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We generalize the spectral sum rule preserving density matrix numerical renormalization group
method (DM-NRG) in such a way, that it can make use of an arbitrary number of local, compact
Lie group symmetries of a quantum impurity model. As one of its applications, we study the
Green’s functions of the highest-weight fields in the spin-half two-channel Kondo (2CK) model.
We use a conformal field theory based scaling approach to predict the analytic properties of
the various Green’s functions in the vicinity of the 2CK fixed point and confirm these predic-
tions by DM-NRG calculations. We also calculate the zero temperature, frequency-dependent
linear conductance of the double quantum dot device that has recently been built to justify the
existence of the 2CK states.



ii



Acknowledgments

I thank my colleagues from Budapest and Karlsruhe for several interesting discussions, and my
coauthors for fruitful collaboration.

I thank Prof. Gergely Zarand for the excellent topic. I am grateful to Prof. Gerd Schon for
his generous support and for the provision of appropriate work conditions. I would like to thank
Ilona Cseppkovi for solving my language related problems. I am grateful to Bertalan Horvath
for his help in getting hold of high quality lecture notes every time I asked for them. I thank Dr.
Catalin Pascu Moca for the mutual work (actually Fig. Bl was prepared by him), Dr. Valentina
Brosco for explaining me about single electron devices. I thank Béla Téth for managing the
printing. I thank Prof. Janos Kertész for his support and Dr. Daniel Hermann for his expert
help with computer related matters. 1 am grateful to Dr. Eszter Szeg6 for her good ideas. 1
appreciate George Matrai’s good advice.

This work has also been supported by Hungarian grants OTKA nos. NF061726, K73361,
NK63066 and by the Landesstiftung Baden-Wiirttemberg via the Kompetenznetz Funktionelle
Nanostrukturen.

iii



Acknowledgments

v



Contents

B Symmetries and the density matrix-NRG
B.1 Svmmetries in NRA . . . . ...
[3.1.1  Svmmetries of the one-channel Kondo model . . . . . . . .. .. .. ...
B.1.2  Svmmetries on the Wilson chaid . . . . . . o v v
[3.1.3  The role of symmetries in the diagonalization procedurd . . . . . . . . ..
B.2 Density matriseNRA . . . . . .
[3.2.1  Complete basis on the Wilson chaitl . . . « . v v v oo e
[3.2.2  Reduction of the density matrix using symmetried . .. ... ...
[3.2.3  Spectral function computation with DM-NRQ . . . . . . . . . .. .. ...

U24  Twochannel Kondo effect in a double dot systend . . . . . . . . . .. . ..
U3  Dvnamical correlations in the two-channel Kondo model . . . . . . . . . . . . ..
U311  Operator spectrum of the 2CK fixed pointl . . . . . . . o o o oo i i

© o 3~

10
13
16
18
18
19

23
23
23
25
27
30
30
31
33
34
38

41
41
43
43

47
50
52
52
99



Contents

U 3.4 Spin spectral functions and susceptibilitied . . . . . . . . . . . . . ... ..
RN Slmer(‘onducting_melaﬁ_onﬂ .........................
U.36  Electron-hole symmetry breﬂkiné .......................
W38 Summard . . ...

vi

69

95

99

101

117



1 Introduction

We study strongly correlated electron systems due to their central importance in condensed
matter physics. These systems involve a large number of degrees of freedom that interact in
complicated ways. It is extremely challenging to resolve their properties since descriptions
based on single-particle pictures and non-interacting models are usually inadequate. Prominent
examples of strongly correlated electron systems are high-temperature superconductors [, 2],
heavy fermion materials [3, 4] and electrons in fractional quantum Hall states [B].

Even under such complicated circumstances sometimes it is possible to identify the relevant
parameters that describe the physics at a certain length scale and relate them through so-called
scaling laws. These laws cover e.g. the power-law dependence of thermodynamic quantities on
the distance from a critical point, and help understand robust, universal features of experimental
data observed under varying circumstances. Markedly different models may also display similar
universal features that are insensitive to the microscopic details of the interactions and depend
only on the number of dimensions, on the model symmetries, etc.

Scaling laws can be derived using Renormalization Group (RG) methods. RG methods are
techniques to calculate averages over configurations of many degrees of freedom in cases when
characteristic length scales are not important in the problem. Such situations arise e.g. at
continuous phase transitions or in certain field theories [6]. A common feature of all RG methods
is that they transform the model parameters, while keeping the physical properties fixed at a
certain length scale. Successive transformations define a trajectory in the parameter space. The
existence of fixed points of the RG transformations and the near fixed point behavior is used to
explain the universality observed under differing conditions.

At continuous phase transitions, fluctuations appear on every length scale, i.e. the maximal
wavelength of fluctuations, the so-called correlation length becomes infinite. Such phase transi-
tion occurs e.g. at the liquid-vapor critical pointﬂ Here, critical opalescence can be inspected as
an accompanying phenomenon. It is due to the fact that at the critical point fluctuations can
be found in the state of the system between the two phases on every length scale, and so on the
wavelength of light as well. These fluctuations and a difference between the refraction indices of
the two phases lead to the scattering of light. Long or short wavelength fluctuations do not play
special role at these transitions, rather fluctuations at all wavelengths contribute to the critical
phenomena.

The lack of characteristic energy scale is also encountered in quantum field theories at the
evaluation of Feynman diagrams when integrating over intermediate states. In many cases,
integrals of the [ % kind appear, where all orders of magnitude range of energies contribute
the same, finite amount to the integral.

In 1949 Dyson showed that quantum electrodynamics (QED) is renormalizable, i.e. UV diver-
gences can be eliminated from the diagrammatic expansion of almost every, so called physical

'Further examples are the Curie point of a ferromagnet, or the superfluid transition in *He.
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quantitiesﬁ in all orders of perturbation theory [§]. This has been accomplished by the intro-
duction of the concepts of bare and renormalized electron charge and mass, and electron and
photon field strengths in addition to using a regularization scheme to render divergent loop in-
tegrals finite. A field theory is called renormalizable if there are only a finite number of physical
quantities that diverge when removing the regularization. The bare parameters of a theory are
the couplings of the original Lagrangian. Renormalized parameters are observable quantities,
like the electron mass measured at a chosen length or energy scale. The predictions of the
theory need to be independent of the choice of this length scale called the normalization point
or the renormalization condition. In other words, bare Green’s functions must remain the same
functions of the bare couplings and the cutoff for any choice. As the bare and the renormalized
Green’s functions are the same up to some renormalized field strength factors, certain relations,
called the Callan-Symanzik equations [9, 0], can be derived for the renormalized Green’s func-
tions. These equations have many implications. One of them is that interactions can generate
scales and cause the fields to acquire new dimensions even though a bare Lagrangian could have
been scale invariant (i.e. containing only dimensionless couplings) [IT].

Special invariance properties of certain field theories were recognized already in 1953 by
Stueckelberg and Petermann [[2]. One of the early forms of perturbative RG methods has
been applied to QED [I3]. It relies on its renormalizability and corresponds to summing up
the leading logarithmic terms, o log™ (E' /) that appear in all orders, n of the renormalized
perturbation theory, (with E the energy characteristic of the process and p the normalization
point where the values of the renormalized couplings are known). This method leads to renor-
malization group equations which determine the change in the renormalized coupling constant
due to a small change in the chosen normalization point, .

This perturbative form of RG applies only to models which can be treated by means of
diagrammatic expansion, where only a few diagrams are important, like in QED. In this formu-
lation, suited for weak coupling, the contribution of fluctuations coming from all length scales
and their coupling cannot be fully appreciated.

In the sixties Kadanoff worked out the scaling theory of critical phenomena [T5] (see also
Refs. [I6, 7, 18]). He realized that grouping together degrees of freedom at the critical point
induces transformations on the Hamiltonian and on the statistical ensemble, but it does not
change the overall physical picture on larger length scales. Successive applications of the trans-
formation eventually probe the large distance/low energy properties of the system. Kadanoff
derived scaling equations for correlation functions through the application of block spin trans-
formations. His method works for lattice models defined in real-space in contrast to momentum
space approaches that are used in general in the field theoretical formulation of RG.

It is difficult to carry out exact RG transformations, as e.g. block spin transformations in two
dimensions, nevertheless there are a few approximation schemes like the e-expansion [I7]. It is
also a perturbative form of RG for critical phenomena and can be solved in dimension d = 4 — ¢
with € small.

In low-dimensions, the study of strongly correlated systems is aided by other powerful ap-
proaches like integrability or conformal field theory [I9, 20] besides RG methods.

In this dissertation RG methods are used to deal with special types of low-dimensional systems
showing strong correlations, called quantum impurity models. Such models describe interactions
between local degrees of freedom — like a spin — and a continuum of extended states — as e.g.

2For a discussion see e.g. Ref. [7].
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a conduction electron band. Their prototypes are the Anderson and the Kondo models. These
models account for several experimental findings like the resistance minimum and power law-
like behavior observed in non-magnetic metals in the presence of magnetic impurities. More
recent experiments exploring Kondo physics take place in mesoscopic systems with reduced
dimensionality such as thin films and wires of dilute magnetic alloys, metallic point contacts,
nanoscopic electronic devices like quantum dots, etc.

We mainly focus on the spin-half two-channel Kondo (2CK) model which is the simplest
variant of overscreened multi-channel Kondo models that exhibit non-Fermi liquid properties.
These properties cannot be described in terms of weakly interacting quasiparticles. Non-Fermi
liquid phenomena have been observed in a number of strongly correlated systems, e.g. in heavy
fermion materials [21), 22, Bl @]. Examples for concentrated heavy fermion compounds are UBe;3
and CeCusSiy. In these systems magnetic impurities, such as f-shell local moments of rare-
earth or actinide ions are immersed in a conducting host. Non-Fermi liquid quantum impurity
models are expected to be relevant in their description. Another type of systems where NFL
physics can been observed are single electron devices. Recently a double dot system has been
designed and built to justify the feasibility of the two-channel Kondo state [23]

Further motivation for the investigation of quantum impurity models is that it is the starting
point to understand more complex, strongly correlated systems in the framework of Dynamical
Mean Field Theory (DMFT) [24]. DMFT is a tool for the investigation of lattice models like
the Hubbard or the Kondo lattice models. It is able to handle strong electron correlations as it
was demonstrated e.g. through various three-dimensional materials displaying Mott-transition.

The solution of quantum impurity models for low-energies was a major issue in theoretical
condensed matter research and led to the development of various non-perturbative techniques.
One of them is the Numerical Renormalization Group (NRG) method developed by Wilson
around 1975. NRG not only solves the strong coupling limit of these models but it also accounts
for the weak coupling and the crossover regions. It is still possibly the most reliable and versatile
method for studying quantum impurity models, and its influence over the development of other
methods is significant.

In this dissertation we present some results of our research carried out in the past four years.
It is accompanied by an extensive introduction to NRG in Chapter Bl, and a brief overview of
the low-temperature transport properties of single electron devices in Chapter H

Our first research project, discussed in Chapter Bl was motivated mainly by the ever increas-
ing interest in understanding the characteristics of nanoscopic electronic devices that can be
described by quantum impurity models. As a natural extension contributed to recent efforts
improving the accuracy of the NRG calculations, we have generalized the spectral sum rule pre-
serving density matrix numerical renormalization group (DM-NRG) method in such a way that
it can make use of an arbitrary number of local compact Lie group symmetries that a quantum
impurity system may possess.

Based on the above, we have developed a flexible DM-NRG code [25], 26] that can easily be
adapted to the problem of interest and could make use of an arbitrary number of compact Lie
group symmetries. We demonstrated that the use of non-Abelian symmetries is advantageous
for reliability and performance reasons.

As one of the applications of our code, in Chapter Hl, we study the Green’s functions of the

3For further details on non-Fermi liquid physics and single electron devices see Section EZIl and Section EZ2,
respectively.
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highest-weight fields in the electron-hole symmetrical spin-half two-channel Kondo (2CK) model.
Even though this model became paradigm for describing non-Fermi liquid physics, so far little
has been published about its dynamical properties. Up to this date, these properties can be
reliably computed for the whole frequency range only with NRG. Nevertheless, in the vicinity
of the 2CK fixed point a conformal field theory based scaling approach can be used to predict
the analytic properties of the various Green’s functions. We confirmed all of our predictions by
DM-NRG calculations.

This dissertation is organized as follows:

Chapter Bl is an introductory chapter that does not contain any new results. In this chapter
we introduce the Kondo and Anderson models and talk about the Kondo problem. After a brief
discussion on scaling, we give a detailed analysis of the numerical renormalization group. It
means that this part involves all the formulas that are necessary to understand NRG and to
write an NRG code. We have added this summary for clarifying the values of all the constants
appearing in the calculations and to be able to use it as source of reference.

In Chapter B it is shown how symmetries appear in the NRG calculations and also present the
density matrix numerical renormalization group method from the point of view of symmetries.
This part contains the following new results: the generalization of the recursive steps in NRG for
an arbitrary number of local compact Lie group symmetries of a quantum impurity system, and
the generalization of the density matrix numerical renormalization group method for the case of
non-Abelian symmetries. The importance of symmetries is demonstrated through calculations
for the two-channel Kondo model.

Chapter H is devoted mainly to the study of the two-channel Kondo (2CK) model. First we
analyze its importance in the description of non-Fermi liquid phenomena. Then we make a
short detour to discuss the low energy transport properties of single electron devices, and in
particular the observation of the one- and two-channel Kondo effects in quantum dot systems.
Afterwards we present a detailed analysis about the dynamical properties of the 2CK model.
This part contains the following new results: Using conformal field theoretical methods we have
classified the boundary highest-weight fields of the electron-hole symmetrical 2CK model at the
2CK fixed point, just as the relevant and leading irrelevant perturbations to the fixed point
Hamiltonian according to the symmetry group SUc1(2) x SUg2(2) x SUg(2). Here C1, C2
are referring to the charge (or flavor) symmetries in the two channels, whereas SUg(2) denotes
the spin SU(2) symmetry of the system. Such classification has already been carried out but
with using a different symmetry group [27]. As it is demonstrated in Chapter B the choice of
the symmetry group is crucial in the DM-NRG calculations.

Based on simple scaling arguments and conformal field theoretical considerations the highest-
weight field can be expanded in terms of the operators of the free theory. Moreover the analytic
properties of the universal scaling curves can be determined in the asymptotic regions. In all
cases, our DM-NRG calculations reinforced our analytic expectations for the universal scaling
curves. We have computed the universal scaling curves connecting the 2CK scaling regimes and
the channel anisotropy or magnetic field induced Fermi liquid scaling regimes. We have found
that the boundaries of the various 2CK scaling regimes depend not only on the type of the
perturbation but also on the operator investigated. In small magnetic field, a universal resonance
has been observed in the local fermion’s spectral function. The dominant superconducting
instability was found in the composite superconducting channel, just as it was anticipated in
Ref. [28]. This latter observation could be relevant for multi-impurity heavy fermion systems.



1 Introduction

In this chapter we also study the zero temperature, finite frequency transport properties of the
double quantum dot device that has recently been built to justify the feasibility of the 2CK
states.

In Chapter Bl the dissertation is concluded by presenting the thesis points.

Four appendices are attached to this thesis:

Appendix [Al contains the definition of the retarded Green’s function and related notions.

In Appendix [B we discuss how to deal with energy-dependent density of states in the NRG
calculations.

In Appendix [ we show how to initialize the one-channel Kondo model for the NRG cal-
culations using the group SUg(2) x SUx(2), with S and C referring to spin and charge,
respectively.

In Appendix [D] using group theoretical tools, we prove that the reduced density matrix is
diagonal in the representation indices in case when the local symmetries of the quantum impurity
model are direct products of SU(2) groups.

The new results of my research are presented in Sections BT3 B22 B2Z3 B3, EITHEIT
and in Appendix [
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2 Scaling & numerical renormalization group
for quantum impurity models

In this chapter we give an introduction to two notions which are closely linked and most fre-
quently referred to in this the thesis. The two main concepts are (a) scaling and (b) Numerical
Renormalization Group (NRG). This chapter does not contain any new results. It is organized as
follows. In Section EZIl we describe the 1-Channel Kondo (1CK) problemﬁ which motivated the
development of NRG [30], and introduce 1CK Hamiltonian. In Section we do the same for
the Anderson model and discuss some link between these two models. Section offers a brief
introduction into the poor man’s scaling approach as applied to the Kondo model. In Sec. 24
succeeds a detailed description of NRG. We show how the Anderson and the 1CK Hamiltonians
are mapped onto the so-called Wilson chain to make them amenable to an NRG analysis.

2.1 The one-channel Kondo problem

Originally the one-channel Kondo problem was concerned with the influence of magnetic im-
purities in a non-magnetic metal, and in particular with the low-temperature behavior of such
systems. These questions are interesting since, as was found experimentally, even small im-
purity concentrations can have substantial impact on the low-energy system properties. Such
impacts include a minimum followed by an anomalous increase in the resistance with decreasing
temperature. This phenomenon was revealed already in 1934 in measurements on Au samples
[B1] but its origin had remained obscure for 30 years. It could not have been attributed either
to the scattering of electrons on each other, or on phonons, or even to their potential scatter-
ing on structureless impurities. Such possibilities have been ruled out as these processes imply
a resistance that increases monotonously with the temperature. Among others, susceptibility
measurements made the localized moments suspicious as the cause, and the first explanation
came from Kondo [32]. He calculated the scattering probability of the conduction electrons up
to second order in perturbation theory using the s-d interaction, also called the one-channel
Kondo model, assuming a weak, antiferromagnetic exchange coupling, J > 0 between an im-
purity spin, S localized at ¥ = 0 and the conduction electron spin density at the place of the
impurity

Hicx = JSU(0)5,,7,(0), (2.1)

with p,v the spin indices and & denoting the Pauli matrices. The W, (7)’s are electron fields
obeying anticommutation relations

{\IIL (7), W, (F')}+ = G(F—7) G - (2.2)

!See e.g. Hewson’s book [29] for a review.
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Kondo’s calculations agreed with the experimental findings on the logarithmic temperature de-
pendence of the resistivity and on the impurity concentration dependence of the resistance min-
imum. To extract one-channel Kondo behavior small impurity concentration is needed (around
or less than 0.01% of impurity atoms). Examples for experimentally well-studied bulk dilute
magnetic alloys are Cr/Mn/Fe in Cu, Vn in Au, Ce in LaAly or in LaBg .

Lately the focus of studies has shifted towards mesoscopic systems of reduced dimensionality,
as the following examples show. The emergence of Kondo physics has been investigated in the
context of thin films and wires of dilute magnetic alloys [33, B4, B35, 36l B7, BY, B9, 40, AT]. It has
also been used to explain the scanning tunneling microscope spectra of single impurities absorbed
onto different metallic surfaces (see e.g. H2, U3, H4L U5, U6]), just as the zero-bias anomaly in
metallic point contacts [A7, B8, B9], and the behavior of the dephasing time of electrons at low-
temperatures (for references see e.g. [B0]). Kondo physics has also been observed in quantum
dots, which are nanoscopic devices that permit the controlled study of various strongly correlated
phenomena via transport measurement. This latter topic is discussed in more detail in Chapter
2|

Beyond the above, in the Kondo model an excellent breeding ground has been found for many
concepts of physics. In this thesis we mainly concentrate on scaling and renormalization.

At low-temperatures there are strong effects because of the presence of a spinful impurity. Due
to them some decades ago it used to be a great theoretical challenge to predict the system prop-
erties. Although the coupling J is weak, yet perturbation theory cannot be pursued at low tem-
peratures since in each order n of the perturbation theory terms of the form o log"(Dp/kpT)
(with Dp the conduction electron bandwidth) appear in the diagrammatic expansion. The
value of the effective coupling, which characterizes the given energy (or temperature) scale, can
be obtained by summing up the leading logarithmic terms in all orders of perturbation theory.
This effective, energy dependent coupling is called the running coupling constant.

2.2 The Anderson model

The Anderson model was introduced in 1961 [5I), 62| to investigate the conditions needed for
the appearance of localized magnetic moments in metals, but lately its relevance has also been
recognized in the description of transport through quantum dots (see Chapter H) and in the
context of dynamical mean field theory [53].

We start with the following form of the three-dimensional, single-impurity Anderson Hamil-
tonian

Ha = HE™ + MY+ HYy, (2.3)
with
M = > e(k) el (k) ¢, (k) (2.4)
3
MYy = egdid, + Udl deldl, (2.5)

MY, = Z( 7 d, +hc>, (2:6)
P



2.3 Poor man’s scaling approach

where H¥" is the conduction electron kinetic energy with the dispersion E(E) = E(E) — €
measured from the Fermi level ep, and CL(E) creates a spin-y conduction electron with a
wavefunction o exp(z’Ef’). Eq. ([Z3) is the impurity part with €; the energy of the localized
level also measured from ep, ¢; = FEy — ep. The localized level can be occupied by localized
electrons with two kinds of spin orientation created by dL, whereas the second term describes
the Coulomb repulsion between d-level electrons. The d-level and the free electrons are coupled
through a hopping term with the amplitude t(E) , as it is expressed by the tunneling part H’A .
Repeated spin indices (p) are to be summed over {1, |}. The conduction electron operators are
normalized to anticommute in such a way that

{CL(E)7CV(E,)}+ - 5M,V 5];’7];/ ) (27)

whereas
{cﬂ,d}+ -1, (2.8)

and the localized and conduction electron states are assumed to be orthogonal to each other.
Based on the average d-level occupancy, (ng) = <dL du> , we can distinguish four different

types of parameter regimes [29]. The local moment regime, also called the Kondo regime, is
characterized by (ng) = 1 and by the relations

EFy<er < Eg+ U, A < eql, |lea + U, (2.9)
where A(e) = WZ |¢(k)[26(e — e(k)) is the hybridization parameter, that describes the d-
k

level broadening due to the tunneling between the d-level and the conduction electrons. This
regime can be described by an effective Kondo model and additional potential scattering [54, bA).

Another magnetic regime is called intermediate valence regime. It occurs when E; or E;+ U
get within a distance of &~ A from the Fermi level, er. Then the charge fluctuations within
the d-level become important, and (ng) is no longer 1 but neither 0 nor 2.

Thus the above conditions imply the occurrence of a localized magnetic moment, that Ander-
son was looking for using the Hartree—Fock approximation [o].

There are two non-magnetic regimes as well, the doubly occupied and the empty orbital
regimes with (ng) = 2 and 0, respectively, occuring when E; + U is far below the Fermi
level or E, is far above it.

The different regimes have first been looked into in detail in Ref. [56] using the numerical
renormalization group (see Sec. ).

2.3 Poor man'’s scaling approach

The poor man’s scaling approach was introduced in 1970 by Anderson [57, 29] to derive the
low-energy properties of the Kondo model. The idea of this method is that these properties are
not affected if we reduce the conduction electron bandwidth, Dp — D = Dp — A D in small
steps, A D, and the effect of scattering into the high-energy excited states, that is into states
near the band edges in the ranges [ep + D, ep + Dp| and [ep — D, ep — Dp], is taken into
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account in the renormalization of the exchange coupling, J. Considering only second order
scattering processes, this redefinition of the exchange coupling leads to the scaling equation

dJ(D)

1oz (D) —2pJ*(D), (2.10)

with p the conduction electron density of states assumed to be constant (see Eq. [Z30)). This
equation can be integrated to yield
J (Dr)

JD) = 1+ 2pJ(Dp)log(D/Dp)’ (2.11)

The form of J(D) suggests that below a certain energy scale this perturbative description looses
its validity as J(D) becomes infinitely strong. The point, where the divergence sets in, is called
the Kondo temperature, Tk . Up to second order in .J, it is approximated by

kB TK = DF exp{— 1/ [sz(DF)]} . (212)

The relevant energy scale is the temperature, kg T and the perturbative scaling approach works
down to energies D ~ max(kpT, kpTk). Eq. ZI0) describes trajectories on the (D,J)
plane. For pJ < 1 each trajectory is characterized by a single parameter, Tk which is thus
scaling invariant. Points of the trajectories correspond to different systems that have a universal
low-energy behavior in common.

