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ABSTRACT

Context. The average matter density within the turnaround scale, which demarcates where galaxies shift from clustering around a
structure to joining the expansion of the Universe, is an important cosmological probe. However, a measurement of the mass enclosed
by the turnaround radius is difficult. Analyses of the turnaround scale in simulated galaxy clusters place the turnaround radius at about
three times the virial radius in a ΛCDM universe and at a (present-day) density contrast with the background matter density of the
Universe of δ ∼ 11. Assessing the mass at such extended distances from a cluster’s center is a challenge for current mass measurement
techniques. Consequently, there is a need to develop and validate new mass-scaling relations, to connect observable masses at cluster
interiors with masses at greater distances.
Aims. Our research aims to establish an analytical framework for the most probable mass profile of galaxy clusters, leading to novel
mass scaling relations, allowing us to estimate masses at larger scales. We derive such analytical mass profiles and compare them with
those from cosmological simulations.
Methods. We used excursion set theory, which provides a statistical framework for the density and local environment of dark matter
halos, and complement it with the spherical collapse model to follow the non-linear growth of these halos.
Results. The profile we developed analytically showed good agreement (better than 30%, and dependent on halo mass) with the mass
profiles of simulated galaxy clusters. Mass scaling relations were obtained from the analytical profile with offset better than 15%
from the simulated ones. This level of precision highlights the potential of our model for probing structure formation dynamics at the
outskirts of galaxy clusters.

Key words. methods: analytical – methods: numerical – galaxies: clusters: general – cosmology: theory –
dark matter – large-scale structure of Universe

1. Introduction

Galaxy clusters, the largest gravitationally bound structures in
the universe, have long been recognized as valuable cosmo-
logical laboratories. During the past three decades, significant
advances have been made in understanding their composition,
dynamics, and integral role within the cosmic web. The well-
studied interiors of these clusters, particularly their relaxed
regions, have laid the foundations for our concordance model of
hierarchical structure formation. This progress has now extended
beyond the traditionally studied virialization regime to include
the kinetically driven splashback regions (Diemer & Kravtsov
2014; Adhikari et al. 2014; More et al. 2015, 2016; O’Neil
et al. 2021). However, the potential of the outer regions of
galaxy clusters, extending outside the splashback radius, into
the infalling region and beyond, remains largely untapped. These
outer reaches hold substantial promise for deepening our under-
standing of structure formation and cosmology.

Recently, the turnaround scale has received significant atten-
tion in cosmological studies (Pavlidou & Tomaras 2014; Lee &
Li 2017; Fong et al. 2022; Lopes et al. 2019; Capozziello et al.
2019). This scale represents the point at which galaxies transi-
tion from infall towards the central cluster to expansion with the
background Universe. In previous work (Pavlidou et al. 2020),
⋆ Corresponding author; gkorkidis@physics.uoc.gr

we identified the turnaround scale as a novel cosmological probe.
We showed that the present average matter density on this scale
(the turnaround density ρta) probes the overall matter content of
the universe, and that its evolution with time is influenced by the
existence of a cosmological constant. The turnaround scale has
thus the potential to provide new constraints on cosmological
parameters, complementary to the ones obtained from the Cos-
mic Microwave Background (CMB) (e.g., Komatsu et al. 2011),
Baryon Acoustic Oscillations (BAO)(e.g., Eisenstein et al. 2005),
and Type Ia Supernovae (e.g., Amanullah et al. 2010).

Our subsequent studies (Korkidis et al. 2020, 2023) con-
firmed the utility of ρta for testing cosmological models using
N-body cosmological simulations. However, measuring the
turnaround density in actual observations using current astro-
nomical surveys presents significant challenges. The radius
where galaxies join the Hubble flow has thus far been measured
for only a few nearby superclusters (Karachentsev & Nasonova
2010; Nasonova et al. 2011; Lee 2018). Accurately measuring
the total mass of galaxies at these scales presents an even more
formidable challenge. Several issues complicate such observa-
tions on a cluster-by-cluster basis, making the associated errors
unsuitable for precise cosmological analysis: (a) Accurate mea-
surement of the mass at the turnaround scale would necessitate
extensive spectroscopic and gravitational lensing surveys, map-
ping the galaxy distribution on very large scales around clusters.
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(b) In the context of the cold dark matter (CDM) model of struc-
ture formation, it is well-acknowledged that most of the mass
surrounding galaxies is dark and, for such small objects as galac-
tic halos, largely inaccessible; (c) Foreground and background
galaxy contamination at these scales is non-negligible and can
skew observations.

In this context, developing scaling relations that would allow
us to infer the mass at turnaround scales from well-established
observable masses becomes paramount. Current observational
techniques, such as X-ray, Sunyaev-Zel’dovich, and weak-lensing
surveys (Andrade-Santos et al. 2021; Bahar et al. 2022; Planck
Collaboration Int. III 2013; Sifón et al. 2016; Hilton et al. 2021,
2018; Ruppin et al. 2018; Gruen et al. 2014), in conjunction with
machine learning methods (see, e.g., Ho et al. 2019; Gupta &
Reichardt 2020, 2021; Armitage et al. 2019a,b), routinely iden-
tify clusters and measure fixed-overdensity masses (masses on
a scale where the average density of the cluster is a set mul-
tiple of the the mean matter density in the universe). These
overdensity masses scale well with each other, leading to the
plausible hypothesis that a straightforward scaling relation might
exist among all overdensity masses. The turnaround mass is also
a fixed-overdensity mass (for instance, in a ΛCDM cosmology
at z = 0, the turnaround mass corresponds to an overdensity
of δ = 11, see for example Korkidis et al. 2020). Identifying
the origin of these scalings could thus provide a straightfor-
ward path towards establishing scalings for the turnaround mass
as well.

