1

© © N o 0o b~ W

10
11
12
13
14
15
16
17
18
19
20
21

Manuscript submitted to doi:10.3934 /XX.XXXXXXX
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X—XX

NEW QUANTUM CODES FROM METACIRCULANT GRAPHS
VIA SELF-DUAL ADDITIVE F,-CODES

PADMAPANI SENEVIRATNE

Department of Mathematics, Texas A&M University-Commerce
2600 South Neal Street, Commerce TX 75428, USA

MARTIANUS FREDERIC EZERMAN™*

School of Physical and Mathematical Sciences, Nanyang Technological University
21 Nanyang Link, Singapore 637371

(Communicated by the associate editor name)

ABSTRACT. We use symplectic self-dual additive codes over F4 obtained from
metacirculant graphs to construct, for the first time, [¢,0,d] qubit codes with
parameters (£,d) € {(78,20),(90,21), (91,22), (93,21), (96,22)}. Secondary
constructions applied to the qubit codes result in many new qubit codes that
perform better than the previous best-known.

1. Introduction. We work on three closely connected objects, namely, a metacir-
culant graph G, a symplectic self-dual additive code C' over Fy, and its corresponding
quantum stabilizer code Q). The route is straightforward. Let I be the identity ma-
trix of a suitable dimension and w be a root of 2% + z + 1 € Fa[z]. We search for a
G whose adjacency matrix A(G) leads to C, which is generated by the row span of
A(G) 4+ wl. This code C, in turn, yields @ via the stabilizer method.

For lengths ¢ € {27,36} exhaustive searches are feasible, allowing us to con-
struct some families of additive codes that contain some code C' with a higher
minimum distance than the best that circulant graphs can lead to. For lengths
£ € {78,90,91,93,96} we run randomized non-exhausted searches to come up with
the new additive codes. We exhibit numerous instances when the resulting qubit
codes have better parameters than the best-known comparable quantum codes.

The general construction of quantum stabilizer codes, wherein classical codes
are used to describe the quantum error operators, is well-established. Our main
reference for the qubit case is the seminal work of Calderbank, Rains, Shor, and
Sloane in [4]. Two recent introductory expositions can be found in [7] and [9].

To get to metacirculant graphs, we recall circulant graphs, which have been more
extensively studied. A recent survey on the subject can be found in [15]. The
following definition of circulant graphs is given in [2].
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2 PADMAPANI SENEVIRATNE AND MARTIANUS FREDERIC EZERMAN

Definition 1.1. Let Z,, denote the ring of integers modulo n and let
Zy ={zxeZ,:0<x<n/2}

The circulant graph I',, (S) is the graph with the vertex set Z,, where any two vertices
x and y are adjacent if and only if |z — y|, € S, with S C Z} and

lal, :==a if 0 <a<n/2,
lalp :=n—a ifn/2<a<n.

The adjacency matrix of a circulant graph is a circulant matriz. An n x n matrix
A is circulant if it has the form

a a2 -+ Gp-1 Qn
an ai o Ap—2 Qp-—1
A= : : : : . (1)
as Qag - ay a9
az az - (¢2%) ai

If the adjacency matrix A := A(G) of G is circulant, then a; = 0 and a; = apyo—;
for i € {2,...,|n/2]}. Circulant matrices are used as building blocks in the con-
structions of many different classes of codes. Examples include self-dual codes,
cyclic codes, and quadratic residue codes.

Circulant graphs are vertex transitive [2]. They are the Cayley graphs of Z,.
In 1982, Alspach and Parsons [1] constructed a family of vertex transitive graphs.
Each graph in the family has a transitive permutation group as a subgroup of its
automorphism group. They named the family metacirculant graphs as it contains
the class of circulant graphs.

Li, Song, and Wang in [13, Definition 1.1], following D. Marusi¢ in [14], call a
graph I = (V| E) an (m, n)-metacirculant if |V'| = mn and I" has two automorphisms
p and o that satisfy some conditions. First, (p) is semiregular and has m orbits on
V. Second, o cyclically permutes the m orbits of (p) and normalizes (p). Third, o™
fixes at least one vertex of I'. In this work, we follow an equivalent combinatorial
definition.

