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Abstract

Extensions of the warped extra dimension framework originally proposed by Randall
and Sundrum are discussed, including soft-wall models and aspects of supersymmetry
breaking. In particular, the standard model in a soft-wall background is covered in de-
tail, including electroweak physics and an extensive treatment of fermions in arbitrary
warped backgrounds. Additionally, aspects of lepton flavor violation in models of su-
persymmetry breaking with hierarchical soft-terms and Dirac gauginos are discussed, as

these can occur naturally when supersymmetry is broken near the infrared boundary.
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Chapter 1

Introduction

1.1 The Hierarchy Problem

The standard model (SM) represents the pinnacle achievement of 20th century particle
physics. It accurately describes nearly all known particle data—not just that for which it
was designed, but also a long list of phenomena predicted as a direct consequence of its
minimal structure. Paradoxically, the same structure that has proven so unshakingly
successful also gives theorists strong reason to suspect that new physics is just around
the corner.

Unless as-yet-unobserved physics appears at the TeV scale, the internal consistency
of the standard model breaks down. In order for the chiral matter and heavy gauge
bosons to acquire mass while preserving unitarity, the SU(2) x U(1) gauge symmetry of
the standard model must be spontaneously broken at low energies. The actual method
nature has chosen to accomplish this symmetry breaking is not known, and this fact
provides the basis for a central question facing particle physicists today. In the stan-
dard model extroweak symmetry is broken via the Higgs mechanism. A scalar field
transforming as a doublet of SU(2) obtains a vacuum expectation value that shifts the
ground state of the theory away from its symmetric minimum. After expanding fluc-
tuations about the shifted minimum, one finds that this simple and elegant mechanism
not only endows the matter and gauge fields with mass, but also enforces a number

of non-trivial relationships between physical observables that have been experimentally



verified to a stunning degree of accuracyﬂ

However, the introduction of a fundamental scalar field introduces a new problem,
known as the hierarchy problem. For the W and Z bosons to have their observed
masses, the physical Higgs mass should be of comparable size—namely, of order 100 GeV.
However, unlike the fermions and gauge bosons, whose masses are protected by chiral
and gauge symmetries, there is no symmetry that protects the mass of a fundamental
scalar from receiving large quantum corrections. For example, the Yukawa coupling
between the Higgs and the top quark results in a one-loop radiative correction to the

Higgs mass-squared mﬁ phys = mi+6m% that is quadratically divergent at leading order,

392 m?
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where A is the momentum cutoff in the loop integral, corresponding to the scale at
which new physics enters. If we assume the standard model is valid up to energies where
quantum gravity becomes important, the cutoff A would correspond to the Planck scale
of order 10'® GeV. Then for the physical Higgs mass-squared to be of order 100 GeV,
there must be a dramatic cancellation between the “bare” mass m,% and the correction
5m,2L to within about 1 part in 103!

The “unnatural” amount of required fine-tuning in the standard model is the essence
of the hierarchy problem, and it has been a central focus of theorists in predicting the
shape of new physics. The reasoning behind this is the following: the problem with
equation arises only if one assumes the standard model is valid up to the highest
energies. Instead, the hierarchy problem might be a hint that the standard model is
merely an effective low-energy theory. New physics should appear at energies of order

a few TeV, cutting off the loop integral.

1.2 Supersymmetry

Supersymmetry (SUSY) is a widely favored candidate solution to the hierarchy problem.
In supersymmetric theories, a new symmetry relates fermions and bosons, so that every
fermion (boson) of the standard model has a bosonic (fermionic) superpartner with the

same mass and couplings. If the symmetry were unbroken, the quadratic divergences

! For a review, see Ref. [I].



3
from loops with respective superpartners would cancel exactly. However, this is clearly
not the case, or we would have long since discovered the superpartners. Instead, if
supersymmetry in fact provides the resolution to the hierarchy problem, it must be
“softly” broken (i.e. broken only by terms with positive mass dimension). Then the
quadratic divergences are instead proportional to the difference in superpartner square-
masses. This implies that the superpartners should not be too heavy, or else the fine-
tuning problem is reintroduced.

Explaining why the scale of SUSY breaking is so low has been a major focus of
supersymmetric model builders. A variety of options for breaking supersymmetry dy-
namically have been explored, with the most promising sharing a common feature of a
hidden sector—a collection of fields separate from the SM—in which SUSY is dynamically
brokenﬂ In gravity mediation [3, 4] 5l [6], supersymmetry breaking is communicated to
the visible sector through gravitional-strength interactions, while gauge mediated mod-
els [7,[8, 9, 10, 11, T2, T3] couple the hidden sector to the visible sector through ordinary
SM gauge interactions, so that the Planck-suppressed effects are relatively unimportant.
If SUSY is broken by dynamics in an extra dimension, a variety of mechanisms are avail-
able. For example, SUSY can be broken by boundary conditions in a compact space,
by the background geometry itself, or it can arise from Boltzmann-suppressed commu-
nication between visible and hidden worldsheets separated by some distance along the
extra space [14, [15, [16], 17, 18] 19| 20} 21}, 22].

A generic pattern of soft supersymmetry-breaking masses can lead to disastrously
large flavor violation [23] [24] 25| 26]. Experimental searches for evidence of supersym-
metry have included examinations of flavor-violating processes, for example K? — K°
mixing, b — sv and p — ey. The extremely low bounds on the rates of such processes
would seem to indicate that supersymmetry breaking must occur via a flavor-universal
mechanism (for example, gauge mediation [27]). However, there is another possibil-
ity that does not spoil naturalness: the first-two generations of superpartners may be
very heavy, while the third generation superpartners are light [28, 29]. Such a pat-
tern of sfermion masses can arise naturally when SUSY is broken from a warped extra
dimension (which we will discuss shortly). Moreover, such models exhibit a continu-

ous R-symmetry that provides an even stronger suppression of flavor violating effects,

2 See Ref. [7] for a review.
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primarily due to the fact that gaugino masses must be of the Dirac type [30]. The

implications of hierarchical soft supersymmetry-breaking masses have been studied in
the quark sector [31],[32], however relatively little has been done in regards to the lepton
sector despite the extreme sensitivity of planned future experimental searches [33]. Ref-

erence [34] examines supersymmetry breaking with heavy sleptons and Dirac gauginos.

1.3 Randall and Sundrum

There is another interpretation of , which again focuses on the assumption that
the Planck scale should be the cutoff of the standard model, but in a subtly different
way. The reason for choosing the Planck scale is that this is the scale at which quan-
tum gravity should become important—thus, we expect that a new theory must enter at
this energy scale, unifying the standard model and general relativity. This scale is mon-
strously large only because gravity is incredibly weak compared to the other three forces,
which are all significant at energies around a TeV. Therefore, an alternate approach is
to explain why gravity is so weak.

This interpretation led to the consideration of extra dimensions as a possible solution
of the hierarchy problem. The key idea is that standard model forces could be confined
to a four-dimensional world-sheet—known as a 3-brane—in a compact higher dimensional
space. In such a case, gravity necessarily would propagate throughout the bulk of
spacetime, as it is the “stuff” of spacetime itself. At distances much smaller than the
size of the extra dimension, one would expect to see deviations from Newton’s inverse-
square law for the force of gravity, as lines of gravitational flux would have more volume
to fill. This was the inspiration for proposing extra dimensions as a solution to the
hierarchy problem in the context of large, flat extra dimensions [35].

The Randall-Sundrum model (RS) [36], 37] modified this idea by proposing that 4D
distance scales change with location along the extra space due to a gravitational metric
that is non-factorizable. Randall and Sundrum were able to show that such a metric was
a solution to Einstein’s equations in 5D under certain assumptions. The solution they
discovered corresponded to a slice of anti-de Sitter (AdS) space between two branes,
denoted as the “ultraviolet” (UV) or “Planck” brane and the “infrared” (IR) or “TeV”

brane. In this picture, the hierarchy problem is solved because apparent energy scales
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are a function of position along the extra dimension. While the fundamental scale on
the UV brane is of order the Planck mass, the effective scale on the IR brane where the
standard model lives is exponentially smaller due to the “warp factor” of the metric.
Meanwhile, the weakness of gravity is easily interpreted in terms of quantum mechanical
language, because the massless graviton “wavefunction” has a profile that is peaked near
the UV brane away from the standard model fields. As a result, the standard model
coupling to gravity is exponentially suppressed.

A truly remarkable feature of RS is that it admits a wholly 4D description that
avoids any mention of the existence of a fifth dimension. This is due to the AdS/CFT
correspondence [38, 39, 40l 41}, 42| [43], which relates strongly coupled conformal field
theories in 4 dimensions to weakly coupled gravitational theories in AdSs. Strictly
speaking, the original AdS/CFT conjecture linked only type IIB string theory on AdS5 x
S5 with N' = 4 Super Yang-Mills theory in 4D. However, numerous extensions of the
original correspondence have passed many non-trivial tests. The AdS/CFT “dictionary”
[44] allows one to translate between fields living in the bulk of the AdS spacetime and
operators of the dual CFT in 4 dimensions. In particular, fields localized toward the
UV brane are interpreted as elementary states of the dual CFT, while those living near
the IR brane are interpreted as composite states. A critical point is that the relation
can only be trusted when the 5D gravitational theory is weakly coupled, which implies
strong 't Hooft coupling on the CFT side. As a result, theories based on RS offer a
potential window into the understanding of strong dynamics.

Indeed, the original Randall-Sundrum model has a dual interpretation of electroweak
symmetry breaking due to strong dynamics. In the Randall-Sundrum model, the pres-
ence of the IR brane corresponds to an abrupt breaking of conformal symmetry at low
energies. The Higgs—being localized on the IR brane—corresponds to a composite state
of the dual CFT, which is weakly coupled to gravity.

This description is reminiscent of technicolor models [45], 46, [47] where electroweak
symmetry is broken by a “techniquark” condensate, similar to the way chiral symmetry
is broken by the quark condensate in quantum chromodynamics (QCD). The standard
model is augmented with a new gauge group that is asymptotically free but confining at
the weak scale. The appearance of the techniquark condensate breaks the chiral sym-

metry of the massless quarks, leading to Nambu-Goldstone bosons that are then eaten
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to provide the longitudinal degrees of freedom for the W and Z bosons. The simplest
technicolor models tend to produce excessive contributions to the Peskin-Takeuchi S
and T parameters [48] [49]. This has led to the formulation of composite Higgs models
[50, 51, 62) 53], walking technicolor and top-color (see Refs. [54] 55] for reviews), and
conformal technicolor [56, 57] models. That these models may be given dual, calculable
descriptions in terms of a perturbative 5D gravity theory has led to a surge of research

into RS models.

1.4 Soft-Walls

The notion that strong dynamics can be described by weakly coupled gravity duals has
sparked an ambitious program known as AdS/QCD, which seeks to formulate a gravity
dual to quantum chromodynamics (QCD) from the bottom up. At low energies, QCD
becomes strongly coupled, leading to confinement of quarks into hadrons. A robust
quantitative description of QCD in this regime has remained elusive because it evades
perturbative description. Rather than searching directly for a holographic derivation
of QCD, the AdS/QCD program seeks to build a dual theory that matches the known
features of QCD.

The AdS/QCD program has encouraged model bulders to move beyond the original
simplified AdS/QCD models [58, 59] of a warped extra dimension sandwiched between
two “hard- wall” branes. The hard-wall framework posits that conformal symmetry is
broken in the IR in the simplest possible way by an abrupt low-energy cutoff of space-
time. By contrast, the soft-wall proposal admits a much richer potential phenomenology
because it considers conformal symmetry breaking in general terms. This has allowed
for improvements in the modeling of meson trajectories, for example, but at the cost of
added computational complexity.

Though the original soft-wall proposal was in fact made in the context of AdS/QCD
models [60], it was used soon after to study electroweak symmetry breaking in soft-
wall backgrounds [61]. While originally an ad-hoc implementation of a soft-wall via a
“dilaton” prefactor in the action was used, the dynamical soft-wall model put forward
in Ref. [62] allowed for the first discussions of stability and naturalness of the soft-wall.

The standard model on a soft-wall was first described in Ref. [63], which also noted
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that the calculation of physical observables involving fermions was particularly difficult.
In fact, fermions evaded quantitative description in all but the simplest cases. What
followed were several attempts to document all known special-case solutions and their
general behaviors, as well as alternative methods for modeling fermions [64, [65]. In
Ref. [60], the first phenomenologically acceptable exact solutions were found and a full

numerical approach to modeling fermions was presented in detail.

1.5 Outline and Notation

This dissertation documents research originally published in Refs. [63,[66]34], which was
completed by the author of this thesis with significant contributions from collaborators
Brian Batell [63] and Tony Gherghetta [63] [66]. These works focus on soft-wall models
and aspects of flavor violation in certain classes of models of supersymmetry breaking.

The layout of this document is as follows:

e Chapter [2| discusses the original Randall-Sundrum model in detail as well as the
important formulas relevant when the standard model fields are allowed to prop-
agate in the bulk. This material provides the necessary foundation for discussing
issues that arise when discussing soft-wall models and supersymmetry breaking.
Our approach may be new to many familiar with Randall-Sundrum models, in
that it is dressed in the language and notation of “supersymmetric quantum me-

chanics” [67].

e Chapter |3| discusses the soft-wall framework, provides details on how such a grav-
itational background can arise dynamically, and places the standard model in the
bulk. The difficulty that arises in addressing fermions is presented. Electroweak

physics is modeled and aspects of fine-tuning are discussed.

e Chapter [4] addresses the problem of fermion physics in the soft-wall setup in de-
tail. Analytic solutions and approximation methods are presented for the single-
generation case. A numerical routine is developed and applied to study the full
three-generation problem. It is shown that many of the attractive features of hard-
wall models are retained in a soft-wall setup, however there are some intriguing

differences.
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e Chapter [5] studies lepton flavor violation in models of supersymmetry breaking
with heavy first-two generation sleptons and Dirac gauginos. Concrete examples of
how such a spectrum can arise in models of SUSY breaking from extra dimensions
are discussed. It is shown that highly non-degenerate slepton masses are allowed

under certain conditions.
We adopt the following set of rules for the treatment of spacetime indices:

e Latin letters run over all indices (0,1,...,5) while Greek letters run only over the
4D indices (0,1,2,3).

e Letters from the beginning of the alphabet (A, B,...,a, 5,...) label Lorentz indices
and are raised and lowered using the Minkowski metric and its inverse, nap =

nAP = diag(—+-+++).

e Letters from the middle of the alphabet (M,N,...,u,v,...) label spacetime indices

and are raised and lowered using the metric and its inverse, gp/n and gM»V.

e The usual four-dimensional coordinates are labeled as x or z* while the coordinate

of the extra space is denoted by y or z.

Our treatment of fermions in Chapters [2] and [4] employs additional conventions, which
can be found in Section 2.3Cl



Chapter 2

The Hard-Wall Warped

Dimension

The solution to the hierarchy problem offered by Randall and Sundrum [36, [37] has
inspired a large amount of study over the past decade for several reasons. The model
provides an elegant solution to the hierarchy problem, predicts the potential existence
of Kaluza-Klein matter at energy scales that can be reached by the LHC, offers new
ways to study aspects of supersymmetry and supersymmetry breaking, and due to
the AdS/CFT correspondence [38, 39, 40l 41}, [42, 43] offers a potential path toward
understanding strongly coupled gauge theories in four dimensions.

In this section, we review the details of the original model by Randall and Sundrum,
as this will provide a solid foundation for our discussion of flavor physics and super-
symmetry. Our discussion is structured wherever possible in a general way, so that the
later treatment of soft-wall models will suffer from a minimal amount of redundancy
and the smallest possible degree of repetitiveness. We start with a general overview of
the model, introducing our notation and conventions that we will carry through into
later chapters. Additionally, we review the concepts of bulk fields and flavor physics in

the Randall-Sundrum background.
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2.1 The Randall-Sundrum Model

The original Randall-Sundrum model [36] posits the existence of a single compact extra
dimension bounded on either end by two 3-branes. Because four-dimensional distance
scales depend exponentially on location in the extra space, the characteristic energy
scales of physics localized in separate regions can differ exponentially. This mechanism in
fact underlies the solution to the hierarchy problem proposed by Randall and Sundrum.
Our discussion here of the details of the model will provide an important reference point

for the later chapters.

2.1A The Setup
Overview of the RS1 Set-Up

In the original Randall-Sundrum model (RS1) [36], the extra dimension is compactified
on a circle of radius R that is then orbifolded to arrive at the space S1/Zs. (In the model
we will refer to as RS2 [37], the space is also compactified in such a way before taking
the limit R — o0o.) The orbifold compactification enforces two symmetry requirements
on the theory under transformations of the coordinate, y, that parameterizes the extra
dimension: periodicity under the shift y — y + 2r R and Zs parity under the reflection
y — —y. Geometrically, the space may be viewed as the result of identifying each point
on a circle of radius R with its reflection about the diameter connecting ¥y = 0 and
y = mR. Two three branes are located at the orbifold fixed points of y =0 and y = 7R
and are referred to as the UV or Planck brane and the IR or TeV brane, respectively.
It is important to keep in mind that the symmetry requirements only apply to the
fields up to global or local symmetries of the Lagrangian. Explicitly, the requirements are
symmetry of the Lagrangian under reflection y — —y and periodicity of the Lagrangian

under a shift of y — y + 27 R. Generically, for any field ®, the requirements are:

O(—y) = =2(y), (2.1.1)
O(y) = £P(y+ 27R). (2.1.2)

Together, these imply ®(7R + y) = £®(7R — y). Thus, the combination can be inter-

preted as two distinct Zs symmetries: a Zg symmetry under reflection about y = 0 and
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a Z4 under reflection about y = wR. One is free to specify the sign under which a field
transforms separately under the Zg and under the Z.

The spacetime in the bulk is that of anti-de Sitter space (AdS5),
ds® = gMNda:Mda;N = e*QA(y)ana:“dx” + dyQ. (2.1.3)

where A(y) = k|y| and k is the AdS curvature, while the induced metric on each brane

is flat. We denote an induced metric by attaching a superscript (subscript) label to g,

(9"):

(UV)

gy (IR)

= gu(z,y =0), Gy = g (z,y = TR). (2.1.4)
The factor e 24®) is often referred to as the “warp-factor.” The reason for this is
apparent in the form of the metric (2.1.3): movement along the direction of the extra
space results in the “warping” of 4D distance scales.

It is easy and often useful to transform the metric to the conformal coordinate,

z, by making use of the coordinate transformation:

dy 4
— = . 2.1.5
L (2.1.5)

Indeed, we make extensive use of these coordinates throughout this work. In these

coordinates, the bulk spacetime metric takes the form:
ds? = e Gy ndeMda™, (2.1.6)

where A(z) = logk|z| for pure AdSs. Then the locations of the UV and IR branes
are z = 29 = 1/k and z = z; = €™ /k, respectively. Care must be taken to properly
account for the orbifold symmetry when integrating in these coordinates. Integrals over
the entire extra space are to be evaluated on the interval y € (—m R, 7R) or equivalently
z € ((k‘zzl)*l,zl). Spacetimes other than pure AdSs can be considered by choosing

different forms for the function A.

AdSs from Einstein’s Equations

The set-up above is consistent with Einstein’s equations for gravity in 5D under certain
conditions. To derive these conditions, we elaborate on the presentations of Refs. [36,
68]. We can model the set-up by considering the classical action in three regions: on
the UV brane, in the bulk, and on the IR brane.
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We first focus only on the bulk action. The bulk action consists of two gravitational
contributions arising from the bulk curvature, R, and bulk cosmological constant, A.
Note that we use a script typeface R to distinguish the Ricci scalar (and tensor) from
the radius of the extra space denoted by R, while we use the capital Gy to distin-
guish Einstein’s tensor from the metric, gasny. When RS1 is modified by placing gauge
or matter fields in the bulk, there will be additional contributions to the bulk action.
Assuming the backreaction is small, these contributions can be neglected for the grav-
itational analysis. However, they can play an important role when discussing stability
of models and will become important when we consider “soft-wall” models in Chapter

With these caveats aside, the bulk action takes the form:

Shulk = / d°zy/—g (MPR — A). (2.1.7)

To find the solution to Einstein’s equations in the bulk, we note that the most general
form of a 5D metric satisfying 4D Poincaré invariance is given by or equivalently
(2.1.6). We therefore insert as an ansatz the conformal metric . The advantage
to using this form is that the Einstein tensor is easily calculated for a conformally flat

metric. The result is [68]:

Gss = 64, G = 3 (A” - A’2> . (2.1.8)
With our conventions, Einstein’s equations then read:
1 1
GMN = WTMN = —WAQMN. (219)

The “55” equation following from (2.1.8]) and (2.1.9) is:

/2: —A 6_2A
12M3

which clearly implies A < 0. The simplest way to solve this equation is to first take a

square root and then rewrite in terms of the coordinate y using (2.1.5)) together with

(2.1.10)

the chain rule. This yields the second simplest of all differential equations:

dA [ —A

Bearing in mind the reflection symmetry, the solution is that for AdS, as advertised:

—A

A(y) = W\m = kly|, A(z) =sgn(z — z0) Inkz. (2.1.12)
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We have discarded the irrelevant integration constant.

