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Abstract. We use symplectic self-dual additive codes over F4 obtained from

metacirculant graphs to construct, for the first time, J`, 0, dK qubit codes with

parameters (`, d) ∈ {(78, 20), (90, 21), (91, 22), (93, 21), (96, 22)}. Secondary
constructions applied to the qubit codes result in many new qubit codes that

perform better than the previous best-known.

1. Introduction. We work on three closely connected objects, namely, a metacir-3

culant graph G, a symplectic self-dual additive code C over F4, and its corresponding4

quantum stabilizer code Q. The route is straightforward. Let I be the identity ma-5

trix of a suitable dimension and ω be a root of x2 + x+ 1 ∈ F2[x]. We search for a6

G whose adjacency matrix A(G) leads to C, which is generated by the row span of7

A(G) + ωI. This code C, in turn, yields Q via the stabilizer method.8

For lengths ` ∈ {27, 36} exhaustive searches are feasible, allowing us to con-9

struct some families of additive codes that contain some code C with a higher10

minimum distance than the best that circulant graphs can lead to. For lengths11

` ∈ {78, 90, 91, 93, 96} we run randomized non-exhausted searches to come up with12

the new additive codes. We exhibit numerous instances when the resulting qubit13

codes have better parameters than the best-known comparable quantum codes.14

The general construction of quantum stabilizer codes, wherein classical codes15

are used to describe the quantum error operators, is well-established. Our main16

reference for the qubit case is the seminal work of Calderbank, Rains, Shor, and17

Sloane in [4]. Two recent introductory expositions can be found in [7] and [9].18

To get to metacirculant graphs, we recall circulant graphs, which have been more19

extensively studied. A recent survey on the subject can be found in [15]. The20

following definition of circulant graphs is given in [2].21
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Definition 1.1. Let Zn denote the ring of integers modulo n and let22

Z∗n := {x ∈ Zn : 0 < x ≤ n/2}.
The circulant graph Γn(S) is the graph with the vertex set Zn where any two vertices23

x and y are adjacent if and only if |x− y|n ∈ S, with S ⊆ Z∗n and24 {
|a|n := a if 0 ≤ a ≤ n/2,
|a|n := n− a if n/2 < a < n.

The adjacency matrix of a circulant graph is a circulant matrix. An n×n matrix25

A is circulant if it has the form26

A =


a1 a2 · · · an−1 an
an a1 · · · an−2 an−1
...

...
. . .

...
...

a3 a4 · · · a1 a2
a2 a3 · · · an a1

 . (1)

If the adjacency matrix A := A(G) of G is circulant, then a1 = 0 and ai = an+2−i27

for i ∈ {2, . . . , bn/2c}. Circulant matrices are used as building blocks in the con-28

structions of many different classes of codes. Examples include self-dual codes,29

cyclic codes, and quadratic residue codes.30

Circulant graphs are vertex transitive [2]. They are the Cayley graphs of Zn.31

In 1982, Alspach and Parsons [1] constructed a family of vertex transitive graphs.32

Each graph in the family has a transitive permutation group as a subgroup of its33

automorphism group. They named the family metacirculant graphs as it contains34

the class of circulant graphs.35

Li, Song, and Wang in [13, Definition 1.1], following D. Marušič in [14], call a36

graph Γ = (V,E) an (m,n)-metacirculant if |V | = mn and Γ has two automorphisms37

ρ and σ that satisfy some conditions. First, 〈ρ〉 is semiregular and has m orbits on38

V . Second, σ cyclically permutes the m orbits of 〈ρ〉 and normalizes 〈ρ〉. Third, σm
39

fixes at least one vertex of Γ. In this work, we follow an equivalent combinatorial40

definition.41

Definition 1.2. ([1]) Let m,n be two fixed positive integers and α ∈ Zn be a unit.42