Definition 1.2. ([1]) Let m, n be two fixed positive integers and a € Z,, be a unit.
Let So,51,--+,S|m/2) € Zn satisty the four properties

1. 8o = —5.

2. 0¢ S,

3. a™S, =Sk for 1 <k <|m/2].

4. If m is even then am/2Sm/2 = —Sn/2-
The meta-circulant graph I' := T’ (mm,a, So, 51, .. .,SLm/QJ) has the vertex set
V(T) = Zp X Zy,. Let Vo, Vi,..., Vin_1, where V; :={(i,7) : 0 < j <n—1}, bea
partition of V(T'). Let 1 < k < |m/2]. Vertices (i,7) and (i + k, h) are adjacent if
and only if (h — j) € a® Si.

Henceforth, we let m > 1 since a metacirculant graph with m = 1 is circulant.

Example 1. The Petersen graph is I'(2,5,2,{1,4},{0}). The vertices are parti-
tioned into
Vo :={(0,0),(0,1),(0,2),(0,3),(0,4)} and V5 := {(1,0),(1,1),(1,2),(1,3),(1,4)}.

Vertices (0,7) and (0, h) are adjacent for h — j € Sy. Vertices (1, ) and (1, h) are
adjacent when h — j € {2,3}. Vertices (0,5) and (1,5) are adjacent for 0 < j < 4.



57
58
59

60

61
62
63

64

65
66

67
68
69
70
71
72
73
74
75
76
7

78
79
80
81

82
83

NEW QUANTUM CODES FROM METACIRCULANT GRAPHS 3

Figure 1, typeset in TikZ-network [12], relabels the vertices lexicographically. The
upper layer contains the vertices in Vj as 1,...,5 while the lower layer presents the
vertices in Vi as 6,...,10.

FIGURE 1. The Petersen Graph as I'(2,5,2,{1,4},{0}).

The following fact is well-known.

Theorem 1.3. ([1]) Let ¢(-) denote the Euler totient function. If ged(m,n) =
1 and ged(m, ¢p(n)) = 1, then the metacirculant T (m,ma,So,Sl, . '7SLm/2J) is
isomorphic to a circulant graph.

The next lemma determines the degree of each vertex.

Lemma 1.4. Any G :=T (m > 1,n,o¢,So,Sl,...,SLm/2J) is regular. The degree
of each vertex is given by

|So| + 151 if m =2,
1So| + [S|my2)| + 2 (Zy:nl/%_l |Sr|) if m > 4 is even, (2)
1ol +2 (44> 15,1) ifm >3 is odd.

Proof. Since the automorphism group of G acts transitively on its vertices, G is a
regular graph. Hence, it suffices to determine the degree of vertex (0,0) € V. The
vertex is adjacent to a vertex (0,h) € V; if and only if h € Sy. This implies that
(0,0) is adjacent to |Sg| vertices in Vj.

Next, (0,0) is adjacent to a vertex (k,h) € Vi if and only if h € Si. Hence,
(0,0) is adjacent to |Sk| vertices in Vj. The set Sy determines the edges between
layers Vy and Vj, whose indices differ by k for 1 < k& < |m/2]. When m is odd,
the index 0 of V} differs by k from both the indices k£ and m — k of V and Vi,
for all 1 < k < [m/2]. When m is even, V,, /2 = —V,, /2, which implies that the
index 0 of Vj differs by k from both the indices & and m — k of V}, and V,,,_j. for all
1 <k < |m/2] —1. Thus, the degree of vertex (0,0) is as given in Equation 2. O

Theorem 1.5. Let S := {SO,Sl, oy Slmy2) } Given the graph G :=T'(m,n,«a, S),
let {V;:i€{0,1,...,m—1}}, with V; := {(i,5) : 0 < j < n}, be the partition of
the vertex set into m layers, each containing n vertices. Then G is a multi-partite
metacirculant graph with m partitions if and only if Sy is the empty set.

