

1 NEW QUANTUM CODES FROM METACIRCULANT GRAPHS
2 VIA SELF-DUAL ADDITIVE \mathbb{F}_4 -CODES

PADMAPANI SENEVIRATNE

Department of Mathematics, Texas A&M University-Commerce
2600 South Neal Street, Commerce TX 75428, USA

MARTIANUS FREDERIC EZERMAN*

School of Physical and Mathematical Sciences, Nanyang Technological University
21 Nanyang Link, Singapore 637371

(Communicated by the associate editor name)

ABSTRACT. We use symplectic self-dual additive codes over \mathbb{F}_4 obtained from metacirculant graphs to construct, for the first time, $[\ell, 0, d]$ qubit codes with parameters $(\ell, d) \in \{(78, 20), (90, 21), (91, 22), (93, 21), (96, 22)\}$. Secondary constructions applied to the qubit codes result in many new qubit codes that perform better than the previous best-known.

3 1. Introduction. We work on three closely connected objects, namely, a *metacirculant graph* G , a *symplectic self-dual additive code* C over \mathbb{F}_4 , and its corresponding **4** *quantum stabilizer code* Q . The route is straightforward. Let I be the identity **5** matrix of a suitable dimension and ω be a root of $x^2 + x + 1 \in \mathbb{F}_2[x]$. We search for a **6** G whose adjacency matrix $A(G)$ leads to C , which is generated by the row span of **7** $A(G) + \omega I$. This code C , in turn, yields Q via the stabilizer method.

9 For lengths $\ell \in \{27, 36\}$ exhaustive searches are feasible, allowing us to **10** construct some families of additive codes that contain some code C with a higher **11** minimum distance than the best that circulant graphs can lead to. For lengths **12** $\ell \in \{78, 90, 91, 93, 96\}$ we run randomized non-exhausted searches to come up with **13** the new additive codes. We exhibit numerous instances when the resulting qubit **14** codes have better parameters than the best-known comparable quantum codes.

15 The general construction of quantum stabilizer codes, wherein classical codes **16** are used to describe the quantum error operators, is well-established. Our main **17** reference for the qubit case is the seminal work of Calderbank, Rains, Shor, and **18** Sloane in [4]. Two recent introductory expositions can be found in [7] and [9].

19 To get to metacirculant graphs, we recall *circulant graphs*, which have been more **20** extensively studied. A recent survey on the subject can be found in [15]. The **21** following definition of circulant graphs is given in [2].

2020 *Mathematics Subject Classification.* Primary: 94B25, 81P73; Secondary: 05C75.

Key words and phrases. additive codes, graph codes, metacirculant graph, quantum codes, self-dual codes.

Nanyang Technological University Grant Number 04INS000047C230GRT01 supports the research carried out by M. F. Ezerman.

* Corresponding author: Martianus Frederic Ezerman.

22 **Definition 1.1.** Let \mathbb{Z}_n denote the ring of integers modulo n and let

$$\mathbb{Z}_n^* := \{x \in \mathbb{Z}_n : 0 < x \leq n/2\}.$$

23 The circulant graph $\Gamma_n(S)$ is the graph with the vertex set \mathbb{Z}_n where any two vertices
24 x and y are adjacent if and only if $|x - y|_n \in S$, with $S \subseteq \mathbb{Z}_n^*$ and

$$\begin{cases} |a|_n := a & \text{if } 0 \leq a \leq n/2, \\ |a|_n := n - a & \text{if } n/2 < a < n. \end{cases}$$

25 The adjacency matrix of a circulant graph is a *circulant matrix*. An $n \times n$ matrix
26 A is circulant if it has the form

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_n & a_1 & \cdots & a_{n-2} & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_3 & a_4 & \cdots & a_1 & a_2 \\ a_2 & a_3 & \cdots & a_n & a_1 \end{pmatrix}. \quad (1)$$

27 If the adjacency matrix $A := A(G)$ of G is circulant, then $a_1 = 0$ and $a_i = a_{n+2-i}$
28 for $i \in \{2, \dots, \lfloor n/2 \rfloor\}$. Circulant matrices are used as building blocks in the con-
29 structions of many different classes of codes. Examples include self-dual codes,
30 cyclic codes, and quadratic residue codes.

31 Circulant graphs are *vertex transitive* [2]. They are the Cayley graphs of \mathbb{Z}_n .
32 In 1982, Alspach and Parsons [1] constructed a family of vertex transitive graphs.
33 Each graph in the family has a transitive permutation group as a subgroup of its
34 automorphism group. They named the family *metacirculant graphs* as it contains
35 the class of circulant graphs.

36 Li, Song, and Wang in [13, Definition 1.1], following D. Marušič in [14], call a
37 graph $\Gamma = (V, E)$ an (m, n) -metacirculant if $|V| = mn$ and Γ has two automorphisms
38 ρ and σ that satisfy some conditions. First, $\langle \rho \rangle$ is semiregular and has m orbits on
39 V . Second, σ cyclically permutes the m orbits of $\langle \rho \rangle$ and normalizes $\langle \rho \rangle$. Third, σ^m
40 fixes at least one vertex of Γ . In this work, we follow an equivalent combinatorial
41 definition.

