Cumulant ratios of conserved charges in the UrQMD model
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The Compressed baryonic Matter (CBM)
experiment to be held at the Facility for An-
tiproton and Ion Research (FAIR) is designed
to study the physics of dense baryonic mat-
ter under extreme thermodynamic conditions
[1]. Arguably the simulation study of observ-
ables such as the fluctuation measure of con-
served quantities like net charge, net baryon
and net strangeness will add an extra dimen-
sion to the future endeavor to characterize the
baryon rich environment. It is found that cu-
mulants of various order and their ratios are
directly proportional to the thermodynamic
susceptibilities and correlation length of the
“fireballs” produced in high-energy nucleus-
nucleus (AB) collisions. It has previously
been seen that the multiplicity distribution
(MD) of charged hadrons can be more suitably
described by a negative binomial distribution
(NBD) than a Poisson distribution (PD) [2].
In this paper we report a simulation study of
the cumulant ratios of the MD of conserved
quantities and compare the results with the
notional prediction of NBD and PD. Out of
a million minimum bias Au+Au events gener-
ated at Fla, = 404 GeV ({/snyn = 8.77 GeV)
by using the UrQMD code [3], only 0-10%
central events are chosen for our analysis.
The analysis is performed within the proposed
pseudorapidity range (1.5 < n < 3.8) of the
CBM detector set up [4]. The statistical un-
certainties are calculated by using the Delta
theorem [5]. In the subsequent analysis the
results are modified for the auto-correlation
effect [6]. The first few cumulants C,, y of the
distribution of a variable N are defined as,

Cin = (N), Con = {(6N)),
Con = ((6N)°),
Cun = <(6N)4> ~3 <<(5N)2>>2 (1)
Once we have the definition of cumulants, mo-

ments of the distribution like the mean value
(M), variance (0?), skewness (S) and kurtosis
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FIG. 1: An dependence of the cumulant ratios of
net charge distribution (0-10% centrality).

(k) are obtained as

2
M=Cy N, o°=0Cyn,
Cs N CuN

- (Can)® /2 " (Con)® )

We use 6N = N — (N) to denote the deviation
of N from its mean value (N). The cumulant
ratios are then constructed to eliminate the
trivial volume dependence of the cumulants,

Cs.n o Cun
So=—""—, Kko"=—= 3
CQ’N CQ’N ( )

In FIG.1 we plot the volume independent
cumulant ratios for the net-charge distribu-
tion as a function of An at different pr in-
tervals. Corresponding NBD (clan structure)
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FIG. 2: An dependence of the cumulant ratios of
net baryon distribution (0-10% centrality).
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and PD (independent emission) predictions
are included. The So values gradually in-
crease with An, while the xo? values, often
associated with large statistical errors, fluc-
tuate around ko? = 1. In FIG.2 the So
and ko? values are plotted against An for the
net baryon number distribution. At FAIR en-
ergy the antibaryon yield is quite low and the
baryon production is largely influenced by nu-
clear stopping. With increasing An a decreas-
ing trend in the So and ko? values is observed.
For both So and ko2 NBD appears to be a
better approximation than the Poisson base-
line. In FIG.3 we have plotted So and ko?
for the net strangeness distribution. While
So shows an increasing trend with increas-
ing An, the ko? values once again fluctuate
around ko? = 1. Deviations from both NBD
and PD expectations are observed at large An.
It is believed that the global charge conserva-
tion principle plays an important role that in-
fluences the evolution of the cumulants in the
n-space. In some cases the acceptance depen-
dence of the C,, ratios is better described by

the NBD, which indicates the presence of a
clan/cluster structure of particle production.
However, no specific indication of any exotic
state can be conjectured from the UrQMD re-
sults presented in this analysis. To set a ref-
erence baseline for the real experiment a more
detailed treatment of the simulated data with
a larger statistics is perhaps what is needed.
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FIG. 3: An dependence of the cumulant ratios of

net strangeness distribution (0-10% centrality).
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