Proof. By Definition 1.2, two vertices (4, j) and (i+k, h) are adjacent in I'(m, n, «, S)
if and only if h — j € o’ Sj. Both vertices are in the same layer V; whenever k = 0.
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Hence, the two vertices (i, j) and (i, h) in V; are adjacent if and only if h—j € a* Sp.
The set Sy being empty implies h — j ¢ a*Sy. Thus, there is no edge between any
pair of vertices within the same layer V;. O

2. Self-dual additive codes from metacirculant graphs. A code over Fy :=
{0,1,w,0 = w? = 1 + w} is said to be additive if it is Fy-linear, i.e., the code is
closed under addition but closure under multiplication by the elements in Fy \ F3 is
not required. An Fy-linear code is additive. An element c of C' is called a codeword
of C. The weight of c is the number of nonzero entries that it has. The minimum
distance of C' is the least nonzero weight of all codewords in C. If C is an additive
code of length £ over Fy, of size 2¥ and minimum distance d, then we denote C' by
(¢,2% d),. Let W; := W;(C) be the number of codewords of weight i in C. Then
the set {Wp, W1, ..., W,} is the weight distribution of C. It is convenient to express
the weights as a polynomial out of the W;s. The weight enumerator of C' is the
polynomial We(y) = Wy + Wiy + ... + Wyry™.

The trace Hermitian inner product of x = (x1,...,2,) and y = (y1,...,Yn) in
F} is given by

n
xxy =Y (w97 +a3y;) . (3)
j=1
Given an additive code C, its symplectic dual C* is

C*={xeFy :xxc=0forallce C}

and C is said to be (symplectic) self-dual if C' = C*.

An additive Fy self-dual code is called Type II if all of its codewords have even
weights. A code which is not Type II is called Type I. It is well-known that Type
IT codes must have even lengths.

Self-dual codes, under various inner products and possible alphabet sets, have
been extensively studied due to their rich algebraic, combinatorial, and geometric
structures. A major reference on this topic is the book [16] authored by Nebe,
Rains, and Sloane. Of particular relevance to our family of additive self-dual codes
here, labeled as family 47 in [16], is the treatment in Section 6 of Chapter 7 and
in Chapter 11.

Let A(T) be the adjacency matrix of the graph T and I be the identity matrix.
The following nice result was first shown by Schlingemann in [18] and subsequently
discussed in [5, Section 3|. Every graph represents a self-dual additive code over
F4 and every self-dual additive code over F, can be represented by a graph. In
particular, the additive Fy-code C := C(T") generated by the row span of the matrix
A(T) 4+ wI is symplectic self-dual.

Danielsen and Parker gave a complete classification of all self-dual additive codes
over Fy for n < 12 in [5]. Follow-up works, covering n < 50, were contributed by
Gulliver and Kim in [11], by Varbanov in [19], by Grassl and Harada in [10], and
by Saito in [17]. Their collective efforts focused on codes derived from graphs
whose adjacency matrices are either circulant or bordered circulant. Our work here
expands the search for new qubit codes by exploring metacirculant graphs. The
following result classifies Type I and Type II additive F4 self-dual codes generated
by metacirculant graphs.

Theorem 2.1. Let C' be an additive F4 self-dual code generated by
T (m,n,a,SO,Sl,...,SLm/QJ) , with 2 | (mn).
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Let

S if m is odd,
5= {' 0 ! 0

IS0l + [S|my2)|  if m is even.
Then C is Type II if and only if Ag is odd.

Proof. Let mn be even. An additive self-dual Fy code C' = C(I") is Type II if and
only if all vertices of T' have odd degree [5]. Lemma 1.4 gives the degree of each
vertex in I’ (m,n,a,SO,Sl, .. .,SLm/QJ). By Equation 2, the degree is odd if and
only if Ag is odd. O

The three parameters of a qubit code @ C C2?" are its length £, dimension K over
C, and minimum distance d = d(Q). The notation

((4,K,d)) or [¢,k,d] with k =log, K

signifies that @ encodes k logical qubits as ¢ physical qubits, with d being the
smallest number of simultaneous quantum error operators that can send a valid
codeword into another.

A symplectic self-dual additive code C over Fy of length ¢ and minimum distance
d gives an [¢,0, d]|2 qubit code Q. Since k = 0, that is the code ) consists of a single
quantum state, one needs to carefully interpret the meaning of minimum distance.
As explained in [4, Section III], an [¢,0,d] code @ has the property that, when
subjected to a decoherence of |(d — 1)/2] coordinates, it is possible to determine
exactly which coordinates were decohered. This code can be used, for example, to
test if certain storage locations for qubits are decohering faster than they should.