One path to developing a predictive model for these scal-
ing relations may pass through the the mass profile of cluster
halos. Much of the effort in this field focuses on the cluster inte-
rior, resulting in the widespread use of common profiles like
NFW or Einasto (Navarro et al. 1996; Einasto 1965). These pro-
files were developed to describe the innermost parts of such
structures through extensive studies in cosmological simulations.
More recently, Diemer (2023) has proposed a model that fits
robustly the entire stacked density profile of simulated clusters,
both interiors and exteriors. In practice, such comprehensive
profiles could be leveraged to construct scaling relations.

In this study, we do exactly this, making use of a model
for the mass profile of cluster exteriors derived analytically
from first principles. The advantages of using an analytic
model for the profile are twofold. First, the derivation process
elucidates the physical processes that shape the profile. Sec-
ond, the profile parameters are directly and causally relatable
to cosmological and structure-formation parameters, without
the need for expensive runs of large suits of cosmological
simulations.

To derive an analytic relation for the (most probable) outer
density profile of galaxy clusters, we make use of the model for
the density distribution around dark matter halos proposed by
Pavlidou & Fields (2005). Our aim is to arrive to an explicit rela-
tion between the overdensity mass in the inner, relaxed portions
of cluster-sized halos and the overdensity mass in their outer
regions, including the turnaround scale.

This paper is organized as follows: In Section 2, we develop
an analytic formulation for the most-probable outer mass pro-
file of galaxy clusters, and we illustrate how mass scaling
relations can be directly derived from this formulation. In
Section 3, we detail the cosmological simulations employed in
our study to test our analytic profile, and describe the methodol-
ogy used to evaluate the performance of our analytical models. In
Section 4 we compare our derived profile with those obtained
from simulations and test the validity of the associated mass scal-
ing relations. Finally, in Section 5, we summarize our findings.

2. An analytic closed-form profile for cluster
exteriors

To build a model of the density distribution around cosmic
structures of varying masses, Pavlidou & Fields (2005) used
excursion set theory to derive a joint distribution of structures
with respect to mass and surrounding overdensity, thus provid-
ing a general, two-parameter statistical description. This double
distribution extends the Press-Schechter formalism by introduc-
ing a clustering scale parameter, β, which quantitatively defines
the “environment” around a structure of mass m to be a scale that
includes mass βm (including the structure itself, so β > 1). By
providing the statistics of the overdensity field as a function of
enclosed mass, the double distribution offers a path to deriving
the most probable density profile at large distances away from
cosmic structures – in other words, to understanding how inte-
rior cluster profiles merge into the background density of the
expanding Universe.

Models of the outer average density profile of clusters from
first principles were pioneered by Barkana (2004); Prada et al.
(2006); Betancort-Rijo et al. (2006); Tavio et al. (2008). Our
methodology, while not fundamentally divergent from theirs,
differs in four key choices. Firstly, in contrast to their use of
a “Lagrangian variable q” – essentially the enclosed mass in
units of radius – as an independent variable, we use the enclosed
mass itself. This choice not only allows for a more intuitive
understanding of our derivations, but, most importantly, straight-
forwardly leads to usable mass scaling relations. Secondly, we
employ a much simpler, while still accurate, approximation for
the transformation of linear-theory overdensities to spherical-
collapse ones, which was proposed by Pavlidou & Fields (2005).
This choice simplifies the calculations and results in a more
transparent closed-form expression. Thirdly, our focus is primar-
ily on the largest structures. This specificity allows us to omit,
with minimal error, corrections for structures engulfed by larger
ones, given the immense size and rarity of our targeted struc-
tures. Finally, we approximate the variance of the density field,
S (m), with a power law of the smoothing mass scale, m. This
approximation holds when concentrating on a limited range of
masses, as we do in our study, and it is critical in demonstrating
the (quasi-)universality of our derived profile. The cumulative
effect of these modifications is a significant simplification of
the mathematical framework without a significant compromise
in predictive power.

Building upon the work by Pavlidou & Fields (2005), we
extend their analysis by deriving the most probable density pro-
file as a function of collapsed mass from the double distribution.
In what follows, we summarize the mathematical formalism and
the assumptions employed in this derivation.

2.1. The double distribution

In Pavlidou & Fields (2005), a joint distribution is constructed
to describe the frequency, within a given volume, of collapsed
structures in specific intervals of mass and local overdensity.
The overdensity is defined as the density contrast with respect
to the average matter-density of the background Universe, cal-
culated on a smoothing scale enclosing mass βm (including the
central structure itself). It is labelled by the corresponding lin-
early extrapolated to the present time overdensity, denoted by
δ̃ℓ. Mathematically, then, the distribution provides the comoving
number density of collapsed, relaxed halos with mass between
[m,m + dm], residing within local overdensity in the range
[δ̃ℓ, δ̃ℓ + dδ̃ℓ]. The linearly extrapolated overdensity field δ̃ℓ
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corresponds to the overdensity field that would result if all struc-
tures continued to grow according to linear theory until the
present time. The mathematical representation for the double
distribution is the following:

dn
dmdδ̃ℓ

(m, δ̃ℓ, β, a) =
ρm,0

m

exp
[
−

δ̃2ℓ
2S (βm)

]
− exp

[
(δ̃ℓ−2δ̃0,c(a))2

2S (βm)

]
√

2πS (βm)
(1)

×

[
δ̃0,c(a) − δ̃ℓ

]
exp

[
−

(δ̃0,c(a)−δ̃ℓ)2

2[S (m)−S (βm)]

]
√

2π
[
S (m) − S (βm)

]3/2

∣∣∣∣∣ dS
dm

∣∣∣∣∣
m
.