42 **Definition 1.2.** ([1]) Let m, n be two fixed positive integers and $\alpha \in \mathbb{Z}_n$ be a unit.
43 Let $S_0, S_1, \dots, S_{\lfloor m/2 \rfloor} \subseteq \mathbb{Z}_n$ satisfy the four properties

- 44 1. $S_0 = -S_0$.
- 45 2. $0 \notin S_0$.
- 46 3. $\alpha^m S_k = S_k$ for $1 \leq k \leq \lfloor m/2 \rfloor$.
- 47 4. If m is even then $\alpha^{m/2} S_{m/2} = -S_{m/2}$.

48 The meta-circulant graph $\Gamma := \Gamma(m, n, \alpha, S_0, S_1, \dots, S_{\lfloor m/2 \rfloor})$ has the vertex set
49 $V(\Gamma) = \mathbb{Z}_m \times \mathbb{Z}_n$. Let V_0, V_1, \dots, V_{m-1} , where $V_i := \{(i, j) : 0 \leq j \leq n-1\}$, be a
50 partition of $V(\Gamma)$. Let $1 \leq k \leq \lfloor m/2 \rfloor$. Vertices (i, j) and $(i+k, h)$ are adjacent if
51 and only if $(h-j) \in \alpha^i S_k$.

52 Henceforth, we let $m > 1$ since a metacirculant graph with $m = 1$ is circulant.

53 **Example 1.** The Petersen graph is $\Gamma(2, 5, 2, \{1, 4\}, \{0\})$. The vertices are parti-
54 tioned into

$$V_0 := \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)\} \text{ and } V_1 := \{(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)\}.$$

55 Vertices $(0, j)$ and $(0, h)$ are adjacent for $h - j \in S_0$. Vertices $(1, j)$ and $(1, h)$ are
56 adjacent when $h - j \in \{2, 3\}$. Vertices $(0, j)$ and $(1, j)$ are adjacent for $0 \leq j \leq 4$.

57 Figure 1, typeset in **TikZ-network** [12], relabels the vertices lexicographically. The
 58 upper layer contains the vertices in V_0 as $1, \dots, 5$ while the lower layer presents the
 59 vertices in V_1 as $6, \dots, 10$.

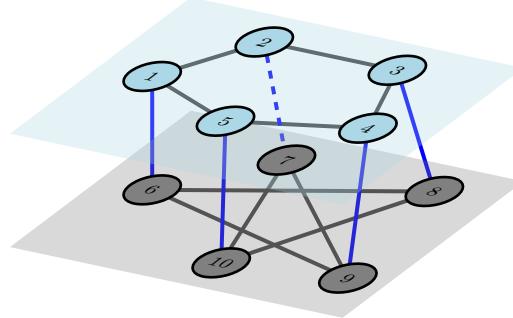


FIGURE 1. The Petersen Graph as $\Gamma(2, 5, 2, \{1, 4\}, \{0\})$.

60 The following fact is well-known.

61 **Theorem 1.3.** ([1]) *Let $\phi(\cdot)$ denote the Euler totient function. If $\gcd(m, n) =$
 62 1 and $\gcd(m, \phi(n)) = 1$, then the metacirculant $\Gamma(m, n, \alpha, S_0, S_1, \dots, S_{\lfloor m/2 \rfloor})$ is
 63 isomorphic to a circulant graph.*

64 The next lemma determines the degree of each vertex.

65 **Lemma 1.4.** *Any $G := \Gamma(m > 1, n, \alpha, S_0, S_1, \dots, S_{\lfloor m/2 \rfloor})$ is regular. The degree
 66 of each vertex is given by*

$$\begin{cases} |S_0| + |S_1| & \text{if } m = 2, \\ |S_0| + |S_{\lfloor m/2 \rfloor}| + 2 \left(\sum_{r=1}^{\lfloor m/2 \rfloor - 1} |S_r| \right) & \text{if } m \geq 4 \text{ is even,} \\ |S_0| + 2 \left(\sum_{r=1}^{\lfloor m/2 \rfloor} |S_r| \right) & \text{if } m \geq 3 \text{ is odd.} \end{cases} \quad (2)$$

67 *Proof.* Since the automorphism group of G acts transitively on its vertices, G is a
 68 regular graph. Hence, it suffices to determine the degree of vertex $(0, 0) \in V_0$. The
 69 vertex is adjacent to a vertex $(0, h) \in V_0$ if and only if $h \in S_0$. This implies that
 70 $(0, 0)$ is adjacent to $|S_0|$ vertices in V_0 .