The same approach has also been applied to the Anderson model [58], which is a more com-
plicated problem in that it involves the renormalization of more model parameters.

As it is based on a weak coupling expansion, the poor man’s scaling approach is successful
only in energy domains higher than kp Tk , but not suited for treating the strong coupling limit.
Its significance lies in that the same scaling ideas combined with a non-perturbative approach
led to solution of the Anderson and Kondo models in the strong coupling limit, as we will shortly
see it in Section 2241

2.4 Numerical renormalization group

The numerical renormalization group is a non-perturbative RG technique, applicable to quan-
tum impurity models and carried out numerically. It was devised by Wilson in the seventies
[B0] to overcome the shortcomings of analytic scaling approaches [59, 60, B7] that brake down
once the amplitude of a relevant interaction becomes so large that it can no longer be treated
perturbatively. These approaches are not good enough to solve the Kondo model in all the
strong-, weak-coupling and crossover regimes simultaneously. Wilson’s NRG was not only the
first to describe all these regions, but up to this date it remained possibly the most reliable
and versatile quantum impurity solver. There are many alternatives to NRG, like the Bethe
ansatz [61), 62, 63, 64], boundary conformal field theory [27, 65], Abelian bosonization [28], the
Yuval-Anderson [66] 67, 68] and the poor man’s scaling approach [57], perturbative calculations
[69, B9, 60], the Fermi liquid theory [Z0], the non-crossing approximation [71], [[2] or other large-
N expansions [73], to name some of the most prominent ones. Apart from being very useful as
these methods approach the problem from an analytic angle and contribute considerably to the
understanding of quantum impurity physics, yet every method other than NRG has a narrower

10
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Figure 2.1: The Wilson chain.
The impurity, represented by the
circle on the left, couples only

..... a=1 to the zeroth sites of the chains,
tny stands for the hopping am-
plitudes between adjacent sites
that decrease exponentially with
the distance from the impurity.

_____ a =2 The number of independent de-
grees of freedom is d at each
site.  Different chains, distin-
guished by the index «, corre-
spond to different types of elec-
trons.

domain of applicability, i.e. can be applied only to a subrange of models, or to restricted regions
in parameter space, or it is appropriate only for the calculation of certain properties.

Next we outline how NRG works so that it is possible to appreciate better the achievements
listed afterwards. A detailed analysis of NRG is presented in the next subsections: ZZTHZ A

To make a model amenable to NRG, first it is mapped into one dimension (1D) in energy space.
Then, by choosing a discretization parameter A > 1, comes the logarithmic division of the con-
duction band into slimmer and slimmer intervals around the Fermi level: 4+ Dp [A*(”“), A*"]
(with Dp the conduction bandwidth and n € Z%). To replace the continuum of electron
states by a discrete set with countably infinitely many states, in each interval a new electron
operator basis is introduced by means of a Fourier series expansion. This expansion is the rea-
son for calling this part of the procedure “(logarithmic) discretization”. Those electron states,
that do not couple directly to the impurity, are neglected. These are the states, which are far
from the impurity in position space and from the Fermi surface in momentum space. A unitary
transformation takes the remaining degrees of freedom into a basis where the conduction elec-
tron kinetic energy assumes a hopping form with exponentially decreasing hopping amplitudes
between adjacent sites along a 1D chain, the so-called Wilson chain. This situation is depicted
in Fig. 2Tl where the possibility of having more chains, each corresponding to different types of
electrons, is also included. The chains couple only through the impurity, and are distinguished
by the index a.—Recently there have been attempts to study impurities in a bosonic bath by
applying NRG to Hamiltonians which are not of hopping form, that is omitting the last step of
the transformations. This goes under the name of star-NRG [4}, [75].—On the Wilson chain the
impurity interacts only with the zeroth electron state sitting at only the zeroth site of the chain.
This state is the possible most localized state at the impurity while still being in the conduc-
tion band. The subsequent states, corresponding to subsequent spherical layers surrounding the
impurity, increase in width and consequently their momentum spread decreases.

The first step of the NRG procedure is solving the part of the hopping Hamiltonian which
contains only the impurity and its coupling to the zeroth site. Each consecutive step consists in
taking into account the coupling to electrons one site further away from the impurity. Due to

11
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the exponentially decaying hopping amplitudes, by diagonalizing the subsequent Hamiltonians
we can resolve the system properties at ever decreasing energy scales as new sites are consid-
ered. The knowledge of the energy spectrum and the eigenstates makes it possible to calculate
thermodynamic properties [30], and, as it has become clear only later than the first applications
of NRG, it can also be used to compute dynamical quantities [76l, [77, B3| [78, [[9, 80]. Such a
quantity is e.g. the Laplace transform of the retarded Green’s function, defined by

/_ZGﬁ,B(t)eitht = —%/OOOTr {@ [A(t),B(o)L} et | (2.13)

G},},B(z)

where [A’B]g = AB — SBA with & = £1 for bosonic/fermionic operators and ¢ the equilib-

rium density matrix. (Further explanation about the spectral and Green’s functions is inserted
in Appendix[Al) In NRG G]j, p(z) can be computed for local operators. Local means that they
act only at the impurity or nearby sites. A detailed discussion of how to calculate Gf}, p(2), ie
what the natural basis is for the evaluation of the trace and what approximations are involved,
is presented in Chapter Bl and in particular in Subsection

The Hilbert space grows exponentially with the inclusion of extra sites by a factor of d at each
step (with d the dimension of the local Hilbert space at the added site). This growth poses a
problem in the numerical calculations. Due to this at each step, a part of the high-energy states
are discarded. This truncation, just as the omission of certain states and thus certain terms from
the Hamiltonian introduce systematic errors into the calculations. Remarkable improvements
dated from the nineties to enhance the precision of NRG calculations, are the interleaving
or z-averaging, which is an improved discretization scheme [RI, B2]; and the self-energy trick
for the calculation of Green’s functions [83]. An alternative discretization with the use of an
overcomplete basis has been proposed recently [84]. Its application can be advantageous for
models with more than one impurity. Another very recent proposal to achieve better resolution
at high-energies is described in [85].

Recent important conceptual advances in the field of calculating dynamical quantities are the
Density Matrix-NRG (DM-NRG) algorithm [86] and the use of a complete basis on the Wilson
chain [87]. This latter concept was originally introduced to study time-dependence, and it was
found out only recently that by using it in combination with the reduced density matrix, very
precise, spectral sum rule preserving spectral functions can be computed [88, 89, [02]. Further
innovations were the incorporation of non-Abelian symmetries into DM-NRG [0} @], which is
the subject of Chapter Bt and the scattering state NRG formalism for the study of finite-bias
steady-state situations [I00].

The scope of NRG includes an exceptionally wide range of models. Originally it has been
applied to the 1-Channel spin-half Kondo (1CK) model [30], but soon it was extended to deal
with the one-channel spin-half Anderson model [b6]. Furthermore it was used to study the
superposition of potential scattering and the 1CK model [92), 93], [@1], the spin-one and spin-3/2
Kondo models [94, 03] e.g. for finding the right spin model for Fe impurities in Au and Ag.
Applications include the 2-Channel spin-half Kondo (2CK) model |96 [[T0, 65, @1 as well as the
two-impurity Kondo [T106, 107, [[26] and the two-impurity Anderson models [125] [[27], that are
basic patterns for describing non-Fermi liquid (NFL) physics (see Chapter H). Even clusters of
three-impurities have been considered [I28],[129]. The domain of NRG now also covers impurities
coupled to a local phonon mode, such as the Anderson—Holstein model [T30), 31 32, 133],
impurities in bosonic baths [74 [75], such as the spin-boson model, and the Bose-Fermi Kondo
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2.4 Numerical renormalization group

model with coupling both to a fermionic conduction band and to a dissipative bosonic bath
34}, [T35].

In the past ten years NRG became increasingly popular for with the development of nan-
otechnology it has got feasible to create tunable mesoscopic devices which made a way to the
thorough examination of strongly correlated phenomena. Such devices are quantum dots in
various setups coupled to normal, superconducting, spin-polarized, etc. leads which can be de-
scribed by quantum impurity models. Several NRG calculations of transport through quantum
dots have appeared [I36], [37, [T40] (for more references see e.g. [I38], [17]). Further details on
this topic can be found in Sec.

Lately the application of NRG in the framework of Dynamical Mean-Field Theory (DMFT)
[24] has turned into an active field of research. DMFT is a tool for the investigation of lattice
models like the Hubbard or the Kondo lattice models. These models are interesting in as much
as they can provide a clue e.g. to the understanding of high-7,. superconductivity [I, ], or
explain the behavior of heavy fermion compounds [, B]. DMFT maps the lattice model onto
an effective impurity model which is then to be solved self-consistently. For its flexibility and
high resolution at low-energies, NRG is becoming more and more popular as the impurity solver
in DMFT studies [120), 211, 24, [122] [123], [1[24], 139, 85]. Another exciting new direction is the
cluster dynamical mean-field theory (CDMFT) [I41] that maps the lattice model onto a cluster
of impurities. CDMFT outgrew from the need to resolve not only temporal but also spatial
correlations in lattice models, a possibility which is ruled out in DMFT. CDMFT combined
with NRG is a promising candidate for providing better resolution than present CDMFT studies
that use e.g. exact diagonalization [I42), M43] for solving the periodic two-impurity Anderson
model. This is one of the simplest models that can capture the competition between the Kondo
screening of the localized moments by conduction electrons and their ordering due to the so-called
Ruderman—Kittel-Kasuya—Yoshida interaction, and thus might give insight into the properties
of Kondo lattice models and possibly to heavy fermion physics.

2.4.1 Reduction from 3D to 1D for the Anderson model

This part contains the derivation that leads from the three-dimensional (3D) Anderson impurity
Hamiltonian defined in discrete k-space to a one-dimensional (1D) form in continuous energy
space. This 1D form is the starting point of the next two Subsections, and ZZ3] where
via approximations and unitary transformations we obtain the Hamiltonian which appears in
the NRG calculations. The derivation presented is largely built on Ref. [B6].

Eq. [Z3) is equivalent to the form

L U U 2
+ Z e(k) cL(k) c, (k) + <ed + 5) deﬂ + 5 <de“ - 1)

+ 2 <W¥) cl(k)d, + h.c.> . (2.14)

k
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2 Scaling & NRG

In going from the lattice to the continuum limit we make the substitutions:

1%
% — /d?’k @ (2.15)

e B = i), (216)

with V' the volume of the system. After dropping the constant term from the impurity part of
Eq. (ZI4) these substitutions lead to

Ha = /d3ke(1€) Wi (k) v, (k) + <ed—|—%> did, + v (deu—1)2

2
+ 1/#/&% (4F) vld, + he) , @17)
with
{vlB), v, ()}, = b oF = B). (2.18)

Now we expand ¢ﬂ(l€) in terms of spherical waves adl

DulF) = 3 g, (B YR (221)
l,m,p
o) = [ 0y i) v (D), (222)

where Ylm(l;:) are the spherical harmonics with k and k the direction and the length of E,
respectively, and df}; is the integral measure on the unit sphere with the normalization

/ dS); = 4m. These relations imply that

{a;rmu(k)7 al’m’u(kl)}+ - 51,1’ 5m,m’ 5u,u 5(k7 - kl) . (223)

2 From the Fourier transform of (k)
0 = [ expEn) v, (2.19)
aimu (k) can be expressed as
aimp(k) = /Oodr r? ki (kr) il47r/dQ,a Y (7)) U, (7), (2.20)
0

with j;(kr) the spherical Bessel functions of the first type [I[04] and # and r are the direction and the length
of 7, respectively. The general form of the functions j;(kr) allows the appearance of the factor 1/k in Eq.

&2
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2.4 Numerical renormalization group

Now we make a transition to an isotropic dispersion relation: e(k) — e(k) = e(|k|) and
hopping: t(k) — t(k) = t(|k|) . These assumptions reduce the terms of the Hamiltonian to

/ &k e(k) Y}(k) ¥, (k) = > / dk (k) af,,, (k) ay, (k) , (2.24)
lm
,/ /d3 nes +hc) \/;/dkk(t( k) ab, (k) d, +hc).

(2.25)
Here we have used the explicit from 1/v/47 of Y. From now on we deal only with the s-channel
part of the kinetic energy. We also pass over to work in energy space by introducing

(k)] 1/2
aple) = [dd(:)} aoou(k) , where € = €(k), (2.26)
thus
-1
{al@, e}, = Gus [d;(:)] Sk —K) = ole — ). (2.27)

As we are interested in the low-energy properties of the system, we impose a UV cut-off
by considering only energies in an interval of 2Dp length around the Fermi level, E(k) €
er — Dp, ep + Dp|. This interval is the conduction band, and D is called the bandwidth.
This way we obtain the forms

D

/dk: e(k) a:g(]u(k) agou(k) = /dk (k) ok aL(e) a,(e) = / de € aL(e) a,le), (2.28)

s
\/7/dk:k: al(k) d, + hc>
_ \/;/dkk <t(k) (diz(:)>1/2 al(e) d, + h.c.>

= [ e (10 afi d, + he) 229)

—-Dp

on applying the definition of the conduction electron density of states (DOS)

6) = %5(6 — E(E/)) — (;/)3 /d3k/6 <€ _ E(EI)) _ 2_‘7:2 12 [d;(:)

s

1
] . (2.30)
e(k)=

To further simplify the situation we ignore the energy-dependence of p(e) and t(e) and replace
them by their values at the Fermi surface: p = p(0) and t = ¢(0) Ep Furthermore we start to

3The energy-dependence of p(e) and t(¢) can also be taken into account in the NRG calculations, as it is shown
in Appendix
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2 Scaling & NRG

A(k)

/_\ \/ Figure 2.2: Logarithmic partition-

ing of the conduction band and a
hybridization function.

-1 A CATAR A A Al 1k

measure energies in units of the bandwidth, Dp, by changing € to £ = ¢/Dp and using the
operators a,(€) = /Dy ay(e) which makes {af(€), a(€')} = §(€ — &) . In terms of these

operators the dimensionless version of the Hamiltonian is
Ha ! i 1 U\ U (. 2
- U d€ € a(€) a,(€) + p—|cat 5 | dudy + 55~ (dudu

—1
. <%>1/2/11d5 (af(€) dy + h.c.)] . (231)

with A = 7 pt? the hybridization parameter introduced earlier.

2.4.2 Logarithmic discretization

Let us divide the &-space interval [— 1, 1] into a sequence of intervals as in Fig. 22 The n'*
interval for positive &’s is (A_(”+1), A_"] with A > 1 the discretization parameter. Now let
us define in each interval a complete set of orthonormal functions, the sine and cosine functions
with appropriate frequencies, as

Loexp(xiw,p&), ifA~0F) < £ < A,

Ui () = { I (2.32)

elsewhere,

with n € {0,1,2,...} the interval index, p € Z the Fourier harmonic index, the superscript
+ distinguishing the positive and negative £ intervals, and w, is given by

2
we = L (2.33)
ln
with 1, the length of the n** interval
l, = A7 — A~ (2.34)

We Fourier series expand a,(€) in terms of these complete basis sets given in each interval as

au(g) = Z [anpu w:p(g) + bnpu %p(g)] ) (2.35)

np
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2.4 Numerical renormalization group

with

1
Ay = / d& [,1,(E)]" au(€), (2.36)

-1

1
b = [ dE [0, O] 0©) (2.37)

—1

These expansion modes form a complete set of independent, discrete, electron operators satis-
fying the anticommutation relations

{a;rzpw an’p’u’}+ = O’ Opp Oppat (2.38)

{blbpw bn’p’u’}Jr = Opn Opp Oppr - (2.39)
Thus, in terms of these operators we have the following contributions to Hﬁi”
' f L+ A —n (4t i
d& & a;,(€) a,(€) = 9 Z A <anpu T L bnpu)
np

~1
Lo A7 AT 2mi (p — p)
+ oI Z v — p <albpuanp/u - b;rlpubnp/p> exp [ﬁ . (2.40)

n,p#p’

-1

1
[ odgae) = (1= A AR (w4 b (2.41)

the impurity couples directly only to ang, and by, . If A is close to 1, then the second sum on
the RHS of Eq. (Z40) may be neglected. Even for larger values of A the following approximation
consists in the neglect of the terms containing a,, and by, for p # 0

Ha 1+ AL . 1 U
D—F = T ZA (ailu anu - bLH b"ﬂ) + D—F €d+5 de“

N % (de“—l)Q N (WQDAF>1/2 <f0TMd“ + h.c.> , (2.42)

with
1t 1 — AT\ V2 9
fou = NG / 1 d€ a, (&) = (T) S TAT (G + bay) (2.43)

with an, = anoy s bny = bnou - The factor 1/v/2 has been introduced to have {fo p f(];y} =
b K +

O -
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2 Scaling & NRG

2.4.3 Conversion to a hopping form

Here we show how Hﬁi”, or in fact how the free part of any one-dimensional Hamiltonian can
be converted into a nearest neighbor hopping form. In Eq. (ZZ2)) the impurity is coupled only
to the fo electron operator. It is convenient to make a unitary transformation from {an,,b,,}
to a new orthonormal set {f,,} with fo given by Eq. (ZZ3). Since the conduction electron
kinetic energy is diagonal in {as,, by, } , its transformations in general result in a non-diagonal
form. We insist on having a kinetic energy which comprises only nearest neighbor hoppings, i.e.
that fp, is coupled only to f(,+1),, . More precisely we require the conduction electron kinetic
energy part of the Hamiltonian to be of the form

[e.9]

Hkin 1 + Afl Y
DAF = SRS, < JL h.c.) . (2.44)
n=0

We write the unitary transformation in the following real, orthogonal form (to ease the notation,
and since electrons with different spins do not couple, we omit spin indices)

m

with u,,, and v, being real numbers. It follows that the inverse transformation is

U =Y Unm fn, (2.46)
by, = Zn: Unm, fn - (2.47)

The coefficients wug,, and vy, are already defined as
Uom = Vom = (1%“)1/2 A2 (2.48)

The further coefficients can be determined recursively. It turns out that for constant hybridiza-
tion
1 — Afnfl

Sn - (1 _ A—Qn—1)1/2 (1 — A—2n—3)1/2 . (2.49)

For the details of the derivation see Appendix [Bl or Ref. [30].

2.4.4 Solution of the Wilson chain

To solve H4 / D Wilson defined a sequence of Hamiltonians as

HY — AN-D/2

N-1
Z A—T/2 &n (fjl,ﬂf(n+1)7“ + h.c.) + Ed de“
n=0

+ 0 (deu—1)2 + A2 (fla, + h.c.)} . (2.50)
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2.4 Numerical renormalization group

with

- 2 1 U
B, = ~ - 2.51
= T (et g) (2:51)
- 2 U

_ 9.52
U 1—|—A71 2DF’ ( 5)
; 2 292/

= . 2.
A <1+A1> 7TDF ( 53)

Then H 4 can be recovered as the limit

1+ A HD
Ha = Nliinw( . ) EA-N-D2 N (2.54)

The H% ’s are diagonalized iteratively, and their low-energy spectrum is presumed to describe
the physics of H4 on the energy scale ~ Dp A—(N-1)/2

2.4.5 Mapping the Kondo model from 3D to 1D

In the rest of the thesis we shall mostly be dealing with the two-channel Kondo model instead
of the Anderson model. For clarity here we show how to map the Kondo interaction from 3D to
the Wilson chain. The reason why we discussed the Anderson model first or that we discussed
it at all is that it is a more general model which involves the Kondo model as a limiting case.
Furthermore certain derivations, like the one in Appendix [Bl for the energy-dependent DOS
exists in the literature only for the Anderson model, and we intend to be exhaustive.

The multi-channel, spin-half Kondo model (MCK) consists of an impurity with a magnetic
moment S = % immersed in a Fermi liquid (FL) of N types of electrons (labeled by the flavor
or channel index o € {1,...,N}), and interacting with them through an exchange interaction.
In discrete k-space this Hamiltonian takes on the form

Huox = Y > e(k) el (k)cy, (k) +ZJ SN Sl (K, (2.55)

ap E WV gk
with S the impurity spin operator, & the vector triad of Pauli matrices and in this subsection

we denote all summation over discrete labels explicitly.
Taking the continuum limit as in Eqs. ([(ZI0)-([ZI0) we obtain

Huek = Z /d?’k‘ﬁ L (R)0g , (R)

Vo, (7) — / Pk exp (iK7) o (B). (2.57)
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2 Scaling & NRG

the anticommutation relations remain almost unchanged, i.e.

{quw GR7Y (W)}+ = 27m)% G056, 0 (F — 7) (2.58)
(2.59)

in contrast to
{6 (R) s ()} = Gapbund (K=F) (2.60)

and it becomes apparent that the coupling is local between the impurity and the conduction
electrons

HMC’K = Z/ dsk 6(];) ¢IW(E) wa,u(];;) + (2‘;)3 5 Z ja \I/l# (0) % \Ilcw (O) : (261)

o, o,V

Now, we expand W (7) in terms of spherical waves as [104]

v, (") = /0 kK / Ay 4m Y il Gy (k) Y™ (k) Y™ (F) o () (2.62)

lm

= 3 [ R Y ) ) (2.9
Im

where Ry (r) are special functions (cf. Eq. (20)) and apmnau(k) is given as in Eq. ZI) after
tagging Q,ZJQ(E) — g #(E) with an extra index «. The probability of electrons to be found at
the origin vanishes except for the s-wave part, i.e. Rg;(0) = 0 unless | = 0. It means that we
can reduce the problem to a one-dimensional one again by considering only the following part
of the electron field operator coupling to the impurity

Vop(r) = Vix /0 "k Sinikr) dooap (F) . (2.64)

with
{a;rmau(k)’al’m’ﬁu(k/)}+ = 51,1’ 5m,m’ o, 5;“/ o (k - kj/) . (265)
This way the following terms constitute the Hamiltonian
Huox = HZO + 1 = HPO + ) / dk €(k) afon,, (k) agon,, (k)
o

14
(27)?

- . Gy ~
+ S T U, (0) % T, (0), (2.66)

o, v

where the part H'>? describes channels other than s and an isotropic dispersion relation is
assumed. Again, we are interested in the long wavelength (low-energy) physics (and hence
the impurity can be considered punctual) so we impose a UV cutoff, Dp, on the domain of
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2.4 Numerical renormalization group

integration in e-space, i.e. we restrict €(k) to the [ep — Dp, ep + Dp] range, and change the
integration variable from k to €. So we get (by dropping the superfluous I, m indices)

Hyex = Hlﬁ%K + Hyicx = Hﬁ%K + Z/ deea €) a,(€)

—

A / de \/p(e) / V@b 2 0, (). (267

L,V

From now on we take p(e) to be constant p = p(0) in the conduction band. The dimensionless
version of Hj,;ox reads

s 1
Hiyiox _ / dggajl#(g) au ) + SZ Jap/ dg/ d& Gpv ay(g/)7
—1

DF o,V
(2.68)

with &€ = €/Dp . Once this has been done we can follow the prescriptions of the previous sub-
sections to obtain a discrete approximation of Hj,~ in a from suitable for NRG calculations,
namely

2°H3
% SZjafoa# ,ul/an,u + Z Z fna,ufnJrla,u + hc)a (269)

DF ( , sV n=0 a,p,v

with A the discretization parameter, ja = 2ja (1 + A_l)_l, where ja = J, p dimensionless.
The fp’s are anticommuting operators at the impurity site having the following form in terms
of the an,(€) operators

fO,a,u = \/m/ deaau )7 (270)
{fg7a7“’ f0767V}+ = 604,6 6:”‘71/ : (271)

The second part of the Hamiltonian in Eq. ([Z69) is the part of the Wilson chain that accounts
for the dynamics of the electrons. The Hamiltonian of Eq. [Z8d) has been used in our NRG
calculations for the two-channel Kondo model described in detail in the forthcoming chapters.
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3 Symmetries and density matrix
in numerical renormalization group

Here we discuss some of the most recent conceptual improvements that took place in the field
of calculating dynamical quantities with the Numerical Renormalization Group (NRG).

