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The decays governed by the flavor-changing-neutral-current (FCNC) transitions, such as
b — s€*¢~, provide an important tool to test the physics in and beyond the Standard Model
(SM). This work focuses on investigating the FCNC process B, — D* (— D) €T¢~ (£ =
e, i, 7). Being an exclusive process, the initial and final state meson matrix elements involve
the form factors, which are nonperturbative quantities and need to be calculated using spe-
cific models. By using the form factors calculated in the covariant light-front quark model,
we analyze the branching fractions and angular observables such as the forward-backward
asymmetry Agg, polarization fractions (longitudinal and transverse) F7(r), CP asymmetry
coefficients A;, and CP-averaged angular coefficients S;, both in the SM and in some new
physics (NP) scenarios. Some of these physical observables are a potential source of finding
the physics beyond the SM and help us to distinguish various NP scenarios.

Subject Index B51

1. Introduction
Several results from the last few decades have some (1-3)o disagreement with the Standard
Model (SM) results, and the flavor-changing-neutral-current (FCNC) processes involving b —
s are the pertinent ones here. The Glashow-Iliopoulos—Maiani (GIM) mechanism allows these
transitions at loop level in the SM, and due to their strong suppression within the SM, exclu-
sive and inclusive b — s¢ ¢~ decays are potential probes of short-distance physics. Also, their
sparkling sensitivity to new physics (NP) particles makes them a harbinger to study the NP
indirectly [1]. In 2013, the observation of tension by the Large Hadron Collider beauty led to
the assumption of the presence of NP [2]. In 2014, another dilemma was confronted within the
SM, namely, the suppression of the ratio Rg for B — K¢~ (£ = e, u) at low dilepton invari-
ant mass and for the consistent description of these anomalies resulted in the presence of NP
[3]. Additionally, the calculated value of the branching ratio of B, — ¢u ™) [4] was small
compared to the SM observations [5,6].

One of the most optimized observables (Ps) in B — K*u*u~ decay has shown a mis-

match with the SM predictions [7,8]. The Yukawa sector of the SM was also scrutinized
B(B—>K<*)p,+;f)
B(B—>K(*)e+e‘)
ous bins of the transferred square momentum, i.e. ¢> = (p¢+ + pe-)* and almost 3o devia-
tions from the SM predictions were recorded at the LHCb [9-11]. However, the situation

by measuring the Lepton Flavor Universality (LFU) ratio Rge) = in vari-
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changed after the latest measurements of LHCb in the low and central ¢* region [12,13],
bringing the LFU ratio into agreement with the SM predictions. Motivated by these ten-
sions, several theoretical studies were performed for the complementary exclusive decays B —
(K1 (1270, 1430), K5 (1430), f5(1525)) 7€~ in the SM and various NP models [14-22]. The
semileptonic decays involving tauons initially received less attention than the muon and elec-
tron in the final state. This situation has now changed, and after experimental improvements,
these decays are in the limelight now [23-27]. Theoretically, to scrutinize the various NP models,
the semileptonic B-meson decays occurring through the FCNC transition b — (s, d)t"t~ have
been investigated in several studies, see e.g. Refs. [28-36]. In contrast to the ordinary B-meson
decays, the B. decay may proceed through the weak decay of either of its heavy constituents,
i.e. b or ¢, and the other will play the role of spectator. It can also decay virtually to the W+
boson, and its lifetime is almost one-third of that of the B°, BT [37-39]. Recently, using the
9fb~! data of the proton—proton collision at the LHC, the LHCb has performed searches for
BY — Dfutp~ decay, but these have not observed any significant signal in the nonresonant
dimuonic mode. The upper limits on % x B(Bf — Dfptu™) < 9.6 x 1078 are set with 95%.
Here, f¢ and f* are the fragmentation fractions of a B meson having ¢ and u quarks [40]. As
D7 needs to be rebuilt from the Dy meson experimentally, it will be a little tough to measure
B, — D¢~ but the situation can be made better with an upgrade in the high luminosity of
the LHCD in future.

