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Before global-scale quantum networks become operational, it is important to consider how to evaluate their
performance so that they can be built to achieve the desired performance. We propose two practical figures
of merit for the performance of a quantum network: the average connection time and the average largest
entanglement cluster size. These quantities are based on the generation of elementary links in a quantum network,
which is a crucial initial requirement that must be met before any long-range entanglement distribution can be
achieved and is inherently probabilistic with current implementations. We obtain bounds on these figures of merit
for a particular class of quantum repeater protocols consisting of repeat-until-success elementary link generation
followed by joining measurements at intermediate nodes that extend the entanglement range. Our results lead to
requirements on quantum memory coherence times, requirements on repeater chain lengths in order to surpass
the repeaterless rate limit, and requirements on other aspects of quantum network implementations. These
requirements are based solely on the inherently probabilistic nature of elementary link generation in quantum
networks, and they apply to networks with arbitrary topology.

DOI: 10.1103/PhysRevResearch.1.023032

I. INTRODUCTION

Progress is being made on building the quantum inter-
net [1-4], with networks consisting of a handful of nodes
currently being developed [5]. The promise of a quantum
internet is the ability to perform quantum information process-
ing tasks, such as quantum teleportation [6,7], quantum key
distribution [8—11], quantum clock synchronization [12—14],
distributed quantum computation [15], and distributed quan-
tum metrology and sensing [16-21], on a global scale.

One of the most common methods for creating long-
distance entangled links is to transmit photonic qubits through
either free space or optical fibers [22,23]. However, each
of these media is lossy, and the probability of successfully
transmitting a photon decays exponentially with the distance
between the end points [24,25]. Other sources of loss, such
as source and detector inefficiencies, as well as read/write
inefficiencies of quantum memories, ultimately make the task
of establishing links in a quantum network with photonic
qubits inherently probabilistic.

Quantum repeaters [22,26,27] can be used to increase
the success probability, as well as the fidelity, of long-range
entanglement in a quantum network. Several schemes for
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long-range bipartite and multipartite entanglement distribu-
tion in quantum repeater networks have been considered
[28-39]. All of these schemes involve first generating ele-
mentary bipartite or multipartite entanglement links and then
performing measurements to join the elementary links [40]. In
general, both the elementary link generation and the joining
measurements are probabilistic. How should we evaluate the
performance of these entanglement distribution schemes, and
what limits are imposed on them by the probabilistic nature of
the operations involved?

In this work, we propose two figures of merit that can be
used to evaluate the performance of elementary link genera-
tion in quantum networks: the average connection time and
the average largest entanglement cluster size. The average
connection time is an important quantity because, as we show,
it can be used to calculate rate of entanglement distribution
in a network as a function of the elementary link generation
probability. The average largest entanglement cluster size is
important because it gives an indication of the range over
which entanglement distribution can be achieved in practice.

Much work has been devoted to quantifying the perfor-
mance of quantum repeater networks by using as figures of
merit fundamental limits on the rate at which either bipartite
or multipartite entanglement and/or a secret key can be gen-
erated between points in the network [41-50]. In these works,
however, perfect quantum repeaters are assumed, and other
practical limitations are not explicitly taken into account.

Both of our figures of merit explicitly take into account the
probabilistic generation of elementary links as well as the lim-
ited coherence time of quantum memories. We show that they
can be used to evaluate the performance of the devices used
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FIG. 1. The network architectures that we consider in this work are based on graphs of arbitrary topology. (a) The vertices of the graph
correspond to the nodes in the network, and the edges correspond to the elementary links. At the center of each elementary link is a source
of entangled photonic qubits (indicated in blue) that fires entangled photons toward the nodes at the ends of the link, where they are held
in quantum memories (indicated in red). (b) An example of the general procedure to create bipartite entanglement between two nonadjacent

nodes that are connected to a common node.

in an actual quantum network implementation and that they
can be used to set device requirements for achieving particular
values of the quantities. We do this by obtaining bounds on the
two figures of merit for a particular class of quantum repeater
protocols based on a repeat-until-success strategy executed
on a graph-based network topology. These bounds represent
limitations on quantum networks based solely on elementary
link generation probabilities, and they are independent of any
particular physical platform. They can thus serve as a guide
for building a real quantum internet.

We start in Sec. II by outlining the network architecture
and quantum repeater protocol that we consider in this work,
which generalize the original quantum repeater proposal in
Refs. [26,27]. Then, in Sec. III, we consider the average
connection time as a figure of merit and evaluate it for our
quantum repeater protocol. We show how the average connec-
tion time can be used to compute entanglement distribution
rates, and we compare these rates with known repeaterless
rate limits. In Sec. IV, we consider the average largest en-
tanglement cluster size as a figure of merit for the long-range
entanglement distribution capability of a quantum network.
We provide concluding remarks in Sec. V.

II. NETWORK ARCHITECTURE AND ENTANGLEMENT
DISTRIBUTION PROTOCOL

The network architecture that we consider is illustrated in
Fig. 1(a). The network corresponds to an undirected graph
G=(V,E), where V ={v; : 1 <i < N} is the set of ver-
tices and £ = {(v;, v;) : v;, v; € V} is the set of edges. The

vertices of the graph correspond to the nodes in the network.
The edges of the graph correspond to the elementary links
in the network. At the center of each elementary link is a
source of bipartite entanglement, which is used to generate
bipartite entanglement between the nodes at the ends of the
edges. These sources produce entangled photonic qubits in a
maximally entangled Bell state. The qubits are encoded into
single photons in one of two distinct modes, which are usually
horizontal and vertical polarization modes.

The transmission of photons from the source to the neigh-
boring nodes typically occurs through either free space or
optical fiber. In each case, loss is the dominant source of noise,
which makes the transmission of photons to the nodes proba-
bilistic. In particular, the probability that a photon arrives at a
node decreases exponentially with the distance that the photon
travels. If we let n; ; be the probability that both photons of a
pair fired along the edge (v;, v;) reach the nodes v; and v;,
then

Mg =e 0, M
where ¢; ; is the length of the edge and o is a value that
characterizes the medium. Typically, @ = ﬁ [51]. In the
context of dual-rail photonic qubits that we consider here,
loss corresponds to an erasure channel between the links (see,
e.g., Refs. [35,52]), so that with probability #; ; both photons
arrive at their destination with fidelity unchanged, and with
probability 1 — n; ; at least one of the photons is lost, meaning
that the state in the corresponding mode is the vacuum state.

