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Abstract
We present an efficient tensor-network-based approach for simulating large-scale quantum circuits
exemplified by quantum support vector machines (QSVMs). Experimentally, leveraging the
cuTensorNet library on multiple GPUs, our method effectively reduces the exponential runtime
growth to near-quadratic scaling with respect to the number of qubits in practical scenarios.
Traditional state-vector simulations become computationally infeasible beyond approximately 50
qubits; in contrast, our simulator successfully handles QSVMs with up to 784 qubits, executing
simulations within seconds on a single high-performance GPU. Furthermore, utilizing the message
passing interface for multi-GPU environments, our method demonstrates strong linear scalability,
effectively decreasing computation time as dataset sizes increase. We validate our framework using
the MNIST and Fashion MNIST datasets, achieving successful multiclass classification and
highlighting the potential of QSVMs for high-dimensional data analysis. By integrating
tensor-network techniques with advanced high-performance computing resources, this work
demonstrates both the feasibility and scalability of simulating large-qubit quantum machine
learning models, providing a valuable validation tool within the emerging Quantum-HPC
ecosystem.

1. Introduction

In the rapidly evolving landscape of artificial intelligence (AI), machine learning algorithms stand out as
pivotal components driving advancements across a multitude of domains [1]. These algorithms,
distinguished into supervised and unsupervised learning paradigms, harness the power of data to uncover
patterns or make predictions [2]. Supervised learning, in particular, leverages pre-labeled data to train
models, with the support vector machine (SVM) being a cornerstone technique in this category [3]. SVMs
excel in classifying data into distinct categories by finding an optimal hyperplane in either the original or a
higher-dimensional feature space [4]. However, the computational demands of SVMs, especially in the
context of large-scale ‘big data’ applications [5], pose significant challenges in terms of both computational
resources and execution time.

Enter the realm of quantum computing, a burgeoning field offering profound computational speedups
over classical approaches for certain problem types. Among these, quantum support vector machines
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Figure 1. QSVM Simulator: Optimizes quantum kernel estimation and learning, enhancing phase operation and objective
evaluation, leading to swift and precise classification outcomes.

(QSVMs) emerge as a promising quantum-enhanced technique for machine learning [6–8], capable of
drastically reducing the computational resources required for SVMs. Leveraging quantum algorithms,
QSVMs achieve exponential speedups in both training and classification tasks by performing calculations in
parallel and employing quantum-specific optimizations [6, 9–11].

However, in the current noisy intermediate-scale quantum (NISQ) era [12], the practical utility of
quantum computers is significantly constrained by their availability and imperfect technological state.
Challenges such as the fidelity of qubits, the error rates of two-qubit gates, and the limited number of
available qubits present substantial hurdles [13–15]. Despite the advent of several methodologies aimed at
enhancing qubit fidelity-such as quantum error mitigation [16, 17] and Dynamical Decoupling [18]-these
limitations persist, impeding the realization of quantum advantage on quantum computing platforms in the
current NISQ era [19, 20]. Consequently, the design and validation of quantum-inspired algorithms, or
hybrid classical-quantum algorithms, are predominantly conducted through high-performance classical
simulations [11, 21]. Furthermore, quantum circuit simulators have shown considerable success in the
near-term verification of quantum algorithms on small qubit systems [22, 23].

Within the scope of our research, we have engineered an advanced tensor-network simulation
framework, purpose-built to expedite the development of QSVMs through the integration of the
cuTensorNet library underlying cuQuantum SDK [24]. This library is meticulously optimized for NVIDIA
GPUs and can facilitate QSVM algorithms, requiring noiseless simulations for quantum kernel estimation as
depicted in figure 1. A pre-computation mechanism is embedded within this workflow, allowing for the
reuse of an optimized tensor-network contraction path in the QSVM’s complex learning stages, thereby
bolstering the efficacy of both the training and classification phases.

Our tensor-network-based simulation is designed for parallel execution using the Message Passing
Interface (MPI) and leverages the substantial computational power of GPU acceleration. This combination
enables our QSVM simulator to efficiently manage large datasets while only modestly increasing memory
requirements, thereby avoiding out-of-memory situations during large-scale quantum circuit simulations.
Its flexibility ensures its utility across various quantum machine learning paradigms. Benchmark results
show that our simulator achieves speedups often exceeding an order of magnitude compared with existing
methods [25, 26], thereby underscoring its potential as a robust and scalable tool for quantum machine
learning within the broader Quantum-High-Performance Computing (HPC) ecosystem [21, 24].

A key feature of our simulator is its capacity to handle up to 784 qubits, enabling an extensive scaling
analysis of QSVM performance and shedding light on the potential of quantum kernel methods in realistic
data classification scenarios. Furthermore, this approach is flexible enough to accommodate various
quantum machine learning paradigms and can be extended to multi-GPU settings for large-scale
simulations. By validating our methods on real-world datasets (such as MNIST and Fashion-MNIST), we
demonstrate that QSVMs can tackle complex classification tasks in Quantum-HPC environments, marking a
significant step toward practical quantum-enhanced machine learning. These strides in QSVM development
signal a major progression towards practical deployment, charting a path for the application of
quantum-enhanced methodologies to complex, real-world data classification challenges within the
Quantum-HPC Ecosystem [11, 21, 27–29].

These results highlight not only the viability of QSVM algorithms but also the value of advanced
simulation tools in guiding future quantum hardware development, such as offering ground truth for
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benchmarking purpose. As such, this work contributes to bridging the gap between theoretical QSVM
formulations and their eventual implementation on large-scale quantum devices, offering valuable insights
for both algorithmic refinement and hardware optimization in the quantum information sciences.

