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Abstract

Geometric aspects of three dimensional N = 4 gauge theories
Samuel Crew

We study geometric aspects of three dimensional N = 4 gauge theories. We focus
mainly on the factorisation property of supersymmetric partition functions of these theories
and introduce hemisphere blocks that precisely realise the factorisation. We define these
blocks as UV partition functions on a hemisphere S1 ×H2 with an exceptional Dirichlet
boundary condition and demonstrate that the resulting object is determined by the
enumerative geometry of the Higgs branch.

The partition function on the hemisphere is closely related to a half-index that counts
local operators of the theory on a flat spacetime with boundary. In this context, we show
that the hemisphere blocks realise characters of lowest weight Verma modules of the Higgs
and Coulomb branch chiral rings acting on boundary local operators.

We study the geometric interpretation of the twisted index factorisation in particular
and demonstrate a relationship between the twisted index and the Hilbert series of a 3d
N = 4 theory. We then use factorisation to provide a novel geometric expression for the
Coulomb branch Hilbert series in terms of invariants of moduli spaces of quasimaps to the
Higgs branch.

Finally, we apply these ideas to a particularly rich example of a non-abelian gauge theory
with adjoint matter whose Higgs branch coincides with a moduli space of instantons. We
compute hemisphere blocks for the theory and explicitly recover Verma module characters of
the Coulomb branch chiral ring. In this example, the blocks have interesting combinatorial
content and can be related to generating functions of reverse plane partitions—we discuss
the interpretation of 3d mirror symmetry in this context. We also study line operators
in this theory and show that half indices in the presence of a line operator exhibit an
integrable structure. Along the way we find interesting connections between the twisted
index gluing of hemisphere blocks and related calculations in topological string theory.
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CHAPTER 1
Introduction

Quantum field theory is a theoretical framework that can be used to describe fundamental
particle physics. The theory successfully explains a wide variety of physical phenomena
in fields ranging from condensed matter physics to cosmology and the development of
quantum field theory is one of the great achievements of twentieth century physics. In the
form of the standard model of particle physics, quantum field theory is arguably the most
precisely tested theory in the history of science—for example the latest measurements
[1] of the anomalous magnetic dipole moment of the electron agree with the theoretical
prediction to one part in a trillion. One of the crowning achievements of quantum field
theory has been the prediction in 1964 [2, 3, 4] and eventual discovery almost half a century
later of the Higgs boson [5, 6], completing the experimental verification of the standard
model.

Despite these successes, many basic aspects of quantum field theory are still poorly
understood. Indeed, even in ‘simple’ examples a precise definition is lacking; one of the
millennium problems of the Clay mathematics institute [7] promises a prize of one million
dollars to formulate quantum Yang-Mills theory in four dimensional spacetime and prove
the existence of a mass gap. Many physicists1 go further still and argue that even our
current formulations of quantum field theory have serious deficiencies. For example, there
exist quantum field theories with no semi-classical description or obvious fundamental
degrees of freedom, and even if a theory does admit a Lagrangian description then often
it cannot be understood in terms of local operators alone but rather one should include
categories of higher dimensional defects. Perhaps this implies that quantum field theory
can and should be formulated entirely geometrically in some to-be-determined sense.

Many of the twentieth century successes of quantum field theory are due to the use
of perturbation theory and Feynman diagrams to understand weakly coupled physical
processes. The difficulties and open problems in quantum field theory arise from trying to
understand strongly coupled physics that is largely invisible to these perturbative methods.
For example, the strong coupling behaviour of the quantum chromodynamics sector of the

1See, for example, Seiberg’s 2015 talk [8].
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standard model remains mysterious. After half a century of working with the standard
model, we still do not have an analytical understanding of the confinement of quarks.
Greater challenges arise still when trying to incorporate physically relevant models of
gravity into the framework of quantum field theory. A first step on this path is surely to
better understand and study non-perturbative aspects of quantum field theory.

A powerful organising principle in physics is the notion of symmetry. The Coleman-
Mandula theorem [9] asserts that, under reasonable assumptions, the maximal bosonic
symmetry group of a quantum field theory is the direct sum of the Poincaré group together
with global symmetries. In this thesis we study supersymmetric quantum field theories
which enjoy additional spacetime symmetries exchanging bosonic and fermionic particles in
their spectrum. Supersymmetry evades the Coleman-Mandula no-go theorem by enlarging
the Poincaré group to the super Poincaré group containing fermionic generators and the
Haag-Sohnius-Lopuszanski theorem [10] ensures this is the maximal symmetry a theory
can admit.2

Supersymmetric field theories are most likely not models that describe the world around
us, and evidence of supersymmetric particles has not been found in collider experiments.3

Nonetheless supersymmetry serves as a powerful toy model whose extra symmetries allow
us to compute exact physical quantities without relying on perturbation theory whilst
still describing interesting physics. In this way, supersymmetry offers a rare glimpse into
the strongly coupled behaviour of interacting quantum field theory. A stunning early
demonstration of the power of supersymmetry is the seminal work of Seiberg and Witten
[12, 13] where, using the power of holomorphicity [14], the strongly coupled IR dynamics of
a four dimensional theory with N = 2 supersymmetry is solved and an analytic description
of confinement of monopoles is provided.

Supersymmetric quantum field theories have flat directions in their scalar potentials
that are generally preserved by quantum corrections. This often leads to moduli spaces
of quantum vacua with interesting geometric structures. An important ingredient in the
Seiberg-Witten solution is the realisation that, in certain regions of the vacuum moduli
space, the UV degrees of freedom are not always an appropriate description of the IR
physics. Instead, a version of Montonen and Olive’s electromagnetic duality [15] is used
to exchange electrically charged and magnetically charged excitations to describe the
effective potential on the entire moduli space. The notion of duality more generally is a
cornerstone in the study of quantum field theory and often arises from our ignorance of
strongly coupled physics. It is possible for two different UV theories to lie in the same
universality class and describe identical physics in the IR. A prototypical example of duality
is the sine-Gordon and Thirring duality [16]: at the quantum level topological solitons

2At least with a mass gap, otherwise conformal symmetry is also a possibility.
3For recent experimental results see, for example, [11].
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in the sine-Gordon model are exchanged with local fermionic excitations in the Thirring
model—this is a strong-weak duality and exchanges topological and flavour quantum
numbers. The sine-Gordon and Thirring duality is a distant ancestor of a more modern
example found in three dimensional N = 4 gauge theories known as three dimensional
mirror symmetry. Three dimensional mirror symmetry is another strong-weak duality that
acts on pairs of gauge theories and exchanges two distinct sectors of the vacuum moduli
space known as the Higgs and Coulomb branches. It is also a strong-weak duality in the
sense that fundamental perturbative excitations are exchanged with monopoles.

Branes are extended supersymmetric objects in string theory that provide boundary
conditions for open strings. Supersymmetric quantum field theories can be naturally
embedded in string theory by realising them as worldvolume theories on branes in a limit
that decouples the gravitational degrees of freedom. Much of the progress in supersymmetry
in the 1990s came from studying brane constructions that suggest and provide ‘zeroth
order’ checks of supersymmetric dualities descending from the web of string dualities.
Three dimensional mirror symmetry is an example for which the relevant gauge theories
can be realised as intersections of branes in type IIB string theory [17] and in this context
three dimensional mirror symmetry is a consequence of S-duality.

Supersymmetric theories contain sectors of protected BPS states that preserve some
fraction of supercharges and, since they live in shortened multiplets, BPS states are
generally invariant under continuous deformations of the theory. Supersymmetric indices
count BPS states and the invariance property allows an index to be computed at a
convenient point of the RG flow—for example where the theory has a weakly coupled
Lagrangian description. Indices are a powerful tool to test dualities more precisely and
gain insight into the strongly coupled dynamics of supersymmetric field theories from a
purely quantum field theoretic perspective without reference, necessarily, to string theory.
Significant progress in supersymmetry in the last two decades has been thanks to the
development of localisation methods to compute supersymmetric indices and partition
functions. Supersymmetric indices can be computed by a path integral and localisation
uses the fermionic symmetries to add exact terms that reduce the path integral to a
lower dimensional integral over BPS field configurations—if we are lucky this is a simple
matrix model with a finite number of variables. A prototypical example appears for the
Witten index in [18] where the index of a quantum mechanical sigma model is shown
to localise to fixed points of a group action on the target. The method was further
developed by Nekrasov in the work [19] where a four dimensional N = 2 super Yang-Mills
theory is topologically twisted and regularised on an omega background and the path
integral is reduced to an equivariant integral over the instanton moduli space. This
powerful calculation systematises the results of Seiberg and Witten discussed previously
and precisely explains the geometric origin of their solution. More recently, localisation has
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been developed further by Pestun in the work [20] where four dimensional N = 2 super
Yang-Mills theories are placed on a compact four sphere and localised to a product of
instanton contributions at the north and south poles. In fact, Pestun’s result is a pre-cursor
to the notion of holomorphic factorisation in three dimensions that we meet later in this
thesis. The techniques and methods of localisation have since been expanded to a diverse
range of theories and partition functions, largely due to the systematic methods developed
by Festuccia and Seiberg [21] to place theories supersymmetrically on curved spacetimes.

Putting physics to one side, in recent years supersymmetry has, perhaps surprisingly,
proved itself an enormously useful tool in mathematics. The last few decades have seen the
birth of a new field of ‘physical mathematics’—the term was coined by Moore in his vision
talk at Strings 2014 [22]. Whilst physics is well-used to borrowing from mathematics, this
transfer of ideas began flowing in the opposite direction towards the end of the 1980s.
Raoul Bott summarised the situation in his plenary lecture at the AAAS meeting in 1988:

“Although we still often do not understand each other, the push and pull relationship
of our two points of view has never been stronger and has invigorated both of us. Certainly
in mathematics the physically inspired aspects of the Yang-Mills theory has had a profound
effect on our understanding of the structure of four-manifolds, and I also think we mathe-
maticians are only now learning to appreciate the rich mathematical structure of the Dirac
sea—and indeed of the whole Fermion-inspired world of the physicists, as well as their
mystical belief in supersymmetry. And on the other hand the most modern achievements
of mathematics—from cobordism to index theory and K theory—have by now made their
way into some aspects of present day physics—I think to stay.”

Localisation is often the technique that allows us to make precise contact between
supersymmetric field theory and moduli space geometry and in this way the mystery
of the path integral can suggest surprising results in mathematics. The lines between
supersymmetry and geometry are increasingly blurred and the fields often evolve in parallel.
Physical mathematics is perhaps best described with some examples—we give a limited
sample in the following paragraphs.

Mirror symmetry [23, 24, 25] in type IIA/B string theory is the first well-known
example of physical mathematics and uses dual pairs of 2d N = (2, 2) topological string
theories—the A and B models—together with their categories of boundary conditions to
predict surprising relations between the enumerative geometry of mirror pairs of Calabi-Yau
threefolds. The physically motivated conjecture led to the development of homological
mirror symmetry in mathematics [26]. Another prototypical example is the work of Witten
in 1988 [27] that introduced topologically twisted 4d N = 2 theories. The partition
functions of these theories realise Donaldson invariants of four manifolds [28] and, together
with the Seiberg-Witten solution discussed previously in the introduction, this led to the
Witten conjecture relating Donaldson invariants to Seiberg-Witten invariants and the
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developments in four manifolds alluded to by Bott in the above quotation. The AGT
correspondence [29] is a more recent example that directly exploits localisation methods
to make contact with geometry. In its original form it relates the partition function of
certain 4d N = 2 super Yang-Mills theories to the conformal blocks of an auxillary 2d
conformal field theory. The partition function can be interpreted geometrically in terms of
instanton moduli space and the correspondence implies a conformal symmetry action on
the equivariant homology of the moduli space. The antecedent to the result appears in the
mathematical literature [30] where Nakajima constructs Heisenberg algebra actions on the
equivariant homology of the Hilbert scheme of points in the plane. The AGT correspondence
has been extended in a number of directions in physics and mathematics since and we refer
the reader to [31] for a more comprehensive review. Many of the constructions and dualities
discussed in this introduction have their origin in M-theory and arise as compactifications
or dimensional reductions of systems of M5 and M2 branes. The worldvolume theory on
M5 branes in particular, a six dimensional N = (2, 0) superconformal field theory, lacks a
semi-classical description and it is not even clear exactly what the fundamental degrees of
freedom should be. Combined with the vast web of string dualities, it is this difficulty and
ambiguity in formulating the theory that often leads to surprises in geometry.

In the spirit of physical mathematics, the broad aim of this thesis is to study three
dimensional N = 4 gauge theories and understand more about the connections between
their strongly coupled behaviour and geometry and representation theory. We now
introduce the main aspects of these theories and review the relevant areas of geometry and
representation theory—we defer technical details to the background chapter that follows.

3d N = 4 gauge theory. We study three dimensional super Yang-Mills theories
preserving eight supercharges. The theories are specified by a UV Lagrangian which is
determined by a choice of gauge group G, a matter representation R, and gauge couplings
g2. We deform the theories by turning on masses and FI parameters. Dimension counting
tells us that the theory is free in the UV and in many cases we find a strongly coupled
conformal field theory in the IR.

The vacua of three dimensional theories were first studied in the work [32] and, as we
discuss in more detail in the following chapter, the moduli space of vacua of 3d N = 4
theories can be described by two branches, the Higgs branch MH parameterised by
hypermultiplet scalars and the Coulomb branch MC parameterised by vector multiplet
scalars and monopole operators. Supersymmetry constrains these vacuum moduli spaces
to be hyperkähler manifolds. In this thesis we focus on a particular class of 3d N = 4
theories known as quiver gauge theories—the Higgs branch of these theories coincides with
a Nakajima quiver variety. The Higgs branch is protected from quantum corrections by
non-renormalisation theorems and can be determined classically from the UV Lagrangian
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whereas the Coulomb branch is intrinsically non-perturbative and has only recently been
constructed to some degree of generality in the works [33, 34, 35]. In the examples we
study in this work the Coulomb branch is also described by a Nakajima quiver variety.

As discussed previously, three dimensional N = 4 theories enjoy a powerful IR duality
known as 3d mirror symmetry and the theories often come in mirror dual pairs that flow
to the same theory in the IR with their Higgs and Coulomb branches exchanged. Higgs
and Coulomb branch operators, denoted RH and RC respectively, form half BPS rings of
protected operators which geometrically coincide with the coordinate rings of the Higgs
and Coulomb branch. In this work we study the Hilbert series that counts these operators.
The spectrum of 3d N = 4 theories also includes vortices. Vortices are half BPS particles
created by monopole operators and the moduli space of vortices can be realised by certain
moduli spaces of maps to the Higgs branchMH . In this way vortices connect the study of
three dimensional gauge theory to the enumerative geometry of Nakajima quiver varieties.

3d indices and factorisation. Supersymmetric indices are useful tools to understand
the non-perturbative behaviour of three dimensional gauge theories. It is often possible to
compute indices by placing the theory supersymmetrically on a curved three manifoldM3

and localising the path integral. In many examples three manifold partition functions have
been shown to factorise as a sum over Higgs vacua α in terms of blocks Hα. The blocks
are defined as partition functions on manifolds topologically equivalent to a hemisphere
S1 ×H2 and the factorisation is of the form

ZM3 =
∑
α

HαH̄α . (1.1)

In fact, many different three dimensional partition functions can be factorised in this way
from the same set of fundamental blocks. When the three manifold is a fibration over
S2, the Higgs branch localisation scheme introduced in the works [36, 37] provides an
interpretation of the factorisation as a localisation to vortices at the north and south poles
of the S2—this is analogous to Pestun’s factorisation of S4 partition functions discussed
previously in the introduction.

Holomorphic blocks [38] are an elegant approach to understanding the factorisation.
They are defined via decomposing the three manifold along a boundary torus and stretching
the two halves of the geometry into cigars. The holomorphic blocks are then BPS indices
on the cigar geometry and they are almost uniquely determined as solutions to q-difference
equations arising from Ward identities. In chapter 4 we take an alternative approach and
define hemisphere blocks with a UV boundary condition that realise the factorisation.

In this work we focus on the twisted indices S2 ×A/B S1 which are partition functions
of the theory with a partial topological twist on S2. In chapter 4 we describe a geometric
interpretation of the factorisation of the twisted index as a gluing of vertex functions from
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quasimap theory and, in a certain class of examples, we show that this gluing realises the
χt genus of a global quasimap space.

Integrability. Geometric representation theory studies algebraic objects (often quantum
algebras such as Yangians or quantum affine groups that are the symmetry groups of
integrable systems) by realising their representation theory in geometry. The first historical
example of geometric representation theory is the Borel-Weil-Bott theorem [39] that realises
spaces of sections of line bundles over flag varieties as modules of semi-simple Lie algebras.

The most direct connection between geometric representation theory and physics arises
from the seminal work of Nakajima [40, 41, 42]. Nakajima shows that the representation
theory of quantum affine algebras (or Yangians) associated to ADE quivers can be realised
geometrically as actions on the equivariant K-theory (or equivariant homology) of Nakajima
quiver varieties. Physically this is closely related to the gauge-Bethe correspondence of
Nekrasov and Shatashvili [43, 44, 45] that relates the ground states of supersymmetric
field theories with four supercharges in two or three dimensions (whose Higgs branches
are Nakajima quiver varieties) to solutions to the Bethe equations associated with a
Yangian or quantum group. The work of Maulik and Okounkov [46, 47] unifies the
gauge-Bethe correspondence and geometric representation theory with their geometric
R-matrix formalism. This work uses stable envelopes to directly construct R-matrices
of quantum groups directly on the equivariant homology (or K-theory) of Nakajima
quiver varieties—the Bethe equations appear in this context from counting vortices in the
associated gauge theory. These constructions have been extended in many directions since
[48, 49, 50]—the most relevant for us being the quantum K-theory construction of [51]
that naturally applies to 3d N = 4 gauge theory.

Boundary conditions and symplectic duality. Symplectic duality is an emerging
field in geometric representation theory that relates certain categories of modules associated
to pairs of ‘dual’ symplectic resolutions [52, 53]. There is not yet a classification of such
pairs but all known examples of symplectic duality arise from pairs of Higgs and Coulomb
branches of 3d N = 4 gauge theories. The relevant theories are ‘good’ theories (in the
classification of [54]) that have conventional IR fixed points and admit generic FI and
mass parameters to fully resolve and lift the Higgs and Coulomb branches to isolated fixed
points.

Physically, the relevant category of modules arises from specifying a boundary condition
B for the theory in the UV that flows to Lagrangian boundary conditions BC and BH in the
Coulomb branch and Higgs branch respectively in the IR. Modules are then constructed
from the action of the (quantised) bulk Higgs and Coulomb branch algebras RH and RC
acting on operators that survive at the boundary—this physical realisation of symplectic
duality is due to the work of Bullimore et. al. [55]. Often the Higgs and Coulomb
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branches arise as the vacuum moduli spaces of mirror pairs of 3d theories and consequently
symplectic duality is closely related to the study of 3d mirror symmetry.

1.1 Summary

We now outline the structure of the thesis and summarise the main results from each
chapter.

Quivers, integrability and Macdonald polynomials. In chapter 3 we study rep-
resentation theoretic aspects of Nakajima quiver varieties abstractly, mostly deferring
physical applications to 3d N = 4 gauge theory to later in the thesis. In the spirit of
geometric representation theory discussed above we prove that certain geometric invariants
of a class of quivers, known as handsaw quivers, realise characters of an integrable spin
chain. The result is summarised in theorem 10 which states:

Theorem. The normalised equivariant Euler characteristic of line bundles over the ‘tooth-
less’ handsaw quiver Q(v,wN ) (the quiver diagram is shown in figure 3.9) realise characters
of the following spin chain Hilbert space consisting of a tensor product of Yangian modules:

H~n =
k⊗
l=1

KR(lw1)n(l)
. (1.2)

In particular, writing λ = (n(1), . . . , n(k)) we have

χT(Lζ1
1 ⊗ . . .⊗ L

ζN
N )

χT(OQ) = Q′λ(X; t) , (1.3)

where Q′λ(X; t) is a Milne polynomial which coincides with the required character.

In this chapter we also introduce Macdonald polynomial methods to evaluate ‘q-
deformed’ Hilbert series for quiver gauge theories. We use these methods to evaluate the
Hilbert series of chainsaw quiver varieties and demonstrate that Macdonald polynomials
are a convenient tool to compute large gauge rank limits of the Hilbert series. One of the
main theorems of this chapter from which these results follow is theorem 9:

Theorem. The q-deformed Molien integral of the chainsaw quiver D(v,w) shown in
figure 3.7 can be written as a sum of skew Macdonald polynomials4 labelled by partitions

4Our conventions for symmetric polynomials are summarised in appendix B.

20



{ν(a), σ(a)}a=1,...,N . We have

I{w}{v}(X; q, t) =
∑

{ν(a),σ(a)}

N∏
a=1

(q; q)va
∞

(t; q)va∞
c̃va(ν(a); q, t)Pν(a)/σ(a)

(
X(a)

1− t ; q, t
)
Qν(a)/σ(a−1)

(
X̄(a+1)

1− t ; q, t
)
,

(1.4)

where X(a) are sets of flavor fugacities and X(N+1) = X(1). X̄ denotes inverse variables
and c̃v(λ; q, t) is the Macdonald integral normalisation constant defined in appendix B.

Vortex geometry and hemisphere blocks. In chapter 4 we study the A- and B-
twisted indices of 3d N = 4 theories. The first part of the chapter is an expanded version
of the publication

• S. Crew, N. Dorey and D. Zhang, Factorisation of 3d N = 4 twisted indices and the
geometry of vortex moduli space, JHEP 08 (2020) 015.

Firstly, we argue that the A- and B-twisted indices essentially coincide with the Hilbert
series of either the Coulomb or the Higgs branch respectively. We then introduce an
angular momentum refinement that allows us to factorise the indices and interpret the
Coulomb branch Hilbert series of a 3d N = 4 gauge theory in terms of the geometry of
vortex moduli space. For theories in the class Tρ[SU(N)], we find a particularly compact
expression

H.S.[MC ] = PLH (t)PQM(ζ; t)PQM(ζ−1; t) , (1.5)

where PLH (t) denotes the Poincaré polynomial of the compact core of the Higgs branch and
PQM(ζ; t) is a generating function of Poincaré polynomials of moduli spaces of quasimaps
into the Higgs branch.

The second part of the chapter is based on the work

• M. Bullimore, S. Crew and D. Zhang, Boundaries, Vermas, and Factorisation,
2010.09741.

We introduce hemisphere partition functions with exceptional Dirichlet boundary conditions
and show that these partition functions precisely factorise the twisted index. In certain
specialised limits, we demonstrate that the hemisphere partition functions realise characters
of lowest weight Verma modules of Higgs and Coulomb branch chiral rings. We compute
the partition function explicitly for the example of supersymmetric QED with N flavours
(SQED[N ]).

Sections 4.3.3 and 4.3.4 are based on the author’s currently unpublished work. Inspired
by the SQED[N ] example, we propose a definition of a hemisphere block that can be
constructed solely in terms of Higgs branch geometry for quiver gauge theories. The
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definition of a hemisphere block in a vacuum α is given by

Hα := eφαPE
[
t− q
1− qN

+
α

]
Vα . (1.6)

Each factor in the block corresponds to classical, one-loop and vortex contributions and
geometrically these contributions are each respectively determined by: line bundles over
the Higgs branch; attracting directions5 of the tangent bundle at the isolated vacuum
α; and the vertex function of the quasimap moduli space based at α. We then discuss
applications to factorisation and show in particular that hemisphere blocks fuse exactly to
the twisted index. In this chapter we also discuss the geometric implications of mirror
symmetry properties of the hemisphere blocks.

3d ADHM quiver gauge theory. Chapter 5 is based on the work

• S. Crew, N. Dorey and D. Zhang, Blocks and Vortices in the 3d ADHM Quiver
Gauge Theory, 2010.09732. (accepted to JHEP)

In this chapter we apply ideas from the previous parts of the thesis to a particularly
rich non-abelian theory with adjoint matter that we refer to as 3d ADHM (the quiver
diagram can be found in figure 3.3). We focus mainly on a particular case where the Higgs
branch of the theory coincides with the Hilbert scheme of points in the plane. The vortex
partition functions of this theory can be expressed in terms of reverse plane partition
fixed points of the relevant quasimap moduli space and we show that 3d mirror symmetry
implies interesting combinatorial generating functions in this context. For example, in one
particular limit, we use the self-mirror property of the theory to recover a familiar ‘Hook
generating function’ of reverse plane partitions6

ĤB
λ =

∏
s∈λ

1
1− zhλ(s) =

∑
π∈RPP(λ)

z|π| = ĤA
λ . (1.7)

We show that, in accordance with the general theory of chapter 4, the hemisphere blocks
realise Verma module characters of the Coulomb branch chiral ring of the Hilbert scheme
of points in the plane.

As an important check on the hemisphere block proposal, we also demonstrate that the
hemisphere blocks of the 3d ADHM theory fuse exactly to the twisted index and recover
Nekrasov’s partition function [19]. In this example we also find an interesting connection

5The definition of the block also depends on a choices of chamber for masses and FI parameters. The
attracting directions are defined with respect to this chamber choice.

6Appendices A and B summarise our conventions for partitions and combinatorics.
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between the blocks and the topological vertex:

ZO(−1)⊕O(−1)→P1 =
∑
λ

Λ|λ|C∅∅λ(t, q)C∅∅λ∨(q, t)

=
∑
λ

Λ|λ|
[
HB
λ (z, ζ; q, t)

] [
HB
λ (z, ζ; q−1, t)

]
= IB ,

(1.8)

where the first line is a gluing of topological vertices to form the conifold amplitude and
the second line is a gluing of hemisphere blocks to compute the twisted index.

Finally, we discuss Neumann boundary conditions and compute the half indices for
the 3d ADHM theory in the presence of a line operator—here we make contact with
the abstract results of chapter 3 and find that the operator count exhibits an integrable
structure. In particular we show that

ÎBWn
(N ) = 1

(z; z)N
Q′(nN )(x1, . . . , xNf ; z) , (1.9)

where the left hand side denotes the half index in the presence of a Wilson line and the
right hand side is a Milne polynomial which, as we show in chapter 3, is the character of a
module of the Yangian Y (slNf ).

We conclude the thesis with a discussion of further directions relating the enumerative
geometry of the Hilbert scheme of points to AdS4 black hole entropy.

23



24



CHAPTER 2
Background

In this chapter we review the background material on 3d N = 4 supersymmetric field
theories that we use throughout the thesis.

Overview. We begin with a review of three dimensionalN = 4 supersymmetric quantum
field theory. We review symmetries of the theory, construct UV Lagrangians and discuss
various half BPS objects. We then move onto the geometry of the vacuum moduli spaces
of 3d N = 4 theories. We review the definition of Nakajima quiver varieties and discuss
their basic geometric properties. We conclude this chapter with an extended example:
supersymmetric QED with N flavours.

2.1 3d N = 4 supersymmetric gauge theories

In this section we review basic aspects of the field theories studied throughout this work. We
write T for a three dimensional super Yang-Mills theory with eight supercharges—N = 4
supersymmetry in three dimensions. Our supersymmetry conventions follow [56, 57].

Supersymmetry algebra. We work in three dimensional Euclidean space with Lorentz
group Spin(3)E ∼= SU(2)E. The theories we study preserve 8 supercharges Qaȧ

α where
α is an SU(2)E index and a and ȧ indices for an SU(2)H × SU(2)C R-symmetry. The
supersymmetry algebra satisfied by the supercharges is

{Qaȧ
α , Q

bḃ
β } = −εabεȧḃσµαβPµ + 2εαβ(εabZ ȧḃ + εȧḃZab) , (2.1)

where (σµ)αβ are the standard Pauli matrices and spinor indices are raised and lowered
with εab with ε12 = ε21 = 1. The Pµ generate spacetime translations and, as we discuss in
more detail momentarily, the central charges act by various combinations of gauge and
flavour transformations.
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2.1.1 UV Lagrangians

We now discuss the construction of UV Lagrangian field theories that realise the super-
symmetry algebra (2.1). These field theories were first studied from the perspective of
dimensional reduction from N = 2 theories in four dimensions in the work [32] and realised
as worldvolume theories of D3-D5-NS5 brane intersections in type IIB string theory in
[58]. A useful review of 3d N = 2 theories can be found in [59].

A 3d N = 4 theory T is specified by a choice of compact gauge group G and a
quaternionic1 representation R of G. For us, the quaternionic representation will always
be of the form R = R⊕ R̄ with R a unitary representation of G.

Together with dimensionful couplings g2 for each gauge group factor, the theory is then
uniquely specified by familiar kinetic terms and couplings for N = 4 vector multiplets and
hypermultiplets (arising from dimensional reduction of the corresponding N = 2 multiplets
in four dimensions, see e.g. [60]).

Symmetries. We consider N = 4 vector multiplets associated to the gauge group G

and N = 4 hypermultiplets transforming in R. We denote the bosonic components of the
vector multiplet by a triplet of scalars ~φ living in the Lie algebra g3 of the gauge group
G together with the gauge connection Aµ. Denoting by N the quaternionic dimension of
the matter representation so that R ∼= HN , the bosonic components of the matter are 4N
real scalars in R4N with the canonical hyperkähler structure. The R-symmetry SU(2)C
acts by rotating the triplet of vector multiplet scalars ~φ and SU(2)H acts by rotating the
hypermultiplet scalars as doublets (X, Y ) under a decomposition R = R⊕ R̄.

The theory T has a global symmetry group, denoted GH ×GC , that commutes with
the supercharges and R-symmetry. G acts as a subgroup of the hyperkähler isometry
group USp(N) = U(2N) ∩ Sp(2N,C) of R, denoting this embedding by R(G), GH acts
on the hypermultiplet scalars as

GH = NUSp(N) (R(G)) /R(G) , (2.2)

where NUSp(N) denotes the normaliser inside USp(N). We call GH the flavour symmetry
group.

In three dimensions, every abelian factor AU(1) of the gauge group has a conserved
current J = ∗dAU(1) for which we can introduce a dual photon γ with J = dγ and γ

periodic with γ ∼ γ + 2πg2. Hence for each abelian factor of G we have a U(1) global
symmetry that acts by shifting the dual photon. This defines the topological symmetry
GC by

GC = Hom(π1(G), U(1)) . (2.3)
1G acts as a subgroup of USp(2N) preserving the hyperkähler structure of R.
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The topological symmetry is often enhanced to a non-abelian symmetry in the IR [61],
we see explicit examples of this later. In the theories we study in this work, the gauge
group will be a product of unitary groups G = ∏

i∈I U(Vi) so that π1(G) = Z|I| and the
topological symmetry is then classically GC = U(1)|I|.

Lagrangians. We now fix an N = 2 subalgebra of the supersymmetry algebra and
decompose our fields into N = 2 multiplets. This corresponds to choosing an element of
P1 × P1 parametrising embeddings U(1)H × U(1)C ⊂ SU(2)H × SU(2)C . We denote the
corresponding U(1) R-charges by RH and RC .

The on-shell fields of a N = 4 hypermultiplet transforming in R are given by a pair of
3d N = 2 chiral multiplets ΦX = (X,ψX) and ΦY = (Y, ψY ). The N = 4 vector multiplet
consists of a 3d N = 2 vector multiplet denoted V = (Aµ, σ, λ) and a 3d N = 2 chiral
multiplet in the adjoint of G denoted Φ = (ϕ, η). The R-charges for the hypermultiplet
fields are

X Y ψX+ ψY+ ψ̄X− ψ̄Y−

RC 0 0 −1 −1 +1 +1
RH 1 1 0 0 0 0

(2.4)

and for the vector multiplet we have

Aµ σ ϕ λ± λ̄± η± η̄±

RC 0 0 2 1 −1 1 −1
RH 0 0 0 1 −1 −1 1

(2.5)

The kinetic terms for the vector multiplet can be expressed in terms of a linear multiplet2

Σ, containing the field strength, and the N = 2 chiral contributions in the vector multiplet.
We have

LN=4 V.M. = 1
g2

∫
d3xd4θ tr Σ2 + 1

g2

∫
d3xd4θ

(
Φ†e−2VΦe2V

)
. (2.6)

The kinetic and N = 4 superpotential terms for the hypermultiplets are given by

LN=4 H.M. =
∫
d3xd4θ

(
Φ†Xe2VΦX + Φ†Y e−2VΦY

)
−
√

2i
∫
d3xd2θ (ΦY ΦΦX + h.c.) . (2.7)

Mass and FI deformations. The theories can be deformed by adding mass and FI
parameters. These enter the Lagrangian in the usual way [62] by coupling to non-dynamical
background multiplets for global symmetries. We first consider coupling to a background
vector multiplet for the GH flavour symmetry. Setting the fermion variations to zero allows
a triplet (transforming under SU(2)H) of parameters ~m ∈ t3H in the scalar components

2See e.g. the review [59] for more details on 3d N = 2 multiplets.
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and in a fixed complex structure, as we see in (2.7), the deformations enter as real and
complex mass parameters (mR,mC) ∈ t⊕ tC where t denotes the Cartan subalgebra of GH .

Similarly we can couple the theory to a twisted vector multiplet for the topological
symmetry GC and in a fixed subalgebra/complex structure we have an SU(2)C triplet
~ξ ∈ g3

C . The parameters enter the Lagrangian3 as real and complex FI parameters
(ξR, ξC) ∈ t⊕ tC where t denotes the Cartan subalgebra of GC .

Masses and FI parameters realise the central charges in the supersymmetry algebra
(2.1) by

Z11 ∼ ξC , Z12 ∼ iξR , Z 1̇1̇ ∼ mC , Z 1̇2̇ ∼ imR . (2.8)

In a fixed N = 2 subalgebra the diagonal combination of U(1)H × U(1)C becomes an
R-symmetry whilst the anti-diagonal combination 1

2(RH −RC) is a flavour symmetry—we
denote this symmetry by U(1)t. The theory can be coupled to a background vector
multiplet for U(1)t with vacuum expectation τ for the real scalar and, reading off (2.4) and
(2.5) we see this contributes a real mass 1

2τ to the N = 4 hypermultiplet and contributes
−τ to the mass of the N = 2 chiral in the vector multiplet. This deformation ‘softly’ breaks
N = 4 supersymmetry to N = 2 and this is often referred to as N = 2∗ supersymmetry
[64].

2.1.2 Moduli space of vacua

Three dimensional N = 4 theories have flat directions in their classical potential that
generically lead to a non-compact quantum moduli space of vacuaM. In the IR the theory
flows to a sigma model to the vacuum moduli space and N = 4 supersymmetry constrains
the target to be hyperkähler [65]. In a non-compact three dimensional spacetime a choice
of vacuum state is required to define the theory—it is a ‘superselection sector’ [66].

We first discuss the classical vacua of (2.7) and (2.6). Including mass and FI deforma-
tions, minimising the scalar potential gives a sum of positive-definite contributions that
must all be set to zero in a vacuum. In a fixed N = 2 subalgebra we find [ϕ, ϕ†] = 0 and
[ϕ, σ] = 0 together with

(σ +mR + τ) · (X, Y ) = 0 ,
(ϕ+mC) · (X, Y ) = 0 ,

µR + ξR = 0 ,
µC + ξC = 0 .

(2.9)

where µR and µC realise the real and complex moment maps for the tri-Hamiltonian G

action on R with respect to the canonical hyperkähler structure on R ∼= HN . In the above
3See for example [63].
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we have used the · notation to indicate that the vector multiplet scalars and the mass
parameters act as infinitesimal gauge and flavour transformations on the hypermultiplet
scalars in the appropriate representation. Explicitly the moment maps are given by

µC = Y TX , µR = X†TX − Y †TY . (2.10)

where T are anti-Hermitian generators of g.
In general the vacuum moduli space consists of mixed branches along which both

hypermultiplet and vector multiplet scalars can obtain vevs. In this work we consider the
distinct Higgs MH and Coulomb MC branches where vectormuliplet and hypermultiplet
scalars separately obtain vevs. These branches are so-named because at a generic point on
the Higgs branch the vector multiplet obtains mass via the Higgs mechanism and on the
Coulomb branch the gauge group is broken to the maximal torus of the gauge group and
generically abelian gauge fields remain in the IR.

Higgs branch. When the mass parameters are set to zero the Higgs branch is parametrised
by vevs for the hypermultiplet scalars and vanishing vevs for the vector multiplet scalars
σ = ϕ = 0. In that case (2.9) is a description of the Higgs branch as a hyperkähler quotient
of R by the action of G

MH = {(X, Y ) : µR + ξR = 0 , µC + ξC = 0}/G . (2.11)

The Higgs branch is then a hyperkähler manifold of complex dimension dimMH =
2N − 2 dimR(G). The moduli space (2.11) is expressed in a fixed N = 2 subalgebra
which we see corresponds to a choice of complex structure on MH . In this fixed complex
structure the action of GH on the hypermultiplet scalars descends to a Hamiltonian action
on MH . Turning on infinitesimal generators mR the equations (2.9) show that mass
parameters lift the Higgs branch to the fixed points of the one-parameter subgroup in GH

specified by the mR. It is an assumption throughout the work that it is possible to turn
on ‘generic’4 mass parameters such that the theory has isolated massive vacua under the
isometry generated by mR which coincide with the fixed points MGH×U(1)t

H —we denote
these isolated vacua by α.

The non-renormalisation theorems of [67, 59] ensure that this classical description of
the Higgs vacua is preserved in the quantum theory. The non-renormalisation theorem
can essentially be summarised by noting that the gauge coupling constants g are real
parameters with no natural complexification and can therefore only be promoted to
background superfields that cannot correct the effective potential.

4We define this more carefully later in subsection 3.1.4.

29



Coulomb branch. The Coulomb branch is described, in the case of vanishing FI
parameters, by X = Y = 0 and (σ, ϕ) obtaining vevs. In this case the gauge group is
broken to a maximal torus T ⊂ G and after dualising the photons to periodic scalars γ we
have

Mclass.
C =

(
R3 × S1

)rkG
/Weyl(G) . (2.12)

This is a complex manifold with dimMC = 2 rkG. The superscript here indicates that
the classical description of the Coulomb branch does receive quantum corrections, however
supersymmetry ensures the quantum Coulomb branch is not lifted and generically we
expect an IR description of the theory on the Coulomb branch as a non-linear sigma model
to a hyperkähler cone target [65]. We discuss the Coulomb branch in more detail in the
following subsections.

2.1.3 Chiral rings

The spectrum of 3d N = 4 theories includes certain protected operators that form
commutative operator algebras known as chiral rings [68]. In this subsection we review
the construction of these chiral rings.

We first define the following two Higgs and Coulomb supercharges5

QH = Q11̇
+ +Q12̇

− , QC = Q11̇
+ +Q21̇

− . (2.13)

These supercharges are nilpotent6 and in the topologically twisted context they are scalars
under an improved Lorentz group defined as the diagonal in SU(2)E × SU(2)H/C with
QH and QC defining the topological Rozansky-Witten model and its mirror [69, 70]. The
chiral rings are defined to be the cohomology rings of QH and QC which we denote by
RH and RC respectively. Much of the discussion to follow is the same for either the Higgs
or Coulomb supercharge so we denote either by Q. We now show that operators in the
chiral rings are independent of position. Define the supercharges

QH
µ = 1

2 (σµ)αȧ Q
2ȧ
α , QC

µ = 1
2 (σµ)αa Q

a2̇
α , (2.14)

we denote either of these vector supercharges by Qµ and from the supersymmetry algebra
(2.1) it follows that in either case we have {Q,Qµ} = Pµ. We then deduce for an operator

5We make an explicit choice of subalgebras—in general one could consider rotations of these supercharges
parametrised by P1 × P1 choices of complex structure on MH and MC .

6Up to gauge transformations and symmetries generated by masses and FI parameters respectively.
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O in Q-cohomology that

Pµ · O = [Pµ,O] = [{Q,Qµ},O] ,
= {[Q,O], Qµ}+ {Q, [Qµ,O]} ,
= 0 ,

(2.15)

where the first term vanishes since O is Q-exact and the second term is Q-exact, therefore
the operator O is independent of position. Since the operators are position independent,
we can move them far away from each other and apply the cluster decomposition principle
[71] to define a product structure on operators O1 and O2 in the cohomology by 〈O1O2〉 =
〈O1〉〈O2〉. Furthermore, in three dimensional flat space there is no notion of operator
ordering and hence the chiral rings are commutative. Later, in chapter 4, we meet the
Ω-deformation that forces the operators in the cohomology to lie on a line and introduces
a notion of operator ordering that quantises the chiral rings. We assume that QH and QC

cohomology contains only bosonic operators in the examples that we consider.

Higgs and Coulomb operators. Throughout this work we meet several BPS objects
of 3d N = 4 theories annihilated by some fraction of the supercharges Qaȧ

α . The chiral
rings RH and RC are the first of these; they consist of half-BPS Higgs and Coulomb
branch operators annihilated by the following supercharges:

Q11̇
− Q12̇

− Q21̇
− Q11̇

+ Q12̇
+ Q21̇

+

RH • • • •
RC • • • •

(2.16)

It is an assumption throughout this work that the theories we study are ‘good’ or ‘ugly’
in the classification of [54]. Such theories flow to a 3d N = 4 superconformal field theory
in the IR with the UV R-symmetry matching the IR R-symmetry. In this case we have
an osp(4|4,R) superconformal symmetry at our disposal with additional superconformal
generators S providing the Hermitian conjugates S = Q† in radial quantisation. We refer
the reader to [57] for further details of the superconformal algebra. In this quantisation,
local operators inserted at the origin correspond to states on a surrounding S2—in chapter
4 we extend this construction to a putative state-operator map for the theory with a
boundary.

In the work [57], Dolan classifies the unitary representations of osp(4|4,R)—we closely
follow the presentation of [38]. We consider QH cohomology for definiteness, but the
arguments below follow for QC identically by appropriately exchanging H and C. Firstly,
note that states in QH-cohomology manifestly preserve Q11̇

+ and Q12̇
− , and for a unitary
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representation we further have the bound

{QH , Q
†
H} = 1

2(D − RH

2 ) ≥ 0 , (2.17)

where D denotes the charge under dilations. The classification of osp(4|4,R) multiplets
implies that operators saturating this bound are superconformal primaries annihilated
by all four supercharges in the first row of (2.16). Furthermore, the unitarity bounds
associated to Q11̇

+ and Q12̇
− ensure that J + RC

2 = 0 for these operators.
In fact, the chiral ring RH is generated by local operators in the UV Lagrangian. In

particular, solutions to the BPS equations for the supercharges in the first row of (2.16)
are solved by gauge invariant fields in bottom components of chiral superfields [72] that
satisfy the complex moment map constraint—that is RH coincides with the coordinate
ring of the Higgs branch (2.11).

The generators of the Coulomb branch chiral ring RC can also be realised at short
distances by scalars in the vector multiplet and certain disorder operators known as
monopoles [73, 74, 54]. However the operator product inRC receives quantum corrections—
we discuss RC in more detail in the following subsection.

Chiral rings and holomorphic functions. In three dimensional flat spacetime the
definition of the theory requires specification of a Higgs or Coulomb vacuum state |Ω〉.
Associated to each element of either the Higgs or the Coulomb chiral ring we can define a
holomorphic function f :MH → C by

fO : |Ω〉 → 〈O〉|Ω〉 . (2.18)

It is a basic assumption of 3d N = 4 theories that this map is surjective. The chiral
rings RH and RC are then identified with the coordinate rings of the Higgs and Coulomb
branches denoted C[MH ] and C[MC ] respectively. This assumption becomes the definition
of the Coulomb branch MC in the mathematical construction of the Coulomb branch due
to Nakajima et. al. [33, 34].

Hilbert series. The Hilbert series [75, 76, 77] is a count of QH- or QC-cohomology
graded by R-charge and further refined by flavour symmetries GH or GC . More precisely,
the Hilbert series are defined by

H.S.[MH ] := TrRH xTH tRH , H.S.[MC ] := TrRC ζTC tRC . (2.19)

From the discussion above, the chiral rings coincide with holomorphic functions on the
Higgs and Coulomb branches, and under certain conditions, the Hilbert series defined
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above coincides with the Hilbert series of an affine variety with a torus action defined as a
torus character of the coordinate ring. In the following chapter, under this correspondence,
we review how to compute the Hilbert series using localisation methods in geometry.

In chapter 4 we compute twisted indices of 3d N = 4 theories that can be realised
as path integrals on S2 × S1. We find that these indices receive contributions only from
states in either RH or RC and agree with the Hilbert series (2.19). This perspective allows
us to relate the Higgs and the Coulomb branch Hilbert series to vortex geometry.

2.1.4 Coulomb branch and 3d mirror symmetry

We now discuss the non-perturbative chiral ring RC of the Coulomb branch. The chiral
ring determines the complex geometry of the Coulomb branch via

MC := SpecC[MC ] = SpecRC . (2.20)

Classically, the Coulomb branchMC is generated by vector multiplet scalars and the dual
photons. This description receives quantum corrections and in addition to X = Y = 0,
the time-independent half-BPS equations for the supercharges in the second row of (2.16)
include F = ?Dσ and D ? σ = 0. These equations admit ’t Hooft monopole solutions
[73] which are local disorder operators defined by singular gauge field configurations.
Specifically, excising a point p ∈ R3 and writing local spherical coordinates (r, θ, ϕ) around
p, then the monopole is determined by a cocharacter m ∈ Hom(U(1), T ) = Λh modulo the
Weyl group W and given by the field configuration

A± ∼
m

2 (±1− cos(θ))dϕ , σ ∼ m

2r . (2.21)

The BPS equations further admit monopole configurations that are ‘dressed’ by constant
configurations for the complex scalar ϕ compatible with the flux m ∈ Λh/W . It is an
assumption, that has been tested in many examples [75, 76, 77, 78, 79], that these dressed
monopole operators generate the chiral ring RC . Furthermore, the ring relations and full
hyperkähler structure have more recently been constructed using abelianisation methods in
the work [35], leading to a full non-perturbative definition of the Coulomb branch geometry.
The complex geometry of the Coulomb branch has also been rigorously formulated in the
mathematical literature in the work of Nakajima et. al. [34, 33]. A physical perspective on
this constructions is provided in [80], where the Coulomb branch algebra is re-constructed
from its action on the cohomology of the vortex moduli space of the theory. In chapter 4
we study a related physical setup and study the action of the Coulomb branch algebra on
boundary conditions of 3d N = 4 theories.
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Coulomb branch Hilbert series. Classically, monopole operators have a charge J(m)
under the abelian part of the topological symmetry GC . In the IR they can acquire
non-trivial quantum numbers and the topological symmetry is typically enhanced to a
non-abelian symmetry [63]. In particular, the RC-charge is given by [54]

∆(m) = −
∑
α∈R+

|α(m)|+ 1
2
∑
ρ∈R
|ρ(m)| , (2.22)

where ρ are the weights of the matter representation R and R+ denotes the positive roots
of g. The ‘good’ or ‘ugly’ assumption (which implies ∆ ≥ 1/2) is important here since
it ensures the unitarity bound is not violated and this formula gives the correct infrared
R-charge of the monopole operator.

The work [77] proposes the following expression for the Coulomb branch Hilbert series
(2.19)

H.S[MC ] =
∑

m∈Λh/W

ζJ(m)t∆(m)PG(t,m) . (2.23)

where PG(t,m) is the contribution of complex scalars dressing the ‘bare’ monopoles and is
given by

PG(t,m) =
r∏
i=1

1
1− tdi(m) . (2.24)

where di(m) with i = 1, . . . , r are the degrees of the Casimir invariants of the residual
gauge group unbroken by m.

3d mirror symmetry. 3d N = 4 theories enjoy a powerful duality known as 3d mirror
symmetry [63, 81]. A zeroth order version of this duality is as an automorphism of the
supersymmetry algebra that exchanges SU(2)H with SU(2)C and GH with GC . 3d mirror
symmetry is therefore expected to exchange strongly coupled Coulomb branch physics with
the classical Higgs branch. The symmetry exchanges masses and FI parameters m↔ ξ

and, in a fixed subalgebra, the RH and RC charges so that t↔ t−1.
3d mirror symmetry is an infrared duality between pairs (T , T ′) of 3d N = 4 theories

and observables and operators should, in principle, be mapped across the duality. The
duality can be motivated for a wide class of theories by a construction in type IIB string
theory [17]—in that context the duality arises as S-duality of the D3, D5 and NS5 system.
Since the original conjecture, much progress has been made with physical checks—these
are too numerous to comprehensively list here but we note a small sample: In the work
of [82] the spectrum of Higgs and Coulomb operators are matched precisely in a large
flavour limit; the work of [83] provides a non-trivial check that the IR metric on the Higgs
and Coulomb branches of mirror dual theories match; in the work [84] the three sphere
partition function of various mirror dual theories are shown to be equal and Dedushenko
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et. al. [85] check correlation functions and operator products of Coulomb branch operators
in the one dimensional topological sector.7

3d mirror symmetry is closely related to the notion of symplectic duality in geometry
[52, 53]. Symplectic duality relates pairs of symplectic resolutions X and X ! that can
often be realised as the Higgs branch and Coulomb branch of a theory T . In particular,
symplectic duality relates the categories of modules associated to the quantised coordinate
rings (chiral ringsRH andRC) of the resolutions X and X ! in a precise way [52]. Physically,
this correspondence can be understood as relating dual pairs of boundary conditions for
mirror dual theories placed on a spacetime with boundary [55]. Symplectic duality now
largely evolves in parallel with the study of 3d mirror symmetry in physics.