Let S0, S1, . . . , Sbm/2c ⊆ Zn satisfy the four properties43

1. S0 = −S0.44

2. 0 /∈ S0.45

3. αmSk = Sk for 1 ≤ k ≤ bm/2c.46

4. If m is even then αm/2Sm/2 = −Sm/2.47

The meta-circulant graph Γ := Γ
(
m,n, α, S0, S1, . . . , Sbm/2c

)
has the vertex set48

V (Γ) = Zm × Zn. Let V0, V1, . . . , Vm−1, where Vi := {(i, j) : 0 ≤ j ≤ n − 1}, be a49

partition of V (Γ). Let 1 ≤ k ≤ bm/2c. Vertices (i, j) and (i+ k, h) are adjacent if50

and only if (h− j) ∈ αi Sk.51

Henceforth, we let m > 1 since a metacirculant graph with m = 1 is circulant.52

Example 1. The Petersen graph is Γ(2, 5, 2, {1, 4}, {0}). The vertices are parti-53

tioned into54

V0 := {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)} and V1 := {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.
Vertices (0, j) and (0, h) are adjacent for h − j ∈ S0. Vertices (1, j) and (1, h) are55

adjacent when h − j ∈ {2, 3}. Vertices (0, j) and (1, j) are adjacent for 0 ≤ j ≤ 4.56
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Figure 1, typeset in TikZ-network [12], relabels the vertices lexicographically. The57

upper layer contains the vertices in V0 as 1, . . . , 5 while the lower layer presents the58

vertices in V1 as 6, . . . , 10.59
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Figure 1. The Petersen Graph as Γ(2, 5, 2, {1, 4}, {0}).

The following fact is well-known.60

Theorem 1.3. ([1]) Let φ(·) denote the Euler totient function. If gcd(m,n) =61

1 and gcd(m,φ(n)) = 1, then the metacirculant Γ
(
m,n, α, S0, S1, . . . , Sbm/2c

)
is62

isomorphic to a circulant graph.63

The next lemma determines the degree of each vertex.64

Lemma 1.4. Any G := Γ
(
m > 1, n, α, S0, S1, . . . , Sbm/2c

)
is regular. The degree65

of each vertex is given by66 
|S0|+ |S1| if m = 2,

|S0|+ |Sbm/2c|+ 2
(∑bm/2c−1

r=1 |Sr|
)

if m ≥ 4 is even,

|S0|+ 2
(∑bm/2c

r=1 |Sr|
)

if m ≥ 3 is odd.

(2)

Proof. Since the automorphism group of G acts transitively on its vertices, G is a67

regular graph. Hence, it suffices to determine the degree of vertex (0, 0) ∈ V0. The68

vertex is adjacent to a vertex (0, h) ∈ V0 if and only if h ∈ S0. This implies that69

(0, 0) is adjacent to |S0| vertices in V0.70

Next, (0, 0) is adjacent to a vertex (k, h) ∈ Vk if and only if h ∈ Sk. Hence,71

(0, 0) is adjacent to |Sk| vertices in Vk. The set Sk determines the edges between72

layers V0 and Vk whose indices differ by k for 1 ≤ k ≤ bm/2c. When m is odd,73

the index 0 of V0 differs by k from both the indices k and m − k of Vk and Vm−k74

for all 1 ≤ k ≤ bm/2c. When m is even, Vm/2 = −Vm/2, which implies that the75

index 0 of V0 differs by k from both the indices k and m− k of Vk and Vm−k for all76

1 ≤ k ≤ bm/2c − 1. Thus, the degree of vertex (0, 0) is as given in Equation 2.77

Theorem 1.5. Let S :=
{
S0, S1, . . . , Sbm/2c

}
. Given the graph G := Γ(m,n, α, S),78

let {Vi : i ∈ {0, 1, . . . ,m − 1}}, with Vi := {(i, j) : 0 ≤ j < n}, be the partition of79

the vertex set into m layers, each containing n vertices. Then G is a multi-partite80

metacirculant graph with m partitions if and only if S0 is the empty set.81

Proof. By Definition 1.2, two vertices (i, j) and (i+k, h) are adjacent in Γ(m,n, α, S)82

if and only if h− j ∈ αi Sk. Both vertices are in the same layer Vi whenever k = 0.83
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Hence, the two vertices (i, j) and (i, h) in Vi are adjacent if and only if h−j ∈ αi S0.84

The set S0 being empty implies h− j /∈ αi S0. Thus, there is no edge between any85

pair of vertices within the same layer Vi.86

2. Self-dual additive codes from metacirculant graphs. A code over F4 :=87

{0, 1, ω, ω = ω2 = 1 + ω} is said to be additive if it is F2-linear, i.e., the code is88

closed under addition but closure under multiplication by the elements in F4 \F2 is89

not required. An F4-linear code is additive. An element c of C is called a codeword90

of C. The weight of c is the number of nonzero entries that it has. The minimum91

distance of C is the least nonzero weight of all codewords in C. If C is an additive92

code of length ` over F4, of size 2k and minimum distance d, then we denote C by93

