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Abstract

Gauge/ Gravity Correspondence, Bulk Locality and Quantum Black Holes

by

Debajyoti Sarkar

Advisor: Daniel N. Kabat, Professor of Physics

The aim of this dissertation is threefold. We begin by the study of two parallel ideal cosmic

strings in the presence of non-minimal scalar fields and spin-1 gauge fields. We show that the

contributions of the non-minimal term on the interaction energy between the strings are similar to

that of the gauge field for a particular value of non-minimal coupling parameter. In this context we

clarify some of the issues that arise when comparing the renormalization of black hole entropy and

entanglement entropy using the replica trick.

In the second part of the dissertation we study the process of bound state formation in clusters

of Dp- brane collision and Dp shell/ Membrane collapse processes. We consider two mechanisms for

bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is

creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a black

hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in

accord with the correspondence principle of Horowitz and Polchinski. We show that the size of

the bound state and timescale for formation of a bound state agree at the correspondence point,

along with other relevant thermodynamic quantities. The timescale involves matching a parametric

resonance in the gauge theory to a quasinormal mode in supergravity.

Finally we study construction of local operators in AdS using the generalized AdS/ CFT corre-

spondence. After briefly sketching previous works on this topic which involve massless and massive
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scalar fields, we present similar construction for spin- 1 and spin- 2 gauge fields. Working in holo-

graphic gauge in the bulk, at leading order in 1/N bulk gauge fields are obtained by smearing

boundary currents over a sphere on the complexified boundary, while linearized metric fluctuations

are obtained by smearing the boundary stress tensor over a ball. This representation respects AdS

covariance up to a compensating gauge transformation. We also consider massive vector fields,

where the bulk field is obtained by smearing a non-conserved current. We compute bulk two-point

functions and show that bulk locality is respected. We show how to include interactions of massive

vectors using 1/N perturbation theory, and we comment on the issue of general backgrounds. We

point out some more recent works on interacting scalar and gauge fields and try to answer the

question of what should be the CFT properties to have a dual gravitational descriptions on AdS

space. We end with some speculations about finite N and when we have black holes in the bulk.
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1

Introduction

No doubt that unifying the four forces of nature has always been one of the ultimate goal of

the Physicists. Sometimes the goal has been from pure academic interests, and sometimes it has

been driven by experimental evidence, but both these motivations have contributed to its progress.

And now with the well built classical General Relativity at one hand and the Standard Model

on the other, we have all the reasons to get encouraged towards fulfilling that goal. We even

have succeeded appreciably. There are now different programs towards quantizing gravity in a

well formulated way. The richest and best-developed program is String Theory [1] which was

built with the simple assumption that the fundamental constituents of matter are strings. The

modern point of view is to consider them as a well built mathematical formalism which has a

much richer structure to incorporate various other constituents like D-branes. String Theory starts

as a quantum theory and nicely and naturally incorporates gravity. With the help of an exotic

symmetry called Supersymmetry,∗ we can even build some models within the framework of string

theory that incorporate the various particles that we see in nature and explain by the Standard

Model. Now as the Standard Model is a gauge theory, the String Theory program is an attempt

to account for both gauge and gravity dynamics in terms of the same underlying stringy degrees

of freedom. It suggests that the same tools can be used to understand both gauge and gravity

dynamics. The duality relation found by Maldacena (for a review see e.g. [2]) was a huge step

towards this goal. It provides a precise dictionary between gauge and gravitational dynamics, and
∗For a comprehensive discussion on Quantum Field Theory (QFT), Supersymmetry (SUSY), Supergravity

(SUGRA) and Conformal Field Theory etc. see e.g. [1].
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goes by the name of AdS/CFT duality. It is basically a correspondence that relates string theory in

Anti de-Sitter (AdS) space to the conformal field theory (CFT) residing at the timelike boundary

of AdS. This duality is most readily visualized in the so called ’t Hooft limit (with ’t Hooft coupling

parameter λ = g2
YMN → fixed) of the field theory side and can be generalized to non-conformal,

finite temperature systems to make closer contact with our everyday world. Here gYM is the field

theory coupling constant and N is the number of ‘colors’ that is taken to be a very large number†.

Also, this duality adds to previously known dualities in string theory such as Matrix Models which

again is a correspondence between the so called Matrix theories (where the degrees of freedom are

matrices and not usual commutative coordinates) and M-theory in a particular frame (for a review

see e.g. [4]). Though not proven, till now we don’t have any counterexample to these dualities.

The main difficulty in proving the conjecture has been the fact that if the gravity side is weakly

coupled, the field theory side becomes strongly coupled (and vice-versa) signaling the breakdown

of well-known perturbation techniques. But on the positive side, using this conjecture we can give

striking predictions of properties of some strongly correlated field theoretic systems (e.g. the Quark

Gluon Plasma that has been discovered recently in Brookhaven National Laboratory (BNL)). Also

new directions have opened up, and it has enabled us to grow a closer contact to other fields of

physics such as Condensed Matter Physics, Nuclear Physics and Atomic Physics where it may finally

find an opportunity of experimental verification.

We cover three main topics in this thesis. In chapter 2, we start off by discussing Casimir

energy calculation in the presence of two parallel cosmic strings in four dimension. The cosmic

strings are taken to be ideal and so they have zero thickness and some length L. We compute the

interaction energy between them in the presence of spin-1 gauge fields and non-minimally coupled

scalar fields. We find that in such set ups the contribution for the gauge fields towards interaction

energy in such spacetime is precisely similar to the contribution from a non-minimally coupled

scalar for a specific value of the non-minimal coupling parameter. These type of terms also appear

in the renormalization of gravitational coupling constant when calculating the one loop correction

of the Bekenstein Hawking entropy of a black hole in the presence of gauge fields. But these terms
†When talking about N as ‘colors’, we are assuming a color group in the CFT side. This is because the best

developed and understood AdS/CFT duality come in terms of N = 4 super Yang-Mills (SYM) theory with SU(N)
gauge group on the CFT side. In general we should take a CFT with a matrix model description where the sizes
of the matrices are N × N and for the duality to correspond to a weakly coupled bulk dual, we can think of these
matrices to be very large. See e.g. [3].
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are absent from the entanglement entropy renormalization. This mismatch of renormalization were

subject to some confusion lately and our calculation supports the presence of such ‘contact terms’

in a gauge invariant quantity like interaction energy. We comment on these issues at the end of this

chapter.

In the next couple of chapters, we discuss formation of black holes in terms of gauge/ gravity

dualities such as AdS/ CFT and Matrix models. The relevant results are presented in chapter 3 and

in chapter 4. First in chapter 3, we study the formation of the black hole in the collapse process of

Dp brane clusters and Dp brane shells. The calculation is done in the limit where the dimensionless

effective ’t Hooft coupling (λeff ) tends to 1. λeff is a dimension dependent quantity and is given

by λ
U3−p where U is the relevant energy scale in the study of Dp branes. From the basic ideas of

AdS/ CFT we know that λeff → 1 is the correspondence point between the two dual theories and

we match our gauge theory calculation with the SUGRA ones at that point. Chapter 4 on the other

hand, is devoted to the collapse of a Membrane or Fuzzy spheres. For both types of systems, we

show the presence of parametric resonance. It turns out that any matrix like models with a quartic

interaction potential with time dependent initial condition have this resonance process and upon

calculating various thermodynamic quantities of interests at the correspondence point, they quite

naturally match up with the SUGRA side. We end both of the sections with a discussion of various

generalization that one can do to such systems to go beyond the constraints of correspondence point.

Chapter 5 and chapter 6 are then devoted to the construction and study of local operators in

AdS using the information of the CFT operators at large values of N using generalized AdS/ CFT‡.

After briefly reviewing some known results, we present new results. These new results contain a

study of spin-1 Maxwell fields in chapter 5 and the gravitons in chapter 6. We consider only free

fields. Here the statement of locality due to gauge invariance is already subtle, and for gravity the

problem is even more non-local due to the diffeomorphism symmetry. We show how can one still

have a notion of local bulk operators in such cases. We end these chapters by presenting some new

results which captures this construction for gauge fields for the next order in 1/N interaction theory

in the bulk. We also present some ongoing work which deals with four-point functions and higher.

We conclude in chapter 7 where we collect our findings so far and discuss some of the future
‡Here we are basically trying to answer the general question of ‘what should be the CFT properties for it to have

a local bulk dual?’. Also see the footnote of previous page.

3



directions and present our outlook. Finally, the appendices then collect some calculation that we

left out during the main chapters.
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2

Cosmic String Interactions Induced by

Gauge and Scalar Fields

As mentioned in the introduction, this chapter stands quite alone from the underlying tool of the

rest of the dissertation. Here we calculate the interaction energy between two parallel ideal cosmic

strings in the presence of gauge and non-minimally coupled scalars. We point out the relevance of

the result with the ideas of black hole entropy calculation using the replica trick and it’s difference

from the entropy of entanglement. The work described here is based on the paper [5].

For a single cosmic string in four Euclidean dimensions the metric is [6, 7]

ds2 = dr2 + r2dψ2 + dτ2 + dz2 (2.1)

The string tension produces a deficit angle, ψ ≈ ψ + β where

β = 2π − 8πλ (2.2)

Here λ = Gµ where G is Newton’s constant and µ is the mass per unit length of the string.

We will be interested in the interaction between two parallel cosmic strings. At the classical

level there is no force between strings,∗ but (as in the Casimir effect) an interaction potential can

be generated at one loop by a quantum field propagating on this background. For simplicity we will
∗In classical gravity there is, however, a non-trivial scattering amplitude which results from the conical boundary

conditions [8, 9].
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take a perturbative approach, and calculate the interaction energy at first order in the product of

the two deficit angles. We consider two types of fields – scalar fields with a non-minimal coupling

to curvature, and abelian gauge fields – as the main point of this chapter is to highlight a relation

between these two cases. Vacuum polarization in the presence of a single cosmic string has been

studied before; see for example [10, 11, 12] for scalar fields and [13, 14] for gauge fields. For related

calculations in the presence of multiple cosmic strings see [15, 16].

We begin by recalling the argument that, to first order in the background curvature, there

should be a relation between gauge fields and scalar fields with specific non-minimal couplings to

curvature. To our knowledge this relation was first stated in [17], although the essence of the

following argument is taken from [18]. Consider a spacetime which is a product Mn × Rd−n of a

weakly-curved n-dimensional Einstein manifold Mn with flat space Rd−n. The metric takes the

form

ds2 = gαβdx
αdxβ + δijdx

idxj (2.3)

where xα are coordinates onMn and xi are coordinates on Rd−n. The Einstein manifold has Ricci

curvature Rαβ = 1
ngαβR.

† Choose a vielbein gαβ = eaαe
b
βδab and denote the corresponding spin

connection ωα.

To establish the relation between gauge and scalar fields we compare their equations of motion.

For a gauge field, the equations of motion in Feynman gauge are

−∇ν∇νAµ +RµνA
ν = 0 (2.4)

where xµ = (xα, xi). There are ghosts associated with this choice of gauge which behave like a pair

of minimally-coupled scalar fields [19]. The components of the gauge field tangent to Rd−n obey

−∇β∇βAi − ∂j∂jAi = 0 (2.5)

where the covariant derivative ∇α treats Ai as a singlet of SO(n). That is, the components Ai

behave like minimally-coupled scalar fields. The components of the gauge field tangent toMn, on
†By Einstein manifold we mean a manifold with Ricci curvature locally proportional to the metric, Rαβ(x) =

f(x)gαβ(x). In two dimensions all manifolds are Einstein. In higher dimensions the contracted Bianchi identity
∇µ
(
Rµν − 1

2
gµνR

)
= 0 requires that f be a constant. In either case it follows from the definition that Rαβ = 1

n
gαβR.
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the other hand, obey

−∇β∇βAa − ∂j∂jAa +
1

n
RAa = 0 (2.6)

Here ∇α acts on Aa = ea
αAα in the fundamental representation of SO(n), and we’ve made use of

the fact that Rαβ = 1
ngαβR. So the components Aa are in the fundamental representation of SO(n)

and have an explicit non-minimal coupling to curvature.

Physical quantities can be computed perturbatively, as an expansion in powers of the background

curvature. As a concrete example imagine computing the effective action for the background which

results from integrating out Aµ. The spin connection can appear in the effective action, but only

through its field strength F = dω + ω2. In fact the field strength can first appear in the effective

action in terms such as FαβFαβ that are quadratic in the curvature. So to first order in the

background curvature we can forget about the spin connection and treat Aa as a collection of n

scalar fields with a non-minimal coupling to curvature. The equation of motion for a non-minimal

scalar is

−∇β∇βφ− ∂j∂jφ+ ξRφ = 0 , (2.7)

and comparing to (2.6) we identify the effective non-minimal coupling parameter ξ = 1/n. Thus to

first order in the background curvature a gauge field is equivalent to n scalar fields with ξ = 1/n,

plus d− n minimally-coupled scalars.

This discussion is relevant to parallel cosmic strings because in two dimensions every manifold

is an Einstein manifold. The argument suggests that, to first order in the product of the deficit

angles, the interaction between two cosmic strings induced by a gauge field should be the same as

the interaction induced by an appropriate collection of non-minimal scalars.

In the remainder this chapter we verify this claim, by computing the interaction energy between

cosmic strings perturbatively. In section 2.1 we compute the interaction energy for a scalar field,

and in section 2.2 we carry out the corresponding computation for a gauge field. We conclude in

section 2.3, where we comment on our results and point out the relation to studies of black hole

entropy.
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2.1 Non-minimal scalar energy

The Euclidean action is

S =

∫
d4x
√
g

(
1

2
gµν∂µφ∂νφ+

1

2
ξRφ2

)
For the conical geometry (2.1) the scalar curvature is‡

R = 16πλδ2(x)/
√
g (2.8)

The action on a cone can be split into three pieces,

Scone = S0 + Sint, Sint = Swedge + Stip (2.9)

where

S0 =

∫
d4x

1

2
δµν∂µφ∂νφ (2.10)

is the action in flat space,

Swedge = −
∫
dτdz

∫ ∞
0

rdr

∫ 4πλ

−4πλ
dψ

1

2
δµν∂µφ∂νφ (2.11)

cancels the flat-space action in the region corresponding to the deficit angle, and

Stip =

∫
dτdz 8πλξφ2 (2.12)

arises from the non-minimal coupling to curvature. It’s straightforward to extend this to a pair of

cosmic strings, just by putting the deficit angles in opposite directions as shown in Fig. 2.1.

We will treat Sint as a perturbation.§ To find the interaction energy per unit length along the

strings Hint we use ∫
dτdzHint = 〈1− e−Sint〉C,0 (2.13)

‡The easiest way to see this is to note that a truncated cone, i.e. a disc with a conical singularity at the center,
has Euler characteristic χ = 1

4π

∫
d2x
√
gR+ 1

2π
β = 1.

§This is somewhat subtle, since it’s not manifest that perturbation theory in Sint will enforce the proper conical
boundary condition φ(r, ψ) = φ(r, ψ+β). Fortunately the boundary conditions are controlled by the spin connection
on the cone, which as we argued in the introduction can only enter at second order in the deficit angle.
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Figure 2.1: Two parallel cosmic strings, separated by a distance b.

where the subscript C, 0 denotes a connected correlation function computed in the unperturbed

theory (2.10). Expanding in powers of Sint, the leading O(λλ′) interaction between the strings

comes from ∫
dτdzHint ≈ −〈S(1)

int S
(2)
int 〉C,0 (2.14)

where the superscripts (1), (2) refer to the first and second cosmic string, respectively. Some useful

unperturbed correlators are

〈φ(x)φ(x′)〉 =
1

4π2

1

(x− x′)2
(2.15)

and

〈
(∂φ)2(x) (∂φ)2(x′)

〉
=

6

π4

1

(x− x′)8〈
(∂φ)2(x)φ2(x′)

〉
=

1

2π4

1

(x− x′)6〈
φ2(x)φ2(x′)

〉
=

1

8π4

1

(x− x′)4

There are three types of interactions. For generality we can imagine that the two strings have

different non-minimal couplings ξ, ξ′.

wedge – wedge

To first order in λ and λ′ the wedges can be treated as very narrow, so that

Hint = −16π2λλ′
∫
dτdz

∫ ∞
0

xdx

∫ ∞
0

x′dx′
6

π4

1(
τ2 + z2 + (x+ x′ + b)2

)4
= − 4λλ′

15πb2

9



wedge – tip

For wedge 1 with tip 2 we have

Hint = 32π2λλ′ξ′
∫
dτdz

∫ ∞
0

xdx
1

2π4

1(
τ2 + z2 + (x+ b)2

)3
=

4λλ′ξ′

3πb2

tip – tip

The interaction between the two tips is

Hint = −64π2λλ′ξξ′
∫
dτdz

1

8π4

1(
τ2 + z2 + b2

)2
= −8λλ′ξξ′

πb2

Assembling these results, to first order in λ and λ′ the interaction energy per unit length due to a

non-minimally coupled scalar field is

Hint =
λλ′

πb2

(
− 4

15
+

4

3
(ξ + ξ′)− 8ξξ′

)
(2.16)

To check the validity of our perturbative approach consider computing 〈φ2〉 for a minimally-

coupled scalar field in the presence of a single cosmic string. At first order in perturbation theory,

after subtracting the divergence which is present in flat space, we have

〈φ2〉 = −〈φ2Swedge〉C,0 =
λ

6π2r2
(2.17)

where r is the distance from the tip of the cone. On the other hand 〈φ2〉 can be computed exactly,

〈φ2〉 =

∫ ∞
0

dsK(s, x, x) (2.18)

10



where the scalar heat kernel on a cone is¶

K(s, x, x) = − 1

2β

1

(4πs)2

∫ ∞
−∞

dy e−
r2

s
cosh2(y/2)

(
cot

π

β
(π + iy) + cot

π

β
(π − iy)

)
(2.19)

Expanding the heat kernel to first order in the deficit angle and integrating over s reproduces (2.17).

2.2 Gauge field energy

We start from the Euclidean action

S = SMaxwell + Sgauge fixing

=

∫
ddx
√
g

(
1

4
FµνF

µν +
1

2

(
∇µAµ

)2)

There are ghosts associated with this choice of gauge that behave like a pair of minimally-coupled

scalars.

If we smooth out the conical singularities, so that we can freely integrate by parts, the action

becomes

S =

∫
ddx
√
g

(
1

2
∇µAν∇µAν −

1

2
Aµ
(
∇µ∇ν −∇ν∇µ

)
Aν
)

=

∫
ddx
√
g

(
1

2
∇µAν∇µAν +

1

2
RµνA

µAν
)

In the second line we used [∇µ,∇ν ]Aν = −RµνAν . We work on a space which is a product of a

two-dimensional cone with coordinates xα and a (d− 2)-dimensional flat space with coordinates xi.

ds2 = gαβdx
αdxβ + δijdx

idxj

In two dimensions the Ricci tensor is proportional to the metric, so from (2.8)

Rαβ = 8πλgαβδ
2(x)/

√
g (2.20)

¶See for example [20]. We dropped the term in the heat kernel 1/(4πs)2 which is responsible for the divergence in
flat space.

11



where 8πλ is the deficit angle. Thus the action for a gauge field on a cone can be decomposed into

Scone = S0 + Sint, Sint = Swedge + Stip (2.21)

For example in four dimensions

S0 =

∫
d4x

1

2
(∂µAν)2 (2.22)

is the Feynman gauge action in flat space,

Swedge = −
∫
dτdz

∫ ∞
0

rdr

∫ 4πλ

−4πλ
dψ

1

2
(∂µAν)2 (2.23)

cancels the flat-space action in the region corresponding to the deficit angle, and

Stip = 4πλ

∫
dτdz gαβA

αAβ (2.24)

arises from the explicit coupling to curvature. Aside from the sums over photon polarizations, this

is identical to the decomposition of the non-minimal scalar action (2.9).

The interaction between two cosmic strings can be calculated perturbatively, just as for a non-

minimal scalar field.‖ In fact the two calculations are identical. There are d − 2 polarizations

transverse to the cone which behave in perturbation theory just like minimally-coupled scalars.

Two of these polarizations are canceled by the ghosts, leaving no contribution in four dimensions.

The two polarizations tangent to the cone behave like non-minimal scalars with ξ = 1/2. So the

overall interaction energy coming from a gauge field in four dimensions is simply twice the scalar

result (2.16) evaluated at ξ = 1/2. That is, for a gauge field in four dimensions

Hint =
2λλ′

πb2

(
−14

15

)
(2.25)

To check the validity of our perturbative approach consider computing 〈AµAµ〉 around a single

‖Again it’s not manifest that perturbation theory in Sint enforces the proper conical boundary conditions on Aα,
but this effect is controlled by the spin connection which can only enter at second order in the deficit angle.
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cosmic string. In perturbation theory, after subtracting the divergence present in flat space, we have

〈AµAµ〉 = 〈AµAµ (−Swedge − Stip)〉C,0 =
4λ

6π2r2
− λ

π2r2
(2.26)

The first term comes from Swedge and is four times the scalar field result (2.17). The second term

comes from Stip and reflects the non-minimal coupling to curvature. The same quantity can be

computed exactly,

〈AµAµ〉 =

∫ ∞
0

ds gµνK
µν
vector(s, x, x) (2.27)

where the vector heat kernel is [20]

gµνK
µν
vector = 4Kscalar(s, x, x) +

2

r
∂rsKscalar(s, x, x) (2.28)

Expanding to first order in the deficit angle and integrating over s reproduces (2.26).∗∗

2.3 Conclusions

In this chapter we considered a cosmic string spacetime and argued that to first order in the deficit

angle there is an equivalence between a gauge field and a collection of scalar fields with specific

non-minimal couplings to curvature. More generally the equivalence holds on the product of any

weakly-curved Einstein manifold with flat space. We tested the equivalence by computing the

interaction energy between two cosmic strings to first order in perturbation theory, showing that it

indeed matched for the appropriate value of the non-minimal coupling parameter.