Inserting this solution into , we see that it is consistent except at the bound-
aries where A” will introduce delta functions. To deal with this, one must consider
the action on the branes. At this point, it does not matter if we work with the y or z
coordinates. However, it is simplest to work with y. Ignoring any matter contribution,

the action is given by:

Suv = —/d‘*m/— (U4 :—/d%v_gv 5(y),
uv g [9AY T uvé(y)
SR = —/d4x\/—g(IR)VIR = —/d5:p

The contribution to the energy momentum tensor is straightforward to derive:

V=9
\/gEVIRé(y —mR). (2.1.13)

1
TV + TRV = S (Vovd(y) + Vird(y —wR)). (2.1.14)

The delta function contribution to from requires some care in dealing
with derivatives at the boundary. Upon crossing y = 0, the derivative of k|y| goes from
—k to k due to the reflection symmetry, while upon crossing y = 7R, it goes from k to
—k. Therefore,

A" =2k (8(y) — 6(y — R)) . (2.1.15)

Comparing (2.1.14) and (2.1.15)), we see that the solution is consistent provided:

Vv = —Vir = 12M%k = /—12M3A. (2.1.16)

2.2 The Hierarchy Problem

Up to now, we have said nothing about the physical implications of the model. Since the
motivation behind RS is to solve the hierarchy problem, our discussion will begin there.
Obtaining a realistic low energy theory requires knowing the relationship between 4D
observables and the fundamental 5D parameters that define the theory. Of particular
interest are two relationships. First, we are interested in the relationship between the
4D Planck mass, Mp, the 5D Planck mass M appearing in the action , and the
radius of the extra dimensions R. Secondly, we would like to know how the electroweak
scale is related to these fundamental mass scales. The purpose of this section is to

review these issues.
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2.2A Gravity in a Warped Extra Dimension

Metric Fluctuations

The most general fluctuations of the metric in a five-dimensional theory include tensor,
vector, and scalar modes at the massless level. However, the vector mode is inconsistent
with the Zo symmetry of the theory, leaving only the tensor and scalar fluctuations.

These fluctuations can be parametrized as{l]
ds? = ¢7240) (v + hy (2, 2)) datda” + d2°] (2.2.1)

where A(z) is now to be treated as a dynamical field. Considering a slice of AdS in

particular, we can write an equivalent metric in a more suggestive form,

_ R(x) 2
ds? = ¢ W R (M + hyw(, 2)) datdx” + (R}_({m)) dy?, (2.2.2)
0

which makes clear the physical interpretation of the graviscalar as the radion corre-
sponding to fluctuations of the compactification radius of the extra space. Stability of
the theory depends critically upon R(x) obtaining a vacuum expectation value of Ry.
The Goldberger-Wise mechanism [71] offers one way to achieve this stability. For our
purposes, we will accept the existence of some such stabilization mechanism and limit

our attention to the tensor modes by setting R(z) = Ry.

The Planck Scale and Graviton Modes

The relationship between the 4D and 5D Planck scales can be found by considering the

Ricci tensor, R,,. The effective 4D gravitational action is found by integrating:

S = M3/d5:1:\/—g72 — M3/d5x,ﬁ—ggﬂ'f7zw +... (2.2.3)

Since the conformal factor e~4(2)

whether one uses the 5D or 4D metrics to calculate them (c.f. [68, [72, [73]). Thus, the

is independent of x, the components R, are the same

4D action becomes:

S = a2 / By /—g OR@ = 273 / Aoy /- g HR® / Lz 3G (2.2.4)
20

! For alternative ways to analyze graviton fluctuations, see refs [68] 69, [70].
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The factor of 2 is to take into account the orbifold symmetry. Equivalently, one can
integrate over the coordinate y € (—7 R, wR). Applying specifically to RS, we have:

M2 = ]\f (1 - e*%’fR) . (2.2.5)

The 4D Planck scale depends very weakly on the radius of the extra dimensions assuming
it is moderately larger than about 1/(27k).

Graviton modes can be considered by inserting the perturbed metric into the
Einstein-Hilbert action and going to the transverse-traceless gauge (also known as the

RS gauge), 8,h*” = hi, = 0. This results in the following action for the field hy,, [63]:
1 1
68 = M? / &Pz =34 (—48phu,,8ph“” —~ 4a5h,W05hW) : (2.2.6)

The equation of motion for A, is found in the usual way by demanding that the variation

(2.2.6)) vanish. Integrating by parts once results in the equation of motion:
e 340,0°hy (x, 2) + 05 (e 34 0shy(,2)) = 0. (2.2.7)

To solve this equation, we expand the bulk graviton in a KK-decomposition. That is,

we seek solutions that satisfy separation of variables by inserting the ansatz,
o0
hy(@,2) = Y MR @) 1" (2), (2.2.8)
n=0

where (‘)p@phgf,) (x) = m,%h,(ﬁ,) (). The equation of motion ({2.2.7) for f}(ln) then becomes,
B5(e 2405 £ (2)) + m2e 34 £ (2) = 0. (2.2.9)
while the states obey the orthonormality condition,

21
2M3/ dz e*BA(Z)f}(Lm)(z)f,(ln) (z) =™, (2.2.10)

0
which leads to a canonical action for the graviton fluctuations.

The action is only minimized if the boundary term arising from the integration by
parts vanishes, implying either Neumann or Dirichlet conditions on the wavefunctions
at the UV and IR boundaries. Applying Neumann conditions (05 f hn))|zo,z1 = 0 gives

rise to a massless 4D graviton with constant wavefunction, f,(lo) = 1/Mp, where Mp is
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defined implicitly in ([2.2.4)) or explicitly for RS in ([2.2.5)). Instead if Dirichlet conditions

are applied then the zero mode is projected out.

It is useful to define the rescaled field
A (z) ~ e’%@f,ﬁn)(z), (2.2.11)

which brings the equation of motion (2.2.7) into the form of a one-dimensional Schro-
dinger equation:

(—02 + V() [ (2) = m2 [y (2), (2.2.12)
with the potential given by

3\ 3 15

where the last equality is for a slice of AdS.

The solutions to this equation can be written in terms of Bessel functions:
7 (z) = N 23 (Jg(mnz) + bg@Yz(mnz)) (2.2.14)
The factor bé") and m,, are determined by imposing the boundary conditions at the UV

and IR branes,
3A n
((‘35 + > M=o (2.2.15)

20,21

2

while the normalization is set by inserting the solution into (2.2.10). Of primary interest

is the mass spectrum, which is approximately given by:

1
My (n + 4) ke ™R, (2.2.16)

Finally, we note that the potential (2.2.13) is of the form W?2(z) — W'(z) where

W (z) = 3A’/2 is known as the “superpotential.” Thus, we can factorize the Schrodinger

equation as [67]:
(=05 + W) (85 + W) [ (2) = m2 [ (2). (2.2.17)

In this way, the zero-mode wavefunction mentioned above can be easily found through

direct integration.
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2.2B The Higgs

To solve the hierarchy problem, Randall and Sundrum proposed placing the standard
model fields on the IR brane. Let us examine the Higgs boson by considering a scalar
field, H, localized on the brane at y = wR. Then the 4D action for the field depends on
the induced metric on the brane :

Sy = / A/ — IR [ggg)(D#HT)(DVH) —A (\H\Q - 1)8)2] . (2.2.18)

The dimensionful symmetry breaking parameter vy is assumed to have a natural value of
order k. However, inserting the induced metric, we find that the action is not canonically

normalized. Redefining the field H =™ R yields a properly normalized action:
Sttt = /d4a: [(D“fﬂ)(Duﬁ) )\ (|H\2 - eZW’“Rvgﬂ . (2.2.19)
The Higgs VEV has been rescaled by an exponential factor:
vy — voe TFE, (2.2.20)

and thus the Higgs mass itself is rescaled in exactly the same way. For fundamental
parameters M ~ k ~ vg ~ R™! of order the 4D Planck scale, it is possible to achieve
an effective scale on the IR brane of order 1 TeV with very modest hierarchies in the
fundamental parameters. All that is required is that e™% be O(10'6), implying the
product kR is O(10). Moreover, the result is general and applies to all dimensionful
parameters localized on the IR brane.

Referring back to equation , we can see a striking physical prediction of
the Randall-Sundrum model. If this solution to the hierarchy problem is correct, then
Kaluza-Klein graviton modes should appear at the TeV scale! In fact, this remarkable
prediction applies not just to gravitons, but to the excited modes of all types of particles
that reside in the bulk of the spacetime. This is the subject to which we now turn our

attention.

2.3 Bulk Fields

In their original model, Randall and Sundrum assumed all standard model field content

was localized on the IR, or TeV brane. This assumption was made because the hierarchy
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problem could only be solved if the Higgs was on the IR brane, where the effective energy
scale was “warped down.” However, there is no requirement that the gauge or fermion
fields of the standard model live on the brane, as their masses are protected by gauge
and chiral symmetries.

This fact led a number of authors to consider placing standard model fields in the
bulk, starting with scalars [71] followed by gauge bosons [74) [75] [76, 77, [78] and fermions
[79 80, [78], eventually leading to the placement of the entire (supersymmetric) standard
model in the bulk [77, [78]. Here, we review the treatment of bulk scalars, gauge fields,
and fermions each in turn. We will specialize our treatment to AdS only when necessary
to discuss particulars of hard-wall models. Otherwise, we keep our treatment as general

as possible so that we can employ it again later.

2.3A Scalar Fields

We begin by discussing scalar fields. This discussion will serve as a useful reference
point later when we discuss supersymmetry in the bulk and soft-wall models in which
the Higgs boson necessarily resides in the bulk.

The action describing a complex scalar, ®, is given by:

Sp = —/d%\/fg{gMN(DMcb)(DN@)+M§>yq>|2}, (2.3.1)

where D), is the gauge covariant derivative. For now we study the free theory and set
Djp; = dp. The mass parameter Mg can consist of bulk and boundary terms. The bulk
term must be even under reflection about y and is naturally of order k2. It can therefore
be parameterized as ak?, where a is a dimensionless number of O(1). The boundary
mass term must also be even and can be parameterized as 2bk [6(y) — d(y — 7R)] =
2bkeA?) [§(2 — 29) — 6(z — z1)] (see (2-1.)). Note that we have assumed the boundary
mass term is the same on the two boundaries. This in fact is a requirement in super-
symmetric theories [78], which we discuss in Chapter We will effectively drop this
assumption when we treat “soft-wall” models in Chapter (3] which require modifying
the IR boundary condition.

The bulk equations of motion are found by inserting the metric factors and varying

the action. In terms of the conformal coordinate z, we have:

" 0,0, P + e34) 5 (6_3A(2)85(I)) —ak?e 24 e = 0. (2.3.2)
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Inserting the ansatz:
O(z,2) =Y o (2)f5"(2), (2.3.3)
n=0
where 17/ 9,0,®™ (z) = m2®™ (z) yields a Sturm-Liouville equation for fén):
405 (A0 117 (2)) + m2 157 (2) - ak?e A 17 () = 0. (2.3.4)

Just as with the graviton field above, we can recast the equation into a Schrédinger

equation for the transformed field fén) = ¢34/ Qfgl). The equation then reads:
(—02 +V(2) f5"(2) = m2 £y (), (2.3.5)

but the potential has an extra term compared to (2.2.13)):
3 >3
V(z) = <2A’(z)> - 5A”(z) + MZe240), (2.3.6)

The canonical normalization condition is:

/ dz 9 (2) F(z) = / dz e 34G) M () £ () = . (2.3.7)
Specializing to a slice of AdS, A(z) = logkz, it is useful to reparameterize the bulk
mass. Without loss of generality, it can be written as

M2 = <(a + %)(a - %) - 15/4> k2, (2.3.8)

where v = v/4 + a. Inserting this into the potential (2.3.6]),the potential is now of the
form W?2(z) — W'(z) where

W(z) = @, (2.3.9)

2z
W22) - W) = V()= 2= 14)2(220‘ +1)

. (2.3.10)

It is clear that either sign choice yields the same equations of motion in the bulk. The

solutions to (2.3.5)) are given in terms of Bessel functions:
() = N3 (Ja(mnz) + bEb”)Ya(mnz)) : (2.3.11)

subject to appropriate boundary conditions. The boundary conditions are due to the
integration by parts leading to (2.3.2]) as well as the brane mass terms in (2.3.1). The
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action is extremized for a Dirichlet condition fén)(zo) = fén)(zl) = 0 or a modified
Neumann conditionH

(fén)' . e_A(Z)bk’fé,n) = 0. (2.3.12)

20,21
A zero-mode exists only when the bulk and boundary masses are appropriately

tuned. The tuning condition is most simply revealed by considering the superpotential
(2.3.9). Because the Schrodinger equation (2.3.5) can be factorized as

(=05 + W (2)) (05 + W(2)) fy) = m2 13", (2:3.13)

it is easy to see that there is a zero-mode solution given by:

F00) = NWe "W - 4 aFa (2.3.14)
fOC) = NO e (2.3.15)

Comparing with (2.3.12)), the tuning condition is given by the relations
b=2Fa=2++V4+a, (2.3.16)

where in the last line we have reverted back to the original parameterization of the bulk
mass.

For 29 < 21 and m,, < (20)~!, we can expand the Bessel functions to arrive at an
approximate expression for the mass spectrum as a function of excitation number n,

a 3
Mmpz1 ~ <n + 5" 4) . (2.3.17)

Finally, let us consider W(z) a function of a as well, i.e. W = W (z;+«). Then
Wi(z )+ W' (z;0) =W(z;aF 1) =W (z;aF1). (2.3.18)

where the sign choice corresponds to the choice in (2.3.9). This will be useful when
we discuss fermions below. An implication of this is that two fields, 1 and 2, with
a1 = ag = 1 can have identical spectra at the massive level. This will be important

during our discussion of supersymmetry in Chapter

2 The prescription for treating the delta function is to integrate only to one side of the boundary,
hence the “missing” factor of 2.
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2.3B Gauge Fields

Up to terms quadratic in the gauge fields Ay, the bulk action for a U(1) gauge field is:

Sg /d%\/ < i 2gMR NSFMNFRS> (2.3.19)

95
where Fy ny = Oy AN — OnApr. To study the KK spectrum, we will work in the gauge

As = 0. The equations of motion in this gauge are given by:
— Ty + e D05 (A 054,) 0. (2.3.20)

We insert the KK-decomposition for the fields A, (z,y):
=" AP @) {7 (2), (2.3.21)
n=0
where 8“F,E,T,L) = m%A,(,n) The canonical normalization condition is:
/ dz /=g e F{M (2) 11 (2) = / dzfy" (2) [V (2) = 6, (2.3.22)
where !}?1(4") = ¢ A/2 fﬁln). The equation of motion for the bulk field fgn) becomes:
_ AD (e*A(Z>85f§")) =m2 . (2.3.23)

The zero-mode is easily found to be constant fj(f)(z) = 1510) = 1/V27R and is trivially

consistent with the Neumann boundary condition (954,) |2, = 0. In direct analogy

with our treatment of gravitons and scalar fields, it is easy to show that the field f(n)
obeys a Schrodinger equation:
o2+ W2 —W Y = m2fy, (2.3.24)
A/
W(z) = 5 (2.3.25)
The solutions in a slice of AdS are again given by Bessel functions:
F(2) = N0 23 (Jl(mnz) n bff)Yl(mnz)) . (2.3.26)

For the Neumann boundary conditions, we can once again expand and find that the

approximate masses for the Kaluza-Klein modes are,

1
Mp21 = (n — 4) . (2.3.27)

3 Our gauge choice breaks 4D gauge invariance at the massive level; it is possible to choose a more
useful gauge for evaluating Feynman diagrams in warped space [81 [82].
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2.3C Fermions

Modeling fermions in a warped extra dimension requires machinery beyond what we

have already considered [83] [84]. We start with the Clifford algebra in curved space:
{TM PN} = 2gMN, (2.3.28)

The upper-case gamma matrices with spacetime indices (see the conventions in the intro-
duction) are related to the lower-case Dirac gamma matrices by the vielbein (“fiinfbein”
in five dimensions) as T'M = e% ~A, where the ¥4 satisfy the usual Clifford algebra in

Minkowski space,
{y, v} =2 nun = 2 diag(—, +, +, +, +), (2.3.29)
and the definition of the vielbein,
nABeM el = gMN (2.3.30)

leads to their colloquial description as the “square-root” of the metric.
The irreducible spinor representation in five dimensions consists of four-component
Dirac fermions, to be contrasted with the two-component Weyl fermions in four dimen-

sions. We take as a basis the following gamma matrices:

0 ot 1 0
b= , 5= , 2.3.31
¥ (w 0 ) gl (0 _1> ( )

where o = (1,0%), 7 = (1,—0"), and o' are the usual Pauli matrices. Note that with
this basis the proper Dirac conjugate is defined as ¥ = Wfi70. The action describing a

fermion with bulk mass My can be written in the familiar way,
Sy = —i/d5x\/—g (ITM Dy ¥ + My TT), (2.3.32)

where the covariant derivative is defined as Dy = Oy + wys (plus any relevant gauge

covariant piece). Here wys is the spin connection, defined as:
i
wir = 548 Wi, (2.3.33)
in terms of the Lorentz generators,

JaB = —% [v*,~7]. (2.3.34)
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The coefficients wy;? 5 given by,
wirlp = e e Tig — ef dyed, (2.3.35)

where Fﬁs is the Christoffel symbol.
These relations simplify greatly in the case of the conformal metric to which we now

2A(

specialize, garn = e 24@nyn. The fiinfbein is given by

ey = e @54 (2.3.36)

and the spin connection is found to be
/

wi(2) = (wy, ws) = (—2fm5, 0) : (2.3.37)

It is straightforward to transform coordinates using, for example, equation (2.1.5)), under
which A’(z) — e~ AW A'(y):

A
wy(y) = (—26 A'm’y5,0> - (2.3.38)

However, one may also take into account the spin connection by replacing the Lagrangian
density, £, in the action (2.3.32)) with the manifestly real density, (£ + £1)/2:

Sy = —z’/d%@{i [OTM (DpT) — (D 0)IM O] + M\p\IJ\I'}. (2.3.39)

where D) is now simply a gauge-covariant derivative (i.e. the spin connection can be
omitted). This can simplify many calculations and reduce notational clutter.

Note that the orbifold symmetry forbids any Dirac mass term on the boundaries.
This is because the parity operator in 5D is ¥(—y) = +v5;¥(y), where absent specified
fermion interactions the sign is ambiguous. In either case, this implies W is odd and
vanishes on the boundary. Accordingly, the mass term My must also be odd and can
be parameterized as My = ck sgn(y) = ck sgn(z — 2).

The representation allows for a convenient decomposition of fermions in
terms of even and odd fields ¥ = ¥, + ¥_, or

U= ( . ) : (2.3.40)
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where v5¥y = +W,. Then choosing either of U(—y) = +v;¥(y) is interpreted as
defining the chirality of fermions on the boundary at z = zy (y = 0) [78], 85, [86].

As discussed earlier, the orbifold requirements allow for the possibility of
separately defining the chirality of the fermions on the two boundaries at z = 2y and
z = z1. This allows for many interesting possibilities. For example, it can provide
a mechanism by which supersymmetry is broken [20] similar to the Scherk-Schwarz
mechanism in flat space [I8, [19], or aid in unification schemes [87].

For now, we consider only fields that are either even on both boundaries, i.e. U(y) =
U(—y) and ¥(7R —y) = V(7rR + y), or odd on both boundaries, i.e. ¥(y) = —¥(—y)
and V(7R —y) = —¥Y(nR + y). The former in particular lead to massless modes that
may be identified with the fermions of the standard model.

Into , we insert ¥ = W, + W_, where ¥, and ¥_ are the left- and right-
handed components of the Dirac fermion, respectively. Extremizing the action yields a

pair of coupled first-order differential equations,
17,0,V £ 24057240y + e AMy U =0, (2.3.41)
which may be simplified by rewriting in terms of the transformed field, U = e 24y:
10, Uy £ 050y + e A My Uy = 0. (2.3.42)

Inserting the KK decomposition for ‘I/,
" o0
Vo(z,2) = Y i (@) i (2), (2.3.43)
n=0

and applying the 4D Dirac equation v#9,9+ = —my¥, yields a 5D analog of the Dirac
equation for qui:
(:|:85 + e_AMq;) f\pi = mnf\p¢. (2.3.44)
The system is easily decoupled by converting to a second order system. The equations
for the fields ]?i may be written as a pair of Schrodinger equations with “supersymmetric
partner potentials” [67],
(—03 + Vi) fux = m} fus, (2.3.45)
where Vo = W2 F W’ (note the sign difference) and W (z) = Mye 4%, In AdS,

W (z) = ¢/z with our parameterization of the bulk mass.
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Note that in AdS, the form of the superpotential is exactly the same as that intro-
duced for scalar fields above in Section if we identify « <> ¢+ 1/2. Therefore, the
solution for the fields fq/_;,_ is the same as ([2.3.11)) up to a simple relabeling. Furthermore,

since a — 1 <» ¢ — 1/2, we can automatically generate the solutions for the fields fy_

using the rule (2.3.18]). The result is,

ﬁfi(z) = Ngiz% (JCjE (mpz) + bg,l)Yci%(mnz)) , (2.3.46)

1
2

subject to the canonical normalization condition,

/ dz /=g e f5 () 1) (2) = / dz JS () F31 (2) = Suam. (2.3.47)

The boundary contribution to the action is extremized only when one of the fields V.
vanishes there—i.e., it satisfies a Dirichlet boundary condition. This is equivalent to
fixing the behavior of ¥ under the Zs reflection. Applying a Dirichlet condition to fi
corresponds to applying a modified Neumann condition to ij due to the equations of
motion . When W4 obeys Dirichlet boundary conditions, the mass spectrum is

given approximately by:

2ct1 1
Mp2] &~ (n+ | C4 | — 4> . (2.3.48)

Both modes fi admit zero-mode solutions,
FO = NO F I W - N©O) Fe (2.3.49)

however only the modified Neumann condition is consistent with the zero-mode solution
, implying that the Dirichlet condition kills the other mode entirely. Thus, in
the effective 4D theory, we get a Kaluza-Klein tower of massive Dirac fermions, but
at the massless level there is a single chiral fermion with the opposite chirality mode
projected out of the theory. This is the mechanism by which the Zy orbifold is able to

recover the chiral fermions of the standard model.