3.1 Symmetries in NRG

States and operators in “physical Hilbert spaces” are distinguished by quantum numbers. Widely
encountered quantum numbers are the spin, the charge or the parity. These quantum numbers
tell the transformation properties of a state or an operator under the action of some symme-
try group. Wilson and his collaborators [B6] realized that classifying states according to their
transformation properties is important in NRG as it enhances the precision and speeds up the
calculations. To extract the most accurate data possible from the NRG calculations, it is best
to take into account the largest possible symmetry of the quantum impurity model. Yet NRG
codes built so far could have handled only specific symmetry combinations suited for specific
problems, and it has required a great deal of effort to adjust a few thousand line code to a new
symmetry setup. We have overcome this difficulty by developing a flexible NRG code [25], 26]
that can easily be adapted to the problem of interest and could make use of an arbitrary number
and any type of discrete and compact, commuting Lie group symmetries that the impurity model
may possess. For this to accomplish we have generalized the recursion relations that come up
in the course of the NRG procedure, connecting subsequent iteration steps. On the following
pages we refine these statements and show how an arbitrary number of discrete and compact
Lie group symmetries can be used in the NRG process.

3.1.1 Symmetries of the one-channel Kondo model

In the NRG calculations, one uses the following approximation of the 1CK Hamiltonian intro-
duced in [30] and discussed in detail in the previous chapter

HlC’K = j§ Z fg,u&uyfo,y + Z Z tn (frt,ufn-l—l,u + hc) : (31)
wve{T,1} n=0 pe{1,l}

This Hamiltonian has an SUg(2) symmetry, corresponding to spin rotations, i.e. it is invariant
under the transformations

Hicx = U, Hicg U, (3.2)
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3 Symmetries and the density matrix-NRG

where the unitary operator U, is generated by the total spin operators,

Us = Us(@) = e=5r, (3.3)

- —» 1 .

ST a Z Z frt S u, n v (34)
n=0 pre{l,|}

with Jg denoting a real, three-component vector. The Hamiltonian Hicx is also invariant
under the action of SUc(2) rotations, U, = e™eC

C7)/2,CY = (Ct —(C7)/2i and C* with

, generated by the operators C* = (CT +

[e.e]

ct = Z(_l)nf;rb,Tf:L7l,
n=0
1 o0

cF = 52 Z Fhfaw = 1|, (3.5)
n=0 \p={1,1}

c- = (cH,

and parameterized by real, three-component vectors ¢ .

Since the spin symmetry generators commute with the charge symmetry generators, Hicx
has a symmetry SUg(2) x SUx(2) [106) 107, T08]. Consequently, the eigenstates of the Hamil-
tonian form degenerate multiplets, |, Q QZ ), that are classified by their multiplet label i, the
spin and charge quantum numbers, ;= = {S;,Ci} E and the z-components of the spin and
charge operators, Qf = {57,C7}. There are at least two ways of interpreting the multiplet
label. The first is that it assigns a unique index, 7, to each multiplet. The other one is that we
need this index only to distinguish multiplets with identical quantum numbers. In the follow-
ing we will apply the former interpretation. Therefore the representation indices Q could be
dropped from the labels of a state, i.e., |, Qz Qf> |2, QZZ>, since Q is determlned uniquely
by the multiplet label 7 itself. However, to be more explicit, we keep this redundant label in
what follows.

In the following we will refer to the quantum numbers Q. as representation indices, while
Q7 are referred to as internal quantum numbers of the internal basis states of a given multiplet.
The representation index Q defines the dimension of the " irreducible subspace which, in
this example, is dim(i) = dlm(Q ) = (28; + 1)(2C; + 1).

Similarly to the irreducible subspaces of the Hilbert space, operators can be organized into ir-
reducible tensor operator multiplets [T03]. One of the simplest examples is given by the impurity
spin, from the components of which we can form an operator triplet as

(A} = {—% sﬂsz,% s} . (3.6)

The components of this triplet transform under spin rotations as the eigenstates |m) of S*,
while they are invariant under charge rotations. This means that A has quantum numbers
Sa = 1 and U4 = 0, and the components of this operator multiplet are labeled by 5% =

'The eigenvalues of the operators 52 and C? are S(S + 1) and C(C + 1), respectively.
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3.1 Symmetries in NRG

m,(m = 0,£1), while the internal charge quantum number is trivially C% = 0. Similarly
to the eigenstates of the Hamiltonian, the quantum numbers of an irreducible tensor operator
B can be organized into a representation index vector, b = (Sp,Cp) and the components
of B are labeled by b* = (S%,CF) taking the values S; = —Sp,—Sp +1,...,Sp and
Cy = —Cp,—Cp + 1,...,Cp. A further example for an S = 1/2 and C' = 1/2 operator is
formed by the four operators {f&T, f(h, fo.1,—foq} (for a more details see p. Bf).

The Wigner—Eckart theoremﬁ tells that the matrix elements of the members of a given operator
multiplet and states within two multiplets, ¢ and j are related by

(1@, @B i@, @) =1 Bl i (@ |bbs Q@) (3.7)

where (i || B || j) denotes the reduced (invariant) matrix element of B, and the generalized
Clebsch—Gordan coefficients are defined as

(@@

bb;Q Q) = (S 57155 S5: 8 S7) (Ci CHICp CRi G5 CF) . (38)

with the usual SU(2) Clebsch—Gordan coefficients [I03] on the right hand side. This relation is
used extensively in the NRG calculations. Eq. B) can be inverted as

GBI = g 2 2 (@

Q Qb

bbiQ, Q) (i@ Q| B |10, Q). (B9)

By,

An important property of the unitary transformations above is that they are local in the
sense that they decompose into unitary operators which commute with each other and act
independently at different sites,

U = U xU,, (3.10)
U = [[tem, (3.11)
U, = Hu&n, (3.12)

This decomposition property is crucial for using symmetries in the NRG calculations, as it
allows to exploit the presence of symmetries at each step of the NRG process all through the
construction of the Wilson chain.

3.1.2 Symmetries on the Wilson chain

The symmetry considerations of Subsection BZIl can be extended to general impurity Hamilto-
nians defined on the Wilson chain by

H= HO + Z (Tn,nJrl + Hn+1) s (313)

n=0

2Some of the considerations presented here do not apply to non-compact Lie groups.
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where Hy contains the interaction between the impurity and the fermionic bath, and nearest-
neighbors on the Wilson chain are coupled through the hopping terms, 7, ,4+1. The nt" on-
site term, H,4+1 describes local correlations/interactions, and it is zero for an electron-hole
symmetrical band [TT2].

NRG solves the model defined in Eq. (BI3) by an iterative diagonalization process. The
iteration steps consist in diagonalizing the set of Hamiltonians defined recursively by

Hy = Hp, (3.14)
H, = Hyp 1+ Th1n+ Hy. (3.15)

Now let us assume that H , as well as every H,, , are invariant under the group G, i.e.
U(g) H, U (9) = H,, n=0,1,2,..., (3.16)

holds for all ¢ € G with U(g) an appropriate unitary representation of G. Furthermore,
let us suppose that G and correspondingly U can be decomposed into a direct product of T’
subgroups G, (v =1,...,T"), each acting independently on every lattice site,

G = G xGyx--xGr, (3.17)
r r
ug) = [Jthe) =T11]%mls)- (3.18)
y=1 =1 n

The subgroups can also be finite, and so G, may denote a crystal field symmetry as well as e.g.
the SU(3) group. However, some of the considerations may not apply to non-compact groups and
not even to locally compact Lie groups, such as SL(2,C), since they have infinite-dimensional
irreducible representations [218].

The above decomposition is not necessarily unique. Nevertheless, having obtained a specific
decomposition of the symmetry, the argument of the previous subsection can be repeated with
the only difference that now a total of I' number of quantum numbers classify the irreducible
subspaces (multiplets) of the Hamiltonians H,, ,

Q = {Q.Q%...Q"} (3.19)

and, by analogy to SU(2), states within the multiplet are labeled by the internal quantum
numbers

Q= {Q',Q*,..Q""} . (3.20)

Similarly to the 1CK example, the dimension of a subspace ¢ depends uniquely on its quantum
numbers @, i.e. dim(i) = dim(Q,).

Operators can also be arranged into irreducible tensor operators, and an irreducible tensor
operator multiplet A is described by quantum numbers a accordingly, while members of the
multiplet are labeled by a* with a and ¢ being I'-component vectors. The Wigner—Eckart the-
orem, Eq. (B), applies to the general case too, with the slight modification that the generalized

Clebsch—Gordan coefficients are now defined as

wri,Q) = [1(ara

=1

(@@

2 o) Y,z
@ a* Q] Q) > . (3.21)

3 For groups like SU(3), having a more complicated Cartan subalgebra, every component of the internal quantum
numbers Q“* is composed of several quantum numbers [I03].
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3.1 Symmetries in NRG

Now the dimension of the multiplet ¢ is given by
r
dim(i) = []dim(Q]), (3.22)
y=1

where dim(Q]) is the dimension of an irreducible representation characterized by the represen-
tation index Q.

3.1.3 The role of symmetries in the diagonalization procedure

As it was scrutinized in Section 4l in Ref. [30] Wilson constructed approximate eigenstates of
H,, for a chain of length n iteratively. The reason for the eigenstates being only approximate
are as follows. At each iteration the dimension of the Hilbert space increases by a factor d, with
d the dimension of the local Hilbert space at a single site of the chain with site label n > 0.
Therefore the size of the Hilbert space increases exponentially with 7, and after a few iterations
one must truncate it: Some of the states i are discarded (i € D), while other states are kept
(i € K), and are used to construct the eigenstates for H,, ;. Due to the truncation, however,
these states will only be approximate eigenstates.

Symmetries are important in the diagonalization procedure. As we will argue below, in their
presence the H, ’s are block diagonal in the representation indices, and thus the eigenvalue
problem can be solved much more efficiently. For some of the physical quantities like the
dynamical correlations, it turns out to be crucial to increase the number of kept states as

much as possible to achieve sufficient numerical accuracy.
As discussed above, in the n'" iteration the eigenstates (multiplets) of H,, are constructed
from the kept multiplets labeled by u with u € K of the (n — 1) iteration (that are the
approximate low-energy eigenstates of H,_1 ) and from a complete set of local states (multiplets)
at the n'" site, labeled by . In the sequel, we refer to these new approximate eigenstates i
as new states, and we call the kept states block states or old states.

In the presence of symmetries, each new multiplet carries representation indices Qg = {Q;} ,
and states within this multiplet are labeled by the internal quantum numbers Qf = {Qg’ “1.
Similarly, local states have quantum numbers 4, = {g)} and are further labeled by QZ =
{g/*}. To construct the approximate eigenstates of H, , we first construct new states from

‘U,Qu Qi> - by adding the electrons at site n,

‘“’Qu Qi>n71 - ‘%Qu ¢ ) L.® (anu Q) o (3.23)

The addition of a new site corresponds to taking the tensor product of the local Hilbert space
with that of the block states. Taking the tensor product constraints the group elements of
all groups in the direct product decomposition of G to be the same for all sites in a given
transformation, just as it is written in Eq. (BIF). We use the Clebsch—Gordan coefficients to
build from the block (old) and from the local states the new states that transform as irreducible
multiplets under the symmetry transformations, U(g) . From a given block state, u, and a local
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3 Symmetries and the density matrix-NRG

state, 1, we can form several new multiplets labeled by 7 by the construction

o), = ¥ (@eln6e.e) k), o)

u’tp

n—1
(i u, p with u € K). (3.24)

In this way, every new state 7 ”remembers” its parent states. The multiplets of Eq. BZa) will
be referred to as the canonical basis from now on. The vector space spanned by this basis can be
decomposed into irreducible subspaces being invariant under the action of G. Their dimensions
are determined by the representation indices Q Schur’s lemmas [T03] tell us that since H,
is scalar under the group G, it has a block- dlagonal structure, i.e. it connects only irreducible
subspaces with the same representatlon indices

. <5, Q; Q| Hul j, Q; Q]Z>n = Gl Ha ), 00..Q;99z @ - (3.25)

Thus Hy is diagonalized by a block-diagonal unitary transformation, (9%”@,]

‘LQZ‘ sz> N Z OELZ]

Z.7Qg Q;> 6Q.,Q~.6Q?,Q5 )
n —r'—1 —1 —

WiQ Q1) = EiQ Q) . (3.27)

with E* the eigenenergies of H,. Here, O is a block-diagonal matrix, and its columns in a
given symmetry sector are just the eigenvectors of the corresponding submatrix of n(i | Hp || §>n
in the canonical basis. In the upcoming iteration, some of these multiplets will be kept, those
of the lowest energy, and form the block states of the (n + 1) iteration, while the rest are
discarded.

In the iteration step outlined above, the matrix elements (i | Hy || 5) ,, are needed, with
H, = Hy,_1 + Th—1n+Hy . The matrix elements of H,,_; follow from Eq. (824 and from the
fact that the block states are the eigenstates of H,_;. They are given by

LN He a1 G), = Eit6s, (3.28)
where u is the state from which the state 7 has been constructed. Similarly, the matrix elements
of H, are given by

LNl T), = en iz, (3.29)

where &) is just the expectation value of H,, with local states within the multiplet 4. Finally,
to Compute the matrix elements of the hopping 7,—1,, , we use the fact that 7,1, can always
be decomposed a:

fean = LAY [clict (el ) el

@ c*

(3.30)

4For a proof, see the first part of the proof in Appendix [
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3.1 Symmetries in NRG

Here C'([J:L; Clz] denotes a creation operator multiplet at site n — 1 that has quantum numbers

¢, and the h([f g are the hopping amplitudes between sites n — 1 and n. The index « in

the equation above labels various “hopping operators”. Here is an example: If we treat the

1CKM using only U(1) symmetries we have two hopping operators, « € {1,2}, corresponding

to C{n} = flT and CQM = fl | - However, if we use the spin SU(2) symmetry, then o« = 1 and
[n] _

ot = {flafiat

For the reduced matrix elements of 7,1, we obtain the following formula upon using Eq.
B2Z4) and the decomposition in Eq. [B30)

W T 7, = 2207 Gl i) (v )

x D <a’g’Q€’Qj’Qu’Qv’gp’gy> 5Q{’Q35Q;Z7Q§ + H.c. ’ (% s U 5 — Va/U) :
(3.31)

*
loc

Here the state ¢ has been constructed from the kept state u of the previous iteration and from
the local state p, while j has been constructed from v and v. The functions

D (a, c, an Q}’ Qu, QU, 4, Q,,) denote group theoretical factors and can be expressed as

D(0,6,@:,2,0,,Q,0,00,) =sen(C, ) > > 3 (@], a7 0,27)

& QL Qg

(@30, 0 2,0;) (@& ec: Q@) (n,8|ecia,) . B332)

with @7 chosen arbitrarily. The sign function sgn(C,u) = =£1 arises as one commutes the
creation operators implicitly present in the local state p, over the operator ct=1 | and it
is negative if Cg" is a fermionic operator and the local state p contains an odd number of
oo (1 G [y,
for all sites and can easily be determined, while n_1<u | C [n—1] I v>n_1 can be computed from

the previous iteration, recursively. In fact, for any operator A, acting only on sites m < n,
and whose matrix elements are known in the iteration n — 1, we have the recursion relation

fermions, otherwise it is positive. The local matrix elements, are the same

n<{ Al j>n = awlAlv, | F (QQE’Q;quva?QM) Og ., > (3.33)

;L7gl)

where we can express the factor F (g, Q; Qj’ Q,.Q, gu> using Eq. BY) and Eq. B22) as

F <Q’Q%’Q3’Qu’gv’gp) :sgn(A, Iu,) <QEQ§ QQZ;Q3Q§>71

(@@ 0,00, ) (@@ Jo,0:0,07) (@,
Qr.Q7 a;

m

aaQ, Q) (3:34)

where the choice of @7, Q]% and @® is almost arbitrary. The only condition that has to be met is

that the generalized Clebsch—Gordan coefficient <QE Qf

aa®; Q; Q§> should be non-vanishing.

29



3 Symmetries and the density matrix-NRG

As only a small fraction of theses on NRG [I13], T4} [[15, [IT6l, [[T7, MT8] have been written
recently without displaying the numerical values of some matrix elements, we exemplify the
above procedure in Appendix [ by including the reduced matrix elements and the block states
of the 0% iteration together with the local states in the 1CK model using the group SUg(2) x
SU-(2) .

3.2 Density matrix numerical renormalization group

One drawback of the algorithm described in Section Blis that the eigenstates of H,, constructed
this way do not form a complete basis on the Wilson chain of length n, since states descendant
from the discarded states of the previous iteration are missing. This deficiency does not effect
the low-energy spectrum, or the thermodynamic quantities but for the spectral functions it leads
to spectral sum rule violation and poor asymptotics. A remedy for these problems supplements
the original NRG scheme with two concepts: a complete basis of the Wilson chain combined with
the reduced density matrix. It was developed in the series of the papers [86, K7, B8, R9]. This
extension of NRG bears the name of Density Matrix Numerical Renormalization Group (DM-
NRG). Our contribution to this line of research was the incorporation of non-Abelian symmetries
into DM-NRG [90], which turns out to be an important element in DM-NRG as well as far as
the asymptotics of spectral functions and the performance are concerned. On the coming few
pages we explain the DM-NRG algorithm from the perspective of symmetries.

3.2.1 Complete basis on the Wilson chain

As it was shown in Ref. [87] it is possible to construct a complete basis of the Wilson chain and
compute the matrix elements, that come up in the NRG algorithm, in this basis. The benefit of
this procedure is the exact fulfillment of spectral sum rules obeyed by spectral functions [88] R9].
The construction goes as follows.

Let us consider a Wilson chain of length N, and construct approximate eigenstates of H,
with n < N that, however, are extended to all sites of the chain,

iQQ) —[iQ Q) (3:33)

In this equation e labels the d¥~" independent ’environment’ states living at the last N — n
sites of the chain. The precise form of these environment states is not important, only their
degeneracy will play an important part. The iterative construction from Section Bl carries over
to these states too. By construction, discarded states (together with their environment state)
form a complete basis set:

1=y Y Y Y fee) (1a.e

n=0i€D e Q-

, (3.36)

where ¢ € D refers to the fact that only discarded states appear in the sum. In Eq. B30) in
the last iteration at n = N all states are considered discarded. We remark that, in the actual
calculations, discarded states do not appear until the iteration M > 0 where the first truncation
is carried out. Fig. Bl illustrates the structure of this complete basis. In the formulation of
the DM-NRG algorithm making use of non-Abelian symmetries we shall use several times the
completeness relation Eq. (B30).
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3.2 Density matrix-NRG

Figure 3.1: A complete basis of a
Kept states Discarded states Wilson chain represented as the ex-
ponentially increasing number of en-
ergy levels belonging to the successive
iterations. Continuous/dashed lines
represent kept, low-energy /discarded,
high-energy levels, respectively. For
the consecutive iteration steps the

Energy Levels

M M +1 M +2 distances between the le\{els illustrate
how the energy resolution of NRG
gets exponentially subtler.

3.2.2 Reduction of the density matrix using symmetries

In the DM-NRG procedure on a Wilson chain of length N, the equilibrium density matrix is
approximated by [89]

N

p o= > p (3.37)
n=0

2 P, -

P = — i@, Qxe)  (e1i.Q,Q7] .
i€eD.Q%e nn

(3.38)

with 8 = 1/T the Boltzmann factor and

N
o= > > e fEgNr (3.39)

n=0ie D,Q

the partition functionl n Eq. (39) the factor d¥~" accounts for the degeneracy of the
environment states in iteration n, i.e. for the local degrees of freedom at sites m > n. Since the
eigenenergies do not depend on the internal quantum numbers, the expression for the partition
function can be simplified to

N

Z = > Y dim(i) e FaV, (3.40)

n=0ieD

with the use of Eq. (B22).
The concept of the reduced density matrix [86] B8, 89| arises naturally as one starts to calculate
Green’s functions with NRG. More precisely, the quantity that shows up in the calculations is

SDifferent approximations also exist in the literature, e.g. the one in Ref. |[§7] where the approximation of the
density matrix comes only from the last iteration.
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3 Symmetries and the density matrix-NRG

the truncated reduced density matriz, defined as

RM = T LU 3.41
{en}{Zp (3.41)

m>n

where one traces over the environment states e, at sites m > n. This truncated reduced
density matrix satisfies the recursion relations

RINL = pINT
—BE"™! IN—n
Rln-1 _ iezDe BE; ZdN +1 ‘ZQ, Q5>n71n71 <1Q2 Q7
_|_Si'£rn{R["]} . (3.42)

Note that the environment variable is missing in the first term of the second expression since it
has been traced over. The first term accounts for the contribution of discarded states, while the
second term has matrix elements between the kept states only.

To construct the matrix elements of R, we first show by induction that RI" is scalar
under symmetry operations. This is clearly true for the first term in Eq. (B222)). To show that
the second term is also invariant, we simply need to use the locality property of the symmetry
transformations, i.e. that on the first n sites U(g) = L(g)V(g), where L(g) transforms the
local states on site n, while V(g) transforms states at sites 0 < m < n — 1, and clearly, L
and V' commute with each other. Therefore, because of the invariance of the trace under cyclic
permutations of the operators, we have

Tr {LVRM vt L+} - Tr {VRM V+} —V Tr {RM} VI=U Tr {RW} Ut . (3.43)

site n site n site n site n

However, since U R Ut = R by assumption, we obtain that

Tr {R["l} = UT {R["}}U+, (3.44)

site n site n

implying that
U RUyt = g1l (3.45)

for R"~1_ too. This equation means that R is scalarﬁ and therefore, we have

(19| R

Q@) = LI ), .0 - (3.46)

The matrix elements (i || R 4) ,, between discarded states simply derive from the first
term in Eq. BZ2). To perform the trace in Eq. (BZ2) and to construct the explicit relation
between the kept matrix elements of RI"=1 and R | first, we rotate R™ to the canonical
basis

LENRR G, = ol G R G), (07! (3.47)

An alternative proof is presented in Appendix [0 for the case when every G~ is an SU(2) group.
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3.2 Density matrix-NRG

Then, using the fact that Tr {R["]} is diagonal in the (internal) symmetry quantum numbers,

site n
we can trace over the local states at site n using the recursion relation Eq. (B24) to obtain the

matrix elements between the kept states u,v € K as
<= dim (7)

(| RI-1 || ) = Tim () n({ | R | 5%@;&;- (3.48)

i,j,g;,u

The tilde over the sum indicates that in the summation over ¢ and j only those states are
considered which have been constructed from u (7 « p,u) and v (j «— p,v) in Eq. E24),
respectively. This is expression applies to any type of discrete and compact Lie group symmetry.
An alternative proof for the case of only SU(2) symmetries is given in Appendix [Dl

3.2.3 Spectral function computation with DM-NRG

In terms of the reduced density matrix we give a general relation for the retarded Green’s function
of two local operators, that act only at the impurity and/or the zeroth site of the Wilson chain.
The notion of retarded Green’s function is introduced in Appendix [A] for convenience here we
repeat its definition for two irreducible tensor operators

Gf 0 = —i([Awe®.B], 0] ). (3.49)

42°7b,b,

By symmetry considerations and as it is shown below, the Green’s function is non-zero only if
the operators A and B transform according to the same representation i.e.

Gﬁ Bl (t) = Gg,BT (t) 0ab da_b, » (3.50)
2,2, 5pp,

and it is independent of the value of a, and correspondingly of b, . Note that in this expression
the representation index b and its labels b, are the quantum numbers that characterize the
operator B and not BT .