In this expression, δ̃0,c(a) is the linearly extrapolated overdensity
of a structure collapsing at redshift z (scale factor a = 1/(1 + z)),
extrapolated to today; δ̃ℓ is the linearly extrapolated overdensity
of a sphere enclosing the central collapsed structure, extrapo-
lated to the present time; and S (m) is the variance of the density
field when smoothed on a scale that encloses mass m. One
implicit assumption made in Eq. (1) is that for steps in mass
∆m, the density variance ∆S(m) (and hence, the density contrasts
∆δ̃ℓ(m)) are uncorrelated (see Appendix A, for a more involved
discussion).

The use of linearly extrapolating overdensities in the deriva-
tion of Eq. (1) is necessary for the treatment of halo statistics
to remain analytically tractable. However, before Eq. (1) can
become predictive for structures residing in the real, non-linear
density field, we have to relate these linearly extrapolated over-
densities to their non-linear counterparts. To this end, we use
a relation introduced in Pavlidou & Fields (2005) which con-
nects linearly extrapolated overdensities δ̃ to overdensities δ
determined using the spherical collapse model:

δ̃a ≈ δ̃c
[
1 − (1 + δa)−1/δ̃c

]
, (2)

In Eq. (2), δ̃a is an overdensity linearly extrapolated to time a,
δa is the real overdensity at that same time a, and δ̃c is the
overdensity of a collapsing structure linearly extrapolated to the
time of collapse. The central assumption of the spherical col-
lapse model in that the matter surrounding each overdensity is
distributed isotropically and follows radial motion during its col-
lapse. This relation is universal for all structures and all times of
collapse. Eq. (2) has the correct asymptotic behavior both at low
and high values of δa, and is accurate to few percent throughout
its domain.

2.2. From the double distribution to the most probable profile

Another way to state the content of Eq. (1) is that, for a given
central collapsed structure of mass m at a cosmic epoch a, the
double distribution describes the probability distribution of over-
densities δ̃ℓ around structures of that mass m, in spheres of
increasing mass βm. We can then derive a profile (a function of
βm) of maximum-probability (linearly extrapolated) overdensity
– the maximum probability profile. Mathematically, this profile
is simply derived by differentiating the double distribution with
respect to overdensity, and setting that derivative to zero.

In what follows, we describe a series of simplifications, both
to the double distribution itself, and to the profile derivation
process, that result in a simple, intuitive, closed-form profile,
without significant loss of accuracy.

Simplification 1: dropping the structure-in-structure cor-
rection. In Eq. (1), the factor:

exp
[
−

δ̃2ℓ
2S (βm)

]
− exp

[
(δ̃ℓ−2δ̃0,c(a))2

2S (βm)

]
√

2πS (βm)

represents the fraction of points in space that, when smoothed
on a scale βm, have a overdensity δ̃ℓ. The role of the second
exponential in the fraction is to correct for points in space that
are in fact part of a collapsed structure on a smoothing scale
larger than βm. In random walk theory, this is referred to as the
existence of an absorbing boundary at the collapse overdensity
δ̃0,c(a). For scales much larger than galaxy clusters themselves,
it can be shown that the second exponential, already for β > 1.2
(for reference, turnaround is predicted to be around β > 1.6) is
less than 20% of the first term. Dropping it can significantly sim-
plify the final expression, and we do so for the remainder of this
paper.

Simplification 2: first differentiate, then convert to non-
linear overdensities. As discussed earlier, Eq. (1) depends on
the linearly extrapolated overdensity. Strictly speaking, in order
to derive the most probable profile, we must first perform a
change of variables using Eq. (2) to recast the double distribution
in terms of δℓ, and then differentiate to obtain the value of δℓ as
a function of βm where the distribution reaches its maximum.
However that would significantly complicate both the algebra
involved, and the final resulting expression. Instead, we will
adopt the approximate path of first calculating a most-probable
profile of linearly extrapolated over-densities by differentiating
Eq. (1), and then use the conversion relation (Eq. (2)) to con-
vert the profile of linearly extrapolated overdensity to profile of
non-linear overdensity. Physically, this would be equivalent to
determining what the most probable density profile around a
structure that has collapsed today looked like in the early Uni-
verse, when the density field was still in the linear regime; and
then, evolving that early most-probable profile forward in time,
using the spherical collapse model. We expect some inaccuracy
– which we will evaluate through comparison with simulations
– to stem from this choice, since the “most-probable profile” is a
statistical quantity and does not represent, as a whole, the density
profile around a single real structure (see discussion of the “typ-
ical profile” in Betancort-Rijo et al. 2006, and also in Barkana
2004 for a discussion of similar strategies).