On theoretical fronts, the semileptonic B, — D7 decay was studied in several approaches, e.g.
the light-front quark model (LFQM) [41], the perturbative quantum chromodynamics (pQCD)
approach [42], the QCD sum rule [43,44], the constituent quark model (CQM) [41], etc. In the
SM, the branching ratio for the electron and muon mode is calculated to be of the order of 103
while for the tau it is 10~%; in particular, various physical observables of B, — D*u*u~ decay
have been calculated in the SM and beyond in Refs. [45-47]. Including the t leptons in the final
state, B, — D*¢*¢~ has been studied in Ref. [48], where Li and Liu have calculated the form
factors in the covariant LFQM approach. Also, the full calculation of the angular distribution
of the quasi-fourfold distribution B, — D} (Dm) ¢*¢~ has been done to study various physical
observables.

As a follow-up of the study presented in Ref. [48], using their form factors, we will first ana-
lyze the branching fractions and angular observables such as the forward-backward asymmetry
Apg, polarization fractions Fy(r), and CP-averaged angular observables (S;, 4;) both in the SM
and beyond. For the physics beyond the SM (BSM), we used the latest model-independent
global fit to b — s¢*t¢~ observables which include the latest measurements by the LHCb of
observables of B, — putu~, By > ¢utu~, Rgk,, and Rg- and added the 254 observables to
find the pattern of the NP that successfully explains the data [49]. We hope our findings will
complement the various asymmetries observed in FCNC decays.

The structure of this paper is organized as follows: Following the introductory section, we
present the angular distributions of the quasi-four body decays B, — D (— D,r){*¢™ in
Sections 2 and 3. In Section 4, we introduce the form factors derived by the covariant LFQM
in Ref. [48]. Section 5 presents numerical results for several observables in the SM and next-
generation physics using NP models 50. Finally, this paper ends with an outline.
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2. Effective Hamiltonian in SM and BSM

The low-energy effective Hamiltonian for b — s ¢~ in the model-independent way is written
as [51],

Hagr = — 298 [xu (C1 (O = Of) + C (05 — O%)) + 2 Y cl-a} : (1)
\/z ie
where A, denotes Vy Ve and J = (1, 2., 3...8, 79,910, 1010, SIV, PI", T1"). V;; stands for
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and the Fermi constant is repre-
sented by Gr = 1.16637 x 107> GeV~2. C;(1v) are the Wilson coefficients that tell us about the
strength of the interaction and O; are the four fermion operators while j is the renormalization
scale. Particularly, O, , are the current-current operators, O3;_¢ are the penguin operators, O7 g
are the electromagnetic operators, and Oy o are the semileptonic operators and their corre-
sponding Wilson coefficients describe the coupling strength between the respective quarks and
charged leptons at the factorization scale u = my,. Short-distance physics is encoded in Wilson
coefficients of higher-dimension operators. In the SM, the effective Hamiltonian contains ten
operators with specific chiralities due to the V-A structure of weak interactions where the heavy
degrees of freedom are integrated out, and we are left with only the operators set, describing
the long-distance physics [52].
Here, the effective Hamiltonian used has the following form:

_ 4GFr 7 Y 2my oy -
Herr (b — stte7) = —szmeE |:S (Cgff(qz, w)y"Pr — 7(77“(#)10“ (]uPR) b(Ly,t)
+ Cro(w) (Sy* Prb) (£y*yst) i| (2

where P, and Pg stand for the left and right projection operators, respectively, c#” = i(y*y" —
y'y#*)/2, and «, stands for the electromagnetic coupling which is % The operators have the
form,

e 5 v
07 = me (SO'MUPRb) F* ,

2

e B _
Oy = —— (nupib) (Ir"1).

2

e _ -
O = 7 (vsPLb) (ly“l) . 3)

Here, operator O7 represents the interaction between photons and quarks whereas Og 1y rep-
resents the interaction between quarks and leptons, respectively. C?ff and C;'ff are represented
by

G () = Cr() + Gy (1)
C (G, 1) = Co(i) + Co per(q*, 1) + Co. (¢, 1), )
where C,

bossy (w) results from the following interaction: b — scc — sy [53]. Cg,pm(qz, w) and
Cy.cz(q%, 1) represent the short- and long-distance contributions, respectively, as Cy pert(¢°, 1)
results from the one-loop matrix element of the four fermi quark operators O;_¢. It can be
calculated at leading order within perturbation theory while Cy .z(¢>, i) relies upon the external
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hadron states. Putting everything together [54]:

Vit ()’zz =Sy = 2) 3Yz2 log y,
8 (v — 1)’ 4@y, -1

and the mass scale = my.