In the reduced density matrix formalism we can generalize the procedure outlined in Ref.
[88, BY] even in the presence of non-Abelian symmetries to obtain the following form for the
Laplace transform of the Green’s function

N
Ghp = > > LGalRr",

n=0 i€D,K (j,k)¢(K.,K)
AT G5 B0, i) G BRG] AT 8D i)
z+ E} — E} dim(a) z2—E!'+ E} dim(a)
(3.51)

Here the second sum is over all the multiplets ¢, j, k of the given iteration subject to the restric-
tion that j,k do not belong to kept states at the same time and no summation is needed for
states within the multiplets. We note that the irreducible matrix elements of R are identical
with the original ones since R is invariant under all symmetry transformations, i.e. it is a

rank 0 object with respect to all symmetries. In Eq. &) dim(a) = ngl dim(a”) is the
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3 Symmetries and the density matrix-NRG

number of operators belonging to the same operator multiplet A,,_ . The coefficients with the
dimensions of the corresponding irreducible subspaces arise in the following way when summing
over the internal quantum numbers [104]

b0.0,00:0: Y. (3:Q @] Au. k.0, Q1) (kQ, Q| By, i@, @)
@@ Q;
= 3 1A (Q @ i@ @) (k1B {Q Qb b0 Q)
@ Q;
= AT kB Y (Q Qe —as@ @) (@ Qb —bs @, @)

QQ;

_ o\ ; a—Q,—Q? dim(k) z
AR RPN e {8

b-Q, — = dlm(k) gz
x ()T dim(b) <b b

Q.Q5Q, - @)

Q,2:Q -

kAT )T kI B D) . (3.52)

A similar derivation yields the coefficient in the second term. Remarkably, Eq. (B52) and thus
Eq. (BEI) contain exclusively the reduced matrix elements and the dimensions of the various
multiplets. Eq. (B52) explicitely shows that Gi pi(2) = 0, unless A and B have the same
quantum numbers, i.e. a =b.

3.3 Comparison between NRG and DM-NRG

In this section we show the advantages of using DM-NRG as opposed to NRG, and illustrate
the benefits of using non-Abelian symmetries by applying DM-NRG to the 2-Channel Kondo
Model (2CKM). This model is exciting in itself as it possesses a non-Fermi liquid type of fixed
point and it provides the simplest descriptions of the double dot system used recently to realize
the 2-Channel Kondo (2CK) effect. This 2CK effect is very fragile and in a magnetic field
we find substantial difference between the NRG and DM-NRG results. For further discussion
about 2CK physics see Chapter Hl whereas for the details of the double dot experiment consult
Subsection EEZA and Ref. [23] in particular.

In the numerical calculations we have used the Hamiltonian Eq. &3) with o € {1,2} label-
ing the two types of electrons. The 2CKM has an obvious SUg(2) spin symmetry. Furthermore
the number of electrons is conserved in both channels corresponding to a Ugi(1) x Uga(1)
symmetry, with C'1 and C2 referring to electrons in channel o = 1 and 2, respectively. Due to
the presence of electron-hole symmetry, these Uc(1) charge symmetries can be supplemented
to SUc(2) symmetries, i.e. the 2CK Hamiltonian is also invariant under SUg(2) x SU¢1(2) X
SUc2(2) transformations. On the other hand, the 2CKM can be solved using U(1) symmetries
exclusively, Ug(1) x Ugi(1) x Ugg(1). This model is thus ideal for testing our flexible code
and the importance of symmetries in the NRG and DM-NRG calculations.

If a local magnetic field is coupled to the impurity spin through a term gupBS?, from among
the total spin generators (see Eq. (B4)), solely S% will commute with the Hamiltonian. That
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Figure 3.2: Dimensionless spectral
function of fy1+ normalized by Dp,
the bandwidth cut-off, as a function
of w/Tk in the absence of magnetic
field obtained with DM-NRG and with
NRG using the symmetries: Ug(1) x
SUc1(2) x SUg2(2) and Ug(l) x
Uci(1) x Uga(1). (a) Comparison be-
tween the spectral weights of the DM-
NRG and NRG results: DM-NRG ful-
fills the sum rule entirely even when
the used symmetry group and therefore
the number of kept states is largely re-
duced. NRG violates the sum rule to
over 15% if the number of kept states
is & 7 x 10% in each iteration. (b) The
same spectral functions as a function
of \/w/Tk . If a sufficient number of
states is kept, i.e. when using larger
symmetry groups, the expected /w
behavior around the 2CK fixed point is
nicely recovered. (¢) The same spectral
functions on a logarithmic scale.
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3 Symmetries and the density matrix-NRG

Figure 3.3: Dimensionless spec- — T T T T T
tral function of fp ;1 normal- 0.6 03} (b) 777 ] ——NRG, Uy(1) x SU_,(2) x SU,,(2)

ized by Dp, the bandwidth g {7 DMANRG, Ug) % U (1 U

cut-off, as a function of w/Tk bt ) L DM-NRG, Ug(1) x SU;, (2) x SU,(2)]
in the presence of magnetic ~ e I A I /4‘\\
field obtained with DM-NRG < 04F et 0 araet [y Spectral weights

01,1
€
~
\1

DM-NRG: 1.00000

and with NRG using the sym-
NRG: .80775

metries: Ug(1) x SU(2) X .
SUc2(2) and Ug(1) x Ugi(1) x ook B/Tk=11x10
Uc2(1). (b) On a smaller scale
at w = 0 we show the smooth-
ness of the DM-NRG data us-
ing both groups and the jump %% =5 o
at w = 0 in the NRG results w/T,
using the larger group.

is, the spin SUg(2) symmetry reduces to Ug(1). Therefore, in a magnetic field we can either
use the group Ug(1) x SU¢1(2) x SUe2(2) for our calculations, or restrict ourselves to U(1)
symmetries only: Ug(1) x Ug1(1) x Uga(1).

As a test, we have computed the retarded Green’s function, G (w) , or more precisely

S
0,0,7770,cx,T
the corresponding spectral function o ot (w), defined by
@ = —~md" W (3.53)
w) = ——1Im w .
QfO,a,T s f()ya’va(J)r’ayT

both in the presence and in the absence of magnetic field. All numerical results presented were
obtained at zero temperature, and the dimensionless couplings were Jo = 0.2 in both channels
and for all runs. The discretization parameter A = 2 was used in all cases, and for each
symmetry combination we have retained a maximum of 1350 multiplets in each iteration.

In Fig. we show data for the local fermion’s spectral function in the absence of magnetic
field obtained through the NRG and the DM-NRG approaches using the two symmetry groups
mentioned above. The Kondo scale Tk in Fig. is the scale at which the 2CK state forms,
and it is defined as the frequency where the T -matrix of the 2CK model drops to half of
its value assumed at w = 0 at the 2CK fixed point [[40]. The T -matrix is defined as the
reducible conduction electron self-energy [29, [[53]. Its imaginary part is proportional to the
spectral function of the composite fermion operator. The definition of the Kondo temperature
is illustrated in Fig. 41

The first important test is the fulfillment of the spectral sum rules. These are always satisfied
in the DM-NRG calculations independently of the symmetry group used, whereas the NRG data
violate the sum rule to over 15% if the number of kept multiplets is 1350 which corresponds to
~ 7 x 10* states taking into account states within multiplets. Fig. B2 (b) shows that around
the 2CK fixed point the y/w behavior, expected from conformal field theoretical calculations, i

"For the explanation of the y/w behavior of spectral functions around the 2CK fixed point see Subsection
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is nicely recovered by both methods, but a sufficiently large number of multiplets must be kept
also in the DM-NRG approach, meaning that in this case the use of the larger symmetry group
is more rewarding. Fig. B2 (c) demonstrates that, in spite of fulfilling the spectral sum rules,
still the DM-NRG data do not show the expected asymptotics for low-frequencies if the number
of multiplets kept is not sufficient. It is quite remarkable that only the DM-NRG procedure
together with the use of non-Abelian symmetries was able to get close to the exact value of the
spectral function at w = 0, ,ofo’a’T(w =0) = 0.25E The presence of magnetic field generates
a new scale [63]

BZ
Th = Ch ﬂ 5 (354)

where we have fixed the somewhat arbitrary constant to Cj, =~ 60 [@I]. This scale, discussed
more thoroughly in Subsection EE3T] (see Eq. ([ER0)), is usually referred to as the renormalized
magnetic field acting on the impurity, and below this scale the non-Fermi liquid physics is
destroyed.

In the presence of magnetic field the sum rule is violated by the NRG approach in the positive
and negative frequency ranges to a different extent, which leads to jumps at w = 0 in the
spectral functions (see Fig. B3]), while this problem is almost absent in the DM-NRG approach.

The fermion spectral functions display universal scaling in the vicinity of 7}, and a universal
peak/dip at 7} [O1]. In Fig. B4l we show how the spectral functions of the composite fermion

8Tt can be shown that psy a1 = %po = % at the 2CK fixed point, in the large bandwidth limit, with po the

unperturbed dimensionless electron DOS. Further details are provided in Chapter gl
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operator, FlJr = f(];,lg&’ can be scaled on top of each other using the scale Tj),. Although,
this collapse can be obtained in both approaches, there is an ~ 20% jump at w = 0 in the
NRG results while the DM-NRG results are continuous there. It is possible to eliminate the
jump in the NRG results by determining the phase shifts from the energy spectrum with high
precision [I53], but even after these corrections, the results continue to violate the sum rule and
numerical errors for low-frequencies remain of the same size as before. Moreover, the "universal’
curve obtained by conventional NRG is clearly incorrect and different from the DM-NRG result.

Even more interesting is the contrast to the case of the single-channel Kondo model. There,
in the presence of a small magnetic field no such universal peak presents itself. Only magnetic
fields of the order of Tk have influence on the low-frequency behavior of the composite fermion’s
spectral function and lead to the well-known splitting of the Kondo resonance [I54].

Also, if we try to compute the imaginary part of the T-matrix of the 2CK model where
the local composite fermion spectral functions for both - and |-spin components have to be
summed up, we end up with large numerical errors in the NRG results [I40] (see Fig. BH), while
DM-NRG provides satisfactory results even in this case.

It is thus clear from these examples that the DM-NRG method together with the use of lots
of symmetries produces much more reliable results than NRG with non-Abelian symmetries or
DM-NRG with only Abelian symmetries, and its use is needed to do computations for more
delicate quantum impurity models.

3.4 Summary

We have developed a so-called flexible DM-NRG program [25, 26] which permits the use of
an arbitrary number of Abelian and non-Abelian symmetries, and incorporates the spectral-
sum preserving density matrix NRG algorithm. The DM-NRG method makes it possible to
generate spectral functions that satisfy spectral sum rules with machine precision at 7" = 0. For
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calculations with non-zero magnetic field the use of the DM-NRG represents a great advantage
over conventional NRG methods [I53], which loose spectral weights and violate spectral sum
rules. Conventional methods also lead to smaller or bigger jumps in the spectral functions at
w = 0 which hinder the computation of the universal scaling functions provided e.g. by the scale
Ty, [[40]. The DM-NRG method solves all these problems if a sufficient number of multiplets
is kept. We have found that for more delicate quantum impurity models like the 2CK model
we need to use as many symmetries as possible to perform reliable calculations and to keep the
computation time within reasonable limits.

We believe that the method presented here opens up the possibility of carrying out very
accurate calculations for multi-channel systems such as multi-dot devices, and even makes it
possible to perform reliable DM-NRG-DMFE'T calculations for periodic impurity models.
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4 Two-channel Kondo model

In this chapter we present our results about the dynamical properties of the 2-Channel Kondo
Model (2CKM). In Section BTl we motivate our work on the 2CKM by discussing its relevance in
the description of Non-Fermi Liquid (NFL) phenomena. In Section 2 follows further motivation
with the details of the recent experiment of Potok et al. realizing the 2-Channel Kondo (2CK)
state [23]. To gain a broader perspective this section also contains discussion about single
electron transistors and the Coulomb blockade phenomenon in Subsection EEZ2, as well as about
the observation of the one-channel Kondo effect in quantum dots in Subsection Section
contains our results about dynamical correlations in the 2CKM. In Subsection EE31] we use
boundary conformal field theory to classify the boundary highest-weight fields of the electron-
hole symmetrical 2CKM by their quantum numbers and identify the relevant perturbations
around the 2CK fixed point. Based on this classification the fields are then expanded in leading
order in terms of the operators of the free theory. In Subsection we describe the technical
details of our DM-NRG calculations. In Subsections L33 L3 and EE3.0 we study the real and
the imaginary parts of the retarded Green’s functions of the local fermions, the impurity spin
and the local superconducting order parameters. In each of these subsections we first discuss
the analytic forms of the susceptibilities in the asymptotic regions of the two-channel and single-
channel Kondo scaling regimes, as they follow from scaling arguments. Then we confirm our
predictions by demonstrating how the expected corrections due to the relevant perturbations
and the leading irrelevant operator present themselves in the DM-NRG data. Furthermore
we determine the boundaries of the 2CK scaling regimes and derive universal scaling curves
connecting the FL and NFL fixed points for each operator under study. In Subsection the
effects of electron-hole symmetry breaking are investigated. Finally, our conclusions are drawn
in Subsection

4.1 Non-Fermi liquid behavior

Deviations from Fermi liquid-like behavior observed e.g. in the metallic state of high-temperature
cuprate superconductors [Il 2], or in heavy fermion systems [B, @] prompted experts to find out
what is behind these phenomena. Two models that became paradigms for describing NFL
physics are the Tomonaga—Luttinger liquid [T73], 79, T80}, [I8T], [82] and the overscreened
multi-channel Kondo model [I74, 75, 76, 77| The former one accounts for the behavior of
one-dimensional interacting electron systems, while in the latter a spin degree of freedom couples
to several degenerate bands of non-interacting electrons. Apart from them, the emergence of
NFL physics has also been ascribed to the effect of disorder in disordered Kondo alloys [I83]
and possibly in doped semiconductors [I84), [[85]. It can also appear as a consequence of the

!Overscreened Kondo models are characterized by the relation k > 2.5, with k the number of electron channels
(or flavors) and S the value of the impurity spin.
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4 Two-channel Kondo model

quantum fluctuations of an order parameter or some collective modes, as is the case in the
vicinity of many quantum phase transitions [I76], [I78].

In this chapter we study a variant of the overscreened multi-channel Kondo model, the spin-
half, two-channel Kondo (2CK) model introduced by Nozieres and Blandin [I86], which is the
simplest prototypical example of non-Fermi liquid quantum impurity models. It has been pro-
posed to describe a variety of systems including dilute heavy fermion compounds [I75], tunneling
impurities in disordered metals and doped semiconductors [I87], [I8S], [IRY].

The 2CKM consists of a spin-half local moment which is coupled through antiferromagnetic
exchange interactions to two channels of conduction electrons (as in Eq. (50 with o € {1,2}).
Electrons in both channels try to screen the impurity spin. If the coupling of the spin to one of
the channels is stronger than to the other then electrons in the more strongly coupled channel
screen the spin, while the other channel becomes decoupled. However, for equal exchange
couplings, the competition between the two channels leads to overscreening and results in non-
Fermi liquid behavior. Among others, it is characterized by a non-trivial zero temperature
residual entropy in the infinite volume limit, a square root-like temperature dependence of
the differential conductance, a logarithmic divergence of the spin susceptibility and the linear
specific heat coefficient at low temperatures [I75]. This unusual and fragile ground state cannot
be described within the framework of Nozieres” Fermi liquid theory [Z0J.

From the experimental point of view the 2CK along with the two-impurity Kondo physics
are two leading candidates for creating NFL phenomena and studying them in a well-controlled
way. Indeed, the observation of the 2CK state in a double dot system proposed by Oreg and
Goldhaber-Gordon [T49] has recently been achieved [23]. Although these measurements were
restricted quantities, like the voltage dependence of the differential conductance at non-zero
temperatures, dynamical quantities also reflect the vicinity of the 2CK fixed point (see Section
E3). In fact, apart from maybe the scattering states Bethe ansatz [I9§], theories are lacking
to calculate properties out-of-equilibrium like the voltage dependence of the differential conduc-
tance in the strong coupling regime. However, one can take hints from scaling analyses and
assume that the differential conductance as a function of the source-drain voltage in the setup
discussed in Subsection EE24] should follow the same power law behavior as the function of fre-
quency or temperature. Therefore to motivate our studies of the 2CKM from the experimental
perspective we present the details of this experiment in Section

Being a prototypical example of non-Fermi liquid models, the 2CKM has already been inves-
tigated with a number of methods. These include non-perturbative techniques like the Bethe
Ansatz, which gives full account of the thermodynamic properties [63), 64], boundary conformal
field theory [27], which describes the vicinity of the fixed points, and NRG [I10, T90]. Other less
powerful approximate methods such as the Yuval-Anderson approach [ITI], Abelian bosoniza-
tion [28], large-f expansion [73, [[91], and the non-crossing approximation [72] have also been
used to study the 2CKM successfully.

Despite this extensive work, little has been published about dynamical correlation functions
such as the spin susceptibility, local charge and superconducting susceptibilities. Even the
detailed properties of the T-matrix, or in other terms the reducible self-energy have only been
computed earlier using conformal field theory, which is rather limited in energy range, and by
the non-crossing approximation, which is not well-controlled and is unable to describe the Fermi
liquid cross-over [193] M94]. It was also possible to compute some of the dynamical correlation
functions in case of extreme spin anisotropy using Abelian bosonization results [2§], though
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4.2 Observation of the two-channel Kondo effect

these calculations reproduce only partly the generic features of the spin-isotropic model [T95].

Local correlations in the two-channel Anderson model around its non-Fermi liquid fixed point
have already been investigated to a certain extent with the use of NRG, although in the absence
of channel anisotropy and magnetic field [I96} [[97]. However, a thorough NRG analysis of the
zero temperature T-matrix of the 2CKM has been carried out only very recently [T40], 1T92], and
the T" # 0 analysis still needs to be done.

Our aim was to fill this gap by giving a comprehensive analysis of the local correlation functions
at zero temperature using NRG. However, in the vicinity of the rather delicate two-channel
Kondo fixed point, the conventional NRG method fails and its further developed version, the
density matrix-NRG (see Chapter Bl) needs to be applied. Furthermore, a rather large number
of multiplets must be kept to achieve good accuracy. We have therefore calculated the real
and the imaginary parts of various local correlation functions with the spectral sum conserving
DM-NRG method, where we use non-Abelian symmetries in a flexible way [90].

To identify the relevant perturbations around the NFL fixed point we apply boundary confor-
mal field theory (see Subsection EE3T]). Then we systematically study how the vicinity of fixed
points and the introduction of relevant perturbations such as a finite channel anisotropy or a
finite magnetic field influence the form of dynamical response functions at zero temperature. We
mainly focus on the strong coupling regime of the 2CK model and the universal cross-over func-
tions in the proximity of this region induced by an external magnetic field or channel anisotropy.
These cross-over functions, describing the cross-over from the non-Fermi liquid fixed point to a
Fermi liquid fixed point, as well as the response functions can currently be computed reliably
at all energy scales only with NRG. However, we shall be able to use the results of boundary
conformal field theory, more precisely, the knowledge of the operator content of the two-channel
Kondo fixed point and the scaling dimensions of the various perturbations around it, to make
very general statements on the analytic properties of the various Green’s functions.

4.2 Observation of the two-channel Kondo effect

Here we present the particulars of the experiment of Potok et al. [23]. To facilitate the under-
standing and give a broader view we talk about quantum dots and their usage in single electron
transistors, and related phenomena like the Coulomb blockade and the single-channel Kondo
effect. Then we turn our attention to the specific double dot setup that was used to justify the
feasibility of the 2CK state.

4.2.1 Quantum dots

In common electric circuits as e.g. in nanosize transistorﬂ on a memory chip the current is carried
by a huge number of electrons without the quantization of charge playing a role. However in the
last two decades or so, it became possible to fabricate nanosize devices and electric circuits with
increased sensitivity that operate on the principle of charge and energy quantization. Such a
mesoscopic device is e.g. a single electron transistor (SET) [I58),203] whose essential constituents
are a few electrons on a small island connected to the rest of the world only through tunneling
barriers. This small droplet of electrons is also called quantum dot (QD) or artificial atom
167, 169 M50, 57, M61], and the rest of the world could mean leads or other quantum dots.

“now with a length of 45 nm by Intel®
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Apart from their use e.g. in LED’s, solar cells and possibly in quantum computing, they serve as
a playground to study a profusion of phenomena. Here we focus on their low-energy transport
properties and especially on their displaying the one- and the two-channel Kondo effects [T51], 23].

Quantum dots have been created in a number of ways. One is by applying negative voltage
to metallic gate electrodes on top of a semiconducting heterostructure, such as GaAs/AlGaAs,
which contains a two-dimensional electron gas (2DEG) at the interface [144, 45, 146l 147,
[[48, 15T]. Applying negative voltages leads to the depletion of the 2DEG underneath the
gates and can be used to confine electrons in a quasi-2D region of a length of the order of a
hundred nanometers. The gate electrodes and thus the size and the shape of the dot are tailored
by lithographic patterning. Another possibility instead of using gate electrodes is etching a
predefined geometry into the structure. In each case this arrangement is called lateral quantum
dot.

Vertical quantum dots are another common type for experimental purposes [164), [[65], [T66].
There the dot corresponds to a few nanometer thick disc (e.g. of InGaAs) in a layered double
barrier heterostructure, and the electrons are confined by the edges of this disc. The tunneling
barriers could be made of thin AlGaAs films acting as insulators, and the leads of doped GaAs
situated at the top and the bottom. Such a structure can for instance be grown by molecular
beam epitaxy [168].

In semiconductors the de Broglie wavelength is relatively large. It is of the order of a few tens
of nanometers and hence comparable to the size of the QD which makes quantization effects
such as the discreteness of the excitation spectrum appreciable at low-temperatures. Thus one

characteristic energy scale of a QD is the average level spacing dF in its spectrum. It scales
with L the linear extent of the dot and the electron DOS p in 2D as [I70, 202]

1 Er

OF ~ x )
pL* = (kpL)?

(4.1)

with the area of the QD approximated by L?. As the electron DOS in metals is larger than in
semiconductors, it is possible to fabricate metallic QD’s with quasi-continuous spectrum made
of Al for example. They are called metallic grains or islands.

Another relevant energy scale is E¢, the charging energy of the dot, which is roughly the
energy required to add one electron to the dot and stems from the Coulomb interaction between
dot electrons [[55]. A crude estimate for it is

EC >~ — (4.2)

with e the electron charge and g( the dielectric constant.

In semiconducting QD’s F¢ is usually orders of magnitude larger than 0F . Typically E¢
is in the range of 1 — 10 meV corresponding to 10 — 100 K whereas JFE is between 2 — 100
ueV, i.e. between 25 mK — 1 K. So for the one-electron phenomena to become observable
one needs to go below the temperature set by F¢. The charging energy, as it is calculated in
Subsection EEZZ] is inversely proportional to the capacitance of the dot. Thus with a control
over the smallness of the dot the one-electron phenomena is experimentally accessible. In the
following Subsection we derive the charging energy of the single electron transistor shown
in Fig. EETl and then discuss some qualitative features of electron transport through the dot.
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Figure 4.1: Single electron transistor

4.2.2 Charging energy and Coulomb blockade in a single electron transistor

First we calculate the electrostatic energy of the system shown in Fig. EETl which is the electric
circuit equivalent of the single electron transistor with a QD in the center coupled to left (L)
and right (R) leads, or by analogy with field-effect transistors corresponding to the source and
drain. When the tunnel junctions are well characterized by the capacitances Cp and Cg, we
can describe the Coulomb interaction between the dot electrons by the classical electrostatic
energy. To promote better understanding and as it is a frequently used formula, next follows its
derivation taken from Refs. [162] [163].

The total energy of the system (after the last tunneling) is given by its electrostatic energy
and the work done by the voltage sources. Now we calculate only the electrostatic part. The
Lagrangian of the system reads

L (qba,qz'ba) = % (CG 9% + CLé? + Cr qz.%) , (4.3)

with Cp, Cr and Cg the capacitances and ¢, ¢p and ¢g the corresponding phases with
their orientations chosen as in Fig. EE1l These phases have been introduced to make connection
with the Lagrangian formalism. Their time derivative is the voltage difference between the two
sides of the corresponding capacitor [163].

In loops L and R the loop rule constrains the variables as

Vi + o+ b — Vo = 0, (4.4)
Vo — b + ¢r — Vg = 0, (4.5)

which leave us with only one independent variable denoted to be ¢¢ in Eq. [EI¥). Now we
change this to be the phase at point A where the dot is located

gzlﬁA =V, + gZBL, (4.6)
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......................
---------

I I I
-2 32 -1 -12 0 12 1 32 2 N

Figure 4.2: Conductance through the quantum dot in the single electron transistor as the
function of N for the regime kpTx < kpT < E¢ (solid line), and for T' < Tk (dotted
line).

and reexpress $§l§§9t in terms of it as

1 . .
Zefet (0a,0a) = 5 (CH —2eNéa + CaVE + CLVE + CrVE), (A7)

with the notations C' = Cp, + Cgr + Cg the total dot capacitance, e N = CVy, + Cr Vg +
Cqa Vo the external charge and e the absolute value of the electron charge. As we see, N can
be tuned continuously e.g. by the changing gate voltage V.