71 Next, $(0, 0)$ is adjacent to a vertex $(k, h) \in V_k$ if and only if $h \in S_k$. Hence,
 72 $(0, 0)$ is adjacent to $|S_k|$ vertices in V_k . The set S_k determines the edges between
 73 layers V_0 and V_k whose indices differ by k for $1 \leq k \leq \lfloor m/2 \rfloor$. When m is odd,
 74 the index 0 of V_0 differs by k from both the indices k and $m - k$ of V_k and V_{m-k}
 75 for all $1 \leq k \leq \lfloor m/2 \rfloor$. When m is even, $V_{m/2} = -V_{m/2}$, which implies that the
 76 index 0 of V_0 differs by k from both the indices k and $m - k$ of V_k and V_{m-k} for all
 77 $1 \leq k \leq \lfloor m/2 \rfloor - 1$. Thus, the degree of vertex $(0, 0)$ is as given in Equation 2. \square

78 **Theorem 1.5.** *Let $S := \{S_0, S_1, \dots, S_{\lfloor m/2 \rfloor}\}$. Given the graph $G := \Gamma(m, n, \alpha, S)$,
 79 let $\{V_i : i \in \{0, 1, \dots, m-1\}\}$, with $V_i := \{(i, j) : 0 \leq j < n\}$, be the partition of
 80 the vertex set into m layers, each containing n vertices. Then G is a multi-partite
 81 metacirculant graph with m partitions if and only if S_0 is the empty set.*

82 *Proof.* By Definition 1.2, two vertices (i, j) and $(i+k, h)$ are adjacent in $\Gamma(m, n, \alpha, S)$
 83 if and only if $h - j \in \alpha^i S_k$. Both vertices are in the same layer V_i whenever $k = 0$.

84 Hence, the two vertices (i, j) and (i, h) in V_i are adjacent if and only if $h - j \in \alpha^i S_0$.
 85 The set S_0 being empty implies $h - j \notin \alpha^i S_0$. Thus, there is no edge between any
 86 pair of vertices within the same layer V_i . \square

87 **2. Self-dual additive codes from metacirculant graphs.** A code over $\mathbb{F}_4 :=$
 88 $\{0, 1, \omega, \bar{\omega} = \omega^2 = 1 + \omega\}$ is said to be *additive* if it is \mathbb{F}_2 -linear, *i.e.*, the code is
 89 closed under addition but closure under multiplication by the elements in $\mathbb{F}_4 \setminus \mathbb{F}_2$ is
 90 not required. An \mathbb{F}_4 -linear code is additive. An element \mathbf{c} of C is called a codeword
 91 of C . The *weight* of \mathbf{c} is the number of nonzero entries that it has. The *minimum*
 92 *distance* of C is the least nonzero weight of all codewords in C . If C is an additive
 93 code of length ℓ over \mathbb{F}_4 , of size 2^k and minimum distance d , then we denote C by
 94 $(\ell, 2^k, d)_4$. Let $W_i := W_i(C)$ be the number of codewords of weight i in C . Then
 95 the set $\{W_0, W_1, \dots, W_n\}$ is the *weight distribution* of C . It is convenient to express
 96 the weights as a polynomial out of the W_i s. The *weight enumerator* of C is the
 97 polynomial $W_C(y) = W_0 + W_1y + \dots + W_ny^n$.

98 The *trace Hermitian inner product* of $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ in
 99 \mathbb{F}_4^n is given by

$$\mathbf{x} * \mathbf{y} = \sum_{j=1}^n (x_j y_j^2 + x_j^2 y_j). \quad (3)$$

100 Given an additive code C , its *symplectic dual* C^* is

$$C^* = \{\mathbf{x} \in \mathbb{F}_4^n : \mathbf{x} * \mathbf{c} = 0 \text{ for all } \mathbf{c} \in C\}$$

101 and C is said to be *(symplectic) self-dual* if $C = C^*$.

102 An additive \mathbb{F}_4 self-dual code is called *Type II* if all of its codewords have even
 103 weights. A code which is not Type II is called *Type I*. It is well-known that Type
 104 II codes must have even lengths.

105 Self-dual codes, under various inner products and possible alphabet sets, have
 106 been extensively studied due to their rich algebraic, combinatorial, and geometric
 107 structures. A major reference on this topic is the book [16] authored by Nebe,
 108 Rains, and Sloane. Of particular relevance to our family of additive self-dual codes
 109 here, labeled as family 4^{H+} in [16], is the treatment in Section 6 of Chapter 7 and
 110 in Chapter 11.

111 Let $A(\Gamma)$ be the adjacency matrix of the graph Γ and I be the identity matrix.
 112 The following nice result was first shown by Schlingemann in [18] and subsequently
 113 discussed in [5, Section 3]. Every graph represents a self-dual additive code over
 114 \mathbb{F}_4 and every self-dual additive code over \mathbb{F}_4 can be represented by a graph. In
 115 particular, the additive \mathbb{F}_4 -code $C := C(\Gamma)$ generated by the row span of the matrix
 116 $A(\Gamma) + \omega I$ is symplectic self-dual.