2. Background

QSVMs represent a significant breakthrough in quantum machine learning, particularly for large-scale data
classification. The pioneering work by Rebentrost et al [6] introduced a quantum algorithm that
substantially enhances the computational efficiency of traditional SVMs. By harnessing quantum-
mechanical principles such as superposition and interference, QSVMs can, under certain assumptions (e.g.
quantum random-access memory, qRAM), achieve near-logarithmic complexity with respect to both the
dimensionality of feature vectors N (qubit number) and the size of the training datasetM (data size). This
approach suggests a potential exponential speedup over classical methods, although practical constraints like
the realization of qRAM remain a major challenge.

More recent work on quantum machine learning has shifted toward quantum kernel estimation,
emphasizing the capability of entangled quantum states to embed classical data in an exponentially large
Hilbert space [30]. Rather than focusing solely on matrix-inversion routines, these methods evaluate inner
products of quantum states (i.e. kernel functions) that would be prohibitively expensive to compute
classically. By embedding data into high-dimensional quantum feature spaces, one can construct decision
boundaries that may be unreachable with purely classical algorithms. Indeed, [31] demonstrates an
end-to-end quantum speedup for a suitably constructed classification problem, providing concrete evidence
that quantum kernels can yield practical gains in machine learning tasks.

Classical SVMs aim to find a hyperplane that maximizes the margin between two classes, typically
formulated in its primal form as:

min
w,b

1

2
||w||2 (1)

subject to

yj
(
w · xj + b

)
⩾ 1, ;∀j, (2)

where w is the normal vector to the hyperplane, b is the bias, xj are feature vectors, and yj are the class labels.
In quantum extensions of this method, the data are mapped into a higher-dimensional Hilbert space via a
quantum kernel, enabling efficient non-linear classification that would otherwise be computationally
prohibitive on classical hardware.

Early QSVM formulations relied on quantum matrix-inversion routines, such as the HHL algorithm
[32], to mitigate the computational bottleneck inherent to large-scale SVMs. Theoretical analyses indicated
that QSVM could perform these matrix inversions withO(log(NM)) complexity [6], a significant
improvement over classical approaches. Quantum parallelism further reduces computational overhead by
allowing simultaneous calculation of many kernel matrix elements, crucial for SVM optimization.

Within the QSVM framework, data points xi are non-linearly transformed into quantum states
ρ(xi) = |ψ(xi)⟩⟨ψ(xi)| within the Hilbert space. The inner product between these quantum states, crucial for
constructing the kernel matrix K(xi,xj), is given by:

K
(
xi,xj

)
= trρ(xi)ρ

(
xj
)
= |⟨ψ (xi) |ψ

(
xj
)
⟩|2, (3)

where |⟨ψ(xi)|ψ(xj)⟩|2 is computed using a unitary matrix U, defined as:

|⟨ψ (xi) |ψ
(
xj
)
⟩|2 = |⟨0⊗N|U† (xi)U

(
xj
)
|0⊗N⟩|2, (4)

with |0⊗N⟩ representing the initial state with all qubits in the |0⟩ state.
QSVM extends classical SVM by utilizing quantum superposition and entanglement to address large,

complex datasets more efficiently. Quantum parallelism enables rapid evaluation of kernel functions across
multiple data pairs, a task that is computationally expensive classically [33]. In light of these developments,
modern QSVM research increasingly emphasizes quantum kernel methods, reflecting both the capabilities of
near-term quantum devices and the desire to circumvent the strict requirements of fully functional qRAM.
Consequently, the present work examines classical simulations of quantum kernel approaches, building on
recent theoretical and experimental advances to investigate whether and how quantum-enhanced feature
spaces can yield advantages in realistic classification scenarios.
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Figure 2. (a) Tensor network formulation of a quantum circuit. (b) Contraction paths determine the computational and memory
costs of tensor network simulations: The upper path results in higher costs.

3. Simulating QSVMwith tensor networks using the cuQuantum SDK and cuTensorNet
library

3.1. Introduction of cuQuantum SDK and cuTensorNet library
As the fields of quantum computing and advanced numerical simulations rapidly expand, NVIDIA has
introduced cuQuantum SDK [24], a comprehensive software development kit (SDK), to accelerate quantum
circuit simulations with NVIDIA GPUs. It supports the programming model CUDA Quantum [24, 34]
(CUDA-Q), and frameworks like Qiskit [35], Pennylane [36], and Cirq [37]. By offering a scalable and
high-performance platform for quantum simulations, cuQuantum can democratize access to quantum
computing research and even propel the field towards achieving real-world quantum machine learning
applications.

The cuQuantum SDK consists of optimized libraries such as cuStateVec and cuTensorNet. cuStateVec is
dedicated to state-vector simulation methods, providing significant acceleration and efficient memory usage,
while cuTensorNet focuses on tensor-network simulations. For tensor-network methods, the quantum
circuit is initially converted into a tensor-network representation (figure 2(a)). Subsequently, pairwise
contraction paths are optimized to minimize computational complexity and memory footprint, followed by
the execution of the computation. As shown in figure 2(b), the sequence of pairwise contractions plays a role
in computational cost. cuTensorNet efficiently identifies high-quality contraction paths [24], accelerating
quantum machine learning exploration, especially for high-dimensional data. The library offers advanced
features like path optimization, approximate simulations, multi-GPU, and multi-node execution, enabling
large-scale simulations and significantly advancing research into complex quantum algorithms across
quantum physics, quantum chemistry, and quantum machine learning.

To boost the efficiency of tensor network computation, cuTensorNet delivers modular and finely
adjustable APIs, as shown in figure 3, tailored for optimizing the pairwise contraction path on the CPU and
improving contraction performance on the GPU. This optimization is essential for minimizing both
computation cost and memory footprint. The pathfinder workflow is primarily structured in the following
manner:

1) Simplification: This initial stage focuses on reducing the complexity of the whole tensor network and
eliminating redundancies within the network. The implementation involves rank simplification to
minimize the number of tensors by removing trivial tensor contractions from the network, resulting in a
smaller network for subsequent processing.