By performing a Legendre transformation we obtain the Hamiltonian from .£§ dsm

elstat 0z

1 N)?
SET (¢AaQA) = %QSA — ¥ = 5 M

o — CgVE& — CLV} — CrV3

1
= Ec(n — N)? — 5 (CaVE + CLVE + CrVE) = Ho(n,N) + cst, (4.8)

where the charge on the dot Q4 = 2£ = C qﬁ 4 — e N is the variable canonically conjugate

Opa

to ¢4 . Thus the term #&(n,N) = Ec (n — N)? accounts for the Coulomb interaction, with
n the excess electron number on the dot: —en = Q4. Note that in Eq. () we have not
included the work done by the voltage sources which is needed to transport back the electrons
after tunneling through the circuit to retain the equilibrium. The factor Ec = €% /2C is called
the charging energy. It takes ~ FEc + 0E amount of energy to charge the dot by one electron
as compared to its ground state, where n assumes the value of the integer closest to N. So by
tuning Vi we can adjust the chemical potential, u of the QD at will. This classical description
permits the understanding of the Coulomb blockade phenomenon, and explains why it is called
a transistor [Th9), 160

To simplify the situation let us assume a symmetric setup with C;, = Cr and V/2 = V}, =
— Vg . A transport voltage V' can be switched on to drive current through the dot. For small
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capacitance C', low temperature and transport voltage, and weak coupling or hybridization,
A (see Eq. (Z31))) between the dot and the leads: kT, eV ,A < E¢, the Coulomb inter-
action between the dot electrons is dominant. As it is depicted in Fig. B2l the transport is
not suppressed only near the charge degeneracy points of the dot described by the condition
Ho(n,N) = Ho(n + 1,N), that is when N is half-integer. Here at finite V' and weak cou-
pling, A < kgT the transport is dominated by first order processes called sequential tunneling,
meaning that when one electron enters the dot, one must leave it before the next one could enter.

By raising V' and keeping Vi fixed, the level structure of the dot can be mapped, since the
appearance of new levels in the transport window, [u — eV/2, u + eV/2,], corresponds to the
opening up of new tunneling channels

For N not a half-integer, i.e. in the Coulomb blockade regimes the transport is suppressed,
and the number of dot electrons, n is set by the gate voltage. The system is called transistor
since by tuning the gate voltage the current can be switched on and off,—although doubts
have been raised whether such single electron transistors would ever replace the conventional
field-effect transistors [I7I]. For fixed V' and with increasing Vi the dot gets filled up in a
step-like fashion, (if the steps do not get smeared out by the temperature and the hybridization
between the dot and the leads). Consequently the current, I and the differential conductance,
G = limy _¢0I/0V show a periodic structure as a function of Vi;. There are peaks in the
conductance, separated approximately by the period AVy =~ e/C + dE/(2¢), which covers the
activation energy needed to reach the next level in the dot. This period can be used to measure
E¢ when §F < E¢ . The resonance widths are approximately given by max (A, kgT'). When
0F < kpT < E¢ , in the Coulomb blockade regimes the sequential tunneling is suppressed,
but other processes such as elastic and inelastic co-tunneling and higher order processes are still
possible and give rise to a finite conductance [204]. As we lower the temperature below the level
spacing, kpT < 6F the inelastic tunneling processes, which would leave behind electron-hole
excitations in the dot, die out and the transport properties strongly depend on the parity of the
number of dot electrons (see Fig. E2).

This qualitative picture can be made quantitative on applying e.g. the real-time transport
theory [206] which can be used to perform systematic diagrammatic expansion in non-equilibrium
situations, and which can even account for e.g. resonant tunneling with an arbitrary number of
tunneling events beyond zeroth order or co-tunneling [208]. Still for odd number of dot electrons
under appropriate circumstances, below a certain temperature, called the Kondo temperature
(Tk), strong, so-called Kondo correlations could develop. There the higher order tunneling
processes dominate the transport properties.

4.2.3 Kondo effect in a single electron transistor

The canonical model for localized electrons — such as e.g. dot electrons in case of weak coupling
to the environment — interacting with delocalized electrons — like conduction electrons in leads —
is the Anderson model [51] (see Eq. (Z3))). To adjust this model to the description of a SET we
introduce two types of operators CLQ(E) that create spin-p conduction electrons with standing
wave wavefunction in lead o = L, R, and write the tunneling part as

Hy = Y ta (CL@(E) d;, + h.c.) , (4.9)
i,u,ae{L,R},E

3In this situation the current may even get suppressed with increasing V' due to the coupling between the levels.
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where d;r creates an electron to the " level of the QD. Realizing that from the even and odd
combinations

tr cur(k) + trcur(k)
t

tR C%L(k) — tL C%R(k)
t

(4.10)

Upe(F)

Yuo(k) (4.11)

with ¢ = 4 /t% + t%, only the even channel couples to the dot electrons, makes the calculations

simpler, since due to the mixing between the L and R lead electrons the problem can be handled
by an effective single-channel descriptionE In the impurity or dot part of the Hamiltonian we
can take into account several types of intradot interactions. Now we consider only the Coulomb
repulsion besides the non-interacting part

U
o= Nant L S i, (412
U {i,u}#{5.v}

with n;, = d; udz} o Clearly, the average level spacing of the dot is coded in the level distribu-
tion, ¢;, whereas U = 2 F¢ and when eV < kT the Fermi level can be estimated by that
of the left or right leads, since then €r; ~ €g . The dot-lead tunneling amplitude can also
be tuned e.g. in lateral QD’s by changing the voltage on the gates that created the tunneling
barriers in the 2DEG.

As it has already been mentioned in Section EZ2 the Anderson model in its local moment
regime can be shown to correspond to an effective Kondo model. This regime is characterized
by an odd number of impurity or dot electrons and by the relations written down in Eq. (Z3).
This correspondence was first established in the paper of Schrieffer and Wolff [54], and was later
refined by Kehrein [55]. Based on it it was predicted already in 1988 [205) 207] that by tuning
the temperature and the SET parameters: F¢, 0F and the tunneling barriers appropriately,
the Kondo effect should be observable in quantum dots in the form of an enhanced conductance
in the Coulomb blockade valleys with odd number of dot electrons. This enhanced conductance,
which can even reach the unitary limit, 2e?/h, can be comprehended as follows.

At sufficiently low temperatures (or frequencies) with odd number of dot electrons, it is enough
to take into account only the singly occupied level closest to the Fermi surface in order to gain
an effective description. In this regime second order elastic co-tunneling processes could still
occur where an incoming electron with a spin alignment different from that of the dot spin gets
scattered through a virtual excited dot state. Due to the spin degeneracy in the ground state
of the isolated dot these processes may flip the dot spin or leave it unchanged, but in any case
lower the energy of the system. This implies that anti-parallel spin alignment between the dot
and the lead electrons is favored and thus hints at an antiferromagnetic exchange coupling in the
effective Kondo Hamiltonian. Perturbation theory in the exchange coupling shows that below a
certain energy scale the spin-flip scattering processes dominate and lead to divergent scattering
amplitude in leading order [32]. The energy scale where this divergence sets in is called the
Kondo temperature, T .

As it was first suggested by Anderson’s poor man'’s scaling analysis [57] and later got numerical
confirmation by Wilson’s NRG [30], in the low-frequency limit the single-channel Kondo model

4Note that the odd channel can be omitted only for V' — 0, that is in equilibrium.
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evolves toward a fixed point where the effective exchange interaction between the localized spin
and the conduction electrons is infinitely strong. This manifests itself in the screening of the
dot spin and a formation of a singlet many-body ground state meaning that the unpaired dot
electron and a conduction electron form a spin singlet with a binding energy ~ kpTk

Based on the picture above, Nozieres was the first to realize that the low-energy system
properties can be understood in terms of Landau’s Fermi liquid theory [0] which presumes
that the low-lying excitations of the system can be mapped to that of a non-interacting one
It hinges on that below Tk the spin of the dot disappears from the problem leaving behind
a structureless local scattering potential. This indicates the appearance of a resonance, the
so-called Kondo or Abrikosov—Suhl resonance [69, 217, 216] in the d-electron spectral function
at the Fermi level in the electron-hole symmetrical case.

Our next goal is to obtain the maximal possible conductance through the dot. More precisely
we are only able to calculate the linear conductance, that is one more reason why we have
assumed a vanishing source-drain voltage initially. In case of the single-impurity Anderson
model the linear conductance is given by the Landauer formula generalized for local interactions

as [215]

e? € 2 |tg)?
G = %/de <— dfd—(e)> 47 p(e)Mgd(e), (4.15)

tL” + [trl”

with f(e) the Fermi distribution, p(e) the lead electron DOS and g4(e) the d-level spectral
function. At T = 0 this formula simplifies considerably. By knowing that below Tk in the
d-level spectral function the so-called Kondo resonance develops at the Fermi level which in the
large bandwidth limit can be approximated by a Lorentzian peak as

A
(¢ — ep)? + A2’

o)) = — (4.16)

with A the hybridization defined as previously, we get that the linear conductance reaches its
maximum 2e?/h for |t;| = |[tr| at T = 0 at the Fermi level. The value of g4(er) can

®The value of Tk can be estimated e.g. by using the poor man’s scaling approach [58]. Such an estimate is
useful in the experiments when setting the temperature.

SRelated to the previous footnote is that another possibility is to extract Tk from the susceptibility of the
impurity spin. At weak-coupling, i.e. at high frequencies the impurity is essentially free, decoupled from the
conduction electrons which leads to an impurity susceptibility o w™!, which is called Curie-Weiss suscepti-
bility. On the other hand for low-temperatures Fermi liquid theory predicts a linear frequency-dependence.
We can read out Tk as the crossover energy scale matching these two types of behaviors.

The following simple calculation shows that the free spin susceptibility is indeed of Curie—~Weiss form.

Consider a system with two spin states: S. = :i:%. If the Hamiltonian is simply given by —pHS. with
i = gup : the magnetic moment, g : the gyromagnetic constant, ug = e h/(2mc) : the Bohr magneton,
and H the magnetic field, then the magnetization, M at temperature 7' is
M = Tr {S: exp[u H S: / (ks D)} = Btann ( £ H (4.13)
Tr {exp[p H S. / (ks T)]} 2 2k T
thus the susceptibility (x = %|H _o)is
2
x = —H . (4.14)
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4 Two-channel Kondo model

Figure 4.3: The double dot device (left) and its elec-
tric circuit equivalent (below) that was used to justify
the existence of the 2CK state. The small dot in the
center couples to a large dot (2) and to a left and
> a right lead (1L and 1R) via the hopping ampli-

E C @ @ tudes, t;, and tr. The small dot has a large level
spacing (0Es ), and the large dot is characterized by

\/ \/‘ a vanishing level spacing (JE; ). The temperature is
t, tx set so that both dots are in the Coulomb blockade

regime and 0E; < T < 0Es;. As a result, only

— I spin exchange is possible between the dots.

d

| |
c, C,
c, — | | —_—c

V.,r— 1 T —*V,

also be obtained from scattering theory by applying Friedel’s sum rule [I05], which relates the
single-particle scattering phase shifts, d,(¢) to the number of displaced electrons, N due to the
screening of the dot spin

5T(6F) + 51(61:) = @wN. (4.17)

In the case of one spin-half unpaired dot electron N = 1 and when there is no magnetic field
b (er) = by(er) = /2.

The first observation of the Kondo effect in QD’s had to be waited until 1998 [I51], whereas
reaching the unitary limit was first reported in Ref. [209] in 2000.

4.2.4 Two-channel Kondo effect in a double dot system

Unlike the 1CK effect, the 2CK effect is not expected to occur in metals with magnetic impurities
because its being unstable to channel anisotropy and other perturbations that are usually present
(see Subsection EE3T]). Recently a single electron transistor was designed and built to justify
the existence of the 2CK state [149, 23]. The setup is depicted in Fig. E3 It consists of a
small dot coupled to a large dot and to two leads. The spin of the small dot in the center plays
the role of the impurity, whereas in the appropriate temperature domain, the large dot and the
even combination of left and right lead electrons (cf. Eq. [@I)) correspond to two independent

20



4.2 Observation of the two-channel Kondo effect

screening channels. Clearly, the large dot has to be large enough so that it has a relatively small
level spacing and thus can operate as a conduction electron reservoir. That is the temperature
must be in the range §F; < T <« §FE;, with 0E; and JFE; the level spacing of the large and
small dot, respectively. The temperature needs to be set so that both dots are in the Coulomb
blockade regime, and thus no mixing occurs between the screening channels. In this arrangement
only spin exchange is possible between the small dot and the screening channels.

It is instructive to determine the electrostatic part of the Hamiltonian of this double dot
system. It can be expressed much the same way as it was done in Subsection for a simpler
single electron transistor, therefore we do not present the details of the calculations only the
initial conditions and the conclusions.

The electric circuit equivalent of the setup is shown in Fig. The Lagrangian is given by

pelstat (ém,q.ﬁm,(ﬁd,q.ﬁd) = % Z C; ¢?, (4.18)

(S {1727“7m7d}

with C; and ¢; the corresponding capacitances and phases. The large and small dots are located
at m and d, respectively. We assume C),, to be much larger than the other capacitances to have
a quasi-continuous spectrum in the large dot. Due to the loop rules there are two independent
variables which we choose to be the two phases at the islands m and d, as eventually we would
like to express the Hamiltonian in terms of the accumulated excess charges, ng and n, on
the islands of the small and the large dots. By inspection it turns out the dominant energy
scale is the charging energy of the small dot. Additionally there will be subleading terms in
the electrostatic energy that describe the charging energy of the large dot and the interaction
between the two dots due to their coupling via the capacitor

62

A (g ny) = Yo (ng — Ng)? + Eg (ng,nm) (4.19)
d

with Cy = C,, + Cy + Cy the total capacitance of the small dot, and Ng = CyVy/e. The rest
of the Hamiltonian assumes the usual non-interacting Anderson Hamiltonian form with possible
tunneling only between the small dot and leads and between the small and large dots.

When the temperature is lowered below the charging energy of the large dot then only spin
exchange is possible between the small dot and the appointed screening channels. It is crucial
that in this setup one has a precise control over the coupling between the small dot and the
two screening channels. Thus it is possible to fine-tune the gate voltages so as to equalize the
exchange couplings for the two channels and produce 2CK physics. The 2CK physics presents
itself in the specific form of the linear conductance, GG. Based on conformal field theory, for
temperatures below Tp in the regime eV < kpT' G should display quadratic voltage de-
pendence, whereas for approximately 3k T < eV [193], it should switch to a square root-like
voltage dependence (see Fig. EEH).
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4 Two-channel Kondo model

4.3 Dynamical correlations in the two-channel Kondo model

4.3.1 Operator spectrum of the 2CK fixed point

To start our conformal field theoretical investigations we get back to the s-channel part of the
Hamiltonian in Eq. ([Z60) for the two-channel case

My = 3 / dk (k) al, (k) 0y, (k)
a,p

This Hamiltonian possesses various symmetries. To see it, it is worth introducing left- and
right-moving fermion fields for » > 0 as

Tur G (0) . (4.20)
(82372214

Drp/vr

¢L/R,a,u(r) = / dk eipk?" Qa,p (k + kF) ) (421)
—Dp/vr

with ep = vp kpﬁ and p = + for right- and left-movers, respectively. In terms of these fields
(suppressing channel and spin indices)

U(r) =~ v [e“waR(r) - e*“waL(r)] : (4.22)
ir
(cf. BEq. @84)). Since ¢r(0) = ¥1(0), lim, o U(r) exists. We extend the fields to negative
space coordinates as ¥ (—x) = ¥g(x). Next we linearize the dispersion around ep: €(k) =
vr (k — kp) and express the free part of the Hamiltonian solely in terms of 17, as

i = ior S [ 5 @0 ), (1.29
whereas the interaction part becomes
_ & - N
Mol ~ Svrp O%: Jo ¥l 0 (0) =5~ Vra, (0) (4.24)

with J, = Jo k% V /(272 vp) = Ju p(0) being the dimensionless coupling as before In the
following we suppress the index L : YLay — Va,» since right-moving fields will not appear

in the formulas. Then the total spin operators _# i defined as

St + /;1_90 J'(x) , (4.25)

1 |
5D Yhu(@)oy, e, (@) (4.26)
&3y

ji

J' (@)

commute with the Hamiltonian and satisfy the standard SU(2) algebra,

[ 71, 79 =it gt (4.27)

"Throughout the calculations we use units of & = kg = 1.
8From now on we use units of vp = 1.
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4.3 Dynamical correlations in the two-channel Kondo model

(cf. Eq. 84). In Eq. (20 we introduced the normal ordering : ... : with respect to the non-
interacting Fermi sea to set the energy of the filled Fermi sea to zero. In a similar way we can
define the “charge spin” (or isospin) density operators, for the channels o = 1,2 respectively
as

Q

+

&
I

wll(x)wlT(w) )
Cie) = 53 o) Ya(a) (428)
w

Co (@) = Yar(@) ¢y (),

with CF(z) = C%(x) + i C4(x) , and the corresponding symmetry generators

. de
@ o= [5G =ame). (129)
27

The generators %7, which are related to the electron-hole symmetry [T06, [T07, [T08], and satisfy
the same SU(2) algebra as the _#°’s,

[(gg,%g} = b €IFEE (4.30)

and they also commute with the Hamiltonian (cf. Eq. (B3)). Thus the Hamiltonian 3~ has a
symmetry SUc1(2) x SUc2(2) x SUg(2) in the charge and spin sectors for arbitrary couplings,
Ja

The same way as it was discussed in Subsection B2, these symmetries can be used to label
every multiplet in the Hilbert space and every operator multiplet by the eigenvalues / 2 =
J(J + 1) and €2 = Co(Cqy + 1).

In the presence of a local magnetic field, i.e. when a term

Hmagn = —gpuB S* (4.31)

is added to H3qj , the symmetry of the system breaks down to SU¢1(2) x SUc2(2) x Ug(1),
with the symmetry Ug(1) corresponding to the conservation of the z-component of the spin,
I

For J; = J, = J and in the absence of an external magnetic field, the Hamiltonian, H3q g
possesses a dynamically generated energy scale, the so-called Kondo temperature,

T ~ Dpe V7. (4.32)

At this scale perturbative expansions around the free fermion fixed point blow up and the system
crosses over to another regime characterized by another fixed point. The definition of Tk is
somewhat arbitrary. We define Tk to be the energy w at which for Ji = Jo the spectral
function of the composite fermion drops to half of its value assumed at w = 0. The reason
for this choice is that the composite fermion spectral function is proportional to the reducible
self-energy of the conduction electrons which can be related to measurable quantities, e.g. it

9This group is a non-trivial subgroup of the Sp(4) x SUg(2) group which is also a symmetry of the 2CKM for
equal exchange coupling as it was established in the paper of Affleck et al. |GH].
From now on we use units where we set gup = 1.
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4 Two-channel Kondo model

determines the differential conductance of the double dot device depicted in Fig. B3l as it is
discussed in Subsection 37 (for further details see the end of this Section and Fig. EEl). For
B =0 and J; = Jo, below Tk the physics is governed by the so-called two-channel Kondo
fixed point.

The physics of the two-channel Kondo fixed point and its vicinity can be captured using
conformal field theory. The two-channel Kondo finite size spectrum and its operator content
has first been obtained using boundary conformal field theory by Affleck and Ludwig [27].
However, instead of charge SU(2) symmetries, Affleck and Ludwig used flavor SU(2) and charge
U(1) symmetries to obtain the fixed point spectrum [27]. The generators of the flavor SU(2)
symmetry are

Tt = / ;Z—iTi(m), (4.33)
i) = 30 Ul @) st (), (434)

a,B, 1

with 7%(x) the flavor density operators. The use of charge SU(2) symmetries, however, has
a clear advantage over the flavor symmetry when it comes to performing NRG calculations:
While the channel anisotropy violates the flavor symmetry, it does not violate the charge SU(2)
symmetries. Therefore, even in the channel anisotropic case, we have three commuting SU(2)
symmetries. If we switch on a local magnetic field, only the spin SU(2) symmetry is reduced to
its U(1) subgroup. Using charge symmetries permits much more precise calculations, and in fact
using them is necessary to obtain accurate enough spectral functions, especially in the presence
of magnetic field.

To understand the fixed point spectrum and the operator content of the 2CKM, let us outline
the boundary conformal field theory in this SUc1(2) x SUg2(2) x SUg(2) language. First, we
remark that the spin density operators, Ji(x) satisfy the SU(2);—2 Kac-Moody algebra of level

k=2 [109 27,

[T (z), J (2")] = gé’j §(z—a')
+ i2n6(z —2') IR IR (z) (4.35)

while the charge density operators, C!(x) satisfy the Kac-Moody algebra of level k = 1:

i), O = L5965 8w — o)
2

+ 027 Sapd(x — 2)eTFCE(2)

We can use these current densities and the Sugawara construction to write the kinetic part of
the Hamiltonian as

HILC = Moy + Ao + Hs + A, (4.36)
1 dx = -

%Ca = g % : Ca(x)Ca(m) ‘o
1 de - =
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4.3 Dynamical correlations in the two-channel Kondo model

Ci1 Cy J 1| Exckm
Ci Cy J I | Egee 0 0 1 1 0
0 0 0 1| 0 10 0 o :
i 0 3 of 4 0 1 0 o z
0 5 5 0| 3 5 3 o2 b
T3 1 1) 1 10 1 o 2
T3 0 €| 1 0 3 1 o 2

2 3 5 | 1

Table 4.1: Left: Primary fields and the corresponding finite size energies at the free fermion
fixed point for anti-periodic boundary conditions. States are classified according to the group
SUc1(2) x SUg2(2) x SUg(2) and the Ising model. The excitation energies Efee are given in
units of 27r/L, with L the size of the chiral fermion system. Right: Finite size spectrum at the
two-channel Kondo fixed point.

In Hgg}e( , the first two terms describe the charge sectors, and have central charge ¢ = 1, while
5 describes the spin sector, and has central charge ¢ = 3/2. The last term corresponds
to the coset space, and must have central charge ¢ = 1/2, since the free fermion model has
central charge ¢ = 4. This term can thus be identified as the critical Ising model [200], having
primary fields 1,0, e with scaling dimensions 0,1/16,1/2, respectively. We can then carry out
the conformal embedding in the usual way, by comparing the finite size spectrum of the free
Hamiltonian with that of Eq. [30]), and identifying the allowed primary fields in the product
space. The fusion rules obtained this way are listed on the left side of Table EETl The finite size
spectrum at the two-channel Kondo fixed point can be derived by fusing with the impurity spin
(which couples to the spin sector only) following the operator product expansion of the Wess—
Zumino-Novikov—Witten model, 1/2 ® 0 — 1/2, 1/2 ® 1/2 - 0® 1, 1/2® 1 — 1/2 (see
RHS of Table EII). Finally, the operator content of the fixed point can be found by performing
a second fusion with the spin. The results of this double fusion are presented in Table EE3T1
In Table EE3] the leading irrelevant operator, /,1 $s, is also included; although it is not a
primary field [27], close to the 2CK fixed point, this operator will also have impact on the form
the correlation functions.

Conformal invariance binds the long-time behavior of the correlators of the primary fields,

¢(1) to be

lim (6()6(0)) o —=. (4.37)

T — 00 T

with x the scaling dimension of ¢ [200, 6, 2T0]. This would mean no or logarithmic w-
dependence around the 2CK fixed point at low-frequencies for the correlators of the primary
fields. However, as we shall see, this behavior is modified by the presence of irrelevant pertur-
bations which eventually result in a power law-like behavior.

