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Abstract

In this thesis, we present theoretical studies on three topics related to multi-component ultracold

gases and gauge fields.

The first topic that we discuss is artificial gauge fields in ultracold gases. Recently, methods
to create artificial gauge fields coupled to neutral ultracold systems using a light-induced Berry’s
connection have been rapidly developing. These methods are not only capable of creating Abelian
gauge fields, such as a conventional magnetic field, but also non-Abelian gauge fields, which opens
a way to explore and simulate a wide variety of physical models. In this thesis, we discuss vari-
ous properties of bosons with Rashba-Dresselhaus spin-orbit coupling, which is a special type of
non-Abelian gauge field. We investigate the stability of Bose-Einstein condensates with Rashba-
Dresselhaus spin-orbit coupling, and show that the condensates are stable against quantum and
thermal fluctuations. We also consider the renormalization of the bare interaction by calculating
the t-matrix and its consequence on the ground state phase diagrams.

The second topic discussed here is three-component ultracold fermionic systems. It is known
that ferromagnetism and superfluidity can coexist at low enough temperature in three-component
ultracold fermions. In this thesis, we elucidate how fermionic pairing and population imbal-
ance enhance each other. We also describe a crossover from Bardeen-Cooper-Schrieffer state of
fermionic pairing state to the limit of Bose-Einstein condensate of three weakly interacting species
of molecules, as the interaction increases. Furthermore, we find an interesting similarity in the free
energies between three-component ultracold fermions and quantum chromodynamics.

The last topic discussed here is Niels Bohr’s double-slit interference gedankenexperiment with
charged particles, which argues that the consistency of elementary quantum mechanics requires
that the electromagnetic field must be quantized. In the experiment a particle’s path through the
slits is determined by measuring the Coulomb field that it produces at large distances. Under
these conditions the interference pattern must be suppressed; otherwise quantum mechanics is not

consistent. The mechanism for the suppression of the interference pattern is that, as the particle’s
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trajectory is bent in diffraction by the slits, it must radiate and the radiation must carry away
phase information. Thus, the radiation field must be a quantized dynamical degree of freedom.
We also consider the related setup in which one attempts to determine the path of a massive
particle through an interferometer by measuring the Newtonian gravitational potential the particle
produces. In this case, we show that the interference pattern would have to be finer than the Planck
length and thus indiscernible. Therefore, unlike for the electromagnetic field, Bohr’s argument does

not imply that the gravitational field must be quantized.
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Chapter 1

Introduction

We discuss three topics in this thesis. The first topic is artificial gauge fields in ultracold gases,
especially ultracold bosons with Rashba-Dresselhaus spin-orbit coupling. The second topic is the
Bardeen-Cooper-Shrieffer (BCS) to Bose-Einstein condensate (BEC) crossover of three-component
ultracold fermions. The last topic is a double-slit interference problem, which discusses why elec-
tromagnetic field must be quantized.

In the following sections, we give brief introductory accounts on the three topics covered in this

thesis. Parts of this thesis are based on the author’s publications [1, 2, 3, 4, 5].

1.1 Gauge fields and ultracold gases

Ultracold gases are versatile playgrounds to realize, explore, and discover various physical models
and phenomena. Indeed, one major reason that ultracold gases are currently attracting so much
attention is that it is possible to simulate various physical models using ultracold gases, which are
otherwise difficult to solve or realize.

One crucial ingredient which is not present in neutral ultracold gases in their natural forms, but
important in many areas in physics, is the coupling with electromagnetic fields, or more generally,
gauge fields. A free non-relativistic particle with charge ¢ coupled to a magnetic field B is described

by the Hamiltonian

Hzim(p—gAf, (1.1)

where c is the speed of light and the vector potential A satisfies B = V x A. Many of the interesting
phenomena in conventional condensed matter physics, such as superconductivity and quantum Hall

effects, are the consequence of electrons coupling to electromagnetic fields. On the other hand, since
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q = 0 for neutral ultracold atoms, these atoms do not naturally couple to electromagnetic fields
as in (1.1). Thus, if we wish to simulate the coupling of electrons, or other charged particles, to
electromagnetic fields using ultracold gases, we need a method for creating artificial gauge potentials
to “trick” neutral particles into behaving as if they are charged particles in electromagnetic fields.
There are two major schemes for achieving artificial gauge fields in neutral ultracold gases; the first
is to rotate the gas, and the second is to use position-dependent atom-light interaction to create
Berry’s connection. Our main focus in this thesis is on the latter scheme, but let us first briefly
discuss the former method of rotation.

If an ultracold atomic system in a harmonic trap is rotating with an angular velocity €2, the

Hamiltonian in the rotating frame is
H—-Q-L, (1.2)

where H is the Hamiltonian in the non-rotating frame and L is the angular momentum operator
[6]. The single-particle Hamiltonian in the rotating frame is then
2

o L=2 122 q.
H QL—2m—|—2mwr Q- (rxp)

1 1 1
=5 (p —mQ xr)* — §m(Q x1)? + §mw2r2, (1.3)

where w is the trap frequency. If the axis of rotation is in the z direction, such that € = (0,0,€),

the Hamiltonian in the rotating frame becomes

1 1
H-Q-L (p — mQ(—y, x,0))* + im(cu2 — 0 (2 + y?) + smw?2?. (1.4)

_ 1
- 2m 2

This Hamiltonian formally has the form of a particle in a trap coupled to a vector potential
9A _
=A =mQ(-y,z,0). (1.5)
c

The magnetic field produced by this vector potential is

2 2
Vx A= <0,0, ch) = q, (1.6)
q q

Thus, the Hamiltonian in the rotating frame takes the same form as that of a charged particle
coupled to an external magnetic field, whose magnitude and direction are proportional to the

angular velocity of rotation. In other words, ultracold gases under rotation “think” as if they are
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charged particles coupled to a magnetic field, even though the particles are neutral. Experiments
have shown that the rotation creates quantized vortices in BECs [7, 8]. For fast enough rotation,
these vortices form a triangular lattice, as in Fig. 1.1. This formation of a triangular lattice,
which was known as an Abrikosov lattice, is originally predicted for magnetic flux lines in type-I1

superconductors where condensed Cooper pairs are coupled to an external magnetic field.

Figure 1.1: Quantized vortices created in a rotating BEC of sodium. (©) Martin Zwierlein.

Studies in rotating ultracold systems have been successful, both theoretically and experimen-
tally, yielding various novel phenomena such as a prediction of the emergence of highly correlated
quantum-Hall like states [9, 10]. However, there are also drawbacks to this method. It is experi-
mentally difficult to achieve very rapid rotation as it requires a fine tuning of the ratio /w close to
1. Also, the artificial magnetic field produced through rotation is necessarily constant. The second
means of creating artificial gauge fields, using a laser-assisted Berry’s connection has the prospect
of circumventing these shortcomings. Moreover, laser-assisted Berry’s connections are capable of
simulating more than a simple external magnetic field, and can also model non-Abelian gauge fields
in the following way. The Hamiltonian of n-component ultracold gases in the spinor basis is an

n x n matrix. Therefore, generally speaking, each component of the gauge field A = (A, 4y, A>)
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is an n X n matrix, which couples to the momentum as:
1 2

m (Ploxn —A)7, (1.7)

where I,xp is the n x n identity matrix. (We include the coefficients of A, such as ¢g/c in the
case of Abelian vector potential, into A.) When some components of A do not commute (e.g.
[Az, Ay # 0), the gauge field A is called non-Abelian. (On the other hand, if all the components of
A commute with each other, the gauge field is Abelian. For instance, the conventional magnetic field
is produced by 1 x 1 Abelian gauge fields.) As we will discuss in detail, Berry’s connection can also
create non-Abelian gauge fields, which significantly broadens the range of physical models which
ultracold gases can explore. In this thesis, special attention is given to the Rashba-Dresselahsu
spin-orbit coupling, which is a special type of non-Abelian gauge fields of the form A o (o, 0y,0),
where o, and o, are the Pauli matrices. When a particle is coupled to the Rashba-Dresselhaus
spin-orbit coupling, the single-particle ground state is doubly (or more) degenerate, which leads
to a non-trivial BEC structure. In addition, the renormalization of the interaction needs a careful

treatment because of the modified single-particle spectrum, as we will discuss.

1.2 Multi-component ultracold fermions

Another topic of interest in this thesis is three-component ultracold fermionic systems. Here, we
briefly review the physics of two-component ultracold fermions to familiarize ourselves with concepts
that are common in multi-component ultracold fermions.

Two-component ultracold fermions can be, to a large extent, understood from an analogy with
spinfull electrons in metals. Electrons in a metal with a weak attractive interaction are known
to exhibit superconductivity at low temperature. If the attractive interaction is independent of
angle, the superconductivity is described by BCS theory [11, 12]. In the BCS theory, particles with
opposite spins and momenta pair, and the pairs condense into the same state. In other words, a
BEC of paired fermions is the origin of BCS superconductivity !. The same mechanism applies for

two-component ultracold fermions, where the two components are regarded as two pseudospins. In

!Strictly speaking, the paired fermions are not bosons in the sense that they do not obey Bose commutation
relations. On the other hand, the pairs all have the same wavefunction, so, in this sense, the pairs are condensed into

the same state [13]. More precisely, the BCS state is a coherent state of fermion pairs.
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the case of two-component ultracold fermions, the fermions with opposite pseudospins and momenta
pair, and the pairs condense to form a superfluid. The original BCS theory is applicable only for
a weak interaction; however, in ultracold systems the interaction can be tuned and need not be
weak. Leggett argued that the physics of weak and strong attraction are continuously connected,
and can be described by a variational approach using a single BCS-like ansatz wavefunction at
zero temperature [14]. When the attraction is weak, the BCS-like state is composed of pairs whose
size is greater than the inter-particle spacing. As the interaction is increased, the size of the pairs
becomes smaller and eventually becomes much smaller than the inter-particle spacing, in which case
the pairs can be regarded as molecules consisting of two fermions. Thus, in the strong interaction
limit, the system at low enough temperature is a BEC of paired fermions. This continuous crossover
from the BCS state of weakly interacting fermions to the BEC of paired (molecular) fermions is
called the BCS-BEC crossover. The fermions remain a superfluid during the BCS-BEC crossover.
The BCS-BEC crossover theory can be extended to a finite temperature. At finite temperature, we
must include the effects of fluctuations of pairs. Nozieres and Schmitt-Rink found that the finite
temperature BCS-BEC crossover can be qualitatively described by considering ladder diagrams for
the free energy, taking into account the effects of pairing fluctuations [15]. Figure 1.2 is a schematic
phase diagram of the BCS-BEC crossover. The horizontal axis is —1/kpa, where kp is the Fermi
momentum and a is the scattering length, which is positive in the BCS region and negative in the

BEC region.

TA

normal

superfluid

' >-1/kra
BEC region 0 BCS region / E

Figure 1.2: A schematic phase diagram of the BCS-BEC crossover in two-component ultracold

fermions.
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The continuous transition in the BCS-BEC crossover has been experimentally observed [16, 17,
18]. Rotating the two-component fermions below the superfluid transition temperature, quantized
vortices have been observed, as shown in the Figure 1.3, and no phase transition has been observed

between the BCS region and the BEC region [19].

Magnetic field [G]
730 833 935

L I L

16 0 0.7
+— BEC Interaction parameter 1/k, 2 BCS —»

Figure 1.3: The BCS-BEC crossover of quantized vortices in a rotating two-component Fermi gas
of 6Li. The right figure is in the BCS region of weak interaction, and the left figure
is in the BEC region of strong interaction. The middle figure is in the intermediate

region called the unitarity regime. (©) Martin Zwierlein.

In this thesis, we discuss the BCS-BEC crossover of three-component ultracold fermionic sys-
tems. As we will see, both superfluidity and magnetism can coexist in three-component ultracold
fermions. Fortunately, basic methods for describing the BCS-BEC crossover in two-component
fermions, such as the Leggett’s BCS-like ansatz state at zero temperature, and Nozieres and
Schmitt-Rink’s approach at the finite temperature, remain valid for three-component systems.
As two-component ultracold fermions can be used to simulate spinfull electrons in metals, three-
component systems are expected to be able to simulate an even wider variety of physical models.
In particular, there is the prospect of simulating analogs of quantum chromodynamics (QCD) using
three-component ultracold fermions, where the three components correspond to the three colors of
QCD. We will see that the Ginzburg-Landau free energies of three-components ultracold fermions

and QCD have similar structures.
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1.3 Should gauge fields be quantized?

In section 1.1, we discussed static gauge fields, in which the gauge fields were not an independent
quantum degrees of freedom. In reality, gauge fields are quantized; for example, electromagnetic
fields should be quantized and photons must have an independent quantum degree of freedom.
There are numerous pieces of experimental evidence to think that the the electromagnetic field
should be quantized, such as the spontaneous emission of light, the Lamb shift, etc?. In another vein,
Niels Bohr conceived an ingenious gedankenexperiment that demonstrated that the electromagnetic
field must be quantized by requiring the consistency of quantum mechanics. An outline of his
argument is as follows. Consider a double-slit interference experiment with charged particles.
When the charge is small, such as with electrons, we know that an interference pattern will emerge.
If the Coulomb field created by the particles is large enough, it should be possible to detect the path
(which slit the particle went through) by measuring the particle’s Coulomb field. If the measuring
device for the Coulomb field is located far enough from the slit, the measurement process cannot
affect the interference pattern, and the interference pattern should remain. However, it would be
a contradiction of quantum mechanics if we were able to detect the path of the particles and still
observe the interference pattern at the same time. This contradiction arises because we have not
treated the electromagnetic field as an independent degree of freedom. If the electromagnetic field
is quantized and has an independent quantum degree of freedom, the bremsstrahlung produced by
the charged particle as they turn the corner at the slits are entangled to the state of the particle.
As a result of this entanglement, the particle obtains a random phase information and thus the
interference pattern is destroyed. Therefore, if we assume that the electromagnetic field is quantized,
quantum mechanics is safe and consistent. In this thesis, we give a detailed analysis of Niels Bohr’s

gedankenezperiment ® and also consider an extension to discuss if gravity should be quantized.

2 It is worth noting that while often cited in this regard, the photoelectric effect does not, in fact, require the

quantization of the electromagnetic field [20, 21].
3 This gedankenexperiment was told by Aage Petersen to Gordon Baym at Copenhagen ca. 1961. Petersen was

Niels Bohr’s scientific secretary (amanuensis) from 1952 until Bohr’s death in 1962. To the author’s knowledge, this
experiment is not mentioned in Bohr’s published papers, unpublished manuscripts, or letters. Aage Bohr, the son of
Niels Bohr, when queried about the experiment, wrote that, “Many ways of observing effects distinguishing between
the “paths” of the electron were certainly discussed ... I do not remember any specific scheme exploiting the Coulomb

field far away from the electron.” (Letter to G. Baym, 6 June 2001.) References to N. Bohr’s ideas in this thesis
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Let us now briefly review an ordinary double-slit interference experiment, in which electrons
go through a double-slit one by one and are detected at the screen. As the number of detected
electrons increases, an interference pattern emerges on the screen. Figure 1.4 shows the interference

pattern produced from an actual experiment by a Hitachi group (e.g. [23]).

Figure 1.4: Double-slit interference pattern of electrons. As the number of detected electrons

increases from (a) to (d), the interference pattern is built up. © Hitachi, Ltd.

We can construct a simple model to explain this experiment. Consider the double-slit setup of
Figure 1.5. Let pi(r) and pa(r) be the momenta of particles which went through the upper and
lower slits, respectively, and reached the position r on the screen. The state of the particle at the

screen is

[state) = / d*r (w1 (r)|p1(r)) + uz(r)[p2(r))), (1.8)

where u;(r) and uy(r) are appropriate weights for the states from the upper and the lower slits,
respectively, and |p) represents the state with momentum p. The probability of measuring a particle

at position r is

(state|o! (r)u(r)[state) = || (r)[state)]|2, (L9)

follow Petersen’s description of the experiment told by Gordon Baym to the author. A similar gedankenexperiment

was described in the chapter 15 of [22] as well.
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slit screen

Figure 1.5: A setup of a double-slit experiment.

where

¢(r) = eipl(r)'rrl/]pl (l‘) + eip2 (r)'r,lybpg(r) (110)

is the particle annihilation operator at r, and 1) is the particle annihilation operator of momentum
p.- Throughout this thesis, we set A = 1 unless otherwise stated. When the lower slit is closed, the

state is, up to an overall normalization factor,

|state)upper = / d*r ui(r)|p1(r)). (1.11)

Then, when the lower slit is closed, the probability of finding a particle at position r is

. 2 9
P Ty (1)]0) | = fur (1), (1.12)

s (0)lstate) upperl|* = |

where |0) is the vacuum state. This probability is proportional to the intensity of the particle beam

at the screen when the lower slit is closed. Thus let us define the intensity by
Lu(r) = |ug ()] (1.13)
Similarly, the intensity of the particle beam when the upper slit is closed is

I)(r) = Jua(r)|?. (1.14)
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When both slits are open, probability of finding a particle at position r is

. . 2
() 1> = [P Tuy (x) + €20 Ty (r)

= |uy (r) ] + |ua(r)|? + u1(r)u§(r)ei(pl(r)fm(r))'r + c.c.
= I,(r) + I;(r) + 24/ 1, (r)I;(r) cos((pi(r) — p2(r)) - r + @), (1.15)

where uy (r)us(r) = |ui(r)ul(r)|e’®. Thus, at least for a short interval, the intensity sinusoidally
oscillates and produces the familiar interference pattern. Upon deriving this expression, we assumed
in (1.8) that the state at the screen is a superposition of states produced by a particle going through
the upper slit and the lower slit. Thus, if there is a way to find which path the particle took, the
interference will not occur, and the interference pattern should not be observed.

In this thesis, we discuss how this argument may be extended for charged particles with quantum
electromagnetic degrees of freedom in the context of Niels Bohr’s gedankenerperiment. We also
discuss a similar gedankenexperiment with massive particles to see if we can conclude that the
gravitational field should be quantized as well. We find that the result is negative; the analogous

argument does not require the quantization of the gravitational field.