2) Division: After simplification, the tensor network undergoes a recursive graph partitioning. This
approach segments the network into multiple sub-networks and forms a contraction tree. The binary
tree defines the contraction path and can be further optimized at the following stage.
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Figure 3. Building blocks of the cuTensorNet library.

3) Slicing and Reconfiguration: The slicing process selects a subset of edges from a tensor network for explicit
summation. This technique results in lower memory requirements and allows parallel execution for each
sliced contraction. Reconfiguration considers several small subtrees within the full contraction tree and
attempts to reduce the contraction cost of the subtrees. cuTensorNet implements dynamic slicing, which
interleaves slicing with reconfiguration.

3.2. Pipeline of QSVM simulation
In figure 4(a), the depicted pipeline of a QSVM commences with the initial quantum state preparation in a
canonical basis state |0⟩. The number of qubits depends on input data features, which can be adjusted using
principal components analysis to evaluate QSVM with varying qubit counts. The QSVM circuit comprises a
parameterized quantum circuit (QC) and its corresponding adjoint (QC†), which correspond to the unitary
operators U(xi) and U†(xj) depicted in figure 4(b). The paired input data xi and xj are embedded into the left
and right halves of the parameterized quantum circuit (QC and QC†), as shown in figure 4(b). At the
measurement stage, the probability amplitude of the zero state |0⟩ is used to represent the similarity between
xi and xj in the quantum feature space. After computing the zero state amplitude for all paired data in the
quantum feature space, the quantum kernel matrix is used to train the support vector classifier. Notably, only
the probability of the all-zero state needs to be computed, allowing the tensor network simulation to reduce
the overall computation by contracting the subspaces of the complete tensor structure. In this paper, we
employ a parameterized QC based on Block-Product State (BPS) wavefunctions [38, 39]. This design
mitigates accuracy degradation at moderate qubit counts, enabling the QSVM to maintain high classification
performance. However, as the number of qubits becomes very large, exponential kernel concentration
ultimately leads to a decrease in accuracy (see section 4.2). Notably, the circuit does not decompose into
smaller blocks; instead, each qubit is entangled through CNOT gates arranged in a linear topology, ensuring
compatibility with near-term quantum hardware (see appendix).

3.3. Complexity of QC simulation for QSVM
When executed on classical hardware such as CPUs and GPUs, the simulation of the QSVM algorithm poses
significant computational challenges with state vector simulations. Figure 5 elucidates these challenges,
indicating that the complexity scales exponentially with the number of qubits as O(2n) and quadratically
with data size as O(N2). Additionally, the memory footprint of the full state vector grows exponentially with
the number of qubits q, which map features into Hilbert space for QC simulations. This aspect underscores
the inherent computational intensity of simulating quantum systems on classical infrastructure.

This scenario highlights the computational complexity advantages that QSVM offers in the realm of
quantum machine learning. The simulation demands, in terms of computation time and memory size, grow
exponentially with larger datasets and a greater number of qubits, a limitation not encountered when QSVM
is run on quantum computers. As demonstrated by Rebentrost et al [6], the complexity advantage of QSVM
can exhibit logarithmic scaling with respect to the product of the number of features and the size of the
training set, denoted as O(log(NM)). However, in the NISQ era, the verification of algorithms using
traditional CPUs is inevitable. Therefore, this section focuses on leveraging GPU acceleration to address the
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Figure 4. (a) The QSVM pipeline showcases the quantum circuit transformation of input data into feature space quantum states.
(b) A schematic of the QSVM circuit.

Figure 5. Computational complexity of QSVM simulation. The left graph demonstrates that simulation time scales exponentially
with the number of qubits, as O(2n), while the right graph shows that the number of quantum circuits required scales
quadratically with data size, as O(n2).

6



Mach. Learn.: Sci. Technol. 6 (2025) 015047 K-C Chen et al

Algorithm 1. Get Kernel Matrix using cuStateVec.

Input :Number of data1 datasize1, Number of data2 datasize2, List of quantum circuits circuits, Index of data1 and
data2 combinations indices, statevector simulator simulator

(i) Initialize kernel_matrix ∈ Cdatasize1×datasize2 with all elements set to zero.
(ii) Set the current operand index i to−1.
(iii) for i1, i2 ∈ {1, . . . , indices} do

(a) Update the circuits index i ← i + 1.
(b) Save circuits [i] statevector.
(c) Set transpile(circuits[i], simulator).
(d) Run simulator and save result result.
(e) Compute amplitude amp← result.get_statevector().

(f) Calculate and store kernel_matrix[i1− 1][i2− 1]← (
√

amp.real2 + amp.imag2).

end
(iv) Symmetrize kernel_matrix by adding its transpose and an identity matrix:

kernel_matrix← kernel_matrix+ kernel_matrixT + diag(1datasize1).

return kernel_matrix

computational bottlenecks encountered when simulating QSVM with large-scale qubit sizes and processing
large datasets.

3.4. Simulating QSVM’s quantum kernel matrix
In this section, we discuss three methods for simulating a QSVM algorithm: state-vector simulation on GPU
using the cuStateVec library, tensor-network simulation on CPU using the opt-einsum library, and
tensor-network simulation on GPU using the cuTensorNet library. In this research work, our interest lies in
comparing a state-of-the-art CPU-centric approach (opt-einsum) to a state-of-the-art GPU-centric
approach (cuTensorNet). This comparison highlights how GPU acceleration can significantly impact
large-scale QC simulations.