2.3D Bulk Fields Summary

In a slice of AdS, the bulk scalar, gauge, and fermion wavefunctions fg, f4 and fg4, as

well as the graviton wavefunction fj, can be concisely described in terms of factorizable
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Schrédinger equations:
(=05 + W) (05 + Wy) 5V = m2f", (2.3.50)

for ¢ € {h, A, ®, ¥} where fd) — G%A(Z)f(ﬁ and

Wy(z) = 201, (2.3.51)
ap=2, as=1, ap==+VA+a, aypr=cE3,
" 4 ® vE 2 (2.3.52)
sp,=3, sa=1, S = 3, sy+ = 4.

If the bosonic fields satisfy a modified Neumann condition,

05+ Wy) f3V], . =0, (2.3.53)

20,21

there exists a zero-mode solution given by

17204(25

ﬁo) ~ e WA 5 (2.3.54)

Otherwise they must obey a a Dirichlet condition and there is no massless mode.
One of the fermion fields fi must satisfy a Dirichlet condition, which corresponds
to a modified Neumann condition on the other field through the first-order equations of

motion:

ozl ., = (E0s+Way) x|, . =0 (2.3.55)

20,21

Then the corresponding zero-mode solution is given by

f’éﬁi ~ F [P Wy (2)dz PR (2356)

That the compact notation (2.3.50)) can describe both fermion modes is peculiar to the
slice of AdS and follows from the relation (|2.3.18]).

The massive modes for all fields are given in terms of Bessel functions as
F(z) = N2 (J% (mnz) + b5, (mn2)> . (2.3.57)
while the mass spectrum is given approximately by

n+9—3)T = (n4+ 92— 3) ke ™ for bosons,
My ~ (n+3 ‘1‘) =3 ‘1‘) o ‘ (2.3.58)
(n + 5 = 1) Zil = (n + 9 = Z) ke T for fermions.

Thus all particles have KK-towers starting at the TeV scale and growing linearly in

mass with excitation number, n.
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Wavefunction Localization Properties

The localization properties of wavefunctions are most apparent when the wavefunctions
are written with respect to the flat coordinate, y. Using ([2.1.5)), we define a rescaled
function, ﬁn) (y) = eA(y)/ZJ?;n) (y) such that

/ dz J§ () (=) = / dy 1" ) 1" (). (2.3.59)

The localization properties are then manifest in the functional form of ﬁn) (y). The

rescaled zero-mode profiles are then:
ﬂo) (y) = e%yféo) ~ ellmas)ky, (2.3.60)

for ¢ € {h, A, ®, ¥, }, while
F§) (y) ~ ey, (2.3.61)

For bosons, ag > 1 corresponds to a UV-localized field with respect to the flat metric,
while oy < 1 corresponds to an IR-localized field. Thus, the graviton zero-mode (o, =
2) is UV-localized, which we can interpret as resulting in the apparent weakness of
gravity on the IR braneﬁ while the gauge boson zero-modes (a4 = 1) are not localized
at all. The scalar zero-mode, on the other hand, can be localized anywhere in the bulk
dependent on the bulk mass parameter a. The fermion zero-modes can also be localized
anywhere. When ¢ > 1/2 (¢ < —1/2), U, (¥_) has a UV-localized zero-mode , while
for ¢ > 1/2 (¢ > —1/2), the mode is IR-localized.

The KK-modes, on the other hand, are all peaked in the IR. To illustrate this, we
have included in Figure a plot of the first several gauge boson KK-modes. The plots

for other fields are similar.

2.4 Standard Model Couplings

2.4A Yukawa Couplings

We have seen how the orbifold boundary conditions lead to massless, chiral fermions in

the free theory. In this section, we will describe how hierarchical fermion masses can be

4 Note however that gravity couples equally to all bulk fields, regardless of localization, as 4D

coordinate invariance and thus the equivalence principle is not broken.
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f(y)

Figure 2.1: The first several Kaluza-Klein gauge boson profiles in the Randall-Sundrum
background, coresponding to excitation numbers n = 0 (solid line), n = 1 (dashed),
n = 2 (dotted), and n = 3 (dot-dashed).

obtained through Yukawa interactions, following the approaches of Refs. [79] [78]. For
simplicity, we will only consider a single fermion generation here and will treat the full
case in Chapter [

We begin by introducing two fermion fields in the bulk, ¥y = ¥y, + ¥U;_ and
Up=Vp, +PYgr_ . The subscripts L and R are labels indicating the types of boundary
conditions imposed on each field. At the massless level, ¥, is a left-handed field while

U is right-handed. The corresponding boundary conditions are:
\I/L_(Z()> = \I/L_(Zl) = 0, \I/R+(z0) = \IJR+(21) =0. (2.4.1)

In a realistic model, the labels would also specify the group transformation properties
of the field. For example, if the fields are to be associated with a charged lepton, ¥y,
(UR) would transform as a doublet (singlet) under SU(2)r.

To lift the zero-modes, we introduce a scalar field H(z, z) that couples the left- and
right-handed fields. For simplicity, we will consider a field localized on the IR brane
NyH(zx,z) = 2H(2)e*?§(z — 1), as in Section m Then the 5D Yukawa coupling
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takes the form

SYukawa = / dx/=gAs [TV R+ VRV ] ff\gz)eA(z)é(z —z2) (242
H
Y / d'x Ty b + Dprs) Hz). (2.4.3)
where A5 is assumed to be O(1/k) and the effective 4D Yukawa coupling is given by:
1
Moo= - / dze AN 119 (2) 1) (2)eAP5(2 — z1) (2.4.4)
R (| 0 A5 70 0
= Ny O (1) = Eﬂj(zl)ﬂl(zl). (2.4.5)

The Higgs normalization follows from canonical normalization of the 4D kinetic term.
For an IR localized Higgs, Ny = eA%1) as in (2.2.19).

In an AdS background, the properly normalized fermion zero-modes are given by

1/2 k
o - B

\/ (1/2F ci/r) eFer/rky. (2.4.7)

6(1:F20L/R)7Tk‘R -1

Assuming ¢;, = —cg = ¢ and ¢ > 1/2, we see that the 4D Yukawa coupling
1
A~ Ask <c — 2) e =20kl (2.4.8)

drops off exponentially with the O(1) localization parameter, c¢. Indeed, when the
Higgs VEV on the IR brane is of order ke ™ ~ TeV and k ~ Mp ~ 10'° TeV, the
electron Yukawa coupling of O(107%) is obtained for ¢ ~ 0.6. As we saw in the previous
section, there is a simple geographic interpretation to this behavior. The realm ¢z, > 1/2
(cg < —1/2) corresponds to UV-localized fermions. That is, their wavefunctions are
peaked near the UV brane as can be seen in and . Thus, the fermion
wavefunctions are exponentially suppressed on the IR brane. The small overlap with
the IR-localized Higgs field is the reason for the sharp suppression of the effective 4D
Yukawa couplings.

On the other hand, when ¢ < 1/2, the fermions are IR localized and there is no large

suppression:

1
A4 ~ )\5]{: (2 - C> . (249)
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Thus, the full range of Yukawa couplings from the electron to the top quark is easily
explained in terms of O(1) 5D parameters.

To describe multiple generations of fermions, the fields are promoted to vectors in
flavor space \I'ZL /R while A5 and A4 are promoted to matrices )\éj and )\Zj . Doing so
necessarily introduces new flavor structure to the standard model, and has therefore
been studied by a number of authors [88, 89, 90, 91, [92], 93], 94 [95].

2.4B Fermion Gauge Couplings & Flavor Protection

The calculation of gauge couplings follows a similar recipe. The contribution to the
bulk action is given by a familiar gauge term. We will again limit our attention to a
U(1) gauge field and a single generation of fermions. The gauge coupling term in the

bulk action is:

Sint = i/d5x V=935 (U(z, 2)TM Ay ¥(, 2)) (2.4.10)

We again work in the gauge A5 = 0 and insert the KK expansions for the fields ¥ and

Ajps. Let us focus on the coupling of a zero-mode gauge boson to the tower of fermions:

St = Z i/d526_5Ag5 (a(m)eA,yuAl(LO)w(n)> (fg))féjm)f&;n)> (2411)

m,n=0

VarR
Zg4i/d4$ (@(n),y#AELO)w(nO (2.4.13)
n=0

_ i 95 | it (@(m),yuAl(LO)w(nU /dze4A< &lm) é}n)) (2.4.12)

where g4 = g5/ V27 R and the last equality follows from the orthonormality condition
(2.3.47)). Thus, the gauge couplings are universal and 4D gauge invariance is preserved.

Next, of considerable importance is the couplings of the fermion zero-modes to the
KK gauge bosons. Generically, these couplings would be expected to introduce large
contributions to flavor changing amplitudes through, for example, KK gluon exchange.
This would result in an extremely high lower bound for the Kaluza-Klein scale, so that
the hierarchy problem is no longer solved. However, in practice things are not so severe.

Near the UV brane, the modified Neumann boundary condition on the gauge boson

wavefunctions forces the KK-mode profiles to be approximately constant. This can be
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seen in the plots in Figure 2.1} for example. As a result, fermions that are peaked
strongly toward UV brane inherit couplings that are essentially independent of the
localization parameter ¢, due to the same orthonormality condition. More specifically,
whenever ¢ > 1/2 (¢ < —1/2) for the fermion zero-mode J(FO)(Z) (fﬁo)(z)), the gauge
couplings become very nearly constant with varying c. Since the couplings are universal,
they are also diagonal in any basis, and therefore there is only a very small contribution
to new flavor changing neutral currents. Moreover, from , we can see that this
is precisely the region of parameter space for which the effective 4D Yukawa couplings
are small. We will return to this issue in more detail during our discussion of soft-wall

models in Chapter [4] where we will show that this “GIM-like” mechanism is preserved.



Chapter 3

The Soft-Wall Warped Dimension

3.1 Motivation

The original Randall-Sundrum model [36] has undergone a series of generalizations
and extensions since its original introduction over a decade ago. The warped extra
dimension framework has grown such that it can now provide a compelling geometrical
understanding of a number of mysteries left unexplained by the Standard Model (SM).
By the AdS/CFT correspondence [38, [39] 140 141} [42] [43], these models also admit
weakly-coupled holographic descriptions of electroweak symmetry breaking and flavor
physics arising from the dynamics of a strongly coupled conformal field theory.

In the original model a slice of AdS bounded by ultraviolet (UV) and infrared (IR)
branes was used to solve the hierarchy problem. The exponential dependence of energy
scales on position along the extra dimension provided a simple explanation for the low
scale of electroweak symmetry breaking provided that all standard model particles were
localized on the IR brane. Later, a number of authors began removing the standard
model fields from the brane, allowing them to propagate in the bulk of spacetime. This
was first done with the gauge fields [74, [75] and later the fermion fields as well [79, 77, [78].
With the gauge bosons and fermions in the bulk, fermion mass hierarchies result from
the wavefunction overlap of SM fermions with an IR localized Higgs [79, [78], [80], leading
to a fermion geography in the fifth dimension which explains the Yukawa coupling
hierarchy and also naturally suppresses the scale of higher-dimension operators that

can mediate dangerous processes [78, [80]. Furthermore, since the couplings between

32
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fermions and Kaluza-Klein (KK) gauge modes are nearly universal, there exists a built-
in “GIM” mechanism that avoids disastrously large contributions to flavor changing
neutral current (FCNC) amplitudes.

A common feature of these extensions is the existence of an IR brane at which the
warped dimension abruptly ends. This breaks the conformal symmetry of the theory,

generating towers of four-dimensional (4D) particle states with KK mass spectra growing

2

2 ~ n?. However, this “hard-wall” picture of the IR brane represents just one way

as m
to break conformal symmetry. A more general approach is to replace the IR brane with
a so-called “soft wall,” in which the departure from conformal symmetry progresses
smoothly with position along the extra dimension. With the IR brane removed, all IR
fields must reside in the bulk, and their wavefunctions and spectra are thus non-trivially
altered by the presence of the soft wall. Given the range of potential functional shapes
the soft-wall can take, a variety of KK mass spectra may be generated by considering
this more general picture. This allows for a potentially greater phenomenological reach
for the warped extra-dimension framework. The greater flexibility can be viewed from
the dual holographic description as well; any operator of finite dimension responsible for
conformal (or other) symmetry breaking can be modeled in the soft-wall background.
In particular, placing the entire Standard Model in a soft-wall warped dimension offers
an interesting framework for modeling the possible underlying dynamics of electroweak
physics. Furthermore, it has been shown that the soft-wall background itself can arise
dynamically from underlying physics [62], suggesting a possible route toward developing
a more complete theory.

In this chapter, we describe the construction of a concrete 5D gravity model as a
starting point to address the hierarchy problem and stability in the soft-wall framework.
To this end, we will first review the background necessary to study physics in the soft-
wall background. This includes a brief discussion of the possible dynamical origin of the
model using the techniques of Ref. [62]. We will then discuss the phenomenology of gravi-
tons and bulk fields in the model. Even though the fifth dimension is infinite, the KK
spectrum can be discrete, with a variety of spacing between resonances. The discussion
of bulk fermions is particularly involved. Specifically, it is necessary to move beyond the
perturbative zero-mode approximation typically employed in hard-wall calculations and

fully account for the 5D Yukawa interactions that generate position-dependent fermion
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mass terms and lead to “twisting” of the standard model flavors in the extra space.
For this reason, we devote the entire next chapter to the treatment of fermions. The
final portion of this chapter is devoted to describing a concrete model of electroweak
physics with custodial symmetry, including a description of the dynamics leading to
an IR-peaked bulk Higgs condensate responsible for spontaneously breaking elecroweak
symmetry. The experimental constraints are discussed and shown to be less stringent
than in hard-wall models, suggesting the possibility of observing KK resonances at the
TeV scale.

3.2 The Soft-Wall Background

3.2A Overview

The basic feature which distinguishes the soft-wall warped dimension from the usual
hard-wall slice of AdS is the replacement of the IR brane with a smooth spacetime
cutoff. This can be modeled in different ways. For example one can begin in the “string
frame” by considering the background metric as being pure AdS, as in the original

Randall-Sundrum scenario. Using the conformal coordinate z, this can be written as
ds? = gyndae™daN = e 24y ndaM dzV, (3.2.1)

where A(z) = logkz, k is the AdS curvature scale, and nyny = diag(—, +, +,+, +).
Without either an IR brane or soft cutoff, a pure AdS spacetime results in a continuous
spectra for all particles [37, [41]. In this picture, the soft-wall arises due to the presence

of the “dilaton,” ®. The action then takes the form:

S:/d5$ —ge_q)ﬁsmng, (3.2.2)

where Lgiring is the matter field Lagrangian in the string frame. In contrast to hard-
wall models, the coordinate z extends to infinity, but the action remains finite assuming
suitable conditions on ®.

Alternatively, one can work in the “Einstein frame,” where the cutoff arises as a

result of a departure from pure AdS in the IR. From this point of view, the metric

(3.2.1) is modified as follows:

A(z) = A(2) = logkz + a(z), (3.2.3)
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so that the action may be generally written:

S = /d5x\/ _EﬁEinstein- (3.2.4)

Both approaches have been used in the literature [62] 60, 61, 96, 63], 66, [O7].

Importantly, it is possible to translate between the pictures using conformal coor-
dinate transformations. Thus, for calculations we are free to work in whichever picture
is most convenient. Although we are taking a phenomenological approach, we have in
mind that ® is to be identified with the string theory dilaton and the action may
originate from some particular D-brane construction [60]. Therefore, for most purposes,
we will stick to the string frame picture. However, when discussing the dynamical origin
of the background and gravitational fluctuations, it will be useful to employ the Einstein
frame where Einstein’s equations are considerably simpler.

In the holographic picture, ® is responsible for the confining dynamics at infrared
energy scales. Indeed, in this picture one can identify an effective running coupling
that grows in the IR, gge‘b ~ e¢®/N,, with N, the number of colors in the dual theory.
Correspondingly, sources located at large z will be strongly coupled, and processes
involving exchange of IR localized bulk KK modes can become nonperturbative at high
energies [60] 61]. However, for UV localized matter, as in the electroweak models that
we will present, the effective description will remain perturbative sufficiently far into
the infrared region.

We will present the most general analytic results whenever possible. However there
are many possible behaviors for the dilaton, and it is not possible to obtain closed form
solutions for arbitrary profiles. For concreteness we will at times consider power-law
behavior ®(z) = (uz)”. The eigenfunctions of bosonic bulk fields with a power-law
dilaton satisfy an analog 1D “Schrodinger” equation with a power-law potential. A
simple WKB approximation then shows that for large mode number n the KK mass
spectrum follows

m2 ~ p?n?2Y. (3.2.5)

so that y is roughly analogous to (z;) ! in hard-wall models. Even though the conformal
coordinate z extends to infinity, for v > 1 we obtain a discrete mass spectrum. In
particular, for the case v = 2 the spectrum exhibits linear “Regge” behavior. Later

we will specialize to this case as it allows for analytic results. As v — oo we recover
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2 ~ n2?. The dilaton power-law exponent, v,

the usual hard-wall mass spectrum m
therefore provides a continuous parameter in which the KK mass spectrum varies from
a continuum to that associated with a compact extra dimension. As discussed in [61],
there are other interesting but qualitatively distinct behaviors possible if v < 1. For
example, a constant dilaton [37] leads to “unparticles” [98] from a 4D perspective, while
“hidden valley” models [99] are obtained when v = 1 [100].

Though an IR brane is no longer needed, a UV boundary at small z is still required in
order to obtain the zero modes identified with the SM fields, which otherwise would not
be normalizable. This also follows from holography, because typically the zero modes
are (primarily) elementary fields associated with “sources” on the UV brane, rather

than composites emerging from the dual gauge theory. As in hard-wall models, the UV

brane will be located at a position zp = 1/k.

3.2B A Concrete Dynamical Model

Though it is possible to study certain aspects of soft-wall phenomenology from a purely
bottom-up approach, a number of important questions cannot be addressed without
reference to an underlying gravity theory. A dynamical gravitational model is required,
for example, to address issues regarding generation of hierarchies and stability. In
this section we present a dynamical 5D gravitational model which leads to a soft-wall
warped dimension. The model is the same as that in Ref. [62] with modifications to
accommodate a UV boundary.

We start with the Einstein frame action describing gravity and two scalar fields, the

“dilaton” ¢ and the “tachyon” T

S = / dx\/—7 <M3R — %gMNaMwm — %ﬁMN(‘)MTé)NT — V(ng,T))

— [ d*z/~guv Auov (9, T), (3.2.6)

where M is the 5D Planck scale. The relationship between ¢ and the dilaton ® defined
above will be described later. The bulk action contains a scalar potential V(¢,T"), and
there is UV boundary located at zyp = 1/k. The induced metric on the boundary is
denoted gy and there is a boundary potential Ayy.

To solve , we introduce a “superpotential”, W (¢, T'), to convert the system
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into a set of first-order differential equations [101} [102]. Using this procedure, we can

write the bulk and boundary potentials in the simple form

V(,T) = 18[(8{9@/>Z<5¥>2

Aov(o,T) = 6[W(po,To)+ W (00, To)(¢ — ¢0) + OrW (¢, To)(T — Tp) + -..],
(3.2.8)

- — W2 (3.2.7)

where ¢g, Ty are the boundary values at z = z3. The extra terms in the boundary
potential may contain higher powers of (¢ — ¢g) and (T — Tp) without affecting the
background solution.

There exists a solution to the 5D gravity-dilaton-tachyon equations of motion with

the metric gy = e2A(2) nuy and the background solutions [62]

Alz) = g(,uz)”—l—logkz, (3.2.9)
P(z) = \/§M3/2(MZ)V, (3.2.10)
T(z) = +4/1+1/v M3 (uz)"/?, (3.2.11)

where the tilde in distinguishes the Einstein frame from the “string” frame. Note
also that there are additive constants in the solutions and , which we
have set to zero. The superpotential that gives rise to this solution is

W (o, T) = M3k | (v + 1)l /AWM _, (1 - \/éz@?’/?> eWW@M”?)} . (3.2.12)
from which the scalar potential can be obtained using Eq. .

