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Abstract

Extensions of the warped extra dimension framework originally proposed by Randall

and Sundrum are discussed, including soft-wall models and aspects of supersymmetry

breaking. In particular, the standard model in a soft-wall background is covered in de-

tail, including electroweak physics and an extensive treatment of fermions in arbitrary

warped backgrounds. Additionally, aspects of lepton flavor violation in models of su-

persymmetry breaking with hierarchical soft-terms and Dirac gauginos are discussed, as

these can occur naturally when supersymmetry is broken near the infrared boundary.
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Chapter 1

Introduction

1.1 The Hierarchy Problem

The standard model (SM) represents the pinnacle achievement of 20th century particle

physics. It accurately describes nearly all known particle data–not just that for which it

was designed, but also a long list of phenomena predicted as a direct consequence of its

minimal structure. Paradoxically, the same structure that has proven so unshakingly

successful also gives theorists strong reason to suspect that new physics is just around

the corner.

Unless as-yet-unobserved physics appears at the TeV scale, the internal consistency

of the standard model breaks down. In order for the chiral matter and heavy gauge

bosons to acquire mass while preserving unitarity, the SU(2)×U(1) gauge symmetry of

the standard model must be spontaneously broken at low energies. The actual method

nature has chosen to accomplish this symmetry breaking is not known, and this fact

provides the basis for a central question facing particle physicists today. In the stan-

dard model extroweak symmetry is broken via the Higgs mechanism. A scalar field

transforming as a doublet of SU(2) obtains a vacuum expectation value that shifts the

ground state of the theory away from its symmetric minimum. After expanding fluc-

tuations about the shifted minimum, one finds that this simple and elegant mechanism

not only endows the matter and gauge fields with mass, but also enforces a number

of non-trivial relationships between physical observables that have been experimentally

1



2

verified to a stunning degree of accuracy.1

However, the introduction of a fundamental scalar field introduces a new problem,

known as the hierarchy problem. For the W and Z bosons to have their observed

masses, the physical Higgs mass should be of comparable size–namely, of order 100 GeV.

However, unlike the fermions and gauge bosons, whose masses are protected by chiral

and gauge symmetries, there is no symmetry that protects the mass of a fundamental

scalar from receiving large quantum corrections. For example, the Yukawa coupling

between the Higgs and the top quark results in a one-loop radiative correction to the

Higgs mass-squared m2
h,phys = m2

h+δm2
h that is quadratically divergent at leading order,

δm2
h ∼ −

3g2

16π2

m2
t

M2
W

Λ2 + · · · , (1.1.1)

where Λ is the momentum cutoff in the loop integral, corresponding to the scale at

which new physics enters. If we assume the standard model is valid up to energies where

quantum gravity becomes important, the cutoff Λ would correspond to the Planck scale

of order 1018 GeV. Then for the physical Higgs mass-squared to be of order 100 GeV,

there must be a dramatic cancellation between the “bare” mass m2
h and the correction

δm2
h to within about 1 part in 1032!

The “unnatural” amount of required fine-tuning in the standard model is the essence

of the hierarchy problem, and it has been a central focus of theorists in predicting the

shape of new physics. The reasoning behind this is the following: the problem with

equation (1.1.1) arises only if one assumes the standard model is valid up to the highest

energies. Instead, the hierarchy problem might be a hint that the standard model is

merely an effective low-energy theory. New physics should appear at energies of order

a few TeV, cutting off the loop integral.

1.2 Supersymmetry

Supersymmetry (SUSY) is a widely favored candidate solution to the hierarchy problem.

In supersymmetric theories, a new symmetry relates fermions and bosons, so that every

fermion (boson) of the standard model has a bosonic (fermionic) superpartner with the

same mass and couplings. If the symmetry were unbroken, the quadratic divergences

1 For a review, see Ref. [1].
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from loops with respective superpartners would cancel exactly. However, this is clearly

not the case, or we would have long since discovered the superpartners. Instead, if

supersymmetry in fact provides the resolution to the hierarchy problem, it must be

“softly” broken (i.e. broken only by terms with positive mass dimension). Then the

quadratic divergences are instead proportional to the difference in superpartner square-

masses. This implies that the superpartners should not be too heavy, or else the fine-

tuning problem is reintroduced.

Explaining why the scale of SUSY breaking is so low has been a major focus of

supersymmetric model builders. A variety of options for breaking supersymmetry dy-

namically have been explored, with the most promising sharing a common feature of a

hidden sector–a collection of fields separate from the SM–in which SUSY is dynamically

broken.2 In gravity mediation [3, 4, 5, 6], supersymmetry breaking is communicated to

the visible sector through gravitional-strength interactions, while gauge mediated mod-

els [7, 8, 9, 10, 11, 12, 13] couple the hidden sector to the visible sector through ordinary

SM gauge interactions, so that the Planck-suppressed effects are relatively unimportant.

If SUSY is broken by dynamics in an extra dimension, a variety of mechanisms are avail-

able. For example, SUSY can be broken by boundary conditions in a compact space,

by the background geometry itself, or it can arise from Boltzmann-suppressed commu-

nication between visible and hidden worldsheets separated by some distance along the

extra space [14, 15, 16, 17, 18, 19, 20, 21, 22].

A generic pattern of soft supersymmetry-breaking masses can lead to disastrously

large flavor violation [23, 24, 25, 26]. Experimental searches for evidence of supersym-

metry have included examinations of flavor-violating processes, for example K̄0 − K0

mixing, b→ sγ and µ→ eγ. The extremely low bounds on the rates of such processes

would seem to indicate that supersymmetry breaking must occur via a flavor-universal

mechanism (for example, gauge mediation [27]). However, there is another possibil-

ity that does not spoil naturalness: the first-two generations of superpartners may be

very heavy, while the third generation superpartners are light [28, 29]. Such a pat-

tern of sfermion masses can arise naturally when SUSY is broken from a warped extra

dimension (which we will discuss shortly). Moreover, such models exhibit a continu-

ous R-symmetry that provides an even stronger suppression of flavor violating effects,

2 See Ref. [2] for a review.
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primarily due to the fact that gaugino masses must be of the Dirac type [30]. The

implications of hierarchical soft supersymmetry-breaking masses have been studied in

the quark sector [31, 32], however relatively little has been done in regards to the lepton

sector despite the extreme sensitivity of planned future experimental searches [33]. Ref-

erence [34] examines supersymmetry breaking with heavy sleptons and Dirac gauginos.

1.3 Randall and Sundrum

There is another interpretation of (1.1.1), which again focuses on the assumption that

the Planck scale should be the cutoff of the standard model, but in a subtly different

way. The reason for choosing the Planck scale is that this is the scale at which quan-

tum gravity should become important–thus, we expect that a new theory must enter at

this energy scale, unifying the standard model and general relativity. This scale is mon-

strously large only because gravity is incredibly weak compared to the other three forces,

which are all significant at energies around a TeV. Therefore, an alternate approach is

to explain why gravity is so weak.

This interpretation led to the consideration of extra dimensions as a possible solution

of the hierarchy problem. The key idea is that standard model forces could be confined

to a four-dimensional world-sheet–known as a 3-brane–in a compact higher dimensional

space. In such a case, gravity necessarily would propagate throughout the bulk of

spacetime, as it is the “stuff” of spacetime itself. At distances much smaller than the

size of the extra dimension, one would expect to see deviations from Newton’s inverse-

square law for the force of gravity, as lines of gravitational flux would have more volume

to fill. This was the inspiration for proposing extra dimensions as a solution to the

hierarchy problem in the context of large, flat extra dimensions [35].

The Randall-Sundrum model (RS) [36, 37] modified this idea by proposing that 4D

distance scales change with location along the extra space due to a gravitational metric

that is non-factorizable. Randall and Sundrum were able to show that such a metric was

a solution to Einstein’s equations in 5D under certain assumptions. The solution they

discovered corresponded to a slice of anti-de Sitter (AdS) space between two branes,

denoted as the “ultraviolet” (UV) or “Planck” brane and the “infrared” (IR) or “TeV”

brane. In this picture, the hierarchy problem is solved because apparent energy scales
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are a function of position along the extra dimension. While the fundamental scale on

the UV brane is of order the Planck mass, the effective scale on the IR brane where the

standard model lives is exponentially smaller due to the “warp factor” of the metric.

Meanwhile, the weakness of gravity is easily interpreted in terms of quantum mechanical

language, because the massless graviton “wavefunction” has a profile that is peaked near

the UV brane away from the standard model fields. As a result, the standard model

coupling to gravity is exponentially suppressed.

A truly remarkable feature of RS is that it admits a wholly 4D description that

avoids any mention of the existence of a fifth dimension. This is due to the AdS/CFT

correspondence [38, 39, 40, 41, 42, 43], which relates strongly coupled conformal field

theories in 4 dimensions to weakly coupled gravitational theories in AdS5. Strictly

speaking, the original AdS/CFT conjecture linked only type IIB string theory on AdS5×
S5 with N = 4 Super Yang-Mills theory in 4D. However, numerous extensions of the

original correspondence have passed many non-trivial tests. The AdS/CFT “dictionary”

[44] allows one to translate between fields living in the bulk of the AdS spacetime and

operators of the dual CFT in 4 dimensions. In particular, fields localized toward the

UV brane are interpreted as elementary states of the dual CFT, while those living near

the IR brane are interpreted as composite states. A critical point is that the relation

can only be trusted when the 5D gravitational theory is weakly coupled, which implies

strong ’t Hooft coupling on the CFT side. As a result, theories based on RS offer a

potential window into the understanding of strong dynamics.

Indeed, the original Randall-Sundrum model has a dual interpretation of electroweak

symmetry breaking due to strong dynamics. In the Randall-Sundrum model, the pres-

ence of the IR brane corresponds to an abrupt breaking of conformal symmetry at low

energies. The Higgs–being localized on the IR brane–corresponds to a composite state

of the dual CFT, which is weakly coupled to gravity.

This description is reminiscent of technicolor models [45, 46, 47] where electroweak

symmetry is broken by a “techniquark” condensate, similar to the way chiral symmetry

is broken by the quark condensate in quantum chromodynamics (QCD). The standard

model is augmented with a new gauge group that is asymptotically free but confining at

the weak scale. The appearance of the techniquark condensate breaks the chiral sym-

metry of the massless quarks, leading to Nambu-Goldstone bosons that are then eaten
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to provide the longitudinal degrees of freedom for the W and Z bosons. The simplest

technicolor models tend to produce excessive contributions to the Peskin-Takeuchi S

and T parameters [48, 49]. This has led to the formulation of composite Higgs models

[50, 51, 52, 53], walking technicolor and top-color (see Refs. [54, 55] for reviews), and

conformal technicolor [56, 57] models. That these models may be given dual, calculable

descriptions in terms of a perturbative 5D gravity theory has led to a surge of research

into RS models.

1.4 Soft-Walls

The notion that strong dynamics can be described by weakly coupled gravity duals has

sparked an ambitious program known as AdS/QCD, which seeks to formulate a gravity

dual to quantum chromodynamics (QCD) from the bottom up. At low energies, QCD

becomes strongly coupled, leading to confinement of quarks into hadrons. A robust

quantitative description of QCD in this regime has remained elusive because it evades

perturbative description. Rather than searching directly for a holographic derivation

of QCD, the AdS/QCD program seeks to build a dual theory that matches the known

features of QCD.

The AdS/QCD program has encouraged model bulders to move beyond the original

simplified AdS/QCD models [58, 59] of a warped extra dimension sandwiched between

two “hard- wall” branes. The hard-wall framework posits that conformal symmetry is

broken in the IR in the simplest possible way by an abrupt low-energy cutoff of space-

time. By contrast, the soft-wall proposal admits a much richer potential phenomenology

because it considers conformal symmetry breaking in general terms. This has allowed

for improvements in the modeling of meson trajectories, for example, but at the cost of

added computational complexity.

Though the original soft-wall proposal was in fact made in the context of AdS/QCD

models [60], it was used soon after to study electroweak symmetry breaking in soft-

wall backgrounds [61]. While originally an ad-hoc implementation of a soft-wall via a

“dilaton” prefactor in the action was used, the dynamical soft-wall model put forward

in Ref. [62] allowed for the first discussions of stability and naturalness of the soft-wall.

The standard model on a soft-wall was first described in Ref. [63], which also noted
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that the calculation of physical observables involving fermions was particularly difficult.

In fact, fermions evaded quantitative description in all but the simplest cases. What

followed were several attempts to document all known special-case solutions and their

general behaviors, as well as alternative methods for modeling fermions [64, 65]. In

Ref. [66], the first phenomenologically acceptable exact solutions were found and a full

numerical approach to modeling fermions was presented in detail.

1.5 Outline and Notation

This dissertation documents research originally published in Refs. [63, 66, 34], which was

completed by the author of this thesis with significant contributions from collaborators

Brian Batell [63] and Tony Gherghetta [63, 66]. These works focus on soft-wall models

and aspects of flavor violation in certain classes of models of supersymmetry breaking.

The layout of this document is as follows:

• Chapter 2 discusses the original Randall-Sundrum model in detail as well as the

important formulas relevant when the standard model fields are allowed to prop-

agate in the bulk. This material provides the necessary foundation for discussing

issues that arise when discussing soft-wall models and supersymmetry breaking.

Our approach may be new to many familiar with Randall-Sundrum models, in

that it is dressed in the language and notation of “supersymmetric quantum me-

chanics” [67].

• Chapter 3 discusses the soft-wall framework, provides details on how such a grav-

itational background can arise dynamically, and places the standard model in the

bulk. The difficulty that arises in addressing fermions is presented. Electroweak

physics is modeled and aspects of fine-tuning are discussed.

• Chapter 4 addresses the problem of fermion physics in the soft-wall setup in de-

tail. Analytic solutions and approximation methods are presented for the single-

generation case. A numerical routine is developed and applied to study the full

three-generation problem. It is shown that many of the attractive features of hard-

wall models are retained in a soft-wall setup, however there are some intriguing

differences.
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• Chapter 5 studies lepton flavor violation in models of supersymmetry breaking

with heavy first-two generation sleptons and Dirac gauginos. Concrete examples of

how such a spectrum can arise in models of SUSY breaking from extra dimensions

are discussed. It is shown that highly non-degenerate slepton masses are allowed

under certain conditions.

We adopt the following set of rules for the treatment of spacetime indices:

• Latin letters run over all indices (0,1,...,5) while Greek letters run only over the

4D indices (0,1,2,3).

• Letters from the beginning of the alphabet (A, B,...,α, β,...) label Lorentz indices

and are raised and lowered using the Minkowski metric and its inverse, ηAB =

ηAB = diag(−++++).

• Letters from the middle of the alphabet (M,N,...,µ,ν,...) label spacetime indices

and are raised and lowered using the metric and its inverse, gMN and gMN .

• The usual four-dimensional coordinates are labeled as x or xµ while the coordinate

of the extra space is denoted by y or z.

Our treatment of fermions in Chapters 2 and 4 employs additional conventions, which

can be found in Section 2.3C.



Chapter 2

The Hard-Wall Warped

Dimension

The solution to the hierarchy problem offered by Randall and Sundrum [36, 37] has

inspired a large amount of study over the past decade for several reasons. The model

provides an elegant solution to the hierarchy problem, predicts the potential existence

of Kaluza-Klein matter at energy scales that can be reached by the LHC, offers new

ways to study aspects of supersymmetry and supersymmetry breaking, and due to

the AdS/CFT correspondence [38, 39, 40, 41, 42, 43] offers a potential path toward

understanding strongly coupled gauge theories in four dimensions.

In this section, we review the details of the original model by Randall and Sundrum,

as this will provide a solid foundation for our discussion of flavor physics and super-

symmetry. Our discussion is structured wherever possible in a general way, so that the

later treatment of soft-wall models will suffer from a minimal amount of redundancy

and the smallest possible degree of repetitiveness. We start with a general overview of

the model, introducing our notation and conventions that we will carry through into

later chapters. Additionally, we review the concepts of bulk fields and flavor physics in

the Randall-Sundrum background.

9
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2.1 The Randall-Sundrum Model

The original Randall-Sundrum model [36] posits the existence of a single compact extra

dimension bounded on either end by two 3-branes. Because four-dimensional distance

scales depend exponentially on location in the extra space, the characteristic energy

scales of physics localized in separate regions can differ exponentially. This mechanism in

fact underlies the solution to the hierarchy problem proposed by Randall and Sundrum.

Our discussion here of the details of the model will provide an important reference point

for the later chapters.

2.1A The Setup

Overview of the RS1 Set-Up

In the original Randall-Sundrum model (RS1) [36], the extra dimension is compactified

on a circle of radius R that is then orbifolded to arrive at the space S1/Z2. (In the model

we will refer to as RS2 [37], the space is also compactified in such a way before taking

the limit R →∞.) The orbifold compactification enforces two symmetry requirements

on the theory under transformations of the coordinate, y, that parameterizes the extra

dimension: periodicity under the shift y → y + 2πR and Z2 parity under the reflection

y → −y. Geometrically, the space may be viewed as the result of identifying each point

on a circle of radius R with its reflection about the diameter connecting y = 0 and

y = πR. Two three branes are located at the orbifold fixed points of y = 0 and y = πR

and are referred to as the UV or Planck brane and the IR or TeV brane, respectively.

It is important to keep in mind that the symmetry requirements only apply to the

fields up to global or local symmetries of the Lagrangian. Explicitly, the requirements are

symmetry of the Lagrangian under reflection y → −y and periodicity of the Lagrangian

under a shift of y → y + 2πR. Generically, for any field Φ, the requirements are:

Φ(−y) = ±Φ(y), (2.1.1)

Φ(y) = ±Φ(y + 2πR). (2.1.2)

Together, these imply Φ(πR + y) = ±Φ(πR − y). Thus, the combination can be inter-

preted as two distinct Z2 symmetries: a Z2 symmetry under reflection about y = 0 and
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a Z′2 under reflection about y = πR. One is free to specify the sign under which a field

transforms separately under the Z2 and under the Z′2.

The spacetime in the bulk is that of anti-de Sitter space (AdS5),

ds2 = gMNdx
MdxN = e−2A(y)ηµνdx

µdxν + dy2. (2.1.3)

where A(y) = k|y| and k is the AdS curvature, while the induced metric on each brane

is flat. We denote an induced metric by attaching a superscript (subscript) label to gµν

(gµν):

g(UV)
µν = gµν(x, y = 0), g(IR)

µν = gµν(x, y = πR). (2.1.4)

The factor e−2A(y) is often referred to as the “warp-factor.” The reason for this is

apparent in the form of the metric (2.1.3): movement along the direction of the extra

space results in the “warping” of 4D distance scales.

It is easy and often useful to transform the metric (2.1.3) to the conformal coordinate,

z, by making use of the coordinate transformation:

dy

dz
= e−A. (2.1.5)

Indeed, we make extensive use of these coordinates throughout this work. In these

coordinates, the bulk spacetime metric takes the form:

ds2 = e−2A(z)ηMNdx
MdxN , (2.1.6)

where A(z) = log k|z| for pure AdS5. Then the locations of the UV and IR branes

are z = z0 = 1/k and z = z1 = eπkR/k, respectively. Care must be taken to properly

account for the orbifold symmetry when integrating in these coordinates. Integrals over

the entire extra space are to be evaluated on the interval y ∈ (−πR, πR) or equivalently

z ∈
(
(k2z1)−1, z1

)
. Spacetimes other than pure AdS5 can be considered by choosing

different forms for the function A.

AdS5 from Einstein’s Equations

The set-up above is consistent with Einstein’s equations for gravity in 5D under certain

conditions. To derive these conditions, we elaborate on the presentations of Refs. [36,

68]. We can model the set-up by considering the classical action in three regions: on

the UV brane, in the bulk, and on the IR brane.
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We first focus only on the bulk action. The bulk action consists of two gravitational

contributions arising from the bulk curvature, R, and bulk cosmological constant, Λ.

Note that we use a script typeface R to distinguish the Ricci scalar (and tensor) from

the radius of the extra space denoted by R, while we use the capital GMN to distin-

guish Einstein’s tensor from the metric, gMN . When RS1 is modified by placing gauge

or matter fields in the bulk, there will be additional contributions to the bulk action.

Assuming the backreaction is small, these contributions can be neglected for the grav-

itational analysis. However, they can play an important role when discussing stability

of models and will become important when we consider “soft-wall” models in Chapter

3. With these caveats aside, the bulk action takes the form:

Sbulk =

∫
d5x
√
−g
(
M3R− Λ

)
. (2.1.7)

To find the solution to Einstein’s equations in the bulk, we note that the most general

form of a 5D metric satisfying 4D Poincaré invariance is given by (2.1.3) or equivalently

(2.1.6). We therefore insert as an ansatz the conformal metric (2.1.6). The advantage

to using this form is that the Einstein tensor is easily calculated for a conformally flat

metric. The result is [68]:

G55 = 6A′
2
, Gµν = 3ηµν

(
A′′ −A′2

)
. (2.1.8)

With our conventions, Einstein’s equations then read:

GMN =
1

M3
TMN = − 1

2M3
ΛgMN . (2.1.9)

The “55” equation following from (2.1.8) and (2.1.9) is:

A′
2

=
−Λ

12M3
e−2A (2.1.10)

which clearly implies Λ < 0. The simplest way to solve this equation is to first take a

square root and then rewrite in terms of the coordinate y using (2.1.5) together with

the chain rule. This yields the second simplest of all differential equations:

dA

dy
=

√
−Λ

12M3
. (2.1.11)

Bearing in mind the reflection symmetry, the solution is that for AdS, as advertised:

A(y) =

√
−Λ

12M3
|y| ≡ k|y|, A(z) = sgn(z − z0) ln kz. (2.1.12)



13

We have discarded the irrelevant integration constant.

Inserting this solution into (2.1.9), we see that it is consistent except at the bound-

aries where A′′ will introduce delta functions. To deal with this, one must consider

the action on the branes. At this point, it does not matter if we work with the y or z

coordinates. However, it is simplest to work with y. Ignoring any matter contribution,

the action is given by:

SUV = −
∫

d4x

√
−g(UV)VUV = −

∫
d5x

√
−g
√
g55

VUVδ(y),

SIR = −
∫

d4x

√
−g(IR)VIR = −

∫
d5x

√
−g
√
g55

VIRδ(y − πR). (2.1.13)

The contribution to the energy momentum tensor is straightforward to derive:

T (UV)
µν + T (IR)

µν =
1

2
ηµν (VUVδ(y) + VIRδ(y − πR)) . (2.1.14)

The delta function contribution to (2.1.9) from (2.1.12) requires some care in dealing

with derivatives at the boundary. Upon crossing y = 0, the derivative of k|y| goes from

−k to k due to the reflection symmetry, while upon crossing y = πR, it goes from k to

−k. Therefore,

A′′ = 2k (δ(y)− δ(y − πR)) . (2.1.15)

Comparing (2.1.14) and (2.1.15), we see that the solution is consistent provided:

VUV = −VIR = 12M3k =
√
−12M3Λ. (2.1.16)

2.2 The Hierarchy Problem

Up to now, we have said nothing about the physical implications of the model. Since the

motivation behind RS is to solve the hierarchy problem, our discussion will begin there.

Obtaining a realistic low energy theory requires knowing the relationship between 4D

observables and the fundamental 5D parameters that define the theory. Of particular

interest are two relationships. First, we are interested in the relationship between the

4D Planck mass, MP , the 5D Planck mass M appearing in the action (2.1.7), and the

radius of the extra dimensions R. Secondly, we would like to know how the electroweak

scale is related to these fundamental mass scales. The purpose of this section is to

review these issues.
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2.2A Gravity in a Warped Extra Dimension

Metric Fluctuations

The most general fluctuations of the metric in a five-dimensional theory include tensor,

vector, and scalar modes at the massless level. However, the vector mode is inconsistent

with the Z2 symmetry of the theory, leaving only the tensor and scalar fluctuations.