The enumerative geometry of pairs X and X ! is also mirror dual in a way made precise
in the recent works [86, 87, 88, 89, 90, 91]. Specifically, vertex functions8 of mirror dual
theories can be related via the elliptic stable envelope [92]. In chapter 4 of the present
work, we use these techniques from enumerative geometry and curve counting to interpret
the ‘gluing’ of twisted indices in physics, and consequently the Hilbert series (2.19), in
terms of vortex geometry.

2.1.5 Vortices

The final BPS object that we consider in this background chapter are half-BPS vortex
solutions preserving the supercharges Q11̇

− , Q12̇
− , Q21̇

+ and Q22̇
+ . We follow closely the

presentation of [80]. Vortices are time-independent BPS solitons localised in the x1,2-
plane, we seek a complex algebraic description of the moduli space and introduce complex
coordinates z = x1 + ix2 and z̄ = x1 − ix2. Turning off masses, the BPS equations for the
vector and chiral multiplets yield

Dz̄X = Dz̄Y = 0 , µC = 0 , Fzz̄ ∼ µR + tR . (2.25)

We impose that X and Y tend to a Higgs vacuum α ∈MH at infinity in C. We compactify
the complex plane to P1 and, as is typical in moduli space constructions [93], the real
moment map can be dropped in favour of a quotient by the complex gauge group together
with a stability condition. The moduli space of vortices in a vacuum α can then be
expressed as the infinite-dimensional Kähler quotient

Mα = {Dz̄X = Dz̄Y = 0, µC = 0 |X, Y z→∞→ α}/GC , (2.26)
7This is the same sector of operators discussed in section 4.4.
8The definition of a vertex function will be reviewed in section 4.1.1.
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where in the above X, Y → α means that X and Y lie in the orbit of α at infinity and we
quotient by gauge transformations constant at∞. This data defines a principal GC-bundle
on P1 trivialised at ∞ with holomorphic sections (X, Y ) of associated bundles satisfying
the moment map constraint µC = 0. The moduli space splits into distinct topological
sectors Mm

α labelled by Chern numbers/fluxes

m = 1
2π

∫
P1

trF , (2.27)

we have m ∈ π1(G) and therefore a natural pairing with exponentiated FI parameters
ζR ∈ Hom(π1(G), U(1)), we see this pairing manifested in vortex partition functions later.
In the case of a product gauge group G = ∏

i∈I U(Ni) (e.g. the quiver field theories
we discuss in the following section) the fluxes form a lattice in Z|I| corresponding to
the non-empty vortex moduli spaces. Later, we see that for Nakajima quiver varieties
H2(MH ,Z) can be identified with tC and so under the above pairing, fluxes can naturally
be identified with homology classes of images of maps P1 →MH . We explore the geometry
further in chapter 4 where the relevant moduli spaces are quasimap spaces [94, 95] and in
this context we elucidate the precise connection between K-theoretic vertex functions and
partition functions of boundary conditions.

In section 4.2 of chapter 4 we pursue a realisation of vortex moduli spaces as moduli
spaces of flags of sheaves on P1. We show for theories of the class Tρ[SU(N)] the relevant
moduli space is a smooth Laumon space [96].

2.2 Nakajima quiver varieties

In this section we review the definition and basic properties of Nakajima quiver varieties
[41, 40]. Physically, Nakajima quiver varieties describe the Higgs branch geometry (2.11)
of a wide class of 3d N = 4 theories.

We begin with a review of the field content of these theories and then discuss the
powerful algebraic realisation of Nakajima quiver varieties as symplectic resolutions. We
focus mostly on the physical implications of these constructions and leave detailed proofs
to the existing literature.

Quiver field theories. In the previous section we considered very general properties of
3d N = 4 gauge theories. We now turn to a particular class of theories known as quiver
gauge theories which we denote by TQ. These theories are specified by a quiver Q—an
example of which can be seen in figure 2.1. The Higgs branch of TQ coincides with a
Nakajima quiver variety and often the Coulomb branch can also be described by a quiver
variety—also known as the symplectic dual (for example the class of T σρ (G) theories are
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1 2

Figure 2.1: A quiver Q with I = {1, 2} and E = {(1, 2), (2, 2)}. The edges of Q̄ are
illustrated together with a choice of orientation Q̄ = ~Q t ~Qop..

‘closed’ in this way under mirror symmetry [97, 98], as is the 3d ADHM quiver theory we
study in chapter 5).

Quiver representations. A quiver is a finite graph Q with a vertex set I and edge
set E. We denote by Q̄ the quiver with double the edges of Q and write Ē for the
doubled edge set. ~Q denotes a choice of orientation of the edges in Q and ~Qop. denotes
the opposite choice of orientation so that Q̄ = ~Qt ~Qop.. See figure 2.1 for an example. We
write the adjacency matrix for the oriented graph as ~Qij = |{# edges joining i and j}|
for (i, j) ∈ I × I. We specify dimension vectors v = {vi}i∈I and w = {wi}i∈I called gauge
nodes and flavour nodes respectively. A quiver representation is an assignment of the
following vector spaces to the quiver

R( ~Q, V ) =
⊕
i,j∈I

Hom(Vi, Vj)⊗ ~Qij , L(V,W ) =
⊕
i∈I

Hom(Vi,Wi) ,

M(v,w) = R( ~Q, V )⊕ L(V,W ) .
(2.28)

where (Vi)i∈I and (Wi)i∈I are complex vector spaces with dimensions determined by the
gauge and flavour nodes (vi) and (wi). A framed double quiver representation is defined by

R(v,w) := T ∗M(v,w) = R( ~Q, V )⊕R( ~Qop., V )⊕ L(W,V )⊕ L(V,W ) . (2.29)

Since it is a cotangent bundle, the representation R(v,w) can play the role of a quaternionic
matter representation R for a 3d N = 4 theory of the type discussed in section 2.1.1.
The gauge group G of the theory is specified by the set of gauge nodes (vi) so that
G = ∏

i∈I U(vi). In this way the quiver Q determines a quiver field theory TQ. In
summary:

• To every gauge node i ∈ I we associate a N = 4 vector multiplet with gauge group
G = U(vi).

• To every edge (i, j) ∈ E between gauge nodes we associate a bifundamental N = 4
chiral multiplet.

• To every flavour node we associate wi fundamental N = 4 hypermultiplets.
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Nakajima quiver varieties. We now discuss the identification of the Higgs branch
of TQ with a Nakajima quiver variety [41, 40]. The matter representation R(v,w) is a
flat space of quaternionic dimension ∑(i,j)∈Ē vivi +∑

i∈I viwi with a natural hyperkähler
structure. We write9 (A,B, I, J) for elements of R(v,w). The quiver representation R(v,w)
admits a tri-holomorphic Hamiltonian action by the gauge group G given by

(A,B, I, J)→ (gAg−1, gBg−1, gI, Jg−1) , (2.30)

for g ∈ ∏i∈I U(Vi). In the canonical complex structure the associated real and complex
moment maps for this action are

µR := [A,A†] + [B,B†] + II† − JJ† ∈
∏
i∈I

u(Vi) ,

µC := [A,B] + IJ ∈
∏
i∈I

u(Vi)⊗ C .
(2.31)

These are precisely the moment maps appearing in the Higgs branch vacuum equations
(2.9) when specialised to a quiver representation.

Definition 2.1. (Nakajima [41]) The Nakajima quiver variety Mξ(v,w) is the Higgs
branch MH(TQ) and is given by the hyperkähler reduction

Mξ(v,w) = µ−1
R (ξR) ∩ µ−1

C (ξC)/G . (2.32)

We defer a discussion of geometrical properties of the quotient, such as smoothness
and dimension, until after discussing the construction of Nakajima quiver varieties as
quasi-projective varieties. For the remainder of this chapter we turn off complex masses mC

and FI parameters ξC. We turn these back on later in section 4.4 of chapter 4 where they
give complex structure deformations of the Higgs branch and Coulomb branch respectively.

Algebraic realisation. The second of Nakajima’s papers on quiver varieties [40] realises
these spaces as quasi-projective varieties. They can be constructed as a geometric invariant
theory (GIT) quotient [99] and in this section we review the essentials of this theory as it
applies to quiver varieties. Throughout, we work in a fixed complex structure and mostly
drop the C subscripts.

Firstly, we note that µ−1(0) ⊂ R(v,w) is an affine algebraic variety and admits an
action of the complexified gauge group GC = ∏

i∈I GL(Vi). We can therefore form the
affine algebraic quotient

Mo(v,w) = SpecC[µ−1(0)]GC . (2.33)
9We use a slightly different notation to the (X,Y ) splitting of the previous section and now further

distinguish between fields between gauge nodes and flavour nodes.
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This space is, by construction, an affine algebraic variety and generally singular. The right
hand side is simply a more formal version of the discussion in subsection 2.1.3—the Higgs
branch chiral ring is formed from gauge invariant hypermultiplet scalars. It is a standard
fact of GIT theory that the geometric points of the affine quotient correspond to closed
G-orbits in R(v,w). Under certain conditions that we discuss in the following, the quiver
variety M(v,w) will be a resolution of the singular affine space Mo(v,w).

The construction of M(v,w) as a GIT quotient depends on a stability parameter
θ ∈ Z|I|. Associated to θ we define a character χθ : GC → C× by χθ(g) = ∏

i∈I (detgi)−θi

and this allows us to define a graded algebra

A :=
⊕
n≥0

C[µ−1(ξC)]GC,χ
n

, (2.34)

where the graded components are given by the χ semi-invariants

C[µ−1(ξC)]GC,χ := {f ∈ C[µ−1(ξC)] : f(g · x) = χθ(g)f(x)} . (2.35)

We then have the following

Definition 2.2. (Nakajima [40]) A Nakajima quiver variety is defined by the GIT quotient
construction

Mθ,ξC(v,w) = µ−1
C (ξC) //χθ GC := Proj (A) . (2.36)

This, by definition, realises the Nakajima quiver variety as a quasi-projective variety.
The Proj construction comes with a natural morphism induced by the inclusion of the
zero component C[µ−1(0)]GC ⊂ A which gives a projective morphism

π :Mθ,ξC(v,w)→Mo,ξC(v,w) (2.37)

that relates the singular space Mo(v,w) to the resolved Higgs branch M(v,w).

Stability. We now define loci of stable points and semistable points. The following is
due to King [100].

Definition 2.3. We say that a quiver representation R(v,w) is semistable with respect
to the stability parameter θ ∈ R|I| if the following condition holds: Whenever S = (Si)i∈I
is a collection of subspaces contained in V = (Vi)i∈I and preserved by A and B we have

• If Si ⊂ ker Ji for all i ∈ I then θ · dimS ≤ 0.

• If im Ii ⊂ Si for all i ∈ I then θ · dimS ≤ θ · dim V .

We further say that a representation R(v,w) is stable (with respect to θ) if the above
inequalities are strict. We write µ−1(0)s and µ−1(0)ss for the locus of stable and semistable
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points respectively. The conditions respect the group action (2.30) and therefore the notion
of stable and semistable descends to definitions of stable and semistable loci, denoted by
µ−1(0)s/GC and µ−1(0)ss/GC respectively, in the topological quotient µ−1(0)/GC.

In this thesis we always take the stability condition θ = (1, . . . , 1) and in that case the
second stability condition is automatic and the first simply states that if S is any subspace
of kerJ that is stable under A and B then S = {0}. We discuss the general θ case because
in a moment we will use this to make contact with the the real FI parameters of the 3d
quiver gauge theory TQ.

In terms of stability, we can now give a more intuitive picture of the geometric points
of the GIT quotient Mθ(v,w).

Theorem 1. (Nakajima [40]) The set of geometric points of the scheme Mθ(v,w) is
topologically equivalent to the quotient

Mθ(v,w) = µ−1(0) //χθ GC = µ−1(0)s/ ∼ , (2.38)

where the equivalence relation on the right identifies x ∼ x′ if the closure of their GC

orbits intersect in µ−1(0)ss.

Note that this is a coarser condition than the topological quotient µ−1(0)s/GC which
in general is a ‘badly-behaved’ non-Hausdorff space.

Generic stability parameters. In fact, the stability parameter θ ∈ Z|I| can often be
chosen so that Mθ(v,w) is a non-singular variety. We define the following disconnected
set of chambers ⋃

CC := R|I|\
⋃

α∈R+(v)
Dα , (2.39)

where R+(v) = {α ∈ Z|I|+ : α 6= 0 , (α, α) ≤ 2 , α ≤ v} and Dα = {θ : θ · α = 0}. When Q

is the Dynkin diagram of a simply-laced Lie algebra g then these are precisely the usual
Weyl chambers associated to g. In general, the form ( , ) is the symmetrised Euler form
associated to Q defined by10

〈v, v′〉 :=
∑
i∈I

viv′i −
∑
e∈Ē

vh(e)v′t(e) ,

(v, v′) := 〈v, v′〉+ 〈v, v′〉 .
(2.40)

We then say that θ ∈ Z|I| is generic if it lies within a chamber CC . Physically, if the FI
parameter11 lies on a root hyperplane then mixed branches of the moduli space open up
as the tension between domain walls separating vacua goes to zero.

10Where h(e) and t(e) denote the vertex at the head and tail of the edge e respectively.
11We discuss how θ relates to the FI parameter in the following.
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If θ ∈ Z|I| is generic then Nakajima shows [40] that the the stabiliser in GC of a point
x ∈ µ−1(0)s is trivial and therefore all orbits in µ−1(0)s are closed. Under these conditions
the geometric points of the quiver variety are given simply by

Mθ(v,w) = µ−1(0)s/GC . (2.41)

Furthermore, under the genericity assumption we have the following

Theorem 2. (Nakajima [40]) If θ ∈ R|I| is generic and Mθ(v,w) is non-empty12 then we
have

• Mθ(v,w) is a non-singular connected variety of dimension 2v · w − 2〈v, v〉.

• If θ, θ′ ∈ R|I| are in the same chamber CC then the quiver varieties Mθ(v,w) and
Mθ′(v,w) are isomorphic.

• The map π :Mθ(v,w)→Mo(v,w) is a resolution of singularities.

The Kempf-Ness theorem. At the beginning of this chapter we defined the Nakajima
quiver variety as a hyperkähler quotient. We now explain the connection between the
hyperkähler quotient and algebraic approaches.

The stability parameter θ ∈ Z|I| can be related to the real FI parameter ξR as follows.
Restricting the character χθ to the real gauge group G defines a character χθ ∈ Λ∨G. Taking
the derivative we obtain a map χ∗ : tC → u(1) ∼= R which, via equation (2.31), can be
considered an element of tC and identified with the real FI parameter ξR. By theorem 2,
quiver varieties in the same chamber are isomorphic and therefore we can always choose
an integer θ in the same chamber as ξR.

Theorem 3. (Kempf-Ness [101]) Assuming θ ∈ Z|I| is generic and the FI parameter ξ is
determined in terms of θ as above, then the hyperkähler quotient (2.32) is smooth and we
have an isomorphism

µ−1
R (ξR) ∩ µ−1

C (0)/G ∼= µ−1
C (0) //χθ GC. (2.42)

We therefore use without ambiguity the notation Mθ,ζC(v,w) to describe a Nakajima
quiver variety as either a hyperkähler quotient or the GIT quotient (2.36).

We assume from this point that our physical FI parameters ξR are chosen so that we
do not cross root hyperlanes and the Higgs branch MH is fully resolved.

12This innocent constraint is often actually the main obstruction to obtaining a non-trivial variety.

41



Flavour symmetries. There is a natural Hamiltonian action of GW = ∏
i∈I GL(Wi) on

R(v,w) associated to the framing factors (wi). Physically, this is a flavour symmetry and
acts by

GW : (A,B, I, J)→ (A,B, Ig, g−1J) . (2.43)

for g ∈ GW . This action commutes with the gauge group action GC, preserves the moment
map equation (2.31) and respects the stability conditions (2.3) and therefore descends to
a Hamiltonian isometry of Mθ(v,w). Comparing with the vacuum equations (2.9) we see
this is the finite version of the infinitesimal transformation generated by the real mass
parameters mR. We denote the maximal torus of this action by A.

It is an assumption throughout this thesis that we work with theories with isolated
fixed points under GW . For ADE quivers theories, this is equivalent to fixing a chamber
CH for mR that lies outside the root hyperplanes:

⋃
CH := R|w|\

⋃
α∈R+(v)

Dα , (2.44)

where the definition of the root hyperplanes is parallel to (2.39) but for the GW symmetry.
We see that for theories with Higgs branch and Coulomb branch both described by
Nakajima quiver varieties, these two constraints are exchanged under 3d mirror symmetry
so that fully resolving the Higgs branch corresponds to lifting the Coulomb branch to
isolated fixed points and vice versa. Our assumption throughout is that our theories admit
suitably generic masses mR and FI parameters ξR to achieve this.

Nakajima quiver varieties also admit a contracting C×t action13 that acts on the linear
data by

C×t : (A,B, I, J)→ (tA,B, tI, J) . (2.45)

The action preserves the moment map constraint and commutes with the gauge group
and therefore descends to an algebraic action on Mθ(v,w) that scales the symplectic
form by t. The resolution π : Mθ(v,w) → Mo(v,w) is equivariant with respect to C×t
and has a unique fixed point o ∈ Mo(v,w), such actions are known as contracting. We
denote by T := A× C×t the combined torus action and write coordinates on T in terms of
the corresponding mass deformations as t = e−τ and z(i)

a = e−m
(i)
a for i = 1, . . . , |I| and

a = 1, . . . ,wi.

Symplectic resolutions. The coordinate ring of the unresolved spaceMo(v,w) admits
a Poisson algebra structure induced from the canonical symplectic form on R(v,w). The
notion of symplectic singularity captures when this algebra coincides with the algebra of

13There is another choice (A,B, I, J) → (tA, tB, tI, tJ) that corresponds to the Higgs branch RH -
symmetry action. In this section we follow the conventions of the quiver variety literature—in fact for the
theories studied in this thesis the two choices are related by a combined gauge and flavour transformation.
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holomorphic functions on the resolved Higgs branch M(v,w)

Definition 2.4. (Beauville [102], Ginzburg [103]) A symplectic resolution is a resolution
of singularities π : X̃ → X with X an irreducible Poisson affine variety and X̃ an algebraic
symplectic manifold such that π induces a Poisson algebra isomorphism

π∗ : C[X]→ Γ(X̃, ÕX) , (2.46)

where ÕX denotes the sheaf of holomorphic functions on X̃.

The work of [104] ensures that a wide class of quiver varieties are sympletic resolutions.
This means the Poisson algebra structure on the chiral ring RH coincides with the Poisson
algebra implied by the quotient construction in theorem 3 on the ring of functions on
M(v,w). In particular, the A-type quivers and the 3d ADHM quiver studied in this thesis
are symplectic resolutions.

Nakajima quiver varieties have the extra structure of a contracting C×t action that
induces a positive grading on the coordinate ring

C[M0(v,w)] =
⊕
k≥0

Ck[M0(v,w)] , (2.47)

with C0[M0(v,w)] = C and grades the Poisson structure with degree two so that for any
i, j ≥ 0 we have

{Ci[M0(v,w)],Cj[M0(v,w)]} ⊂ Ci+j−2[M0(v,w)] . (2.48)

The work of Kaledin in [105] shows that this structure admits a canonical lift to the
ring of holomorphic functions on M(v,w). Symplectic resolutions have many favourable
geometrical properties, such as higher sheaf cohomology vanishing, that allow us to make
progress computing geometric invariants—we discuss these in more detail in the following
chapter. For now, we focus on the physical interpretation.

Regarding a Nakajima quiver variety as a Higgs branch, then under the identification
from the previous section we have RH = C[MH ]. The interpretation of the symplectic
resolution property in physics is that the chiral ring admits a holomorphic Poisson bracket
and the C×t action corresponds to the grading of the operators by R-charge. Finally, since
MH is a symplectic resolution, the purely algebraic chiral ring RH = C[µ−1(0)]GC captures
the ring of holomorphic functions on the resolved Higgs branch. Conversely, this allows
the information of the physical chiral ring to be extracted using geometric localisation
methods that recieve contributions from the isolated fixed points on the resolved Higgs
branch MH—we return to these ideas in chapter 3.
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Figure 2.2: SQED[N ] Quiver

2.3 SQED[N ] example

We now demonstrate the abstract ideas of the previous two sections with a concrete
example: supersymmetric QED with N fundamental hypermultiplets, hereafter denoted
SQED[N ].

This theory is sufficiently complicated to effectively illustrate the main ideas we meet
throughout the thesis but simple enough that the geometrical and algebraic aspects can be
understood in concrete terms. Consequently, we will return to this example at many points
throughout the work, adding layers of complexity as we go. In this section we discuss the
Higgs and Coulomb branch geometry in detail. In subsection 4.1.1 we will discuss the
vortex moduli space of the theory realised as a quasimap space and compute the vertex
functions. In subsection 4.3.2 we place the theory on a half space with a boundary and
compute the partition function of an exceptional Dirichlet boundary condition—later in
the same chapter we show that this partition function yields Verma characters of the
quantised Higgs and Coulomb chiral rings. We visit SQED[N ] for a final time in section
5.3.3 where we compute the partition function with a Neumann boundary condition and
discuss the geometric interpretation of this object.

Field content. SQED[N ] is an abelian quiver gauge theory described by the quiver in
figure 2.214. It has gauge group G = U(1) and N fundamental hypermultiplets with a
GH = PSU(N) flavour symmetry. The topological symmetry is GC = U(1).

We introduce real mass deformations15 m1, . . . ,mN with ∑imi = 0 and an FI parameter
ξ. SQED[N ] is mirror dual to another A-type quiver and consequently the condition for
both the Higgs and the Coulomb branches to be fully resolved and have isolated singularities
is that the masses and FI parameters live in chambers CH and CC of tH = RN−1 and

14Note that throughout we use the convention of the mathematical quiver variety literature [41, 40] and
draw only the hypermultiplet chirals.

15Here and throughout the work masses and FI parameters without R or C subscripts denote real
parameters.
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tC = R respectively. We choose the following chambers for the masses and FI parameters

CH = {m1 < . . . < mN} , CC = {ξ > 0} . (2.49)

the chamber of the FI parameters16 corresponds to the stability condition θ = 1 as in
section 2.2. We also turn on a mass deformation τ .

Higgs branch geometry. The Higgs branch17 is the Nakajima quiver variety MH =
Mθ(v,w) with v = (1) and w = (N). Following section 2.2, we denote the scalars in
R = R⊕ R̄ by (X, Y ) and the complex moment map is µ(X, Y ) = XY . We call Mo(v,w)
the unresolved Higgs branch and denote it by Mo

H , it has geometric points

Mo
H = {A ∈ End(CN) : A2 = 0 , rkA ≤ 1} , (2.50)

where A = Y X. To understand the resolved Higgs branch we note that the stability
condition (2.3) with θ = 1 implies that Y is injective and therefore specifies a line C ⊂ CN .
Now imA lies inside both im Y and kerA and therefore A gives a well-defined element
of Hom(CN/ im Y, im Y ) which can be identified18 with the cotangent fibre of PN−1 at
the point im Y , conversely A and im Y determines (X, Y ) up to the action of the gauge
group C× and we therefore have an isomorphismMH

∼= T ∗PN−1 with im Y identified with
projective coordinates [Y1 : . . . : YN ] on PN−1. The projective morphism π :MH →Mo

H

acts by
π : (im Y,A)→ A (2.51)

and we see that the pre-image of the singularity o ∈Mo
H under π is the core PN−1. In the

case N = 2 the symplectic resolution property is particularly clear as we now show. We
choose the following generators for the coordinate ring of Mo

H

h = X1Y1 −X2Y2 , e = X1Y2 f = X2Y1 . (2.52)

The moment map gives the ring relations h2 = 4ef and geometrically the unresolved space
is a singular curve in C3. The Poisson bracket structure induced from the symplectic form
on the pre-quotient space R(1, N) is given by

{e, f} = h , {h, e} = 2e , {h, f} = −2f , (2.53)

this agrees with the smooth symplectic structure on the resolution T ∗P1. This is the simplest
case of the famous Springer resolution [107]. In chapter 4, we consider a deformation

16Likewise the chamber of the mass parameters is the stability condition θ̃ = 1 on the dual variety.
17With masses momentarily turned off.
18See, for example, Chriss and Ginzburg [106].
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quantisation of this algebra and realise modules by counting boundary operators in the
theory.

Fixed points. The mass deformation τ corresponding to the action C×t scales the
cotangent directions in T ∗PN−1 since19 (X, Y )→ (X, tY ) and therefore A→ tA.

Recall that the flavour group acts on the linear data by (X, Y ) → (gX, Y g−1) for
g ∈ GL(CN). It is immediate that we must have A = {0} (considered as an element
of Hom(CN/ im Y, im Y ) = T ∗Y PN−1) and therefore the fixed points α lie on the compact
core PN−1. The fixed point α can then be labelled by α = 1, . . . , N depending on which
coordinate of Y is non-zero.

Coulomb branch geometry. The Coulomb branch MC for SQED[N ] is generated by
ϕ and the bare monopole operators20 v± = e

± 1
g2 (σ+iγ). Classically, the monopoles satisfy

the relation v+v− = 1 but, as explained in [55], in the quantum theory the relation is
modified to

v+v− = ϕN . (2.54)

Together with the symplectic form Ω = dϕ ∧ d log v+, this describes the Coulomb branch
as the AN−1 singularity C2/ZN . The bare monopole operators v+ and v− have topological
and R-charges ζtN2 and ζ−1t

N
2 respectively and the Coulomb branch Hilbert series is given

by

H.S.[MC ] = 1
1− t

∑
m∈Z

ζmt
N
2 |m| = 1− tN

(1− t)(1− ζtN2 )(1− ζ−1t
N
2 )
. (2.55)

The Coulomb branch Hilbert series is naturally expressed as a series expansion in R charge
1 + t + O(t2). One of the results of chapter 4 is to interpret the right hand side of this
expression as a ‘holomorphic factorisation’ and instead expand in the topological fugacity
ζ. In section 4.3.3 we relate this expansion to the Poincaré polynomial of the vortex
moduli space.

19We continue to work with the convention from the quiver variety literature—this is gauge equivalent
to the RH -symmetry action (X,Y )→ (tX, tY )

20Inserting these operators in the path integral induces the singular configuration (2.21).
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CHAPTER 3
Quivers, integrability and Macdonald polynomials

This chapter begins with a review of geometric localisation. We add more detail to the
introduction to Nakajima quiver varieties we gave in section 2.2 and discuss equivariant
K-theory and the computation of various geometric invariants. We discuss Molien integrals
that compute the Hilbert series of 3d N = 4 theories and introduce a ‘q-deformed Molien
integral’ which is closely related to the kind of integral we meet in section 5.3 that
counts operators supported on a Neumann boundary condition. We show that Macdonald
polymomials can be used as a convenient tool to evaluate such integrals and apply these
methods to chainsaw quiver varieties and the ADHM moduli space in particular.

In sections 3.3 and 3.4 we study handsaw quiver varieties and show that, in the spirit
of the Borel-Weil-Bott theorem for flag varieties, certain Yangian modules can be realised
as homology groups of line bundles over the so-called ‘toothless’ handsaw quivers. Later,
in chapter 5, we discuss the physical interpretation of this result as counting boundary
operators in the presence of a line operator in a certain 3d N = 4 theory.

Overview. We begin with a review of geometric localisation. We focus on physical
applications and aim to phrase the background material in a way that lends itself to
explicit computations of the physical observables that we study throughout the thesis. In
section 3.2 we review Yangian characters and spin chain partition functions; we conclude
the section with a new result showing that a certain class of symmetric functions, known
as Milne polynomials, realise these spin chain partition functions. The second novel result
of the chapter is contained in section 3.3. In this section, we study a particular quiver
variety that describes a Lagrangian submanifold of the ADHM moduli space, we show
that holomorphic sections of line bundles supported on this submanifold form a particular
module of the type discussed in section 3.2—the physical interpretation of these results in
3d N = 4 gauge theory is deferred to chapter 5. We then further extend the results of
section 3.3 to a class of quivers called chainsaw quiver varieties—we introduce Macdonald
function methods to evaluate their Hilbert series and find that a subset of these quivers
realise more general Yangian characters. Finally, in section 3.4.3, we introduce Macdonald
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polynomial methods as a convenient tool to evaluate the large gauge rank limit of Hilbert
series.

Publications. The first two sections of this chapter are mostly review material. Parts
of section 3.3 and 3.4 appear in [108]

• S. Crew, N. Dorey and D. Zhang, Blocks and Vortices in the 3d ADHM Quiver
Gauge Theory, 2010.09732. (accepted to JHEP)

Section 3.4.2 is the author’s currently unpublished work.

3.1 Preliminaries

We work with quasi-projective varieties X equipped with the action of an algebraic group
G with an N dimensional maximal torus T ⊂ G. Physically, for the most part, X will be
a Nakajima quiver variety describing the Higgs branch MH of a 3d N = 4 theory and the
algebraic torus action will arise from global symmetries of the gauge theory. Later in this
chapter, X will also stand for resolutions of vortex moduli spaces of 3d N = 4 theories,
similarly realised as quiver varieties and in chapter 4 we will consider more general vortex
moduli spaces that do not admit smooth quiver descriptions. In this section we review a
suitably general setup to cover these cases. We begin with a lightning review of localisation
in equivariant K-theory—throughout, we take a constructive approach focused on explicit
calculations and refer the reader to the mathematical literature for detailed proofs.

Equivariant K-theory. The equivariant K-theory ring KT (X) is the Grothendieck
group of T -equivariant coherent sheaves on X.1 KT (X) has the structure of a commutative
KT (pt)-module with the product structure given by the tensor product. The K-theory of
a point KT (pt) can be identified with the representation ring of the torus Z[t±1

1 , . . . t±1
N ].

If f : Y → X is a closed embedding of varieties then we have a well-behaved2 pullback
map f ∗ : KT (X)→ KT (Y ). If f : X → Y is a proper morphism (or a projective map to
an affine variety) then we have a well-behaved push forward3 f∗ : KT (X)→ KT (Y ). We
will exclusively consider the case where Y = XT is the finite set of isolated fixed points of
X under T and ι : XT → X is the inclusion map.

The torus action T on X induces an action on the global sections Γ(X,E) of a sheaf
E and in turn endows the sheaf cohomology groups H i(X;E) with a T -module structure.

1When X is non-singular we can equivalently work with locally free equivariant coherent sheaves (i.e.
vector bundles) [109].

2Respects the KT (pt)-module structure.
3Defined as the sum of the images of the higher derived functors

∑
i(−1)iRif∗.
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We are interested in computing the equivariant Euler characteristic of an equivariant sheaf
on X defined by

χT (E,X) :=
∑
i≥0

(−1)ichTH i(X;E) , (3.1)

with E ∈ KT (X). In later chapters, these invariants will be associated to various
supersymmetric observables.

Localisation. Equivariant Euler characteristics can be computed using the method of
localisation in equivariant K-theory which we now review. We refer the reader to the
excellent reviews [106] and [95] for further technical detail.

We define KT (X)loc to be the localised K-theory ring KT (X) ⊗KT (pt) Q(T ) where
Q(T ) denotes the fraction field of the representation ring of T i.e. Q(T ) = Q(t1, . . . , tN).
Thomason’s localisation theorem [110] tells us that the pushforward ι∗ is an isomorphism
after localising so that

ι∗ : KT (XT )loc ∼= KT (X)loc . (3.2)

The isomorphism here respects the KT (pt) module structure on both sides. Since for us
XT will always be a set of isolated fixed points, then the left hand side is simply |XT |
copies of the representation ring and this allows us to think of the localised equivariant
K-theory of X as a vector space with a basis labelled by fixed points |x〉.

Furthermore, it is possible4 to explicitly compute the inverse of ι∗ by

ι−1
∗ (E) =

⊕
x∈XT

chT (Ex)PE [T∨x X] . (3.3)

where T∨x X is the fibre of the cotangent bundle at x ∈ XT and PE is the plethystic
exponential defined in (A.12).

Symplectic resolutions. Suppose π : X̃ → X is a symplectic resolution as in definition
2.4. We further suppose there exists a C× action with a unique fixed point o ∈ X and we
denote the inclusion of this fixed point by ιo. As discussed around definition 2.4, these
conditions are met for the Nakajima quiver varieties discussed throughout this thesis.

Under these conditions, one can show that, from the definition of the push forward
and the fact that π is projective, we have π∗E = ∑(−1)iH i(X;E). By localisation on the
un-resolved affine space X, since there is a unique fixed point o, we have:

KT (X)loc = KT (pt) ∼= Z[t±1
1 , . . . t±1

N ] , (3.4)

where the isomorphism is given by (ι∗o)−1 = chT . Putting these pieces together gives the
4See, for example, section 4 of [111].
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commutative square
KT (X̃)loc

⊕
xKT (pt)

KT (X)loc KT (pt)

ι−1
∗

π∗
∑

x

chT

and we obtain a localisation formula for the equivariant Euler characteristic of a sheaf E:

χT (E, X̃) =
∑
i≥0

(−1)ichTH i(X̃;E)

=
∑
x∈X̃T

chT (Ex)PE[T∨x X̃] .
(3.5)

This is the tool we use to compute equivariant Euler characteristics throughout this work.

Remark. When X is a smooth projective variety we are on the more familiar ground of
smooth Kähler manifolds. Crucially though, a Nakajima quiver variety is not projective.
Following GAGA [112], X can be considered a compact complex manifold with a compact
connected lie group action G (with maximal torus T ) and coherent sheaves can be identified
with holomorphic G-equivariant vector bundles E → X. The sheaf cohomology groups
H i(X,E) coincide with ordinary complex sheaf cohomology groups in the analytic topology
which can be computed by e.g. Čech cohomology.

In this case the equivariant Euler characteristic computes the index of the Dolbeault
operator ∂ on X. Explicitly, we now have a proper map to a point π : X → pt with
π∗E = ∑(−1)iH i(X,E) and equivariant Grothendieck-Riemann-Roch tells us that the
push forward is given by

χT (E,X) = ind(∂,E) =
∫
X

tdG(TX)chG(E) , (3.6)

where TX denotes the holomorphic tangent bundle on X and tdG and chG are equivariant
Todd and Chern classes respectively. The integral can then be computed using e.g.
Atiyah-Bott localisation to yield the same formula as (3.5).

3.1.1 Nakajima quiver varieties

We now discuss how the general theory of the previous section applies to Nakajima quiver
varieties Mθ(v,w) in particular. As discussed in section 2.2, Nakajima quiver varieties are
equipped with torus actions T = A× C×t which we assume have isolated fixed point sets
Mθ(v,w)A and C×t denotes the contracting action. We consider the equivariant K-theory
KT(Mθ(v,w)). To save on notational clutter we write X =Mθ(v,w) in the following.
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Tautological bundles. Nakajima quiver varieties X have a set of T-equivariant tau-
tological bundles Vi associated to each vertex i ∈ I, the fibre at an orbit (A,B, I, J) is
the vector space Vi on which the quiver representation acts.5 We can similarly define
bundles Wi associated to the vector spaces (Wi)i∈I in the same way, these bundles are
topologically trivial but admit an action of T. Associated to the vector bundles Vi we also
have tautological line bundles defined by Li = detVi for i ∈ I.

Kirwan surjectivity. The following is known as the Kirwan surjectivity conjecture and
was proved by McGerty and Nevins in the work [113].

Theorem 4. If X is a Nakajima quiver variety then KT(X) is generated by the Schur
functors of tautological bundles Vi with i ∈ I.

Consequently, the Picard group of X is generated by the tautological line bundles
Li = detVi for i ∈ I and we have Pic(X) ∼= Z|I|. We write ζR for coordinates on
Pic(X) ⊗ U(1)—these are known as Kähler parameters in the enumerative geometry
literature. Recall the definition of the topological symmetry (2.3); for the gauge group of
X we have GC = U(1)|I| thus the parameters ζR can be identified with exponentiated FI
parameters ξ ∈ tC .

Furthermore, since the Chern classes of line bundles generate H2(MH ,Z), we can
identify coordinates on the Lie algebra of the topological symmetry with the second
homology

tC = H2(MH ,Z) . (3.7)

For symplectic dual pairs we can further identify

tH = H2(MC ,Z) . (3.8)

so that 3d mirror symmetry exchanges Kähler and equivariant parameters.
The Chern roots of tautological bundles Vi are denoted by w(i)

a with a = 1, . . . , rkVi
and i ∈ I and then from theorem 4 the (non-localised) equivariant K-theory can be
identified with the ring of symmetric Laurent polynomials

KT(X) ∼= Z[
(
w(i)
a

)±1
,
(
z(i)
a

)±1
, t±1]Sym/R . (3.9)

where R is the ideal of Laurent polynomials that vanish at the fixed points in a sense to
be defined below. We denote by V∨ the K-theory dual which inverts the weights of V,
∨ : ω → ω−1.

5More precisely µ−1(0)s →Mθ(v,w) is a principle G-bundle and Vi is the associated vector bundle
µ−1(0)s ×G Vi [41].
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A particularly useful K-theory class is the tangent bundle that appears in the localisa-
tion formulae (3.5) of the previous section. The following lemma due to [46] gives us this
class as an element of the ring (3.9).

Lemma 1. The K-theory class of the tangent bundle TM(v,w) of a Nakajima quiver
variety with quiver graph Q and vertex set I is determined in terms of the tautological
bundles by the following 2|I| × 2|I| quadratic form

C =
Q̄− 1− t t1|I|

1|I| 0|I|

 , (3.10)

so that
TM(v,w) = (~V∨, ~W∨) ·C · (~V , ~W)T . (3.11)

Fixed point characters. In the case of isolated fixed points, to evaluate the character
of a bundle at a fixed point p ∈ X |T| we simply take ι−1

p,? as in the discussion above to give
an element of KT(p) = Z[x(i)

a , t
±1]. This determines a map on the Chern roots

w(i)
a → w(i)

a (p) ≡ t(i)a ∈ KT(pt) (3.12)

Hence, given the character of the Chern roots, we can deduce the T character of any K-
theory class V at a fixed point p ∈ XT by evaluating the Laurent polynomial corresponding
to V at the values (3.12).

3.1.2 Hilbert series

The Hilbert series is defined for an affine variety X with a torus action T by

H.S.[X] = chTC[X] . (3.13)

When X is an unresolved Higgs branchMo
H , this coincides with the physical Hilbert series

defined in equation (2.19). If X admits a symplectic resolution π : X̃ → X then, under
suitable conditions, the Hilbert series counts holomorphic functions on X̃ and can be
computed using the localisation formula (3.5).

Let X̃ be a symplectic resolution and E = O
X̃

be the structure sheaf. Symplectic
resolutions with a contracting C× action have the property that H i(X̃,O

X̃
) = 0 for i > 0

[103]. In this case the equivariant Euler characteristic of the structure sheaf counts global
sections Γ(X̃,O

X̃
) (i.e. holomorphic functions) and the localisation formula (3.5) gives

χT (O
X̃
, X̃) = chTH0(X̃,O

X̃
) =

∑
x∈X̃T

PE[T∨x X̃] . (3.14)
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For symplectic resolutions, π induces a Poisson algebra isomorphism π∗ : C[X]→ Γ(X̃,O
X̃

)
and so we have

χT (O
X̃
, X̃) = chTC[X] =: H.S.[X̃] . (3.15)

Line bundles. We also consider equivariant counts of sections of line bundles L ⊂
Pic(X). Using localisation (3.5) we can compute the equivariant sections of L (assuming
higher cohomology of the line bundle in question vanishes) in terms of characters at the
fixed point by

χT (L, X̃) = chTH0(X̃,L) =
∑
x∈X̃T

chT (Lx)PE[T∨x X̃] . (3.16)

Example 3.1. We return to the SQED[N ] example with Higgs branch MH = T ∗PN−1.
As discussed in section 2.3, the fixed points α ∈MT

H are labelled by coordinate lines and
correspond to an element α ∈ {1, . . . , N}. There is one tautological (line) bundle which
we express in terms of the Chern root V = w.

From the discussion in section 2.3, the flavour group action scales the fibre by x−1
α

at the fixed point α and the evaluation of the Chern root, as in (3.12), is then simply
w → w(α) = x−1

α . The rank N topologically trivial tautological bundle W is given by

W = x1 + . . .+ xN . (3.17)

Following the recipe in lemma 1, the tangent bundle for this quiver can be expressed in
terms of the tautological bundles as

TMH =W∨ ⊗ V − V∨ ⊗ V + tV∨ ⊗W − tV ⊗ V∨ , (3.18)

and evaluating this at the fixed point α we find

TαMH =
N∑
j 6=α

(
xα
xj

+ t
xj
xα

)
. (3.19)

We now have the ingredients to compute the Hilbert series twisted by a line bundle using
equation (3.16) which gives

χT (L⊗κ,MH) =
N∑
α=1

xκα

N∏
j 6=α

1
(1− xα/xj) (1− txj/xα) . (3.20)

Quiver varieties and Molien integrals. If X = M(v,w) is a quiver variety then
we have a concrete algebraic handle on the holomorphic functions since Γ(X,OX) =
C[M0(v,w)] and the latter ring is, by definition, given by C[µ−1(0)]GC .
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We have the following due to [114]

Lemma 2. Let X = M(v) be a double quiver without framing. C[X] is generated by
elements of the form

TrVi1 Xi1i2Xi2i3 . . . Xin−1inXin,i1 , (3.21)

where (i1, . . . , in, i1) is an oriented cycle in the quiver graph Q̄ with corresponding operators
Xi,j : Vi → Vj. The trace is taken over Vi1 .

This lemma together with the trick6 of Crawley-Boevey [115] then gives the following

Theorem 5. Let X =M(v,w) be a framed double quiver variety with adjacency matrix
Q. Let p = (i1, i2, . . . , in, i1) be a closed oriented cycle in Q and q = (j1, . . . , jk) be a
connected path in Q. Denote by Xij ∈ Hom(Vi, Vj) the corresponding operators. The
coordinate ring C[X] is generated by elements of the two types

Ap = TrVi Xi1i2Xi2i3 . . . Xin−1inXin,i1 ,

Bq = Ij1Xj1j2Xj2j3 . . . Xjk−1jkJjk ,
(3.22)

where Ii : Wi → Vi and Ji : Vi → Wi.

In plain English, the holomorphic functions on a quiver variety are given by appropriate
traces over gauge-invariant polynomials in the scalars that end on either a gauge node or
begin and end on a flavour node.

The Molien-Weyl integral method is a convenient device to compute the Hilbert series
of the coordinate ring. The method belongs to algebraic invariant theory [116] and has
been popularised in physics by the plethystic program of Hanany et. al. [117]. The Molien
integral counts generators in the coordinate ring by

H.S.[M(v,w)] = 〈PE
[
chGC×GW×C×t

Q(v,w)− chGC×GW×C×t
µ
]
, 1〉GC . (3.23)

The plethystic exponential, defined in (A.12), on the right hand side of this expression
is a generating function of all possible ‘words’ from scalars in Q(v,w) quotient the ideal
generated by µ that implements moment map constraint. 〈 , 〉GC is the inner product on
the character ring of GC and we project onto gauge invariant words by taking the inner
product against the identity character. Physically, the GW characters refine the Hilbert
series by flavour symmetries and the contracting C×t action is a refinement by R-symmetry
RH . The expression (3.23) can be written in terms of the Haar measure for GC which, for

6Crawley-Boevey [115] shows that a framed quiver variety is isomorphic to an un-framed quiver with
vertex set I ∪ {∞} and wi extra edges for each i ∈ I connectecting i→∞.
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the unitary gauge groups discussed in this work, leads to the Molien integral

H.S.[M(v,w)] =
∏
i∈I

1
vi!

vi∏
a=1

∮
C

dw(i)
a

2πiw(i)
a

vi∏
a6=b

(
1− w(i)

a

w
(i)
b

)
PE [Q(v,w)− µ] . (3.24)

where the contour C is the unit torus. The Molien integral can also be understood in terms
of geometry and the localisation formula (3.5) in K-theory. The integration variables
w(i)
a of (3.24) can be interpreted as elements of the K-theory ring (3.9), specifically the

a = 1, . . . , vi Chern roots of the rank vi tautological bundles Vi. The terms Q(v,w) and
µ in the integrand are associated with K-theory classes in a way that we discuss in the
following. The poles of the integral are in 1-1 correspondence with T-fixed points of
M(v,w) and evaluating the integral by residues corresponds to evaluating the plethystic
exponential of the tangent bundle at the Chern roots evaluated at fixed points as in
equation (3.12). From this perspective, the Hilbert series twisted by a line bundle (3.16)
can also be expressed in a similar integral form by inserting the Chern character of a line
bundle L:

χT(L,M(v,w)) =
∏
i∈I

vi∏
a=1

∮
C

dw(i)
a

2πiw(i)
a

vi∏
a6=b

(
1− w(i)

a

w
(i)
b

)
ch(L)PE [Q(v,w)− µ] . (3.25)

Later, in chapter 4, we show that for a 3d N = 4 gauge theory the B-twisted index
reproduces the Hilbert series in the form of the Molien integral (3.24), in equation (4.61)
of that chapter the integrand is shown explicitly.

The Molien integral can be rephrased in terms of K-theory classes of the quiverM(v,w)
with adjacency matrix Q. Recall that KT(M(v,w)) is generated over KT(pt) by the Chern
roots (w(i)

a )a=1,...,vi and (x(i)
a )a=1,...,wi for i ∈ I. The classes associated to R(v,w) and µ are

given by

Q(v,w) =
⊕
i,j∈I
V∨i (Qij + tQT

ij)Vj +
⊕
i∈I

tW∨i ⊗ Vi +
⊕
i∈I
Wi ⊗ V∨i ,

µ =
⊕
i∈I

tV∨i ⊗ Vi .
(3.26)

Example 3.2. We compute the Molien integral for SQED[N ] with MH = T ∗PN−1. The
relevant bundles are discussed in example 3.1. We can then use (3.26) to write down the
Molien integral to compute the Hilbert series of the tautological line bundle

χT(Lκ,MH) =
∮
S1

dw

2πiww
−κPE

[
N∑
i=1

tw−1x−1
i +

N∑
i=1

wxi − t
]
,

= (1− t)
∮
S1

dw

2πiww
−κ

N∏
i=1

1
1− tw

xi

1
1− wxi

.

(3.27)
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This integral has poles at w = x−1
p for p = 1, . . . , N which are precisely the evaluations of

the Chern roots (3.12). From the first line above we see that evaluating the residues here
reproduces the localisation formula (3.5) and we recover the Hilbert series.

Remark. The Molien integral (3.24) is ‘Hall-Littlewood type’ in the heirarchy of symmetric
functions (see appendix B) with the contracting C×t playing the role of the Hall-Littlewood
parameter t. We note here that there is a natural ‘Macdonald q-deformation’ of (3.24)

Iq(M(v,w)) =
∏
i∈I

1
vi!

vi∏
a=1

∮
C

dw(i)
a

2πiw(i)
a

vi∏
a6=b

(w(i)
a /w

(i)
b ; q)∞PE

[
1

1− q (Q(v,w)− µ)
]

(3.28)

We evaluate integrals of this type in chapter 4 where they count local boundary operators
supported on a Neumann boundary condition in a 3d N = 4 gauge theory. It would be
interesting to investigate further the geometric interpretation of these q-deformed ‘Molien
integrals’.

3.1.3 The twisted χt genus

The Hirzebruch χt genus [118] is a generalisation of the Hilbert series that, at least in the
smooth projective case, can be understood as a count of holomorphic forms α ∈ Hp,0

∂̄
as

well as just the holomorphic functions counted by the Hilbert series (2.19). Physically,
the χt genus can realise supersymmetric indices of certain one dimensional non-linear
sigma models, for example the one dimensional osp(4∗|4) Higgs branch sigma models of
[119, 120]. In the present work, vortex partition functions of certain 3d N = 4 gauge
theories will be realised by χt genera.

The χt genus can be computed by geometric localisation. In fact, we consider a mild
generalisation of the χt genus twisted by a line bundle L. Later, this line bundle will play
the role of topological background flux but it is also important as a technical tool to match
to the symmetrised virtual structure sheaf localisation as we will see later in section 4.1.1.