The parameter p is an integration constant in the solution and sets the IR scale

of the soft wall. This is analogous to the radius in RS1, which is also identified as a
modulus field. Without stabilization of the scale u, there should exist a massless radion
associated with this modulus. However, we will see next that the UV boundary potential
can in fact stabilize p, and we therefore expect that the radion becomes massive. A
complete answer to this question can only be obtained by analyzing the fluctuations of
the background solutions, which is beyond the scope of the present work (but see Ref.
[103]).
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The UV boundary conditions are found to be

7 0A
M3eA% = Wi(¢o,Tp), (3.2.13)
20
70
eAa—f = 60sW (¢, To), (3.2.14)
20
eg%f — 69rW (o, T), (3.2.15)
20

which imply that

$o = \/§M3/2(uzo)”, (3.2.16)
To = +4/(1+1/v) M3 (uzg)"/?. (3.2.17)

Taking zp = 1/k, Egs. (3.2.16) and (3.2.17) fix the soft-wall scale to be
1/v 2/v

N N R / . 1 1o !
H= sMm32) U\ x4 T 1o MI2)

Note that (3.2.18)) also implies a tuning between ¢g and Ty. Clearly, a large hierarchy
cannot be generated between the UV scale k£ and the soft-wall IR scale p for v > 1 if

(3.2.18)

natural values are assumed for the boundary values, ¢g ~ Ty ~ M 3/2 as this implies
1 < k, with a larger hierarchy for smaller values of v. In the case v = 2 on which we
will focus later, it is clearly not possible to generate the Planck-weak scale hierarchy
without a significant amount of tuning. Interestingly, the hierarchy u/k ~ 10716 can
be naturally generated for ¢ ~ 0.1 M3/2 and v ~ 1/13, but this does not give rise to a
discrete KK particle spectrum. A more involved discussion of naturalness in this model
can be found in [I03]. Their discussion can be related to the above construction by
making the simple replacement ny = Tp/ V2.

While the boundary action fails to naturally generate a large hierarchy be-
tween k and pu, an alternative way to satisfy the boundary conditions for ¢ and T is to
let

Avv (o, T) =6W (o, T). (3.2.19)

The boundary conditions following from the variational principle do not then fix the

IR scale p. With this assumption other stabilization mechanisms can then be explored.
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For example, we might consider an additional scalar field .S, as in the Goldberger-Wise
mechanism [71], with a small amplitude so that the backreaction on the metric can
be neglected. If the field has a profile S(z) ~ M3/2(uz)?, and boundary condition
analogous to those in (3.2.14]) and (3.2.15)), this would suggest p/k ~ (SO/M3/2)1/5. A
large hierarchy between k and p would be obtained if 0 < 5 < 1.

Although our main application of the soft-wall background will be to model elec-
troweak physics, one can ask whether ordinary 4D gravity can be incorporated naturally
into our model. The 4D Planck mass is given by

M o= M / " gz A0,

20

22/1/ M3/1'2 2 \Y M3
- = =ZFr <—V,2 (E) ) ~ S (3.2.20)
where T'(n,z) is the incomplete Gamma function, and we have used zp = 1/k and

assumed p/k < 1 in the last step. We can see that there is a problem because we would
like to have u ~ TeV to model electroweak physics. Lacking a robust mechanism that
generates a hierarchy between p and k means that k ~ p ~ TeV. If we take as usual
k < M, then according to we cannot account for the weakness of gravity.

With these considerations, there are two possible cases for the UV scale k < M: (i)
k < Mp,i.e. there is no large hierarchy and we project out the zero-mode graviton with
Dirichlet conditions (for concreteness we will take k& ~ 1000y as in [104]); (ii) & ~ Mp,
i.e. we assume a suitable stabilization mechanism may be found and apply Neumann
conditions to allow a massless graviton.

Note that the metric and action describing matter fields is defined
in the string frame, which is obtained by rescaling the dilaton ¢ = \/%M 329 and

—43/3

performing a conformal transformation gyny — e gun- In the string frame, the

background solutions for the metric and dilaton become
A(z) = logkz, (3.2.21)
O(z) = (uz)”. (3.2.22)
We have a pure AdS metric and power-law dilaton as advertised in Section Unless
otherwise specified we will now restrict to v = 2. This will give rise to a linear Regge-like

mass spectrum and will enable analytic solutions to be obtained. Other values of v will

lead to qualitatively similar features.
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3.2C Gravity in the Soft-Wall

To study the graviton modes, we examine fluctuations of the background metric in the
Einstein frame, gyp/n. The most general expression for the perturbed metric leading to
4D graviton modes takes the form of (2.2.1)):

ds? = ¢~2A@) [ (M + hyw (@, 2)) datda” + sz]. (3.2.23)

Thus, it is straightforward to adapt the results of Sections [2.2A] and 2.3D] In the
transverse-traceless gauge d,h*" = hl, = 0 and using the KK expansion (2.2.§)), the

equations of motion for the z-dependent piece f}gn)(z) becomes

05(e 3405 £ (2)) + m2e 34 (2) = 0. (3.2.24)

The redefinition fhn)(z) = 34(2)/ 2]?;;(2) brings the equation of motion into the form of

a factorizable 1D Schrédinger equation with potential V(z) = W? — W',

(=05 + W (2)) (85 + W(2)) [ (2) = m2 [ (), (3.2.25)

where
W(z) = ;A’, (3.2.26)
V(z) = 4tz + 4% + %, (3.2.27)

and the solutions are normalized as

M3 / Tz I (z) = 67, (3.2.28)
20
With a Neumann UV boundary condition 0Os f,gn)] 2z = 0, we can see that a massless
mode f,(lo) (z) = 1/Mp still exists, where Mp is defined in (3.2.20). This is expected
since we have not broken 4D coordinate invariance.

Next we turn to m, # 0. The potential is familiar as the radial equation for a
two-dimensional harmonic oscillator. Redefining ¢ = v/2uz, the Schrédinger equation

is now

mQ — ~ ~ o~
(—a§ +&°+ 521/4> fi(2) = Enfy(2), (3.2.29)



41
where E, = (m% —4/,L2) /2p? and m = 2. In the limit 29 — 0, the solution will
match the well-known result from quantum mechanics, for which the eigenvalues take
on integer values En =4n+2m+ 2 for n=0,1,2,... and the wavefunctions are given
in terms of associated Laguerre polynomials as f}En) ~ e ¢/ 2emH1/21m(e2). However,
imposing a Neumann or Dirichlet boundary condition at zy > 0 changes the energy
levels such that they no longer take on integer values, and the solutions are no longer

simple polynomials. The normalizable solutions are instead given by
n n) —34 1 5
F(2) = NMe3AE/ Va2 7 (—4(En +2),-1 ,§2> : (3.2.30)

where U(a, b,y) is the Tricomi confluent hypergeometric function. The profiles f;'(2)

are therefore

n n m%
fMz) =N U (—W —1 ,2u222> : (3.2.31)
£(N)
fn (2
uz 2uz 3uz

Figure 3.1: KK graviton profiles: The zero mode (solid), n = 1 (dash), and n = 2 (dot),
for p =1 TeV and k = 1000 TeV. If k and p have a Planck-weak scale separation, then
the zero mode is further separated from the KK modes.

The KK mass spectrum can be found by applying the UV boundary condition. In

the limit pzo < 1, the KK modes follow approximate linear trajectories:

m2 ~8u*(n+2), n=012.... (3.2.32)
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The approximate mass formula is valid for both Neumann and Dirichlet con-

ditions. This is because the mass spectrum is largely determined by IR dynamics and

is not overly sensitive to the UV boundary condition. The first few modes have been
plotted in Figure 3.1

For z > zj, the wavefunctions are well approximated by the Laguerre

polynomial solutions,

F(2) = Ny (=) (n)! 4(u) L2 (20222) (3.2.33)
Using (3.2.33)), we can derive an approximate expression for the normalization:
, —1/2
D" k| M~ () (=n)k
NJ' ~ - | — k+2)! .2.34
e Tl j;o TG Ry YRR (3234)
where the Pochhammer symbol (n); is defined as
i1 (ntj—1)! forneZ
() =[Jla+k)y=¢ W - (3.2.35)
- 1y (=n)!
k=0 (—1) oy forneZ.

The sum can be performed,

n—1
(=n); (=n) , B 1
j;() i G +]2)! k! (k +k2)! (U +k+2)l= CECED) (3.2.36)

and using (3.2.20]), we can write the normalization as

Curk [ o
Mp p \ (n+2)!/(n)!"

As in hard-wall models, the couplings of the KK gravitons depend on where matter

NP ~ (3.2.37)

is located in the extra dimension. Later we will examine electroweak models with
UV localized fermions. In this case the KK mode gravitons couple with a strength
}(Ln) (20) ~ u/(kMp), which is extremely suppressed and not likely to have observable

consequences. This of course will change if fermions propagate in the bulk.

3.3 Bulk fields

We will now consider bulk gauge and fermion fields in the soft-wall background. As mo-
tivated in Section the starting point will be the action ([3.2.2)) with an appropriate

matter Lagrangian.
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3.3A Gauge Fields

Consider the simple case of a U(1) gauge field Ap/(x,z) in the bulk. The gauge field

dynamics are described by the action
1
S = /d%dz\/—g e ? (—4FMNFMN> : (3.3.1)

Performing a KK decomposition,
Aulz,2) =Y Ap(@) fA(2), (3.3.2)
n=0

the wavefunctions obey the equation of motion

— e<A+¢)65(6_(A+©)65f£1n)> =mj, fzgxn)’ (3.3.3)

n

and are normalized according to

/OO dz e AP () i (z) = 6™, (3.3.4)

20

These relationships are exactly the same as (2.3.22) and (2.3.23)) up to the redefinition
A — A+ ®. Therefore, the discussion of Sections and are easily applied. A

massless mode persists due to the unbroken gauge symmetry. It is constant:

)y _ 2k k
)= \/ TE () \/ log(k/1) /2 (3:3:9)

where Ei(x) is the exponential integral function, v ~ 0.577 is the Euler-Mascheroni

constant, and we have used zgp = 1/k and p/k < 1. The Schrodinger potential following
from (2.3.24) with W (z) = (A’ + ®')/2 = p?z + 1/(22) is now given by

3
Viz)=W?-W' =p*22+ = 3.3.6
(2) W+ (3.3.6)
Using the same techniques as for the graviton above, the wavefunctions of the massive

modes are found to be

n n m%
fMe) =N (;ﬂ .0 ,,u2z2> . (3.3.7)
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Applying the Neumann condition to the wavefunctions at the UV boundary de-
termines the mass spectrum of the excited vector modes. We find that in the limit

u/k < 1, the gauge boson masses follow approximate linear trajectories:
m?2 ~4p®(n + 1), n=0,1,2.... (3.3.8)
For large z, the wavefunctions reduce to Laguerre polynomials:
Fi ) = NOY (=) (n)! 222 L (u227) . (3.3.9)
Similarly, as for the graviton wavefunction case, this form of the wavefunction can be
used to derive an approximate expression for the normalization:

N ~ (7(:)& 2(n+ k. (3.3.10)

3.3B Fermions

While the analysis of bulk gauge fields in the soft-wall background is straightforward,
this is not the case for fermions. We will postpone a detailed discussion of the full
treatment of fermions until Chapter Our purpose here is to highlight the issues
involved.

As was discussed in Chapter [2] fermions are typically analyzed using the zero-mode
approximation, treating Yukawa interactions with the Higgs as perturbations and ob-
taining fermion masses from wavefunction overlap integrals [79, [80 [78]. The simplifi-
cation thereby introduced is considerable: modes of opposite chirality can be treated
completely separately. However, this approach is not valid for the soft-wall scenario.
Unlike in hard-wall models with an IR brane, the Higgs boson in a soft-wall background
must necessarily propagate in the bulk. Since the Higgs profile should be peaked in the
IR (to be dual to a composite electroweak symmetry breaking sector), the backreaction
of the Higgs vacuum expectation value (VEV) on the bulk fermion equations of motion
at large z cannot be neglected. The proper approach is to diagonalize the bulk equations
of motion and obtain the SM fermion masses from the boundary conditionsﬂ Attempt-

ing to treat the Yukawa interaction perturbatively necessarily introduces problems with

! Note that in general any model with a bulk Higgs condensate and bulk fermions should be analyzed
in this way. However with a hard wall cutting off the extra dimension, it may be reasonable to treat the
bulk Yukawa interaction as a perturbation and use the zero-mode approximation for fermions (although,
see also [93)]).
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strong coupling and normalizability. To see this, we will consider fermions in a soft-wall

background modeled first by a dilaton and second by a deformed AdS metric.

Dilaton soft wall

First, we can imagine the dilaton providing the soft wall, with ®(z) = p?22 and a pure
AdS metric A(z) = logkz. Inserting the prefactor e~® into the fermion action ([2.3.39)
results in an equation of motion analogous to ([2.3.41]):

' y,0, ¥+ £ 6(2A+%)85 (e*(QAJF%)\I/i) + e AMy¥y =0, (3.3.11)

Inserting the KK-decomposition ([2.3.43]), the equations of motion for the transformed
field U = e~ (24+®/2)¥ hecomes identical to (2.3.44):

(£05+ e M) 1 (2) = ma F(2). (3.3.12)
Moreover, the normalization condition is identical (2.3.47]). The remarkable fact is that

the transformed functions depend only on the metric and not on the dilaton profile, a
result of the fact that the equations of motion are first order in derivatives. The zero

modes have the same power-law profile as in hard-wall models:
F90) o 2T (3.3.13)

Since the extra space extends to z — oo, these modes are normalizable if 1 F 2¢ < 0,
meaning only UV localized zero modes are allowed. Additionally, while it would ap-
pear that the Kaluza-Klein spectrum is unchanged, in fact the spectrum is no longer
discrete but instead becomes continuous. The wavefunctions given by asymp-
totically approach plane wave solutions. This is similar to the behavior of gravitons in
the Randall-Sundrum model when the IR brane is removed [37], however there is no
normalizable mode in the absence of boundary mass terms.

Let us examine the gauge coupling between a zero-mode fermion f; and a KK gauge
boson. The gauge boson wavefunction is given in given in Eq. . Inserting the
appropriate functions into the Lagrangian (see ), we find that the effective 4D

coupling behaves as:
00 2
g" 95/ dzz7> U <—m’§ ,0 ,u2z2>,
P 4p

0

[e.9]
~ 95/ dz 27222 (3.3.14)
20
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where we have used the asymptotic large z behavior of the hypergeometric function,
Ula,b,y) ~y™, (3.3.15)
in the final step. Noting the mass spectrum ({3.3.8]), this coupling becomes

g(”)oc/ dz 222 (3.3.16)

0

which diverges for n > ¢ — 1/2. Therefore, once a particular ¢ value is chosen, the

coupling ¢(™ diverges for sufficiently large gauge boson KK mode number n.

Metric soft wall

It is also possible to model the soft wall with an exponentially decaying metric, with
Z(z) = 2422%/3 + log kz. Again, we can follow the analysis above, this time setting
® = 0, and replacing A(z) — A(z). We then obtain the equation of motion for the
fermion profiles:

(+05 + e M) [ (2) = ma U (2). (3.3.17)

The massless mode solutions can be obtained straightforwardly by integrating Eq.

(3.3.17)), leading to
FO (2 oc eFe B(-20222/3) 2, (3.3.18)

However, this solution is not normalizable. The exponential integral function vanishes
as z — oo, and thus the profile g$ )(z) approaches a constant at large z. Noting the
normalization condition , we see that the zero mode is not normalizable, and is
therefore absent from the theory.

The problems discussed above are ultimately related to the fact that the fifth di-
mension extends to z — oo, and their origin is easily understood by considering the
the Schrodinger potentials in the second-order equations for the fields. The potentials
vanish as z — oo. If we consider Yukawa interactions with a bulk Higgs, it is easy to see
that the perturbabive approximation is invalid. The large addition to the potential due
to the IR peaked Higgs profile cannot be treated as a perturbation upon a vanishing
potentiall We therefore endeavor to fully account for the Higgs feedback on the fermion

equations of motion. This is the subject of Chapter For the time being, we will

simply assume that there exist fermion solutions that are UV-localized.
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3.4 Electroweak models

In this section we investigate models of electroweak symmetry breaking with a soft-wall
background. For simplicity, we will consider SM fermions localized on the UV brane,
which are interpreted as elementary states in the holographic theory. It is possible to
generalize these models to include bulk fermions based on the analysis presented in
Chapter [l We will focus on bulk gauge fields interacting with a Higgs field peaked at
large z, which is interpreted in the dual theory as electroweak symmetry breaking due
to strong dynamics.

We start by considering a model with a bulk custodial isospin gauge symmetry, so
as to protect the model from excessive contributions to precision electroweak observ-
ables [89], namely the Peskin-Takeuichi T parameter [48] [49]. The bulk gauge group
is SU(2),xSU(2)gpxU(1)x. On the UV boundary the gauge symmetry is broken via
boundary conditions to the electroweak subgroup SU(2);,xU(1)y. In the IR region, the
custodial symmetry is broken to the vector subgroup via a bulk Higgs condensate. In
the usual hard-wall setups, this symmetry breaking is achieved via a Higgs localized on
the IR brane [89] or via IR-brane boundary conditions as in Higgsless models [105] [106].
In fact, our setup is very similar to the “gaugephobic Higgs” model [107], though with
a different background geometry and no IR brane.

The Lagrangian of the model is given by

1 1 1
S = /d%« —ge—q’[— 4—g2Lﬁ/,NL“MN — 4—gQR7MNR“MN —3 = X XM

5 5 s

—Tr|DyH)? = V(H)| — /d4x\/gUVe_q> Vv (H), (3.4.1)

where L, (x, z), R};(z,2), and Xp(x, z) represent SU(2)r, SU(2)g, and U(1)x gauge
fields, respectively. In addition there is a bulk Higgs boson H(x,z) with bulk and
boundary potentials V(H) and Vyy (H), respectively. We have chosen the right- and
left-handed gauge couplings to be equal for simplicity.

We break SU(2)gp xU(1)x — U(1)y through boundary conditions on the UV brane.
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The gauge fields satisfy the following UV boundary conditions,

d5L
1 1 p3
a5 (g/52Xp, + ggRH>

which break SU(2)gr x U(1)x — U(1)y. The four would-be massless directions are
indicated by the Neumann conditions.
The bulk Higgs field is a bidoublet under SU(2)r, xSU(2)g transforming as:

=0, R.?

20 20 (3.4.2)
= (]’

20

=0, (X,—R})

20

H — U HU},. (3.4.3)

We define vector and axial-vector fields V&, A%, = (L4, + R%,)/V/2 as the Higgs field
only couples to the axial mode through the covariant derivative. After the Higgs acquires

a non-trivial profile along the fifth direction,

_ e (10
(H() =~ (0 1 ) (3.4.4)

the gauge symmetry is broken down to the vector subgroup SU(2)p x SU(2)p —
SU(2)y. The vector and axial modes can be analyzed using the methods of Sections[2.3B]
and We refer to the z-dependent pieces in the KK decompositions (see )
for Vi, and A}, as v(p, z) and a(p, z), respectively, where p = \/ﬁ is the 4-momentum.

The functions satisfy the equations of motion,

A (A V50(p,2)) = pu(p,z),  (345)

(A9 (N 05a(p,2)) - e HAERA()alp, ) = pPalp2).  (346)

The vector profile v(p, z) is obtained from , while the exact form of the axial-
vector profile can only be determined after specifying the Higgs VEV h(z). We will
next consider two simple cases which allow for an analytical determination of a(p, z).
Note that the X gauge boson profile is also given by v(p, z).

From a 4D perspective, the theory contains a massless photon, a KK tower of charged
W bosons, and a KK tower of neutral Z bosons with the lightest states in these towers

identified with the SM W and Z bosons, respectively. To determine the mass spectra,
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we apply the UV boundary conditions in Eq. (3.4.2). For the W tower, the spectrum

(with m2 = —p?) is determined by the following equation:

v(p, 20)d’ (p, 20) + a(p, 20)v'(p, 20) = 0, (3.4.7)

while for the photon and neutral Z boson tower we find

v'(p, 20) [gg(v(p, 20)d’ (p, 20) + a(p, 20)' (p, 20)) + 2952v(p, 20)d’ (p, 20)] =0. (3.4.8)

The prime (') symbol in Egs. and denotes differentiation with respect to
z. Note that of the two equations in , one equation (v'(p, zg) = 0) corresponds to
the excited modes of the photon, while the other equation determines the KK spectrum
of the Z boson.

To match the 5D theory to the 4D effective theory, we can relate the parameters gs,
g, and p to, for instance, the electric charge and the masses of the W and Z bosons

determined from (3.4.7) and (3.4.8)). Note that the massless mode is always of the form:
Vi | Xm _ Am

Ay o< —5 + = —. (3.4.9)
9 9 G
From this and the normalization (3.3.5)), the electric charge is computed to be
2 .12 k
o2~ 9595 (3.4.10)

g5+ 298 log(k/p) — /2
The W and Z boson masses will be computed for specific Higgs profiles below, but first
we consider the dynamics of the Higgs sector and present a simple model leading to an

IR-peaked Higgs background profile.

3.4A Higgs dynamics

We now analyze the dynamics leading to a bulk Higgs condensate. An understanding
of the Higgs dynamics is important for more than just aesthetic reasons; any realis-
tic phenomenological study requires a concrete dynamical model to analyze the Higgs
fluctuations and determine, for example, the mass of the physical Higgs scalar and its
couplings to SM fields.