2
Chy, (1) = iaty [gn%‘s‘ - 0.1687> ~0.03 x Cz(u):| )

as(mw)

. m?
Wlth y[ — ﬁ’ )” = O(S(lj,) ,

Copert(5. 11) = 0.1240 () + & (1. §) Cpo + A [g (e, §) — 2 (0, §)]
|
X (3C (n) + G () — 78 (0,8) (Cs () + 3C4 (1))
|
— 58 (1, §) (4C3(p) + 4C4 (1) + 3Cs(w) + Co(p))

2 2 2 2
+ ng(u) + §C4(M) + §C5(u«) + §C6(u), (6)

where § = 31—22, m, =2< and C(u) = 3C135(1) + Cra6 (). The Wilson coefficients are cho-
b

my°
sen at u = my and their numerical values read as C; = —0.226, C, = 1.096, C; = 0.01, C4 =
—0.024, Cs = 0.007, Cs = —0.028, C; = —0.305, Cs = —0.15, Cy = 4.186, C;p = —4.559 [55].
In the Wolfenstein representation, the A, has the following form [56]:

o R =22 (p — im), (7
and A = 0.22500 4 0.00067. Here the function w () is defined as [57]:
R 2, 4 (Slog(l —u) 2. . R 5445 R
=—= - | ——du— -logSlog(l —§)— ————log(1 —
w (8) 971 + 3/0 ” u 3 ogslog(l —3) 30129 og(l —25)
25 (1 +8) (1 —25) . 5495 — 657
- ~2 — 1logs ~ ~ 0 (8)
3(1—=5)"(1425) 6(1—25)(1+25)
and the functions g(z, §)have the form [58,59]:
R 8 8 4 2 1+ 11— . 422
g(z,95) = —§10g(z)+ﬁ+§y—§(2—|—y)\/|1—y X {log ﬁ% —m} for yETf <1
8 8§ 4 2 1 422
2(2.8) = —5log(2) + 3= + 5 — 5 (2+3) /T =y x 2arctan 7= for y= j -1,
)
which for ¢ = 0 becomes:
8 8 4 4
8(0.5) = 3 — 5 log (%) — 5 log$+ 5. (10)

The Cg’cg( #o) has the contributions from the intermediate light vector mesons and vector char-
monium states [60]:

3
Coex(qte) = —a—’g{c w Y

Vi=J /Y, ¢ (25), ...
my, B(V; — 1+z)r,,}

2 492 ;
q mVj—l—lmVjFVj

mVIB (Vl — l+l_) I'y,

q* —mj, + imy, Ty,

— 1,80.9)(3C1 () + Co(w)

2

Vi=p,o,...

(11)

where my, and I'y, represent the mass in GeV and the total decay rate of the particular resonance
particle in MeV, respectively. These values are taken from the Particle Data Group [61] and
represented in Table 1.
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Table 1. Properties of resonances and the values of input parameters involved in effective Wilson coef-
ficients [48].

B(V; —
Vi my; Ty, ey x 1073
P 0.775 149 4.635
1) 0.783 8.68 7.380
0] 1.019 4.249 2.915 x 107!
i 3.097 0.093 5.966 x 10+
¥(2S) 3.686 0.294 7.965 x 1072
W(3770) 3.774 27.2 9.6 x 107!
l[/(4040) 4.039 80 1.07 x 10—'_1
Iﬁ(4160) 4.191 70 6.9 x 107!

3. Angular distributions and the observables
By definition of the transition probability amplitude,
(D5 (P2)I57,.bIB(P))) = €rvape™ P ¢ e,
(DI (pN5yuysbIB(p) = —i[e,f (%) + €. P (Puas (4°) + qua— ()] . (12)
where P, = pﬁ) + pgf) and ¢, = pﬂ) - pf). Also, € represents the polarization vector of the D7
meson. The expression of amplitudes in the Bauer—Stech—Wirbel (BSW) form [62] is as follows:

1

D* Q)= b|B, My — » *V po ‘BV 2’
(DS (p'7)I57ub|Be(p™)) e (q)
* P

D* ()5 bIB.(pV)) = i 4 () — €. P oA (2

(D (P)5y,ysbIBe(p')) = i | (m1 + ma) € 41 () e 2 (77)
e*.P ) )

—2mo= g [ 43 (0) = Ao ()] | (13)

where the mass of the B, meson is my, while the mass of the D} meson is m,. Additionally,
tensor current amplitude is defined as [63]:

(DE(p?)5i6" 4,01 B(pV)) = Ti(q*)eapune: PP,

(D3 ()50 g,y S| B(p ) = iTs (¢7) [ (nr} — m3) ) — €.qP |
P
Ty (%) *.q | gy — —— | 14
+iT5 (¢%) € q[qu m%_m%] (14)

Here, V(¢%), 41 (4%) . 42 (¢%) . A3 (¢*) . 4o (¢*) . T1 (¢%) . T2 (¢*) . T3 (¢*) are the form factors
[64-66]. By using the above definitions of the matrix elements, the invariant amplitude is written
in the following form [48]:

M s+, 51-) = (Dyrr; 17 (54 )1~ (51- )| Herr| Be)

1
= Z 2 5= Mp: . (5v) (D} (sp) 17 (sp+) I (s57-) [Herr| Be). (15)
— Mp:

Sy 8

where Mp: -, pr is

Mbp: - pa = —igpip,€" P}, (16)
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Table 2. The helicity combinations that correspond to different angular

distributions.
i Ji(¢) 1i(0,6,, )
2 2

Is (3 -2 (’AH + [A[ + AR + AL >+ sin® 0

diRe [ AL A% + AL AL ]
lo A+ AR + 4y (| +2Re[A0AO*]) cos? 0
2s B} (‘AH - |Af| + ‘AH + |Az] ) /4 sin 6 cos 26,
2¢c —B? (’AO |2 + A% |2) cos® 0 cos 26,

2

3 <|AL )A"‘ + | AL - ’AH )/2 sin’ 6 sin” 6; cos 2¢)
4 BiRe [A%AL + A%A%] / V2 sin 26 sin 26, cos ¢

V2B Re[A) AL, — A% A% sin 26 sin 6; cos ¢
6s 2B/Re [AEAE - A%Aﬁ*] sin 6 cos 6
7 V28 Im [AOLAL - A%AL*] sin 26 sin ; sin ¢
8 BHm [A) AL — AYAR] / V2 sin 26 sin 26, sin ¢
9 B71Im [AL.Af + Al *Aﬁ] sin’ 6 sin® 6 sin 2¢

Using the effective Lagrangian approach for the calculation, the amplitude has the following
form:

M (s, 5-) = Z o MDMDS,, (sV)|:CeffHV Ay )L (s, 8-, z)— 7 TS (510, 1)

L (5o, 51,0+ CooH "™ (s, O L (sye, 50, 0) = Y (C;“H” (5w AL (s, 51-, 1)

=0, +
2;nbceffHT+T5 (SV,)\.)L (.S]+ Si— ,)\)-f— Cl()HV - (SV,)\.)L (Sl+ S-, )\,))i| (17)
In this equation, N = % and a factor of comes from the right- and left-hand projection

operators mentioned in Eq. (2). Helicity amphtudes are mentioned in Ref. [67]. Finally, by using
the effective Hamiltonian as mentioned in Eq. (2), the simplified form of angular distribution
as deduced in Ref. [68] is

d*r
dq? dcy dcy, dqb 32

ZJ(q )f1(0. 61, ), (18)

where ¢y represents cosf. Each of these is mentioned in Table 2. In the given scenario, the
angle 0 represents the deviation between the direction of pion emission and the —Z rest frame
direction of the D} meson. Similarly, 6; denotes the angle formed by the £~ particle with the +2
rest frame direction of the £7¢~ pair, and ¢ is the angle made between the planes of the decay
as presented in Fig. 1.

6/16

¥20Z J9qWan0N g1 UO Jesn ASTJ U0JJ0IYoUAS usuoupe|3 sayosined Aq LG161.82/909€01L/0L/#20g/a10nle/ded/woo dno-ojwepeoe//:sdiy wolj papeojumoq



PTEP 2024, 103B06 H. Waseem and A. Hafeez

Fig. 1. Scattering kinematics of quasi-fourfold distribution [48].

The corresponding amplitudes for the particular polarizations have the parametrized form
and are the functions of ¢ [69].