1.4 Outline of this thesis

The organization of this thesis is as follows:

In chapter 2, we discuss how gauge fields are artificially produced in neutral ultracold systems.
We discuss a general theory of Berry’s connection and how this tool can be used to create artifi-
cial gauge fields in ultracold systems. We then move on to discuss Rashba-Dresselhaus spin-orbit
coupling. We explain single-particle properties of a particle with Rashba-Dresselhaus spin-orbit
coupling, such as the single-particle spectrum and the possibility of BEC in the absence of interac-
tion.

In chapter 3, we discuss the stability of BEC’s in the presence of Rashba-Dresselhaus spin-orbit
coupling with an s-wave contact interaction. We show, by first calculating the Green’s function,
that the BEC’s are stable against quantum and thermal fluctuations. Also, comparing free energies
of the normal phase and the condensed phase, we infer that generally the system is condensed at
zero temperature, and undergoes a transition to normal at non-zero temperature. The content in

this chapter is based on [1].
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In chapter 4, we discuss how the bare interaction is renormalized in the presence of Rashba-
Dresselhaus spin-orbit coupling, and how the renormalized interaction affects the phase diagram.
In particular, we derive the exact two-body t-matrix of two bosons or two fermions scattering in an
arbitrary mixture of Rashba and Dresselhaus spin-orbit coupling. We describe the phase diagram
for bosons within the mean-field approximation using the t-matrix as an effective interaction. The
content in this chapter is based on [2, 3].

In chapter 5, we discuss three-component ultracold fermions. We investigate the phase diagram
and the BCS-BEC crossover of a homogeneous three-component ultracold Fermi gas with a U(3)-
invariant attractive interaction. We show that the system at sufficiently low temperatures exhibits
population imbalance as well as fermionic pairing. We describe the crossover in this system, con-
necting the weakly interacting BCS regime of the partially population-imbalanced fermion pairing
state and the BEC limit with three weakly interacting species of molecules, including pairing fluc-
tuations within a t-matrix calculation of the particle self-energies. The content in this chapter is
based on [4].

In chapter 6, we discuss our final topic of Niels Bohr’s double-slit gedankenerperiment. We show
how the measurement limit of the path is related to the charge of the particle by first reconstructing
the argument of the measurability of small electric fields by Bohr and Rosenfeld. Next, we discuss
how the visibility of the interference pattern varies as a function of the charge of the particle,
assuming that the electromagnetic radiation has an independent quantum degree of freedom. We
then conclude that we cannot efficiently measure the path of the particle without destroying the
interference pattern, showing the consistency of the quantum mechanics. We also discuss that a
similar argument does not lead to the requirement that the gravitational field be quantized. The
content in this chapter is based on [5].

In appendix A, we develop a theory of scattering in both two and three dimensions, emphasizing
differences between different dimensions. We explain how the effective interaction and the t-matrix
are related, and how the bare interaction can be renormalized in terms of the scattering length.

Appendices from B to G are devoted to lengthy calculations omitted in the main text.



Chapter 2

Artificial gauge fields in ultracold atoms

2.1 Introduction

In most experimental systems, trapped ultracold atoms are neutral and do not naturally couple
to gauge fields, such as electromagnetic fields, in a way charged particles are coupled these fields'.
On the other hand, many interesting phenomena in condensed matter systems are the result of the
coupling between charged particles, which are often electrons, and gauge fields, usually electromag-
netic fields. Examples of such phenomena include Aharonov-Bohm effects, quantum Hall effects,
and the formation of quantum vortices in type-II superconductors.

Roughly speaking, there are two different methods for obtaining a gauge-field like potential in
ultracold atomic systems. One method is to rotate the gas. By rotating the gas, the Hamiltonian
acquires an effective static Abelian gauge field in the rotating frame, which amounts to coupling
the neutral atoms to effective magnetic fields as we saw in the section 1.1.

Another method for creating artificial gauge fields involves using finely tuned and aligned lasers.
There have been many proposals for obtaining external (static) gauge fields, both Abelian and non-
Abelian, and some are already realized [24, 25, 26, 27, 28, 29, 30, 31]. Such a system is of great
interest not only because of the prospect of simulating various models in condensed matter physics
in which electrons are coupled to magnetic fields, but also because of the possibility of exploring
physical systems which have never been conceived before. For example, in conventional condensed

matter physics, the charge carriers are electrons, which are fermions, but using ultracold atoms one

! Ultracold atoms do couple to electric and magnetic fields, and it is this coupling which makes magnetic and
optical traps possible. However, the coupling structure between ultracold atoms and electromagnetic fields is quite

different than that between charged particles and these fields.

12
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can create artificial gauge fields coupled to bosons, which has no analog in conventional condensed
matter physics.

In this chapter, we begin by explaining Berry’s connection and how this tool is used to create
artificial gauge fields in ultracold gases. We then discuss single-particle properties of a particle with

Rashba-Dresselhaus spin-orbit coupling, which is a special class of non-Abelian gauge field.

2.2 Berry’s connection

Berry’s connection is the effective gauge field that arises when the state of the system contains
both fast and slowly varying components [32]. While the quickly varying component of the state
adiabatically follows the slowly varying component obeying the quantum adiabatic theorem, the
slowly varying component acquires Berry’s connection.

We first develop a general theory of Berry’s connection, and then apply the theory to ultracold
gases. In the case of ultracold atoms, the slow component is the translational motion of the atom,
and the fast component is the internal state of the atom. An atom moves in the field created by
finely aligned lasers, and the translational motion of the atom acquires Berry’s connection, which
serves as an artificially created gauge field to the atom.

Let r denote the position involved in the state which is changing slowly?. Then, the state whose
parameters vary quickly is described by a Hamiltonian with given r. (Now we are treating r as
a classical variable to describe the fast component, although in principle it is not. This is the
Born-Oppenheimer approximation.) Let us call the Hamiltonian with fast variables H*'(r). Note
that HT (r) may contain a spatial derivative term, but if so, it will not be with respect to r, which
is the position of the slowly varying component. When we write H¥ (r), r is an external parameter
which is fixed. Let {|x;(r))} denote a complete set of orthonormal eigenstates for H’ (r) with the
respective eigenvalues F;. Applying the adiabatic theorem we conclude that when the slow variable
is changed, the fast variable follows the change of the slow variable adiabatically. This means

that we only need to consider a certain subspace spanned by {|x;(r))} which have the same (or

2 In this chapter, we need to distinguish between vectors and matrices. We let a capital letter in bold font denote
a matrix, and a lower-case letter in bold font denote a vector. A capital letter in bold font with an arrow on its top
denote a vector of matrices. For example, A= (Az, Ay, A,), where A; are matrices. On the other hand, r = (z,y, 2)

is a vector in three dimensional space.
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similar) energy eigenvalue. Let g be the set of indices in the subspace with the same energy. When
the subspace is non-degenerate, g contains only one element. When the subspace is degenerate, g
contains several elements.

Let us now begin by writing the overall state of the system as

= i)l (2.1)

leg
where |®(r),) denotes the partial projection of the whole state |®) onto the subspace of slowly

varying components with position r. We may now write the total one-particle Hamiltonian as

H= <—§2+U( )>I+HF(r), (2.2)

m
where I is the identity operator in the Hilbert space of the quickly varying components. Then, the

Schrédinger equation is

0
i ®(r)it) =i %wl t)x(r
2
= H[B(r); 1) = (—QV FUE) 4 ) S
leg
=D (‘ +U(r) + El) i) xa(r)). (2.3)
leg
Applying (xm(r)| where m € g from the left, we obtain
2
g mr,t) = (=50 + V) + B ) () = %wl () (r))
— 5 sz (0)[V2ha(r)
leg
= L Y —1 r r Y —1 r r r
Y ( Y b= 1000 )] >>> (You = i @ITha(e) ) e
+(U(r) +E )+ Z m(0)[VIxi(r))) thi(r)
leg
+ Z 1)V xn (1)) O (1) [V X2 (1)) i () — ﬁZ(Xm(r)\VZ\Xz(P)WZ(F)
nlEg leg
(2.4)
Defining
A (r) = i{xm (1) V xa(r)), (2.5)
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the above equation can be written as
0 1 /V -
Zawm(rvt) - Z % (Zfsmn - Amn(r)) < > )wm( )
L
2m

An () - A () (x). (2.6)

leg n,leg
This equation can be written in terms of ¥(r), which is the vector whose components are )y, (r)

with m € g, and A(r), which is a matrix whose (m, ) element is A,,;(r). Then,

2m \ 1

2
z'aatﬁ(r,t) = (1 (V,I - A(r)) +(U(r)+ En)I+ V(r)) P(r,t), (2.7)
where (m, 1) component of a matrix V(r) is
Via(r) = 5 (V om(®)]) - (Va(r) X o An(r) - Au(r) (2.8)

Now the effective Schrédinger equation (2.7) for the wavefunctlon of the slow component looks
as if the particle is traveling in the vector potential given by A(r) and the scalar potential V(r)
in addition to the original potential U(r). The emergent effective vector potential A(r) is called
the Berry’s connection. If there is only one component in g, the wavefunction ¢ (r) has only one
component, and so does the Berry’s connection. In this case, the vector potential is called Abelian.
On the other hand, if there are more than one element in g, the wavefunction is a vector with more
than one component, and the Berry’s connection becomes a matrix with more than one dimension.
When the Berry’s connection is noncommutative, the vector potential is non-Abelian.

We can rewrite the scalar potential in a more compact way, by using a relation derived by

taking the derivative of (x;(r)|Xm(r)) = 0;m, which is

(VO ) (1) = —(u @]V (1)) (2.9
Then,
Via(r) = 32 5 (9 b ()] - b () O () W () nzeg;ﬁmn(r) )
==Y o b ®TaE)) - () V() nzeg;nﬁmnm Aun(r)
_ %ffmn(r) Al )—nzegélffmn(r) A(r)
=3 % A (x) - Ay (r), (2.10)
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which is an expression found in [33].

Finally, we note that the matrix A(r) is a vector of Hermitian matrices:

Ami(x) = i{xm ()| V1xa(r) = =i (V@) () = @0a@)|Vxm )" = Am(r)™. (2.11)

So far we have developed a general theory of the Berry’s connection. Now, let us look at some

specific examples of the use of Berry’s connections to realize artificial gauge fields in ultracold gases.

2.3 Creating artificial gauge fields

There are many proposals to create artificial gauge fields using Berry’s connection. Here we describe
a scheme which was used in the first experimental realization of an artificial gauge field in [24, 25]3.

Consider a system of ultracold 8’ Rb atoms, focusing on the three hyperfine levels with F' = 1.
Two of the states |g1) and |g2), are coupled to the third state |e), with space dependent complex

Rabi frequencies x; and xo. The Hamiltonian of the three internal states in {|g1), |e), |g2)} basis is

—-20 k7 O
1
H= 5 K1 0 K2 | (212)
0 kK3 20

where 26 is the detuning of Raman excitation between the states |g1) and |g2). Choosing the laser
configuration so that the difference of the wave vectors of two coupling lasers is directed in the x

direction and s = x§ = ke~ *4* the Hamiltonian becomes

_ K ikg -1 = etkaz 0
Lo " tan 6 V2 tan 6
. an anf |
H=94 —ikaz 0 ikar | = § | —ehax 0 —¢tkar | 2.13
0 e_ikdm 1 0 ta‘ie—zkdm 1
2% 7

where tan# = x/1/25. The eigenstates of this Hamiltonian are 0 and +d/ cos = 4/62 + x2/2.
The normalized eigenvectors corresponding to the eigenvectors —/6% + k2/2, 0, and /6% + k2/2

3 The analysis of the scheme we describe here is based on [33], which makes explicit use of the Berry’s connection.

On the other hand, the original analysis of the setup, which is given in [34], does not directly use the Berry’s
connection. The two analyses yield the same result in the parameter regime where they are both valid. However, the

analysis given in [34] applies to a wider parameter regime.
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are
etkat cos2(6/2) cikaz si%e e'Fa® 5in? (6 /2)
=) 1 sing 0) 8 +) L sing (2.14)
-\ = _ in = 3 = —= S1n .
7 , cos ) ;

V2

e~ kar 5in%(9/2) —e_ikdm% e~ ka cos2(0/2)

respectively. Assuming the energy —/02 + k2/2 is lower than the other two states, we can use an
adiabatic approximation in which the system follows the lowest energy eigenstate throughout the

system’s evolution. In this approximation, the artificial gauge field created is an Abelian gauge

field, which is:
A =i(—|V|-) = —cos OV (kqz) = (—kqcos,0,0), (2.15)
and the artificial magnetic field is
B=VxA= (0, kg0, cos 8, k0, cos ), (2.16)

where cos6 depends on position through the position dependence of 4. The first experimental
realization of the artificial gauge field was with a constant ¢, which leads to non-zero vector field,
but zero artificial magnetic field [24]. Later the same group realized a non-zero artificial magnetic
field utilizing a § with spatial variation in the y direction [25]. The artificial magnetic field was
thus in the z direction and they observed quantized vortices in the BEC as shown in the Figure
2.1.

In a similar manner, a non-Abelian gauge field can be artificially created in ultracold gases. In
the next section, we turn our attention to the Rashba-Dresselhaus spin-orbit coupling, which is a

special kind of non-Abelian gauge fields.

2.4 Rashba-Dresselhaus spin-orbit coupling

2.4.1 Hamiltonian

Among the many possible configurations of non-Abelian gauge fields in ultracold atoms, special
interest has been given to a certain type of non-Abelian gauge field which is known as Rashba-

Dresselhaus spin-orbit coupling.
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b ¢/2n=0.13 kHz pm~! ¢ ¢'/2n=0.27 kHz pm™!

souu-

d ¢’/2n = 0.31 kHz pm™! e 6'/2n=0.34 kHz pm™! f 6’/2n=0.40 kHz pm-!

80“--

X posmon after TOF ( um)

Y position after TOF (m)

Figure 2.1: Vortices created in a BEC of 87Rb coupled to an artificial magnetic field. ¢’ is the
gradient of the detuning §. As ¢’ increases, the number of vortices increases because
the artificial magnetic field becomes larger. The asymmetry in the shape of the cloud
is from a shear force due to the Raman lasers. Adapted by permission from Macmillan

Publishers Ltd: Nature 462, 628-632, copyright 2009 [25].

The theory of Rashba-Dresselhaus spin-orbit coupling was originally developed in the context
of two-dimensional semiconductors [35, 36]. The Rashba spin-orbit coupling and the Dresselhaus
spin-orbit coupling both couple the momentum p and the spin o, but their origins are different. The
Rashba spin-orbit coupling is the result of the inversion asymmetry of the confining potential (or
the structure), whereas the Dresselhaus spin-orbit coupling is the result of the inversion asymmetry
of the bulk [37, 38]. The overall spin-orbit coupling is the result of an interplay between the Rashba

and the Dresselhaus spin-orbit couplings.

The Rashba spin-orbit coupling is given by the Hamiltonian

Hr =cr (pny - pyax) s (2'17)

and the Dresselhaus spin-orbit coupling is

Hp =cp (pxe - pyo-y) ) (218)

where cr and cp are respective coupling strengths. In order to facilitate our analysis let us first
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transform the Hamiltonians by performing a pseudospin rotation given by a unitary matrix

efifr/S 0
2.19
0 eim/8 ( )
Under this transformation, the Pauli matrices transform to
eim/8 0 e—tim/8 0 or — 0y
Oy — o ==
v 0 6—i7r/8 v 0 ei7r/8 \/i
eim/8 0 e—im/8 0
oy — ‘ oy ' = M. (2.20)
0 e—zw/S 0 ez7r/8 \/5
Then, the Rashba and Dresselhaus Hamiltonians transform as
oz + 0y Jx_ay> (pz—py Pz + Py >
Hr —c — =c oy + o 2.21
Ox — Oy Oy + 0Oy Pz — Py Dz + Py )
Hp — ¢ — =c O — oy | - 2.22
Finally, let us rename the axes in the momentum space so that
Pz — Py Dz + Dy
— Dz, — Dy 2.23
Thus, we obtain
Hr — cg (Pa0z + Pyoy) , (2.24)
Hp — ¢p (P22 — Pyoy) - (2.25)
The sum of the two spin-orbit coupling Hamiltonians give
K K
Hr+Hp — (cr + ¢cD)pa0s + (crR — cD)pyoy = %pmcrx + %pyay, (2.26)

where K = m(cg+cp) and ) = (cg —¢p)/(cr+c¢p). The parameter k measures the overall strength
of the Rashba-Dresselhaus spin-orbit coupling, while 7 is a measure of the relative strength of the
Rashba-Dresselhaus spin-orbit couplings. Without a loss of generality, we can assume x > 0 and

0 <7 < 1% In the case of pure Rashba spin-orbit coupling, we have n = 1, and in the case of an

* When k < 0 or n < 0 or 1 < 7, we can always flip the signs of p, or p, and redefine the axis of momenta to

satisfy Kk >0 and 0 <n < 1.
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equal mixture of the Rasbha and the Dresselhaus spin-orbit coupling (cg = ¢p), we have n = 0.
Since 7 also sets the anisotropy of the spin-orbit coupling in z and y directions in the rotated
basis, we will call n the anisotropy of the spin-orbit coupling. In what follows, we consider the

Rashba-Dresselhaus spin-orbit coupling in the rotated basis and use
K Nk
Hrp = prax + Epyo'ya (2.27)

as the Rashba-Dresselhaus spin-orbit interaction.