Each node v; in the network contains d; quantum mem-
ories, where d; is the degree of the node v;. (The degree of
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a node is defined to be the number of edges connected to
that node.) Several different platforms have been considered
for quantum memories in quantum repeater networks, such
as trapped ions [53], Rydberg atoms [54,55], atom-cavity
systems [56,57], NV centers in diamond [58-63], individual
rare-earth ions in crystals [64], and superconducting proces-
sors [65]. In order to store the arriving photonic qubit state
in the quantum memory, each node has locally an optical
Bell measurement device. First, a memory-photon entangled
state is generated, then a Bell measurement is performed on
the photon from the memory-photon pair and the incom-
ing photon from the source. This strategy allows for direct
knowledge about the arrival of the photon, which is then
communicated to the neighboring node (see, e.g., Ref. [61]).
At the same time, conditioned on the success of the Bell
measurement, the state of the photonic qubit is transferred
to the memory qubit. Linear-optical Bell measurements are
limited to a success probability of 50% [66-68], although
higher success probabilities are in principle possible using
nonlinear elements or by increasing the number of photons
[56,69-72].

In addition to loss due to the transmission of photons
through free space or optical fibers, there are other sources
of loss, such as source inefficiency, detector inefficiency, and
quantum memory read/write inefficiency. We can combine
all of these loss factors into a single probability p;; for
establishing a link between neighboring nodes v; and v;.

To generate elementary links in a network, we use a
repeat-until-success strategy in which sources of photonic
qubits (blue nodes in Fig. 1) continuously fire entangled
states toward repeater stations (gray nodes in Fig. 1) at a
rate of R trials per second. Once an elementary link has
been established, the corresponding qubits are held in the
quantum memories at the repeater nodes for up to time ¢*
while the neighboring elementary links are being established.
After time #*, the effects of decoherence on the stored qubits
are considered to be too great and the link is discarded
and must be reestablished. The cutoff #* can take into ac-
count not only the coherence times of the quantum mem-
ories, but also other more stringent practical requirements.
For example, for protocols making use of entanglement pu-
rification, the cutoff time should be such that the end-to-
end shared entangled states have sufficiently high fidelity
in order to perform the desired entanglement purification
protocol.

As an example of this repeat-until-success protocol, con-
sider the situation depicted in Fig. 1(b), in which two end
nodes are separated via elementary links by a common cen-
tral node. Generating bipartite entanglement between these
end nodes is the most basic element of any long-distance
entanglement distribution scheme. Our protocol for establish-
ing entanglement between the end nodes is the following
repeat-until-success procedure, which is based on the schemes
presented in Refs. [61,63,73-76].

(1) Elementary link generation attempts are continuously
made at a rate of R trials per second. In each trial, a pair of
entangled photons is fired from a source station towards the
nodes at the ends of the link. Neighboring nodes at the ends
of the elementary link communicate classically to confirm the
arrival of both photons.

FIG. 2. Instead of bipartite entanglement, as in Fig. 1(a), the
elementary links in a quantum network can consist of multipartite
entanglement; for example, we can have elementary links of tripartite
(left) or four-partite (right) entanglement.

(2) Once an elementary link has been established, the
corresponding qubits are stored in quantum memory for up
to time #*. If this time is reached and the other elementary link
has not been established, then the link must be reestablished.

(3) Once both elementary links have been established,
an entanglement swapping measurement is performed on
the memory qubits in the central node in order to establish
entanglement between the end nodes.

The protocol described above for generating bipartite en-
tanglement between two nodes separated by one central node
generalizes straightforwardly both to bipartite entanglement
generation through a longer chain of elementary links and
to multipartite entanglement generation over a collection of
adjacent elementary links. In these cases, an elementary link
must be reestablished after the cutoff time, which means that
all of the relevant elementary links must be established before
the cutoff of any one of the elementary links is reached. Once
all of the relevant elementary links have been established,
measurements can be made on the intermediate nodes in order
to generate bipartite or multipartite entanglement between the
end nodes. Bell measurements are typically used to obtain
long-range bipartite entanglement, while multiqubit measure-
ments can be made in order to generate multipartite entangle-
ment; see, e.g., Refs. [28-39]. In this way, the protocol that
we consider is an extension of the original quantum repeater
protocol in Refs. [26,27] from a linear chain to an arbitrary
topology.

Another way to generalize the original quantum repeater
protocol is to generate elementary links of multipartite en-
tanglement instead of bipartite entanglement. For example, in
Fig. 2, the elementary links consist of tripartite entanglement
[31,77] and four-partite entanglement. One can then consider
multipartite entanglement swapping (see, e.g., [31]) to extend
the range of multipartite entanglement.

The bipartite and multipartite generalizations of the orig-
inal quantum repeater protocol of Refs. [26,27] that we con-
sider here are similar to the bipartite and multipartite quantum
repeater protocols in Refs. [42,44,45,47-49]. For the figures
of merit considered in those works, however, no physical limi-
tations are placed on the quantum repeaters, while we consider
the practically relevant scenario of probabilistic elementary
link generation and quantum repeaters with limited coherence
times.
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In our network architecture, we allow for the possibility
of having multiple parallel links along the edges connecting
two neighboring nodes. This can be achieved using multiple
optical fibers between the two nodes, or by employing spectral
multiplexing; see, e.g., Refs. [60,78,79]. If p; ; is the proba-
bility of establishing a connection along the edge (v;, v;) for
one of the parallel links, and there are n > 1 parallel links,
then the probability of establishing a connection increases
from p; j to 1 — (1 — p; ;)". In other words, with probability
I — (1 — p;;)", at least one of the parallel links successfully
connects the two neighboring nodes.