Definition 3.1. Given a line bundle L ∈ Pic(X) we define the twisted χt genus by7

χt(X) ≡
∑
j≥0

(−t)jχT (Ωj
X ⊗ L, X) ,

=
∑
i,j≥0

ti+jchTH i(X,Ωj
X ⊗ L) ,

(3.29)

where Ωj
X = ΛjT∨X is the sheaf of algebraic j-differentials.

The χt genus is a polynomial in t of at most degree dimX. Applying the localisation
7Note that this has t→ −t compared to the standard definition of the Hirzebruch genus.
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formula (3.5) we have:

χt(X) =
∑
j≥0

(−t)j
∑
x∈XT

chT (Lx)chT (ΛjT∨x X)PE[T∨x X]

=
∑
x∈XT

chT (Lx) PE [(1− t)T∨x X] .
(3.30)

We note two useful limits in the case L = OX . Firstly the t→ 1 limit of (3.30) in which
we find:

lim
t→1

χt(X) =
∑
x∈XT

1 = |XT | , (3.31)

so that this limit counts fixed points on X. Secondly the limit t→ 0 which recovers the
Hilbert series (provided the higher cohomology of the structure sheaf vanishes):

lim
t→0

χt(X) =
∑
x∈XT

PE [T∨x X]

= H.S.[X] .
(3.32)

Finally, we note that Serre duality implies the property

χt(X) = tdimXχt−1(X) . (3.33)

Projective varieties. When X is projective (i.e. a compact Kähler manifold) the
sheaf cohomology groups Hq(X,Ωp

X) are identified with the Dolbeault cohomology groups
Hp,q

∂̄
(X). In this case, the (untwisted) χt genus coincides with the Poincaré polynomial of

X.
Denote by λ(s) ⊂ T a generic8 circle action. Since X is projective then (3.29) is a

finite Laurent series in s and the only possible singularities are at s = 0 or s =∞. Now
we consider taking these limits in the localisation formula (3.30). We have

χt(X) =
∑
x∈XT

dimX∏
i=1

1− tsd
(x)
i

1− sd(x)
i

, (3.34)

where d(x)
i are a set of integers (they correspond to the attracting and repelling weights

in the following subsection). In particular the exponents of s in the numerators and
denominators are equal and so χt(X) has finite limits at s = 0 and s = ∞ and must
therefore be constant in s. In particular we can take s = 1 so that the character degenerates
to the dimension and then by the Hodge decomposition we recover the Poincaré polynomial.

In summary, the χt genus of a compact space does not depend on global isometries.
Later, in chapter 4, this plays a crucial role for us where we show that the A-twisted index

8In the sense that X has isolated fixed points under λ.
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of a 3d N = 4 theory can be realised as the χt genus of a compact quasimap space and we
find significant cancellations of this nature.

3.1.4 Poincaré polynomials

In this subsection we discuss a localisation formula for the Poincaré polynomial of a smooth
projective T -variety X with isolated fixed points. The Poincaré polynomial is defined by

PX(t) :=
∑
i≥0

ti dimHi(X,Z) . (3.35)

We review the Bialynicki-Birula decomposition [121] which provides a way to compute
these Poincaré polynomials from fixed point data. We choose a generic one parameter
subgroup λ(t) ⊂ T and decompose the tangent space at a fixed point α ∈ XT into positive
and negative torus weights for λ:

TαX = T+
α X ⊕ T−α X . (3.36)

The attracting and repelling cells are defined by

Y +
α := {x ∈ X : lim

t→0
t · x = α} , Y −α := {x ∈ X : lim

t→∞
t · x = α} . (3.37)

The attracting and repelling cells Y +
α and Y −α are affine spaces and give cellular decompo-

sitions of X [121] of dimensions pα and nα respectively so that

X =
⋃
α

Y +
α =

⋃
α

Y −α . (3.38)

The homology basis formula then yields

Hi(X,Z) =
⊕
α∈XT

Hi−2pα({α},Z)

=
⊕
α∈XT

Hi−2nα({α},Z) ,
(3.39)

so that each attracting/repelling cell contributes one generator to the homology. Conse-
quently, the decomposition leads to a convenient expression for the Poincaré polynomial
of X expressed in terms of the dimensions of the positive and negative weight spaces of a
generic torus action at a fixed point:

PX(t) =
∑
α∈XT

t2nα =
∑
α∈XT

t2pα . (3.40)
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In particular, note that X has no odd homology—we abuse notation throughout the thesis
by redefining the Poincaré polynomial to be PX(t) := PX(t2).

Example 3.3. The tangent space of PN−1 is given by the t→ 0 limit of (3.19), that is
TαPN−1 = ∑

j 6=α xα/xj . Choosing a chamber x1 < . . . < xN we see that at each fixed point
α = 1, . . . , N we have pα = N − α and nα = α so that

PPN−1(t) = 1 + t+ . . .+ tN−1 . (3.41)

Connection to χt genus. The arguments in the previous section explain that when X
is a projective variety with a torus action then the χt genus is independent of the torus
fugacities. In particular we can send s→ 0 or s→∞ in the expression (3.34). We then
recover either of the localisation formulae (3.40) so that

χt(X) = PX(t) . (3.42)

Non-compact case. Under certain conditions there is a connection between the χt
genus of a non-compact space and the Poincaré polynomial of a compact submanifold due
to [122]. Let π : X̃ → X be an equivariant resolution with a contracting C×q action and
isolated fixed points under a torus action T . Denote by o ∈ X the unique fixed point in
the singular space. Under these conditions we have

lim
q→0

χt(X̃) = Pπ−1(o)(t) . (3.43)

The idea of the proof is that, under these assumptions, we can perturb the C×q action to a
more general subgroup of T before sending the corresponding fugacity to zero. Since the
T -fixed points are isolated we then recover the fixed point formula (3.40) and together
with the fact that {Y +

α } is again a cellular decomposition of π−1(o) the result follows.

Nakajima quiver varieties. Nakajima quiver varieties M(v,w) are symplectic reso-
lutions and, thought of as a Higgs branch MH of a 3d N = 4 theory, associated to the
flavour symmetry GH is a real moment map µR,H . Turning on real mass parameters mR is
equivalent to choosing a particular circle action λ(t) ⊂ T in the above discussion. The
fixed points are equivalently given by critical points of the Morse function [123]

hm = µR,H ·mR . (3.44)

The condition of generic mass parameters is then equivalent to exp(R ·mR) = T . In
this context, the attracting cells are holomorphic Lagrangians attained by Morse flow
[55]. The attracting cells depend on the chamber CH and are associated to vacua α, we
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denote them by Lα and in section 4.3 we realise them as Higgs branch images of certain
N = (2, 2) boundary conditions. Poincaré polynomials of certain quiver varieties can also
be computed using the localisation formula (3.40) since they are homotopic to their central
fibre π−1(o), which is often compact [41, 40].

Example 3.4. We compute the twisted equivariant χy genus9 for SQED[N ] using the
ingredients from example 3.1 and the localisation formula (3.30). We have

χy(T ∗PN−1) =
N∑
α=1

xκα

N∏
j 6=α

(1− yxα/xj) (1− tyxj/xα)
(1− xα/xj) (1− txj/xα) . (3.45)

The Hilbert series limit y → 0 recovers (3.20). Now t corresponds to the contracting C×t
action and the compact core is given by π−1(o) = PN−1. Now sending t→ 0 in the above
(setting the line bundle charge κ to zero now) we find

lim
t→0

χy(T ∗PN−1) =
N∑
α=1

N∏
j 6=α

1− yxα/xj
1− xα/xj

= 1 + y + . . .+ yN−1 .

(3.46)

which we recognise as the Poincaré polynomial of PN−1 (3.41). Note that in going from the
first to the second line it is not a priori obvious that the expression is indeed independent
of x1, . . . , xN . This is a toy example of the vortex partition functions that we meet in
chapter 4 where it is necessary to use the theoretical framework developed in the present
section since it is not as straightforward to compute the relevant limits by hand.

3.2 Macdonald polynomials and integrability

In this section we review representation theoretic aspects of spin chain partition functions.
We found it useful to review material for Yangian representation theory in a self-contained
way since much of this material has either been absorbed into the theory of q-characters
for quantum affine algebras [124] or is somewhat scattered throughout the older literature
on the quantum inverse scattering method. We want to focus on the Yangian case since
these algebras are of the type relevant for Higgs and Coulomb branch algebras of 3d N = 4
gauge theories.

Overview. We begin in section 3.2.1 with a review of Yangian algebras and a particular
class of modules known as Kirillov-Reshetikhin modules. In section 3.2.2 we review Knight’s
[125] definition of Yangian characters—these allow us to efficiently make contact with
the quantum Q-system of [126]. In section 3.2.3 we discuss the relationship between the

9Note we switch to the χy notation since t is typically reserved for the contracting C× action.
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physics of the Heisenberg XXX spin chain and Yangian representation theory. Section 3.2.4
concludes with a discussion of a class of symmetric functions known as Milne polynomials
that we show coincide with spin chain partition functions. We show later in the thesis
that Milne polynomials coincide with equivariant counts of line bundles over a particular
quiver variety and the present section provides the background to interpret this result in
the context of integrability.

Conventions. The conventions for symmetric functions and partitions used in this
section are reviewed in appendices A and B. Throughout g denotes a finite dimensional
complex semi-simple Lie algebra of rank r. The Cartan subalgebra is denoted h and
the Cartan matrix is denoted by A = (Aij)i,j=1,...,r. We denote the simple roots of g by
(αi)i=1,...,r and the fundamental weights by (ωi)i=1,...,r. We denote by (−,−) the standard
invariant non-degenerate bilinear form on h∗ and let di = (αi, αi) for i = 1, . . . , r.

3.2.1 Yangians and Kirillov-Reshetikhin modules

Yangian. The Yangian Y (g) is an infinite dimensional Hopf algebra over C that quantises
the universal enveloping algebra of the loop algebra U(g[u]). We begin with Drinfeld’s
first presentation [127] which exhibits Y (g) as an algebra generated by x and J(x) for
x ∈ g satisfying the relations

[x, y]Y (g) = [x, y]g ,
[x, J(y)] = J([x, y]) ,

(3.47)

together with Serre-type relations. We direct the reader to [127] for a full list and note here
only that this presentation makes manifest that g is a subalgebra of Y (g). The Yangian is
a Hopf algebra equipped with a coproduct structure ∆ : Y (g)→ Y (g)⊗ Y (g) that allows
the construction of tensor product representations. The coproduct is given by10

∆(x) = x⊗ I + 1⊗ x ,

∆(J(x)) = J(x)⊗ 1 + 1⊗ J(x) + 1
2[x⊗ 1,Ω] .

(3.48)

The Yangian admits a (pseudo11) universal R-matrix. The R-matrix is an element
R(λ) ∈ Y (g)⊗ Y (g)[[λ−1]] that satisfies

(∆⊗ I)R(λ) = R13(λ)R23(λ) ,
(1⊗∆)R(λ) = R13(λ)R12(λ) .

(3.49)

10Ω denotes the quadratic Casimir of U(g).
11The Yangian is only an almost quasi-triangular Hopf algebra in the terminology of [128] and does not

admit a universal R-matrix.
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where these equations are in Y (g)⊗3 and Rij denotes the action in the i, j component of
the tensor product. The R-matrix satisfies the quantum Yang-Baxter equation

R12(λ1− λ2)R13(λ1− λ3)R23(λ2− λ3) = R23(λ2− λ3)R13(λ1− λ3)R12(λ1− λ2) . (3.50)

Highest weight modules. To understand the representation theory of Y (g) it is more
convenient to work with an alternative presentation of the Yangian known as Drinfeld’s
second realisation [129]. In this work Y (g) is presented as an associative algebra with
generators X±i,k and Hi,k with i = 1, . . . , r and k = 1, 2, . . .. We refer the reader to [129]
for a full list of generators but note here that among them are

[Hi,k, Hj,l] = 0 , (3.51)

so that the elements Hi,k generate the analogue of a Cartan subalgebra for Y (g). The
relations also include

[Hi,0, X
±
j,k] = ±diAijX±j,k . (3.52)

Heuristically, we see that these relations provide a PBW decomposition of the Yangian
into Y (g) = Y − ⊗ Y 0 ⊗ Y + where the factors are constructed from ordered monomials in
the generators X−, H and X+ respectively; this allows progress to be made understanding
the modules of Y (g). The full details of this construction can be found in [130]. It is
possible [129] to write an explicit isomorphism φ : Y (g)→ Y (g) between the two different
presentations, we note only that it maps the Cartan elements by

φ(Hi) = d−1
i Hi,0 , (3.53)

where Hi is an element of g.
We now discuss the representation theory of Y (g). We define weight spaces of a

Y (g)-module V by
Vh = {v ∈ V : Hi,k · v = hi,kv , ∀i, k} . (3.54)

We say that V is highest weight if V = Y (g) · v for some vector v ∈ Vh with X+
i,k · v = 0

for all i and k. With these definitions, the following is due to [129]

Theorem 6. Every finite dimensional irreducible Y (g)-module V is highest weight.

We denote such highest weight modules by V (h). There exists a construction of these
modules analogous to semi-simple Lie algebra constructions of highest weight modules via
quotients of Verma modules. The following theorem then gives the conditions analogous
to the highest weight theorem for a highest weight Y (g)-module to be finite dimensional:

Theorem 7. (Drinfeld [129]) The irreducible module V (h) is finite dimensional if and
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only if there exist polynomials Pi ∈ C[λ] for i = 1, . . . , r such that

Pi(λ+ di)
Pi(λ) = 1 +

∞∑
k=0

hi,kλ
−k−1 . (3.55)

The so-called Drinfeld polynomials Pi are determined up to a constant and so we
have a correspondence between finite dimensional irreducible representations of Y (g) and
r-tuples of monic polynomials. We now turn to a distinguished class of modules known as
Kirillov-Reshetikhin (KR) modules [131], or fundamental modules—these modules have the
property that any finite dimensional Y (g) module is a subquotient of a tensor product of
KR modules [128]. Kirillov-Reshetikhin modules are also the class for which the quantum
inverse scattering method can be formulated for a Heisenberg spin chain [131]. They are
defined as follows

Definition 3.2. Kirillov-Reshetikhin modules are finite dimensional irreducible represen-
tations V (h) of Y (g) with Drinfeld polynomials satisfying

Pj(λ) =
λ− a j = i ,

1 j 6= i .
(3.56)

for some i ∈ {1, . . . , r}.

Recall that g is a subalgebra of Y (g) so V (h) can be pulled back to a g-module we
denote by λ the maximal weight of this module. From the isomorphism (3.53) we have that
Hi,0 = diλ(H)i and then from (3.55) we deduce deg(Pi) = λ(Hi). Kirillov-Reshetikhin
modules can then be labelled uniquely as KRλ(a).

Evaluation modules. We restrict to the case g = slr+1. In that case we have a family,
labelled by a ∈ C, of evaluation maps eva : Y (g)→ U(g) given by the explicit action on
the generators in the presentation (3.47)

eva(x) = x ,

eva(J(x)) = ax+ 1
4
∑
a,b

tr(x(xaxb + xbxa))xaxb
(3.57)

where {xa} is an orthonormal basis of g. Such evaluation maps that are the identity on g are
not available for more Lie algebra general type. If Vλ is a representation of g then we have a
pull-back representation of Y (g) denoted ev∗aVλ and when λ is a multiple of a fundamental
weight λ = mωi the pull-back representation coincides with the Kirillov-Reshetikhin
module

KRmωi(a) ∼= ev∗aVmωi . (3.58)
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3.2.2 Yangian characters

Yangian characters were introduced by Knight in the work [125] and have since been
absorbed into the theory of q-characters for quantum affine algebras [124, 132]. In this
subsection we review Knight’s construction of Yangian characters.

The generators Hi,k mutually commute however, in general, they do not act semi-
simply on a Y (g)-module V . Instead the module V can be decomposed into generalised
eigenspaces for Hi,k. We write

V =
⊕
β

Vβ ,

Vβ = {v ∈ V : (Hi,k − dβi,k)rv = 0 for some r > 0} .
(3.59)

The eigenvalues can then be arranged in generating series βi = 1 +∑∞
k=0 d

β
iku
−k−1
i . The

Yangian characters are elements of the group algebra Z[LN ] of formal Laurent series where

Lr = {f(u1, . . . , ur) =
r∏
i=1

fi(ui)} , (3.60)

with Laurent polynomials fi of the form fi(ui) = 1 +∑∞
k=0 aku

−k−1
i . The characters are

then defined by

Definition 3.3. The character of a Yangian module V is a map chY (g) : RepY (g)→ Z[Lr]
given by

chY (g)V =
∑
β

dim Vβ e
β1 . . . eβr . (3.61)

The work of [125] shows that the character is multiplicative on tensor products. For A-
type algebras, inclusion of g in Y (g) induces a restriction map on the character and we have
res chY (g)V = chgV which recover the familiar g-character as an element of Z[xi = eui ]i∈I .
Informally speaking, the restriction map corresponds to taking the leading part of the
formal Laurent series in (3.61). We finish this section with the following theorem due to
[133, 134] that shows that the Yangian characters themselves are solutions to a discrete
integrable system.

Theorem 8. Let T (a)
m (u) := chY (g)KRmωa(u) be the character of a Kirillov-Reshetikhin

module. The variables T (a)
m are solutions to the T-system which in A-type is given by

T (a)
m (u− 1)T (a)

m (u+ 1) = T
(a)
m−1(u)T (a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u) , (3.62)

with a = 1, . . . , r, m ≥ 1 and T (r+1)
m = 1.
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⊗ ⊗ ⊗

Figure 3.1: An example spin chain Hilbert space H~n with n
(1)
1 = 2, n(2)

2 = 1 and n
(3)
1 = 1.

3.2.3 Heisenberg XXX spin chain

We return to physics and consider the inhomogeneous Heisenberg XXX spin chain with N
sites and periodic boundary conditions—we restrict to the case that the sites are g = slr+1

modules. The model is specified by a Hilbert space consisting of a tensor product of
Kirillov-Reshetikhin modules:

H~n =
⊗

1≤a≤r

⊗
1≤l≤k

KR⊗n
(a)
l

lωa
=:

N⊗
i=1

Vi , (3.63)

the modules have generic12 spectral parameters u1, . . . , uN . The multivector ~n = (n(a)
l )

parametrises the modules in the spin chain. As a g-module, H~n is built from a tensor
product of rectangular highest weights, an example Hilbert space is shown in figure 3.1.
Associated to each pair i, j of tensor product factors in H~n, the discussion in 3.2.1 ensures
that we have R-matrices Rij : Vi ⊗ Vj → Vj ⊗ Vj that solve the quantum Yang-Baxter
equation (3.50) and after specifying an auxillary representation V0 we have the transfer
matrix t(λ) = TrV0 R01 . . . R0N . The transfer matrix satisfies the important relation
[t(λ), t(µ)] = 0 that arises from the quantum Yang-Baxter equation. There is then a series
of commuting Hamiltonians the spectrum of which can be determined by the quantum
inverse scattering method [131]—we return to this construction shortly.

The partition function. In this work we are interested in computing the partition
function

Z~n(X) := chgH~n , (3.64)

where as usual X denotes the set of variables {x1, . . . , xr+1} which are fugacities for slr+1

satisfying x1 . . . xr+1 = 1. Considered a g-module, the Hilbert space decomposes into
a sum of highest weight modules H~n = ⊕

µ Vµ and the partition function can then be
expressed as a sum of Schur polynomials

Z~n(X) =
∑
µ

Mµ,~nsµ(X) . (3.65)

12Pairwise not separated by an integer.
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Mµ,~n denote multiplicities of the factor Vµ in the Hilbert space. One of the main ideas of
the seminal work [131] is that, via the Bethe ansatz, the representation theory of Y (g)
can teach us about the classical representation theory of g.

Bethe ansatz. The completeness conjecture13 [137] provides an explicit combinatorial
description for the coefficients Mµ,~n as we now describe.

The eigenstates of the transfer matrix t(u) are parametrised by solutions to the Bethe
equations [138], the relevant equations for the XXX model we study in this section are

N∏
j=1

λ(a)
p + uj + i

2(λ̃j, αm)
λ

(a)
p + uj − i

2(λ̃j, αm)
= −

r∏
b=1

m(b)∏
q=1

λ(a)
p − λ(b)

q + i
2(αa, αm)

λ
(a)
p − λ(b)

q − i
2(αa, αm)

, (3.66)

where λ̃j denotes the weight of the jth site in (3.63). This is a set of equations determined
by a choice of integers (m(a))a=1,...,r for the Bethe roots {λ(a)

p } with p = 1, . . . ,m(a). The
completeness conjecture states that g-highest weights µ are in 1-1 correspondence with
solutions to these equations. In particular the multiplicity of the weight µ, as we have
called Mµ,~n, is given by the number of solutions to the equations (3.66) with the m(a)

determined in terms of µ by the equation

l(a) =
k∑
i=1

n
(a)
i −

r∑
b=1

Aabm
(a) , (3.67)

where l(a) denotes the ath Dynkin label of µ. In brief, the m(a) are determined by subtracting
simple roots from the highest weight in (3.63) until one obtains the weight of interest µ.

The string hypothesis14 [131] provides a combinatorial count of the solutions to the
system (3.66) and thereby determines the multiplicities of Vµ in H~n. Following [126] the
multiplicities are given by

Mµ,~n =
∑
~m

r∏
a=1

k∏
i=1

(
m

(a)
i + P

(a)
i

m
(a)
i

)
, (3.68)

where the sum is over all compositions m(a)
i with ∑k

i=1m
(a)
i = m(a). The P (a)

i are vacancy
numbers defined by

P
(a)
i :=

k∑
j=1

min(i, j)n(a)
j + (B~m)(a)

i , (3.69)

with B
(a,b)
i,j = sign(Aab) min(|Aab|j, |Aba|i).

13Since made into a theorem [135, 136].
14The string hypothesis is that solutions to (3.66) form strings in the complex plane. This is not strictly

true but nonetheless provides a good count of the solutions [126].
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Quantum Q-system. The definition of the spin chain partition function (3.64) gives

chgH~n =
r∏

a=1

k∏
m=1

(chgVmωa)n
(a)
m . (3.70)

Setting Q(a)
m = chVmωa then from (3.62), after applying the restriction map, we have that

the g-characters solve the Q-system

(
Q(a)
m

)2
= Q

(a)
m−1Q

(a)
m+1 +Q(a+1)

m Q(a−1)
m , (3.71)

where a = 1, . . . , r and m ≥ 1. In a series of papers [139, 140, 141] Kedem and Di
Francesco study a quantisation of the Q-system. The quantum Q-system15 is defined by

(
Q(a)
m

)2
= qaQ(a)

m+1Q
(a)
m−1 +Q(a+1)

m Q(a−1)
m , (3.72)

with the initial conditions Q(0)
m = 1 and Q(r+1)

m = 0. The variables Q(a)
m are now non-

commuting and satisfy

Q(a)
m Q

(b)
m′ = q(m′−m) min(a,b)Q(b)

m′Q(a)
m , when |m−m′| ≤ |a− b|+ 1 . (3.73)

Solutions to the quantum Q-system lead to a q-deformed version of the character (3.64)
via

Z~n(X; q) :=
r∏

a=1

k∏
l=1

(Q(a)
l )n

(a)
l ,

=
∑
µ

Mµ,~n(q)sλ(X) .
(3.74)

The Mµ,~n(q) factor is known as a fermionic form [142, 139] and coincides with a q-deformed
version of (3.68). Explicitly this factor is

Mµ,~n(q) =
∑
~m

qQ(~m,~n)
r∏

a=1

k∏
i=1

m(a)
i + P

(a)
i

m
(a)
i


q

, (3.75)

where Q(m,n) = 1
2 ~m · P and the q-binomial coefficient is defined in (A.7).

Remark. The q-grading can be interpreted physically in the spin chain as grading the
Hilbert space by one of the higher Hamiltonians in the transfer matrix. The representation
theoretic interpretation is more clear when the modules Vi are considered instead as
representations of the quantum affine algebra Uq(ĝ) or the current algebra g[t]. In the
former case q realises the so called charge function [142] for the crystal limit of the quantum

15This is the renormalised quantum Q-system in the terminology of [141].
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⊗ ⊗ =

Figure 3.2: Hilbert space of KR modules with n
(1)
2 = 1, n(1)

3 = 1 and n
(1)
4 = 1 associated

to a partition λ.

affine algebra. In the latter case q is associated to the natural grading on fusion products
of current algebra modules [143]. We refer the reader to [119] for an excellent review of
the relationships between the representation theory of these different algebras.

3.2.4 Milne polynomials

We begin this subsection by reviewing the solution of Kedem and Di Francesco [140] to
the quantum Q-system (3.72) by realising it as an algebra acting on symmetric functions
in variables x1, . . . , xr+1. We first require some notation, let I be a subset of {1, . . . , r+ 1}
and denote the complement by Ī. We write xI for the product ∏i∈I xi and define

aI(x) :=
∏
i∈I
j∈Ī

xi
xi − xj

, ΓI :=
∏
i∈I

Γq,i , (3.76)

where Γq,i is a q-shift operator acting by Γq,i(x1, . . . , xr+1) = (x1, . . . , qxi, . . . , xr+1). Now
we define difference operators that act on symmetric functions of x1, . . . , xr+1 by

Da,m =
∑

I⊂{1,...,r+1}
|I|=a

xmI aI(x)ΓI . (3.77)

Kedem and Di Francesco show that these difference operators solve the quantum Q-system
under the identification Q(a)

m = Da,m. The q-deformed partition function (3.74) can then
be constructed from iterating the action of the raising operators.

Z~n(X; q) =
r∏

a=1

k∏
m=1

(Da,m)n
(a)
l · 1 . (3.78)

Jing operators. We now turn to a special case of the spin chain Hilbert space H~n. We
consider modules with only n(1)

l non-zero.16 The modules are illustrated in figure 3.2. In
this case we re-order the modules and associate to ~n a partition λ = (n(1)

1 , . . . , n
(1)
k ). We

write the partition function (3.64) as Zλ(x1, . . . , xr+1; q).
We now turn to Macdonald polynomials Pλ(X; q, t) in variables X = {x1, . . . , xr+1}.

16This is the opposite of the case considered by [140] where spin chain characters are realised by
q-Whittaker functions.
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Our conventions for Macdonald polynomials are summarised in appendix B. In this section
we consider the alternative Macdonald J function normalisation of these polynomials
together with a plethystic substitution:

Jλ(X; q, t) := cλ(q, t)Pλ
(

X

1− t ; q, t
)
. (3.79)

As shown in the work [144], these renormalised Macdonald polynomials have an expansion
in Schur polynomials with coefficients given by the two parameter generalisation of Kostka
polynomials Kµλ(q, t)

Jλ(X; q, t) =
∑
µ

Kµλ(q, t)sµ(X) . (3.80)

This normalisation also coincides, up to a pre-factor tn(λ), with Haiman’s normalisation
[145] where they are shown to be closely related to the geometry of the Hilbert scheme of
points. We return to this idea in more detail chapter 5. This correspondence is used in
[145] to prove the Macdonald positivity conjecture Kλµ(q, t) ∈ N[q, t].

Milne polynomials are defined to be the q → 0 limit of the polynomials Jλ and they
have a positive expansion in terms of the one parameter Kostka polynomials Kλµ(t) as
follows

Q′λ(X; t) := lim
q→0

Jλ(X; q, t) =
∑
µ

Kλµ(t)sµ(X) . (3.81)

In theorem 2.1 of [146] it is shown that Milne polynomials can be built iteratively from
Jing raising operators.

Q′λ(x; t) = Hλ1 . . . Hλk · 1 . (3.82)

In fact, the Jing operators coincide with the difference operator (3.77) and Hm = D1,m;
we conclude that the q-deformed partition function of the spin chain Hilbert space Hλ in
equation (3.78) is given by a Milne polynomial17 so that

Zλ(x1, . . . , xr+1; q) = Q′λ(X; q) . (3.83)

Furthermore, the one parameter Kostka polynomials can then be identified with the
fermionic forms Kλµ(t) = Mλµ(t). In the following section we realise these q-deformed spin
chain partition functions as characters of homology groups of line bundles over a certain
quiver variety.

17We relabel the t parameter of the Milne polynomial to q here.
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3.3 Hanany-Tong moduli space

In this section we bring together the methods of the previous two introductory sections
and compute geometric invariants of a physically interesting quiver variety. We begin with
a discussion of the Hanany-Tong moduli space, denoted VN,r. This quiver is a Lagrangian
submanifold of the ADHM quiver and we find that the equivariant Euler characteristics of
its tautological line bundles realise modules of the type discussed in the previous section.

In the work [147] the quiver is constructed as the vortex moduli space of a three
dimensional U(N) theory with N N = 4 hypermultiplets where, using type IIB brane
constructions, it is realised as a Lagrangian submanifold of instanton moduli space. In the
present work, the quiver plays an alternative physical role. We regard it as a Lagrangian
submanifold in the Higgs branch of a 3d N = 4 theory—we defer a full physical discussion
to chapter 5, but the idea is that sections of line bundles over VN,r can be interpreted as
counting local boundary operators in the 3d theory.

Outline. We begin in section 3.3.1 with a review of the ADHM moduli spaceMN,r, this
is important background material that we use in this chapter and later in chapter 5—the
Hanany-Tong moduli space is a Lagrangian submanifold of the ADHM quiver. In section
3.3.3 we compute the Hilbert series of line bundles of VN,r and discuss the connection to
the spin chain partition functions of the previous section. The conventions for partitions
and polynomials used throughout are summarised in appendix A.

3.3.1 ADHM quiver

We first discuss the ADHM quiver (sometimes referred to as the Jordan quiver) illustrated
in figure 3.3, we denote the quiver variety byMN,r. This quiver variety plays an important
role in the ADHM construction of instantons [148]. In this thesis it plays a number of
other physical roles and in chapter 5 it will be the Higgs branch of a 3d N = 4 theory. The
Hilbert series of this quiver can also be understood as providing the instanton corrections
to the partition function of a particular 5d N = 1 SYM theory, we explore this perspective
further in section 5.4.

ADHM quiver. MN,r is a Nakajima quiver variety of the type discussed in section 2.2
with v = (N) and w = (r). We briefly review the construction in this particular case. The
gauge nodes and flavour nodes are given by the vector spaces V = CN and W = Cr and
elements of the quiver representation are denoted

(A,B, I, J) ∈ Hom(V, V )⊕ Hom(V, V )⊕ Hom(W,V )⊕ Hom(V,W ) . (3.84)
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Figure 3.3: ADHM Quiver MN,r

The flavour group GL(V ) acts by

(A,B, I, J)→ (gAg−1, gBg−1, gI, Jg−1) , (3.85)

with associated moment map µ = [A,B] + IJ . The quiver variety MN,r is then defined
by

MN,r = {(A,B, I, J) ∈ µ−1(0) : stable }/GL(V ) . (3.86)

In the notation of section 2.2 we take the stability paramater θ = 1 so that the stability
condition 2.3 becomes the constraint that there are no non-trivial (A,B) invariant subspaces
of V contained in ker J . The condition θ = 1 also ensures the conditions of theorem 2 are
met, that is to say MN,r is a smooth variety of dimension 2Nr.

Remark. The ADHM quiver describes the moduli space of rank r framed N -instantons
on R4. We have

Mreg.
N,r = {isomorphism classes of pairs (A,Φ)} , (3.87)

On the right hand side A is an anti self-dual connection in a rank r Hermitian vector
bundle E on S4 with c2(E) = N and Φ : E∞ → Cr is a trivialisation of E at infinity. The
left hand side is the regular locus of the Nakajima quiver variety.18 The proof of this
statement is the content of the ADHM construction [148], we thus refer to this quiver as
the ADHM quiver and later we talk about the 3d ADHM theory whose Higgs branchMH

coincides with MN,r.
18The geometric points are given by the points of (3.86) that are in addition costable: there is no

non-trivial (A,B)-stable subspace of V that contains im I.
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Flavour symmetry. The ADHM quiver admits a Hamiltonian group action T̃ =
C×t1 × C×t2 × A given by

(A,B, I, J)→ (t1A, t2B, Ig−1, t1t2gJ) . (3.88)

where g = diag(e1, . . . , er). The A action arises as the maximal torus of the general flavour
group action discussed in section 2.2 associated with the framing W . In the 3d gauge
theory context, we realise these symmetries as a combination of the fundamental flavour
symmetry and a combination of RH = U(1) R-symmetry and a U(1) flavour symmetry
rotating the adjoint fields.

Torsion-free sheaves. The ADHM quiver has an equivalent description in terms of a
moduli space of torsion-free sheaves on P2:

MN,r = {isomorphism classes of pairs (E,Φ)} , (3.89)

where E is a torsion free sheaf of rank r on P2 with c2(E) = N and, denoting by l∞ the
line at ∞ in P2, Φ is the framing Φ : E|l∞ → O⊕rl∞ . We refer the reader to [111] for a proof
of the identification with the ADHM data.

Fixed points. In this realisation the group action (3.88) acting on pairs (E,Φ) can be
understood as follows. C×t1 × C×t2 naturally acts on P2 by [z0 : z1 : z2] → [z0 : t1z1 : t2z2]
leaving the line at infinity invariant; this extends to an action, by pullback, on E. The
torus A acts by rotating the framing at infinity.

A pair (E,Φ) is then fixed by T̃ if E can be decomposed as E = I1⊕ . . .⊕ Ir with each
Iα ∈MNα,1 and ∑Nα = N with Φ mapping Iα|l∞ to the α factor of O⊕rl∞ . Later, in section
5.1.1 of chapter 5, we see that when r = 1 there is yet another convenient description of
the moduli space in terms of the Hilbert scheme of N points in the plane C2. In that
context, each Iα is an ideal in C[x, y] generated by monomials xiyj that form a partition
λ as in figure 5.2. The result is that the T̃ fixed points of the ADHM quiver are labelled
by coloured Young tableaux :

MT̃
N,r ↔ {(λ1, . . . , λr) :

r∑
α=1
|λr| = N} . (3.90)

An example of a fixed point is illustrated in figure 3.4. We refer the reader to [111] for a
more detailed construction of the fixed points.

Equivariant K-theory. The discussion in section 2.2 explains that KT̃(MN,r) is gener-
ated by the tautological bundle V = w1+. . .+wN and the framing bundleW = x1+. . .+xr.
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Figure 3.4: A particular fixed point on M10,3.

The evaluation of the Chern roots at a fixed point ~λ = (λ1, . . . , λr) is given by19

ws(~λ) = xδ(α,s)t
−is+1
1 t−js+1

2 . (3.91)

where s is a box in ~λ and δ(α, s) = α where α is such that s ∈ λα. Using20 lemma 1 the
K-theory class of the tangent bundle is given by

TMN,r =W∨ ⊗ V +W ⊗V∨t1t2 − V∨ ⊗ V(1− t1)(1− t2) , (3.92)

and evaluating this at a fixed point ~λ gives21

T~λMN,r =
r∑

α,β=1

xβ
xα

∑
s∈λα

t
−lλβ (s)
1 t

aλα (s)+1
2 +

∑
t∈λβ

t
lλα (t)+1
1 t

−aλβ (t)
2

 . (3.93)

Hilbert series. We compute the twisted Hilbert series of section 3.1.2 for the ADHM
quiver. Evaluating the tautological line bundle L = detV at a fixed point ~λ we find

L~λ =
r∏

α=1

∏
s∈λα

xαt
−is+1
1 t−js+1

2 . (3.94)

We now have the necessary ingredients to compute the (twisted) Hilbert series using the
localisation formula (3.16).

H.S.[MN,r] =
∑
~λ

|~λ|=N

r∏
α=1

∏
s∈λα

xκαt
κ(−is+1)
1 t

κ(−js+1)
2

r∏
α,β=1

1∏
s∈λα 1− xβ

xα
t
−lλβ (s)
1 t

aλα (s)+1
2

1∏
s∈λβ 1− xβ

xα
t
lλα (t)+1
1 t

−aλβ (t)
2

.

(3.95)

19This can be deduced from the arguments in chapter 5.
20Although note the slightly different global symmetries, the K-theory ring is now a module over

Z[t±1
1 , t±1

2 , x±1
1 , . . . , x±1

r ] and the contracting action C× is a combination of t1 and t2. There is also an
extra symmetry rotating the adjoint fields which we choose to grade by here.

21This follows from some lengthy combinatoric cancellations detailed in [111].
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This is the K-theoretic lift of Nekrasov’s partition function [149], and realises the N -
instanton contributions to a 5d SU(r) gauge theory. The Hilbert series was studied from
a mathematical perspective by Nakajima [150, 151]. Recall from section 3.1.2 that it is
also possible to express the Hilbert series as a Molien integral

H.S.[MN,r] = 1
N !

∮ N∏
a=1

dwa
2πiwa

N∏
a6=b

(
1− wa

wb

) N∏
a,b=1

(
1− t1t2wawb

)
(
1− t1wawb

) (
1− t2wawb

)
N∏
a=1

r∏
i=1

1
1− z−1

i wa

1
1− t1t2ziw−1

a

.

(3.96)

One of the advantages of re-writing the Hilbert series in this form is that it allows us
to understand the large gauge rank N limit—this seems very difficult to compute from
the expression (3.95). In section 3.4, we evaluate a (generalisation of) this integral using
Macdonald symmetric function methods and take the limit N →∞.

3.3.2 Lagrangian subvariety

In this section we consider a Lagrangian subvariety VN,r ⊂MN,r of the instanton moduli
space fixed by a subtorus of the group action (3.88).

Hanany-Tong moduli space. The moduli space is shown in figure 3.5, it corresponds
to discarding half of the arrows of figure 3.3. More precisely, setting B = J = 0 we have

VN,r := {(A, I) ∈ Hom(V, V )⊕ Hom(W,V ) : stable}/GL(V ) , (3.97)

where the stability condition is that there is no proper A-stable subspace of V containing
im I. This is an example of a handsaw quiver studied by Nakajima [152]. It has complex
dimension Nr and the symplectic form of MN,r manifestly vanishes on VN,r so that VN,r
is a Lagrangian subvariety. In particular, from (3.88), we see that VN,r is the locus in
MN,r fixed by the C×t1 group action. It inherits geometrical properties such as smoothness
from MN,r.

Fixed points. We now consider the fixed points under the residual torus action T =
C×t2 × A. In the description of MN,r in terms of torsion-free sheaves (E,Φ), the C×t1 action
scales one of the coordinates on the P2 and the fixed sheaves E = I1 ⊕ . . .⊕ Ir are then
tuples of C×-equivariant sheaves on C which can be labelled by integers ~k = (k1, . . . , kr)
with ∑ kα = N—these are the subset of the coloured Young tableaux corresponding to
vertical partitions, an example is depicted in figure 3.6.
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Figure 3.5: Hanany-Tong Moduli space VN,r as a Lagrangian submanifold of MN,r.

Figure 3.6: An example of a fixed point ~k on V10,3 ⊂M10,3 with k1 = 4, k2 = 4 and k3 = 2.

Equivariant K-theory. We can deduce the character of the tangent space to VN,r at a
fixed point ~k by taking the t1 invariant part of (3.93). Relabelling22 t2 → q−1 we have:

T~kVN,r =
r∑

α,β=1

xα
xβ

kβ−1∑
s=0

qkα−kβ+1+s . (3.98)

Similarly, the tautological line bundle (3.94) restricted to VN,r evaluated at a fixed point ~k
is given by

L~k =
r∏

α=1
xkαα q

1
2kα(kα−1) . (3.99)

3.3.3 Sections of line bundles

We now come to the main result of this section. We find that counts of sections of the line
bundle L give characters of a quantum group—the Yangian of section 3.2. Precisely, we
compute the equivariant Euler characteristic of the line bundle L⊗ζ with ζ ∈ Z≥0 defined
by

χT(L⊗ζ ,VN,r) := chTH
0(VN,r,L⊗ζ) . (3.100)

22To match the fermionic form conventions from section 3.2.

75



Substituting (3.99) and (3.98) into the localisation formula (3.16) we have

χT(L⊗ζ ,VN,r) =
∑

k1+...+kr=N

r∏
α=1

xζkαα q
ζ
2kα(kα−1)

r∏
α,β=1

1
(xα/xβqkα−kβ+1; q)kβ

. (3.101)

We then have:

Proposition 1. The equivariant Euler characteristic of L⊗ζ normalised by the Hilbert
series of VN,r is the q-deformed character (3.74) of the spin chain Hilbert space

H =
N⊗
l=1

KR(lω1)⊗ζ . (3.102)

The character coincides with the Milne polynomial

χT(L⊗ζ)
χT(O) = Q′(ζN )(x1, . . . , xr; q) . (3.103)

Proof. We write ZN,r for χT(L⊗ζ ,VN,r) in equation (3.99) and proceed inductively on N

to show that
ZN,r = (D1,ζ)N · 1 = Q(ζN )(x1, . . . , xr; q) , (3.104)

where D1,ζ are the Jing raising operators of section 3.2.4. When N = 1 the sum over {ki}
in ZN,r is a choice of which ki is set equal to 1. Furthermore, the first product over i
becomes simply xζi for this choice ki and the second product receives contributions only
from terms involving the non-zero ki, and brings out a factor of 1/(1− q)—we have:

Z1,r = 1
1− q

r∑
i=1

xζi

r∏
j=1
j 6=i

1
1− xi/xj

. (3.105)

This coincides with the raising operator D1,ζ divided by (q; q)1 as required.
Now we act with D1,ζ on ZN,r. Firstly, consider the action of the shift operator Γq,i on

the summand. We denote the summand by Z{k}N,r so that:

ZN,r =
∑

k1+...+kr=N
Z{k}N,r . (3.106)

The shift operator acts on the summand as follows:

Γq,i · Z{k}N,r = x−ζi Z
{k̃(i)}
N,r

r∏
j=1

(
1− qk̃

(i)
j xj/xi

)
. (3.107)

The set of integers {k̃(i)} is the same as the set {k} except the ith integer is shifted by 1
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so that k̃i = ki + 1. Now applying the whole raising operator we have:

D1,ζ · ZN,r =
r∑
i=1

xζi

r∏
j=1
j 6=i

1
1− xj/xi

∑
{k}

x−ζi Z{k̃(i)}
N,r

r∏
j=1

(
1− qk̃

(i)
j xj/xi

) . (3.108)

Now we look to change variable in the sum over {k}. We can re-parametrise the sum as a
sum over {k′} with ∑r

i=1 k
′
i = N + 1 but with k′i ≥ 1. Now the term in square brackets

vanishes if k′i = 0 so we can write the expression as a sum over all {k′} with ∑i k
′
i = N + 1.

The result is then an expression:23

D1,ζ · ZN,r =
∑

k1+...+kr=N+1
Z{k}N+1,r

 r∑
i=1

(1− qki)
∏
j=1
j 6=i

1− qkjxj/xi
1− xj/xi

 . (3.109)

The term in square brackets is in fact independent of xi and gives simply 1− q
∑r

i=1 ki =
1− qN+1 thus completing the proof since

D1,ζ · ZN,r = ZN+1,r. (3.110)

Remark. We note that this expression can also be expressed as a Molien integral from
section 3.1.2

χT(L⊗ζ ,VN,r) = 1
N !

∮ N∏
i=1

dwi

2πiwζ+1
i

∏
a6=b

(
1− wa

wb

) N∏
i,j=1

1
1− qwi/wj

N∏
i=1

r∏
a=1

1
1− wixa

.

(3.111)
This integral was evaluated using Milne polynomial methods in the work [153]. In the
following section we introduce Macdonald polynomial techniques to evaluate integrals of
the kind (3.28). Using these methods, we show that sections of line bundles over more
general toothless handsaw quivers realise more general KR module characters.

Twisted χt genus. We conclude this subsection with some remarks on the twisted χt

genus of the Hanany-Tong vortex moduli space. We can use the same ingredients to
compute the twisted (by L) χy genus of VN,r. Substituting (3.98) and (3.99) into the
localisation formula (3.30) we find

χy(VN,r) =
∑

k1+...+kr=N
xζkαα q

ζ
2kα(kα−1)

r∏
α,β=1

(yxα/xβqkα−kβ+1; q)kβ
(xα/xβqkα−kβ+1; q)kβ

. (3.112)

23Relabelling {k′} → {k} for ease of notation.
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Figure 3.7: A segment of a periodic Chainsaw quiver D(v,w).

The limit y → 0 recovers the twisted Hilbert series of the line bundle above. Another
interesting limit is instead q → 0. In the absence of line bundle charge, this is the limit
of subsection 3.1.4 and computes the Poincaré polynomial of the compact core. We first
re-write the sum over fixed points in terms of the Weyl group Sr as follows

χy(VN,r) =
∑
σ∈Sr

∑
k1≥...≥kr

xζkαα q
ζ
2kα(kα−1)

r∏
α,β=1

(yxα/xβqkα−kβ+1; q)kβ
(xα/xβqkα−kβ+1; q)kβ

. (3.113)

Now sending q → 0 we see from the line bundle term that the only fixed points that
contribute are those with kα = 0, 1 for α = 1, . . . , r, we thus parametrise the sum by the
number, k, of 1s that appear in ~k so that

lim
q→0

χy(VN,r) =
∑
σ∈Sr

xζ1 . . . x
ζ
k

k∏
α=1

r∏
β=k+1

1− yxα/xβ
1− xα/xβ

, (3.114)

up to the normalisation constant v(ζk)(y) (see appendix B) this is a Hall-Littlewood
polynomial B.16

lim
q→0

χy(VN,r) = v(ζk)(y)PHL
(ζk)(X; y) . (3.115)

3.4 Chainsaw quiver varieties

In this section we study the chainsaw quiver variety D(v,w) illustrated in figure 3.7.

Motivation. The chainsaw quiver was first studied in the mathematical literature by
Finkelberg and Rybnikov [154]. Later it was shown by Kanno and Tachikawa in the
work [155] that the chainsaw quiver describes the moduli space of instantons in a four
dimensional pure SU(M) gauge theory with N = 2 supersymmetry in the presence of a
surface operator.

The AGT correspondence [29] implies, in particular, that the BPS sector of pure
SU(M) N = 2 gauge theories in four dimensions is governed by a WM -algebra symmetry.
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Often, the partition function (geometrically, the homological limit of the Hilbert series
of the relevant quiver variety) coincides with the norm of the Gaitto state [156] of the
WM -algebra. In the presence of a surface operator this correspondence has been extended
[157, 158, 159] to a particular W -algebra constructed using the affine symmetry ŜU(M),
in this case the relevant instanton moduli space is described by the chainsaw quiver variety
[60]. The gauge nodes wi parametrise the choice of surface operator with w1 +. . .+wN = M

and the flavour nodes vi parametrise the instanton number. In this section we study a
K-theoretic lift (and q-deformation) of this setup and show that the partition function can
be computed using Macdonald polynomial methods that evaluate the associated Molien
integral.

Outline. We begin in section 3.4.1 where we show that the chainsaw quiver partition
function can be evaluated in terms of Macdonald polynomials. In section 3.4.2 we study a
special limit of the chainsaw quivers that we call toothless handsaw quivers—we find that
sections of line bundles supported on these quiver varieties yield the more general spin
chain characters discussed in section 3.2. The ADHM moduli space of the previous section
is a special case of a chainsaw quiver and we conclude the present section in 3.4.3 by
demonstrating that the Macdonald polynomial methods are a convenient tool to compute
the large rank limit of the Hilbert series of the ADHM moduli space.

Conventions for Macdonald polynomials and combinatorics used throughout this section
are summarised in appendices A and B.

3.4.1 Molien integral of chainsaw quiver varieties

Definition. The chainsaw quiver is a single framed quiver with gauge nodes and flavour
nodes

V =
N⊕
i=1

Vi , W =
N⊕
i=1

Wi , (3.116)

with associated dimension vectors (v1, . . . , vN) and (w1, . . . ,wN). Quiver representations
are specified by the following linear maps for i = 1, . . . , N

Ai : Vi → Vi , Bi : Vi+1 → Vi , Ii : Wi → Vi , Ji : Vi → Wi+1 . (3.117)

where we take i modulo N . The gauge group G = GL(V1)× . . .×GL(VN ) acts in the usual
way by (A,B, I, J)→ (g−1Ag, g−1Bg, gI, Jg−1). The chainsaw quiver is then defined by

D(v,w) = {(A,B, I, J) : stable }/GL(V ) . (3.118)

where stability is defined in the sense of definition 2.3. We introduce corresponding Chern
roots for the tautological bundles i = 1, . . . , N denoted {w(i)

ki
}ki=1,...,vi . We have the usual
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framing group action GW = GL(W1)× . . .×GL(WN) for which we introduce fugacities
associated to each flavour node i = 1, . . . , N denoted {x(i)

ki
}ki=1,...,wi . We also have a

contracting C×t acting by

(A,B, I, J)→ (tA,B, tI, J) , (3.119)

we write t for the corresponding fugacity.24 We denote the maximal torus of these group
actions by T. Associated to each gauge node we have the usual tautological line bundles
Li = detVi for i = 1, . . . , N generating the Picard group Pic(D(v,w)) ∼= ZN .

q-deformed Molien integral. Associated to D(v,w) we consider a q-deformed Molien
integral of the type defined in (3.28). Later in chapter 5 we see that integrals of this type
realise counts of local operators of 3d N = 4 theories. In this chapter they are a technical
tool to evaluate the Hilbert series of the chainsaw quiver.