Throughout this chapter we worked in Feynman gauge, which is adequate for studying gauge-

invariant quantities. However it would be interesting to study the relation between gauge and

scalar fields in other choices of gauge. Also it would be interesting to study the interaction between

strings at higher orders in perturbation theory. Beyond leading order there is no reason to expect

an equivalence between gauge and scalar fields, since the spin connection distinguishes between the

two types of fields and can appear in the interaction energy at second order in the deficit angle.

Besides their direct application to cosmic strings, our results also have relevance to the ther-
∗∗Note that the last term in (2.28), which in the black hole context captures the contact interaction of a gauge field

with the horizon, corresponds at first order in perturbation theory to effects associated with Stip.
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modynamics of black holes. In a Euclidean formalism the entropy of a black hole measures the

response of the partition function to an infinitesimal conical deficit angle inserted at the horizon

[21, 22]. This has been used to study the renormalization of black hole entropy due to matter fields,

with the somewhat surprising conclusion that a gauge field can make a negative contribution to

the entropy. In [20] it was shown that this is due to a contact term in the partition function for a

gauge field, associated with particle paths that begin and end on the horizon. Here we’ve shown

that, to first order in the deficit angle, a gauge field is equivalent to a collection of non-minimal

scalars. So the contact interaction of [20] is visible at the level of the equations of motion, as the

explicit non-minimal coupling to curvature seen in (2.6). This makes the negative renormalization

of black hole entropy less mysterious, since it maps a gauge field to the well-studied problem of

a non-minimally coupled scalar field in a black hole background [23]. Our results also show the

physical relevance of these contact interactions: besides contributing to black hole entropy, they

make a (finite, observable, gauge invariant) contribution to the force between two cosmic strings.

Though there is a cancellation in two dimensions from the ghost zero modes [24], but in general

such terms are present and their gauge invariance was shown by Solodukhin [25].

We conclude with some additional evidence in support of the relation between gauge and scalar

fields at first order in the background curvature. The partition function for a gauge field on a cone

was evaluated in [20]. Including the ghosts, the result is

βFgauge = (d− 2)βFminimal
scalar +A⊥(2π − β)

∫ ∞
ε2

ds

(4πs)d/2
(2.29)

Here d is the total number of spacetime dimensions, A⊥ is the area of the d−2 transverse dimensions

corresponding to the horizon, s is a Schwinger parameter, and ε is a UV cutoff. The partition

function for a non-minimal scalar was evaluated to first order in the deficit angle in [23], with the

result

βF ξ
scalar = βFminimal

scalar + ξA⊥(2π − β)

∫ ∞
ε2

ds

(4πs)d/2
(2.30)

Comparing the partition functions again shows that a gauge field corresponds to two non-minimal

scalars with ξ = 1/2, together with d−2 minimal scalars (two of which are canceled by the ghosts).
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The same relation can be seen in the one-loop renormalization of Newton’s constant,

1

4GN,ren
=

1

4GN
+

c1

(4π)
d−2
2 (d− 2)εd−2

(2.31)

where the Seeley – de Witt coefficients are [26]

c1 =


1
6 − ξ non-minimal scalar

d−2
6 − 1 gauge field including ghosts

(2.32)

On a d-dimensional Einstein manifold the gauge field result corresponds to d non-minimal scalars

with ξ = 1/d, plus two minimally-coupled scalar ghosts.
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3

Black Hole Formation at the

Correspondence Point: Part I

In this chapter and the next we study the formation of a black hole using various gauge/ gravity

dualities at a particular limiting value of the energy scale. This chapter is devoted to the formation of

black holes made out of collapse processes of various dimensional Dp brane shells and clusters. The

next chapter, on the other hand, discusses collapse of fuzzy spheres. We show that at least, at the

correspondence point (we clarify the definition of this point in a moment), there is a generic process

in the gauge theory side which can describe field theory thermalization and the corresponding black

hole formation machanism in gravity. This mechanism gives us a natural time scale which in turn

is related to the time scale of the formation of the black holes.

3.1 Introduction and summary

Understanding black holes microstates from a D-brane or fundamental string perspective is a long-

standing theme in string theory. The original observation that vibrating strings qualitatively re-

semble a black hole [21, 27] was followed by a quantitative worldvolume derivation of black hole

entropy for certain BPS states [28]. This relationship eventually became a fundamental aspect of the

holographic duality between gauge and gravity degrees of freedom [29]. According to this duality,

microstates of a black hole are in one-to-one correspondence with microstates of a strongly-coupled

gauge theory. This duality also applies to time-dependent processes such as black hole formation
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and evaporation, leading to the viewpoint that these processes should be unitary, contrary to [30].

To gain insight into black hole formation, and a better understanding of the microstructure of

the resulting black hole, in this chapter we study the process of bound state formation from two

perspectives: perturbative gauge theory and supergravity. In perturbative gauge theory a D-brane

bound state can be formed through a process of open string creation. In supergravity we will see that

open string creation is not possible, and one instead forms a bound state through the gravitational

or closed-string process of black hole formation.

The perturbative gauge theory and supergravity calculations of bound state formation do not

have an overlapping range of validity. But we will show that they agree qualitatively at an inter-

mediate value of the coupling, in accord with the correspondence principle introduced by Horowitz

and Polchinski [31]. This suggests that there is a smooth transition between the process of open

string creation at weak coupling and black hole formation at strong coupling.

As a first test of these ideas, in section 3.2 we study bound state formation in D0-brane collisions

and show that the sizes of the bound states match at the correspondence point. In section 3.3 we

extend this analysis to general Dp-branes.

Next we consider the time development of the bound states after they have formed. In section

3.4 we show that the weakly-coupled gauge theory has a parametric resonance which exponentially

amplifies the number of open strings present, and we identify the timescale for the production of

additional open strings at weak coupling. In the gravitational description, a perturbed black hole

approaches equilibrium on a timescale determined by the quasinormal frequencies. In section 3.5

we compare these two timescales and show that they agree at the correspondence point.

In section 3.6 we compare properties of the bound state as initially formed to equilibrium

properties of the black hole, and show that at the correspondence point the bound state is created

in a state of near-equilibrium. In section 3.7 we study a different initial configuration, in which a

bound state is formed by collapse of a spherical shell of D0-branes, and show that the picture of a

smooth transition between open string production and black hole formation continues to hold. We

conclude in section 3.8.

The present work is related to several studies in the literature. In gauge – gravity duality, a

black hole on the gravity side is dual to a thermal state of the gauge theory, where all O(N2) degrees

of freedom are excited [32, 33]. There have been many studies of 0-brane black hole microstates
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Figure 3.1: Colliding stacks of 0-branes.

from matrix quantum mechanics, along with their associated thermalization process. Some previous

studies of 0-brane black holes from matrix quantum mechanics include [34, 35, 36, 37, 38, 39, 40].

Also see [41, 42] for studies of black hole formation from the gravity perspective, and [43, 44, 45, 46,

47, 48] for studies from the gauge theory perspective. In particular parametric resonance has been

discussed in relation to thermalization in the closely related work [46]. Open string production has

been studied as a mechanism for trapping moduli at enhanced symmetry points in [49], while open

string production in relativistic D-brane collisions has been studied in [50].

3.2 Bound state formation in 0-brane collisions

Consider colliding two clusters of 0-branes as shown in Fig. 3.1. We’d like to understand whether a

bound state is formed during the collision. Two mechanisms for bound state formation have been

discussed in the literature.

1. In a perturbative description of D-brane dynamics, open strings can be produced and lead to

formation of a bound state. This occurs for impact parameters b .
√
vα′ [51]. This can be

understood as the condition for violating the adiabatic approximation. For a review of the

calculation see appendix A.1.

2. At strong coupling the D-brane system has a dual gravitational description [3]. In this de-

scription, according to the hoop conjecture of Thorne [52, 53], a black hole should form if the

two D-brane clusters are contained within their own Schwarzschild radius.

Our goal is to understand in what regimes these two mechanisms for bound state formation are

operative, and whether they are connected in any way.
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It will be convenient to work in terms of a radial coordinate U with units of energy, U = r/α′.

The ’t Hooft coupling of the M(atrix) quantum mechanics is λ = g2
YMN , which in string and

M-theory units can be expressed as

λ = gsN/`
3
s = R3N/`611 . (3.1)

Here gs is the string coupling, `s is the string length, R is the radius of the M-theory circle, and `11

is the M-theory Planck length. The mass of a single D0-brane is

m0 =
1

gs`s
=

1

R
. (3.2)

3.2.1 Perturbative string production

We work in the center of mass frame, with momenta

p1 =
N1

R
v1 p2 =

N2

R
v2 p1 + p2 = 0 (3.3)

We consider a fixed total energy E, which determines the asymptotic relative velocity v.

1

2

N1

R
v2

1 +
1

2

N2

R
v2

2 = E ,

⇒ v = v1 − v2 ∼
(
NER

N1N2

)1/2

=

(
λEl4s
N1N2

)1/2

. (3.4)

In terms of the U coordinate, the relative velocity is

U̇ =

(
λE

N1N2

)1/2

. (3.5)

As reviewed in appendix A.1, open string production sets in when

U ∼
√
U̇ =

(
λE

N1N2

)1/4

. (3.6)

Note that the radius at which open strings are produced depends on how we split the total D-brane

charge. The radius is minimized when N1 = N2 = N/2, which gives the minimum radius for open
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string production as

U0 ∼
(
λE

N2

)1/4

. (3.7)

This is the case which is interesting for matching to supergravity.

There are some checks we should perform to make sure this perturbative result is valid. As

discussed in [54], the effective action has a double expansion in λ/U3 and U̇2/U4. The expansion

in powers of λ/U3 is the Yang-Mills loop expansion, which is valid provided U0 > λ1/3. From (3.7)

this requires

E > N2λ1/3 (3.8)

At the critical point where the loop expansion breaks down, U0 ∼ λ1/3, the inequality (3.8) is

saturated.

The expansion in powers of U̇2/U4 is the derivative expansion, which is valid when U̇2 < U4.

Note that the derivative expansion breaks down at the point where open strings are produced. Up

to this point, i.e. for U >
√
U̇ , one can trust the two-derivative terms in the effective action, which

means one can ignore corrections to the asymptotic velocity estimate (3.4).∗ So the only condition

for the validity of the perturbative description of open string production is (3.8).

3.2.2 Bound state formation in gravity

The M(atrix) quantum mechanics has a dual gravitational description at strong coupling, meaning

for U < λ1/3. So let’s imagine the 0-brane clusters approach to within this distance, and study

whether a bound state can form.

At first, one might think a bound state could form via open string production. As noted in

[3], the metric factors cancel out of the Nambu-Goto action, and even in the supergravity regime

the mass of an open string connecting the two clusters of D-branes is mW ∼ U . The adiabatic

approximation breaks down, and these open strings should be produced, if U̇/U2 > 1. However this

velocity cannot be attained in the regime where supergravity is valid, since it violates the causality
∗As we will see, this is not the case in the supergravity regime.

20



bound [55, 56]. This can be seen in the probe approximation, where the DBI action for a probe is

S =
1

g2
YM

∫
dt
U7

λ

1−

√
1− λU̇2

U7

 (3.9)

Thus causality bounds the velocity of the probe,

λU̇2

U7
< 1 . (3.10)

Rather remarkably, the probe has to slow down significantly as U → 0. In any case, in the super-

gravity regime we have U̇2

U4 <
U3

λ , and since U3

λ < 1 at strong coupling, open strings can never be

produced.

This means black hole formation is the only way to form a bound state in the supergravity regime.

Since open string production is ruled out, we reach the sensible conclusion that the formation of a

horizon is a purely gravitational closed-string process. The hoop conjecture states that a black hole

will form if the energy E is contained within its own Schwarzschild radius. For a 10-dimensional

black hole with N units of 0-brane charge, the Schwarzschild radius is

U0 =

(
λ2E

N2

)1/7

(3.11)

This 10-D supergravity description is only valid if the curvature and string coupling are small at

the horizon, which requires

λ1/3N−4/21 < U0 < λ1/3 (3.12)

For smaller U0 one must lift to M-theory; for larger U0 the M(atrix) quantum mechanics is weakly

coupled. At the outer radius where the supergravity approximation breaks down, U0 ∼ λ1/3,

eq. (3.11) tells us that E ∼ N2λ1/3.

3.2.3 Correspondence point

We’ve found that open string production is only possible at weak coupling, while black hole for-

mation can only occur within the bubble where supergravity is valid. One could ask if the two

phenomena are smoothly connected. Is there a correspondence point where both descriptions are
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valid?

From the perturbative point of view, the transition happens when the condition (3.8) is satu-

rated, E = N2λ1/3. In this case open strings are produced, but at a radius U0 ∼ λ1/3 where the

system is just becoming strongly coupled.

From the supergravity point of view, the transition happens when the energy of the black hole

is E = N2λ1/3, corresponding to a Schwarzschild radius U0 ∼ λ1/3. In this case the black hole fills

the entire region where supergravity is valid.

This suggests that open string production and black hole formation are indeed continuously

connected. Since the transition between the two descriptions happens when the curvature at the

horizon is of order string scale,

α′R ∼ (λ/U3)−1/2 ∼ 1 , (3.13)

this is an example of the correspondence principle of Horowitz and Polchinski [31]. Note that

for a given black hole energy, one can view the condition of being at the correspondence point,

E = N2λ1/3, as fixing the total 0-brane charge,

N =

(
E3`3s
gs

)1/7

. (3.14)

3.3 Dp-brane collisions

In this section we generalize our 0-brane results and consider Dp-branes wrapped on a p-torus of

volume Vp. We first record some general formulas then analyze particular cases.

The Yang-Mills coupling is g2
YM = gs/`

3−p
s and the ’t Hooft coupling is λ = g2

YMN . In terms of

U = r/α′, the effective dimensionless ’t Hooft coupling is

λeff =
λ

U3−p . (3.15)

The Yang-Mills theory is weakly coupled when λeff < 1 and has a dual gravitational description

when λeff > 1 [3].

Imagine colliding two stacks of wrapped Dp-branes at weak coupling, with a fixed energy density

ε as measured in the Yang-Mills theory. The mass of a wrapped p-brane is Vp/gs`
p+1
s , so in the
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center of mass frame the relative velocity is

U̇ =

(
λε

N1N2

)1/2

. (3.16)

Open string production sets in when

U ∼
√
U̇ ∼

(
λε

N1N2

)1/4

. (3.17)

The radius at which open strings are produced depends on how we divide the total D-brane charge.

The radius is minimized by setting N1 = N2 = N/2, which gives the minimum radius for open

string production as

U0 ∼
(
λε

N2

)1/4

. (3.18)

This is the case which is interesting for comparison to supergravity.

Just as for 0-branes, open string production is not possible in the supergravity regime. The DBI

action for a probe brane is

S =
1

g2
YM

∫
dp+1x

U7−p

λ

1−

√
1− λU̇2

U7−p

 (3.19)

Thus the causality bound is U̇2/U4 < U3−p/λ = 1/λeff [55], which rules out open string production

(at least in the probe approximation). Instead we have the process of black hole formation, with a

horizon radius U0 = (g4
YMε)

1/(7−p) [3].

Further analysis depends on the dimension of the branes.

p = 0, 1, 2

For p < 3 the Yang-Mills theory is weakly coupled when U > λ1/(3−p) and has a dual gravita-

tional description when U < λ1/(3−p). Thus open string production is possible at large distances,

while black hole formation is possible at small distances. The correspondence point, where the two

descriptions match on to each other, occurs when

ε = N2λ
1+p
3−p

U0 = λ1/(3−p)
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At this energy density open string production occurs just as the Yang-Mills theory is becoming

strongly coupled. From the supergravity perspective, the resulting black brane fills the entire region

in which supergravity is valid.

p = 3

In this case the Yang-Mills theory is conformal and dual to AdS5×S5 [29]. The ’t Hooft coupling

is dimensionless. For λ . 1 open string production is possible, while for λ & 1 black holes can form.

The two descriptions match on to each other at the correspondence point λ = 1. Note that, unlike

other values of p, the correspondence point is independent of the energy density ε.

As a test of this idea, note that the radius at which open strings form is

U0 = (λε/N2)1/4 (3.20)

while for p = 3 the horizon radius is

U0 = (g4
YMε)

1/4 (3.21)

These two expressions for U0 agree when λ = 1. This suggests that the process of open string

production for λ . 1 smoothly matches on to black hole formation for λ & 1.

p = 4, 5, 6

For p > 3 the Yang-Mills theory is strongly coupled in the UV and has a dual supergravity

description (modulo some subtleties described in [3]). In the IR the Yang-Mills theory is weakly

coupled. Black hole production is possible in the supergravity regime, where U > λ1/(3−p), while

open string production is possible for U < λ1/(3−p). The correspondence point where the two

descriptions match is at

ε = N2λ
1+p
3−p (3.22)

U0 = λ1/(3−p) (3.23)

3.4 Parametric resonance in perturbative SYM

In this section we study the evolution of a bound state formed at weak coupling by open string

creation. We show that the number of open strings increases exponentially with time due to a
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parametric resonance in the gauge theory. For simplicity we consider 0-brane collisions; the gener-

alization to Dp-branes is straightforward and will be mentioned in section 3.5.2.

Suppose a cluster of N1 incoming 0-branes collides with a stack of N2 coincident 0-branes at

rest. In the collision suppose n open strings are produced. These open strings produce a linear

confining potential, so the system will begin to oscillate. The conserved total energy is

E =
1

2
mv2 + nτx (3.24)

Here we’re adopting a non-relativistic description, appropriate to the form of the D0-brane quantum

mechanics, while m is the mass of the incoming 0-branes, v is their velocity, n is the number of

open strings created, τ = 1/2πα′ is the fundamental string tension, and x is the length of the open

strings. The period of oscillation is

∆t = 4
(m

2

)1/2
∫ E/nτ

0

dx√
E − nτx

∼
√
mE

nτ
(3.25)

So up to numerical factors, the frequency of oscillation is

Ω =
nτ√
mE

(3.26)

while the amplitude of oscillation (the maximum value of x) is

L =
E

nτ
(3.27)

We introduce this as a classical M(atrix) background by setting Xi = Xi
cl + xi where

X1
cl =

 L sin Ωt1N1 0

0 0

 X2
cl = · · · = X9

cl = 0 , (3.28)

We have decomposed the N ×N matrix into blocks; 1N1 is the N1×N1 unit matrix. Expanding to
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quadratic order in the fluctuations, the M(atrix) Lagrangian†

LYM =
1

2g2
YM

Tr

(
ẊiẊi +

1

2
[Xi, Xj ][Xi, Xj ]

)
(3.29)

reduces to

LYM =
1

2g2
YM

Tr
(
ẋ1ẋ1

)
+

1

2g2
YM

9∑
i=2

Tr
(
ẋiẋi + [xi, X1

cl][x
i, X1

cl]
)

(3.30)

Note that the potential for x1 vanishes. We also have the Gauss constraint associated with setting

A0 = 0, namely ∑
i

[Xi, Ẋi] = 0 (3.31)

To quadratic order this reduces to [X1
cl, ẋ

1] = [Ẋ1
cl, x

1] which only constrains x1. The simplest

solution is to set x1 = 0.

To study the remaining degrees of freedom we decompose

xi =

 ai bi†

bi ci

 (3.32)

where ai is an N1 ×N1 matrix, bi is an N1 ×N2 rectangular matrix and ci is an N2 ×N2 matrix.

We will often suppress the index i = 2, . . . , 9. To quadratic order the a and c entries have trivial

dynamics, since [xi, X1
cl] does not involve a and c. On the other hand, the equation of motion for b

is

b̈+ L2 sin2(Ωt) b = 0 (3.33)

Defining s = Ωt this reduces to Mathieu’s equation,

d2b

ds2
+ (a− 2q cos 2s) b = 0 (3.34)

with the particular values a = 2q = L2/2Ω2. Mathieu’s equation admits Floquet solutions

b(t) = eiγΩtP (Ωt) (3.35)
†We are setting 2πα′ = 1 and A0 = 0.
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Figure 3.2: The imaginary part of the Mathieu characteristic exponent as a function of a = 2q.

where P (·) is a periodic function with period π. As a function of a and q there are intervals where

γ has a negative imaginary part and the solution grows exponentially. These intervals correspond

to band gaps in the Bloch interpretation of Mathieu’s equation. The imaginary part of γ is plotted

as a function of a = 2q in Fig. 3.2. There are clearly many intervals where the solution is unstable,

with a typical exponent |Imγ| ∼ 0.25.

This instability corresponds to an exponential growth in the number of open strings present.

Note that in our case‡

a = 2q ∼ mE3/n4 (3.36)

After the initial collision the energy E in the oscillating background will decrease as the system

begins to thermalize, while the number n of open strings gets larger. So we expect the value of a to

decrease with time. This means the system will scan across the different instability bands available

to it.

To summarize, we have found that the oscillating background resulting from a 0-brane colli-

sion is unstable. The 16N1N2 real degrees of freedom contained in bi for i = 2, . . . , 9 behave as

parametrically-driven oscillators. Their amplitude grows exponentially, on a timescale

tYM ∼ 1/Ω ∼
√
mE/nτ (3.37)

Here m is the mass of the N1 incoming 0-branes, E is the total energy of the system, n is the

number of open strings present in the off-diagonal block b and τ is the fundamental string tension.
‡Restoring units, we would have L2 → L2τ2 in (3.33) and a = 2q ∼ mE3/n4τ2 in (3.36).
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3.5 Comparison of timescales

We compare the timescale associated with parametric resonance to the quasinormal modes of a black

hole. We consider parametric resonance for D0-branes in section 3.5.1, generalize to Dp-branes in

section 3.5.2, and compare to quasinormal modes in section 3.5.3.