AL () = Niy 28, [ (G5 Cuo) (1 + m2) A1 (47) + 200G (i =) T3 () ]

N;/2Np: A (m?, m3, ¢*
A g (7) = W«/q_z {(Cgff ¥ ClO) [(m% —m5 =) (m +my) A (¢7) — ﬁzﬁlz (4°)

A mZ’mZ’ 2
§ oyt [on% $3md— ) Ty () — e ) g (ﬁ” ’

/5 (mz’mz’ qz)
W@5=2MJﬂ%r——§?i—4%AMfy (19)

where
Ny = GV
4 piN2
8«/Xq2 4m%
Nppo=——"—— |1 — —LB(D* D). 20
b 3 x 25673m] q* (D7 — D) (20)

Regarding the conjugated CP mode, B — D*" (— D,x)I*]~ weak phase conjugations of
the CKM elements lead to
AT 9
dg* dcg dcg, dp 327

Zﬂﬁm&w@ (21)

with the substitutions as Jl(c,s),2(c,s),3,4,7 — jl(c,s),2(c,s),3,4,7 and J5,6s,8,9 — _J_5,6s,8,9~ By doing in-
tegration over the angles in the domain 6 € [0, 7], 6, € [0, 7], and ¢ € [0, 2], the differential
width becomes only the function of ¢, so,

ar 1

d—q2 = Z(3ch+6J1S_J2c_2JZS)' (22)
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A similar expression results for the conjugated mode of the transition so that the CP-average
differential decay width can be written as,

dr 1 (dr dr
—==|-—=+—-—=). 23

dg* 2 (dq2 i dqz) =
To disentangle the CP-conserving and -violating effects, CP (angular S; and asymmetry angular
A;) coefficients are defined as

S _ Ji+Ji
" d(D+T) /dg*
Ji—Ji
Aj=—"—-1 24
d(T'+T)/dg? 29

where J;’s are the angular coefficients defined in Ref. [48]. Several observables can be constructed
from these J; coefficients, and these quasi-four body processes are sensitive to NP. Other physical
observables can be calculated such as forward-backward asymmetry 4gg, and longitudinal and
transverse polarization fractions F7r) of Di mesons. This we have done in the next few sections.

4. Observables and form factors

The Standard relation for the CP asymmetry lepton forward-backward asymmetry is,

! ! ! 2 d* (1 +T) 3
AFBzz—_/d Q/d 0 d = — A,
cp (q ) d (F + F) /dg> % _1 oS _1 €08 0 ¢dq2dcosedcos<91d¢> 476
(25)
whereas the CP-averaged forward-backward asymmetry is,
2 3
Aps (¢°) = Zsé- (26)
The polarizations are defined as
1
Fi=y (3S1c — S20),
1
Fr=3 (3815 — S2).- (27)

We also focus on the LFU ratios as these are important to trace out NP, i.e.

f(m]—mz)z dr (Be— D} (— Dy )t ™) qu

Rie — T4 a7
(my—my)? dF(Bc—>D§‘(—>DS7r)e+e*) da? ’
f4p,2 dqz q
[mm) dr(EoDi D) o
R = : (28)
(mi—my)> dT(Be— D (—Dym)ut ) p .
4p? dg? q

The form factors used in this work are taken from Ref. [48], in which entities are derived using
the covariant LFQM, which is considered best for exploring mesons and baryons. This model
requires initial mesons to be on the shell compared to conventional LFQM [70,71]. They use the
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z-series parametrization form for the form factors to perform analytical continuation [72,73].

F (O) {1 + a |:(Z(q2) _ Z(O)) _ % (Z (q2)3 _ Z(0)3>:|

F(¢*) =

2
pole

+as [(z () - z(0)2) n % (z —2(0)} } ] (29)

where a; are the fitting parameters in space-like region ¢°> < 0 and z ( ) is defined as,

m

\/(ml +my)’ — ¢ — \/(ml +m2)? — (my —m)’

\/(ml +m) — 2+ \/(ml +ma)’ — (my — mz)Z.

The values of free parameters a; and all the form factors at ¢*> = 0 are as given in Ref. [48].
Form factors for B, — D} are calculated by using different approaches in Refs. [74-76] but
here only central values are taken in the present analysis.

z(q’) =

(30)

5. New model benchmarks and parameters

For the SM Wilson coefficients we use, CSM = —0.305, C5M = 4.186, C5M = —4.559 which are
found at 4 = m,. By omitting the CKM unitarity, we can determine the CKM elements Vi V}
[77]:

)LZ
ViV = —Vcb[l -5 a —2/3+2iﬁ)] +0(19, (31)

so, we took
VoV = (41.4+£0.5) x 1072, (32)