These fluctuations can be parametrized as:1

ds2 = e−2A(z)
[
(ηµν + hµν(x, z)) dxµdxν + dz2

]
, (2.2.1)

where A(z) is now to be treated as a dynamical field. Considering a slice of AdS in

particular, we can write an equivalent metric in a more suggestive form,

ds2 = e
−2k|y|R(x)

R0 (ηµν + hµν(x, z)) dxµdxν +

(
R(x)

R0

)2

dy2, (2.2.2)

which makes clear the physical interpretation of the graviscalar as the radion corre-

sponding to fluctuations of the compactification radius of the extra space. Stability of

the theory depends critically upon R(x) obtaining a vacuum expectation value of R0.

The Goldberger-Wise mechanism [71] offers one way to achieve this stability. For our

purposes, we will accept the existence of some such stabilization mechanism and limit

our attention to the tensor modes by setting R(x) = R0.

The Planck Scale and Graviton Modes

The relationship between the 4D and 5D Planck scales can be found by considering the

Ricci tensor, Rµν . The effective 4D gravitational action is found by integrating:

S = M3

∫
d5x
√
−gR →M3

∫
d5x
√
−ggµνRµν + . . . (2.2.3)

Since the conformal factor e−A(z) is independent of x, the components Rµν are the same

whether one uses the 5D or 4D metrics to calculate them (c.f. [68, 72, 73]). Thus, the

4D action becomes:

S(4) ≡M2
P

∫
d4x

√
−g(4)R(4) = 2M3

∫
d4x

√
−g(4)R(4)

∫ z1

z0

dze−3A(z). (2.2.4)

1 For alternative ways to analyze graviton fluctuations, see refs [68, 69, 70].
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The factor of 2 is to take into account the orbifold symmetry. Equivalently, one can

integrate over the coordinate y ∈ (−πR, πR). Applying specifically to RS, we have:

M2
P =

M3

k

(
1− e−2πkR

)
. (2.2.5)

The 4D Planck scale depends very weakly on the radius of the extra dimensions assuming

it is moderately larger than about 1/(2πk).

Graviton modes can be considered by inserting the perturbed metric (2.2.1) into the

Einstein-Hilbert action and going to the transverse-traceless gauge (also known as the

RS gauge), ∂µh
µν = hµµ = 0. This results in the following action for the field hµν [63]:

δS = M3

∫
d5x e−3A

(
−1

4
∂ρhµν∂

ρhµν − 1

4
∂5hµν∂5h

µν

)
. (2.2.6)

The equation of motion for hµν is found in the usual way by demanding that the variation

(2.2.6) vanish. Integrating by parts once results in the equation of motion:

e−3A∂ρ∂
ρhµν(x, z) + ∂5

(
e−3A∂5hµν(x, z)

)
= 0. (2.2.7)

To solve this equation, we expand the bulk graviton in a KK-decomposition. That is,

we seek solutions that satisfy separation of variables by inserting the ansatz,

hµν(x, z) =
∞∑
n=0

h(n)
µν (x)f

(n)
h (z), (2.2.8)

where ∂ρ∂
ρh

(n)
µν (x) = m2

nh
(n)
µν (x). The equation of motion (2.2.7) for f

(n)
h then becomes,

∂5(e−3A∂5f
(n)
h (z)) +m2

ne
−3Af

(n)
h (z) = 0. (2.2.9)

while the states obey the orthonormality condition,

2M3

∫ z1

z0

dz e−3A(z)f
(m)
h (z)f

(n)
h (z) = δmn, (2.2.10)

which leads to a canonical action for the graviton fluctuations.

The action is only minimized if the boundary term arising from the integration by

parts vanishes, implying either Neumann or Dirichlet conditions on the wavefunctions

at the UV and IR boundaries. Applying Neumann conditions (∂5f
(n)
h )|z0,z1 = 0 gives

rise to a massless 4D graviton with constant wavefunction, f
(0)
h = 1/MP , where MP is
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defined implicitly in (2.2.4) or explicitly for RS in (2.2.5). Instead if Dirichlet conditions

are applied then the zero mode is projected out.

It is useful to define the rescaled field

f̃
(n)
h (z) ∼ e−

3A(z)
2 f

(n)
h (z), (2.2.11)

which brings the equation of motion (2.2.7) into the form of a one-dimensional Schrö-

dinger equation: (
−∂2

5 + V (z)
)
f̃

(n)
h (z) = m2

nf̃
(n)
h (z), (2.2.12)

with the potential given by

V (z) =

(
3

2
A′
)2

− 3

2
A′′ =

15

4z2
, (2.2.13)

where the last equality is for a slice of AdS.

The solutions to this equation can be written in terms of Bessel functions:

f̃
(n)
h (z) = N

(n)
h z

1
2

(
J2(mnz) + b

(n)
h Y2(mnz)

)
(2.2.14)

The factor b
(n)
h and mn are determined by imposing the boundary conditions at the UV

and IR branes, (
∂5 +

3A′

2

)
f̃

(n)
h

∣∣∣∣
z0,z1

= 0 (2.2.15)

while the normalization is set by inserting the solution into (2.2.10). Of primary interest

is the mass spectrum, which is approximately given by:

mn '
(
n+

1

4

)
πke−πkR. (2.2.16)

Finally, we note that the potential (2.2.13) is of the form W 2(z) − W ′(z) where

W (z) = 3A′/2 is known as the “superpotential.” Thus, we can factorize the Schrödinger

equation (2.2.12) as [67]:

(−∂5 +W ) (∂5 +W ) f̃nh (z) = m2
nf̃

n
h (z). (2.2.17)

In this way, the zero-mode wavefunction mentioned above can be easily found through

direct integration.
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2.2B The Higgs

To solve the hierarchy problem, Randall and Sundrum proposed placing the standard

model fields on the IR brane. Let us examine the Higgs boson by considering a scalar

field, H, localized on the brane at y = πR. Then the 4D action for the field depends on

the induced metric on the brane (2.1.4):

SH =

∫
d4x

√
−g(IR)

[
gµν(IR)(DµH

†)(DνH)− λ
(
|H|2 − v2

0

)2
]
. (2.2.18)

The dimensionful symmetry breaking parameter v0 is assumed to have a natural value of

order k. However, inserting the induced metric, we find that the action is not canonically

normalized. Redefining the field H̃ = eπkRH yields a properly normalized action:

SH,eff =

∫
d4x

[
(DµH̃†)(DµH̃)− λ

(
|H̃|

2
− e−2πkRv2

0

)2
]
. (2.2.19)

The Higgs VEV has been rescaled by an exponential factor:

v0 → v0e
−πkR, (2.2.20)

and thus the Higgs mass itself is rescaled in exactly the same way. For fundamental

parameters M ∼ k ∼ v0 ∼ R−1 of order the 4D Planck scale, it is possible to achieve

an effective scale on the IR brane of order 1 TeV with very modest hierarchies in the

fundamental parameters. All that is required is that eπkR be O(1016), implying the

product kR is O(10). Moreover, the result is general and applies to all dimensionful

parameters localized on the IR brane.

Referring back to equation (2.2.16), we can see a striking physical prediction of

the Randall-Sundrum model. If this solution to the hierarchy problem is correct, then

Kaluza-Klein graviton modes should appear at the TeV scale! In fact, this remarkable

prediction applies not just to gravitons, but to the excited modes of all types of particles

that reside in the bulk of the spacetime. This is the subject to which we now turn our

attention.

2.3 Bulk Fields

In their original model, Randall and Sundrum assumed all standard model field content

was localized on the IR, or TeV brane. This assumption was made because the hierarchy
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problem could only be solved if the Higgs was on the IR brane, where the effective energy

scale was “warped down.” However, there is no requirement that the gauge or fermion

fields of the standard model live on the brane, as their masses are protected by gauge

and chiral symmetries.

This fact led a number of authors to consider placing standard model fields in the

bulk, starting with scalars [71] followed by gauge bosons [74, 75, 76, 77, 78] and fermions

[79, 80, 78], eventually leading to the placement of the entire (supersymmetric) standard

model in the bulk [77, 78]. Here, we review the treatment of bulk scalars, gauge fields,

and fermions each in turn. We will specialize our treatment to AdS only when necessary

to discuss particulars of hard-wall models. Otherwise, we keep our treatment as general

as possible so that we can employ it again later.

2.3A Scalar Fields

We begin by discussing scalar fields. This discussion will serve as a useful reference

point later when we discuss supersymmetry in the bulk and soft-wall models in which

the Higgs boson necessarily resides in the bulk.

The action describing a complex scalar, Φ, is given by:

SΦ = −
∫
d5x
√
−g
{
gMN (DMΦ)(DNΦ) +M2

Φ|Φ|2
}
, (2.3.1)

where DM is the gauge covariant derivative. For now we study the free theory and set

DM = ∂M . The mass parameter M2
Φ can consist of bulk and boundary terms. The bulk

term must be even under reflection about y and is naturally of order k2. It can therefore

be parameterized as ak2, where a is a dimensionless number of O(1). The boundary

mass term must also be even and can be parameterized as 2bk [δ(y)− δ(y − πR)] =

2bkeA(z) [δ(z − z0)− δ(z − z1)] (see (2.1.5)). Note that we have assumed the boundary

mass term is the same on the two boundaries. This in fact is a requirement in super-

symmetric theories [78], which we discuss in Chapter 5. We will effectively drop this

assumption when we treat “soft-wall” models in Chapter 3, which require modifying

the IR boundary condition.

The bulk equations of motion are found by inserting the metric factors and varying

the action. In terms of the conformal coordinate z, we have:

ηµν∂µ∂νΦ + e3A(z)∂5

(
e−3A(z)∂5Φ

)
− ak2e−2A(z)Φ = 0. (2.3.2)
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Inserting the ansatz:

Φ(x, z) =
∞∑
n=0

Φ(n)(x)f
(n)
Φ (z), (2.3.3)

where ηµν∂µ∂νΦ(n)(x) = m2
nΦ(n)(x) yields a Sturm-Liouville equation for f

(n)
Φ :

e3A(z)∂5

(
e−3A(z)∂5f

(n)
Φ (z)

)
+m2

nf
(n)
Φ (z)− ak2e−2A(z)f

(n)
Φ (z) = 0. (2.3.4)

Just as with the graviton field above, we can recast the equation into a Schrödinger

equation for the transformed field f
(n)
Φ = e3A/2f̃

(n)
Φ . The equation then reads:(

−∂2
5 + V (z)

)
f̃

(n)
Φ (z) = m2

nf̃
(n)
Φ (z), (2.3.5)

but the potential has an extra term compared to (2.2.13):

V (z) =

(
3

2
A′(z)

)2

− 3

2
A′′(z) +M2

Φe
−2A(z). (2.3.6)

The canonical normalization condition is:∫
dz f̃

(m)
Φ (z)f̃

(n)
Φ (z) =

∫
dz e−3A(z)f

(m)
Φ (z)f

(n)
Φ (z) = δmn. (2.3.7)

Specializing to a slice of AdS, A(z) = log kz, it is useful to reparameterize the bulk

mass. Without loss of generality, it can be written as

M2
Φ =

(
(α+

1

2
)(α− 1

2
)− 15/4

)
k2, (2.3.8)

where α =
√

4 + a. Inserting this into the potential (2.3.6),the potential is now of the

form W 2(z)−W ′(z) where

W (z) =
±2α− 1

2z
, (2.3.9)

W 2(z)−W ′(z) = V (z) =
(2α− 1)(2α+ 1)

4z2
. (2.3.10)

It is clear that either sign choice yields the same equations of motion in the bulk. The

solutions to (2.3.5) are given in terms of Bessel functions:

f̃
(n)
Φ (z) = N

(n)
Φ z

1
2

(
Jα(mnz) + b

(n)
Φ Yα(mnz)

)
, (2.3.11)

subject to appropriate boundary conditions. The boundary conditions are due to the

integration by parts leading to (2.3.2) as well as the brane mass terms in (2.3.1). The
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action is extremized for a Dirichlet condition f
(n)
Φ (z0) = f

(n)
Φ (z1) = 0 or a modified

Neumann condition,2 (
f

(n)′

Φ − e−A(z)bkf
(n)
Φ

) ∣∣∣∣
z0,z1

= 0. (2.3.12)

A zero-mode exists only when the bulk and boundary masses are appropriately

tuned. The tuning condition is most simply revealed by considering the superpotential

(2.3.9). Because the Schrödinger equation (2.3.5) can be factorized as

(−∂5 +W (z)) (∂5 +W (z)) f̃
(n)
Φ = m2

nf̃
(n)
Φ , (2.3.13)

it is easy to see that there is a zero-mode solution given by:

f̃
(0)
Φ (z) = N

(0)
Φ e−

∫ zW (z′)dz′ = z
1
2
∓α, (2.3.14)

f
(0)
Φ (z) = N

(0)
Φ z2∓α. (2.3.15)

Comparing with (2.3.12), the tuning condition is given by the relations

b = 2∓ α = 2±
√

4 + a, (2.3.16)

where in the last line we have reverted back to the original parameterization of the bulk

mass.

For z0 � z1 and mn � (z0)−1, we can expand the Bessel functions to arrive at an

approximate expression for the mass spectrum as a function of excitation number n,

mnz1 ≈
(
n+

α

2
− 3

4

)
π. (2.3.17)

Finally, let us consider W (z) a function of α as well, i.e. W = W (z;±α). Then

W (z;α)2 +W ′(z;α) = W (z;α∓ 1)2 −W ′(z;α∓ 1). (2.3.18)

where the sign choice corresponds to the choice in (2.3.9). This will be useful when

we discuss fermions below. An implication of this is that two fields, 1 and 2, with

α1 = α2 ± 1 can have identical spectra at the massive level. This will be important

during our discussion of supersymmetry in Chapter 5.

2 The prescription for treating the delta function is to integrate only to one side of the boundary,
hence the “missing” factor of 2.
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2.3B Gauge Fields

Up to terms quadratic in the gauge fields AM , the bulk action for a U(1) gauge field is:

SΦ = −
∫
d5x
√
−g
(
− 1

4g2
5

gMRgNSFMNFRS

)
, (2.3.19)

where FMN = ∂MAN − ∂NAM . To study the KK spectrum, we will work in the gauge

A5 = 0. The equations of motion in this gauge are given by:

− ηµρηνσ∂µFρσ + ηνρeA(z)∂5

(
e−A(z)∂5Aρ

)
= 0. (2.3.20)

We insert the KK-decomposition for the fields Aµ(x, y):

Aµ(x, y) =
∞∑
n=0

A(n)
µ (x)f

(n)
A (z), (2.3.21)

where ∂µF
(n)
µν = m2

nA
(n)
ν .3 The canonical normalization condition is:∫

dz
√
−g e4Af

(m)
A (z)f

(m)
A (z) =

∫
dzf̃

(m)
A (z)f̃

(n)
A (z) = δmn, (2.3.22)

where f̃
(n)
A = e−A/2f

(n)
A . The equation of motion for the bulk field f

(n)
A becomes:

− eA(z)∂5

(
e−A(z)∂5f

(n)
A

)
= m2

nf
(n)
A . (2.3.23)

The zero-mode is easily found to be constant f
(0)
A (z) = f

(0)
A = 1/

√
2πR and is trivially

consistent with the Neumann boundary condition (∂5Aµ) |z0,z1 = 0. In direct analogy

with our treatment of gravitons and scalar fields, it is easy to show that the field f̃
(n)
A

obeys a Schrödinger equation:[
−∂2

5 +W 2 −W ′
]
f̃

(n)
A = m2

nf̃
(n)
A , (2.3.24)

W (z) =
A′

2
. (2.3.25)

The solutions in a slice of AdS are again given by Bessel functions:

f̃
(n)
A (z) = N

(n)
A z

1
2

(
J1(mnz) + b

(n)
A Y1(mnz)

)
. (2.3.26)

For the Neumann boundary conditions, we can once again expand and find that the

approximate masses for the Kaluza-Klein modes are,

mnz1 '
(
n− 1

4

)
π. (2.3.27)

3 Our gauge choice breaks 4D gauge invariance at the massive level; it is possible to choose a more
useful gauge for evaluating Feynman diagrams in warped space [81, 82].
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2.3C Fermions

Modeling fermions in a warped extra dimension requires machinery beyond what we

have already considered [83, 84]. We start with the Clifford algebra in curved space:

{ΓM ,ΓN} = 2gMN . (2.3.28)

The upper-case gamma matrices with spacetime indices (see the conventions in the intro-

duction) are related to the lower-case Dirac gamma matrices by the vielbein (“fünfbein”

in five dimensions) as ΓM = eMA γ
A, where the γA satisfy the usual Clifford algebra in

Minkowski space,

{γM , γN} = 2 ηMN = 2 diag(−,+,+,+,+), (2.3.29)

and the definition of the vielbein,

ηABeMA e
N
B = gMN , (2.3.30)

leads to their colloquial description as the “square-root” of the metric.

The irreducible spinor representation in five dimensions consists of four-component

Dirac fermions, to be contrasted with the two-component Weyl fermions in four dimen-

sions. We take as a basis the following gamma matrices:

γµ = −i

(
0 σµ

σµ 0

)
, γ5 =

(
1 0

0 −1

)
, (2.3.31)

where σµ = (1, σi), σµ = (1,−σi), and σi are the usual Pauli matrices. Note that with

this basis the proper Dirac conjugate is defined as Ψ = Ψ†iγ0. The action describing a

fermion with bulk mass MΨ can be written in the familiar way,

SΨ = −i
∫

d5x
√
−g
(
ΨΓMDMΨ +MΨΨΨ

)
, (2.3.32)

where the covariant derivative is defined as DM = ∂M + ωM (plus any relevant gauge

covariant piece). Here ωM is the spin connection, defined as:

ωM =
i

2
JAB ωABM , (2.3.33)

in terms of the Lorentz generators,

JAB = − i
4

[
γA, γB

]
. (2.3.34)
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The coefficients ωM
A
B given by,

ωM
A
B = eAR eSB ΓRMS − eRB ∂Me

A
S , (2.3.35)

where ΓRMS is the Christoffel symbol.

These relations simplify greatly in the case of the conformal metric to which we now

specialize, gMN = e−2A(z)ηMN . The fünfbein is given by

eAM = e−A(z)δAM , (2.3.36)

and the spin connection is found to be

ωM (z) = (ωµ, ω5) =

(
−A

′

2
γµγ

5, 0

)
. (2.3.37)

It is straightforward to transform coordinates using, for example, equation (2.1.5), under

which A′(z)→ e−A(y)A′(y):

ωM (y) =

(
−A

′

2
e−Aγµγ

5, 0

)
. (2.3.38)

However, one may also take into account the spin connection by replacing the Lagrangian

density, L, in the action (2.3.32) with the manifestly real density, (L+ L†)/2:

SΨ = −i
∫

d5x
√
−g
{

1

2

[
ΨΓM (DMΨ)− (DMΨ)ΓMΨ

]
+MΨΨΨ

}
. (2.3.39)

where DM is now simply a gauge-covariant derivative (i.e. the spin connection can be

omitted). This can simplify many calculations and reduce notational clutter.

Note that the orbifold symmetry forbids any Dirac mass term on the boundaries.

This is because the parity operator in 5D is Ψ(−y) = ±γ5Ψ(y), where absent specified

fermion interactions the sign is ambiguous. In either case, this implies ΨΨ is odd and

vanishes on the boundary. Accordingly, the mass term MΨ must also be odd and can

be parameterized as MΨ = ck sgn(y) = ck sgn(z − z0).

The representation (2.3.31) allows for a convenient decomposition of fermions in

terms of even and odd fields Ψ = Ψ+ + Ψ−, or

Ψ =

(
Ψ+

Ψ−

)
, (2.3.40)
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where γ5Ψ± = ±Ψ±. Then choosing either of Ψ(−y) = ±γ5Ψ(y) is interpreted as

defining the chirality of fermions on the boundary at z = z0 (y = 0) [78, 85, 86].

As discussed earlier, the orbifold requirements (2.1.1) allow for the possibility of

separately defining the chirality of the fermions on the two boundaries at z = z0 and

z = z1. This allows for many interesting possibilities. For example, it can provide

a mechanism by which supersymmetry is broken [20] similar to the Scherk-Schwarz

mechanism in flat space [18, 19], or aid in unification schemes [87].

For now, we consider only fields that are either even on both boundaries, i.e. Ψ(y) =

Ψ(−y) and Ψ(πR − y) = Ψ(πR + y), or odd on both boundaries, i.e. Ψ(y) = −Ψ(−y)

and Ψ(πR − y) = −Ψ(πR + y). The former in particular lead to massless modes that

may be identified with the fermions of the standard model.

Into (2.3.39), we insert Ψ = Ψ+ + Ψ−, where Ψ+ and Ψ− are the left- and right-

handed components of the Dirac fermion, respectively. Extremizing the action yields a

pair of coupled first-order differential equations,

ηµνγµ∂νΨ∓ ± e2A∂5e
−2AΨ± + e−AMΨΨ± = 0, (2.3.41)

which may be simplified by rewriting in terms of the transformed field, Ψ̃ = e−2AΨ:

ηµνγµ∂νΨ̃∓ ± ∂5Ψ̃± + e−AMΨΨ̃± = 0. (2.3.42)

Inserting the KK decomposition for Ψ̃,

Ψ̃±(x, z) =
∞∑
n=0

ψ
(n)
± (x)f̃

(n)
Ψ±(z), (2.3.43)

and applying the 4D Dirac equation γµ∂µψ± = −mnψ∓, yields a 5D analog of the Dirac

equation for f̃Ψ±: (
±∂5 + e−AMΨ

)
f̃Ψ± = mnf̃Ψ∓. (2.3.44)

The system is easily decoupled by converting to a second order system. The equations

for the fields f̃± may be written as a pair of Schrödinger equations with “supersymmetric

partner potentials” [67], (
−∂2

5 + V±
)
f̃Ψ± = m2

nf̃Ψ±, (2.3.45)

where V± = W 2 ∓ W ′ (note the sign difference) and W (z) = MΨe
−A(z). In AdS,

W (z) = c/z with our parameterization of the bulk mass.
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Note that in AdS, the form of the superpotential is exactly the same as that intro-

duced for scalar fields above in Section 2.3A if we identify α↔ c+ 1/2. Therefore, the

solution for the fields f̃Ψ+ is the same as (2.3.11) up to a simple relabeling. Furthermore,

since α − 1 ↔ c − 1/2, we can automatically generate the solutions for the fields fΨ−

using the rule (2.3.18). The result is,

f̃
(n)
Ψ±(z) = N

(n)
Ψ±z

1
2

(
Jc± 1

2
(mnz) + b

(n)
Ψ Yc± 1

2
(mnz)

)
, (2.3.46)

subject to the canonical normalization condition,∫
dz
√
−g eA f (m)

Ψ± (z)f
(n)
Ψ±(z) =

∫
dz f̃

(m)
Ψ± (z)f̃

(n)
Ψ±(z) = δmn. (2.3.47)

The boundary contribution to the action is extremized only when one of the fields Ψ±

vanishes there–i.e., it satisfies a Dirichlet boundary condition. This is equivalent to

fixing the behavior of Ψ under the Z2 reflection. Applying a Dirichlet condition to f̃±

corresponds to applying a modified Neumann condition to f̃∓ due to the equations of

motion (2.3.44). When Ψ± obeys Dirichlet boundary conditions, the mass spectrum is

given approximately by:

mnz1 ≈
(
n+
|2c± 1|

4
− 1

4

)
π. (2.3.48)

Both modes f̃± admit zero-mode solutions,

f̃
(0)
± = N

(0)
Ψ±e

∓
∫ zW (z′)dz′ = N

(0)
Ψ±z

∓c, (2.3.49)

however only the modified Neumann condition is consistent with the zero-mode solution

(2.3.49), implying that the Dirichlet condition kills the other mode entirely. Thus, in

the effective 4D theory, we get a Kaluza-Klein tower of massive Dirac fermions, but

at the massless level there is a single chiral fermion with the opposite chirality mode

projected out of the theory. This is the mechanism by which the Z2 orbifold is able to

recover the chiral fermions of the standard model.