117 Danielsen and Parker gave a complete classification of *all* self-dual additive codes
 118 over \mathbb{F}_4 for $n \leq 12$ in [5]. Follow-up works, covering $n \leq 50$, were contributed by
 119 Gulliver and Kim in [11], by Varbanov in [19], by Grassl and Harada in [10], and
 120 by Saito in [17]. Their collective efforts focused on codes derived from graphs
 121 whose adjacency matrices are either *circulant* or *bordered circulant*. Our work here
 122 expands the search for new qubit codes by exploring metacirculant graphs. The
 123 following result classifies Type I and Type II additive \mathbb{F}_4 self-dual codes generated
 124 by metacirculant graphs.

125 **Theorem 2.1.** *Let C be an additive \mathbb{F}_4 self-dual code generated by*

$$\Gamma(m, n, \alpha, S_0, S_1, \dots, S_{\lfloor m/2 \rfloor}), \text{ with } 2 \mid (mn).$$

126 Let

$$\Delta_S := \begin{cases} |S_0| & \text{if } m \text{ is odd,} \\ |S_0| + |S_{\lfloor m/2 \rfloor}| & \text{if } m \text{ is even.} \end{cases} \quad (4)$$

127 Then C is Type II if and only if Δ_S is odd.

128 *Proof.* Let mn be even. An additive self-dual \mathbb{F}_4 code $C = C(\Gamma)$ is Type II if and
129 only if all vertices of Γ have odd degree [5]. Lemma 1.4 gives the degree of each
130 vertex in $\Gamma(m, n, \alpha, S_0, S_1, \dots, S_{\lfloor m/2 \rfloor})$. By Equation 2, the degree is odd if and
131 only if Δ_S is odd. \square

132 The three parameters of a qubit code $Q \subseteq \mathbb{C}^{2^\ell}$ are its *length* ℓ , *dimension* K over
133 \mathbb{C} , and *minimum distance* $d = d(Q)$. The notation

$$((\ell, K, d)) \text{ or } \llbracket \ell, k, d \rrbracket \text{ with } k = \log_2 K$$

134 signifies that Q encodes k logical qubits as ℓ physical qubits, with d being the
135 smallest number of simultaneous quantum error operators that can send a valid
136 codeword into another.

137 A symplectic self-dual additive code C over \mathbb{F}_4 of length ℓ and minimum distance
138 d gives an $\llbracket \ell, 0, d \rrbracket_2$ qubit code Q . Since $k = 0$, that is the code Q consists of a single
139 quantum state, one needs to carefully interpret the meaning of minimum distance.
140 As explained in [4, Section III], an $\llbracket \ell, 0, d \rrbracket$ code Q has the property that, when
141 subjected to a decoherence of $\lfloor (d-1)/2 \rfloor$ coordinates, it is possible to *determine*
142 *exactly* which coordinates were decohered. This code can be used, for example, to
143 test if certain storage locations for qubits are decohering faster than they should.

144 Such a code Q can be of interest in their own right. An example is the unique
145 $\llbracket 2, 0, 2 \rrbracket$ code that corresponds to the maximally entangled quantum state known
146 as the EPR pair in the famed paper [6] of Einstein, Podolsky, and Rosen. More
147 commonly, a zero-dimensional code is used as a seed in some secondary constructions
148 of quantum codes to produce qubit codes with $k > 0$.

149 **Theorem 2.2.** [4, Theorem 6] *Assume that a qubit $((\ell, K, d > 1))_2$ code Q exists.
150 Then the following qubit codes exist. An $((\ell, K', d))_2$ code for all $1 < K' \leq K$ by
151 subcode construction. A $((\lambda, K, d))_2$ code for all $K > 1$ and $\lambda \geq \ell$ by lengthening.
152 An $((\ell - 1, K, d - 1))_2$ code by puncturing.*

153 There is also a quantum analogue of the *shortening* construction on classical
154 code, although the former is less straightforward to perform. Interested reader can
155 consult [9, Section 4.3] for the procedure.

156 **Example 2.** The $[12, 6, 6]_4$ dodecacode \mathcal{D} yields the unique $\llbracket 12, 0, 6 \rrbracket$ qubit code.
157 It can be generated by the metacirculant graph $G_{12} := \Gamma(2, 6, 5, \{3\}, \{0, 3, 4, 5\})$.
158 Figure 2 shows G_{12} with the vertices relabeled for convenience. The dodecacode is
159 Type II, with weight enumerator $1 + 396y^6 + 1485y^8 + 1980y^{10} + 234y^{12}$.

160 Many known optimal or currently best-performing qubit codes of length ℓ with
161 $K = 1$ in the literature, *i.e.*, $\llbracket \ell, 0, d \rrbracket_2$ with best-known or optimal d , are constructed
162 based on circulant graphs [5, 10, 17]. We will soon show that strict improvements
163 can be gained when one starts with metacirculant graphs. We use MAGMA [3] for all
164 computations.