Differentiating Eq. (1) with respect to δ̃ℓ, using the simpli-
fications discussed above, and setting the result equal to zero
returns the following simple expression for the most probable
profile of overdensity linearly extrapolated to the present cosmic
time:

δ̃ℓ = δ̃0,c(a)
S (βm)
S (m)

. (3)

We note that δ̃0,c(a) is the overdensity of a structure collapsing
at time a, linerarly extrapolated to a = 1 (today). It is related
to δ̃c (the overdensity of a structure collapsing at a extrapolated
to time a, a universal value for all epochs a) through δ̃0,c(a) =
δ̃cD(1)/D(a), where D(a) is the linear growth factor at redshift a.
Using this relation, we can rewrite Eq. (3) in terms of quantities
extrapolated to the time of collapse of the central structure a:

δ̃ℓ,a = ˜δ, c
S (βm)
S (m)

. (4)
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Finally, we use Eq. (2) to convert the δ̃ℓa to δℓ(a). This is now
possible, because both the linearly extrapolated and the nonlinear
(spherical collapse) overdensities are calculated at the same time
a. This yields

δ̃c
[
1 − (1 + δℓ)−1/δ̃c

]
= δ̃c

S (βm)
S (m)

. (5)

Solving for δℓ we get

1 + δℓ =
[
1 −

S (βm)
S (m)

]−δ̃c
, (6)

which we can confirm has the correct asymptotic behavior, going
to ∞ when β = 1, and going to 1 (i.e., δℓ = 0, average matter-
density of the universe) when β → ∞. We can also express this
equation in terms of average densities within a sphere including
mass βm (instead of overdensities),

ρavg(β) = ρm

[
1 −

S (βm)
S (m)

]−δ̃c
, (7)

where ρm is the average matter-density of the Universe at the
desired redshift.

We can simplify Eq. (7) even further if the variance of
the density field can be approximated as a power law in mass,
S (m) = m−γ, with −γ = d ln S/d ln m (in Appendix A we explore
the legitimacy of this assumption). With this substitution, we
obtain

ρavg = ρm
[
1 − β−γ

]−δ̃c = ρm,0a−3 [
1 − β−γ

]−δ̃c . (8)

Put in words, up to the validity of all the approximations we have
discussed so far, the average matter density of a sphere enclosing
mass β times central galaxy cluster mass (so β > 1 always), nor-
malized to the mean matter-density of the universe at the time
of observation, is universal, and equal to (1 − β−γ)−δ̃c . For very
large β, this profile asymptotes to 1 (i.e., eventually the matter
density of increasingly large spheres encompassing the cluster
eventually tends to the average matter-density of the Universe at
the time of observation). For β → 1, the profile asymptotes to
∞, as is the expectation in the spherical collapse model, where
a structure collapses to a singularity. In practice, this means that
the validity of this (outer-region) profile will break down at some
β > 1, to be determined by comparison with simulations.

2.3. Mass scalings

The very existence of a universal average density profile depen-
dent only on β (and not on m) implies that the virial mass will
scale with any other “constant overdensity” mass that is larger
than the virial mass itself. If, then, we take the virial (collapsed,
relaxed) mass of the central cluster to be the usually-assumed
m200 (i.e., a mass enclosed within a sphere which is, on average,
200 times denser than the average background-matter density of
the Universe), and mX to be a different fixed-overdensity mass
(a mass enclosed in a sphere X times overdense with respect to
the background Universe, with X < 200), it is straightforward to
derive a scaling between the two. In order to see this we solve
Eq. (8) for β to get:

β =

1 − (
ρavg

ρm(a)

)−1/δ̃c
−1/γ

. (9)

So now any constant overdensity criterion ρX = Xρm(a) will
yield a specific value for β (a value independent of m, and so
the same for clusters of all masses) :

βX =
[
1 − X−1/δ̃c

]−1/γ
. (10)

And thus the sphere of average overdensity ρX = Xρm(a) will
most probably contain a mass βXm (“most probably” because
our formalism yields the most probable average density pro-
file). Then, the most probable scaling of mX with m (i.e., most
commonly, with M200), will be

mx = βXm =
[
1 − X−1/δ̃c

]−1/γ
m. (11)

This will also hold for the turnaround mass, since the turnaround
density is a constant for a given cosmology and a given redshift
(for example, for the concordance ΛCDM cosmology today, X =
11 for the turnaround mass).

Mta =
[
1 − X−1/δ̃c

ta

]−1/γ
M200. (12)

This means that we have a theoretically predictable scaling
between M200 and Mta, for any cosmology. Because γ has a slight
dependence on mass, the logarithmic scaling between masses is
expected to have some tilt compared to the the Mta ∝ M200 line.

Similarly, we can derive a scaling between any two overden-
sity masses, say mX and mY , defined as the masses of spheres
with average matter density Xρm(a) and Yρm(a), respectively,
provided that both X and Y are lower than 200 (or whatever the
threshold for the virialized part of the cluster is taken to be):

mX =

1 − X−1/δ̃c

1 − Y−1/δ̃c

−1/γ

mY . (13)

Detailed recipes for deriving the values of γ and δ̃c used in this
work are given in Appendices A and B, respectively.

3. Simulations and methods

In this section, we discuss the simulations used for testing the
validity and accuracy of the analytic profile and the predicted
mass scalings. We present the criteria we adopted to select our
halo sample, and the methodology we used to construct the most-
probable average mass profiles for these halos.