3.4.1. Simulation of QSVM with state vector
State vector simulation is widely used for simulating QC-based quantum computing because QC operations
can naturally be represented using state vectors. In this method, Qiskit is used to create the QSVM QC, and
the state-vector simulation is implemented on a GPU via the cuStateVec backend, as described in
algorithm 1. The advantage of using cuStateVec includes a speedup of the simulation time by leveraging GPU
capabilities and enabling multi-GPU processing with MPI for distributed computing. The effectiveness of
cuStateVec in enhancing quantum-circuit-simulation efficiency is evidenced in Lykov et al’s research work
using cuStateVec and the cuQuantum SDK [22].

3.4.2. Simulation of QSVM with tensor network
Even with cuStateVec enabling GPU acceleration, challenges persist due to the complexity of encoding the
number of qubits O(2n) CF and the size of the data O(n2). To surmount these challenges, we present an
innovative approach using the cuTensorNet library for QSVM simulation. In the creation of the tensor
network representation, we seamlessly integrate Qiskit and cuQuantum’s built-in CircuitToEinsum object.

Initially, Qiskit is used to construct a QuantumKernel circuit, which is then transformed into
‘expression’ and ‘operand’ components by CircuitToEinsum. Due to the identical topological structure of
the QC, the same ‘expression’ component can be reused for subsequent pairs of data. Meanwhile, the
‘operand’ is updated with parameters from the previously created operand. This approach rapidly transitions
data pairs into tensor networks and preserves computational efficiency. The derivation of the kernel matrix-a
pivotal component of the SVM-exploits a consistent ‘path’ to greatly minimize the repetition of contraction
order calculations. The detailed algorithm is described in algorithm 2. This technique not only leverages the
computational strength of GPUs but also ensures path reusability, resulting in a considerable acceleration of
the simulation process and a dramatic reduction in computational complexity. We will demonstrate those
improvements in the next section.

To ensure a fair comparison tensor network QSVM simulation between CPU and GPU performance, we
utilize the opt-einsum package, which provides optimized tensor computation on CPUs similar to the
cuQuantum SDK available for NVIDIA GPUs. The detailed algorithm for simulating the QSVM on CPUs,
aimed at equalizing the computational environment to the extent possible, is described in algorithm 3.
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Algorithm 2. Get Kernel Matrix using cuTensorNet.

Input :Number of data1 datasize1, Number of data2 datasize2, Circuit einstein summation expression exp, List of oper-
ands operands, Index of data1 and data2 combinations indices, network options options

(i) Initialize kernel_matrix ∈ Cdatasize1 ×datasize2 with all elements set to zero.
(ii) Set the current operand index i to−1.
(iii) Initialize the network with given options to prepare for contraction operations.
(iv) for i1, i2 ∈ {1, . . . , indices} do

(a) Update the operand index i ← i + 1.
(b) Reset the network to its initial state before each contraction.
(c) Prepare the operands for contraction based on i.
(d) Compute amplitude amp← Contract within the network(exp,operands[i],options).

(e) Calculate and store kernel_matrix[i1− 1][i2− 1]←
√

amp.real2 + amp.imag2.

end
(v) Symmetrize kernel_matrix by adding its transpose and an identity matrix:

kernel_matrix← kernel_matrix+ kernel_matrixT + diag(1datasize1).

return kernel_matrix

Algorithm 3. Get Kernel Matrix using opt-einsum.

Input :Number of data1 datasize1, Number of data2 datasize2, Circuit einstein summation expression exp, List of oper-
ands operands, Index of data1 and data2 combinations indices, Contraction path path

(i) Initialize kernel_matrix ∈ Cdatasize1 ×datasize2 with all elements set to zero.
(ii) Set the current operand index i to−1.
(iii) for i1, i2 ∈ {1, . . . , indices}

(a) Update the operands index i ← i + 1.
(b) Compute amplitude amp← opt_einsum.contract(exp,operands[i],path).

(c) Calculate and store kernel_matrix[i1− 1][i2− 1]←
√

amp.real2 + amp.imag2.

end
(iv) Symmetrize kernel_matrix by adding its transpose and an identity matrix:

kernel_matrix← kernel_matrix+ kernel_matrixT + diag(1datasize1).

return kernel_matrix

4. Performance and benchmarking of QSVMwith cuTensorNet

4.1. QSVM Simulation and cuTensorNet-Accelerated QSVM (cuTN-QSVM)
In the outlined simulation workflow, figures 1 and 4 illustrate the sequence from the initial input of data to
the generation of a QC for the purpose of encoding. Subsequent steps involve the use of optimized
compilation to compute and simulate the QCs, leading to the extraction of a quantum kernel matrix. This
matrix is then applied to develop a support vector classifier (SVC).

However, in typical CPU-based workflows, bottlenecks arise in the progression from the construction of
QCs to the calculation of the quantum kernel matrix, where the complexity of simulating the QSVM
algorithm scales exponentially with the number of qubits, O(2n), and quadratically with data size, O(N2). To
alleviate these bottlenecks, we incorporate the cuQuantum SDK into the QSVM workflow, employing a
method of assigned parameters for the formulation of QSVM’s QCs. We then maintain a consistent
‘expression’ for the simulation of these circuits. Ultimately, a ‘path reuse’ strategy is adopted for the tensor
network contractions to compute the quantum kernel matrix, effectively reducing redundant computations
when processing large datasets, reducing it from O(N2) to O(1) for pathfinding. Importantly, as depicted in
figure 6, the expressions and paths used in the cuTensorNet during the QSVM simulation process remain
unchanged compared to those in CPU and cuStateVec, ensuring that no accuracy is compromised for the
sake of expedience. In addition to the path reuse strategy, cuTensorNet offers concurrent execution for tensor
network contractions. This technique allows the continued contractions on multiple GPUs asynchronously
when tensors are already on the device, thus enhancing computational efficiency by continuing operations
without delay. The pronounced speedup achieved through the implementation of path reuse within the
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Figure 6. Comparative visualization of quantum kernel matrices and their computation speedups. (a)–(c) illustrate the quantum
kernel matrices generated from state vector simulation, tensor network simulation, and tensor network simulation with path
reuse strategies, respectively. (d) and (e) feature the parity plots for quantum kernel assessments comparing the outputs of state
vector simulations with tensor network and tensor network with path reuse algorithms, demonstrating high concordance. (f)
quantifies the performance enhancement attributable to path reuse in tensor network simulations, showcasing significant
temporal reductions across an array of dataset sizes.

cuTensorNet library is detailed in figure 6(g), where we report a fiftyfold increase in speed compared to
conditions without path reuse.