3.5.1 0-brane parametric resonance

As we saw in section 3.4, the timescale for parametric resonance is determined by the period of

oscillation. In a 0-brane collision this is given by

tYM ∼ 1/Ω ∼
√
mE/nτ (3.38)

For N1 incoming D0-branes the mass is m = N1/R, where R = gsls is the radius of the M-theory

circle. Also E is the total energy of the system, n is the number of open strings and τ ∼ 1/l2s is

string tension. We consider the case N1 ∼ N2 ∼ N . Then the off-diagonal block b contains O(N2)

elements, so as shown in appendix A.1 O(N2) open strings are created by parametric resonance.

Using R = gs`s, τ ∼ 1/`2s, n ∼ N2 and gs ∼ g2
YM`

3
s we obtain

tYM ∼
√
NE

R

1

nτ
∼
√
E

λ1/2N
. (3.39)

At the correspondence point

E ∼ N2λ1/3 (3.40)

which means

tYM ∼ λ−1/3 . (3.41)

At the correspondence point the timescale for parametric resonance is independent of N and is

set by the ’t Hooft scale. As we will see in section 3.5.3, the same holds true for the quasinormal

frequencies of a black hole at the correspondence point.
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3.5.2 p-brane parametric resonance

It’s straightforward to extend this result to Dp-branes. First, the mass of a single D0-brane in the

previous section is replaced by the mass of Dp-brane wrapped on a volume Vp. So we should replace

1/R→ Vp/gsl
p+1
s . (3.42)

The energy of the incoming Dp-branes is related to the energy density ε by

E = εVp . (3.43)

The tension of the strings is the same, τ ∼ 1/`2s. So for Dp-branes, in place of (3.38), the oscillation

timescale is

tYM ∼
√
mE

nτ
→ Vp

√
Nε

gsl
p+1
s

1

nτ
. (3.44)

The number of open strings n is modified. As shown in appendix A.1, for N1 ∼ N2 and p 6= 3, the

number density of open strings at the correspondence point is set by the ’t Hooft scale. Thus

n ∼ N2Vpλ
p

3−p . (3.45)

Using this together with gsN = g2
YMN`

3−p
s = λ`3−ps we obtain

tYM ∼ Vp

√
Nε

gs`
p+1
s

1

nτ
∼ λ

− p
3−p
√
ε

λ1/2N
. (3.46)

From (3.22) the energy density at the correspondence point is

ε ∼ N2λ
1+p
3−p (3.47)

so the timescale is

tYM ∼ λ−
1

3−p . (3.48)

Just as for 0-branes, the timescale for parametric resonance is independent of N and set by the ’t

Hooft scale.
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3-branes are a special case since the ’t Hooft coupling is dimensionless. The correspondence

point is defined by λ ∼ 1. As shown in appendix A.1, for N1 ∼ N2 the number of open strings at

the correspondence point is

n ∼ N2V3U
3
0 (3.49)

where U0 is the horizon radius of the black brane. The energy density at the correspondence point

is ε ∼ N2U4
0 , so the parametric resonance timescale is

tYM ∼ Vp

√
Nε

gs`
p+1
s

1

nτ
∼ 1

U0
(3.50)

Thus for D3-branes the parametric resonance timescale is 1/U0, which also happens to be the inverse

temperature of the black brane.

3.5.3 Comparison to quasinormal modes

Quasinormal modes for non-extremal Dp-branes were studied in [57, 58] following earlier work on

AdS-Schwarzschild black holes [59]. The basic idea is to solve the scalar wave equation in the near-

horizon geometry of N coincident non-extremal Dp-branes, with a Dirichlet boundary condition at

infinity and purely ingoing waves at the future horizon. This gives rise to a discrete set of complex

quasinormal frequencies, whose imaginary parts govern the decay of scalar perturbations of the

black hole. It was found that the quasinormal frequencies are proportional to the temperature, with

a coefficient of proportionality that was found numerically in [57].

Recall that the temperature, energy density and entropy density of these black branes are related

to their horizon radius U0 by [3, 57]

T ∼ 1√
λ
U

(5−p)/2
0

ε ∼ N2

λ2
U7−p

0

s ∼ N2

λ3/2
U

(9−p)/2
0
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Assuming p 6= 3, at the correspondence point we have U0 ∼ λ1/(3−p) so that

T ∼ λ
1

3−p

ε ∼ N2λ
p+1
3−p

s ∼ N2λ
p

3−p

These quantities all obey the expected large-N counting, and since the ’t Hooft coupling λ has units

of (energy)3−p, these results could have been guessed on dimensional grounds. In the special case

p = 3 the ’t Hooft coupling is dimensionless and the correspondence point is defined by λ = 1. At

the correspondence point the horizon radius U0 remains arbitrary, with

T = U0

ε = N2U4
0

s = N2U3
0

Again these results could have been guessed on dimensional grounds.

As we saw in section 3.5.1 and 3.5.2 the timescale for parametric resonance is

tYM ∼

 λ−1/(3−p) for p 6= 3

1/U0 for p = 3
(3.51)

For all p this matches the inverse temperature of the black brane, tYM ∼ 1/T . Thus at the

correspondence point the timescale for parametric resonance matches the timescale for the decay of

quasinormal excitations of the black brane.

3.6 Comparison to equilibrium properties

It’s interesting to compare the properties of the bound state as initially formed to the equilibrium

properties of the black hole. This will show us that, at the correspondence point, very little ad-

ditional evolution is required to reach equilibrium – perhaps just a few e-foldings of parametric

resonance will suffice.
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First, in a 0-brane collision, note that the total number of open strings produced is ∼ N1N2.

With equal charges N1 = N2 = N/2 the number of open strings is O(N2). At the correspondence

point these strings have a mass ∼ λ1/3, so the total energy and entropy in open strings is

E ∼ N2λ1/3

S ∼ N2

This matches the equilibrium energy and entropy of the black hole, suggesting that black hole

formation at the correspondence point is a simple one-step procedure, in which the open strings

that are formed in the initial collision essentially account for the equilibrium properties of the black

hole. The analogous result for p-branes is that the number of open strings at the correspondence

point is, for p 6= 3,

n ∼ N2Vpλ
p

3−p (3.52)

where we have used (A.2) and the fact that U ∼ λ
1

3−p . Since the open strings have a mass ∼ U ,

this corresponds to a total energy and entropy in open strings

E ∼ N2Vpλ
p+1
3−p

S ∼ N2Vpλ
p

3−p

which again matches the equilibrium energy and entropy of the black brane. This again suggests

that the black hole is essentially fully formed in the initial collision, with very little additional

evolution required to reach equilibrium.§

Another quantity we can compare at the correspondence point is the size of the bound state. At

weak coupling, after n open strings have been formed, the amplitude of oscillation of the resulting

bound state is, from (3.27),

L =
E

nτ
(3.53)

§When p = 3 the matching is n ∼ N2V3U
3
0 , E ∼ N2V3U

4
0 , S ∼ N2V3U

3
0 .
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At the correspondence point for general p we have

E ∼ N2VpU
p+1
0 (3.54)

while the initial number of open strings created is

n ∼ N2VpU
p
0 (3.55)

Thus the initial amplitude of oscillation as measured in the U coordinate is

L/`2s = E/n ∼ U0 (3.56)

In other words, the initial oscillation amplitude matches the equilibrium horizon radius of the black

brane. Again this suggests that after the initial collision, only a small amount of additional evolution

is required to reach equilibrium.

3.7 Shell Collapse

So far we have studied bound state formation in a collision between two clusters of D-branes, in

the geometry shown in Fig. 3.1. Here we study a different initial configuration, in which N D0-

branes are uniformly distributed over a collapsing spherical shell as in Fig. 3.3. We will see that the

correspondence principle applies and a similar outcome is obtained in this case.

We consider an initial configuration in which the 0-branes are uniformly spread over an S8 of

radius U in 9 spatial dimensions. The 0-branes are localized but uniformly distributed over the

sphere, with velocities directed toward the center. Intuitively we argue as follows. Since the total

volume of the sphere scales as U8, each 0-brane occupies a volume ∼ U8/N , and the distance

between nearest-neighbor 0-branes scales as U/N1/8. This means virtual open strings connecting

nearest-neighbor 0-branes are quite light, with a mass ∼ U/N1/8 that goes to zero at large N .

However the typical open string is much heavier, with a mass ∼ U that is independent of N . We

expect these typical open strings to dominate the bound-state formation process, and therefore

expect to have a well-defined correspondence point at large N .
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Figure 3.3: A collapsing shell of 0-branes. Initially the 0-branes are spread uniformly over an S8

with velocities toward the center.

8

S 7

U

θ
W

S

boson

Figure 3.4: The 0-branes are spread over an S8 of radius U . The S7 has radius U sin θ and the W
boson has length 2U sin θ/2.
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To argue this in more detail, it is useful to consider a 0-brane located at the south pole and

study the number of virtual open strings as a function of the angle θ to the other 0-brane. See Fig.

3.4. The number of distinct open strings dn in the interval (θ, θ + dθ) is

dn =
N

32π4U8

105

× π4

3
(U sin θ)7 × Udθ (3.57)

The first factorN/
(

32π4U8

105

)
is the number density of 0-branes on the S8, the second factor π

4

3 (U sin θ)7

is the volume of an S7 located at an angle θ from the south pole. Thus the number density of open

strings is
dn

dθ
=

35

32
N sin7 θ (3.58)

We can also find the mass density of open strings dm
dθ . Since an open string subtending an angle θ

has a mass 2U sin θ/2, this is given by

dm

dθ
=
dn

dθ
· 2U sin

θ

2
=

35

16
NU sin7 θ sin

θ

2
(3.59)

The W-boson number density 1
N
dn
dθ and mass density 1

NU
dm
dθ are plotted in Fig. 3.5.

As can be seen in the figure, there are light open strings at large N . However the number of

these strings is tiny, since dn
dθ ∼ θ

7 at small angles.¶ Most of the W-bosons are concentrated around

θ = π/2. Therefore a spherical shell is basically the same as having W-bosons distributed in the

interval θ0 < θ < π − θ0, where θ0 is determined by the fraction of 0-branes pairs we neglect. For

example, if we neglect dn
dθ ≤ 10−7N , then θ0 ∼ 0.1. Since the masses of the W-bosons near θ = π/2

are all O(U), we can simply approximate the entire W-boson spectrum by taking mW ∼ U .

We now consider what happens when we give the shell of 0-branes some velocity toward the

origin. The analysis is almost identical to the colliding clusters considered in section 3.2. Given N

D0-branes with total energy E, the asymptotic relative velocity is

E ∼ mass× v2 ∼ N

R
v2

⇒ v ∼
(
ER

N

)1/2

=

(
Eλl4s
N2

)1/2

(3.60)

¶This is due to the fact that the 0-branes are spread on an S8. The distribution would be less sharply peaked in
lower dimensions, with dn

dθ
∼ θd−1 on an Sd.
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Figure 3.5: On the left, the W-boson number density 1
N
dn
dθ . On the right, the W-boson mass density

1
NU

dm
dθ .

In terms of the U coordinate, this becomes

U̇ =

(
Eλ

N2

)1/2

(3.61)

This matches the result in section 3.2 for N1 = N2 ∼ N . Since the W-boson masses are concentrated

around mW ∼ U , open string production again sets in when

U ∼
√
U̇ ∼

(
Eλ

N2

)1/4

(3.62)

At the correspondence point, where the effective gauge coupling becomes order one, we have

U ∼ λ1/3 (3.63)

and therefore

E ∼ N2λ1/3 . (3.64)

Just as in section 3.2, this matches the radius and energy energy of a black hole at the correspondence

point.
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3.8 Conclusions

In this chapter we studied D-brane collisions. We argued that the process of open string creation,

which leads to formation of a D-brane bound state at weak coupling, smoothly matches on to a

process at strong coupling, namely black hole formation in the dual supergravity. The transition

happens at an intermediate value of the coupling, given by the correspondence principle of Horowitz

and Polchinski. The size of the bound state, the timescale for approaching equilibrium, and the

thermodynamic properties of the bound state all agree between the two descriptions. The latter

agreement happens quickly, which suggests that the bound state is formed by the initial collision in

a near-equilibrium configuration.

We considered two types of initial configurations, namely colliding clusters of wrapped Dp-

branes and a collapsing shell of D0-branes. The main difference between the two configurations

was that the shell had a tail of light open strings which we argued could be neglected. In fact, this

distinction between the two configurations is somewhat artificial, since with somewhat more generic

initial conditions the 0-branes which make up the clusters could have some small random relative

velocities. One would then expect some open string production within the clusters, which would

put the two examples on much the same footing.

In the examples we studied the powers of N were fixed by large-N counting, so at the correspon-

dence point there was essentially only a single length scale in the problem, namely the ’t Hooft scale

(for p 6= 3) or the horizon radius (when p = 3). In a sense this guaranteed the matching between

perturbative gauge theory and gravity results, just on dimensional grounds. To explore this further

it would be interesting to study multi-charged black holes, or to deform the background in a way

which introduces another length scale, and ask whether there is still a simple transition between

perturbative worldvolume dynamics and black hole formation.

A step in this direction would be to consider 0-brane collisions but with N1 6= N2. In this case,

as we saw in section 3.6, the matching between perturbative gauge and gravity results must be

more complicated, because the energy and entropy in open strings that are created in the initial

collision do not match the equilibrium energy and entropy of the black hole. This means further

dynamical evolution is required before the bound state reaches equilibrium. It would be interesting

to study this, perhaps by going beyond the linearized approximation made when studying parametric
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resonance in section 3.4. There are several related interesting examples to consider, for example a

situation in which several concentric layers of shells are collapsing.

Another direction would be to use the present results to better understand the microstructure of

black holes. The picture that emerges, is that a black hole is a thermal bound state of D-branes and

open strings, is reminiscent of the fuzzball proposal [60]. However the real question, relevant also

for firewalls [61], is whether this thermal state could be a dual description of the interior geometry

of the black hole.
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4

Black Hole Formation at the

Correspondence Point: Part II

In the previous chapter [62], we studied bound state formation in D-brane collisions, including the

possible formation of a black hole. We considered collisions between clusters of D-branes, as well as

a configuration in which D-branes were arranged in a spherical shell with velocities directed toward

the center. At weak coupling a bound state forms via a process of open string production. At

strong coupling, where the system has a dual supergravity description [3], the collision results in

formation of a black hole. We found that the crossover between these two mechanisms for bound

state formation is smooth. We did a matrix model calculation on the gauge theory side at an

intermediate value of the coupling and matched our results with various thermodynamic quantities

associated with the black hole, that form in the gravity side description.

4.1 Introduction

The purpose of the present work [63] is to study a more interesting initial configuration, namely

a fuzzy sphere or spherical membrane built out of 0-branes. Starting from rest, a fuzzy sphere

will shrink under its own tension. Classically the sphere shrinks to zero size and re-expands. But

taking quantum effects into account, as the sphere shrinks open string production can occur at weak

coupling, while black hole formation can occur at strong coupling. Our objective is to study these

processes in more detail and show that they are smoothly connected at the correspondence point.
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An outline of this chapter is as follows. In section 4.2 we review the description of fuzzy spheres

and study the spectrum of fluctuations about a fuzzy sphere. In section 4.3 we study the collapse of

a fuzzy sphere at weak coupling as open strings are produced. In section 4.4 we argue that there is

a smooth match to the process of black hole formation at strong coupling. In section 4.5 we study

the perturbative evolution of the sphere in more detail, including back-reaction from open string

production. In section 4.6 we provide further evidence for a smooth crossover at the correspondence

point.

There is a large literature on fuzzy geometry in various matrix models, for a review see [64]. In

particular Berenstein and Trancanelli studied the tachyons which result from fuzzy spheres inter-

secting at angles in the BMN model, and the role they play in thermalizing the system [46].

4.2 Fuzzy spheres

To describe an ordinary sphere embedded in Rd, we begin by introducing three Cartesian coordinates

xA = (x, y, z) on a unit S2, subject to the constraint

∑
A

x2
A = 1

The embedding coordinates in Rd, which we denote Xi for i = 1, . . . , d, can then be expanded in

powers of the xA’s.

Xi =
∞∑
`=0

ciA1···A` xA1 · · ·xA` (4.1)

The coefficients ciA1···A` are symmetric and traceless on their lower indices. They transform in the

spin-` representation of SU(2). After the traces are removed, the product xA1 · · ·xA` provides a

Cartesian basis for the spin-` spherical harmonics [65].

To make the sphere fuzzy or non-commutative we use the dictionary [66, 67, 68]

xA ↔
2

N
JA (4.2)

where the matrices JA are generators of SU(2) in the N -dimensional representation (i.e. with spin
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j = N−1
2 ). They obey

[JA, JB] = iεABCJC
∑
A

J2
A =

N2 − 1

4
1 (4.3)

The embedding coordinates become Hermitian matrices, with the expansion

Xi =

N−1∑
`=0

ciA1···A`

(
2

N

)`
JA1 · · · JA` (4.4)

Note that the expansion terminates at ` = N − 1, since beyond this point one no longer gets

independent matrices. To make this plausible, note that summing the dimensions of the appropriate

SU(2) representations accounts for the N2 parameters in a Hermitian matrix.

N−1∑
`=0

(2`+ 1) = N2 (4.5)

In fact there is a stronger result: the matrices vanish identically for ` ≥ N . To see this it’s convenient

to work in a basis of raising and lowering operators J± = Jx± iJy with metric ds2 = dx+dx−+dz2.

Note that (J+)` is traceless and symmetric on its lower indices – it’s the highest weight state in

the spin-` representation – and with N -dimensional generators it vanishes identically for ` ≥ N ,

(J+)` = 0 for ` ≥ N . Then by applying lowering operators a general symmetrized traceless product

must vanish for ` ≥ N .

This construction of a fuzzy sphere finds a natural home in the BFSS model [69], or the quantum

mechanics of N D0-branes, where the bosonic part of the action is∗

S =
1

g2
YM

∫
dtTr

(
1

2
(∂0X

i)2 +
1

4
[Xi, Xj ]2

)
(4.6)

We’ve fixed the gauge A0 = 0, so the equation of motion

Ẍi + [[Xi, Xj ], Xj ] = 0 (4.7)
∗Conventions: the fields Xi have units of energy. They are related to 0-brane positions by X = (position)/2πα′.

The Yang-Mills coupling is g2YM = gs
(2π)2`3s

.
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must be supplemented with the Gauss constraint

[∂0X
i, Xi] = 0 (4.8)

At the classical level a simple configuration is a spherical membrane of initial radius U0, described

by setting [70, 71]

XA(t) = U(t)
2

N
JA A = 1, 2, 3 (4.9)

XI = 0 I = 4, · · · , 9

The Gauss constraint is trivially satisfied since [JA, JA] = 0, while the equation of motion reduces

to

Ü = − 8

N2
U3 (4.10)

Solving this with the initial conditions U(0) = U0, U̇(0) = 0 one finds that the sphere collapses

after a time

τ =
NΓ(1/4)2

√
128π U0

(4.11)

This construction of a spherical membrane is based on the pioneering work of de Wit et al. [72].

The collapsing sphere solution was first described by Collins and Tucker [73].

In the quantum theory we’ll be interested in fluctuations about this solution, so we set†

XA(t) = U(t)
2

N
JA + xA(t) (4.12)

XI(t) = xI(t)

At linearized order the Gauss constraint (4.8) reduces to

U̇ [JA, xA] = U [JA, ẋA] (4.13)

This constraint removes roughly N2 degrees of freedom from the 3N2 degrees of freedom contained
†The results for the spectrum in the remainder of this section have also been obtained by Harold Steinacker and

Jochen Zahn [74].
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in xA.‡ However to linearized order it puts no constraint on xI .

The linearized equation of motion for xI is

ẍI +
4

N2
U2[JA, [JA, xI ]] = 0 (4.14)

To solve this we expand the field in fuzzy spherical harmonics,

xI =
N−1∑
`=0

cIA1···A`

(
2

N

)`
JA1 · · · JA` (4.15)

With the SU(2) algebra [JA, JB] = iεABCJC and the identity εABCεADE = δBDδCE − δBEδCD one

can show that (assuming the indices A1 · · ·A` are contracted with a symmetric traceless tensor)

[JA, [JA, JA1 · · · JA` ]] = `(`+ 1)JA1 · · · JA` (4.16)

In other words, fuzzy spherical harmonics are angular momentum eigenstates, with the expected

eigenvalue of the total angular momentum. The linearized equation of motion (4.14) then reduces

to

c̈IA1···A` +
4`(`+ 1)

N2
U2cIA1···A` = 0 (4.17)

This determines the spectrum of fluctuations in the transverse dimensions I = 4, . . . , 9. In each of

these dimensions there are fluctuations with ` = 0, . . . , N−1. A fluctuation with angular momentum

` is (2`+ 1)-fold degenerate and has frequency

ω` =
2

N

√
`(`+ 1)U (4.18)

The spectrum of fluctuations in the dimensions A = 1, 2, 3 is studied in appendix A.2. Here we just

summarize the results. Decomposing xA into SU(2) representations we find that there are s-type

fluctuations with spin ` + 1 for ` = 0, . . . , N − 1. These fluctuations are (2` + 3)-fold degenerate

and have frequency

ω` =
2

N

√
`(`− 1)U (4.19)

‡More precisely it removes N2 − 1 degrees of freedom: the trace of a commutator vanishes, so the trace of the
Gauss constraint is trivially satisfied.
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name labels spin degeneracy frequency

transverse
I = 4, . . . , 9

` = 0, . . . , N − 1
` 2`+ 1 2

N

√
`(`+ 1)U

s-type ` = 0, . . . , N − 1 `+ 1 2`+ 3 2
N

√
`(`− 1)U

u-type ` = 1, . . . , N − 1 `− 1 2`− 1 2
N

√
(`+ 1)(`+ 2)U

Table 4.1: Spectrum of fluctuations about a fuzzy sphere of radius U .