3.1. Simulation overview

To validate our analytical models against realistic, simulated
average mass profiles of dark matter halos in cluster-sized sys-
tems, we used the same cosmological simulations as in our prior
work (Korkidis et al. 2023; a more in depth presentation of the
simulation can be found therein). This includes the large-box
concordance ΛCDM MDPL2 simulation (1000 h−1 comoving
Mpc on a side, particle mass 1.51 × 109h−1M⊙), and the Virgo
consortium simulations, with identical 239.5 h−1 Mpc – sided
boxes for three different cosmologies [a concordance ΛCDM, a
no-Λ Ωm = 0.3 (OCDM), and a “standard” Ωm = 1 flat CDM
(SCDM)], and particle masses equal to 6.86 × 1010 h−1 M⊙ for
the ΛCDM/OCDM, and 22.7 × 1010 h−1 M⊙ for the SCDM
respectively.
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Fig. 1. Average matter density (in units of the background-Universe
average matter density) within concentric spheres around MDPL2 z = 0
cluster-sized halos, as a function of mass that is enclosed in each sphere.
The colorscale encodes the number of lines per pixel on the plot. The
enclosed mass is normalized to M200, so all profiles converge at an aver-
age density 200 per the definition of M200. The red solid line depicts the
profile mode. The independent variable M̃ = M/M200 is equivalent to β
in the analytic profile of Eq. (8).

3.2. Building the profiles

The profile that we derived in Section 2, described the most
probable profile of the average matter density within concen-
tric spheres of increasing enclosed mass, as a function of that
enclosed mass. To compare the analytical predictions against
the simulated data, we analyzed the matter distribution around
1000/900 randomly selected galaxy-cluster-sized (M200 ≥ 8 ×
1013 M⊙) dark matter structures from each of the MDPL2/Virgo
simulations, respectively. Given that in hierarchical structure for-
mation cosmologies the halo distribution follows a mass function
in which larger structures are more rare, during our sampling we
divided the halo catalog in 30 mass bins, and from each bin,
we selected 40 random clusters. We segmented the region sur-
rounding the center of each galaxy cluster into 500 concentric
spheres extending up to 10 × R200,m in radius, ensuring that each
halo was contained within the simulation’s boundaries. Within
each sphere, we computed the enclosed mass, and, dividing by
the volume of the sphere, the corresponding dark matter den-
sity. The chosen number and size of bins were sufficiently large
to accurately represent the profiles at all enclosed overdensity
masses for both group and cluster-sized halos. Finally, we nor-
malized the enclosed mass for each individual halo profile to its
virial mass, specifically M200.

4. Results

4.1. Mass density profile of simulated halos

We first confirmed that the type of profiles examined here do
cluster around a most probable behavior which our analytical
profile aims to model. Figure 1 presents the compiled profiles
from the MDPL2 simulation at z = 0. The colorbar indicates
the density of lines on the plot. This visualization clearly shows
that most profiles tend to converge around a common profile.
In Fig. 1, the independent variable M̃ = M/M200 is equivalent
to β in the analytic profile of Eq. (8), assuming that M200 is a
reasonable approximation of the true relaxed mass m of the
central cluster.

100

101

102

103

ρ
(<

M̃
)/
ρ̄

m

z = 0

z = 1

1.0 1.5 2.0 2.5 3.0 3.5

M̃ = M/M200

100

6× 10−1

2× 100

ρ
(<

M̃
)/
ρ

an
al

y
ti

c

Fig. 2. Performance of our analytic density profile for different red-
shifts. Upper panel: most probable (mode) average matter density within
spheres of enclosed mass M as a function of M (normalized to M200; M̃
is equivalent to β in Eq. (8)), from our analytic result (Eq. (8), dashed
lines), and from the MDPL2 simulation halos (solid lines; the shaded
region includes 68% of the densities PDF), for z = 0 (blue) and z = 1
(green). Lower panel: ratio of MDPL2 over analytic mode profile as a
function of enclosed mass. In the bottom panel, the ratio of the mode to
the analytic profiles is displayed.

To formally capture and represent this pattern, we grouped
these normalized profiles into 40 linear mass bins, from 0 to
4 × M200. For each bin, we determined the most probable value
(mode) of the density. This was achieved by employing a Gaus-
sian kernel density estimator1 (Virtanen et al. 2020) to model the
probability density function (PDF) of densities in the bin, and
subsequently identifying the density for which the PDF is maxi-
mum. The resulting mode profile is depicted by the red solid line
in Fig. A.1, closely tracking regions with high profile density, as
anticipated.

We next tested the extent to which our analytic profile
matches the most probable profile seen in simulations. In Fig. 2,
we overlay the analytical profile with the mode of the profiles
derived from the MDPL2 simulation. Different curve colors
stand for different redshifts of our halo samples. For the analyti-
cal profile, we incorporate the cosmological parameters from the
simulation (Ωm,ΩΛ, h0, ns) and the median value of M200 for the
halo sample (6.3× 1014 M⊙ for z = 0 halos and 1.2× 1014 M⊙ for
z = 1). The lower panel compares the simulated and analytical
profiles by examining their ratio.

The analytical profiles, developed using the spherical col-
lapse model to evolve linearly extrapolated overdensities into
the non-linear regime, tend to infinity as the enclosed mass
approaches M200

2. For M̃ ≡ β ≥ 1, the analytical profile shows
an excellent alignment with the mode profile; fluctuations are

1 For the bandwidth determination the algorithm that we employed
used Scott’s rule (Scott 1992).
2 Under our assumptions, the model assumes virialization for sim-
ulated clusters when the density is 200 times the background mass
density, a consequence of employing spherical top hat thresholds; for
a recent discussion see Delos (2024).
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Fig. 3. Most probable average matter-density profile from our analytical
model (dashed lines) and MDPl2 (solid lines), for different ranges of
cluster masses M200. The independent variable M̃ is equivalent to β in
Eq. (8).

within 15%. The profile exhibits little variation with redshift,
beyond what is encoded in the overall increase of average
background matter density with increasing redshift.