We remark that with nonideal quantum memories, the
entanglement distribution protocol described above will in
general generate a mixed entangled state between the end
nodes with nonunit fidelity to the ideal state. In order to
increase the fidelity, one can perform entanglement purifi-
cation [80] at the intermediate nodes before performing the
measurements that increase the range of entanglement (see,
e.g., Refs. [44,45]). Since entanglement purification protocols
are generally probabilistic, the success probability of entan-
glement purification can be incorporated into the probability
pi,j of successfully obtaining an entangled link along the edge
(v, vj). Our results thus apply even in the case that entangle-
ment purification between neighboring nodes is incorporated
into the entanglement distribution protocol.

A slight modification of the entanglement generation pro-
tocol given above is based on the scheme presented in
Ref. [81]. In this alternate scheme, we place a linear-optical
Bell measurement station at the center of each elementary link
instead of a source producing photonic-qubit Bell states. An
entangled state between a quantum memory and a photon is
generated locally at two neighboring nodes. The photon from
each node is then transmitted toward the center of the ele-
mentary link connecting the two nodes. A Bell measurement
is then performed on the two arriving photons. Success of
this Bell measurement heralds the generation of entanglement
between the two memory qubits at the neighboring nodes. All
of the results presented here apply equally to this method. See
also [61,76] for an analysis of this alternative entanglement
generation protocol.

To summarize, we consider in this work a quantum repeater
protocol in which the elementary link generation is inherently
probabilistic. All that matters for our results is the probability
pi,j for successfully establishing an elementary link along the
edge (v;, v;) and the cutoff time ¢* of the quantum memories.
We do not focus on any particular implementation and the
corresponding parameters that may lead to specific values for
the probabilities p; ;. This allows our results to be completely
general and applicable to any practical quantum network
implementation.

III. AVERAGE CONNECTION TIME

How long does it take for all of the required elementary
links to be established in a quantum network? Given a cutoff
time of t* for the quantum memories, the repetition rate
R of the trials in the entanglement distribution protocol, as
described in the previous section, leads to a cutoff number
of trials n* := |Rt*|, beyond which an elementary link must
be reestablished. Then, if there are M elementary links to

be established, we let N(M, n*) denote the number of trials
needed to establish all M elementary links, so that the re-
quired connection time is 7(M, n*) := N(M, n*)/R. Note that
N (M, n*) depends only on the number M of elementary links
and not on the topology of the network, since all elementary
link attempts are independent of each other. We are interested
in the average connection time E[T (M, n*)], which we de-
termine by focusing on the average number E[N (M, n*)] of
trials.

In Ref. [82, Eq. (5)], it was shown that if all of the elemen-
tary links in the network have the same success probability p,
then
_3-2p[l-(0—py1-201—-p)

22— pl1 =201 = p)"] = 2(1 — p)"}
For higher values of M in the case n* = co, we have that
N(M, 00) = max {Ny, N, ... ,Ny}, where N;, 1 <i < M,is
a geometric random variable with success probability p; that
indicates the number of trials needed to establish a connec-
tion in the ith elementary link. Indeed, in the case of an
infinite cutoff time, once an elementary link is established
it is possible to wait as long as required for all of the other
links to be established. If, for simplicity, we assume that
all of the elementary links in the network have the same
success probability p, then (see Appendix A) E[N(M, co)] =
S GO/ = A = p)a).

In the case n* < oo, the number of trials needed to es-
tablish all M elementary links can never be less than the
number of trials it takes for any one of the elementary links
to be established, meaning that N(M,n*) > N; for all 1 <
i < M. In particular, then, N(M, n*) > max {N, ... ,Ny} =
N(M, oo0), which implies that E[N(M, n*)] > E[N(M, co)]
for all n* < 0o. Furthermore, the most number of trials are re-
quired when there are no quantum memories, which is equiva-
lent to setting n* = 0. Therefore, E[N(M, n*)] < E[N(M, 0)]
for all n* > 0. In the case n* = 0, all of the elementary links
have to be established in the same trial, and the probability
that this occurs is p¥. This means that Pr[N(M, 0) = n] =
pM(1 — pMy=! Therefore, E[N (M, 0)] = 1/pM. We thus ob-
tain the following result.

Theorem 1. Consider a quantum network in which the
success probability of each of the M > 1 elementary links is
p. Then, for all 0 < n* < oo,

E[N(2, n")]

)

f(’”)i@ww N G
K)T—(1—pF S S

k=1

See Appendix A for the proof.

Theorem 1 gives us a lower bound on the average connec-
tion time for any network, and it depends only on the number
M of elementary links being established in the network, as
well as the elementary link success probability p.

See Fig. 3(a) for plots of E[N(M, 0)] and E[N(M, c0)]
for various values of M. As an example, suppose that we
would like to construct a network with M = 10 elementary
links, and we would like the network to be fully connected
within 10 trials on average. Then, in the best-case scenario of
n* = oo, we see from Fig. 3(a) that we would require a link
success probability p of at least 0.25. Also, if we assume that

p=e 2 (with @ = ﬁ), so that the photon transmission
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FIG. 3. (a) The upper and lower bounds E[N(M,0)] and
E[N (M, 00)], respectively, from Theorem 1, for networks with M =
10, 50, 100, 250 elementary links. (b) Average connection times
E[TM,n*)] = E[N(M, n*)]/R, assuming p = e o= ﬁ, and
R = %, for M =5, 10 elementary links.

medium is the only source of loss, if we assume that all
elementary links have the same length ¢, and we let R = §
be the repetition rate [83], where c is the speed of light, then
we find that even for an internodal distance of £ = 40 km, the
average global connection time for a network with M = 100
elementary links and no quantum memories is approximately
107* seconds, which is longer than the age of the universe. On
the other hand, with quantum memories and a cutoff n* = oo,
the average connection time is less than 10=2 seconds. Note
that 10~2 seconds is the optimal connection time, meaning
that any network with M = 100 elementary links and an
internodal distance of £ = 40 km making use of the protocol
described in Sec. II requires at least 1072 seconds to become
fully connected. We also find that for a network with M = 10
elementary links and an internodal distance of £ = 30 km, it
is not possible to obtain a fully connected network in less than
103 seconds.