There are also u-type fluctuations with spin ` − 1 for ` = 1, . . . , N − 1. These fluctuations are

(2`− 1)-fold degenerate and have frequencies

ω` =
2

N

√
(`+ 1)(`+ 2)U (4.20)

In the rest of this chapter the distinction between these various types of frequencies will not matter,

and from now on we will ignore the differences between the formulas (4.18), (4.19), (4.20). When

we write explicit formulas we will make use of the transverse frequencies (4.18).

4.3 Perturbative sphere collapse

Assuming the 0-brane quantum mechanics is weakly coupled, let’s study the collapse of a fuzzy

sphere in a little more detail. The conserved total energy of the quantum mechanics is

EYM =
1

g2
YM

Tr

(
1

2
(∂0X

i)2 − 1

4
[Xi, Xj ]2

)
(4.21)

which at large N for the classical solution (4.9) reduces to

EYM ≈
1

g2
YM

(
N

2
U̇2 +

2

N
U4

)
(4.22)

So the radial velocity U̇ is related to the initial radius of the sphere U0 by

U̇2 ≈ 4

N2

(
U4

0 − U4
)

(4.23)

Classically a fuzzy sphere remains spherical as it collapses, but quantum mechanically other
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modes will get excited. This happens when the adiabatic approximation breaks down. For a mode

with frequency ω`, the adiabatic approximation fails when

ω̇`
ω2
`

& 1 (4.24)

Given the frequencies (4.18), adiabaticity breaks down when

NU̇

U2
√
`(`+ 1)

& 1 (4.25)

which using (4.23) can be rewritten as

U .
U0(

`(`+ 1) + 1
)1/4 (4.26)

So a large fuzzy sphere evolves adiabatically. As the sphere shrinks modes with more and more

angular momentum become excited. The mode with the largest angular momentum, `max ∼ N ,

gets excited when the fuzzy sphere reaches the inner radius for open string production

Uinner ∼ U0/
√
N (4.27)

At this point the adiabatic approximation has completely broken down, and all N2 degrees of

freedom in the matrices have become excited, or equivalently all possible open strings have been

produced. The subsequent evolution of the sphere will be studied in section 4.5.

4.4 Black hole formation and the correspondence point

At large N and strong coupling the 0-brane quantum mechanics has a dual description in terms of

IIA supergravity [3]. Introducing the ’t Hooft coupling λ = g2
YMN and a radial coordinate with

units of energy U = r/α′, the 0-brane quantum mechanics is weakly coupled when U > λ1/3 and

has a dual supergravity description when U < λ1/3.§

In the supergravity regime one would expect a fuzzy sphere to collapse and form a black hole
§The radial coordinate U introduced here differs by a factor 2π from the radius of the sphere introduced in (4.9):

see footnote ∗. We will ignore this difference from now on.
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with N units of 0-brane charge. The Schwarzschild radius of such a black hole is [3]

US ∼
(
g4

YME
)1/7 (4.28)

Here E is the energy above extremality, identified with the Hamiltonian of the quantum mechanics.

Given (4.22), the Schwarzschild radius is related to the initial radius of the sphere by

US ∼
(
g2

YMU
4
0

N

)1/7

(4.29)

Of course this discussion only makes sense if the black hole fits in the region where supergravity is

valid. This requires US < λ1/3 or equivalently E < N2λ1/3, which means

U0 < N1/2λ1/3 (4.30)

The perturbative description of fuzzy sphere collapse worked out in section 4.3, on the other

hand, is only valid if the quantum mechanics is weakly coupled. We followed the evolution of

the sphere perturbatively down to the radius Uinner given in (4.27), at which point all N2 degrees

of freedom have gotten excited. This perturbative description is only valid if Uinner > λ1/3, or

equivalently

U0 > N1/2λ1/3 (4.31)

We now see that there is a smooth crossover between the perturbative description of fuzzy sphere

collapse and the non-perturbative process of black hole formation. The crossover occurs when the

initial radius and total energy are

U0 ∼ N1/2λ1/3 (4.32)

E ∼ N2λ1/3

At the crossover point the Schwarzschild radius and inner radius for open string production agree,

US ∼ Uinner ∼ λ1/3 (4.33)
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For a black hole of this size the curvature at the horizon is of order string scale.

α′R ∼ (U3/λ)1/2 ∼ 1 (4.34)

So this crossover, once again, is an example of the correspondence principle of Horowitz and Polchin-

ski at work [31].

4.5 Back-reaction and parametric resonance

In section 4.3 we followed the evolution of a weakly-coupled fuzzy sphere down to the radius Uinner ∼

U0/
√
N . At this radius adiabaticity has broken down for all of the fluctuation modes, so O(N2) open

strings have been produced. In this section we study the subsequent evolution of the sphere, still

assuming weak coupling, but taking into account back reaction from open string production. We’ll

show that a parametric resonance is present in the weakly-coupled field theory which exponentially

amplifies the number of open strings present.

To study the back-reaction from open string production, we begin by estimating the total energy

in open strings. Suppose that as the sphere collapses roughly one open string is produced in each of

the fluctuation modes (4.18). This is justified in appendix A.3. Then once the sphere has crossed

the radius Uinner, the total energy in open strings is

Eopen ∼
N−1∑
`=0

(2`+ 1)ω`

=
N−1∑
`=0

(2`+ 1)
2

N

√
`(`+ 1)U

∼ N2U (4.35)

For this description of the collapse process to make sense, we should check that back-reaction from

open string production can be neglected down to the radius Uinner. To do this we compare the

energy in open strings (4.35) to the total energy of the sphere (4.22). At the radius Uinner we have

Eopen ∼ N2Uinner, while the total energy EYM ∼ U4
0 /λ ∼ N2U4

inner/λ, so

Eopen

EYM
∼ λ

U3
inner

(4.36)

47



Indeed, provided the field theory remains weakly coupled down to the radius Uinner, we have Uinner >

λ1/3 (or equivalently U0 > N1/2λ1/3) and back reaction can be neglected during the initial collapse

of the sphere.

Even though back-reaction can be neglected during the initial collapse of the sphere, it is not

necessarily negligible when the sphere subsequently re-expands. To decide this issue we compare

the potential energy in open strings (4.35), Eopen ∼ N2U , to the classical potential energy of a

fuzzy sphere, which from (4.22) is given by Eclassical = 2
λU

4. Thus

Eopen

Eclassical
∼ N2λ

U3
(4.37)

The linear potential from open strings dominates at small radius, while the classical U4 potential

dominates at large radius. The two energies are comparable when U ∼ N2/3λ1/3.

We can now identify three qualitatively different behaviors, depending on the initial radius of

the sphere.

large initial radius, U0 > N2/3λ1/3

In this case the classical potential energy of the sphere is dominant near the turning point, which

is located at U ≈ U0. The classical evolution of the sphere described in section 4.2 is a good

approximation to the true behavior. In particular the sphere collapses to zero size on the timescale

τ ∼ N/U0 given in (4.11).

intermediate initial radius, N1/2λ1/3 < U0 < N2/3λ1/3

In this case the field theory remains weakly coupled down to the radius Uinner, but when the

sphere subsequently re-expands it’s the linear potential arising from open string production which

is dominant near the turning point. The classical U4 potential can be neglected, and overall energy

conservation reads (in place of (4.22))

N

2g2
YM

U̇2 + cN2U =
2U4

0

λ
(4.38)

Here c is an O(1) constant reflecting the number of open strings present in each mode. In this linear

potential the turning point is located at U = 2U4
0 /cN

2λ, which fortunately is in the weakly coupled

regime of the field theory. After reaching the turning point, the sphere re-collapses to zero size in

48



a time

τ =
2U2

0

cNλ
(4.39)

small initial radius, U0 < N1/2λ1/3

In this case the sphere enters the regime where supergravity is valid and falls within its own

Schwarzschild radius to form a black hole.

We can now describe the subsequent evolution of the sphere in a little more detail. At weak

coupling the sphere pulsates with a frequency

Ω ∼ 1/τ ∼


U0/N large initial radius

Nλ/U2
0 intermediate initial radius

(4.40)

One can approximate this as an oscillating classical background U(t) = Ũ0 sin Ωt, where the back-

reacted amplitude of oscillation

Ũ0 ∼


U0 large initial radius

U4
0 /N

2λ intermediate initial radius
(4.41)

Plugging this oscillating background into the fluctuation equation (4.17) for the transverse fluctu-

ations, one finds that small fluctuations are governed by the Mathieu equation. As in [62], this

means there is a parametric resonance which makes the number of open strings grow exponentially

with time, on a timescale set by the period of oscillation τ .¶

4.6 More on the correspondence point

The collapse of a fuzzy sphere appears qualitatively different depending on whether the initial radius

is large, intermediate or small. In this section we study the transitions between these different

regimes, and argue that they are in fact smoothly connected.

One can smoothly continue from large to intermediate initial radius in the formulas (4.40),
¶Similarly, for s-type and u-type fluctuations, we obtain Mathieu equations with ωl given by (4.19) and (4.20).

However the derivation of (4.19) and (4.20) in appendix A.2 is under the adiabatic approximation, U̇ → 0. Therefore
we expect the Mathieu equations for s-type and u-type fluctuations are modified once the adiabatic approximation
breaks down and parametric resonance occurs.
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(4.41) for the frequency and amplitude of oscillation, since the expressions agree at the large-

to-intermediate crossover point U0 ∼ N2/3λ1/3. In a way this is not surprising. At large and

intermediate initial radius open string production takes place while the field theory is still weakly

coupled. As the initial radius is decreased open string production becomes more important. The

resulting linear potential smoothly takes over from the classical U4 potential, and this is responsible

for modifying the frequency and amplitude of oscillation.

Now let’s see if we can continue from intermediate to small initial radius. This intermediate-

to-small crossover occurs when U0 ∼ N1/2λ1/3, which corresponds to a total energy E ∼ U4
0 /λ ∼

N2λ1/3. This amounts to working at the correspondence point of Horowitz and Polchinski [31],

since the Schwarzschild radius of the resulting black hole

US ∼ (g4
YME)1/7 ∼ λ1/3 (4.42)

which means the curvature at the horizon is of order string scale.

α′R ∼ (U3
S/λ)1/2 ∼ 1 (4.43)

In other words, the resulting black hole just fits in the region where supergravity is valid [3].

There are various quantities we can compare at the Horowitz-Polchinski correspondence point

which suggest that the crossover is smooth.

classical size

In the weakly-coupled field theory the classical background is a pulsating sphere with a maximum

size given in (4.41). Evaluating this at U0 = N1/2λ1/3 we find that the back-reacted amplitude of

oscillation is set by the ’t Hooft scale, Ũ0 ∼ λ1/3. This matches the Schwarzschild radius (4.42) of

a black hole at the correspondence point, US ∼ λ1/3.

size of quantum fluctuations

For the classical background (4.9), the size of the sphere can be measured by

1

N
Tr
(
XAXA

)
= U2

(
1 +O(1/N2)

)
(4.44)
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Let’s compare this to the spread in the 0-brane positions due to quantum fluctuations, measured by

(∆X)2 ≡ 1

N
〈Tr

(
XIXI

)
〉 I = 4, . . . , 9 (4.45)

To evaluate this, recall that for a harmonic oscillator

〈n|x̂2|n〉 =
~
mω

(
n+

1

2

)
(4.46)

We can adapt this to the problem at hand by identifying ~/m with g2
YM. Then assuming small

fluctuations and using the frequencies (4.18) we have

(∆X)2 =
∑
I

1

N

N−1∑
`=1

∑̀
m=−`

g2
YM

ω`

(
nI`m +

1

2

)

∼ 1

N

N−1∑
`=1

(2`+ 1)
g2

YMN√
`(`+ 1)U

∼ λ

U
(4.47)

In the first line we suppressed the ` = 0 modes which describe center of mass position. In the second

line we dropped the sum on I and took the quantum numbers nI`m ∼ O(1), appropriate to having

one open string per mode. To compare the size of these quantum fluctuations to the size of the

classical background, we set U = Ũ0 and consider the ratio

(∆X)2

(Ũ0)2
∼ λ

(Ũ0)3
(4.48)

Provided the maximum size of the sphere is larger than the ’t Hooft scale, Ũ0 > λ1/3 or equivalently

U0 > N1/2λ1/3, then the quantum fluctuations in the 0-brane positions are small compared to the

radius of the sphere. This shows that at large and intermediate initial radius a classical fuzzy sphere

provides a good description of the quantum state.‖ It also shows that as we go to the Horowitz-

Polchinski correspondence point, Ũ0 = λ1/3, the classical background merges into the quantum

fluctuations. This fits with a general expectation in gravity-gauge duality, that at strong coupling
‖Although as we saw in section 4.5, for intermediate initial radius one must take back-reaction into account to

find the correct frequency and amplitude for the classical background.
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the D-brane positions have quantum fluctuations which are comparable in size to the region in

which supergravity is valid [75, 76].

thermalization time

On the weakly-coupled side we identified a parametric resonance which leads to open string pro-

duction on a timescale set by the frequency (4.40). Evaluating this at U0 = N1/2λ1/3 we find that

the frequency of oscillation is set by the ’t Hooft scale, Ω ∼ λ1/3.

What does this correspond to on the supergravity side? The black hole has a spectrum of

quasinormal frequencies which govern the approach to equilibrium. The quasinormal frequencies

are set by the Hawking temperature [59, 57, 58], namely T ∼ 1√
λ
U

5/2
S , which at the correspondence

point is of order the ’t Hooft scale, T ∼ λ1/3. Thus at the correspondence point the timescale

for parametric resonance agrees with the relaxation time of the black hole. This suggests that the

weak-coupling process of open string production via parametric resonance smoothly matches on to

the strong-coupling process of black hole formation.

entropy production

At weak coupling, during the initial collapse of a fuzzy sphere, we saw that O(N2) open strings

are produced. These strings have an entropy Sstring ∼ N2. On the other hand, on the supergravity

side, the equilibrium entropy of the black hole is [3]

Sbh ∼ N2U
9/2
S /λ3/2 (4.49)

Evaluating this at the correspondence point US ∼ λ1/3 we see that Sbh ∼ N2. So at the corre-

spondence point the entropy produced during the initial collapse of a fuzzy sphere is close to the

equilibrium entropy of the black hole. This suggests that very little additional evolution – perhaps

just a few e-foldings of parametric resonance – is required for the system to reach equilibrium.
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5

Holographic Representation of Bulk

Fields: Case for Spin-1

In this chapter and the next, we steer our interests towards the construction of local operators in the

bulk of AdS spaces in terms of gauge theory information, as mentioned in the introduction [77]. We

especially look at the situation where there is a gauge symmetry on the bulk side. We start off with

the spin -1 Maxwell fields in this chapter and construct the corresponding smearing function which

later helps us to write down a gauge invariant local bulk operator. We show its locality property

by computing a commutator of that operator with a spacelike separated boundary operator. We do

the same for spin-2 graviton fields in the next chapter.

5.1 Introduction

The question of locality and causality in quantum gravity is an old and unresolved issue. AdS/CFT

implies that at best locality and causality are approximate notions. However it is vital to understand

in what situations and in what way the notion of bulk locality arises. One approach to this issue,

pursued since the early days of AdS/CFT, is to construct operators in the CFT which can mimic

the local field operators of bulk supergravity.

In [78, 79, 80, 81] free scalar fields in the bulk were expressed as CFT operators, and it was

shown that bulk locality was obeyed in the leading large-N limit. This approach was refined to

obtain CFT expressions that are covariant and convenient in [82, 83, 84]. In particular it was shown
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that one can represent bulk scalar fields as smeared operators in the CFT, where the smearing has

support on a ball on the complexified boundary. See e.g. appendix A.4 for an overview of calculation

for the case of scalars. In [85] (see also [86]) it was shown that for scalar fields this construction

can be extended to include interactions using 1/N perturbation theory. The construction of bulk

operators in asymptotically AdS spacetimes has been further extended and clarified in [87].

In this chapter we build upon two approaches that have been successfully used to construct

scalar fields in the bulk.

1. Given a bulk Lagrangian one can solve the bulk equations of motion perturbatively, to express

the Heisenberg picture field operators in terms of boundary data. This leads to an expression

for the bulk field as a sum of smeared CFT operators. The bulk operator constructed in this

way of course respects locality, assuming one starts from a local Lagrangian in the bulk, but

the construction seems tied to knowing the bulk equations of motion.

2. Alternatively one can start in the CFT with a candidate bulk operator, constructed by solving

free equations of motion, then demand that bulk micro-causality holds at the level of three

point functions. This can be achieved order-by-order in the 1/N expansion, by modifying

the definition of the bulk field in the CFT to include a sum of appropriately-smeared higher

dimension operators. In this construction the guiding principle is bulk micro-causality.

The later construction can be carried out fully inside the CFT, without knowing the bulk Lagrangian.

Hence it may enable one to see the limitations of bulk perturbation theory, and understand the way

in which micro-causality breaks down at the non-perturbative level∗. A difficulty of extending the

second approach to gauge fields is that the correct statement of bulk micro-causality is necessarily

somewhat subtle [87].

An outline of this chapter is as follows. In the first part of this chapter we extend the program

of [82, 83, 84] to free fields with spin one. A closely related construction has been carried out by

Heemskerk [89]. In section 5.2 we derive the smearing function for a bulk gauge field and show

that it is covariant under conformal transformations. We compute the bulk-to-boundary two point

function and show that, although the gauge field does not obey micro-causality, the corresponding

field strength does. In section 5.3 we derive the smearing function for a massive vector field, and
∗By micro-causality, we basically mean that the operators will commute at space like separation [88].
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show that a massive vector directly obeys micro-causality. The helps clarify the relation between

gauge symmetry and locality.

5.2 Gauge smearing functions

In this section we develop the representation of an abelian bulk gauge field as a non-local observable

in the dual CFT. Our basic result is given in (5.4) below: the bulk gauge field at a point (x, z) in the

bulk is obtained by integrating the boundary current over a sphere of radius z on the complexified

boundary.

Our conventions are as follows. We work in Poincaré coordinates in AdSd+1 with metric

ds2 = GMNdX
MdXN =

R2

z2

(
ηµνdx

µdxν + dz2
)

µ, ν = 0, . . . , d− 1

The boundary at z = 0 carries a flat Minkowski metric, ηµν = diag(− + · · ·+). Boundary indices

µ, ν are raised and lowered with ηµν .

Our goal is to solve the source-free Maxwell equations in the bulk, ∇MFMN = 0, with the

boundary conditions

Fzµ(x, z) ∼ (d− 2)zd−3jµ(x) as z → 0 (5.1)

The factor d − 2 is inserted for later convenience.† From the bulk perspective this defines jµ(x)

as the coefficient of the leading small-z behavior of the bulk field. But in the dual CFT jµ(x) is

interpreted as a conserved current. So if we can solve for the bulk field in terms of its near-boundary

behavior, via a kernel of the form

AM (x, z) =

∫
ddx′KM

µ(x, z|x′)jµ(x′) , (5.2)

then we will have succeeded in representing the bulk gauge field as a non-local observable in the dual

CFT. We’ll refer to KM
µ as a smearing function, although as we’ll see below, smearing distribution

might be more appropriate.

A few comments are in order.
†The special case d = 2 will be discussed in section 5.2.2.1.
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• The smearing function we are after should not be confused with Witten’s bulk-to-boundary

propagator, which relates a non-normalizeable field in the bulk to a source in the dual CFT

[32]. Rather we wish to express a normalizeable field in the bulk in terms of an operator in

the CFT.

• The AdS boundary is timelike, so this is not a standard Cauchy problem. Nonetheless, in

all cases of interest, it seems an explicit solution is possible. There is some discussion of this

fact in [87]. Also note that we will construct smearing functions with compact support on

the complexified boundary, along the lines of [84]. For a construction with support on a real

section of the boundary see [89].

Of course the CFT doesn’t know about bulk gauge symmetries – it only sees global conservation

laws – so in order to reconstruct a bulk gauge field we will need to make some choice of gauge in

the bulk. It’s convenient to work in “holographic gauge” and set

Az(x, z) = 0 .

This allows a residual gauge freedom

Aµ(x, z)→ Aµ(x, z) + ∂µλ(x)

where the gauge parameter λ is independent of z. The equation of motion from varying Az is

∂z (ηµν∂µAν) = 0 .

Thus ∂µAµ is independent of z, and we can use a residual gauge transformation to set ∂µAµ = 0

everywhere.‡ The remaining Maxwell equations then simplify to

∂µ∂
µAν + zd−3∂z

1

zd−3
∂zAν = 0 .

‡From the CFT point of view this is guaranteed by the boundary conditions at z = 0, where the bulk gauge field
approaches a conserved current in the CFT.
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Defining φµ(x, z) = zAµ(x, z) one finds that§

∂µ∂
µφν + zd−1∂z

1

zd−1
∂zφν +

d− 1

z2
φν = 0 . (5.3)

This shows that each component of φ obeys the usual scalar wave equation,¶ and from the mass

term we can read off m2R2 = 1− d.