(`, 2k, d)4. Let Wi := Wi(C) be the number of codewords of weight i in C. Then94

the set {W0,W1, . . . ,Wn} is the weight distribution of C. It is convenient to express95

the weights as a polynomial out of the Wis. The weight enumerator of C is the96

polynomial WC(y) = W0 +W1y + . . .+Wny
n.97

The trace Hermitian inner product of x = (x1, . . . , xn) and y = (y1, . . . , yn) in98

Fn
4 is given by99

x ∗ y =

n∑
j=1

(
xjy

2
j + x2jyj

)
. (3)

Given an additive code C, its symplectic dual C∗ is100

C∗ = {x ∈ Fn
4 : x ∗ c = 0 for all c ∈ C}

and C is said to be (symplectic) self-dual if C = C∗.101

An additive F4 self-dual code is called Type II if all of its codewords have even102

weights. A code which is not Type II is called Type I. It is well-known that Type103

II codes must have even lengths.104

Self-dual codes, under various inner products and possible alphabet sets, have105

been extensively studied due to their rich algebraic, combinatorial, and geometric106

structures. A major reference on this topic is the book [16] authored by Nebe,107

Rains, and Sloane. Of particular relevance to our family of additive self-dual codes108

here, labeled as family 4H+ in [16], is the treatment in Section 6 of Chapter 7 and109

in Chapter 11.110

Let A(Γ) be the adjacency matrix of the graph Γ and I be the identity matrix.111

The following nice result was first shown by Schlingemann in [18] and subsequently112

discussed in [5, Section 3]. Every graph represents a self-dual additive code over113

F4 and every self-dual additive code over F4 can be represented by a graph. In114

particular, the additive F4-code C := C(Γ) generated by the row span of the matrix115

A(Γ) + ωI is symplectic self-dual.116

Danielsen and Parker gave a complete classification of all self-dual additive codes117

over F4 for n ≤ 12 in [5]. Follow-up works, covering n ≤ 50, were contributed by118

Gulliver and Kim in [11], by Varbanov in [19], by Grassl and Harada in [10], and119

by Saito in [17]. Their collective efforts focused on codes derived from graphs120

whose adjacency matrices are either circulant or bordered circulant. Our work here121

expands the search for new qubit codes by exploring metacirculant graphs. The122

following result classifies Type I and Type II additive F4 self-dual codes generated123

by metacirculant graphs.124

Theorem 2.1. Let C be an additive F4 self-dual code generated by125

Γ
(
m,n, α, S0, S1, . . . , Sbm/2c

)
, with 2 | (mn).
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Let126

∆S :=

{
|S0| if m is odd,

|S0|+ |Sbm/2c| if m is even.
(4)

Then C is Type II if and only if ∆S is odd.127

Proof. Let mn be even. An additive self-dual F4 code C = C(Γ) is Type II if and128

only if all vertices of Γ have odd degree [5]. Lemma 1.4 gives the degree of each129

vertex in Γ
(
m,n, α, S0, S1, . . . , Sbm/2c

)
. By Equation 2, the degree is odd if and130

only if ∆S is odd.131

The three parameters of a qubit code Q ⊆ C2` are its length `, dimension K over132

C, and minimum distance d = d(Q). The notation133

((`,K, d)) or J`, k, dK with k = log2K

signifies that Q encodes k logical qubits as ` physical qubits, with d being the134

smallest number of simultaneous quantum error operators that can send a valid135

codeword into another.136

A symplectic self-dual additive code C over F4 of length ` and minimum distance137

d gives an J`, 0, dK2 qubit code Q. Since k = 0, that is the code Q consists of a single138

quantum state, one needs to carefully interpret the meaning of minimum distance.139

As explained in [4, Section III], an J`, 0, dK code Q has the property that, when140

subjected to a decoherence of b(d − 1)/2c coordinates, it is possible to determine141

exactly which coordinates were decohered. This code can be used, for example, to142

test if certain storage locations for qubits are decohering faster than they should.143