2.3D Bulk Fields Summary

In a slice of AdS, the bulk scalar, gauge, and fermion wavefunctions fΦ, fA and fΨ±, as

well as the graviton wavefunction fh, can be concisely described in terms of factorizable
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Schrödinger equations:

(−∂5 +Wφ) (∂5 +Wφ) f̃
(n)
φ = m2

nf̃
(n)
φ , (2.3.50)

for φ ∈ {h, A, Φ,Ψ±} where f̃φ = e
sφ
2
A(z)fφ and

Wφ(z) =
2αφ−1

2z , (2.3.51)

αh = 2, αA = 1, αΦ = ±
√

4 + a, αΨ± = c± 1
2 ,

sh = 3, sA = 1, sΦ = 3, sΨ± = 4.
(2.3.52)

If the bosonic fields satisfy a modified Neumann condition,

(∂5 +Wφ) f̃
(n)
φ

∣∣
z0,z1

= 0, (2.3.53)

there exists a zero-mode solution given by

f̃
(0)
φ ∼ e−

∫ zWφ(z′)dz′ ∼ z
1−2αφ

2 . (2.3.54)

Otherwise they must obey a a Dirichlet condition and there is no massless mode.

One of the fermion fields f± must satisfy a Dirichlet condition, which corresponds

to a modified Neumann condition on the other field through the first-order equations of

motion:

f̃Ψ∓
∣∣
z0,z1

= (±∂5 +WΨ+) f̃±
∣∣
z0,z1

= 0. (2.3.55)

Then the corresponding zero-mode solution is given by

f̃
(0)
Ψ± ∼ e

∓
∫ zWΨ+(z′)dz′ ∼ z∓c. (2.3.56)

That the compact notation (2.3.50) can describe both fermion modes is peculiar to the

slice of AdS and follows from the relation (2.3.18).

The massive modes for all fields are given in terms of Bessel functions as

f̃
(n)
φ (z) = N

(n)
φ z

1
2

(
Jαφ(mnz) + b

(n)
φ Yαφ(mnz)

)
. (2.3.57)

while the mass spectrum is given approximately by

mn '


(
n+ α

2 −
3
4

)
π
z1

=
(
n+ α

2 −
3
4

)
πke−πkR for bosons,(

n+ α
2 −

1
4

)
π
z1

=
(
n+ α

2 −
1
4

)
πke−πkR for fermions.

(2.3.58)

Thus all particles have KK-towers starting at the TeV scale and growing linearly in

mass with excitation number, n.
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Wavefunction Localization Properties

The localization properties of wavefunctions are most apparent when the wavefunctions

are written with respect to the flat coordinate, y. Using (2.1.5), we define a rescaled

function, f̂
(n)
φ (y) = eA(y)/2f̃

(n)
φ (y) such that∫

dz f̃
(m)
φ (z)f̃

(n)
φ (z) =

∫
dy f̂

(m)
φ (y)f̂

(n)
φ (y). (2.3.59)

The localization properties are then manifest in the functional form of f̂
(n)
φ (y). The

rescaled zero-mode profiles are then:

f̂
(0)
φ (y) = e

ky
2 f̃

(0)
φ ∼ e(1−αφ)ky, (2.3.60)

for φ ∈ {h,A,Φ,Ψ+}, while

f̂
(0)
Ψ−

(y) ∼ e(αΨ+
)ky. (2.3.61)

For bosons, αφ > 1 corresponds to a UV-localized field with respect to the flat metric,

while αφ < 1 corresponds to an IR-localized field. Thus, the graviton zero-mode (αh =

2) is UV-localized, which we can interpret as resulting in the apparent weakness of

gravity on the IR brane,4 while the gauge boson zero-modes (αA = 1) are not localized

at all. The scalar zero-mode, on the other hand, can be localized anywhere in the bulk

dependent on the bulk mass parameter a. The fermion zero-modes can also be localized

anywhere. When c > 1/2 (c < −1/2), Ψ+ (Ψ−) has a UV-localized zero-mode , while

for c > 1/2 (c > −1/2), the mode is IR-localized.

The KK-modes, on the other hand, are all peaked in the IR. To illustrate this, we

have included in Figure 2.1 a plot of the first several gauge boson KK-modes. The plots

for other fields are similar.

2.4 Standard Model Couplings

2.4A Yukawa Couplings

We have seen how the orbifold boundary conditions lead to massless, chiral fermions in

the free theory. In this section, we will describe how hierarchical fermion masses can be

4 Note however that gravity couples equally to all bulk fields, regardless of localization, as 4D
coordinate invariance and thus the equivalence principle is not broken.
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ΠR
y

fA
HnLHyL

Figure 2.1: The first several Kaluza-Klein gauge boson profiles in the Randall-Sundrum
background, coresponding to excitation numbers n = 0 (solid line), n = 1 (dashed),
n = 2 (dotted), and n = 3 (dot-dashed).

obtained through Yukawa interactions, following the approaches of Refs. [79, 78]. For

simplicity, we will only consider a single fermion generation here and will treat the full

case in Chapter 4.

We begin by introducing two fermion fields in the bulk, ΨL = ΨL+ + ΨL− and

ΨR = ΨR+ + ΨR−. The subscripts L and R are labels indicating the types of boundary

conditions imposed on each field. At the massless level, ΨL is a left-handed field while

ΨR is right-handed. The corresponding boundary conditions are:

ΨL−(z0) = ΨL−(z1) = 0, ΨR+(z0) = ΨR+(z1) = 0. (2.4.1)

In a realistic model, the labels would also specify the group transformation properties

of the field. For example, if the fields are to be associated with a charged lepton, ΨL

(ΨR) would transform as a doublet (singlet) under SU(2)L.

To lift the zero-modes, we introduce a scalar field H(x, z) that couples the left- and

right-handed fields. For simplicity, we will consider a field localized on the IR brane

NHH(x, z) = 2H(x)eA(z)δ(z − z1), as in Section 2.2B. Then the 5D Yukawa coupling
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takes the form

SYukawa =

∫
d5x
√
−gλ5

[
ΨLΨR + ΨRΨL

] H(x)

NH
eA(z)δ(z − z0) (2.4.2)

→ λ4

∫
d4x

(
ψL+ψR− + ψR−ψL+

)
H(x). (2.4.3)

where λ5 is assumed to be O(1/k) and the effective 4D Yukawa coupling is given by:

λ4 ≡ 1

NH

∫
dze−5A(z)λ5f

(0)
L+(z)f

(0)
R−(z)eA(z)δ(z − z1) (2.4.4)

= λ5
e−4A(z1)

NH
f

(0)
L+(z1)f

(0)
R−(z1) =

λ5

NH
f̃

(0)
L+(z1)f̃

(0)
R−(z1). (2.4.5)

The Higgs normalization follows from canonical normalization of the 4D kinetic term.

For an IR localized Higgs, NH = eA(z1) as in (2.2.19).

In an AdS background, the properly normalized fermion zero-modes are given by

f
(0)
L+/R−(z1) =

√ (
1/2∓ cL/R

)
k

(kz1)1∓2cL/R − 1
(kz)∓cL/R (2.4.6)

=

√ (
1/2∓ cL/R

)
e(1∓2cL/R)πkR − 1

e∓cL/Rky. (2.4.7)

Assuming cL = −cR = c and c > 1/2, we see that the 4D Yukawa coupling

λ4 ' λ5k

(
c− 1

2

)
e(1−2c)πkR (2.4.8)

drops off exponentially with the O(1) localization parameter, c. Indeed, when the

Higgs VEV on the IR brane is of order ke−πkR ∼ TeV and k ∼ MP ∼ 1015 TeV, the

electron Yukawa coupling of O(10−6) is obtained for c ' 0.6. As we saw in the previous

section, there is a simple geographic interpretation to this behavior. The realm cL > 1/2

(cR < −1/2) corresponds to UV-localized fermions. That is, their wavefunctions are

peaked near the UV brane as can be seen in (2.3.60) and (2.3.61). Thus, the fermion

wavefunctions are exponentially suppressed on the IR brane. The small overlap with

the IR-localized Higgs field is the reason for the sharp suppression of the effective 4D

Yukawa couplings.

On the other hand, when c < 1/2, the fermions are IR localized and there is no large

suppression:

λ4 ' λ5k

(
1

2
− c
)
. (2.4.9)



30

Thus, the full range of Yukawa couplings from the electron to the top quark is easily

explained in terms of O(1) 5D parameters.

To describe multiple generations of fermions, the fields are promoted to vectors in

flavor space Ψi
L/R while λ5 and λ4 are promoted to matrices λij5 and λij4 . Doing so

necessarily introduces new flavor structure to the standard model, and has therefore

been studied by a number of authors [88, 89, 90, 91, 92, 93, 94, 95].

2.4B Fermion Gauge Couplings & Flavor Protection

The calculation of gauge couplings follows a similar recipe. The contribution to the

bulk action is given by a familiar gauge term. We will again limit our attention to a

U(1) gauge field and a single generation of fermions. The gauge coupling term in the

bulk action is:

Sint = i

∫
d5x
√
−g g5

(
Ψ(x, z)ΓMAMΨ(x, z)

)
(2.4.10)

We again work in the gauge A5 = 0 and insert the KK expansions for the fields Ψ and

AM . Let us focus on the coupling of a zero-mode gauge boson to the tower of fermions:

Sint ⇒
∞∑

m,n=0

i

∫
d5ze−5Ag5

(
ψ

(m)
eAγµA(0)

µ ψ(n)
)(

f
(0)
A f

(m)
Ψ f

(n)
Ψ

)
(2.4.11)

=
∞∑

m,n=0

g5√
2πR

i

∫
d4x

(
ψ

(m)
γµA(0)

µ ψ(n)
)∫

dz e−4A
(
f

(m)
Ψ f

(n)
Ψ

)
(2.4.12)

≡
∞∑
n=0

g4i

∫
d4x

(
ψ

(n)
γµA(0)

µ ψ(n)
)

(2.4.13)

where g4 ≡ g5/
√

2πR and the last equality follows from the orthonormality condition

(2.3.47). Thus, the gauge couplings are universal and 4D gauge invariance is preserved.

Next, of considerable importance is the couplings of the fermion zero-modes to the

KK gauge bosons. Generically, these couplings would be expected to introduce large

contributions to flavor changing amplitudes through, for example, KK gluon exchange.

This would result in an extremely high lower bound for the Kaluza-Klein scale, so that

the hierarchy problem is no longer solved. However, in practice things are not so severe.

Near the UV brane, the modified Neumann boundary condition on the gauge boson

wavefunctions forces the KK-mode profiles to be approximately constant. This can be
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seen in the plots in Figure 2.1, for example. As a result, fermions that are peaked

strongly toward UV brane inherit couplings that are essentially independent of the

localization parameter c, due to the same orthonormality condition. More specifically,

whenever c > 1/2 (c < −1/2) for the fermion zero-mode f
(0)
+ (z) (f

(0)
− (z)), the gauge

couplings become very nearly constant with varying c. Since the couplings are universal,

they are also diagonal in any basis, and therefore there is only a very small contribution

to new flavor changing neutral currents. Moreover, from (2.4.8), we can see that this

is precisely the region of parameter space for which the effective 4D Yukawa couplings

are small. We will return to this issue in more detail during our discussion of soft-wall

models in Chapter 4, where we will show that this “GIM-like” mechanism is preserved.



Chapter 3

The Soft-Wall Warped Dimension

3.1 Motivation

The original Randall-Sundrum model [36] has undergone a series of generalizations

and extensions since its original introduction over a decade ago. The warped extra

dimension framework has grown such that it can now provide a compelling geometrical

understanding of a number of mysteries left unexplained by the Standard Model (SM).

By the AdS/CFT correspondence [38, 39, 40, 41, 42, 43], these models also admit

weakly-coupled holographic descriptions of electroweak symmetry breaking and flavor

physics arising from the dynamics of a strongly coupled conformal field theory.

In the original model a slice of AdS bounded by ultraviolet (UV) and infrared (IR)

branes was used to solve the hierarchy problem. The exponential dependence of energy

scales on position along the extra dimension provided a simple explanation for the low

scale of electroweak symmetry breaking provided that all standard model particles were

localized on the IR brane. Later, a number of authors began removing the standard

model fields from the brane, allowing them to propagate in the bulk of spacetime. This

was first done with the gauge fields [74, 75] and later the fermion fields as well [79, 77, 78].

With the gauge bosons and fermions in the bulk, fermion mass hierarchies result from

the wavefunction overlap of SM fermions with an IR localized Higgs [79, 78, 80], leading

to a fermion geography in the fifth dimension which explains the Yukawa coupling

hierarchy and also naturally suppresses the scale of higher-dimension operators that

can mediate dangerous processes [78, 80]. Furthermore, since the couplings between

32
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fermions and Kaluza-Klein (KK) gauge modes are nearly universal, there exists a built-

in “GIM” mechanism that avoids disastrously large contributions to flavor changing

neutral current (FCNC) amplitudes.

A common feature of these extensions is the existence of an IR brane at which the

warped dimension abruptly ends. This breaks the conformal symmetry of the theory,

generating towers of four-dimensional (4D) particle states with KK mass spectra growing

as m2
n ∼ n2. However, this “hard-wall” picture of the IR brane represents just one way

to break conformal symmetry. A more general approach is to replace the IR brane with

a so-called “soft wall,” in which the departure from conformal symmetry progresses

smoothly with position along the extra dimension. With the IR brane removed, all IR

fields must reside in the bulk, and their wavefunctions and spectra are thus non-trivially

altered by the presence of the soft wall. Given the range of potential functional shapes

the soft-wall can take, a variety of KK mass spectra may be generated by considering

this more general picture. This allows for a potentially greater phenomenological reach

for the warped extra-dimension framework. The greater flexibility can be viewed from

the dual holographic description as well; any operator of finite dimension responsible for

conformal (or other) symmetry breaking can be modeled in the soft-wall background.

In particular, placing the entire Standard Model in a soft-wall warped dimension offers

an interesting framework for modeling the possible underlying dynamics of electroweak

physics. Furthermore, it has been shown that the soft-wall background itself can arise

dynamically from underlying physics [62], suggesting a possible route toward developing

a more complete theory.

In this chapter, we describe the construction of a concrete 5D gravity model as a

starting point to address the hierarchy problem and stability in the soft-wall framework.

To this end, we will first review the background necessary to study physics in the soft-

wall background. This includes a brief discussion of the possible dynamical origin of the

model using the techniques of Ref. [62]. We will then discuss the phenomenology of gravi-

tons and bulk fields in the model. Even though the fifth dimension is infinite, the KK

spectrum can be discrete, with a variety of spacing between resonances. The discussion

of bulk fermions is particularly involved. Specifically, it is necessary to move beyond the

perturbative zero-mode approximation typically employed in hard-wall calculations and

fully account for the 5D Yukawa interactions that generate position-dependent fermion
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mass terms and lead to “twisting” of the standard model flavors in the extra space.

For this reason, we devote the entire next chapter to the treatment of fermions. The

final portion of this chapter is devoted to describing a concrete model of electroweak

physics with custodial symmetry, including a description of the dynamics leading to

an IR-peaked bulk Higgs condensate responsible for spontaneously breaking elecroweak

symmetry. The experimental constraints are discussed and shown to be less stringent

than in hard-wall models, suggesting the possibility of observing KK resonances at the

TeV scale.

3.2 The Soft-Wall Background

3.2A Overview

The basic feature which distinguishes the soft-wall warped dimension from the usual

hard-wall slice of AdS is the replacement of the IR brane with a smooth spacetime

cutoff. This can be modeled in different ways. For example one can begin in the “string

frame” by considering the background metric as being pure AdS, as in the original

Randall-Sundrum scenario. Using the conformal coordinate z, this can be written as

ds2 = gMNdx
MdxN = e−2A(z)ηMNdx

MdxN , (3.2.1)

where A(z) = log kz, k is the AdS curvature scale, and ηMN = diag(−,+,+,+,+).

Without either an IR brane or soft cutoff, a pure AdS spacetime results in a continuous

spectra for all particles [37, 41]. In this picture, the soft-wall arises due to the presence

of the “dilaton,” Φ. The action then takes the form:

S =

∫
d5x
√
−g e−ΦLString, (3.2.2)

where LString is the matter field Lagrangian in the string frame. In contrast to hard-

wall models, the coordinate z extends to infinity, but the action remains finite assuming

suitable conditions on Φ.

Alternatively, one can work in the “Einstein frame,” where the cutoff arises as a

result of a departure from pure AdS in the IR. From this point of view, the metric

(3.2.1) is modified as follows:

A(z)→ Ã(z) = log kz + ã(z), (3.2.3)
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so that the action may be generally written:

S =

∫
d5x
√
−g̃LEinstein. (3.2.4)

Both approaches have been used in the literature [62, 60, 61, 96, 63, 66, 97].

Importantly, it is possible to translate between the pictures using conformal coor-

dinate transformations. Thus, for calculations we are free to work in whichever picture

is most convenient. Although we are taking a phenomenological approach, we have in

mind that Φ is to be identified with the string theory dilaton and the action (3.2.2) may

originate from some particular D-brane construction [60]. Therefore, for most purposes,

we will stick to the string frame picture. However, when discussing the dynamical origin

of the background and gravitational fluctuations, it will be useful to employ the Einstein

frame where Einstein’s equations are considerably simpler.

In the holographic picture, Φ is responsible for the confining dynamics at infrared

energy scales. Indeed, in this picture one can identify an effective running coupling

that grows in the IR, g2
5e

Φ ∼ eΦ/Nc, with Nc the number of colors in the dual theory.

Correspondingly, sources located at large z will be strongly coupled, and processes

involving exchange of IR localized bulk KK modes can become nonperturbative at high

energies [60, 61]. However, for UV localized matter, as in the electroweak models that

we will present, the effective description will remain perturbative sufficiently far into

the infrared region.

We will present the most general analytic results whenever possible. However there

are many possible behaviors for the dilaton, and it is not possible to obtain closed form

solutions for arbitrary profiles. For concreteness we will at times consider power-law

behavior Φ(z) = (µz)ν . The eigenfunctions of bosonic bulk fields with a power-law

dilaton satisfy an analog 1D “Schrödinger” equation with a power-law potential. A

simple WKB approximation then shows that for large mode number n the KK mass

spectrum follows

m2
n ∼ µ2 n2−2/ν . (3.2.5)

so that µ is roughly analogous to (z1)−1 in hard-wall models. Even though the conformal

coordinate z extends to infinity, for ν > 1 we obtain a discrete mass spectrum. In

particular, for the case ν = 2 the spectrum exhibits linear “Regge” behavior. Later

we will specialize to this case as it allows for analytic results. As ν → ∞ we recover
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the usual hard-wall mass spectrum m2
n ∼ n2. The dilaton power-law exponent, ν,

therefore provides a continuous parameter in which the KK mass spectrum varies from

a continuum to that associated with a compact extra dimension. As discussed in [61],

there are other interesting but qualitatively distinct behaviors possible if ν ≤ 1. For

example, a constant dilaton [37] leads to “unparticles” [98] from a 4D perspective, while

“hidden valley” models [99] are obtained when ν = 1 [100].

Though an IR brane is no longer needed, a UV boundary at small z is still required in

order to obtain the zero modes identified with the SM fields, which otherwise would not

be normalizable. This also follows from holography, because typically the zero modes

are (primarily) elementary fields associated with “sources” on the UV brane, rather

than composites emerging from the dual gauge theory. As in hard-wall models, the UV

brane will be located at a position z0 = 1/k.

3.2B A Concrete Dynamical Model

Though it is possible to study certain aspects of soft-wall phenomenology from a purely

bottom-up approach, a number of important questions cannot be addressed without

reference to an underlying gravity theory. A dynamical gravitational model is required,

for example, to address issues regarding generation of hierarchies and stability. In

this section we present a dynamical 5D gravitational model which leads to a soft-wall

warped dimension. The model is the same as that in Ref. [62] with modifications to

accommodate a UV boundary.

We start with the Einstein frame action describing gravity and two scalar fields, the

“dilaton” φ and the “tachyon” T :

S =

∫
d5x
√
−g̃

(
M3R− 1

2
g̃MN∂Mφ∂Nφ−

1

2
g̃MN∂MT∂NT − V (φ, T )

)
−
∫
d4x
√
−g̃UV λUV (φ, T ), (3.2.6)

where M is the 5D Planck scale. The relationship between φ and the dilaton Φ defined

above will be described later. The bulk action contains a scalar potential V (φ, T ), and

there is UV boundary located at z0 = 1/k. The induced metric on the boundary is

denoted gUV and there is a boundary potential λUV .

To solve (3.2.6), we introduce a “superpotential”, W (φ, T ), to convert the system



37

into a set of first-order differential equations [101, 102]. Using this procedure, we can

write the bulk and boundary potentials in the simple form

V (φ, T ) = 18

[(
∂W

∂φ

)2

+

(
∂W

∂T

)2
]
− 12

M3
W 2, (3.2.7)

λUV (φ, T ) = 6 [W (φ0, T0) + ∂φW (φ0, T0)(φ− φ0) + ∂TW (φ0, T0)(T − T0) + . . . ] ,

(3.2.8)

where φ0, T0 are the boundary values at z = z0. The extra terms in the boundary

potential may contain higher powers of (φ − φ0) and (T − T0) without affecting the

background solution.

There exists a solution to the 5D gravity-dilaton-tachyon equations of motion with

the metric g̃MN = e−2Ã(z)ηMN and the background solutions [62]

Ã(z) =
2

3
(µz)ν + log kz , (3.2.9)

φ(z) =

√
8

3
M3/2(µz)ν , (3.2.10)

T (z) = ±4
√

1 + 1/ν M3/2(µz)ν/2 , (3.2.11)

where the tilde in (3.2.9) distinguishes the Einstein frame from the “string” frame. Note

also that there are additive constants in the solutions (3.2.10) and (3.2.11), which we

have set to zero. The superpotential that gives rise to this solution is

W (φ, T ) = M3k

[
(ν + 1)eT

2/(24(1+1/ν)M3) − ν
(

1− φ√
6M3/2

)
eφ/(

√
6M3/2)

]
, (3.2.12)

from which the scalar potential can be obtained using Eq. (3.2.7).

The parameter µ is an integration constant in the solution and sets the IR scale

of the soft wall. This is analogous to the radius in RS1, which is also identified as a

modulus field. Without stabilization of the scale µ, there should exist a massless radion

associated with this modulus. However, we will see next that the UV boundary potential

can in fact stabilize µ, and we therefore expect that the radion becomes massive. A

complete answer to this question can only be obtained by analyzing the fluctuations of

the background solutions, which is beyond the scope of the present work (but see Ref.