I{w}{v}(X; ζ;α, β, γ; q, t)

=
∮ N∏

a=1

1
va!

va∏
i=1

dw
(a)
i

2πiw(a)
i

(
w

(a)
i

)−ζa N∏
a=1

va∏
i,j=1

(w(a)
i /w

(a)
j ; q)∞

(tw(a)
i /w

(a)
j ; q)∞

N∏
a=1

va∏
i=1

va+1∏
j=1

(γatw(a)
i /w

(a+1)
j ; q)∞

(γaw(a)
i /w

(a+1)
j ; q)∞

N∏
a=1

va∏
i=1

wa∏
m=0

wa+1∏
n=0

1
(αaw(a)

i x
(a)
m ; q)∞

1
(βa 1

w
(a)
i x

(a+1)
n

; q)∞
.

(3.120)

We note that when q → 0 this integral reduces to the Molien integral for the (twisted by
the line bundles L) Hilbert series of D(v,w). Throughout this section we use shorthand
for the tensor product of powers of line bundles on D(v,w) and write Lζ = ⊗N

i=1 L
⊗ζi
i . The

q → 0 limit of the Molien integral (3.120) gives

χT
(
Lζ ,D(v,w)

)
= lim

q→0
I{w}{v}(X(a); ζa;αa = βa = γa = 1; q, t) . (3.121)

We introduce the parameters α,β and γ in the integral (3.120) as convenient book-keeping
to take various limits in the following subsection. We now evaluate I{w}{v} using the theory
of Macdonald polynomials. We denote by X(a) the set of variables (x(a)

1 , . . . , x(a)
wa ), and X̄

for sets of inverse variables X̄ = {x−1
1 , x−1

2 , . . .}.

Theorem 9. The q-deformed Molien integral of the chainsaw quiver D(v,w) can be
written as a sum of skew Macdonald polynomials labelled by partitions {ν(a), σ(a)}a=1,...,N

24This is different to the previous section where we called it q, we want to reserve q for the Macdonald
deformation in this section.
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in the flavour fugacities as

I{w}{v}(X; ζ;α, β, γ; q, t) =
∑

{ν(a),σ(a)}

N∏
a=1

(q; q)va
∞

(t; q)va∞
c̃va(ν(a); q, t)γ|σ(a)|

a Pν(a)/σ(a)

(
αaX

(a)

1− t ; q, t
)
Qν(a)/σ̃(a−1)

(
βaX̄

(a+1)

1− t ; q, t
)
.

(3.122)

where the shifted partitions are defined by σ̃(a) = σ(a) + (ζva+1
a+1 ) for a = 1, . . . , N with

(ζvN+1
N+1 ) = (ζv1

1 ). Similarly, the variables X(N+1) and X(1) are identified.

Proof. Using the Macdonald measure (B.46) and the Macdonald Cauchy identity (B.31)25,
we can re-write the integrand in terms of symmetric functions:

I{w}{v}(X; ζ;α, β, γ; q, t) =
N∏
a=1

(q; q)va
∞

(t; q)va∞

∮ N∏
a=1

dµ[W (a); q, t]
va∏
i=1

(
w

(a)
i

)−ζa ∑
{λ(a)}

Pλ(a)

(
W (a); q, t

)
Qλ(a)

(
αaX

(a)

1− t ; q, t
)

∑
{µ(a)}

Pµ(a)

(
W̄ (a); q, t

)
Qµ(a)

(
βaX̄

(a+1)

1− t ; q, t
)

∑
{σ(a)}

γ|σ
(a)|

a bσ(a)(q, t)Pσ(a)

(
W (a); q, t

)
Pσ(a)

(
W̄ (a+1); q, t

)
.

(3.123)

Now we can use (B.33) to absorb the factors of
(
w(a)

)−ζa . Further, using the Macdonald
algebra structure constants (B.41) we can write the integral as:

I{w}{v} =
N∏
a=1

(q; q)va
∞

(t; q)va∞

∮ N∏
a=1

dµ[W (a); q, t]

∑
{λ(a),µ(a),σ(a)}
{ν(a),ρ(a)}

N∏
a=1

f ν
(a)

λ(a)σ(a)(q, t)Pν(a)

(
W (a); q, t

)
fρ

(a)

µ(a)σ̃(a−1)Pρ(a)

(
W̄ (a); q, t

)

γ|σ
(a)|

a Qλ(a)

(
αaX

(a)

1− t ; q, t
)
Qµ(a)

(
βaX̄

(a+1)

1− t ; q, t
)
bσ(a)(q, t) .

(3.124)

In the above we write σ̃(a) to denote the partition shifted by (ζv), and σ(0) is identified
with σ(N). Precisely:

σ̃(a) = σ(a) + (ζva+1
a+1 ) , (3.125)

where again vN+1 and ζN+1 are identified with v1 and ζ1 respectively. In the next step of
the calculation, we use the orthogonality of the Macdonald polynomials with respect to
the inner product (B.45), this introduces a normalisation factor (B.47). Finally, we use

25We use a plethystically substituted form X → X
1−t of this identity for the flavour terms.
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v1 v2 vN

w1 w2 w3 wN+1

Figure 3.8: Handsaw quiver Q(v,w).

the definition of skew Macdonald polynomials (B.42) to write the integral as:

I{w}{v}(X; ζ;α, β, γ; q, t) =
∑

{ν(a),σ(a)}

N∏
a=1

(q; q)va
∞

(t; q)va∞
c̃va(ν(a); q, t)γ|σ(a)|

a Pν(a)/σ(a)

(
αaX

(a)

1− t ; q, t
)
Qν(a)/σ̃(a−1)

(
βaX̄

(a+1)

1− t ; q, t
)
.

(3.126)

In the above, we have also used part of the normalisation of the inner product (the bν
term) combined with the bσ term to re-normalise the first skew Macdonald polynomial.

3.4.2 Handsaw quivers

We now consider some particular examples of chainsaw quivers known as handsaw quiv-
ers. These quivers are shown in figure 3.8 and are subvarieties of the chainsaw quivers
D(v,w). We denote the handsaw quiver by Q(v,w). Later we meet these again as vortex
moduli spaces of Tρ[SU(N)] theories where we study their χt genera using the fixed point
localisation methods of chapter 3.

The Molien integral for these quivers can be computed by setting γN = 0 which ‘breaks
the periodicity’ of the chainsaw quiver. The proof of proposition 9 required γN 6= 0 and
we therefore need to modify the result as follows

Proposition 2. The chainsaw quiver q-deformed Molien integral can equivalently be
expressed as

I{w}{v}(X; ζ;α, β, γ; q, t) =
∑

{ν(a),σ(a)}

N∏
a=1

(q; q)va
∞

(t; q)va∞
c̃va(ν(a); q, t)γ|σ(a)|

a Pν̃(a)/σ(a)

(
αaX

(a)

1− t ; q, t
)
Qν(a)/σ̃(a−1)

(
βaX̄

(a+1)

1− t ; q, t
)
,

(3.127)

where ν̃(1) = ν(1) +(ζv1
1 ) when a = 1 and ν̃(a) = ν(a) otherwise. Further σ̃(a) = σ(a) +(ζka+1

a+1 )
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v1 v2 vN

wN

Figure 3.9: Toothless handsaw quiver Q(v,wN) with an example closed oriented cycle
highlighted in blue.

when a = 1, . . . , N − 1 and σ̃(N) = σ(N).

Proof. The only difference to the proof of proposition 9 is that we multiply ∏k1
i=1

(
w

(1)
i

)−ζa
with Pσ(1)(W (1)) in the first line instead of Pµ(1)(W (1)). We do this because when γN = 0
we cannot multiply it with Pσ(N)(W (1)).

Sending q → 0 with γN = 0 and αa = βa = 1 for a = 1, . . . , N recovers the Hilbert
series of the Handsaw quiver Q(v,w) of figure 3.8.

χT(Lζ ,Q(v,w)) = lim
q→0
Iw,v(X; ζ; γN = 0) . (3.128)

Toothless handsaw. Now we can consider the case γN = 0 together with αN = 1 and
αa = 0 for a = 1, . . . , N − 1 and βa = 0 for all a = 1, . . . , N , the quiver diagram is shown
in figure 3.9. We call such quivers toothless handsaw quiver and denote them by Q(v,wN ).
Using the homegeneity property of the skew Macdonald polynomials in (B.42) we have
the following constraints satisfied by the partitions in the sum (3.127)

ν(1) + (ζv1
1 ) = σ(1) , ν(a) = σ(a) , a ≥ 2
ν(1) = σ(N) , ν(a) = σ(a−1) + (ζva

a ) , a ≥ 2 .
(3.129)

Together with the fact that γN = 0 implying σ(N) = ∅ these equations can be solved
recursively for ν(N) giving a single partition λ that survives in the sum

ν(N) = (ζvN
N ) + . . .+ (ζv1

1 ) =: λ . (3.130)

The expression for the q-deformed Molien integral is then

I{w}{v}(X; ζ;α, β, γ; q, t) =[
(q; q)v1+...+vN

∞
(t; q)v1+...+vN∞

N∏
a=1

c̃va(ν(a); q, t)
]
Pλ

(
X

1− t ; q, t
)
.

(3.131)
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where we have relabelled X := X(N). Finally, we consider the Hilbert series limit q → 0.
In this limit the Macdonald polynomial becomes a Milne polynomial (see appendix B) and
it is a short calculation with the normalisation constant (B.47) to see that

lim
q→0
I{w}{v}(X; ζ; t) = χT(Lζ1

1 ⊗ . . .⊗ L
ζN
N ,Q(v,w1))

= 1
(t; t)v1

1
(t; t)v1+v2

. . .
1

(t; t)v1+...+vN
Q′λ(X; t) ,

(3.132)

where λ = (ζv1
1 ) + . . .+ (ζvN

N ). The prefactor arises from the more general closed oriented
cycles available for the toothless handsaw, these are illustrated on figure 3.9. We therefore
have the following generalisation of proposition 1:

Theorem 10. The normalised equivariant Euler characteristic of line bundles over Q(v,wN )
realise characters of the Kirrilov-Reshetikhin module

H~n =
k⊗
l=1

KR(lw1)n
(l)
1 . (3.133)

Writing λ = (n(1), . . . , n(k)) we have

χT(Lζ1
1 ⊗ . . .⊗ L

ζN
N )

χT(OQ) = Q′λ(X; t) . (3.134)

3.4.3 Large rank limit

We now compute the large gauge rank limit of the Hilbert series. We focus on the ADHM
case D(v,w) =MN,r, that is the chainsaw quiver 3.7 with one gauge node. We keep the
q-deformation but turn off line bundle charge and match to the symmetry conventions in
the ADHM section 3.3.1 so that

α = 1 , β = t1t2 , γ = t2 , t = t1 . (3.135)

In that case proposition 9 tells us that the q-deformed Molien integral is given by

IN,r(X; q, t1, t2) =∑
{ν,σ}

(q; q)N∞
(t1; q)N∞

c̃N(ν; q, t1)t|σ|2 Pν/σ

(
X̄

1− t1
; q, t

)
Qν/σ

(
t1t2X

1− t1
; q, t1

)
.

(3.136)

Normalisation constant. A subtle aspect to taking the large N limit of (3.136) is how
to deal with the Macdonald integral normalisation constant c̃N(ν; q, t). This constant is
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defined in equation (B.47) by

c̃N(ν; q, t1) :=
N∏
i=1

Γq(iβ)
Γq(β)Γq((i− 1)β + 1)

∏
s∈λ

1− qa′(s)tN−l
′(s)

1

1− qa′(s)+1t
N−l′(s)−1
1

, (3.137)

where Γq(x) is the q-Gamma function (A.6). We deal with the first factor to begin with.
Writing t1 = qβ, we use the definition of the q-Gamma function to express the first factor
as

N∏
i=1

Γq(iβ)
Γq(β)Γq((i− 1)β + 1) = (t1; q)N∞

(q; q)N∞

N∏
i=1

(qti−1
1 ; q)∞

(ti1; q)∞
. (3.138)

This product can be telescoped so that for the entire normalisation constant we have

c̃N(ν; q, t1) = (t1; q)N∞
(q; q)N∞

(q; q)∞
(t1; t1)N(qtN1 ; q)∞

∏
s∈λ

1− qa′(s)tN−l
′(s)

1

1− qa′(s)+1t
N−l′(s)−1
1

. (3.139)

Now we assume that |t1| < 1 so that as N → ∞ the second product factor goes to 1
together with (qtN1 ; q)∞ → 1. Combining this limit with (3.136) we find

lim
N→∞

IN,r(X; q, t1, t2) =

(q; q)∞
(t1; t1)∞

∑
ν,σ

t
|σ|
2 Pν/σ

(
X̄

1− t1
; q, t1

)
Qν/σ

(
t1t2X

1− t1
; q, t1

)
.

(3.140)

To simplify the Hilbert series further we require the following lemma.

Lemma 3. Skew Macdonald polynomials satisfy the following Cauchy-like identity:

∑
λ,µ

γ|λ|Qµ/λ(X; q, t)Pµ/λ(Y ; q, t) = PE
[

γ

1− γ + 1− t
(1− γ)(1− q)XY

]
. (3.141)

Proof. The method of proof used here is an adaptation of the Schur case found in exercise
(28) of Chapter II.5 in Macdonald [144]. We let

F (X, Y ; q, t) =
∑
λ,µ

γ|λ|Qµ/λ(X; q, t)Pµ/λ(Y ; q, t) . (3.142)

Using the identity (B.44) and the fact that Macdonald polynomials are homogeneous we
can perform the sum over µ to find:

F (X, Y ; q, t) = PE
[

1− t
1− qXY

]∑
λ,µ

γ|µ|Qλ/µ (γX; q, t)Pλ/µ(Y ; q, t) . (3.143)

In other words:
F (X, Y ; q, t) = PE

[
1− t
1− qXY

]
F (γX, Y ; q, t) . (3.144)
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Now, provided |γ| < 1, we can iterate this relation to find:

F (X, Y ; q, t) = F (0, Y ; q, t)PE
[

1− t
(1− γ)(1− q)XY

]
. (3.145)

Using the fact that Pλ/µ vanishes unless µ ⊂ λ together with the fact Pλ/µ(0) vanishes
unless µ = λ (where it equals 1) we find:

F (0, Y ; q; t) =
∑
λ

γ|λ| =
∞∏
k=1

1
1− γk = PE

[
γ

1− γ

]
. (3.146)

The lemma then follows.

After suitable parameter identifications and making the plethystic substitutions X →
X

1−t1 , Y → Y
1−t1 then we can use this lemma to evaluate (3.140). At large N , the

normalisation constants of (3.140) can also be expressed in a plethystic form and overall
we have the relatively compact plethystic expression

lim
N→∞

IN,r(X; q, t1, t2) = PE
[

1
1− q

(
XX̄

(1− t1)(1− t2) − q
)

+ t1
1− t1

+ t2
1− t2

]
. (3.147)

Finally, sending q → 0 yields a plethystic expression for the large gauge rank Hilbert series
of the ADHM quiver

lim
N→∞

H.S.[MN,r] = PE
[

(x1 + . . .+ xr)(x−1
1 + . . .+ x−1

r )
(1− t1)(1− t2) + t1

1− t1
+ t2

1− t2

]
. (3.148)
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CHAPTER 4
Vortex geometry and hemisphere blocks

In this chapter we study the geometrical interpretation of holomorphic factorisation of
closed three manifold partition functions of 3d N = 4 theories. We focus on the twisted
index and show that this observable coincides with the Hilbert series of the theory. We
introduce an angular momentum refinement that allows us to use holomorphic factorisation
to understand the Hilbert series in terms of the geometry of vortex moduli space.

We then introduce a UV construction of a hemisphere block realised as a partition
function of the theory on a hemisphere with an exceptional Dirichlet boundary condition.
Inspired by concrete calculations of half indices of these boundary conditions for the
SQED[N ] theory, we propose a geometric prescription for the block for a wide class of
quiver gauge theories that depends only on the Higgs branch geometry. We show that the
hemisphere block glues exactly to reproduce results from the localisation of twisted indices
discussed in the first part of the chapter.

We find that in specialised limits the hemisphere blocks have interesting representation
theoretic content—they compute lowest weight Verma module characters of the chiral
rings of the theory. Combined with the observations in the first parts of the chapter, this
allows us to understand holomorphic factorisation of partition functions of 3d N = 4
theories in terms of ‘gluing’ Verma module characters.

Overview. Section 4.1 is a review of background material on vortices, quasimaps and
the twisted index that we use throughout the remainder of the thesis. In section 4.2 we
investigate the relationships between vortex geometry, holomorphic factorisation and the
Coulomb branch Hilbert series. We demonstrate these ideas explicitly for the T [SU(N)]
theory with a novel calculation factorising the topologically twisted index. In section 4.3 we
introduce the new notion of hemisphere blocks. We provide a prescription to compute these
blocks for a wide variety of quiver gauge theories and discuss applications to understanding
the geometry of factorisation of the twisted index. Finally, in section 4.4 we discuss the
representation theoretic content of hemisphere blocks and meet the final novel result of the
chapter where we show that, in certain specialised limits of the block, we recover lowest
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weight Verma module characters of the quantised Higgs and Coulomb branch chiral rings.
The conventions for partitions and symmetric functions used throughout this chapter are
summarised in appendices A and B.

Publications. Section 4.2 is based on the work [108] written in collaboration with N.
Dorey and D. Zhang

• S. Crew, N. Dorey and D. Zhang, Factorisation of 3d N = 4 twisted indices and the
geometry of vortex moduli space, JHEP 08 (2020) 015.

Sections 4.3 and 4.4 are based on [160] with M. Bullimore and D. Zhang

• M. Bullimore, S. Crew and D. Zhang, Boundaries, Vermas, and Factorisation,
2010.09741.

Sections 4.3.3 and 4.3.4 consist of the author’s currently unpublished work.

4.1 Background

Outline. In section 4.1.1, we discuss the relationship between quasimap moduli spaces
and vortex moduli spaces of 3d N = 4 theories and review the vertex function which
is the main geometrical object of study in this chapter. In section 4.1.2 we review the
definitions of topologically twisted indices and how to compute them using Coulomb
branch localisation. We then review the notion of holomorphic factorisation of 3d partition
functions and how this applies in particular to the topologically twisted indices. Finally,
we spend some time introducing the T [SU(N)] theory which is the main example studied
in section 4.2.

4.1.1 Vortices and quasimaps

3d N = 4 theories admit half-BPS vortex solutions. In section 2.1.5 we discussed how
the vortex moduli space can be described by the data of a principal GC-bundle together
with holomorphic sections (X, Y ) in R that satisfy the complex moment map constraint
µC = 0. When R is a quiver representation and the Higgs branch is the quiver variety
MH =Mθ(v,w) this construction is realised by the quasimap moduli spaces QM(MH)—
these are fundamental objects in enumerative geometry introduced in the works [94, 95, 161].
The physical observables we are interested are vortex partition functions, which in the
quasimap literature are known as vertex functions. In this subsection we review the
construction of quasimap spaces and their vertex functions.
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Quasimap spaces. Quasimap moduli spaces QMd(X) associated to a Nakajima quiver
variety X =Mθ(v,w) are Deligne-Mumford stacks. Later, in section 4.2, we work with
more down-to-earth realisations of particular quasimap moduli spaces as smooth projective
varieties known as Laumon spaces [96]. However for general quiver gauge theories, such
as the 3d ADHM theory studied in chapter 5, we require the more general quasimap
machinery.

We begin with an intuitive description. Quasimap moduli spaces parametrise maps
f : P1 → X. They split into topologically distinct sectors for each map degree which we
denote by

QMd(X) = {maps of degree d : P1 → X} . (4.1)

The degree d describes the image of P1 inside X i.e. d = im f ∈ H2(X,Z). Recall from
3.1.1 that a Nakajima quiver variety has tautological bundles (Vi)i∈I and (Wi)i∈I associated
to each node of the quiver. A map f induces pullback bundles V = f ∗V and topologically
trivial bundles W = f ∗W on P1. We also have a bundle R(v,w) on P1 corresponding to
the quiver representation R(v,w) defined by

M (v,w) =
∑
i∈I

Hom(Wi,Vi)⊕
⊕

(i,j)∈E
. ~Qij ⊗ Hom(Vi,Vj) ,

R(v,w) = M (v,w)⊕M (v,w)∨ .
(4.2)

The definition of a quasimap f : P1 99K X involves working with bundle data rather than
the map f itself. The data is

• A collection of rank (vi)i∈I vector bundles (Vi)i∈I on P1.

• A section f ∈ H0(P1,R(v,w)⊗ t) satisfying µC = 0.

The degree d of a quasimap is defined to be the vector of degrees of the bundles (Vi)i∈I ,
this coincides with the intuitive notion of degree discussed above whenever the quasimap f
is non-singular and matches the first Chern classes in the vortex moduli space description
in section 2.1.5. The quasimap moduli space is then defined by

QMd(X) := {degree d quasimap data}/ ∼= . (4.3)

Moving in the moduli space corresponds to varying the bundles (Vi)i∈I , up to isomorphism,
and the section f with the base curve fixed.

Stable quasimaps. In general quasimaps define maps from P1 to the stack quotient
µ−1(0)/GC, the space of stable quasimaps is a better behaved space that is a finite type
Deligne-Mumford stack with a perfect obstruction theory [94]. Stable quasimaps are defined
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to have only finitely many points p ∈ P1 mapping to non-stable points1 of µ−1(0)/GC.
Hereafter we write QMd(X) for the space of stable quasimaps.

Non-singular quasimaps. For each point p ∈ P1 we have an associated evaluation
map

evp : QMd(X)→ µ−1(0)/GC , (4.4)

the right hand side is a quotient stack that includes the stable points as an open subset
µ−1(0)s/GC ⊂ µ−1(0)/GC. We say that a quasimap f is non-singular at p if f(p) lies in
the stable locus for all p—i.e. f(p) is a point in the quiver variety X. In that case we
have a well-defined evaluation map to the Higgs branch

evp : QMd
non. sing. at p(X)→ X . (4.5)

Torus actions and based quasimaps. QMd(X) admits a natural torus action Tq =
C×q × T. The torus action T is inherited from the corresponding action on the quiver
variety X—the fugacities x of this group action are known as equivariant parameters in the
curve counting literature, and C×q acts by scaling the coordinate on P1. In physical terms,
as we saw in section 2.1.5, the fugacities x on the torus T are identified with exponentiated
real masses; later we place the theory on an omega-deformed spacetime whose deformation
parameter will be associated to rotations of the P1 base. We also note from [95] that
the quasimap moduli spaces are empty outside a certain cone C ⊂ H2(X,Z) of allowed
degrees d determined by the stability condition of the quiver X. In chapter 5 we see the
cone condition can give interesting combinatorial constraints on which quasimap moduli
spaces are non-empty.

We now fix a point p = ∞ ∈ P1 and consider the moduli space of stable quasimaps
non-singular at ∞. If α ∈ XT is an isolated massive vacuum then we have a well-defined
locus of based quasimaps QMd

α(X) ⊂ QMd
non. sing. at ∞ given by

QMd
α = {degree d stable quasimap data non-singular at ∞ : f(∞) = α} . (4.6)

Vertex functions. The main object we are interested in enumerative geometry is known
as the vertex function V(ζ, x; q, t). The vertex function can be realised as the equivariant
Euler characteristic of a, suitably defined, virtual structure sheaf on QMd(X). In the work
[94] it is shown that the quasimap moduli space admits a perfect obstruction theory and is
equipped with a virtual structure sheaf2 Ôvir and a virtual tangent bundle T virQMd

α. We
1In the sense of definition 2.3
2The hat denotes the symmetrised virtual structure sheaf which is the virtual structure sheaf twisted

by the virtual canonical line bundle, this is analogous to working with the Dirac operator rather than the
Dolbeault operator on a Kähler manifold.
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do not review the construction in detail here but note only that the perfect obstruction
theory allows us to compute Euler characteristics using the localisation formulae of chapter
3.

Consider quasimaps non-singular at∞. The evaluation map (4.5) defines a pushforward
evp,∗ with image lying inside KTq(X). The vertex functions are defined by

V(x, ζ; q, t) :=
∑

d

ζdevp,∗(QMd
non. sing. at p(X), Ôvir) ∈ KTq(X)loc[[ζ]] , (4.7)

in the above the Kähler parameters ζ (FI parameters) are naturally paired with the
quasimap degree d (vortex number) and x and t are coordinates on the torus T = A×C×t
(mass parameters). Later q will be identified with the omega background deformation
parameter. The vertex function can be expanded in the fixed point basis of the localised
K-theory and, since the fixed locus

(
QMd

)Tq is proper [95], the vertex function at a fixed
point computes the equivariant Euler characteristic of the virtual structure sheaf on the
moduli space of based quasimaps

Vα(x, ζ; q, t) =
∑

d

ζdχ(Ôvir,QMd
α(X)) . (4.8)

The vertex function can then be computed using the localisation theorems discussed in
section 3.1 giving

Vα(x, ζ; q, t) =
∑

d

ζd
∑

(V ,W )
â
(
T vir

(V ,W )QMd
p

)
, (4.9)

where the second sum is taken over quasimaps (V ,W ) fixed under the torus action Tq

and â is a symmetric version3 of the plethystic exponential defined on torus weights by

â(ω) = 1
ω

1
2 − ω− 1

2
, â(ω1 + ω2) = â(ω1)â(ω2) . (4.10)

Remark. We note that, informally speaking, this index has ‘numerators and denominators’
in the sense that at a fixed point the virtual tangent bundle takes the form of a difference
of K-theory classes

T vir
p = Defp −Obsp , (4.11)

so that the plethystic exponential in the localisation formula (3.5) contributes numerators
and denominators at each fixed point. Therefore, the vertex functions have more in
common with the χt genus of section 3.1.3 than the Hilbert series of section 3.1.2.

In section 4.2 we study the T [SU(N)] theory. In this case, we show that the relevant
vertex functions agree with generating functions of χt genera of smooth Laumon spaces, or

3Since we work with the symmetrised virtual structure sheaf Ôvir which carries an extra factor of the
the square root of the canonical bundle compared with Ovir.
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handsaw quiver varieties [152], and the numerators and denominators in (4.9) match the
localisation formula for the χt genus (3.30). In section 4.3 we make the correspondence with
enumerative geometry and 3d N = 4 gauge theory more precise by introducing a particular
UV boundary condition in the 3d theory whose partition function realises the vertex
functions. In this context we also determine perturbative contributions unambiguously
using the formalism of quasimaps.

SQED[N ] example. Following [51], we now show how to compute the relevant vertex
functions for our favourite example: SQED[N ] with Higgs branch MH = T ∗PN−1.

We have two tautological bundles V and W on T ∗PN−1. The tangent bundle (3.19)
induces a bundle on the base curve denoted P + tP∨ with P = W ∨⊗V −V ⊗V ∨. For
this example, the cone of effective degrees is d = d ∈ Z≥0 and the fibre of the (reduced4)
virtual tangent bundle at a point (V ,W ) is given by

T vir.
(V ,W )QMd

α = H•(P ⊕ tP∨)− TαPN−1 . (4.12)

A lemma of Grothendieck says that the bundles (V ,W ) split and in particular at a Tq

fixed point they are given by

V = O(d)q−dxα , W = O(1)x1 + . . .+O(1)xN . (4.13)

The higher cohomology in the right hand side of (4.12) vanishes and the character of line
bundles of this form is given by5

chTqH
0(xαq−dO(d)) = xα(1 + q−1 + . . .+ q−d) . (4.14)

We now have the ingredients to compute the localisation formula (4.9). We find

Vα(x, ζ; q, t) =
∑
d≥0

((
q

1
2 t−

1
2
)N

ζ
)d N∏

i=1

(
txα
xi

; q
)
d(

q xα
xi

; q
)
d

. (4.15)

We reproduce this expression from the χt genus of the relevant Laumon space in section
4.2

4.1.2 The topologically twisted index

In this section we review the definition and localisation computation of one of the main
supersymmetric observables studied in this thesis, the topologically twisted index.

4Subtracting the tangent bundle of PN−1 normalises the vertex function to 1 as an expansion in ζ.
5See the discussion in section 3.4.2.
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Twisted indices. 3d N = 4 theories admit two topological twists [162, 163]—the
A-twist and the B-twist—which are uplifts of the two dimensional A- and B-models
[24]. The choice of twist corresponds to twisting the SU(2)E Lorentz group with either
SU(2)H or SU(2)C respectively. Throughout, we fix a U(1)H × U(1)C subalgebra of the
SU(2)H × SU(2)C R-symmetry and denote the integer R-charges by RH and RC .

In the IR non-linear sigma model context, the B-twist is known as the Rozansky-
Witten twist [70] and preserves the four supercharges: Q11̇

+ , Q21̇
+ , Q12̇

− , Q
22̇
− satisfying the

supersymmetry algebra
{QA1̇

+ , QB2̇
− } = 2εABE . (4.16)

The A-twist is the mirror of the B-twist and preserves the supercharges Q11̇
+ , Q22̇

− , Q
12̇
+ , Q21̇

−

that satisfy the supersymmetry algebra

{Q1Ȧ
+ , Q2Ḃ

− } = 2εȦḂE . (4.17)

Both twists preserve the common supercharges Q11̇
+ and Q22̇

− which are compatible with the
anti-diagonal R-symmetry combination RH −RC together with angular momenta J + 1

2RH

and J + 1
2RC . These are gradings for global symmetries from the perspective of our fixed

N = 2 subalgebra. The twisted indices are then defined by

IA = TrHA
S2

(−1)F qJ+RC
2 t

RH−RC
2 xTHξTC ,

IB = TrHB
S2

(−1)F qJ+RH
2 t

RC−RH
2 xTHξTH .

(4.18)

where TH and TC are maximal tori of the flavour and topological symmetries respectively.

Path integral. A 3d N = 2 theory with integer R-charge assignments can be placed
supersymmetricaly on a curved S2 × S1 with a non-trivial background connection for the
R-symmetry gauge field A(R).

The method to achieve this was pioneered by Seiberg and Festuccia in the work [21].
The particular case of the 3d N = 2 twisted index has been studied in detail by Benini et.
al. [164, 165, 166] and the N = 4 case in particular was recently studied by Closset and
Kim [167]. We couple the R multiplet of our theory to a classical supergravity background.
The relevant supergravity theory is known as ‘new minimal supergravity’ [168] and the
field content is as follows:

• Metric – gµν .

• R-symmetry gauge field – A(R)
µ .

• 2-form gauge field – Bµν (with field strength H = ?B).

• Central charge symmetry gauge field – Cµ (with field strength V = ?C).
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• Gravitini – ψµ , ψ̃µ.

To consistently couple our theory to this background we have to impose that the gravitini
variations vanishes δψ = 0. This yields a pair of generalised Killing spinor equations:

(∇µ − iA(R)
µ )ζ = −1

2Hγµζ − iVµζ −
1
2εµνρV

νγρζ ,

(∇µ + iA(R)
µ )ζ̃ = −1

2Hγµζ̃ + iVµζ + 1
2εµνρV

νγρζ̃ .
(4.19)

A solution to this pair of equations yields, via the supergravity Lagrangian, a rigid
supersymmetric Lagrangian that preserves the supercharges Q11̇

+ and Q22̇
− . For the twisted

geometry there exists a solution to the Killing spinor equations (4.19) with

H = V µ = 0, A(R) = ωS
2

12 . (4.20)

In particular this implies that 1
2π
∫
S2 dA(R) = −1 and R-charges are quantised.

Coulomb branch localisation. The twisted indices (4.18) can then be computed by
localisation [169] with respect to the supercharge Q = Q11̇

+ +Q22̇
− . We follow the Coulomb

branch localisation procedure of [164]. Q-exact BPS configurations are specified by the
following vector multiplet data

• Magnetic flux m = 1
2π
∫
S2 F co-character living in the coroot lattice Λ∨h .

• Complex mode u = At + iβσ here At is the gauge field holonomy along the S1, σ is
the real vector multiplet scalar and β is the S1 radius. We set x = eiu.

The BPS manifold can then be described by MBPS = (H × h× Λ∨h )/W where W is the
Weyl group of the gauge group. The result of the localisation procedure is a Jeffrey-Kirwan
contour integral

IA,B = 1
|W |

∑
m∈Λ∨

h

∮
JK

dx

2πixZ
A,B
int (x,m) . (4.21)

In the above ZA,B
int (u,m) is a meromorphic form determined by the 1-loop determinants

around the BPS configurations as computed in the work [164]. We now write down these
1-loop determinants for both the A- and B-twist with the angular momentum refinement6

and R-charges imposed by N = 4 supersymmetry. We focus on the multiplets relevant for
the unitary quiver gauge theories and write the meromorphic form in terms of the quiver
data of section 2.2: the quiver adjacency matrix Q and dimension vectors (v,w).

6In the following section we show that the indices are actually independent of q, but introducing
q-refinement is crucial to allow us to factorise.
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Firstly, for each edge (i, j) ∈ E we have contributions from bifundamental matter:

ZA,bi.
ij =

vi∏
a=1

vj∏
b=1

(w(i)
a /w

(j)
b ) 1

2 (m(i)
a −m

(j)
b

)

(w(i)
a /w

(j)
b t

1
2 q

1
2 (1−m(i)

a −m
(j)
b

); q)
m

(i)
a −m

(j)
b

(w(j)
b /w(i)

a ) 1
2 (−m(i)

a +m
(j)
b

)

(w(i)
a /w

(j)
b t

1
2 q

1
2 (1+m

(i)
a −m

(j)
b

); q)−m(i)
a +m

(j)
b

,

ZB,bi.
ij =

vi∏
a=1

vj∏
b=1

(t 1
2w(i)

a /w
(j)
b ) 1

2 (m(i)
a −m

(j)
b

+1)

(w(i)
a /w

(j)
b t

1
2 q

1
2 (−m(i)

a −m
(j)
b

); q)
m

(i)
a −m

(j)
b

+1

(t 1
2w

(j)
b /w(i)

a ) 1
2 (−m(i)

a +m
(j)
b

+1)

(w(j)
b /w

(i)
a t

1
2 q

1
2 (m(i)

a −m
(j)
b

); q)−m(i)
a +m

(j)
b

+1

.

(4.22)

Secondly, for each framing factor we have the following contributions from fundamental
matter:

ZA,fun.
i =

vi∏
a=1

wi∏
b=1

(t 1
2w(i)

a /x
(j)
b ) 1

2m
(i)
a

(w(i)
a /x

(j)
b t

1
2 q

1
2 (1−m(i)

a ); q)
m

(i)
a

(t 1
2x

(j)
b /w(i)

a )− 1
2m

(i)
a

(x(j)
b /w

(i)
a t

1
2 q

1
2 (1+ma); q)−m(i)

a

,

ZB,fun.
i =

vi∏
a=1

wi∏
b=1

(t 1
2w(i)

a /x
(j)
b ) 1

2 (m(i)
a +1)

(w(i)
a /x

(j)
b t

1
2 q−

1
2m

(i)
a ; q)

m
(i)
a +1

(t 1
2x

(j)
b /w(i)

a ) 1
2 (−m(i)

a +1)

(x(j)
b /w

(i)
a t

1
2 q

1
2ma ; q)−m(i)

a +1

.

(4.23)

Finally, for every node i ∈ I we also have a contribution from the vector multiplet:

ZA,vec.
i =

vi∏
a,b=1

(w(i)
a /w

(i)
b ) 1

2 (m(i)
a −m

(i)
b
−1)

(w(i)
a /w

(i)
b q

1
2 (2−m(i)

a +m
(i)
b

); q)
m

(i)
a −m

(i)
b
−1

(w(i)
a /w

(i)
b t
− 1

2 ) 1
2 (m(i)

a +m
(i)
b

+1)

(w(i)
a /w

(i)
b t
−1q

1
2 (−m(i)

a +m
(i)
b

); q)
m

(i)
a −m

(i)
b

+1

,

ZB,vec.
i =

vi∏
a,b=1

(w(i)
a /w

(i)
b ) 1

2 (m(i)
a −m

(i)
b
−1)

(w(i)
a /w

(i)
b q

1
2 (2−m(i)

a +m
(i)
b

); q)
m

(i)
a −m

(i)
b
−1

(w(i)
a /w

(i)
b t
− 1

2 ) 1
2 (m(i)

a −m
(i)
b
−1)

(w(i)
a /w

(i)
b t
−1q

1
2 (2−m(i)

a +m
(i)
b

); q)
m

(i)
a −m

(i)
b
−1

.

(4.24)

Each U(1) factor of GC , i.e. each vertex of the quiver, also contributes classically to the
integrand:

Zcl. = ζm . (4.25)

The Coulomb branch localisation procedure yields a Jeffreys-Kirwan residue prescription
for the index7 to compute (4.18). We have

IA,B = 1
|W |

∑
m∈Λ∨

h

∑
x∗∈Msing.

JK-Res
x=x∗

[Q(x∗, η]ZA,B
int (x,m) (4.26)

The singular set Msing. is a subset of the BPS locus M = H × h parametrised by the
bosonic zero modes of σ and At. M contains certain hyperlanes Hi where a chiral multiplet
Φi develops a zero mode, precisely Hi = {u ∈ M : eiρi(u)+ρf (v)=1} where ρi and ρf are
the gauge and flavour weights respectively of the chiral multiplet—these are poles of the

7In this thesis we work with examples where there are no ‘boundary contributions’ in the terminology
of [164].
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one-loop determinants. We then have

M∗
sing. = {u∗ ∈M : at least r linearly independent Hi meet at u∗} . (4.27)

Finally Q(u∗) specifies the charges of the hyperplanes meeting at u∗. The prescription of
[164] can then be stated as if the JK parameter η > 0 then we should take residues of
ZA,B

int (x,m) at singular points u∗ with positive charges Q(u∗).

4.1.3 Holomorphic factorisation

In many examples, partition functions on closed three manifolds M3 of theories with
N ≥ 2 supersymmetry have been shown to decompose into a set of fundamental blocks Hα.
The blocks can be defined as partition functions on spaces with a boundary topologically
equivalent to a hemisphere S1 ×H2 and partition functions factorise as

ZM3 =
∑
α

HαH̃α . (4.28)

The sum is taken over isolated massive Higgs vacua α and the ∼ operation implements a
conjugation of fugacities corresponding to an element g ∈ SL(2,Z) gluing the boundary
tori ∂(S1 ×H2) = T 2. Different elements g correspond to the Heegaard decomposition of
the three manifold

M3 =
(
S1 ×H2

)
∪g
(
S1 ×H2

)
. (4.29)

Traditionally, these fundamental blocks have been defined in the IR as holomorphic blocks
realised as twisted compactifications on a cigar [38]. Later, in section 4.3, we give an
alternative definition of the fundamental blocks in the UV as partition functions on a
hemisphere.

We review how factorisation is typically observed in the literature. The theory is first
placed on the manifold M3 by the supergravity method described in section 4.1.2. The
partition function can then often be localised on the Coulomb branch to give a contour
integral expression for the partition function. Finally, the residues at relevant poles are
evaluated and factorised by hand to find formulae of the schematic form

ZM3 =
∑
α

ZPerturbative||ZVortex||2 , (4.30)

where the particular gluing depends on the choice of three manifold M3 and acts by a
modular transformation on fugacities. The factorisation has been demonstrated in this
way first by [170] and in many examples since [171, 172, 173, 174, 108]. We follow this
methodology in section 4.2 to demonstrate the factorisation of the A-twisted index of the
T [SU(N)] theory.
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The vortex partition function ZVortex in the above equation has many different realisa-
tions and interpretations, a sample of which are: as partition functions on a hemisphere
S1 × D with Neumann boundary conditions [175]; geometrically, as J-functions in the
Gromov-Witten theory of the Higgs branch [176, 177]; and as effective GLSM descriptions
of vortex quantum mechanics [178]. Higgs branch localisation [37, 36] offers a more
constructive approach to factorisation where the theory is localised on the Higgs branch
to vortex configurations. Similarly, recent work [179] gives a rigorous construction of a
similar factorisation into three dimensional hemispheres HS3.

The holomorphic block approach of [38] gives an elegant IR definition of the block in
terms of the q-difference equations it satisfies, however this includes some ambiguity in the
perturbative contributions related to the ability to add q-constant terms to the block. In
section 4.4, we take a constructive approach and define hemisphere blocks in terms of a UV
boundary condition on a hemisphere S1 ×H2. Our UV prescription resolves ambiguities
in the perturbative contributions and fuses exactly to three manifold partition functions
(4.30). The hemisphere block decomposes into perturbative and vortex contributions

ZS1×H2 = ZClassicalZ1-loopZVortex , (4.31)

and in particular the one-loop and classical pieces here fuse exactly to the perturbative
contributions to the three manifold partition function (4.30). In this thesis, we discuss
the geometrical interpretation of ZS1×H2 in terms of the quasimap spaces of the previous
subsection. The vortex contributions arise as the vertex functions of the quasimap moduli
space and the perturbative contribution are determined by certain Lagrangian submanifolds
of the Higgs branch.

Topologically twisted index. In this work we focus on N = 4 theories and the
topologically twisted index on the backgroundM3 = S2×A/BS1. The relevant conjugation
is then expected to be [180, 181]

IA,B =
∑
α

Hα(q, t)Hα(q−1, t) . (4.32)

We discuss how to implement the two different twists in section 4.3.

4.1.4 T [SU(N)] theory

The main example we study in the first part of this chapter is the T [SU(N)] theory
depicted in figure 4.1. We review the basic definition and properties of this theory.
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Motivation. The theories T [G], for a more general group G, were introduced in the
work [54] where they are shown to realise the S-dual of Dirichlet boundary conditions
in certain 4d N = 4 supersymmetric Yang-Mills theories with gauge group G. In that
work, T [G] theories are shown to be ‘good’ and flow to superconformal field theories in the
IR. In the IR the flavour symmetry is G and the topological symmetry is the Langlands
dual group G∨. In this context 3d mirror symmetry [17] can be understood from the IIB
S-duality perspective as exchanging the theories T [G] and T [G∨] so that T [SU(N)] is self
mirror dual. The T [G] theories consequently play an important role in the gauge theoretic
interpretation of the geometric Langlands correspondence [182, 183, 184].

The T [SU(N)] theory is also an important ingredient in the finite AGT correspondence.
The works [185, 186] show that the holomorphic blocks of the theory realise q-Toda con-
formal blocks which can be understood as ‘Higgsing’ the q-deformed AGT correspondence
in five dimensions [187, 188, 189]. These ideas are closely related to the finite AGT
correspondence in the mathematical literature [190, 191] where finite W -algebra modules
are realised by the cohomology of quasimap spaces to the Higgs branch of T [SU(N)]. In
the context of section 4.4 of this thesis these actions should be thought of as the Higgs or
Coulomb branch chiral ring of T [SU(N)] acting on the cohomology of its vortex moduli
space.

The T [SU(N)] theory also plays a role in the AdS/CFT correspondence [192, 193]
where the theory is dual to a warped AdS4 oK type IIB supergravity background. Recent
work [194] demonstrates that the free energy of the gravity solution can be recovered from
a large N limit of the topologically twisted index—it would be interesting to understand
these results from the vortex geometry perspective of this chapter.

In the first part of this chapter we study the moduli space of vortices of the T [SU(N)]
theory. We compute the twisted indices and provide a geometric interpretation of the
holomorphic factorisation. Later, after taking a more constructive approach to factorisation,
we revisit the T [SU(N)] example in section 4.3.

Field content. T [SU(N)] is a 3d N = 4 quiver gauge theory fitting into the framework
of chapter 2, the relevant quiver diagram is shown in figure 4.1. The theory has a product
gauge group U(1)× . . .×U(N − 1) with bifundamental hypermultiplets in U(i)×U(i+ 1)
for i = 1, . . . , N − 1. There are N hypermultiplets in the fundamental of U(N). The
flavour symmetry is GH = SU(N) and the UV topological symmetry is GC = U(1)N which
is enhanced to GC = SU(N) in the IR. We write (x1, . . . , xN) and (ζ1, . . . , ζN) for the
corresponding fugacities and t for the fugacity associated to the U(1)t mass deformation.

Higgs branch. The quiver has vertex set I = {1, . . . , N − 1} and we write Vi = Ci

for the corresponding gauge nodes and VN = CN for the framing node. As usual we
denote the bifundamental scalars as (A,B) with Ai : Vi → Vi+1 and Bi : Vi+1 → Vi
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for i = 1, . . . , N − 2. The fundamental scalars are denoted (I, J) and define maps
I : VN → VN−1 and J : VN−1 → VN . If we turn on generic FI parameters corresponding to
the stability parameter θ = 1 then the stability condition 2.3 imposes that JBN−1 . . . Bk

is injective for any k = 1, . . . , N − 2. This defines a complete flag in CN given by
0 ⊂ V1 ⊂ . . . ⊂ VN−1 ⊂ CN , the moduli space of these flags is denoted BN . The moment
map constraint implies that for each i we have Bi|Vi = Bi−1 and I|VN = BN−1, this
equivalently defines a map X : CN → CN with X(Vi) ⊂ Vi−1. Hence the quiver describes
the cotangent bundle to the complete flag variety8

MH = T ∗BN . (4.33)

The flavour group GH = GL(VN ) acts on VN as in (2.43) and if we fix a basis {e1, . . . , eN}
then we see that, provided we turn on generic mass parameters, the fixed points under
GH are labelled by 0 ⊂ V1 ⊂ . . . ⊂ VN−1 ⊂ CN where each Vk is spanned by a k-subset
of {e1, . . . , eN}. Hence the theory has N ! massive vacua parametrised by σ ∈ SN . The
contracting C×t action (2.45) has fixed point subvariety BN .

Hilbert series. We now write down the Hilbert series of the Higgs and the Coulomb
branches. Evaluating the tangent bundle from lemma 1 at the fixed point σ we have

TσMH =
∑
i<j

xσ(i)

xσ(j)
+ t

xσ(j)

xσ(i)
. (4.34)

The localisation formula (3.14) for the Higgs branch then reads

H.S.[MH ] =
∑
σ∈SN

∏
i<j

1(
1− xσ(i)/xσ(j)

) (
1− t−1xσ(j)/xσ(i)

)
= (t−1; t−1)N

N∏
i,j=1

1
1− t−1xi/xj

.

(4.35)

For the Coulomb branch, the monopole formula (2.23) reads

H.S.[MC ] =
∑

m
(i)
a ∈Λ∨

h
/W

t∆(m)
N−1∏
i=1

z
∑N−i

a=1 m
(N−i)
a

i , (4.36)

with the monopole R-charge given by

∆(m) = 1
2

N−1∑
i=1

∑
a,b

|m(i)
a −m

(i+1)
b | −

N−1∑
i=1

∑
a,b

|m(i)
a −m

(i)
b |

 , (4.37)

8This description of the cotangent bundle appears in for e.g. theorem 4.1.2 of Chriss and Ginzburg
[106].
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Figure 4.1: T [SU(N)] quiver diagram.

where m(N) = 0. This expression was computed in [97] and the authors found

H.S.[MC ] = (t; t)N
N∏

i,j=1

1
1− tζi/ζj

, (4.38)

where zk = ζk/ζk+1 for k = 1, . . . , N − 1. Comparing (4.35) and (4.38) the self-mirror
property of T [SU(N)] is manifest and in the Coulomb branch Hilbert series we see the
enhancement of the topological symmetry to the non-abelian group GC = SU(N) as
expected.

4.2 Laumon space and twisted index of T [SU(N)]

In this section we focus on the topologically A-twisted index and give a geometrical
interpretation of its factorisation. We show that the A-twisted index computes the
Coulomb branch Hilbert series of the theory and argue that the Coulomb branch localisation
procedure for the B-twisted index yields a Molien integral of the type discussed in section
3.1.2.