Such a code Q can be of interest in their own right. An example is the unique144

J2, 0, 2K code that corresponds to the maximally entangled quantum state known145

as the EPR pair in the famed paper [6] of Einstein, Podolsky, and Rosen. More146

commonly, a zero-dimensional code is used as a seed in some secondary constructions147

of quantum codes to produce qubit codes with k > 0.148

Theorem 2.2. [4, Theorem 6] Assume that a qubit ((`,K, d > 1))2 code Q exists.149

Then the following qubit codes exist. An ((`,K ′, d))2 code for all 1 < K ′ ≤ K by150

subcode construction. A ((λ,K, d))2 code for all K > 1 and λ ≥ ` by lengthening.151

An ((`− 1,K, d− 1))2 code by puncturing.152

There is also a quantum analogue of the shortening construction on classical153

code, although the former is less straightforward to perform. Interested reader can154

consult [9, Section 4.3] for the procedure.155

Example 2. The [12, 6, 6]4 dodecacode D yields the unique J12, 0, 6K qubit code.156

It can be generated by the metacirculant graph G12 := Γ(2, 6, 5, {3}, {0, 3, 4, 5}).157

Figure 2 shows G12 with the vertices relabeled for convenience. The dodecacode is158

Type II, with weight enumerator 1 + 396y6 + 1485y8 + 1980y10 + 234y12.159

Many known optimal or currently best-performing qubit codes of length ` with160

K = 1 in the literature, i.e., J`, 0, dK2 with best-known or optimal d, are constructed161

based on circulant graphs [5, 10, 17]. We will soon show that strict improvements162

can be gained when one starts with metacirculant graphs. We use MAGMA [3] for all163

computations.164
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Figure 2. G12 := Γ(2, 6, 5, {3}, {0, 3, 4, 5}) of the dodecacode D. �

3. Higher best-known minimum distances of additive symplectic self-165

dual codes. This section presents additive symplectic self-dual codes of length166

` ∈ {27, 36} with stricly higher minimum distances than any that can be derived167

from circulant graphs. The strict improvements, however, do not extend to the168

quantum setup. There are J`, 0, dK qubit codes, constructed from other approaches169

as recorded in the corresponding entries in [8], whose minimum distances are equal170

to the ones that we derive here.171

For length ` = 27, Varbanov in [19] concluded after an exhaustive search that172

the circulant graph construction only yields additive self-dual codes
(

27, 227, d̂
)
4

of173

highest minimum distance d = 8 ≥ d̂. Using the metacirculant graph construction,174

we obtain additive self-dual codes with parameters
(
27, 227, 9

)
4
. They yield J27, 0, 9K175

qubit codes, which meet the best-known parameters in [8].176

Proposition 1. There are two inequivalent families of
(
27, 227, 9

)
4

additive self-177

dual codes from metacirculant graphs with (m,n) = (3, 9). Each family consists of178

108 equivalent codes. They yield J27, 0, 9K qubit stabilizer codes.179

Proof. An exhaustive search found 216 metacirculant graphs {Γ(3, 9, α, S0, S1)} in
two non-isomorphic families, which we call F27,1 and F27,2, corresponding to two
inequivalent codes C27,1 and C27,2. The respective families can be represented by
the graphs

G27,1 := Γ(3, 9, 4, {2, 7}, {0, 1, 2, 3, 4, 5, 8}) and

G27,2 := Γ(3, 9, 7, {1, 3, 6, 8}, {0, 5, 8}). (5)

To confirm that the resulting codes are inequivalent, it suffices to note that the180

number of weight 9 words are 591 and 717, respectively. We note that both codes181

have Wi > 0 for all 9 ≤ i ≤ 27. When i is even, Wi(C27,1) = WiC27,2.182

The complete list of the 216 metacirculant graphs, divided into the families F27,1183

and F27,2, and the weight distributions of the two inequivalent codes can be found184

in the supplementary material.185

A self-dual additive
(
36, 236, 12

)
4

code from circulant graphs does not exist, since186

the best minimum distance is confirmed to be 11 in [10, 17]. The metacirculant187
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graph construction increases the known minimum distance of length 36 additive188

self-dual codes to 12.189

Proposition 2. There are 72 metacirculant graphs with (m,n) = (2, 18), producing
two inequivalent additive symplectic self-dual

(
36, 236, 12

)
4

Type II codes. We can
separate the 72 graphs into two families, which we call F36,1 and F36,2. Each family
consists of 36 isomorphic graphs. They yield J36, 0, 12K qubit codes. The respective
families can be represented by the graphs