Such a code @ can be of interest in their own right. An example is the unique
[2,0,2] code that corresponds to the maximally entangled quantum state known
as the EPR pair in the famed paper [6] of Einstein, Podolsky, and Rosen. More
commonly, a zero-dimensional code is used as a seed in some secondary constructions
of quantum codes to produce qubit codes with £ > 0.

Theorem 2.2. [4, Theorem 6] Assume that a qubit (¢, K,d > 1))2 code Q exists.
Then the following qubit codes exist. An (({,K’,d))s code for all 1 < K' < K by
subcode construction. A (A, K,d))2 code for all K > 1 and X\ > £ by lengthening.
An (0 —1,K,d —1))s code by puncturing.

There is also a quantum analogue of the shortening construction on classical
code, although the former is less straightforward to perform. Interested reader can
consult [9, Section 4.3] for the procedure.

Example 2. The [12,6,6]4 dodecacode D yields the unique [12,0, 6] qubit code.
It can be generated by the metacirculant graph Gi2 := I'(2,6,5, {3}, {0,3,4,5}).
Figure 2 shows G2 with the vertices relabeled for convenience. The dodecacode is
Type II, with weight enumerator 1 + 396y° + 1485y% + 1980y + 234y!2.

Many known optimal or currently best-performing qubit codes of length ¢ with
K = 11in the literature, i.e., [¢,0, d]s with best-known or optimal d, are constructed
based on circulant graphs [5, 10, 17]. We will soon show that strict improvements
can be gained when one starts with metacirculant graphs. We use MAGMA [3] for all
computations.
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FIGURE 2. G12:=T1(2,6,5,{3},{0,3,4,5}) of the dodecacode D. [

3. Higher best-known minimum distances of additive symplectic self-
dual codes. This section presents additive symplectic self-dual codes of length
¢ € {27,36} with stricly higher minimum distances than any that can be derived
from circulant graphs. The strict improvements, however, do not extend to the
quantum setup. There are [¢,0,d] qubit codes, constructed from other approaches
as recorded in the corresponding entries in [8], whose minimum distances are equal
to the ones that we derive here.

For length ¢ = 27, Varbanov in [19] concluded after an exhaustive search that

the circulant graph construction only yields additive self-dual codes (27, 227, c/l\> of
4

highest minimum distance d = 8 > d. Using the metacirculant graph construction,

we obtain additive self-dual codes with parameters (27,2%7,9),. They yield [27,0, 9]

qubit codes, which meet the best-known parameters in [8].

Proposition 1. There are two inequivalent families of 27,227,9)4 additive self-

dual codes from metacirculant graphs with (m,n) = (3,9). Fach family consists of
108 equivalent codes. They yield [27,0,9] qubit stabilizer codes.

Proof. An exhaustive search found 216 metacirculant graphs {I'(3,9, a, Sp,S1)} in
two non-isomorphic families, which we call Fy71 and Fy7 2, corresponding to two
inequivalent codes Ca7 1 and Co7 2. The respective families can be represented by
the graphs

Gor1:=T113,9,4,{2,7},{0,1,2,3,4,5,8}) and

G27,2 = F(379773{1733678}a{Oa5,8})' (5)
To confirm that the resulting codes are inequivalent, it suffices to note that the
number of weight 9 words are 591 and 717, respectively. We note that both codes
have W; > 0 for all 9 <4 < 27. When i is even, W;(Ca71) = W;Co7.2.

The complete list of the 216 metacirculant graphs, divided into the families F27 1

and Fyr72, and the weight distributions of the two inequivalent codes can be found
in the supplementary material. O

A self-dual additive (367 236, 12) , code from circulant graphs does not exist, since
the best minimum distance is confirmed to be 11 in [10, 17]. The metacirculant
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graph construction increases the known minimum distance of length 36 additive
self-dual codes to 12.