We focus on the T [SU(N)] example and introduce a ‘fictitious’ angular momentum
refinement which allows us to factorise the A-twisted index into vortex partition functions

IA ∼
∑
α

ZαvortexZαvortex . (4.39)

For the T [SU(N)] theory, the abstract quasimap moduli spaces of section 4.1.1 coincide
with Laumon spaces [96], which we denote by Qd

α. The χt genera of local Laumon space
coincides with the vortex partition functions of the T [SU(N)] theory, schematically:

ZαVortex =
∑

d

ζdχt(Qd) . (4.40)

There also exists a notion of a global Laumon space Qd that is independent of the particular
vacuum α. The work [191] shows that the χt genus of global Laumon space can be factorised
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χt(Qd) ∼
∑
α

∑
d=d′+d′′

χt(Qd′

α )χt(Qd′′
α ) . (4.41)

We show that the conjugation here coincides precisely with the topologically twisted gluing
in equation (4.39). The main result of section 3.1.4 is that, in the absence of external flux,
there are surprising cancellations on the right hand side of this equation and in fact the
A-twisted index computes a generating function of the Poincaré polynomials of Qd—this
gives a novel geometric interpretation of the Coulomb branch Hilbert series which we write
here schematically as

H.S.[MC ] ∼ PQM(MH)(ζ; t)PQM(MH)(ζ; t) , (4.42)

where PQM(MH)(ζ; t) denote generating functions of the Poincaré polynomials of quasimap
spaces to the Higgs branch MH—we define the conjugation more carefully later. We
return to these ideas in greater generality in section 4.3.

Outline. We begin in section 4.2.1 by factorising the A-twisted index of the T [SU(N)]
theory. We show that the index factorises into ‘vortex partition functions’ in the way
expected in equation (4.30). In section 4.2.2 we show that the vortex moduli space for the
T [SU(N)] theory is a Laumon space and we show that the vertex functions of Laumon
space coincide with the vortex partition functions for T [SU(N)]. We then show that the
factorisation of the topologically twisted index can be interpreted as the factorisation
property of the χt genus of global Laumon space. Finally, in section 3.1.4, we argue that
in general the A-twisted index of a 3d N = 4 theory coincides with its Coulomb branch
Hilbert series.

4.2.1 Factorisation

In this section we compute the A-twisted index of the T [SU(N)] theory and factorise it
into ‘vortex partition functions’. In the following we write x = (x1, . . . , xN) for the set of
flavour fugacities and we write ζ = (ζ1, . . . , zN) for the topological symmetry fugacities.
The action of the symmetric group is denoted by σ · x = (xσ(1), . . . , xσ(N)). Following the
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prescription to compute the index from section 4.1.2 we find:

IA (x, ζ; q, t) =
(
N−1∏
i=1

(−1)i
i!

) ∑
{m(i)

a }

∮
JK

N−1∏
i=1

i∏
a=1

dw(i)
a

2πiw(i)
a

N−1∏
i=1

(
ζi
ζi+1

)∑i

a=1 m
(i)
a



N−1∏
i=1

i∏
a,b=1

((
w

(i)
a

w
(i)
b

) 1
2
)(m(i)

a −m
(i)
b
−1)

(
w

(i)
a

w
(i)
b

q
1
2 (2−m(i)

a +m
(i)
b

); q
)
m

(i)
a −m

(i)
b
−1

((
w

(i)
a

x
(i)
b

) 1
2
t−

1
2

)(m(i)
a −m

(i)
b

+1)

(
w

(i)
a

w
(s)
b

t−1q
1
2 (−m(i)

a +m
(i)
b

); q
)
m

(i)
a −m

(i)
b

+1

N−1∏
i=1

i∏
a=1

i+1∏
b=1

((
w

(i)
a

w
(i+1)
b

) 1
2
t

1
4

)(m(i)
a −m

(i+1)
b

)

(
w

(s)
a

w
(i+1)
b

t
1
2 q

1
2 (1−m(i)

a +m
(i+1)
b

); q
)
m

(i)
a −m

(i+1)
b

((
w

(i+1)
b

w
(i)
a

) 1
2
t

1
4

)(m(i+1)
b

−m(i)
a )

(
w

(i+1)
b

w
(i)
a

t
1
2 q

1
2 (1+m

(i)
a −m

(i+1)
b

); q
)
m

(i+1)
b

−m(i)
a

.

(4.43)

where w(N)
b = xb and m

(N)
b = 0 for b = 1, . . . , N . Taking the appropriate Jeffrey-Kirwan

residues we find the index factorises as follows:

IA (x, ζ; q, t) =
∑
σ∈SN

ZA,σPerturbativeZAVortex (σ · x, ζ; q, t)ZAVortex

(
σ · x, ζ; q−1, t

)
, (4.44)

where the perturbative piece is given by:

ZA,σPerturbative (x, ζ; q, t) =
 N∏
i<j

(−t)− 1
2
ζi
ζj

 N∏
i<j

1− t xi
xj

1− xi
xj

 , (4.45)

with σ acting by permutations on {x}. The vortex partition function is realised as a sum
over the relevant poles by

ZAVortex (x, ζ, q, t) =

∑
{d(i)
a }

N−1∏
i=1

(
t−1 ζi

ζi+1

)di i∏
a,b=1
a 6=b

(
t−1 xa

xb
; q
)
d

(i)
a −d

(i)
b(

xa
xb

; q
)
d

(i)
a −d

(i)
b

×
i∏

a=1

i+1∏
b=1

(
tq xa

xb
; q
)
d

(i)
a −d

(i+1)
b(

q xa
xb

; q
)
d

(i)
a −d

(i+1)
b

,
(4.46)

where the sum is over the set of vortex numbers {d(i)
a } with i = 1, . . . , N−1 and a = 1, . . . , i.

We write di = ∑i
a=1 d

(i)
a and d = (d1, . . . , dN−1) for the vector of vortex numbers. The

102



vortex numbers satisfy d(N)
a = 0 for a = 1, . . . , N and the following constraints:

d
(1)
1 ≥ d

(2)
1 ≥ d

(3)
1 ≥ · · · ≥ d

(N−1)
1 ≥ 0

d
(2)
2 ≥ d

(3)
2 ≥ · · · ≥ d

(N−1)
2 ≥ 0

d
(3)
3 ≥ · · · ≥ d

(N−1)
3 ≥ 0

. . . ...
d

(N−1)
N−1 ≥ 0 .

(4.47)

As expected, the Coulomb branch localisation calculation yields the twisted index as a
sum over Higgs vacua of vortex partition functions. The vortex partition functions agree
with localisation on a hemisphere S1 ×D of Yoshida and Sugiyama [175]. They also agree
with the K-theoretic vertex functions for T ∗BN as computed in the work [49].

Factorising the perturbative contributions. One can also factorise the perturbative
contributions as follows. We notice that the 1-loop contributions in a vacuum σ ∈ SN can
be written as

ZA1-loop =
N∏
i<j

1− t xi
xj

1− xi
xj

=
N∏
i<j

(
q xi
xj

; q
)
−1(

tq xi
xj

; q
)
−1

=
 N∏
i<j

(qxi/xj; q)∞
(tqxi/xj; q)∞

 N∏
i<j

(q−1xi/xj; q−1)∞
(tq−1xi/xj; q−1)∞

 ,
(4.48)

where we have used the identity (A.5) and the fusion rule (A.10). The classical pieces can
also be factorised as we demonstrate in [108] however there is significant ambiguity here
in terms of how to resolve these terms—we fix these ambiguities in section 4.3.

Another problem with this factorisation is chamber dependence. Consider, for example,
sending9 t→ q−1 in (4.48). In the first block we have

Z1-loop =
N∏
i<j

1
1− xi/xj

. (4.49)

These blocks are then convergent in different chambers CH for each vacum σ. The blocks
should be defined with respect to a fixed chamber choice if they are to arise from a
well-defined UV prescription. We thus need to find a chamber independent way to factorise
(4.48)—this is one of the goals of section 4.3.

We remark here that these issues are ‘invisible’ from the Coulomb branch localisation
procedure since we avoid dealing with the boundary of the hemispheres and instead work
directly with S2 × S1.

9This limit is the ‘B-limit’ of section 4.3 and restores the N = 2∗ supersymmetry to N = 4.
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4.2.2 Vortex moduli space of T [SU(N)]

We now turn to the geometric interpretation of the factorisation derived in the previous
subsection.

For the T [SU(N)] theory, where the Higgs branch is the cotangent bundle of the
complete flag variety, the quasimap spaces QMd

α can be given particularly convenient
descriptions as Laumon spaces.

Laumon spaces. We now discuss quasimaps for T [SU(N)]. Firstly, by the general
theory of section 4.1.1 the degree d is a vector d = (d1, . . . , dN). We are interested in
quasimaps (V ,W ) fixed by Tq = A× C×t × C×q . We first consider quasimaps fixed by C×t ,
this forces our quasimaps to lie in the core of T ∗B i.e. in the complete flag variety B. The
relevant quasimap data10 (Vi)i∈I is a collection of vector bundles (or locally free sheaves)
of degVi = di and rkVi = i for i = 1, . . . , N − 1 together with a section f ∈ H0(P1,M )11.
A stable section satisfying the moment map constraint µC = 0 is equivalent to imposing
that the sheaves form a flag—this is analogous to the discussion in 4.1.4 for the complete
flag variety—and we obtain a moduli space of flags

0 = V0 ⊂ V1 ⊂ . . . ⊂ VN = W ⊗OP1 , (4.50)

where W is an N -dimensional complex vector space W = sp〈x1, . . . , xN〉. This moduli
space has an alternative life as the Laumon space introduced by Laumon in [96] and further
studied in the works [191, 195, 196, 197, 198, 199], we denote the moduli space by Qd.
Laumon space predates the more general construction of quasimap moduli spaces discussed
in section 4.1.1. The based Laumon space Qd ⊂ Qd is defined by further imposing that
Vi ⊂ VN is a vector subbundle in a neighbourhood of ∞ ∈ P1 and the fibre there is equal
to sp〈x1, . . . , xi〉. Laumon spaces for other vacua α ∈ SN are obtained by the natural SN
action on W .

Laumon space is technically easier to work with than a quasimap space: Qd is a smooth
projective variety of dimension 2d1 + . . .+2dN−1 +dimB and Qd is a smooth, non-compact,
quasi-projective variety of dimension 2d1 + . . .+ 2dN .

Group action. The fixed points under the Aq := A×C×q action are derived in the work
[191] and are labelled by the set of integers {d(i)

a } with i = 1, . . . N − 1 and a = 1, . . . , i
satisfying the same constraints as (4.47) with d =

(∑i
a=1 d

(i)
a

)
i=1,...,N−1

. Specifically the

10We switch to using V notation V since hopefully there is no confusion with quiver vector bundles in
this section.

11Here M denotes the bundle associated to the oriented quiver representation.
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fixed subsheaves split into sums of line bundles on P1 as follows

V1 = x1q
d

(1)
1 O(d(1)

1 )

V2 = x1q
d

(2)
1 O(d(2)

1 )⊕ x2q
d

(2)
2 O(d(2)

2 )
. . .

VN−1 = x1q
d

(N−1)
1 O(d(N−1)

1 )⊕ . . .⊕ xN−1q
d

(N−1)
N−1 O(d(N−1)

N−1 ) .

(4.51)

Quiver realisation. Nakajima shows in [152] that the (based) Laumon space can also
be described by an oriented quiver variety known as a handsaw quiver. We met these
quivers already in chapter 3—see figure 3.8. The identification with quasimap data is
as follows. For vortices in T [SU(N)], we set wi = 1 for i ∈ I ∪ {N + 1} and the vortex
numbers are identified with the gauge nodes d = (vi)i∈I . The torus action corresponds to
the usual action by framing factors and the C×q action coincides with the chainsaw action
(3.119) restricted to the handsaw quiver. In proposition 2 we computed the Hilbert series
in terms of skew Hall-Littlewood polynomials.

Vertex functions. We now show that the vertex functions Vα for the T [SU(N)] vortex
moduli space coincide with generating functions of the χt genera of the smooth quasi-
projective variety Qd. We follow the construction of the virtual tangent sheaf outlined in
section 3.2 of [95]. In the particular case that M is a smooth variety, it can be considered
a zero section M = s−1(0) of the inclusion s : M → T ∗M and the virtual tangent bundle
is T vir. = TM − tT ∗M . Applying this to Laumon space, localisation of the (symmetrised)
virtual structure sheaf gives

χT (Qd, Ôvir.) =
∑
p∈QT

d

â
(
TpQd − tT∨p Qd

)
t→tq= (t− 1

2 )dimQd
∑
p∈QT

d

PE [(1− t)chTTpQd]

= (t− 1
2 )dimQdχt(Qd) ,

(4.52)

where in the last line we have used the localisation formula (3.30). The shift t → tq

will be explained in the following section, it relates to the fact that the vertex function
naturally gives the B-shifted partition function rather than the A-shift required in the
present section. We conclude that vertex function can be identified with χt(Qd).

Localisation. We now discuss how to compute the χt genus using fixed point localisation.
The character of the tangent space of Qd at a fixed point {d(i)

a } according to [200] is given
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by

chAqTd(i)
a
Qd =

∑
1≤i<j≤N

xj
xi

d
(j−1)
i −d(j)

j∑
l=1

ql +
∑

1≤i,j≤N−1

xj
xi

N−1∑
k=max(i,j)

d
(k)
i −d

(k+1)
j∑

l=d(k)
i −d

(k)
j +1

ql . (4.53)

Now, using the localisation formula (3.30), and the results of the previous paragraph we
have the identifications for vacua α ∈ SN

ZAVortex(x, ζ; q, t→ qt) = Vα(z, ζ; q, t)
=
∑

d

(t− 1
2 ζ)d

∑
{d(i)
a }

PE
[
(1− t)T

d
(i)
a
Qd

]
. (4.54)

It is a non-trivial combinatorial identity that (4.46) can in fact be expressed in the form
PE [(1− t)V ] at each vortex number, the arguments above show this must be the case and
we have also verified the resulting identities at fixed finite vortex number with computer
checks. Indeed, for a general 3d N = 4 theory, the vortex partition functions will not be
equivariant χt genera in this way as we will see in the example of chapter 5.

Example 4.1. We demonstrate this idea explicitly for the case T [SU(2)]. There is one
vortex number d ≥ 0 and one fixed point. The character (4.53) becomes

chAqTdQd = x1

x2

d∑
l=1

ql +
d∑
l=1

ql . (4.55)

In that case the localisation formula (3.30) gives

χt(Qd) = (tq; q)d
(q; q)d

(tq x1
x2

; q)d
(q x1

x2
; q)d

. (4.56)

We see this agrees with the vortex partition function (4.46) in the case N = 2. The vacuum
dependence arises from permutations σ acting on the flavour fugacities (x1, x2).

There is a significant advantage in realising the moduli space as the smooth quasi-
projective variety Qd since, as we discussed in 3.1.4, there is a well-defined Poincaré
polynomial limit of its χt genus.

Global Laumon space. The global Laumon space also admits an action of the torus
T. In the work [196] the authors compute the χt genus of global Laumon space. The fixed
points of global Laumon space are labelled by a triple (σ,d0,d∞) with σ ∈ SN and d0, d∞

satisfying the same conditions as (4.47). In physical terms, the localisation computation
on global Laumon space can be thought of as first localising to vortices at either the north
or the south pole of P1 and then enumerating the fixed points on the local Laumon spaces
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Qσ
d, exactly as one would expect from a Higgs branch localisation scheme. The χt genus

of global Laumon space is given by

χt(Qd) =
∑

d′+d′′=d

∑
σ∈SN

∏
i<j

1− t xi
xj

1− xi
xj

χt(Qd′)χt(Qd′′) , (4.57)

where, as before, σ ∈ SN acts on the (x1, . . . , xN ) variables. The conjugation on the second
factor involves a change of variables q → q−1. The conclusion is that this calculation
precisely coincides with the gluing (4.44) and furthermore we can identify the A-twisted
index with the generating function of χt genera of global Laumon space. Precisely, the
identification is

IA(x, ζ; q, t) =
∏
i<j

t−1 ζi
ζj

∑
d

N−1∏
i=1

(
t−1 ζi

ζi+1

)di
χt(Qd) . (4.58)

We thus realise the A-twisted index gluing as the χt genus of Laumon space. In the
following sections we study several generalisations of this result. We remark that this is
consistent with the recent work of [201], they do not turn on the ‘fictitious’ q-deformation
and therefore cannot access the factorisation; nonetheless, they show that the twisted
index can be identified with enumerative counts of quasimaps in this way. In fact, we see
in the next section that there are dramatic cancellations on the right hand side of this
equation and the index is independent of q and x, it is in this sense that the q-deformation
is ‘fictitious’.

4.2.3 Poincaré polynomial limits and Hilbert series

In this section we consider the relationship between the A-twisted index IA and the
Hilbert series of the Coulomb branch H.S.[MC ]. A priori the twisted index depends on
the parameters x, ζ and q, t—the main result of this section is that in fact the angular
momentum refinement q is an exact deformations and the indices do not depend on q, it
turns out that the index computes the Hilbert series. This implies remarkable cancellations
from the enumerative geometry point of view between the equivariant K-theoretic vertex
functions glued in a particular way. However, it is still important to turn on q because it
allows us to factorise the index.

We discuss this from several points of view in the following: 3d mirror symmetry,
geometry of the quasimap space and topological quantum field theory.

3d mirror symmetry. 3d mirror symmetry exchanges the A- and the B-twisted indices
[167]. Under the mirror map explained in section 2.1.4, RH is exchanged with RC and GH
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is exchanged with GC so for two mirror dual theories T and T̃ we expect the relation

IA(T ;x, ζ, t, q) = IB(T̃ ; ζ, x, t−1, q) . (4.59)

Now we consider the localisation formula (4.21) for the B-twisted index of a quiver gauge
theory M(v,w). Reading off the one loop determinants from section 4.1.2 we have

IB(x, ζ; q, t) =
∑

m∈Λ∨
h

∮ ∏
i∈I

vi∏
a=1

1
vi!

dw(i)
a

2πw(i)
a

ZB,vec.
i ZB,fun.

i

∏
(i,j)∈E

ZB,bifun.
i,j . (4.60)

It turns out that in the zero magnetic flux sector m = 0 dependence on the angular
momentum refinement q drops out and it is an easy exercise with the identity (A.5) to
find that the one loop determinants simplify as follows

IBm=0(x, ζ, q, t) =∮ ∏
i∈I

∏
i∈I

vi∏
a=1

1
vi!

dw(i)
a

2πw(i)
a

(
1− w(i)

a

w
(i)
b

)(
1− tw

(i)
a

w
(i)
b

) wi∏
b=1

1
(1− t 1

2w
(i)
a /x

(i)
b )

1
(1− t 1

2x
(i)
b /w

(i)
a )∏

(i,j)∈E

vi∏
a=1

vj∏
b=1

1
1− t 1

2w
(i)
a /w

(j)
b

1
1− t 1

2w
(j)
b /w

(i)
a

.

(4.61)

We see12 that this is the Molien integral for the quiver M(v,w) discussed in section 3.1.2
and hence reproduces the Hilbert series of the Higgs branch MH . In fact, in the absence
of angular momentum refinement, [167] show that in the example of linear quivers this is
the only sector that contributes to the Jeffrey-Kirwan residue prescription—it would be
interesting to verify this more generally.

3d mirror symmetry then gives us the statements

IA(T ;x, ζ, q, t) = H.S.[MC ](ζ, t) ,
IB(T ;x, ζ, q, t) = H.S.[MH ](x, t) .

(4.62)

In the following section we argue that in general the twisted indices can be factorised in
terms of the vertex functions of the quiver M(v,w)—schematically we find

IA ∼
∑

vacua,α
Vα(x, ζ; q, t)Vα(x, ζ, q−1, t) , (4.63)

12Up to a convention for the contracting C×t action. Typically in quiver variety literature the contracting
action scales half of the quiver arrows (it is an equivalent to an R-symmetry mixed with a flavour symmetry;
in this expression one could redefine x→ tx), however the physical R-symmetry action scales all of the
scalars in the matter multiplets. These different choices are gauge equivalent and lead to an overall
pre-factor of a power of t difference between the twisted index and the Hilbert series.
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In this context 3d mirror symmetry provides a non-trivial conjecture that the right hand
side of this equation is in fact independent of q. In the presence of non-trivial background
fluxes we should project onto the ξ0 sector to recover the q-independent Hilbert series with
line bundle charge.

The observation that the twisted index reproduces the Hilbert series was also recently
understood in the t → 1 limit [201, 160]. In this case the index manifestly becomes q-
independent since the index receives contributions from states annihilated by two additional
supercharges i.e. Higgs operators. In that case N = 4 supersymmetry is restored and the
twisted index computes the genus zero Rozansky-Witten invariants [70] of MH—these
give simply the Hilbert series of the Higgs branch (albeit ungraded by R-charge t).

Topological state-operator. We focus on the B-twisted index, the argument for the
A-twist is identical. The index (4.21) receives contributions from states annihilated by
the supercharges Q11̇

+ and Q22̇
− . Quantising in flat space the states annihilated by these

supercharges coincide with those in QH cohomology. Hence by the representation theory
arguments of section 2.1.3 the B-twisted index receives contributions only from Higgs
operators uncharged under J + RH

2 and TC . It would be interesting to understand the
physics of this setup better by a topological state-operator map in three dimensions—we
leave such a construction to future work [202].

Geometrical argument. In section 4.2.2 we identified the twisted index with the χt
genus of the global Laumon space Qd. This space is a projective variety and by the
arguments of section 3.1.4 we have that the χt genus of a compact variety cannot depend
on global symmetry fugacities. In particular, we have

χt(Qd) = PQd
(t) , (4.64)

where the right hand side is manifestly independent of q and x.

q → 0 limit of blocks. The above arguments allow us to evaluate the twisted index at
any value of q. We choose to send q → 0.

Realising the moduli space as a handsaw quiver variety, Nakajima [152] shows that
the (based) Laumon space is a resolution of singularities13 π : Qd → Qo

d. There is a
unique fixed point o ∈ (Qo

d)Tq and the pre-image is a projective variety which we denote
by Od := π−1(o). The fugacity q is conjugate to the group action C×q and together these
facts imply we are in the setting of the discussion around (3.42) in section 3.1.4 and the

13Although note that it is not a symplectic resolution. Qd is an oriented quiver and there is no
holomorphic symplectic form on the resolution in general.
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q → 0 limit of the χt genus coincides with the Poincaré polynomial

lim
q→0

χt(Qd) = POd
(t) . (4.65)

In particular, in this limit the genus becomes independent of the mass parameters x.
Similarly we can send q →∞ using the identity (3.33) to find

lim
q→0

χt(Qd) = tdimQdPOd
(t−1)

= t2|d|POd
(t−1) .

(4.66)

Using the Bialynicki-Birula methods that we reviewed in section 3.1.4, Nakajima [152]
computes the generating function for these polynomials which we can write as

∑
d

N−1∏
s=1

(
t−1 ζs

ζs+1

)ds
Pt(Od) =

N∏
i<j

1
1− t−1ζi/ζj

. (4.67)

Hilbert series. We now take this limit through the factorisation (4.44) and recover the
Hilbert series. We have

IA = lim
q→0

IA

=
 N∏
i<j

(−t)− 1
2
ζi
ζj

 ∑
d′,d′′

 ∑
α∈SN

1− txi/xj
1− xi/xj

 N−1∏
i=1

(
t−1 ζs

ζs+1

)d′s
POd′

(t)
N−1∏

i=1

(
t
ζs
ζs+1

)d′′s
POd′′

(t−1)


=
 N∏
i<j

(−t)− 1
2
ζi
ζj

 [ N∏
i=1

1− ti
1− t

] ∏
i<j

1
1− t−1ζi/ζj

 ∏
i<j

1
1− tζi/ζj


= t

1
4N(N−1)

N∏
i=1

(1− ti)
N∏

i,j=1

1
1− tζi/ζj

= t
1
4N(N−1)H.S.[MC ] .

(4.68)

In going from the second line to the third line we use the generating function (4.67) and
the following lemma

Lemma 4. ∑
α∈SN

N∏
i<j

1− txi/xj
1− xi/xj

=
N∏
i=1

1− ti
1− t . (4.69)

Proof. Macdonald proves this lemma using combinatorial methods in section III.1 of [144],
in that context it is equivalent to Hall-Littlewood polynomials (B.16) being normalised
such that P•(X; t) = 1.

In the last line of (4.68) we recognise the Coulomb branch Hilbert series of T [SU(N)]
from equation (4.38)—up to a power of t which we will understand in greater generality
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in section 4.3. We conclude that the Hilbert series, when expanded in the topological
symmetry ζ, can be understood in terms of Poincaré polynomials of the vortex moduli
space as we advertised in (4.42). Precisely, we can write the penultimate line of (4.68) as

H.S.[MC ] =
[
N∏
i=1

1− ti
1− t

] ∏
i>j

1
1− tζi/ζj

∏
i<j

1
1− tζi/ζj


=
[
N∏
i=1

1− ti
1− t

]
PQM(MH)(ζ; t)PQM(MH)(ζ−1; t) .

(4.70)

We can go further and write the unbroken Casimir factor suggestively as

N∏
i=1

1− ti
1− t =

N∏
i=1

1− ti
(1− trkVi−rkVi−1) , (4.71)

where rkVi are the ranks of sheaves in the moduli space construction from section 4.2.2, in
this case they are rkVi = 1, but this expression generalises to Tρ[SU(N)] theories. We see
later that this computes the Poincaré polynomial of the central fibre π−1(o) of the Higgs
branch which, in this example, is the complete flag variety L = BN which is a compact
Lagrangian. The result is then

H.S.[MC ] = PL(t)PQM(MH)(ζ; t)PQM(MH)(ζ−1; t) , (4.72)

and we note that this expression is determined in terms of the Higgs branch geometry
only. The arguments of this section apply to theories in the class Tρ[SU(N)] whose vortex
moduli spaces, since the Higgs branches are partial flag varieties, can be realised by the
general handsaw quivers of [152]—or equivalently by suitably relaxing the rank constraints
on the sheaves in section 4.2.2. In the next section, after introducing hemisphere blocks,
we demonstrate this factorisation for the SQCD[k,N ] theory. Later, in chapter 5, we also
present similar results for a more complicated non-abelian theory with adjoint matter.

Remark. We conclude this section by noting that we are also free to send q → 1. In
this limit one can compute the holomorphic block by saddle point methods and make
contact with the constructions of [51, 49]. This suggests an interesting connection between
Poincaré polynomials of vortex moduli spaces and solutions to Bethe ansatz equations
that would be interesting to explore in future work.

4.3 Hemisphere blocks

In the previous section we derived ‘vortex partition functions’ by factorising the twisted
index by hand. In this section we change gear and instead focus on a first principles
derivation of a fundamental block Hα that realises the factorisation.
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We define hemisphere blocks in the UV as partition functions on a hemisphere S1×H2.
The hemisphere has a boundary on which we place a particular N = (2, 2) boundary
condition known as the exceptional Dirichlet boundary condition Bα. These boundary
conditions are canonically associated to isolated vacua α and are natural candidates to
yield a set of fundamental blocks.

We show that the hemisphere blocks Hα := ZS1×H2(Bα) are closely related to the half
index I(Bα) counting local operators in the flat space theory with a boundary. A putative
state-operator correspondence on the hemisphere relates the half index to the hemisphere
blocks via a ‘Casimir energy’ term

ZS1×H2(Bα) = eφαI(Bα) . (4.73)

This set of blocks have a number of favourable features. The blocks are manifestly
dependent on choices of chamber CH and CC from the start and as the chambers are
varied the blocks will exhibit wall-crossing and transform amongst themselves but gluing
in such a way that closed three manifold partition functions, such as the twisted index, are
invariant under this wall-crossing. The blocks also resolve the perturbative ambiguities
discussed in section 4.2.1 and we find that they fuse exactly to various three manifold
partition functions.

We find that the hemisphere blocks can be expressed solely in terms of Higgs branch
geometry. The partition function on the hemisphere can be separated into perturbative
and vortex contributions

ZS1×H2(Bα) = ZPert.(Bα)ZVortex(Bα) , (4.74)

where the vortex contribution coincides with the equivariant K-theoretic vertex function
discussed in section 4.1.1 and the perturbative contribution can be realised in terms of
the attracting directions and fibres of line bundles over the Higgs branch at a particular
vacuum α.

Outline. We begin in section 4.3.1 with a discussion of exceptional Dirichlet boundary
conditions, we discuss how to compute the half index of these boundary conditions and
lift these calculations to a hemisphere partition function. In section 4.3.2 we compute
the hemisphere partition function explicitly for the SQED[N ] example. In section 4.3.3
we extrapolate this construction to a more general quiver gauge theory and propose a
definition for the hemisphere block in terms of the quiver data. Finally, in section 4.3.4,
we check this proposal in examples and show that we can glue hemisphere blocks to form
twisted indices.
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4.3.1 N = (2, 2) boundary conditions

So far in the thesis we have met BPS Higgs and Coulomb branch operators and BPS
vortices. We now introduce the last half-BPS object of 3d N = 4 theories that we study.
We consider boundary conditions B that preserve N = (2, 2) supersymmetry with the
supercharges Q11̇

+ , Q12̇
− ,Q21̇

− and Q22̇
+ . The boundary conditions we study will also preserve

a maximal torus U(1)V × U(1)A of the bulk R-symmetry SU(2)H × SU(2)C .
In the previous section we placed our theory on S2 × S1 with a topological twist. In

this section we, momentarily, put our theory back on flat space {x1, x2, x3} but now with a
boundary condition at x3 = 0. We write z = x1 + ix2 and z̄ = x1 − ix2 for the coordinates
on the boundary. This setup is illustrated in figure 4.5. The boundary condition B
preserves a subalgebra of osp(4, 4|R) and later we will recover the ‘twisted’ blocks studied
in the previous section by a simple R-symmetry shift.

The half superconformal index was defined in the work [203] for 3d N = 2 theories. It
is a trace over states HB in radial quantisation annihilated by Q11̇

+ and its superconformal
conjugate:

I(B) := TrHB(−1)F qJ+RV −RA
4 t

RV −RA
2 xFHζFC . (4.75)

The boundary conditions we study preserve a maximal torus TH × TC of the bulk flavour
symmetry GH ×GC for which we write FH and FC for the Cartan generators in the above.

Exceptional Dirichlet. The particular boundary conditions we study in this thesis are
known as exceptional Dirichlet boundary conditions, we follow closely the presentation of
[55] where these boundary conditions were first studied for 3d N = 4 theories. In a fixed
chamber CH , there are a set of Lagrangian manifolds of the Higgs branch MH associated
to each isolated massive vacuum denoted L+

α—we met these manifolds already in section
3.1.4 where they are discussed in more detail. Exceptional Dirichlet boundary conditions,
denoted Bα, are engineered to have a Higgs branch image coinciding with L+

α .
In the IR the 3d N = 4 theories we study—together with the boundary condition

Bα—flow to non-linear sigma models on the vacuum moduli space [55]. In this context
the IR image of the boundary condition is a Lagrangian submanifold that is expected to
realise the thimble boundary conditions for the Higgs branch sigma model. In this way,
the exceptional Dirichlet boundary conditions Bα are in one-to-one correspondence with
isolated vacua α.

The boundary condition includes setting the vector multiplet to Dirichlet so that14

Fµν |∂ = 0 , D3σ = 0 , Dµϕ = 0 , (4.76)
14Together with the supersymmetric completion to the rest of the multiplet.

113



where µ and ν are directions parallel to the boundary. In the absence of matter, this
boundary condition breaks the gauge symmetry to a global symmetry G∂ on the boundary.
We consider quiver gauge theories and so we also have to pick a boundary condition
for the matter. Boundary conditions for hypermultiplets are specified by a Lagrangian
splitting R(v,w) = L⊕L̄ where, relabelling scalars as (XL, YL), fields YL are given Dirichlet
boundary conditions and XL are given Neumann boundary conditions—together with the
supersymmetric completion to the rest of the multiplet.

The splitting of R(v,w) for the exceptional Dirichlet boundary condition Bα crucially
depends on the vacuum α and is distinct from the natural splitting associated to the
cotangent bundle structure of the quiver variety. It is defined as follows: we choose a
constant matrix c of vevs for the hypermultiplets YL|∂ = c in such a way that the boundary
symmetry G∂ is broken but a maximal torus TH × TC of the bulk flavour symmetry is
preserved. The constants should be chosen so that the image of Bα on the Higgs branch
coincides with L+

α .
In practice this is very difficult to compute for an arbitrary non-abelian 3d N = 4

theory since it depends on the pre-quotient data R(v,w) and an understanding of the
affine spaces that descend to Lagrangian submanifolds in the quotient. We compute the
boundary condition explicitly only for SQED[N ] and show that the end result depends
only on the local data of the fixed point α in the quotient space M(v,w). In section 4.3.3
we use this to formulate a proposal for the hemisphere block of a quiver gauge theory that
should arise from the exceptional Dirichlet boundary conditions discussed in the present
section.

Half index. We first write the half index for a generic Dirichlet boundary condition for
an abelian theory—this corresponds to setting the matrix of constants c to zero. Following
[203] we have

I(Bα) = TrHB(−1)F qJ+RV +RA
4 t

RV −RA
2 zFHζFCwFG , (4.77)

where w is a fugacity for the FG generator of the U(1)∂ symmetry. Turning on vevs for
the scalars Y |∂ initiates an RG flow. We turn on a vev for a scalar with charges +1 under
RV , +1 under U(1)∂ and QH under TH—a linear combination of U(1)V , U(1)∂ and TH is
spontaneously broken however the combinations

R′V = RV − FG , F ′H = FH −QHFG , (4.78)

survive along the RG flow and become the new boundary R-symmetry and flavour
symmetry. The upshot is that in index calculations we eliminate w via the substitution
q

1
4 t

1
2 zQHw = 1 for the chirals that obtain expectation values.
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Operator counting. The operators from the matter multiplets that contribute to the
index (4.77) in general are given by

∂nzX ∂nz Y ∂nz ψ
X

− ∂nz ψ
Y

−

G +1 −1 −1 +1
FH +1 −1 −1 +1
J n n n+ 1

2 n+ 1
2

RA 0 0 +1 +1
RV +1 +1 0 0

(4.79)

This follows from a specialisation of the results of [203] to N = 4 theories. We then have
that hypermultiplets with the boundary conditions

BX : ∂⊥X|∂ = 0 , Y |∂ = 0 ,
BY : ∂⊥Y |∂ = 0 , X|∂ = 0 ,

(4.80)

contribute to the index with

IN=4 HM(BX) = (q 3
4 t−

1
2wx; q)∞

(q 1
4 t

1
2wx; q)∞

, IN=4 HM(BY ) = (q 3
4 t−

1
2w−1x−1; q)∞

(q 1
4 t

1
2w−1x−1; q)∞

. (4.81)

where the q-Pochhammer symbols should be thought of as expansions in spin q—the
definition is in (A.1). The perturbative contributions from the vector multiplet come from
the operators [203]

Dn+1
z (σ + iγ) Dn

z η−

G adj adj
J n n+ 1

2

RA 0 −1
RV 0 +1

(4.82)

so that for a theory with gauge group G we have the perturbative contribution

IN=4 VM = (q 1
2 t; q)rkG

∞
(q; q)rkG

∞

∏
α∈rt(G)

(q 1
2 twα; q)∞

(qwα; q)∞
. (4.83)

The exceptional Dirichlet boundary condition supports boundary monopole operators that
must also be included in the trace (4.77). These operators arise from bringing the ’t Hooft
monopole solutions discussed in section 2.1.4 to the boundary and are again labelled by a
cocharacter m ∈ Λ. Operators with electric charge λ ∈ g acquire a shift to their spin of
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x3
Obnd.

|Obnd.〉

Figure 4.2: Hemisphere state-operator map.

λ(m) and in the N = 4 case the non-perturbative half index proposed by [203] reads

I(B) ∼ (q 1
2 t; q)rkG

(q; q)rkG
∞

∑
m∈Λ

ζm

 ∏
α∈roots(G)

(q 1
2 +α(m)twα; q)∞

(q1+α(m)wα; q)∞

 [IN=4
matter(w → qmw)

]
, (4.84)

the ∼ here indicates that we have omitted the effective Chern-Simons level since we take
an alternative approach and realise this term by a path integral in the next paragraph. We
now have the ingredients required to compute the half index of the exceptional Dirichlet
boundary conditions.

State-operator correspondence and Casimir energy. The above discussion is a
count of local operators inserted at the origin of the boundary. In the present super-
conformal setup with a boundary we expect there to be a 3d state-operator map that
relates the operator count to a partition function ZS1×H2 counting states on a surrounding
hemisphere—this is illustrated in figure 4.2. The hemisphere is the space S1 ×H2 with
metric

ds2 = dτ 2 + r2(dθ2 + sin2 θdϕ2) , (4.85)

with τ ∼ τ+βr the S1 coordinate with q = e−2β and 0 ≤ θ ≤ π/2. The boundary condition
B is then imposed at the S1 × S1 boundary θ = π/2. Typically [204, 205, 206] operator
counts and partition functions related via a state-operator map differ by a ‘Casimir energy’
factor that we write as

ZS1×D(B) = eφIB . (4.86)

The operator counting discussed in the previous paragraph can be directly related to
one-loop determinants arising from the localisation computation of the left hand side of
(4.86) as we now discuss.

116



Firstly, we define the following function that arises in the zeta function regularisation
of one-loop determinants

E(x) := log q
24 −

x

4 + x2

4 log q . (4.87)

In a localisation computation (for example [175]) the N = 4 vector multiplet contribution
(4.83) is modified to

Z1-loop
VM = e

E
[

log
(
q

1
2 t

)]
−E[log(q)] (q 1

2 t; q)rkG
∞

(q; q)rkG
∞

∏
α∈rt(G)

e
E
[

log
(
q

1
2 tsα

)]
−E[log(qsα)] (q 1

2 tsα; q)∞
(qsα; q)∞

. (4.88)

Similarly the N = 4 hypermultiplet contributions (4.81) are modified to

Z1-loop
HM (BX) = e

E
[
log
(
q

3
4 t−

1
2wx

)]
−E
[

log
(
q

1
2 t

1
2wx

)]
(q 3

4 t−
1
2wx; q)∞

(q 1
4 t

1
2wx; q)∞

,

Z1-loop
HM (BY ) = e

E
[
log
(
q

3
4 t−

1
2w−1x−1

)]
−E
[

log
(
q

1
2 t

1
2w−1x−1

)]
(q 3

4 t−
1
2w−1x−1; q)∞

(q 1
4 t

1
2w−1x−1; q)∞

.

(4.89)

Finally, we import the on-shell classical contribution to the path integral from [160] where
the localisation is performed in greater detail—for an abelian theory we have

SCl. = log ζ log(wqm)
log q . (4.90)

The procedure for computing the hemisphere partition function then mirrors (4.84) in
that

ZS1×D(z, ζ; q, t;w) =
∑
m∈Λ

ζmeScl.Z1-loop(w → qmw) . (4.91)

The dependence on the gauge fugacity w is then eliminated from (4.91) by the exceptional
Dirichlet procedure of setting the relevant fugacities to one. We compute the hemisphere
partition function explicitly for an example in the following section.

Background flux. In the topologically twisted setup of [38], we can understand fugaci-
ties entering (4.91) as holonomies of background gauge fields coupled to global symmetries.
The metric (4.85) becomes a fibred product of S1 over H2 with holonomies

ν =
∮
S1
AF + β

∮
∂H2

AF , (4.92)

shifting fugacities ν → ν + nβ or z → zq
1
2n then corresponds to introducing n units of

background flux on H2 for the corresponding symmetry. We define the A- and B-shifted
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hemisphere partition functions by a shift of the R-symmetry:

ZAS1×H2(x, ζ; q, t) := ZS1×H2(x, ζ; q, t→ tq
1
2 ) ,

ZBS1×H2(x, ζ; q, t) := ZS1×H2(x, ζ; q, t→ tq−
1
2 ) .

(4.93)

Indeed, in the following sections we show that these hemisphere partition functions, when
glued appropriately, reproduce the A- and B-twisted indices of the theory.

We similarly write

IA(x, ζ; q, t) := I(x, ζ; q, t→ tq
1
2 ) ,

IB(x, ζ; q, t) := I(x, ζ; q, t→ tq−
1
2 ) ,

(4.94)

for A- and B-shifted half indices.
Twisting is no longer trivial in this way if the hemisphere is replaced with a more

general Riemann surface with boundary.

Remark. We conclude this subsection with some remarks about the connection between
the hemisphere partition function and enumerative geometry. Firstly, note that in sec-
tion 3.1 we stressed that the localisation formulae for Nakajima quiver varieties can be
understood as evaluating the Chern roots w associated to tautological bundles W at
fixed points p as in (3.12). This precisely mirrors the ‘exceptional Dirichlet procedure’
and indeed there exists [51] methods to evaluate vertex functions of quiver varieties via
Jackson q-integrals that realise the invariants as sums over towers of ‘poles’ pqm. We will
see in the following example that for SQED[N ] the non-perturbative contributions to
(4.91) reproduce the vertex functions for T ∗PN−1 in (4.15) and furthermore these methods
of evaluation coincide. Secondly, typically ‘holomorphic blocks’ are realised as contour
integrals as in, for example, the work [175]. In fact, such ‘holomorphic block integrals’
realise Neumann boundary conditions for the hemisphere partition function and it is not
always possible to associate Neumann boundary conditions to vacua in the way that we
discussed above for the exceptional Dirichlet boundary conditions (only if their Higgs
branch images coincide)—the theory we study in chapter 5 is an example of this. This
observation mirrors the fact that Jackson q-integrals cannot always be represented by a
contour integral in the complex plane. Consequently, we propose that the exceptional
Dirichlet procedure is the correct notion of a fundamental block and not a Coulomb branch
contour integral. We explore this idea in more detail in the following sections.

4.3.2 Example: SQED[N ]

We turn again to supersymmetric QED with N flavours. The exceptional Dirichlet
boundary conditions Bα associated to the α = {1, . . . , N} Higgs vacua of SQED[N ] are
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specified by15

∂⊥Yj = 0 Xj = cδαj j ≤ α ,

∂⊥Xj = 0 Yj = 0 j > α ,
(4.95)

where c 6= 0.

Attracting submanifolds. For fixed α, the fields (Y1, . . . , Yα) are allowed to fluctuate,
these cut out Pα−1 ⊂ PN−1. Recall from section 2.3 the description of the cotangent bundle
at a point Y ∈ PN as Y X ∈ Hom(CN/ im Y, im Y ), evaluating this on the locus (4.95) we
see a natural isomorphism to a direct sum of tautological line bundles ⊕α

i=1OPα−1(−1)
which is isomorphic to the conormal bundle to Pα−1 [207]. The conormal bundles are
well-known to describe the attracting Lagrangians of T ∗PN−1. This method can be adapted
to cotangent bundles to flag varieties but it is unclear, at least to the author, how to
understand the attracting Lagrangians of general Nakajima quiver varieties in terms of
the pre-quotient data in this way.

Half index. Now we apply the recipe (4.91) outlined in the previous section to the
boundary condition (4.95) for SQED[N ]. We write the appropriate one-loop determinants
from (4.88) and (4.89) together with the classical contribution (4.90) and then specialise
fugacities as w = x−1

α t−
1
2 q−

1
4 appropriate to each boundary condition Bα. After repeated

use of the identity (A.11) we can write the hemisphere partition function in the following
form

ZS1×H2(Bα) = eφαIα1-loopIαVortex , (4.96)

i.e. a contribution from the ‘Casimir energy’ and the half index I(Bα) = Iα1-loopIαVortex.
The one-loop and non-perturbative contributions are given by

Iα1-loop =
i−1∏
j=1

(
q xi
xj

; q
)
∞(

q
1
2 t xi
xj

; q
)
∞

N∏
j=i+1

(
q

1
2 t−1 xj

xi
; q
)
∞(

xj
xi

; q
)
∞

,

IαVortex =
∑
d≥0

((
q

1
4 t−

1
2
)N

ζ
)d N∏

j=1

(
q

1
2 t xi
xj

; q
)
d(

q xi
xj

; q
)
d

,

(4.97)

and for the Casimir energy we find

φα =

∑
j<α

log
(
q

1
4 t−

1
2
)

log
(
xα/xjt

1
2 q

1
4
)

log q +
∑
j>α

log
(
q

1
4 t−

1
2
)

log
(
xj/xαt

− 1
2 q−

1
4
)

log q +
log
(
xαt

1
2 q

1
4
)

log ζ
log q .

(4.98)
15Together with the Dirichlet boundary condition for the vector multiplet and the supersymmetric

completion to the rest of the multiplet.
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In the following we discuss the geometrical interpretation of the index where it is convenient
to work with the A- and B-shifted partition functions discussed in the previous section
and defined as

ZAS1×H2(Bα) := ZS1×H2(Bα)(t→ tq
1
2 ) ,

ZBS1×H2(Bα) := ZS1×H2(Bα)(t→ tq−
1
2 ) .

(4.99)

4.3.3 Twisted indices and geometry

In this subsection we discuss one of the main results of this thesis. We first show that
the hemisphere partition function for SQED[N ] derived in the previous example can
be expressed solely in terms of the geometry of the Higgs branch MH = T ∗PN−1. We
generalise this construction to a theory with Higgs branch a Nakajima quiver variety
MH = M(v,w) and define a block in terms of the quiver data. We expect the block
to agree with the hemisphere partition function of the exceptional Dirichlet boundary
condition—this is a significant simplification since the exceptional Dirichlet boundary
condition computation depends intricately on the pre-quotient data. We denote the block
by

Hα(x, ζ, q, t) := ZS1×H2(x, ζ, q, t) . (4.100)

This object is defined in definition 4.1 and we test the proposal in several examples.

Attracting and repelling directions. Let X =M(v,w) be a Nakajima quiver variety.
Recall that X has a torus action T = A×C×t where the C×t scales the symplectic form and
A leaves it invariant. We select a fixed chamber CH for A. Physically, this is an ordering
of the mass parameters—for SQED[N ] we took m1 < . . . < mN . The tangent space at a
fixed point α splits into positive and negative weights denoted16

TαX = N+
α ⊕N−α . (4.101)

The space N+
α coincides locally with the attracting Lagrangians L+

α discussed previously
in section 3.1.4.

SQED[N ] example. We now rewrite the B-shifted hemisphere partition function (4.99)
of supersymmetric QED in a geometric form.

First we note that the vortex contributions agree with the K-theoretic equivariant
vertex function for T ∗PN−1 from equation (4.15)

IB,αVortex = Vα(x, ζ; q, t) . (4.102)
16There are no zero weights since our assumption throughout is that XA is finite.
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Now, for MH = T ∗PN−1, the splitting of the tangent bundle (3.19) into attracting and
repelling directions of A is

N+
α =

∑
j<α

xα
xj

+ t−1 ∑
j>α

xj
xα

,

N−α =
∑
j>α

xα
xj

+ t−1 ∑
j<α

xj
xα

.
(4.103)

In terms of which we identify (the B-shift of) the one-loop piece (4.97) as

IB,α1-loop = PE
[
t− q
1− qN

+
α

]
. (4.104)

Finally, we can write (the B-shift of) the classical contribution (4.98) in terms of the
quiver data as follows17

φBα =
∑
ω∈N+

α

log
(
q

1
2 t−

1
2
)

log
(
t

1
2ω
)

log q +
log ξ log

(
t

1
2Lα

)
log q , (4.105)

where Lα is the tautological line bundle on T ∗PN−1 from example 3.1 (not to be confused
with the attracting Lagrangian L+

α ) evaluated at the fixed point α.

Hemisphere blocks. We now define the hemisphere block for a ‘good’ theory TQ with
isolated vacua with respect to fixed chambers CH and CC .

Definition 4.1. The hemisphere block in the B-shifted convention is defined by

HB
α (x, ζ; q, t) = eφ

B
αPE

[
t− q
1− qN

+
α

]
Vα(x, ζ; q, t) , (4.106)

where Vα(x, ζ; q, t) are the vertex functions of the quasimap moduli space QMd(MH) and
N+
α denotes the attracting directions of the tangent bundle of the Higgs branch MH at

the fixed point α. The Casimir energy is given by

φBα =
∑
ω∈N+

α

log
(
q

1
2 t−

1
2
)

log
(
t

1
2ω
)

log q +
∑
i∈I

vi∑
a=1

log(ξi) log
(
t

1
2w(i)

a (α)
)

log q , (4.107)

where the second sum is over the vertex set of the quiver and w(i)
a (α) denotes the evaluation

of the Chern roots of the tautological bundle Vi at the vacuum α for i ∈ I and a = 1, . . . , vi.
The A-shifted block is defined as the B-shifted block with the substitution t→ qt as in

17The slightly annoying powers of t 1
2 can again be traced back to the difference in convention for

the contracting action in the mathematical literature compared with the physical interpretation as an
R-symmetry.

121



(4.94)
HA
α (x, ζ; q, t) = HB

α (x, ζ, q, t→ qt) . (4.108)

The three factors in the blocks correspond to classical, one-loop and vortex contributions
respectively.