G36,1 := Γ(2, 18, 1, {4, 6, 12, 14}, {3, 4, 6, 7, 9, 11, 12, 14, 15}),
G36,2 := Γ(2, 18, 1, {4, 6, 12, 14}, {1, 4, 7, 8, 9, 10, 11, 14, 17}). (6)

Proof. The weight distributions of the additive self-dual codes C36,1 and C36,2 de-190

rived, respectively, from G36,1 and G36,2 confirm that the codes are Type II. We191

have Wi > 0 for i ∈ {0} ∪ {2j : 6 ≤ j ≤ 18}. The two additive codes are inequiva-192

lent since W12(C36,1) = 28764 6= 20844 = W12(C36,2). The list of {α, S0, S1} for the193

metacirculant graphs Γ(2, 18, α, S0, S1) that splits into two families can be found in194

the supplementary material. The graphs G36,1 and G36,2 share a common structure195

when we look into edges that are incident to vertices within the same layer. The196

structures differ only on the edges that are incident to vertices that belong to two197

distinct layers.198

4. New qubit codes. Here we present new qubit codes J`, 0, dK2 for lengths ` ∈199

{78, 90, 91, 93, 96}. Due to the large sizes of the relevant graphs, we supply a MAGMA200

routine to generate them in the supplementary material instead of presenting the201

graphs explicitly. For each `, we keep a record of the minimum distance calculation202

and include it as a supporting document.203

Applying secondary constructions yields more qubit codes with strictly better204

parameters that previously known. There are computational routines used by M.205

Grassl to perform the propagation rules on the improved codes submitted for inclu-206

sion to his online table [8]. We highlight the process only for ` = 78, for brevity.207

Proposition 3. The metacirculant graph

G78 := Γ(6, 13, 12, {1, 4, 6, 7, 9, 12}, {1, 2, 3, 5, 7, 8, 9, 11},
{1, 2, 4, 5, 8, 10}, {1, 2, 3, 6, 7, 8, 12}) (7)

yields a new
(
78, 278, 20

)
4

Type II additive self-dual code. The corresponding Q78 is208

a new J78, 0, 20K qubit code. Prior to our discovery, the best-known was J78, 0, 19K209

and the first known occurence of d = 20 was at ` = 80. Our new qubit code has been210

listed as the current best-known since October 13, 2020 in Grassl’s table [8] based211

on a private communication.212

Proof. A randomized search in MAGMA found G78. The graph yields the self-dual213

additive code C78 of distance d = 20. By Theorem 2.1, ∆S = |S0| + |S3| = 13,214

which implies that C78 is Type II. The qubit code Q78 can then be certified to have215

the claimed parameters.216

By propagation rules, strict improvements have also been achieved by puncturing,217

shortening, lengthening, and taking a subcode of Q78. Table 1 provides the details.218
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Table 1. New codes from modifying Q78

Code Parameters Propagation rule

Q78,1 J77, 0, 19K2 Puncture Q78 at {78}
Q78,2 J77, 1, 19K2 Shorten Q78 at {78}
Q78,3 J78, 1, 19K2 Lengthen Q78,2 by 1

Q78,4 J76, 2, 18K2 Shorten Q78 at {77, 78}
Q78,5 J76, 1, 18K2 Subcode of Q78,4

Q78,6 J77, 2, 18K2 Lengthen Q78,4 by 1

Q78,7 J75, 3, 17K2 Shorten Q78 at {76, 77, 78}
Q78,8 J76, 3, 17K2 Lengthen Q78,7 by 1

Q78,9 J75, 2, 17K2 Subcode of Q78,7

Proposition 4. The metacirculant graph

G90 := Γ(10, 9, 8, {1, 8}, {0, 1, 2, 4, 5, 8}, {5, 6},
{2, 4, 5, 6, 8}, {0, 1, 2, 4, 7}, {0, 5, 7, 8}) (8)

generates a new
(
90, 290, 21

)
4

Type I additive self-dual code C90. The new J90, 0, 21K219

qubit code Q90 has better minimum distance than the best-known J90, 0, 20K in [8].220

Proof. The graph G90 and the resulting codes C90 and Q90 as well as their param-221

eters were found by MAGMA searches. The code C90 is Type I by Theorem 2.1, since222