The lifetime of B, meson t, = 0.510 psis taken from the Particle Data Group, and the branch-
ing fraction B (D;k — Dsn) = 5 x 1072, Finally, we found the CP-averaged differential branch-
ing ratios as calculated within the ¢> (GeV?) bin[1.1, 6.0] and other physical observables in the
different ¢> (GeV?) bins [1.1, 6.0], [6.0, 8.0], [11, 12.5], and [15, 17] for all the three generations
of leptons. The branching fractions of electron and muon are of the order of 10~® magnitude
whereas that for tau in the bin [15, 17] can reach up to 10~°. R*¢ is consistent with the SM pre-
diction, i.e. 1.00, and R™ = 0.3801. In the region [1.1, 6.0] GeVz, the branching fraction for
electron and muon is

B(B. — Di(— Dsw)ete™) oo =0.614 x 107,
B(B: = D (= Dsmt) " i0™) y ;609 = 0.616 x 107%,
B(Be — D} (= Dymt) T 77) 150 170 = 0-087 x 1077 (33)

This quasi-fourfold distribution provides the number of angular observables to check for NP
effects. So now we visit the NP models to trace out the NP. First of all, we here present the
Wilson coefficients we used to trace out the NP, and separation between NP effects is based on
the following shifts in values of Wilson coefficients and mainly the LFU NP contribution to

C}y; these are expressed as [78]:

W _ AU %
Co.10) = C.10) T C0,10);
U
Co.100 = Co.10 (34)
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Table 3. The Wilson coefficients in different new scenarios [49].

Wilson
Scenarios coefficients 1 o range Ax?
SI cy —1.08 £0.18 27.90
SII CcY =-Cf —0.50 £0.12 18.85
SIII Cy =-Cy —0.88 £0.16 26.92

Table 4. The Wilson coefficients in different new scenarios [49].

Wilson
Wilson coeffi-
Scenarios coefficients lo range pull  Scenarios cients lo range pull
C;; [-1.31,-0.53] 4.5 - C;L = [-0.27, —0.12] 3.6
_CIIBM
Sv cY =cf) [—0.13, 0.58] - SIX cy [-0.09,0.27] -
C{fm [—0.66, 0.07] - - - - -
Cg‘; = —Cl’(m [-0.33,-0.20] 4.1 - Gy [—-0.72, —0.41] 4.6
SVI cY =cy [—0.43, —0.17] - SX Cpy [0.05, 0.34] -
Gy [-0.43,-0.08] 5.5 - C;; [—0.82, —0.51] 4.6
SVII Gy [—1.07, —0.58] - SXI Cly [—0.26, —0.04] -
Cg‘; = _ClVoM [-0.18, —0.05] 5.6 - C?I}’L [—0.96, —0.60] 5.1
SVIII cy [—1.15,-0.77] - SX11 Gy, [0.22, 0.63] -
- - - - - Cy) [0.01, 0.38] -
- - - - - Cly [—0.08, 0.24] -

Table 5. Branching ratios in the bin [1.1, 6.0] GeV? and [15, 17] GeV? for the SM and different NP models.

Br(GeV~?) 7’ (GeV?) SM (10-%) SII(10-1°) SV(10719) SVI(10-19)

t=c [1.1,6.0] 0.614 [5.418,4.532]  [4.730,4.007]  [4.064,4.686]
t=p [1.1,6.0] 0.616 - [4.553,8.901]  [4.267,5.169]
t=1 [15,17] 0.087 [0.107,0.913]  [0.646,0.729]  [0.749,0.925]

where the Wilson coefficients C(lé,lo) are linked with the b — s¢£7¢~ (£ = ¢, 7) and ng’lo) is as-
sociated with b — st~ [49]. LFU NP is allowed in particularly C as it was commonly
held that these dropped out as the statistical point of view couldn’t justify their presence. Still,
their inclusion leads to a new paradigm. Vector couplings to muons are encoded in C§. LFU-
violating NP affects only muons ng’t = 0. Scenario VIII containing universal coefficient cou-
pling C§ together with the muonic part follows the SU(2),. invariance. These all are indepen-
dent of external hadron states and their momentum-energy relations. Here we consider the
values obtained from the complete data set and the three prominent 1.D NP scenarios and eight
D > 1 as presented in Tables 3 and 4.

Using the NP models mentioned in the above Tables 3 and 4, we assessed the physical observ-
ables in different ¢> bins and found significant deviations from the SM results. The calculated
branching fractions for the quasi-four body process in the range 1.1 GeV? < ¢ < 6.0 GeV?
for the electron and muon and in the range 15 GeV? < q2 < 17 GeV? for tau are mentioned in
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Table 6. Value of R™ in ¢? bin of [15, 17] GeV? in different scenarios.