In the comprehensive workflow outlined in figure 7, the input data initiates QC construction, integrating
frontends such as Qiskit or Cirq with the cuQuantum API, which generates Einstein summation expressions
and tensor operands for the circuit. The process advances by converting QCs into tensor networks
represented as CuPy arrays, enabling the utilization of in-place operations to update content for the same
operands efficiently. Key to enhancing computational efficiency within this framework is the strategic
deployment of direct conversion from data to operand, alongside expression reuse for optimizing
computational pathways. This step is crucial in minimizing redundancy and ensuring the streamlined
execution of the workflow. As the process proceeds, CuPy’s capabilities are harnessed to accelerate the
computation of the kernel matrix, culminating in the application of the SVC. Moreover, cuTensorNet, as part
of the cuQuantum SDK, incorporates advanced strategies such as path reuse and non-blocking operations
across multi-GPU configurations.

These approaches significantly reduce the computational overhead from a conventional complexity of
O(2n) to a more scalable O(n2), thereby enhancing the practicality of executing extensive QSVM simulations
with improved processing times and efficiency in resource utilization. Figure 8 illustrates that quantum
simulation on the NVIDIA A100 GPU using cuStateVec becomes practically infeasible for more than 50
qubits. However, by employing cuTensorNet, single-contraction simulations can be completed within 0.2
seconds, even with up to 784 qubits. Additionally, figure 8 shows that the path reuse strategy can further
enhance the speed, offering more than tenfold acceleration when increasing the number of qubits in the
QSVM algorithm.

In the GPU-accelerated workflow utilizing cuTensorNet, as delineated in figure 7, we are able to expand
the feature size (number of qubits) and scale up the data volume for our QSVM algorithm. The evaluation of
accuracy resulting from these augmentations will be discussed in the following part, while an in-depth
assessment of resource management will be presented in the subsequent section.

4.2. Accuracy benchmarking and validation of large-scale QSVM
4.2.1. Binary classification
We benchmarked the performance of a QSVM on high-dimensional image classification tasks using both
10-class MNIST and Fashion-MNIST datasets of 31 500 images each, split 80–20 for training and testing. As
a classical baseline, we employed an SVM with a radial basis function kernel and systematically varied the
scaling parameter γ between 0.001 and 1000 to identify optimal hyperparameters. Although SVM is not the
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Figure 7.Workflow optimization for QSVM simulation through architectural enhancements, integrating Qiskit/Cirq with
cuQuantum SDK. This transition from circuit building to tensor network conversion and kernel matrix computation reduces
computational time complexity, leveraging GPU acceleration and multi-GPU strategies.

Figure 8. Simulation time comparison for quantum state vector simulation and two cuTensorNet approaches-path plus
contraction (no-path reuse), and contraction only (path reuse)-across a range of qubit numbers, up to the equivalent of a 28x28
pixel grid (784 qubits).

most advanced machine learning model available, it provides a well-established framework that enables us to
validate the feasibility and potential advantages of our quantum-enhanced approach.

In figure 9, our results indicate that QSVM offers competitive performance and can, under certain
conditions, outperform the classical SVM for moderate circuit sizes. In particular, QSVMmaintains high
accuracy by leveraging quantum feature maps that embed data into larger Hilbert spaces. However, beyond a
critical qubit threshold, we observe a decline in test accuracy, which we attribute to overfitting effects and the
phenomenon of exponential kernel concentration-where off-diagonal kernel matrix elements diminish and
the optimization landscape becomes exponentially flat [40]. This vanishing-gradient problem not only
complicates the training of parameterized Qs but also underscores the practical limitations of naively scaling
up circuit depth or qubit count.

In light of these observations, current quantum machine learning approaches still require careful feature
engineering or hybrid methods to optimize model performance. Moreover, the amount of training data can
significantly impact QSVM accuracy, as illustrated in figure 10, underscoring the importance of sufficiently
large datasets.

Despite these challenges, our proof-of-concept study confirms that QSVM can serve as a promising
foundation for large-scale quantum machine learning, particularly in scenarios where high-dimensional
embeddings may confer a computational advantage. Further research on QC design, regularization
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Figure 9. Benchmark of QSVM and SVM on MNIST and Fashion-MNIST (nine labels, 45 binary classification tasks). (a)
Training accuracy vs number of qubits (QSVM) or features (SVM). (b) Test accuracy. QSVM outperforms SVM for moderate
qubit counts, but overfitting leads to reduced test accuracy with more qubits. Shaded regions show one standard deviation around
mean accuracy.

Figure 10. Classification Accuracy versus Dataset Size for Binary Classification of MNIST Digits 2 and 6 using a 128-Qubit QSVM
model.

strategies, and optimization techniques will be crucial to fully harness the benefits of quantum-enhanced
models and to mitigate the pitfalls associated with increasingly large quantum systems.

