r0rc � 1 implies that log( 1

r0rc
) is large so that the O (q4) term 

need not be small even if q2

T 2/z � 1, suggesting a breakdown of the 
series expansion.
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