∆S = |S0|+ |S5| = 6.223

Proposition 5. The multi-partite metacirculant graph

G91 := Γ(7, 13, 3, {}, {4, 7, 8, 10, 11, 12},
{1, 3, 4, 7, 8, 9, 10, 11, 12}, {0, 4, 7, 8, 10, 11, 12}) (9)

gives a new
(
91, 291, 22

)
4

Type I additive self-dual code C91. The new J91, 0, 22K224

qubit code Q91 has better minimum distance than the J91, 0, 21K code in [8].225

Proof. By Theorem 1.5, G91 is a multi-partite graph. The vertices are partitioned226

into 7 layers, each containing 13 vertices. We used MAGMA to verify that the minimum227

distance d of the generated (91, 291, d)4 self-dual additive code C91 is indeed 22. This228

code is clearly Type I since its length is odd. The corresponding J91, 0, 22K qubit229

code Q91 improves on the J91, 0, 21K code currently listed as best-known in [8].230

Proposition 6. The metacirculant graph

G93 := Γ(3, 31, 1, {10, 12, 14, 15, 16, 17, 19, 21},
{2, 7, 8, 10, 11, 13, 15, 16, 17, 19}) (10)

generates a new
(
93, 293, 21

)
4

additive self-dual code C93. The code is Type I due231

to its odd length. The new J93, 0, 21K qubit code Q93 has better minimum distance232

when compared with the prior best-known J93, 0, 20K qubit code in [8].233

Proof. We used MAGMA to verify that the generated
(
93, 293, d

)
4

additive self-dual234

code C93 has minimum distance d = 21. The code corresponds to a new J93, 0, 21K235

qubit code Q93.236
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Table 2. Properties of the Graphs

G dmin(G) ν(G) γ(G) |Aut(G)| G dmin(G) ν(G) γ(G) |Aut(G)|

G12 6 5 4 24 G78 20 41 7 78
G27,1 9 16 6 27 G90 21 42 7 90
G27,2 9 10 4 27 G91 22 44 7 546
G36,1 12 13 6 72 G93 22 28 4 186
G36,2 12 13 4 72 G96 22 35 6 96

Proposition 7. The metacirculant graph

G96 := Γ(6, 16, 7, {2, 4, 6, 7, 9, 10, 12, 14}, {1, 3, 4, 5, 7, 9, 10},
{3, 5, 11, 14}, {0, 2, 7, 10, 15}) (11)

generates a new
(
96, 296, 22

)
4

Type II additive self-dual code C96. The new J96, 0, 22K237

qubit code Q96 improves the minimum distance of the prior best-known J96, 0, 20K238

code in [8].239

Proof. We confirmed that the minimum distance of C96 is 22 by using MAGMA. Since240

∆S = |S0|+ |S3| = 13, the code is Type II by Theorem 2.1.241

5. Concluding Remarks. There are at least two challenging aspects in finding242

improved symplectic self-dual additive codes over F4 or strictly better qubit codes.243

First, the search space quickly widens as the length ` grows. Second, determining244

the minimum distances of the codes is computationally expensive [20]. On a laptop245

with 11.6 GB available memory, powered by an Intel i7-7500U CPU, a single core246

run of MAGMA found the minimum distance for the code in Proposition 3 in 10 hours.247

For the code in Proposition 7, the computation took 41 days and 15 hours.248

We have shown that focusing on metacirculant graphs which are not isomorphic249

to the circulant ones is a fruitful approach. Bringing this work to its end, Table 2250

summarizes the properties of the graphs that we have used above. All of them have251

diameter 2 and girth 3. Included in the table, for each graph G, are the minimum252

distance dmin(G) of the generated additive code C := C(G), the degree ν(G) of253

each vertex in G, the size γ(G) of the maximum clique, and the size |Aut(G)| of the254

automorphism group of G.255
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Supplementary Material.259

1. The graphs, their properties, and the corresponding additive codes can be260

explicitly constructed by running record.m. Included in the output are the261

complete weight enumerators of the codes of lengths ` ∈ {12, 27, 36}.262

2. The relevant graphs with 27 vertices are split into families F27,1 and F27,2 by263

families27.m. Those with 36 vertices are separated into families F36,1 and264

F36,2 by families36.m.265

3. The respective five certificates of the minimum distance computations are266

labelled 78 20.txt, 90 21.txt, 91 22.txt, 93 21.txt, and 96 22.txt.267
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