4.2.2. Multi-class classification
To assess the robustness of the QSVM beyond binary classification, we further evaluated its performance on
the 10-class versions of the MNIST and Fashion-MNIST datasets. For each dataset, we select 1000 training
samples and reserve an additional 500 samples for testing. For MNIST, both the classical baseline SVM and
the QSVM employ 64 features/qubits, whereas for Fashion MNIST, they use 96 features/qubits. Figure 11
shows the confusion matrices for both datasets under SVM and QSVM, while table 1 summarizes several
macro-level performance metrics (accuracy, sensitivity, specificity, and F1 score). For MNIST, the QSVM
yields slightly higher accuracy, along with marginal improvements in sensitivity and specificity. A similar
trend emerges for the more challenging Fashion-MNIST dataset, where QSVM also achieves higher overall
accuracy and macro-level metrics than the classical SVM.

These findings reinforce our earlier observations that, for moderate circuit sizes, QSVM can learn
complex data distributions effectively. By embedding data points in a larger Hilbert space, the quantum
kernel method can capture subtle features that improve class separability. However, as discussed previously,
overfitting and the onset of Barren plateaus can degrade performance when the number of qubits becomes
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Figure 11. Confusion matrices for the classical SVM with 64 features (a) and 96 features (c), and for the QSVM with 64 qubits (b)
and 96 qubits (d), evaluated on 10-class MNIST (a), (b) and 10-class Fashion-MNIST (c), (d). Each cell indicates the number of
predictions for a given true label (vertical axis) and predicted label (horizontal axis). Brighter diagonal entries reflect a higher
count of correctly classified samples. Overall, QSVM demonstrates consistently strong performance, often improving upon the
classical SVM.

Table 1.Macro Metrics for SVM and QSVM on MNIST and Fashion MNIST Datasets. The bold numbers this table indicate better
performance in macro metrics.

Dataset Model Accuracy Sensitivity Specificity F1-score

MNIST SVM 0.8780 0.8820 0.9865 0.8783
QSVM 0.8860 0.8900 0.9874 0.8864

Fashion MNIST SVM 0.6140 0.6388 0.9578 0.6088
QSVM 0.6660 0.6744 0.9633 0.6608

excessively large. Consequently, the design of circuit architectures and the choice of
hyperparameters-particularly in multiclass settings-remain critical in balancing expressivity and
generalization.

4.3. Simulation with single CPU and GPU
In this section, we compare the performance of a CPU and a GPU, as illustrated in figure 12. To ensure a fair
comparison, we employed Opt-Einsum for the contraction process on a single AMD EPYC 7J13 CPU,
contrasting this with a single NVIDIA A100 GPU using cuTensorNet for the contraction process, with path
reuse implemented. The detailed pseudocodes are discussed in section 3.4. Moreover, it was necessary to
synchronize the contraction paths in Opt-Einsum with those of cuTensorNet to ensure consistency. As
depicted in figure 12, the speedup provided by the GPU relative to the CPU becomes more pronounced as
the number of simulated qubits increases. Consequently, for large-scale qubit simulations, GPUs
demonstrate enhanced scalability and promise substantial benefits for future advanced qubit algorithms in
simulation and emulation.
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Figure 12. Benchmarking QSVM circuit simulation time using a single CPU and a single GPU. The GPU data shows minimal
variation compared to the CPU’s scale.

Figure 13. Strong scaling of the QSVM simulation is observed for 1000 data points across 1, 2, 4, and 8 GPUs, demonstrating
linear speedup.

5. Distributed simulation and resource estimation in HPC

In the final section of our study, a multi-GPU instance was utilized to expand the QSVMmodel via
cuTensorNet to accommodate a dataset comprising 1000 data points of 28x28 MNIST images. The
implementation of multi-GPU resources to enhance QC simulation via cuStateVec is thoroughly detailed in
the research conducted by Shaydulin et al [41]. Our emphasis lies on leveraging the data from these
experiments to rigorously assess both the computational costs and the temporal demands inherent in the
tensor-network simulation of the QSVM algorithm within a multi-GPU processing framework.

In our computational environment, each GPU within a node is interconnected using the high-bandwidth
NVLink network and the NVIDIA Collective Communications Library (NCCL) to optimize intra-node
communication. The input data is paired and evenly distributed across multiple GPUs via NCCL, where it is
directly converted into a tensor network for computation. The results are then returned to a single GPU via
NCCL to form the quantum kernel matrix for SVC classification. By harnessing these integrated
technological benefits, we have successfully actualized the accelerated computational outcomes for managing
large-scale qubit systems and complex datasets, as illustrated in figure 13. Comparative analysis indicates that
our performance metrics are on par with distributed simulation results documented in the existing scientific
corpus, as cited in Bayraktar et al’s and Lykov et al’s work [22, 24].
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Figure 14. Execution time for quantum simulations against qubit count for a single A100 GPU and MPI-based 2, 4 and 8
multi-GPU setups. The performance enhancement with additional GPUs is evident, underscoring the benefits of parallelized
computation.

5.1. Benchmarking cuTensorNet Multi-GPUwithMPI
Figure 13 illustrates the execution time required for quantum simulations in relation to the number of
qubits. The data compares the performance of a single A100 GPU to systems utilizing 2, 4, and 8 GPUs in
conjunction with MPI and within a single NVIDIA DGX node. It is evident from the results that the
incorporation of multi-GPUs significantly decreases computation time, highlighting the strong linear
speedup of cuTenserNet with MPI. The trend indicates a substantial reduction in execution time as the
number of GPUs is increased, affirming the efficacy of multi-GPU setups in handling large datasets.

5.2. Large dataset processing with multi-GPU
Figure 14 presents a comparative analysis of computational time across different configurations, ranging
from a single GPU (A100, 80GB) to 2, 4, and 8 multi-GPU arrangements using MPI for processing datasets
of various sizes. The results distinctly highlight the superior efficiency and scalability of multi-GPU systems,
especially when managing large-scale datasets. A notable reduction in processing time is observed with the
integration of an 8-GPU setup, underscoring the considerable advantages of parallel computing for
large-scale data analysis. In figure 14, experimental data (solid line) from 40 to 1000 data points is
extrapolated to estimate the processing time for 10 000 data points, corresponding to nearly 50 million
circuits (dashed line). The projection indicates that an eight-GPU system could achieve linear acceleration,
reducing a week-long processing task using the simulated QSVM to approximately one day (blue line).