Simulations consistently show that the density profile around
clusters exhibits near-universal characteristics when normalized
against a constant overdensity radius or mass relative to the
background. This behavior is replicated in Fig. 3, where, with
solid lines, we plot the mode density profiles of MDPL2 clusters
at z = 0, against their enclosed mass in concentric spheres of
increasing radius. Different colors correspond to different aver-
age masses of the halo sample. The consistency of the profiles
between different mass bins is even stronger in simulations than
in our analytical profiles (shown with dashed lines), with devia-
tions between simulations and analytic profile for the smaller and
larger mass bins reaching 25%. This variation of the analytic pro-
file with cluster mass originates in the mild dependence of γ on
mass (each profile in the figure has a different γ value as shown
in the legend; also, see Appendix A and Fig. A.1). We have con-
firmed that the expected mild mass-dependence of the analytic
mode profile is real, and not a result of our approximations: it
persists when the full expression for S(m) is used rather than the
power-law approximation: the deviation between the two profiles
is negligible for the range of M̃ considered here, when γ is taken
to be equal to −dlnS/dlnm|m=M200 (as we do in all cases, using the
median M200 of our sample each time). For much higher M̃, of
course, when the transfer function T(k) → 1, S(m) does asymp-
tote to a power-law (see Eq. (A.3)), and the full universality of
the mode profile is recovered; however this becomes relevant for
mass scales much larger than those considered in this paper. The
dependence of the mode profile also persists if we replace the
approximation of Eq. (2) with the more accurate but also more
cumbersome Eq. (8) of Sheth & Tormen (2002), also used by
Prada et al. (2006).

The lack of such dependence in simulations is plausibly an
effect of the somewhat fuzzy correspondence between M200 and
the true “collapsed mass” entering the analytical mode profile.
Even under the assumption of spherical symmetry, the SCM is
only applicable for shells that have never undergone shell cross-
ing. In this context, the appropriate collapsed mass is somewhat
ambiguous. Here we have taken it to be M200. However, if one
were to require that all mass that has undergone shell crossing is
considered to be part of the collapsed mass, then the splashback
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Fig. 4. Correlation between turnaround mass Mta,actual and collapsed
mass M200 for the MDPL2 cluster sample at z = 0. The red solid line
depicts the theoretical scaling relation of Eq. (11). The blue solid line
represents the mode value of the blue points in bins of M200. The blue
shaded region corresponds to the 16th and 84th percentiles.

mass (Diemer & Kravtsov 2014; Adhikari et al. 2014; Diemer
et al. 2017) should also be considered. This is likely one of the
effects that partly contribute to the offset observed in Fig. 3
between the solid and the dashed blue curves.

This effect would also be exaggerated by the underlying
assumption in Eq. (1) that steps in enclosed mass result in uncor-
related corresponding steps in enclosed underdensity (imple-
mented formally by the adoption of a sharp-in-k filter for S(m);
see also discussion in Appendix A). This assumption is required
for the excursion-set formalism used to derive Eq. (1) to be
strictly applicable; however, in the analysis of simulations, suc-
cessive steps in overdensity corresponding to successive steps
enclosed mass are correlated (they are calculated using a top-
hat, rather than a sharp-in-k, filter). The extent of this mismatch
would be dependent on the mass accretion rate.

Finally, another factor to consider is the finite accuracy with
which we determine the mode density in every sphere of a given
M̃: the mode profile remains reasonably within uncertainties of
the simulated mode across mass bins, simulations, and redshifts.

4.2. Mass scalings

We now turn to evaluate the performance of our scaling relation
between different overdensity masses (Eq. 11) for our halo sam-
ples. As detailed in our prior works (Korkidis et al. 2020, 2023),
the kinematically-defined turnaround mass Mta,kinematic (the mass
enclosed within the kinematically-identified turnaround radius)
corresponds well to an overdensity mass, consistent with the pre-
diction of the spherical collapse model. For concordanceΛCDM
and z = 0, spherical collapse predicts that Xta = 11. We also set
the collapsed mass m = M200. For each halo, employing Eq. (11),
we can predict the turnaround mass Mta,predicted ≡ M11,predicted
from its M200 and also calculate its actual mass within that
overdensity (X = 11, M11,actual ≈ Mta,actual).

We first test that such a scaling relation does exist in simula-
tions, for the case that is of most interest to us (scaling of M200
with the turnaround mass). In Fig. 4 we plot the turnaround mass
of each cluster in our MDPL2 sample, Mta,actual, as a function of
its M200. The mode along with the 16th and 84th percentiles of
this scaling in bins of M200 is shown with the solid blue line and
the shaded region, respectively, and they do confirm that a tight
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Fig. 6. Performance of our scaling relation for masses corresponding to different overdensity values δ (equivalent to X in Eq. (11)) in the MDPL2
sample. The solid curves and vertical lines are the same as in Fig. 5. As δ decreases (left to right), the most probable offset decreases, while
high-error tails become more pronounced. Both behaviors can be traced to the performance of the analytic profile (see text for discussion).

scaling between the two masses is indeed present in the MDPL2
sample, although outliers do exist. For comparison, we overplot,
with the red line, the mode scaling predicted by Eq. (11), and it
is already obvious that the analytic mode scaling is in excellent
agreement with the mode scaling seen in simulations.