Although tachyonic, the scalar satisfies the Breitenlohner-Freedman (BF) bound [90]. It is dual

to an operator of conformal dimension

∆ =
d

2
+

√
d2

4
+m2R2 = d− 1

The normalizeable near-boundary behavior for such a scalar field is

φµ(x, z) ∼ zd−1jµ(x) as z → 0

In appendix A.4 we show how to construct a smearing function for such a scalar field. The result,

given in (A.43), can be used to represent a bulk gauge field in terms of the boundary current.

zAµ(t,x, z) =
1

vol(Sd−1)

∫
t′2+|y′|2=z2

dt′dd−1y′ jµ(t+ t′,x + iy′) (5.4)

vol(Sd−1) =
2πd/2

Γ(d/2)

Here we’re splitting the boundary coordinates xµ = (t;x) into a time coordinate t and d − 1

spatial coordinates x. Note that the boundary current is evaluated at complex values of the spatial

coordinates. The integral is over a sphere of radius z on the complexified boundary, with the center

of the sphere located at (t;x).

The basic claim is that (5.4) gives a gauge field that satisfies Maxwell’s equations and has the

boundary behavior

Aµ(x, z) ∼ zd−2jµ(x) as z → 0 (5.5)

§This amounts to expressing the gauge field in a vielbein basis, setting Aa = ea
µAµ where eaµ = z

R
δa
µ.

¶The mass term actually represents a non-minimal coupling to curvature, (�+ ξR)φ = 0 where ξ = − d−1
d(d+1)

.
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The fact that Aµ satisfies Maxwell’s equations follows from appendix A.4, while the boundary

conditions are easy to check. As z → 0 the integration region shrinks to a point, so we can

bring the current outside the integral; the factors of vol(Sd−1) cancel and we’re left with (5.5).

The corresponding field strength then satisfies (5.1). This is one nice feature of working on the

complexified boundary: it’s manifest that local fields in the bulk go over to local operators in the

CFT, in the limit that the bulk point approaches the boundary.

Finally note that (5.4) can be written in a covariant form. The invariant distance between two

points in AdS is

σ(x, z|x′, z′) =
z2 + z′2 + (x− x′)µ(x− x′)µ

2zz′
.

The invariant distance diverges as z′ → 0. However we can define a regulated bulk - boundary

distance

(σz′)z′→0 =
z2 + (x− x′)µ(x− x′)µ

2z
(5.6)

In terms of σz′, the smearing integral (5.4) can be written as

zAµ(t,x, z) =
1

vol(Sd−1)

∫
dt′dd−1y′ δ(σz′) jµ(t+ t′,x + iy′) (5.7)

5.2.1 AdS covariance for gauge fields

It’s instructive to check that the smearing function (5.7) behaves covariantly under conformal trans-

formations. First note that it’s manifestly covariant under Poincaré transformations of the xµ

coordinates. Under a dilation, which corresponds to the bulk isometry

xµ → x′µ = λxµ z → z′ = λz

we have

Aµ → A′µ =
1

λ
Aµ Az → A′z =

1

λ
Az

Thus holographic gauge is preserved, A′z = 0, and the quantity zAµ appearing on the left hand side

of (5.7) transforms like a scalar. This is consistent with the right hand side of (5.7), since under a

dilation ddx has dimension −d, δ(σz′) has dimension 1, and jµ has dimension d− 1.
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Special conformal transformations are a little more subtle. These correspond to the bulk isometry

xµ → x′µ =
xµ − bµ(x2 + z2)

1− 2b · x+ b2(x2 + z2)
(5.8)

z → z′ =
z

1− 2b · x+ b2(x2 + z2)
(5.9)

Starting from holographic gauge Az = 0 and working to first order in bµ we find

A′z = 2zb ·A (5.10)

A′µ = Aµ + 2xµb ·A− 2bµx ·A− 2b · xAµ (5.11)

So holographic gauge isn’t preserved. To restore it we make a compensating gauge transformation

A→ A+ dλ where

λ = − 1

vol(Sd−1)

∫
ddx′ θ(σz′) 2b · j

The gauge parameter λ has been chosen so that

∂zλ = − 1

vol(Sd−1)

∫
ddx′ δ(σz′) 2b · j = −2zb ·A (5.12)

and

∂µλ = − 1

vol(Sd−1)

∫
ddx′ δ(σz′)

1

z
(x− x′)µ 2b · j (5.13)

= −2xµb ·A+
1

vol(Sd−1)

∫
ddx′ δ(σz′)

1

z
x′µ 2b · j (5.14)

The gauge transformation restores holographic gauge, A′z = 0, while combining (5.11) and (5.13)

we find

(
zAµ

)′
= zAµ − 2zbµx ·A+

1

vol(Sd−1)

∫
ddx′ δ(σz′)x′µ 2b · j (5.15)

= zAµ +
1

vol(Sd−1)

∫
ddx′ δ(σz′) 2(x′µ b · j − bµx · j) (5.16)

59



Current conservation implies
∫
ddx′ θ(σz′) ∂µj

µ = 0, which after integrating by parts means

∫
ddx′ δ(σz′) (x− x′)µjµ = 0 . (5.17)

So we can replace x with x′ in the last term of (5.16) to obtain

(
zAµ

)′
= zAµ +

1

vol(Sd−1)

∫
ddx′ δ(σz′) 2(x′µ b · j − bµx′ · j) (5.18)

This establishes how the left hand side of (5.7) behaves under a special conformal transformation.

Now let’s look at the right hand side. Under a special conformal transformation

xµ → x′µ = xµ + 2b · xxµ − bµx2 (5.19)

a vector of dimension ∆ transforms according to

jµ → j′µ = jµ + 2xµb · j − 2bµx · j − 2∆b · xjµ (5.20)

The measure ddx′ δ(σz′) has dimension 1− d and transforms according to

ddx′ δ(σz′)→ ddx′ δ(σz′)
[
1− 2(1− d)b · x

]
(5.21)

Combining (5.20) and (5.21) for ∆ = d− 1 reproduces the transformation seen in (5.18).

This shows explicitly that the smearing function we have defined behaves covariantly under

conformal transformations.‖ Indeed it seems that, aside from the freedom to choose a different

gauge in the bulk, the smearing function is uniquely fixed by the requirement of AdS covariance,

at least if one works on the complexified boundary. This means that, even though we derived the

smearing function by solving Maxwell’s equations, it actually has a more general scope of validity.

It can be used whenever one seeks a linear map from a conserved current on the boundary to a

gauge field in the bulk.
‖This was probably guaranteed to be the case by the construction in section 5.2.
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5.2.2 Two-point functions and bulk causality for gauge fields

In this section we use the smearing functions we have constructed to study bulk locality and causality

for gauge fields. Since we are working at leading order in the 1/N expansion of the CFT, we are

restricted to studying bulk physics at the level of two-point functions. We consider two basic cases:

in section 5.2.2.1 we consider Chern-Simons theory in AdS3, and in section 5.2.2.2 we consider

Maxwell theory in AdS4 and higher.

5.2.2.1 Chern-Simons fields in AdS3

AdS3 is something of a special case, since a conserved current in the CFT is dual to a Chern-Simons

gauge field in the bulk [91]. Fortunately we can still use our smearing functions in this context,

since they’re essentially fixed by AdS covariance.

From the smearing function (5.4) we have

zAµ(t, x, z) =
1

2π

∫ 2π

0
zdθ jµ(t+ z sin θ, x+ iz cos θ) (5.22)

It’s convenient to introduce light-front coordinates x± = t± x and write the AdS3 metric as

ds2 =
R2

z2

(
−dx+dx− + dz2

)
For concreteness consider a CFT with a right-moving abelian current j− = j−(x−). We assume the

left-moving current vanishes, j+ = 0. Then the only non-trivial smearing integral is

A−(x+, x−, z) =

∫ 2π

0

dθ

2π
j−(x− − izeiθ)

Defining ξ = eiθ the contour integral picks up the pole at ξ = 0 and gives A−(x+, x−, z) = j−(x−).

So a right-moving current in the CFT is dual to a bulk gauge field

A+ = 0

A−(x+, x−, z) = j−(x−) (5.23)

Az = 0
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This is the world’s simplest example of holography: the boundary current is lifted to be z-independent,

and declared to be a gauge field in the bulk.

Although “reading the hologram” in this case is almost trivial, there are a few things to check.

First of all, (5.23) defines a flat gauge field in AdS, which satisfies the Chern-Simons equations of

motion.∗∗ Working backwards, the boundary conditions on the gauge field are a bit different from

(5.1), since we have

Aµ(x, z) ∼ jµ(x) as z → 0

We can use this framework to compute 2-point functions in the bulk. The boundary correlator

is fixed by conformal invariance. With a Wightman iε prescription

〈j−(x−)j−(x−′)〉 = − k

8π2

1

(x− − x−′ − iε)2
(5.24)

where k is the level of the current algebra. This lifts to a bulk correlator

〈A−(x+, x−, z)A−(x+′, x−′, z′)〉 = − k

8π2

1

(x− − x−′ − iε)2

Note that the bulk 2-point function is independent of x+ and z, which is perhaps not so surprising

in a topological theory.

We can also study bulk locality and causality in this framework. The correlator (5.24) implies

that the CFT currents obey the standard current algebra

i[j−(x−), j−(x−′)] = − k

4π
δ′(x− − x−′) .

This lifts to a bulk commutator

i[A−(x+, x−, z), A−(x+′, x−′, z′)] = − k

4π
δ′(x− − x−′) (5.25)

This bulk commutator is clearly non-local, being independent of both x+ and z. But causality is

respected: the field strength vanishes, so all local gauge-invariant quantities obey causal (in fact
∗∗The smearing functions were constructed by solving Maxwell’s equations, but they are essentially fixed by AdS

covariance and therefore hold more generally. In AdS3 the smearing functions seem to know that a current in the
CFT is dual to a Chern-Simons gauge field in the bulk.

62



trivial) commutation relations.

We obtained these results by applying our smearing functions to the current algebra on the

boundary. In appendix A.5 we show that they can also be obtained from the bulk point of view, by

quantizing Chern-Simons theory in holographic gauge.

5.2.2.2 Maxwell fields in AdS4 and higher

We now consider Maxwell fields in AdS4 and higher, where a bulk gauge field obeying Maxwell’s

equations is dual to a conserved current on the boundary.††

Our starting point is the current – current correlator in a d-dimensional CFT,

〈 jµ(x) jν(0) 〉 =

(
1

x2

)d−1(
ηµν −

2xµxν
x2

)
. (5.26)

Up to an overall normalization, this correlator is fixed by current conservation and conformal in-

variance. We will be interested in Wightman correlators, defined by the iε prescription

x2 ≡ −(t− iε)2 + |x|2 .

Our goal is to apply the smearing function (5.4) to the first operator in (5.26), to obtain a bulk -

boundary correlator

〈Aµ(t,x, z) jν(0) 〉 .

To deal with the vector indices it’s useful to note that for any Lorentz-invariant function f(x) =

f
(√
−t2 + |x|2

)
we have

∂µ∂νf = ηµν
1

x
f ′(x) +

xµxν
x2

(
f ′′(x)− 1

x
f ′(x)

)
(5.27)

This lets us write the current – current correlator in the form

〈 jµ(x) jν(0) 〉 =
d− 2

d− 1
ηµν

(
1

x2

)d−1

− 1

2(d− 1)(d− 2)
∂µ∂ν

(
1

x2

)d−2

††Low dimensions are special, for example in AdS3 a bulk Maxwell field is dual to a gauge field in the CFT [92, 91].
Strictly speaking AdS4 Maxwell is also special since the boundary currents only capture the “electric” sector of the
bulk theory [93].
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Applying the smearing function (5.4) gives the bulk – boundary correlator in terms of two scalar

integrals,

〈zAµ(t,x, z)jν(0)〉 =
Γ(d/2)

2πd/2

(
d− 2

d− 1
ηµνI1 −

1

2(d− 1)(d− 2)
∂µ∂νI2

)
(5.28)

where

In =

∫
t′2+|y′|2=z2

dt′dd−1y′
1(

− (t+ t′)2 + |x + iy′|2
)d−n (5.29)

The integral is over a (d−1)-sphere of radius z on the boundary. We write the metric on this sphere

as

ds2 =
z2

z2 − y2
dy2 + (z2 − y2) dΩ2

d−2

Here −z < y < z and dΩ2
d−2 is the metric on a unit Sd−2. To take advantage of spherical symmetry

on Sd−2 we work at spacelike separation in the x1 direction, setting

x1 = x t = x2 = · · · = xd−1 = 0

Then In reduces to a one-dimensional integral.

In =
2π(d−1)/2

Γ((d− 1)/2)

∫ z

−z
dy

z(z2 − y2)(d−3)/2

(x2 − z2 + 2ixy)d−n

The prescription for defining this integral is to begin at large spacelike separation, x� 0, where the

operators are well-separated on the boundary and the integral is well-defined. It can be extended

to smaller values of x by analytic continuation, as described in Fig. 5.1. This prescription gives In

in terms of a hypergeometric function.

In =
2πd/2

Γ(d/2)

zd−1

(x2)d−n
F
(
d− n, d

2
− n+ 1,

d

2
,− z

2

x2

)
(5.30)

When n = 1 this reduces to

I1 =
2πd/2

Γ(d/2)

zd−1

(x2 + z2)d−1
. (5.31)

Note that I1 is only singular on the bulk lightcone, at x2+z2 = 0. It has an AdS-covariant form, with

I1 ∼ 1/(σz′)d−1. These properties could have been anticipated since, up to an overall coefficient, I1
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z−z

2i(x   − z  )

2 x

2

Figure 5.1: Integration contour for In. At large spacelike separation the pole is far up the imaginary
axis. The pole moves down and crosses the integration contour when x = z; one can continue to
smaller values of x by deforming the contour. The integral may be singular when x→ 0+ and the
pole moves to −i∞. There are singularities when x → ±iz and the pole hits an endpoint of the
integration contour.

d I2

3 −2πiz

x
log

x+ iz

x− iz

4
2π2z3

x2(x2 + z2)

5 − iπ
2z

2x3
log

x+ iz

x− iz
− π2z2(x2 − z2)

x2(x2 + z2)2

6
π3z5(z2 + 3x2)

3x4(x2 + z2)3

Table 5.1: I2 in various dimensions.

is the bulk - boundary correlator for a scalar field with dimension ∆ = d− 1.

We are also interested in n = 2. In any given dimension I2 can be reduced to elementary

functions, see for example Table 5.1, however the expressions become unwieldy as d increases. For

our purposes a key observation is that I2 is singular on the boundary lightcone, with

I2 ∼
π(d+1)/2

2d−4Γ((d− 1)/2)

z

xd−2
as x→ 0

I2 is also singular on the bulk lightcone, at x2 + z2 = 0.

Bulk – boundary correlators follow from (5.28) and (5.30); the identity (5.27) is useful for taking
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derivatives of I2. For example in AdS4 we find

〈Aµ(t,x, z) jν(0) 〉 = ηµν

[
z(3x2 + z2)

4x2(x2 + z2)2
− i

8x3
log

x+ iz

x− iz

]
−xµxν

[
z(5x2 + 3z2)

4x4(x2 + z2)2
− 3i

8x5
log

x+ iz

x− iz

]

while in AdS5 we have

〈Aµ(t,x, z) jν(0) 〉 = ηµν
z2(6x4 + 3x2z2 + z4)

6x4(x2 + z2)3
− xµxν

2z2(3x4 + 3x2z2 + z4)

3x6(x2 + z2)3

Explicit expressions in higher dimensions become rather unwieldy. In general the A – j correlators

inherit the singularity structure of I2: they are singular on the boundary lightcone x2 = 0, as well

as on the bulk lightcone x2 + z2 = 0. Correlators involving field strengths are both simpler and

better behaved. In any dimension we find

〈Fλµ(t,x, z) jν(0) 〉 = −2(d− 2)zd−2

(x2 + z2)d
(xληµν − xµηλν) (5.32)

〈Fzµ(t,x, z) jν(0) 〉 =
(d− 2)zd−3

(x2 + z2)d
(
ηµν(x2 − z2)− 2xµxν

)
Note that F – j correlators are only singular on the bulk lightcone.

Finally we can use these results to discuss bulk locality and causality. The expectation value

of a commutator 〈 [Aµ(t,x, z), jν(0)] 〉 is given by the difference in the prescriptions t→ t− iε and

t→ t+ iε. It follows that the commutator of a bulk gauge field with a boundary current is non-zero

at lightlike separation on the boundary. Lightlike separation on the boundary implies spacelike

separation in the bulk, so we appear to have non-local or acausal correlators. Of course there is no

real violation of causality here, since A – j correlators are gauge dependent. For Maxwell fields we

can test causality by looking at gauge-invariant quantities, and indeed field strengths have causal

correlators: they commute with the boundary currents at bulk spacelike separation.
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5.3 Massive vector fields

We start with the Lagrangian for a massive vector field in Lorentzian AdSd+1.

S =

∫
dzddx

√
−G
[
− 1

4
FMNFMN −

1

2
m2AMA

M
]

(5.33)

The equations of motion ∇MFMN −m2AN = 0 imply

∇MAM = 0 . (5.34)

Decomposing AM = (Az, Aµ), the equations of motion for Az are

[∂2
z + ∂µ∂

µ − 1

z
(d− 1)∂z −

m2 − d+ 1

z2
]Az = 0 (5.35)

This is identical to the equation of motion for a scalar field with (mass)2 = m2 − d + 1. For the

other components one has (defining φµ = zAµ)

[∂2
z + ∂ν∂

ν − 1

z
(d− 1)∂z −

m2 − d+ 1

z2
]φµ = 2∂µAz (5.36)

Let

∆ =
d

2
+

√
(d− 2)2

4
+m2 (5.37)

and define the boundary value of Az by

Az ∼ z∆A0
z as z → 0

The equation of motion for Az can be solved in the same way as for a scalar field (see appendix

A.4)

Az(t,x, z) =

∫
t′2+y′2<z2

dt′dy′

(
z2 − t′2 − y

′2

z

)∆−d

A0
z(t+ t′,x + iy′) (5.38)
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What is the boundary value of A0
z in terms of CFT data? Since φµ(z → 0) ∼ z∆ then Aµ ∼ z∆−1jµ,

and inserting this in (5.34) gives

A0
z =

1

d−∆− 1
∂µj

µ (5.39)

So A0
z is sourced by the divergence of the boundary current.

Now let’s solve (5.36). First note that a solution to the homogeneous equation (5.35) can be

expanded in modes as

Az =

∫
|ω|>|k|

dωdd−1k azωke
−iωt+ikxzd/2Jν(z

√
ω2 − k2) (5.40)

where ν = ∆ − d/2 and Jν(y) is a Bessel function. A similar solution would hold for (5.36) if the

right hand side was zero. The complete solution to (5.36) can then be written in the form [94]

φµ(t,x, z) =

∫
|ω|>|k|

dωdd−1k zd/2e−iωt+ikx (5.41)

× [aµωkJν(z
√
ω2 − k2) + azωk

izkµ√
ω2 − k2

Jν+1(z
√
ω2 − k2)]

Now from the boundary behavior of Az one has

azωk =
2νΓ(ν + 1)

(2π)d(ω2 − k2)ν/2

∫
dt′dd−1x′eiωt

′−ikx′A0
z(t
′,x′) (5.42)

and since the term proportional to azωk in (5.41) is subleading as z → 0 one also has

aµωk =
2νΓ(ν + 1)

(2π)d(ω2 − k2)ν/2

∫
dt′dd−1x′eiωt

′−ikx′zjµ(t′,x′) (5.43)

By inserting the expressions for aµωk and azωk into (5.41) one gets an expression for the bulk field

in terms of boundary data. The first term looks just like the smearing function for a scalar field of

dimension ∆, while the second term (aside from a factor izkµ
2(ν+1)) is just the smearing function for a

scalar field of dimension ∆ + 1 [84]. As a result we get the following expression

φµ(t,x, z) =

∫
K∆(x, x′)jµ(x′) +

z

2(ν + 1)

∫
K∆+1(x, x′) ∂µA

0
z(x
′) (5.44)
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More explicitly

zAµ(t,x, z) =
Γ(∆− d/2 + 1)

πd/2Γ(∆− d+ 1)

∫
t′2+y′2<z2

dt′dd−1y′(
z2 − t′2 − y′2

z
)∆−dA0

µ(t+ t′, x+ iy′)

+
zΓ(∆− d/2 + 1)

2πd/2Γ(∆− d+ 2)

∫
t′2+y′2<z2

dt′dd−1y′(
z2 − t′2 − y′2

z
)∆−d+1∂µA

0
z(t+ t′, x+ iy′)

5.3.1 Two-point functions and bulk causality

In this section we compute the two point function of a massive vector. The CFT two point function

for a spin-1 field is

< jµ(x)jν(0) >= (ηµν −
2xµxν
x2

)
1

(x2)∆
(5.45)

It can also be written in the form

< jµ(x)jν(0) >=
∆− 1

∆
ηµν

1

(x2)∆
− 1

2∆(∆− 1)
∂µ∂ν

1

(x2)∆−1
(5.46)

Since our expression for the bulk operator involves the divergence of the current we will also need

< ∂µj
µ(x)jν(0) >=

d−∆− 1

∆
∂ν

1

(x2)∆
(5.47)

The correlator of a bulk field Az with a boundary current jν is easy to read off from the smearing

function for Az, which as we showed is just the smearing function of a scalar field of dimension ∆.