Remark. It is well-known that in many examples vertex functions can be ‘identified’ with
vortex partition functions. One of the new feature here is the normalisation, that arises
form a careful consideration of the UV boundary condition, which makes the chamber
dependence manifest—we will see several advantages to this normalisation throughout
the thesis. The dependence on CH enters in the decomposition of the tangent bundle and
the dependence on CC enters as the stability condition for the quasimap moduli spaces.
It would be interesting to derive this hemsiphere block from a Higgs branch localisation
calculation on the hemisphere S1 × H2 where we would expect to recover the Jackson
q-integral method for evaluating the vertex function.

Factorisation. The proposal 4.1 has been checked in a number of different gluings—in
this thesis we focus on the A- and the B-twisted indices. The relevant gluing for the
B-twist is

IB =
∑
α

HB
α (q, t)HB

α (q−1, t) , (4.109)

and for the A-twist we have

IA =
∑
α

HA
α (q, t)HA

α (q−1, t) . (4.110)

Recall that the arguments of section 4.2.3 ensure say that both of these indices are in
fact independent of q and either x or ζ respectively. From the enumerative geometry
perspective this implies surprising cancellations between the vertex functions on the right
hand side of the above equations.

Geometry of the B-twisted factorisation. We now discuss how to write the B-
twisted index in terms of the quiver data and the geometrical interpretation of topological
flux. Background flux for the topological symmetry can be introduced by shifting ξi →
q

1
2n

(T )
i ξi for i = 1, . . . , |I|. This modifies the Casimir contribution (4.107) to

φα → φα + 1
2
∑
i∈I

n
(T )
i

vi∑
a=1

log
(
t

1
2w(i)

a (α)
)
. (4.111)

We now prove that the B-twisted topological index in general glues to the twisted
Hilbert series of section 3.1.2, including the presence of background topological flux. In
this gluing only the shifted term and the q-independent part of the Casimir energy survives
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to give

IB =
∑
α∈XA

∏
i∈I

(
t

1
2L(i)

α

)n(T )
i

 ∏
ω∈N+

α

t
1
2ω

PE
[
t− q
1− qN

+
α

]
PE

[
t− q−1

1− q−1N
+
α

]

=
∑
α∈XA

∏
i∈I

(
t

1
2L(i)

α

)n(T )
i

 ∏
ω∈N+

α

t
1
2ω

PE
[
tN+

α

]
PE

[
N+
α

]
,

(4.112)

where L(i)
α denotes the evaluation of the tautological line bundle associated to i ∈ I at the

fixed point α. In the last line we have used the fusion identity (A.10). We now rewrite
the twisted index in terms of the attracting weights

IB =
∑
α∈XA

∏
i∈I

(
t

1
2L(i)

α

)n(T )
i (−t)− 1

2 |N
+
α |

∏
ω∈N+

α

−ω
1− ω

∏
ω∈N+

α

1
1− ω

= (−t) 1
4 dim(MH) ∑

α∈XA

∏
i∈I

(
t

1
2L(i)

α

)n(T )
i

∏
ω∈N−α

1
1− ω

∏
ω∈N+

α

1
1− ω .

(4.113)

In the second line we flip the relevant weights and recover, up to an overall power of t, the
localisation formula (3.14) for the Higgs branch Hilbert series, namely

IB = (−t)
1
4 dim(MH) ∑

α∈XA

∏
i∈I

(
t

1
2L(i)

α

)n(T )
i PE [TαMH ] . (4.114)

In particular, we can give a geometric interpretation to the topological flux n(T ) as
controlling which of the tautological line bundles (Li)i∈I are turned on.

Comments on the A-twist. For the A-shifted block it is convenient to introduce some
extra notation. The tangent bundle of a cotangent type quiver variety X admits a further
splitting by the polarisation TX = P + t−1P∨ and we define the decomposition of the
attracting and repelling directions with respect to the polarisation by

N+
α = P+

α + t−1P̄+
α , N−α = P−α + t−1P̄−α . (4.115)

This splitting has the property (P+
α )∨ = P̄−α . The 1-loop contributions to the A-shifted

block can then be expressed as

IA,1-loop
α = PE

[
1− t−1

1− q P̄+
α + q(t− 1)

1− q P+
α

]
. (4.116)

As we argued in section 4.2.3 the A-twisted index reproduces the Hilbert series of the
Coulomb branch MC and, in contrast to the B-twisted index, vortices now play a crucial

123



role. The terms that survive in the gluing of the one-loop pieces are given by

IA,1-loop
α (q, t)IA,1-loop

α (q−1, t) = PE
[
(1− t−1)P̄+

α

]
PE

[
(1− t)P+

α

]
. (4.117)

Similar to the discussion in the previous paragraph we can invert the weights in the first
factor and use (P+

α )∨ = P̄−α (at the expense of a power of t) so that

IA,1-loop
α (q, t)IA,1-loop

α (q−1, t) = (−t)− 1
4 dim(MH)PE [(1− t)Pα] . (4.118)

We conclude that the one-loop piece receives contributions from one half of the tangent
bundle TX = P + t−1P∨ of the Higgs branch.

For the vortex contributions we are free to send q → 0 to recover a product of generating
functions of ‘Poincaré polynomials’18 of the quasimap moduli space. We denote the vortex
contributions by

IA,Vortex
α (q, t)IA,Vortex

α (q−1, t) = PQMα
(ζ; t)PQMα

(ζ; t) . (4.119)

Now in some theories, for example Tρ[SU(N)]19 as we saw explicitly in section 4.2.3, the
Poincaré polynomials do not depend on the vacuum α. In that case we have the following:

Lemma 5. The vacuum dependent part of the sum (4.110) for the A-twisted index of
a theory in the class Tρ[SU(N)] arises only from the one loop contributions. Then, the
sum over vacua gives the Poincaré polynomial of the compact core LH = π−1(0) ⊂MH of
the Higgs branch. In summary, the one-loop contribution to the Coulomb branch Hilbert
series is ∑

α∈XA

PE [(1− t)Pα] = PLH (t) . (4.120)

Proof. The summand on the left hand side is equation (4.118). When the Higgs branch of a
theory is a cotangent bundle then Pα is the tangent bundle of the core LH = π−1(0) ⊂MH

evaluated at a fixed point α and then the sum over vacua is the localisation formula (3.30)
for the χt genus of LH . Since this space is compact, the arguments of section 3.1.4
ensure that it is independent of the flavour fugacities and coincides with the Poincaré
polynomial.

In conclusion, for theories where the Poincaré polynomials of the quasimap moduli
spaces do not depend on the vacuum α, then we have the following formula for the Coulomb

18This is strictly only a polynomial when the moduli space is a smooth variety but it is always true,
from the localisation formula (4.9), that the vertex functions have equal powers of q in the numerators
and denominators so that this limit is well-defined. In the absence of a better word for the limit, we call
it again a Poincaré polynomial.

19These are theories whose Higgs branch is a partial flag variety.
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Figure 4.3: SQCD[k,N ] quiver diagram.

d

k N − k

Figure 4.4: Vortex moduli space of SQCD[k,N ].

branch Hilbert series

H.S.[MC ] = PLH (t)PQM(ζ; t)PQM(ζ; t) . (4.121)

where the conjugation inverts ζ. This is a generalisation of the T [SU(N)] result (4.70).
We demonstrate this explicitly for the SQCD[k,N ] example in the following subsection.

In general, some vacuum dependence remains in the Poincaré polynomial. In that case
we still have an interpretation of the Coulomb branch Hilbert series in terms of vortex
geometry but a non-trivial sum over vacua remains—we see this in the ADHM example of
chapter 5.

4.3.4 Examples

In this section we focus on the A-twist since, by the general arguments above, the B-twist
manifestly gives the Higgs branch Hilbert series expressed as a sum over Higgs branch
fixed points. The Coulomb branch side is more interesting.

Example: SQCD[k,N ]. Supersymmetric QCD with k colours and N flavours is a
quiver gauge theory described by the quiver in figure 4.3. It has gauge group G = U(k)
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and N hypermultiplets. The Higgs branch can be identified with MH = T ∗Gr(k,N), the
cotangent bundle to the Grassmanian of k-planes in W = CN .

The torus action A has N !
(N−k)!k! isolated fixed points labelled by injective maps α :

{1, . . . , k} → {1, . . . , N} which, much like the T [SU(N)] example of section 4.1.4, can be
identified with a choice of k-subset of a fixed basis {e1, . . . , eN} of W .

Following similar arguments to section 4.2.2 the relevant vortex moduli space, here
denoted Qk,N

d , describes maps P1 → Gr(k,N) and can be realised by the moduli space of
sheaves V on P1 satisfying

0 ⊂ V ⊂ W ⊗OP1 , (4.122)

with rankV = k and degV = d. Nakajima [152] realises this moduli space as the handsaw
quiver of figure 4.4. The torus A acts by permuting the flavour nodes, that is selecting
a k-subset of the flavour fugacities {x1, . . . , xN}. The vertex function coincides with the
generating function of χt genera of the Laumon space, and in the A-shift convention we
have

Vα(z, ζ; q, t→ qt) =
∑
d≥0

ζdt−
1
2 dimQk,N

d χt(Qk,N
d,α )

q→0=
∑
d≥0

(
t−N/2ζ

)d
PQk,N

d
(t)

=
k∏
i=1

1
1− ζt−N/2+i−1 ,

(4.123)

where in the second line we have used equation (3.43). Crucially this relies on the theory
being ‘good’ or ‘ugly’ so that the handsaw quiver is a resolution with a compact core—in
the present example we require N ≥ 2k—then we can use Nakajima’s formula [152] for the
generating function of the Poincaré polynomials of the handsaw quiver in figure 4.4. We
can take q → 0 similarly for the conjugate block using (3.33) which sends20 t→ t−1. The
theory is cotangent type so we can apply lemma 5 to understand the 1-loop contributions.
The Poincaré polynomial of Gr(k,N) can be computed using the localisation methods
discussed in section 3.1.4 and is given by

PGr(k,N)(t) =
∏N
i=1(1− ti)∏k

i=1(1− ti)∏N−k
i=1 (1− ti)

. (4.124)

Finally, combining with the classical contributions, we have

IA = PLH (t)PQM(ζ; t)PQM(ζ; t)

=
∏N
i=1(1− ti)∏k

i=1(1− ti)∏N−k
i=1 (1− ti)

k∏
i=1

1
1− ζt−N/2+i−1

k∏
i=1

1
1− ζ−1t−N/2+i−1 .

(4.125)

20The block gluing is q to q−1 but amusingly after taking the limit q → q−1 this manifests as a t→ t−1

gluing; when we finally combine with the classical pieces the conjugation is ζ → ζ−1!
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This matches the Coulomb branch Hilbert series of this theory as computed using the
monopole formula in equation (5.3) of [77]. We have given a geometric interpretation of
this Coulomb branch Hilbert series purely in terms of the Higgs branch geometry.

Example: T [SU(N)]. We have already studied the A-twist of T [SU(N)] in detail above.
We remark here only that we have now solved the ‘perturbative ambiguity’ problem we
discussed towards the end of section 4.2.1 and we demonstrate the ‘correct’ factorisation
of the one loop contributions.

Factorising the A-twisted index we found the perturbative contribution in a vacuum
σ ∈ SN is given by

IA,σ1-loop =
N∏
i<j

1− txσ(i)/xσ(i)

1− xσ(i)/xσ(j)
. (4.126)

Lemma 5 shows us that we should recognise (4.126) as the plethystic exponential of the
polarisation bundle of T ∗B, which, up to an overall power of t, can be factorised into
attracting and repelling directions as in (4.117)

IA,σ1-loop = IA,σ1-loop(q, t)IA,σ1-loop(q−1, t) = PE [(1− t)P ] = PE
[
(1− t)P+

α

]
PE

[
(1− t−1)P̄+

α

]
.

(4.127)

For the T [SU(N)] theory the factorisation is given explicitly by21

P+
σ =

∑
i<j

σ(j)<σ(i)

xσ(j)

xσ(i)
, P̄+

σ =
∑
i<j

σ(j)>σ(i)

xσ(i)

xσ(j)
. (4.128)

Lemma 4 is then lemma 5 in disguise, this is a geometric version of Macdonald’s proof
and gives the Poincaré polynomial of the flag variety B.

Remark. We conclude this chapter with some remarks about the three sphere partition
function and offer a preview of the following section. Whilst in this thesis we focus on the
twisted index gluing, the hemisphere blocks in definition 4.1 also fuse exactly to other three
manifold partitions functions. In particular, the gluing appropriate for the S3 partition
function [170] in the N = 4 limit can be obtained by gluing the t→ 1 limit of an A-shifted
block together with the t→ 1 limit of a B-shifted block. Focusing on the one-loop and
vortex contributions we have

ZS3 ∼
∑
σ∈SN

[
lim
t→1
IA,σ

] [
lim
t→1
IB,σ

]

∼
∑
σ∈SN

[
lim
t→1

V(z, ζ; q, t)
] [

PE[N+
α ]
]
.

(4.129)

21This can be deduced from the tangent bundle formula in lemma 1 and the discussion of the fixed
points in section 4.1.4.
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The first limit counts the fixed points on the quasimap moduli space and the second limit
provides the generating function—we revisit these ideas in more detail in the following
section. Sending t → 1 in (4.46) we find a geometric series that can be resummed.
Combining with (4.128) for the attracting directions N+

α = P+
α + tP̄+

α we have

ZS3 ∼
∑
s∈SN

N∏
i<j

1
1− zi/zj

1
1− ζi/ζj

. (4.130)

This recovers the proposed S3 partition function of T [G] [208, 209, 210]. This calculation
is in general more interesting for non mirror self-dual theories—we see precisely how
contributions from both the Higgs branch and the Coulomb branch contribute to the three
sphere partition function. Further we note that (4.130) are the ‘Verma denominators’ of
g = slN . Understanding the appearance of Verma characters here was the motivation
for the work in the following section where we show that, in general, specialised A- and
B-shifted hemisphere blocks realise Verma modules of Higgs and Coulomb branch chiral
algebras respectively.

4.4 Representation theory

In this section we explore representation theoretic aspects of the hemisphere blocks. We
discuss how the exceptional Dirichlect boundary conditions yield lowest weight Verma
modules of the quantised bulk Higgs and Coulomb chiral rings and explore the implications
of 3d mirror symmetry in this context. We demonstrate these ideas explicitly with the
SQED[N ] example.

4.4.1 Exceptional Dirichlet and Verma modules

We deform the theory by introducing an Ω-background that quantises the ring of bulk
chiral operators to form a non-commutative algebra. There is an action of the bulk chiral
ring on the operators surviving at the boundary and in the particular case of exceptional
Dirichlet, these modules are lowest weight Verma modules [55]. We begin with a review of
the Ω-background and the module structure.

Ω deformations. 3d N = 4 theories on R2 × R≥0 admit two omega deformations,
denoted ΩA and ΩB, associated to a fixed axis of rotation in R2 × R≥0. The deformations
can be realised in a number of ways—for example as a twisted mass deformation in 3d as
in [55] or as dimensional reduction of the Seiberg-Witten-type setup of [19]. However they
are realised, the Ω-backgrounds deform the Higgs and Coulomb chiral ring supercharges
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(2.13) so that22 Q2
H = εLV and Q2

C = εLV respectively, where LV is the Lie derivative
associated to rotations in the x1,2 plane. The Ω-deformations are constructed explicitly
in the [211, 212] and the same algebras can also be realised by working with a ‘Q + S’
cohomology construction as in the works [213, 214, 85, 215]. We take the former perspective
in this thesis.

Physically, the local operator count of the previous subsection is unaffected but we
now have a notion of operator ordering on the bulk chiral rings C[MH ] and C[MC ]—the
cohomology of QH and QC now consists of operators constrained to the line x1 = x2 = 0.
We denote these non-commutative rings by R̂H and R̂C respectively.

Deformation quantisation. We suppose MH and MC are a dual pair of symplectic
resolutions. In that case the quantised chiral rings are quantisations of the coordinate
rings R̂H = Ĉ[MH ] and R̂C = Ĉ[MC ]. The Ω-deformations can then be understood from
the perspective of the geometry of symplectic resolutions [53, 52]—we follow closely the
presentation of [216].

We denote by A either of the coordinate rings C[MH ] or C[MC ]. Recall from section
2.2 that the coordinate rings are Poisson algebras graded, with degree −2, by the C×t
action—we write A = ⊕

iAi. A deformation quantisation of a Poisson algebra A consists
of an associative product ? on formal power series A[[ε]]

f ? g =
∞∑
k=0

Ck(f, g)εk , (4.131)

and ask that to leading order ? agrees with the original commutative product of A.
Furthermore, we impose that ? is compatible with the Poisson structure23 of A in the
sense that

lim
ε→0

1
ε
[f, g] = {f, g} , (4.132)

where the commutator on the left is defined by [f, g] := f ? g − g ? f . We further ask
that the deformation quantisation respects the C×t grading so that Ck(Ai,Aj) ⊂ Ai+j−2k

which in particular implies that the products (4.131) are polynomials in ε. Deformation
quantisations for MH or MC can be classified [53, 52] and they are determined uniquely
by specifying an element of H2(MH ,C) or H2(MC ,C) respectively. As we saw in section
3.1.1, these homology groups can be identified with complex masses and FI parameters.
The upshot is that the quantised Higgs and Coulomb branch algebras R̂H and R̂C are
determined uniquely by mC and ξC. Often these algebras can be realised by the process
of quantum symplectic reduction [217] and in some cases the operator product can also

22Masses and FI parameters generating flavour symmetries and gauge transformations can also enter
the right hand side of these equations.

23Associativity ensures that the leading part of [f, g] is a well-defined Poisson bracket.
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Figure 4.5: R2 × R≥0 with the bulk-boundary action illustrated.

be verified with localisation computations [85]. We construct the non-commutative chiral
rings for SQED[N ] explicitly in the following section.

Modules. Bringing bulk elements of R̂H or R̂C to the boundary defines an action of
the bulk chiral algebras on local operators inserted at z = 0 that satisfy the boundary
condition, we illustrate this action schematically in figure 4.5. The action of R̂H and R̂C

on boundary local operators is described in detail in [55]. The Higgs branch action is
purely classical and the module structure can be defined as a quotient of the bulk algebra.
The Coulomb branch on the other hand receives quantum corrections and an ansatz has
to be made for the action of bulk monopole operators. In this section we focus on the half
index operator count and show that, in certain specialised limits, we can recover characters
of the modules detailed in the work [55].

Both of the algebras R̂H and R̂C contain operators JH and JC that measure TH or TC
charge [55]. For example, in the case of Higgs operators

[JH ,Oγ] = γOγ , (4.133)

where γ lives in the character lattice Λ∨H . This grades the algebras R̂H and R̂C by the
character lattices Λ∨H and Λ∨C and ensures that modules generated by TH or TC preserving
boundary conditions in the sense above have a weight decomposition.

Consider, in the presence of real masses and FI parameters, the operators Jm = m · JH
and Jξ = ξ · JC . Boundary conditions compatible with m and ξ, in fixed chambers CH

and CC , are lowest weight modules for Jξ and Jm. In particular, the exceptional Dirichlet
boundary conditions Bα associated to vacua are expected to yield lowest weight Verma
modules for R̂H and R̂C .

Example 4.2. A toy example is a free hypermultiplet (X, Y ). In this case the classical
Poisson bracket on the chiral ring is {X, Y } = 1 which we canonically quantise by [Ŷ, X̂] = ε.
Consider the boundary condition BX given by ∂⊥X|∂ = 0 and Y |∂ = 0, this preserves
TH = U(1). The module has lowest weight state |0〉 satisfying Ŷ |0〉 = 0 and is generated
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by |n〉 = X̂n|0〉.
The operator JH is given by the normal ordered flavour symmetry moment map

JH = 1
ε
X̂Ŷ + 1

2 which gives
JH |n〉 =

(
n+ 1

2

)
|n〉 . (4.134)

Intuitively one can view this construction as quantising the Higgs branch C2 as a phase
space by selecting canonical momenta p = Ŷ and position x = X̂ and building polynomial
wave functions.

4.4.2 Specialised limits and mirror symmetry

We now consider two supersymmetry enhancing limits of the half index. We call these
limits the B-limit which corresponds to t → q−

1
2 and the A-limit which corresponds to

sending t→ q
1
2 . Alternatively, these limits correspond to specialising t→ 1 in either the

A-shifted or B-shifted indices defined in (4.94).

B-limit. In the B-limit, t → q−
1
2 , the generator J + RA

2 that now grades the index
commutes with an additional supercharge Q12̇

− . By the unitarity bound arguments of
section 2.1.3 we then have that the half index receives contributions from the (bosonic)
Higgs chiral ring operators with D − RV

2 = 0 and J + RA
2 = 0 so that the indices are

independent of q and ξ (Higgs operators are uncharged under TC). We write

ÎB(B) := lim
t→q−

1
2

I = TrHB xFH . (4.135)

In the limit only the one-loop contributions from (4.106) survive.

Example 4.3. The B-limit of SQED[N ] is obtained by sending t→ q−
1
2 in (4.97)—only

the one-loop piece survives and we have

ÎBα =
α−1∏
j=1

1
1− xα/xj

N∏
j=α+1

1
1− xj/xα

. (4.136)

We note that this limit respects the chamber structure CH in that it is convergent for {x}
with respect to the chamber choice.

A-limit. The A-limit corresponds to setting t→ q
1
2 . In the A-limit we receive contribu-

tions only from Coulomb branch operators D − RA
2 = 0 that are uncharged under TH and

satisfy J + RV
2 = 0 so that

ÎA(B) := lim
t→q

1
2

I = TrHA ξFC . (4.137)
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In this case only the non-perturbative terms of (4.108) survive.

Example 4.4. The A-limit of SQED[N ] is obtained by sending t→ q
1
2 in (4.97)—we find

ÎAα =
∑
m≥0

ζm = 1
1− ζ . (4.138)

Casimir energy and highest weights. We denote the A- and B-limits of the Casimir
energy term similarly by φ̂Aα and φ̂Bα respectively. The limits above count local boundary
operators in modules of R̂H and R̂C respectively. By the general theory reviewed above,
these modules are lowest weight Verma modules. We find that the Casimir energy term
(4.107) plays a crucial role and realises the lowest weight of these modules so that

XH(Bα) = eφ
B
α ÎBα = lim

t→1
HB
α , XC(Bα) = eφ

A
α ÎAα = lim

t→1
HA
α . (4.139)

We check this explicitly for SQED[N ] in the following section, and later in chapter 5 for a
more complicated non-abelian theory.

Combined with the notion of factorisation, these arguments lead to formulae for closed
three manifold partition functions as sums over Verma characters

ZM3 =
∑
α

XH/C
α X̄H/C

α , (4.140)

where the conjugation corresponds to the particular gluing as reviewed in section 4.1.3.
Formulae for the S3 partition function were recently derived from factorising pole contri-
butions of the specialised Coulomb branch localisation integral by Okazaki and Gaiotto in
[208], the present work explains this observation in terms of modules induced by boundary
conditions.

3d mirror symmetry. We denote by T and T ′ mirror dual theories with mirror dual
boundary conditions B and B̃. Mirror symmetry exchanges RA ↔ RV and FH ↔ FC and
we expect A-shifted and B-shifted half indices of mirror dual theories should be related.
In general, it should be possible to expand the mirror dual of an exceptional Dirichlet
boundary condition linearly in the exceptional Dirichlet basis B′ of T ′, giving schematically

IT (Bα) = IT ′(B̃α) ,
=
∑
β

UβαIT ′(B′β) . (4.141)
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Similar transformations appear in the symplectic duality literature [92] where Uαβ can be
realised as the upper-triangular24 elliptic stable envelopes, in our context this is a basis
change of boundary conditions. We find, in examples, that in the two supersymmetry
enhancing A- and B-limits discussed above the transformation Uαβ becomes diagonal.
This implies that there is a straightforward map between boundary Higgs and Coulomb
branch operators in two mirror dual theories. We expect in general

ÎA(Bα) = ÎB(Bα) , (4.142)

up to the appropriate mirror dual parameter swaps z → ζ and t→ t−1 and an appropriate
matching of isolated vacua/fixed points in the two theories.

The geometric proposal in definition 4.1 implies that the A- and B-limits of the half
index of a theory T receive contributions from only the one-loop or the vortex contributions
respectively. In the latter case, the vertex functions degenerate to a sum over the fixed
points of the vortex moduli space. The statement of mirror symmetry is then that the
generating function of fixed points of the quasimap moduli space based at α is given by
the plethystic exponential of the attracting directions at α of the Higgs branch of the
mirror theory.25

Proposition 3. Let T and T̃ be a pair of ‘good’ mirror dual 3d quiver N = 4 gauge
theories that admit generic mass and FI parameters to give fully resolved Higgs and
Coulomb branches MH and MC with isolated fixed points. Then

ÎAα (T ) = PE
[
N+
α (MC)

]
=
∑

d

ζd{#fixed points QMd
α(MH)} = ÎBα (T̃ ) . (4.143)

In the above proposition the CH chamber dependence is manifest on the left hand side
as it determines the attracting directions at a fixed point. For the right hand side: recall
from the discussion in section 4.1.1 that the stability condition of the Nakajima quiver
variety (which is equivalent to the chamber of FI parameters) determines the effective
degrees, hence the right hand side will yield different vertex functions in different chambers
CC i.e. the chamber dependence is also to be matched across this equality. The left hand
side of (4.143) is a generating function of the right hand side and so this identity can
generate interesting combinatorial formulae. We discuss an example of this in the following
chapter where the Higgs branch is the Hilbert scheme of points in the plane and we find
generating functions of reverse plane partitions.

Example 4.5. Consider the T [SU(N)] theory of section 4.1.4 with fixed chambers CH =
{m1 < . . . < mN} and CC = {ξ1 < . . . < ξN}. Recall that T [SU(N)] is mirror self dual.

24With respect to the ordering associated to vacua arising from the moment map in section 3.35.
25In this identification we make the usual mirror symmetry transformation ζ ↔ z.
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The vacua are described by σ ∈ SN and the relevant contributions to the attracting
directions are given by26

P+
σ =

∑
i<j

σ(j)<σ(i)

xσ(j)

xσ(i)
, P̄+

σ =
∑
i<j

σ(j)>σ(i)

xσ(i)

xσ(j)
, (4.144)

hence the B-limit gives

ÎB = PE[P+
σ + P̄+

σ ] =
N∏
i<j

1
1− xi/xj

. (4.145)

On the other hand, in the A-limit of the mirror dual, the vortex sum degenerates and we
find

ÎA =
∑
{d(s)
a }

N−1∏
s=1

(
ζs
ζs+1

)ds
. (4.146)

This is a geometric series that sums to (4.145). We see that the identity in proposition 3
is verified after appropriate identification of masses and FI parameters.

In this case there is a special feature in that the generating functions are vacuum
independent (i.e. the number of fixed points of each based quasimap space is the same)—
this is not always the case, and the theory we study in the following chapter does not have
this property.

4.4.3 SQED[N ] example

In this subsection we discuss the quantisations of the Higgs and Coulomb branch algebras
for SQED[N ] and compute the corresponding Verma module characters. We show that they
reproduce the specialised limits of the half index and therefore verify (4.139). Throughout
we work in fixed chambers for the real mass and real FI parameters given by

CH = {m1 < . . . < mN} , CC = {ξ > 0} . (4.147)

Higgs branch characters. We compute the quantised Higgs branch algebra for SQED[N ]
by quantum symplectic reduction. R̂H is generated by N copies of the Heisenberg algebra

[X̂i, Ŷj] = εδij , i = 1, . . . , N . (4.148)

We then restrict to gauge invariant combinations and imposing the, normal ordered,
moment map constraint ∑N

i=1 :X̂iŶi: = ξC where the normal ordering is defined by :X̂iŶi: =
26This can be deduced from the tangent space formula in lemma 1.
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X̂iŶi + ε
2 = ŶiX̂i − ε

2 we have that the algebra is generated by

hj = X̂jŶj − X̂j+1Ŷj+1 ,

ej = X̂jŶj+1 ,

fj = X̂j+1Ŷj ,

(4.149)

for j = 1, . . . , N − 1. The relations (4.148) imply that these generators satisfy the usual
Chevalley-Serre relations for slN including

[ei, fj] = ε δijhj , [hi, ej] = εAijej , [hi, fj] = −εAijfj , (4.150)

where Aij is the Cartan matrix of slN . Note that this algebra quantises the Higgs branch
algebra discussed in section 2.3. The generator Jm associated to the global symmetry
U(1)m ⊂ TH specified by the real mass parameters is given by

Jm =
N∑
i=1

mi :X̂iŶi: . (4.151)

Now setting eij = X̂iŶj for i < j and fij = X̂jŶi for i > j we see

[Jm, eij] = ε(mi −mj)ei,j for i < j ,

[Jm, fij] = ε(mi −mj)fi,j for i > j ,
(4.152)

hence eij and fij are lowering and raising operators respectively. The module associated
to Bα is generated by acting with the raising operators on the vacuum state |Bα〉 which
satisfies

X̂i|Bα〉 = δiαc|Bα〉 for i = 1, . . . , α ,
Ŷi|Bα〉 = 0 for i = α + 1, . . . , N .

(4.153)

Using (4.151) we can compute the weight of the vacuum state

Jm|Bα〉 =
 ε

2

∑
j>α

mj −
∑
j<α

mj

+
(
ξC −

N − 2α + 1
2 ε

)
mα

 |Bα〉 . (4.154)
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The operators that do not annihilate the vacuum state, namely fαj for j < α and fjα for
j > α, generate the module. Hence, using the relations (4.152), the character is given by

XH
α := Tr e−

Jm
ε

= x
ξC
ε
α

∏
j<α

(
xα
xj

) 1
2 ∏
k>i

(
xk
xα

) 1
2 ∏
j<α

(
1 + xα

xj
+ x2

α

x2
j

+ ...

) ∏
k>α

(
1 + xk

xα
+ x2

k

x2
α

+ ...

)

= x
ξC
ε
α

∏
j<α

(
xα
xj

) 1
2

1− xα
xj

∏
k>α

(
xk
xα

) 1
2

1− xk
xα

.

(4.155)

Now we compute the B-limit of the Casimir energy to find

φ̂Bα = 1
2
∑
j<α

log xα
xj

+ 1
2
∑
j>α

log xj
xα

+ log xα log ξ
log q , (4.156)

Combining with the B-limit of the half index (4.97) and assuming the state operator
correspondence of section 4.3.1 identifies parameters as

ξC ↔ − log ζ , ε↔ − log q . (4.157)

then we have
XH
α = eφ̂

B
α ÎB . (4.158)

with the Casimir energy providing the lowest weight term.

Coulomb branch characters. The quantised Coulomb branch chiral ring of super-
symmetric QED is generated by27 the complex scalar ϕ and the monopole operators v±

subject to

[ϕ̂, v̂±] = ±εv̂± ,

v̂+v̂− =
N∏
i=1

(
ϕ+mi,C −

ε

2

)
,

v̂−v̂+ =
N∏
i=1

(
ϕ+mi,C + ε

2

)
,

(4.159)

this is a deformation by complex mass parameters and a quantisation of the Coulomb
branch algebra (2.54). The topological global symmetry generated by a real FI parameter
ξ ∈ R is generated by the operator Jξ = −ξϕ̂ so that

[Jξ, v̂±] = ∓εξv̂± . (4.160)
27See [55].
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This means that in our chamber CH = {ξ > 0}, the monopole operator v̂+ is a lowering
operator and v̂− is a raising operator with respect to Jξ.

Modules of the algebra RC are generated by boundary states |Bα〉 satisfying
(
ϕ̂+mα,C + ε

2

)
|Bα〉 = 0, v̂+|Bα〉 = 0 . (4.161)

These expressions arise from the analysis of boundary monopole operators performed in
the work [55]. The boundary condition therefore generates a lowest weight Verma module
by acting with v̂−. We compute the character of this module

Tr e−
Jξ
ε = ξ

mα,C
ε

+ 1
2 (1 + ξ + ξ2 + . . .)

= ξ
mα,C
ε

ξ
1
2

1− ξ ,
(4.162)

and see that this converges for our chamber choice CC . Now taking the A-limit of the
Casimir energy (4.98) we have

φ̂Aα = 1
2 log ξ + 1

2
log xα log ξ

log q , (4.163)

so that, comparing with the A-limit of the index (4.97), we have the identification

XC
α = eφ̂

A ÎB . (4.164)
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CHAPTER 5
3d ADHM quiver gauge theory

This chapter is an extended example of some of the ideas we have met throughout the
thesis. We study a particularly rich non-abelian theory with adjoint matter that we refer
to as the 3d ADHM quiver gauge theory.

We compute the hemisphere blocks defined in the previous chapter and show that they
glue correctly to the twisted indices—this is an important check on definition 4.1. We find
that the representation theoretic content of the blocks is more interesting than the simple
Lie algebras studied thus far in the cotangent type examples. We also study the half index
of Neumann boundary conditions. In the ADHM example we find interesting connections
to the geometric results on handsaw quiver varieties that we studied in chapter 3.

The theory has deep connections to the enumerative geometry of Hilbert schemes
of points in the plane; in this chapter we turn the correspondence between physics and
geometry around and use 3d mirror symmetry to predict a combinatorial expression for
the ‘Poincaré polynomial’ of the relevant quasimap space.

One of the main motivations for studying the 3d ADHM quiver gauge theory is that it
flows in the IR to a theory with an AdS4 holographic dual description. This chapter lays
the ground work for understanding geometric and representation theoretic aspects of this
correspondence and we conclude with some further directions related to AdS4 black hole
entropy.

Overview. We begin in section 5.1 with background material relating the theory to the
geometry of the Hilbert scheme of points in the plane. In section 5.2 we compute the
hemisphere blocks introduced in the previous chapter using the prescription of definition
4.1. In the first new result of the chapter we show that these blocks compute the Verma
characters of the Coulomb branch algebra R̂C and provide a check of (a refined version
of) the 3d mirror symmetry identity of proposition 3. In the second result of the chapter
we compute the twisted index in section 5.4—we argue that for the ADHM theory there
is some extra structure and the twisted index gluing coincides with gluing vertices in
topological string theory. In section 5.3 we consider Neumann boundary conditions and
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Figure 5.1: Quiver description of HilbN(C2).

find a new interesting connection to the Hanany-Tong moduli space of chapter 3. Finally
in section 5.5 we review the recent work of [218] on the 3d ADHM theory and AdS4 black
hole entropy and discuss how this work can be interpreted in enumerative geometry.

Conventions. We refer the reader to appendix A for a review of the conventions for
partitions and combinatorics used throughout this section.

Publications. This chapter is mostly based on the author’s contributions to [219].
However, the approach to hemisphere blocks using the definition 4.1 does not feature in
this paper—[219] takes an alternative approach and constructs the boundary condition
from first principles, we do not review that construction here.

• S. Crew, N. Dorey and D. Zhang, Blocks and Vortices in the 3d ADHM Quiver
Gauge Theory, 2010.09732. (accepted to JHEP)

Section 5.3 consists of the author’s currently unpublished work.

5.1 Preliminaries

We focus on a particular 3d gauge theory living on N D2-branes on top a single D6-brane
in type IIA string theory [220, 84]. The theory has a Lagrangian description as a 3d N = 4
theory with G = U(N) gauge symmetry.

The theory has a vector multiplet, one hypermultiplet in the fundamental representation
(I, J) and an adjoint hypermultiplet (A,B). The Higgs branch MH is described by the
Nakajima quiver variety encoded by the data in figure 5.1 and coincides with the ADHM
construction of the instanton moduli space [148]—we thus refer to this theory as 3d ADHM.

Turning on a real mass z = e−m for the symmetry rotating the adjoint field and the
usual axial mass deformation t = e−τ generates the group action on the quiver described
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in section 3.3.1 and gives rise to isolated massive vacua. We also turn on a positive real
FI parameter ζ = e−ξ. The Coulomb branch has recently been constructed in the work
of Nakajima and Kodera [221] where it is shown that the quantised Coulomb branch is
a certain deformation of a quotient of the affine Yangian Y (ĝl(1)) known as a spherical
cyclotomic rational Cherednik algebra. The theory is expected to be self mirror dual as
argued in the works [222, 223].

5.1.1 Hilbert schemes

In this chapter we predominantly focus on the theory with one fundamental flavour.
In this case the resolved Higgs branch of the theory can be described by the Hilbert
scheme of points in the plane MH = HilbN(C2). The unresolved Higgs branch is the
symmetric product M0

H = SymN(C2) and the resolution is the Hilbert-Chow morphism
π : HilbN (C2)→ SymN (C2). We begin with a brief review of the Hilbert scheme of points
in the plane following [123].

Definition. The Hilbert scheme of points in the plane parametrises ideals of codimension
N in C[x, y]

HilbN(C2) := {J ⊂ C[x, y] : dim(C[x, y]/J ) = N} . (5.1)

As we now show following [103, 224], this space is isomorphic to the Jordan quiver variety
of section 3.3.1. When Nf = 1 the stability condition of definition 2.3 is equivalent for
θ > 0 to1

µ−1(0)s = {(A,B, I, J) : J = 0 , I is cyclic for (A,B)} . (5.2)

Then, given a point in µ−1(0)s, we can define a polynomial ideal in (5.1) invariant under
the G-action (3.85) by

JA,B,I = {p(x, y) ∈ C[x, y] : p(x, y)I = 0} . (5.3)

This map is 1-1.

Fixed points. There is a natural torus action T on HilbN (C2) induced by the following
action on C2

(x, y)→ (xt−1
1 , yt−1

2 ) . (5.4)

This action coincides with the group actions of section 3.3.1 under the identification
(t1, t2) = (zt 1

2 , z−1t
1
2 ) so that the action corresponding to t1t2, denoted C×t , scales the

symplectic form and the action associated to t1/t2, denoted A, leaves it invariant. We
write the combined torus action as T = A× C×t . We work with the (z, t) fugacities since

1A cyclic vector I for A,B satisfies C〈A,B〉I = V .

141



1 x

xyy

y2

Figure 5.2: Fixed point in HilbN(C2) corresponding to the ideal generated by monomials
{x2, x2y, xy2}.

these correspond to the physical flavour symmetry and axial R-symmetry. The torus
fixed points are labelled by partitions λ of N and correspond to ideals generated by the
monomials

Jλ = {xλiyi : i = 1, . . . , l(λ)} . (5.5)

An example is shown in figure 5.2.

Tautological bundle. According to the general arguments of section 3.1.1, there is one
tautological vector bundle V of rank N associated to the single gauge node of figure 5.1.
In the Hilbert scheme description (5.1) the fibre of this bundle at a fixed point λ is given
by

V|λ = C[x, y]/Jλ . (5.6)

In the K-theory ring KT (HilbN(C2)) the bundle V is described by Chern roots V =
w1 + . . .+ wN and from (5.5) the evaluation at a fixed point λ is

Vλ =
∑

(i,j)∈λ
zi−jt

1
2 i+

1
2 j−1 . (5.7)

Hence the evaluation of the Chern roots (3.12) is given by ws(λ) = zis−jst
1
2 is+

1
2 js−1 where

s runs over the boxes in λ. We deduce that the tautological bundle L = detV at a fixed
point λ is then given by

Lλ = z−
∑

s∈λ cλ(s)t
∑

s∈λ
1
2hλ(s)+ 1

2 , (5.8)

where we used the definition of the hook length hλ(s) and content cλ(s) (A.21). This
agrees with equation (3.94) in the case r = 1.

Tangent bundle. Specialising (3.93) to the case r = 1 we have that the evaluation of
the tangent bundle at a fixed point λ is given by

TλMH =
∑
s∈λ

z−lλ(s)−aλ(s)−1t−
1
2 lλ(s)+ 1

2aλ(s)− 1
2 + zaλ(s)+lλ(s)+1t−

1
2aλ(s)+ 1

2 lλ(s)− 1
2 . (5.9)
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Throughout we fix chambers CH = {z > 0} and CC = {ξ > 0} and in that case the tangent
bundle splits into positive and negative weights TλMH = N+

λ +N−λ with

N+
λ =

∑
s∈λ

zaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)−1) ,

N−λ =
∑
s∈λ

z−aλ(s)−lλ(s)−1t−
1
2 (aλ(s)+lλ(s)+1) .

(5.10)

K-theory. Recall from section 3.1.1 that the localised K-theory KT(X)loc of a Nakajima
quiver variety is a vector space (over the representation ring) with a basis labelled by
skyscraper sheaves Iα at fixed points. In the case of the Hilbert scheme of points we have
[145]

Kt1,t2(HilbN(C2))loc. ∼= Z[x1, x2, . . . , xN ]⊗ Z[t1, t−1
2 ] , (5.11)

with the isomorphism mapping Macdonald polynomials (B.23) to the skyscraper sheaves
of fixed points

Iλ ↔ H̃λ(t1, t−1
2 ) , (5.12)

with |λ| = N . The normalisation of the Macdonald polynomial is Haiman’s modified
Macdonald polynomial given by

H̃λ(X; t1, t−1
2 ) = t

n(λ)
1 Jλ

(
X

1− t−1
1

; t1, t2
)
. (5.13)

The relationship between Jλ and Pλ is reviewed in appendix B. In particular, the product
structure in the localised K-theory is determined by the Macdonald structure constants
f νλµ(t1, t−1

2 ) defined in (B.41) and the bilinear pairing coincides with the inner product
(B.45).

5.2 Hemisphere blocks

We now compute the hemisphere blocks for the 3d ADHM theory. Physically we expect
these blocks coincide with hemisphere partition functions of the theory with a N =
(2, 2) exceptional Dirichlet boundary condition on the S1 × S1 boundary. Following the
prescription proposed in definition 4.1 the B-shifted hemisphere block can be written as

HB
λ (ζ, z; q, t) = eφ

B
λ IB,λ1-loopI

B,λ
Vortex . (5.14)
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As usual, we denote by IBλ = IB,λ1-loopI
B,λ
Vortex the contributions from the half index part.

Using (5.8) and (5.10), the classical contribution is given by

φBλ =−
∑
s∈λ

cλ(s)
 log ζ log z

log q +
∑
s∈λ

hλ(s)
 log

(
t−

1
2 q

1
2
)

log z
log q +

∑
s∈λ

hλ(s)
 log

(
t

1
2
)

log ζ
log q −

∑
s∈λ

cλ(s)
 log

(
t

1
2
)

log
(
t−

1
2 q

1
2
)

log q .

(5.15)

The one-loop piece follows using (5.10)

IB,λ1-loop = PE
[
t− q
1− qN

+
λ

]
=
∏
s∈λ

(
qzaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1); q

)
∞(

tzaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)−1); q

)
∞

. (5.16)

The vortex contributions are given by the vertex functions for HilbN(C2)

IB,λVortex = Vλ(ζ, z; q, t) =
∑

d

ζdχ(Ôvir.,QMd
λ) , (5.17)

where QMd
λ denotes the based quasimap space for HilbN (C2). These functions were recently

computed by [86]2 and are given by

Vλ(ζ, z; q, t)

=
∑

π∈RPP(λ)

(
ζt−

1
2 q

1
2
)|π|∏

s∈λ

(ws(λ)−1; q)−πs
(qtws(λ)−1; q)−πs

∏
s,t∈λ
s 6=t

(
qtwt(λ)
ws(λ) ; q

)
πt−πs(

wt(λ)
ws(λ) ; q

)
πt−πs

(
zt−

1
2
wt(λ)
ws(λ) ; q

)
πt−πs(

qzt
1
2
wt(λ)
ws(λ) ; q

)
πt−πs

,

(5.18)

where ws denotes the evaluation of Chern roots (5.7). A priori the vortex sum should be
over all degrees d = (d1, . . . , dN) ∈ ZN however the same vortex partition function was
recently obtained via factorising the superconformal index [218] and there it is argued that
only the di that weakly increase along the rows and columns of λ contribute i.e. {di} form
a reverse plane partition.3 Our conventions for reverse plane partitions are summarised in
appendix A. In the geometrical context of section 4.1.1 this can be interpreted as the fact
that each quasimap f : P1 → HilbN (C2) with f(∞) = λ is labelled by a single non-negative
integer degree d and the fixed points on the moduli space are labelled by reverse plane
partitions π of λ with |π| = d.

As in section 4.3, the A-shifted hemisphere block is given by the parameter redefinition

HA
λ = HB

λ (t→ tq) . (5.19)
2There are some differences of convention: q → q−1 and their partitions are rotations of ours by 90◦.
3This is also shown explicitly in appendix D of [219].
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5.2.1 Verma character limits

In the previous chapter we discussed how the A-limit yields characters of Verma modules
of the Coulomb branch chiral ring. This limit is realised by sending t → q of equation
(5.14) and, in agreement with the general arguments of section 4.4, we find that only the
vortex contributions survive giving

ÎAλ := lim
t→1
IAλ = lim

t→q
IBλ =

∑
π∈RPP(λ)

ζ |π| . (5.20)

The A-limit of the Casimir term is

φ̂Aλ = −
∑
s∈λ

cλ(s)
 log ζ log z

log q + 1
2

∑
s∈λ

hλ(s)
 log ζ . (5.21)

Verma characters. The quantised Coulomb branch algebra R̂C has recently been
studied from the physical [225] and geometric [221] points of view. We briefly review this
construction and discuss the conjectural Verma module characters.

The 3d ADHM theory with one flavour is self-mirror dual. We explain in the following
how both the A-limit and the B-limit give the same character. To the authors knowledge,
the Verma modules of the quantised Higgs branch algebra R̂H have not been studied in
the mathematical literature and in this section we focus on the Coulomb branch side.

The algebra R̂C can be realised as an algebra of difference operators acting on functions
on CN . We denote by wa variables on CN and va the shift operator

va : wa → wa + log q . (5.22)

The difference (monopole) operators are then defined by

Et =
N∑
a=1

N∏
b6=a

wa − wb − log z
wa − wb

wt+1
a va ,

Ft =
N∑
a=1

N∏
b 6=a

wa − wb + log z
wa − wb

wtava .

(5.23)

where t is a non-negative integer.

Remark. We note that these operators look similar to those of section 3.2.4—they are
rational versions of those operators. We expect that this is not a coincidence: Operators
of this type can be collected as generating functions (see [226]) of the quantum toroidal
algebra Ut( ˆ̂gl1) which acts in the quantum K-theory of HilbN(C2) [227, 228, 50]. We
expect this correspondence to be an incidence of a K-theoretic lift of the quantum Hikita
conjecture [229].
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Figure 5.3: The diagonals of λ = (3, 2, 2, 1) are {1,1,2,2,1,1}.

In each vacuum λ the action of R̂C can be decomposed in terms of the diagonals {Nk}
of λ with ∑

Nk = N—the definition of the diagonals of a partition is shown in figure
5.3. The variables wa and shift operators va are then split into groups wk;a and vk;a of
Nk variables with corresponding splittings of the monopole operators Ek,t and Fk,t. The
Hamiltonians are given by the wk;a variables and the Verma modules are generated from
the action of Ek,t on a lowest weight state annihilated by the Fk,t. We refer the reader to
[225] for a detailed construction of the module but note here that the lowest weight state
has4

wk;a|Bλ〉 = [(log z − log q)j − (log q + log z)i] |Bλ〉 , (5.24)

where (i, j) are the coordinates of the box associated to the ath element on the kth diagonal.
Higher weight states have eigenvalues

wk;a = − log q nk;a + (log z − log q)j − (log q + log z)i , (5.25)

where the nk;a are positive integers non-decreasing along the rows and columns of λ. This
is precisely the data of a reverse plane partition π ∈ RPP(λ) and the module is generated
by {nk;a : nk;a ∈ RPP(λ)}. We can now write down the Verma character5

XC
λ (ζ) = Tr

∏
k,a

ζ
wk;a
log q = e−(∑s∈λ cλ(s)) log ζ log z

log q + 1
2(∑s∈λ hλ(s)) log ζ ∑

π∈RPP(λ)
ζ |π| . (5.26)

We see this matches the A-limit in (5.20) and (5.21) and, in accordance with the general
arguments of section 4.4, we have

XC(Bλ) = lim
t→1

HA
λ = eφ̂

A
λ ÎA . (5.27)

4We have rescaled variables from [225] and performed a triality transformation ε2 → −ε1 − ε2 in their
notation to match our conventions.

5The Verma characters were also recently computed with an additional R symmetry twist in [208]. In
this equation we have used the identity (A.23).
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5.2.2 Specialised limits and combinatorics

In this section we verify the mirror symmetry property of the specialised blocks (proposition
3 of section 4.3) for HilbN (C2). Firstly, we compute the B-limit of the index and find that
only the 1-loop contributions survive, equation (5.16) telescopes to give

ÎBλ = lim
t→1
IBλ = 1

1− zhλ(s) . (5.28)

This is the well-known Hook generating function [230] for reverse plane partitions. Indeed,
computing the A-limit, the vortex sum in (5.18) degenerates to a count of fixed points
giving

ÎBλ = 1
1− zhλ(s) =

∑
π∈RPP(λ)

ζ |π| = ÎAλ , (5.29)

with the second equality under the mirror identification ζ ↔ z. We thus verify proposition
3 in a non-trivial example. Geometrically we have that the generating function of the
fixed point count on the quasimap space QMλ is given by the attracting directions of the
tangent bundle evaluated at λ.