6. Conclusion

This paper has presented a comprehensive investigation into the feasibility and performance of large-scale
QSVM simulations using a tensor-network-based framework integrated with NVIDIA’s cuQuantum SDK. By
leveraging the cuTensorNet library on multi-GPU platforms, we significantly reduced the otherwise
prohibitive computational overhead associated with simulating large qubit systems. Rigorous performance
benchmarks demonstrated not only near-quadratic scaling for circuit simulations-thereby overcoming the
exponential barriers of conventional state-vector approaches-but also robust speedups via MPI-based
parallelization for QC simulation. Moreover, our experiments on benchmark datasets, including MNIST and
Fashion-MNIST, revealed that QSVMs can achieve high classification accuracy, emphasizing the promise of
quantum methods for complex, high-dimensional data. Crucially, the observed improvements in accuracy
with increasing dataset size underscore the value of scalable simulation environments as a test bed for
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algorithmic refinements and real-world applications. The successful integration of cuTensorNet and
multi-GPU infrastructures thus serves as a critical validation of quantum-HPC synergy, pointing to a
practical route toward bridging near-term quantum hardware limitations and large-scale quantum machine
learning goals. These results lay a foundation for further advances in high-performance quantum
simulations and reinforce the potential impact of quantum-enhanced algorithms within the rapidly evolving
Quantum-HPC ecosystem.
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Appendix. QSVMwith block-product states

In this appendix, we provide additional technical details on our use of BPS and the contrast between our
circuit constructions and the stricter block-encoding formalism in [38]. Our primary objective is to
investigate how varying levels of entanglement (no entanglement, partial entanglement, and full
entanglement) can affect the performance of QSVM. Although we embrace the idea of embedding features in
‘blocks,’ we do not strictly enforce the complete separability mandated in reference [38]. Instead, we consider
a spectrum of entangling mechanisms within and between these blocks to assess scalability, expressive power,
and classification accuracy [39].

One of the feature-map strategies we examine in this appendix is the fully-entangled ZZ Feature Map,
which harnesses pairwise qubit interactions via controlled-phase gates to capture higher-order correlations
in the input data. For an n-dimensional input vector x= (x1,x2, . . . ,xn), a standard realization of this
encoding can be written as

UZZ (x) =

 ∏
1⩽i<j⩽n

exp

(
− i

2
xi xjZiZj

)[
n∏

i=1

exp

(
− i

2
xi Zi

)]
, (5)

where Zi and Zj are the Pauli-Z operators on the ith and jth qubits, respectively, with 1⩽ i < j ⩽ n. These
exponential operators can be decomposed into single-qubit rotations and two-qubit controlled-phase gates,
and a layer of Hadamard gates is often introduced at the beginning and/or end of the circuit to spread
amplitudes across the computational basis.

To explore more scalable quantum data embeddings, we employ a BPS approach, inspired by the
framework in reference [38, 39]. In this method, the feature space is partitioned into smaller blocks that are
mapped to distinct, though not necessarily fully separable, sections of the Hilbert space. Specifically, we let x
be an (mn)-dimensional input vector grouped intom blocks,

x = [s1, s2, . . . , sm]
⊤
, sb = [sb,1, sb,2, . . . , sb,n]

⊤
,

and define the BPS wavefunction as∣∣ΨBPS (x)
〉
=

∣∣ψ1 (s1)
〉
⊗

∣∣ψ2 (s2)
〉
⊗ ·· · ⊗

∣∣ψm (sm)
〉
, (6)
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Figure 15. Four encoding schemes for 5-qubit QSVM: (a) Fully-entangled ZZ Feature Map, (b) Non-entangled BPS, (c)
Half-entangled BPS, and (d) Fully-entangled BPS. By varying the entanglement among qubits and across blocks, these schemes
strike different balances between expressiveness and resource requirements.

where each block
∣∣ψb(sb)

〉
is constructed via single-qubit rotations and an internal entangling layer:

∣∣ψb (sb)
〉
=

 n⊗
q=1

Rz

(
sb,q

) U ent
2n

 n⊗
q=1

Ry

(
sb,q

)
Rz

(
sb,q

)
H

∣∣0⊗n
〉
. (7)

The operator

Uent
2n :=

n−1∏
q=1

CNOTq,q+1 (8)

adds a layer of entanglement among the n qubits in each block. While [38] enforces block separability across
the entire wavefunction to allow classical multiplications of block overlaps, our approach relaxes this
condition in subsequent layers to support partial or fully connected entanglement across blocks for
comparison in this appendix.

Figure 15 illustrates four representative encoding circuits for a 5-qubit case: (a) a fully-entangled ZZ
Feature Map employing multi-qubit controlled-phase operations, (b) a non-entangled BPS circuit that uses
only single-qubit rotations (Rz,Ry) without CNOTs, (c) a half-entangled BPS incorporating partial
entanglement within each block, and (d) a fully-entangled BPS that enables both intra- and inter-block
entangling gates for maximum expressive power. These circuits capture the trade-off between entanglement
depth, expressive capacity, and circuit overhead.

From a practical standpoint, BPS embeddings offer notable advantages: partitioning the encoding into
separate blocks simplifies circuit design for large-scale qubit systems and enables tensor-network or classical
simulation methodologies that assume limited entanglement. In instances where strong multi-qubit
correlations are not essential, low-entanglement BPS embeddings can deliver satisfactory performance while
maintaining relatively shallow circuits. It is worth mentioning that this could benefit distributed quantum
computing’s circuit partitioning strategy.