Since Az(x) = 1
d−∆−1∂µj

µ(x) we have

< Az(z, x)jν(0) >=
1

∆
∂ν(

z

x2 + z2
)∆ (5.48)

This two-point function respects bulk causality.
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For the other components of the bulk field we have

< zAµ(t,x, z)jν(0) >=

∫
t′2+|y′|2<z2

dt′dd−1y′
[

(5.49)

Γ(∆− d/2 + 1)

πd/2Γ(∆− d+ 1)

(
z2 − t′2 − |y′|2

z

)∆−d
< jµ(t+ t′,x + iy′)jν(0) >

+
zΓ(∆− d/2 + 1)

2πd/2Γ(∆− d+ 2)

(
z2 − t′2 − |y′|2

z

)∆−d+1

∂µ < Az(t+ t′,x + iy′)jν(0) >

]

Using (5.46) and (5.48) we write this as

< zAµ(x, z)jν(0) >=
∆− 1

∆
ηµν

(
z

z2 + x2

)∆

− Γ(∆− d/2 + 1)

2∆πd/2Γ(∆− d+ 1)
∂µ∂ν

(
1

∆− 1
f∆(z, x)− z

∆− d+ 1
f∆+1(z, x)

)

where

f∆(z, x) =

∫
t′2+|y′|2<z2

dt′dd−1y′
(
z2 − t′2 − |y′|2

z

)∆−d
×(

1

−(t+ t′)2 + (x1 + iy1)2 + · · ·+ (xd−1 + iyd−1)2

)∆−1

We set t = 0, x1 = x, x2 = · · · = xd−1 = 0. We will compute f∆ for this case then restore the

dependence on the other coordinates using Lorentz invariance. Switching from (t′, y′) to spherical

coordinates we get

f∆ = vol(Sd−2)

∫ z

0
drrd−1

(
z2 − r2

z2

)∆−d ∫ π

0

sind−2 θ

(x2 + 2ixr cos θ − r2)∆−1
(5.50)

We use the integrals

∫ π

0

sin2µ−1 θ

(1 + 2a cos θ + a2)ν
=

Γ(µ)Γ(1
2)

Γ(µ+ 1
2)
F (ν, ν − µ+

1

2
, µ+

1

2
, a2)∫ 1

0
(1− x)µ−1xγ−1F (α, β, γ, ax) =

Γ(µ)Γ(γ)

Γ(µ+ γ)
F (α, β, γ + µ, a) (5.51)

to find

f∆ =
πd/2Γ(∆− d+ 1)

Γ(∆− d
2 + 1)

z∆

x2∆−2
F (∆− 1,∆− d

2
,∆− d

2
+ 1,− z

2

x2
) (5.52)
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Then we use the identity

γF (α, β, γ, x)− γF (α, β + 1, γ, x) + xαF (α+ 1, β + 1, γ + 1, x) (5.53)

and restore Lorentz invariance to find

< zAµ(x, z)jν(0) >=
∆− 1

∆
ηµν

(
z

x2 + z2

)∆

− z∆

2∆(∆− 1)
∂µ∂ν

(
1

x2 + z2

)∆−1

(5.54)

Note that the final answer is only non-analytic on the bulk lightcone. This however was achieved

by a cancellation of terms that are non-analytic on the boundary lightcone between f∆ and f∆+1.

So the locality of a massive vector field in the bulk is made possible by the fact that the dual

boundary current isn’t conserved, which allowed us to cancel non-analytic terms in the correlator.

This mechanism is not available for a gauge field since it is dual to a conserved current.

5.4 Conclusions

In this chapter we worked out the smearing functions which describe linearized spin-1 excitations in

AdS. We showed that bulk locality is respected: although gauge fields have non-local commutators

when one works in holographic gauge, the corresponding curvature – the field strength for Aµ –

is causal. We also studied massive vector fields, where the vector field itself is causal due to the

non-conserved nature of the dual boundary current.

These results could be extended in several directions. For example we computed the smearing

function for a Chern-Simons gauge field in AdS3. It would be interesting to work out the smearing

function for a Maxwell field in AdS3, dual to a CFT with a dynamical gauge field [92, 91] (see

however [95]). This would allow one to study the Maxwell-Chern-Simons theory recently analyzed

in [96]. Since the smearing functions are basically fixed by AdS covariance, in principle our results

could be applied to a duality between AdS2 and CFT1, although the physical interpretation in this

context is not clear.

Perhaps a more automatic direction is to extend our results to include interactions. For massive

vector fields we showed how this works in section 6.3: in a 1/N expansion one adds appropriately

smeared higher-dimension vector operators, with coefficients that are fixed by the requirement of
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bulk causality. It has already been extended to gauge fields [86] and very recently for gravitons [97].

We discuss their results briefly in the next chapter.
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6

Holographic Representation of Bulk

Fields: Case for Spin-2

6.1 Introduction

In this chapter we extend our program of last chapter for spin- 2 graviton fields. In section 6.2 we

obtain results for gravity analogous to the Maxwell case. We first work out the smearing function for

a graviton and show that the graviton has non-local correlators with a spacelike separated operator.

We find out the ‘gauge invariant’ role in our context is played by Weyl tensor and as expected, it

obeys bulk micro-causality.

In the second part of this chapter we discuss interactions and general backgrounds. In section

6.3 we take a step back to spin- 1 fields and show how to extend our construction for massive vector

fields to include interactions, using perturbation theory in 1/N , and we discuss the difficulty with

gauge and gravity fields resulting from the existence of conserved charges. The detailed calculation

appear in [86] and [97]. In section 6.4 we provide a framework for extending the construction to

general backgrounds and for going beyond the approximation of having a fixed background. We

also explain the necessary conditions for the existence of approximately local operators in the bulk.

This last part is quite speculative and we comment on it briefly in the conclusions section 7.
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6.2 Graviton smearing functions

We now turn our attention to constructing a smearing function that describes a fluctuation of the

bulk metric. To this end we consider a linearized perturbation of the AdS metric,

ds2 =
R2

z2

(
dz2 + gµνdx

µdxν
)

(6.1)

gµν = ηµν +
z2

R2
hµν

Here we are working in “holographic gauge” (or Fefferman - Graham coordinates [98]) in which

gzz = gzµ = 0

The source-free Einstein equations in this coordinate system can be found in [99].∗ Working to

linear order in hµν the zz, the zν, and the trace of the µν components of the Einstein equations

read

zz :
(
∂2
z +

3

z
∂z

)
h = 0 (6.2)

zν :
(
∂z +

2

z

)
(∂µh

µν − ∂νh) = 0 (6.3)

trace :
(
∂2
z −

2d− 5

z
∂z −

4(d− 1)

z2

)
h+ 2

(
∂µ∂

µh− ∂µ∂νhµν
)

= 0 (6.4)

Here h ≡ hµµ. The only solution to this system of equations compatible with normalizeable behavior

as z → 0 is to set†

h = 0 ∂µh
µν = 0 (6.5)

Thus hµν is traceless and conserved, which enables us to consistently identify its boundary behavior

with the stress tensor of the CFT.

It only remains to solve the µν components of the Einstein equations, which given (6.5) can be
∗Ref. [99] uses ρ = z2/R2 as a radial coordinate.
†To see this note that (6.3) implies ∂µhµν − ∂νh ∼ 1/z2. To avoid this non-normalizeable behavior we must set

∂µh
µν − ∂νh = 0. The divergence of this equation means the last term in (6.4) drops out. Then the difference of

(6.2) and (6.4) gives
(
∂z +

2
z

)
h = 0 which requires that we set h = 0.
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simplified to (
∂α∂

α + ∂2
z +

5− d
z

∂z −
2(d− 2)

z2

)
hµν = 0

Following the procedure that worked for Maxwell fields, we define φµν = z2hµν and find that‡

(
∂α∂

α + zd−1∂z
1

zd−1
∂z

)
φµν = 0

That is, each component of φµν obeys the massless scalar wave equation. A massless scalar is dual

to an operator of dimension ∆ = d in the CFT, and has the asymptotic fall-off

φµν(x, z) ∼ zdTµν(x) as z → 0

We identify Tµν with the stress tensor of the CFT. To reconstruct the bulk metric perturbation

from the stress tensor we use the scalar smearing function (A.36) given in appendix A.4. Setting

∆ = d, this gives

z2hµν(t,x, z) =
1

vol(Bd)

∫
t′2+|y′|2<z2

dt′dd−1y′ Tµν(t+ t′,x + iy′) (6.6)

volume of a unit d-ball = vol(Bd) =
2πd/2

dΓ(d/2)

Thus the bulk metric perturbation is obtained by smearing the stress tensor over a ball of radius z

on the complexified boundary.

6.2.1 AdS covariance

It’s instructive to check that the smearing function (6.6) respects AdS covariance. We will be

somewhat brief, since the steps are very similar to those in section 5.2.1. Covariance under Poincaré

transformations of xµ is manifest. A dilation corresponds to the bulk isometry

xµ → x′µ = λxµ z → z′ = λz .

‡This amounts to working in a vielbein basis, hab = ea
µeb

νhµν where eaµ = z
R
δa
µ.
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Holographic gauge is preserved since h′zz = h′zµ = 0, while the combination z2hµν which appears

on the left hand side of (6.6) transforms like a scalar. This matches the behavior of the right hand

side: the stress tensor has dimension d, while the measure ddx′ has dimension −d.

Special conformal transformations are a little more involved. A special conformal transformation

corresponds to an infinitesimal bulk isometry

xµ → x′µ = xµ + 2b · xxµ − bµ(x2 + z2)

z → z′ = z + 2b · xz

Under this isometry

h′zz = 0

h′zµ = 2zbαhαµ (6.7)

h′µν = hµν + 2bα(xµhαν + xνhαµ)− 2xα(bµhαν + bνhαµ)− 4b · xhµν

Holographic gauge isn’t preserved, so to restore it we make a compensating diffeomorphism xµ →

xµ + εµ(x, z), under which

δhµν =
R2

z2

(
∂µεν + ∂νεµ

)
δhzµ =

R2

z2
∂zεµ

δhzz = 0

The appropriate diffeomorphism is

εµ = − 1

R2vol(Bd)

∫
ddx′ θ(σz′)σzz′ 2bαT

αµ (6.8)

for which

δhzµ = −2zbαhαµ

δhµν = − 1

z2vol(Bd)

∫
ddx′ θ(σz′) 2bα(x− x′)µTαν + (µ↔ ν) (6.9)
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This restores holographic gauge. Combining (6.7) and (6.9) we find

(
z2hµν

)′
= z2hµν +

1

vol(Bd)

∫
ddx′ θ(σz′)

[
2bαx′µTαν − 2xαbµTαν + (µ↔ ν)

]
(6.10)

Current conservation in the form
∫
ddx′ θ(σz′)σzz′ ∂µT

µν = 0 implies

∫
ddx′ θ(σz′) (x− x′)µTµν = 0

This means we can replace xα with x′α in (6.10), to obtain the transformation of the left hand side

of (6.6). The result exactly matches the transformation of the right hand side, since under a special

conformal transformation

Tµν → T ′µν = Tµν + 2bα(xµTαν + xνTαµ)− 2xα(bµTαν + bνTαµ)− 2db · xTµν

The last term cancels the transformation of the measure ddx′ θ(σz′).

6.2.2 Two-point functions and bulk causality for gravity

We now use the smearing functions we have constructed to compute 2-point functions for the

graviton. We consider gravity in AdS3 in section 6.2.2.1, and gravity in AdS4 and higher in section

6.2.2.2.

6.2.2.1 Gravity in AdS3

AdS3 is special because there is no propagating graviton [100]. Rather the bulk curvature is com-

pletely determined by the vacuum Einstein equations

RMN =
Λ

d− 1
GMN (6.11)

where the cosmological constant Λ = −d(d − 1)/R2. This uniquely fixes the geometry. So in

AdS3 we expect the smearing function to generate a metric perturbation which corresponds to an

infinitesimal (but non-normalizeable) diffeomorphism of the background AdS metric.
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We work in light-front coordinates x± = t± x and write the perturbed AdS metric as

ds2 =
R2

z2

(
dz2 − dx+dx−

)
+ hµνdx

µdxν (6.12)

From the smearing function (6.6) we have for instance

z2h−− =
1

π

∫
t′2+y′2<z2

dt′dy′ T−−(t+ t′, x+ iy′) (6.13)

Since T−− only depends on x− this becomes (t′ = r sin θ, y′ = r cos θ)

z2h−− =
1

π

∫ z

0
rdr

∫ 2π

0
dθ T−−

(
x− − ireiθ

)
(6.14)

Defining ξ = eiθ the contour integral picks up the pole at ξ = 0 and ends up giving h−− = T−−. So

at the linearized level a stress tensor in the CFT corresponds to a bulk metric perturbation

h−− = T−−(x−)

h++ = T++(x+) (6.15)

h+− = 0

This provides a remarkably simple example of holography: the boundary stress tensor is lifted to

be z-independent and re-interpreted as a metric perturbation in the bulk. Not surprisingly, this is

very reminiscent of the Chern-Simons correspondence (5.23).

We can use this to compute the bulk 2-point function for the graviton. For instance the CFT

2-point function

〈T−−(x−)T−−(x′−)〉 =
c

8π2

1

(x− − x′− − iε)4
(6.16)

lifts to a bulk correlator

〈h−−(x+, x−, z)h−−(x′+, x′−, z′)〉 =
c

8π2

1

(x− − x′− − iε)4

Here we have used a Wightman iε prescription and c is the central charge of the CFT.
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To study bulk locality and causality in this framework, note that the CFT correlator (6.16)

corresponds to a Virasoro algebra

i[T−−(x−), T−−(x′−)] =
c

24π
δ′′′(x− − x′−)

This lifts to the bulk commutator

i[h−−(x+, x−, z), h−−(x′+, x′−, z′)] =
c

24π
δ′′′(x− − x′−)

Metric perturbations in the bulk have non-local commutators; this behavior is acceptable since

metric perturbations are coordinate dependent. One might ask if there is a quantity – analogous to

the field strength for a gauge field – which obeys causal commutation relations. In the next section

we will claim that, for gravity, such a quantity is provided by the Weyl tensor. This claim becomes

vacuous in three dimensions since the Weyl tensor vanishes identically.

We began this section by recalling that the source-free Einstein equations fix the bulk geometry

to be pure AdS. So to complete the story, one might ask for a coordinate transformation which

brings the perturbed metric (6.12), (6.15) back to the canonical form ds2 = R2

z2

(
dz2 − dx+dx−

)
.

The required transformation is

δx+ = − 2

R2

1

∂3
+

T++ −
z2

R2

1

∂−
T−−

δx− = − 2

R2

1

∂3
−
T−− −

z2

R2

1

∂+
T++ (6.17)

δz = − z

R2

(
1

∂2
+

T++ +
1

∂2
−
T−−

)

Note that the transformation does not vanish at the boundary, so it does not correspond to a

(normalizeable) gauge symmetry of the bulk theory.
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6.2.2.2 Gravity in AdS4 and higher

Our starting point for gravity in AdS4 and higher is the 2-point function of the stress tensor in a

general CFT. Up to an overall coefficient proportional to the central charge, this has the form§

〈Tµν(x)Tαβ(0)〉 = Xµναβ
1

(x2)d
+ Yµναβ

1

(x2)d−1
+ Zµναβ

1

(x2)d−2
(6.18)

where we’ve introduced

Xµναβ = −2d ηµνηαβ + d(d− 1)
(
ηµαηνβ + ηµβηνα

)
(6.19)

Yµναβ =
1

d− 1

(
ηµν∂α∂β + ηαβ∂µ∂ν

)
− 1

2

(
ηµα∂ν∂β + ηµβ∂ν∂α + ηνα∂µ∂β + ηνβ∂µ∂α

)
Zµναβ =

1

2(d− 1)(d− 2)
∂µ∂ν∂α∂β

Up to an overall normalization this correlator is uniquely determined by requiring that the stress

tensor be traceless and conserved with the correct scaling dimension. Applying the smearing function

(6.6) gives the bulk – boundary correlator

z2〈hµν(t,x, z)Tαβ(0)〉 = XµναβJ0 + YµναβJ1 + ZµναβJ2 (6.20)

where

Jn =
1

vol(Bd)

∫
t′2+|y′|2<z2

dt′dd−1y′
1(

− (t+ t′)2 + |x + iy′|2
)d−n (6.21)

Note that Jn is related to the integral (5.29) we encountered for gauge fields.

d

dz
Jn =

1

vol(Bd)
In

This can be integrated using (5.30) to give

Jn =
zd

(x2)d−n
F
(
d− n, d

2
− n+ 1,

d

2
+ 1,− z

2

x2

)
(6.22)

§See for example (2.37) and (A5) in Ref. [101].
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d J1 J2

3 − 3i

4x
log

x+ iz

x− iz
− 3z

2(x2 + z2)
−3i(x2 + z2)

4x
log

x+ iz

x− iz
− 3z

2

4
z4

x2(x2 + z2)2
−2 log

x2 + z2

x2
+

2z2

x2

5 − 5i

32x3
log

x+ iz

x− iz
− 5z(3x4 + 8x2z2 − 3z4)

48x2(x2 + z2)3

15i

32x3
(3x2 − z2) log

x+ iz

x− iz
+

15z(3x2 + z2)

16x2(x2 + z2)

6
z6(4x2 + z2)

4x4(x2 + z2)4

z6

x4(x2 + z2)2

Table 6.1: J1 and J2 in low dimensions.

In general Jn has singularities on both the boundary lightcone (where x2 = 0) and the bulk lightcone

(where x2 + z2 = 0). The case n = 0 is an exception to this general rule, since

J0 =
zd

(x2 + z2)d

J0 is only singular on the bulk lightcone, and in fact has an AdS-covariant form J0 ∼ 1/(σz′)d. This

was to be expected since, up to an overall normalization, J0 is the bulk – boundary correlator for

a massless scalar field. Some other cases of interest can be found in table 6.1.

At this stage we have an expression for the h – T correlator in terms of differential operators

acting on Jn’s. We will stop here, since explicitly evaluating the derivatives in (6.20) leads to lengthy

expressions. But one important observation we can make is that the h – T correlator inherits the

singularity structure of J1 and J2: it has singularities on both the bulk and boundary lightcones.

This means the commutator [hµν(t,x, z), Tαβ(0)] will be non-zero at lightlike separation on the

boundary (where x2 = 0), even though this corresponds to spacelike separation in the bulk (since

x2 +z2 > 0). This shows that in holographic gauge metric perturbations have acausal commutators.

This is acceptable because the commutator is gauge dependent.

This raises an interesting question, whether there is a quantity one can define in linearized

gravity which obeys causal commutation relations. That is, whether there is something analogous

to the Maxwell field strength Fµν , which as we saw in (5.32) has correlators that are only singular

on the bulk lightcone. At first one might think the gravitational analog is provided by the Riemann

tensor. However this can’t be right: perturbing the source-free Einstein equations (6.11) shows that
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δRµν = − d
R2hµν . Since we’ve already shown that the metric perturbation has acausal commutators,

the same must be true for the Ricci tensor.

This suggests that we split off the Ricci part of the curvature and work with the Weyl tensor.

In fact the Weyl tensor commutes with the boundary stress tensor at bulk spacelike separation.

We will show this in two ways: first by an intuitive argument, then by an explicit calculation in

holographic gauge.

The intuitive argument runs as follows. Imagine quantizing the bulk theory perturbatively using

a covariant gauge condition. Then locality would be manifest, and all fields (including the metric

perturbation) would obey canonical local commutation relations. It follows that in covariant gauge

the Weyl tensor commutes with the boundary stress tensor at spacelike separation. But since the

Weyl tensor transforms homogeneously under changes of coordinates, if the commutator vanishes

in covariant gauge it should also vanish in holographic gauge.¶ This fits with the fact that, at the

linearized level, the Weyl tensor is gauge invariant around an AdS background.

The explicit calculation proceeds as follows. Linearizing around an AdS background the non-

trivial components of the Weyl tensor are

z2Cαβγδ =
1

2

(
∂α∂γφβδ − ∂α∂δφβγ − ∂β∂γφαδ + ∂β∂δφαγ

)
(6.23)

− 1

2z
∂z
(
ηαγφβδ − ηαδφβγ − ηβγφαδ + ηβδφαγ

)
z2Czβγδ =

1

2
∂z
(
∂γφβδ − ∂δφβγ

)
Here φαβ = z2hαβ , and we have used the fact that φαβ obeys the massless scalar wave equation(
∂α∂

α+∂2
z

)
φµν = d−1

z ∂zφµν . The remaining components of the Weyl tensor Czβzδ are not indepen-

dent by the trace-free condition.

In principle it is straightforward to compute C – T correlators. Consider for example z2〈Czβγδ(x)Tρσ(0)〉.

Using the φ – T correlator (6.20) and the operators (6.19) one obtains a rather long expression.

However many terms drop out when you antisymmetrize on γ and δ. What survives has the form
¶This argument breaks down for the Riemann tensor. In an AdS background the Riemann tensor acquires a vev,

and a perturbation δRαβγδ transforms inhomogeneously under changes of coordinates.
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(‘stuff’ meaning metrics and derivatives tangent to the boundary)

z2〈Czβγδ(x)Tρσ(0)〉 = ∂z

∫
x′2<z2

ddx′
{

(stuff) · 1

(x2)d
+ (stuff) · 1

(x2)d−1

}
=

∫
x′2=z2

ddx′
{

(stuff) · 1

(x2)d
+ (stuff) · 1

(x2)d−1

}
= (stuff) · I0 + (stuff) · I1 (6.24)

As we saw in (5.31) I1 is analytic on the boundary lightcone. It turns out that I0 is also analytic

at x2 = 0:

I0 =
2πd/2

Γ(d/2)

zd−1(x2 − z2)

(x2 + z2)d+1
(6.25)

So the correlator (6.24) is analytic at x2 = 0, and Czβγδ obeys causal commutation relations with

the boundary stress tensor.