In order to obtain tighter estimates for E[N (M, n*)] for
0 < n* < oo, we resort to estimating E[N (M, n*)] via Monte
Carlo simulations. Assuming that all elementary links have
the same length ¢, letting R = { be the repetition rate as

before, and assuming p = e o= ﬁ, we obtain the
plots in Fig. 3(b) for E[T (M, n*)] = E[N(M, n*)]/R when
M =5, 10. For example, suppose that we have a network
with M = 10 elementary links and we would like to obtain
a fully connected network within one second. Then, with
quantum memories such that n* = 2, we see from Fig. 3(b)

that the maximum possible internodal distance is £ &~ 37 km,

TABLE 1. Minimum cutoffs n}, beyond which the average

number E[N (M, n}. )] of trials is approximately within 1% of the

min

optimal value, which is E[N (M, co)].

M p=0.01 0.03 0.05 0.1 0.3 0.5
10 655 210 125 65 18 9
20 745 250 150 70 20 10

and this maximum distance corresponds to a cutoff time of
t* =2 x 37km/c =246 us. More generally, if we impose
a particular cutoff time ¢*, then the maximum internodal
distance is £ = ct*/2, which corresponds to n* = 2, and in
this case the average connection time is also maximal. By
taking higher values of n*, the average connection time can be
decreased at the cost of decreasing the maximum internodal
distance.

The lower bound in Theorem 1 imposes a requirement on
the cutoff #n* needed in order to obtain the required elementary
links in the fewest possible number of trials on average.
In Table I, we show the minimum cutoff, denoted by nZ. ,
that is required in order to obtain the required elementary
links in a number of trials that is within 1% of the optimal
number E[N (M, co)] of trials. For values of the link success
probability p less than 0.1, we require a cutoff on the order
of hundreds of trials. If we assume that p = e~*¢ for all
elementary links, and that all elementary links have the same
length £, then p = 0.01 implies £ ~ 100 km, so that for M =
10 elementary links the required cutoff time is approximately
t* = 655¢/c = 0.2 seconds.

A. Entanglement distribution rates and overcoming
the repeaterless limit

A well-established figure of merit for any quantum
repeater protocol is the repeaterless (i.e., point-to-point)
quantum/secret-key capacity [84] of the quantum commu-
nication channel over which the protocol takes place. The
quantity E[N(M, n*)] can be used to evaluate the quantum
repeater protocol that we consider here against this figure
of merit. Let us consider a linear repeater chain with a total
length L divided into M elementary links, such that there
are M — 1 equally spaced repeater stations between the end
points. Photonic qubits are made using the dual-rail encoding.
Then, the source stations at the center of each elementary
link fire maximally entangled qubit pairs (ebits) towards the
repeater stations through a bosonic pure-loss channel [85]

. C o gt 1 L ;
with transmissivity e~*2, where o = S km and £ = 7 1s the
length of each elementary link. We assume for simplicity that
the entanglement swapping Bell measurements at the repeater
stations are perfect and deterministic, and that there are no
other imperfections. Note that each trial of the elementary link
generation requires two uses of the channel. Furthermore, due
to the dual-rail encoding, each trial has success probability
p= e~2¢ [86]. Therefore, because E[N (M, n*)] represents the
number of trials needed to obtain one end-to-end ebit, the
quantity 1/{2E[N(M, n*)]} is the average number of end-
to-end ebits per channel use, i.e., the rate. By Theorem 1,
1/{2E[N (M, 00)]} is the highest possible rate for the protocol
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FIG. 4. Optimal rates 1/{2E[N(M, co)]} for the quantum re-
peater protocols considered in this work, as executed on a linear
chain with M elementary links, compared to the repeaterless capacity
(RL Cap.) —log,(1 — n) of the bosonic pure-loss channel [87,88].
The end-to-end distance of the chain is L, such that n = e™*f, o =
ﬁ. To compute the rates 1/{2E[N (M, co)]}, we set p = e,

that we consider. We compare this rate to the repeaterless
capacity of the bosonic pure-loss channel over the entire
length of the chain, which is —log,(1 — e~*F) [87,88]. The
results are shown in Fig. 4, using which we obtain repeater
chain lengths L, beyond which our repeater protocol can
overcome the repeaterless capacity; see Table II.

B. Parallel elementary link generation

We can extend Theorem 1 to the case that np parallel
paths exist in the network for the required elementary links.
The parallel paths can arise either due to multiple parallel
transmission channels or through edge-disjoint paths when
considering the connection of two distinct points in the net-
work. We let N(M, n*; np) denote the number of trials needed
to obtain all M elementary links in a network with memory
cutoff n* and np parallel paths for the elementary links.

Without quantum memories, i.e., in the case n* =0,
N(M, 0;np) is simply a geometric random variable in which
the corresponding success probability pgcc is given by the
probability that at least one of the np paths has all of its
elementary links established. For simplicity, as before, we
suppose that each elementary link has a success probability
of p. Then, pgec = 1 — (1 — pM)**. This holds due to the fact
that the ith path is connected with probability p¥. Then, with
probability 1 — p, at least one of the elementary links in
the ith path fails. Then, since all paths are independent of
each other, the probability that they all fail is []}*, (1 — pM) =

TABLE II. Minimum total repeater chain lengths L;,, as ob-
tained from the results in Fig. 4, beyond which the quantum repeater
protocol considered in this work can overcome the repeaterless
capacity of the bosonic pure-loss channel. M is the number of
elementary links in the chain.

M 2 3 4 5 10

Liyin (km) 63 52 47 45 42

(1 — pMy'r. We thus have that

1
E[NWM, O;np)] = w 4)

Let us now determine N(M, n*;np) in the case in which
n* = oo. To start, let NJ’: be the number of trials needed
to establish the jth elementary link in the ith path, where
1 < j < M. Furthermore, let Ni(M, 0o0) be the number of
trials needed to establish the ith path between A and B.
Then, the number of trials needed to establish one of the np
paths between A and B depends on which of the paths gets
established first. We thus obtain

N(M, oo;np)
= min{N'(M, 00), N> (M, 0), ... , N"**(M, 00)}. (5)

In Appendix B, we show that

Pr[N(M, 0o;np) = n] = {1 — [1 — (1 — p)" "My
_ {1 _ [] _ (1 _p)n]M}nP’ (6)

and that the average number of trials needed to connect the M
elementary links is

E[N(M, 00;np)] = Y (1 —[1—(1—=p" 1"}y (D)

n=1

Let us now consider the example of a network with the
topology of a two-dimensional pyramid, as shown in Fig. 5(a).
We assume that all of the elementary links have the same
success probability p. We let n# denote the number of layers
in the network.