Refined limit. We now consider two refined limits of the half index. Recall the half
index of an exceptional Dirichlet boundary condition B is given by

Iα = TrHB(−1)F qJ+RV +RA
4 t

RV −RA
2 zFHζFC . (5.30)

We consider the two limits tq± 1
2 → 0 with tq∓ 1

2 fixed. Similar limits were discussed for the
full superconformal index in [231]. In the A- and B-shifted convention these are the limits

lim
tq

1
2→0
Iα = lim

q→0
IAα , lim

tq−
1
2→0
Iα = lim

q→0
IBα . (5.31)

The first of these was considered in chapter 3 where this limit took us from the χt genera
of vortex moduli space to the Poincaré polynomials. Using essentially identical unitarity
arguments to those of section 2.1.3, these limits select operators with either J + RV

2 = 0
and D = RA

2 or J + RA
2 = 0 and D = RV

2 . That is to say they are traces over Higgs or
Coulomb operators but now refined by R charge.

In the present example of HilbN(C2) we first compute the refined B-limit of equation
(5.16) where we find

lim
q→0
IBλ = 1

1− zaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)+1)

. (5.32)
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The geometrical interpretation of the q → 0 limit of the A-twist is less clear in comparison
to the T [SU(N)] example discussed in chapter 3. In particular, the quasimap space is
no longer a non-singular quasi-projective variety and the limit is not strictly a Poincaré
polynomial. However, we note that under certain conditions6 at each fixed point in
equation (5.18) the numerator and denominators have matching powers of q so at least
this limit is well-defined. We abuse terminology and still refer to this limit as the ‘Poincaré
polynomial limit’. We return to this point after computing the A- and B-twisted indices
in section 5.4.

5.3 Neumann boundary conditions

So far in the thesis we have focused on exceptional Dirichlet boundary conditions. In
this section we discuss particular Neumann boundary conditions, denoted N , and their
Higgs branch images. Again there is an action of the bulk chiral ring on the image and
the general arguments of [55] show that N should yield simple modules of R̂H .

Overview. We begin with a discussion of Neumman boundary conditions in general and
the computation of their half indices. We study a particular boundary condition, denoted
N , for the SQED[N ] and SQCD[k,N ] examples and discuss the geometric interpretation
of N as counting sections of line bundles over the Higgs branch. Finally, we study the 3d
ADHM theory with Nf > 1 flavours and discuss the relationship between characters of
R̂H and the Hanany-Tong moduli space of section 3.3.

5.3.1 Half index

The Neumann boundary condition imposes the following conditions for the N = 4 vector
multiplet7

N : F3µ|∂ = 0 , D3ϕ|∂ = 0 , Dµσ|∂ = 0 , (5.33)

where µ are directions parallel to the boundary. In contrast to the exceptional Dirichlet
boundary conditions discussed in section 4.3.1, the gauge symmetry is preserved at the
boundary. In particular, this means that the half index can be expressed as an integral
projecting onto gauge invariant states with the Haar measure for G [170].

6This condition, together with the limit q →∞ also being well-defined, is equivalent to ‘large frame
vanishing’ of the bare vertex—in fact HilbN (C2) has this property for any N [232]. We expect this to
be related to the ‘good’ and ‘ugly’ assumption. We thank Hunter Dinkins for discussions on large frame
vanishing.

7Together with the supersymmetric completion to the rest of the multiplet.
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The operators in the vector multiplet that survive (5.33) at the boundary together
with their charges are given by

Dn
zϕ Dn

zλ−

G adj adj
J n n+ 1

2

RA 2 −1
RV 0 +1

(5.34)

Hence for a G = U(N) gauge group the N = 4 vector multiplet contributes to the half
index (4.84) the following

I(N ) = 1
N !

(q; q)N∞
(q 1

2 t−1; q)N∞

∮ N∏
i=1

dwi
2πiwi

N∏
i 6=j

(
wi
wj

; q
)
∞(

q
1
2 t−1 wi

wj
; q
)
∞

. (5.35)

The contour here and throughout this section is a product of unit circles appropriate for
the Haar measure for SU(N). As in section 4.3.1, we again have a choice of Dirichlet or
Neumann for each N = 2 chiral comprising the N = 4 hypermultiplet. This determines a
Lagrangian splitting of (X, Y ) and throughout this section we take the splitting associated
to the natural polarisation of a Nakajima quiver variety. That is

N : X|∂ = 0 , D3Y |∂ = 0 . (5.36)

The matter contributions to the index are the same as in section 4.3.1 except now we
integrate over the gauge fugacities w since gauge symmetry is preserved at the boundary.

The Higgs branch image of N is formed of gauge invariant polynomials in Y that we
denote by p(Y ). We have

C[N ] = C[MH ]/I , (5.37)

for the Higgs branch image where I is the ideal of functions vanishing on N . The action
of the quantised bulk chiral algebra R̂H = C[MH ] on the Higgs branch image follows from
the quantum symplectic reduction and is explicitly

X̂ · p(Y ) = ε∂Y p(Y ) , Ŷ · p(Y ) = Y p(Y ) . (5.38)

We note that geometrically boundary local operators correspond to holomorphic functions
supported on N and therefore when MH is a co-tangent bundle then N = π−1(o) is the
compact core so that only the unit operator contributes to the index. We enhance this
setup in the following with a line operator so that the boundary chiral ring is less trivial.
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Remark. We note that it is possible, for example in the class of co-tangent type theories,8

that the image of Neumann boundary conditions coincides with the image of exceptional
Dirichlet boundary conditions on the Higgs branch. In such cases it is possible to define a
‘holomorphic block’ with a contour integral prescription.

5.3.2 Line operators

In this section we consider the insertion of a Wilson line at the origin z = z̄ = 0 and
extending perpendicularly out of the boundary.

WR = P exp i
∫
x3≤0
z=z̄=0

(A3 − iσ) dx3 . (5.39)

The boundary local operators that contribute to the half index then transform in the
representation R̄ and the projection onto gauge invariants is modified accordingly so that

I(N ) ∼
∮
dµGχR(w)IMatter . (5.40)

In terms of the polynomials p(Y ) the gauge invariance condition is now modified to

µ̂C · p(Y ) = R · p(Y ) . (5.41)

Geometrically this implies that we are counting sections of bundles over N ⊂MH . We
show this explicitly in the following example.

5.3.3 Warm-up: SQED[N ]

We return to supersymmetric QED with N flavours for the last time. Recall that MH =
T ∗PN−1 and now the Higgs branch image of the N boundary condition is N = PN−1. We
consider the half index count of local operators in the presence of a Wilson line of positive
charge n.

Boundary local operators. The ring C[N ] contains only the identity operator however,
in the presence of Wn, the boundary operators are given by polynomials in (Y1, . . . , YN)
satisfying the condition (5.41). The boundary module is then generated by

N : Y i1
1 Y i2

2 . . . Y iN
N |N 〉 , (5.42)

where i1 + . . .+iN = n and |N 〉 denotes the unit operator annihilated by all the ‘derivatives’
X. That is, the boundary module is generated by homogeneous polynomials of degree

8Theories whose Higgs branchMH is a cotangent bundle, for example theories in the class Tρ[SU(N)].
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n which can be associated to sections of O(n)→ PN−1. The action of9 R̂H = U(slN)/Z
realises H0(PN−1,O(n)) as a finite dimensional module as in the Borel-Weil-Bott theorem
for this simple partial flag variety.

Half index. We now compute the half index of N . Following the recipe for the vector
multiplet in the previous section and the matter recipe from section 4.3.1, keeping track
of the gauge fugacity now, we find

IWn(N ) = (q; q)∞
(q 1

2 t−1; q)∞

∮ dw

2πiww
−n

N∏
i=1

(q 3
4 t−

1
2wxi; q)∞

(q 1
4 t

1
2wxi; q)∞

. (5.43)

Taking the B-limit we find the integrand telescopes to

ÎBWn
(N ) := lim

t→q
1
2

IN ,Wn =
∮ dw

2πiww
−n

N∏
i=1

1
1− wxi

. (5.44)

We note this is the Molien integral from example 3.2 that computes sections of the line
bundle O(n) over PN−1, or equivalently the boundary operators (5.42), so that10

ÎBWn
(N ) = χTH (O(n),PN−1) = chTHH0(PN−1,O(n)) . (5.45)

It is straightforward to evaluate the integral explicitly by residues but to illustrate the
more general principle we can evaluate it using the symmetric function methods from
chapter 3. The Schur measure (B.15) is particularly simple for one variable and we write:

ÎBWn
(N ) =

∮
dµS[w]s(n)(w−1)

∑
λ

sλ(w)sλ(x1, . . . , xN) ,

= s(n)(x1, . . . , xN) ,
(5.46)

where in the second line we use orthogonality of the Schur polynomials under the measure
dµS[w]—see appendix B. Indeed we find the appropriate character for the totally symmetric
module H0(PN−1,O(n)).

SQCD[k,N ]. We briefly discuss the non-abelian theory SQCD[k,N ]. The details of
this theory were reviewed in example 4.3.4. Recall that MH = T ∗Gr(k,N) and we have
N = Gr(k,N). The flavour symmetry is GH = GL(CN) and the gauge symmetry is
GC = GL(Ck). We again insert a Wilson line in the totally symmetric representation so

9The arguments of section 4.4 show that the quantised Higgs branch algebra of SQED[N ] is a central
quotient of U(slN ) by Casimirs.

10The second equality follows since the higher cohomology of line bundles on PN−1 vanishes.
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that the half index is given by

IWn(N ) = 1
k!

(q; q)k∞
(q 1

2 t−1; q)k∞

∮ k∏
i=1

dwi
2πiwi

w−ni

k∏
i 6=j

(
wi
wj

; q
)
∞(

q
1
2 t−1 wi

wj
; q
)
∞

k∏
i=1

N∏
j=1

(q 3
4 t−

1
2wixj; q)∞

(q 1
4 t

1
2wixj; q)∞

.

(5.47)
Before taking the B-limit, we can evaluate the integral using the Macdonald polynomial
methods of chapter 3 to give11

IWn(N ) = (q; q)k∞
(q 1

2 t−1; q)k∞

∮
dµ

(k)
M [W ; q, q 1

2 t−1]P(n)(W−1)
∑
λ

Qλ(W )Pλ(q
1
4 t

1
2X)

= (q; q)k∞
(q 1

2 t−1; q)k∞
N(n)(q, q

1
2 t−1)P(n)(q

1
4 t

1
2X; q, q 1

2 t−1) .
(5.48)

In the first line we rewrite the integral in terms of the Macdonald measure (B.46) and use
the Cauchy identity (B.31). In the second line we use the orthogonality of Macdonald
polynomials (B.24). The B-limit t→ q−

1
2 is then the limit that sets equal the parameters

of the Macdonald polynomial—in this limit the normalisation constant (B.47) simplifies
to one and the Macdonald polynomial degenerates to a Schur polynomial so that

ÎWn(N ) = s(n)(x1, . . . , xN) . (5.49)

Again, the count of boundary operators in the presence of Wn realises the Borel-Weil-Bott
theorem, in this case for the line bundle O(n)→ Gr(k,N) i.e.

ÎWn(N ) = chTHH0(Gr(k,N),O(n)) . (5.50)

Remark. We note that Macdonald polynomials with arbitrary partition labels can be
realised by Tρ[SU(N)] theories, generalising equation (5.48). It would be interesting to
understand if there is an algebra whose characters are realised by these line operator half
indices with the full q and t dependence.

5.3.4 Hanany-Tong moduli space

We now apply the ideas of the previous section to the theory studied in this chapter and
compute the Neumann boundary condition for 3d ADHM. We momentarily consider the
theory with Nf > 1 hypermultiplets described by the quiver in figure 3.5 (r = Nf in
that figure). The fields (I, J) now transform in the fundamental of the flavour group
GH = SU(Nf) for which we introduce associated mass parameters xi = e−mi with
i = 1, . . . , N . The group action on the quiver data is as in (3.88).

11The dependence of the Macdonald polynomials on the parameters (q, q 1
2 t−1) is left implicit in the

first line.
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The ADHM theory is an upgrade from the previous SQCD[k,N ] example in that we
now add adjoint matter. The boundary condition on the vector multiplet is again given by
(5.33) and for the matter fields we take the obvious Lagrangian associated to the quiver in
figure 3.3

N : J |∂ = 0 , D3I|∂ = 0 ,
A|∂ = 0 , D3B|∂ = 0 .

(5.51)

The Higgs branch image of this boundary condition is then the Hanany-Tong moduli space
of section 3.3.

Half index. Following the previous section we can write down the half index for the
boundary condition N together with a Wilson line Wn. This is the same as the half index
for SQCD[k,N ] in (5.47) with an extra contribution from the adjoint matter B.

IWn(N ) = 1
N !

(q; q)N∞
(q 1

2 t−1; q)N∞

∮ N∏
i=1

dwi
2πiwi

w−ni

N∏
i 6=j

(
wi
wj

; q
)
∞(

q
1
2 t−1 wi

wj
; q
)
∞

N∏
i,j=1

(
q

3
4 t−

1
2 zwi

wi
; q
)
∞(

q
1
4 t

1
2 zwi

wi
; q
)
∞

N∏
i=1

Nf∏
j=1

(q 3
4 t−

1
2wixj; q)∞

(q 1
4 t

1
2wixj; q)∞

.

(5.52)

Now in the B-limit we find that the integrand telescopes to12

ÎBWn
(N ) = lim

t→q−
1
2

IWn(N )

= 1
N !

∮ N∏
i=1

dwi
2πiwi

w−ni

N∏
i 6=j

(
1− wi

wj

)
N∏

i,j=1

1
1− zwi/wj

N∏
i=1

Nf∏
j=1

1
1− wixj

.

(5.53)

We evaluated this integral in proposition 1 of chapter 3 (see the remark following the proof
for the integral formulation) where we found

ÎBWn
(N ) = 1

(z; z)N
Q′(nN )(x1, . . . , xNf ; z) . (5.54)

We thus expect Milne polynomials Q′(nN )(x, z) to yield simple module characters of the
Higgs branch algebra R̂H of the ADHM quiver. We note that in the proof of (5.54), we
made use of the raising operators D1,n that act by

D1,nQ
′
(nN )(x1, . . . , xNf ; z) = Q′(nN+1)(x1, . . . , xNf ; z) , (5.55)

12We note that this integral also arises as the matrix model of a gauged quantum mechanics as in
[153]. It would be interesting to investigate the relationship between this model and the one dimensional
quantum mechanics of Higgs operators in the Ω background.
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from this perspective we can view these operators as adding Wilson line charge n.

Geometric interpretation. In section 3.3 of chapter 3 we realised this half index as
computing the equivariant Euler characteristic of powers of the tautological line bundle
over the Hanany-Tong moduli space VN,Nf so that

ÎBWn
(N ) = chTHH0(VN,Nf ,L⊗n) . (5.56)

We note a difference with the SQCD[k,N ] example in that the Hanany-Tong moduli
space is non-compact. This is reflected in the above in that in the absence of Wilson line
charge n = 0 we still have the contribution (z; z)−1

N since there are non-trivial holomorphic
functions given by TrBi. Hence the modules generated by local operators in the presence
of Wn are not finite dimensional.

5.4 Twisted index factorisation

In this section we discuss the twisted index factorisation for the 3d ADHM theory. We
return to the case of Nf = 1 so that the Higgs branch is HilbN(C2).

Outline. We first verify that the A- and B-twisted index gluing yields the Hilbert series.
This is an important check of our block definition 4.1. We then discuss 3d mirror symmetry
in this self mirror dual context and use it to conjecture an expression for the ‘Poincaré
polynomials’ of QMd

λ. Finally we note some special features of the 3d ADHM theory. The
vortex contributions to the block Hλ coincide with the 1-leg PT vertex and we make the
connection between gluing verties to form the conifold amplitude in topological string
theory and the twisted index factorisation in 3d.

5.4.1 A- and B-twisted indices

We first compute the indices by gluing the hemisphere blocks (5.14).

A-twist. Recall that the A-shifted blocks are related to the B-shifted blocks (5.14) by
the following redefinition

HA
λ (ζ, z; q, t) = HB

λ (ζ, z, q, t→ tq) . (5.57)

154



The vacua of the 3d ADHM theory with Nf = 1 and gauge group rank N are labelled by
plane partitions λ with |λ| = N . The relevant gluing for the A-twisted half index is

IA =
∑
|λ|=N

HA
λ (ζ, z; q, t)HA

λ (ζ, z; q−1, t) . (5.58)

Firstly note that contributions from the classical pieces that survive in this gluing are
given by

IA,λClassical = ζ
∑

s∈λ hλ(s)t
1
2
∑

s∈λ cλ(s) . (5.59)

The gluing of the one-loop contributions (5.16) using the fusion identity (A.10) yields

IA,λ1-loop =
∏
s∈λ

(
zaλ(s)+lλ(s)+1(tq) 1

2 (lλ(s)−aλ(s)−1)q; q
)
aλ(s)−lλ(s)(

zaλ(s)+lλ(s)+1(tq) 1
2 (lλ(s)−aλ(s)+1); q

)
aλ(s)−lλ(s)

. (5.60)

Recall from the general arguments of chapter 3 that the A-twisted index is independent of
the fugacities q and z. In particular, we are free to send z → 0 in the above which leaves
IA,λ1-loop = 1. The conclusion is that the A-twisted index only receives contributions from
the classical piece and the vertex functions so that

IA =
∑
|λ|=N

ζ
∑

s∈λ hλ(s)t
1
2
∑

s∈λ cλ(s)Vλ(ζ, z; q, tq)Vλ(ζ, z; q−1, tq) . (5.61)

We are also free to send q → 0 in the above expression. As noted in section 5.2, this limit
is well-defined but is not strictly a Poincaré polynomial limit. We take q → 0 and write:

H.S.[HilbN(C2)] = IA =
∑
|λ|=N

ζ
∑

s∈λ hλ(s)t
1
2
∑

s∈λ cλ(s) ∑
d,d′

ζd+d′t
1
2 (d−d′)PQMd

λ
(t)PQMd′

λ
(t−1) .

(5.62)
A priori it seems difficult to obtain a closed form expression for PQMd

λ
(t), however 3d

mirror symmetry provides an answer as we discuss further after computing the B-twisted
index.

B-twist. We now compute the B-twisted index. In this case only the perturbative pieces
contribute and fusing (5.15) we have for the classical piece

IB,λClassical = z
∑

s∈λ hλ(s)t−
1
2 cλ(s) . (5.63)

Using the fusion identity (A.10) with the one-loop terms (5.16) we find

IB,λ1-loop =
∏
s∈λ

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)+1)

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1)

, (5.64)
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so that for the B-twisted index in total we have

IB =
∑
|λ|=N

HB
λ (ζ, z; q, t)HB

λ (ζ, z; q−1, t)

=
∑
|λ|=N

∏
s∈λ

zhλ(s)t−
1
2 cλ(s)

(1− zaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)+1))(1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1))

.

(5.65)

We recognise this as Nakajima’s formula for the Hilbert series of HilbN(C2) up to an
overall power of t− 1

2 |λ| which agrees with general arguments of section 4.3.3. As expected,
(5.65) reproduces the expression (3.95) from chapter 3 in the case r = 1. In section 3.4.3
we computed the large gauge group rank limit of the Hilbert series/B-twisted index and
found the plethystic form

lim
N→∞

IB = PE
 zt

1
2

1− zt 1
2

+ z−1t
1
2

1− z−1t
1
2

+ 1
(1− zt 1

2 )(1− z−1t
1
2 )

 , (5.66)

hence in the large N limit the Higgs branch chiral ring is freely generated by the operators
TrAi, TrBi and IAiBjJ for i, j ≥ 0.

Refined 3d mirror symmetry. Recall the mirror symmetry statement from proposition
3 which exchanges the one-loop and vortex contributions in the A and B limits. If we
compare equations (5.62) and (5.65) we see the classical pieces are identified and we now
have a refined version of proposition 3. This is refined in the sense that the one-loop
contributions to the B-index can be expressed as

lim
q→0
IB,λ1-loop = lim

q→0
PE

[
t− q
1− qN

+
λ

]
= 1

1− zaλ(s)+lλ(s)+1t
1
2 (lλ(s)−aλ(s)+1)

, (5.67)

which is a refined version of the B-limit (5.28). We then have the identification

lim
q→0
IB,λ1-loop = lim

q→0
IA,λVortex =

∑
d

(t− 1
2 ζ)dPQMd

λ
(t) , (5.68)

where the two sides are equal up to the usual mirror symmetry transformations z ↔ ζ

and t↔ t−1. Indeed the Hillman-Grassl correspondence [233] provides an expansion of
the refined one-loop piece as a sum over reverse plane partitions13

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)+1)

=
∑

π∈RPP(λ)
(ζt− 1

2 )|π|tht(π) , (5.69)

13We thank Gjergji Zaimi for pointing this out to us in the MathOverflow post mathoverflow.net/
questions/354618/.
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λ

Figure 5.4: Conifold toric diagram. We glue along the preferred edge.

where ht(π) is a statistic on reverse plane partitions defined in appendix A. Note that
when t→ 1 this becomes the unrefined Hook generating formula (5.29). In particular 3d
mirror symmetry now predicts a closed expression for the ‘Poincare polynomials’ of the
quasimap moduli spaces.

PQMd
λ
(t) := lim

q→0
χ(Ôvir.,QMd

λ) =
∑

π∈RPP(λ)
|π|=d

tht(π) . (5.70)

5.4.2 String theory interpretation

As we discussed in section 3.3.1 of chapter 3, the Hilbert scheme is also a rank one
instanton moduli space. Specifically, the Hilbert series of the Hilbert scheme of N points
on C2 computes the N -instanton contributions to Nekrasov’s partition function [19] of a
five dimensional U(1) gauge theory on Ω-deformed C2

q,t × S1. In this context, (t1, t2) are
identified with the 5d Ω-deformation parameters (q, t).

This 5d gauge theory can be geometrically engineered in string theory [234, 235]. We
consider M-theory compactified on a non-compact toric Calabi-Yau threefold X. In this
case the relevant geometry is the resolved conifold X = O(−1) ⊕ O(−1) → P1 whose
(dual) toric diagram we present in figure 5.4. Edges in the toric diagram represent volumes
of P1 and vertices represent fixed points of the torus action.

The refined topological string A-model with target X is known to compute the 5d
partition function [236]. The topological A-model counts holomorphic maps f : Σg → X

and computes the refined Gromov-Witten invariants of X (for a review see [237]). The
refined topological vertex provides a powerful combinatorial realisation of topological
string amplitudes. Heuristically speaking, the topological vertex slices the diagram into
C3 patches, described by tri-valent vertices, by slicing edges with Lagrangian branes and
anti-branes. The count of holomorphic maps is then localised to torus fixed points in X.
The result is a Feynman diagram-like method to compute topological A-model amplitudes.
In the case of interest, figure 5.4 , the slicing is such that only vertices with one non-trivial
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edge are required and the relevant refined vertex is given by [236]

C∅∅λ(t, q) = q
1
2 ||λ||

2
Pλ∨(t−ρ; q, t)

=
(
zt

1
2
)||λ∨||2 ∏

s∈λ

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1)

.
(5.71)

The conjugate vertex is

C∅∅λ∨(q, t) = t
1
2 ||λ
∨||2Pλ(q−ρ; t, q)

=
(
zt−

1
2
)||λ||2 ∏

s∈λ

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)+1)

.
(5.72)

In the above equations we have used the principal specialisation identity for Macdonald
polynomials (B.34) and the notation q−ρ = q

1
2 , q

3
2 , q

5
2 . . .. Now we consider the B-shifted

hemisphere blocks (5.14). We have

lim
q→0

HB
λ (z, ζ; q, t) = z

1
2
∑

s∈λ hλ(s)t−
1
4
∑

s∈λ cλ(s) ∏
s∈λ

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)+1)

,

lim
q→0

HB
λ (z, ζ; q−1, t) = z

1
2
∑

s∈λ hλ(s)t−
1
4
∑

s∈λ cλ(s) ∏
s∈λ

1
1− zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1)

.

(5.73)

Hence the refined B-shifted blocks coincide with the topological vertices (5.71) and (5.72).
In particular, using the identity (A.17), the Casimir energy terms coincide with the so-
called ‘framing factors’ of the topological vertex—in fact the B-twisted index suggests
an alternative, more symmetric, distribution of the framing factors between the vertices.
Furthermore, the topological vertex gluing for the conifold amplitude (section 5.1 of [236])
coincides precisely with the B-twisted index gluing (5.65). Introducing a fugacity Λ for
instanton number we write

ZO(−1)⊕O(−1)→P1 =
∑
λ

Λ|λ|C∅∅λ(t, q)C∅∅λ∨(q, t)

=
∑
λ

Λ|λ|
[
lim
q→0

HB
λ (z, ζ; q, t)

] [
lim
q→0

HB
λ (z, ζ; q−1, t)

]
=
∑
λ

Λ|λ|
[
HB
λ (z, ζ; q, t)

] [
HB
λ (z, ζ; q−1, t)

]
.

(5.74)

The conifold amplitude is well-known [238] to compute the Hilbert series of the instanton
moduli space, in agreement with the calculation of section 5.4. This suggests a novel phys-
ical interpretation of the refined topological vertex as counting boundary local operators
in a three dimensional gauge theory.
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3d mirror symmetry. Since the theory is self mirror dual, we can equivalently write
the B-twisted index in terms of the A-twisted index and from the arguments in chapter 4
only the vertex pieces contribute so that (up to relabelling z → ζ and t→ t−1)

IB = IA =
∑
λ

ζ
∑

s∈λ hλ(s)t
1
2
∑

s∈λ cλ(s)
[∑

d

(
t−

1
2 ζ
)d
PQMd

λ
(t)
] [∑

d

(
t

1
2 ζ
)d
PQMd

λ
(t−1)

]
.

(5.75)

Remark. We conclude this section with remarks on how we expect to prove this corre-
spondence and the physical interpretation. If we consider further compactifying the system
on the M-theory circle, then we find type IIA string theory with D2-D0 bound states and
a single D6 brane. These bound states are counted by PT invariants [239, 240]—the corre-
spondence with the topological string computation arises from the PT/GW correspondence
[241, 242].

The PT invariants of X can be computed using localisation to the torus fixed points
XT described by the tri-valent vertices in the toric diagram 5.4. It is argued in [243] that
the one-legged PT vertex ZPT

λ (the torus contributions at the fixed points) are realised by
the virtual Euler characteristics of quasimaps to HilbN(C2) so that

ZPT
λ =

∑
d

ζdχT(Ôvir,QMd
λ) . (5.76)

We note that it is also possible to take a more pedestrian approach and, in an appropriate
chamber, directly identify the box counting formulation of the PT vertex [244, 245] with
the sum over reverse plane partitions in equation (5.18). In this way, we can identify the
topologically twisted gluing with the localisation calculation of PT invariants of X. In
particular this applies to the full equivariant vertex including q and ζ dependence. By the
arguments of section 3.1.4 of chapter 3 the topologically twisted index is independent of
these parameters and an exactly analogous cancellation in the conifold gluing of equivariant
PT vertices was recently observed in [246].

It would be interesting to complete this circle of ideas physically by realising the twisted
compactification on P1 of the D2 world-volume theory in this type IIA context along the
lines of [247].

5.5 Further directions: AdS4 black holes

In this section we review recent progress in understanding black hole microstate counting
from vortex partition functions [248, 218]. We discuss how this relates to our work and
place these recent calculations in a geometrical framework.

In the IR our theory flows to a N = 8 superconformal field theory on the world-volume
theory on N M2 branes [220], known as the ABJM theory. This theory has a Lagrangian
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description as a U(N)×U(N) gauge theory with opposite Chern-Simons levels κ = −κ̃ = 1.
ABJM is dual under the AdS/CFT correspondence to eleven dimensional supergravity
on AdS4 × S7 (for a review see [249]). The gravitational theory admits a class of dyonic
rotating black holes with AdS4 boundary conditions and in many examples indices of the
dual field theory have been shown to account for the entropy [250, 251, 252].

Recent work [248, 218] computes holomorphic blocks of the UV theory in a large angular
momentum Cardy limit and shows that a particular vacuum contribution dominates.
Schematically they realise the vortex partition function as a contour integral

ZS1×D(z, ζ; q, t) ∼
∮ N∏

i=1

dwi
2πiwi

w−ζi

N∏
i 6=j

(
wi
wj

; q
)
∞(

q
1
2 t−1 wi

wj
; q
)
∞

N∏
i,j=1

(
q

3
4 t−

1
2 zwi

wi
; q
)
∞(

q
1
4 t

1
2 zwi

wi
; q
)
∞

N∏
i=1

(q 3
4 t−

1
2wi; q)∞

(q 1
4 t

1
2wi; q)∞

.
(5.77)

This is the contour integral discussed in section 5.3 that computes the half index of a
Neumann boundary condition for the theory on R2 ×R≥0 in the presence of a Wilson line.
For cotangent type theories there exist Neumann boundary conditions whose Higgs branch
images coincide with the attracting submanifolds associated to the exceptional Dirichlet
condition, however for the ADHM theory there is no consistent set of contours for (5.77)
that account for all the vacua.

The Cardy limit corresponds to sending q → 1 in the partition function (5.77). In fact
in a number of examples this limit is not a simplification and at large N the Cardy limit
captures the correct black hole entropy even at finite q. The integral can be evaluated by
a saddle point approximation, schematically we have

ZS1×D ∼
∑
∗

1√
∂2W∗

e
1

log qW
∗ + . . . , (5.78)

where . . . indicate terms subleading in log q. The saddle point equations can be re-expressed
in the Cardy limit in the following way:

ζ = 1− wit
1
2

1− wit−
1
2

N∏
j 6=i

wi − twj
wi − t−1wj

wi − z−1t−
1
2wj

wi − zt
1
2wj

wi − zt−
1
2wj

wi − z−1t
1
2wj

, i = 1, . . . , N . (5.79)

The authors of [218, 248] carefully analyse these equations in the large N limit and argue
that a single vacuum λ = (1N) dominates—we expect this to be related to the fact
that, as discussed in section 5.3, the Neumann boundary condition is supported on the
Hanany-Tong moduli space which only contains these column fixed points.14 The dominant

14In the Nf = 1 case there is only one column fixed point.
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block is known as a Cardy block and scales like

log CS1×D ∼ −
i
√

3
2 log qN

3
2

√
∆1∆2∆3∆4 , (5.80)

where ∆i are constrained combinations of the log fugacities log ζ, log t, log z—we refer the
reader to [218] for the precise range of validity of these parameters. The Cardy blocks can
be glued to determine the large N behaviour of the superconformal index

ZS.C. = C(q, t)C(q−1, t−1) ,

logZS.C. ∼ −
i
√

3
log qN

3
2

√
∆1∆2∆3∆4 .

(5.81)

We see that the Cardy block gluing reproduces the entropy functional for AdS4 black holes
at finite angular momentum [253].

Geometric interpretation. We now discuss how this result fits into the geometry of
the Hilbert scheme of N points in the plane and the hemisphere blocks introduced in
this thesis. Instead of writing holomorphic blocks as a contour integral, in section 4.3
we advocated the exceptional Dirichlet prescription for the hemisphere partition function
associated to all vacua λ which leads to the hemisphere block

Hλ := eφλPE
[
t− q
1− qN

+
λ

]
Vλ(ζ, x; q, t). (5.82)

The Cardy limit corresponds to sending q → 1. The perturbative contributions are
relatively straightforward and we deal with those first. The q → 1 behaviour of the Casimir
energy is immediate and we consider only the Cardy limit of the one loop contribution.
For an analytic function the plethystic exponential (A.12) can be expressed as

PE[f(x)] = exp
( ∞∑
n=1

1
n
f(xn)

)
. (5.83)

We re-write the one-loop piece in this way and set q = eε with ε→ 0 to find

lim
q→1
Iλ1-loop = lim

q→1
PE

[ ∞∑
n=1

1
n

tn − 1
1− qnN

+
λ (tn, zn)

]

= exp
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ε
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n=1

1
n2 (1− tn)
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zaλ(s)+lλ(s)+1

)n (
t

1
2 (lλ(s)−aλ(s)−1)
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)

= exp
(1
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Li2(zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)+1))− Li2(zaλ(s)+lλ(s)+1t

1
2 (lλ(s)−aλ(s)−1))

]
+ . . .

)
.

(5.84)

161



It remains to compute the q → 1 limit of the bare vertex Vλ for HilbN (C2). The asymptotics
of this type of limit have been studied extensively in the enumerative geometry literature
in the context of quantum K-theory [51, 49, 50].

Integrability of HilbN(C2). Recall from section 5.1 that the localised equivariant K-
theory of HilbN(C2) is a ring of symmetric functions where skyscraper sheaves of fixed
points can be identified with Macdonald polynomials labelled by λ. The geometric R-
matrix construction15 of Maulik and Okounkov [46] realises the localised K-theory as a
Fock module of the quantum toroidal algebra Ut( ˆ̂gl1):

Kt1,t2

(⋃
N

HilbN(C2)
)

loc

∼= F(a) . (5.85)

These modules are of a similar class to those studied for the Yangian in section 3.2. We
refer the reader to [255] for more details. The module structure can also be understood
explicitly as an action on Macdonald polynomials without the full machinery of the
geometric R-matrix [232].

The study of the quantum K-theory of Nakajima quiver varieties was initiated in [51].
We refer the reader to the work [50] for detailed constructions in the ADHM case and
collect only some basic facts here. The quantum K-theory ring QKT(HilbN (C2)), deforms
the product on Kt1,t2(HilbN(C2)) with additional contributions from curves in HilbN(C2).
The classical K-theory is generated by the rank N tautological bundle V, this bundle is
deformed in QKT(HilbN(C2)) to a quantum tautological bundle, denoted by V̂, which
generates the quantum K-theory ring. By the construction of the localised K-theory, there
is a natural action of the quantum K-theory ring on the localised classical K-theory that
is diagonal in the basis of fixed points |λ〉 = Oλ. Specifically, if V̂ ∈ QKT(HilbN(C2)) is
the rank N quantum tautological bundle then

V̂ ⊗ |λ〉 = V̂(w1, . . . , wN)|λ〉 , (5.86)

where on the right hand side we evaluate the Chern roots on the solution corresponding
to λ in the following set of Bethe equations

â

(
wi

∂

∂wi
THilbN(C2)

)
= ζ , i = 1, . . . , N . (5.87)

15The geometric R-matrix is a systematic construction to understand extended quantum group actions
on geometric invariants of Nakajima quiver varieties. It is a culmination of the work initiated in physics
by [43, 44] known as the gauge-Bethe correspondence. We refer the reader to [254] for a review of more
recent developments.
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Using the tangent space formula in lemma 1 these equations are explicitly16

ζ = 1− wit
1
2

1− wit−
1
2

N∏
j 6=i

wi − twj
wi − t−1wj

wi − z−1t−
1
2wj

wi − zt
1
2wj

wi − zt−
1
2wj

wi − z−1t
1
2wj

, i = 1, . . . , N . (5.88)

These are precisely the equations arising from the saddle point evaluation (5.79) of the
holomorphic block integral and the Bethe ansatz equations for the quantum toroidal
algebra action (5.85). These equations were also expressed using the contour integral form
of the block in [50] but we note here that it is not necessary to formulate the block as a
contour integral for the geometric argument to hold.

Now the important theorem that we can use to relate enumerative geometry and the
black hole entropy story is the following due to [51]

Theorem 11. The q → 1 limit of the bare vertex is dominated by the eigenvalue of
multiplication by the quantum tautological line bundle L̂ := det V̂ . Precisely,

lim
q→1

Vλ(ζ, z; q, t) = exp
(

1
1− q

∫
dqζ log(lλ(ζ)) + . . .

)
, (5.89)

where lλ(ζ) are the (normalised) eigenvalues of multiplication by the quantum tautological
line bundle and

∫
dqζ denotes the Jackson q-integral.

Remark. Setting N = 1 we have a tractable toy model of this theorem. The theory
becomes SQED[1] with a decoupled adjoint hypermultiplet. We can then use the q-binomial
theorem (A.8) to write the vertex function in this case as

V(z, ζ; q, t) =
∑
d≥0

(
ζt−

1
2 q

1
2
)d (t; q)d

(q; q)d
. (5.90)

We can use the q-binomial theorem to ‘resum’ the vortices

V(z, ζ; q, t) = (tζt− 1
2 q

1
2 ; q)∞

(ζt− 1
2 q

1
2 ; q)∞

= PE
[

1− t
1− q ζt

− 1
2 q

1
2

]
.

(5.91)

The asymptotics of which can be analysed in the same way as the one-loop contributions
discussed above.

We conclude that the recent Cardy limit black hole entropy calculations of [248, 218] can
be interpreted in the context of enumerative geometry as finding the dominant eigenvalue
of multiplication by the quantum tautological line bundle L̂. We leave to future work

16Recall (t1, t2) = (zt 1
2 , z−1t

1
2 ).
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the interpretation of this calculation in terms of the integrable system associated to the
quantum toroidal algebra Ut( ˆ̂gl1).
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CHAPTER 6
Summary and outlook

In this thesis we have studied geometric and representation theoretic aspects of three
dimensional N = 4 gauge theories. Many of the ideas presented were centred on under-
standing and developing the factorisation property of supersymmetric indices and partition
functions.

In chapter 3 we studied the Hilbert series of Nakajima quiver varieties. We showed that
Macdonald polynomials are a convenient tool to evaluate the Hilbert series and compute
large gauge rank limits. We then considered handsaw quiver varieties in particular and
showed that equivariant counts of line bundles over these quivers realise Yangian characters.

In chapter 4 we presented two main ideas. Firstly, we showed that twisted indices can
be reformulated in terms of vortex geometry—in particular we showed that the twisted
index coincides with the Hilbert series and can be factorised into a product of Poincaré
polynomials of the vortex moduli space. We demonstrated this factorisation explicitly
for the T [SU(N)] and SQCD[k,N ] examples. Secondly, in this chapter we introduced
hemisphere blocks defined in the UV with a particular boundary condition. The blocks
realise factorisation of three manifold partition functions without perturbative ambiguities.
We showed that these blocks are also determined solely in terms of the Higgs branch
geometry of a theory and demonstrated that in certain supersymmetry enhancing limits
they realise lowest weight Verma module characters of Higgs and Coulomb branch chiral
rings.

In chapter 5 we studied the rich example of the 3d ADHM quiver gauge theory. This
example is a non-trivial check on the hemisphere block proposal of chapter 4 and the theory
also has some unique features of its own. We showed that the hemisphere blocks of the 3d
ADHM theory are related to the topological vertex and the gluing of blocks corresponds
to gluing vertices to compute the conifold amplitude. The blocks also have interesting
combinatorial properties relating to counting reverse plane partitions and we investigated
the implications of 3d mirror symmetry in this context. Finally, in this chapter we studied
Neumann boundary conditions, and using the results of chapter 3, we showed that the
half index of the 3d ADHM theory in the presence of a line operator exhibits an integrable
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structure.

6.1 Further directions

We conclude with some directions for further research.

3d mirror symmetry and quasimaps. We expect it is possible to prove 3d mirror
symmetry of the Hilbert series in generality by using the connection to the twisted index
discussed in this thesis. Roughly speaking, we have shown that one can write the Hilbert
series of the Higgs branch of a theory T in terms of vertex functions as

H.S.[MH(T )] =
∑
α

Vα(x, ζ; q, t)Vα(x, ζ; q−1, t) . (6.1)

This expression already implies surprising cancellations between the vertex functions that
would be interesting to investigate from an enumerative geometry perspective. The recent
works [86, 87, 88, 89] make explicit that symplectic duality acts on the vertex function by
linear transformations induced by the elliptic stable envelope. Schematically we can write

H.S.[MH(T )] =
∑
α

UαβUαγṼβ(x, ζ; q, t)Ṽγ(x, ζ; q−1, t) , (6.2)

where Uαβ is the elliptic stable envelope evaluated in the fixed point basis and Ṽ are vertex
functions of the symplectic dual variety. On the other hand, provided certain assumptions
are met, 3d mirror symmetry allows us to write the Hilbert series in terms of the mirror
dual variety as

H.S.[MH(T )] = H.S.[MC(T̃ )]
=
∑
α

Ṽα(x, ζ; q, t)Ṽα(x, ζ; q−1, t) . (6.3)

This implies a ‘unitarity’ property of the elliptic stable envelope matrix UαβUαγ = δβγ

and it would be interesting to investigate this property from the perspective of quasimap
moduli spaces.

Characters beyond the specialised limits. It would be interesting to investigate
the representation theoretic interpretation of half indices and bulk algebra actions away
from the specialised limits of section 4.4 in chapter 4. For example, we showed in that
section that in some cases the general half index in the presence of a line operator is given
by a Macdonald polynomial. Recent work [256] constructs boundary chiral algebras that
categorify the half indices of 3d N = 2 theories. However, at least naively, this structure
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is broken by the omega deformation and is not compatible with the perspective of section
4.4.

Higgs branch localisation systematics. In section 4.3 of chapter 4 we showed in the
SQED[N ] example that the exceptional Dirichlet boundary condition procedure mimics
the evaluation of quasimap vertex functions by Jackson q-integrals. We then extrapolated
the result to suggest a general geometric expression for the hemisphere block. It would
be interesting to test this proposal from the perspective of Higgs branch localisation.
We expect that the results of [36, 37] could be adapted to the hemisphere S1 × H2

with a boundary and in this way directly make contact with the quasimap localisation
computation.

Quantum Hikita conjecture. In chapter 5 we found a close relationship between the
(K-theoretic) Coulomb branch algebra of HilbN (C2) and the difference operators of Kedem
and Di Francesco [140]. We showed that the difference operators add line operator charge
to the half index of HilbN(C2). We expect this is an instance of a K-theoretic lift of the
quantum Hikita conjecture of [229]; we leave a careful study of the relationships between
these algebras to future work.

Black hole entropy. As discussed in more detail towards the end of chapter 5, it is
possible, at least in principle, to extract the entropy functional of certain AdS4 black holes
from the vertex functions of HilbN (C2). It would be interesting to interpret this calculation
in a more intrinsically geometric setting and elucidate the intriguing connections between
black hole entropy and the representation theory of quantum toroidal algebras.
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Lie compacts, Séminaire Bourbaki 2 (1954) 447–454.

[40] H. Nakajima et al., Quiver varieties and Kac-Moody algebras, Duke Mathematical
Journal 91 (1998) 515–560.

171

http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
http://dx.doi.org/10.1016/j.geomphys.2015.09.005
https://arxiv.org/abs/1507.00685
https://arxiv.org/abs/hep-th/9607163
http://dx.doi.org/10.4310/ATMP.2016.v20.n3.a4
https://arxiv.org/abs/1503.03676
http://dx.doi.org/10.4310/ATMP.2018.v22.n5.a1
http://dx.doi.org/10.4310/ATMP.2018.v22.n5.a1
https://arxiv.org/abs/1601.03586
http://dx.doi.org/10.1007/s00220-017-2903-0
https://arxiv.org/abs/1503.04817
http://dx.doi.org/10.1093/ptep/ptu158
https://arxiv.org/abs/1312.3627
http://dx.doi.org/10.1007/JHEP05(2014)030
http://dx.doi.org/10.1007/JHEP05(2014)030
https://arxiv.org/abs/1312.6078
http://dx.doi.org/10.1007/JHEP12(2014)177
https://arxiv.org/abs/1211.1986


[41] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras,
Duke Math. J. 76 (1994) 365–416.

[42] H. Nakajima, Quiver varieties and finite dimensional representations of quantum
affine algebras, Journal of the American Mathematical Society 14 (2001) 145–238.

[43] N. A. Nekrasov and S. L. Shatashvili, Supersymmetric vacua and Bethe ansatz,
arXiv preprint arXiv:0901.4744 (2009) .

[44] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge
theories, arXiv preprint arXiv:1312.6689 (2013) .

[45] N. Nekrasov and S. Shatashvili, Bethe/Gauge correspondence on curved spaces,
Journal of High Energy Physics 2015 (2015) 100.

[46] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv
preprint arXiv:1211.1287 (2012) .

[47] A. Okounkov, Enumerative geometry and geometric representation theory, Algebraic
Geometry: Salt Lake City (2015) 419–457.

[48] M. Bullimore, H.-C. Kim and T. Lukowski, Expanding the Bethe/Gauge Dictionary,
JHEP 11 (2017) 055, [1708.00445].

[49] P. Koroteev, P. P. Pushkar, A. Smirnov and A. M. Zeitlin, Quantum K-theory of
Quiver Varieties and Many-Body Systems, 1705.10419.

[50] P. Koroteev, A-type Quiver Varieties and ADHM Moduli Spaces, 1805.00986.

[51] P. P. Pushkar, A. Smirnov and A. M. Zeitlin, Baxter Q-operator from quantum
K-theory, Adv. Math. 360 (2020) 106919, [1612.08723].

[52] T. Braden, A. Licata, N. Proudfoot and B. Webster, Quantizations of conical
symplectic resolutions II: category O and symplectic duality, 1407.0964.

[53] T. Braden, N. Proudfoot and B. Webster, Quantizations of conical symplectic
resolutions I: local and global structure, arXiv preprint arXiv:1208.3863 (2012) .

[54] D. Gaiotto and E. Witten, S-Duality of Boundary Conditions In N=4 Super
Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721–896, [0807.3720].

[55] M. Bullimore, T. Dimofte, D. Gaiotto and J. Hilburn, Boundaries, Mirror
Symmetry, and Symplectic Duality in 3d N = 4 Gauge Theory, JHEP 10 (2016)
108, [1603.08382].

172

http://dx.doi.org/10.1215/S0012-7094-94-07613-8
http://dx.doi.org/10.1007/JHEP11(2017)055
https://arxiv.org/abs/1708.00445
https://arxiv.org/abs/1705.10419
https://arxiv.org/abs/1805.00986
http://dx.doi.org/10.1016/j.aim.2019.106919
https://arxiv.org/abs/1612.08723
https://arxiv.org/abs/1407.0964
http://dx.doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
http://dx.doi.org/10.1007/JHEP10(2016)108
http://dx.doi.org/10.1007/JHEP10(2016)108
https://arxiv.org/abs/1603.08382


[56] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press,
Princeton, NJ, USA, 1992.

[57] F. Dolan, On Superconformal Characters and Partition Functions in Three
Dimensions, J. Math. Phys. 51 (2010) 022301, [0811.2740].

[58] N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384
(1996) 81–85, [hep-th/9606017].

[59] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg and M. Strassler, Aspects of
N=2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997)
67–99, [hep-th/9703110].

[60] Y. Tachikawa, N=2 supersymmetric dynamics for pedestrians, vol. 890. 2014,
10.1007/978-3-319-08822-8.

[61] D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators,
JHEP 05 (2011) 015, [1007.4861].

[62] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys.
Lett. B 318 (1993) 469–475, [hep-ph/9309335].

[63] A. Kapustin and M. J. Strassler, On mirror symmetry in three-dimensional Abelian
gauge theories, JHEP 04 (1999) 021, [hep-th/9902033].

[64] L. Alvarez-Gaume, J. Distler, C. Kounnas and M. Marino, Softly broken N=2 QCD,
Int. J. Mod. Phys. A 11 (1996) 4745–4777, [hep-th/9604004].

[65] L. Alvarez-Gaume and D. Z. Freedman, Geometrical Structure and Ultraviolet
Finiteness in the Supersymmetric Sigma Model, Commun. Math. Phys. 80 (1981)
443.

[66] O. Aharony, S. S. Razamat, N. Seiberg and B. Willett, The long flow to freedom,
JHEP 02 (2017) 056, [1611.02763].

[67] P. C. Argyres, M. Plesser and N. Seiberg, The Moduli space of vacua of N=2 SUSY
QCD and duality in N=1 SUSY QCD, Nucl. Phys. B 471 (1996) 159–194,
[hep-th/9603042].

[68] W. Lerche, C. Vafa and N. P. Warner, Chiral Rings in N=2 Superconformal
Theories, Nucl. Phys. B 324 (1989) 427–474.

[69] M. Blau and G. Thompson, On the relationship between the Rozansky-Witten and
the three-dimensional Seiberg-Witten invariants, Adv. Theor. Math. Phys. 5 (2002)
483–498, [hep-th/0006244].

