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Introduction

In nuclear physics, the investigation of simi-
larities in two different quantum systems likely
began with the mirror nuclei, which have iden-
tical energy spectra and isobaric mass multi-
plates [1]. Similar to the mirror nuclei, the
study of pseudo-mirror nuclei provides valu-
able insights into nuclear structure by high-
lighting symmetries between nuclei with dif-
ferent proton and neutron configurations [2].
In the framework of the nuclear shell model,
pseudo-mirror nuclei are characterized by a
unique correlation: one nucleus in the pair
has the same number of proton particles (and
neutron holes), Np(Nn) as the neutron holes
(and proton particles), Nn(Np) in the other,
within a specific model space. In the A ≈ 80
mass region, the nuclei 76Se and 80Kr have
been identified as pseudo-mirror pairs with
NpNn = 48, displaying notable similarities in
their low-energy spectra and kinematic mo-
ment of inertia (I/~2). Apart from this, study-
ing the systematics of B(E2) transitions in the
pseudo-mirror nuclei provides crucial informa-
tion about the quadrupole collectivity and the
degree of deformation in these nuclei [3]. In
this study, we use the shell-model framework
to explore these similarities, offering deeper
insights into the underlying proton-neutron
interactions in defining the nuclear structure
of these two pseudo-mirror nuclei.

Formalism

The jun45 shell-model interaction [4] is uti-
lized in the study of pseudo-mirror nuclei 76Se
and 80Kr. We can express the shell-model

∗d patel@ph.iitr.ac.in
†praveen.srivastava@ph.iitr.ac.in

Hamiltonian as follows:

H =
∑
α

εαN̂α+
1

4

∑
αβδγJT

〈jαjβ |V |jγjδ〉JT×

O†JT ;jαjβ
OJT ;jδjγ , (1)

where, α = {nljt} denotes the single-
particle orbitals and εα stand for the cor-
responding single-particle energies. N̂α =∑
jz,tz

a†α,jz,tzaα,jz,tz is the particle number
operator. The two-body matrix elements
〈jαjβ |V |jγjδ〉JT are coupled to the spin J

and isospin T . O†JT , and OJT represent the
fermion pair creation and annihilation opera-
tors, respectively.
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FIG. 1: Comparison of the shell-model predicted
states of g.s. bands in the pseudo-mirror nuclei
76Se and 80Kr with the experimental data [5].

The mean-field part of the shell-model
Hamiltonian corresponding to the jun45 in-
teraction consists of 0f5/21p0g9/2 proton and
neutron orbitals. The KSHELL code [6] is em-
ployed for the diagonalization of shell-model
Hamiltonian matrices, and these calculations
are performed without any truncation.
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FIG. 2: Comparison of the theoretical and exper-
imental kinematic moment of inertia (I/~2) as a
function of rotational frequency (~ω).

Results and discussion

In this section, we discuss the structural
properties of the pseudo-mirror nuclei 76Se
and 80Kr. Figure 1 shows the comparison of
the shell-model predicted yrast states of the
ground state (g.s.) bands in both nuclei with
the experimental data. The variation of the
(I/~2) with respect to the rotational frequency
(~ω) is illustrated in Fig. 2 using the relation
I/~2 = (2J − 1)/Eγ(J → J − 2), where Eγ is
the energy difference of two consecutive states
of g.s. band. The rotational frequency and
Eγ follow the relation, Eγ = 2~ω. Shell-model
obtained B(E2) transitions corresponding to
effective charges (ep = 1.7, en = 1.1) are com-
pared with the experimental data in Fig. 3.

In the f5/2pg9/2 model space, the pseudo-

mirror nuclei 76Se and 80Kr have Np ×Nn =
48, with 6p-8h and 8p-6h configurations, re-
spectively. Our calculations show remarkable
agreement with the experimental energy levels
of both nuclei. In 76Se, the configurations of
0+ − 10+ states are predominantly keep four
neutrons in the ν(g9/2) orbital, with no pro-
ton excitations in the π(g9/2) orbital from the

f5/2−p shells. In contrast, for 80Kr, the dom-

inant configurations of the 0+−10+ states in-
volve six neutrons in the ν(g9/2) orbital, with
two proton excitation in the π(g9/2) orbital

from the 2+ state and onward. The I/~2 trend
is accurately reproduced for 76Se, though a
deviation is observed for 80Kr, where shell-
model calculations show back-bending at the
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FIG. 3: Comparison of the shell-model predicted
B(E2) transitions in the pseudo-mirror nuclei
76Se and 80Kr with the experimental data.

8+ → 6+ transition, rather than at 10+ → 8+.
This discrepancy stems from slight deviations
between the shell-model predicted states and
the corresponding experimental levels. Fur-
thermore, similar B(E2) transitions in anal-
ogous states of 76Se and 80Kr are reflected
in both the experimental data and the shell-
model results. In conclusion, the utilized effec-
tive interaction successfully reproduces most
spectroscopic properties of both nuclei but re-
quires further refinement for more accurate
predictions of the I/~2 values for 80Kr.
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