To further quantify the performance of our scaling we plot,
with the histogram in the left panel of Fig. 5, the fractional dif-
ference, as a percentage, between the turnaround mass M11,actual
measured from the simulation data, and the turnaround mass
M11,predicted predicted by our scaling relation using M200 as
input. The histogram has a pronounced peak near zero, sug-
gesting that the scaling relation predicts the turnaround mass
well. However, the distribution of residuals does feature a long
tail, so the mean of this distribution has a non-negligible bias
(up to 20%).

Another factor affecting the performance of the scaling rela-
tion is the mass range of the sample. This is explored in the
right panel of Figure 5. Here, different colors correspond to sub-
samples of different mass ranges, with the median mass in each
subsample shown in the legend. Although the qualitative features
of the histograms remain consistent, we observe a systematic
trend from negative to positive offsets of the peak of the distribu-
tion as the median sample mass increases. The absolute value of
this offset is up to 15% for the range of masses considered here.
This behavior is anticipated based on the performance of the
analytic profile for different sample mass ranges seen in Fig. 3.

In Fig. 6 we evaluate again the performance of our mass scal-
ing for different values of overdensity δ at which the mass is
evaluated (corresponding to X in Eq. (11)). Each panel corre-
sponds to a different value of δ, which decreases from left to
right, and which is displayed in the legend of each panel. In all
scenarios, the distribution peaks at <10% error. The most prob-
able error increases with increasing overdensity, a behavior we
anticipate due to the analytic profile diverging at the assumed
collapse overdensity δ = 200. However, the high-error outlier
tails decrease with increasing overdensity, a behavior also antic-
ipated from Fig. 1: closer to M200 individual profiles are more
clustered around the mode profile. For this reason, deviations
of individual outliers from the analytic mode profile, and the
associated deviations from the mass scaling derived from the
mode profile, are more pronounced for higher mass scales (lower
overdensity values).

The same analysis for X ≡ Xta (turnaround mass) is then con-
ducted in Fig. 7 for halo samples from three Virgo simulations,
each corresponding to a different set of cosmological param-
eters: Ωm = 0.3,ΩΛ = 0.7 (VirgoLCDM); Ωm = 0.3,ΩΛ = 0
(VirgoOCDM); andΩm = 1,ΩΛ = 0 (VirgoSCDM). In all cases,
we analyzed z = 0 snapshots. The behavior in the first two cos-
mologies, featuring the same dark matter content at the present
cosmic epoch, is very similar. This is consistent with our findings
both analytically in the context of the spherical collapse model
(Pavlidou et al. 2020) and in simulations (Korkidis et al. 2023)
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100).

that the behavior on turnaround scales at some specific redshift
depends primarily on the average matter density at that same red-
shift. The mild difference of the most-probable error compared
to the MDPL2 sample (Fig. 5) likely stems from the smaller
box size in the Virgo simulations, which results to a smaller
median mass of the halo sample. As also seen in Figure 5, in
this range of halo masses the scaling tends to overpredict the
turnaround mass (negative mode error). In the VirgoSCDM box,
where the median mass of the sample is larger, the error mode
is almost zero, and a more pronounced high-error tail is present,
also consistent with our findings for different cluster mass ranges
in MDPL2. It would appear that sample mass drives the perfor-
mance of the scaling relation of Eq. (11), more than the variation
in cosmological parameters, which appear to be accounted for
sufficiently by the model.

Finally, we also test the performance of Eq. (13) – a scaling
relationship between any two overdensity masses mX and mY.
We employ this scaling relation to estimate the actual value of
the turnaround mass Mta,actual (X = 11) using an overdensity
mass M100 (Y = 100), and plot the distribution of its percentage
difference from Mta,actual in Fig. 8. In the same figure, we also
overplot the same distribution for the prediction derived from
Eq. (11). The comparison indicates an almost identical position

for the peak of the distributions; however, when the turnaround
mass is derived from M100 rather than M200 the error distribution
is tighter around zero – a result of the analytic profile performing
better away from its divergence point at the collapse mass.

5. Conclusions

In this study, we derived a theoretical model for the most-
probable outer average density profile of large galaxy clusters
as a function of enclosed mass, using excursion set theory. This
model, based on Gaussian early universe statistics and the spher-
ical collapse framework, has two parameters, γ and δ̃c, both of
which can be analytically derived from the cosmological param-
eters (Ωm, ΩΛ, and power spectrum slope n), and the median
virial mass of the sample under consideration. We compared our
profile with profiles around galaxy-cluster–sized halos inΛCDM
simulations, and found good agreement across mass ranges and
redshifts.

From the profile we derived a scaling relation that links dif-
ferent overdensity masses, and found that it performs well with
the the peak of the error distribution remaining below 15% for
all cosmologies, sample masses, and overdensities we tested. We
have traced residual inaccuracies of the scaling relation to two
factors.

The offset from zero of the maximum of the error is depen-
dent on the exact cluster mass range considered. In particular,
the mode profile in simulations appears to be more univer-
sal (similar across mass ranges) than the analytic model pre-
dicts. This is plausibly an effect of an imperfect identification
between the collapsed mass m of the analytic profile and the
overdensity-200 mass M200 in simulated clusters, leading to a
cross-contamination of mass ranges.

The tail of the error distribution tends to grow as the mass
scale we consider grows (or, equivalently, as the overdensity
where the mass is calculated decreases). This is due the increas-
ing spread of the profile distribution with increasing scale. As
a result, masses at overdensities closer to 200 (say, 150 or 100)
scale more tightly with M200 than the turnaround mass (M11 for
z = 0 in concordance Λ CDM).