[103]).
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The UV boundary conditions are found to be

M3 eÃ
∂Ã

∂z

∣∣∣∣
z0

= W (φ0, T0), (3.2.13)

eÃ
∂φ

∂z

∣∣∣∣
z0

= 6 ∂φW (φ0, T0), (3.2.14)

eÃ
∂T

∂z

∣∣∣∣
z0

= 6 ∂TW (φ0, T0), (3.2.15)

which imply that

φ0 =

√
8

3
M3/2(µz0)ν , (3.2.16)

T0 = ±4
√

(1 + 1/ν)M3/2(µz0)ν/2 . (3.2.17)

Taking z0 = 1/k, Eqs. (3.2.16) and (3.2.17) fix the soft-wall scale to be

µ = k

(√
3

8

φ0

M3/2

)1/ν

= k

(
1

±4
√

1 + 1/ν

T0

M3/2

)2/ν

. (3.2.18)

Note that (3.2.18) also implies a tuning between φ0 and T0. Clearly, a large hierarchy

cannot be generated between the UV scale k and the soft-wall IR scale µ for ν > 1 if

natural values are assumed for the boundary values, φ0 ∼ T0 ∼ M3/2, as this implies

µ . k, with a larger hierarchy for smaller values of ν. In the case ν = 2 on which we

will focus later, it is clearly not possible to generate the Planck-weak scale hierarchy

without a significant amount of tuning. Interestingly, the hierarchy µ/k ∼ 10−16 can

be naturally generated for φ0 ∼ 0.1M3/2 and ν ∼ 1/13, but this does not give rise to a

discrete KK particle spectrum. A more involved discussion of naturalness in this model

can be found in [103]. Their discussion can be related to the above construction by

making the simple replacement η0 = T0/
√

2.

While the boundary action (3.2.8) fails to naturally generate a large hierarchy be-

tween k and µ, an alternative way to satisfy the boundary conditions for φ and T is to

let

λUV (φ, T ) = 6W (φ, T ). (3.2.19)

The boundary conditions following from the variational principle do not then fix the

IR scale µ. With this assumption other stabilization mechanisms can then be explored.
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For example, we might consider an additional scalar field S, as in the Goldberger-Wise

mechanism [71], with a small amplitude so that the backreaction on the metric can

be neglected. If the field has a profile S(z) ∼ M3/2(µz)β, and boundary condition

analogous to those in (3.2.14) and (3.2.15), this would suggest µ/k ∼
(
S0/M

3/2
)1/β

. A

large hierarchy between k and µ would be obtained if 0 < β < 1.

Although our main application of the soft-wall background will be to model elec-

troweak physics, one can ask whether ordinary 4D gravity can be incorporated naturally

into our model. The 4D Planck mass is given by

M2
P = M3

∫ ∞
z0

dz e−3Ã(z),

=
22/ν

ν

M3µ2

k3
Γ

(
−2

ν
, 2
(µ
k

)ν)
' M3

2k
, (3.2.20)

where Γ(n, x) is the incomplete Gamma function, and we have used z0 = 1/k and

assumed µ/k � 1 in the last step. We can see that there is a problem because we would

like to have µ ∼ TeV to model electroweak physics. Lacking a robust mechanism that

generates a hierarchy between µ and k means that k ∼ µ ∼ TeV. If we take as usual

k .M , then according to (3.2.20) we cannot account for the weakness of gravity.

With these considerations, there are two possible cases for the UV scale k .M : (i)

k �MP , i.e. there is no large hierarchy and we project out the zero-mode graviton with

Dirichlet conditions (for concreteness we will take k ∼ 1000µ as in [104]); (ii) k ∼MP ,

i.e. we assume a suitable stabilization mechanism may be found and apply Neumann

conditions to allow a massless graviton.

Note that the metric (3.2.1) and action describing matter fields (3.2.2) is defined

in the string frame, which is obtained by rescaling the dilaton φ =
√

8/3M3/2Φ and

performing a conformal transformation gMN → e−4Φ/3gMN . In the string frame, the

background solutions for the metric and dilaton become

A(z) = log kz, (3.2.21)

Φ(z) = (µz)ν . (3.2.22)

We have a pure AdS metric and power-law dilaton as advertised in Section 3.2A. Unless

otherwise specified we will now restrict to ν = 2. This will give rise to a linear Regge-like

mass spectrum and will enable analytic solutions to be obtained. Other values of ν will

lead to qualitatively similar features.
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3.2C Gravity in the Soft-Wall

To study the graviton modes, we examine fluctuations of the background metric in the

Einstein frame, g̃MN . The most general expression for the perturbed metric leading to

4D graviton modes takes the form of (2.2.1):

ds2 = e−2Ã(z)
[

(ηµν + hµν(x, z)) dxµdxν + dz2
]
. (3.2.23)

Thus, it is straightforward to adapt the results of Sections 2.2A and 2.3D. In the

transverse-traceless gauge ∂µh
µν = hµµ = 0 and using the KK expansion (2.2.8), the

equations of motion for the z-dependent piece f
(n)
h (z) becomes

∂5(e−3Ã∂5f
(n)
h (z)) +m2

ne
−3Ãf

(n)
h (z) = 0. (3.2.24)

The redefinition f
(n)
h (z) = e3Ã(z)/2f̃nh (z) brings the equation of motion into the form of

a factorizable 1D Schrödinger equation with potential V (z) = W 2 −W ′,

(−∂5 +W (z)) (∂5 +W (z)) f̃
(n)
h (z) = m2

nf̃
(n)
h (z), (3.2.25)

where

W (z) =
3

2
Ã′, (3.2.26)

V (z) = 4µ4z2 + 4µ2 +
15

4z2
, (3.2.27)

and the solutions are normalized as

M3

∫ ∞
z0

dz f̃
(n)
h (z)f̃

(n)
h (z) = δmn. (3.2.28)

With a Neumann UV boundary condition ∂5f
(n)
h |z0 = 0, we can see that a massless

mode f
(0)
h (z) = 1/MP still exists, where MP is defined in (3.2.20). This is expected

since we have not broken 4D coordinate invariance.

Next we turn to mn 6= 0. The potential is familiar as the radial equation for a

two-dimensional harmonic oscillator. Redefining ξ =
√

2µz, the Schrödinger equation

is now (
−∂2

ξ + ξ2 +
m2 − 1/4

ξ2

)
f̃nh (z) = Ênf̃

n
h (z), (3.2.29)
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where Ên =
(
m2
n − 4µ2

)
/2µ2 and m = 2. In the limit z0 → 0, the solution will

match the well-known result from quantum mechanics, for which the eigenvalues take

on integer values Ên = 4n+ 2m+ 2 for n = 0, 1, 2, . . . and the wavefunctions are given

in terms of associated Laguerre polynomials as f
(n)
h ∼ e−ξ

2/2ξm+1/2Lmn (ξ2). However,

imposing a Neumann or Dirichlet boundary condition at z0 > 0 changes the energy

levels such that they no longer take on integer values, and the solutions are no longer

simple polynomials. The normalizable solutions are instead given by

f̃
(n)
h (z) = N

(n)
h e−3Ã(ξ/

√
2µ)/2 U

(
−1

4
(Ên + 2) ,−1 , ξ2

)
, (3.2.30)

where U(a, b, y) is the Tricomi confluent hypergeometric function. The profiles fnh (z)

are therefore

f
(n)
h (z) = N

(n)
h U

(
−m

2
n

8µ2
,−1 , 2µ2z2

)
. (3.2.31)

Μz 2Μz 3Μz

f
�

h
HnLHzL

Figure 3.1: KK graviton profiles: The zero mode (solid), n = 1 (dash), and n = 2 (dot),
for µ = 1 TeV and k = 1000 TeV. If k and µ have a Planck-weak scale separation, then
the zero mode is further separated from the KK modes.

The KK mass spectrum can be found by applying the UV boundary condition. In

the limit µz0 � 1, the KK modes follow approximate linear trajectories:

m2
n ' 8µ2(n+ 2), n = 0, 1, 2 . . . . (3.2.32)



42

The approximate mass formula (3.2.32) is valid for both Neumann and Dirichlet con-

ditions. This is because the mass spectrum is largely determined by IR dynamics and

is not overly sensitive to the UV boundary condition. The first few modes have been

plotted in Figure 3.1.

For z � z0, the wavefunctions (3.2.31) are well approximated by the Laguerre

polynomial solutions,

fnh (z) ' Nn
h (−1)n(n)! 4(µz)4L2

n

(
2µ2z2

)
. (3.2.33)

Using (3.2.33), we can derive an approximate expression for the normalization:

Nn
h '

(−1)n

(n+ 2)!

k

µ

 M3

k

n∑
j,k=0

(−n)j
j! (j + 2)!

(−n)k
k! (k + 2)!

(j + k + 2)!

−1/2

, (3.2.34)

where the Pochhammer symbol (n)j is defined as

(n)j =

j−1∏
k=0

(a+ k) =


(n+j−1)!

(n−1)! for n ∈ Z+,

(−1)j (−n)!
(−n−j)! for n ∈ Z−.

(3.2.35)

The sum can be performed,

n−1∑
j,k=0

(−n)j
j! (j + 2)!

(−n)k
k! (k + 2)!

(j + k + 2)! =
1

(n+ 1)(n+ 2)
, (3.2.36)

and using (3.2.20), we can write the normalization as

Nn
h '

(−1)n

MP

k

µ

√
2

(n+ 2)!(n)!
. (3.2.37)

As in hard-wall models, the couplings of the KK gravitons depend on where matter

is located in the extra dimension. Later we will examine electroweak models with

UV localized fermions. In this case the KK mode gravitons couple with a strength

f
(n)
h (z0) ∼ µ/(kMP ), which is extremely suppressed and not likely to have observable

consequences. This of course will change if fermions propagate in the bulk.

3.3 Bulk fields

We will now consider bulk gauge and fermion fields in the soft-wall background. As mo-

tivated in Section 3.2A, the starting point will be the action (3.2.2) with an appropriate

matter Lagrangian.
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3.3A Gauge Fields

Consider the simple case of a U(1) gauge field AM (x, z) in the bulk. The gauge field

dynamics are described by the action

S =

∫
d4xdz

√
−g e−Φ

(
−1

4
FMNF

MN

)
. (3.3.1)

Performing a KK decomposition,

Aµ(x, z) =
∞∑
n=0

Anµ(x)fnA(z), (3.3.2)

the wavefunctions obey the equation of motion

− e(A+Φ)∂5(e−(A+Φ)∂5f
(n)
A ) = m2

nf
(n)
A , (3.3.3)

and are normalized according to∫ ∞
z0

dz e−(A+Φ)fnA(z)fmA (z) = δnm. (3.3.4)

These relationships are exactly the same as (2.3.22) and (2.3.23) up to the redefinition

A→ A+ Φ. Therefore, the discussion of Sections 2.3B and 2.3D are easily applied. A

massless mode persists due to the unbroken gauge symmetry. It is constant:

f
(0)
A (z) =

√
− 2k

Ei (−µ2/k2)
'

√
k

log(k/µ)− γ/2
, (3.3.5)

where Ei(x) is the exponential integral function, γ ≈ 0.577 is the Euler-Mascheroni

constant, and we have used z0 = 1/k and µ/k � 1. The Schrödinger potential following

from (2.3.24) with W (z) = (A′ + Φ′)/2 = µ2z + 1/(2z) is now given by

V (z) = W 2 −W ′ = µ4z2 +
3

4z2
. (3.3.6)

Using the same techniques as for the graviton above, the wavefunctions of the massive

modes are found to be

f
(n)
A (z) = N

(n)
A U

(
−m

2
n

4µ2
, 0 , µ2z2

)
. (3.3.7)
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Applying the Neumann condition to the wavefunctions at the UV boundary de-

termines the mass spectrum of the excited vector modes. We find that in the limit

µ/k � 1, the gauge boson masses follow approximate linear trajectories:

m2
n ' 4µ2(n+ 1), n = 0, 1, 2 . . . . (3.3.8)

For large z, the wavefunctions reduce to Laguerre polynomials:

f
(n)
A (z) ' N (n)

A (−1)n(n)! µ2z2L1
n

(
µ2z2

)
. (3.3.9)

Similarly, as for the graviton wavefunction case, this form of the wavefunction can be

used to derive an approximate expression for the normalization:

N
(n)
A ' (−1)n

(n+ 1)!

√
2(n+ 1)k . (3.3.10)

3.3B Fermions

While the analysis of bulk gauge fields in the soft-wall background is straightforward,

this is not the case for fermions. We will postpone a detailed discussion of the full

treatment of fermions until Chapter 4. Our purpose here is to highlight the issues

involved.

As was discussed in Chapter 2, fermions are typically analyzed using the zero-mode

approximation, treating Yukawa interactions with the Higgs as perturbations and ob-

taining fermion masses from wavefunction overlap integrals [79, 80, 78]. The simplifi-

cation thereby introduced is considerable: modes of opposite chirality can be treated

completely separately. However, this approach is not valid for the soft-wall scenario.

Unlike in hard-wall models with an IR brane, the Higgs boson in a soft-wall background

must necessarily propagate in the bulk. Since the Higgs profile should be peaked in the

IR (to be dual to a composite electroweak symmetry breaking sector), the backreaction

of the Higgs vacuum expectation value (VEV) on the bulk fermion equations of motion

at large z cannot be neglected. The proper approach is to diagonalize the bulk equations

of motion and obtain the SM fermion masses from the boundary conditions.1 Attempt-

ing to treat the Yukawa interaction perturbatively necessarily introduces problems with

1 Note that in general any model with a bulk Higgs condensate and bulk fermions should be analyzed
in this way. However with a hard wall cutting off the extra dimension, it may be reasonable to treat the
bulk Yukawa interaction as a perturbation and use the zero-mode approximation for fermions (although,
see also [93]).
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strong coupling and normalizability. To see this, we will consider fermions in a soft-wall

background modeled first by a dilaton and second by a deformed AdS metric.

Dilaton soft wall

First, we can imagine the dilaton providing the soft wall, with Φ(z) = µ2z2 and a pure

AdS metric A(z) = log kz. Inserting the prefactor e−Φ into the fermion action (2.3.39)

results in an equation of motion analogous to (2.3.41):

ηµνγµ∂νΨ∓ ± e(2A+ Φ
2

)∂5

(
e−(2A+ Φ

2
)Ψ±

)
+ e−AMΨΨ± = 0, (3.3.11)

Inserting the KK-decomposition (2.3.43), the equations of motion for the transformed

field Ψ̃ = e−(2A+Φ/2)Ψ becomes identical to (2.3.44):(
± ∂5 + e−AMΨ

)
f̃

(n)
± (z) = mnf̃

(n)
∓ (z). (3.3.12)

Moreover, the normalization condition is identical (2.3.47). The remarkable fact is that

the transformed functions depend only on the metric and not on the dilaton profile, a

result of the fact that the equations of motion are first order in derivatives. The zero

modes have the same power-law profile as in hard-wall models:

f
(0)
± (z) ∝ z∓c. (3.3.13)

Since the extra space extends to z → ∞, these modes are normalizable if 1 ∓ 2c < 0,

meaning only UV localized zero modes are allowed. Additionally, while it would ap-

pear that the Kaluza-Klein spectrum is unchanged, in fact the spectrum is no longer

discrete but instead becomes continuous. The wavefunctions given by (2.3.46) asymp-

totically approach plane wave solutions. This is similar to the behavior of gravitons in

the Randall-Sundrum model when the IR brane is removed [37], however there is no

normalizable mode in the absence of boundary mass terms.

Let us examine the gauge coupling between a zero-mode fermion f+ and a KK gauge

boson. The gauge boson wavefunction is given in given in Eq. (3.3.7). Inserting the

appropriate functions into the Lagrangian (see (2.4.10)), we find that the effective 4D

coupling behaves as:

gn ∝ g5

∫ ∞
z0

dz z−2c U

(
−m

2
n

4µ2
, 0 , µ2z2

)
,

' g5

∫ ∞
z0

dz z−2czm
2
n/2µ

2
, (3.3.14)
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where we have used the asymptotic large z behavior of the hypergeometric function,

U(a, b, y) ∼ y−a, (3.3.15)

in the final step. Noting the mass spectrum (3.3.8), this coupling becomes

g(n) ∝
∫ ∞
z0

dz z2n−2c, (3.3.16)

which diverges for n > c − 1/2. Therefore, once a particular c value is chosen, the

coupling g(n) diverges for sufficiently large gauge boson KK mode number n.

Metric soft wall

It is also possible to model the soft wall with an exponentially decaying metric, with

Ã(z) = 2µ2z2/3 + log kz. Again, we can follow the analysis above, this time setting

Φ = 0, and replacing A(z) → Ã(z). We then obtain the equation of motion for the

fermion profiles: (
± ∂5 + e−ÃMΨ

)
f̃

(n)
± (z) = mnf̃

(n)
∓ (z). (3.3.17)

The massless mode solutions can be obtained straightforwardly by integrating Eq.

(3.3.17), leading to

f̃
(0)
± (z) ∝ e∓c Ei(−2µ2z2/3)/2. (3.3.18)

However, this solution is not normalizable. The exponential integral function vanishes

as z → ∞, and thus the profile g
(0)
± (z) approaches a constant at large z. Noting the

normalization condition (2.3.47), we see that the zero mode is not normalizable, and is

therefore absent from the theory.

The problems discussed above are ultimately related to the fact that the fifth di-

mension extends to z → ∞, and their origin is easily understood by considering the

the Schrödinger potentials in the second-order equations for the fields. The potentials

vanish as z →∞. If we consider Yukawa interactions with a bulk Higgs, it is easy to see

that the perturbabive approximation is invalid. The large addition to the potential due

to the IR peaked Higgs profile cannot be treated as a perturbation upon a vanishing

potential! We therefore endeavor to fully account for the Higgs feedback on the fermion

equations of motion. This is the subject of Chapter 4. For the time being, we will

simply assume that there exist fermion solutions that are UV-localized.
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3.4 Electroweak models

In this section we investigate models of electroweak symmetry breaking with a soft-wall

background. For simplicity, we will consider SM fermions localized on the UV brane,

which are interpreted as elementary states in the holographic theory. It is possible to

generalize these models to include bulk fermions based on the analysis presented in

Chapter 4. We will focus on bulk gauge fields interacting with a Higgs field peaked at

large z, which is interpreted in the dual theory as electroweak symmetry breaking due

to strong dynamics.

We start by considering a model with a bulk custodial isospin gauge symmetry, so

as to protect the model from excessive contributions to precision electroweak observ-

ables [89], namely the Peskin-Takeuichi T parameter [48, 49]. The bulk gauge group

is SU(2)L×SU(2)R×U(1)X . On the UV boundary the gauge symmetry is broken via

boundary conditions to the electroweak subgroup SU(2)L×U(1)Y . In the IR region, the

custodial symmetry is broken to the vector subgroup via a bulk Higgs condensate. In

the usual hard-wall setups, this symmetry breaking is achieved via a Higgs localized on

the IR brane [89] or via IR-brane boundary conditions as in Higgsless models [105, 106].

In fact, our setup is very similar to the “gaugephobic Higgs” model [107], though with

a different background geometry and no IR brane.

The Lagrangian of the model is given by

S =

∫
d5x
√
−g e−Φ

[
− 1

4g2
5

LaMNL
aMN − 1

4g2
5

RaMNR
aMN − 1

4g
′2
5

XMNX
MN

−Tr|DMH|2 − V (H)

]
−
∫
d4x
√
−gUV e−Φ VUV (H), (3.4.1)

where LaM (x, z), RaM (x, z), and XM (x, z) represent SU(2)L, SU(2)R, and U(1)X gauge

fields, respectively. In addition there is a bulk Higgs boson H(x, z) with bulk and

boundary potentials V (H) and VUV (H), respectively. We have chosen the right- and

left-handed gauge couplings to be equal for simplicity.

We break SU(2)R×U(1)X → U(1)Y through boundary conditions on the UV brane.
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The gauge fields satisfy the following UV boundary conditions,

∂5L
a
µ

∣∣∣∣
z0

= 0, R1,2
µ

∣∣∣∣
z0

= 0,

∂5

(
1

g
′2
5

Xµ + 1
g2
5
R3
µ

) ∣∣∣∣
z0

= 0, (Xµ −R3
µ)

∣∣∣∣
z0

= 0,
(3.4.2)

which break SU(2)R × U(1)X → U(1)Y . The four would-be massless directions are

indicated by the Neumann conditions.

The bulk Higgs field is a bidoublet under SU(2)L×SU(2)R transforming as:

H → ULHU
†
R. (3.4.3)

We define vector and axial-vector fields V a
M , A

a
M = (LaM ± RaM )/

√
2 as the Higgs field

only couples to the axial mode through the covariant derivative. After the Higgs acquires

a non-trivial profile along the fifth direction,

〈H(z)〉 =
h(z)√

2

(
1 0

0 1

)
, (3.4.4)

the gauge symmetry is broken down to the vector subgroup SU(2)L × SU(2)R →
SU(2)V . The vector and axial modes can be analyzed using the methods of Sections 2.3B

and 3.3A. We refer to the z-dependent pieces in the KK decompositions (see (3.3.2))

for V a
M and AaM as v(p, z) and a(p, z), respectively, where p =

√
p2 is the 4-momentum.

The functions satisfy the equations of motion,

e(A+Φ)∂5

(
e−(A+Φ)∂5v(p, z)

)
= p2v(p, z), (3.4.5)

e(A+Φ)∂5

(
e−(A+Φ)∂5a(p, z)

)
− e−2Ag2

5h
2(z)a(p, z) = p2a(p, z). (3.4.6)

The vector profile v(p, z) is obtained from (3.3.7), while the exact form of the axial-

vector profile can only be determined after specifying the Higgs VEV h(z). We will

next consider two simple cases which allow for an analytical determination of a(p, z).

Note that the X gauge boson profile is also given by v(p, z).

From a 4D perspective, the theory contains a massless photon, a KK tower of charged

W bosons, and a KK tower of neutral Z bosons with the lightest states in these towers

identified with the SM W and Z bosons, respectively. To determine the mass spectra,
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we apply the UV boundary conditions in Eq. (3.4.2). For the W tower, the spectrum

(with m2
n = −p2) is determined by the following equation:

v(p, z0)a′(p, z0) + a(p, z0)v′(p, z0) = 0, (3.4.7)

while for the photon and neutral Z boson tower we find

v′(p, z0)
[
g2

5(v(p, z0)a′(p, z0) + a(p, z0)v′(p, z0)) + 2g′25 v(p, z0)a′(p, z0)
]

= 0. (3.4.8)

The prime (′) symbol in Eqs. (3.4.7) and (3.4.8) denotes differentiation with respect to

z. Note that of the two equations in (3.4.8), one equation (v′(p, z0) = 0) corresponds to

the excited modes of the photon, while the other equation determines the KK spectrum

of the Z boson.

To match the 5D theory to the 4D effective theory, we can relate the parameters g5,

g′5, and µ to, for instance, the electric charge and the masses of the W and Z bosons

determined from (3.4.7) and (3.4.8). Note that the massless mode is always of the form:

AM ∝
VM
g2

5

+
XM

g′25
≡ AM

g̃2
5

. (3.4.9)

From this and the normalization (3.3.5), the electric charge is computed to be

e2 ' g2
5g
′2
5

g2
5 + 2g′25

k

log(k/µ)− γ/2
. (3.4.10)

The W and Z boson masses will be computed for specific Higgs profiles below, but first

we consider the dynamics of the Higgs sector and present a simple model leading to an

IR-peaked Higgs background profile.

3.4A Higgs dynamics

We now analyze the dynamics leading to a bulk Higgs condensate. An understanding

of the Higgs dynamics is important for more than just aesthetic reasons; any realis-

tic phenomenological study requires a concrete dynamical model to analyze the Higgs

fluctuations and determine, for example, the mass of the physical Higgs scalar and its

couplings to SM fields.