Nonetheless, strictly separable blocks may undermine the expressive power of an encoding, resulting in
suboptimal classification accuracy for datasets that rely on higher-order correlations. As shown in figure 16,
although partially or fully entangled circuits incur higher overhead, they typically achieve superior accuracy
when the number of qubits increases. In our benchmarking, which targets MNIST digit {2,6} classification
(with 500 training samples and 200 testing samples), BPS-based feature maps outperform the ZZ Feature
Map. Among the three BPS variants (non-entangled, half-entangled, and fully-entangled), the fully
entangled design consistently yields the best performance. These observations suggest that for more complex
problems, the richer correlations intrinsic to fully entangled feature maps often warrant the additional
resource cost. Nevertheless, partially entangled BPS configurations may still serve as a practical compromise
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Figure 16. Classification accuracy vs. number of qubits for different encoding schemes. Solid lines denote training accuracy, while
dashed lines denote test accuracy. The Fully-Entangled ZZ Feature Map (blue curves) consistently outperforms other approaches,
emphasizing the importance of entanglement for large-scale QSVM. BPS schemes (green curves) help reduce circuit depth but
may yield lower performance on complex datasets.

between performance and implementability, whereas the fully entangled BPS scheme is ultimately adopted in
this research work on account of its superior accuracy to others.

Future studies might more thoroughly quantify the interplay between block separability and
entanglement depth, revealing when strict block encoding (as prescribed in reference [38]) is most beneficial
versus when the enhanced correlations of fully entangled circuits drive substantial improvements in
performance.
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[30] Havlíček V, Córcoles A D, Temme K, Harrow AW, Kandala A, Chow J M and Gambetta J M 2019 Supervised learning with
quantum-enhanced feature spaces Nature 567 209–12

[31] Liu Y, Arunachalam S and Temme K 2021 A rigorous and robust quantum speed-up in supervised machine learning Nat. Phys.
17 1013–7

[32] Duan B, Yuan J, Yu C-H, Huang J and Hsieh C-Y 2020 A survey on hhl algorithm: From theory to application in quantummachine
learning Phys. Lett. A 384 126595

[33] Gentinetta G, Thomsen A, Sutter D and Woerner S 2024 The complexity of quantum support vector machines Quantum 8 1225
[34] Kim J-S, McCaskey A, Heim B, Modani M, Stanwyck S and Costa T 2023 Cuda quantum: The platform for integrated

quantum-classical computing 2023 60th ACM/IEEE Design Automation Conf. (DAC) (IEEE) pp 1–4
[35] Wille R, Van Meter R and Naveh Y 2019 Ibm’s qiskit tool chain: working with and developing for real quantum computers 2019

Design, Automation & Test in Europe Conf. & Exhibition (DATE) (IEEE) pp 1234–40
[36] Bergholm V et al 2018 Pennylane: automatic differentiation of hybrid quantum-classical computations (arXiv:1811.04968)
[37] Isakov S V et al 2021 Simulations of quantum circuits with approximate noise using qsim and cirq (arXiv:2111.02396)
[38] Martyn J, Vidal G, Roberts C and Leichenauer S 2020 Entanglement and tensor networks for supervised image classification

(arXiv:2007.06082)
[39] Suzuki T, Miyazaki T, Inaritai T and Otsuka T 2023 Quantum ai simulator using a hybrid CPU–FPGA approach Sci. Rep. 13 7735
[40] Thanasilp S S W, Cerezo M and Holmes 2024 Exponential concentration in quantum kernel methods Nat. Commun. 15 5200
[41] Shaydulin R et al 2023 Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically

intractable problem (arXiv:2308.02342)

18

https://doi.org/10.1103/RevModPhys.95.045005
https://doi.org/10.1103/RevModPhys.95.045005
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1038/s41467-023-41217-6
https://doi.org/10.1038/s41467-023-41217-6
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.21468/SciPostPhysCore.7.4.075
https://doi.org/10.21468/SciPostPhysCore.7.4.075
https://doi.org/10.1038/s41598-023-38558-z
https://doi.org/10.1038/s41598-023-38558-z
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1016/j.physleta.2020.126595
https://doi.org/10.1016/j.physleta.2020.126595
https://doi.org/10.22331/q-2024-01-11-1225
https://doi.org/10.22331/q-2024-01-11-1225
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/2111.02396
https://arxiv.org/abs/2007.06082
https://doi.org/10.1038/s41598-023-34600-2
https://doi.org/10.1038/s41598-023-34600-2
https://doi.org/10.1038/s41467-024-49287-w
https://doi.org/10.1038/s41467-024-49287-w
https://arxiv.org/abs/2308.02342

	Validating large-scale quantum machine learning: efficient simulation of quantum support vector machines using tensor networks
	1. Introduction
	2. Background
	3. Simulating QSVM with tensor networks using the cuQuantum SDK and cuTensorNet library
	3.1. Introduction of cuQuantum SDK and cuTensorNet library
	3.2. Pipeline of QSVM simulation
	3.3. Complexity of QC simulation for QSVM
	3.4. Simulating QSVM's quantum kernel matrix
	3.4.1. Simulation of QSVM with state vector
	3.4.2. Simulation of QSVM with tensor network


	4. Performance and benchmarking of QSVM with cuTensorNet
	4.1. QSVM Simulation and cuTensorNet-Accelerated QSVM (cuTN-QSVM)
	4.2. Accuracy benchmarking and validation of large-scale QSVM
	4.2.1. Binary classification
	4.2.2. Multi-class classification

	4.3. Simulation with single CPU and GPU

	5. Distributed simulation and resource estimation in HPC
	5.1. Benchmarking cuTensorNet Multi-GPU with MPI
	5.2. Large dataset processing with multi-GPU

	6. Conclusion
	Appendix. QSVM with block-product states
	References