Our analytical model demonstrates the existence, in princi-
ple, of a scaling between any two overdensity masses, dependent
on cosmology and redshift, and it provides a reasonable approx-
imation to this scaling directly from these parameters. A fit of
the parameter γ to a particular simulated sample of clusters with
masses in the range of interest can provide an even more accu-
rate scaling should one be required. We have confirmed that such
fits return values of γ that always fall within those predicted
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theoretically (see Appendix A and Fig. A.1) for masses in the
galaxy-cluster range.
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Appendix A: Density field variance

In deriving Eq. (8) from Eq. (7) we assumed that, for a limited
range of masses, S (m) can be approximated by a power law, that
is

S (βm)
S (m)

≈ β−γ (A.1)

where

−γ =
d ln S
d ln m

. (A.2)

Here, we evaluate the validity of this assumption, and we pro-
vide a recipe for the evaluation of γ. The variance of the density
field is given by

S (m) =
∫ k(m)

k=0
k2dk|δk |2 = σ2

8

∫ k(m)
k=0 T 2(k)kn+2dk∫ k(m8)
k=0 T 2(k)kn+2dk

(A.3)

In this equation, we have made two assumptions. First, that right
after matter-radiation equality, ⟨|δk |2⟩ can be simply described
in terms of a power-law in k modified by a transfer function,
⟨|δk |

2⟩ ∝ T 2(k)kn. Second, that the window function for the cal-
culation of the variance is sharp in k−space. This assumption
is necessary for random-walk formalism (used to derive Eq. 1)
to be strictly applicable: each "step" in the time-like variable
(here S (m)) should produce a step in the space-like variable
(here, the overdensity corresponding to the mass scale m) that
is completely independent from the previous step. This requires
that the k-modes producing a change in the spacelike variable
not appear in any of the previous steps. A sharp-in-k window
function enforces this condition. For a more extensive discussion
on this assumption and its consequences see Bond et al. (1991);
Lacey & Cole (1993); Pavlidou & Fields (2005).

The variance of the field has been normalized to the present
time at scale of 8 comoving Mpc (σ8). For T (k) we adopt the fit-
ting formulae of Bardeen et al. (1986) for the adiabatic cold dark
matter transfer function (Eq. G3). We have verified that using
other approximations (e.g., per Eisenstein & Hu 1998) does not
alter substantially any of the results presented in this work.

To obtain k(m), we integrate the sharp-in-k window function
over all space and multiplying by ρm,0 we obtain

kc(m) =
(

6π2ρm,0

m

)1/3

. (A.4)

Then, from Eq. (A.3), we can calculate S(m) and its logarithmic
slope, which we plot in Fig. A.1. Clearly, this slope is not con-
stant over the range of masses of interest (as it should be for a
power law), but it does not vary wildly either. As a result, for
a small range of masses, S (m) can be approximated reasonably
well by a power law. Of course as m → ∞ the transfer function
T → 1 and S (m) asymptotes to ∝ m−(n+3)/3, but this occurs on
scales much larger than those of interest in this work.

Appendix B: Calculating δ̃c

For a given cosmology, that is, a set of Ωm, ΩΛ, we first calculate
the parameters

ω = ΩΛ/Ωm (B.1)

1014 1015

m [M�]

−0.60

−0.55

−0.50

−0.45

d
lo

gS
/d

lo
gm

Fig. A.1. Variation in the logarithmic slope of the density field dis-
persion S for diverse values of the collapsed mass m. The function’s
minimal curvature indicates near-consistency with a straight line across
each order of magnitude in mass. This pattern suggests that approximat-
ing the variance of the density profile with a power-law model could be
a plausible approach.

and

ϕ = (Ωm + ΩΛ − 1)/Ωm . (B.2)

Note that for a flat cosmology, ϕ = 0, while for a cosmology
without Λ, ω = 0.

Now let ap be the (evolving) radius of an initially overdense
region (density perturbation) normalized so that, had the specific
region begun its evolution at the same density as the bacground
Universe, ap at the present cosmic epoch would have been equal
to 1. The size of this perturbation at turnaround, apta, that is
reaching collapse today (i.e. at scale factor of the background
Universe equal to 1; note that this structure must have reached
turnaround at sometime in the past), can be found through (e.g.,
Pavlidou & Fields 2005; Pavlidou et al. 2020)∫ 1

0

√
ydy√

ωy3 − ϕy + 1
= 2a3/2

pta

∫ 1

0

√
zdz√

ωa3
ptaz3 − (ωa3

pta + 1)z + 1
.

Then, the extrapolated overdensity δ̃c to the time of collapse3

will be (Pavlidou & Fields 2005):

δ̃c =
3Ωm[(ωa3

pta + 1)/apta − ϕ]

2
D(a0), (B.3)

where D(a0) is the linear growth factor for the present cosmic
epoch a0 = 1 (Carroll et al. 1992)

D(a0) = Ω−1/2
m

√
1 + ω − ϕ

∫ 1

0

[
x

1 + ωx3 − ϕx

]3/2

dx . (B.4)

Overall, the variations in δ̃c in different cosmologies are small.
For concordance ΛCDM (Ωm = 0.3, ΩΛ = 0.7), δ̃c = 1.6757.
For SCDM (Ωm = 1, ΩΛ = 0), δ̃c = 1.6865.

3 In the case considered, which is of a structure achieving collapse
today, that time is the time of scale factor equal to 1.
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