The bulk Higgs potential in (3.4.1) is assumed to have the form

V (H) = m2
H(z)Tr|H|2, (3.4.11)
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where we have defined a z-dependent effective mass

m2
H(z) = k2

[
α(α− 4)− 2αµ2z2

]
. (3.4.12)

According to the AdS/CFT dictionary, the particular constant mass-squared in (3.4.12)

corresponds to an operator with dimension ∆H = |α − 2| + 2 in the dual theory. The

z-dependent mass term is assumed to arise from a coupling to another scalar field which

obtains a background VEV. In fact, in our gravity model there are two candidates for

these scalar fields, the dilaton Φ and tachyon T . Interaction terms like Φ|H|2 or T 2|H|2

can provide the z2 part of the mass term, although we do not need to specify the precise

origin of this term for the phenomenological analysis. Note also that there is a tuning

between the different terms in (3.4.12).

Inserting the background (3.4.4), we find the following equation of motion for h(z):

e(3A+Φ)∂5(e−(3A+Φ)∂5h)− e−2Am2
H(z)h = 0. (3.4.13)

The general solution to this equation is

h(z) = zα
(
c0 + c1Γ

(
2− α,−µ2z2

))
, (3.4.14)

where c0, c1 are arbitrary constants. Demanding finiteness of this solution in the soft-

wall background implies c1 = 0, which leads to

h(z) = c0z
α. (3.4.15)

We must add a UV boundary potential to ensure that the solution (3.4.15) can

non-trivially satisfy the boundary condition. An appropriate choice is

VUV (H) =
λ0

k2

(
Tr|H|2 − v2

0

)2
, (3.4.16)

which leads to the UV boundary condition(
∂5h−

2λ0

k2
h(h2 − v2

0)

) ∣∣∣∣∣
z0

= 0. (3.4.17)

Substituting (3.4.15) into this boundary condition gives rise to two possible solutions,

a trivial solution c0 = 0, as well as a non-trivial solution:

c2
0 = k3+2α

(
v2

0

k3
+

α

2λ0

)
. (3.4.18)
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The energy density per unit brane volume, H, can be calculated as in Ref. [108]. The

difference between the trivial and non-trivial solution energy densities is found to be

H(h = 0)−H(h = c0z
α) =

1

λ0
k4e−µ

2z2
0

(
λ0v

2
0

k3
+
α

2

)2

. (3.4.19)

Therefore, the non-trivial Higgs background (3.4.15) will be the ground state provided

that this difference is positive, which occurs when λ0 > 0. Incidentally the energy

density of the non-trivial solution is of order k4 + v2
0k, so provided v2

0 . k
3 and k .M

the backreaction on the gravitational background can be neglected.

In order to trigger electroweak symmetry breaking at a scale of order µ, the bulk

Higgs VEV should become appreciable near z ∼ 1/µ, suggesting that c0 ∝ k3/2µα. We

thus require that
v2

0

k3
+

α

2λ0
∼
(µ
k

)2α
. (3.4.20)

This is clearly tuned, since the quantity on the left hand side is naturally of order one.

The need for this tuning is due to the fact that the stabilizing potential is located on

the UV brane. Eq. (3.4.20) suggests two possible situations: either v2
0 is small and λ0

is large, or a partial cancellation occurs between the two terms on the left-hand side

of (3.4.20), in which case both v2
0 and λ0 can have perturbative values. To determine

which case can be realized we need to consider the spectrum of fluctuations about the

Higgs background.

To study the Higgs fluctuations, we write h(z) → h(z) + h̃(x, z). The equation of

motion for h̃ is

�h̃+ e(3A+Φ)∂5(e−(3A+Φ)∂5h̃)− e−2Am2
H h̃ = 0. (3.4.21)

Due to the boundary quartic potential (3.4.16), the UV boundary condition for the

fluctuation is a nonlinear equation that does not admit an analytic solution for the

eigenvalues. An approximate solution can be found by performing a linearized fluctua-

tion analysis. In this case the boundary condition for the fluctuation becomes(
∂5 −

2λ0

k2

(
(h2 − v2

0) + 2h2
))

h̃

∣∣∣∣∣
z0

= 0. (3.4.22)

The KK-expansion is

h̃(x, z) =

∞∑
n=0

h̃(n)(x)f
(n)

h̃
(z). (3.4.23)



52

Transforming the functions in our accustomed way, f
(n)

h̃
(z) = e(3A+Φ)/2 f̃

(n)

h̃
(z), the

profiles ĝn
h̃
(z) satisfy a Schrödinger equation with the potential

V
h̃
(z) =

(
3A′ + Φ′

2

)2

−
(

3A′′ + Φ′′

2

)
+ e−2Am2

H(z) (3.4.24)

= µ4z2 + 2(1− α)µ2 +
(α− 2)2 − 1/4

z2
, (3.4.25)

which is of the same form as the potential in (3.2.29) with m = α − 2. The solutions

for the untransformed profiles are then

f
(n)

h̃
(z) = Nn

h̃
zαU

(
−m

2
n

4µ2
, α− 1 , µ2z2

)
, (3.4.26)

where Nn
h̃

is a normalization factor. Applying the boundary conditions, the Higgs mass

spectrum is determined by the equation

m2
nz

2
0 U

(
−m

2
n

4µ2
+ 1 , α , µ2z2

0

)
− 4 ζ U

(
−m

2
n

4µ2
, α− 1 , µ2z2

0

)
= 0, (3.4.27)

where ζ = α + 2λ0v
2
0/k

3 ∼ 2λ0(µ/k)2α. In the limit |ζ| � 1 the Higgs (lowest lying

mode) mass-squared is m2
0 ' 2ζk2/ log(k/µ). For ζ < 0 we find a tachyon mode, and a

zero mode at ζ = 0, so we restrict to ζ > 0. The Higgs mass increases as we increase

ζ. Note that these results are at the linearized level and the nonlinear terms in the UV

boundary condition have been neglected.

Earlier we argued that λ0 > 0 if the non-trivial Higgs profile is to be the vacuum

state of the theory. Now we see that this condition also implies that there are no tachyon

modes provided v2
0/k

3 > −α/(2λ0). In particular, for v2
0/k

3 = −α/(2λ0)+ε then (3.4.20)

can be satisfied with ε ∼ (µ/k)2α, implying that v2
0 and λ0 can have perturbative values.

Thus, a perturbative solution describing electroweak symmetry breaking with a light

Higgs boson can be found. However, for large enough ζ, corresponding to a heavy Higgs

or technicolor limit, the theory becomes nonperturbative.

3.4B Electroweak constraints

With fermions localized on the UV brane and a bulk custodial symmetry, the most

important constraint on this model comes from the S parameter [48, 49]. Of course,

one would like to extend fermions into the bulk in a realistic manner to understand the
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SM flavor structure. In this case, there are other constraints that arise from loop level

contributions to the T parameter from KK mode fermions and nonuniversal corrections

to the Zbb coupling [89, 109], as well as stringent constraints from flavor violation

[110, 111, 112]. Mechanisms to weaken these constraints have been developed recently,

(e.g. using different custodial representations for third generation fermions [113]), and

there is no reason to expect such mechanisms cannot be implemented in the soft-wall

warped framework. Nevertheless, the constraint from S is still fairly restrictive in hard-

wall models, forcing the KK scale to be around 3 TeV [89]. It is thus interesting to see

whether or not the constraint from S can be weakened in a soft-wall background.

Recently, Ref. [61] found that the KK scale can indeed be lowered depending on the

assumptions regarding the type of soft wall and Higgs condensate. In particular, they

considered an example with a “linear” soft wall (ν = 2 in our notation) with a quadratic

Higgs profile, finding that the KK scale can be around 2 TeV. We will verify this result,

and present another example for the linear soft wall in which the constraints are even

less severe.

To calculate the S parameter we will use the boundary effective action approach [114]

which is particularly convenient when fermions are UV localized. Following [114, 115],

the general expression for the vector and axial-vector self energies is

ΣV = − 1

g2
5

e−(A+Φ)∂5v

v

∣∣∣∣
z0

, (3.4.28)

ΣA = − 1

g2
5

e−(A+Φ)∂5a

a

∣∣∣∣
z0

. (3.4.29)

The S parameter is defined as

S = 8π(Σ′V (0)− Σ′A(0)) . (3.4.30)

From the exact expression for the vector profile given in (3.3.7), the vector self energy

is

ΣV (p2) =
e−µ

2z2
0

2g2
5k

p2
U
(

1 + p2

4µ2 , 1 , µ
2z2

0

)
U
(
p2

4µ2 , 0 , µ2z2
0

) . (3.4.31)

In the limit µz0 � 1 we find

Σ′V (0) ≈ 1

2g2
5k

(−γ − 2 logµz0) . (3.4.32)
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We now examine two explicit examples of profiles h(z) which allow for an analytic

determination of the axial-vector profile a(p, z) and S, finding in each case that the KK

scale can be lowered.

Linear VEV

Assuming ν = 2 the first case we consider is when the Higgs VEV is linear in z, so that

g2
5h

2(z) = ξk2µ2z2, (3.4.33)

where ξ is a dimensionless parameter. This requires choosing α = 1 or m2
H(z) =

−3k2−2µ2z2. In the dual holographic theory this corresponds to electroweak symmetry

breaking with an operator of dimension ∆H = 3. From the equation of motion (3.4.6),

we find the axial-vector profile a(z):

a(p, z) = U

(
p2

4µ2
+
ξ

4
, 0 , µ2z2

)
. (3.4.34)

By expanding the spectrum equations (3.4.7) and (3.4.8) in the limit µz0 � 1, ξ � 1

we find two light modes that can be identified with the W and Z bosons, with masses:

m2
W ≈ 1

2
ξµ2, (3.4.35)

m2
Z ≈ 1

2

g2
5 + 2g′25
g2

5 + g′25
ξµ2. (3.4.36)

We can see the custodial symmetry at work in the relationship between the W and Z

masses [105, 106]. The ratio m2
W /m

2
Z ≈ (g2

5 + g′25 )/(g2
5 + 2g′25 ) ' g2/(g2 + g′2), where

g, g′ are the SU(2)L, U(1)Y gauge couplings, respectively.

The closed form expression for the axial-vector self energy is

ΣA(p2) =
e−µ

2z2
0

2g2
5k

(p2 + ξµ2)
U
(

1 + p2

4µ2 + ξ
4 , 1 , µ

2z2
0

)
U
(
p2

4µ2 + ξ
4 , 0 , µ

2z2
0

) . (3.4.37)

Taking the limit µz0 � 1, ξ � 1 the derivative becomes

Σ′A(0) ≈ 1

2g2
5k

(
−γ − 2 logµz0 −

π2

12
ξ

)
. (3.4.38)
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Combining 3.4.38 with (3.4.32), we find the S parameter for the case of a linear Higgs

VEV:

S ≈ π3ξ

3g2
5k
' 2π3

3g2(log(k/µ)− γ/2)

m2
W

µ2
. (3.4.39)

Requiring S < 0.2 implies that when the UV scale is 1000 TeV, the IR scale µ ≤ 0.5 TeV.

Thus, the first KK gauge boson resonances have masses of order 1 TeV. If we choose the

UV scale to be of order MP then the constraint is even weaker, and the first KK modes

can be quite light, of order 300-500 GeV! Also, since the spacing between successive

modes is 2µ, in this scenario it may actually be possible to observe the linear trajectory

at the LHC.

Quadratic VEV

Next for ν = 2 we consider a quadratic profile for the Higgs,

g2
5h

2(z) = ξk2µ4z4. (3.4.40)

This requires choosing α = 2 or m2
H(z) = −4k2 − 4µ2z2. In the dual holographic

theory this corresponds to electroweak symmetry breaking with an operator of dimension

∆H = 2. The axial-vector profile is then

a(p, z) = eµ
2z2(1−

√
1+ξ)/2 U

(
p2

4µ2
√

1 + ξ
, 0 ,

√
1 + ξ µ2z2

)
. (3.4.41)

Expanding (3.4.7) and (3.4.8) in the limit µz0 � 1, ξ � 1, the masses of the W and Z

bosons are found to be

m2
W ≈ 1

4

1

log(k/µ)− γ/2
ξµ2, (3.4.42)

m2
Z ≈ 1

4

g2
5 + 2g′25
g2

5 + g′25

1

log(k/µ)− γ/2
ξµ2. (3.4.43)

The axial-vector self energy can then be computed and is given by,

ΣA(p2) =
e−µ

2z2
0

2g2
5k

p2
U
(

1 + p2

4µ2
√

1+ξ
, 1 ,
√

1 + ξµ2z2
0

)
U
(

p2

4µ2
√

1+ξ
, 0 ,
√

1 + ξµ2z2
0

) − 2µ2(1−
√

1 + ξ)

 , (3.4.44)

which leads to the expression for Σ′(0) in the limit µz0 � 1:

Σ′A(0) ≈ 1

2g2
5k

(
−γ − 2 logµz0 − log

√
1 + ξ

)
. (3.4.45)
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The S parameter is therefore given by

S ≈ 2π

g2
5k

log (1 + ξ) ' 8π

g2

m2
W

µ2
. (3.4.46)

In the case when the Higgs VEV is quadratic in z, the constraint S < 0.2 translates

into an upper bound of µ ≤ 1.3 TeV, which is very similar to the result obtained in

Ref. [61] for the same mass term (using their ε = 1). There is some weak dependence on

the ratio k/µ in S, and taking k ∼ Mp, the lower bound on µ becomes approximately

1.2 TeV.



Chapter 4

Fermions in the Soft-Wall

In Chapter 2, we reviewed the treatment of bulk fields in a hard-wall background,

In particular, in Section 2.4A we discussed how to obtain hierarchical fermion masses

in hard-wall setups. The perturbative approach we employed is a familiar technique

useful for solving many problems in physics. We started with the free theory of two

chiral fermion fields absent Yukawa interactions and found the fermion wavefunction

profiles along the extra spatial direction. Next, we accounted for the Yukawa interaction

between the fermions by using elementary perturbation theory to calculate the resulting

contribution to 4D particle masses. Although that is as far as we went in Chapter 2, it

is also possible to calculate first-order corrections to the wavefunctions resulting from

the interaction, or to fit to known flavor physics observables [93, 94].

When we examined soft-wall models in Chapter 3, we found that this approach is ill-

suited. The ultimate reason for the difficulty was discussed in Section 3.3B. The Higgs

interaction is expected to take place in the IR (so as to trigger electroweak symmetry

breaking at the TeV scale), where the effective Schrödinger potentials in the fermion

equations of motion vanish. In such a scenario, the familiar perturbative approach is

invalid.

Thus, we are seemingly left with no choice but to approach the full problem, coupling

the fermions in the bulk and solving the resulting system of equations. As we will see,

this is made difficult because modeling just a single generation of fermions requires solv-

ing a fourth-order system–significantly more complicated than the first-order zero-mode

equations of motion we found in Chapter 2. Moreover, with interactions throughout the

57



58

bulk, it becomes extremely cumbersome to discuss any flavor physics effects whatsoever

absent unjustified assumptions regarding the structure of the 5D Yukawa couplings.

In this chapter we present a comprehensive analysis of bulk fermions in a soft-

wall background. We document several analytical solutions for special cases of the

single generation problem in the context of the electroweak model of Section 3.4. Our

results show that many of the attractive features of hard-wall models, including the

natural suppression of flavor violation through a GIM-like mechanism are retained. We

also cover several approximation methods that allow for the analysis of fermions in an

arbitrary background. Finally, we attack the complete three-generation case using a

non-iterative numerical routine. We present the full dependence of SM fermion masses

on the masses in the bulk and compare the results to a typical hard-wall model. We

find that the behavior is very different in the phenomenologically interesting region of

the parameter space, where the bulk SU(2)L doublet and singlet fermions have opposite

bulk masses. We then present results for the case of three generations with substantial

mixing between bulk profiles. We find example spectra resembling the up- and down-

type quarks in the spirit of Ref. [116].

Our discussion follows closely the work of Ref. [66]. Other approaches to this

problem can be found in Refs. [65, 64, 117]. An iterative numerical approach may also

be found in Ref. [118]; the iterative method offers improved stability when there are

extremely large scale hierarchies in the model, however it does not extend readily to the

three-generation problem as our approach does.

4.1 Fermions in the Soft-Wall Background

4.1A The Fermion Lagrangian and Equations of Motion

We work in the setup described in detail in Chapter 3. The spacetime is parameterized

by (xµ, z) with conformal coordinate z and metric:

ds2 = e−2A(z)ηMNdx
MdxN , (4.1.1)

where ηMN = diag(−,+,+,+,+). In particular we will consider a pure AdS metric,

i.e. A(z) = log kz with k the AdS curvature scale. The spacetime is defined on the

interval z ∈ [z0,∞), where z0 is the location of the UV brane. The spacetime extends
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to z → ∞, and we will therefore consider a soft-wall setup in which the dilaton, Φ

obtains a background value and provides a dynamical cutoff to spacetime. The gauge

and matter fields are described by the action,

S =

∫
d5x
√
−g e−ΦL, (4.1.2)

where L is the 5D Lagrangian. While much of our discussion of fermions in this chapter

is valid in general, for the sake of concreteness we will specifically consider the dilaton

profile used during our analysis of gauge, scalar, and graviton flucutations in Chapter

3:

Φ(z) = (µz)2, (4.1.3)

where the soft-wall mass scale µ ∼ 1 TeV.

Consider 5D Dirac fermions, Ψi
L (Ψi

R) which transform as a doublet (singlet) under

SU(2)L. It is straightforward to embed our setup in a theory with a bulk custodial

SU(2)L × SU(2)R symmetry as in Section 3.4, but this will not be essential for our

discussion. In the absence of Yukawa interactions, the fermion action is given by:

S = −
∫
d5x
√
−g e−Φ

[
1

2

(
Ψ̄ai
L e

M
A γ

ADMΨai
L −DM Ψ̄ai

L e
M
A γ

AΨai
L

)
+M ij

L Ψ̄ai
LΨaj

L

+
1

2

(
Ψ̄i
Re

M
A γ

ADMΨi
R −DM Ψ̄i

Re
M
A γ

AΨi
R

)
+M ij

R Ψ̄i
RΨj

R

]
, (4.1.4)

where eMA = eAδMA is the vielbein and DM = ∂M + ωM is the covariant derivative with

spin connection ωM . The index a is an SU(2) label, while i, j are 5D flavor indices.

The projections of the Dirac spinors are given by Ψai
L± = ±γ5Ψai

L± and similarly for

Ψi
R. Dirichlet conditions are imposed on the fields Ψia

L− and Ψi
R+ at the UV boundary:

Ψai
L−(x, z)

∣∣∣∣
z0

= 0,

Ψi
R+(x, z)

∣∣∣∣
z0

= 0. (4.1.5)

This choice of boundary conditions is familiar from our discussion of hard-wall models

in Chapter 2, as it gives rise to massless chiral fermions from the 4D point of view.

As we saw in Chapter 3, for a soft-wall model we instead get a continuum of modes in

the AdS background. Introducing a Yukawa coupling to a bulk Higgs, whose vacuum
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expectation value (VEV) is z-dependent, will result in a discrete spectrum and raise the

would-be zero-mode. The Yukawa interaction contribution to the action is:

SY ukawa = −
∫
d5x
√
−ge−Φ

[ λij5√
k

Ψ̄ai
L (x, z)Ha(x, z)Ψj

R(x, z) + h.c.
]
,

≡ −
∫
d5x
√
−ge−Φ

[
mij(z) Ψ̄i

L(x, z)Ψj
R(x, z) + h.c.

]
, (4.1.6)

where we have substituted the background value for the Higgs field:

H(x, z)→ H(z) =
h(z)√

2

(
0

1

)
, (4.1.7)

and dropped the SU(2) labels ΨL ≡ Ψ2
L. Note that we have dropped the SU(2)L ×

SU(2)R custodial symmetry requirement here, as it is not relevant to our discussion.

The effective z-dependent bulk mass term arising from the Yukawa interaction is simply:

mij(z) ≡ λij5√
2 k

h(z). (4.1.8)

To ensure a discrete spectrum of fermion masses, the Higgs VEV must grow faster than

the metric factor, eA(z) = 1/(kz), decays. Namely,1

lim
z→∞

h(z)

z
→∞. (4.1.9)

Varying the action with respect to Ψ̄L,R, we find the equations of motion:

γµ∂µψ
i
L± ∓ ∂5ψ

i
L∓ + e−AM ij

L ψ
j
L∓ + e−AmijψjR∓ = 0, (4.1.10)

γµ∂µψ
i
R± ∓ ∂5ψ

i
R∓ + e−AM ij

Rψ
j
R∓ + e−Am†ijψjL∓ = 0, (4.1.11)

where we have defined Ψ = e2A+Φ/2ψ. This transformation shows that the fermion mass

spectra do not depend on the presence of the dilaton. Rather, it is the Higgs VEV that

sets the fermion spacing, in contrast to the case of bosonic fields.

We seek solutions to these equations of motion that satisfy separation of variables.

The KK expansion for the fields ψL,R± is assumed to be:

ψiL±(x, z) =
∑
n,α

f̃
iα(n)
L± (z)ψ

α(n)
± (x), (4.1.12)

ψiR±(x, z) =
∑
n,α

f̃
iα(n)
R± (z)ψ

α(n)
± (x), (4.1.13)

1 Other possiblities may also be considered. For example, if lim
z→∞

h(z)/z → µ > 0, there can exist

discrete low-lying modes with a continuous spectrum above a “mass gap,” as in Refs. [65, 96].
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where γµ∂µψ
α(n)
± = −mα

nψ
α(n)
∓ (no sum over α). Similar to the conventions of Ref. [116]

we have introduced separate Latin and Greek indices labelling the 5D and 4D flavor,

respectively. In this way, n is analagous to a principal quantum number while α runs

over states with degenerate principal quantum numbers and split energy levels. Note

that this KK-expansion is designed to diagonalize the 4D mass matrix. Defining the

vectors:

f̃
iα(n)
± =

(
f̃
iα(n)
L±

f̃
iα(n)
R±

)
, (4.1.14)

allows the equations of motion for the 5D fields to be written in the form:[
±∂5δ

ij +Mij
]
f̃
jα(n)
± (z) = mα

nf̃
iα(n)
∓ , (4.1.15)

where the mixing matrix is defined as

M = e−A

(
M ij
L mij(z)

m†ij(z) M ij
R

)
. (4.1.16)

Note that α, i, j run from 1, . . . NF , where NF is the number of fermion generations.

Thus Mij is a 2NF × 2NF matrix, and equation (4.1.15) represents a coupled system

of 4NF differential equations for each α. The 4D fermion fields ψ
α(n)
± (x) are canonically

normalized by requiring that:∫ ∞
z0

dz
(

(f
iα(n)
L± )†f

iβ(m)
L± + (f

iα(n)
R± )†f

iβ(m)
R±

)
= δnmδαβ. (4.1.17)

Note that the index i is to be summed over in this expression.

Before ending our general discussion of the fermion setup, let us count and discuss

the parameters involved in the problem. There are 4NF integration constants to be

fixed. Of these, 2NF are fixed explicitly by the boundary conditions (4.1.5). The

remaining 2NF constants are fixed by the normalization condition (4.1.17). One of

these constants corresponds to an overall scale, while the other 2NF − 1 constants may

be recast as the ratios of the various non-vanishing field components at the boundary.

A consistent solution can only exist for certain values of the mα
n. In general, however, it

is not possible to determine the masses or normalization constants independently. This

is the source of difficulty in solving the problem.
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4.2 Fermion Spectrum

The coupled equations (4.1.15) cannot be solved analytically except for a few special

single-generation cases, depending upon the particular form of the Higgs VEV and

the relative bulk masses for the fermions. We first review the single generation case in

detail. We begin very generally, emphasizing that these methods apply to a wide variety

of soft-wall models in AdS. We then specialize to a quadratic VEV and find the explicit

solutions to the equations of motion for the special cases. The analytic solutions allow

us to verify the results of the numerical routine we present in Section 4.3 (as well as the

numerical treatment of Ref. [64] in which the Yukawas are treated perturbatively).