Now consider z2〈Cαβγδ(x)Tρσ(0)〉. Again one obtains a rather long expression. However many

terms drop out when you antisymmetrize on α and β, or on γ and δ. Also many terms involve

either J0, I0 or I1 which we know are analytic at x2 = 0. Dropping all such contributions, up to an

overall coefficient we find that only two terms survive:

z2〈Cαβγδ(x)Tρσ(0)〉 (6.26)

∼ ∂[αηβ][γ∂δ]∂ρ∂σ

(∫
x′2<z2

ddx′
1

(x2)d−1
− 1

2(d− 2)z

∫
x′2=z2

ddx′
1

(x2)d−2

)
= ∂[αηβ][γ∂δ]∂ρ∂σ

(
vol(Bd)J1 −

1

2(d− 2)z
I2

)

With the help of one of Gauss’ recursion relations for hypergeometric functions one can show that

the quantity in parenthesis is

− πd/2

(d− 2)Γ(d/2)

zd−2

(x2 + z2)d−2

This is analytic on the boundary lightcone, so Cαβγδ obeys causal commutation relations with the

boundary stress tensor.
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6.3 Interactions

In this section we make some remarks on constructing bulk operators at higher orders in 1/N . For

scalar fields it was shown in [85] that one can construct interacting local bulk fields without any

knowledge of the bulk Lagrangian. Rather, by adopting bulk micro-causality as a guiding principle,

one can construct the appropriate bulk operators just from knowing CFT correlators. Here we show

that something similar can be done for a massive vector field in AdS3: a local bulk operator can be

constructed, even in the presence of interactions. However for a gauge field in AdS3 we show that

the analogous procedure breaks down. In this section, to avoid notational complexity, we denote

w = x+ = t+ x

w̄ = x− = t− x

Up to an overall coefficient, the three point function of three primary operators in a two dimen-

sional CFT is

< O1,h1,h̄1
(w1, w̄1)O2,h2,h̄2

(w2, w̄2)O3,h3,h̄3
(w3, w̄3) > (6.27)

=
1

wh1+h2−h3
12 wh2+h3−h1

23 wh3+h1−h2
13

1

w̄h̄1+h̄2−h̄3
12 w̄h̄2+h̄3−h̄1

23 w̄h̄3+h̄1−h̄2
13

Here wij = wi − wj . Let us for simplicity assume that O2 and O3 are scalar operators so h2 = h̄2

and h3 = h̄3, but O1 has spin 1 with h1 = h̄1 + 1. To explore bulk locality we smear O2 into a bulk

operator using the free field smearing function

O2(z, w2, w̄2) =

∫ z

0
rdr(

z2 − r2

z
)2h−2

∫
|α|=1

dα

iα
O(w2 + rα, w̄2 − rα−1). (6.28)

We can get the CFT three point function with h1 → h1 + 1 (as long as h1 6= 0) by acting on a three

point correlator with the operator

1

h3 − h2 − h1

∂

∂w12
− 1

h2 − h3 − h1

∂

∂w13
(6.29)

So the result for h1 = h̄1 + 1 can be gotten from the result for h1 = h̄1 by acting with the operator
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(6.29). The situation with h1 = h̄1 was analyzed in [85]. It was found that for scalar operators

one can add a series of appropriately smeared higher dimension scalar operators that will cancel

the causality-violating terms in the three point function. Here we see that this is still true if one

of the boundary operator has spin. Note however that for the special case of conserved current

(meaning h = 0, h̄ = 1 or h = 1, h̄ = 0) this argument does not apply. This is not only because

acting with the operator (6.29) is not possible, but also because if O1 is a conserved current then

Ward identities restrict its three point function. For instance for a conserved current the three point

function will vanish unless the two point function < O2O3 > is non-zero. So for a conserved current

adding smeared higher dimension primaries is not in general possible.

We now consider the case where O1 is smeared into the bulk. We’ll work in terms of the OPE,

similarly to what was done in [85]. For simplicity we denote h1 = n, h̄1 = n − 1 and assume that

h2 = h̄2 = 1. We look at terms in the OPE proportional to the scalar operator

jn,n−1(w, w̄)O1,1(0) =
O1,1(0)

wnw̄n−1
+ · · ·

jn−1,n(w, w̄)O1,1(0) =
O1,1(0)

wn−1w̄n
+ · · · (6.30)

When n = 1 the smearing function (5.23) for a massless gauge field in AdS3 gives

A1,0(z, w, w̄)O1,1(0) =
1

w
O1,1(0) + · · · (6.31)

On the other hand for a massive vector the smearing function (5.44) leads to

An,n−1(z, w, w̄)O1,1(0) =

(
− 2

π

d

dw
I

(n−1)
1 +

z

π

d

dw
I

(n)
2

)
O1,1(0) + · · · (6.32)

where

I
(n−1)
1 =

∫ z

0
rdr

(
z2 − r2

z

)2n−3 ∫
|α|=1

dα

α(w + rα)n−1(w̄ − r/α)n−1

I
(n)
2 =

∫ z

0
rdr

(
z2 − r2

z

)2n−2 ∫
|α|=1

dα

α(w + rα)n(w̄ − r/α)n
(6.33)
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Using (5.51) one gets

I
(n−1)
1 =

πz2n−1

(2n− 2)(ww̄)n−1
F (n− 1, n− 1, 2n− 1,− z2

ww̄
)

I
(n−1)
1 =

πz2n

(2n− 1)(ww̄)n
F (n, n, 2n,− z2

ww̄
) (6.34)

and finally using (5.53) one gets

An,n−1(z, w, w̄)O1,1(0) = −O1,1(0)
d

dw

(
z2n−1

(n− 1)(ww̄)n−1
F (n− 1, n, 2n− 1,− z2

ww̄
)

)
(6.35)

A similar result holds for An−1,n by replacing w → w̄. The quantity in parenthesis in (6.35) is

non-analytic due to terms of the form

(ww̄
z2

)m
ln
z2 + ww̄

ww̄
(6.36)

with n ≥ m ≥ 1.

Suppose we have a massless gauge field in the bulk. The singular term in (6.31) leads to a

non-vanishing commutator at bulk spacelike separation, and must be canceled if the gauge field is

to commute at spacelike separation. But given the structure (6.36) there is no massive vector we

can add to our definition of a bulk gauge field that will cancel the divergent term in (6.31). This

means that it is not possible to promote a boundary conserved current to a local bulk field.‖

On the other hand, starting from a non-conserved current in the CFT, there is no obstacle to

restoring bulk locality. One can cancel non-analytic terms of the form (6.36) by adding a tower of

higher-dimension spin-1 fields with appropriately chosen masses and coefficients to our definition of

a bulk vector field. This will leave a non-analytic term of the form

(
ww̄

z2
)nmax ln(ww̄) (6.37)

where nmax the largest n used in the sum over higher dimension primaries. So, just as in the scalar
‖The lesson here is not that causality is violated. For example in AdS3 the field strength associated with (5.23)

vanishes identically, and in this sense micro-causality is trivially satisfied even in the presence of interactions. Rather
the lesson is that there is an obstacle to constructing bulk gauge fields which have local commutators. This is a
feature, not a bug, since as we discuss in section 6.3.1 gauge fields are expected to have non-local commutators.
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case [85], we can make a massive vector field in the bulk as local as we wish. For spin- 1 Maxwell

fields, one finds the same conclusion which has been sketched out in [86] .

6.3.1 A comment on gauge fields

If there is a gauge symmetry in the bulk, i.e. a conserved current on the boundary, the issue of

constructing bulk operators become a bit more involved. Of course one could start from the bulk

equations of motion and solve them perturbatively, to express bulk fields in terms of boundary

data. If one starts from a local bulk Lagrangian, this procedure is guaranteed to describe a local

theory in the bulk (at least perturbatively). But if one wants to construct bulk operators purely in

terms of the CFT, without making reference to bulk equations of motion, then having bulk gauge

symmetries complicates matters. If there is a gauge symmetry in the bulk then the corresponding

charge can be expressed as a surface term and identified with a conserved quantity in the CFT.

The charge generates global gauge transformations, so as discussed in [87, 89], charged fields in the

bulk must have non-local commutators in order to properly implement the Gauss constraint. In the

context of gravity this discussion applies to time evolution, since the CFT Hamilton should generate

time translation everywhere in the bulk. While these non-local commutators do not actually violate

causality, they do complicate the CFT construction, in the sense that the guiding principle of bulk

causality must be stated more carefully. It’s tempting to speculate that the good causal properties

we found for the field strength and Weyl tensor at the linearized level can provide a basis for

constructing the interacting theory, at least in perturbation theory. Indeed it does turn out that

if e.g. one considers charged scalar fields in the bulk (charged under a U(1) gauge symmetry or

diffeomorphism), even though the scalars commute among themselves at spacelike separation, they

fail to satisfy micro-causality with Aµ and hµν perturbation∗∗. On the other hand, upon adding an

infinite tower of smeared higher dimensional operators (albeit non-primary this time), the above-

mentioned ‘gauge-invariant’ tensors do satisfy micro-causality principle. The fact that the operators

are non-primary precisely gives the transformation rule for the bulk operator under AdS isometries,

that one should expect if it is to be charged under the gauge field. The relevant calculations have

been done in [86] and [97] in greater details.
∗∗Although the amount of non-commutativity is the same as required by the Gauss law.
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6.4 General backgrounds

Using the Green’s function approach one can write an expression for the Heisenberg picture fields

in the bulk in terms of the boundary values of those same fields, now interpreted as operators in the

dual CFT. Correlation function of these CFT operators then reproduce bulk correlation functions.

The computations are done from the bulk point of view in a particular gauge Gzµ = 0, Gzz = R2/z2.

With gauge fields one also sets Az = 0. These conditions completely fix the gauge. The resulting

computations are thus physical since all redundant degrees of freedom have been eliminated. In a

fixed gauge one can reproduce bulk calculations using boundary data, and since the boundary data

comes from a unitary field theory this constitutes holography. From the CFT point of view one

corrects the naive smeared operator (constructed to represent a free field in the bulk) by adding

higher dimension smeared operators to get a local bulk operator. However these calculations as

presented are done in a fixed background metric with a fixed causal structure. This causal structure

cannot be circumvented or changed in perturbation theory since it is built in to the hardware of the

approach. The approach based on micro-causality and CFT correlators has the same difficulty. One

must define a smearing function which is determined by the background metric, and this smearing

function cannot be changed in perturbation theory, aside from corrections to incorporate anomalous

dimensions.

Besides the question: how local can bulk operators be in this formalism?, one can ask how this

formalism could work without an a priori notion of a background. Here we make a few comments

on these issues.

In a fixed background the equations of motion for the bulk fields come from a radial Hamiltonian

Hr. (By radial Hamiltonian we mean the operator which generates radial evolution of fluctuations

about this particular background.) Schematically (φ stands for any perturbative field including

gravitons on this background)
∂φ

∂z
= −[Hr, φ] (6.38)

We also need to impose an initial condition, given by normalizable falloff as z → 0 for each field.

The radial Hamiltonian can be explicitly written down in the supergravity approximation. If we

had a different background metric then the radial Hamiltonian would be some different operator,
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but for each background we can think of the radial Hamiltonian as some operator in the CFT,

generating the transformation from boundary operators to bulk operators via the map

O(x, t)→ e−
∫ z
0 HrO(x, t)e

∫ z
0 Hr (6.39)

However the idea that we will just get a different smearing function for each background is still

problematic. The construction of smearing functions relies on having a classical spacetime (perhaps

with a few perturbative quantum fluctuations). This clearly does not have to be the case for a

generic state in the CFT.

The approximation of getting a fixed background with a few supergravity excitations on it

involves two steps. First one needs to integrate out all the bulk stringy modes, which in the

CFT means integrating out all high dimension operators. Second one must do a semiclassical

approximation to get a well-defined background metric. We won’t have much to say about the first

step, other than that one has to be careful later on when discussing high dimension operators. For

instance, in the promotion of a boundary operator to a field in the bulk, one one needs to include

from the CFT perspective a tower of high dimension operators. If one includes high dimension

operators only up to some ∆max then, according to [85], a good estimate of the commutator of a

bulk operator with a boundary operator (taken to be scalars in AdS3), which are spacelike separated

in the bulk but not on the boundary, is

[φ(t,x, z),O(0)] ∼ 1

∆max

( t2 − |x|2
z2

)∆max

(6.40)

Although non-zero, the commutator is exponentially suppressed away from the bulk lightcone pro-

vided ∆max is large. A nice way to characterize the bulk non-locality associated with a finite value

of ∆max is to ask how far from the bulk lightcone one can go before the commutator becomes

exponentially small. This is given by

δS ∼ R/∆max (6.41)

where R is the AdS radius and S is proper length in the bulk. For ∆max ∼ (g2
YMN)1/4 – appropriate

for stringy modes – one gets δS ∼ ls.

Even if the approximation of integrating out the stringy modes is good it does not mean the CFT
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state describes a semiclassical space time. In the supergravity approximation we can write down

the equations of motion for the metric and matter fields in holographic gauge without choosing

a particular background. This is done by replacing the radial Hamiltonian in (6.38) with the

appropriate Hamiltonian for the supergravity system, namely Hg =
∫
ddx 1

z2
HWD where HWD is

the Wheeler – de Witt operator. The radial evolution equations are

∂O
∂z

= −[Hg,O]
∂gµν
∂z

= −[Hg, gµν ] (6.42)

and similarly for the conjugate momenta. Once the constraints are satisfied on the initial slice

(z = 0) the equations of motion guarantee that they are obeyed at any z. We assume here that

gµν(z → 0) = ηµν (6.43)

So corrections to the bulk metric come from normalizable modes, with the leading correction for

small z being proportional to Tµν . This together with ∂µTµν = 0 and Tµµ = 0 gives enough initial

data to solve the equations.††

The equations of motion can formally be solved to give the bulk fields as functionals of the

boundary data.

φ(x, z) = φ(x, z)
[
Tµν(x′),O(x′′)

]
(6.44)

gµν(x, z) = gµν(x, z)
[
Tµν(x′),O(x′′)

]
So far this is independent of the state of the CFT. But now, given some state of the CFT, we would

like to obtain a set of bulk operators which look like fields propagating on some semiclassical space

time. To do this, to a good approximation one needs to be able to substitute

Tµν = 〈Tµν〉+ δTµν . (6.45)

If this approximation is valid then we are guarantied that correlators of our bulk operators, calcu-

lated in the CFT, will look like correlation function of supergravity fields on a background which
††We are ignoring the question of whether holographic gauge can be extended all the way to z =∞. Also since we

are working in a Poincaré patch we are ignoring any anomalous trace of the stress tensor.

90



solves the Einstein equations with asymptotics set by 〈Tµν〉.

Clearly such an approximation is valid in a CFT state if connected correlation functions of CFT

operators obey large N factorization. Thus CFT states with large N factorization will be dual to

semiclassical spacetimes, while those which do not obey large N factorization will not have a local

spacetime interpretation.

Finally we want to speculate about a natural construction for bulk operators purely inside the

CFT. It seems possible from the above considerations that one can define “bulk operators” in the

CFT regardless of the state of the CFT or any low energy approximation. These operators will not

generically have a bulk interpretation, except for a restricted set of states where largeN factorization

holds. What are these master bulk operators? It seems natural to extrapolate from the supergravity

situation (6.42). A natural guess is that one should replace the radial Hamiltonian in (6.39) with

a more fundamental gauge theory operator, such as the exact RG Hamiltonian or Fokker-Planck

Hamiltonian (see for instance [102, 103]).

6.5 Conclusions and Ongoing Work

In this chapter we worked out the smearing functions for spin-2 excitations in AdS, analogous to the

case for spin- 1 in the last chapter. We showed again that the bulk locality is respected: although

metric perturbations have non-local commutators when one works in holographic gauge, part of

the corresponding curvature, namely the Weyl tensor is causal. We also discussed how the case for

interactions goes and what are the subtleties that one can expect in these cases. Ultimately one

might hope to make contact between the ‘bottom-up’ approach of constructing bulk observables

in 1/N perturbation theory, and the ‘top-down’ approach of section 6.4 where bulk operators are

constructed using the Fokker-Planck Hamiltonian of the boundary theory.

Finally let’s end the chapter with a brief overview of the ongoing work that is going on along

these lines. After studying the three point function, the only non-trivial order in which one will

want to check the locality is O(N−2), which will mean e.g. a φ4 interaction term in the bulk or

equivalently the study of four-point functions‡‡. At this point the previous calculations of construct-

ing local operators for gauge fields come in handy, as we now have to necessarily deal with them.
‡‡Note that we don’t really need to worry about the higher point functions, as we can always use the operator

product expansion (OPE) between two operators and ultimately deal with the case at the level of four-point functions.
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But, now that one has a construction of local operators for fields charged under gauge or gravity

fields at the level of 3-point function, it’s quite understandable that locality should hold even at

O(N−2). Because whenever we have a four-point function (here for simplicity, let’s assume four

scalar operators) and we smear one of the scalar operator, to get

〈[φ(x1, z),O(x2)]O(x3)O(x4)〉 (6.46)

we can always use

O(x3)O(x4) =
∑
k

ck(x3, x4)T k(x3)

type OPE where T k(x3) is a complete set of operators in the given CFT with arbitrary spins.

But [86] and [97] already shows that (6.46) is zero for T k(x3) being a scalar or a conserved (or

non-conserved) current or a conserved (or non-conserved) stress tensor and these are basically the

relevant operators one deal with in a low energy bulk theory. But of course, how this works for a

gauge or gravity field and how in particular the cancellation in the commutator works out remain to

be seen. This is currently in progress. As our starting point is micro-causality, a good place to start

will be a simple representation of boundary four-point function and an educated guess could be to

work with the Mellin representation of operators [104]. This could also serve as a probe to verify

the conjecture made by Heemskerk et al. [105], [106] which states that to achieve bulk locality, a

CFT need to have a planar or large N expansion and moreover, all single trace operators with spins

greater than two have to have parametrically large conformal dimensions. Similar suggestions have

been made by using Mellin representations of correlators in [107] where an added condition has

been the boundedness of Mellin amplitudes for CFT correlation functions for large values of Mellin

space variables. It will be nice to see how these different constraints on CFT to have a local bulk

dual fit together with our approach from micro-causality.
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7

Comments and Outlooks

As is clear from the title, the most used tool in this dissertation was gauge/ gravity correspon-

dence. The second string revolution starting with open-closed string dualities and discovery of D-

branes led to this current generalized understanding of quantum gravity theories in AdS spaces and

undoubtedly since then it has become a much used tool to theoretical physicists with application

ranging to even condensed matter systems and strongly coupled field theory systems. This type of

duality is so useful because it can shed light on both the perspectives of field theory and of quantum

gravity. Hence it’s no surprise that we have tried to make use of both sides of this duality; on

one hand, we tried to understand the fast thermalization in field theory from a black hole creation

process in the bulk, and on the other hand we studied bulk locality from a gauge theory point of

view. Of course the understanding of even this duality is far from complete and some of the most

pressing questions pertain to cultivate various other limits of duality, such as λ → 0 limit (which

corresponds to higher spin gravity in the bulk) or the study of dS/CFT dualities. It will be e.g.

exciting to understand the study of black hole formation and local operator construction in the

framework of these dualities.

But some of the immediate technical questions are the following, which we also discussed, to

some extent, in their respective chapters: along the line of black hole formation process, one of the

important limitations we had was that we were precisely at the correspondence point with equal

number of D-brane clusters colliding with each other. Being at the correspondence point is strictly

necessary to be able to match our results with the gauge theory side (and thereby providing another

instance where the duality works). However, it will be interesting to study how can we go beyond the
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equal momentum splitting case and takeN1 6= N2 (or study similar cases like multicharged black hole

etc.). For N1 6= N2, the total number of excited degrees of freedoms are ∼ O(N1N2) after parametric

resonance and we seem to need a secondary step to excite the remaining ∼ O(N2 −N1N2) degrees

of freedoms (dof) of the black hole. But this is technically difficult to do perturbatively to first order

in quantum fluctuations as the approximation breaks down as soon as we have parametric resonance

in the first place. Also, even though all the black holes we consider have horizon curvature of the

order of string scale, it is interesting to see that they are made out of the open string degrees of

freedoms. Similar stringy description of black holes is available only for certain black hole charges

and in the presence of supersymmetry, namely in the fuzzballs [60].

Similarly there are various directions one can go from the current study of bulk locality. We

already talked about some of the previous and ongoing work on CFT four-point functions that could

be used to study the locality issues in more details. But all these descriptions are valid only for

perturbation in 1/N . Note that this construction is quite custom made for complementarity like

arguments. Black hole complementarity basically tells us that the degrees of freedom inside and

outside the horizon are in fact not independent, even though we can define states and operators

on a nice slice passing through the horizon to have a local field theoretic description. A good

idea will then be to construct such local operators for Schwarzschild black holes in AdS, but it

turns out to be highly non-trivial. This would also help us in answering the black hole firewall

paradox recently addressed in Almheiri et al. [61], [108] which argues that the horizon should not

be structureless, but does not give up the independence of degrees of freedom inside and outside the

horizon. This firewall argument is already an intensely studied problem and we will not try to list

all the relevant references here. But the closest work that addresses the local operator construction

in such framework is by Raju and Papadodimas ([109], [110], [111]) who are able to construct local

operators beyond horizon at large N and argue that it eliminates the need for firewalls. But one

of their other outcomes is that one can’t seem to have a background independent construction any

more as in their construction the smearing operator itself is CFT state dependent. One other related

study that supports non-locality between d.o.fs inside and outside black hole horizon, but give up

firewalls is by Maldacena and Susskind [112]. There the dependence of operators inside and outside

the horizon comes in the form of a wormhole. It will thus be interesting to extend our construction

to finite N , study the possibility of building a background independent statement of local operator
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construction and study the link between such construction and wormholes to understand these issues

in finer details. Other (rather different) future direction would be to extend our construction with

dS space and investigate the possibility of a gauge theory construction of dS quantum gravity [113],

[114] despite it’s various criticisms [115], [116].
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Appendix A

Appendix

A.1 String production in a D-brane collision

We review the process of open string production in a D-brane collision, following [51, 117].