2.4.2 Proposed scheme

There have been a several proposals to realize Rashba-Dresselhaus spin-orbit coupling in ultracold
gases [39, 40, 41, 42, 43]. Here we describe one scheme utilizing “dark states” following the argument
in [33]. This scheme utilizes a multipod configuration, where N (almost) degenerate levels |g;),
where j = 1,--- , N are coupled to one excited state |e) with position dependent complex Rabi

frequencies k;(r), described by an internal Hamiltonian

H= Z(Hﬂ gj|+hc> (2.28)

Eventually we take N = 3, but for the moment, we proceed with the general case of N states. We

choose the coupling lasers so that
rj(r) = —=e™T, (2.29)

where k; = k(— cosa;,sina;,0) and o = 275 /N. Then,

@ikj'l'

N
H:g]@ ;@jy\/ﬁ —i—h.c.zg\e)(B\—i—h.c. (2.30)

Thus, among the N degenerate states, only |B), which is called the bright state, is coupled to the
excited state. The N — 1 states which are not coupled to the excited state are called dark states.
We consider the situation where the atoms stay adiabatically in the dark states. We can take the
basis of the dark states to be

wzjn ikjr

Z 195) ——F—=— (2.31)
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wheren =1,--- , N —1. One can prove that |e), |B), and |D,,) form an orthonormal basis. We note
here that eigenstates of the Hamiltonian (2.30) with non-zero energies are |£) = (|e) + |B))/v2
with energies +x/2. Thus, although the dark states do not couple to the excited states, there is a

lower energy state than the dark states. The artificial gauge field created in the dark states is

N
. 1 o . 4
Apm = Z<Dn‘V|Dm> — ZN E <gj|efzajnJr'ij-rvezalmfzkl-r|gl>
Jil=1
1 N
— ZN E (—Zk )e—wzj(n m)

ko A
=— Z(Cos aj, —sinay, 0)e s (n=m)

N <
j=1
— _E i 1( R je 1 0)€—io¢j(n—m)
- N4&=2 ’
j=1
k
= _5(571 m+1 +6nm 171571 m+1 — 5nm 170) (232)
where n,m = 1,--- , N — 1, and the artificial scalar potential is
1
Vam = =5 (Dal 91=Y= V| Dim) + (Da|V|+)(+]7] D)

- _2L<Dn|V|B><B|V|Dm>

N
11 1 )
“am N et 5 D (=ikp)et
j=1 =1
21 1 & -
=5 N Z(cos aj, —sin oy, 0) —iayn, Z cos oy, — sin ag, 0)e* 4™
m J=1 1:1
k,2
= 8TTL (671 1+ 511 N-1, Msn 1— ién,Nflv 0) : (5m,N71 + 5m,1a iém,Nfl - 7;5m,1a 0)
k2
= 4 On10m1 + On N—10m,N-1) (2.33)

Choosing N = 3, the the artificial gauge field is a vector of 2 x 2 matrices,

.k
A==

2 (U$7ay70) 9 (234)

which is exactly the pure Rashba spin-orbit coupling, and the artificial scalar potential is

kQ
—1 2.
V= Ty 12x2; (2.35)
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which is proportional to the identity matrix and simply moves the zero of the energy.

Experimentally, the pure Rashba spin-orbit coupling has not been realized yet. The scheme
described above utilizing dark states is, although in principle possible, technically difficult due to
the short lifetime of particles which is the result of collisions which initiate transitions from dark
states to the lower energy state. A scheme to overcome this problem has been proposed [43].

The equal mixture of the Rashba and the Dresselhaus spin-orbit couplings is experimentally
realized in [27]. There, the experimenters use a setup similar to the one used to create an artificial
Abelian gauge field described in the section 2.3, but they decouple one state by means of a large
detuning and create an effective 2 x 2 Hamiltonian, which after a proper rotation of a basis has the
form of an equal mixture of Rashba-Dresselhaus spin-orbit coupling (i.e. zero anisotropy n = 0).
The vector potential itself is then Abelian since only one component is non-zero, but the scalar
potential is also a 2 x 2 matrix, and the artificial gauge field is non-Abelian in the sense that the
vector potential and the scalar potential do not commute. A theoretical analysis of this system is

given by Ho and Zhang in [44].

2.4.3 Single particle motion

It is well known that a charged particle moving in a constant magnetic field, which is a U(1) Abelian
field, makes a circular trajectory in the plane perpendicular to the magnetic field. Now that we
have an access to non-Abelian gauge fields, it is natural to ask a question: “what is the motion
of a particle moving in an external non-Abelian gauge field?” In this subsection, we start with
the motion of a particle in a general non-Abelian gauge field, and then choose Rashba-Dresselhaus
spin-orbit coupling as a specific example to investigate the details®.

The Hamiltonian of the system is

_ Ly A LA
H = om (pa:I A:L“) (pyI Ay) +2m (sz Az) (2-36)

2
+ 2m
where I is the 2 by 2 identity matrix, and (A;, Ay, A.) is the vector of SU(2) non-Abelian vector

fields. In the following, we may omit writing I when there is no ambiguity. The magnetic field B

is defined through the field strength tensor F;;, which is defined as

Fij = 0iA; — 9;A; — i[Ai, Aj. (2.37)

® A similar analysis is given in [45].



2.4. RASHBA-DRESSELHAUS SPIN-ORBIT COUPLING 23

The magnetic field is then defined by

€ijkFjk

Bi: )
2

(2.38)

where €5, is a completely anti-symmetric unit tensor with €,,. = 1. For example, since F;; is
anti-symmetric,

1

B.=F,, = (VxA).+ A Ay (2.39)

Note that this magnetic field is still a 2 by 2 matrix. From this expression, we can see that we can
have non-zero magnetic field even when the vector potential is constant due to the non-Abelian
nature of the vector potential.

To obtain a constant SU(2) magnetic field in z-direction, we can assume a vector potential of
the form

A= (A, A,0), (2.40)
where A, and A, do not depend on position. Then, the magnetic field is
a 1
B= <0,0, ,[Ax,Ay]> . (2.41)
i

Next, we solve the Heisenberg equations of motion for the Hamiltonian.

Heisenberg equations of motion
In the presence of the magnetic field (2.40), the Hamiltonian of our system is
H= - (poI = A)? + — (p,I— A,)? + —pI (2.42)
~om e * om P Y omP= ’
Let us define the time evolution operator U by
U = exp (—iHt) . (2.43)
Then, operator O in the Heisenberg representation is
o) =U'ou, (2.44)

whose time evolution is determined by

d
i 0(t) = U0, HjU (2.45)
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Since there is no explicit position dependence in the Hamiltonian, we have

d d

d
— 0, (DI = i— I=i— I=0. 24

Therefore, the momentum is a constant of motion and we may write

pz(t) = P, py(t) = py, pz(t) = p.. (2.47)

The time dependence of position is more complicated. The z-component is the simplest, and we

have
d ) z 2 t N
i1 = Ut U = vt g = P2 Pey (2.48)
dt m m m
Therefore, integrating yields
2(t) = 2t 4 2(0). (2.49)
m

Omitting the obvious I, the time dependence of x is given by

) .
zﬂx(t) = Ulz, HIU = —U'[z, (p. — AL)}JU = %UT (pe — Ap)U =i

Dz (t) — A:E (t)
dt 2m ’

m

(2.50)

Note that the vector potential A, also evolves with time in the Heisenberg representation according
to A.(t) = UTA,U, due to the non-Abelian nature of the potential. A similar equation of motion
holds for y(t), and we obtain

%m(t) _ pdf(t) T_nAJ»‘(t)7 %y@) — py<t> ;nAy(t) ) (2.51)

Next, we need to look at the time evolution of the vector potential in the Heisenberg representation.

From the Heisenberg equations of motion, we obtain

i%Am(t) _ UT[A,, HIU = iUT[Ar, (b, — AU
= U (A A (3 — Ay) + (g — Ay) (A A U
- _ﬁm (B: (py — Ay) + (py — A,) B.) U. (2.52)
Therefore, we have
AL =5 (20, Ba(0) ~ B()A, (1) ~ Ay (B (1) (253)
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Similarly, for A,(t), we have

d 1

%Ay&) = 2m (2p:B.(t) — B.(1)Ax(t) — Ax(t)B(t)) . (2.54)

Finally, we need an equation of motion for B,(t¢), which is

d 1d

—B,(t) = -—

dt ®) i dt
1

= — 5 —U'[Ar Ay, (pr — A2)” + (py — Ay)°|U. (2.55)

[As(t), Ay(t)] = ~U'[[Az, Ay H]U

Before choosing a particular vector potential, let us see how the change in species, which cor-
responds to the change in hyperfine species in ultracold gases, occur in this setup. For example,
suppose the system is originally prepared in the first species, whose state can be written as (1,0)?,
apart from the center-of-mass wavefunction. Then, at a later time ¢, the probability of finding the

particle in the first species is given by
10 1
(1 0) Ut vl ). (2.56)
0 0 0
Then, defining

P, = : (2.57)
00

the probability of finding the particle in the first species can be calculated through the Heisenberg

representation of Pq, whose time evolution is

i%Pl(t) =Ul[Py, HU
. 1 _'. 2 2
= %U [P1, (px — Az)” + (py — Ay)7|U. (2.58)

To simplify further, we need a specific choice of the vector potential, which we will do in the next

section.

Rashba-Dresselhaus

Now, for the sake of concreteness, we consider a Rashba-Dresselhaus-type of non-Abelian gauge

field: A, = —koy, Ay = —koy, and A, = 0 with x being a constant. For this vector potential, the
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magnetic field is B, = [A;, A,]/i = 2k%0,. Then, the equation of motion for B,(t) is

d 1
“B,(t) = ——U[A,, A], (ps — A,)? —A)?
i (1) 2mU [[Ag, y]>(p ) +(py y) U
22 1
= 7%(]”(%7 (px - Ax)2 + (py - Ay)Q]U
K WAy — 2y AU
—% [Uza_pz x — 4Py y”
3

= Ut (ipyo, — dipyoy)U

e
= F (pyAz(t) - pry(t)) .

Meanwhile, the equations of motion for A, and A, are

d

1
—A,(t)=-——U"(2p,B, —B,A, — A,B,
dt () 2mU(py Y Y )U

1
- _%UT (4I€2py0z + 2"330z0'y + 2H30-yo-z) U

= —%UuﬁpyazU
= 2B (1)
DAy = o (2.B.(t) - Bo(DAL(D) - A (DB (1)
= 2B.(1)
Therefore, we can write
2
A t) ~ o, (1) =~ ) 2 L g
2 2
PR ) - paA ()

(2.59)

(2.60)

(2.61)

(2.62)

For convenience, define p;, = (/p2 + pg. Then, the solution to the above differential equation is

2 2
PyAs(t) — prAy(t) = Csin ( I:?‘t) + D cos ( /;I;J_t> ,

where, setting ¢t = 0, we see
D =p,A; — p:Ay.

C is determined by taking the derivative of (2.63):

2 2 2
4 (PyAs(t) — psAy(t)) = —%Bz(t) - %Bz(t) = —%Bz(t)

dt
2 2 2 2
= /{plCcos < Hth) — KpLDsin (mt) ,
m m m m

(2.63)

(2.64)

(2.65)
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from which we see
2 2 2 2
B.(t) = ~ " Ccos < ﬁth) + L Dsin ( rPL t> . (2.66)
b1 m jan m
Taking ¢t = 0, we may conclude that
C = —%Bz — —pL Ko, (2.67)
Now, we can find A,(t) and A,(t).
d 2 2 2 2
—A,(t) = —p—sz(t) = Py & cos ( HpJ‘t) — Py gin ( PL t> (2.68)
dt m mp | m mp | m
d 2 2 2 2
CA, ) =Bt = - ’””pﬁ"ccos< ““t) + prDsin< ””“t>. (2.69)
dt m mp m mp| m
These equations can be integrated to give
2 2
Aty =2 (c Sin< ”mt) + D cos ( ”“t) - D) A, (2.70)
P m m
2 2
Ay t) = —p—; (C sin < Kplt) + Dcos < hL t) - D) +A,. (2.71)
i m m
Note that they give the correct values at t = 0.
We can now finally write down x(¢) and y(¢). The equations of motion were
d pw(t) — Ar(t)
—x(t) =
dtx( ) m
—A
S i (c ( “t) +Dcos< pit) —D> (2.72)
m mp7 m m
d py(t) — Ay(t)
—y(t) =
V() -
A
==y P <c n< th)—FDcos( plt>—D> (2.73)
m mp?
Integrating yields
—A 2 2 2
x(t) = Pa %t — py3 (C — Ccos < PL t) + Dsin < L t> _ L Dt) +2z(0) (2.74)
m 2kpT m m m
2 2 2
y(t)y = Pv— vy 4 Do (C - Ccos< “p%) +Dsin( ”‘“t) - ”‘“Dt) +y(0),  (2.75)
m 2KpT m m m
with
D =p,A; — psA,. (2.77)
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At this point, z(t) and y(t) are 2 x 2 matrices. To obtain the motion of a particle, we need to take
the expectation values with respect to the initial state we want to consider. We can also calculate

the probability of being in the first (hyperfine) species Py (t).

d 1
i P1(t) = 5 -U'P1, (pr = Ag)” + (py — AU

1
= —EUT[Pl,pIAI +pyA, U

K
= %UT(p:c[Pla 0| + py[P1,0,))U

K . .
%UJ[ (prioy — pyiog)U

i%(pyAa:(t) — oAy (1)),

1 2 2
i— (Csin( ”mt) +Dcos( ““t)) . (2.78)
m m m

P(t) = 1 <C—Ccos <2I:SJ't>+Dsin<2I:£J‘t>>+P1

2 — 2
— %2 (1 cos [ Py ) _ ByTz T P20y ) (ZEPLLY Pi. (2.79)
2 m 2p m

Thus, we solved the Heisenberg equations of motion for the particle moving in a non-Abelian field

Therefore,

with A = —k(0g,0y,0). After taking the expectation values with respect to the initial state of
interest, we see that if the particle does not have a momentum in z direction, the particle will
move in the xy plane forming circular orbit with the center of the circular motion moving linearly.
Additionally, we find that the probability of being in the first species oscillates with time.

In the next subsection, we discuss the unique dispersion of Rashba-Dresselhaus spin-orbit cou-
pling.
2.4.4 Single particle spectrum

The single particle Hamiltonian of Rashba-Dresselhaus spin-orbit coupling can be exactly diago-
nalized. Here, we consider anisotropic Rashba-Dresselhaus spin-orbit coupling described by the

following Hamiltonian in 2 X 2 spinor basis

H= - I (2.80)
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with

—

A= (A, Ay A,) = —k(0g,n0y,0), (2.81)

where 0 < 7 <1 sets the anisotropy. When 7 = 1, the spin-orbit interaction is isotropic. The last
term —n?k21/2m in the Hamiltonian is added so that the system’s ground state has zero energy.

Then, diagonalizing

2 2 2 2 o
P’ + K K 1 p°t+ K 26(pa — inpy)
M= g T e i) = o . S
26(pz +inpy) P K
we obtain the single particle energy spectrum
(L ££)* + (1= 0°)py + 12
ex(p) = vy =, (2.83)

2m
where we defined p? = p? +p§ +p? and p, e'® = p, +inp,. There are two branches e_(p) and e (p)

in the dispersion. The corresponding eigenvectors are

_ ! ! 2.84
Vi(P)—E it ) (2.84)

which implies that the eigenstates of the Hamiltonian are

Vo) = o [ (2.85)
+pll’) = 2.85
P V2 +e'?®
in the position-space basis.
In the second quantized basis, the original Hamiltonian is
(pI — A)Q —n?k%I [ap
H=>"(af v) o N (2:86)
p P

where ap and by are the annihilation operators of particles with momentum p in pseudospin species

a and b, respectively. Defining the new operators ap and 3, by

« 1 1 —e i@ a
Pl=— A P, (2.87)
Bo)  V2\1 i@ ) \b,

the Hamiltonian is diagonalized as

H=3" (e (P)apap +ei ()35 (2.88)
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It is worth noting that the transformation from (a-b) basis to («a-3) basis depends on the momentum,
as one can see from (2.87). It is this momentum dependence of the transformation that causes the
momentum dependence of the interaction, as we will see in the following chapters.

The single particle energy spectrum (2.83) is drastically modified from the free case, which is

just p?/2m. The energy spectrum with spin-orbit coupling is plotted in Figure 2.2.

(a) (b)
Figure 2.2: Dispersion of a particle with Rashba-Dresselahsu spin-orbit coupling (2.83). The dis-

persion in z-direction, which is just p?/2m, is not drawn. (a) Pure Rashba spin-orbit
coupling (n = 1) with degeneracy along (p,,p.) = (k,0). (b) Rashba-Dresselhaus
mixture (n = 0.7) with two-fold degeneracy at p = (£k, 0, 0).

When 0 < 7 < 1, the energy spectrum has doubly degenerate minima at p = (+x,0,0). On
the other hand, when n = 1, the energy spectrum is circularly degenerate along p;, = k. These
degenerate single-particle ground states have nontrivial consequences in many-body Bose systems
and many researchers have analyzed the properties of ultracold bosonic systems with Rashba-
Dresselhaus spin-orbit coupling [46, 47, 48, 49, 50, 51, 52, 53, 54].

Before introducing the interaction, let us consider the possibility of BEC in the ideal Bose gas

with Rashba-Dresselhaus spin-orbit coupling.
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2.4.5 Bose-Einstein Condensation without interaction

Introducing the chemical potential u, the number density of excited particles at temperature T' =

1/p is given by

1 1 1
nes = Zp: <eﬁ(6—(p)u) 1 T B - 1) ' (2:89)

Since the minimum value of €4 (p) is zero, the chemical potential must be negative, as usual. The
right hand side of (2.89) is an increasing function of the chemical potential, and the BEC is formed
at a temperature where the right hand side equals the total number of particles when u = 0. Then,

at the critical temperature T,

_ [ &p 1 1
"= g\ e o1 T e _1
= (2mT.)*/? / d’p 1
(2m)3 \ ((VPEnPp2—r/V2mTe)+ (1= )p2+p2 _ |

! > L (2.90)

VPR HPp+r/V2MTe) 2+ (1-n?)pg+p2

where we have rescaled the variable of integration in the second line. For 0 < n < 1, for a given &
there always exists T, > 0 which satisfies the above equation. However, for n = 1, the right hand
side diverges and there is no 7T, > 0 which can satisfy the equation. This means that for n = 1
there is no BEC transition at a finite temperature for an ideal Bose gas with Rashba-Dresselhaus
spin-orbit coupling. Physically, this absence of BEC for n = 1 is due to the fact that because
of the infinitely degenerate single-particle ground states the low-energy density of states becomes

two-dimensional; focusing on the low-energy, the density of states is

D(E)z/d%a(E_e(p)):/(gif)’gg@_M)

(2m)3 2m
pidpidp; 2 9
dp | dp,
~ 2mf<;/ f);ﬂ_)l; § (2mE — i — pz)
me
= 2.91
o (291)

which is constant as in two dimensional free Bose gas. Thus just as the ideal Bose gas in two

dimensions does not form a BEC at finite temperatures (although superfluidity can appear through
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a Kosterlitz-Thouless mechanism in the presence of interactions), the same mechanism leads to the
absence of BEC at finite temperature in Bose gases with Rashba-Dresselhaus spin-orbit coupling

in the absence of interactions.