4.2A Single Generation

For a single generation of fermions, equation (4.1.15) becomes:

[±∂z +M] f̃
(n)
± (z) = mnf̃

(n)
∓ (z), (4.2.1)

where M is a 2× 2 mixing matrix:

M = e−A

(
ML m(z)

m(z) MR

)
. (4.2.2)

The equations for f̃
(n)
+ and f̃

(n)
− can be decoupled by deriving a second-order equation

from (4.2.1). The fields f̃
(n)
± obey a Schrödinger-like equation:(
−∂2

z + V±
)
f̃

(n)
± = m2

nf̃
(n)
± , (4.2.3)

where the “potentials” are given by:

V±(z) =M2 ∓M′. (4.2.4)

This is of the same apparent form as the superpotentials we introduced previously, only

now the potential is a matrix. The difficulty in solving (4.2.3) is due to the fact that the

mixing matrix generally cannot be diagonalized through global transformations of the

functions, f̃L±,R±. However, there are special cases for which the second-order equations

can be decoupled further. They occur whenever:

ML = MR, “degenerate”

ML +MR ± ∂zeA(z) = 0. “split” (4.2.5)
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The “degenerate” case is separable in any background. The “split” cases are separable

regardless of the Higgs VEV in AdS, where the split-case condition simply becomes

ML +MR ± k = 0.

For generic forms of the Higgs VEV, it is most useful to work with transformed

fields,

g
(n)
± =

(
g

(n)
L±

g
(n)
R±

)
= Uf

(n)
± =

1√
2

(
1 1

1 −1

)(
f̃

(n)
L±

f̃
(n)
R±

)
. (4.2.6)

In this basis the equations of motion are given by,[
±∂z + M̂

]
g

(n)
± (z) = mng

(n)
∓ (z), (4.2.7)

where

M̂ = U †MU =
e−A

2

(
2m(z) +ML +MR ML −MR

ML −MR −2m(z) +ML +MR

)
, (4.2.8)

while the boundary conditions (4.1.5) become:

g
(n)
L±

∣∣∣∣
z0

= ±g(n)
R±

∣∣∣∣
z0

. (4.2.9)

We may also define transformed potentials, V̂±, in direct analogy with (4.2.4). For the

degenerate case, both of the potentials V̂+ and V̂− are simultaneously diagonal in this

basis. In the split cases, only one of the potentials V̂± will be diagonal. After solving

the corresponding pair of decoupled second-order equations, the first-order equations

(4.2.7) can be used to generate the remaining solutions.

Below, we consider the degenerate case and one of the two split cases, ML+MR+k =

0, assuming the following form for the Higgs VEV:

h(z) = ηk3/2µ2z2, (4.2.10)

giving m(z) = bk(µz)2 where b = λ5η/
√

2, as in [63]. We also parameterize the bulk

masses in units of the AdS curvature, ML,R = cL,Rk, where cL,R are dimensionless

coefficients.
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Degenerate Bulk Masses

The solution to the degenerate bulk mass case cL = cR = c was first presented in detail

in [63]. It is fairly straightforward to solve. The Schrödinger potentials are given by

V̂± =

(
c(c±1)
z2 + (2c∓ 1)bµ2 + b2µ4z2 0

0 c(c±1)
z2 − (2c∓ 1)bµ2 + b2µ4z2

)
, (4.2.11)

and admit the following solutions in terms of confluent hypergeometric functions:2

g
(n)
L+(z) = Nn

L+ e
− b µ2 z2/2z−c U

(
− m2

n

4bµ2
,

1

2
− c , b µ2z2

)
, (4.2.12)

g
(n)
L−(z) = Nn

L− e
− b µ2 z2/2z1−c U

(
− m2

n

4bµ2
+ 1 ,

3

2
− c , b µ2z2

)
, (4.2.13)

g
(n)
R+(z) = Nn

R+ e
− b µ2 z2/2z1+c U

(
− m2

n

4bµ2
+ 1 ,

3

2
+ c , b µ2z2

)
, (4.2.14)

g
(n)
R−(z) = Nn

R− e
− b µ2 z2/2zc U

(
− m2

n

4bµ2
,

1

2
+ c , b µ2z2

)
. (4.2.15)

The fermion mass spectrum is obtained by applying the boundary conditions (4.2.9)

and demanding consistency of the first order equations (4.2.7). These requirements can

be shown to result in a single equation describing the spectrum:

1

4
m2
nz

2
0 U

(
− m2

n

4bµ2
+ 1 ,

3

2
− c , b µ2z2

0

)
U

(
− m2

n

4bµ2
+ 1 ,

3

2
+ c , b µ2z2

0

)
−U

(
− m2

n

4bµ2
,

1

2
− c , b µ2z2

0

)
U

(
− m2

n

4bµ2
,

1

2
+ c , b µ2z2

0

)
= 0. (4.2.16)

The first massive mode is to be identified with the SM fermion, so it is of interest

to determine its mass. In the limit µz0 � 1, and assuming the first mode is light

m2
0/(4bµ

2)� 1, an expansion of Eq. (4.2.16) reveals a very light mode for |c| > 1/2:

m2
0 '

2bµ2

Γ(−1/2 + |c|)
(bµ2z2

0)−1/2+|c|. (4.2.17)

In the regime −1/2 < c < 1/2, we find instead that the fermion mass is of order bµ2:

m2
0 '

4bµ2

π sec cπ − ψ(1/2− c)− ψ(1/2 + c)
, (4.2.18)

2 These Schrödinger potentials are easily related to the radial equation for a two-dimensional har-
monic oscillator. See the discussion in Section 3.2C or [60].
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where ψ is the digamma function. Thus we see that it is possible to generate a small

fermion mass (e.g. electron) or a large mass (e.g. top quark) by choosing different values

of the bulk mass parameter c, at least in this simple case of one generation.

Split Localizations

Next we consider one of the “split” cases, cL+cR+1 = 0. The other case, cL+cR−1 = 0,

is very similar. With this choice, the transformation (4.2.6) will diagonalize the potential

Ṽ+ for any Higgs VEV in AdS. However, for our choice, h(z) ∼ z2, the untransformed

potential V− happens to be diagonal,

V− =

(
c(c−1)
z2 + b2µ4z2 0

0 (c+1)(c+2)
z2 + b2µ4z2

)
, (4.2.19)

so we will work in this basis.

A consistent solution requires that either f̃
(n)
L− = 0 or f̃

(n)
R− = 0. This is a peculiarity

of the particular choice of the Higgs VEV and will not be true for other forms. The

result is that the full tower of orthogonal solutions is most easily described in terms of

two “distinct” KK towers of solutions. The first solution is:

f̃
(n)
L−(z) = N

(n)
L−e

−bµ2z2/2zc U

(
1

4
+
c

2
− m2

n

4bµ2
,
1

2
+ c, bµ2z2

)
, (4.2.20)

f̃
(n)
R+(z) =

bµ2z

mn
f

(n)
L− , (4.2.21)

f̃
(n)
L+(z) =

1

mn

( c
z
f

(n)
L− − f

(n)′

L−

)
, (4.2.22)

f̃
(n)
R−(z) = 0, (4.2.23)

where N
(n)
L− is a normalization constant. For this tower, the boundary conditions

f̃
(n)
R+

∣∣
z0

= 0 and f̃
(n)
L−
∣∣
z0

= 0 are equivalent. The orthonormality condition for all fields

may be written compactly as, ∫ ∞
z0

dz f̃
(n)
L− f̃

(m)
L− = δnm, (4.2.24)

as this in fact implies the correct orthonormality condition for the remaining fields,∫ ∞
z0

dz
[
f̃

(n)
L+ f̃

(m)
L+ + f̃

(n)
R+f̃

(m)
R+

]
= δnm. (4.2.25)
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The other KK tower is given by:

f̃
(n)
R−(z) = N

(n)
R−e

−bµ2z2/2z2+c U

(
5

4
+
c

2
− m2

n

4bµ2
,
5

2
+ c, bµ2z2

)
, (4.2.26)

f̃
(n)
L+(z) =

bµ2z

mn
f

(n)
R−, (4.2.27)

f̃
(n)
R+(z) = − 1

mn

(
1 + c

z
f

(n)
R− + f

(n)′

R−

)
, (4.2.28)

f̃
(n)
L−(z) = 0, (4.2.29)

where N
(n)
R− is a normalization constant. The spectrum for this tower is found by im-

posing the boundary condition f̃
(n)
R+

∣∣
z0

= 0, while the normalization condition is,∫ ∞
z0

dz f̃
(n)
R−f̃

(m)
R− = δnm. (4.2.30)

The second tower in fact admits a very light ground state, however approximating the

mass requires some care. Note that it was possible to derive the approximation (4.2.17)

for the degenerate case because the first argument of the hypergeometric functions in

(4.2.12) – (4.2.15) was small. We do not have such luxury in this case.

Instead, for m2
0 � bµ2 we can expand the functions using techniques of so-called

boundary perturbation theory of quantum mechanics [119, 120]. We start by considering

the Schrödinger-like equation for f̃
(n)
R−,

− ∂2
z f̃

(n)
R− +

[
(c+ 1)(c+ 2)

z2
+ b2µ4z2

]
f̃

(n)
R− = m2

nf̃
(n)
R−. (4.2.31)

As we are seeking solutions with small m2
0, we begin by writing f̃

(0)
R− as a product of the

zero-mode solution and a correction:

f̃
(0)
R− = ζ(z)F (z), (4.2.32)

where ζ(z) is chosen so as to satisfy the zero-mode equation

− ∂2
zζ +

[
(c+ 1)(c+ 2)

z2
+ b2µ4z2

]
ζ = 0. (4.2.33)

The solution to this equation may be written as,

ζ(z) = N
(0)
R−z

1/2Kν(bµ2z2/2),
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where N
(0)
R− is a constant, Kν is the modified Bessel function and ν = 3/4 + c/2. The

function F (z) obeys the second-order equation,[
ζ−2∂z(ζ

2∂z) +m2
0

]
F (z) = 0

and may be expanded in powers of m2
0. The resulting expansion for f̃

(0)
R− is,

f̃
(0)
R− ' ζ(z)

[
1 +m2

0

∫ z

z0

dz′ζ−2

∫ ∞
z′

dz′′ζ2 +O(m4
0)

]
. (4.2.34)

Such an expansion has also been used in Ref. [61] to approximate wavefunctions in

soft-wall models. In contrast, here we are using it to solve the boundary value problem

itself. The UV boundary condition,

f̃
(0)
R+

∣∣∣
z0

=

(
f̃

(0)′

R− +
1 + c

z
f̃

(0)
R−

) ∣∣∣
z0

= 0, (4.2.35)

can now be applied to the expansion (4.2.34). Notice that at the boundary z = z0, the

O(m2
0) correction vanishes while its derivative is given by a single integral over Bessel

functions. Using well-known known rules for differentiation and integration of Bessel

functions (c.f. [121]), we can thus derive the following approximate expression for m2
0:

m2
0 '

K1−ν(bµ2z2
0/2)

Kν(bµ2z2
0/2)I(z0)

z0, (4.2.36)

where

I(z) ≡
∫ ∞
z

dz′ ζ2(z′). (4.2.37)

The expression (4.2.36) can now be expanded for small z0. For c > −1/2 we find,

m2
0 '

2(c/2 + 3/4)

Γ (c/2 + 3/4)

(
b2µ4z2

0

4

)[(
bµ2z2

0

4

)c−1/2

Γ (−c/2 + 1/4) + Γ (c/2− 1/4)

]
.

(4.2.38)

In the limit c� 1/2, this expression simplifies further to

m2
0 '

(
1 +

1

c− 1/2

)
b2µ4z2

0 . (4.2.39)

This expression reveals a lower bound on the fermion mass in this region of the bulk

mass parameter space,

mmin = (µz0)bµ. (4.2.40)
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Figure 4.1: The first several masses in the split case plotted as a function of cL. The
spectrum is composed of two “separate” towers (dashed and solid lines), which coincide
for large negative and positive values of cL. Here, m̃2

n = m2
n/bµ

2 and µz0 � 1.

For c � −1/2, the above expansions are poor approximations because the mass

becomes O(bµ). To deal with this regime, we can apply mathematical techniques from

“supersymmetric quantum mechanics” to determine the mass [67]. As we have observed

frequently in previous chapters, quantum mechanical system for which the Hamiltonian

may be factorized as,

[−∂z +W (z)] [∂z +W (z)]ψ = m2
nψ. (4.2.41)

admit zero-mode solutions ψ ∼ e−
∫
W satisfying boundary conditions that are trivially

consistent with the equations of motion,

[∂z +W (z)]ψ
∣∣
B = 0. (4.2.42)

Thus we consider the particular “superpotential,”

W (z) =
1 + c

z
+ bµ2z, (4.2.43)

which gives rise to the “ordinary” potential:

V (z) = W 2 −W ′ = (c+ 1)(c+ 2)

z2
+ b2µ4z2 + (2c+ 1)bµ2. (4.2.44)
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which is equivalent to the potential in (4.2.31) up to a constant shift of the reference

potential. Next, we note that the boundary conditions in (4.2.35) are equivalent to

[∂z + W (z)]f̃
(0)
R−|z0 = 0 in the limit µz0 → 0. We can conclude then that the solution

ψ ∼ e−
∫
W is in fact a good approximation for f̃

(0)
R− provided the mass eigenvalue is

given by

m2
0 ' (−1− 2c)bµ2. (4.2.45)

This is clearly only valid when c < −1/2. We have checked that the expressions (4.2.39)

and (4.2.45) match the exact results well in the appropriate regions. The full spectrum

is plotted in Fig. 4.1. The distinctive KK tower structure of the split case suggests

the possibility of novel KK physics unlike that found in hard-wall models and may be

interesting to study in other soft-wall bulk Higgs models as well.

4.2B Comparison with Perturbative Expansions

The possibility of modeling fermions by introducing non-constant bulk Dirac mass terms

has been considered in Ref. [64]. For a single generation setup with quadratic bulk

mass terms, the equations of motion are the same as (4.2.1), but now the mixing matrix

(4.1.16) can be written effectively as,

M = e−A

(
c0
Lk + c1

Lkµ
2z2 bkµ2z2

bkµ2z2 c0
Rk + c1

Rkµ
2z2

)
, (4.2.46)

where c0
L,R, c

1
L,R are constant coefficients. The effect of this non-constant bulk mass is

that normalizable zero-modes persist (depending on the choice of the signs of c1
L,R) even

in the limit b → 0. For small values of b, the spectrum may be found by treating the

bulk Yukawa interaction as a perturbation on the b = 0 solutions.

Such an approach can be related to ours in some cases. For example, in the case

of degenerate constant mass pieces, c0
L = c0

R, global unitary transformations may still

be used to diagonalize the mass matrix when the bulk masses have the same functional

form as the Higgs VEV. Thus, the introduction of non-constant bulk masses can be

viewed as effectively changing the boundary conditions on the fields in such cases.

It is interesting to note that the case considered in [64] is similar to our “split” case.

In particular, they examine c1
L = −c1

R and c0
L = −c0

R in detail. In the slightly different

split configuration for the constant pieces of the bulk mass, c0
L = ±1 − c0

R, analytical
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solutions can be obtained in a similar fashion to our earlier analysis. For c0
L = −1− c0

R,

we find the lowest lying KK tower to be:

f
(n)
R−(z) = N

(n)
R−e

−b̃µ2z2/2z2+c0L U

(
5

4
+
c0
L

2
− m̃2

n

4b̃µ2
,
5

2
+ c0

L, b̃µ
2z2

)
, (4.2.47)

f
(n)
L+(z) =

bµ2z

mn
f

(n)
R−, (4.2.48)

f
(n)
R+(z) = − 1

mn

(
f

(n)′

R− +
1 + c0

L

z
f

(n)
R− + c1

Lµ
2zf

(n)
R−

)
, (4.2.49)

f
(n)
L−(z) = 0, (4.2.50)

where we have defined effective parameters, b̃2 =
(
c1
L

)2
+b2, and m̃2

n = m2
n−c1

L

(
2c0
L + 1

)
to make the comparison with (4.2.26)–(4.2.29) clear. Note that there remains a lower

bound on the mass for c0
L � 1/2. We have checked that this solution describes the

large c0
L behavior for the case considered in Ref. [64], c0

L = −c0
R. We expect that all of

the basic features of the non-constant bulk mass model should be contained within our

exact solutions.

Generically the split and degenerate cases allow one to find the spectrum exactly

by solving a set of decoupled second-order equations. Even when the equations cannot

be solved exactly, approximate methods such as those we have described above may

be employed. Additionally, as our numerical results will verify, one can expect the

behavior in these special cases to provide a complete qualitative picture of the full

parameter space dependence.

4.2C Couplings to Gauge Bosons

Of significant interest in models involving extra dimensions is the coupling of fermions to

the KK gauge bosons. When the fermions are localized at different points along the extra

dimension, they can obtain non-universal couplings to the excited gauge bosons. Such

non-universality will generically lead to large contributions to flavor physics observables,

providing very stringent lower bounds on the allowed KK scale [122].

In hard-wall models, the couplings can become universal for certain regions of the

parameter space, resulting in a GIM-like suppression of FCNCs [78] and greatly lowering

the bound on the allowed KK scale. We therefore would like to see if a similar effect is



71

present in the soft-wall case. Moreover, we would like to develop our formalism in such

a way that multiple fermion generations can be incorporated.

In analogy with the discussion of Section 2.4B, the couplings of the zero mode

fermions to the KK gauge bosons are found to be:

g
αβ(n)
± = g5

∫ ∞
z0

dzf
(n)
A

(
(f
iα(0)
L± )†f

iβ(0)
L± + (f

iα(0)
R± )†f

iβ(0)
R±

)
, (4.2.51)

where f
(n)
A is the gauge boson profile along the extra dimension. The gauge boson

profiles arising from a quadratic dilaton (4.1.3) were derived in Section 3.3A. The zero-

mode couplings g
αβ(0)
± ≡ gδαβ remain universal due to the orthonormality condition

(4.1.17) and the flat zero mode gauge boson profile. This is because the dilaton factor

explicitly cancels and plays no role.

The degenerate single-generation case was considered in [63], where it was found

that only one of the couplings, g+ or g−, can become universal due to the opposite

localizations of the fermion modes. In Ref [64], it was seen that opposite constant and

non-constant bulk masses led to universal couplings for both g+ and g−. This happens

as well for the split case solutions. We have plotted the couplings for this case in Figs.

4.2 and 4.3. We find that the couplings g+ and g− become universal simultaneously

whenever c� 1/2.

Note that the bounds from flavor physics are generically expected to be more strin-

gent in soft-wall models than in models with a hard wall. This follows from the generi-

cally closer spacing of the KK modes in soft-wall models as compared to hard-wall mod-

els. For example, we can consider the contribution to ∆mK arising from non-universal

couplings. The effective 4D Lagrangian contains operators that are suppressed by the

squared masses of the KK gauge bosons mediating the strangeness-changing transitions

(∆S = 2):

L∆S=2 ⊇
∞∑
n=1

1

M2
n

[
d̄αLg̃

αβ(n)
+ γµdβL + d̄αRg̃

αβ(n)
− γµdβR + h.c.

]2
, (4.2.52)

where the sum is over the gauge boson KK modes with KK masses Mn, and g̃
αβ(n)
± =

V d
L,R g

αβ(n)
± V d†

L,R with V d
L,R generic unitary matrices [122]. Thus, in the presence of non-

degenerate couplings to the bulk KK gauge bosons, bounds from flavor experiments

may be interpreted as a lower bound on the KK scale.
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Figure 4.2: The ratio g
(n)
+ /g for n = 1 (solid), n = 2 (dashed), and n = 3 (dotted) KK

gauge modes coupled to the zero-mode fermion in the split case, as calculated using
(4.2.51).

The key point is that the total amount of suppression in (4.2.52) depends upon the

spacing of the KK tower. In a hard-wall model, for example, M2
n ∼ n2M2

KK , where

MKK is the KK mass scale. This compares to the soft-wall scenario where it would

seem to imply a problem, because the squared mass trajectories grow generically as

m2
n ∼ nM2

KK . (Indeed, this spacing was the original motivation for studying the soft-

wall [60]). While the sum of 1/n diverges as n → ∞, we should of course truncate

the sum at some high energy cutoff. Nevertheless, the naive implication is that the

constraints on soft-wall models should be considerably tighter.

However, this argument ignores the fact that the gauge bosons become increasingly

IR localized with increasing mode number n. Thus, any off-diagonal terms in the gauge

coupling matrices are further suppressed for large n. By performing a numerical fit

using the first several dozen gauge boson modes and our split case solutions, we find

that the couplings fall off as n−0.4 to a very good approximation in the region where

the couplings are independent of localization. This implies that the terms in the sum

(4.2.52) grow as n−1.4. All other things being equal, this implies that the constraints

from flavor physics are roughly a factor of two more stringent in this model than in

hard-wall models.
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Figure 4.3: The ratio g
(n)
− /g for n = 1 (solid), n = 2 (dashed), and n = 3 (dotted) KK

gauge modes coupled to the zero-mode fermion in the split case, as calculated using
(4.2.51).

While this presents no great problem for the model with a quadratic dilaton, for

a generic power law behavior in the dilaton, Φ ∼ zα, the spectrum of gauge bosons

grows as m2
n ∼ n2−2/αM2

KK [63]. This means that for less steep potentials, even tiny

amounts of non-degeneracy among the bulk couplings has potentially severe implications

for flavor physics.

4.3 Numerical Solution

4.3A Routine

The analytical solutions that we have presented, though useful, do not solve the full

fermion mass problem including flavor. Our goal is to solve the eigenvalue problem

(4.1.15) with mixed boundary conditions. The “initial conditions” (4.1.5) specify half

of the boundary values at the UV brane or, equivalently, half of the integration constants

for the system. The remaining constants of integration are fixed by the normalization

conditions (4.1.17), which can only be satisfied if the eigenvalue, mα
n, has been chosen

correctly. Thus, following our discussion at the end of Section 4.1, it would seem that we
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must find the particular coordinates in a 2NF -dimensional parameter space that result

in a normalizable solution.

In fact, the problem is made considerably simpler by exploiting the linearity of the

system. To this end, we first convert the problem to an initial value one by extending

and modifying the shooting method [123] to linear boundary value problems of arbitrary

order. In this way, the orthonormality requirement (4.1.17) can be viewed as fixing

the 2NF − 1 ratios of the functions at the boundary at z = z0, plus one irrelevant

scale parameter. The remaining degree of freedom corresponds to mα
n and is fixed by

demanding finiteness of the solution in the IR.

Since (4.1.15) is linear, its solutions may be written as:

f iα(n)(z) = U(mα
n; z, z0)ijf jα(n)(z0), (4.3.1)

where the propagator U(mα
n; z, z0) is a linear operator and the f iα(n)(z) are 4NF ×4NF

matrix-valued functions for NF fermion generations.

Our approach is to solve for the matrix elements of U by integrating an arbitrary

set of 4NF linearly independent basis vectors that span the space of initial values,

f iα(n)(z0), and inverting (4.3.1). Having reconstructed the matrix U , it is straightfor-

ward to find the initial value vectors that lead to normalizable solutions by considering

the behavior of U acting on such a vector: it transports it to the zero-vector. Therefore,

the initial conditions leading to normalizable solutions correspond to eigenvectors of

U(mα
n; z, z0) with vanishing eigenvalues in the limit z → ∞. There are generally 2NF

such eigenvectors. The actual solution will be formed from a sum over these vectors,

f
iα(n)
j (z) =

2NF∑
i=1

aiF
iα(n)
j (z), (4.3.2)

where the ai are constants and the capitalized F iα(n)(z) are 4NF -component vector-

valued functions (j = 1, 2, . . . , 4NF ) satisfying3

lim
z1→∞

U(mα
n; z1, z)

ijF jα(n)(z) = 0. (4.3.3)

Numerically, we can estimate the values of these vectors by considering the eigen-

vectors of U(mα
n; z1, z0), where our cutoff satisfies z1 � µ−1. In practice, results are

3 Technically, given the orthonormality condition, we should consider the limit of |UF |2, but the
distinction is inconsequential.
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much more reliable if one starts the forward integration from some intermediate range

z∗ ∼ µ−1 and then integrates the normalizable modes back to z0. Variations on this

theme can be explored, and one of the attractive features of the method is that it does

not depend on a particular numerical integration technique.