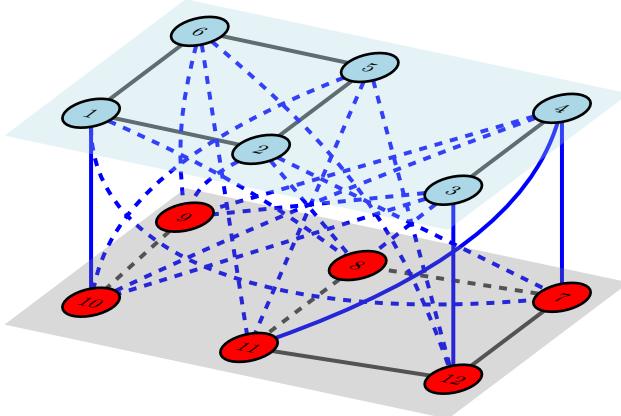


FIGURE 2. $G_{12} := \Gamma(2, 6, 5, \{3\}, \{0, 3, 4, 5\})$ of the dodecadode \mathcal{D} . \square

165 3. **Higher best-known minimum distances of additive symplectic self-
166 dual codes.** This section presents additive symplectic self-dual codes of length
167 $\ell \in \{27, 36\}$ with strictly higher minimum distances than any that can be derived
168 from circulant graphs. The strict improvements, however, do not extend to the
169 quantum setup. There are $[\ell, 0, d]$ qubit codes, constructed from other approaches
170 as recorded in the corresponding entries in [8], whose minimum distances are equal
171 to the ones that we derive here.

172 For length $\ell = 27$, Varbanov in [19] concluded after an exhaustive search that
173 the circulant graph construction only yields additive self-dual codes $(27, 2^{27}, \hat{d})_4$ of
174 highest minimum distance $d = 8 \geq \hat{d}$. Using the metacirculant graph construction,
175 we obtain additive self-dual codes with parameters $(27, 2^{27}, 9)_4$. They yield $[\ell, 0, 9]$
176 qubit codes, which meet the best-known parameters in [8].

177 **Proposition 1.** *There are two inequivalent families of $(27, 2^{27}, 9)_4$ additive self-
178 dual codes from metacirculant graphs with $(m, n) = (3, 9)$. Each family consists of
179 108 equivalent codes. They yield $[\ell, 0, 9]$ qubit stabilizer codes.*

Proof. An exhaustive search found 216 metacirculant graphs $\{\Gamma(3, 9, \alpha, S_0, S_1)\}$ in
two non-isomorphic families, which we call $\mathcal{F}_{27,1}$ and $\mathcal{F}_{27,2}$, corresponding to two
inequivalent codes $C_{27,1}$ and $C_{27,2}$. The respective families can be represented by
the graphs

$$G_{27,1} := \Gamma(3, 9, 4, \{2, 7\}, \{0, 1, 2, 3, 4, 5, 8\}) \text{ and} \\ G_{27,2} := \Gamma(3, 9, 7, \{1, 3, 6, 8\}, \{0, 5, 8\}). \quad (5)$$

180 To confirm that the resulting codes are inequivalent, it suffices to note that the
181 number of weight 9 words are 591 and 717, respectively. We note that both codes
182 have $W_i > 0$ for all $9 \leq i \leq 27$. When i is even, $W_i(C_{27,1}) = W_i(C_{27,2})$.

183 The complete list of the 216 metacirculant graphs, divided into the families $\mathcal{F}_{27,1}$
184 and $\mathcal{F}_{27,2}$, and the weight distributions of the two inequivalent codes can be found
185 in the supplementary material. \square

186 A self-dual additive $(36, 2^{36}, 12)_4$ code from circulant graphs does *not* exist, since
187 the best minimum distance is confirmed to be 11 in [10, 17]. The metacirculant

graph construction increases the known minimum distance of length 36 additive self-dual codes to 12.

Proposition 2. *There are 72 metacirculant graphs with $(m, n) = (2, 18)$, producing two inequivalent additive symplectic self-dual $(36, 2^{36}, 12)_4$ Type II codes. We can separate the 72 graphs into two families, which we call $\mathcal{F}_{36,1}$ and $\mathcal{F}_{36,2}$. Each family consists of 36 isomorphic graphs. They yield $\llbracket 36, 0, 12 \rrbracket$ qubit codes. The respective families can be represented by the graphs*

$$\begin{aligned} G_{36,1} &:= \Gamma(2, 18, 1, \{4, 6, 12, 14\}, \{3, 4, 6, 7, 9, 11, 12, 14, 15\}), \\ G_{36,2} &:= \Gamma(2, 18, 1, \{4, 6, 12, 14\}, \{1, 4, 7, 8, 9, 10, 11, 14, 17\}). \end{aligned} \quad (6)$$