The bulk Higgs potential in is assumed to have the form

V(H) = m%(2)Tr|H|?, (3.4.11)
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where we have defined a z-dependent effective mass
my(z) = k? [a(a — 4) — 2ap?2%] . (3.4.12)

According to the AdS/CFT dictionary, the particular constant mass-squared in (3.4.12)
corresponds to an operator with dimension Ay = |a — 2| 4+ 2 in the dual theory. The
z-dependent mass term is assumed to arise from a coupling to another scalar field which
obtains a background VEV. In fact, in our gravity model there are two candidates for
these scalar fields, the dilaton ® and tachyon 7. Interaction terms like ®|H|? or T?|H |?
can provide the 22 part of the mass term, although we do not need to specify the precise
origin of this term for the phenomenological analysis. Note also that there is a tuning
between the different terms in .

Inserting the background , we find the following equation of motion for h(z):

eBATR) g (e BAYD) g p) — e724m2, (2)h = 0. (3.4.13)
The general solution to this equation is
h(z) = 2% (co + el (2 — a, —p?2?%)) (3.4.14)

where cg, c; are arbitrary constants. Demanding finiteness of this solution in the soft-

wall background implies ¢; = 0, which leads to
h(z) = ¢pz®. (3.4.15)

We must add a UV boundary potential to ensure that the solution (3.4.15) can

non-trivially satisfy the boundary condition. An appropriate choice is

A
Vv (H) = ;73 (Te|H|? - v3)°, (3.4.16)

which leads to the UV boundary condition

(65h — @h(fﬂ — u§)>

2 =0. (3.4.17)

20

Substituting (3.4.15)) into this boundary condition gives rise to two possible solutions,

a trivial solution ¢y = 0, as well as a non-trivial solution:

2
2 _ 1.342a [ Y0 o
cg =k <k3 + 2)\0> . (3.4.18)
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The energy density per unit brane volume, H, can be calculated as in Ref. [10§]. The
difference between the trivial and non-trivial solution energy densities is found to be

2

H(h =0) —H(h = cpz®) = ;01@46—“223 OZ;’% + ‘;‘) . (3.4.19)

Therefore, the non-trivial Higgs background will be the ground state provided

that this difference is positive, which occurs when A\g > 0. Incidentally the energy

density of the non-trivial solution is of order k% + v3k, so provided v < k% and k < M

the backreaction on the gravitational background can be neglected.
In order to trigger electroweak symmetry breaking at a scale of order u, the bulk
Higgs VEV should become appreciable near z ~ 1/u, suggesting that c¢o k32, We

thus require that

2 2c
v «a W
-+ —~ (= . 4.2
k3 + 20 (k:) (3.4.20)

This is clearly tuned, since the quantity on the left hand side is naturally of order one.
The need for this tuning is due to the fact that the stabilizing potential is located on
the UV brane. Eq. suggests two possible situations: either v% is small and Ag
is large, or a partial cancellation occurs between the two terms on the left-hand side
of , in which case both v% and Ao can have perturbative values. To determine
which case can be realized we need to consider the spectrum of fluctuations about the
Higgs background.
To study the Higgs fluctuations, we write h(z) — h(z) + h(z,z). The equation of
motion for A is
Oh 4 eBA4®) g5 (= BAT®I g n) — e 24m2 h = 0. (3.4.21)

Due to the boundary quartic potential (3.4.16[), the UV boundary condition for the
fluctuation is a nonlinear equation that does not admit an analytic solution for the
eigenvalues. An approximate solution can be found by performing a linearized fluctua-

tion analysis. In this case the boundary condition for the fluctuation becomes

20

<a - ((h* —v3) + 2h2)) nl =o0. (3.4.22)

20

The KK-expansion is
h(z,z) = ZE(")(x)fT(ln)(z). (3.4.23)
n=0
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Transforming the functions in our accustomed way, fﬁ(n)(z) = (34+9)/2 f’%n) (z), the

profiles ﬁ’i(z) satisfy a Schrodinger equation with the potential

Vi(z) = (3’4,;@,>2 — <3AN2W> + e 24m%(2) (3.4.24)
(a—2)2 — 1/47

= 224201 —a)p® + (3.4.25)

22
which is of the same form as the potential in with m = a — 2. The solutions
for the untransformed profiles are then
fﬁn)(z) = N22°U (_m% ,oo—1 ,,u2z2> , (3.4.26)
h h Ap2
where NT? is a normalization factor. Applying the boundary conditions, the Higgs mass
spectrum is determined by the equation

2,2 my 2,2 ma 2,2
ma 25 U _4TL2+1’Q’MZO —4C¢U e a—1,pu%25) =0, (3.4.27)

where ( = a + 2X\gv3/k? ~ 2Xo(1/k)?®. In the limit [¢| < 1 the Higgs (lowest lying
mode) mass-squared is m3 ~ 2¢k?/log(k/u). For ( < 0 we find a tachyon mode, and a
zero mode at ¢ = 0, so we restrict to ¢ > 0. The Higgs mass increases as we increase
(. Note that these results are at the linearized level and the nonlinear terms in the UV
boundary condition have been neglected.

Earlier we argued that A\g > 0 if the non-trivial Higgs profile is to be the vacuum
state of the theory. Now we see that this condition also implies that there are no tachyon
modes provided v3/k3 > —a/(2\). In particular, for v} /k* = —a/(2Xo)+e then (3.4.20)
can be satisfied with € ~ (11/k)?, implying that v and A can have perturbative values.
Thus, a perturbative solution describing electroweak symmetry breaking with a light
Higgs boson can be found. However, for large enough (, corresponding to a heavy Higgs

or technicolor limit, the theory becomes nonperturbative.

3.4B Electroweak constraints

With fermions localized on the UV brane and a bulk custodial symmetry, the most
important constraint on this model comes from the S parameter [48] [49]. Of course,

one would like to extend fermions into the bulk in a realistic manner to understand the
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SM flavor structure. In this case, there are other constraints that arise from loop level
contributions to the T parameter from KK mode fermions and nonuniversal corrections
to the Zbb coupling [89, 109], as well as stringent constraints from flavor violation
[110) 1111 112]. Mechanisms to weaken these constraints have been developed recently,
(e.g. using different custodial representations for third generation fermions [113]), and
there is no reason to expect such mechanisms cannot be implemented in the soft-wall
warped framework. Nevertheless, the constraint from S is still fairly restrictive in hard-
wall models, forcing the KK scale to be around 3 TeV [89]. It is thus interesting to see
whether or not the constraint from S can be weakened in a soft-wall background.
Recently, Ref. [61] found that the KK scale can indeed be lowered depending on the
assumptions regarding the type of soft wall and Higgs condensate. In particular, they
considered an example with a “linear” soft wall (v = 2 in our notation) with a quadratic
Higgs profile, finding that the KK scale can be around 2 TeV. We will verify this result,
and present another example for the linear soft wall in which the constraints are even
less severe.
To calculate the S parameter we will use the boundary effective action approach [114]
which is particularly convenient when fermions are UV localized. Following [114] [1T5],

the general expression for the vector and axial-vector self energies is

1
Sy = —76—<A+‘P>@ , (3.4.28)
95 v 20
1
Y4 = —ﬁe—(“q’)@ (3.4.29)
95 a 20
The S parameter is defined as
S = 8w (21, (0) — ¥'4(0)) . (3.4.30)

From the exact expression for the vector profile given in (3.3.7)), the vector self energy
is ,
e—yQ,zg 9 U (1 + f? 5 1 ,,LLQZ(%)

Sv(p®) = P (3.4.31)
295k U (% ,0 ,uzzg)
In the limit pzp < 1 we find
1
¥ (0) ~ (—vy —2log pzo) - (3.4.32)

- Zggkz
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We now examine two explicit examples of profiles h(z) which allow for an analytic
determination of the axial-vector profile a(p, z) and S, finding in each case that the KK

scale can be lowered.

Linear VEV

Assuming v = 2 the first case we consider is when the Higgs VEV is linear in z, so that
GEh?(2) = €k 222, (3.4.33)

where ¢ is a dimensionless parameter. This requires choosing a = 1 or m%(z) =
—3k% —2%2%. In the dual holographic theory this corresponds to electroweak symmetry
breaking with an operator of dimension Ay = 3. From the equation of motion (3.4.6),

we find the axial-vector profile a(z):

_ € 2.2
a(p,z)—U<4M —1—4 ,0 uz). (3.4.34)

By expanding the spectrum equations (3.4.7)) and (3.4.8) in the limit puzp < 1, £ < 1
we find two light modes that can be identified with the W and Z bosons, with masses:

1

my o~ 75,12, (3.4.35)
1 2L

my g5+ 9 . (3.4.36)
2 9% + 95

We can see the custodial symmetry at work in the relationship between the W and Z
masses [105], [106]. The ratio m¥,/m% ~ (g2 + 92)/(9? + 292) ~ ¢*/(g* + ¢'*), where
g,g are the SU(2)., U(1)y gauge couplings, respectively.

The closed form expression for the axial-vector self energy is

> L€ 2.2

67/,L2Zg U(l-l—ffg-i-z,l,uzo)
Sa?) = S 0+ e — (3.4.37)

95 U<W+Z,O,,uz0)
Taking the limit pzp < 1, £ < 1 the derivative becomes
1 2

¥4 (0 —y —21 - —¢ . 3.4.38
40) > o (= 2lo i - T3¢ (3.4.38)
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Combining [3.4.38 with (3.4.32), we find the S parameter for the case of a linear Higgs

VEV: 5 5 )
LN 2T miy,

" 3g2k — 3¢2(log(k/p) —7/2) p*
Requiring S' < 0.2 implies that when the UV scale is 1000 TeV, the IR scale u < 0.5 TeV.

Thus, the first KK gauge boson resonances have masses of order 1 TeV. If we choose the

S

(3.4.39)

UV scale to be of order Mp then the constraint is even weaker, and the first KK modes
can be quite light, of order 300-500 GeV! Also, since the spacing between successive
modes is 2u, in this scenario it may actually be possible to observe the linear trajectory
at the LHC.

Quadratic VEV

Next for v = 2 we consider a quadratic profile for the Higgs,

geh?(2) = €k utst, (3.4.40)

This requires choosing o = 2 or m%(z) = —4k? — 44222, In the dual holographic

theory this corresponds to electroweak symmetry breaking with an operator of dimension
Ay = 2. The axial-vector profile is then
2
— POV (P o T Ep2? 3.4.41
a(p,z) =e <4M2 Tre " §u 2" ). (3.4.41)
Expanding (3.4.7) and (3.4.8]) in the limit puzp < 1, £ < 1, the masses of the W and Z
bosons are found to be

1 1

2 2
% SR — 3.4.42
v 4log(k/p) — /2 (3442)
1g2+ 292 1
ml ~ -9t €. (3.4.43)

4 g2+ g2 log(k/u) — /2
The axial-vector self energy can then be computed and is given by,
2
e [ LU (Ut gl 1 VT G4
p
292k 2 AT E
g5 U<4,u2p71+§ 70 s 1+§M223)

which leads to the expression for ¥'(0) in the limit pzg < 1:

(—'v — 2log p1z9 — log \/ﬁ) : (3.4.45)

Ya(p?) = — 2121 —\/1+&)|, (3.4.44)

¥4(0) ~

1
29§k



56
The S parameter is therefore given by
s iy

2
szlog(l—i—{)z 5

p o (3.4.46)
5

In the case when the Higgs VEV is quadratic in z, the constraint S < 0.2 translates
into an upper bound of p < 1.3 TeV, which is very similar to the result obtained in
Ref. [61] for the same mass term (using their € = 1). There is some weak dependence on
the ratio k/p in S, and taking k ~ M, the lower bound on p becomes approximately
1.2 TeV.



Chapter 4

Fermions in the Soft-Wall

In Chapter we reviewed the treatment of bulk fields in a hard-wall background,
In particular, in Section we discussed how to obtain hierarchical fermion masses
in hard-wall setups. The perturbative approach we employed is a familiar technique
useful for solving many problems in physics. We started with the free theory of two
chiral fermion fields absent Yukawa interactions and found the fermion wavefunction
profiles along the extra spatial direction. Next, we accounted for the Yukawa interaction
between the fermions by using elementary perturbation theory to calculate the resulting
contribution to 4D particle masses. Although that is as far as we went in Chapter [2] it
is also possible to calculate first-order corrections to the wavefunctions resulting from
the interaction, or to fit to known flavor physics observables [93], 04].

When we examined soft-wall models in Chapter |3, we found that this approach is ill-
suited. The ultimate reason for the difficulty was discussed in Section The Higgs
interaction is expected to take place in the IR (so as to trigger electroweak symmetry
breaking at the TeV scale), where the effective Schrodinger potentials in the fermion
equations of motion vanish. In such a scenario, the familiar perturbative approach is
invalid.

Thus, we are seemingly left with no choice but to approach the full problem, coupling
the fermions in the bulk and solving the resulting system of equations. As we will see,
this is made difficult because modeling just a single generation of fermions requires solv-
ing a fourth-order system—significantly more complicated than the first-order zero-mode

equations of motion we found in Chapter 2l Moreover, with interactions throughout the

o7
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bulk, it becomes extremely cumbersome to discuss any flavor physics effects whatsoever
absent unjustified assumptions regarding the structure of the 5D Yukawa couplings.

In this chapter we present a comprehensive analysis of bulk fermions in a soft-
wall background. We document several analytical solutions for special cases of the
single generation problem in the context of the electroweak model of Section Our
results show that many of the attractive features of hard-wall models, including the
natural suppression of flavor violation through a GIM-like mechanism are retained. We
also cover several approximation methods that allow for the analysis of fermions in an
arbitrary background. Finally, we attack the complete three-generation case using a
non-iterative numerical routine. We present the full dependence of SM fermion masses
on the masses in the bulk and compare the results to a typical hard-wall model. We
find that the behavior is very different in the phenomenologically interesting region of
the parameter space, where the bulk SU(2);, doublet and singlet fermions have opposite
bulk masses. We then present results for the case of three generations with substantial
mixing between bulk profiles. We find example spectra resembling the up- and down-
type quarks in the spirit of Ref. [116].

Our discussion follows closely the work of Ref. [66]. Other approaches to this
problem can be found in Refs. [65] 64, [117]. An iterative numerical approach may also
be found in Ref. [118]; the iterative method offers improved stability when there are
extremely large scale hierarchies in the model, however it does not extend readily to the

three-generation problem as our approach does.

4.1 Fermions in the Soft-Wall Background

4.1A The Fermion Lagrangian and Equations of Motion

We work in the setup described in detail in Chapter |3l The spacetime is parameterized

by (x*, z) with conformal coordinate z and metric:
ds? = e 24y ndaM daN | (4.1.1)

where nyn = diag(—,+,4,+,+). In particular we will consider a pure AdS metric,
ie. A(z) = logkz with k the AdS curvature scale. The spacetime is defined on the

interval z € [zg,00), where z( is the location of the UV brane. The spacetime extends
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to z — o0, and we will therefore consider a soft-wall setup in which the dilaton, ®
obtains a background value and provides a dynamical cutoff to spacetime. The gauge

and matter fields are described by the action,
S = /d%; —ge ®L, (4.1.2)

where L is the 5D Lagrangian. While much of our discussion of fermions in this chapter
is valid in general, for the sake of concreteness we will specifically consider the dilaton
profile used during our analysis of gauge, scalar, and graviton flucutations in Chapter

d(z) = (puz)?, (4.1.3)

where the soft-wall mass scale y ~ 1 TeV.

Consider 5D Dirac fermions, ¥% (U%) which transform as a doublet (singlet) under
SU(2)r. Tt is straightforward to embed our setup in a theory with a bulk custodial
SU(2)r, x SU(2)r symmetry as in Section but this will not be essential for our

discussion. In the absence of Yukawa interactions, the fermion action is given by:

1 ,- . . _ . . o .
S = _/d% —ge® { 5 (OY N AADNTF — Dy Ul AATE) + MUYy
1, . . , o
+ 5 (Wred v Dy ¥y — Dy Wrel v W) + MEURWL| , (414)

where e% = eAéle is the vielbein and Dj; = 0p; + wyys is the covariant derivative with
spin connection wys. The index a is an SU(2) label, while 4, j are 5D flavor indices.
The projections of the Dirac spinors are given by W% _ = +£450% _ and similarly for

\I”}é. Dirichlet conditions are imposed on the fields \Iﬂf_ and \IlﬁLz . at the UV boundary:

Uy (z,2)] = 0,

20

U (2,2)] = 0. (4.1.5)

20
This choice of boundary conditions is familiar from our discussion of hard-wall models
in Chapter [2] as it gives rise to massless chiral fermions from the 4D point of view.
As we saw in Chapter [3] for a soft-wall model we instead get a continuum of modes in

the AdS background. Introducing a Yukawa coupling to a bulk Higgs, whose vacuum
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expectation value (VEV) is z-dependent, will result in a discrete spectrum and raise the

would-be zero-mode. The Yukawa interaction contribution to the action is:
T :
Syukawa = — / d537\/ _g€_<I) [ ﬁ ‘I/%Z(.T, Z)Ha(.ilf, Z)‘PE(JZ‘, Z) + h.c. i| ,
—/d5$\/—ge_q) [mij(z) W (z, Z)\Ifiz(l', z) + h.c.}, (4.1.6)

where we have substituted the background value for the Higgs field:

H(z,2) — H(z) = h&? < (1) ) 7 (4.1.7)

and dropped the SU(2) labels ¥, = ¥2. Note that we have dropped the SU(2)., x

SU(2)g custodial symmetry requirement here, as it is not relevant to our discussion.

The effective z-dependent bulk mass term arising from the Yukawa interaction is simply:

ij
>\5

m¥(z) = mh(z). (4.1.8)

To ensure a discrete spectrum of fermion masses, the Higgs VEV must grow faster than

the metric factor, eA(®) = 1/(kz), decays. Namelyl
lim hz) — 0. (4.1.9)
Z—00 z

Varying the action with respect to W L,r, we find the equations of motion:
VOt F Ostbpe + e MPY]_+ e Amiyl, . = 0, (4.1.10)
V'O F 05ty + e AMPhy + e Amliyl - = o, (4.1.11)
where we have defined U = ¢24+%/2y. This transformation shows that the fermion mass
spectra do not depend on the presence of the dilaton. Rather, it is the Higgs VEV that
sets the fermion spacing, in contrast to the case of bosonic fields.

We seek solutions to these equations of motion that satisfy separation of variables.

The KK expansion for the fields 7, p+ is assumed to be:

@Dii(%Z) = Zij: a(n)(ﬂf), (4.1.12)

Vha(r,2) = ZfRi i (), (4.1.13)

1 Other possiblities may also be considered. For example, if lim h(z)/z — pu > 0, there can exist
Z—r 00

discrete low-lying modes with a continuous spectrum above a “mass gap,” as in Refs. [65] 96].
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a(n)

where v#0,91 = —m%@[)sé(n) (no sum over «). Similar to the conventions of Ref. [116]
we have introduced separate Latin and Greek indices labelling the 5D and 4D flavor,
respectively. In this way, n is analagous to a principal quantum number while « runs
over states with degenerate principal quantum numbers and split energy levels. Note

that this KK-expansion is designed to diagonalize the 4D mass matrix. Defining the

vectors: ()
Tia(n fza "
fem = ( “%j(n) ; (4.1.14)
fR:t
allows the equations of motion for the 5D fields to be written in the form:
[£0567 + M) f120) () = m fre™), (4.1.15)

where the mixing matrix is defined as

Moo MmUY (4.1.16)
mii(z) M}

Note that «,4,j run from 1,... Np, where Np is the number of fermion generations.
Thus M%¥ is a 2Np x 2Np matrix, and equation represents a coupled system
of 4Ny differential equations for each o. The 4D fermion fields wi(n) (x) are canonically
normalized by requiring that:

/ dz (A A 4 (el ) = ammaer, (4.1.17)

0

Note that the index i is to be summed over in this expression.

Before ending our general discussion of the fermion setup, let us count and discuss
the parameters involved in the problem. There are 4Np integration constants to be
fixed. Of these, 2N are fixed explicitly by the boundary conditions (4.1.5)). The
remaining 2Ny constants are fixed by the normalization condition . One of
these constants corresponds to an overall scale, while the other 2Ng — 1 constants may
be recast as the ratios of the various non-vanishing field components at the boundary.
A consistent solution can only exist for certain values of the mS. In general, however, it
is not possible to determine the masses or normalization constants independently. This

is the source of difficulty in solving the problem.
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4.2 Fermion Spectrum

The coupled equations (4.1.15)) cannot be solved analytically except for a few special
single-generation cases, depending upon the particular form of the Higgs VEV and
the relative bulk masses for the fermions. We first review the single generation case in
detail. We begin very generally, emphasizing that these methods apply to a wide variety
of soft-wall models in AdS. We then specialize to a quadratic VEV and find the explicit
solutions to the equations of motion for the special cases. The analytic solutions allow
us to verify the results of the numerical routine we present in Section (as well as the

numerical treatment of Ref. [64] in which the Yukawas are treated perturbatively).