What remains is to identify the scaling operators in terms of the operators of the non-
interacting theory, or more precisely in terms of the local operators acting at the zeroth site of
the Wilson chain. There are only five simple operators, S and fo,a,u that satisfy this criterium,
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4 Two-channel Kondo model

but out of them, based on simple combinatorics, we can form all together 139 different local
irreducible tensor operators not including the identity. In the following we do not consider all
of them. Based on naive power counting among others we leave out the operators with x < 0,
where x is the dimensionality (in powers of momentum) of the corresponding coupling of the
interaction described by the operator These interactions are termed to be non-renormalizable
and are naively ignored on approaching the 2CK fixed point assuming that they are irrelevant,
as they become less important in the limit of low-energies, i.e. using Weinberg’s theorem or due
to a theorem of Polchinski [201]. Every composite operator with more than two local fermions
belongs to this family.

In general, an operator of the non-interacting theory can be written as an infinite series in
terms of the scaling operators and their descendants. Apart from the Ising sector, which is hard
to identify, we can tell by looking at the various quantum numbers of the operators acting on
the Wilson chain, which primary fields could be present in them. In this way, we can identify,
e.g. 58 as the spin operator S. Thus the spin operator can be expressed as

S = Asgo+... (4.38)

where the dots stand for all the less relevant operators that are present in the expansion of S ,
and some high-frequency portions which are not properly captured in the expansion above. The
weight, Ag can be determined by matching the decay of the spin-spin correlation function at
short and long times. This way we get Ay ~ 1/y/Tk since we know that at high-frequencies
the impurity spin is decoupled from the conduction electrons and thus its susceptibility follows
the Curie-Weiss law (see Eq. (EI4)).

There are many operators that contain the scaling fields in their expansion. As an example,
let us consider the operators qSZﬁ . Here the label p = {1,]} refers to the spin components of
a J = 1/2 spinor, while 7 = £ refers to the charge spins (or isospins) of a charge C' = 1/2
spinor. To identify the corresponding operator on the Wilson chain, we first note that f&lw
transforms as a spinor under spin rotations. It can easily be seen that the operator fg,l =
i 0y fo1 also transforms as a spinor. We can then form a four-spinor out of these operators,
v = {f&l,ﬂ, f(;r,l,u} . It is easy to show that ~; transforms as a spinor under SU¢q(2) rotations
as well, thus gb;‘f could be identified as v, = {f(]JL,l,w f&l,ﬂ}.

However, we can construct another operator, Ff = f&lg&' and its counterpart, F 1T =10, F1,

and form a four-spinor out of them: I'y = {FlT w 15‘1]: u} . This operator has the same quantum
numbers as 1, and in fact, both operators’ expansions contain gb;’f .

The operator QSTAT/ is of special interest, since it is relevant at the two-channel Kondo fixed
point, just like the spin. Its susceptibility therefore diverges logarithmically. Good candidates for
these operators would be v € Tl v (with €., a two by two antisymmetric matrix with
the entry €;; = 1), since these are spin singlet operators that behave as charge 1/2 spinors in
both channels. The 7 = 7/ = + component of this operator corresponds to the superconducting

order parameter
— T T T T
Osc = Jforilozs = Jorifoz (4.39)

while the +— components describe a local operator that hybridizes the channels, ~ f0T717 L fo2-

HOf course, here we refer to the local operators on the Wilson chain prior to making them dimensionless.
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4.3 Dynamical correlations in the two-channel Kondo model

Ci Cy J I 2°°K  scaling corresponding operators
operators
0 0 11 3 o 5
_ [t .
5 0 3 o 3 orh m= (fO,Lu ) (wyfo,l)u>
rr= (Fly,, —(ioyFo),)
11 1 72
0 3 3 o 3 o N
% % 0 1 % ¢ZT/ fg,lsgfayfg,Q _foTJS&fOQ
—foa0y SG oy fly —forioy SGfos
0 0 % Ganis S(f(;l&le — fg726"f072)
o o o 1 3 J 165 S(fd16 for + f325f02)

Table 4.2: Highest-weight operators and their dimensions 22¢% at the 2CK fixed point. Op-
erators are classified by the symmetry group SUc1(2) x SUg2(2) x SUg(2) and the scaling
operators of the Ising model. The constants C; and Cy denote the charge spins (or isospins)
in channels 1 and 2, respectively, while J refers to the spin, and I labels the scaling operators
of the Ising model: 1,0,¢. Superscripts 7,77 = =+ refer to the two components of charge
spinors, while © =7, ] label the components of a spin-half spinor. The operator %1 is the
Kac—Moody raising operator which raises the scaling dimension of gz?s by one [193].

Another candidate would be the operator, ZW € ri 727/” . This operator is also a local
singlet, and has charge spins (or isospins) C; = Cy = 1/2. It contains the following component

of the composite superconducting order parameter
Oscc = fe18Gi0,fl,. (4.40)

From their transformation properties it is not obvious, which one of the above superconducting
order parameters has singular susceptibility. However, NRG gives a definite answer by showing
that while the susceptibility of the traditional operator does not diverge as the temperature or
frequency goes to zero, that of the composite order parameter does (see Subsection EE3H), and
thus confirms what first has first been anticipated in Ref. [28]. It is thus this latter operator
that can be identified as qSTAT/. Note that, in case of electron-hole symmetry, the composite
hybridization operator

Omi:v = f(J]r,l ‘S_;O_: f0,2 (441)

has the same singular susceptibility as Ogo¢ since they are both components of the same tensor
operator. This is, however, not true any more away from electron-hole symmetry. Furthermore,
superconducting correlations are usually more dangerous, since in the Cooper channel any small
attraction may lead to ordering when a regular lattice model of two-channel Kondo impurities
is considered.

The knowledge of the operator content of the 2CK fixed point enables us to describe the
effects of small magnetic fields and small channel anisotropies (jl # Jo ). For energies and
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4 Two-channel Kondo model

temperatures below Tk , the behavior of the model can be described by the slightly perturbed
two-channel Kondo fixed point Hamiltonian. For J; =~ Js and in a small magnetic field,
B < Tk, this Hamiltonian can be expressed as

H = Hicx + Dy/* ko Ganis + Dy > Tio bs + Dy > X JFradhs + oo (4.42)

Here H35. ) is the 2CK fixed point Hamiltonian, and kg is the dimensionless coupling to the
channel anisotropy field, ¢qnis, whereas the effective magnetic field, ﬁo, couples to the “spin
field”, ¢s. Both of them are relevant perturbations at the 2CK fixed point and they must vanish
to end up with the 2CK fixed point at w,T" — 0. The third coupling, Ao, couples to the leading
irrelevant operator (see Tab. EL3l), which dominates the physics when x = h = 0. The energy
cut-off Dy in Eq. ZZ) is a somewhat arbitrary scale: it can be though of as the energy scale
below which the 2CK physics emerges, i.e. Dy ~ Tk . Then the dimensionless couplings kg,

)\0! and hg are approximately related to the couplings of the original Hamiltonian, Eq. (ZGJ),
ad!3

ko ~ Kp=d4-—2 (4.43)
(J1 + Jo)?
XN o~ 0(1) . 4.45)

However, the arbitrary scale Dy in Eq. [@Z2) can be changed at the cost of changing the
couplings: Dy — D, kg — k(D), hg — h(D) and A\g — A(D) in such a way that the
physics below Dy remains unchanged. This freedom translates to scaling equations, whose
leading terms follow from the conformal field theory results (see Tab. EE3]), and read

dk(D) 1
= —k(D . 4.4
dh(D) 1
— = —h(D . 4.47
d\(D) 1
—— = —=XD e 4.4
o AD) (1.48)
with | = — log D, and the coefficients of the leading terms on the RHS are the RG eigenvalues,

y?CK =1 — 22K of the corresponding operator [6]. Solving these equations with the initial
conditions, D = Dy ~Tg and h = hy, kK = kg, A = Ay, we can read out the energy scales

at which the rescaled couplings become of the order of one,

Ji — Jo)?

T « Tg ki ~ Ty =) , (4.49)
(J1 4+ J2)*

Ty, o Tk hd ~ B?/Tk . (4.50)

At these scales the couplings of the relevant operators are so large that they can no longer be
treated as perturbations. Below T™ the single-channel Kondo behavior is recovered in the more

2See e.g. Ref. [T09] for the details of the derivation of these scales where the perturbative renormalization group
approach breaks down.
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Lo L L L
L

Figure 4.4: Spectral function pp
of the composite fermion operator,
Fy1,1 as a function of w, and the
definition of the scales Tk and
T*. Tk is defined by the relation
or(w = T, T = 0,Kr = 0) =
top(w = 0,7 = 0,Kg = 0). For
non-zero Kg the scale T* is defined
through op(w = T*,T = 0,Kg) =
3 op(w = 0,7 = 0,|Kal).

Pr ()

strongly coupled channel, while T}, can be interpreted as the scale where the impurity spin
dynamics is frozen by the external field.

The prefactors in Eqs. ([E49) and ([ESL0) are somewhat arbitrary. They depend slightly on the
precise definition one uses to extract these scales. In this thesis, we use the spectral function
of the composite fermion to define the scales Tk and T*. We define Tk to be the energy at
which for Kr = 0 the spectral function of the composite fermion takes half of its fixed point
value (i.e. the value assumed at w = 0), whereas T* is the energy at which for Kr > 0 it
takes 75% of its fixed point value (see Fig. EZl).

It is much harder to relate T} to a physically measurable quantity. We defined it simply
through the relation, 7}, = C} B?/Tk , where the constant was chosen to be Cj, ~ 60. This
way 1} corresponds roughly to the energy at which the NFL finite size spectrum crosses over
to the low-frequency FL spectrum.

4.3.2 Details of the NRG calculations

All results presented refer to zero temperature. The NRG calculations were performed with a
discretization parameter A = 2.

In the electron-hole symmetrical cases the sum of the dimensionless couplings was J; + Jo =
0.4 for each run. We have used the symmetry group SUci(2) X SUr2(2) x SUg(2) in case
of channel anisotropy but no magnetic field or electron-hole symmetry breaking At these
calculations the maximum number of kept multiplets was 750 in each iteration. This corresponds
to the diagonalization of ~ 90 matrices with matrix sizes ranging up to ~ 600, acting on the
vector space of &~ 9000 multiplets consisting of ~ 106000 states.

In the presence of magnetic field we used the symmetry group SUc1(2) x SU2(2) x Ug(1),
and retained a maximum of 1350 multiplets in each iteration, that corresponds to the diagonal-
ization of ~ 150 matrices with matrix sizes ranging up to a~ 800 acting on the vector space of

3The corresponding symmetry generators have been enumerated in Eqgs. ) and B3).
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4 Two-channel Kondo model

~ 18000 multiplets consisting of ~ 73000 states.

As for the details of the DM-NRG calculations in case of electron-hole symmetry breaking
caused by the term Eq. ([EEZ), which is briefly discussed in Subsection EEX0, we used the
symmetry group Ucgq(1) x Uga(l) x SUg(2) and retained a maximum of 2000 multiplets
in each iteration, that corresponds to the diagonalization of ~ 250 matrices with matrix sizes
ranging up to ~ 1000 acting on the vector space of &~ 29000 multiplets consisting of ~ 138000
states.

Next we show how the knowledge of the operator content of the two-channel Kondo fixed
point help us understand the analytic structure of the various dynamical correlation functions
obtained by DM-NRG.

4.3.3 Local fermions’ spectral functions and susceptibilities

Let us first analyze the Green’s function of the local fermion, f(;r,m u Yo - The composite

D f(],a) Green’s function [T40], which is proportional to the reducible self-
energy, is closely related to it through the Dyson equation. Therefore we do not discuss its
analytic properties in detail but use it merely as a reference to define the various energy scales
in the NRG calculations (see Fig. EE4l). Let us note, however, that in the large bandwidth
limit, apart from a trivial constant shift, a minus sign and a proportionality factor, the spectral
function of the local fermion is that of the composite fermion, and close to the 2CK fixed point
all features of op are also reflected in oy .

Before we discuss the NRG results, let us examine what predictions we have for the retarded
Green’s function of the operator fot a from conformal field theory. By looking at its quantum

numbers, this operator can be identified with the operator gbjzg (see Tab. L3I, i.e.

foap=Aro0h + ..., (4.51)

with the prefactor Ay o« 1/v/Dp with A a complex number. The dots in the equation above
indicate the series of other, less relevant operators and their descendants, which give subleading
corrections to the correlation function of fot au Furthermore, the expansion above holds only

fermion’s ( Fl

for the long time behavior. The short time part of the correlation function of foT,a, . 18 not
captured by Eq. [XI]), and gives a constant to G¢(w) of the order of ~ 1/Dp. Thus, apart
from a prefactor A?e, a constant shift and subleading terms, the Green’s function of f&a,u is
that of the field (75225 . Using the Callan—-Symanzik equations it can be shown that the Green’s
function of any operator of dimension x = 1/2 is scale invariant around the two-channel Kondo
fixed point [0T]. Since gb%ﬁ and thus f& a,u Dave a scaling dimension 1 /2 at the 2CK fixed point,
it follows that the dimensionless retarded Green’s function, Dr G¢(w), is also scale invariant
. w T
Dr gf(waT) = 9f _,_’K(D)’h(D)’)‘(D)a s
D" D
495 _ pd9r

=D = 0. 4.52
dl dD 0 (452)

From Eq. [22), we can deduce various important properties. Let us first consider the simplest
case, T' = 0 and x = h = 0. Then setting the scale D to Dy ~ Tk we have

R — R w
g w) = gy <D—O,)\0,...> : (4.53)
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4.3 Dynamical correlations in the two-channel Kondo model

Let us now by choosing a time rescaling parameter a > 1 with a” = Dy/|w| rescale D — |w|
in n steps. By using the fixed point scaling equation ([ZF]) we obtain A(D)

w
g gr [ £a™ —, a2 N, ...
gf gf( a Do’a’ 07

R |w|
— g2, 4.54
f Dy (4.54)

Assuming that this function is analytic in its second argument we have for |w| < Tx

- ,h, T=0 . (W
9y (W) = gy Tr

+ 4 — ..., 4.55
9+ f T 9+ f Tx ( )

%

with g+ 5 and ¢/, § some complex expansion coefficients. Here the subscripts + refer to the
cases w > 0 and w < 0, respectively. As we discussed above, the constants g4 y depend also
on the short time behavior of G¢(¢), and are not universal in this sense. These constants are
not independent of each other. They are related by the constraint that the retarded Green’s
function must be analytic in the upper half-plane. Furthermore, electron-hole symmetry implies
that g1y = g-y and ¢, ;, = —(¢_ ;)*.

Relations similar to the ones above hold for the dimensionless spectral function. This is

defined as
R 1 R
of(w) = - Im gf(w) , (4.56)

and assumes the following form at small frequencies in case of electron-hole symmetry,

T, ,h=0 / |w]
™ = — 4+ ... 4.57
¢ (w) Tyt Ty T + ( )
For w > Tk the scaling dimension of the local fermion is governed by the free fermion
Hamiltonian, a:;ree = 1/2, corresponding to an w-independent spectral function. Perturbation

theory in .J amounts to logarithmic corrections of the form: 1/2 — cst / log?(Txk /w), as we
sketched it on the left parts of Figs. and L0
For T'# 0, and k = h = 0 using similar arguments as before, but now rescaling D — T we

find
~k.h=0 R w T
' w = _a_a)‘

. w [T

Then by expanding g; we obtain the following scaling form for the low temperature behavior
of the spectral function,

00 - () 8 () s
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Figure 4.5: (left) Sketch of the dimensionless spectral function ¢y = Dpos of f&l,o, and
(right) the real part of its dimensionless Green’s function, Re gy = Dp Re Gy for T' > 0
and Krp = 0,B = 0 as a function of log (w/Tk). Asymptotics indicated for w < Tk were
derived through scaling arguments. The large w-behavior is a result of perturbation theory. The
features of the spectral functions for w > Dp are non-universal and depend on the realization
of the model.

with ©; and 0 ¢ universal scaling functions. Note that we made no assumption about the ratio
w/T, but both w and T must be smaller than Tr.

The asymptotic properties of © ¢ can be extracted by making use of the facts that (i) g¢(w,T’)
must be analytic for w < T', (i7) that Eq. (ERd) should reproduce the T" — 0 results in the
limit w > T, and (i7i) that by electron-hole symmetry, o0 must be an even function of w.
The emerging asymptotic properties together with those of the other scaling functions defined
later are summarized in Table E The asymptotic properties of the real part, Re g;, can be
extracted from those of o, by performmg a Hilbert transform

Re gf(w) = 77/61~ » —c)D (4.60)

with P the principal part. The obtained features are sketched in Fig. for T > 0 and
k=h=0.

Let us now investigate the effect of channel anisotropy, i.e. kK # 0 at T = 0 temperature and
no magnetic field h = 0. In this case, we can rescale D from its initial value Dy to D = |w|

to obtain
A Ty 1/2 W \1/2
Qf (1, <7> Ko, (ﬁ) )\0, e (461)

= K5 (=) + |TK| K () + s

with 7™ the anisotropy scale defined earlier in Eq. ([E49)). The superscripts + refer to the cases
of positive or negative anisotropies: the superscript “+” is used when the coupling is larger
in the channel o where the Green’s function of f&a,u is measured. The asymptotics of the

T, h=0
oy (w)
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Figure 4.6: (left) Sketch of the dimensionless spectral function of f&l,#: 0 = Dp o5, and
(right) the real part of its dimensionless Green’s function: Re gy = Dp Re Gy for T' = 0, K >
0 and B = 0 as a function of log (w/Tk). Asymptotics indicated for w < Tk were derived
through scaling arguments. The large w-behavior is a result of perturbation theory. The features
of the spectral functions for w > Dp are non-universal.

universal functions IC? and I@f can be obtained through similar scaling arguments as before

and they differ only slightly from those of ©; and 8] ¢ (see Table EE33)). The properties of

@?’hzo(w) are summarized in Fig. BE6l A remarkable feature of the spectral function is that

it contains a correction ~ y/T*/|w|. This correction can be obtained by doing perturbation
theory in the small parameter k(w) at the two-channel Kondo fixed point, and exploiting that
there the long-time behavior of the three-point functions is specified by conformal invariance
[2001, M93]. Hence for w — 0 the analytic form of the Fourier transform of

7 T £la7) bunis ) o) (462)

with 7 the time-ordering operator, can easily be determined upon dimensional analysis. Thus
the procedure of extracting the leading correction to the near fixed point behavior works the
same way as for the leading irrelevant operator.

From the asymptotic forms in Table we find that in the limit w/T* > 1 in the local
fermion’s susceptibility a new scale, T}‘* ~ /T*Ty appears as a result of the competition
between the leading irrelevant operator and the channel anisotropy [I40]. Thus it is only in the
regime T}‘* < w < Tk that the leading irrelevant operator determines the dominant scaling
behavior of the local fermion’s susceptibility, i.e. we expect to see 2CK physics. The expected
properties of p; and that of the real part of its dimensionless Green’s function g in the presence
of channel asymmetry are shown in Fig. L6l And as we shall see, these analytic expectations
are nicely confirmed by our NRG results.

Fig. 7 (a) depicts the spectral function of f(;r,L L for several values of Kr as a function of
w/Tx on a logarithmic scale. The overall scaling is very similar to the one sketched in Fig. I8,
except that the high temperature plateau is missing; this is due to the relatively large value
of Ty , which is only one decade smaller than the bandwidth cut-off. We chose such a large
Tk so that the low-frequency behavior is visible for longer before the numerical errors blow up.
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4 Two-channel Kondo model

. . Asymptotic Form Scaling Variable 2CK
Scaling Function

r<1, 1<z x Scaling Regime
(C] 1/4 1/4
57 ) RN o
K i +7 .2 1
~i (l’) fO + Iifgo/;? foo + f, ‘ ‘ w/T* T;* é w, T;* o T*TK
’Cf (z) Kto || f,
B 2 111/2
310 () 5fu+53/2 » B+ 05 1z w/T, T Sw, T < VI T
By, (x) ﬁfu 2] ﬁﬂu
S 04 03
~S (x) ~5(’) Ly ~ S Sgn($) 12 w/T T é w
Os (x) 05 =, 0% sgn(x) |x|
I§S ({L‘) Ii‘s(v) T, li%o Sgn(:r) + Koo " 1 w/T* T < w . TH (T*2TK)1/3
Ks (2) &0 sen(e) a2 R sen(x) T
~S,z (l’) B ﬁS,z ‘/Li 72 ﬂS,z + @S,z |:z:| w/Th T}’:* Sw, T}’:* X IR Tk
BS,Z (37) 5,593 |.73| / ) ﬁg’?z -

Table 4.3: Asymptotic behavior of the universal cross-over functions. At finite temperature, the boundary of the two-channel
Kondo scaling regime is set by the temperature. At zero temperature, the various boundaries of the 2CK scaling regime derive
from the competition between the leading irrelevant operator and the relevant perturbation.
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Figure 4.7: (a) Dimensionless spectral function of fo1,: 0f(w) = Dpos(w) as a function

of w/Tk for different values of Kpr. (b — e) Numerical confirmations of the low-frequency
asymptotics derived through scaling arguments in Subsection Dashed straight lines are
to demonstrate deviations from the expected /w-like (b — ¢), 1/y/w-like (d) and w?-like (e)
behavior. In plots (¢ —e) T%/Tx = 2.4 x 107%.
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Figures 7. (b— e) are the numerical confirmations of the asymptotics stated. In all these figures
dashed straight lines are to demonstrate deviations from the expected behavior. In Fig. EE7.(b)
we show the square root-like asymptotics in the 2CK scaling regime for the channel symmetric
case. This behavior is a consequence of the dimension of the leading irrelevant operator as it
has just been discussed. In Fig. EE7(c) the same asymptotics is shown in the same region in
case of a finite channel anisotropy, whereas below them Fig. L7 (d) demonstrates an (1/ w)l/ 2
like behavior resulting from the relevant perturbation of the 2CK fixed point Hamiltonian with
channel anisotropy. In Fig. EE7(e) the FL-like w?-behavior is recovered below T*, which is
typical of fermionic operators in the 1CK scaling regimes.

In Figs. B8 (a — b) we show the universal scaling curves, K that connect the two-channel
and single-channel fixed points at low-frequencies. They were computed from runs with negative
and positive values of K and are plotted as a function of w/T*. The universal behavior is
violated for values of K higher than the highest ones shown in Fig. EE8l where T™ becomes
comparable to Tk .

The real parts of the local fermion susceptibilities are plotted in Fig. for several values of
Kpg. They were obtained by performing the Hilbert transformations numerically. They should
show a three-peak structure based on the analytic considerations (see Fig. EEl). There are two
low-frequency peaks clearly visible, associated with the cross-overs at T* and Tk . Furthermore
there should be a non-universal peak at the cut-off. For relatively large channel anisotropies,
where T* ~ Tg , the former two peaks cannot be clearly separated in Fig. Also, due to the
large value of T ~ Dp, the peak at w ~ Tk and the smeared singularity at the bandwidth
cut-off, w = Dp merge to a single non-universal feature in our NRG curves.