Proof. The weight distributions of the additive self-dual codes $C_{36,1}$ and $C_{36,2}$ derived, respectively, from $G_{36,1}$ and $G_{36,2}$ confirm that the codes are Type II. We have $W_i > 0$ for $i \in \{0\} \cup \{2j : 6 \leq j \leq 18\}$. The two additive codes are inequivalent since $W_{12}(C_{36,1}) = 28764 \neq 20844 = W_{12}(C_{36,2})$. The list of $\{\alpha, S_0, S_1\}$ for the metacirculant graphs $\Gamma(2, 18, \alpha, S_0, S_1)$ that splits into two families can be found in the supplementary material. The graphs $G_{36,1}$ and $G_{36,2}$ share a common structure when we look into edges that are incident to vertices within the same layer. The structures differ only on the edges that are incident to vertices that belong to two distinct layers. \square

4. New qubit codes. Here we present new qubit codes $\llbracket \ell, 0, d \rrbracket_2$ for lengths $\ell \in \{78, 90, 91, 93, 96\}$. Due to the large sizes of the relevant graphs, we supply a MAGMA routine to generate them in the supplementary material instead of presenting the graphs explicitly. For each ℓ , we keep a record of the minimum distance calculation and include it as a supporting document.

Applying secondary constructions yields more qubit codes with strictly better parameters than previously known. There are computational routines used by M. Grassl to perform the propagation rules on the improved codes submitted for inclusion to his online table [8]. We highlight the process only for $\ell = 78$, for brevity.

Proposition 3. *The metacirculant graph*

$$\begin{aligned} G_{78} &:= \Gamma(6, 13, 12, \{1, 4, 6, 7, 9, 12\}, \{1, 2, 3, 5, 7, 8, 9, 11\}, \\ &\quad \{1, 2, 4, 5, 8, 10\}, \{1, 2, 3, 6, 7, 8, 12\}) \end{aligned} \quad (7)$$

yields a new $(78, 2^{78}, 20)_4$ Type II additive self-dual code. The corresponding Q_{78} is a new $\llbracket 78, 0, 20 \rrbracket$ qubit code. Prior to our discovery, the best-known was $\llbracket 78, 0, 19 \rrbracket$ and the first known occurrence of $d = 20$ was at $\ell = 80$. Our new qubit code has been listed as the current best-known since October 13, 2020 in Grassl's table [8] based on a private communication.

Proof. A randomized search in MAGMA found G_{78} . The graph yields the self-dual additive code C_{78} of distance $d = 20$. By Theorem 2.1, $\Delta_S = |S_0| + |S_3| = 13$, which implies that C_{78} is Type II. The qubit code Q_{78} can then be certified to have the claimed parameters. \square

By propagation rules, strict improvements have also been achieved by puncturing, shortening, lengthening, and taking a subcode of Q_{78} . Table 1 provides the details.

TABLE 1. New codes from modifying Q_{78}

Code	Parameters	Propagation rule
$Q_{78,1}$	$\llbracket 77, 0, 19 \rrbracket_2$	Puncture Q_{78} at $\{78\}$
$Q_{78,2}$	$\llbracket 77, 1, 19 \rrbracket_2$	Shorten Q_{78} at $\{78\}$
$Q_{78,3}$	$\llbracket 78, 1, 19 \rrbracket_2$	Lengthen $Q_{78,2}$ by 1
$Q_{78,4}$	$\llbracket 76, 2, 18 \rrbracket_2$	Shorten Q_{78} at $\{77, 78\}$
$Q_{78,5}$	$\llbracket 76, 1, 18 \rrbracket_2$	Subcode of $Q_{78,4}$
$Q_{78,6}$	$\llbracket 77, 2, 18 \rrbracket_2$	Lengthen $Q_{78,4}$ by 1
$Q_{78,7}$	$\llbracket 75, 3, 17 \rrbracket_2$	Shorten Q_{78} at $\{76, 77, 78\}$
$Q_{78,8}$	$\llbracket 76, 3, 17 \rrbracket_2$	Lengthen $Q_{78,7}$ by 1
$Q_{78,9}$	$\llbracket 75, 2, 17 \rrbracket_2$	Subcode of $Q_{78,7}$

Proposition 4. *The metacirculant graph*

$$G_{90} := \Gamma(10, 9, 8, \{1, 8\}, \{0, 1, 2, 4, 5, 8\}, \{5, 6\}, \{2, 4, 5, 6, 8\}, \{0, 1, 2, 4, 7\}, \{0, 5, 7, 8\}) \quad (8)$$

219 generates a new $(90, 2^{90}, 21)_4$ Type I additive self-dual code C_{90} . The new $\llbracket 90, 0, 21 \rrbracket$
220 qubit code Q_{90} has better minimum distance than the best-known $\llbracket 90, 0, 20 \rrbracket$ in [8].