How many trials does it take, on average, to obtain a
connected path from the node at the top of the network to one
of the nodes at the bottom? We let p = 0.1, and we let A be at
the center of the bottom layer of the pyramid and B be at the
very top of the pyramid. The results we obtain are in Fig. 5(b)
for nLA =3,4,5,6,7,8 and n* = 2. We see that as the size of
the network grows, so too does the required number of trials.

Next, we consider the distribution of trials for the nodes
on the bottom layer. We again let p = 0.1 and n* = 2. The
results we obtain are shown in Fig. 5(c). The number of trials
is symmetric around on the center of the bottom layer for
all values of nf. In particular, placing A at the center of the
bottom layer results in the fewest number of trials, while
placing A at either one of the two edges of the bottom layer
results in the highest number of trials.

Finally, we consider the effect of having longer cutoffs n*.
In Fig. 5(d), we plot the average number of trials needed when
A is at the center of the bottom layer and B is at the top, for
nLA =3,5,7 and p = 0.1. As expected, as n* increases, the
number of trials decreases. Interestingly, for all three network
sizes corresponding to nf = 3,5, 7, the average number of
trials appears to approach a value close to eight, suggesting
that eight is the fewest number of trials in which a connection
between A and B can be established, at least for pyramid
networks with an odd number of layers.
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FIG. 5. (a) A two-dimensional pyramid network with nf =5
layers. Shown are two paths from the node A at the center of the
bottom layer to B at the very top of the pyramid. (b) The average
number of trials when A is at the center of the bottom layer of the
pyramid and B is at the top of the pyramid, as a function of the
number n} of layers in the pyramid. We set n* =2 and p =0.1.
(c) The average number of trials as a function of the position x of
A on the bottom layer of the pyramid, with x = 1 being the leftmost
corner. The node B is again at the top of the pyramid, and we again
setn* = 2 and p = 0.1. (d) The average number of trials as a function
of n* when A is at the center of the bottom layer and B is at the top,
with p = 0.1.

IV. AVERAGE LARGEST ENTANGLEMENT
CLUSTER SIZE

In order to understand the long-range connectivity in a net-
work, it is important to consider the size of the largest cluster
of established elementary links that can be achieved in the net-
work within a certain period of time. By a cluster, we mean a
collection of nodes in the network, all of which are connected
to each other via established elementary links. We define the
size of a cluster by the number of established elementary
links contained in it. Since every established elementary link
corresponds to a shared entangled state between neighboring
nodes, we refer to a cluster as an entanglement cluster.

Let S (G, n*) denote the size of the largest entanglement
cluster after n > 1 trials in a network described by the graph
G = (V,E) with memory cutoff n*. We are interested in
the quantity E[S)**(G, n*)], which is the average largest
entanglement cluster size. Note that the size of the largest
entanglement cluster in a network after a certain number of
trials can never exceed the number of established elementary
links in the entire network after the same number of trials. If

we let L, (M, n*) denote the number of established elementary
links after n trials in the network of M = |E| total elementary
links, we thus have the upper bound S"*(G, n*) < L,(M, n*).

Now, how many elementary links can be established in
the network in a fixed amount of time when we start with a
network with all elementary links unestablished? As before,
we work more generally with the number of trials instead
of with the time, and we assume that all elementary links
have the same success probability p. We are interested in
the quantity E[L,(M, n*)]. Observe that L,(M, n*) does not
depend explicitly on the graph G, similarly to the quantity
N(M, n*), since all elementary link attempts are independent
of each other. We provide more specific details about the
quantity L,(M, n*) in Appendix C.

With n* =0, all established elementary links are reset
after one trial. Then, since all elementary link attempts are
independent of each other, we have that Pr[L, (M, 0) = x] =
(I;I)p"(l — p)=*, which means that %E[L,,(M, 0)] = p.

For n* > 0, we prove in Appendix C that

%E[Ln(M, n)l=1-00-=p), n<n+1 (8

In the case n > n* + 1, we estimate %E[L,, (M, n*)] via Monte
Carlo simulations. See Fig. 6 for plots of %E[LH(M, n*)]
with M = 40 for a variety of finite nonzero cutoffs n*. Al-
though we take M = 40 elementary links in the network to
obtain the plots, after comparing the results with various other
values of M, we find that the fraction AL,IIE[LH(M, n*)] does
not depend on M. Furthermore, we find in some cases that
having a higher value of n* is unhelpful for obtaining a higher
fraction of established elementary links for certain values of
p. For example, in the case of n = 30 trials, we find that
for p roughly between 0.30 and 0.70, the average number of
established elementary links with n* = 6 is higher than the
average number of established elementary links with n* = 8.
This behavior is due to the fact that with a finite cutoff,
there are times at which several established elementary links
are simultaneously removed as a consequence of reaching
the cutoff number of trials, especially when the elementary
link success probability p is high. Interestingly, therefore,
unlike the quantity N(M, n*), the quantity L,(M, n*) is not
monotonic in n* for all values of n and p.

In general, the number of established elementary links
with a finite cutoff cannot exceed the number of es-
tablished elementary links with an infinite cutoff. There-
fore, E[L,(M,0)] < E[L,(M,n*)] < E[L,(M, oc0)] for all
0 < n* < oo. Using this, we obtain the following result, the
proof of which can be found in Appendix C.

