

Neutron activation and cross-section calculation for tungsten as a Divertor material in Fusion Reactor

Mayur Mehta¹, Bhawna Pandey², Rajnikant Makawana³,
Vibha Vansola³, S.S.Khirwadkar¹

¹ Divertor and First wall Technology Development Division, Institute for Plasma Research, Gandhinagar-382428, India

² Fusion Neutronics Laboratory, Institute for Plasma Research, Gandhinagar-382428, India

³ Department of Physics, Faculty of Science, M. S. University of Baroda, Vadodara-390020, INDIA

* Email: mayur@ipr.res.in

Introduction

In a DT fusion machine, neutrons arise from the deuterium-tritium reaction $D+T \rightarrow He+n$. Neutrons leave the plasma and interact with the surrounding materials i.e. the first wall, divertor, blanket, vacuum vessel, cryostat, which are critical components of a fusion reactor.

Tungsten is an obvious choice as Plasma Facing Component (PFC) in fusion devices as the first wall of a blanket and a divertor plate on account of its excellent physical and mechanical properties [1] i.e. low sputtering yield, high melting point, lower erosion rate and low tritium retention. The present paper describes activation calculations using European Activation System (EASY) [2] and cross-section calculations using recent nuclear reaction code TALYS-1.6 [3], for tungsten as a plasma facing material, after exposure to a flux of 14 MeV neutrons.

Activation calculations

Activation calculations have been performed by activation code EASY-2007 [4] which solves the large number of coupled differential equations (the Bateman equations) which govern the generation and decay chains for the many nuclides involved. The code package has been used to obtain the activation characteristics of tungsten material. They include the specific activity, decay heat, dose rate, inhalation dose and ingestion dose, list of isotopes at shutdown and dominant isotopes versus cooling rates, related to the tungsten material present in the divertor [5-6].

Nuclear model calculations

In addition to the activation calculation, nuclear reaction cross-section calculations with the help of TALYS-1.6 has also been performed to compute the cross-sections of $^{180}W(n,2n)^{179}m,g,totW$, $^{184}W(n,2n)^{183}m,g,totW$ reactions from threshold to 20 MeV neutron energy. The required inputs like nuclear masses, discrete energy levels, optical model potential and level densities of the nuclides involved in the calculations have been taken from latest RIPL-3 [7]. Before running the TALYS code, we have optimized the input file.

The theoretical results are compared with the existing experimental data in EXFOR [8-9] data library as well as Evaluated data files.(ENDF) [10].

Figures 1 & 2 show the illustrative cases of $^{184}W(n,2n)^{183m}W$, $^{184}W(n,2n)^{184tot}W$ reaction cross-section. Energy spectra of primary and secondary neutrons have also been calculated.

The details of activation calculations and cross-section calculations with important outcome will be presented.

Conclusion

The paper presents the important response function (specific activity, decay heat, dose rate, inhalation dose and ingestion dose) of tungsten as a plasma facing material when irradiated by 14 MeV neutrons. Some of the important calculations of cross-section will be highlighted for tungsten isotopes specially for

meta-stable state, where very few data with large discrepancy are available.

Acknowledgment

The authors are thankful to Dr. CVS Rao, Dr. T. K. Basu and Dr. Paresh Prajapati, Institute for Plasma Research, for encouraging us to carry out this work and for their valuable suggestions and guidance.

The authors also acknowledge the help and suggestions of Dr. H. M. Agrawal, Professor, Department of Physics, G. B. Pant University, Pantnagar, Uttarakhand, and Prof. N. L. Singh, Professor and Head, Department of Physics, M. S. University, Baroda.

References

- [1] Y. Ueda et al, Fusion Engineering and Design **89**, 901-906 (2014)
- [2] M. R. Gilbert, R.A. Forrest, Comprehensive handbook of activation data calculated using EASY-2003, Fusion Engineering and Design **81**, 1511–1516 (2006)
- [3] A. J. Koning, et al., TALYS User Manual, A nuclear reaction program, User Manual. NRG-1755 ZG Petten, The Netherlands (2011)
- [4] R. A. Forrest, The European Activation System: EASY-2007 Overview, UKAEA FUS 533 (2007)
- [5] H. Y. Khater et al, Three Dimensional Activation Analysis for the ITER Divertor Cassette, **ITER/US/97-IV-DV-12**
- [6] N. P. Taylor et al, Activation Properties of Tungsten as a First Wall Protection in Fusion Power Plants(International Symposium on Fusion Nuclear Technology-Tokyo-Japan)
- [7] R. Capote et al, Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations, Nuclear Data Sheets **110**, 3107-3214 (2009)
- [8] B. Sarer et al, Calculation of neutron-induced production cross-sections of $^{180,182,183,184,186}\text{W}$ up to 20Mev Annals of Nuclear Energy **36**, 417-426 (2009)
- [9] EXFOR, Experimental Nuclear Reaction Data, Database Version of August 20, 2014
- [10] ENDF, Evaluated Nuclear Data Library, Database Version of March 14, 2014

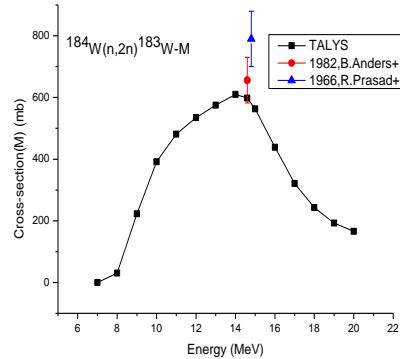


Figure-1

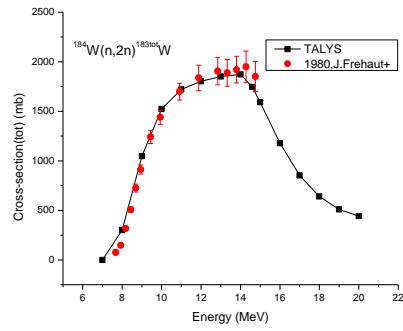


Figure-2

Figs. 1 & 2 TALYS-1.6 based excitation Functions of (n,2n) reactions along with Experimental data and Evaluated data Files