221 *Proof.* The graph G_{90} and the resulting codes C_{90} and Q_{90} as well as their parameters
222 were found by MAGMA searches. The code C_{90} is Type I by Theorem 2.1, since
223 $\Delta_S = |S_0| + |S_5| = 6$. \square

Proposition 5. *The multi-partite metacirculant graph*

$$G_{91} := \Gamma(7, 13, 3, \{\}, \{4, 7, 8, 10, 11, 12\}, \{1, 3, 4, 7, 8, 9, 10, 11, 12\}, \{0, 4, 7, 8, 10, 11, 12\}) \quad (9)$$

224 gives a new $(91, 2^{91}, 22)_4$ Type I additive self-dual code C_{91} . The new $\llbracket 91, 0, 22 \rrbracket$
225 qubit code Q_{91} has better minimum distance than the $\llbracket 91, 0, 21 \rrbracket$ code in [8].

226 *Proof.* By Theorem 1.5, G_{91} is a multi-partite graph. The vertices are partitioned
227 into 7 layers, each containing 13 vertices. We used MAGMA to verify that the minimum
228 distance d of the generated $(91, 2^{91}, d)_4$ self-dual additive code C_{91} is indeed 22. This
229 code is clearly Type I since its length is odd. The corresponding $\llbracket 91, 0, 22 \rrbracket$ qubit
230 code Q_{91} improves on the $\llbracket 91, 0, 21 \rrbracket$ code currently listed as best-known in [8]. \square

Proposition 6. *The metacirculant graph*

$$G_{93} := \Gamma(3, 31, 1, \{10, 12, 14, 15, 16, 17, 19, 21\}, \{2, 7, 8, 10, 11, 13, 15, 16, 17, 19\}) \quad (10)$$

231 generates a new $(93, 2^{93}, 21)_4$ additive self-dual code C_{93} . The code is Type I due
232 to its odd length. The new $\llbracket 93, 0, 21 \rrbracket$ qubit code Q_{93} has better minimum distance
233 when compared with the prior best-known $\llbracket 93, 0, 20 \rrbracket$ qubit code in [8].

234 *Proof.* We used MAGMA to verify that the generated $(93, 2^{93}, d)_4$ additive self-dual
235 code C_{93} has minimum distance $d = 21$. The code corresponds to a new $\llbracket 93, 0, 21 \rrbracket$
236 qubit code Q_{93} . \square

TABLE 2. Properties of the Graphs

G	$d_{\min}(G)$	$\nu(G)$	$\gamma(G)$	$ \text{Aut}(G) $	G	$d_{\min}(G)$	$\nu(G)$	$\gamma(G)$	$ \text{Aut}(G) $
G_{12}	6	5	4	24	G_{78}	20	41	7	78
$G_{27,1}$	9	16	6	27	G_{90}	21	42	7	90
$G_{27,2}$	9	10	4	27	G_{91}	22	44	7	546
$G_{36,1}$	12	13	6	72	G_{93}	22	28	4	186
$G_{36,2}$	12	13	4	72	G_{96}	22	35	6	96

Proposition 7. *The metacirculant graph*

$$G_{96} := \Gamma(6, 16, 7, \{2, 4, 6, 7, 9, 10, 12, 14\}, \{1, 3, 4, 5, 7, 9, 10\}, \{3, 5, 11, 14\}, \{0, 2, 7, 10, 15\}) \quad (11)$$

237 generates a new $(96, 2^{96}, 22)_4$ Type II additive self-dual code C_{96} . The new $[[96, 0, 22]$
238 qubit code Q_{96} improves the minimum distance of the prior best-known $[[96, 0, 20]$
239 code in [8].

240 *Proof.* We confirmed that the minimum distance of C_{96} is 22 by using MAGMA. Since
241 $\Delta_S = |S_0| + |S_3| = 13$, the code is Type II by Theorem 2.1. \square

242 **5. Concluding Remarks.** There are at least two challenging aspects in finding
243 improved symplectic self-dual additive codes over \mathbb{F}_4 or strictly better qubit codes.
244 First, the search space quickly widens as the length ℓ grows. Second, determining
245 the minimum distances of the codes is computationally expensive [20]. On a laptop
246 with 11.6 GB available memory, powered by an Intel i7-7500U CPU, a single core
247 run of MAGMA found the minimum distance for the code in Proposition 3 in 10 hours.
248 For the code in Proposition 7, the computation took 41 days and 15 hours.

249 We have shown that focusing on metacirculant graphs which are not isomorphic
250 to the circulant ones is a fruitful approach. Bringing this work to its end, Table 2
251 summarizes the properties of the graphs that we have used above. All of them have
252 diameter 2 and girth 3. Included in the table, for each graph G , are the minimum
253 distance $d_{\min}(G)$ of the generated additive code $C := C(G)$, the degree $\nu(G)$ of
254 each vertex in G , the size $\gamma(G)$ of the maximum clique, and the size $|\text{Aut}(G)|$ of the
255 automorphism group of G .