4.2A Single Generation
For a single generation of fermions, equation (4.1.15]) becomes:
[£0, + M) 1 (2) = ma f(2), (4.2.1)

where M is a 2 x 2 mixing matrix:

A4:€A<£Z)?zx> (4.2.2)

The equations for ﬁn) and f(_n) can be decoupled by deriving a second-order equation
from (4.2.1]). The fields 1@ obey a Schrodinger-like equation:

(~02 + V) [V = m2 f, (4.2.3)
where the “potentials” are given by:
Vi(z) = M2 F M. (4.2.4)

This is of the same apparent form as the superpotentials we introduced previously, only
now the potential is a matrix. The difficulty in solving is due to the fact that the
mixing matrix generally cannot be diagonalized through global transformations of the
functions, fLi’ r+. However, there are special cases for which the second-order equations

can be decoupled further. They occur whenever:

My = Mg, “degenerate”
My + Mg+ 0.¢4%) = 0. “split” (4.2.5)
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The “degenerate” case is separable in any background. The “split” cases are separable
regardless of the Higgs VEV in AdS, where the split-case condition simply becomes
My + Mgtk =0.

For generic forms of the Higgs VEV, it is most useful to work with transformed

fields,
(n) #(n)
() _ [ 9+ ) _ <n>_1<1 1><Li>
gy = - =Uf"=— = - (4.2.6)
(9%3:) V21 1 I

In this basis the equations of motion are given by,

[i@z + /T/l\} gin)(z) = mng(;")(z), (4.2.7)
where
— -4 (2 M M My, — M,
M= vtmo = <2 2mE) + Mu+ My LR . (42.8)
2 ML—MR —2m(z)+ML—|—MR

while the boundary conditions (4.1.5) become:

(4.2.9)

We may also define transformed potentials, 91, in direct analogy with . For the
degenerate case, both of the potentials 17+ and V_ are simultaneously diagonal in this
basis. In the split cases, only one of the potentials ﬁi will be diagonal. After solving
the corresponding pair of decoupled second-order equations, the first-order equations
can be used to generate the remaining solutions.

Below, we consider the degenerate case and one of the two split cases, M+ Mgr—+k =

0, assuming the following form for the Higgs VEV:
h(z) = nk>? 222, (4.2.10)

giving m(z) = bk(uz)? where b = A\3n/v/2, as in [63]. We also parameterize the bulk
masses in units of the AdS curvature, My r = c rk, where c; r are dimensionless

coefficients.
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Degenerate Bulk Masses

The solution to the degenerate bulk mass case ¢;, = cg = ¢ was first presented in detail

in [63]. It is fairly straightforward to solve. The Schrédinger potentials are given by

0 cletl) _ (2¢ F 1)bp? + b2utz?

z

N c(c£l) 92 Dbu2 + b2 4 2 0
Vi:<z2 +(2e F 1)bu +b7u’z ) (4.2.11)

and admit the following solutions in terms of confluent hypergeometric functionsﬂ

g(n)(z) = Np, e W22y (- s 1—c bu?z? (4.2.12)

L+ L+ 4b//42 ) 2 ) )
2

(n) _ —bu?22/2 1- m 3 2.2

g;.(2) = Np_e nra2/2, CU<—4b:2+1,2—C,bMZ>, (4.2.13)
2

(n) _ —bu?22/2 1+ m 3 2,2

gpi(2) = Np,e w2, CU<—4b:2+1,2+c,buz>, (4.2.14)

21
0P () = Np et/ U<— Bt bu222>. (4.2.15)

The fermion mass spectrum is obtained by applying the boundary conditions (4.2.9))
and demanding consistency of the first order equations (4.2.7]). These requirements can
be shown to result in a single equation describing the spectrum:

m?2 m2

1 3 3
4ming<—4b:2+1, 3¢ bu2z§>U<—4b:2—l—1, Stes bu2z3>

m2 1 9 9 m2 1 2.2

The first massive mode is to be identified with the SM fermion, so it is of interest
to determine its mass. In the limit pzg < 1, and assuming the first mode is light
m2/(4bu*) < 1, an expansion of Eq. (4.2.16) reveals a very light mode for |¢| > 1/2:

m3 =~ L(bﬁz?)—lmld. (4.2.17)
CTT(-1/24 )
In the regime —1/2 < ¢ < 1/2, we find instead that the fermion mass is of order bu?:

4bpu®
wsecemr —(1/2 —¢) —(1/2+¢) '

mg o~ (4.2.18)

2 These Schrodinger potentials are easily related to the radial equation for a two-dimensional har-
monic oscillator. See the discussion in Section or [60].
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where 1 is the digamma function. Thus we see that it is possible to generate a small
fermion mass (e.g. electron) or a large mass (e.g. top quark) by choosing different values

of the bulk mass parameter ¢, at least in this simple case of one generation.

Split Localizations

Next we consider one of the “split” cases, ¢, +cr+1 = 0. The other case, ¢ +cr—1 =0,
is very similar. With this choice, the transformation will diagonalize the potential
17+ for any Higgs VEV in AdS. However, for our choice, h(z) ~ 22, the untransformed
potential V_ happens to be diagonal,

c(c—1) 2 4.9
V.= ( . e | g, > : (4.2.19)

so we will work in this basis.

A(”) = 0. This is a peculiarity

A consistent solution requires that either f}n_) =0 or
of the particular choice of the Higgs VEV and will not be true for other forms. The
result is that the full tower of orthogonal solutions is most easily described in terms of
two “distinct” KK towers of solutions. The first solution is:

n n 1 21
AE_)(Z) = Né_)e_b“zzQ/zzC U < p &M 2y ¢, b’z > , (4.2.20)

42 4bu?’2
n by
f3z) a sz : (4.2.21)
n 1 n n)’
e = e (C - éf) (4.2.22)
fR”_(z) = 0, (4.2.23)

where N, (n) is a normalization constant. For this tower, the boundary conditions

il

=0 and f n)‘ = 0 are equivalent. The orthonormality condition for all fields

may be written compactly as,
[ee]
/ dz fiM fim) = gnm (4.2.24)
20
as this in fact implies the correct orthonormality condition for the remaining fields,

/OO dz | FE )+ TR | = o, (4.2.25)

20
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The other KK tower is given by:

A}Q(Z) = NI(Qe_b“%Q/QzHC U (Z + g — 47252, g +c, bu2z2) . (4.2.26)
) = %jf@, (4.2.27)
e = - (FER ). (1.225)
i) = o, (4.2.29)

where N ](DZ) is a normalization constant. The spectrum for this tower is found by im-

posing the boundary condition fgﬂm = 0, while the normalization condition is,

/ dz f o) — g (4.2.30)

20
The second tower in fact admits a very light ground state, however approximating the
mass requires some care. Note that it was possible to derive the approximation (4.2.17))
for the degenerate case because the first argument of the hypergeometric functions in

(4.2.12)) — (4.2.15)) was small. We do not have such luxury in this case.

Instead, for m% < bu? we can expand the functions using techniques of so-called
boundary perturbation theory of quantum mechanics [119,[120]. We start by considering

the Schrodinger-like equation for fg?,

—92fi) + (”ii”) + B2t | P = m2 . (4.2.31)

As we are seeking solutions with small mg, we begin by writing fﬁéoz as a product of the

zero-mode solution and a correction:
i) = C(=)F(2), (4.2.32)

where ((z) is chosen so as to satisfy the zero-mode equation

(c+1)(c+2)
22

- 9%+ +0*ut? | ¢ =0. (4.2.33)

The solution to this equation may be written as,

((z) = N 212K, (bu22 2),
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where N g)z is a constant, K, is the modified Bessel function and v = 3/4 + ¢/2. The

function F'(z) obeys the second-order equation,
[C_28Z(C25)Z) + mg] F(z)=0

and may be expanded in powers of m%. The resulting expansion for fg)z is,

7O~ ¢(2) [1 +m? / Cdre? / Ty (’)(mé)] . (4.2.34)

0
Such an expansion has also been used in Ref. [61] to approximate wavefunctions in
soft-wall models. In contrast, here we are using it to solve the boundary value problem
itself. The UV boundary condition,
0 0 14+c30
i, = ()

z

=0, (4.2.35)

20

can now be applied to the expansion (4.2.34). Notice that at the boundary z = zg, the
O(mg) correction vanishes while its derivative is given by a single integral over Bessel
functions. Using well-known known rules for differentiation and integration of Bessel

functions (c.f. [I21]), we can thus derive the following approximate expression for m3:

Ky, (bi22/2)
K, (0223 /2)Z(z0)

m3 =

20, (4.2.36)
where

I(z2) = /OO dz' (7). (4.2.37)

z

The expression (4.2.36)) can now be expanded for small zy. For ¢ > —1/2 we find,

c—1/2
3 o 2/2+3/4) <52M423> [(bﬂzzg> T(—¢/241/4) +T (¢/2 - 1/4)] :

- T'(¢/2+43/4) 4 4
(4.2.38)
In the limit ¢ > 1/2, this expression simplifies further to
1
2 2 4.2
~ (1 . 4.2.
my <—|—C_1/2>buzo (4.2.39)

This expression reveals a lower bound on the fermion mass in this region of the bulk
mass parameter space,
Mmin = (1420)bps. (4.2.40)
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2 112

Figure 4.1: The first several masses in the split case plotted as a function of ¢;. The

spectrum is composed of two “separate” towers (dashed and solid lines), which coincide
2

for large negative and positive values of cy. Here, m2 = m2 /bu? and pzo < 1.

For ¢ <« —1/2, the above expansions are poor approximations because the mass
becomes O(bu). To deal with this regime, we can apply mathematical techniques from
“supersymmetric quantum mechanics” to determine the mass [67]. As we have observed
frequently in previous chapters, quantum mechanical system for which the Hamiltonian

may be factorized as,
[—0. + W(2)] [0, + W (2)] ¢ = m24. (4.2.41)

admit zero-mode solutions 1 ~ e~ w satisfying boundary conditions that are trivially

consistent with the equations of motion,
[0. + W (2)] |z = 0. (4.2.42)

Thus we consider the particular “superpotential,”

1+

W(z) + bp?z, (4.2.43)

which gives rise to the “ordinary” potential:

(c+1)(c+2)
22

Viz)=W?2-W = + 02t 22 + (2¢+ 1)bp?. (4.2.44)
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which is equivalent to the potential in up to a constant shift of the reference
potential. Next, we note that the boundary conditions in are equivalent to
[0 + W (z)] Ag)z\zg = 0 in the limit pzop — 0. We can conclude then that the solution
P~ e~ /W is in fact a good approximation for f’g)z provided the mass eigenvalue is
given by

mé ~ (=1 — 2¢)bu®. (4.2.45)

This is clearly only valid when ¢ < —1/2. We have checked that the expressions (4.2.39))
and match the exact results well in the appropriate regions. The full spectrum
is plotted in Fig. .1l The distinctive KK tower structure of the split case suggests
the possibility of novel KK physics unlike that found in hard-wall models and may be

interesting to study in other soft-wall bulk Higgs models as well.

4.2B Comparison with Perturbative Expansions

The possibility of modeling fermions by introducing non-constant bulk Dirac mass terms
has been considered in Ref. [64]. For a single generation setup with quadratic bulk
mass terms, the equations of motion are the same as , but now the mixing matrix
(4.1.16]) can be written effectively as,

Moz [ Bkt byt (4.2.46)
bk 2> Ak + chku®z? ’

where cOL’ R ci r are constant coefficients. The effect of this non-constant bulk mass is
that normalizable zero-modes persist (depending on the choice of the signs of clL’ R) even
in the limit & — 0. For small values of b, the spectrum may be found by treating the
bulk Yukawa interaction as a perturbation on the b = 0 solutions.

Such an approach can be related to ours in some cases. For example, in the case
of degenerate constant mass pieces, cOL = c%, global unitary transformations may still
be used to diagonalize the mass matrix when the bulk masses have the same functional
form as the Higgs VEV. Thus, the introduction of non-constant bulk masses can be
viewed as effectively changing the boundary conditions on the fields in such cases.

It is interesting to note that the case considered in [64] is similar to our “split” case.
In particular, they examine clL = _01113 and c% = —cOR in detail. In the slightly different

split configuration for the constant pieces of the bulk mass, c% =+1- c?%, analytical
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solutions can be obtained in a similar fashion to our earlier analysis. For cOL =-1- cOR,

we find the lowest lying KK tower to be:

F(z) = NWe w224 (Z + C2OL - 47?52,; + c%,'l?;ﬁzv?) . (4.2.47)
fﬁ)(z) bsl izf(’?, (4.2.48)
e = o () P e (1.2.49)
M) = o, (4.2.50)

where we have defined effective parameters, b2 = (c};)2+b2, and T?L,% = m,%—c}: (26% =+ 1)
to make the comparison with f clear. Note that there remains a lower
bound on the mass for ¢} > 1/2. We have checked that this solution describes the
large ¢} behavior for the case considered in Ref. [64], 2 = —c%. We expect that all of
the basic features of the non-constant bulk mass model should be contained within our
exact solutions.

Generically the split and degenerate cases allow one to find the spectrum exactly
by solving a set of decoupled second-order equations. Even when the equations cannot
be solved exactly, approximate methods such as those we have described above may
be employed. Additionally, as our numerical results will verify, one can expect the
behavior in these special cases to provide a complete qualitative picture of the full

parameter space dependence.

4.2C Couplings to Gauge Bosons

Of significant interest in models involving extra dimensions is the coupling of fermions to
the KK gauge bosons. When the fermions are localized at different points along the extra
dimension, they can obtain non-universal couplings to the excited gauge bosons. Such
non-universality will generically lead to large contributions to flavor physics observables,
providing very stringent lower bounds on the allowed KK scale [122].

In hard-wall models, the couplings can become universal for certain regions of the
parameter space, resulting in a GIM-like suppression of FCNCs [78] and greatly lowering

the bound on the allowed KK scale. We therefore would like to see if a similar effect is
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present in the soft-wall case. Moreover, we would like to develop our formalism in such
a way that multiple fermion generations can be incorporated.

In analogy with the discussion of Section the couplings of the zero mode
fermions to the KK gauge bosons are found to be:

07 = g5 [ a0 (O + GO ) (1251)
20
where fj(ﬁln) is the gauge boson profile along the extra dimension. The gauge boson
profiles arising from a quadratic dilaton were derived in Section m The zero-
mode couplings giﬁ © — ¢6°? remain universal due to the orthonormality condition
(4.1.17) and the flat zero mode gauge boson profile. This is because the dilaton factor
explicitly cancels and plays no role.

The degenerate single-generation case was considered in [63], where it was found
that only one of the couplings, g+ or g_, can become universal due to the opposite
localizations of the fermion modes. In Ref [64], it was seen that opposite constant and
non-constant bulk masses led to universal couplings for both g, and g_. This happens
as well for the split case solutions. We have plotted the couplings for this case in Figs.
and We find that the couplings g4 and g_ become universal simultaneously
whenever ¢ > 1/2.

Note that the bounds from flavor physics are generically expected to be more strin-
gent in soft-wall models than in models with a hard wall. This follows from the generi-
cally closer spacing of the KK modes in soft-wall models as compared to hard-wall mod-
els. For example, we can consider the contribution to Amyg arising from non-universal
couplings. The effective 4D Lagrangian contains operators that are suppressed by the

squared masses of the KK gauge bosons mediating the strangeness-changing transitions
(AS =2):
o~ 1 Ja~aB(n) u B | ja=aB(n) u B 2
Las=22 " 2o [d557 ] + dag™™yrdf + el (4.2.52)
n=1"""
where the sum is over the gauge boson KK modes with KK masses M,, and fqi’g () _
VLC{ R giﬁ (n)VLd TR with VLd’ r generic unitary matrices [122]. Thus, in the presence of non-

degenerate couplings to the bulk KK gauge bosons, bounds from flavor experiments

may be interpreted as a lower bound on the KK scale.
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Figure 4.2: The ratio gin)/g for n =1 (solid), n = 2 (dashed), and n = 3 (dotted) KK
gauge modes coupled to the zero-mode fermion in the split case, as calculated using

(230)

The key point is that the total amount of suppression in (4.2.52) depends upon the
spacing of the KK tower. In a hard-wall model, for example, M? ~ nQMIQ< x» Where
Mg is the KK mass scale. This compares to the soft-wall scenario where it would

seem to imply a problem, because the squared mass trajectories grow generically as

2

my,

~ nMIQ{ x- (Indeed, this spacing was the original motivation for studying the soft-
wall [60]). While the sum of 1/n diverges as n — oo, we should of course truncate
the sum at some high energy cutoff. Nevertheless, the naive implication is that the
constraints on soft-wall models should be considerably tighter.

However, this argument ignores the fact that the gauge bosons become increasingly
IR localized with increasing mode number n. Thus, any off-diagonal terms in the gauge
coupling matrices are further suppressed for large n. By performing a numerical fit
using the first several dozen gauge boson modes and our split case solutions, we find
that the couplings fall off as n~ % to a very good approximation in the region where
the couplings are independent of localization. This implies that the terms in the sum
grow as n~ 4. All other things being equal, this implies that the constraints
from flavor physics are roughly a factor of two more stringent in this model than in

hard-wall models.
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Figure 4.3: The ratio g&")/g for n =1 (solid), n = 2 (dashed), and n = 3 (dotted) KK
gauge modes coupled to the zero-mode fermion in the split case, as calculated using

[@2.51).

While this presents no great problem for the model with a quadratic dilaton, for

a generic power law behavior in the dilaton, ® ~ 2% the spectrum of gauge bosons

2

grows as m;,

~ n?=2/ “MZ . [63]. This means that for less steep potentials, even tiny
amounts of non-degeneracy among the bulk couplings has potentially severe implications

for flavor physics.

4.3 Numerical Solution

4.3A Routine

The analytical solutions that we have presented, though useful, do not solve the full
fermion mass problem including flavor. Our goal is to solve the eigenvalue problem
(4.1.15) with mixed boundary conditions. The “initial conditions” specify half
of the boundary values at the UV brane or, equivalently, half of the integration constants
for the system. The remaining constants of integration are fixed by the normalization
conditions , which can only be satisfied if the eigenvalue, m&, has been chosen
correctly. Thus, following our discussion at the end of Section[d.1] it would seem that we
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must find the particular coordinates in a 2/Np-dimensional parameter space that result
in a normalizable solution.

In fact, the problem is made considerably simpler by exploiting the linearity of the
system. To this end, we first convert the problem to an initial value one by extending
and modifying the shooting method [123] to linear boundary value problems of arbitrary
order. In this way, the orthonormality requirement can be viewed as fixing
the 2Np — 1 ratios of the functions at the boundary at z = zg, plus one irrelevant
scale parameter. The remaining degree of freedom corresponds to m$ and is fixed by
demanding finiteness of the solution in the IR.

Since is linear, its solutions may be written as:

fia(n) (Z) — U(mz; z, Zo)ijfja(n) (ZO)’ (431)

where the propagator U(m$; z, zp) is a linear operator and the fm(")(z) are 4Np X 4N
matrix-valued functions for Ng fermion generations.

Our approach is to solve for the matrix elements of U by integrating an arbitrary
set of 4Np linearly independent basis vectors that span the space of initial values,
(%), and inverting (4.3.1). Having reconstructed the matrix U, it is straightfor-
ward to find the initial value vectors that lead to normalizable solutions by considering
the behavior of U acting on such a vector: it transports it to the zero-vector. Therefore,
the initial conditions leading to normalizable solutions correspond to eigenvectors of
U(mS; z, z9) with vanishing eigenvalues in the limit z — oco. There are generally 2Np
such eigenvectors. The actual solution will be formed from a sum over these vectors,

2Np

FE0E) = 3 e, (132
=1

where the a; are constants and the capitalized F*(™(z) are 4Np-component vector-

valued functions (j =1,2,...,4Np) satisfyingﬂ

lim U(mS;z1,2) 7 FI*M(2) = 0. (4.3.3)

21—00

Numerically, we can estimate the values of these vectors by considering the eigen-

1

vectors of U(m%; 21, 20), where our cutoff satisfies z; > p~". In practice, results are

3 Technically, given the orthonormality condition, we should consider the limit of [UF|?, but the
distinction is inconsequential.
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much more reliable if one starts the forward integration from some intermediate range

I and then integrates the normalizable modes back to zp. Variations on this

25~
theme can be explored, and one of the attractive features of the method is that it does
not depend on a particular numerical integration technique.

We scan over mg, at each point integrating the system from an arbitrary set of

n
initial values so as to reconstruct the normalizable solutions. If there exists a linear
combination of the solutions that matches the boundary conditions (4.1.F]), then m¢ is
a solution to the system. To determine when this occurs, we define a merit function in
the following way. Let us arrange the functions ™ such that the functions satisfy
Dirichlet conditions for ¢ = 1,2,...,2Np. Then from we have:

2Np )
S wF () =0, forj=12,...2Np, (4.3.4)
=1

which can only be satisfied if they are linearly independent. Thus,

R (0) (o) o B (z)
Fla(n) 5 F2a(n) 5 F2Npa(n) 5
dot | 2 ‘(0) > .(0) | 2 (20) o (435)
n a(n Nra(n
Fz}ﬁfw)(zo) Fng)(Zo) o Byt ™ (20)

Our merit function is simply the absolute value of this determinant, and we search for
a minimum.

When the hierarchy between p and z; 1is very large, increasingly high precision
is necessary to achieve reliable results. Iterative methods may be better suited to the
problem in such cases. Our primary goal is to highlight the differences between fermions
in soft-wall and hard-wall scenarios, and the speed and simplicity of this technique are
its chief advantages. For this reason, we have limited our attention to a modest hierarchy

below.

