4. Summary and Outlook of Part |

In this part of the thesis a new solution of the leading order evolution equation for the gener-
alized parton distributions has been presented. The form of the solution is completely fixed
by the symmetry properties of the evolution kernels. It has been shown that the evolution
of the GPDs should be treated differently in the ERBL and DGLAP kinematical regions.
This agrees both with the mathematical structure of the evolution equation and its physical
content.

The solution which has been derived can be used for analytical and numerical studies of the
GPD evolution, since all quantities entering the derivation and final result are unambiguously
defined. The solution reflects in a clear mathematical way the physical properties of the GPD
evolution, for instance the phenomenon of parton migration to the ERBL region at high scales.
It has been demonstrated that the solution for ¢ — 0 and £ — 1 takes the known form of the
DGLAP and ERBL equations, respectively. Further the behavior of the solution has been
studied analytically in different limiting cases, namely at large evolution scales and in the
limit of small &.

A Mathematica computer code has been developed in order to transcribe the analytically
derived solution into a numerical algorithm. The program is worked out for the isovector
as well as the isosinglet GPDs and has been tested to reproduce the general features of the
evolution and works in reasonable time. Several examples have been given in the text.

The current situation in the GPD business is not too satisfactory. This is mainly due
to the fact that data with high accuracy is not available by now. Even if high accuracy
data were be accessible, it is non-trivial to extract the GPDs from this data. This is due to
the fact that GPDs enter at the amplitude level and not on the level of the cross section.
Nevertheless, several experimental groups make the effort to perform the relevant experiments
and thereby improve the situation on the experimental side. For example, the determination
of GPDs is one of the driving forces behind the 12GeV upgrade of the CEBAF facility at the
Thomas Jefferson Laboratory (JLAB) in Virginia, USA, as well as the HERMES experiment
at Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany. When these data
become available there will be the need to have a suitable tool to perform the evolution and
this is what we have at hand.

There are also other applications of the presented approach which one may think of. It
would be interesting to analyze the analytic structure of the evolution of twist-3 operators. It
is known that the knowledge of the reggeon bound states allows one to extract the anomalous
dimensions of the operators at singular points in the j-plane [86]. This correspondence has
been checked for twist-2 operators. Recently, the methods for the calculations of the multi-
reggeon bound states were developed [87, 88, 89], and the predictions for the anomalous
dimensions of higher twist operators at the singular points have been obtained [90, 91].
However, so far it is not known how to solve the problem of the analytical continuation of
the anomalous dimensions of higher twist operators. The approach presented here might
be helpful to solve this problem — at least for the class of twist-3 operators for which the
evolution equation is known to be integrable.

In the refs. [29, 30, 92, 93] it has been observed that the Hamiltonian which governs the
scaling behavior of certain QCD operators, can be mapped on a completely integrable system
known as non-compact spin chain. This allows to determine the anomalous dimensions of
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these operators exactly. The key feature of integrability is, again, the collinear conformal

Symimetry.
In the second part of this thesis the non-compact spin chains are treated within the frame-

work of the Quantum Inverse Scattering Method.



8. Summary and Outlook of Part Il

In this part of the thesis we have worked out several new results concerning some particu-
lar completely integrable models within the framework of the Quantum Inverse Scattering
Method. These models are defined on tensor product spaces of unitary representations of the
group SL(2,R). Therefore, we formulated the Yang-Baxter relation on the four possible dis-
tinct product spaces and derived explicitly the corresponding solutions. Thereby we obtained
two, previously unknown, solutions, namely those on the spaces D @ T and T' ® T', where D
denotes a representation space of the discrete series and 71 is one of the continuous series.
The solution on the completely continuous space, T’ ® T', was then taken to define a com-
pletely integrable Heisenberg spin chain model, which, due to its symmetry group SL(2,R)
is referred to as a non-compact spin chain. The Hilbert space attached to each lattice site of
this model is La(IR) and the spin operators are realized as the generators of the continuous
series representation of SL(2,R). The Hamiltonian of this model is defined as the derivative
of the fundamental transfer matrix, which is constructed out of the solution of the Yang-
Baxter relation of the corresponding Hilbert space. Taking our result for the R-operator,
the Hamiltonian is given by the sum of two-particle Hamiltonians and only involves nearest
neighbor interactions. The pairwise Hamiltonians have been shown to possess a discrete and
a continuous spectrum, which reflects the pattern of the decomposition of the tensor product
of two representations of the principal series into its irreducible subspaces. The eigenstates
belonging to the continuous spectrum are labeled by the sl(2) spin s = 1/2+ip, p € RT, and
the parity with respect to the permutation of arguments. The energies of the states with the
same spin but different parity are different and the gap between them is maximal for p = 0
and decreases exponentially with p.