[15,17] GeV? SM SII SV SVI
R 0.3801 [0.0589, 0.6627] [0.5790, 0.6748] [0.6706, 0.6351]

Table 7. Results of App in different ¢> bins for the three generations of leptons.

Observables q> GeV? SM SII SV SVI
App (£ = ¢) [1.1,6.0] 0057  [-0257,—0.175]  [-0.178,—0.062]  [0.081,0.194]
[6. 8] —0257  [-0.484,—0300]  [0.029.0.068]  [0.098,0.347]
[11,12.5] —0.381 [—0.463, —0.377] [0.078, 0.148] [0.194, 0.403]
(15, 17] 0294 [-0.174 —0.113]  [=0.004,0.036]  [0.049,0.127]
Aps(C=p)  [.160]  —0.056 _ [£0.253,0.244]  [=0.014, 0.044]
[6, 8] —0.256 — [—0.125,0.513] [—0.003, 0.140]
[11,12.5]  —0.380 - [0.263,0.393]  [0.037, 0.098]
[15. 17] —0.294 - [=0.121,0.192]  [—0.009, 0.032]
App(C=7)  [1.1,6.0] 0 0 0 0
[6. 8] 0 0 0 0
[11,12.5] 0 0 0 0
[15, 17] —0.154  [-0.036,—0.056]  [-0.002,0.010]  [0.014, 0.040]

Table 5 for all the relevant models. The mentioned scenarios exhibit significant deviations from
the SM results, imprinting the NP effects.

Resonant particles, and charmonium states J/v and 1 (2S) affect the widths greatly because
of large dilepton masses and small widths, whereas those above the DD threshold due to their
larger widths don’t contribute effectively. Charmless vector mesons are suppressed by the factor
Ay

We have investigated the physical observables, the lepton forward-backward asymmetry pa-
rameter, and the transverse and longitudinal polarization fractions. These observables (average
value) are calculated by using the following equation:

o EANE 8w
(e 8

min

(35)

Now we mention the numerical results of these observables, i.e. lepton forward-backward
asymmetry and polarization fractions, in Tables 7 and 8 for the respective decay for all the
relevant NP models in different ¢*> bins and the impact of LFUV-NP and LFU NP can be
observed as compared to SM results. It’s clear from the results that Rg and Rk~ deviate from
the corresponding ratios in the SM, signaling the presence of BSM theory. The ¢*> dependence
of these observables is represented in Figs. 2 and 3. The results depict the discrepancy between
the results of NP and the SM with large deviations showing that Agg, F7, and Fr are the best
probes to search for BSM physics in different ¢> intervals for the specific scenarios mentioned
in Table 4. Although no such measurements have been recorded experimentally, in the future,
the LHCDb can be expected to reveal the details of this quasi-four body decay to measure the
corresponding observables. The ratios of branching fractions in different models deviate from
1 in the case of electron and muon, representing that electron and muon are different particles
under the constraints of varying coupling strengths. Relative deviations of the observables of
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Table 8. Results of F; and Fr in different ¢° bins for the three generations of leptons.

Observables 7> (GeV?) SM SII SV SVI

(FL (€ = o)) [1.1,6.0] 0.870 0.099,0052]  [0.431,0.060]  [0.054,0.058]
(Fy (€ = e)) - 0.130 [0.901,0.948]  [0.569,0.940]  [0.946.0.942]
(F (€ = o)) [6. 8] [0.719] 0.433,0582]  [0.913,0.805]  [0.773,0.540]
(Fy (€ = e)) - 0.281 [0.567,0418]  [0.087,0.195]  [0.227.0.460]
(F (€ = o)) [11,12.5] 0.535 0.353,0331]  [0.635,0.369]  [0.354,0.334]
(Fy (€ = e)) - 0.465 [0.647.0.669]  [0.365,0.631]  [0.646.0.666]
(F (€ = o)) [15.17] 0.431 [0.401,0400]  [0.430,0.404]  [0.403,0.401]
(Fy (€ = e)) _ 0.569 [0.599,0.600]  [0.570,0.596]  [0.597,0.599]
(F, (£ = ) [1.1,6.0] 0.867 - 0.219,0.218]  [0.012,0.021]
(Fr (£ = ) - 0.133 — — _