173

http://dx.doi.org/10.1063/1.3211091
https://arxiv.org/abs/0811.2740
http://dx.doi.org/10.1016/0370-2693(96)00819-2
http://dx.doi.org/10.1016/0370-2693(96)00819-2
https://arxiv.org/abs/hep-th/9606017
http://dx.doi.org/10.1016/S0550-3213(97)00323-4
http://dx.doi.org/10.1016/S0550-3213(97)00323-4
https://arxiv.org/abs/hep-th/9703110
http://dx.doi.org/10.1007/978-3-319-08822-8
http://dx.doi.org/10.1007/JHEP05(2011)015
https://arxiv.org/abs/1007.4861
http://dx.doi.org/10.1016/0370-2693(93)91541-T
http://dx.doi.org/10.1016/0370-2693(93)91541-T
https://arxiv.org/abs/hep-ph/9309335
http://dx.doi.org/10.1088/1126-6708/1999/04/021
https://arxiv.org/abs/hep-th/9902033
http://dx.doi.org/10.1142/S0217751X96002170
https://arxiv.org/abs/hep-th/9604004
http://dx.doi.org/10.1007/BF01208280
http://dx.doi.org/10.1007/BF01208280
http://dx.doi.org/10.1007/JHEP02(2017)056
https://arxiv.org/abs/1611.02763
http://dx.doi.org/10.1016/0550-3213(96)00210-6
https://arxiv.org/abs/hep-th/9603042
http://dx.doi.org/10.1016/0550-3213(89)90474-4
http://dx.doi.org/10.4310/ATMP.2001.v5.n3.a3
http://dx.doi.org/10.4310/ATMP.2001.v5.n3.a3
https://arxiv.org/abs/hep-th/0006244


[70] L. Rozansky and E. Witten, HyperKahler geometry and invariants of three
manifolds, Selecta Math. 3 (1997) 401–458, [hep-th/9612216].

[71] H. Araki, K. Hepp and D. Ruelle, On the asymptotic behaviour of Wightman
functions in space-like directions, Helv. Phys. Acta 35 (1962) 164–174.

[72] F. Cachazo, M. R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies
in supersymmetric gauge theory, JHEP 12 (2002) 071, [hep-th/0211170].

[73] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement,
Nucl. Phys. B 138 (1978) 1–25.

[74] V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in
three-dimensional conformal field theory, JHEP 11 (2002) 049, [hep-th/0206054].

[75] A. Hanany and N. Mekareeya, Complete Intersection Moduli Spaces in N=4 Gauge
Theories in Three Dimensions, JHEP 01 (2012) 079, [1110.6203].

[76] S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One
Instanton Moduli Space, JHEP 06 (2010) 100, [1005.3026].

[77] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of
Coulomb branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005, [1309.2657].

[78] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The
Moduli Space of Instantons, JHEP 12 (2014) 103, [1408.6835].

[79] G. Cheng, A. Hanany, Y. Li and Y. Zhao, Coulomb Branch for A-type Balanced
Quivers in 3d N = 4 gauge theories, 1701.03825.

[80] M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H.-C. Kim, Vortices and
Vermas, Adv. Theor. Math. Phys. 22 (2018) 803–917, [1609.04406].

[81] K. A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge
theories, Phys. Lett. B 387 (1996) 513–519, [hep-th/9607207].

[82] V. A. Borokhov, Monopole operators and mirror symmetry in three-dimensional
gauge theories. PhD thesis, Caltech, 2004.

[83] J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in
three-dimensional theories, SL(2,Z) and D-brane moduli spaces, Nucl. Phys. B 493
(1997) 148–176, [hep-th/9612131].

[84] A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional
Dualities, JHEP 10 (2010) 013, [1003.5694].

174

http://dx.doi.org/10.1007/s000290050016
https://arxiv.org/abs/hep-th/9612216
http://dx.doi.org/10.5169/seals-113273
http://dx.doi.org/10.1088/1126-6708/2002/12/071
https://arxiv.org/abs/hep-th/0211170
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1088/1126-6708/2002/11/049
https://arxiv.org/abs/hep-th/0206054
http://dx.doi.org/10.1007/JHEP01(2012)079
https://arxiv.org/abs/1110.6203
http://dx.doi.org/10.1007/JHEP06(2010)100
https://arxiv.org/abs/1005.3026
http://dx.doi.org/10.1007/JHEP01(2014)005
https://arxiv.org/abs/1309.2657
http://dx.doi.org/10.1007/JHEP12(2014)103
https://arxiv.org/abs/1408.6835
https://arxiv.org/abs/1701.03825
http://dx.doi.org/10.4310/ATMP.2018.v22.n4.a1
https://arxiv.org/abs/1609.04406
http://dx.doi.org/10.1016/0370-2693(96)01088-X
https://arxiv.org/abs/hep-th/9607207
http://dx.doi.org/10.1016/S0550-3213(97)00115-6
http://dx.doi.org/10.1016/S0550-3213(97)00115-6
https://arxiv.org/abs/hep-th/9612131
http://dx.doi.org/10.1007/JHEP10(2010)013
https://arxiv.org/abs/1003.5694


[85] M. Dedushenko, Y. Fan, S. S. Pufu and R. Yacoby, Coulomb Branch Operators and
Mirror Symmetry in Three Dimensions, JHEP 04 (2018) 037, [1712.09384].

[86] H. Dinkins and A. Smirnov, Characters of tangent spaces at torus fixed points and
3d-mirror symmetry, 1908.01199.

[87] H. Dinkins, 3d mirror symmetry of the cotangent bundle of the full flag variety,
2011.08603.

[88] H. Dinkins and A. Smirnov, Capped vertex with descendants for zero dimensional
A∞ quiver varieties, 2005.12980.

[89] H. Dinkins, Symplectic Duality of T ∗Gr(k, n), 2008.05516.

[90] R. Rimányi, A. Smirnov, A. Varchenko and Z. Zhou, Three-Dimensional Mirror
Self-Symmetry of the Cotangent Bundle of the Full Flag Variety, SIGMA 15 (2019)
093, [1906.00134].
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[112] J.-P. Serre, Géométrie algébrique et géométrie analytique, in Annales de l’institut
Fourier, vol. 6, pp. 1–42, 1956.

[113] K. McGerty and T. Nevins, Kirwan surjectivity for quiver varieties, Inventiones
mathematicae 212 (2018) 161–187.

[114] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Transactions of
the American Mathematical Society (1990) 585–598.

[115] W. Crawley-Boevey, Geometry of the moment map for representations of quivers,
Compositio Mathematica 126 (2001) 257–293.

[116] S. Mukai and M. Shigeru, An introduction to invariants and moduli, vol. 81.
Cambridge University Press, 2003.

176

https://arxiv.org/abs/1602.00164
http://dx.doi.org/10.1007/JHEP08(2020)015
https://arxiv.org/abs/2002.04573
http://dx.doi.org/10.1007/s00222-005-0444-1
http://dx.doi.org/10.1007/s00222-005-0444-1
https://arxiv.org/abs/math/0306198


[117] B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic
program, Journal of High Energy Physics 2007 (2007) 090.

[118] F. Hirzebruch, A. Borel and R. Schwarzenberger, Topological methods in algebraic
geometry, vol. 175. Springer Berlin-Heidelberg-New York, 1966.

[119] A. E. Barns-Graham, Much ado about nothing: The superconformal index and
Hilbert series of three dimensional N= 4 vacua. PhD thesis, University of
Cambridge, 2019.

[120] A. J. Singleton, The geometry and representation theory of superconformal quantum
mechanics. PhD thesis, Cambridge U., 6, 2016. 10.17863/CAM.275.

[121] A. Bialynicki-Birula, Some Theorems on Actions of Algebraic Groups, Annals of
Mathematics 98 (1973) 480–497.

[122] N. Dorey and D. Zhang, Superconformal quantum mechanics on Kähler cones,
JHEP 05 (2020) 115, [1911.06787].

[123] H. Nakajima et al., Lectures on Hilbert schemes of points on surfaces. No. 18.
American Mathematical Soc., 1999.

[124] E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum
affine algebras and deformations of W -algebras, Recent Developments in Quantum
Affine Algebras and Related Topics (Raleigh, NC, 1998) 163–205.

[125] H. Knight, Spectra of tensor products of finite dimensional representations of
Yangians, Journal of algebra 174 (1995) 187–196.

[126] R. Kedem, A pentagon of identities, graded tensor products, and the
Kirillov-Reshetikhin conjecture, in New trends in quantum integrable systems,
pp. 173–193. World Scientific, 2011.

[127] V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, in
Yang-Baxter Equation in Integrable Systems, pp. 264–268. World Scientific, 1990.

[128] V. Chari, A. Pressley et al., A guide to quantum groups. Cambridge university press,
1995.

[129] V. Drinfeld, A New realization of Yangians and quantized affine algebras, Sov. Math.
Dokl. 36 (1988) 212–216.

[130] S. Z. Levendorskii, On PBW bases for Yangians, letters in mathematical physics 27
(1993) 37–42.

177

http://dx.doi.org/10.1007/JHEP05(2020)115
https://arxiv.org/abs/1911.06787


[131] A. N. Kirillov and N. Reshetikhin, Representations of Yangians and multiplicities of
ocurrence of the irreducible components of the tensor product of simplifie Lie
algebras, J. Sov. Math 52 (1981) 393–403.

[132] E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional
representations of quantum affine algebras, Communications in Mathematical
Physics 216 (2001) 23–57.

[133] H. Nakajima, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum
affine algebras, Represent. Theory 7 (2003) 3.

[134] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems,
Journal für die reine und angewandte Mathematik 2006 (2006) 63–87.

[135] E. Ardonne and R. Kedem, Fusion products of Kirillov–Reshetikhin modules and
fermionic multiplicity formulas, Journal of Algebra 308 (2007) 270–294.

[136] P. Di Francesco and R. Kedem, Proof of the combinatorial Kirillov-Reshetikhin
conjecture, International Mathematics Research Notices 2008 (2008) rnn006–rnn006.

[137] A. N. Kirillov and N. Y. Reshetikhin, Exact solution of the integrable XXZ
Heisenberg model with arbitrary spin. I. The ground state and the excitation
spectrum, Journal of Physics A: Mathematical and General 20 (1987) 1565.

[138] L. Faddeev, How algebraic Bethe ansatz works for integrable model, arXiv preprint
hep-th/9605187 (1996) .

[139] P. Di Francesco and R. Kedem, Quantum Q systems: from cluster algebras to
quantum current algebras, Letters in Mathematical Physics 107 (2017) 301–341.

[140] P. Di Francesco and R. Kedem, Difference equations for graded characters from
quantum cluster algebra, Transformation Groups 23 (2018) 391–424.

[141] P. Di Francesco and R. Kedem, Macdonald operators and quantum Q-systems for
classical types, arXiv preprint arXiv:1908.00806 (2019) .

[142] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Z. Tsuboi, Paths, crystals and
fermionic formulae, in MathPhys Odyssey 2001, pp. 205–272. Springer, 2002.

[143] P. Di Francesco and R. Kedem, Quantum cluster algebras and fusion products,
International Mathematics Research Notices 2014 (2014) 2593–2642.

[144] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford university
press, 1998.

178



[145] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture,
Journal of the American Mathematical Society 14 (2001) 941–1006.

[146] A. M. Garsia, Orthogonality of Milne’s polynomials and raising operators, Discrete
Mathematics 99 (1992) 247–264.

[147] A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037,
[hep-th/0306150].

[148] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, Construction of
instantons, Physics Letters A 65 (1978) 185–187.

[149] N. A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, in
The unity of mathematics, pp. 525–596. Springer, 2006.

[150] H. Nakajima, K. Yoshioka et al., Lectures on instanton counting, Algebraic
structures and moduli spaces 38 (2004) 31–101.

[151] H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic
partition function, Transformation groups 10 (2005) 489–519.

[152] H. Nakajima, Handsaw quiver varieties and finite W-algebras, Moscow Math. J. 12
(2012) 633, [1107.5073].

[153] N. Dorey, D. Tong and C. Turner, A Matrix Model for WZW, JHEP 08 (2016) 007,
[1604.05711].

[154] M. Finkelberg and L. Rybnikov, Quantization of Drinfeld Zastava in type A, arXiv
preprint arXiv:1009.0676 (2010) .

[155] H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the
chain-saw quiver, JHEP 06 (2011) 119, [1105.0357].

[156] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, J.
Phys. Conf. Ser. 462 (2013) 012014, [0908.0307].

[157] N. Wyllard, W-algebras and surface operators in N=2 gauge theories, J. Phys. A 44
(2011) 155401, [1011.0289].

[158] N. Wyllard, Instanton partition functions in N=2 SU(N) gauge theories with a
general surface operator, and their W-algebra duals, JHEP 02 (2011) 114,
[1012.1355].

[159] S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with
surface operator, Adv. Theor. Math. Phys. 19 (2015) 1277–1338, [1408.4132].

179

http://dx.doi.org/10.1088/1126-6708/2003/07/037
https://arxiv.org/abs/hep-th/0306150
https://arxiv.org/abs/1107.5073
http://dx.doi.org/10.1007/JHEP08(2016)007
https://arxiv.org/abs/1604.05711
http://dx.doi.org/10.1007/JHEP06(2011)119
https://arxiv.org/abs/1105.0357
http://dx.doi.org/10.1088/1742-6596/462/1/012014
http://dx.doi.org/10.1088/1742-6596/462/1/012014
https://arxiv.org/abs/0908.0307
http://dx.doi.org/10.1088/1751-8113/44/15/155401
http://dx.doi.org/10.1088/1751-8113/44/15/155401
https://arxiv.org/abs/1011.0289
http://dx.doi.org/10.1007/JHEP02(2011)114
https://arxiv.org/abs/1012.1355
http://dx.doi.org/10.4310/ATMP.2015.v19.n6.a4
https://arxiv.org/abs/1408.4132


[160] M. Bullimore, S. Crew and D. Zhang, Boundaries, Vermas, and Factorisation,
2010.09741.

[161] M. Aganagic and A. Okounkov, Quasimap counts and Bethe eigenfunctions,
Moscow Math. J. 17 (2017) 565–600, [1704.08746].

[162] A. Kapustin and K. Vyas, A-Models in Three and Four Dimensions, 1002.4241.

[163] S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, JHEP 07
(2017) 071, [1602.05302].

[164] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional
supersymmetric theories, JHEP 07 (2015) 127, [1504.03698].

[165] F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann
surfaces, Proc. Symp. Pure Math. 96 (2017) 13–46, [1605.06120].

[166] S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices,
Commun. Math. Phys. 355 (2017) 1–50, [1501.01310].

[167] C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge
theories, JHEP 08 (2016) 059, [1605.06531].

[168] M. F. Sohnius and P. C. West, An Alternative Minimal Off-Shell Version of N=1
Supergravity, Phys. Lett. B 105 (1981) 353–357.

[169] V. Pestun, Localization and N = 2 supersymmetric field theory, Les Houches Lect.
Notes 106 (2019) .

[170] S. Pasquetti, Factorisation of N = 2 Theories on the Squashed 3-Sphere, JHEP 04
(2012) 120, [1111.6905].

[171] C. Hwang and J. Park, Factorization of the 3d superconformal index with an adjoint
matter, JHEP 11 (2015) 028, [1506.03951].

[172] C. Hwang, H.-C. Kim and J. Park, Factorization of the 3d superconformal index,
JHEP 08 (2014) 018, [1211.6023].

[173] T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor.
Math. Phys. 17 (2013) 975–1076, [1112.5179].

[174] A. Cabo-Bizet, Factorising the 3D Topologically Twisted Index, JHEP 04 (2017)
115, [1606.06341].

[175] Y. Yoshida and K. Sugiyama, Localization of 3d N = 2 Supersymmetric Theories
on S1 ×D2, PTEP 2020 (2020) 11, [1409.6713].

180

https://arxiv.org/abs/2010.09741
https://arxiv.org/abs/1704.08746
https://arxiv.org/abs/1002.4241
http://dx.doi.org/10.1007/JHEP07(2017)071
http://dx.doi.org/10.1007/JHEP07(2017)071
https://arxiv.org/abs/1602.05302
http://dx.doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698
https://arxiv.org/abs/1605.06120
http://dx.doi.org/10.1007/s00220-017-2931-9
https://arxiv.org/abs/1501.01310
http://dx.doi.org/10.1007/JHEP08(2016)059
https://arxiv.org/abs/1605.06531
http://dx.doi.org/10.1016/0370-2693(81)90778-4
http://dx.doi.org/10.1093/oso/9780198828150.003.0011
http://dx.doi.org/10.1093/oso/9780198828150.003.0011
http://dx.doi.org/10.1007/JHEP04(2012)120
http://dx.doi.org/10.1007/JHEP04(2012)120
https://arxiv.org/abs/1111.6905
http://dx.doi.org/10.1007/JHEP11(2015)028
https://arxiv.org/abs/1506.03951
http://dx.doi.org/10.1007/JHEP08(2014)018
https://arxiv.org/abs/1211.6023
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a3
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a3
https://arxiv.org/abs/1112.5179
http://dx.doi.org/10.1007/JHEP04(2017)115
http://dx.doi.org/10.1007/JHEP04(2017)115
https://arxiv.org/abs/1606.06341
http://dx.doi.org/10.1093/ptep/ptaa136
https://arxiv.org/abs/1409.6713


[176] G. Bonelli, A. Sciarappa, A. Tanzini and P. Vasko, Vortex partition functions, wall
crossing and equivariant Gromov-Witten invariants, Commun. Math. Phys. 333
(2015) 717–760, [1307.5997].

[177] T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian
3-manifolds, Lett. Math. Phys. 98 (2011) 225–287, [1006.0977].

[178] C. Hwang, P. Yi and Y. Yoshida, Fundamental Vortices, Wall-Crossing, and
Particle-Vortex Duality, JHEP 05 (2017) 099, [1703.00213].

[179] M. Dedushenko, Gluing II: Boundary Localization and Gluing Formulas,
1807.04278.

[180] C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d N = 2 theories,
JHEP 11 (2018) 004, [1807.02328].

[181] S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, J.
Knot Theor. Ramifications 29 (2020) 2040003, [1701.06567].

[182] E. Witten, Mirror Symmetry, Hitchin’s Equations, And Langlands Duality,
0802.0999.

[183] E. Witten, More On Gauge Theory And Geometric Langlands, 1506.04293.

[184] A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric
Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1–236,
[hep-th/0604151].

[185] F. Aprile, S. Pasquetti and Y. Zenkevich, Flipping the head of T [SU(N)]: mirror
symmetry, spectral duality and monopoles, JHEP 04 (2019) 138, [1812.08142].

[186] A. Nedelin, S. Pasquetti and Y. Zenkevich, T[SU(N)] duality webs: mirror
symmetry, spectral duality and gauge/CFT correspondences, JHEP 02 (2019) 176,
[1712.08140].

[187] M. Aganagic and S. Shakirov, Gauge/Vortex duality and AGT, pp. 419–448. 2016.
1412.7132. 10.1007/978-3-319-18769-313.

[188] M. Aganagic, N. Haouzi and S. Shakirov, An-Triality, 1403.3657.

[189] M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville Triality, 1309.1687.

[190] A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A finite analog of the AGT
relation I: finite W-algebras and quasimaps’ spaces, Communications in mathematical
physics 308 (2011) 457.

181

http://dx.doi.org/10.1007/s00220-014-2193-8
http://dx.doi.org/10.1007/s00220-014-2193-8
https://arxiv.org/abs/1307.5997
http://dx.doi.org/10.1007/s11005-011-0531-8
https://arxiv.org/abs/1006.0977
http://dx.doi.org/10.1007/JHEP05(2017)099
https://arxiv.org/abs/1703.00213
https://arxiv.org/abs/1807.04278
http://dx.doi.org/10.1007/JHEP11(2018)004
https://arxiv.org/abs/1807.02328
http://dx.doi.org/10.1142/S0218216520400039
http://dx.doi.org/10.1142/S0218216520400039
https://arxiv.org/abs/1701.06567
https://arxiv.org/abs/0802.0999
https://arxiv.org/abs/1506.04293
http://dx.doi.org/10.4310/CNTP.2007.v1.n1.a1
https://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1007/JHEP04(2019)138
https://arxiv.org/abs/1812.08142
http://dx.doi.org/10.1007/JHEP02(2019)176
https://arxiv.org/abs/1712.08140
https://arxiv.org/abs/1412.7132
https://arxiv.org/abs/1403.3657
https://arxiv.org/abs/1309.1687


[191] B. Feigin, M. Finkelberg, A. Negut and L. Rybnikov, Yangians and cohomology rings of
Laumon spaces, Selecta Mathematica 17 (2011) 573–607.

[192] B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D=3 N=4
Superconformal Field Theories, JHEP 08 (2011) 087, [1106.4253].

[193] B. Assel, J. Estes and M. Yamazaki, Large N Free Energy of 3d N=4 SCFTs and
AdS4/CFT3, JHEP 09 (2012) 074, [1206.2920].

[194] L. Coccia, Topologically twisted index of T [SU(N)] at large N , 2006.06578.

[195] A. Braverman, M. Finkelberg and J. Shiraishi, Macdonald polynomials, Laumon spaces
and perverse coherent sheaves, Perspectives in Representation Theory, Contemp. Math
610 (2014) 23–41.

[196] B. Feigin, M. Finkelberg, I. Frenkel and L. Rybnikov, Gelfand–Tsetlin algebras and
cohomology rings of Laumon spaces, Selecta Mathematica 17 (2011) 337–361.

[197] A. Negut, Laumon spaces and the Calogero-Sutherland integrable system, Inventiones
mathematicae 178 (2009) 299–331.

[198] J. Shiraishi, Affine screening operators, affine Laumon spaces and conjectures concerning
non-stationary Ruijsenaars functions, Journal of Integrable Systems 4 (2019) xyz010.

[199] M. Finkelberg and A. Kuznetsov, Global intersection cohomology of quasimaps’ spaces,
International Mathematics Research Notices 1997 (1997) 301–328.

[200] A. Braverman and M. Finkelberg, Finite difference quantum Toda lattice via equivariant
K-theory, Transformation Groups 10 (2005) 363–386.

[201] M. Bullimore, A. Ferrari and H. Kim, Twisted Indices of 3d N = 4 Gauge Theories and
Enumerative Geometry of Quasi-Maps, JHEP 07 (2019) 014, [1812.05567].

[202] S. Crew, H. Dinkins and D. Zhang, Mirror symmetry of twistd indices and the Hilbert
series, In preparation.

[203] T. Dimofte, D. Gaiotto and N. M. Paquette, Dual boundary conditions in 3d SCFT’s,
JHEP 05 (2018) 060, [1712.07654].

[204] N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the
Anomaly Polynomial, JHEP 09 (2015) 142, [1507.08553].

[205] C. P. Herzog and K.-W. Huang, Stress Tensors from Trace Anomalies in Conformal Field
Theories, Phys. Rev. D 87 (2013) 081901, [1301.5002].

182

http://dx.doi.org/10.1007/JHEP08(2011)087
https://arxiv.org/abs/1106.4253
http://dx.doi.org/10.1007/JHEP09(2012)074
https://arxiv.org/abs/1206.2920
https://arxiv.org/abs/2006.06578
http://dx.doi.org/10.1007/JHEP07(2019)014
https://arxiv.org/abs/1812.05567
https://arxiv.org/abs/In preparation
http://dx.doi.org/10.1007/JHEP05(2018)060
https://arxiv.org/abs/1712.07654
http://dx.doi.org/10.1007/JHEP09(2015)142
https://arxiv.org/abs/1507.08553
http://dx.doi.org/10.1103/PhysRevD.87.081901
https://arxiv.org/abs/1301.5002


[206] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The
Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP 07 (2015)
043, [1503.05537].

[207] L. Badescu, On the normal bundle of submanifolds of Pn, arXiv preprint math/0701487
(2007) .

[208] D. Gaiotto and T. Okazaki, Sphere correlation functions and Verma modules, JHEP 02
(2020) 133, [1911.11126].

[209] C.-M. Chang, M. Fluder, Y.-H. Lin, S.-H. Shao and Y. Wang, 3d N=4 Bootstrap and
Mirror Symmetry, 1910.03600.

[210] S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and
mirror symmetry, JHEP 05 (2012) 099, [1105.2551].

[211] J. Yagi, Ω-deformation and quantization, JHEP 08 (2014) 112, [1405.6714].

[212] C. Beem, D. Ben-Zvi, M. Bullimore, T. Dimofte and A. Neitzke, Secondary products in
supersymmetric field theory, Annales Henri Poincare 21 (2020) 1235–1310, [1809.00009].

[213] J. Oh and J. Yagi, Chiral algebras from Ω-deformation, JHEP 08 (2019) 143,
[1903.11123].

[214] S. Jeong, SCFT/VOA correspondence via Ω-deformation, JHEP 10 (2019) 171,
[1904.00927].

[215] M. Dedushenko, S. S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch
operators, JHEP 03 (2018) 138, [1610.00740].

[216] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal
symmetry in three dimensions, Commun. Math. Phys. 354 (2017) 345–392, [1601.05378].

[217] I. Losev, Isomorphisms of quantizations via quantization of resolutions, Advances in
Mathematics 231 (2012) 1216–1270.

[218] S. Choi, C. Hwang and S. Kim, Quantum vortices, M2-branes and black holes,
1908.02470.

[219] S. Crew, N. Dorey and D. Zhang, Blocks and Vortices in the 3d ADHM Quiver Gauge
Theory, 2010.09732.

[220] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091,
[0806.1218].

183

http://dx.doi.org/10.1007/JHEP07(2015)043
http://dx.doi.org/10.1007/JHEP07(2015)043
https://arxiv.org/abs/1503.05537
http://dx.doi.org/10.1007/JHEP02(2020)133
http://dx.doi.org/10.1007/JHEP02(2020)133
https://arxiv.org/abs/1911.11126
https://arxiv.org/abs/1910.03600
http://dx.doi.org/10.1007/JHEP05(2012)099
https://arxiv.org/abs/1105.2551
http://dx.doi.org/10.1007/JHEP08(2014)112
https://arxiv.org/abs/1405.6714
http://dx.doi.org/10.1007/s00023-020-00888-3
https://arxiv.org/abs/1809.00009
http://dx.doi.org/10.1007/JHEP08(2019)143
https://arxiv.org/abs/1903.11123
http://dx.doi.org/10.1007/JHEP10(2019)171
https://arxiv.org/abs/1904.00927
http://dx.doi.org/10.1007/JHEP03(2018)138
https://arxiv.org/abs/1610.00740
http://dx.doi.org/10.1007/s00220-017-2845-6
https://arxiv.org/abs/1601.05378
https://arxiv.org/abs/1908.02470
https://arxiv.org/abs/2010.09732
http://dx.doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218


[221] R. Kodera and H. Nakajima, Quantized Coulomb branches of Jordan quiver gauge theories
and cyclotomic rational Cherednik algebras, Proc. Symp. Pure Math. 98 (2018) 49–78,
[1608.00875].

[222] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge
theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101–147, [hep-th/9611063].

[223] M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional
gauge theories, Nucl. Phys. B 490 (1997) 107–120, [hep-th/9611201].

[224] A. Smirnov, Elliptic stable envelope for Hilbert scheme of points in the plane, 1804.08779.

[225] D. Gaiotto and J. Oh, Aspects of Ω-deformed M-theory, 1907.06495.

[226] P. Di Francesco and R. Kedem, q-Deformed Q-Systems, DAHA and Quantum Toroidal
Algebras via Generalized Macdonald Operators, Communications in Mathematical Physics
369 (2019) 867–928.

[227] A. Okounkov and R. Pandharipande, Quantum cohomology of the hilbert scheme of points
in the plane, Inventiones mathematicae 179 (2010) 523–557.

[228] A. Smirnov, On the Instanton R-matrix, Communications in Mathematical Physics 345
(2016) 703–740.

[229] J. Kamnitzer, M. McBreen and N. Proudfoot, The quantum Hikita conjecture, arXiv
preprint arXiv:1807.09858 (2018) .

[230] R. P. Stanley, Ordered structures and partitions, vol. 119. American Mathematical Soc.,
1972.

[231] S. S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP 10
(2014) 099, [1403.6107].

[232] A. Smirnov, Rationality of capped descendent vertex in K-theory, arXiv preprint
arXiv:1612.01048 (2016) .

[233] E. R. Gansner, The Hillman-Grassl correspondence and the enumeration of reverse plane
partitions, Journal of Combinatorial Theory, Series A 30 (1981) 71–89.

[234] T. J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic
genera, JHEP 03 (2008) 069, [hep-th/0310272].

[235] S. H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl.
Phys. B 497 (1997) 173–195, [hep-th/9609239].

184

https://arxiv.org/abs/1608.00875
http://dx.doi.org/10.1016/S0550-3213(97)00125-9
https://arxiv.org/abs/hep-th/9611063
http://dx.doi.org/10.1016/S0550-3213(97)00061-8
https://arxiv.org/abs/hep-th/9611201
https://arxiv.org/abs/1804.08779
https://arxiv.org/abs/1907.06495
http://dx.doi.org/10.1007/JHEP10(2014)099
http://dx.doi.org/10.1007/JHEP10(2014)099
https://arxiv.org/abs/1403.6107
http://dx.doi.org/10.1088/1126-6708/2008/03/069
https://arxiv.org/abs/hep-th/0310272
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
https://arxiv.org/abs/hep-th/9609239


[236] A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069,
[hep-th/0701156].

[237] M. Marino, Chern-Simons theory, matrix models, and topological strings, vol. 131. 2005.
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APPENDIX A
Special functions and combinatorics

Our conventions for q-functions and enumerative combinatorics follow closely [257, 144,
258, 259], we summarise them here for ease of reference.

A.1 q-functions

Definitions. The q-Pochhammer function is defined for a ∈ C and |q| < 1 by the infinite
product

(a; q)∞ :=
∞∏
k=0

(1− aqk) , (A.1)

The analytic continuation to |q| > 1 is given by

(a; q−1)∞ =
∞∏
k=0

1
1− aqk+1 , (A.2)

which converges for |a| < q. For z ∈ C we define the finite q-Pochhammer symbol by

(a; q)z := (a; q)∞
(aqz; q)∞

, (A.3)

which for z = n > 0 becomes

(a; q)n =
n−1∏
k=0

(1− aqk) , (A.4)

and for z = n < 0 we have

(a; q)n =
−n−1∏
k=0

1
1− aq−k−1 . (A.5)
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The q-Gamma function is defined for |q| < 1 by

Γq(z) := (q; q)∞
(qz; q)∞

(1− q)1−z . (A.6)

The q-binomial coefficient is defined byn
m


q

:= (q; q)n
(q; q)m(q; q)n−m

. (A.7)

The q-binomial coefficient generalises the binomial expansion

(a; q)n =
n∑
k=0

q(
k
2)
n
k


q

ak . (A.8)

Identities. The q-Pochhammer functions satisfy the q-binomial theorem for |z| < 1

(az; q)∞
(z; q)∞

=
∞∑
n=0

(a; q)n
(q; q)n

zn . (A.9)

We note the fusion identity

(aq n2 ; q)∞(aq−n2 ; q−1)∞ = (aq n2 ; q)−n+1 , (A.10)

and the following basic identities which follow straightforwardly from the definition

(a; q)n = (a−1q1−n; q)n(−a)nq(
n
2) ,

(a; q)−n = (−qa−1)n
(qa−1; q)n

q(
n
2) .

(A.11)

Plethystic exponential. Let V be an N -dimensional torus T module with weights
ω1, . . . , ωN . The plethystic exponential of a weight is defined by

PE [ω] = 1
1− ω , (A.12)

and extended to the module V by

PE [ω + ω′] = PE [ω] PE [ω′] . (A.13)

We define
PE [−ω] = 1− ω . (A.14)
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The plethystic exponential can also be represented by

PE [V ] = exp
( ∞∑
n=1

1
n

chT (tn1 , . . . , tnN)
)
. (A.15)

A.2 Partitions and Young diagrams

Partitions. A partition is a sequence of non-negative integers

λ = (λ1, λ2, λ3, . . .) , (A.16)

such that λ1 ≥ λ2 ≥ λ3 ≥ . . . and only finitely many λi are non-zero. The λi are called
parts of the partition. The length of a partition l(λ) is the number of non-zero entries in
λ and the weight is defined by |λ| = λ1 + . . . + λl(λ). Setting n = |λ| we say that λ is a
partition of n and write λ ` n. We occasionally make use of the norm

||λ||2 =
∑
i≥1

λ2
i . (A.17)

We write mi(λ) for the multiplicity of i in λ i.e. the number of times the part i appears in
λ. This allows us to use the alternative notation for a partition

λ = (1m12m23m3 . . .) . (A.18)

Young diagrams. A partition can be represented by a Young diagram defined as the
set of points (i, j) ∈ Z2 such that 1 ≤ j ≤ λi. (i, j) are coordinates describing the rows and
columns respectively of a partition, we denote by s ∈ λ a box with coordinates (is, js)—this
is the ‘English’ convention of [144] and is summarised in figure A.1a. The transpose of a
partition, denoted λ∨, is the partition obtained from transposing the diagram of λ. We
denote the parts of the transpose partition by λ∨ = (λ∨1 , λ∨2 , . . .).

The arm length and leg length of a box s ∈ λ are defined by

aλ(s) := λi − j , lλ(s) := λ∨j − i . (A.19)

Staring at the diagram A.1a explains why these functions are called arm and leg lengths.
The arm colength and leg colength are defined by

a′λ(s) = j − 1 , l′λ(s) = i− 1 . (A.20)
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(a) The partition λ = (4, 2, 1) with the box
s = (1, 3) highlighted.

(b) An example reverse plane partition with
base λ. Here π(1,3) = 2.

Figure A.1: Conventions for partitions and reverse plane partitions.

The hook and content of a box s ∈ λ are defined by

hλ(s) := aλ(s) + lλ(s) + 1 ,
cλ(s) := a′λ(s)− l′λ(s) = js − is .

(A.21)

Summations over hook and content can be expressed in terms of the norm

∑
s∈λ

cλ(s) = 1
2(||λ||2 − ||λ∨||2) ,

∑
s∈λ

hλ(s) = 1
2(||λ||2 + ||λ∨||2) .

(A.22)

Or, alternatively, the sums can be expressed over the coordinates of boxes as
∑
s∈λ

cλ(s) =
∑

(i,j)∈λ
j − i ,

∑
s∈λ

hλ(s) =
∑

(i,j)∈λ
i+ j + 1 .

(A.23)

Finally, we define the statistic

n(λ) =
∑
i≥1

(i− 1)λi , (A.24)

which satisfies n(λ) = 1
2(||λ||2 − |λ|).

Orderings. The lexicographic ordering on partitions is defined by λ < µ if for some i
we have λi = µj for all j < i and λi < µi, i.e. the ordering one would put on partitions if
one were to put them in the dictionary.

Skew diagrams. If λ and µ are two partitions then µ ⊂ λ means that the diagram for
µ is a subset of the diagram for λ. The set λ/µ = {θi = λi − µi | i = 1, 2, . . .} is called a
skew diagram. A skew diagram θ is called connected if all of the boxes in θ share at least
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one common side. We say θ is a border strip of a partition λ if θ is contained in λ and θ is
connected with no 2× 2 blocks of boxes. The height ht of a border strip is defined to be
one less than the number of rows it occupies. We further say θ is a maximal border strip
of λ if the box s = (i, j) ∈ θ with maximal content is such that s = (i+ 1, j) is not in λ

and the box s′ = (i′, j′) with minimal content is such that (i′, j′ + 1) is not in λ.
Every skew diagram λ/µ can be uniquely decomposed into maximal border strips. The

height of a skew diagram ht(λ/µ) is the sum of the heights of the maximal border strips
in the decomposition of λ/µ.

Reverse plane partitions. A reverse plane partition (RPP) π with base λ is a 3d
partition with non-negative integer heights πs above each box s ∈ λ such that πs weakly
decrease along the rows and columns of λ, an example is shown in figure A.1b. We write
|π| = ∑

s∈λ πs for the total number of boxes in the reverse plane partition.

Height. A reverese plane partition can be thought of in terms of layers of skew shapes
λ/µi, with i = 1, 2, . . . stacked on top of each other. We define the height of a reverse
plane partition in terms of the skew counterpart defined in the previous paragraph by:

ht(π) :=
∑
i≥1

ht(λ/µi) . (A.25)
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APPENDIX B
Symmetric functions and Macdonald polynomials

In this appendix we review Macdonald polynomials following [144] and [258]. We leave
detailed proofs to these references but spend some time reviewing the main results since
this material is quite disjoint from conventionally assumed background in the 3d N = 4
gauge theory literature.

B.1 Symmetric functions

We denote by Q[x1, . . . , xN ] the ring of rational polynomials in variables x1, . . . , xN . The
symmetric group SN acts naturally on this ring and we define the ring of symmetric
polynomials in N variables by

ΛN := Q[x1, . . . , xN ]SN . (B.1)

The ring is graded by homogeneous symmetric polynomials of degree k so that

ΛN =
⊕
k≥0

Λk
N . (B.2)

We write Λ for the ring of symmetric polynomials in infinitely many variables—this can
be defined rigorously as an inverse limit of the graded rings with respect to the restriction
maps that take ΛM to ΛN with M > N [144].

We use plethystic notation and write X = x1 + x2 + . . . for the set of variables
{x1, , x2, . . .}. The Cartesian product is XY = (x1 +x2 + . . .)(y1 +y2 + . . .) which represents
the set XY = {x1y1 + x2y1 + . . .+ x1y2 + x2y2 + . . .}. The union of variables is denoted
X + Y = x1 + x2 + . . .+ y1 + y2 + . . . which represents the set X + Y = {x1, y1, x2, y2, . . .}.
In the following we also write 1

1−q for the set of variables {1, q, q2, . . .}. We write X̄ for
the set of inverse variables {x−1

1 , x−1
2 , . . .}.
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Monomial symmetric functions. For λ a partition the monomial symmetric functions
are defined by

mλ(X) :=
∑
α

xα , (B.3)

where the sum is over distinct permutations α of λ. The monomial symmetric functions
mλ with |λ| = k are a basis for Λk.

Homogenous symmetric functions. We now define the homogenous symmetric func-
tions hλ. Firstly, let

hn =
∑
λ`n

mλ , (B.4)

we then define
hλ := hλ1hλ2 . . . . (B.5)

Power sum symmetric functions. The power sum symmetric functions are defined
for n > 0 by

pn(X) :=
∑
i≥1

xni . (B.6)

Similarly for a partition λ we define

pλ := pλ1pλ2 . . . . (B.7)

The power sum symmetric functions pλ form a basis for Λ.

Hall innner product. The Hall inner product is an inner product on Λ defined such
that the homogenous and monomial symmetric functions are orthonormal:

〈hµ,mλ〉 = δµλ. (B.8)

Schur polynomials. The Schur polynomials sλ(X) are elements of ΛN defined by

sλ(X) = det1≤i,j≤N(xλj+N−ji )
det1≤i,j≤N(xN−ji )

, (B.9)

with l(λ) ≤ N . The Schur polynomials are symmetric, homogeneous of degree |λ|, and
form a basis for ΛN . The elements of the transition matrix between monomial symmetric
functions and Schur polynomials are known as Kostka numbers

sλ =
∑
µ

Kλµmµ . (B.10)
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The Schur Cauchy kernel is the plethystic exponential

PE [XY ] =
∏
i,j≥1

1
1− xiyj

. (B.11)

The Schur polynomials satisfy the Cauchy identitity

∑
λ

sλ(X)sλ(Y ) = PE [XY ] . (B.12)

Schur polynomials are also orthonormal with respect to the Hall inner product

〈sλ, sµ〉 = δλ,µ . (B.13)

The inner product can be written as an integral arising from the Haar measure of glN

〈f(X), g(X)〉 =
∮
dµ

(N)
S [X]f(X)g(X̄) , (B.14)

where the Schur measure in N variables is

dµ
(N)
S [X] = 1

N !

N∏
i=1

dxi
2πxi

N∏
i 6=j

(
1− xi

xj

)
. (B.15)

Hall-Littlewood polynomials. Hall-Littlewood polynomials are an intermediate step
between Schur polynomials and Macdonald polynomials. They are symmetric polynomials
in Λ⊗Q(t) and, unlike Macdonald polynomials, admit an explicit formula as a sum over
the Weyl group:

PHL
λ (X; t) := 1

vλ(t)
∑
ω∈SN

xλ1
1 . . . xλNN

∏
i<j

1− txj/xi
1− xj/xi

, (B.16)

where the Weyl group acts on the variables x1, . . . , xN and the normalisation constant is

vλ(t) =
∏
i≥0

(t; t)mi(λ)

(1− t)mi(λ) . (B.17)

These polynomials interpolate between Schur polynomials and monomial symmetric
functions in the following sense

PHL
λ (X; 0) = sλ(X) , PHL

λ (X; 1) = mλ(X) . (B.18)

Hall-Littlewood polynomials satisfy the Cauchy identity

∑
λ

PHL
λ (X; t)QHL

λ (X; t) = PE [(1− t)XY ] , (B.19)
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where QHL
λ (X; t) is a renormalised Hall-Littlewood polynomial defined by QHL

λ (X; t) =
bλ(t)PHL

λ (X; t) and the normalisation constant is

bλ(t) =
∏
i≥1

(t; t)mi(λ) . (B.20)

B.2 Macdonald polynomials

Macdonald polynomials are symmetric functions in two parameters q, t. They are elements
of1 Λ⊗Q(q, t).

Plethystic substitution. Plethystic substitutions of a symmetric functions f in Λ ⊗
Q(q, t) can be understood in terms of their power sum expansions, for example f

(
1−t
1−qX

)
denotes the replacement

pn →
1− tn
1− qnpn , (B.21)

in the power sum expansion of f . This agrees with the plethystic notation discussed at the
end of section B.1 but we note a subtlety that if c ∈ Q is not an indeterminate, then by
definition we have pn(cX) = cpn(X) so in particular pn(−X) = −pn(X) 6= (−1)npn(X).
The variables −X = {−x1,−x2, . . .} typically denote the plethystic substitution −pn(X)
rather than the evaluation (−1)npn(X).

Modified Hall inner product. The modified Hall inner product is defined on Λ⊗Q(q, t)
by

〈f(X), g(Y )〉q,t := 〈f
(
X

1− t
1− q

)
, g(Y )〉 . (B.22)

Macdonald polynomials. Macdonald polynomials are polynomials in Λ⊗Q(q, t) that
have an upper-triangular expansion in the monomial symmetric functions with respect to
the lexicographic ordering on partitions

Pλ = mλ +
∑
µ<λ

uλµmµ . (B.23)

They are orthogonal with respect to the modified Hall inner product

〈Pλ, Pµ〉q,t = 0 withλ 6= µ . (B.24)

Existence and uniqueness of such polynomials was shown by Macdonald in [144]. In that
reference Macdonald also shows that Pλ can be realised combinatorially as a sum over

1In fact, as we shall see, suitably normalised Macdonald polynomials turn out to be elements of
Λ⊗ Z(q, t).
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Young tableaux, we do not review this construction here but note that it allows you to
compute Macdonald polynomials by hand.2 The Macdonald polynomials for partitions of
three are

P111(X; q, t) = m111 ,

P21(X; q, t) = m21 + (t− 1)(2qt+ q + t+ 2)
qt2 − 1 m111 ,

P3(X; q, t) = m3 + (q2 + q + 1)(t− 1)
q2t− 1 m21 + (q + 1)(q2 + q + 1)(t− 1)2

(qt− 1)(q2t− 1) m111 .

(B.25)

Macdonald polynomials are a basis for Λ ⊗ Q(q, t) and are homogeneous of degree |λ|.
They specialise to Hall-Littlewood polynomials when q = 0

Pλ(X; 0, t) = PHL
λ (X; t) , (B.26)

and when q = t we obtain Schur polynomials

Pλ(X; t, t) = sλ(X) . (B.27)

The renormalised Macdonald polynomial Qλ is defined by

Qλ(X; q, t) := bλ(q, t)Pλ(X; q, t) , (B.28)

where
bλ(q, t) =

∏
s∈λ

1− qaλ(s)tlλ(s)+1

1− qaλ(s)+1tlλ(s) . (B.29)

The polynomials Qλ and Pλ are orthonormal with respect to the modified Hall inner
product

〈Pλ, Qµ〉q,t = δλµ. (B.30)

Macdonald polynomials satisfy the Cauchy identity

∑
λ

Pλ(X; q, t)Qλ(X; q, t) = PE
[

1− t
1− qXY

]
, (B.31)

which follows from othonormality with respect to the modified Hall inner product. Using
the definition of the plethystic exponential (A.12) we can alternatively write the Macdonald
Cauchy kernel as

PE
[

1− t
1− qXY

]
=
∏
x∈X
y∈Y

(txy; q)∞
(txy; q)∞

. (B.32)

2Or borrow them from the excellent resource https://www2.math.upenn.edu/˜peal/polynomials/
as we have done.
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Macdonald polynomials satisfy Pλ(q, t) = Pλ(q−1, t−1) and we note the following identity

Pλ+(sr)(x1, . . . , xr) = xs1x
s
2 . . . x

s
rPλ(x1, . . . , xr) . (B.33)

which follows from the uniqueness property.

Principal specialisation formula. Macdonald polynomials Pλ satisfy the principal
specialisation formula

Pλ

( 1
1− t ; q, t

)
= tn(λ) ∏

s∈λ

1
1− qaλ(s)tlλ(s)+1 . (B.34)

Macdonald J polynomials. In section 3.2.4 we make use of Milne polynomials. Before
discussing these, it is convenient first to study a normalisation of Macdonald polynomials
known as Macdonald’s J polynomials

Jλ(X; q, t) = cλ(q, t)Pλ(X; q, t) , (B.35)

where
cλ(q, t) =

∏
s∈λ

(1− qaλ(s)tlλ(s)+1) . (B.36)

When combined with a plethystic substitution, these polynomials have a positive Schur
expansion

Jλ

(
X

1− t ; q, t
)

=
∑
µ

Kµλ(q, t)sµ(X) , (B.37)

where the Kµλ(q, t) are two parameter generalisations of the Kostka number Kµλ with
Kλµ(0, 1) = Kλµ. In fact Kµλ(q, t) have positive integral coefficients [145].

Milne polynomials. Milne polynomials are a degeneration limit of the plethystically
substituted Macdonald J polynomial

Q′λ(X; t) = lim
q→0

Jλ

(
X

1− t ; t
)

=
∑
µ

Kµλ(t)sµ(X) . (B.38)

Using the fact that
lim
q→0

cλ(q, t)
∏
i≥0

(t; t)mi(λ) =: bλ(t) , (B.39)

then we have that Milne polynomials are a re-normalised Hall-Littlewood polynomial
(B.16) with a plethystic substitution, these are traditionally denoted by

Q′λ(X; t) = bλ(t)Pλ
(

X

1− t ; t
)

= Qλ

(
X

1− t ; t
)
. (B.40)
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Skew Macdonald polynomials. We now turn to Skew Macdonald polynomials. First
we define the structure constants fλµν(q, t) to be the coefficients in the expansion of a
product of two Macdonald polynomials

PµPν =
∑
λ

fλµνPλ . (B.41)

The coefficients fλµν vanish unless |λ| = |µ|+|ν| and ν, µ ⊂ λ. Skew Macdonald polynomials
are then defined by

Qλ/µ(X; q, t) :=
∑
ν

fλµν(q, t)Qν(X; q, t) , (B.42)

and the renormalised Pλ/µ version is defined by

Qλ/µ(X; q, t) = bλ(q, t)
bµ(q, t)Pλ/µ(X; q, t) . (B.43)

Both of these polynomials are manifestly symmetric and homogeneous of degree |λ| − |µ|.
They vanish unless µ ⊂ λ. Skew Macdonald polynomials satisfy a skew Cauchy identity

∑
λ

Pρ/λ(X; q, t)Qρ/µ(Y ; q, t) = PE
[

1− t
1− qXY

]∑
ρ

Pµ/ρ(X; q, t)Qλ/ρ(Y ; q, t) . (B.44)

Integral inner product. We define an integral inner product 〈−,−〉′N ;q,t on ΛN⊗Q(q, t)
by

〈f, g〉′N ;q,t =
∮
dµ

(N)
M f(X)g(X̄) , (B.45)

where the Macdonald measure in N variables is

dµ
(N)
M [X; q, t] = 1

N !

N∏
i=1

dxi
2πxi

∏
i 6=j

(xi/xj; q)∞
(txi/xj; q)∞

. (B.46)

Macdonald polynomials are orthogonal with respect to this inner product but not or-
thonormal. The normalisation constant is given by

〈Pλ, Pµ〉′N ;q,t = δλµc̃N(λ; q, t) 1
bλ(q, t)

, (B.47)

where
c̃N(ν; q, t) =

N∏
i=1

Γq(iβ)
Γq(β)Γq((i− 1)β + 1)

∏
s∈λ

1− qa′(s)tN−l′(s)
1− qa′(s)+1tN−l′(s)−1 , (B.48)

in the above we write t = qβ. The constant c̃N was determined in the work [260].
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