Proposition 2. There are 72 metacirculant graphs with (m,n) = (2,18), producing
two inequivalent additive symplectic self-dual (367 236, 12)4 Type 11 codes. We can
separate the 72 graphs into two families, which we call Fz1 and Fzs 2. Each family
consists of 36 isomorphic graphs. They yield [36,0,12] qubit codes. The respective
families can be represented by the graphs

Gss1 =T(2,18,1,{4,6,12,14},{3,4,6,7,9,11,12,14,15}),
Gssz :=T(2,18,1,{4,6,12,14},{1,4,7,8,9,10, 11,14, 17}). (6)

Proof. The weight distributions of the additive self-dual codes Cs6; and Czg 2 de-
rived, respectively, from G361 and G3e2 confirm that the codes are Type II. We
have W; > 0 for i € {0} U {27 : 6 < j < 18}. The two additive codes are inequiva-
lent since Wi2(Cs6,1) = 28764 # 20844 = W14(Cs62). The list of {«, Sp, S1} for the
metacirculant graphs I'(2, 18, a, Sp, S1) that splits into two families can be found in
the supplementary material. The graphs G361 and Gsg 2 share a common structure
when we look into edges that are incident to vertices within the same layer. The
structures differ only on the edges that are incident to vertices that belong to two
distinct layers. O

4. New qubit codes. Here we present new qubit codes [¢,0,d]s for lengths ¢ €
{78,90,91,93,96}. Due to the large sizes of the relevant graphs, we supply a MAGMA
routine to generate them in the supplementary material instead of presenting the
graphs explicitly. For each ¢, we keep a record of the minimum distance calculation
and include it as a supporting document.

Applying secondary constructions yields more qubit codes with strictly better
parameters that previously known. There are computational routines used by M.
Grassl to perform the propagation rules on the improved codes submitted for inclu-
sion to his online table [8]. We highlight the process only for £ = 78, for brevity.

Proposition 3. The metacirculant graph

Grs :=T(6,13,12,{1,4,6,7,9,12},{1,2,3,5,7,8,9, 11},
{1,2,4,5,8,10},{1,2,3,6,7,8,12}) (7)

yields a new (78, 278, 20)4 Type II additive self-dual code. The corresponding Qrs is
a new [78,0,20] qubit code. Prior to our discovery, the best-known was [78,0,19]
and the first known occurence of d = 20 was at £ = 80. Our new qubit code has been
listed as the current best-known since October 13, 2020 in Grassl’s table [8] based
on a private communication.

Proof. A randomized search in MAGMA found Gr7s. The graph yields the self-dual
additive code Crg of distance d = 20. By Theorem 2.1, Ag = [Sp| + |S3| = 13,
which implies that C7g is Type II. The qubit code Q7g can then be certified to have
the claimed parameters. O

By propagation rules, strict improvements have also been achieved by puncturing,
shortening, lengthening, and taking a subcode of Q7. Table 1 provides the details.
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TABLE 1. New codes from modifying Qvg

Code Parameters Propagation rule

Q7s1 [77,0,19]2 Puncture Qrs at {78}
Q7,2 [77,1,19]2 Shorten Qrs at {78}

Q78,3  [78,1,19]2 Lengthen Qrs,2 by 1

Q7s,a  [76,2,18]2  Shorten Q7s at {77,78}
Q7s,5 [76,1,18]2  Subcode of Qrs.4

Qs,6  [77,2,18]2 Lengthen Q7s.4 by 1

Q7,7 [75,3,17]2 Shorten Qrs at {76,77,78}
Q7s,s  [76,3,17]2 Lengthen Q7s7 by 1

Q78,0 [75,2,17]2  Subcode of Qr7s,7

Proposition 4. The metacirculant graph

Goo :=T1(10,9,8,{1,8},{0,1,2,4,5,8}, {5,6},
{2’ 4’ 5767 8}7{07172’ 4’ 7}’{0’ 5777 8}) (8)

generates a new (90, 290, 21)4 Type I additive self-dual code Cqg. The new [90, 0, 21]
qubit code Qgo has better minimum distance than the best-known [90,0,20] in [8].