4.3B Results
Single Generation

We first present results for a single generation of fermions, as this case illustrates the

essential features of the fermion mass behavior in the soft-wall, and allows us to compare
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log;o(Mo/Vb p)

Figure 4.4: Lowest lying masses for the “degenerate” (¢ = ¢, = cgr) and “split” (c =
cr, = —1—cp) cases. The solid lines are determined using the exact results from Section
while the dots represent values obtained using the numerical method of Section

4.3Al

our numerical results with the analytical cases in the appropriate limits as well as to a

typical hard-wall setup. We assume the following values of the parameters:
p=1TeV; pzo = 1073; b=1. (4.3.6)

In Figure[4.4] we compare the numerical results to the analytical results from Section
[4.2] where it can be seen that the two methods agree very well. In Figure we plot the
fermion mass contours to show the full dependence on the parameters ¢y, and cg. The
shape of the plot is easily understood from the analytical results. The numerical solution
smoothly interpolates between the solutions along the lines ¢y, = cg and c¢;, = £1 — cg.
Because a similar analysis can be repeated for other Higgs VEVs, this provides a natural
way to begin studying the qualitative aspects of other models in AdS as well.

We can compare the soft-wall behavior with a typical hard-wall setup. In Figure
we provide the corresponding contour plot for a hard-wall model in which the SM
fermion masses are simply proportional to the values of the wavefunctions at z = 1/pu.
The most striking difference between the plots occurs in the lower right-hand corner.

This is the region where ¢, > 1/2 and cgp < —1/2.
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Figure 4.5: Contours of log;o(mq/v/bu) for the lowest lying masses in our soft-wall setup
with vbuzg = 1073,

The hard-wall case is characterized by a steep dependence on the bulk mass in this
region, where the wavefunctions are proportional to fgﬁ ~ z7° and fl(%oz ~ 2R For

29 < p~ ', the normalization constants become vanishingly small:

—1/24cp R

NP% ~ 2 (4.3.7)

Thus, the values of the functions in the IR at z = p~! are additionally suppressed. This
is the well-known mechanism for generating SM mass hierarchies in Randall-Sundrum
scenarios with bulk fields [79, [78]. For the soft-wall case, however, we can see the lower

bound on the mass in this region,

mo ~ (1zo)u, (4.3.8)

as indicated by the approximate expression (4.2.39). This can be understood by noting
that the normalization (4.1.17)) involves the sum of two types of fermion contributions,

which are generically not simultaneously suppressed.
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Figure 4.6: Contours of log;,(1mq/v/bp) for the lowest lying masses in a typical hard-wall
setup with vbuzg = 1073,

Three-Generations

In this section we aim to provide concrete numerical examples involving three gener-
ations of fermions that fully take into account the 5D flavor mixing to show that the
attractive features of the soft-wall are maintained.

For multiple generations, there are three matrices that parameterize the fermions:
two bulk mass matrices M; and Mg, and the bulk Yukawa matrix, A\5. We take the
action to be written in an arbitrary basis, for example, the CKM basis. Absent
some symmetry, there is no reason to expect any structure relating the entries of the
various bulk parameter matrices. We generically expect that the entries of each matrix
are all of order unity (in units of the AdS curvature scale, k), and that the various
matrices are misaligned. There is of course some basis in which both M; and Mg are
diagonal. Thus, by “misaligned,” we mean that this basis is distinct from the one in
which the Yukawa matrix is diagonal. Indeed, the typical approach is to work in this
basis, treating the Yukawa interactions as perturbations. Such an approach has been
used in both hard-wall [79] [78, 116, R0, 93] and even in modified soft-wall setups [64].
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In Ref. [64], it was found that one needed to include the first several KK modes in
order to achieve reliable results in such a perturbative expansion when including only
a single generation. At such a point, the analysis is essentially a numerical exercise. In
our view, it is advantageous to include the entire KK tower in the numerical formulation
wherever possible. That is to say that it may make the most sense to simply solve the
equations of motion , which guarantee the orthogonality of the eigenfunctions
due to the Hermiticity of the mixing matrix.

We expect that all other interactions may be treated reliably as perturbations. This
is because the Higgs grows unbounded in the IR where it is the dominant contribution
to the fermion equations of motion. Other observables may thus be calculated using
the usual wavefunction overlap approximation. As an application, we will calculate the
couplings to excited gauge bosons for examples involving three generations.

We do not attempt to set precise bounds on soft-wall models here, as doing so goes
significantly beyond the scope of this work. Electroweak and flavor constraints have
been discussed in the context of soft-wall models in Refs. [63] [64]. Detailed analyses
in various hard-wall scenarios can be found in [79, [78, 80, 122} 112} 93] and references
therein.

However, we will require that the eigenvalues of the bulk mass matrices satisfy
miL 2 k/2 and m}é < —mi in order to get nearly degenerate gauge couplings. Because
of the lower bound on the fermion masses at mgo ~ (uzo)p in this region, it is clear
that the hierarchy considered above, pzg = 1073 will be inadequate for generating MeV
scale masses when = 1 TeV, and will only be possible for pzg < 1076, Thus we
again assume a quadratic Higgs VEV, h(z) = nk3/2 1222, and the following for our input
parameters:

p=1TeV; pzo = 1076, (4.3.9)

Dealing with much larger hierarchies presents significant numerical challenges. However,
the qualitative results of such an analysis should not be substantially different from the
results presented here.

First, we present an example resembling down-type quarks (or charged leptons). For
simplicity, we take the entries of M}, to be nearly degenerate, but we allow for large

non-degeneracy in the matrix Mg as well as in the Yukawa matrix. Specifically, we
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consider,
0.784  —0.020 0.023 —2.179 —-0.459 -0.774
My, Mg
= —0.020 0.808816 0.0094 |, 7 —0.459 -1.073 -0.354 |,
0.024 0.0094  0.780 —0.774 —-0.354 0.1218

0.422 0.175 —-0.678
n
— A5 = —0.007 0.928 0.348 . 4.3.10
\/Q 5 ( )
0.295 —-0.327 0.637

We find a spectrum of masses resembling the down-type quarks (or charged leptons):
mg = 0.57 MeV, 96.08 MeV, 1.310 GeV. (4.3.11)

The fermion mass hierarchy is clearly obtained, but due to the complexity of the nu-

merical procedure we do not match the SM masses exactly. The fermion bulk profiles,

F(z) = \/ (fio(O)y pia(0) 4 (pia0)yg piol0) (4.3.12)

are plotted in Figure The fermion profile overlap with the Higgs VEV, h(z) leads
to the fermion mass hierarchy. The corresponding bulk profiles, F'¥(z) are not plotted
because the profile differences between the flavors are not as pronounced. This is due
to our choice of UV boundary conditions and bulk masses .

From expression , we can calculate the coupling of the zero mode fermions
to the KK gauge bosons (i.e. gluons). The result is a matrix whose off-diagonal entries

contribute to flavor violation. We obtain the following results for the first two KK gauge
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Figure 4.7: The down-type fermion bulk profiles F¥(z) for the first generation (solid),
second generation (dashed) and third generation (dotted) showing the overlap with the
Higgs VEV h(z). Note that h(z) has been rescaled for presentation.

coupling matrices, normalized to the coupling to the massless gauge boson:

(1) 0.186 1074 104
95— | 10t 0187 2x 10t |,
g
107% 2x107* 0.185
@) 0.140 107* 1074
It — | 104 0138 107t |;
g
107* 107* 0.137
0 0.188 ~0 =0
- - ~0 0188 104 |,
g
~0 107* 0.184
@ 0.1390 ~0 =0
% = | ~0 0139 104 |. (4.3.13)

~0 107* 0.137

This behavior is maintained for higher modes as well. For this choice of parameters,
the very nearly degenerate couplings imply that p of order a few TeV will be consistent

with flavor constraints [65] [93) [I12]. Note that we have assumed no contributions to
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Figure 4.8: The up-type fermion bulk profiles F'%(z) for the first generation (solid),
second generation (dashed) and third generation (dotted) showing the overlap with the
Higgs VEV h(z). Note that h(z) has been rescaled for presentation.

CP violation. Thus the soft-wall model can accommodate the fermion mass hierarchy
with large bulk mixing and small flavor violation.
The up-type quarks are only moderately more sensitive to the presence of the top

when large bulk mixing is allowed. For the choices, ¢ = 1 TeV and pzg = 107° we

obtain
0.749 —-0.005 0.017 —0.940 —-0.285 —0.200
M, Mg
e = —0.005 0.785 0.066 |, % = —-0.285 —1.103 —-0.338 |,
0.017 0.066 0.516 —0.200 —0.338 —0.657

0.700 —-0.352 —-0.193
As=| —0.079 0.826 —0.065 |, (4.3.14)
—0.098 —-0.321 1.430

e
V2

which gives rise to the following mass spectrum:
mg = 2.10 MeV, 129.1 MeV, 151.5 GeV. (4.3.15)

Again we see that the correct fermion mass hierarchy can be obtained. The fermion
bulk profiles, F¥(z) = \/(féo_)(z))2 + (fg)_) (2))? are plotted in Figure The fermion
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profile overlap with the Higgs VEV, h(z) leads to the fermion mass hierarchy. Similarly

to the down-type fermions, the corresponding up-type bulk profiles F'{*(z) are not plotted

because the profile differences are negligible due to the choice of UV boundary conditions
and bulk masses (4.3.14). The gauge couplings are nearly universal among the first two

generations:

0.186 2x 1073
2x 1072  0.185
2x1073 107

0.140 102 1073
1073 0.139 103
1072 1073 —0.05

0.188 2x 10
4x107%*  0.183
2x1073 103

0.140 106
10~6 0.137
3x107% 2x10°3

2x 1073
106
—0.05

4 %1074
1073
—-0.17

3x 1074

2% 1073
—0.140

(4.3.16)

Constraints from top quark physics are significantly weaker, so this is not expected to

affect the bound on p.



Chapter 5

Lepton Flavor Violation with
Heavy Sleptons and Dirac

Gauginos

5.1 Introduction

Extensive effort has been devoted toward solving the supersymmetric flavor conundrum.
Supersymmetry provides an elegant and natural solution to the hierarchy problem, but
consistency with flavor physics measurements requires that the off-diagonal elements of
the squark and slepton mass matrices be unnaturally small. This has led many physicists
to favor flavor-blind features as an essential ingredient in models of supersymmetry
breaking. Gauge mediation has become immensely popular in no small part due to its
prediction of flavor universal sfermion masses.

However, there are additional possibilities that do not require universal soft masses
for the suppression of flavor violation, and it is interesting to consider these possibilities.

Three particular mechanisms that have been previously proposed are:

1. Alignment: the fermion and sfermion mass matrices are aligned in some basis, so

that the rotations to the gauge eigenstates cancel [124] [125],

2. Hierarchy: the first two generations are heavy while the third (most notably the
stop) is light [2§], and

84
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3. Extended R-Symmetry: the absence of certain MSSM diagrams (such as those

involving Majorana gauginos) results in a much reduced flavor violation effect
[30].

In this chapter, we consider lepton flavor violation under these scenarios, focusing
on models with both sfermion mass hierarchy and an extended R-symmetry. As we
will describe, this can arise naturally in phenomenological models of supersymmetry
breaking from a warped background. In contrast to the original proposal of Randall
and Sundrum [36], which solved the hierarchy problem by positing that the Higgs was
localized on the infrared brane, we consider an elementary Higgs sector protected by
supersymmetry. In this case, the Higgs is peaked in the UV while the warped geometry
is used to explain the scale of SUSY breaking.

The generic low energy theory we consider features first-two generation sfermions of
order 5 TeV, third generation sfermions of order 500 GeV and Dirac gauginos. While the
existence of heavy sparticles is seemingly at odds with one of the primary motivations
of supersymmetry—namely, naturalness in the Higgs sector—non-universality actually
allows for large first and second generation scalar masses without destabilizing the Higgs
due to small Yukawa couplings [29]. This combination prevents excessive rates for flavor
violating processes, even when one considers large mixing among the sfermions. In
particular, we consider the process yx — ey, which provides the most stringent constraint
on the lepton sector of these modelsE The light third generation requires the inclusion
of second-order mass insertion effects.

After a short review of supersymmetry in AdS in Section [5.2] we describe how super-
symmetry breaking from extra dimensions can yield the general low-energy theory we
have described in Section In Section [5.4] we examine the existing flavor constraints
on these models in terms of mass-insertion parameters. We find that LFV constraints
can be accommodated for arbitrarily large mixing and gaugino masses no larger than
1.5 TeV. In Section [5.5] we discuss the implications of lepton-slepton alignment, which
results in all flavor violation being mediated only by charginos. Finally, in Section [5.6

we compare these results with generic models with off-diagonal slepton mass terms and

! Ref. [126] considered p — e conversion in nuclei and found that this process provided the strongest
constraints for relatively light sleptons and squarks. With larger sfermion masses, these processes are
subdominant.
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discuss the implications for the squark sector.

5.2 Supersymmetry in a Slice of AdS

Warped Background

The setup we have in mind is a supersymmetric Randall-Sundrum [36] background.
Numerous top-down studies of this scenario have been undertaken [127, 128 [129] [130),
21]. Here we are interested in aspects of flavor in a phenomenological, bottom-up
approach. As we are only interested in constraining low energy observables, we will not
construct an explicit model, but rather outline the important features and behaviors.
However, we will provide some explicit examples from the literature to illustrate our
points.

We will be following many of the conventions of Section In particular, our

spacetime is described by the conformal metric,
ds® = gyndzMda = eiZg(z)nMNddexN, (5.2.1)

and is cut off by two three-branes at z = zg = 1/k and z = z; = ™% /k

The standard model fermions, gauge bosons, and their superpartners are assumed
to live in the bulk. We will therefore review how supersymmetry can be realized in a
slice of AdS, following the work of Refs. [78, 131, 132, [133]. We will limit our attention

to the vector supermultiplet and hypermultiplets.

Supersymmetric Bulk Field Content

Since the simplest spinor representation in five dimensions is the four-component Dirac
spinor, the minimum number of supercharges is 8. This corresponds to N' = 2 SUSY
from the 4D point of view. We will focus on the U(1) vector supermultiplet and hyper-

multiplet representations. The supermultiplet field content is given by:

V=V, \\, %) (5.2.2)
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where Vjs is the gauge field, ¥ is a real scalar in the adjoint representation, and A’ for

i = 1,2 is a symplectic-Majorana spinor:

. 2\
2= < y L* ) , (5.2.3)
€ )‘Lj

obeying X' = C (XZ)T where C is the charge conjugation matrix.
The action is due to the gauge (2.3.19)), fermion (2.3.32)), and scalar contributions
(2.3.1)), with modifications to account for a symplectic Majorana spinor and real scalar:

S = /d%f[ sFin + (DuE)* + ;szQ +IXTM Dy N mTAXi (o3)9 N
(5.2.4)
The supersymmetry transformations for each field may be found in Refs. [131] [78]. The
gauge supermultiplet Lagrangian will be invariant under these transformations only
when the fermion and scalar 5D masses take on particular values. This is in contrast
to flat space, in which all particles in the multiplet must have identical masses. The

masses compatible with supersymmetry are

1 1 15
mé = <(Oé§) +5)an—35) -7 ) k? = —4k?, (5.2.5)
my = cxk Sgn(z — 20) = g Sgn(z — zp) (5.2.6)

Importantly, the tuning relation between the scalar bulk and boundary masses
is also required for the theory to be supersymmetric.

Given our discussion in Section we can see how supersymmetry is realized.
With ¢y = 1/2 and A! even (corresponding to W, ), the A! profiles will match that of
the gauge field (aq = 1). Then A\? must be odd and ay, = 0. It will not have a zero-
mode, but at the massive level it will couple to A! to form a tower of Dirac KK-states.
Similarly, the scalar field will have ayy = 0 and odd boundary conditions lead to the
same spectrum as the other fields, but the massless mode is projected out. Note that
even though the values of « are different, the KK towers are identical. This is due to the
relation , which relates the KK-spectra of fields differing in « by 1. Thus, from
the 4D point of view, the orbifold boundary conditions have reproduced the massless

vector multiplet of N' = 1 supersymmetry. At the massive level, there is a KK-tower of
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N = 2 supermultiplets. with identical masses and couplings. In summary, we have:

1, for even fields Vy;, A' = N = 1 multiplet at massless level;
a = (5.2.7)
0, for odd fields ¥, \> = no massless modes.

The story is very similar for the hypermultiplet,
d = (H', D). (5.2.8)

where H? for i = 1,2 are complex scalars and W is a Dirac fermion. The action is
obtained in a straightforward way from (2.3.32) and (2.3.1]), and the relevant super-
symmetry transformations are again found in Refs. [I3T] [78]. The required relationship

between the scalar masses and the fermion bulk mass is:

myg = ck Sgn(z — zp) (5.2.9)
my = (FEc—15/4)k* + (3F2¢) ke [6(2 — 20) — 6(2 — z1)] (5.2.10)

Again, the relation is easily understood by the results of Section [2.3D|and (2.3.18]), as
we can identify a = |c + 1/2| for H! and o = |c — 1/2| for H2. With ¥, and H' even,

they will have zero-modes. Then ¥_ and H? must be odd and their massless modes are

projected out. The result is that we regain the A/ = 1 chiral multiplet at the massless
level.

We have seen that at the massless level, boundary conditions break the amount of
supersymmetry in the low-energy theory down to N’ = 1. The remaining N' =1 SUSY
is assumed to remain unbroken on the UV brane and softly broken in the IR. By the
AdS/CFT correspondence [38, [39, [40], [4T], [42], [43], this setup has a dual interpretation
in terms of a purely four-dimensional strongly coupled conformal field theory (CFT). In
particular, fields that are UV-localized are dual to elementary states of the CFT, while

those that are IR localized correspond to composite states.

5.3 Supersymmetry Breaking

At this point, it is natural to ask what we have gained beyond redundancy by consider-
ing supersymmetry—a solution to the hierarchy problem—in the context of the Randall-

Sundrum solution to the hierarchy problem. The answer lies in the fact that in order for
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supersymmetry to be realized, a new hierarchy must be introduced to explain the low
scale of supersymmetry breaking. The non-supersymmetric Randall-Sundrum solution
to the hierarchy problem requires the Higgs to live on the TeV brane, where the effec-
tive cutoff for corrections to the Higgs mass-squared is of order the TeV scale. With
a bulk supersymmetry, there is no need to confine the Higgs to the IR, and instead
it may live, for example, near the UV brane. Then supersymmetry may provide the
solution to the hierarchy puzzle, while the warped model can provide a dual description
of low-energy supersymmetry breaking by strong dynamics. Thus, we will consider the

up- and down-type Higgs bosons to be UV-localized fields.

5.3A° Elementary Higgses and (S)Fermion Mass

Our main interest in the Higgs sector is how it relates to the pattern of sfermion masses.
For our purposes, then, we can assume the Higgs sector is completely confined to the
UV brane. The reason for this is as follows. As described in Section the standard
model fermions arise from the marriage of the massless modes of two bulk fields, \Ilg))i
and \Ilgg)i, where ¥, (¥R) is a doublet (singlet) under SU(2);, and i is a generation
index. The boundary conditions are chosen such that \IJ(LO)i is left-handed while \Ilgg)i is
right-handed from the 4D point of view. The joining occurs through Yukawa couplings
with the Higgs, forming light Dirac fermions in the 4D theory. These couplings are only
allowed on either boundary due to the bulk N’ = 2 SUSY. Assuming no large hierarchies
in fundamental Yukawas, we can then relate fermion masses to their couplings at the
boundary where the appropriate Higgs is localized. Thus, it is only the boundary value
of the appropriate Higgs field that is important in determining any fermion’s (and thus
sfermion’s) localization.

To make the discussion concrete, each member of a 5D SU(2), doublet field shares
a common localization parameter, ¢} . For ¢, > 1/2 (¢, < 1/2), the doublet is UV (IR)
localized. Similarly, each right-handed SU(2), singlet has localization parameter cﬁq.
These fields are UV (IR) localized for ¢, < —1/2 (¢}, > —1/2).

The zero modes obtain masses through wavefunction overlap with the UV local-

ized Higgs fields, with effective 4D Yukawa couplings, Yy, related to 5D bulk Yukawa
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couplings, YgP, by [22]:

1/2 — ¢ 1/2 + cp
_ v5D
Yo = Y$ k\/(kzl)l—QCL — \/(lm)mcR —. (5.3.1)

A large range of 4D Yukawa couplings is obtained by varying the parameters cy,

and cp of each field over a range of O(1). To see this, consider ¢;, = —cg = ¢. Since
kz1 > 1, it is clear from that UV localized fields (¢ > 1/2) obtain order 1 4D
Yukawa couplings while IR localized fields (¢ < 1/2) obtain exponentially tiny couplings.
As a result, the fermion localizations are expected to follow a distinctive pattern. In
particular, the relatively light first-two generations should be somewhat IR localized,
while the heavy third-generation fermions should be UV localized.