Let us now turn to the effect of a finite magnetic field, B # 0 for the case T = 0, Kr = 0.
As h and k scale the same way in the 2CK scaling regime, the argument concerning the
k # 0 case can be repeated with some distinctive features: Now, the spin SUg(2) symmetry
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is violated, and therefore the spectral functions of fg al and fg al become different, and they
are no longer even either. Nevertheless, due to particle-hole symmetry, they are still related
through the relations

pri (W, Tk, hy...) = pri(—w, T,k h,...),
pry (W, Tk, b)) = pp(w, Tk, —h,...) . (4.63)

We are thus free to choose the orientation of the magnetic field downwards. Then, after rescaling
D — |w| we get

w vl

<k, T=0 _ w 1wl dl
Qfall (w) - Bfaﬂ (Th> + TK ny# (Th> + ... ) (464)

where the label p refers to the different spin components and By, and Bf,u are yet another
pair of universal cross-over functions. The asymptotic properties of the functions By, and B fu
are summarized in Table

Fig. EET0 shows the spectral functions ¢f, as a function of w/Tk on linear and logarithmic
scales for different magnetic field values. The same curves are depicted as a function of w/T},
in Fig. EETTl, which demonstrates the existence of the universal scaling curves, By, , i.e. that
by using the scale, T} the local fermion’s spectral functions can be scaled on top of each other
for small enough magnetic fields. In this magnetic field region, we find a peak at T} for the
spin-T component of fT, while at the same place there is a dip for the spin-| component. This
remarkable feature contrasts with the 1CK case, where no such universal peak/dip occurs for
small magnetic fields. In fact, the same universal features also appear for the spectral functions
of the composite fermions, which were computed independently and which are proportional to
the reducible conduction electron self-energies [I53]. The rescaled spectral functions op ,(w)
have already been shown in Chapter B in Fig. B4l
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Although this numerical evidence can be obtained by conventional NRG methods not using
the density matrix, this is no longer true for the sum of the local fermions spectral function
over the different spin components. In fact, for this quantity universal scaling curves in the
presence of magnetic field cannot be obtained using NRG because of the increase in the size
of the numerical errors at low-frequencies and the mismatch between the positive and negative
frequency parts of the spectral functions. The sum of the local fermion’s spectral function over
the two spin components is depicted in Fig. as a function of w/Tk. Here the splitting of the
Kondo resonance in the energy-dependent total scattering cross section appears as a minimum
at w ~ Ty. Unfortunately, for even smaller magnetic fields the accuracy of our numerical data
is insufficient to tell if the splitting of the Kondo resonance persists in the limit B — 0, as
conjectured in Ref. [T40]. In the data with B/Tx > 1.1 x 10~*, there seems to be always a
shallow minimum in the spectral function, and we see no indication for crossing of the curves as
the magnitude of the field is reduced.

With small modifications, the analysis presented in this subsection carries over to essentially
any fermionic operator that has quantum numbers C; = J = 1/2 or Cy = J = 1/2 and
has a finite overlap with the primary fields ¢y and ¢y2, only the high-frequency behavior
(w > Tk ) and the normalization factors change. Typically, a local operator having the same
charge and spin quantum numbers as ¢, will have a finite overlap with them. However, in
some cases the Ising quantum number of an operator may prevent an overlap.

4.3.4 Spin spectral functions and susceptibilities

In this section, we discuss the properties of the spin operator, S , which is the most obvious
example of a bosonic operator of spin J = 1 and charge quantum numbers C; = Cy = 0
that overlaps with the scaling operator ¢5. There are, however, many operators that have the
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same quantum numbers: Two examples are the so-called channel spin operator
Se = foadfon— fis5foz (4.65)
and a composite channel spin operator
Scc = F1Gfo1— Flydfor - (4.66)

Our discussion can be easily generalized to these operators with slight modifications.
The analysis of the spin spectral function goes along the lines of the previous subsection. First
we recall that the field ¢, appears in the expansion of the spin operator,

S = Ayds + ..., (4.67)

with Ay ~ 1//Tx ~ 1/v/Dy. Therefore, the appropriate dimensionless scale invariant Green’s
function is defined as

w T
g —, — = T T ..., Dg) . 4.
gs <D7 Da"<‘307h07 ) K GS (w7 , KO, ) 0) ( 68)

We remark that, apart from a minus sign, for bosonic correlations we identified the retarded
Green’s function as the dynamical susceptibility,

Xw) = —Gw). (4.69)

We shall not repeat here all the steps of the derivation, only summarize the main results.
In the absence of magnetic field (h = 0) the spectral function of the spin operator is odd.
Furthermore, at 7' = 0 and for no anisotropy (x = 0) the spin spectral function has a
discontinuity at w = 0 [I75]

05" W) & seu)|rs +rdy [ ] (4.70)
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Figure 4.13: Left: Sketch of the dimensionless spectral function of S 0s = Tgos =
TgIm xys(w)/m for T > 0 and Kr = 0,B = 0 as a function of log (w/Tx). Right: Sketch of
0s = Tkos = Tk Im xs(w)/m for T = 0 and Kr # 0,B = 0 as a function of log (w/Tk) .
Asymptotics indicated for w < Tk were derived through scaling arguments. The large w-
behavior is a result of perturbation theory [214].

This jump corresponds to a logarithmically divergent dynamical susceptibility, Re xs(w) =
—Re Gs(w) x In(Tk Jw)/Tk .

For w > Ty the impurity spin becomes asymptotically free, decoupled from the conduction
electrons, therefore its w-dependence is set by its scaling dimension at the free fermion fixed
point where xgree = 0. It has the implication that its correlation function decays as w™!
corresponding to the Curie-Weiss susceptibility with logarithmic corrections present, known
from Bethe Ansatz results and from perturbation theory.

At finite temperatures 7" £ 0, but for k = h = 0, we obtain the following scaling form for

Tw<Tk:
W) = o (%) n \/% Os <%> TR (4.71)

The asymptotic properties of the scaling functions ©g and Og are listed in Table
In case of finite channel anisotropy but zero temperature we obtain for w <« Tk the scaling
form

0w~ ks () ¢l s () @2

The asymptotic properties of Kg,Kg are only slightly different from those of Og,Og (see
Table EE33)): below 7™ the spectral function displays analytic behavior, while the regime w >
T* is governed by non-analytical corrections associated with the 2CK fixed point. In this regime
a feature worth mentioning is the appearance of a correction, ~ T%/w to Kg, more precisely,
the lack of a /|T*/w| correction. This is due to the fact that the anisotropy operator is odd,
while the spin operator is even with respect to swapping the channel labels. Therefore there is
no first order correction to the spin-spin correlation function in %, and the leading corrections
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are only of second order, i.e., of the form x?/w. From the comparison of the terms in Kg and
Kg it also follows the existence of another cross-over scale

kok *2 1/3
T o~ (TTx) ", (4.73)

that separates the regimes governed by the leading relevant and leading irrelevant operators.
Here we used the subscript s to indicate that this scale T¢™ is different from the scale 77"
introduced in relation to the local fermion’s spectral function. The asymptotic properties of
0s x xs(w) for T" > 0, K = 0 and T" = 0,Kr # 0 are sketched in the upper and lower
parts of Fig. ET3] while the behavior of the real part is presented in Fig. EET4l

These expectations above are indeed nicely met by the NRG calculations: Fig. shows the
impurity spin spectral functions as a function of w/Tk for various Kpg’s and their asymptotic
properties. First, in Fig. ELT0l(b) we show a very small logarithmic w-dependence that we
observed below Tk at the 2CK fixed point. The amplitude of this log(w)-dependence was
reduced as we increased the number of multiplets. It appears that this behavior is not derived
from the lognormal smoothing of the NRG data, and it may be due to some approximations used
in the spectral sum-conserving DM-NRG procedure. In Fig. T8l (¢) we show the square root-
like behavior around the 2CK Kondo fixed point which is attributed to the leading irrelevant
operator, while Fig. EET0l(d) shows that first order corrections coming from the scaling of the
channel anisotropy are indeed absent just as we stated above, and only second order terms
appear, resulting in an 1/w-like behavior. Finally, Fig. 10l (e) demonstrates the linear w-
dependence, which is characteristic of most bosonic operators in the proximity of an FL fixed
point. All these findings support very nicely the analytical properties summarized in Table 233

The spin spectral functions also collapse to a universal scaling curve describing the cross-over
from the two-channel Kondo to the one-channel Kondo fixed points, when they are plotted
against w/T**. This universal data collapse is demonstrated in Fig. ELT6] where the impurity
spin spectral functions are plotted for various K values. The data collapse works up to some-
what higher anisotropy values than for the local fermions’ spectral functions as it is indicated
by the Kpg-dependence of the scales T¢™ and T

The real part of the spin susceptibility was obtained through numerical Hilbert transformation,
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Figure 4.15: (a) Dimensionless spectral function of S: 0s

Tkos = TrgIm xg(w)/m as

a function of w/Tx for different values of Kpr. (b) Minute log (w)-dependence at the lowest

frequencies diminishing as a function of the number of kept multiplets.

(¢ — e) Numerical

confirmations of the low-frequency asymptotics derived from scaling arguments in Section EE341
Straight dashed lines are to demonstrate deviations from the expected /w-like (¢), w-like (d),
and 1/w-like behavior (e). In plots (d —e) T*/Tx = 7 x 1072.
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and is shown in Fig. ETT as a function of w/Tk for various values of K. These curves meet the
expected behavior sketched in Fig. EET4k they display a logarithmic increase at high-frequencies
and saturate at values that correspond to Re xs ~ In(Tx/T™) / Tk.

Let us finally discuss the case, T = k = 0 but h # 0. Then the components of S are
distinguished by the magnetic field: The spectral function of S* has almost the same features
as for finite channel anisotropies. Since S? is a hermitian operator, its spectral function remains
odd and acquires the following corrections in the different scaling regimes

. - w lw| 5 w
0s. = Bs.: (Th> + Tr Bs. . <Th> + ... (4.74)

with the scaling functions Bg ., l”;’s,z having the asymptotic properties listed in Table

Note that in this case the first order correction coming from the magnetic field does not vanish,
and leads to the appearance of a cross-over scale ~ /13T .

The perpendicular components of the impurity spin have somewhat different properties. Since
the operators S* are not Hermitian, and therefore their spectral functions are not symmetrical.
The spectral functions of the operators S* and SY are, however, symmetrical, and their Green’s
functions (and susceptibilities) are related through

1
g5 = 95 = ; (G& +651) . (4.75)

The corresponding dimensionless spectral functions, 907 and @Si as computed by our DM-NRG
calculations are shown in Fig. as a function of w/Tk, while the universal scaling with w/T},
is confirmed for low-frequencies in Fig. ET9. This scaling also turned out to be valid for values
of B higher than the ones for fermions (see Fig. EETd). The scaling functions Bg . and Bg+
behave very similarly. This is somewhat surprising, since the naive expectation would be to
have a resonance in Bg 4, just as in the local fermion’s spectral function, that would correspond
to a spin-flip excitation at the renormalized spin splitting, T},.
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4.3 Dynamical correlations in the two-channel Kondo model

4.3.5 Superconducting correlations

Now let us investigate the local superconducting correlations. They deserve special attention,
since many heavy fermion compounds display exotic superconducting phases that may possibly
be induced by local two-channel Kondo physics [I75]. The most obvious candidates for the
corresponding local operators have been identified in Subsection EE31], and are the local channel-
asymmetric superconducting operator, Ogc = f&m fg& L f&L I f&m, and the composite

fermion superconductor field, Ogco = fg 1 Sz 107y fg 9 -
For the composite superconductor we find the expansion,

Oscc = Asce o5 + ... (4.76)

where the expansion coefficient Agcc can be estimated from the high-frequency behavior of
the correlation function up to logarithmic prefactors as Ascc ~ Tk /Dp. While for the
impurity spin, one can exclude logarithmic corrections to the expansion coefficient Ag in Eq.
based on the exact Bethe ansatz results, this is not possible for the superconducting correlation
function. In fact, we know that in the expansion of the composite fermion itself the correct
prefactor is Ap ~ J/\/Tx ~ 1/(vVTx In(Dp/Tk)) [[53]. Therefore, similar logarithmic factors
could appear in the prefactor Agcoc . Nevertheless, in the following, we shall disregard possible
logarithmic corrections, and define the normalized dimensionless and scale-invariant correlation
function through the relation

A D3, Di.
gscc(w) = T Gsco(w) = — T xscc(w) . (4.77)
K K

Apart from its overall amplitude and its high-frequency behavior, in the low-frequency scaling
regimes the spectral function of the composite superconductor operator behaves the same way
as that of S* (see Tab. EEZTl). Therefore we merely state its asymptotics without further
explanation.

In the absence of anisotropy and magnetic field, Kk = h = 0, for w <« Tk the spectral
function becomes a universal function, pscc(w/T), whose behavior is described by the scaling
form

@g’gzo(w) ~ Oscco (%) + \/g (':)SCC (%) + ..., (4.78)

while in the presence of anisotropy, but at zero temperature and for h = 0, the spectral
functions behave as

T, h=0 w > lw| - < w >
’ ~ — — — . 4.
Ose (W) Kscc <T* + T Kscc )+ (4.79)

Finally, in a finite magnetic field but for x = 0 anisotropy and at T = 0 the spectral
function assumes the following scaling form,

=T=0 _ w lw| w
p— - —— — PR . 4-
0Sce Bscc (Th> + T Bsce (Th> + (4.80)
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The properties of the the various scaling functions defined above are identical to those of the
corresponding spectral functions of the S?% given in Table EE33] therefore they have not been
included in Table again.

The asymptotic properties are nicely confirmed by our NRG calculations. The dependence on
the anisotropy, together with the ~ \/m , the ~ 1/w and the ~ w scaling regimes are plotted
in Fig. Here the high-frequency region, w > Tk , is also displayed, where the spectral
function is roughly linear in the frequency, as dictated by the free fermion fixed point.

The universal collapse of the low-frequency part of the curves in terms of w/T* is shown in
Fig. The cross-over curve, Kgcoco (%) is very similar to the spin cross-over function, Kg,
and displays a plateau at large frequencies from which it deviates as 1/w, until it finally reaches
the linear frequency regime below 1™ .

Fig. displays the real part of the dimensionless Green’s function, that is essentially the
real part of the superconducting susceptibility. This diverges logarithmically for 7" = 0, but
for finite 7™ ’s it saturates, corresponding to a susceptibility value

Tk Tk
Re xscc ~ D—% In (T* ) . (4.81)

There appears a small prefactor in front of the logarithm due to the fact that composite su-
perconducting correlations are irrelevant at energies w > Ty , as it follows from simple power
counting.

Application of a magnetic field has effects very similar to the anisotropy, as shown in the
upper part of Fig. EZ3. We kept a relatively small number of multiplets therefore the small
logarithmic increase at small frequencies is more visible in Fig. As mentioned before, this
increase is most likely an artifact of the spectral sum conserving approximation of Ref. [90] and
it is due to the way this method redistributes spectral weights. This is based on the observation
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w/Ty for different values of Kp, and (b) the real part of its dimensionless Green’s function:
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that the slope of the logarithm diminishes if we increase the number of kept multiplets. These
curves also collapse to a single universal curve as a function of w/T}, , as shown in the lower part
of Fig.

Finally, in Fig. 24l we show the numerically obtained spectral function and the correspond-
ing dimensionless susceptibility of the non-composite superconductor, Ogo = f&m fg& L

f0T717 L f&?,T' Clearly, this spectral function displays no plateau below Ty , but it exhibits a lin-
ear w behavior below Tk , and correspondingly, the susceptibility Re xgc remains finite for
w — 0 even in the absence of anisotropy and an external magnetic field, i.e. at the 2CK fixed
point.

This implies that, although its charge and spin quantum numbers would allow it, the expansion
of this operator does not contain the scaling operator qﬁTAT/ . This may be due to the difference
in the Ising quantum numbers, which we did not identify. Thus the dimension of the highest-
weight scaling operator that appears in the expansion of Ogc is # = 1 and not 1/2, as one
would have naively expected it based on a simple comparison of quantum numbers. Turning on
a small anisotropy or magnetic field does not influence substantially the spectral properties of
the corresponding Green’s function either.

4.3.6 Electron-hole symmetry breaking

Throughout an actual experiment the electron-hole (e-h) symmetry might not be assured. Mo-
tivated by this condition we studied the effects of e-h symmetry breaking on the local Green’s
functions of the 2CKM. We added a potential scattering term

vy fgw Foan (4.82)

o,

to the NRG Hamiltonian of Eq. (Z6J). As this operator is marginal around the 2CK fixed point
it is not expected to influence the asymptotic behavior of the spectral functions [I75]. Indeed,
the numerical results for the composite fermion’s and local fermion’s spectral functions reinforce
this expectation. At the level of the finite size spectrum, this operator appears through a phase
shift ¢, i.e. as a shift of the energy levels.
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Figure 4.25: (a) Imaginary
part of the eigenvalue of the on-
shell T-matrix, as function of
w/Tg , for several different val-
ues of the anisotropy parame-
ter, Krp = 471 — J)/(h +
j2)2. In all cases J1 + Jo =
0.2. Curves with J; > Jo or
Ji < T scale to Im t(0) = 2
or Im ¢(0) = 0, respectively.
The critical curve corresponding
to jl = jg separates these
two sets of curves. (b) Im ¢(w)
for jl = jg, as a function of
Vw/Tg . The dashed line is to
demonstrate deviations from the
expected y/w-behavior. (c) T*
as the function of K 1%5.
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The upper part of Fig. shows the universal scaling of the composite fermion’s spectral
function, ¢p(w) versus w/Tx for different values of the potential scattering strength, V' and
the exchange coupling, J with J = J; = Jo. We defined Tk by the half width of the function
or(w) for each value of the J,V parameter pair and for each positive and negative frequency
range individually.

The numerical calculations manifested the expected \/w/Tx scaling for low-frequencies as it
is demonstrated in the insets of Fig.

For the composite fermions for low-frequencies the effect of e-h symmetry breaking manifests
itself mostly in the shift of or(w) by a constant.

For the local fermions we carried out the same kind of analysis and found reassuring /w/Tx
behavior as shown in the inset of the lower part of Fig. For low-frequencies the above e-h
symmetry violation makes the local fermions’ spectral functions much more asymmetric as that
of the composite fermions, whereas 9¢(0) = 0.25 remains unchanged in accordance with the
result of Affleck and Ludwig for the retarded self-energy at the 2CK fixed point [T93].

4.3.7 Linear conductance of a double dot system

Using NRG, we have also computed the zero temperature, finite-frequency linear conductance
of the double dot system discussed in Subsection EEZ4] and depicted in Fig. E3l In the regime
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4.3 Dynamical correlations in the two-channel Kondo model

where the system can be described by the 2CK Kondo model, we can identify the dimensionless
eigenvalue of the so-called on-shell T-matrix, ¢,(w) as being proportional to the dimensionless,
retarded Green’s function of the composite fermion operator, G ,(w) [I53l, T92, T40]

tw(w) = —J7Gruw), (4.83)

with J; the Kondo exchange coupling to the even combination of the left and right lead con-
duction electrons. It is also known that at the 2CK fixed point, the single particle sector of the
S-matrix of the conduction electrons vanishes [I93]. Thus from the relation, S(w) =1+ i t(w)
between the dimensionless eigenvalue of the S- and T-matrices we obtain that
lim tw,T) = i, for J, = Jp. (4.84)
w, T —0

Furthermore in the linear response regime we can relate Im {¢(w)} to the real part of the linear
conductance through the Kubo formula. We get that

Re {G(w)} = 8G_f) Z/dw' Im {t,(W")} [f(& +w)— f(W —w)], (4.85)
n

. _2e2  At2t%

tion. It means that at the 2CK fixed point G(w = 0) = G/2. Based on the formulas above
and using NRG, we have computed Im {¢(w)} and Re {G(w)} for finite channel anisotropies,
characterized by the anisotropy parameter now defined as Kp = 4(J; — J2)/(J1 + J2)? (with
Ja the value of the exchange couplings in the NRG calculations). The results of these calcula-
tion are shown in Figs. and E220], and are very similar to the results for the spectral function
of the local fermion operators (cf. Subsection EE33]), therefore we do not discuss their properties
again.

the maximal conductance through the dot and f the Fermi distribu-

4.3.8 Summary

In the previous subsections we analyzed the properties of the correlation functions of various
local operators of the 2CK model in the presence of a channel anisotropy, external magnetic
field and potential scattering. In particular, we studied numerically and analytically the corre-
lation functions of local fermions, the impurity spin and local superconductivity operators. The
selection of these operators was partially motivated by conformal field theory, which tells us the
quantum numbers and scaling dimensions of the various scaling operators at the 2CK fixed point
[Z7]. There are, however, many operators that have quantum numbers identical with the scal-
ing fields. Here we picked operators having the right quantum numbers, and at the same time
having the largest possible scaling dimension at the free fermion fixed point where the exchange
coupling goes to zero. These are the operators whose spectral functions are expected to have the
largest spectral weight at small temperatures, and which are therefore the primary candidates
for an order parameter, when a lattice of 2CK impurities is formed, as is the case in some U- and
Ce-based compounds. The operators above are, of course, also of physical interest on their own:
the spectral function of f& ap 18 related to the tunneling spectrum into the conduction electron

sea at the impurity site, the Green’s function of S is just the dynamical spin susceptibility that
can be measured in inelastic neutron scattering, and finally the local superconducting operators

83



4 Two-channel Kondo model

1 L L L L I L L L L
| LI)Q 05 . T | T | KR: O |
\ S TN =01 —__ K,=002
5 3 ™~ K,=-002 }
- S 04 . - R
n Q) | M | --- Ky,=01
Q-)Q ' — S K,=-01
~— L Q: L L —_—— KR_ 0.2 -
_ | N N 0 0.5 1 _
3 RN 12 K,=-02
— 0.5 S o ~o T~ ((L)/TK) B
QO S~ -l
— i e - T = — 5
0 R e et o DL Eet e T
e ! i S T T S e
_.' ...... R
I
1 @ |
0 1 1 1 1 I 1 1 1 1
0 0.5 1
w/T,
1_ I L L LI I L L LI I L1l -
> b
o (b)) |
~— KR: 0.002
—~
3 | K,= 0.01 . |
N T~
———- K,=002 N T~
R . ~
"~ '~ ~
() [ - KF\’: 0.2 "\.. \\\ n
o universal curve Tk - TSslls
0 T T T TTIm T T T TTImm T T T TTImm - \| ||||I1TI'I_—_
Q0_5_ _——— KR: - 0.002 =
9 _— KRZ -000 0 T -
= ] K, = -0.02 BN \\ I
§’ 4 - Kg=-02 \'\. \‘. \\ i
. 4 \c N
&?_, universal curve S ‘.\ \\
) 1 '~ R
o T~ ~ o
0 | TT T T T T TTImm T T T TTImm .\|.||||I'ITI'I__
10° 10° 10° 10°
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Figure 4.27: (left) Sketch of the various 2CK scaling regimes in the presence of channel anisotropy
for the local fermions bounded by T]’ﬁ* from below and for the spin bounded by 77, the
crossover scale T is also indicated. (right) Sketch of the 2CK scaling regime for the suscepti-
bilities of the highest-weight fields bounded by 77", and the crossover scale T}, besides.

are candidates for superconducting ordering in heavy fermion materials. We remark that, in
the electron-hole symmetrical case, the other components of the operator multiplet that con-
tains the composite superconducting order parameter Ogcc would correspond to a composite
channel-mixing charge density ordering. Of course, the susceptibilities of this operator has the
same properties as that of ysco(w).

In addition to these operators, there are two more operators of possible interest. The so-called
composite fermion’s Green’s function is related to the ¢-matrix, that describes the scattering
properties off a two-channel impurity (or the conductance through it in case of a quantum dot),
and was already studied to a certain extent in Ref. [I40]. A further candidate is the channel
anisotropy operator. This also has a logarithmically divergent susceptibility, and would also
be associated with a composite orbital ordering in case of a 2CK lattice system. However, the
spectral properties of this latter operator are so similar to those of the composite superconductor
that we have decided no to show data about them.

To identify the scaling operators we reconstructed the boundary conformal field theory of Af-
fleck and Ludwig for the group SUg1(2) X SUeo(2) x SUg(2). Then we established the scaling
properties of the various dynamical correlation functions and identified the corresponding univer-
sal cross-over functions and their asymptotic properties, based upon simple scaling arguments.
In this way, universal scaling functions describing the cross-over from the two-channel Kondo
fixed point to the one-channel Kondo fixed point (for J # jg) and to the magnetically po-
larized fixed point (for B # 0) have been introduced, which we then determined numerically.
We emphasize again that presently these universal cross-over functions can only be obtained
through DM-NRG.