Theorem 2. Consider a network described by a graph G
with M edges, such that each elementary link has a success
probability p. Then,

p< ELM IS 1-(-p', O

and A%IIE[S;““(G, n)] <1 —(1—p)foral0 < n* < oo.
As an immediate application of Theorem 2, suppose that
we would like a fraction f of established elementary links in
a network with a given elementary link success probability
p- Then, Theorem 2 tells us that, no matter what the cutoff
n* is, we require at least n = [log(1 — f)/log(1l — p)] trials
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FIG. 6. The average fraction ﬁ]E[L,, (M, n*)] of established elementary links in a network with M = 40 elementary links for various values
of the cutoff n*. Analytic expressions for iE[L,, (M, 0)] and #E [L,(M, co0)] are given by the left- and right-hand sides, respectively, of Eq. (9).

on average in order to achieve the desired fraction f of
established elementary links.

Let us now return to the average largest entanglement
cluster size E[S)**(G, n*)] and examine it in more detail.
We consider the regular square and triangular lattices, and
we assume that all elementary links have the same success
probability p. We also consider n = 10 trials. Then, we find
that as the size of the network increases, a critical value of p
emerges, call it p., at which the average largest entanglement
cluster size undergoes a sharp transition. Below pq, the
average largest entanglement cluster size is effectively zero,
while beyond p. the average largest entanglement cluster
size increases to one; see Fig. 7. We also observe that as n*
increases p.ri; decreases; see Table III.

The quantity pgi can be regarded as the minimum ele-
mentary link success probability that must be attained in any
practical implementation of a large-scale quantum network.
In other words, all of the elements that contribute to the

TABLE III. Estimated values of the critical elementary link
success probability p.;, based on the curves in Fig. 7.

=0 1 2 3 4
Square 0.500 0.336 0.250 0.203 0.166
Triangular 0.347 0.213 0.151 0.117 0.098

elementary link success probability, such as the source ineffi-
ciency, the transmission loss, the quantum memory read/write
inefficiencies, and the success probability of entanglement
purification, have to combine to be greater than p.: in order
to have a good large-scale quantum network. In this context,
the values in Fig. 7 imply that the triangular lattice topology
is more suitable for large-scale quantum networks since it has
a lower critical elementary link success probability for every
cutoff value considered.

1.00 F 1.00 F
*:, 0.75 F *:h 0.75 F
S S
i 050 i 050
g2 ge
el el
B025F Bo025F
== —I=
0.00 f | [ 0.00 1 L L L
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
p p
n*=0 n*=2
n* =4
n* =1 *=3

FIG. 7. Estimated average largest entanglement cluster sizes
with n = 10 trials and various cutoffs for the 500 x 500 square (left)
and triangular (right) lattices.
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V. SUMMARY AND OUTLOOK Another direction for future work is to explore how the re-
sults obtained here can be generalized to “one way” quantum
repeater protocols, in which the entanglement to be shared
and/or the quantum information to be transmitted is generated
entirely locally at a particular node and sent through elemen-
tary links to the desired end nodes [90-97]. Such protocols
do not require the two-way classical communication that is
required in the protocols that we consider; however, these
protocols require the use of quantum error-correction codes,
which typically results in a significant resource overhead in
terms of the number of required physical qubits.

Generation of elementary links is a crucial first step to ob-
taining long-distance entanglement in a quantum network. In
this work, we considered the limitations imposed on quantum
networks due to the inherently probabilistic nature of elemen-
tary link generation. We proposed the average connection time
and the average largest entanglement cluster size as relevant
quantities to consider when evaluating the performance of a
quantum network. We provided bounds on these two quan-
tities for a particular class of quantum repeater protocols.
These bounds led to requirements on the coherence times
of quantum memories (Table I), requirements on the lengths
of repeater chains in order to achieve rates that surpass the
repeaterless capacity (Table II), and requirements on overall
device efficiency for large-scale networks (Table III). S.K. acknowledges support from the National Science

One direction for future work is to investigate the trade-off =~ Foundation and the National Science and Engineering Re-
between the two quantities considered here and the fidelity of =~ search Council of Canada Postgraduate Scholarship. J.P.D.,
the shared entangled state at the end of the protocol. By con- C.TM., and A.U.S. would like to acknowledge support
sidering more general operations at the intermediate nodes, from the Army Research Office, Air Force Office of
one could then aim to determine quantum repeater protocols Scientific Research, Defense Advanced Research Projects
that are optimal for these two quantities, similarly to the Agency, National Science Foundation, and Northrop Grum-
investigation in Ref. [89] on the trade-off between fidelity and ~ man Aerospace Systems. We acknowledge valuable discus-
success probability in entanglement purification protocols. sions with Anthony Brady and Siddhartha Das.
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APPENDIX A: PROOF OF THEOREM 1

We start by determining the probability distribution of N(M, co). Since N(M, oo) = max{Ny, ... , Ny}, we first characterize
the set S, := {(ny, na, ..., ny) : max{n, ny, ... ,ny} = n}. Observe that Sy;, can be written as the disjoint union 8y, =

it 18’ of the sets SJJM ,» Which are given by

Sin = || tGri i) i = =iy =n 1 <ip<n—1.0¢ (k... .k} (A1)

1<k < <k; <M

In other words, the set 8] ,, consists of all M-tuples in which j elements of the tuple are equal to n and the rest are between 1
and n — 1. The largest element of each M-tuple is thus equal to n, as required. For example, in the case M = 3, we have

3”—{(1 j,n): 1< <n—1}U{@G,nj):1< <Kn—11U{n,i,j): 1< <n-—1}, (A2)
2= 1<i<n—1}U{(ni,n):1<i<n—1}U{(n,ni):1<i<n—1}, (A3)
30 ={(n,n,m)}. (A4)

Since all of the sets S}JW , are disjoint, and s/ . 18 itself a disjoint union of sets, we obtain

Pr[N(M, 00) = n] = Z Pr[S},,] (A5)

M
:Z Z Z Pr[N1=i1,N2=i2,...,NM

J=lI<ki<<k;i<M 1 <ip <n—1,

S

Lk, ..., kj}

=iy iy, = =i, =n] (A6)
Since all of the random variables N; are independent, we obtain
M J
PrN(M,00)=n]=>_ > J]Pr[N = n] ]_[ Z Pr[N, = if]. (A7)
J=1 1<k) < <k; <M i=1 Yi=1
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By definition, Pr[N,, = n] = pi,(1 — py, y'=1 and it is straightforward to show that, if p;, = p for all k;, then

n—1
1= =pr!
Z(l —p = (A8)
— 4
Therefore, since there are (Af) elements in the set {(ki, ... ,k;): 1 <k; <--- < k; < M}, we obtain
M 1— (1 _ )n 1
Pr[N(M,00) =n] =Y ( )[—} M[(l -, (A9)
4

j=l1
which can be simplified to

Pr[N(M,00)=n]l=[1 — (1 —py"IM —[1 — (1 — p)" M.