We scan over mα
n, at each point integrating the system from an arbitrary set of

initial values so as to reconstruct the normalizable solutions. If there exists a linear

combination of the solutions that matches the boundary conditions (4.1.5), then mα
n is

a solution to the system. To determine when this occurs, we define a merit function in

the following way. Let us arrange the functions f iα(n) such that the functions satisfy

Dirichlet conditions for i = 1, 2, . . . , 2NF . Then from (4.3.2) we have:

2NF∑
i=1

aiF
iα(n)
j (z0) = 0, for j = 1, 2, . . . 2NF , (4.3.4)

which can only be satisfied if they are linearly independent. Thus,

det


F

1α(n)
1 (z0) F

2α(n)
1 (z0) · · · F

2NFα(n)
1 (z0)

F
1α(n)
2 (z0) F

2α(n)
2 (z0) · · · F

2NFα(n)
2 (z0)

...
...

. . .
...

F
1α(n)
2NF

(z0) F
2α(n)
2NF

(z0) · · · F
2NFα(n)
2NF

(z0)

 = 0. (4.3.5)

Our merit function is simply the absolute value of this determinant, and we search for

a minimum.

When the hierarchy between µ and z−1
0 is very large, increasingly high precision

is necessary to achieve reliable results. Iterative methods may be better suited to the

problem in such cases. Our primary goal is to highlight the differences between fermions

in soft-wall and hard-wall scenarios, and the speed and simplicity of this technique are

its chief advantages. For this reason, we have limited our attention to a modest hierarchy

below.

4.3B Results

Single Generation

We first present results for a single generation of fermions, as this case illustrates the

essential features of the fermion mass behavior in the soft-wall, and allows us to compare
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Figure 4.4: Lowest lying masses for the “degenerate” (c = cL = cR) and “split” (c =
cL = −1−cR) cases. The solid lines are determined using the exact results from Section
4.2, while the dots represent values obtained using the numerical method of Section
4.3A.

our numerical results with the analytical cases in the appropriate limits as well as to a

typical hard-wall setup. We assume the following values of the parameters:

µ = 1 TeV; µz0 = 10−3; b = 1. (4.3.6)

In Figure 4.4, we compare the numerical results to the analytical results from Section

4.2 where it can be seen that the two methods agree very well. In Figure 4.5, we plot the

fermion mass contours to show the full dependence on the parameters cL and cR. The

shape of the plot is easily understood from the analytical results. The numerical solution

smoothly interpolates between the solutions along the lines cL = cR and cL = ±1− cR.

Because a similar analysis can be repeated for other Higgs VEVs, this provides a natural

way to begin studying the qualitative aspects of other models in AdS as well.

We can compare the soft-wall behavior with a typical hard-wall setup. In Figure

4.6 we provide the corresponding contour plot for a hard-wall model in which the SM

fermion masses are simply proportional to the values of the wavefunctions at z = 1/µ.

The most striking difference between the plots occurs in the lower right-hand corner.

This is the region where cL > 1/2 and cR < −1/2.
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Figure 4.5: Contours of log10(m0/
√
bµ) for the lowest lying masses in our soft-wall setup

with
√
bµz0 = 10−3.

The hard-wall case is characterized by a steep dependence on the bulk mass in this

region, where the wavefunctions are proportional to f
(0)
L+ ∼ z−cL and f

(0)
R− ∼ zcR . For

z0 � µ−1, the normalization constants become vanishingly small:

N
(0)
L,R ∼ z

−1/2±cL,R
0 . (4.3.7)

Thus, the values of the functions in the IR at z = µ−1 are additionally suppressed. This

is the well-known mechanism for generating SM mass hierarchies in Randall-Sundrum

scenarios with bulk fields [79, 78]. For the soft-wall case, however, we can see the lower

bound on the mass in this region,

m0 ∼ (µz0)µ, (4.3.8)

as indicated by the approximate expression (4.2.39). This can be understood by noting

that the normalization (4.1.17) involves the sum of two types of fermion contributions,

which are generically not simultaneously suppressed.
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Figure 4.6: Contours of log10(m0/
√
bµ) for the lowest lying masses in a typical hard-wall

setup with
√
bµz0 = 10−3.

Three-Generations

In this section we aim to provide concrete numerical examples involving three gener-

ations of fermions that fully take into account the 5D flavor mixing to show that the

attractive features of the soft-wall are maintained.

For multiple generations, there are three matrices that parameterize the fermions:

two bulk mass matrices ML and MR, and the bulk Yukawa matrix, λ5. We take the

action (4.1.4) to be written in an arbitrary basis, for example, the CKM basis. Absent

some symmetry, there is no reason to expect any structure relating the entries of the

various bulk parameter matrices. We generically expect that the entries of each matrix

are all of order unity (in units of the AdS curvature scale, k), and that the various

matrices are misaligned. There is of course some basis in which both ML and MR are

diagonal. Thus, by “misaligned,” we mean that this basis is distinct from the one in

which the Yukawa matrix is diagonal. Indeed, the typical approach is to work in this

basis, treating the Yukawa interactions as perturbations. Such an approach has been

used in both hard-wall [79, 78, 116, 80, 93] and even in modified soft-wall setups [64].
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In Ref. [64], it was found that one needed to include the first several KK modes in

order to achieve reliable results in such a perturbative expansion when including only

a single generation. At such a point, the analysis is essentially a numerical exercise. In

our view, it is advantageous to include the entire KK tower in the numerical formulation

wherever possible. That is to say that it may make the most sense to simply solve the

equations of motion (4.1.15), which guarantee the orthogonality of the eigenfunctions

due to the Hermiticity of the mixing matrix.

We expect that all other interactions may be treated reliably as perturbations. This

is because the Higgs grows unbounded in the IR where it is the dominant contribution

to the fermion equations of motion. Other observables may thus be calculated using

the usual wavefunction overlap approximation. As an application, we will calculate the

couplings to excited gauge bosons for examples involving three generations.

We do not attempt to set precise bounds on soft-wall models here, as doing so goes

significantly beyond the scope of this work. Electroweak and flavor constraints have

been discussed in the context of soft-wall models in Refs. [63, 64]. Detailed analyses

in various hard-wall scenarios can be found in [79, 78, 80, 122, 112, 93] and references

therein.

However, we will require that the eigenvalues of the bulk mass matrices satisfy

mi
L & k/2 and mi

R . −mi
L in order to get nearly degenerate gauge couplings. Because

of the lower bound on the fermion masses at m0 ∼ (µz0)µ in this region, it is clear

that the hierarchy considered above, µz0 = 10−3 will be inadequate for generating MeV

scale masses when µ = 1 TeV, and will only be possible for µz0 . 10−6. Thus we

again assume a quadratic Higgs VEV, h(z) = ηk3/2µ2z2, and the following for our input

parameters:

µ = 1 TeV; µz0 = 10−6. (4.3.9)

Dealing with much larger hierarchies presents significant numerical challenges. However,

the qualitative results of such an analysis should not be substantially different from the

results presented here.

First, we present an example resembling down-type quarks (or charged leptons). For

simplicity, we take the entries of ML to be nearly degenerate, but we allow for large

non-degeneracy in the matrix MR as well as in the Yukawa matrix. Specifically, we
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consider,

ML

k
=


0.784 −0.020 0.023

−0.020 0.808816 0.0094

0.024 0.0094 0.780

 ,
MR

k
=


−2.179 −0.459 −0.774

−0.459 −1.073 −0.354

−0.774 −0.354 0.1218

 ,

η√
2
λ5 =


0.422 0.175 −0.678

−0.007 0.928 0.348

0.295 −0.327 0.637

 . (4.3.10)

We find a spectrum of masses resembling the down-type quarks (or charged leptons):

mα
0 = 0.57 MeV, 96.08 MeV, 1.310 GeV. (4.3.11)

The fermion mass hierarchy is clearly obtained, but due to the complexity of the nu-

merical procedure we do not match the SM masses exactly. The fermion bulk profiles,

Fα−(z) =

√
(f
iα(0)
L− )†f

iα(0)
L− + (f

iα(0)
R− )†f

iα(0)
R− , (4.3.12)

are plotted in Figure 4.7. The fermion profile overlap with the Higgs VEV, h(z) leads

to the fermion mass hierarchy. The corresponding bulk profiles, Fα+(z) are not plotted

because the profile differences between the flavors are not as pronounced. This is due

to our choice of UV boundary conditions and bulk masses (4.3.10).

From expression (4.2.51), we can calculate the coupling of the zero mode fermions

to the KK gauge bosons (i.e. gluons). The result is a matrix whose off-diagonal entries

contribute to flavor violation. We obtain the following results for the first two KK gauge
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Figure 4.7: The down-type fermion bulk profiles Fα−(z) for the first generation (solid),
second generation (dashed) and third generation (dotted) showing the overlap with the
Higgs VEV h(z). Note that h(z) has been rescaled for presentation.

coupling matrices, normalized to the coupling to the massless gauge boson:

g
(1)
+

g
=


0.186 10−4 10−4

10−4 0.187 2× 10−4

10−4 2× 10−4 0.185

 ,

g
(2)
+

g
=


0.140 10−4 10−4

10−4 0.138 10−4

10−4 10−4 0.137

 ;

g
(1)
−
g

=


0.188 ≈ 0 ≈ 0

≈ 0 0.188 10−4

≈ 0 10−4 0.184

 ,

g
(2)
−
g

=


0.139 ≈ 0 ≈ 0

≈ 0 0.139 10−4

≈ 0 10−4 0.137

 . (4.3.13)

This behavior is maintained for higher modes as well. For this choice of parameters,

the very nearly degenerate couplings imply that µ of order a few TeV will be consistent

with flavor constraints [65, 93, 112]. Note that we have assumed no contributions to
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Figure 4.8: The up-type fermion bulk profiles Fα−(z) for the first generation (solid),
second generation (dashed) and third generation (dotted) showing the overlap with the
Higgs VEV h(z). Note that h(z) has been rescaled for presentation.

CP violation. Thus the soft-wall model can accommodate the fermion mass hierarchy

with large bulk mixing and small flavor violation.

The up-type quarks are only moderately more sensitive to the presence of the top

when large bulk mixing is allowed. For the choices, µ = 1 TeV and µz0 = 10−6 we

obtain

ML

k
=


0.749 −0.005 0.017

−0.005 0.785 0.066

0.017 0.066 0.516

 ,
MR

k
=


−0.940 −0.285 −0.200

−0.285 −1.103 −0.338

−0.200 −0.338 −0.657

 ,

η√
2
λ5 =


0.700 −0.352 −0.193

−0.079 0.826 −0.065

−0.098 −0.321 1.430

 , (4.3.14)

which gives rise to the following mass spectrum:

mα
0 = 2.10 MeV, 129.1 MeV, 151.5 GeV. (4.3.15)

Again we see that the correct fermion mass hierarchy can be obtained. The fermion

bulk profiles, Fα−(z) =
√

(f
(0)
L−(z))2 + (f

(0)
R−(z))2 are plotted in Figure 4.8. The fermion
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profile overlap with the Higgs VEV, h(z) leads to the fermion mass hierarchy. Similarly

to the down-type fermions, the corresponding up-type bulk profiles Fα+(z) are not plotted

because the profile differences are negligible due to the choice of UV boundary conditions

and bulk masses (4.3.14). The gauge couplings are nearly universal among the first two

generations:

g
(1)
+

g
=


0.186 2× 10−3 2× 10−3

2× 10−3 0.185 10−6

2× 10−3 10−6 −0.05

 ,

g
(2)
+

g
=


0.140 10−3 10−3

10−3 0.139 10−3

10−3 10−3 −0.05

 ;

g
(1)
−
g

=


0.188 2× 10−6 4× 10−4

4× 10−4 0.183 10−3

2× 10−3 10−3 −0.17

 ,

g
(2)
−
g

=


0.140 10−6 3× 10−4

10−6 0.137 2× 10−3

3× 10−4 2× 10−3 −0.140

 . (4.3.16)

Constraints from top quark physics are significantly weaker, so this is not expected to

affect the bound on µ.



Chapter 5

Lepton Flavor Violation with

Heavy Sleptons and Dirac

Gauginos

5.1 Introduction

Extensive effort has been devoted toward solving the supersymmetric flavor conundrum.

Supersymmetry provides an elegant and natural solution to the hierarchy problem, but

consistency with flavor physics measurements requires that the off-diagonal elements of

the squark and slepton mass matrices be unnaturally small. This has led many physicists

to favor flavor-blind features as an essential ingredient in models of supersymmetry

breaking. Gauge mediation has become immensely popular in no small part due to its

prediction of flavor universal sfermion masses.

However, there are additional possibilities that do not require universal soft masses

for the suppression of flavor violation, and it is interesting to consider these possibilities.

Three particular mechanisms that have been previously proposed are:

1. Alignment: the fermion and sfermion mass matrices are aligned in some basis, so

that the rotations to the gauge eigenstates cancel [124, 125],

2. Hierarchy: the first two generations are heavy while the third (most notably the

stop) is light [28], and

84
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3. Extended R-Symmetry: the absence of certain MSSM diagrams (such as those

involving Majorana gauginos) results in a much reduced flavor violation effect

[30].

In this chapter, we consider lepton flavor violation under these scenarios, focusing

on models with both sfermion mass hierarchy and an extended R-symmetry. As we

will describe, this can arise naturally in phenomenological models of supersymmetry

breaking from a warped background. In contrast to the original proposal of Randall

and Sundrum [36], which solved the hierarchy problem by positing that the Higgs was

localized on the infrared brane, we consider an elementary Higgs sector protected by

supersymmetry. In this case, the Higgs is peaked in the UV while the warped geometry

is used to explain the scale of SUSY breaking.

The generic low energy theory we consider features first-two generation sfermions of

order 5 TeV, third generation sfermions of order 500 GeV and Dirac gauginos. While the

existence of heavy sparticles is seemingly at odds with one of the primary motivations

of supersymmetry—namely, naturalness in the Higgs sector—non-universality actually

allows for large first and second generation scalar masses without destabilizing the Higgs

due to small Yukawa couplings [29]. This combination prevents excessive rates for flavor

violating processes, even when one considers large mixing among the sfermions. In

particular, we consider the process µ→ eγ, which provides the most stringent constraint

on the lepton sector of these models.1 The light third generation requires the inclusion

of second-order mass insertion effects.

After a short review of supersymmetry in AdS in Section 5.2, we describe how super-

symmetry breaking from extra dimensions can yield the general low-energy theory we

have described in Section 5.3. In Section 5.4, we examine the existing flavor constraints

on these models in terms of mass-insertion parameters. We find that LFV constraints

can be accommodated for arbitrarily large mixing and gaugino masses no larger than

1.5 TeV. In Section 5.5, we discuss the implications of lepton-slepton alignment, which

results in all flavor violation being mediated only by charginos. Finally, in Section 5.6

we compare these results with generic models with off-diagonal slepton mass terms and

1 Ref. [126] considered µ→ e conversion in nuclei and found that this process provided the strongest
constraints for relatively light sleptons and squarks. With larger sfermion masses, these processes are
subdominant.
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discuss the implications for the squark sector.

5.2 Supersymmetry in a Slice of AdS

Warped Background

The setup we have in mind is a supersymmetric Randall-Sundrum [36] background.

Numerous top-down studies of this scenario have been undertaken [127, 128, 129, 130,

21]. Here we are interested in aspects of flavor in a phenomenological, bottom-up

approach. As we are only interested in constraining low energy observables, we will not

construct an explicit model, but rather outline the important features and behaviors.

However, we will provide some explicit examples from the literature to illustrate our

points.

We will be following many of the conventions of Section 2.1A. In particular, our

spacetime is described by the conformal metric,

ds2 = gMNdx
MdxN = e−2Ã(z)ηMNdx

MdxN , (5.2.1)

and is cut off by two three-branes at z = z0 = 1/k and z = z1 = eπkR/k

The standard model fermions, gauge bosons, and their superpartners are assumed

to live in the bulk. We will therefore review how supersymmetry can be realized in a

slice of AdS, following the work of Refs. [78, 131, 132, 133]. We will limit our attention

to the vector supermultiplet and hypermultiplets.

Supersymmetric Bulk Field Content

Since the simplest spinor representation in five dimensions is the four-component Dirac

spinor, the minimum number of supercharges is 8. This corresponds to N = 2 SUSY

from the 4D point of view. We will focus on the U(1) vector supermultiplet and hyper-

multiplet representations. The supermultiplet field content is given by:

V = (VM , λ
i,Σ) (5.2.2)
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where VM is the gauge field, Σ is a real scalar in the adjoint representation, and λi for

i = 1, 2 is a symplectic-Majorana spinor:

λi =

(
λiL

εijλ∗Lj

)
, (5.2.3)

obeying λi = C(λi)T where C is the charge conjugation matrix.

The action is due to the gauge (2.3.19), fermion (2.3.32), and scalar contributions

(2.3.1), with modifications to account for a symplectic Majorana spinor and real scalar:

S = −
∫
d5x
√
−g
[

1

4g2
5

F 2
MN + (DMΣ)2 +

1

2
m2

ΣΣ2 +
i

2
λ
i
ΓMDMλ

i +
imλ

2
λ
i
(σ3)ij λj

]
,

(5.2.4)

The supersymmetry transformations for each field may be found in Refs. [131, 78]. The

gauge supermultiplet Lagrangian will be invariant under these transformations only

when the fermion and scalar 5D masses take on particular values. This is in contrast

to flat space, in which all particles in the multiplet must have identical masses. The

masses compatible with supersymmetry are

m2
Σ =

(
(αΣ +

1

2
)(αΣ −

1

2
)− 15

4

)
k2 = −4k2, (5.2.5)

mλ = cλk Sgn(z − z0) =
k

2
Sgn(z − z0) (5.2.6)

Importantly, the tuning relation (2.3.16) between the scalar bulk and boundary masses

is also required for the theory to be supersymmetric.

Given our discussion in Section 2.3D, we can see how supersymmetry is realized.

With cλ = 1/2 and λ1 even (corresponding to Ψ+), the λ1 profiles will match that of

the gauge field (αA = 1). Then λ2 must be odd and αλ2 = 0. It will not have a zero-

mode, but at the massive level it will couple to λ1 to form a tower of Dirac KK-states.

Similarly, the scalar field will have αΣ = 0 and odd boundary conditions lead to the

same spectrum as the other fields, but the massless mode is projected out. Note that

even though the values of α are different, the KK towers are identical. This is due to the

relation (2.3.18), which relates the KK-spectra of fields differing in α by 1. Thus, from

the 4D point of view, the orbifold boundary conditions have reproduced the massless

vector multiplet of N = 1 supersymmetry. At the massive level, there is a KK-tower of
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N = 2 supermultiplets. with identical masses and couplings. In summary, we have:

α =

1, for even fields VM, λ
1 ⇒ N = 1 multiplet at massless level;

0, for odd fields Σ, λ2 ⇒ no massless modes.
(5.2.7)

The story is very similar for the hypermultiplet,

Φ = (H i,Ψ). (5.2.8)

where H i for i = 1, 2 are complex scalars and Ψ is a Dirac fermion. The action is

obtained in a straightforward way from (2.3.32) and (2.3.1), and the relevant super-

symmetry transformations are again found in Refs. [131, 78]. The required relationship

between the scalar masses and the fermion bulk mass is:

mΨ = ck Sgn(z − z0) (5.2.9)

m1,2
H =

(
c2 ± c− 15/4

)
k2 + (3∓ 2c) keA(z) [δ(z − z0)− δ(z − z1)] (5.2.10)

Again, the relation is easily understood by the results of Section 2.3D and (2.3.18), as

we can identify α = |c+ 1/2| for H1 and α = |c− 1/2| for H2. With Ψ+ and H1 even,

they will have zero-modes. Then Ψ− and H2 must be odd and their massless modes are

projected out. The result is that we regain the N = 1 chiral multiplet at the massless

level.

We have seen that at the massless level, boundary conditions break the amount of

supersymmetry in the low-energy theory down to N = 1. The remaining N = 1 SUSY

is assumed to remain unbroken on the UV brane and softly broken in the IR. By the

AdS/CFT correspondence [38, 39, 40, 41, 42, 43], this setup has a dual interpretation

in terms of a purely four-dimensional strongly coupled conformal field theory (CFT). In

particular, fields that are UV-localized are dual to elementary states of the CFT, while

those that are IR localized correspond to composite states.

5.3 Supersymmetry Breaking

At this point, it is natural to ask what we have gained beyond redundancy by consider-

ing supersymmetry–a solution to the hierarchy problem–in the context of the Randall-

Sundrum solution to the hierarchy problem. The answer lies in the fact that in order for
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supersymmetry to be realized, a new hierarchy must be introduced to explain the low

scale of supersymmetry breaking. The non-supersymmetric Randall-Sundrum solution

to the hierarchy problem requires the Higgs to live on the TeV brane, where the effec-

tive cutoff for corrections to the Higgs mass-squared is of order the TeV scale. With

a bulk supersymmetry, there is no need to confine the Higgs to the IR, and instead

it may live, for example, near the UV brane. Then supersymmetry may provide the

solution to the hierarchy puzzle, while the warped model can provide a dual description

of low-energy supersymmetry breaking by strong dynamics. Thus, we will consider the

up- and down-type Higgs bosons to be UV-localized fields.

5.3A Elementary Higgses and (S)Fermion Mass

Our main interest in the Higgs sector is how it relates to the pattern of sfermion masses.

For our purposes, then, we can assume the Higgs sector is completely confined to the

UV brane. The reason for this is as follows. As described in Section 2.4A, the standard

model fermions arise from the marriage of the massless modes of two bulk fields, Ψ
(0)i
L

and Ψ
(0)i
R , where ΨL (ΨR) is a doublet (singlet) under SU(2)L and i is a generation

index. The boundary conditions are chosen such that Ψ
(0)i
L is left-handed while Ψ

(0)i
R is

right-handed from the 4D point of view. The joining occurs through Yukawa couplings

with the Higgs, forming light Dirac fermions in the 4D theory. These couplings are only

allowed on either boundary due to the bulk N = 2 SUSY. Assuming no large hierarchies

in fundamental Yukawas, we can then relate fermion masses to their couplings at the

boundary where the appropriate Higgs is localized. Thus, it is only the boundary value

of the appropriate Higgs field that is important in determining any fermion’s (and thus

sfermion’s) localization.

To make the discussion concrete, each member of a 5D SU(2)L doublet field shares

a common localization parameter, ciL. For ciL > 1/2 (ciL < 1/2), the doublet is UV (IR)

localized. Similarly, each right-handed SU(2)L singlet has localization parameter ciR.

These fields are UV (IR) localized for ciR < −1/2 (ciR > −1/2).

The zero modes obtain masses through wavefunction overlap with the UV local-

ized Higgs fields, with effective 4D Yukawa couplings, YΨ, related to 5D bulk Yukawa
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couplings, Y 5D
Ψ , by [22]:

YΨ = Y 5D
Ψ k

√
1/2− cL

(kz1)1−2cL − 1

√
1/2 + cR

(kz1)1+2cR − 1
. (5.3.1)

A large range of 4D Yukawa couplings is obtained by varying the parameters cL

and cR of each field over a range of O(1). To see this, consider cL = −cR = c. Since

kz1 � 1, it is clear from (5.3.1) that UV localized fields (c > 1/2) obtain order 1 4D

Yukawa couplings while IR localized fields (c < 1/2) obtain exponentially tiny couplings.