Chapter 3

Stability of spin-orbit coupled BEC’s

against fluctuations

3.1 Introduction

Condensates of ultracold bosons in three dimensions with Rashba spin-orbit coupling differ from
usual Bose-Einstein condensates (BEC’s) in several important ways. In the absence of interpar-
ticle interactions, the low-lying density of states is two-dimensional [47], and thus condensation
is destroyed by thermal fluctuations at any non-zero temperature. With interparticle interactions
present, fluctuations around mean-field states lead at finite temperature to an instability of the
plane-wave state in two dimensions [50]. In this chapter, we consider three-dimensional ultracold
bosons with Rashba-Dresselhaus coupling, to investigate the effects of quantum and thermal fluc-
tuations on a plane-wave Bose-Einstein condensation, and show that interactions in fact stabilize
the condensate in 3D. This interaction-induced BEC is a unique feature of bosons with Rashba-
Dresselhaus spin-orbit coupling, with no analogous system yet found. However, unlike in usual
BEC’s, a non-condensed state is not, as we show, kinematically forbidden at any non-zero temper-
ature. Condensation, while favored at very low temperature, should disappear at high temperature.
As in a BCS superconductor, where both a normal and condensed state are allowed at low tempera-
ture, the system should undergo a similar phase transition at a critical temperature. The materials

in this chapter is based on [1].
We consider bosons with Rashba-Dresselhaus spin-orbit coupling in three dimensions with s-

33
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wave contact interactions, described by the Hamiltonian

2, .2
P+ K K ap
H= E (ai, b;r)) (2mI+ m (P20 +77py0y)>
P

1

1
+ v E (gaa aTmanBapzapl + gnb bL4bL3bp2bpl + 2gap aL4pr3bp2apl)
P1+P2=P3+P4

= Hxin + Hint- (3.1)

In this chapter, we use the (constant) mean-field couplings g;;; effects of higher order corrections
and the renormalization of the effective interaction are considered in the next chapter.

We first discuss the ground state phase diagram within mean-field theory for both anisotropic
and isotropic spin-orbit couplings. Then, focusing on an isotropic spin-orbit coupling, we consider
the quantum and thermal fluctuations upon the mean-field ground state and investigate the stability

of BECs against these fluctuations.

3.2 Mean-field ground state

3.2.1 Anisotropic case

We begin by considering the ground state of the anisotropic case (0 < n < 1). When the spin-
orbit coupling is anisotropic, the single-particle spectrum has two-fold degenerate minima at p =
(£k,0,0) = £k. Apart from quantum depletion of condensates, we expect that the condensate is
formed on these two minima. We begin, therefore, by positing the ansatz state!

1

VN!

where |0) is a vacuum state with no particle, the operator « is defined by (2.87), and the normal-

b)) = <cRaL + C,Rain)N 10), (3.2)

ization requires |ce|? + c_k|? = 1.
We wish to determine the coefficients ¢, and c_, which minimize the energy of the system. By
an explicit calculation, we obtain

N(N - 1)
8V

'Note that we can also consider fragmented condensate states as a possible ground state. However, as described

(U[H|W) = (V| Hint | V) = (gaa + gvb + 29ap + 2|CH|2|C*KA|2 (Yaa + gob — 29ab)) . (3.3)

in [55], the fragmented condensate states are quite fragile against external perturbations, so considering realistic

situations we do not worry about the possibility of fragmented condensates
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Thus, if gaa+9p > 29ap, (Cr,c—r) = (1,0) or (0, 1) is preferred, and if gua+96p < 29ap, (||, |[c—k|) =
(1/v/2,1/+/2) is preferred.

The former case, (cx,c—x) = (1,0) or (0, 1), is a BEC made of particles with a single momentum,
and is called a plane wave state. The latter case (|ck|, |c_x|) = (1/v/2,1/4/2) is a BEC made of two

different momenta, forming a standing wave, and is called a striped state.

3.2.2 Isotropic case

When the spin-orbit coupling is isotropic (n = 1), the single-particle ground state is highly degen-
erate. Defining ag = @y cos,xsin0,0), @ BEC ansatz generally takes the following form:

N N

1 1 a, — e
== > cwaf | 10)=—=| 2 at—rm—] 10 (3.4)

0<f<2r 0<f<2m
with the normalization Y ,|cg|? = 1. One can prove
N(N -1 ; o (0 — I
(V[H[P) = (8V) Z <gaa + gbbez(gﬁ-e3 b2—61) + anbez(g3 02)) Cp4Cp3Cp2Cpi1- (3.5)
P1+P2=P3+P4

The combinations of (p1, p2, p3, p4) which are on the single-particle ground states and conserve

the momentum are

(P,P,P;P) (3.6)
(pa 7p7 p,7 7p/) (37)
(p.p’.p,p’) and (p,p’,p’,p) with p # +p’, (3.8)

where p and p’ satisfy p; = p/| = k. Then,

N(N —1)

(WIHT) =

2
2(gaa + gbb + gab) - (gaa + gbb + 2gab) Z ‘CB|4 + 2gab <Z ei9|09|2>
6 [4

2 2

+ gvb (3.9)

5 Co+nCo

0

—2i0
E e “Ycgynco

0

~2(gaa + g56) D _ o+ [*lcol* + Gaa
6

We wish to find values of ¢y which minimize the energy of the system. However, finding a general
condition for ¢y is difficult, so here we estimate the energy for several configurations of ¢y and

discuss which state plausibly has the lowest energy.
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Case I : ¢9 =1 (plane wave state)

N(N -

(e = YD (00 4 g+ ) — (000 + 0] (3.10)

Case I : ¢y = c; = 1/+/2 (striped state)

N(N -1 + g +2
wr)w) = YD o g+ ) — See 9 200 (3.11)
8V 2
Case 111 : corpypy = 1/VM withn =0,1,--- M — 1, and M > 3 is an odd integer
N(N -1 + gop + 2
(UIH|T) = (8V> |:2(gaa + gob + Gab) — Jaa g;; gab} (3.12)

Case IV : corp/p = 1/VM withn =0,1,--- M — 1, and M > 4 is an even integer

N(N -1

+ + 2 2 +
sV ) |:2(gaa + gy + gab) - Jaa T Gbb YGab _ (gaa gbb)

M M

(W[H|W) = +gaa] (3.13)

Comparing these four cases, we see that if g, + gpp > 29gap, case I (plane wave state) wins, and
if gaa + gob < 29gap, case Il (striped state) wins. In fact, a numerical calculation also gives the
same result [49], which is exactly the same as the anisotropic case. Thus we find that, in Rashba-
Dresselhaus coupled Bose systems, the plane wave state and the striped state are the two states
which are preferred as the ground state within mean-field theory with the bare couplings. Figure
3.1 is the mean-field phase diagram which is valid for both anisotropic and isotropic cases.

In the following section, we consider the effects of fluctuations upon the mean-field ground state

and discuss the stability of the condensates.

3.3 Effects of fluctuations

In this section, we focus on the isotropic spin-orbit coupling 7 = 1 with isotropic interaction
g = Gaa = Gob = Gap- The plane wave state and the striped state are degenerate ground states
within mean-field theory with the bare couplings, but a study including quantum and thermal
fluctuations within the bare couplings shows that the plane wave state is favored [54]. Therefore
here we consider a plane wave ground state with wave vector k = (k,0,0), with macroscopic

occupation, above which quantum and thermal fluctuation will be applied.
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Gabl

striped .

- plane wave

L.
Lat

(Gaa + gob)/2

Figure 3.1: The mean-field phase diagram of bosons with Rashba-Dresselhaus spin-orbit coupling

with mean-field (bare) interparticle interactions.

Since the operator (CLL — bL) /\/2 creates a particle in the single-particle ground state with

momentum k, it is easier to work in the following (—, +) basis:

_ 1 1 -1 a
Cop) L Pl (3.14)

vip) V2N 1) \bp
The state created by wT—,n is macroscopically occupied. In terms of this (—,+) basis, the original

Hamiltonian becomes

2 2
p*+ K K V_p
P

+7p

g
+ W Z <¢T—,p4¢T—,p3w—,p2¢—,p1 T wl,p4wl,p3¢+,p2¢+,p1 + 2wi,p4wi,p3¢+,p2¢—,p1> '

P1+pP2=pP3+P4

(3.15)

In the following, we derive the fluctuations of the system in terms of the single particle matrix
Green ~ s functions. We estimate the quantum depletion of the number of particles in the excited
state, and also the lowest order correction to the energy due to quantum fluctuations. We then
look at the infrared structure of the Green’s functions to discuss the stability of condensate at finite
temperature. We also obtain the free energy of a normal state and compare the states with and

without condensates to discuss the phase transition at finite temperature.
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3.3.1 Green’s functions

We use the Bogoliubov approximation, where the operators wT_,n and ¢_ ,; in the Hamiltonian are

replaced by \/Np, where Ny is the number of condensate particles. Then the Hamiltonian becomes

2 2
P+ kK K Y-,
H' ~ —uNo + —NO + (M o wﬂ,) KQm - M) It (=pe0 +py0y)] ’
P#K er,p

g
7 NO Z <2¢T—:P4¢T—,P3 /(/}_7132 + 2¢T_’p4'(/}j_’p31/}+7p2>
K+P2=P3+P4
Pi#K
g 7
2V No Z <2wi,p3¢—,pz¢—,p1 + 2¢i,p3¢+,p2w—,p1)
P1+P2=p3+kK

PiF#K

+ 7N0 Z (4¢T_,P7ﬁ[}*,l) + d}i,ZK,fpf(ﬁT_’p + ¢7,2K,*p’¢)7,p + 2¢17p1!}+7p>

g
+ 2 Z <1/’T—,p41/’i,p3w—vp2¢—7pl + ¢l7p4¢l,p3¢+,p2w+,p1 + 2w1,p4¢1,p3¢+7p2"‘/’—,p1> .
P1+p2;p3+P4
PiFk

(3.16)

The chemical potential with the Hartree-Fock energy, which we call uyg, is

B
uo_aNO<H>—<‘g/ o+fZ(4wT,pw ot 0o 0t s +2¢+7p¢+,p)>

pP7K

= gno + 2gn— + gny. (3.17)

From the approximated Hamiltonian (3.16), we would like to construct an equation of motion
for Green’s functions with Hartree-Fock energy included. In the Hartree-Fock approximation, the

terms proportional to /Ny in (3.16) do not contribute, thus, we can ignore these terms.

In terms of the following vector in Nambu-Gorkov representation

\IIp(t)E(’l/J—,p(t) ¢1725_p(t) ﬂ)Jr,p(t) ¢1’2n_p(t)>t
(6op®) 0' 0 vip®) vl,0) (3.18)
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where t is the tranposition and p’ = 2k — p, we define the matrix Greens’s function by

G(p;t1,ta) = —i(TVp(t) Uy (t2)1)

Yop(t)P! J(t2) Yo p(t)y_p(ta) o p(t)l j(ta) Yo p(t) s p(te
. <T AT LI (2 B LAY (20 P 59 BT 2 1 (2 B A () CCY
¢+,p(t1)¢i,p(t2) U pt)V_ p(ta) i p(ti)l p(t2) Yy p(t)y pr(te

) ) )

Writing down the Heisenberg equations of motion for ¥_ , and 1 p, we can derive the equations

of motion for the Green’s function. The detailed derivation is given in the Appendix B, and the

Green’s function is

-1

z—A  —gng irpy 0
—gng —z—C 0 —iLp!
G =| el
i Dy 0 z—B 0
0 iepy 0 —z—D

where G(p, z) is the Fourier transform of G(p;t1,t2) defined in (B.15), and

2 — 2kp, + K2 — k)
A:%—u+g(2no+2n,+n+) = p—r) —p+g(2no +2n_ +ny)
2m 2m
2 2 2
2
B:%—mg(nwndrzm) = @;rﬂ?—u+g(no+n_+2n+)
2 2% / 4 KJQ !/ K 2
c=" Pz —u+g(2no+2n7+n+)=M*M+g(2no+2n7+n+)
2m 2m
12 / 2 / 2
+ 2kpl, + K +K
p=" Pe —M+g(n0+n_+2n+):M—M+g(n0+n_+2n+)-
2m 2m
Explicitly calculating the inverse, we obtain
1
G = ———
(P, 2) det G™1(p, 2)
(= B) (24 C)(z + D) - £5f2) —gno(z — B)(z+ D)

2

—gno(2 = B)(z + D) ~(z+D) ((z = A)(z=B) = 25p3) - |,

m2

(3.20)

(3.21)
(3.22)
(3.23)

(3.24)

(3.25)
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where

2,12
K,py

det G~ (p, 2) = <<z ~A)=-B) - m) (<z+c><z+D> o ) + (9n0)(z — B)(2 + D).

(3.26)

We have thus obtained an expression for the Green’s function. In the following, we investigate the

stability of the system using the Green’s function.

3.3.2 Low momentum excitations

Let us now look at the low momentum excitations of our system. The excitations are determined
by the poles of the Green’s function in frequency space, which are the solutions to the equation
det G™!(p, z) = 0. Since det G!(p, z) = det G~ (2k —p, —2), the roots of det G~ (p, z) = 0 come
in pairs: two positive and two negative, corresponding to two excitations, for each p. One of the
two excitations is gapless in the limit p — &, and the other is gapless in the limit p — —k. In the

following, we investigate them one by one.

Excitation gapless in the limit p — &

Since our condensate is sitting at a momentum k = (k,0,0), it is convenient to introduce a shifted
momentum q by writing p = & + q and look at small q. Then, p’ = 26 — p = kK — q. Also, for
notational convenience, we write n = ng + n— + n4. Then,

2

A:;—m—u+ng+g(no+n,):(§' (3.27)
+ 2K)?

B:(qzmm)—,u—i—ng—i—gmr (3.28)
— 92)?

D= (q2mm)—,u+ng+gn+. (3.29)

At this point, we would like to use pg as a chemical potential. Defining An = n, — n_, we obtain

2 9 2
A—c=T 4. - (at2x)
2m 2m

(q —2k)*

+ gAn, D=
2m

+ gAn. (3.30)

Focusing on the low momentum excitations, we assume |q| < 2k, so that Thus,

2 2

2
A:C:q—+gn0 BzDzi—i—gAn. (3.31)
2m m
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Then, the low-momentum excitations are determined by

1202 202\ 2
det G (k +q,2) ~ 2% — <A2 + B — (gng)? + 2quy> 22+ (AB - mq2y> — (gno)*B%* =0.

(3.32)

Solving for z, we obtain

A2 4+ B2 2 (242 A2 B2 _ 2 K22\ 2 K2g2\ 2
2 + (gno) I qyi ( + (gno) n qy> —(AB— mqy> + (gno)2B2.

2 m? 2 m

(3.33)

Thus, among two positive roots of det G~!(k+q, z) = 0, the one given by the positive sign in (3.33)
is gapped, and the one with negative sign in (3.33) is gapless in the limit q — 0. The spectrum
gapped at q = 0 is, as we see below, gapless in the limit p — —k (namely q — —2k). Thus, the

low-energy excitation spectrum gapless in the limit q — 0 is

2 4 2 2 2
dx q; qy m qy
2 =24 = —— (gAn+ —= ) ). 3.34
ci(a) \/ grno < 2m 2m 2k2 (g " 2m>> (3:34)

The dispersion relation for g, = 0 is linear at low momenta, as in the usual Bogoliubov spec-

trum. Since qZ /2m is generally larger than g|An| in typical experimental setups, the dispersion is

essentially quadratic for ¢, = ¢, = 02, and thus
2 2 4
gz +q 1 ¢
€1(q) ~ \/QQTLO <I2m z + 12 2;) (3.35)

Excitation gapless in the limit p — —k

To consider a gapless excitation in the limit p — —k, we define @' = p + k. The excitation
corresponds to the positive root of det G=!(p, z) = 0 for a given p which becomes gapless in the

limit q' — 0. Ignoring n_ and ny as small, as we discuss below, one finds that the excitation is

/2 12 12
, q7 + 4y gno 4y
— - 3.36
e2(d) 2m k2 /m + gng 4m (3:36)

This excitation is quadratic and free particle-like in all directions, unlike the other excitation. The

spectra of the two excitations agree with the result of [54].

2 As discussed below, An is of order ng \/m7 and ng ~ N/L37 where N is the total number of particles, and
L is the linear size of the system, and the smallest gy is ~ 7/L. Then naively writing g ~ 4wa/m where a is the
scattering length, we obtain |gAn|/q§/2m ~ 102N3/2(a/L)5/2. Taking typical experimental parameters from [27],
N ~10°, L ~ 10" *cm, and a ~5nm we estimate [gAn| < 0.1g; /2m.
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3.3.3 Condensate depletion

We now consider the condensate depletion of the system due to quantum fluctuations. The number

of particles in (—) state is given by
. /d3 ] (: = B) (4 C)(: + D) - £4?)
n_ = qdz ;
(2m)* (= )= B) = %) (= + O)= + D) — £263) + (9n0)*(= — B)(= + D)
(3.37)

where only the negative poles in the z integral are taken upon integration. Similarly, the number

of particles in (+) state is
; /dS ] (z = 4) (2 + C)(z + D) = £262) + (gn0)*(= + D)
ngy = qdz .
T2t (= )= B) = 5¢2) (2 + O)(= + D) = £263) + (9n0)*(= — B)(= + D)
(3.38)

The poles in z at large q behave as —¢?/2m, and since at large ¢, A ~ B ~ C ~ D ~ ¢?/2m, naive
power counting would indicate that the integrand after the z integration behaves as ¢!, which
combined with three ¢-integrals yields a quadratic ultraviolet divergence. In fact, cancellations in
the integrand lead to convergence, which we now show. Since the Green’s function has two negative
and two positive poles, let us factor the denominator in the form

2 2

det G™Y(p,2) = ((z —A)(z—B) — :ﬂqi) <(z +C)(z+ D) — :12‘15) + (gno)*(z — B)(z + D)

= (Z — El)(z — Eg)(z — Eg)(z — E4), (3.39)

where By < Fy < 0 < E3 < E4. Asymptotically at large ¢, 1 ~ Ey ~ —¢?> and E3 ~ E; ~ ¢°.