Our numerical calculations confirmed all our analytical expectations, including that in the
presence of magnetic field, or channel anisotropy, the 2CK scaling regime is rather restricted,
and it may also depend on the physical quantity considered. In Fig. E27 we sketched the regimes
where the pure two-channel Kondo behavior can be observed. Notice that in the presence of
anisotropy the 2CK scaling regime of the spin susceptibility has a boundary that differs from
that of the 2CK Kondo scaling regime of the local fermions.
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4 Two-channel Kondo model

Some of the spectral functions show quite remarkable features. Namely, in a magnetic field
the spectral function of the composite fermion, FOJ[, I shows a universal peak at a frequency
w = T} . This peak may appear due to the spin-flip excitations of the impurity spin at the
renormalized magnetic field. Remarkably, this peak is accompanied by a dip of the same size at
the same frequency for spin down electrons. This dip is actually very surprising and is hard to
explain. Similar features appear but with opposite sign in the local fermions’ spectral functions.
Even more surprisingly, this sharp resonant feature is absent in the spectral function of the spin
operators, ST .

We have also studied, how the 2CK behavior is influenced by electron-hole symmetry breaking.
We found that in the presence of a strong potential scattering the singular part of the composite
fermion’s spectral function remains almost perfectly symmetrical, whereas the singular part of
the local fermion’s spectral function has a strong asymmetry. We argued that in the presence
of electron-hole symmetry breaking the universal cross-over functions should depend on an
additional universal phase shift parameter related to the potential scattering strength.

One of the interesting results of our analysis is that only the composite superconductor Ogo¢
has a logarithmically divergent susceptibility. This is thus the primary candidate for supercon-
ducting ordering for a 2CK lattice system.

Interestingly, although the results are still somewhat controversial [2I1], in the two-channel
Kondo lattice these local superconducting correlations do not seem to induce a superconducting
transition [213]. This may be, however, an artifact of the standard two-channel Kondo lattice
model, which does not account properly for the orbital and band structure of an f-electron
material [212]. In a more realistic lattice of two-channel Kondo impurities a composite super-
conducting order may develop, similar to the one suggested in Ref. [212].
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Figure 4.28: Universal scaling of the dimensionless composite fermion’s (top) and local fermion’s
spectral functions (bottom) as a function of w/Tk for different values of the exchange coupling,
J and potential scattering strength, V. The insets show \/w-like behavior for low-frequencies

for both operators.
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5 Summary

The study of strongly correlated electron systems is one of the central themes in condensed
matter physics. The investigation of quantum impurity models is a starting point towards the
understanding of more complex strongly correlated systems. These models also provide the de-
scription of various correlated mesoscopic structures, they appear in molecular electronics and
describe phenomena such as dissipation or dephasing. Since their creation, our understanding
of these models has evolved considerably due to the powerful theoretical tools available for their
study. The Numerical Renormalization Group (NRG) method, devised by Wilson in the seven-
ties, is possibly the most powerful from among them. With this dissertation I have contributed
to the efforts improving the accuracy of the spectral function calculations using the recently
developed Density Matrix Numerical Renormalization Group (DM-NRG) method. These de-
velopments have been timely e.g. because of the possible applications of mesoscopic devices
in quantum computing. My DM-NRG studies concentrated on the two-channel Kondo model
which is the simplest quantum impurity model exhibiting non-Fermi liquid properties. It has
possible relevance in the description of heavy fermion systems. Moreover, the existence of the
two-channel Kondo state has recently been justified using a double quantum dot device.

In the following thesis points I summarize the main new results presented in my Ph.D. dis-
sertation.

1. T have worked out a flexible NRG procedure which is capable of handling an arbitrary
number of compact Lie group symmetries that a quantum impurity model possesses [26],

Q0.

2. T have implemented the above procedure for spin- and charge-SU(2) and U(1) symmetries
in structure oriented C++ programming language by writing a flexible NRG code [25,
0] which can be downloaded from the site http://www.phy.bme.hu/~dmnrg/. I have
demonstrated that the use of non-Abelian symmetries is advantageous for reliability and
performance reasons.

3. Using NRG, in the presence of channel anisotropy I have calculated the zero tempera-
ture, frequency-dependent linear conductance of the double quantum dot device that has
recently been built to justify the feasibility of the 2CK states. I have computed the univer-
sal conductance scaling curves that connect the one- and two-channel Kondo fixed points
of the two-channel Kondo model that describes the system [I40]. I remark that presently
NRG is the only method to calculate these scaling curves.

4. Based on group theoretical considerations, I have shown that in the recently devised DM-
NRG method the reduced density matrix preserves its diagonal form even in such cases
when an arbitrary number of compact, non-Abelian Lie group symmetries of the quantum
impurity model are considered [90] (see also Appendix [D).
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5. I have implemented the DM-NRG procedure for an arbitrary number of spin- and charge-

SU(2) and U(1) symmetries into the NRG code mentioned above. This way it became
possible to calculate very accurate, spectral sum rule preserving spectral functions [25, 00].

. Based on conformal field theoretical results, I have classified the highest-weight fields

of the electron-hole symmetrical two-channel Kondo model at the two-channel Kondo
fixed point according to the group SU¢1(2) x SUg2(2) x SUg(2), and determined the
relevant and leading irrelevant perturbations to the 2CK fixed point Hamiltonian [91].
Using DM-NRG, I have computed the retarded Green’s functions of the highest-weight
fields at zero temperature at the two-channel Kondo fixed point and in the presence of
relevant perturbations such as the channel anisotropy, or the magnetic field using the
groups SUc1(2) x SUe2(2) x SUg(2) and SUc1(2) x SUe2(2) x Ug(1), respectively. I
have also performed spectral function calculations for fermionic operators in the presence
of marginal potential scattering with the use of the symmetry Uqq(1) x Uga(1) x SUg(2)

[a1].

. Based on simple scaling arguments and conformal field theoretical considerations, I have

expanded the highest-weight fields at the two-channel Kondo fixed point in terms of the
operators of the free theory. I have determined the analytic form of the universal scaling
curves in the asymptotic regions and their numerical form for the whole frequency range.
In all cases my DM-NRG calculations confirmed the analytic expectations [91].

. I found that the boundaries of the various 2CK scaling regimes depend not only on the

type of the perturbation but also on the operator investigated. In a small magnetic field,
I observed a universal resonance in the local fermions’ spectral function and that the
dominant superconducting instability arises in the composite superconducting channel

[a1].



A Relation between the linear response
and the spectral function

A.1 Definition of the linear response function

Let us introduce the following time-dependent perturbation to a static Hamiltonian

dH = B f(t), where B = BT, (A1)

and f(t) is the strength of the perturbation. The time-dependent expectation value of the
operator A (denoted by the subscript ¢) is expressed to first order in f(¢) in terms of the
linear response function ¢ p(t,t') as

t

(4), = (4),+ [ eanttrrrar, (A.2)

— 00

where the subscript 0 indicates the unperturbed expectation value computed using the equilib-
rium density matrix, p, and the kernel is given by

oap(t,t) = —%<[/1(t),3(t’)]£>0, (A.3)

where [fl, E’] — AB - fBA with & = +£1 for bosonic/fermionic operators. As it is an
§

equilibrium expectation value, ¢4 p depends only on the time difference: ¢ — ¢'. (From now
on the subscript 0 will be omitted and expectation values will be meant implicitly to refer to
the equilibrium case.)

The integral in Eq. (A2) can be extended to oo by introducing the retarded Green’s function
as the kernel

Gsl) = —zowm{s[in.50) } | (A4)

with O(t) the Heaviside step function.
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A Definition of the Green’s function

A.2 Spectral/energy representation and the definition of the
spectral function

Upon specifying p as the canonical distribution, the linear response function or the generalized
susceptibility reads ad]

e

waB(t) = —iTr{

I
|
N
S
3
/:5
N
ou]S
e
|
782%
o
e
s

(t)] n> . (A.5)

where Hn) = E, n), the set {n)} forms an orthonormal basis, and Z = ZeiﬁEn is the

n
partition function with § = 1/T the Boltzmann factor. Making use of the following form of
the identity (and omitting the hat from above the operators)

1 = ) m)Pry, (A.6)

m
with Pr,, the projection onto the vector m), we get

pap(t) = =iy 7 ((n[(A()m) PrinBn) — £ (n|(Bm) PrmA(t)n))
B
= —iy 7 ((n]A()m) (m|Bn) — £(n|Bm) (m[A(t)n)) . (A7)

Inserting the definition of the time-dependence of an operator in the Heisenberg picture, the
response function reduces further to the form

pap(t) = =iy
= =iy - <ei<En—Em>t (n|Am) (m|Bn) — £edBn=Bnt (| Bm) <myAn>)
n,m Z

efﬁEn

((n ‘ethAe_thm> (m|Bn) — & (n|Bm) (m ‘ethAe_thn>)

upon introducing wy,, = E,, — E,. Taking the Laplace transform of ¢4 g(t) into the half-
plane of complex numbers with positive imaginary parts we gain

& , e PEn _ ¢e=BEm (n|Am) (m |Bn
xAB(z) E/O gpA,B(t)eZtht = Z £ (n|4m) {m|B > (A.9)

7 Z — Wmn,

n,m

'From now on everything is measured in units of % and kg .
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A.2 Spectral/energy representation and the definition of the spectral function

Substituting w + i€ for z, for € — 07 yap(w + i€) can be partitioned into two terms as

Xap(w) = Xap(w) + ixapw), (A.10)
where
: € ge (n|Am) (m|Bn)
= A1l
Viple) = Y p g i (A1)
e*ﬁEn — efﬁEm
Vislw) = -3 S Am) (m B 6 (w — ) . (A12)

with P the principal part. If B = AT: Re x, ,;(w) = X/ 41 (w) and Im x , ;1 (w) = x4 (@)
hold. The definition of the spectral function of the operator A is
1 e BEn _ geBEm
0a@) = — i) = ST T Am) o - o) - (A3)

n,m

Provided that A AT + AT A = cst , by integrating over w in Eq. (AA13)) we obtain the relation

cst = /dw oA(w), (A.14)

called the spectral sum rule.
The Kramers—Kronig relations establish connection between the real and imaginary parts of
the response function via a Hilbert transform as

Im x , 44 (@)
Re x (@) = —7> / o’ w/‘f*w (A.15)
R
Im x g4t (w) = ——7?/ dw' © Xagi (@ ). (A.16)
w — W

Taking the 8 — oo limit we get

[(n|Am)|* 6 (v — winn)

efﬁ(EnfEO) —_ gefﬁ(EmeO)
lim p4(w) = lim
B—00 f—00 £~ Ze*ﬁ(Ei*Eo)

i

=D [(0]Am)* 6 (w — wmo) — ) [(n|AD)* 6 (w — won) , (A.17)

with 0) referring to the ground state. If A is a self-adjoint operator, the spectral function of
it will be an odd/even function of w in case { = £1, respectively.
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B Energy-dependent density of states in NRG

As an alternative to what has been described in Subsecs. and 223 NRG has also been
extended to deal with energy-dependent p(e) and t¢(e) [[I2, T3 [[15]. For its importance e.g.
in implementing NRG to dynamical mean-field theory [120) [[21], 24, 122, [123], 124, 139 5],
which is supposed to be one of the subsequent applications of our code [Z5], or treating quantum
impurities embedded into pseudo-gap Fermi systems [I12], we show how the mapping to the
Wilson chain gets modified with energy-dependent DOS and couplings.

In Ref. [IT2] it is argued that after integrating out the conduction electron degrees of freedom,
the following two models result in the same effective action for the impurity degrees of freedom

1 1
HYy = /ldg g(€) aL(E) a,(&) + Ha + /ldg h(E) [CLL(E) d, + h.c.}, (B.1)

and

1 1 A(g) 1/2
Ha — /ldEEaL(E) a,(E) + Ha + /ldé’ SO [a©) dy + ne], (B2)
(with A(E) = 7p(E)#(E)? the dimensionless hybridization and () = p(e) Dp and (&) =
t(e) / Dr the dimensionless conduction electron DOS and coupling, respectively) provided that

-1 2
agax( )h(g_l(x))

holds with ¢g~! the inverse of g. Eq. (B3) is obviously satisfied with the choice g(£) = &€ and

h(E) = \/A(E) /. However, to be able to reduce the Hamiltonian to an s-channel form, it is
better to choose h(£) to be constant in each interval of the logarithmic discretization, and so
g(€) has to be modified accordingly to meet Eq. (B3]). Keeping the same notation as in Subsec.
EZ2 we define h(€) to take the following value in the n'* interval

Y= pa)i(x)? (B.3)

n 1/2
1A -
hE) = ki = [_/ de ﬁ<5)t(5)2] L i ATHD < g < AT (BA)
n JA—(n+1)
1 _A—(n+1) 1/2
ME) = hu = [z_/ d€ p(€) 5(5)2] Cif ATH) < g < AT (B)
nJ—-A—"

With this choice, the tunneling part is of the form

HY = ZdL (1 - A71)1/2ZA*n/2 (h anop + Py baop + hec.)
I n

1

_ ( / " e 5(6) 5(5)2>1/22 (df, fop + hc) . (BS)
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B Energy-dependent density of states in NRG

with
1/2

1— A1
vaN = 1 ZA_n/Q (hj; Anop + hr_L bnOu) ) (B7)

/ 0 7€) i(€)?

1

so that {fo,w fg"/}+ = 0, again.

The next task is to map Hﬁi” to the Wilson chain. Here we make the same approximation
as in Subsec. by dropping all terms with p # 0 contributions, that do not couple directly
to the impurity

1
Hk;zn Hk‘ln = Z/ldgg(g) Zli (aILOM anou + bILOM bnOu)
po VT n "

= Z (SZ G’ILOM nop + S, bILOM bnOu) ’ (B'8)
nu
with
1A
sto= — a€ g(€), (B.9)
A—(n+1)

—(n+1)

S, —/ a€g(€). (B.10)
A—"n

As it is argued in e.g. [I12], the specific form of g(€) need not be known, as in the formulas only
its integrals over the intervals + (A~("*D A="] appear. From Eq. (B3) g(+A™") = A"
can be inferred. Using this relation together with Eq. ([B3)) it is straightforward to show that

_ATT
/ dEE p(E)E(E)?

spo= A : (B.11)
| aeneie?
A—(n+1)
A—(n+1)
/ dEE p(E)E(E)?

swo= T : (B.12)
/ 4 H(€) E(£)?
—A—"n

Now, we demand 'Hkm to be of tridiagonal form, i.e.
Z (S;L’— G’ILM nu + Sn bnu bnu) Z {Enu frTL,u fn,u + tnu (fn+1 Mf + hC)} ’ (B13)
nuy nuy

here €y, are called the on-site energies, and t,, denote the hopping amplitudes. We apply the
Lénczos tridiagonalization procedure [I19, [[T3] to achieve this form and find the coefficients in
the decomposition Eq. [ZZ3) and its inverse Eqs. (Z40]), @Z1). The coefficients ug,, and v,
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B Energy-dependent density of states in NRG

are already determined by Eq. ([B). Using their knowledge we set up the recursion relations to
determine the further coefficients, €,, and t,,. Inserting Eqs. (ZZ8), [(ZZD) into Eq. (BI3),
we get the following relation between the coefficients of f,, on the two sides of Eq. (BI3)

Z (Sﬁ Unm a;rn + S Unm bin) = €n fTTL + tn frTL-i-l + tn-1) fi—l? (B.14)
m
which gives for n = 0
> <S$ Uom afy, + 85 Vom bin) = e fd +tof]. (B.15)
m
Taking the anticommutator of fy with both sides of Eq. ([BIH) we find ¢y as

€@ = Z (% U + S Vom) - (B.16)

m

Taking the anticommutator of both sides of Eq. (BIH)) with themselves we get

&+ 88 =3 [(shwom)” + (s v0m)°] - (B.17)

m

and thus

th=> {(sﬁ uom)? + (s;LUOm)2] _ [Z (s ugy + s vgm)] . (B.18)

m m

Now to carry on with the recursion we have to express w1, and v1,, in terms of what is known
so far. This can be done by using Eq. ([BI3). The result is

uom (85, — €0)

Ul = BT (B.19)
Vi = %{)_60) (B.20)
Following the same logic we get for n > 0
€n = Z (s w2 + s vim) s (B.21)
m
2= Y [(S;UOm)Q + (smmf] A N (B.22)
m
Ut ym = o (5, En)t — ) b : (B.23)
n
VUntlym = v (5, = En)t ~ Ye-b o : (B.24)
n

Note that in case of electron-hole symmetry, i.e. for an even hybridization function, the on-site
energies vanish.

There is one more technical remark concerning the tridiagonalization procedure: Because
of the exponentially decaying hopping amplitudes, for large n’s one should resort to arbitrary
precision routines for the evaluation of the recursion relations above.
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C Initializing the one-channel Kondo model
with SUg(2) x SUx(2) symmetry

For the above symmetry setup in the first iteration we have three different block multiplets,
u = 1,...,3 formed from the impurity spin and the conduction electron at the zeroth site of
the Wilson chain, while there are two local/added multiplets in each iteration, p = 1,2. These
states and their S,C' quantum numbers are listed in Tab. (only highest weight states, i.e.
states with the largest S% C? quantum numbers are listed). The reduced matrix elements of
the Hamiltonian between the block states then read

-2.0 0
ofull Hollv)y=J| 0 ;3 0 [, (C.1)
0 00

with J the exchange coupling strength.

For the construction of the hopping Hamiltonian the matrix elements of f(;r are needed and
can be determined using the Wigner—Eckart theorem. In the present case, the four operators
7T0 = {fJ,T, f&l, fo,1,—fos} form an irreducible operator multiplet, thus their invariant matrix
elements are the same and are given by

0 0 V2
olu |l ol v)y=1 0 0 V2. (C.2)
1

3
5ooyi oo
To generate the hopping terms of the Hamiltonian, we also need to know the reduced matrix
elements of 7;2 41 between the added states. These are as follows

0\/§>

bl e Il v) = ( 5 o (C:3)
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C' NRQG initialization

Block
states S C Local

states S C
1) = UM =11 0 0

1) = £, ,10) 30
12) = S, 1) 10

‘2>:fl+1,rfi+1,1’0> 0 %
13) = f2 f2 1) 5 3

Table C.1: Block states at the zeroth site of the Wilson chain (left) and local/added states
(right) for the single-channel Kondo model using the group SUg(2) x SU¢(2). Block states are
formed from the impurity spin and the conduction electrons at the zeroth site of the Wilson chain.
Different states correspond to different irreducible subspaces of the group SUg(2) x SU¢(2).
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D Proof of the diagonal form
of the reduced density matrix
for SU(2) symmetries

In a different way from how it was demonstrated in the main part of the thesis we show that
the reduced density matrix is diagonal in the representation indices in the case when the local
symmetries are direct products of SU(2) groups.

The proof consists of two parts. In the first one we show that a scalar operator with respect to
SU(2) over the space Vi ® Vo, with Vi,V, two, finite dimensional vector spaces, has a special
form in terms of tensor products between irreducible tensor operator components acting on V;
and Vs, respectively. In the second part we show that the trace of this special form over V;
vanishes unless the trace of a scalar operator was taken. As a consequence the reduced density
matrix remains scalar under further reduction.

Claim: Let Vi and Vs be vector spaces of dimensions dy and ds, respectively. Let A be
a linear mapping of Vi ® Vs into itself (A € L(V; ® Vs)) which is a scalar with respect to
SU(2). Then A can be written of the form

> > S cfme i) gl (D.1)

n,m Q(mm)é% w=—Q(n,m)

where Q(n,m) runs over the non- negative integers and half-integers and satisfies the relation

(2Q(n,m) + 1) < min(d?,d3); for i = 1,2, len myw 18 the w™ component of an irre-

ducible tensor operator of rank Q(n,m), acting on V;. The Cnm)w_g are constants with the
restriction that there are at most min(d2,d3) non-zero among them.
Proof: First we show that A can be decomposed as

Q1(n) Qa(m)

> > > > Cgi(:b)’fg QV11(31 )1 ® QY Vz) , (D.2)

n,m Ql(n) 92(m)eZ+ w1 = 7Q1(n) wo = ng(m

where (201(n)+1) < d? and (2Q2(m)+1) < d3 and among the constants CQl((n))f}Q at most

d{d% are non-zero. This decomposition is a consequence of (i) that VA € L(V; ® Vs) can be
decomposed as

A dj
SN i B @B (D.3)
i=1j=1

where for i = 1,2, k=1,...,d?, B( V) enumerate the elements of the canonical basis of L(V;),

the linear mappings of V; into 1tse1f and the ¢/ -s are constants; and (ii) that VO € L(V;)
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D Reduction of the density matrix for SU(2) symmetries

can be expressed in terms of the irreducible tensor operator components as these components
form a basis of L(V;) [103].

Let D( ) o(9) be the matrix elements of the (20 + 1)-dimensional, irreducible representation
of SU(2 ) ith g € SU(2) arbitrary. By using its invariance under the action of SU(2), we can
rewrite A as

Q1(n) Qa(m) Q1(n) Qa(m) s (n)
A=) > > > > > Cosmyn

Ql(n),ﬂg(m)E% w1 =—01(n) w2 =—-Q2(m) W) =-Q1(n) wh=-02(m)

Qa(
« puln ))( ) Df,;% (9) Q(Vln - Qgg(m ot (D.4)

wl,wl

By decomposing the product of the irreducible representations in Eq. (D) into irreducible
representations, as usual, we have

Q140
Q Q Q
Df,l,lu),/l (Q)Df,;u),é (9) = Z (Q w4+ wa | Q2 wy Qg wr) ™ Diliw,w ) ,(9)
Q=01 Q|

X (Qw) +why [Qwh Q wh) . (D.5)
By substituting the form above into Eq. (O4]) and by integrating both sides over SU(2) we
obtain Eq. (1)) with the identification

Q(n,m)
Q1(n),w w
3 Cbimﬁiﬂ<—1)l, (D.6)

w1 =—Q(n,m)

Qnm)w _ (_1)w
¢ 2Q(n,m) +1

with Q(n,m) = Q1(n) = Qa(m). Here we have used the fundamental orthogonality theorem
[T03] in the form

) )*D _
[0 = [N DLy s 0V = S sbosiog . (DT

and the fact that the = 0 summation index appears in Eq. ([0) only if Q7 = Q9. To get Eq.
(D46l we have also exploited the relation [T04]
000 -—waw = D7 (D.8)
V20 + 1 '

If we have a direct product of several SU(2) groups instead of only one the above statement
remains true with the distinctive feature that instead of one representation index we have an
array of indices referring to the different SU(2) groups.

The proof for the diagonal form of the reduced density matrix goes by induction for the
iteration steps again. RWVmax| is a scalar and, by making use of the previous claim, it can be
written as a sum over tensor products of irreducible tensor operator components acting on the
local vector spaces at each site, i.e. of the form

RlNmax]  — Z<Ti[loc}>

)

@ (Tfey (D.9)

w,w? w,—w?
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D Reduction of the density matrix for SU(2) symmetries

where <Ti[lgc}> . and <TZ-[Nma"_1}> , are irreducible tensor operator components acting
on the local Ve%‘%r space at site Nmaf,;%d on the remaining, local vector spaces, respectively.
To obtain R[[](V}Ea"_” we have to trace over the local basis states, {‘ 4, g; >loc} , that is we have
to recover the following matrix elements

(RRR=1)) = Ysen (1 g,) (@ 1T Q) (g, 15 11 g, )

i,g#,u

(@),
< (Q, @ |w, w; Q, Q) I > (@), @) i) (D-10)
T=1(q),=—(a"),

(

where we have made use of the Wigner—Eckart theorem. The coefficient sgn(.,.) appears for
that the terms above might acquire minus signs according to the number of fermionic operators

and excitations present in Q[N"‘“_l] and in ‘ Qi, Q:> , respectively.
Next we show that
q
> @@ lss"qq") = (20+1) 850050 (D.11)

qF=—q

s = 0 must hold otherwise ¢* + s* = ¢* would not be satisfied. The sum can be rewritten

as [104]

q q
z 2\ —q—q* z z
qzz_q<qq|80qQ>— 1qzz_q(—) (s0]qq°q—q)

x (00]qa*q—q*) V2q+1(=)"" = (2¢ + 1)d59. (D.12)

It has the implication that the terms from Eq. ([O.I0) that give non-vanishing contribution to
RWmax=1l are the ones with a scalar TZ-UOC] and so TZ-[N“’”_” is also an SU(2) invariant, that is

R[I](VI?Q“‘*I] is a scalar. The induction towards smaller iteration steps goes the same way.
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