As a result, the fermion localizations are expected to follow a distinctive pattern. In

particular, the relatively light first-two generations should be somewhat IR localized,

while the heavy third-generation fermions should be UV localized.

This is important for the following reason: if supersymmetry is broken at low energy,

its effects should be felt predominantly by IR localized fields. Thus, the soft sfermion

masses are expected to follow a roughly inverse pattern: the first two generation scalars

are heavy while the third is light. To see this explicitly, let us consider two explicit

mechanisms that have been proposed in the literature: supersymmetry breaking due

to orbifold boundary conditions, and supersymmetry breaking due to a deformed AdS

background.

5.3B Supersymmetry Breaking by Orbifold Boundary Conditions

We first consider an analog of the flat-space Scherk-Schwarz mechanism [18, 19] in

which “twisted” orbifold boundary conditions are used to break supersymmetry, as

in Refs. [78, 134]. The flat-space analog has been considered in numerous studies (see

[135, 136, 137, 138, 139] and references therein). Recall from Chapter 2, that the orbifold

symmetry can be interpreted as symmetry under two independent transformations, a

Z2 about y = 0 and a Z′2 about y = πR. Fields that are even under both the Z2 and Z′2
(satisfying Neumann boundary conditions at both the UV and IR boundaries) admit

massless modes, while fields obeying Dirichlet conditions do not.

To model supersymmetry breaking at the TeV scale, we can impose different bound-

ary conditions on fields within the same multiplet. For example, consider a multiplet

for which one field obeys even boundary conditions and therefore has a massless mode,

while its superpartner is even under Z2 but odd under Z′2 (and thus satisfies a Neumann
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condition at the UV boundary but a Dirichlet condition at the IR brane). Then it is

not difficult to show that the mass spectrum is found by solving [78]:

Jα−1(mnk )

Yα−1(mnk )
=
Jα(eπkRmnk )

Yα(eπkRmnk )
. (5.3.2)

For α /∈ Z, the Neumann functions satisfy:

Yα(x) =
1

sin(απ)
[cos(απ)Jα(x)− J−α(x)] . (5.3.3)

The connection to Yα for α ∈ Z involves a non-trivial limit, but we will be able to

recover the α = 1 case in the end. Inserting (5.3.3) into (5.3.2) allows us to eliminate

the Neumann functions:

J−α(wx)Jα−1(x) + Jα(wx)J1−α(x) = 0. (5.3.4)

where x = mn/k and w = eπkR. To find the lowest lying mode, we assume m0/k � 1

and substitute the standard expansion for the Bessel function,

Jα(x) =
(x

2

)α ∞∑
k=0

(−1)k

k!Γ (α+ k + 1)

(x
2

)2k
. (5.3.5)

Expanding to 2nd order in x and solving gives:

m0

k
=

2
√
α2 − α√

e2απkR − e2kRπα+ α− 1
(5.3.6)

The limit α→ 1 reproduces the result for gauginos found in [78]. The general behavior

is as expected from geographical arguments. As α > 1 (α < 1) corresponds to a UV

(IR) localized field, we expect the twisted boundary condition to have a larger effect

for small α, because IR-localized fields will be most affected by the different boundary

conditions on the IR brane. This is indeed the case, as can be seen in Figure 5.1. Since

the light fermions are IR localized when the Higgs lives on the UV brane, their scalar

superpartners are heavy, and vice versa.

5.3C Supersymmetry Breaking by Deformed AdS

Another possibilty is that supersymmetry is broken due to the spacetime departing

from pure AdS in the IR region. This is similar to the soft-wall setups we discussed
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Figure 5.1: Tree level SUSY-breaking mass masses vs. α for kR = 10 when SUSY is
broken by orbifold boundary conditions.

in Chapter 3. As we saw, the treatment of fermions was particularly involved when

the IR brane is removed completely. Therefore, we will consider the concrete model of

Ref. [22], which constructed a gravity dual to single-sector SUSY breaking [140] in five

dimensions. The background is given by the metric:

e−2Ã(z) =
1

(kz)2

[
1− ε

(
z

z1

)4
]
. (5.3.7)

The small parameter ε = 0.05 arises from an underlying 10D supergravity solution and

characterizes the size of the AdS deformation in the IR. For our purposes, its value is

taken to be freely chosen (but see Appendix D of [22]). Note that this background can

also be modeled using the dynamical setup of Chapter 3, with a perturbed metric given

by

Ã = log kz +
ε

2

(
z

z1

)4

, (5.3.8)

as the two backgrounds are equivalent to first-order in the small parameter ε. The

primary difference between this model and the soft-wall models is that there remains

an IR brane located at z = z1, so that in essence conformal symmetry breaking in the
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IR is due to a hybrid mechanism. With the hard IR brane in place, fermions present

no added difficulty. Their massless modes are protected by chiral symmetry while the

deformation endows the scalar zero modes with masses.

The model parameters are chosen such that the curvature scale k ∼ M/10, where

M is the five-dimensional Planck scale, implying k ' 10−3/2MP = 7.7 × 1016 GeV.

Additionally,

πkR = 28.42, z1 = (ke−πkR)−1 = (35 TeV)−1.

The ratio of the Higgs VEVs is taken to be tanβ = 10.

Scalar Superpartners & Soft Masses

As we saw in Section 5.2, the localization parameter, cL/R, of each fermion is related to

that of the scalar partner, αL/R, by supersymmetry as:

αL/R = |cL/R ± 1/2|.

The localization parameter determines the soft mass of the scalar. In the small ε limit

[22],

m̃2 = ε
(α− 1)(12− α)

(kz1)4

(kz1)3−α − (kz1)α−1

(kz1)α−1 − (kz1)1−αk
2 +O(ε2). (5.3.9)

For the choices of the parameters (5.3.9), scalar masses can be vanishingly small

for α � 1 or O(z−1
1 = 35 TeV) for α > 1. The size of soft masses is thus tied to the

localization of the superfield. Because the Higgs is located on the UV brane, the light

fermion superpartners will be IR localized and receive large SUSY-breaking masses.

5.3D Generic Spectrum and Features of the Low-Energy Theory

The above examples demonstrate that the basic setup we outlined generically generates

a spectrum with heavy, composite first-two generation scalars and light, elementary

third generation scalars. Thus, these models are generically dual to single-sector models

[140, 141]. The pattern of soft masses has nothing to do with the particular mechanism

of supersymmetry breaking (i.e. boundary conditions vs. the deformation of AdS), and

only with whether the Higgs is elementary or composite.
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Assuming the Kaluza-Klein (KK) scale is high enough that we can neglect effects

from KK-mediated processes,2 we can focus on a low-energy theory with supersym-

metric field content and hierarchical sfermion soft masses. However, it is not necessarily

the MSSM field content. The reason is that the bulk theory has a continuous U(1)

R-symmetry. Assuming this symmetry remains unbroken or approximately unbroken

below the IR scale, it will be protected from a number of deleterious effects [30]. For

example, Majorana gaugino masses are forbidden, which eliminates many diagrams that

give large contributions to flavor violation. In a warped framework, Dirac masses are

readily generated by pairing up the massless modes with KK-modes, as occurs for ex-

ample when SUSY is broken by boundary conditions.3 These can be heavy or light

depending on the nature and scale of the SUSY breaking.

There are a few additional considerations that we incorporate as constraints from

the start. Naturalness demands that the scalars should should not be too heavy to

avoid unnatural EWSB. This primarily constrains the scale of the stop due to the larger

Yukawa couplings, but also implies the other scalars should not be too heavy [29].

Additionally, we assume left-right degeneracy among the first-two generations to avoid

large hypercharge Fayet-Iliopoulos (FI) terms [28]. Finally, any explicit model must be

checked to ensure that the stop square-mass is not driven negative [142, 143]. We will

limit our attention to tanβ not too large, in which case we need not worry about the

influence of an extended Higgs sector.

In summary, we have a supersymmetric Randall-Sundrum setup with an elementary

Higgs sector and bulk gauge and matter supermultiplets. The scale of soft-susy masses

is assumed to be consistent with natural EWSB. The important modifications to the

MSSM are:

1. heavy first two-generation scalars of up to 5 TeV (we neglect their mass difference),

2. light third generation scalars of under 1 TeV,

3. Dirac gauginos with masses of order 1 TeV.

2 In Ref. [22], the scale was taken to be of order 100 TeV.
3 This description might invite objection on the grounds that towers with different boundary con-

ditions are not in the same Hilbert space. Nevertheless, we have Dirac gauginos.
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Figure 5.2: Generic Feynman graph leading to lepton decay. With Dirac gauginos,
the chirality flip (indicated by arrow direction) can take place on external lines or at
the lepton-slepton-higgsino vertex. There are also loops involving sneutrino-chargino
exchange (c.f. [145]).

We will also assume tanβ & 1 but not too large to avoid large additional flavor violation

[144].

5.4 Lepton Flavor Violation

With Dirac gauginos and light sleptons, flavor constraints are weakened considerably.

The gauginos may naturally be significantly heavier than the scalars and dangerous

dimension five operators are forbidden. In particular, relatively large mixing in the

slepton matrices may be allowed for gaugino masses of order a few TeV with relatively

light sleptons [30], however there are important constraints from µ → e conversion

processes that can dominate when the sfermions are light [126]. In models with heavy

first-two generations and an extended R-symmetry, the bounds on single insertions are

suppressed by the heavy slepton masses. However, the suppression is not as large as

one might naively expect unless the gauginos are also made very heavy because the loop

functions depend on the ratio of gaugino to slepton masses. Additionally, significant

contributions can remain due to second order mixing involving the light third generation

sleptons.

With heavy first-two generation sleptons, the most important constraint comes from
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the rare decay µ→ eγ. The Feynman graphs contributing to µ→ eγ are like those de-

picted in Fig. 5.2. The loops can involve chargino and sneutrino exchange or neutralino

and charged slepton exchange. The branching ratio for the process is given by:

Γ (µ→ eγ)

Γ (µ→ eν̄eνµ)
=

48απ3

G2
F

(
|A(n1)

L +A
(n2)
L +A

(c1)
L +A

(c2)
L |

2 + |A(n1)
R +A

(n2)
R |2

)
(5.4.1)

The notation is chosen to match that of Refs. [145, 30]. The superscripts c (n) indicate

chargino (neutralino) exchange. The numbers 1 and 2 indicate the chirality flip occurs on

the external and internal lines, respectively. Finally, the L and R indicate whether the

insertion of the left- or right-handed type. The internal chirality flip arises only due to

Higgsino-gaugino mixing, as we have assumed no left-right mixing terms are generated.

Additionally, terms smaller by a factor of the ratio me/mµ have been dropped.

Following Ref. [145], we assume the first-two generation heavy sleptons have approx-

imately degenerate physical masses. Notational clutter is greatly simplified by noting

that in the setup we have described, left-handed charged sleptons and sneutrinos should

have roughly equal physical masses, although the structure of their mass squared matri-

ces is not necessarily the same. Additionally, for the first two generations, this will also

give approximately the physical mass for the right-handed charged slepton due to our

assumption of left-right degeneracy for the heavy scalars. We denote this single heavy

scale m̃L. The mass of the left-handed (right-handed) third generation scalars are m̃τL

(m̃τR). The entries of the soft mass-squared matrices in the basis of gauge interactions

are labelled by capital letters: (M̃2
L)ij and (M̃2

E)ij .

We also define the differences ∆m̃2
L = m̃2

L − m̃2
τL

and ∆m̃2
R = m̃2

L − m̃2
τR

. Finally,

the insertion parameters that enter the amplitude expressions we write as:

(δL/R)12 =
(M̃2

L/E)12

m̃2
L

, (δL/R)i3 =
(M̃2

L/E)i3

∆m̃2
L/R

(5.4.2)

for i = 1, 2 in the second expression. Note that these expressions differ somewhat from

common definitions in terms of “average slepton mass.” Our definitions are related

to the terms that directly enter the amplitudes4 as calculated using the “multi-mass

insertion” technique [145], which is easily related to an expansion of loop integrals over

rotated mass matrices (as in Ref. [146]). Also, since the 3 × 3 squark mass-squared

4 We have approximated (∆m̃2
L)2 ' ∆m̃2

Lm̃
2
L and similary for (∆m̃2

R)2.
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matrices can each be diagonalized by unitary transformations, these expressions satisfy

δij ≤ 1/2 when two of the squarks are degenerate.

To first order in the ratios MW /MB̃
and MW /MW̃

that determine the neutralino

and chargino mixing, the amplitudes are given by5

A
(c1)
L =

α2

24π

{
(δL)12 + (δL)13(δL)23

m̃2
L

g(c1) (xcL)

−(δL)13(δL)23

m̃2
τL

f (c1) (xcτL)

}
, (5.4.3)

A
(c2)
L = −α2

4π

{
(δL)12 + (δL)13(δL)23

m̃2
L

g(c2) (xcL)

−(δL)13(δL)23

m̃2
τL

f (c2) (xcτL)

}
, (5.4.4)

A
(n1)
L = − α2

48π

(
1 + t2W

){(δL)12 + (δL)13(δL)23

m̃2
L

g(n1) (xnL)

−(δL)13(δL)23

m̃2
τL

f (c1) (xnτL)

}
,

(5.4.5)

A
(n2)
L =

α2

16π

(
1− t2W

){(δL)12 + (δL)13(δL)23

m̃2
L

g(n2) (xnL)

−(δL)13(δL)23

m̃2
τL

f (c2) (xnτL)

}
,

(5.4.6)

A
(n1)
R = − α1

12π

{
(δR)12 + (δR)13(δR)23

m̃2
L

g(n1) (xnL)

−(δR)13(δR)23

m̃2
τR

f (n1) (xnτR)

}
, (5.4.7)

A
(n2)
R =

α1

8π

{
(δR)12 + (δR)13(δR)23

m̃2
L

g(n2) (xnL)

−(δR)13(δR)23

m̃2
τR

f (n2) (xnτR)

}
, (5.4.8)

5 As all relevant diagrams are proportional to mµ, the factors appearing in Ref. [145] have been
absorbed into the decay rate.
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where tW = tan(θW ) and xab = m̃2
a/m̃

2
b with m̃c and m̃n the mass of the appropriate

chargino or neutralino, respectively. The loop functions are given by

fc1(x) =
1

2(1− x)4

(
2 + 3x− 6x2 + x3 + 6x log x

)
, (5.4.9)

fc2(x) = − 1

2(1− x)3

(
3− 4x+ x2 + 2 log x

)
, (5.4.10)

fn1(x) =
1

2(1− x)4

(
1− 6x+ 3x2 + 2x3 − 6x2 log x

)
, (5.4.11)

fc1(x) =
1

(1− x)3

(
1− x2 + 2x log x

)
, (5.4.12)

gai(x) = fai(x) + xf ′ai(x). (5.4.13)

We have provided contour plots satisfying the present bound BR(µ → eγ) = 1.2×
10−11 [147] in Figures 5.3 and 5.4. In Figure 5.3, we have assumed all δij entries are of

the same size, while in Figure 5.4, we have only included the δ12 contribution. There is

an apparent large cancellation over much of the parameter space due to a competition

between various loop contributions to the amplitudes. In any case, large flavor violating

δij entries are allowed for gaugino masses in the 1-2 TeV range, and order 0.1-0.2 for

the 0.5-1 TeV range.

5.5 Alignment Scenario

Next we consider the alignment scenario discussed in Ref. [124], in which the charged

slepton mass eigenstates are aligned with the charged lepton mass eigenstates, and sim-

ilarly for the sneutrinos and neutrinos. This scenario greatly alleviates neutral current

contributions to flavor violation in both the lepton [124] and quark [125] sectors. Note

that our assumption is different from a trivial alignment scenario where the sneutrinos,

charged sleptons and leptons are all aligned simultaneously.

In this case, all neutralino-mediated contributions to flavor violation vanish. The

reason is that the effective mixing matrix for the neutralino couplings is:

K̃eM ẽM = U †eM ŨeM , (5.5.1)

where M = L,R (again, we are neglecting left-right slepton mixing). Since the leptons

and charged sleptons are aligned, UeM = ŨeM and the product is just the unit matrix.
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Figure 5.3: Contours for M
B̃

satisfying BR(µ → eγ) = 1.2 × 10−11 assuming δ12 =
δ13 = δ23 = 0.1 (solid), 0.25 (dashed), and 0.5 (dot-dashed), m̃τL = m̃τR = 500 GeV,
and M

W̃
= 2M

B̃
. The area below each curve indicates the excluded region.

In contrast, the chargino mixing matrix is given by:

K̃eLν̃L = U †eLŨνL = UPMNS (5.5.2)

where the last equality follows from our assumption of neutrino and sneutrino alignment

and the measurements of neutrino mixing angles in the Pontecorvo-Maki-Nakagawa-

Sakata matrix UPMNS . We take the values for the mixing angles from Ref. [148] and

ignore any CP violating or Majorana phases for simplicity. We have listed the angles

in Table 5.1. Then the PMNS matrix is:

UPMNS =


0.822 0.564 0.084

−0.449 0.550 0.705

0.351 −0.617 0.705

 .

Working in a basis in which the lepton masses and chargino vertices are diagonal, the
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Figure 5.4: Contours for M
B̃

satisfying BR(µ→ eγ) = 1.2×10−11 assuming δ13 = δ23 =
0, δ12 = 0.1 (solid), 0.25 (dashed), and 0.5 (dot-dashed), m̃τL = m̃τR = 500 GeV, and
M
W̃

= 2M
B̃

. The area below each curve indicates the excluded region.

flavor violation is moved to the sneutrino mass matrices:(
M̃2
νL

)
ij

=
(
UM (d)2

νL
U †
)
ij
. (5.5.3)

where we have dropped the “PMNS” label from U . In the scenario we have outlined

with heavy first-two generation charged and neutral sleptons, the 23 mixing is nearly

maximal due to the fact that θ23 ' 45◦. For example, given a stau neutrino mass of

m̃ντ = 500 GeV and selectron and smuon masses of m̃ = 5 TeV, we find:

(
M̃2
νL

)
= m̃2


0.993 −0.058 −0.058

−0.058 0.508 0.492

−0.058 0.492 0.508

 .

The equality of the 13 and 12 entries is due to our assumption of degeneracy between

the first two generations. If exact degeneracy is maintained and the mixing angle θ13
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Parameter Best Fit

sin2θ12 0.32
sin2θ23 0.50
sin2θ13 0.007

∆m2
12 (10−5 eV2) 7.6

∆m2
23 (10−3 eV2) 2.4

Table 5.1: Best-fit values for the neutrino mixing angles as they appear in Ref. [148].

turns out to in fact vanish, then both the 12 and 13 entries would vanish. Then µ →
eγ vanishes and τ → µγ provides the most stringent constraints. In any other case,

however, the contributions of both δ12 and the product δ13δ23 can be important.

In Figure 5.5 are contour plots for the branching fraction over a range of heavy

sneutrino and gaugino masses when the third generation is 500 GeV. Remarkably the

contribution to µ → eγ is only sensitive to the relative splitting between the heavy

sneutrino masses and the chargino mass. Additionally, the rate is within the reach of a

experimental searches given reasonable slepton and gaugino masses.

5.6 Discussion

5.6A Comparison with MSSM-like models

We can readily compare these results with those of typical models. With slepton and

gaugino masses of order a few hundred GeV, Majorana gauginos, and explicit µ terms,

the constraints on LFV for a generic model are very stringent. We have listed the con-

straints as found in Ref. [33] in Table 5.2. Two of the RR entries lack solid constraints

due to cancellations that occur in various regions of the space of MSSM parameters. The

orders of magnitude for these bounds are generically expected to be of the same order

as the corresponding LL constraint. Furthermore, we are neglecting any LR mixing.

The improvement over such models is apparent. Taking into account only the in-

creased slepton masses (i.e., ignoring the monotonic increase in the loop functions with

decreasing m2
c̃/ñ/m̃

2
L), one can hope to relax the δ12 constraints by up to 2 orders of
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Figure 5.5: Contours satisfying BR(µ → eγ) = 1.2 × 10−11 assuming only chargino
contributions due to an alignment mechanism and neutrino-like mixing (see text) for
m̃ν2 = 0.9m̃ν1 (solid line), m̃ν2 = m̃ν1 (dashed), and m̃ν2 = 1.1m̃ν1 (dot-dashed). The
third generation sneutrino is assumed to be 500 GeV.

magnitude to 0.06.6 The product δ13δ23 obeys a similar bound. Moreover, the rate for

µ→ eγ can be very sensitive to tanβ when there are Majorana gauginos and explicit µ

terms.

In contrast, the scenario we considered allowed for significantly larger values for δ12

with or without large cancellations in the amplitudes. For example, in Figure 5.4 we

see that heavy sleptons and gauginos of about 500 GeV are consistent with current

measurements of µ → eγ when the δ12 entry is as big as 0.1. With gaugino masses of

order 1− 1.5 TeV, arbitrarily large δij entries are allowed.

6 The rates are proportional to δ2
12 and inversely proportional to the average slepton mass to the

fourth power.
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Table 5.2: Bounds on the (δAB)ij as they appear in Ref. [33].

ij LL RR

12 6× 10−4 0.09
13 0.15 ≈ 10−1

23 0.12 ≈ 10−1

5.6B The (s)quark sector

It would be interesting to complete a similar analysis of flavor violation in the quark

sector, namely of the rates for ∆F = 2 processes involving the kaon and D0 systems.

The analysis of Ref. [30] found that explaining the kaon mass difference required gluinos

of at least 5 TeV provided there is large mixing in both the left- and right-handed squark

mass-squared matrices. A complimentary analysis in the presence of hierarchical soft

terms could be completed in the spirt of Ref. [31].

For models with an alignment mechanism as discussed in Section 5.5 above, or at

least an approximate alignment mechanism, gluino-mediated flavor violation is signifi-

cantly suppressed [125], as there is only the much weaker coupling to the charginos, and

the quark mixing matrices are small. In such a case, the lepton sector is expected to

provide the most severe constraints. Therefore, it would be interesting to explore con-

crete models like those we have described that feature alignment mechanisms through,

e.g., horizontal symmetries.

5.6C Conclusions

We discussed lepton flavor violation in models with hierarchical soft terms and Dirac

gauginos. The rates for µ → eγ are within the bounds provided by experiment with

large off-diagonal entries in the slepton mass-squared matrices provided the gauginos

are sufficiently heavy (M
B̃

between 500− 1500 GeV).

We motivated this discussion by describing how this spectrum can arise in models of

SUSY breaking from a warped extra dimension with an elementary Higgs sector, similar

to the model of Ref. [22]. We argued that the geographical relation between fermion

masses and wavefunction localizations leads to an inverted hierarchy for the sfermion
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masses, with the first-two generations being generically heavy and the third generically

light, while the bulk R-symmetry indicates that the neutralinos should acquire Dirac

masses.

We also considered flavor violation mediated strictly by charginos, as occurs when

the slepton masses are aligned with the lepton superpartner masses. When the off-

diagonal elements are due to the large neutrino mixing angles, rates for µ → eγ may

remain within reach of future experiments.

In all the cases we considered, the rates for µ→ eγ are such that that they should be

detected in future experiments unless there are unnaturally small off-diagonal elements

in the slepton mass matrices or the gauginos are very heavy. Assuming neither is true,

an experimental signature of this sort of model would be the discovery of a light stau

and measurement of µ → eγ at a rate near the present bound, together of course with

sufficiently high lower limits on the masses of the first-two generation sleptons.
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