Then,
i [ B (E+OG+D) - )
T <2w>4/ ! z(z—E1><z F2)(z — Bs)(z — Ea)
(E1+C)(E1+ D >
= (2Z)4(27ri)/d3q (E )<E )1(; El)er )_En"; ql/)
™ 1 2 1 — £43 1 4

(B>~ B) (B + O)(Bx + D) ~ £g?)

T B = B (B> — Bs) (B> — By)

(3.40)
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On the other hand, since

(8- 08 - B - ) (B4 OB+ D) = ) + (mo(Br — B+ D) =0,

(3.41)
we can write
2 2(Ey - B)(E\+ D
(B1+C)(E1+ D) — g2 = — (gn0)"(E) = B)(Ey J;Q ) (3.42)
2 = (B - A B - B) -
and similarly for Fy — FEs. Thus, we can rewrite (3.40) as
i . —(£1 - B) (9m0)*(E1 — B)(E1 + D)
n_ = 2me /d3 + (B < Ey) ).
(21 ) | 4 <<E1 BB — By)(Br — 1) (B, — A)(By —B)— g )
(3.43)

AsE,—Ey~qand By —E3~ E, — E; ~ E; — A~ E; — B ~ ¢?, the denominator of the integral
goes as ~ ¢°. On the other hand, as E; + D ~ ¢, the numerator goes as ¢°. Therefore, the overall
integrand goes as ¢~*, which combined with the integral over d®q does not result in an ultraviolet
divergence. We can also rewrite the integral as

i —(gn0)?(z — B)*(z + D)

n_ = d3qdz , (3.44)
(2m) / det G71(p, 2) ((z —A)(z—B) - ,%qi)
which is easier to evaluate numerically.
We can similarly see that ny is not ultraviolet divergent:
i —(gng)?(z + D 52 02
g = 2 . /d3qdz (g 0) ( )quy . . (345)
(2m) det G=1(p,2) ((z = A)(z — B) - £342)

Since the integrand itself contains n_ and ny through An, these equations should be solved
self-consistently. To a first approximation (which is equivalent to Bogoliubov approximation), we
can ignore An in the integrand and evaluate n_ and n, directly. Having done so, we must then
check the consistency of our calculation by computing An/ng and observing whether it is small
enough so that the approximation is justified.

Equations (3.44) and (3.45) can be evaluated numerically as a function of k//2mgng. The
number of excited particles n., = n_ + ny is plotted in Fig. 3.23. Generally, n_ > n,, and
the contribution of ny to the number of excited particles is negligible. As the figure shows, the
condensate depletion increases with x/v/2mgng, and is of order ng+/(2mg)3ng < n, thus justifying

our use of the Bogoliubov approximation.

3 Thanks to numerical assistance from Philip Powell.
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Figure 3.2: The number of excited particles, in units of (2mgn0)3/ 2 as a function of the spin-orbit

coupling strength x in units of \/2mgng. Generally n_ > n, and ne, = n_.

3.3.4 Ground state energy corrections

We can similarly evaluate the correction to the ground state energy from the quantum fluctuation.

The ground state energy density in terms of Green’s functions is

E  un
V = 7 —g(n2_+ni+n_n+)
1 P2+ K2 K Gu(p,z) Gi3(p,2)
G31(p,2) G33(p,2)

(3.46)

where the second term takes care of the double-counting issue of Hartree-Fock approximation, and
the term in braces is z plus the single-particle Hamiltonian in the (—, +) basis. As before, assuming
n_ and n4 to be much smaller than ng, which is appropriate at the dilute limit, we ignore the
contribution from Hartree-Fock terms. The integral equals gn0(2mgn0)3/ 2 times a dimensionless
function X of p/gng and k/v/2mgng. Since the chemical potential in mean-field is u = gny and
Nex is O((2mgng)®/?), the energy density is

E
V= % + Xgn(2mgn)3/?, (3.47)
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where X is, explicitly,

1 i 1 >+ 2kp, + K
3/2 _ 1 3 p Pz 2
X gno(2mgno) 2 @) /d pdz—det G (p.2) [(2 + — > (z+ D)(gno)

n <(z—|—A)(z—|—D) - :;p§> <<z+ 22m 2) (22— A—B) — %px(A—B) —2:;;93)] . (3.48)

Then, we write the chemical potential similarly as (c.f. [56]),

W= gn (1 +Y/ (2mg)3n) . (3.49)
Since
_9FE O (EN_1  mop O 3/2
F=9n "~ on <V> B 2M+ 20n * on (Xgn(2mgn) )
1 1
= gh+gon <1 + gY\/(2mg)3n> + ngn(ngn)?’/?, (3.50)
we find

w=gn (1 +Y (2mg)3n) =gn (1 + gY\/ (2mg)3n> + 5X gn(2mgn)3/?, (3.51)

which implies
Y =-10X. (3.52)

Thus the ground state energy is

o~ O (18X mgn) (3:53)

In calculating X, we take p = gng; deviations of p from gng result in higher order corrections.

For x — 0, one finds X = —1/15v/272, which leads to

E, _gn2 8
pl=0=05 (14 g5 5 V@), o

which is the ground state energy derived by Lee and Yang [57, 58]. As we tune x away from 0, we

need to evaluate the integral numerically. Figure 3.3 shows the shift in the ground state energy,
AE = EJV — gn?/2, in units of (1/(2mg)3n)gn?/2, as a function of x//2mgng. The energy
decreases with increasing k, and AFE changes from positive to negative at kK ~ 0.64/2mgng, an

effect too small to see in the figure.
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Figure 3.3: The shift in the ground state energy density, AE, in units of (/(2mg)3n)gn?/2, as a

function of the spin-orbit coupling strength « in units of \/2mgny.

3.3.5 Finite temperature BEC

In the absence of interactions, bosons with Rashba spin-orbit coupling do not have a finite tem-
perature transition to a BEC because the density of states becomes two-dimensional at low energy.
However, in the presence of interactions, the density of states is modified and, as we will see soon,

it is possible to have a BEC at finite temperature.

The number of excited particles at temperature 7' is

no+ny = —(2:;)3 Z / Bp (Gri(p, 2) + Caa(ps 20)) (3.55)

where the v sum is over bosonic Matsubara frequencies.

The system forms a BEC at a given temperature when ne, converges in the infrared, and the
total particle density exceeds me;. The infrared structure is captured by the z, = 0 component
of the Matsubara sum. Since there are two gapless excitations €;(q) and €e2(q’), we need to add
infrared contributions from two limits q — 0 and q’ — 0. In the limit of small ¢ and ¢’ and using

= o, one finds from inverting

ano
e1(q)?’

1
Gii(—k +q,0) +G33(—k +q',0) = —
11( q’,0) + Gz3( q,0) ()

Gii(k+q,0) + G33(k+q,0) = —

: (3.56)
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respectively, and thus,

n_+ny ~ —(23;)3 /d3p (G11(p, 0) + G33(q, 0))

~ T/ <§i§3 <elg ek 62(1(1) " C)

d3q m 2m
NT/ n +C (3.57)
2m)3 | g2 + g2 + g% /4K2 1o ’
(2m)* | @z + ¢z + qy/4n Gt 2,

where C' is a constant as q — 0. The integral converges in the infrared, and thus a BEC can form
at finite temperature.

Equivalently, the number of excited particles is given in terms of the fluctuations of the con-
densate by ne, = <5wi (r)dy_(r)). To illustrate the connection we evaluate the fluctuations in
terms of the deviation of the free energy with respect to small variations of (¢_) neglecting the free
particle-like excitations €;. The mean-field condensate wavefunction is (¢ (r))g = \/noe”®*. Then,

defining (U_(r)) = (e 7*T{¢yp_(r)), T (p_(r))*), the following relation holds (cf. Eq. (18) of [59])

1

3
OF = —5 / (;ZW(;S(S(\IJ_(q»TG:l_(KJ +q,0)5(V_(q)), (3.58)

where G__(p;,t1,t2) = —i(T(\Il_(p,tl)\IJT_(p,tQ» is the upper left 4 components of G(p;t1,t2),
and 0(¥_(q)) is the small variation of the Fourier transform of (V_(r)). Explicitly, from (3.20)

one finds,

K m 2
Al + ) tagalm)

K m 2
gno Ak +q) — Febn

G l(k+q,0)=— (3.59)

Since phase fluctuations are important in low energy, let us define the phase 6(r) by (¥_(r)) =

(v/noe®®™) | /nge=®)) and then in terms of its Fourier transform 6(q) we have

no d3q 1 1
0F = ) (271')3 ‘H(q)‘Q <q2 - 2H2q§ ((2& _ q)2 + (2K + q)2>> ’ (3'60)

Thus

e - o dO(@o(a)Pe P s oo 1 ! -
|0(sh—(a))|* = Td{0(a)) o7 =mT <q 2K%q, ((2& —- + Gt q)2>> ‘

(3.61)
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Approximating the final term by its small ¢ limit, we find

5 (al 2 ~ mT 2
0(—(a))| peR e (3.62)
from which we find
Bg —— d3q m
= | —=|6(y_ 2~T 3.63
Nex /(27_‘_)3‘ <¢ (q)>‘ /(27_‘_)3 q%—kqg—i-qﬁ/ll/iz’ ( )

in agreement with the first term, the leading term, of (3.57). This result is consistent with Jian
and Zhai’s effective field theory approach to calculate phase fluctuations [50], applied in three

dimensions.

3.4 Normal state

So far, we have assumed the existence of condensate, and proved that the condensate is not de-
stroyed by thermal fluctuations. We should also ask whether a non-condensed state is favorable
at finite temperature. Here we obtain the free energy of the normal state within the Hartree-Fock
approximation and compare the free energies with and without a condensate.

The Green’s functions of a normal state within the Hartree-Fock approximation can be obtained
by setting ngp = 0 in (3.20), which yields

-1

Gu(p,z) Gi3(p,2) _ (A A iy | (3.64)
Gs1(p,2z) Gs3(p,2) —ipy z— B
where
(p — k)* (p+ K)?
Then, the reduced Hamiltonian within the Hartree-Fock approximation is
A —ilpy Y_p
Hur = Vg (n2 +n% +n_ny) + Z (dff_’p q/;jfhp) o mn (3.66)
P#K Dy B er,P
In fact, n_ = ny = n/2, where n is the total number density of particles; namely there is no

spontaneous imbalance of population in each pseudospin species. One one can prove this by in-

troducing independent chemical potentials for each species, and seeing that the second derivative
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of the Ginzburg-Landau free energy with respect to the population imbalance is positive. The
derivation is outlined in Appendix C.

Setting n— = n4 = n/2, the Helmholtz free energy density is

1
4 _ B 1 _ B¢
F = pn— gn —|— E In (1 e PP )> + %G gp In (1 e B(P’)) , (3.67)
where
~ (pL —r)*+p? 3 _ (pL+r)+1? 3
o) = o —ut om, &o(p) = " —— —pu+gn. (3.68)

The number equation, which determines the chemical potential for a given temperature, is

An important feature of this number equation is that there is always a value of p which satisfies this

equation for a given temperature, thus the state without condensate is not kinematically forbidden
at any non-zero temperature.
As T'— 0 in the absence of a condensate, u — 3gn/2, and

F — Zgn? (3.70)

This energy is larger than the ground state energy with condensate

ign2 (1 + O( (2mg)3n)> . (3.71)
Therefore, at sufficiently low temperature, a condensate is energetically preferred. At low temper-
ature F'(u,no) < F(u,0), so ng > 0. The condensate density decreases with temperature, and the
transition to the normal state, if second order, occurs when OF(u,ng)/0ng = 0 at ng = 0. Deter-
mination of the order of the transition, the transition temperature, and possible critical exponents

at the transition is left to the future®.

4 At the mean field level, the transition is (spuriously) first order, as in the Bogoliubov approximation to the finite

temperature Bose gas [60].



Chapter 4

Renormalized interaction in spin-orbit

coupled BEC'’s

4.1 Introduction

In this chapter we consider the effects of the renormalized interaction in ultracold atoms with
Rashba-Dresselhaus spin-orbit coupling. Although our main concern is bosons, we also derive the
renormalized interaction for fermions. The material in this chapter is based on papers [2, 3].

When the inter-particle potential is described by an s-wave contact interaction, the relation
between the bare interaction and the effective interaction is non-trivial, because the scattering
t-matrix, which serves as an effective interaction, depends on the large momentum cutoff, as ex-
plained in Appendix A.6, and the proper renormalization of the momentum cutoff is required. For
Bose gases in the absence of Rashba-Dresselhaus spin-orbit coupling, the low energy t-matrix is
proportional to the scattering length, in terms of which the momentum cutoff is renormalized, and
thus the effective interaction is proportional to the scattering length. However, for Bose gases with
Rashba-Dresselhaus interaction, as we see below, this simple relation between the bare interaction
and the scattering length does not hold.

For a contact interaction with strength g, in the absence of Rashba-Dresselhaus spin-orbit

coupling, the integral equation for the zero-energy T-matrix is, from (A.151),

1 om 1 /A Pk 1
T5(0,0) 4ma g

(4.1)

where €y(k) = k?/2m is the free particle dispersion and a is the scattering length in free space. We

have written the free t-matrix Ty to distinguish from the t-matrix with spin-orbit coupling. After

50
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introducing the Rashba-Dresselhaus spin-orbit coupling, the dispersion is altered, and the relation
(4.1) is no longer valid [53]. To obtain the effective interaction in terms of the physical observables,
we must first obtain the correct t-matrix.

Naively replacing €g(k) by the dispersion of the lower branch, e_ (k) = {(k1 — k)% + k2}/(2m),
demonstrates the apparent difficulty in obtaining the relation between bare coupling and the t-

matrix. For the zero-energy t-matrix, one may write

TN§+ 27T)3(/{7L—I€)2+]{72N§+27T2

SV /A(dgl€ m b (A T mA ). (4.2)
The integral is ultraviolet divergent. Even after renormalizing the linear divergence using (4.1), we
are still left with the logarithmic divergence.

As we will see in the following section, the logarithmic divergences do indeed vanish if we include
the contributions from the both lower and upper energy branches when calculating the t-matrix.
Thus, in the end, the t-matrix can be written solely in terms of low energy parameters which do

not depend on either the ultraviolet cutoff or the short distance behavior of the interaction.

4.2 T-matrix

4.2.1 Bethe-Salpeter equations

The starting Hamiltonian for both isotropic and anisotropic spin-orbit coupling is the same as the

previous chapter, Eq. (3.1), which is

a

m

2 2
p Ttk K
H= E (ai, bL) <2ml+ (px0x+77py‘7y)>
p p

1
+ W Z (gaa an4angaP2aP1 + oo bJpr>4bI>3bp2 bpl + 29ab aL4bJpr>3bp2ap1>
P1+P2=P3+P4

= Hiin + Hint, (43)

with 0 < n < 1. We consider both bosons and fermions. For fermions, g.e = g = 0. We
are interested in the low-energy scattering, especially the zero-energy scattering of particles in the

single-particle ground states. In this case, it is convenient to move to the («, 3) basis introduced
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in (2.87), in terms of which the Hamiltonian becomes

H=3" [e-P)apap + et (D)3 Bp| + Hin (4.4)

where the interaction part of the Hamiltonian is of the form

D

P1+P2=pP3+pP4

1 1.,
Hint = v |:2V¢1,¢>2;¢>3,¢>4 (04;[)404;230@20‘1)1 + ﬁ£4ﬁ;r>3ﬁp2ﬁpl)

+ %Vﬁm@s,m (58 cpactmy + 0,0, Bpa B ) + \}51’;?),@@3@4 (8L Bealor + Y0, 0p,0p,)
+\}§V<§é),¢2;¢3,¢4 (OCL4O‘L36P2O‘P1 + ﬂ;rmﬁg)aamﬁpl) + V(51)7¢)2;¢>37¢4O‘I)4/8I)3ﬁp2ap1:| . (4.5)
The coefficients V() are defined by
Vé??¢2;¢3,¢4 - 9% %ei(mwrmw) - % (ewl + eim) (€*i¢>3 4 efwm) 7
\}§V¢(>?),¢2;¢3,¢4 _ 9% _ %ei(¢1+¢2*¢3*¢4) n % (eim n emg) (e*lfbs e m) 7
%Vg)mmm - 9% + %ei(qﬂ@—m—m) + % (ewn - el¢2> (e—wg - e—im) (e

where the upper signs are for bosons and the lower signs are for fermions. The angles ¢; are defined
by pie + inpiy = e,/ p%m + 772p227y. As we can see, the interaction mixes different species in the
(c, B) basis. The coefficients of each term are chosen so that the Feynman rules for vertices in the
(v, ) basis are just Vs,

We now calculate the t-matrix describing the collision of two atoms in the a-branch with
incoming momenta q/2 + p and q/2 — p and outgoing momenta q/2 + p’ and q/2 — p’. The
momentum of each particle is on the degenerate ground-state circle for n = 1 and either pg or
—po for 0 < n < 1. The single particle propagators are 1/(w — ex(p)), and characteristically, the
interactions in the (¢, 3) basis are dependent on angle. The t-matrix is the sum of ladder diagrams
(Fig. 4.1). We denote the momenta of particles in the intermediate off-shell states by q/2 + k and
q/2 — k and label angles of the momenta ¢; as in the Fig. 4.1. The Bethe-Salpeter equation for the
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Figure 4.1: The scattering t-matrix for two particles in the a-branch. The solid lines denote
particles in a-branch, and the dashed lines are particles in the §-branch. The ¢; are

the angles of the corresponding momenta in the z-y plane.

zero-energy vertex function I'0S with incoming and outgoing a-a particles is

1
Fgg(p’ p/; q) = Vt;1)7¢2;¢3,¢4

(1) . (2) . (3) .
N / k| Virgnigs 06 a0 PED Vi 005,06 5310 P5 D) | Vo) 65:00,05T 0 (o P’ 9)

(2m)3 | e (F—k)+e_(3+k) e (F—k) +e(3+k) e (F—k)+e(3+k) |’

1oy v(2)
Fgg(p, p; q) - V¢17¢2§¢3,¢4

[1,(2) . 1) . (3) ce) |
_ / Ok V¢17¢2;¢5,¢6Fgg (k, p'; q) V¢17¢2§¢57¢6 Fgg (k, p'; q) V¢17¢2§¢5»¢6Fgg(k’ P q)
(

2 (-0 Te(F+0 -0 +a@+k -k +e (k|

[e7e% /. _ (4)
a3 (PP ) = Vg 6060 6
3 _V(4) Faa(k /. ) V(4) I‘\aa(k /. ) V(5) Faa(k /. )_
_/ k| Vi 9i65,06 aa K P5A b2,01305,06~ BBV P A 1,62:06,05 - a8 S P A
2m)3 | e—(3—k)+e(§+k) e (3 -k +ep(§+k) e (F-k) +e(§+Kk) |’

(4.7)

where '/, (p,p’;q) is the t-matrix for scattering of particles in the branches p,v with momenta
q/2 + p to branches p,7 with final momenta q/2 + p’. The angles ¢5 and ¢g are the angles of
q/2—k and q/2+k in the z-y plane with y components multiplied by 7. As before, the upper signs
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are for bosons and the lower signs are for fermions. We obtain the t-matrices by solving this set of

Bethe-Salpeter equations. We consider fermions and bosons separately in the following subsections.