256 **Acknowledgements.** We thank the editor and the two anonymous reviewers for
257 their scrutiny of our initial submission. Their thoughtful assessment and critical
258 suggestions help us to improve our work considerably.

259 **Supplementary Material.**

- 260 The graphs, their properties, and the corresponding additive codes can be
261 explicitly constructed by running `record.m`. Included in the output are the
262 complete weight enumerators of the codes of lengths $\ell \in \{12, 27, 36\}$.
- 263 The relevant graphs with 27 vertices are split into families $\mathcal{F}_{27,1}$ and $\mathcal{F}_{27,2}$ by
264 `families27.m`. Those with 36 vertices are separated into families $\mathcal{F}_{36,1}$ and
265 $\mathcal{F}_{36,2}$ by `families36.m`.
- 266 The respective five certificates of the minimum distance computations are
267 labelled `78_20.txt`, `90_21.txt`, `91_22.txt`, `93_21.txt`, and `96_22.txt`.

268

REFERENCES

269 [1] B. Alspach and T. D. Parsons, A construction for vertex-transitive graphs, *Canad. J. Math.*,
270 **34** (1982), 307–318.

271 [2] Zbigniew R. Bogdanowicz, Pancylicity of connected circulant graphs, *J. Graph Theory*, **22**
272 (1996), 167–174.

273 [3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, *J.*
274 *Symb. Comput.*, **24** (1997), 235–265.

275 [4] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction
276 via codes over $GF(4)$, *IEEE Trans. Inform. Theory*, **44** (1998), 1369–1387.

277 [5] L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over
278 $GF(4)$ of length up to 12, *J. Combin. Theory, Ser. A*, **113** (2006), 1351–1367.

279 [6] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical
280 reality be considered complete?, *Phys. Rev.*, **47** (1935), 777–780.

281 [7] Martianus F. Ezerman, Quantum error-control codes, Chapter 27 in W. C. Huffman, J.-L.
282 Kim and P. Solé (Eds.), *Concise Encyclopedia of Coding Theory*, 1st edition, Chapman and
283 Hall (CRC Press), Boca Raton, 2021.

284 [8] Markus Grassl, Bounds on the minimum distance of linear codes and quantum codes. Online
285 available at <http://www.codetables.de>, 2007, accessed on 2021-04-30.

286 [9] Markus Grassl, Algebraic quantum codes: Linking quantum mechanics and discrete mathe-
287 matics, *Int. J. Comput. Math.: Comput. Syst. Theory*, (2020)
288 DOI: 10.1080/23799927.2020.1850530

289 [10] M. Grassl and M. Harada, New self-dual additive \mathbb{F}_4 -codes constructed from circulant graphs,
290 *Discrete Math.*, **340** (2017), 399–403.

291 [11] T. A. Gulliver and J.-L. Kim, Circulant based extremal additive self-dual codes over $GF(4)$,
292 *IEEE Trans. Inform. Theory*, **50** (2004), 359–366.

293 [12] Jürgen Hackl, TikZ-network manual, preprint, [arXiv:1709.06005](https://arxiv.org/abs/1709.06005). Source code at <https://github.com/hackl/tikz-network>.

294 [13] C. H. Li, S. J. Song and D. J. Wang, A characterization of metacirculants, *J. Combin. Theory,*
295 *Ser. A*, **120** (2013), 39–48.

296 [14] Dragan Marušič, On 2-arc-transitivity of Cayley graphs, *J. Combin. Theory, Ser. B*, **87**
297 (2003), 162–196. Corrigendum in *J. Combin. Theory, Ser. B*, **96** (2006), 761–764.

298 [15] Emiliya A. Monakhova, A survey on undirected circulant graphs, *Discrete Math. Algorithms*
299 *Appl.*, **04** (2012), 1250002.

300 [16] G. Nebe, E. M. Rains and N. J. A. Sloane, *Self-Dual Codes and Invariant Theory*, Springer,
301 Berlin, Heidelberg, 2006.

302 [17] Ken Saito, Self-dual additive \mathbb{F}_4 -codes of lengths up to 40 represented by circulant graphs,
303 *Adv. Math. Commun.*, **13** (2019), 213–220.

304 [18] Dirk Schlingemann, Stabilizer codes can be realized as graph codes, *Quantum Info. Comput.*,
305 **2** (2002), 1533–7146.

306 [19] Zlatko Varbanov, Additive circulant graph codes over $GF(4)$, *Math. Maked.*, **6** (2008), 73–79.

307 [20] Alexander Vardy, The intractability of computing the minimum distance of a code, *IEEE*
308 *Trans. Inform. Theory*, **43** (1997), 1757–1766.

310 Received xxxx 20xx; revised xxxx 20xx.

311 *E-mail address:* Padmapani.Seneviratne@tamuc.edu312 *E-mail address:* fredeezerman@ntu.edu.sg