This is important for the following reason: if supersymmetry is broken at low energy,
its effects should be felt predominantly by IR localized fields. Thus, the soft sfermion
masses are expected to follow a roughly inverse pattern: the first two generation scalars
are heavy while the third is light. To see this explicitly, let us consider two explicit
mechanisms that have been proposed in the literature: supersymmetry breaking due
to orbifold boundary conditions, and supersymmetry breaking due to a deformed AdS

background.

5.3B Supersymmetry Breaking by Orbifold Boundary Conditions

We first consider an analog of the flat-space Scherk-Schwarz mechanism [18, 19] in
which “twisted” orbifold boundary conditions are used to break supersymmetry, as
in Refs. [78, [134]. The flat-space analog has been considered in numerous studies (see
[135], 136, 137, 138, [139] and references therein). Recall from Chapter that the orbifold
symmetry can be interpreted as symmetry under two independent transformations, a
Zy about y = 0 and a Z), about y = wR. Fields that are even under both the Zy and Z)
(satisfying Neumann boundary conditions at both the UV and IR boundaries) admit
massless modes, while fields obeying Dirichlet conditions do not.

To model supersymmetry breaking at the TeV scale, we can impose different bound-
ary conditions on fields within the same multiplet. For example, consider a multiplet
for which one field obeys even boundary conditions and therefore has a massless mode,

while its superpartner is even under Zg but odd under Z/, (and thus satisfies a Neumann
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condition at the UV boundary but a Dirichlet condition at the IR brane). Then it is
not difficult to show that the mass spectrum is found by solving [78]:

Yo-1("g) Ya(eﬂkR%)
For « ¢ Z, the Neumann functions satisfy:
1
Yo(z) = —J_ : 3.
(x) sin(am) [cos(am)Ja(x) — J_o(x)] (5.3.3)

The connection to Y, for o € Z involves a non-trivial limit, but we will be able to
recover the a = 1 case in the end. Inserting (5.3.3) into ([5.3.2)) allows us to eliminate

the Neumann functions:
J_o(wx)Jo—1(x) + Jo(wz)Ji_o(x) = 0. (5.3.4)

where © = m,,/k and w = ¢™%. To find the lowest lying mode, we assume mqg/k < 1

and substitute the standard expansion for the Bessel function,

T\ e (—1)* x\ 2k
h) = (2)' 3 CU ey 55
@) =13 kz::Ok!P(a—Fk:—i—l) 2 (5:3.5)
Expanding to 2nd order in x and solving gives:

o _ Ve —a (5.3.6)
k VeZarkR _ o2kRmy o — 1 e

The limit o — 1 reproduces the result for gauginos found in [78]. The general behavior
is as expected from geographical arguments. As « > 1 (a < 1) corresponds to a UV
(IR) localized field, we expect the twisted boundary condition to have a larger effect
for small «, because IR-localized fields will be most affected by the different boundary
conditions on the IR brane. This is indeed the case, as can be seen in Figure Since
the light fermions are IR localized when the Higgs lives on the UV brane, their scalar

superpartners are heavy, and vice versa.

5.3C Supersymmetry Breaking by Deformed AdS

Another possibilty is that supersymmetry is broken due to the spacetime departing

from pure AdS in the IR region. This is similar to the soft-wall setups we discussed
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Figure 5.1: Tree level SUSY-breaking mass masses vs. « for kR = 10 when SUSY is
broken by orbifold boundary conditions.

in Chapter As we saw, the treatment of fermions was particularly involved when
the IR brane is removed completely. Therefore, we will consider the concrete model of
Ref. [22], which constructed a gravity dual to single-sector SUSY breaking [140] in five

dimensions. The background is given by the metric:

/T( ) 1 z 4
—2A(z _ o -~
T @@2P E<a)

The small parameter € = 0.05 arises from an underlying 10D supergravity solution and

(5.3.7)

characterizes the size of the AdS deformation in the IR. For our purposes, its value is
taken to be freely chosen (but see Appendix D of [22]). Note that this background can
also be modeled using the dynamical setup of Chapter 3], with a perturbed metric given
by

4
~ €[z
A=logkz+-|— ) , 5.3.8

ehet g () (5.3
as the two backgrounds are equivalent to first-order in the small parameter e. The
primary difference between this model and the soft-wall models is that there remains

an IR brane located at z = z1, so that in essence conformal symmetry breaking in the
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IR is due to a hybrid mechanism. With the hard IR brane in place, fermions present
no added difficulty. Their massless modes are protected by chiral symmetry while the
deformation endows the scalar zero modes with masses.
The model parameters are chosen such that the curvature scale k ~ M /10, where
M is the five-dimensional Planck scale, implying k ~ 1073/2Mp = 7.7 x 10'6 GeV.
Additionally,

TkR = 2842,  z = (ke ™) 71 = (35 TeV) L.

The ratio of the Higgs VEVs is taken to be tan 8 = 10.

Scalar Superpartners & Soft Masses

As we saw in Section the localization parameter, cy /g, of each fermion is related to

that of the scalar partner, ay /g, by supersymmetry as:

ar/r = lcr/r £ 1/2|.

The localization parameter determines the soft mass of the scalar. In the small € limit
221,

P 6(oz —1)(12 — @) (kz1)3% — (kz)*!

(kzp)* (kzp)2=1 — (k2p)l—@

For the choices of the parameters , scalar masses can be vanishingly small

for « < 1 or O(z;" = 35 TeV) for a > 1. The size of soft masses is thus tied to the

k% + O(e?). (5.3.9)

localization of the superfield. Because the Higgs is located on the UV brane, the light

fermion superpartners will be IR localized and receive large SUSY-breaking masses.

5.3D Generic Spectrum and Features of the Low-Energy Theory

The above examples demonstrate that the basic setup we outlined generically generates
a spectrum with heavy, composite first-two generation scalars and light, elementary
third generation scalars. Thus, these models are generically dual to single-sector models
[140, 141]. The pattern of soft masses has nothing to do with the particular mechanism
of supersymmetry breaking (i.e. boundary conditions vs. the deformation of AdS), and

only with whether the Higgs is elementary or composite.
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Assuming the Kaluza-Klein (KK) scale is high enough that we can neglect effects
from KK-mediated processesﬂ we can focus on a low-energy theory with supersym-
metric field content and hierarchical sfermion soft masses. However, it is not necessarily
the MSSM field content. The reason is that the bulk theory has a continuous U(1)
R-symmetry. Assuming this symmetry remains unbroken or approximately unbroken
below the IR scale, it will be protected from a number of deleterious effects [30]. For
example, Majorana gaugino masses are forbidden, which eliminates many diagrams that
give large contributions to flavor violation. In a warped framework, Dirac masses are
readily generated by pairing up the massless modes with KK-modes, as occurs for ex-
ample when SUSY is broken by boundary conditionsﬂ These can be heavy or light
depending on the nature and scale of the SUSY breaking.

There are a few additional considerations that we incorporate as constraints from
the start. Naturalness demands that the scalars should should not be too heavy to
avoid unnatural EWSB. This primarily constrains the scale of the stop due to the larger
Yukawa couplings, but also implies the other scalars should not be too heavy [29].
Additionally, we assume left-right degeneracy among the first-two generations to avoid
large hypercharge Fayet-Iliopoulos (FI) terms [28]. Finally, any explicit model must be
checked to ensure that the stop square-mass is not driven negative [142] [143]. We will
limit our attention to tan 8 not too large, in which case we need not worry about the
influence of an extended Higgs sector.

In summary, we have a supersymmetric Randall-Sundrum setup with an elementary
Higgs sector and bulk gauge and matter supermultiplets. The scale of soft-susy masses
is assumed to be consistent with natural EWSB. The important modifications to the
MSSM are:

1. heavy first two-generation scalars of up to 5 TeV (we neglect their mass difference),
2. light third generation scalars of under 1 TeV,

3. Dirac gauginos with masses of order 1 TeV.

2 In Ref. [22], the scale was taken to be of order 100 TeV.
3 This description might invite objection on the grounds that towers with different boundary con-
ditions are not in the same Hilbert space. Nevertheless, we have Dirac gauginos.
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Figure 5.2: Generic Feynman graph leading to lepton decay. With Dirac gauginos,
the chirality flip (indicated by arrow direction) can take place on external lines or at
the lepton-slepton-higgsino vertex. There are also loops involving sneutrino-chargino
exchange (c.f. [145]).

We will also assume tan 8 2 1 but not too large to avoid large additional flavor violation
[144].

5.4 Lepton Flavor Violation

With Dirac gauginos and light sleptons, flavor constraints are weakened considerably.
The gauginos may naturally be significantly heavier than the scalars and dangerous
dimension five operators are forbidden. In particular, relatively large mixing in the
slepton matrices may be allowed for gaugino masses of order a few TeV with relatively
light sleptons [30], however there are important constraints from g — e conversion
processes that can dominate when the sfermions are light [126]. In models with heavy
first-two generations and an extended R-symmetry, the bounds on single insertions are
suppressed by the heavy slepton masses. However, the suppression is not as large as
one might naively expect unless the gauginos are also made very heavy because the loop
functions depend on the ratio of gaugino to slepton masses. Additionally, significant
contributions can remain due to second order mixing involving the light third generation
sleptons.

With heavy first-two generation sleptons, the most important constraint comes from
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the rare decay y — ey. The Feynman graphs contributing to u — e are like those de-
picted in Fig. [5.2l The loops can involve chargino and sneutrino exchange or neutralino
and charged slepton exchange. The branching ratio for the process is given by:

(p—ey)  48ar®
U (p—ever,) G2

(145 + A0 4 AFY - AFR 4 [AGY + ATDP) (5.40)

The notation is chosen to match that of Refs. [145] [30]. The superscripts ¢ (n) indicate
chargino (neutralino) exchange. The numbers 1 and 2 indicate the chirality flip occurs on
the external and internal lines, respectively. Finally, the L and R indicate whether the
insertion of the left- or right-handed type. The internal chirality flip arises only due to
Higgsino-gaugino mixing, as we have assumed no left-right mixing terms are generated.
Additionally, terms smaller by a factor of the ratio m./m,, have been dropped.

Following Ref. [145], we assume the first-two generation heavy sleptons have approx-
imately degenerate physical masses. Notational clutter is greatly simplified by noting
that in the setup we have described, left-handed charged sleptons and sneutrinos should
have roughly equal physical masses, although the structure of their mass squared matri-
ces is not necessarily the same. Additionally, for the first two generations, this will also
give approximately the physical mass for the right-handed charged slepton due to our
assumption of left-right degeneracy for the heavy scalars. We denote this single heavy
scale my. The mass of the left-handed (right-handed) third generation scalars are m,,
(m7). The entries of the soft mass-squared matrices in the basis of gauge interactions
are labelled by capital letters: (]T([/E)” and (M%)U

We also define the differences Am? = m? — ﬁﬁL and Am?% = m? — ﬁL%R. Finally,

the insertion parameters that enter the amplitude expressions we write as:

(J\?f E)12 (]\7% E)z’S
Ormiz = —=—.  (Or/r)is = ﬁ (5.4.2)
ML ML R

for ¢ = 1,2 in the second expression. Note that these expressions differ somewhat from
common definitions in terms of “average slepton mass.” Our definitions are related
to the terms that directly enter the amplitudeﬁ as calculated using the “multi-mass
insertion” technique [145], which is easily related to an expansion of loop integrals over

rotated mass matrices (as in Ref. [146]). Also, since the 3 x 3 squark mass-squared

4 We have approximated (Am?2)? ~ Am?m3 and similary for (Am%)?2.
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matrices can each be diagonalized by unitary transformations, these expressions satisfy

dij < 1/2 when two of the squarks are degenerate.

To first order in the ratios My /Mg and My /Mg that determine the neutralino

and chargino mixing, the amplitudes are given byﬂ

A(Ld) _ 2o;w{((S,;)qu(5§)13(5L)23 ) (1)
m FU (5 )}
L
_Gn)ilbu)en e L)},
A(Lnl) _ _40‘?2 (1+t) {<5L>12+(5§)13(5L)23 D) (2,1)
L
s ey }
. dr)12 + (6 J n
AT = % (1—ty) {( Lz + ( ?13( 1)23 9™ (xn1)
IOATIUAE PP }
m1) _ a1 | (Or)i2 + (6r)1300R)23 (1)
AR - 127r{ m% g (#nL)

=)
ms2.

- (5R)13(5R)23f(n1) (xm'R) }7

R 87 m%

A(TLQ) - (o] { (5R)12 + (5R)13(5R>23g(n2) (ZL‘nL)

=9)
ms.

- (5R)13(6R)23 f(n2) (J:nTR) }7

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

(5.4.8)

® As all relevant diagrams are proportional to m,,, the factors appearing in Ref. [T45] have been

absorbed into the decay rate.
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where ty = tan(fy) and x4 = M2 /ﬁmg with m. and m,, the mass of the appropriate

chargino or neutralino, respectively. The loop functions are given by

fa(z) = M (2+ 3z — 62% + 2° + 6z log 7) (5.4.9)
feo(z) = —2(11@3 (3 — 4z + 2% + 2logz) , (5.4.10)
far(z) = M (1 — 62 + 32% + 22° — 627 log 7) , (5.4.11)
fa(z) = (1_1@,)3 (1 —2? +2zloga), (5.4.12)
Goi(®) = fui(z) +2fl(2). (5.4.13)

We have provided contour plots satisfying the present bound BR(u — ey) = 1.2 X
10~ [147] in Figures and In Figure we have assumed all J;; entries are of
the same size, while in Figure we have only included the d19 contribution. There is
an apparent large cancellation over much of the parameter space due to a competition
between various loop contributions to the amplitudes. In any case, large flavor violating
0;; entries are allowed for gaugino masses in the 1-2 TeV range, and order 0.1-0.2 for
the 0.5-1 TeV range.

5.5 Alignment Scenario

Next we consider the alignment scenario discussed in Ref. [124], in which the charged
slepton mass eigenstates are aligned with the charged lepton mass eigenstates, and sim-
ilarly for the sneutrinos and neutrinos. This scenario greatly alleviates neutral current
contributions to flavor violation in both the lepton [124] and quark [125] sectors. Note
that our assumption is different from a trivial alignment scenario where the sneutrinos,
charged sleptons and leptons are all aligned simultaneously.

In this case, all neutralino-mediated contributions to flavor violation vanish. The

reason is that the effective mixing matrix for the neutralino couplings is:

=Ul U, (5.5.1)

Keyen e
where M = L, R (again, we are neglecting left-right slepton mixing). Since the leptons

and charged sleptons are aligned, U,,, = U, ,, and the product is just the unit matrix.
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Figure 5.3: Contours for M satisfying BR(u — ey) = 1.2 x 10~ assuming 610 =

013 = 023 = 0.1 (solid), 0.25 (dashed), and 0.5 (dot-dashed), m,, = m,, = 500 GeV,
and My = 2Mpg. The area below each curve indicates the excluded region.

In contrast, the chargino mixing matrix is given by:
Kepi, = UL Uy, = Upnins (5.5.2)

where the last equality follows from our assumption of neutrino and sneutrino alignment
and the measurements of neutrino mixing angles in the Pontecorvo-Maki-Nakagawa-
Sakata matrix Upysys. We take the values for the mixing angles from Ref. [148] and
ignore any CP violating or Majorana phases for simplicity. We have listed the angles
in Table 5.1l Then the PMNS matrix is:

0.822  0.564 0.084
Upuns = | —0.449 0.550 0.705
0.351 —0.617 0.705

Working in a basis in which the lepton masses and chargino vertices are diagonal, the
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Figure 5.4: Contours for M satisfying BR(u — ey) = 1.2x 10~ assuming 013 = do3 =
0, d12 = 0.1 (solid), 0.25 (dashed), and 0.5 (dot-dashed), m,, = m,, = 500 GeV, and

My = 2Mp. The area below each curve indicates the excluded region.

flavor violation is moved to the sneutrino mass matrices:

(MEL)“ - (UM5g>2UT) . (5.5.3)
ij ij
where we have dropped the “PMNS” label from U. In the scenario we have outlined
with heavy first-two generation charged and neutral sleptons, the 23 mixing is nearly
maximal due to the fact that 63 ~ 45°. For example, given a stau neutrino mass of

m,, = 500 GeV and selectron and smuon masses of m =5 TeV, we find:

0.993 —0.058 —0.058
(32) =m* | —0.058 0508  0.492
~0.058 0492 0.508

The equality of the 13 and 12 entries is due to our assumption of degeneracy between

the first two generations. If exact degeneracy is maintained and the mixing angle 6;3
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Parameter Best Fit
sin6,9 0.32
sin’fy3 0.50
sin’6;3 0.007

Am?, (1075 eV?) 7.6
Am3, (1073 eV?) 2.4

Table 5.1: Best-fit values for the neutrino mixing angles as they appear in Ref. [148].

turns out to in fact vanish, then both the 12 and 13 entries would vanish. Then p —
ey vanishes and 7 — py provides the most stringent constraints. In any other case,
however, the contributions of both d12 and the product d13d23 can be important.

In Figure are contour plots for the branching fraction over a range of heavy
sneutrino and gaugino masses when the third generation is 500 GeV. Remarkably the
contribution to p — ey is only sensitive to the relative splitting between the heavy
sneutrino masses and the chargino mass. Additionally, the rate is within the reach of a

experimental searches given reasonable slepton and gaugino masses.

5.6 Discussion

5.6A Comparison with MSSM-like models

We can readily compare these results with those of typical models. With slepton and
gaugino masses of order a few hundred GeV, Majorana gauginos, and explicit y terms,
the constraints on LFV for a generic model are very stringent. We have listed the con-
straints as found in Ref. [33] in Table Two of the RR entries lack solid constraints
due to cancellations that occur in various regions of the space of MSSM parameters. The
orders of magnitude for these bounds are generically expected to be of the same order
as the corresponding LL constraint. Furthermore, we are neglecting any LR mixing.
The improvement over such models is apparent. Taking into account only the in-
creased slepton masses (i.e., ignoring the monotonic increase in the loop functions with

decreasing mg/ﬁ / 7%%), one can hope to relax the d1o constraints by up to 2 orders of
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Figure 5.5: Contours satisfying BR(z — ey) = 1.2 x 107! assuming only chargino
contributions due to an alignment mechanism and neutrino-like mixing (see text) for
my, = 0.9m,, (solid line), m,, = m,, (dashed), and m,, = 1.1m,, (dot-dashed). The
third generation sneutrino is assumed to be 500 GeV.

magnitude to 0.0GE] The product d13023 obeys a similar bound. Moreover, the rate for
1 — ey can be very sensitive to tan § when there are Majorana gauginos and explicit u
terms.

In contrast, the scenario we considered allowed for significantly larger values for d1o
with or without large cancellations in the amplitudes. For example, in Figure we
see that heavy sleptons and gauginos of about 500 GeV are consistent with current
measurements of ;1 — ey when the §12 entry is as big as 0.1. With gaugino masses of

order 1 — 1.5 TeV, arbitrarily large §;; entries are allowed.

5 The rates are proportional to 6%, and inversely proportional to the average slepton mass to the
fourth power.
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Table 5.2: Bounds on the (64p)i; as they appear in Ref. [33].
j | LL RR
12[6x107%| 0.09
13 015 |=~107"
23 | 0.12 ~ 107!

5.6B The (s)quark sector

It would be interesting to complete a similar analysis of flavor violation in the quark
sector, namely of the rates for AF = 2 processes involving the kaon and Dy systems.
The analysis of Ref. [30] found that explaining the kaon mass difference required gluinos
of at least 5 TeV provided there is large mixing in both the left- and right-handed squark
mass-squared matrices. A complimentary analysis in the presence of hierarchical soft
terms could be completed in the spirt of Ref. [31].

For models with an alignment mechanism as discussed in Section above, or at
least an approximate alignment mechanism, gluino-mediated flavor violation is signifi-
cantly suppressed [125], as there is only the much weaker coupling to the charginos, and
the quark mixing matrices are small. In such a case, the lepton sector is expected to
provide the most severe constraints. Therefore, it would be interesting to explore con-
crete models like those we have described that feature alignment mechanisms through,

e.g., horizontal symmetries.

5.6C Conclusions

We discussed lepton flavor violation in models with hierarchical soft terms and Dirac
gauginos. The rates for y — ey are within the bounds provided by experiment with
large off-diagonal entries in the slepton mass-squared matrices provided the gauginos
are sufficiently heavy (Mg between 500 — 1500 GeV).

We motivated this discussion by describing how this spectrum can arise in models of
SUSY breaking from a warped extra dimension with an elementary Higgs sector, similar
to the model of Ref. [22]. We argued that the geographical relation between fermion

masses and wavefunction localizations leads to an inverted hierarchy for the sfermion
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masses, with the first-two generations being generically heavy and the third generically
light, while the bulk R-symmetry indicates that the neutralinos should acquire Dirac
masses.

We also considered flavor violation mediated strictly by charginos, as occurs when
the slepton masses are aligned with the lepton superpartner masses. When the off-
diagonal elements are due to the large neutrino mixing angles, rates for y — ey may
remain within reach of future experiments.

In all the cases we considered, the rates for 4 — e~y are such that that they should be
detected in future experiments unless there are unnaturally small off-diagonal elements
in the slepton mass matrices or the gauginos are very heavy. Assuming neither is true,
an experimental signature of this sort of model would be the discovery of a light stau
and measurement of u — ey at a rate near the present bound, together of course with

sufficiently high lower limits on the masses of the first-two generation sleptons.
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