4.2.2 Fermions

Solving for the t-matrices for fermions is easier than bosons, because for fermions g, = gp = 0.
Looking at (4.7), we can observe

re(p,p’sa) 1 I'aa(p,p';q)

674(151 €Z¢2 ﬁ 67:(151 +€7:¢2 ’ (48)

re(p,p’sa) = -T25(p,p'sq),

Then, the set of Bethe-Salpeter equations reduces to
(e=i#s — e=ido)
e,(% —-k)+ e,(% +k)

reae.psa) g (e_wg_e_m) Gab / Bk
(

eidr —ei2 8 Ty 27)3

e~ %5 _ e—i¢6) 9 (e—i¢5 4 e—i¢6) RIS + cids

( - % pone piq). (4
0 G0 (K be (3 k) —aer | aloPid) (19

Rearranging terms, we have

Faa(p p q) _ Yab  Yab A3k ‘eiqbs _ ei¢6|2
(@ e (e — o) 8 8 ) @rP [ (§-W e (§TH)
iP5 i¢6 2 2 ips ipe |2 I‘O&CM k /.
N q\e | N % +e L | aalk:Paq) (4.10)
e (F—k)+e(3+Kk)  er(F—k)+e_(F+Kk)| (el —eids)(ei?s — emi1)
Defining
Iea(p,p';a)
(o704
Laa(p.pia) = (6191 — ¢id2)(e—i9s — g—i%a)’ (4.11)
equation (4.10) can be regarded as a self-consistent equation for T':
ro(p,p;q) = —Jeb _ Jab *k [ [e?° — et ?
8 8 J (2m)? le—(§ —k)+e_(§+k)
195 _ i |2 9| et®s 196 |2
+ ’e € | |e + € | I‘\OtOé(k p q) (412)

+
(3 -k +e(34+k) e (f-k) +e(d+k)

Since the right hand side does not depend on p, F‘m ®(p,p’;q) does not depend on p. Then,

gar [ d3k |ei®s — ¢ido |2 |ei®s — ide|2 2|ei?s + ¢is|2
1+/ + +
( 8 J (2m)3 [e—(‘;—k>+e-(3+k) (9 —k)+er (3 +k) (q—k)+e—(‘§‘+k>]>

Faa(p p q) __Jab (413)
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which implies

11gO£(p7 p/) CI) = _(eid)l — 6i¢2)(67i¢3 _ e*i¢4)x

«

< 8 / Bk [ |ei®s — eis|2 |ei®s — eis|2 2|¢ids 4 ¢ido|2 D—l

— + + + :

Yab (27)3 le—(F—k)+e_(§+k) e(§—k)+e(F+k) e (3-k)+e(F+Kk)
(4.14)

This is the t-matrix for fermions in the lower dispersion branch. To determine if this t-matrix

depends on the ultraviolet cutoff, we define the dimensionless functions

fla/2) =

w/ 43k [ 1 N 1 N 2 _4m}
mk ) 2n)3 le-(§—k)+e-(§+k) e (§-k)+e(F+k) e (F-k +e(§+k) K2]’

(4.15)
9(q/2) =
B 77/ d3k [ cos(¢p5 — d6) cos(¢s — ¢) _ 2 cos(¢5 — ¢e) ]
me [ (2r) le-(§ -k +e-(F+k)  er(§-k)+er(§+k)  er( -k +e(F+k)]
(4.16)

where § = |q|/k. One can prove that f(z) and g(z) do not diverge in the ultraviolet. Then,

) , : , 8 3k 8m  2mk
ao /. — i¢ i} —i —ig -
Faa(pap 7q) = —(6 t—e 2)(6 P—e 4) ( +/ (27’(’)3 2

90 F(@/2) +g<q*/2>])_ |

(4.17)

The relation between the scattering length a4, in the absence of the spin-orbit coupling and the

bare coupling gqp is (4.1)

1 m A3k m
1 / : (4.18)

YJab - 4Traab - 271‘)3?'
Then,

2m 2mk

~1
+ 201 5/2) + 9(0/2))

Fgg(p,p’; q) = _(€i¢1 _ ei¢2)(€—i¢3 _ e—i¢4) <
Tag (ei¢1 _ ez‘¢>2)(e—z¢3 _ eﬂ;¢4)
2m 1+ awr[f(3/2) +9(q/2)]

TAgh

(4.19)

This t-matrix is explicitly free of the ultraviolet divergence, and written solely in terms of physi-

cal observables. Similarly, logarithmic ultraviolet divergences do not appear in the gap equation
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for fermions in paired states, and linear divergences can again be renormalized away in favor of

scattering lengths, as discussed in [61, 62, 63, 64, 65, 66].

The functions f(z) and g(x) depend on the anisotropy 7. In the isotropic case of n = 1, the

functions behave as in Fig. 4.2. The functions diverges logarithmically at the infrared as x — 0,

3.0
2.5\
2.0
1.5}
1.0-

0.5t

\~~
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-~

I I I I T X
—-0.5t

Figure 4.2: The center-of-mass momentum dependence of f(z) (solid line) and g(z) (dashed line)

when 7 =1 as defined in Eq. (4.15) and (4.16).

which leads to the conclusion

Toa(p,p’50) =0, (4.20)

namely, there is no interaction if the center of mass momentum of the two colliding particles is
zero. In other words, if the colliding particles have opposite momenta, the particles do not feel the
interaction. This infrared divergence for n = 1 arises from the existence of infinitely many pairs of
zero-energy single-particle states with ¢ = 0. For q # 0, there is only one pair of zero-energy states

and, thus, no infrared divergence. A similar mechanism for the infrared divergence occurs in Bose

systems as well, as we discuss next.

4.2.3 Bosons

As for fermions, the t-matrix for bosons does not contain any ultraviolet divergences. However, the

bosonic t-matrix is much more difficult to obtain. The detailed derivation is given in Appendix D.



4.2. T-MATRIX
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The result is
1
ao / 7T . €i¢1 + €i¢2 —1 71‘((;5 +¢ )
Ioap,pia)=— (1 eilote) —___—— M e HPston (4.21)
T 2 e P3| o—ida
2
where
FO+ 2 m(@/?) ha(@/2)
M= hni@? )+ h3(a/2) : (4.22)
L(r@-o®)+:5)

h3(q/2) ha(a/2) 3

with q = q/k and § = ¢/k. The dimensionless functions f(G/2) and g(G/2) are the same as in the

previous subsection:
f(q/2) =
77/ 3k [ 1 N 1 N 2 B 4771]
mk ) (2m)3 le_(§+k)+e-(3-k) e (§+k)+e(F-k) e (§+k) +e(9d—-k) K2
9(q/2) =
_ ”/ &k [ cos(¢5 — P6) n cos(¢s5 — ¢6) B 2 cos(¢s — ¢s) }
me | 27)3 [e-(§+k)+e_(§-k) e (§+k)+e (3 -k e (F+k+e(§-k)]|
(4.23)

The dimensionless functions h1(q/2), and ha(q/2) are defined by

26i(¢5 +¢6) ]

hi(a/2) =
T / Bk ci(@5+d6) N ci(@5+d6)
mk ) (27)3 |e—(3+k)+e(§—k) e (F+k)+e(§—k) e (3+k) +e(d—k)
ha(a/2) =
m / 3k [ €95 + e ei?s + ei?s 2(e?s — ¢ido) }
(2m)3 le—(F+k)+e-(3-k) er(§+k)+e(§-k) e(F+k+e(§-k)]°
(4.24)

2me
Note that changing the angle of q in the x-y plane only changes the overall phases of hi(q/2)

and h2(q/2). In addition, these four functions are everywhere finite except for the logarithmic

divergence of f(¢/2) at ¢ = 0.
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4.3 Ground state phases

We now determine the many-body ground state via mean-field theory using the t-matrix derived

3.

7; are all <1, where n

above as the effective interaction, an approximation valid as long as the na
is the particle density. In mean field, we assume that all particles are in the single-particle ground
states (k,0,0) or (—k,0,0), and thus ignore possible occupation of excited states as a consequence
of the interaction. In this case the system is described essentially by the Nozieres model [67].
The issues of going beyond mean field, (e.g., via Bogoliubov theory) as well as including possible
effects of the condensate on the effective interaction, are beyond the scope of this thesis and are
left for the future. For 0 < n < 1, we take the particles to be either at p = (x,0,0) or (—x,0,0);
the relevant interactions are those between particles of either the same momentum or opposite
momenta. We denote the interaction with same momentum by 'y = I'9%(0, 0; £2k) and that with
opposite momenta by I'x = I'YS(£k, Fk,0), where k = (k,0,0) as in the previous chapter.

The relevant terms in the interaction are then equivalent to the Nozieres model [67]
1 1
Hint ~ 57PN (N +1) + 37(2T'x — To) NeNo, (4.25)

where Ny = aJ([K,()’O)a(,{’O’O) and N, = O‘Ifn,o,o)a(—m(ho)' The total number of particles, N = No—+ N,
is fixed. For I’y < 2I';, the ground state is a single BEC with either all the particles in (k,0,0)
or (—k,0,0), while, for Iy > 2I';, the condensate is nominally fragmented with half of the atoms
forming a BEC in one state and the other half forming a BEC in the other state. However, as shown
in Ref. [55], such a fragmented state is expected to be unstable against formation of a coherent
condensate with a condensate wave function that is a coherent superposition of the two momenta.
Following the conventions of Refs. [49, 50], we call the single BEC phase “plane wave,” and the BEC
phase with two different momenta “striped.” The difference of the present calculation from earlier

(1) (1)

studies with mean-field couplings [49, 50], is that here the bare couplings, V; 5.0 and V; - ., are

replaced by I'g and I';, respectively.
While there is no difficulty in deriving the phase diagrams for general scattering lengths, we

assume here for simplicity that the intraspecies scattering lengths are equal, ay, = app. Then,

L 2m 1R+ 1/Raa + 2f(1) = g(1) + (1) = 4hs(1)
O mk (1/kaa + F(1) — 9(1))(1/KGaq + F(1) + h1(1)) — 4ha(1)?’
2T 1
= %1/#;@% + f(0) — h1(0)’

(4.26)
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where h1(0) = hi(q = (0,0,0)), h1(1) = hi1(q = (1,0,0)), etc. The quantities f(0), h1(0), f(1),
g(1), hi(1), and ha(1), which depend on 7, can be calculated numerically. The interaction between
different momenta I';; is independent of a,p, and is a monotonically increasing nonnegative function
of Kaqq, equal to 0 at kaee, = 0 and reaching 27/ [mk(f(0) — h1(0))] at Kaqq = co. The dependence
of Ty on Kag, and Kagp is more complicated. We plot 'y and 'z, both scaled by 27 /(mk), for

n = 0.5 in Fig. 4.3. Now we discuss the ground-state phases from n =0 to 1.

02 04 06 08 10%%a
(a) (b)

Figure 4.3: (a) 'y as a function of kauq and kag, and (b) T'; as a function of Kae,, both scaled

by 27 /(mk), for n = 0.5. The vertical plane in the middle of panel (a) indicates the

resonance where, from left to right, I'g diverges to positive infinity and comes back

from negative infinity.

When 1 = 0, the effective interactions are relatively simple. It can be shown that f(0) = h1(0)
for n = 0; hence I'; = 27a,,/m, and the effective interaction in the q = 0 channel does not depend
on the spin-orbit coupling strength x. In the q/2 = (k,0,0) channel, f(1) = —1,¢(1) = 0,h1(1) =0,
and ha(1) = 1/2, so,

2 —4
F() = i KQaa + KQgp KGqakQab (427)
mk 1 — Kaga — Kagp

for n = 0. The effective interaction at small Ka., and kagp, is positive, and diverges when Kaqq+Kagp
approaches unity. As one crosses the line kaqq, + kaqgy = 1, T'g starts at negative infinity and
remains negative until Kagq + Kaep = 4Kagqkaqp, after which 'y is positive. When 'y is negative,

we expect the BEC in bulk to be unstable against collapse, as in ordinary BEC’s with negative
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scattering length in the absence of spin-orbit couplings. We call the phase with an attractive
interaction “unstable.” The three possible ground-state phases, plane wave, striped, and unstable,

are determined by the sign of I'g and the interplay between I'g and I'.

As n increases from 0, the basic structure of I'g does not change; I'y remains positive at small
Kaqq and kagp, and as these variables increase, I'g again diverges at a line in the kKaqq-kaqp plane,
beyond which it is negative up to a second line, after which I'g is positive. Since the denominator
of T'y is quadratic in 1/(ka) [Eq. (4.26)], it has in fact two zeros, one for positive scattering lengths,
as shown, and a second for negative scattering lengths, which is discussed at the end of this section.

The structure for positive scattering lengths is illustrated in Fig. 4.3, for n = 0.5.

The ground-state phase diagrams for various n are plotted in Fig. 4.4. In the panels, the plane-
wave phase is labeled “P,” the striped phase “S,” and the unstable phase “U.” The plane-wave
phase occurs when 0 < I'y < 2I';, the striped phase when 2I'; < I'g, and the unstable phase
when I'y < 0. Note the overall tendency of the phase diagrams as 7 increases; the upper striped
region detaches from the resonant critical point, where the resonant line (between S and U) and
the line with ') = 0 (between U and P) touch, and the region is pushed upward as 7 is increased.
Meanwhile, the shapes of the resonant line and the boundaries of plane-wave regions change but,
with the exception of the upper striped region, the overall topology does not change. The dashed
lines aqq = agp in the figures are the phase-separation lines obtained earlier [49] using mean-field
couplings 4ma,,/m and 4mag,/m; there the striped phase is preferred above the dashed lines and
the plane-wave phase is preferred below the dashed lines. Use of mean-field couplings is accurate
for small kaq, and kagp but, as these variables increase, the deviation from the mean-field-coupling

prediction becomes significant and the phase diagrams exhibit qualitatively new and rich structures.

This overall tendency continues to around n ~ 0.99. With further increase of 1 toward isotropy,
n = 1, we start to observe qualitatively new behavior of the phase diagrams. The phase diagrams
close to n = 1 are plotted in Fig. 4.5. As one sees, the striped region comes back from above and
touches the resonant critical point, and at the same time the lower plane-wave region detaches from

the critical point. In the limit n = 1, the plane-wave region vanishes.

The behavior around 77 ~ 1 is in fact logarithmic in the deviations of the anisotropy n from
unity. We write § = 1 —n?; as § — 0, h1(0), f(1), g(1), h1(1), and hs(1) approach finite values,
but, in leading order for small §, f(0) ~ |Ind|/4. Setting, for small 4, h1(0), f(1), g(1), h1(1), and
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Figure 4.4: Ground state phase diagrams in the ka,, - Kaqp plane for anisotropies n = 0, 0.25,
0.5, and 0.75. The regions P are the plane-wave phase with a BEC of a single mo-
mentum. The regions S are the striped phase with a BEC of a coherent superposition
of two different momenta. The phase in the regions U are unstable, with the effective
interaction I'g negative. Along the line between S and U, I'y diverges, and along the
line between U and P, I'y vanishes. The intersection of these two lines is a critical
point. The dashed lines indicate the phase diagram derived using mean-field coupling,
in which the plane is separated into an upper striped region and a lower plane wave

region.
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Figure 4.5: Ground-state phase diagrams for 7 close to unity.
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ha(1), to their values at 6 = 0 and approximating f(0) by |Ind|/4, corresponds to fixing I'g and
varying the slope of I';. In the isotropic limit § = 0, I'y = 0 and thus a plane-wave region is not
allowed [cf. Eq. (4.25)]. With small anisotropy, I'x can be positive, and small plane-wave regions
appear.

We now briefly consider tuning the scattering lengths to negative values. In the absence of
spin-orbit couplings, negative scattering lengths lead to an instability in large systems. On the
other hand, as we see from Eq. (4.26), tuning the inverse scattering lengths to just below 0 does
not immediately lead to an attractive interaction; in the presence of the spin-orbit coupling fields,
Rashba-Dresselhaus couplings can stabilize BEC’s with negative scattering lengths if the inverse
scattering lengths are small. Even when I'j is negative, systems with small particle number can be
metastable in the presence of an attractive interaction '. For illustration, we plot the phase diagram
for n = 0.5, extended to negative scattering lengths in Fig. 4.6. In the regions marked “Stable,”
Iy > 0 and the ground state is either a plane-wave or striped phase. As seen in the figure, when
both scattering lengths a,, and a,, are negative and large, another stable region appears in the
phase diagram, in which the ground state is in the striped phase. The line between the lower-left
striped phase and the unstable phase is a second resonant line along which I'y diverges. A stable
region with negative scattering lengths generally exists for all 0 < 1 < 1; as n increases, the stable

region in the phase diagram becomes larger.