To solve the spin chain model, the methods of the Baxter Q-operator and Separation of
Variables have been applied. The standard technique, the Algebraic Bethe Ansatz (ABA),
is not applicable for the model in question, because of the absence of a lowest weight vector
in the underlying Hilbert space. After defining the Baxter operator as an integral operator
acting on the Hilbert space of the model, we solved the defining equations and obtained the
kernel of the Q-operator in an explicit form. This allowed us to determine the analytical
properties of the eigenvalues of the Q-operator as functions of the spectral parameter. Then,
the eigenvalues of the Baxter operator can be obtained as solutions to the Baxter equation on
the appropriate class of functions and this eigenvalues already encode all information about
the corresponding eigenstates. We have shown that the Hamiltonian of the model can be
obtained as a derivative of the Baxter operator at special values of the spectral parameter.
Moreover, the arbitrary transfer matrix factorizes into the product of two Baxter Q-operators
at certain values of the spectral parameters. We have also constructed the representation
of the separated variables for the model in question. The kernel of the unitary operator,
which maps the eigenfunction to the SoV representation, has been obtained in an explicit
form. It factorizes into the product of N — 1 (N is the number of sites) operators each
depending on one separated variable only. The kernel of the transition operator can be
visualized as a Feynman diagram with a specific pyramidal form. This form of the kernel,
first obtained for the SL(2, C) spin chain in [87], is a general feature of all non-compact SL(2)
spin magnets [126, 128]. Using the diagram technique we calculated the scalar product of
the transition kernels and determined the Sklyanin’s integration measure. We have shown
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that the wavefunction in the separated variables is given by the product of the eigenvalues of
the (conjugated) Baxter operator. Therefore the knowledge of the eigenvalue of the Baxter
operator allows to restore the eigenfunction.

The interest in non-compact Heisenberg spin chains is originated in the studies of the
scaling behavior of certain composite operators in QCD. Nowadays, the focus has moved
from QCD to super-symmetric theories, where scaling dimensions of operators are computed
in order to support the famous AdS/CFT conjecture. It has been found that the hidden
integrability, which has been originally detected in the QCD context, is a generic feature
of all Yang-Mills theories and is even enhanced in their super-symmetric extensions. In all
cases which have been considered so far, super-symmetric or not, the Heisenberg spin chain
Hamiltonian on which a particular evolution operator could be mapped, is diagonalizable
with the ABA method. For the spin chains from the SL(2) sector this originated from the
fact that they belong to the discrete series representations. If one looks at the non-compact
spin chains from a more general, mathematical point of view, then it seems desirable to
find a unified picture, in which all non-compact spin chains with SL(2) symmetry can be
treated on the same footing. But, since this necessarily involves also the continuous series
representation, one has to rely on the alternative approach within the QISM, namely Baxter
Q-operators and SoV representation. From this viewpoint it was natural to consider the
spin chain on the space T'® T as we did here. The spin chain model on the space D ® T',
which can be constructed from the R-operator given in section 6.3, is the last in line which is
missing. It will be an interesting question for the future, whether it is possible to construct
a universal solution to the Yang-Baxter relation on the space V7 ® Vo, where V; is a unitary
SL(2,R) representation, discrete or continuous. Then, one possibly can treat all the different
spin chains on the same footing and identify their common basis, although from the current
knowledge, they seem to exhibit such different behaviors. The application of the thereby
achieved knowledge should be helpful for the construction and solution of so-called graded,
or super-symmetric non-compact spin chains. This, as a final aim, may shed some light on
the mathematical nature of the hidden integrability in four dimensional gauge theories.