(A10)
Next, to find E[N(M, c0)], we use the fact that
o0 o0
E[N(M, c0)] = ZPr[N(M, o0) > n] = Z{l — Pr[N(M, co0) < nl}. (A11)
n=1 n=1
Then, since N(M, co) = max{Ny, ... , Ny}, and since max{Ni, ... , Ny} < nifandonly if N; < nforall 1 <i < M, we obtain
oo oo
E[N(M. 00)] = ) (1 =Pr[Ny <n]---Pr[Ny <n]) =) (1 —[1—(1—p) 1"}, (A12)
n=1 n=1
as required, where to obtain the last equality we used Eq. (A8), which implies that
n—1
PriNy <nl=) p(l=p)~'=1-(1-py" (A13)
i=1
forall 1 < £ < M. Now,
o N
Do == =py "My = lim {11 = (1= py M), (Al4)
n=1 oo n=1
Letting ¢ = 1 — p, we have
MM 2 M
1=(1= n—11M = (1= n—1\M — -1 k _k(n—1) =1 -1 k k(n—l)' A15
H=A=p M =a=-g)"=3 (] )Dq D G [Co b (A15)
k=0 k=1
Therefore,
K M M 1 qks
1 kb1 ghn=1) k+1
E[N(M, 00)] = 1%102:1:; (k)( 1) = lim Z < )( 1) <1_—) (A16)
where to obtain the last equality we used the fact that
s 1— ks
qu<n-n> _ qk (A17)
n=1 - 4q
for all k > 1. Finally, for 0 < ¢ < 1, it holds that lim,_, o ¢" = 0 for all k > 1, which means that
M M
M M (_1)k+l
E[N(M, = 1 k“ —_— Al8
[N(M, 00)] ;( )( ) 21: a5 (A18)
as required.
APPENDIX B: PROOF OF EQUATION (6) AND EQUATION (7)
We now prove that
Pr{N(M, 00;np) = n] = {1 — [1 = (1= p)" "Iy — {1 = [1 = (1 = py'1")™, (BD)
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and that the average number of trials needed to connect the M elementary links is

o0
E[N(M, 0osnp)l = Y (1 — [1— (1 = p)" "M}, (B2)
n=1
In order to prove Eqgs. (6) and (7), the main task is to characterize the set gnp,,, ={(ni,ny,...,ny) min{n;, ny, ..., 0y} =
n}. It holds that S,,,, = I_J;f‘;]gflp,n, where
Son= || G i)ty = =i =nie >0l ¢ kK (B3)

1<k < <kj<np

Since all of the sets SfW, are disjoint, and S,JIM is itself a disjoint union, we obtain

Pr[N(M, 00inp) =n] = ¥ Pr[S,,.] (B4)
j=1

oo

ZXP: Z Z PI'[NI(M,OO):iI,NZ(M’oo)ziz"__’

J=11<ki<-<kj<np iy =n+1,
O k... k)

XN"P(ansoo)zinp:ikl ="':ikf:n] (B3)
np J o

= Z Z HPr[Nk’(M, 00) = n] ]_[ Z Pr[NY(M, o00) = if]. (B6)
j=1 1<k < <kj<np i=1 lky,... .k} ig=n+1

Now, let us recall from Eq. (A10) that for n* = oo we have that

PrN“(M,00) =il = [1 = (1 = p) ¥ = [1 = (1 = p) " ¥ (B7)

forall 1 < € < np. Since
i Pr[N‘(M, 00) = iy] = 1 — anPr[N@(M, 00) =il =1—[1—(=p)1", (B8)

et P
we find that
Pr[N(M, 00;np) = n] = Z ("Jf’){[l — (I =p"M = 1= =p" YL =1 = (1 = py 1y (B9)
i

={1—[1=A=py M -1 -1 -a-p My, (B10)

as required.
Next, to find E[N (M, oo; np)], we use the fact that

E[N(M, co;np)] = ZPr [N(M, co;np) > nl. (B11)

n=1

Since N(M, o0;np) = min (N'(M, 00), ... ,N" (M, 00)}, and since min{N'(M, 00),... ,N"(M,c0)} > n if and only if
N'(M, o0) > nforall 1 < i < np, we obtain

E[N(M, 00;np)] = Y PrIN'(M, 00) > n] - Pr[N" (M, 00) > n] = Y {1 —[1 — (1 — py" ']}, (B12)

n=1 n=1
as required, where to obtain the last equality we made use of the fact that

n—1
Pr[N'(M, 00) > n]l =1 —Pr[N'(M,00) <n]=1— ZPr[Ni(M, ©0)=jl=1—-[1—-(1—=p" ¥ (B13)
j=1

for all 1 < i < np, which follows from Eq. (B8). This completes the proof.
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APPENDIX C: THE AVERAGE NUMBER OF ESTABLISHED ELEMENTARY LINKS

Given a network with a total of M elementary links and a cutoff of n* > 0, the quantity L,(M, n*) is defined as the number
of established elementary links after n > 1 trials when initially there are no established elementary links in the network. In this
section, we provide a general expression for E[L, (M, n*)] and prove Theorem 2.