4.4 Conclusion

Proposed schemes to realize Rashba-Dresselhaus spin-orbit couplings in ultracold atomic experi-
ments [39, 40, 41, 42, 43] use Raman lasers to couple atoms in different hyperfine states. In general
as one transforms the original basis to one in which the coupling has the Rashba-Dresselhaus spin-
orbit structure, the interaction Hamiltonian acquires terms such as aI,4aI,3ap2bp1 which do not

conserve the number of particles in each pseudospin state (a-like and b-like). Our analysis, which

1 Assuming bosons trapped in an isotropic harmonic potential, we can roughly estimate the particle number below
which the condensate is stable with I'y < 0. In the absence of spin-orbit coupling, the critical number of bosons
is Ne ~ 0.6acsc/|al, where aosc is the oscillator length of a trap \/W [68]. For spin-orbit coupled bosons, the
scattering length is replaced by mI'o/(4n). Introducing a scaled effective coupling 'y = m«xIo/(27) (the scale used
in Fig. 4.3), we estimate a critical number N, ~ 0.3kaosc/|To|. Using realistic values of  ~ /27 /804 nm [27] and

Gosc ~ 1pum, we obtain N, ~ 2/|f‘0|, which implies that stabilization occurs only quite close to the line I'g = 0.



64 CHAPTER 4: RENORMALIZED INTERACTION IN SPIN-ORBIT COUPLED BEC’s
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Figure 4.6: Ground-state phase diagram for n = 0.5 extended to negative values of scattering

lengths. The regions marked U and S are unstable and striped phases, as before. The
region marked “Stable” is either a plane-wave or striped phase. Note the appearance

of a stable (striped) phase when both scattering lengths are large and negative.

did not take such terms into account, can be directly compared with proposed experiments when
the interaction is independent of species (gaq = gbb = gap), in Which case the interaction is indepen-
dent of the choice of basis. This condition is a good approximation for the three hyperfine states of
87Rb in the lowest F' = 1 state. The assumption that Jaa = gbb = Jap corresponds to the (dashed)
diagonal lines in Figs. 4.4 and 4.5. Figure 4.7 shows the phase diagram in the n-xa plane, where a
is the assumed common scattering length.

For 0 < 7 < 0.99, the system, with increasing ka, experiences transitions from plane-wave to
striped, then to unstable, and finally to the plane-wave phase again, as seen in Fig. 4.7(a). Looking
more closely at the region 0.9 <7 < 1, as drawn on a logarithmic scale in Fig. 4.7(b), we find that
the line separating the lower plane-wave and striped regions terminates and another line starts from
positive infinity above which the striped phase is preferred. This new line touches the uppermost
line (below the upper P phase) in the figure in the » — 1 limit, and thus no plane-wave region

exists for isotropic spin-orbit coupling?.

2While one can achieve large scattering lengths experimentally with Feshbach resonances, the general mp, mp
dependence of the resonances leads to differences of the scattering lengths near the resonances, a complicating feature

requiring analysis beyond the scope of this thesis.
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Figure 4.7: Ground-state phase diagram when a,, = app = aqp = a in the n-xa plane for (a)
anisotropies less than 0.99 and (b) anisotropies close to unity. The horizontal axis of

panel (b) is a logarithmic scale.



Chapter 5

Three-component ultracold fermions

5.1 Introduction

In this chapter, we turn our attention to the three-component ultracold fermions. The content in
this chapter is based on [4].

Multi-component ultracold atomic systems have recently been the focus of both experiment and
theory, motivated in part by the prospect of simulating a wider range of many-body models, such as
lattice SU(N) models [69, 70, 71, 72, 73] and quantum chromodynamics (QCD) analogs [74, 75, 76,
77], than is possible with single- or two-component systems. The possibility of creating analogs of
color superfluid states and the formation of hadronic states in multicomponent systems [74, 75, 76]
is especially interesting since the regime of cold dense QCD matter is not directly achievable in
current nuclear experiments or in lattice QCD.

When three species of fermions weakly attract each other, two species form Cooper pairs and
the third remains a Fermi liquid [78, 79, 80, 81, 82, 83, 84, 85]. Which two species pair de-
pends on anisotropies in the interactions and mass differences between different species. If there
is no anisotropy, the Hamiltonian of the system possesses global U(3) symmetry with respect to
rotation in species space, and the pairing breaks this symmetry. An important feature of the three-
component fermion system is spontaneous population imbalance, first noted in the continuum in
Ref. [84] at T' = 0. In addition, BCS superfluidity and population imbalance (magnetism), with
two independent order parameters, can coexist, an intrinsic feature of a multicomponent Fermi
systems, as shown by Cherng et al. [85] in the weak-coupling BCS regime.

We consider here U(3) invariant three-component ultracold Fermi gases in three-dimensional free

space with varying interaction, with a focus on spontaneous population imbalance and superfluidity

66
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at finite temperature at general interaction strength; we study the phase diagram in general and
the BCS-BEC crossover of the system, fixing only the total number of particles and allowing
spontaneous population imbalance to occur. With a fixed total number of particles, population
imbalance is accompanied by spatial inhomogeneities, such as, domain formation. In this chapter,
we first analyze the system at zero temperature in BCS mean field to show that the fermion pairing
gap and population imbalance both develop with increasing bare attractive interaction between
the fermions. Then we discuss non-zero temperature, starting from the BCS region where the
scattering length is small and negative. We calculate the population imbalance as well as the
BCS transition temperature as a function of interaction strength and temperature, to lowest order
in the interaction. The thermodynamic potential derived here agrees with previous calculations
[79, 80, 81, 82, 83] when the chemical potentials of the three species are equal. We also derive
the Ginzburg-Landau free energy as a function of the two order parameter—the pairing gap and
the population imbalanc—and discuss a possible analogy between dense QCD and three-component
ultracold fermions. We then turn to the BEC limit of three-component ultracold fermions, where
the scattering length is small and positive, a regime described by three different weakly interacting
species of molecules made of different combinations of fermions. We show that Bose condensation of
the molecules is accompanied by population imbalance. Finally, we discuss the BCS-BEC crossover
connecting BCS and BEC limits, following the procedure of Noziéres and Schmitt-Rink [15] to
include pairing fluctuations (or non-condensed pairs), here in a summation of ladder diagrams
for the self-energies; this calculation yields a transition temperature to the condensate phase that

reduces to the BCS and BEC limits.

Degenerate three-component gases have been experimentally realized using the three lowest
hyperfine states of 5Li [86, 87]; at high magnetic fields, well beyond unitarity, the scattering lengths
between the three hyperfine states are negative and sufficiently close that the system is approx-
imately U(3) invariant. In addition, ultracold gases of alkaline-earth-metal atoms possess good
SU(N) invariance (with N up to 10) [71, 72, 73], and are good candidates to observe the physics
discussed here. Ytterbium has an SU(6) symmetry due to the nuclear spin; an SU(3) invariant mix-
ture can be obtained by using only three spin components. In °Li as well as in '"1Yb and '™YD, the
temperatures currently achieved experimentally are around T' 2 0.37F [73, 86, 87]. With a factor

of ~ 3 decrease in temperature, phase separation due to the formation of population-imbalanced
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domains could be observed.

Around the unitarity point, 1/a = 0, in a U(3) invariant system (where a is the s-wave scattering
length), three-body Efimov bound states can exist [88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. Efimov
states have been experimentally observed in a trap through an increase of the particle loss rate,
mediated by these states [86, 87, 98]. In this thesis, we analyze the system on time scales long
enough to see the two-body interaction physics but short enough that Efimov states, or three-
body collisions, can be neglected; such an intermediate thermalized regime can exist in a trap at
sufficiently low densities, since the two-body collision rate is proportional to the particle density
squared whereas the three-body collision rate is proportional to the density cubed *. As we show, the
homogeneous state is unstable against the formation of inhomogeneous structures with population
imbalance; population imbalance suppresses the formation of Efimov states, tending to stabilize

the inhomogeneous three-component system.

5.2 Three-component U(3) invariant fermions

We consider a three-component fermion system in free space with equal masses and the same
scattering length between different species. We label the three species by “colors” in analogy with
QCD, “red (r),” “green (g),” and “blue (b).” At low temperature, the interaction is dominated by

s-wave scattering, and the Hamiltonian is

2
H=H—pN=> (fm - u) Yl ok + % SN Wl Ul s qtaxtsi, (5.1)
k,a a8 kk'\,q
where w;k is the creation operator of a particle with color @ = r, g, b with momentum k; V is
the volume, and we take i = 1 throughout. We assume an attractive bare contact interaction
of strength U < 0. Although we take a common chemical potential ;o for all three species, the
numbers of each species in the state of lowest free energy can be different as a consequence of
interactions, an effect that would be observable in an experiment that starts with equal numbers,
as an inhomogeneous state. The Hamiltonian is invariant under global U(3) rotations of the species.

The attractive interaction leads to pairing of fermions at low temperature. The pairing order

"Muckans et al. [87] argue that strong interactions with a long lifetime (> 0.1s) can in fact be achieved in a

low-density gas.
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parameter is antisymmetric in color, and thus has the form

Aa(r) o capy (Pp(r)1y (1)), (5:2)

where €,3, is a completely anti-symmetric unit tensor. Since under a global U(3) rotation,

Yax — Uaptg ks (5.3)

where Uyg € U(3) (we use the convention that repeated indices are summed over), A, transforms

as

Au(r) %%W(r)%(r» — (det U)UZ5A4(r), (5.4)

where 1), (r) is the Fourier transform of ¢, k.
To prove Eq. (5.4), we consider the operator A, = €apy¥3Y~, whose expectation value is

proportional to A,. The combination waAa transforms as

¢TA = chAa = 6a6'y¢aw,6’7/)’y
— €afyUacUpnUqethcthyipe = det Uecneepnibe = det UenagyPatp)y = det UwTA (5.5)

On the other hand, ¥7 — ¢TUT. Therefore, A — det UUT™t =detUU*.

As a consequence of the transformation (5.4), we can — when the order parameter is independent
of position — always choose appropriate axes of colors to transform the pairing order parameter
into the form A = (0,0,A), that is, by taking appropriate linear combinations of the species, we
find that only two colors are paired and one is left unpaired. By applying a Bogoliubov-Valatin
transformation, we can see that there are two gapped fermionic excitations corresponding to the
quasiparticles of the paired fermions, and one ungapped excitation due to the unpaired fermions.
In the following, we assume, without loss of generality, that the red and green particles are paired

and the blue are not paired.

5.3 BCS Mean Field at T =0

In this section, we consider the ground state of the system within mean-field BCS theory. We

describe the pairing between r and g particles and unpaired b particles with the BCS-like ansatz,

) =TT (e + onslyesl ) TT whilvec), (5.6)

b
k k| <kb.
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where |uy |2+ |vk|? = 1 and k% is the b Fermi momentum. The parameters uy and vy are determined

by minimizing (V|H — puN|¥) at fixed pu. Following the standard procedure, we obtain

1 1
== TR  vd == T S (5.7)
V& + A2 2 NGEUX
where & = k?/2m — p and the gap A = —(U/V) >, ukvy is determined by
U 1 A
a--Uyl 8 (5.)
Kk 74 /& + A2
We use the relation of the bare coupling U and the scattering length a [14, 99],
1 m 1 m
- = — 5.9
U 4ma V ; k2’ (5:9)
to rewrite the gap equation for A # 0 in terms of a as
m 1 m 1 1
2
dra V - k 2 /512( L A2
The chemical potential is determined by fixing the total number of particles IV:
k‘b 3
Sk y e (5.11)

N = (¥ l ax|¥) = - —— |+ :
< |§;wa,kw K ¥) Ekj N 62

The same gap and number equations were derived in Ref. [84] using path-integral techniques. We
solve the gap equation (5.10) and the number equation (5.11) simultaneously to calculate the pairing
gap and the number imbalance in terms of the scattering length.

In Fig. 5.1, we plot the pairing gap A, measured in units of ep = k:%J /2m, and the number of r
particles N, divided by the total number of particles N, against —1/kpa, where kr = (672N /3V)1/3.
The right side of the figure corresponds to the weak-coupling regime (BCS region); the bare coupling
becomes stronger toward the left side (BEC region) of the figure. As we see, |A| and the fraction
of red particles, N, /N, increase with stronger interaction. The N, /N axis ranges from 1/3 to
1/2; when N,/N = 1/3, all three species are equally populated, but for N,/N = 1/2, only r
and g particles are present. In general, N,/N is greater than 1/3 in the interacting system, and
it approaches 1/2 as the interaction becomes stronger. Thus the ground state of the interacting

system always exhibits population imbalance, or magnetization (in analogy with a spin system).
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Figure 5.1: The number of red particles divided by the number of total particles N,./N and the
pairing gap A, in units of ep, at zero temperature, vs. —1/kpa. The solid line shows

N,./N (left vertical axis) and the dotted line A (right vertical axis).

The magnetization arises physically through the gain of pairing energy when there are more particles
in r and g states, and as remarked earlier, it would reveal itself in experiment as an inhomogeneous

distribution of particle numbers.

With this basic picture in mind, we turn now to non-zero temperature.

5.4 BCS region

In the BCS region, where the scattering length a is negative and small, perturbation theory in
terms of the scattering length describes the system well. We first derive the phase diagram in this

region, and then we derive the corresponding Ginzburg-Landau free energy.
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5.4.1 Mean-field phase diagram

The mean-field Hamiltonian Hj; is

Har — pN = Z (gk - —(N N, )) Y ot — A by — A !ty
k k

Un

——A2
AP - 2

NyNy + N,Ny + NyN,) , (5.12)

where

U
- V E wr kd}g, (513)
k

As was done earlier, we assume equal numbers of red and green particles, N, = Ny. Also, we now

include the Hartree energy, Uy = 4wa/m. Defining

Erk =&k + (N + Ny), (5.14)
UH

Sk = &k + + 2N, (5.15)

we rewrite the mean-field Hamiltonian as

Hy — uN = Z §rk <¢i7k¢r,k + w;,k%,k) + Z &”kw;k%’k
k K

Un

a (N2+2N,N,),  (5.16)

. V
—-A § Yrxg -k — A E w;,klﬁ:,k - ﬁ\AF
K K

which is essentially the BCS mean-field Hamiltonian for paired red and green particles plus normal
blue particles. Diagonalizing by a Bogoliubov-Valatin transformation, we find the thermodynamic

potential

In [1 +e ﬁﬁk] 21 Zln {1 + efﬂib,k]

UH

—&rk) ——\AP a (N? 4 2N, Ny) , (5.17)

X
=) (ex

where g5 = /€2, + |A[]2. The condition 9/9|A|* = 0 gives the gap equation

1 ~1-2f(e) 1
Vzk:25k =5 (5.18)
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where f(z) = 1/(e5% 4 1) is the Fermi distribution function. Again, u is determined by the number

equations
1 tanh Gy /2
N, = —(1-&xk—————— |, 5.19
S5 (1 e ™) (5.19)
No=>_ f&x) (5.20)
k
with
N =2N, + Np,. (5.21)

Numerically solving the gap equation (5.18) with the number equation (5.21), we obtain the gap

and number imbalance at given temperature and scattering length, shown in Fig. 5.2. The figure

Figure 5.2: Phase diagram of the BCS region: N,./N vs. —1/kpa and temperature, in units of ep.
The z-axis ranges from 1/3 to 0.35. The intersection of the surface and the bottom

plane toward higher T is the transition line between the ordered and normal phases.

plots N, /N as a function of —1/kra and T. The normal phase is the unshaded region at higher
T; here A = 0 and N,/N = 1/3. In the shaded region, A # 0 and N,/N > 1/3, a small number

imbalance. We show in the next subsection using the Ginzburg-Landau free energy that A # 0
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implies N,,/N > 1/3 and vice versa. To extend the theory to the unitarity and BEC regimes, we
take pair fluctuations into account 2, in Sec. VI.
In the next subsection, we derive the Ginzburg-Landau free energy of the system in the BCS

regime, and derive the relations between the pairing gap and the number imbalance.

5.4.2 Ginzburg-Landau free energy

The interplay between pairing and number imbalance is most easily seen from the Ginzburg-Landau
free energy, the expansion of the free energy in terms of the corresponding order parameters around

the transition temperature. We define the order parameter for number imbalance, ¢, by

N, N

¢=—

- = 22
e (5.22)

Fixing the total number of particles N = 2N, + N;, we have equivalently

 1(N, N
¢__§ <V_3V)' (5.23)

To derive the Ginzburg-Landau free energy it is convenient (in the derivation only) to let
the chemical potential p;, for b be different from the chemical potential u, for r and g. The
thermodynamic potential Q(T', pi,., up) can be derived as in the previous subsection. The Helmholtz

free energy is then
F(Av ¢) = Q + 2,u‘7‘N’I’ "‘ MbNb, (524)

in terms of which the Ginzburg-Landau (GL) free-energy density can be obtained by expanding

1

FaL(A, ¢) = v (F'(A,¢) — F(0,0)). (5.25)
We define
~ k2 Uy
Erie = 5 = i+ 7 (Nr + No) (5.26)
- k2 Uy
fb,k = % — o+ 72N’r‘a (5-27)

2We have so far assumed that the blue particles do not pair. However, the blue particles feel an effective attractive
interaction with each other mediated by the existence of the red and green particles [100] , which can lead to p-wave
pairing state of the blue particles. However, as shown by Kagan and Chubukov [101], the transition temperature to

such p-wave pairing is too low (Te ~ 10_7TF) to be observed in experiment, and we ignore it here.
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and & = Méfﬂk + A2, and the chemical potential of the normal phase pg implicitly through

where 512 = k%/2m — o +2Ux N/3V . In terms of these quantities, the Ginzburg-Landau free-energy

5.28
eﬁgk o (5.28)

density is
. 1 _gE 3 _gf
Fon(A, ¢) = Zln (1477 - Wzk:ln (14 e=560] +Wzk:1n 1+ 4]
2 5 N
- = Z (5k &, ) — g T3Un® +2(ur — mo)d + 537 (ur + pp = 3p0) s (5.29)

in the expansion in ¢ and A, we keep in mind that u, and p are implicit functions of A and ¢

through the number equations

1 1 tanh 5}, /2 N
0=y s (1-gutm) - (5:30)
and
1 1 N
2= ——— - (5.31)

- eBox 1 3V

The Ginzburg-Landau free energy up to fourth order in the order parameters is

(c2)?

fGL(A,(b) :aA2 + <b—|— p
1

1
) A*+3 (c — UH> ¢* + e3¢ + cag? — QZ—QA% + csA%¢2%, (5.32)
1 1

where ¢; ~ c¢5 and b are all positive, but the sign of a depends on temperature. The detailed
coefficients are given in Appendix E.
The physically realized values of the order parameters minimize the Ginzburg-Landau energy;

to leading order in the order parameters, we then have

oFar 1 2

= - 2 A = 5.33
¢ 0 (01 UH> - -0 (5:33)

0FarL (c2)* ) 2 _ 52
=2A 2 A —¢| =0. .34
IA [a + <b + . 01 26| =0 (5.34)

The first condition implies

¢ = 2 A2 (5.35)

3(1 - C1UH)
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indicating that if the pairing gap is non-zero, the number imbalance is non-zero, and vice versa.