(F, (£ = ) [6. 8] 0.719 - [0.822,0.284]  [0.574,0.146]
(Fr (£ = ) - 0.281 — — _

(Fi (£ = ) [11,12.5] 0.536 - [0.494,0.383]  [0.286,0.292]
(Fr (£ =) - 0.464 — — _

(F (€ = 1)) [15. 17] 0.432 . [0.412,0403]  [0.399,0.398]
(Fy (€ = p)) _ 0.568 - _ _

(FL (L =1)) [1.1,6] _ _ _ B

(Fr (£ =r1)) - - - - -
(FL(t=71)) [6, 8] - - - -

(Fr (£ =r1)) - - - - -

(FL (€= 1)) [11,12.5] _ _ _ -
(Fr(t=1)) - - - - _

(FL (€ = 1)) (15, 17] 0.458 (0.381,0.389]  [0.414,0.383]  [0.382,0.383]
(Fy (€ = 1)) - 0.542 [0.619,0.611]  [0.586,0.617]  [0.618,0.617]

% 1 \QT;wur‘ §: 0
Moo A Pl 8

0

W 16

T 0
¢4(GeV?)

(®)

Fig. 2. The branching ratios of B — D¥ (— Dx)¢*¢~,for ¢ = e, u, T asa function of ¢* in the SM and
various NP scenarios: SM (red solid line), SIT upper interval (blue solid line), SII lower interval (blue
dashed line), SV upper interval (purple solid line), SV lower interval (purple dashed line), SVI upper
interval (green solid line), and SVI lower interval (green dashed line) of the Wilson coefficients.

the respective models from the SM are calculated. For example, we found a 91.9% deviation of
the NP branching fraction from the SM value; for F7, the relative deviation is 91.3%.

All the other relative deviations concerning SM results can be calculated easily. The CP-
averaged coefficients S, Sac(s), and Sg serve as the best probes to search for the BSM. The
graphs in Fig. 3 depict variations of Fr, Fy, and Apg with ¢* and Tables 7 and 8 present the
results across different ¢ bins. In Fig. 3 and Tables 7 and 8, observables for the case £ =
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Fig. 3. The forward-backward asymmetry (a,b,c), and longitudinal (d, e, f) and transverse polarization (g,
h,i) of B— D*(— Dm)e*¢~, for £ =e, pu, T asa function of ¢* in the SM and various NP scenarios:
SM (red solid line), SII upper interval (blue solid line), SII lower interval (blue dashed line), SV upper
interval (purple solid line), SV lower interval (purple dashed line), SVI upper interval (magenta solid
line), and SVI lower interval (magenta dashed line) of the Wilson coefficients.

show some missing lines and data as compared to the other two leptons and the reason is that
SII doesn’t have C; 10» s some models don’t have all the C9U ’1,(; to satisfy Eq. (34).

6. Summary

The rare semileptonic decays have shown some deviations from the SM results, motivating us
to see if we can find some suitable way to interpret them. Using the latest measurements of
By — utpu~, By — ¢utpn”, Rk, and Rg- and adding the 254 observables, Alguero et al.
[49] found the pattern of the NP that successfully explains the data. Here, we studied the ef-
fect of these new couplings on the angular profiles of the decay B, — (Dj — Dn) ¢~ , where
we have studied the fourfold distribution of this decay in detail and extracted the various pos-
sible physical observables from the different angular coefficients. Central values are taken for
the form factors, so uncertainties associated with the form factors might show differences in
the future if considered. Being exclusive decays, the initial and final state matrix elements are
parametrized in terms of the form factors, which are nonperturbative quantities. We took the
values of these form factors calculated in the covariant LFQM [48], where the cascade decays
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with the e and u in the final state have been calculated with the branching ratio to be of the
order of 107%. Due to the phase space suppression, for the T case, the corresponding result
is O (107%) in ¢* =[15, 17] GeV2. When we used the NP Wilson coefficients from Ref. [49],
this LFU ratio with 7 to u showed substantial deviations from the SM results. The case is the
same for the other observables, i.e. the lepton forward-backward asymmetry and polarization
asymmetries. Hence, these can serve as potential probes to search the NP. We hope that in the
future, the experimental observations of these rare semileptonic decays at the LHCb and ded-
icated B-factories will help us to find suitable interpretations of these mismatches with the SM
results.
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