Let us start by defining L) (M, n*) to be the number of elementary links established in the jth trial, where j > 1. In the case
j=1, we have 0 < LM, n*) < M. For 1 < Jj < n*+ 1, none of the established elementary links are reset between trials.
This means that LY (M, n*) depends on L(M, n*), LM, n*), ... ,LY=D(M, n*). If x; represents the number established
elementary links in the ith trial, then

OSLYM, ") <M —x;—xa— - —xj_1, l<j<n +1. (C1)
For j > n* 4 1, elementary links start being reset: before the start of trial j = n* 42, all links established in the first
trial are reset, which means that 0 < L DM, n*) <M —xp — -+ - — Xp+1. Then, before the start of trial j = n* + 3, all
links established in the second trial are reset, which means that 0 < LM, n*) <M —x3 — - — Xpp0. In general, then,

LY (M, n*) depends on LY™")(M, n*), ... , LY~ (M, n*), LU=V (M, n*), which means that
OSLYM, ") <M —xj_pp—--- —Xja—Xxj_1, j>n+1 (C2)

Let us now consider the probability distribution of the random variables LY (M, n*). First, for j = 1, we have
W M Mx
Pr[L"’(M,n*) =x] = pra—p" 0<x<M (C3)
X

For all j < n* + 1, because none of the links are reset between trials, we have that LOM, n*) depends on all trials before the
jth one, so that

Pr(LY(M, n*) = x|LVM, n*) = 1, LPM, n*) = x3, ..., LY"D(M, ") = x;1]

_(M_xl_xz_..._

x xf’l)px(l _ pMnma (€4

forall 2 < j<n*+1andall 0 < XSM—x1—x— - —Xj_1. For trials j > n* + 1, elementary links start being reset as
described above. This means that LY (M, n*) depends only on the »n* trials prior to the jth trial, i.e.,

Pr{LY(M, n*) = x|LO(M, n*) = x1, LPM, n*) = xa, ..., LY (M, n*) = x; 1]
=Pr[LY M, n*) =x|LV" M, n*) = xj_pe, ... ,LYD M, 1n*) = xj0, LY DM, n*) = x;_1]

M_xj—n*_"'_x/’—Z_xi—l Mo—Xi p— oo Xy —X i —
— . . 1 — Xjgr = —Xj2—Xj_1—X
( B p(l—p)

forall j >n*+1landall0 <x <M —xj_pr — -~ —Xj_2 — Xj_1.

Let us now consider the quantity L, (M, n*). In the case n* = 0o, once an elementary link has been established, it never has
to be reset. This implies that L,(M, o) = Z?=1 LY (M, 0o). This equality holds even for finite n*, provided that n < n* + 1,
because in this case none of the established elementary links have to be reset (because the cutoff n* is never reached). This means
that L,(M, n*) = 3, LOM, n*)forall0 < n* < ooandalln < n* + 1.If n > n* + 1, then every established elementary link
is reset n* trials after it was established. This means that the number of elementary links established in the jth trial must be
removed from the total number of established elementary links n* trials after the jth trial. Therefore,

n n—1 n
L,(M, n*):ZL(j)(M, n*) — Z LY (M, n*) = Z LM, n*), n>n*+1. (C5)
j=1

j=nt+1 j=n—n*

In other words, for n > n* 4 1, only the last n* 4 1 trials matter for determining the total number of established elementary links
after n trials. In summary, for all 0 < n* < ooandalln > 1,

"LOM Y, n<nt+1,
L,y = |2 (C6)
Zj=n—n" L(j)(M’ l’l*), n>n"+1.
Note that
L,(M,0) =LY M, 0), €

which means that the number of established elementary links in n trials with n* = 0 is the same as the number of established
elementary links after one trial. This makes sense, since for n* = 0 all established elementary links are reset at the end of each
trial.
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Proof of Theorem 2

We now prove that

%E[Ln(M, Ol=p, n=1, (&)
and
CEILM 00 =1~ (= p), n>1. ()
The latter can be stated more generally as
%]E[Ln(M, n]=1—-0-p)", n<<n" +1. (C10)

Since by Eq. (C7) we have that L,(M, 0) = L(M, 0), and we have from Eq. (C3) that L' (M, 0) is simply a binomial
random variable, we immediately obtain E[L, (M, 0)] = E[L"(M, 0)] = Mp, so that Eq. (C8) holds.
To prove Eq. (C9), and more generally Eq. (C10), we first calculate E[LY) (M, n*)] with 1 < j < n* + 1. Using Eq. (C1), we
have
Pr[LY(M, n*) = x]

M M—x M—x|—xy——xj

=y > > PrlLOM, n*) = x;, LOM, n*) = xa, ..., LY DM, n*) = x;_1, LY (M, n*) = x] (Cl1)
x1=0 x,=0 xj—1=0
M M—x M—x1—Xx3——Xj_2
=X Y RLOGM ) = LY M. 1) = x| LV, ) = x1] x -
X1:0 )CZZO X/,l:()
x Pr[LY(M, n*) = x | LD(M, n*) = x;, LR (M, n*) = xa, ... , LY"D(M, n*) = x;_4]. (C12)
Therefore,
M—x)—xp—-—xj_|
E[LY(M, n*)] = Z xPr[LY(M, n*) = x] (C13)
x=0
M M-—x; M—x|—xp——xj2
=YY Y ARt = x PULO M. nt) = x| LM ) = ] x -
x1=0 x,=0 xj-1=0
x Pr[LY(M, n*) = x | LD(M, n*) = x;, LP (M, n*) = xa, ... , LY"D(M, n*) = x;_1]. (C14)
Now,
M*)C]*Xz*-“*x_f,[ M — X1 —X>» — - —X;
x( o H>PX(1 —pMTITRTI TN T = (M — Xy —xp — - — Xj_)P. (C15)
X
x=0
Then,
M_XI_XZ_'"_X/72 M — X1 —X>» — ++° —X;
Z ( b H)zf‘f‘ (1 — pyM8m2= =2 (M — X — Xy — -+ — Xjg — Xj_1)
2. Yt _ .
Xj-1=
=M-xi—x— - —Xxjo—M-x1—x2— - —X;22)p (Cl16)
=M —x1 —x2—---—x;2)(1 = p). (C17)
Similarly, summing over x;_, gives the result (M —x; —x, —--- —x;_3)(1 — p). Continuing this for all the summation

variables, we ultimately obtain
E[LYM,n)] =Mp(1 —py~', n*>1, 1<j<n"+1. (C18)
Using this, we find that for all n < n* 4 1,
E[Ly(M, n*)] = Y "E[LY(M,n)] =Y Mp(1 — p))~" = M[1 — (1 - p)"], (C19)
J=1 j=1

as required.
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