Consider colliding two 0-branes with relative velocity v and impact parameter b. Setting 2πα′ =

1, the virtual open strings connecting the two 0-branes have an energy or frequency ω =
√
v2t2 + b2.

As long as this frequency is changing adiabatically open strings will not be produced. The adiabatic

approximation breaks down when ω̇/ω2 & 1. The peak value of this quantity is ω̇/ω2 ∼ v/b2 when

vt ∼ b, so (restoring units) open strings are produced for b .
√
vα′.

Now consider colliding two p-branes wrapped on a torus of volume Vp, with relative velocity v

and impact parameter b in the transverse dimensions. Consider a virtual open string that connects

the two p-branes and has momentum k along the p-brane worldvolumes. Setting 2πα′ = 1, this

virtual open string has an energy or frequency

ω =
√
k2 + v2t2 + b2

If k = 0 then the condition for open string production is just what it was for 0-branes, b .
√
v.

Having non-zero k increases ω and suppresses open string production. Effectively there is a cutoff,

that open strings are produced up to a maximum momentum k ∼ b ∼
√
v. Restoring units, the

maximum momentum is k ∼
√
v/α′ = U̇1/2. This cutoff corresponds to a number density of open
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strings on the p-brane worldvolume

# open strings
volume

∼ U̇p/2

If we collide two stacks of Dp-branes with charges N1 and N2 respectively, it’s easy to estimate

the total number of open strings that are produced. At weak coupling the individual brane collisions

are independent events. So for 0-branes the total number of open strings produced is

n ∼ N1N2

while for p-branes the total number of open strings produced is

n ∼ N1N2VpU̇
p/2 (A.1)

or equivalently

n ∼ N1N2VpU
p (A.2)

There is, however, an important consistency check on this result: we need to make sure the

incoming D-branes have enough kinetic energy to produce this number of open strings. Equivalently,

we need to make sure that the back-reaction of open string production on the velocities of the D-

branes is under control. Given the number of open strings (A.2), the energy in open strings is

Estring = nU = N1N2Vp

(
λε

N1N2

) p+1
4

where we have used (3.17). On the other hand the kinetic energy of the incoming branes is

E = εVp

Thus the ratio
Estring

E
= λ

(
λε

N1N2

) p−3
4

(A.3)
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and the consistency condition Estring/E < 1 is equivalent to

λUp−3 < 1

This is nothing but the condition λeff < 1. Thus at weak coupling energy conservation does not

limit the number of open strings that are produced and the simple estimate (A.2) can be trusted.

A.2 Fluctuations in the XA dimensions

In this appendix we study the spectrum of fluctuations in the directions A = 1, 2, 3. We need to

solve the linearized Gauss constraint

U̇ [JA, xA] = U [JA, ẋA] (A.4)

along with the linearized equation of motion

ẍA +
4

N2
U2[[xA, JB], JB] +

4

N2
U2[[JA, xB], JB] +

4

N2
U2[[JA, JB], xB] = 0 (A.5)

These expressions can be simplified somewhat. In the adiabatic approximation we study the spec-

trum of fluctuations treating U as constant. Then the fluctuation modes can be taken to have

definite frequency, xA ∼ e−iωt, so the Gauss constraint amounts to the requirement that

[JA, xA] = 0 (A.6)

Also we can simplify the equation of motion using

[[JA, xB], JB] = −[[xB, JB], JA]− [[JB, JA], xB] (Jacobi identity)

= [[JA, JB], xB] (Gauss constraint)

This reduces the equation of motion to

ẍA +
4

N2
U2[[xA, JB], JB] +

8

N2
U2[[JA, JB], xB] = 0 (A.7)
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To go further we expand the fluctuations in fuzzy vector spherical harmonics. These are con-

structed as follows. Expanding in a complete set of matrices we can set∗

xA =
N−1∑
`=0

xAA1···A`JA1 · · · JA` (A.8)

The tensor xAA1···A` is symmetric and traceless on the indices A1 · · ·A`, so taking all indices into

account it transforms as a (spin 1) ⊗ (spin `) product representation of SU(2). Decomposing this

product, the irreducible pieces correspond to tensors s, t, u that have spin `+1, `, `−1 respectively.

These tensors can be constructed explicitly.†

sA0A1···A` ∼ (xA0A1···A` + cyclic permutations of A0 · · ·A`)

− 2

2`+ 1

∑̀
i,j=0
i<j

δAiAjxBBA0···Âi···Âj ···A` (A.9)

tA1···A` ∼
∑̀
i=1

εAiABxABA1···Âi···A` (A.10)

uA2···A` ∼ δABxABA2···A` (A.11)

The tensors s, t, u are constructed to be symmetric and traceless on all indices, so that they corre-

spond to the appropriate irreducible SU(2) representations.

This decomposition helps in understanding the Gauss constraint (A.6), since

[JA, xA] = xAA1···A` [J
A, JA1 · · · JA` ]

= i
(
εA1ABxABA2···A` + εA2ABxAA1BA3···A` + · · ·+ εA`ABxAA1···A`−1B

)
JA1 · · · JA`

∼ itA1···A`JA1 · · · JA`

Thus the Gauss constraint requires that we set the spin-` irreducible piece to zero, tA1···A` = 0.

Now let’s study the equation of motion (A.7). Using (4.16) in the middle term, and evaluating

∗To save writing we’re adopting a different normalization convention in expanding xA, without the factor
(

2
N

)`
present in (4.15).
†A hat denotes a missing index. There’s an overall normalization in these formulas which we leave unspecified.
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the commutators in the last term, the equation of motion becomes

ẍAA1···A`JA1 · · · JA` +
4

N2
U2`(`+ 1)xAA1···A`JA1 · · · JA` (A.12)

+
8

N2
U2xBBA2···A` (JAJA2 · · · JA` + JA2JAJA3 · · · JA` + · · · )

− 8

N2
U2xBAA2···A` (JBJA2 · · · JA` + JA2JBJA3 · · · JA` + · · · )

= 0

(there are ` terms in the second and third lines, where the generators JA and JB are inserted at

different positions). We consider the different irreducible pieces in turn.

s-type fluctuations

To study the irreducible piece with spin `+1 we take x to be symmetric and traceless on all indices,

xAA1···A` = sAA1···A` (A.13)

For such a tensor the Gauss law is automatically satisfied, while the equation of motion (A.12)

reduces to

s̈AA1···A` +
4

N2
U2`(`− 1)sAA1···A` = 0 (A.14)

We read off the frequencies

ω` =
2

N
U
√
`(`− 1) (A.15)

These modes are (2`+3)-fold degenerate. There are two zero-frequency modes: ` = 0 is a translation

zero mode in the XA directions, while ` = 1 is an energy-preserving quadrupole deformation of the

sphere.

t-type fluctuations

These exist for ` ≥ 1. We can reconstruct the tensor x from its spin-` irreducible piece t by setting

xAA1···A` = εAA1BtBA2···A` + εAA2BtA1BA3···A` + · · ·+ εAA`BtA1···A`−1B (A.16)

This map has been constructed so that x is symmetric and traceless on the indices A1 · · ·A`. In other

words, it defines the embedding of (spin `) ↪→ (spin 1)⊗ (spin `). Given (A.16), the corresponding
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Hermitian matrix xA can be written as a commutator,

xA ≡ xAA1···A`JA1 · · · JA` (A.17)

= itA1···A` [JA, JA1 · · · JA` ]

As we saw earlier, these fluctuations fail to satisfy the Gauss constraint, since from (4.16)

[JA, xA] = i`(`+ 1)tA1···A`JA1 · · · JA` (A.18)

Again the only solution to the Gauss constraint is to set t = 0.

u-type fluctuations

These exist for ` ≥ 1. We can reconstruct x from its spin-(`− 1) irreducible piece using

xAA1···A` =
∑̀
i=1

δAAiuA1···Âi···A` −
2

2`− 1

∑̀
i,j=1
i<j

δAiAjuAA1···Âi···Âj ···A` (A.19)

This map is constructed so that x is symmetric and traceless on A1 · · ·A`. For such a tensor the

Gauss law is automatically satisfied. Substituting the expression for x into the equation of motion

(A.12), we find after some algebra that

üA2···A` +
4

N2
U2(`+ 1)(`+ 2)uA2···A` = 0 (A.20)

From this we read off the frequencies

ω` =
2

N
U
√

(`+ 1)(`+ 2) (A.21)

These modes are (2` − 1)-fold degenerate. The ` = 1 mode is a monopole deformation of the

sphere, U → U+δU . The frequency ω1 agrees with what one obtains by perturbing the background

equation of motion (4.10).
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A.3 Open string production

In this appendix we study the process of open string production in more detail. Our goal is to show

that, during the initial collapse of a fuzzy sphere, roughly one open string is produced in each of the

fluctuation modes. We assume the fluctuations are weakly coupled, which as discussed in section

4.5 means U0 > N1/2λ1/3.

We focus on a particular fluctuation mode. For concreteness we consider a transverse mode

(4.18) with frequency

ω` =
2

N

√
`(`+ 1)U (A.22)

For this mode, the adiabatic approximation breaks down when ω̇`/ω2
` ∼ 1 or

NU̇

2
√
`(`+ 1)U2

∼ 1 (A.23)

Energy conservation (4.23) fixes U̇2 ≈ 4
N2

(
U4

0 −U4
)
. By the time the adiabatic approximation has

broken down we can neglect the U4 term, so the velocity is

U̇ ≈ 2

N
U2

0 (A.24)

and the adiabatic approximation fails at

U ≈ U0(
`(`+ 1)

)1/4 (A.25)

At the point where the adiabatic approximation fails the mode can be thought of as a harmonic

oscillator in its ground state, with a frequency

ω ≈ 2

N

(
`(`+ 1)

)1/4
U0 (A.26)

and a ground state wavefunction (identifying ~/m with g2
YM)

ψ0(x) =

(
ω

πg2
YM

)1/4

e−
1
2
ωx2/g2YM (A.27)
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After the adiabatic approximation breaks down the sphere continues to shrink. We must follow

the evolution of the mode through the non-adiabatic regime, until the sphere re-expands to the

radius (A.25) at which adiabaticity is restored. In the non-adiabatic regime the frequency is so low

that it seems reasonable to neglect the potential energy for the mode, in other words, to treat it as

a free particle. In this approximation the Gaussian wavefunction (A.27) undergoes free diffusion,

spreading to a width

∆x2 = ∆x2
0 +

g4
YM∆t2

4∆x2
0

(A.28)

Here the initial position uncertainty is ∆x2
0 = g2

YM/2ω, while the time spent in the non-adiabatic

regime is

∆t =
∆U

U̇
≈ N(

`(`+ 1)
)1/4

U0

(A.29)

This gives ∆x2 ≈ 5∆x2
0: the wavefunction spreads by a factor of roughly

√
5 as the sphere transits

the non-adiabatic regime. This factor is independent of the parameters N , `, U0, which suggests

that of order one open string is produced in each of the fluctuation modes.

To argue this more precisely we recall some properties of squeezed states [118]. For a harmonic

oscillator these are defined by

|ξ〉 = exp

[
ξ

2

(
â†â† − ââ

)]
|0〉 (A.30)

where the squeezing parameter 0 < ξ <∞. An equivalent expression is

|ξ〉 =
(
1− γ2

)1/4
exp

[
γ

2
â†â†

]
|0〉 (A.31)

where γ = tanh ξ. A squeezed state has a Gaussian wavefunction with a width

∆x = eξ∆x0 (A.32)

so we identify eξ ≈
√

5. Expanding the exponential in (A.31), the probability of finding 2n strings

present is

P (2n strings) =
(
1− γ2

)1/2 (2n)!

(n!)2

(γ
2

)2n
(A.33)
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The probability decreases monotonically with n. The average number of strings present is

∞∑
n=0

2nP (2n strings) =
γ2

1− γ2
≈ 4

5
(A.34)

So the simple approximation of free diffusion in the non-adiabatic regime supports the claim that

roughly one open string is produced in each fluctuation mode.

A.4 Scalar smearing functions

Consider a scalar field of mass m in AdSd+1. It’s dual to an operator of dimension ∆ in the CFT,

where m2R2 = ∆(∆− d). The mode expansion is

φ(t,x, z) =

∫
|ω|>|k|

dωdd−1k aωke
−iωteik·xzd/2Jν(z

√
ω2 − |k|2) (A.35)

where ν = ∆− d/2. As z → 0 we have φ(t,x, z) ∼ z∆φ0(t,x) where the boundary field

φ0(t,x) =
1

2νΓ(ν + 1)

∫
|ω|>|k|

dωdd−1k aωke
−iωteik·x(ω2 − |k|2)ν/2

Our basic goal is to express the bulk field in terms of the boundary field. A straightforward way to

do this is to express the coefficients aωk as a Fourier transform of φ0,

aωk =
2νΓ(ν + 1)

(2π)d(ω2 − |k|2)ν/2

∫
dtdd−1x eiωte−ik·xφ0(t,x) .

Substituting this back in (A.35) leads to an integral representation of the smearing function. Gener-

ically one obtains a smearing function with support on the entire boundary of the Poincaré patch,

however by complexifying the boundary spatial coordinates one can obtain a smearing function with

compact support. As shown in [84] this leads to

φ(t,x, z) =
Γ(∆− d

2 + 1)

πd/2Γ(∆− d+ 1)

∫
t′2+|y′|2<z2

dt′dd−1y′
(
z2 − t′2 − |y′|2

z

)∆−d
φ0(t+ t′,x + iy′) (A.36)

This expression is fine for ∆ > d−1. However when ∆ = d−1 it’s ill-defined: the integral diverges,

and the coefficient in front goes to zero.
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To construct a smearing function for ∆ = d − 1 we return to the mode expansion (A.35). As

a warm-up example take a massless field in AdS2 with ∆ = 0. The mode expansion is φ(t, z) =∫
dω aωe

−iωt cos(ωz). Then aω = 1
2π

∫
dt eiωtφ0(t) and

φ(t, z) =

∫
dt′
∫
dω

2π
e−iω(t−t′) cos(ωz)φ0(t′)

=
1

2
(φ0(t+ z) + φ0(t− z)) (A.37)

This clearly satisfies the wave equation (∂2
t − ∂2

x)φ = 0 and obeys the boundary condition φ(t, z)→

φ0(t) as z → 0. It can be written in the covariant form

φ(t, z) =
1

2

∫
dt′ δ(σz′)φ0(t′)

where σz′ = z2−(t−t′)2
2z .

We now consider the general case of a field with ∆ = d− 1. In any dimension solving for aωk in

terms of φ0 and plugging back into the mode expansion gives

φ(t,x, z) =

∫
|ω|>|k|

dωdd−1k
2νΓ(d/2)zd/2

(2π)d(ω2 − |k|2)ν/2
Jν
(
z
√
ω2 − |k|2

)
e−iωteik·xφ0(ω,k) (A.38)

Here ν = d
2 − 1 and φ0(ω,k) is the Fourier transform of the boundary field. The Bessel function

has an integral representation

Jν(a) =
1

√
π Γ
(
ν + 1

2

) (a
2

)ν ∫ π

0
dθ e−ia cos θ sin2ν θ (A.39)

or equivalently

Jν(a) =
1

√
π Γ
(
ν + 1

2

) (a
2

)ν 1

vol(Sd−2)

∫
|n|=1

dn e−ia·n (A.40)

Here a is a d-component vector with Euclidean norm a and n ∈ Sd−1 is a unit vector. Setting

a = z(ω,−ik1, . . . ,−ikd−1) and using

vol(Sd−1) =
2πd/2

Γ(d/2)
=

√
π Γ
(
d−1

2

)
vol(Sd−2)

Γ(d/2)
(A.41)
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this becomes

2νΓ(d/2)zd/2

(ω2 − |k|2)ν/2
Jν(z

√
ω2 − |k|2) =

1

vol(Sd−1)

∫
t′2+|y′|2=z2

dt′dd−1y′ e−iωt
′
e−k·y

′

Using this representation in (A.38) leads to‡

φ(t,x, z) =
1

vol(Sd−1)

∫
t′2+|y′|2=z2

dt′dd−1y′
∫
dωdd−1k

(2π)d
e−iω(t+t′)eik·(x+iy′)φ0(ω,k) (A.42)

We interpret the Fourier transforms in (A.42) as defining the analytic continuation of φ0(t,x) to

complex x. Thus the smearing function for a scalar field with ∆ = d− 1 is

φ(t,x, z) =
1

vol(Sd−1)

∫
t′2+|y′|2=z2

dt′dd−1y′ φ0(t+ t′,x + iy′) (A.43)

This can be written in a covariant form

φ(t,x, z) =
1

vol(Sd−1)

∫
dt′dd−1y′ δ(σz′)φ0(t+ t′,x + iy′) (A.44)

in terms of the bulk - boundary distance (5.6).

It’s clear that (A.43), (A.44) satisfy the correct boundary conditions. As z → 0 the integration

region on the boundary shrinks to a point, so we can bring the boundary field outside the integral

and recover

φ(t,x, z) ∼ zd−1φ0(t,x) as z → 0

One can also check that (A.44) satisfies the wave equation. Acting on a function of the AdS-invariant

distance σ, the wave equation (�−m2)φ = 0 reduces to

(σ2 − 1)φ′′ + (d+ 1)σφ′ −∆(∆− d)φ = 0

With a small fixed cutoff z′, the smearing kernel appearing in (A.44) is 1
z′ δ(σ). We want to check

that this is annihilated by the wave operator in the limit z′ → 0. To do this we act with the wave
‡The boundary field φ0 only has Fourier components with |ω| > |k|, so we can integrate over ω and k without

restriction.
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operator and integrate against a test function f(σz′) (the test function can be thought of as the

boundary field). For ∆ = d− 1 this gives

∫
d(σz′) f(σz′)

[
(σ2 − 1)

d2

dσ2
+ (d+ 1)σ

d

dσ
+ (d− 1)

]
1

z′
δ(σ)

=

∫
d(σz′)

1

z′
δ(σ)

[
d2

dσ2
(σ2 − 1)− (d+ 1)

d

dσ
σ + (d− 1)

]
f(σz′)

= −z′2f ′′(0)

This vanishes as z′ → 0, which shows that the wave equation is satisfied when the regulator is

removed.

A.5 Chern-Simons in holographic gauge

Our goal in this appendix is to quantize Chern-Simons theory in holographic gauge. We want

to show that we recover the bulk commutator (5.25) obtained in section 5.2.2.1 by applying our

smearing functions to the current algebra on the boundary.

We begin from the abelian Chern-Simons action§

Sbulk =

∫
d3x

1

2
κ εABCAA∂BAC

To obtain a right-moving current algebra on the boundary we supplement this with a surface term

[119]

Sbdy =

∫
d2xκA+A−

The surface term leads to a well-defined variational principle provided we impose the boundary

condition that A− is fixed (that is, δA− = 0) on the boundary.

In light-front coordinates one can integrate by parts to find (the surface terms cancel against

Sbdy)

Sbulk+bdy =

∫
dx+dx−dz κAz∂+A− + κA+ (∂−Az − ∂zA−) .

§Conventions: light-front coordinates are x± = t ± x. We take ε012 = +1 and relate the bulk and boundary
orientations by

∫
d3x ∂zf = −

∫
d2xf |z=0.
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We adopt x+ as light-front time [120] and read off the Poisson bracket [121]

{Az(x−, z), A−(x−′, z′)} =
1

κ
δ(x− − x−′)δ(z − z′)

A+ is a Lagrange multiplier that enforces the Chern-Simons Gauss law. Thus we have a (first-class)

constraint

χ1 = ∂zA− − ∂−Az ≈ 0 .

The constraint generates the expected gauge transformation

δAz =

{∫
dx−′dz′ λ1χ1, Az(x

−, z)

}
=

1

κ
∂zλ1

δA− =

{∫
dx−′dz′ λ1χ1, A−(x−, z)

}
=

1

κ
∂−λ1

To preserve the boundary condition δA−|z=0 = 0, we require that the gauge parameter satisfy

λ1|z=0 = 0. We wish to work in holographic gauge, so we impose an additional constraint (a

gauge-fixing condition)

χ2 = Az ≈ 0 .

The constraints obey

∆ij ≡ {χi, χj} =

 0 − 1
κδ(x

− − x−′)δ′(z − z′)

− 1
κδ(x

− − x−′)δ′(z − z′) 0


Acting on functions

(
λ1
λ2

)
this operator has zero modes, but as we will see the zero modes can be

eliminated by requiring

λ1(x−, z = 0) = 0 λ2(x−, z =∞) = 0

Then ∆ has a well-defined inverse,

∆−1 =

 0 −κδ(x− − x−′)θ(z − z′)

κδ(x− − x−′)θ(z′ − z) 0


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Note that ∆−1 is antisymmetric. One can easily check the basic property

∆−1∆

(
λ1

λ2

)
=

 λ1(x−, z)− λ1(x−, 0)

λ2(x−, z)− λ2(x−,∞)


which shows that ∆ is invertible given our boundary conditions. The constraints can be eliminated

by defining Dirac brackets. The Dirac bracket of Az with anything will vanish, while the Dirac

bracket of A− with itself is

{
A−(x−, z), A−(x−′, z′)

}
= 0− {A−, χi}∆−1

ij {χj , A−}

= −1

κ
δ′(x− − x−′)

Quantizing via {·, ·} → i[·, ·] reproduces the bulk commutator (5.25) and fixes the normalization

κ = 4π/k.
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