Proof. The graph Ggg and the resulting codes Cyg and Qg as well as their param-
eters were found by MAGMA searches. The code Cyg is Type I by Theorem 2.1, since
Ag = |So| + |S5] = 6. O

Proposition 5. The multi-partite metacirculant graph

Gop :=T1(7,13,3,{},{4,7,8,10,11,12},
{1,3,4,7,8,9,10,11,12},{0,4,7,8,10,11,12}) (9)

gives a mew (91,291,22)4 Type I additive self-dual code Cy1. The new [91,0,22]
qubit code Qg1 has better minimum distance than the [91,0,21] code in [8].

Proof. By Theorem 1.5, Gg; is a multi-partite graph. The vertices are partitioned
into 7 layers, each containing 13 vertices. We used MAGMA to verify that the minimum
distance d of the generated (91,29, d)4 self-dual additive code Cy; is indeed 22. This
code is clearly Type I since its length is odd. The corresponding [91, 0, 22] qubit
code Qg1 improves on the [91,0,21] code currently listed as best-known in [8]. [

Proposition 6. The metacirculant graph

Gg3 :=T1(3,31,1,{10,12,14,15,16,17,19,21},
{2,7,8,10,11,13,15,16,17,19}) (10)
generates a new (93,293,21)4 additive self-dual code Cy3. The code is Type I due

to its odd length. The new [93,0,21] qubit code Qg3 has better minimum distance
when compared with the prior best-known [93,0,20] qubit code in [8].

Proof. We used MAGMA to verify that the generated (93, 293 ,d) , additive self-dual
code Cys has minimum distance d = 21. The code corresponds to a new [93,0, 21]
qubit code Q3. O
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TABLE 2. Properties of the Graphs

G duin(G) v(G) (G) |Aut(G)] | G dmin(G) v(G) +(G) |Aut(G)

G2 6 5 4 24 Grs 20 41 7 78
G271 9 16 6 27 Goo 21 42 7 90
Goar,2 9 10 4 27 Go1 22 44 7 546
G6,1 12 13 6 72 Gos 22 28 4 186
G36,2 12 13 4 72 Gos 22 35 6 96

Proposition 7. The metacirculant graph

Gog :=T(6,16,7,{2,4,6,7,9,10,12,14}, {1,3,4,5,7,9, 10},
{3,5,11,14},{0,2,7,10,15}) (11)

generates a new (967 296 22)4 Type II additive self-dual code Cog. The new [96,0,22]
qubit code Qg improves the minimum distance of the prior best-known [96, 0, 20]
code in [8].

Proof. We confirmed that the minimum distance of Cgg is 22 by using MAGMA. Since
Ag = |Sp| + |S5] = 13, the code is Type II by Theorem 2.1. O

5. Concluding Remarks. There are at least two challenging aspects in finding
improved symplectic self-dual additive codes over F, or strictly better qubit codes.
First, the search space quickly widens as the length ¢ grows. Second, determining
the minimum distances of the codes is computationally expensive [20]. On a laptop
with 11.6 GB available memory, powered by an Intel i7-7500U CPU, a single core
run of MAGMA found the minimum distance for the code in Proposition 3 in 10 hours.
For the code in Proposition 7, the computation took 41 days and 15 hours.

We have shown that focusing on metacirculant graphs which are not isomorphic
to the circulant ones is a fruitful approach. Bringing this work to its end, Table 2
summarizes the properties of the graphs that we have used above. All of them have
diameter 2 and girth 3. Included in the table, for each graph G, are the minimum
distance dpyin(G) of the generated additive code C := C(G), the degree v(G) of
each vertex in G, the size v(G) of the maximum clique, and the size |Aut(G)| of the
automorphism group of G.

Acknowledgements. We thank the editor and the two anonymous reviewers for
their scrutiny of our initial submission. Their thoughtful assessment and critical
suggestions help us to improve our work considerably.

Supplementary Material.

1. The graphs, their properties, and the corresponding additive codes can be
explicitly constructed by running record.m. Included in the output are the
complete weight enumerators of the codes of lengths ¢ € {12,27,36}.

2. The relevant graphs with 27 vertices are split into families F27,; and Fa7,2 by
families27.m. Those with 36 vertices are separated into families F36; and
f36,2 by families36.m.

3. The respective five certificates of the minimum distance computations are
labelled 78_20.txt, 90_21.txt, 91_22.txt, 93_21.txt, and 96_22.txt.
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