The second condition, combined with Eq. (5.35), implies

A [a +2 (b PG ) )> AZ} — 0. (5.36)

cl 3c1(1 —aUg

In addition to the solution A = 0, when a < 0 this equation has a second solution, with lower free

energy,

N o
2(b+ co?/c1 — 2%/ (3c1(1 — e1Upg)))

(5.37)

The transition to fermion pairing is at the temperature at which a = 0.

The Ginzburg-Landau free energy of three-component ultracold fermions has certain similarities
to the Ginzburg-Landau free energy of dense QCD derived in Refs. [102, 103, 104], which makes
multicomponent ultracold atoms a promising analog of dense QCD. The Ginzburg-Landau free
energy of dense QCD has the form

Cl

o o B s d 35/4/2 o122
QQCD(d,U):5|d| +Z|d| +50 - 30 + 40 —~'|d|*o + N|d|*o7, (5.38)

where d is the quark-quark pairing order parameter and ¢ is the chiral symmetry breaking order
parameter. We attach primes to the coefficients to avoid possible confusion with similarly labeled
quantities used earlier. The signs of o and a’ depend on the temperature and the strength of the
couplings. As argued in Refs. [102, 103, 104], 3, ¢, 7/, and X are positive.

With the correspondence between the present system and the dense QCD system, A « d and
¢ <« o, we see that the two Ginzburg-Landau free energies have a similar structure. Although
the original QCD Lagrangian has a local SU(3) gauge symmetry, the Ginzburg-Landau free en-
ergy (5.38), which does not take the gluonic degrees of freedom explicitly into account, possesses
only global SU(3) symmetry. To this extent, one can construct an analogy with ultracold atomic
fermions. Similarly, Nambu—Jona-Lasinio models of QCD [105, 106, 107, 108] also have only global
SU(3) symmetry. Differences between the QCD free energy and that of ultracold fermions are that
the sign of @’ becomes negative at low temperature whereas the coefficient of ¢? is always positive,
and in addition the coefficients of 0% and ¢3 are opposite in sign. These differences are due to the
fact that the dense QCD system can undergo chiral symmetry breaking without quark-quark pair-

ing, but the three-component ultracold fermion system, beginning with equal populations, cannot
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spontaneously develop local number imbalance without fermion pairing; with the symmetric inter-
action we are assuming, number imbalance arises from the gain of pairing energy with an increasing
number of paired particles. It would be interesting to see how the analogy can be sharpened in
multi-component atomic systems where spontaneous number imbalance and fermion pairing oc-
cur independently, for example, with increased numbers of species or with deviations from fully

symmetric interactions.

5.5 BEC limit

We turn now to the BEC limit, where the scattering length between fermions is small and pos-
itive. We can regard the system here as a collection of three types of weakly interacting bound
Bose molecules, each made of two fermions, which can be red-green, green-blue, or blue-red. The
molecules Bose-condense at sufficiently low temperature. The condensate of molecules can be re-
duced to a condensate of one type of molecule by appropriately choosing the color axes, as with
pairing in the BCS regime. The condensate in the BEC limit is composed of the same two colors

that are paired in the BCS limit.

At high temperature, the system is not condensed, but is simply a gas of thermally excited
molecules. Unlike in the condensate, one cannot exclude the existence of three types of thermally
excited molecules. Whether the high-temperature system develops a number imbalance depends
upon the intermolecular interactions. For the same type of molecules, the effective scattering
length is 0.6a [109], where a is the scattering length of the constituent fermions. Between different
molecules, as we show later, the effective scattering length is still 0.6a. Thus, above the condensation
temperature, the system is described by three kinds of thermally excited molecules with the same
interaction between all molecules. As we show in Appendix F, the uncondensed Bose system does
not develop a spontaneous number imbalance as long as the interaction between the same types
of bosons is greater than half of the interaction between the different bosons. Thus the present

system does not exhibit number imbalance above the condensate transition temperature.

We have, therefore, the following picture of the BEC limit. At high temperature the system is

a homogeneous mixture of three types of molecules. The Bose-Einstein condensation temperature
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is that of noninteracting bosons of mass 2m and density N/6V,
2/3
Thrc = W <g/> ~ 0.137 Tp. (5.39)
Below Tggc, the system is a mixture of the condensate of one type of molecule and a cloud of
thermal molecules of three types, which vanishes at T' = 0.

We now show that the scattering length between different molecules is the same as that, 0.6a, be-
tween like molecules. The derivation of Ref. [109] of the scattering length between similar molecules
depended on the symmetry of the four-particle scattering wave function. Since, as we show, the wave
function for scattering of different molecules has the same symmetry, the arguments of Ref. [109]
lead to the same scattering length. We write the four-particle scattering wave function between
similar molecules, for example, red-green on red-green, as Wg(ry, ro;rs3,ry), where ry denotes the
position of the red fermion of the first molecule, ry is the position of the green fermion of the first
molecule, r3 is the red fermion of the second molecule, and ry4 is the green fermion of the second

molecule. The symmetries due to Fermi statistics are

U,(ry,ro;r3, ry) = —W,(rs,ro;ri,re) = —V,(ry,ry;ra, ra). (5.40)
V. .
2
7y
n .
3

Figure 5.3: Two different molecules colliding.

On the other hand, scattering between different molecules, for example, red-green and red-blue
shown in Fig. 5.3, described by the four-particle scattering wavefunction W,(r1,ro;rs, rg) (where ry

now denotes the position of the blue fermion), has only a single symmetry due to Fermi statistics,

Ui(ry,ro;r3,ry) = —W4(rs, ro;ry, re). (5.41)
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However, for s-wave scattering, the wave function is symmetric with respect to the interchange of

molecules, so that

Wg(ry,ro;r3,14) = Yy(rs, ra;re, r2). (5.42)
Conditions (5.41) and (5.42) imply that

Wy(ry,rosr3,14) = —W4(r1, ra513,12), (5.43)

which is exactly the same symmetry that was present due to the exchange of green fermions in ¥,.

The Schrodinger equation in the two cases has one apparent difference, that is, the delta-function
interaction between the green and blue fermions. However, the antisymmetry (5.43) for exchange of
green and blue fermions implies that the product of the green-blue potential and the wave function
in the Schrodinger equation vanishes, so that the Schrodinger equation is the same as for identical
molecules, and the scattering length is also the same. This argument depends crucially on the two

molecules having one color (here red) in common.

5.6 Crossover theory

The crossover, in a two-component system, from BCS pairing in the weak-coupling region to a BEC
of weakly interacting molecules in the strong-coupling region is continuous, as seen in experiment
[16, 17, 18] and understood theoretically [14, 15, 110, 111, 112, 112, 113, 114, 115]. A common
feature of theories of the BCS-BEC crossover at non-zero temperature is the incorporation of pairing
fluctuations, which allow thermally excited Cooper pairs to exist above the condensate transition
temperature. We now apply this idea to develop a theory of the crossover, at non-zero temperature,
in the three-component system to connect the BCS and BEC regimes discussed earlier, and see
that the crossover is also continuous.® We incorporate pairing fluctuations through a self-consistent
summation of ladder diagrams, and then numerically solve for the transition temperature between

the condensate and noncondensate phases.

3At sufficiently low temperature Efimov states can lower the energy around unitarity, producing a discontinuous

transition from the BCS to the BEC regimes [92] .
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5.6.1 Self-consistent summation of ladder diagrams

We construct the crossover theory in terms of the finite temperature normal and anomalous Green’s

functions:

Galr = v',t = ') = =i (T (Ya(r, )0l (1)) )

Fr—r't—t") = =i (T (¢r(r,t)hy(x', 1)), (5.44)
where T' denotes time ordering. We assume still that pairing takes place between r and g particles.
The pairing gap is given in terms of the Fourier transform of F(r —r’,¢t — ') by

d®k U d®k

where k denotes (k,wy); the summation is over the fermionic Matsubara frequencies wy = imvy /3
with odd integer 1. The Schwinger-Dyson equations for the Green’s functions, illustrated in Fig.

5.4, are

r r
O

—(E)—

+ —> —

r g g r

—_— + < @: >

b b b b
4>= > + >é

Figure 5.4: The Schwinger-Dyson equations for the normal and anomalous Green’s functions.

|

g
<

Gr(k) = Go(k) + Gok) (Ser (k)G (k) + Sy () FH(R))
FH(k) = Go(=k) (s (£)G, (k) + Sgg (—R)F' (1))

Gv(k) = Go(k) + Go(k)Xuw(k)Gu(k), (5.46)
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where gg(k)_1 = wy, — &k is the free-particle Green’s function, and ¥,z are self-energies with an

incoming « particle and an outgoing (§ particle. Solving this system of equations, we obtain

-1
o s )

1
k) = ;
Golk) go(k)*1 — Zpp(k)
FHk) = =Zgp(k) - {Srg (k) gr (k) + (Go(k) ™" = Spr (k) (Go(—k) ™ = Bgg(—R))} . (5:47)
The main contribution to the off-diagonal self-energies is the gap:
3K 1
rg ﬂ / 271' 3 ) = EQT(k) = —A, (548)

where we assume without loss of generality that A is real. Then the r-particle self-energy, for

example, is given by

3
Sk =- [ (jﬁqggz 1o, 5 )Gy (—k + ) + Ty B )G~k + @), (5.49)

where T'og(k, k'; q), is the two-particle t-matrix for incoming particles of color o with momenta k
and 3 with —k + ¢, and outgoing with momenta k' and —k" + ¢, respectively; the w, are bosonic

Matsubara frequencies. The corresponding diagram is Fig. 5.5. Including the t-matrix in the

;
)

—
-
o

Figure 5.5: Self-energy written in terms of ¢ matrices.

self-energy takes pairing fluctuations into account, and as shown in Ref. [15], encompasses thermal
fluctuations of paired molecules in the BEC limit and the Hartree approximation in the BCS
limit [15], thus connecting both limits continuously. Note that there is no process of this form
in which the top line is anomalous since such a process would involve scattering between two r
particles, either initially or finally, which is forbidden by the Pauli principle; the internal lines can,

however, be anomalous.
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On the other hand, in the self-energy of b particles, the top line can in principle be anomalous;
however, this process would involve particle-hole scatterings either initially or finally, which is
negligible for short-range interactions [56]; the self-energy involves only a sum of rb and gb particle-

particle scatterings. The Bethe-Salpeter equation for the rb t-matrix becomes

, dp 1
Frb(k,k:;q):_U—U/( P ZQT )Gs(—p + )T (p, k' ). (5.50)

As one sees by iterating this equation, T,y (k, k'; q) is independent of k and k'; we write T'(k, k'; q) =

I'(g). Solving Eq. (5.50), we obtain

-1
1 d 1
Tuta) == | 5+ | Gy Zgr G +a)| (5.51)

I'yy takes the same form mutatis mutandis.
In I,y we must take the rg anomalous Green’s functions into account, as illustrated in Fig. 5.6.

Solving the Bethe-Salpeter equation in Nambu matrix notation, we have

g g rr r 8 g
S < <
> T < ran | >
| 1 |
1 1 |
> —> << ! >
r r g g r r

Figure 5.6: An anomalous contribution to the rg t-matrix.

_ x11(—q)
FTg(q) B X11(Q)X11(—Q) - X12(Q)2’ (5.52)

where

Xn(Q):—% /dp 1Zgr (p)Gg(q — p), (5.53)

vl = [ 252 1Zf \Fa ). (550

To determine the gap and the number imbalance as a function of temperature and scattering

length involves self—consistently solving the gap equation (5.47), which can be rewritten as

Bk 1 1
U / 27)3 8 zk: (Go(k) ™1 = S0 (k) (Go(—k) T = Sgg(—k)) + A2’ (5.55)
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together with the number equations

N, d3k 1
AR zwkn
v nlﬂo / § Gr(k (5.56)
Ny d3k 1

li Wk 5.57
V nﬂ+0/ Z gb ( )

However in this thesis we focus only on calculating the transition temperature.

5.6.2 Evaluation of T,

We now use the formalism of the previous subsection to evaluate the transition temperature, where
the pairing gap A becomes zero. The gap equation at T is equivalent to the condition that I';4(q)

diverges at ¢ = 0. Therefore, at T,., we can make the approximations,

3
Srr(k) = / jﬂqg ﬁlz +0(@Ga(q — k) + Dry(@)Golg — k)

3
/ d q ! Z rg gg ) + Frb(Q)gb(_k)) ) (558)

and

d3q 2 d 2
(k) = —/ q Zrbr )Gr(q — k) — q ZFbT )Gr(—k). (5.59)

For T' > T,, the t-matrices do not depend on the color indices. Then, using the final line of

Eq. (5.58) we see that the Green’s function for r particles becomes

Gy (k) = (G (B) = S () ™ (G () + Gol(—)AL) ™ = = szi A (500
Pg

where we introduce a “pseudogap” A, at T, by writing

Apg = / L'(q), (5.61)

with I' = I';g = Iy, = I'p,. The final line of Eq. (5.60) is just a BCS Green’s function with the gap
replaced by the pseudogap. We write Ey = \/512{ + Agg for convenience. Similarly G,(k) has the
same form at T =T,.

The number equations then reduce to

N _1 dgk fk ﬁCEk
W_Z/W(l - tanh = ) (5.62)
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while the equation for the pseudogap is

1 d3k: 1
—7 = / Zgr

[ A% &\ tanh(BEi/2) Ay f'(Fi) | |
—/w{(”é‘2> e o

as before, the bare coupling U is related to the scattering length a through Eq. (5.9).

In the BCS limit, kpa — 07, Agg tends to zero, as we can see by considering the BCS gap
equation at T, (not the mean-field BCS transition temperature, but the same 7, that we are using

here) with a gap A

1 B3k tanh(ﬁc 612(+A2/2)
_ / : (5.64)

v 2m)? 24/E2 + A2

Expanding the right sides of (5.63) and (5.64) in terms of A2 and A2, we see that the zeroth order
terms are identical. Also, since the final line of Eq. (5.63) decreases monotonically with Apg, the
limit A? — 0, as in weak-coupling BCS, implies Agg —

Determining 7, requires estimating A2 , which we do by expanding Frg(q)_1 around ¢ = 0,

Py’
recalling that I',;(0)™1 = 0 at T,

1 d3p 1
R / P Zgr (0)Gya — D)

/d3p 1Zgr { 6, (c.)

=Zwg — 2. (5.65)

1
wq + 6 V2gg(kaw)‘k:7p ‘12}
k=—p

Explicit forms for Z and v are given in Appendix G. The pseudogap then becomes

dgq 1 1 1 d3q 1 ¢(3/2) A 3/2
2 _ L _ ot _
Apg - 2/ (27T)3 ﬁc gq: qu — ryq2 2Z / (27.(_)3 eBC’YQQ/Z -1 4Z (7_[_/867> . (566)

Solving the number equation (5.62), the gap equation (5.63), and the expression for the pseudo-

gap (5.66) self-consistently, we obtain the transition temperature, plotted against —1/kpa in Fig.
5.7. The solid line in the figure is the transition temperature calculated with the ladder summation
formalism described here, and the dotted line is the result from mean-field BCS theory. The ladder

summation line approaches the mean-field line in the BCS limit. On the other hand, in the BEC
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Figure 5.7: The phase diagram of three-component ultracold Fermi gas. The temperature is in
units of Tr. The solid line is the transition temperature calculated with pairing
fluctuations incorporated through the summation of ladder diagrams. The dotted
line is the transition temperature calculated from mean-field BCS theory. The mean-
field line corresponds roughly to the temperature at which fermions start to form
(noncondensed) pairs. The line calculated from the ladder summation is where the
Cooper pairs start to condense. Toward the left end of the figure, the transition

temperature approaches the BEC limiting value T, ~ 0.137TF.
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limit, the ladder summation correctly yields 7, — 0.1377Tr. The crossover theory presented here
connects both limits continuously.

Throughout, we have kept a common chemical potential for the different species, and found
that below 7. the number of b particles becomes smaller than the number of r or g particles. In
ultracold atomic experiments, the number of the particles in each species is usually fixed at the
start, and thus the simplest scenario that may occur experimentally is that the number imbalance
appears through the formation of population-imbalanced domains. The formation of population-
imbalanced domains leads to a gain of condensation energy of order E.V/2 for the fully imbalanced
state, where E. is the condensate energy density in a balanced system; the factor 1/2 = 3/2 — 1
is the increase in the relative number of Cooper pairs in the imbalanced state over that in the
balanced state. On the other hand, the formation of a single domain wall costs a net surface energy
Egury of order E.VE./L, where . is the coherence length and L is the linear size of the system. The
condition that the formation of the domain is beneficial for the system is E.V/2 > Eg,, ¢, or roughly
L/¢ 2 1, which typically holds well. Domain formation is expected to decrease the free energy
from that of the homogeneous state at low temperature. Other possible realizations of population
imbalance include the formation of a “color density” wave or the formation of an inhomogeneous
(Fulde-Ferrell-Larkin-Ovchinnikov) superfluid; we leave analysis of these states as future study.
Also to apply the present theory quantitatively under realistic experimental conditions it will be

necessary to investigate the effects of Efimov states.



Chapter 6

Bohr’s gedankenexperiment on double-

slit interference

6.1 Introduction

In this chapter, we discuss Niels Bohr’s double-slit gedankenexperiment. The content in this chapter
is based on [5].

Niels Bohr once suggested a very simple gedankenexperiment to prove that, in order to preserve
the consistency of elementary quantum mechanics, the radiation field must be quantized as photons.
In the experiment one carries out conventional two-slit diffraction with electrons (or other charged
particles), building up the diffraction pattern one electron at a time (as in the experiment of
Ref. [23]). One then tries to determine which slit the electron went through by measuring far
away, in the plane of the slits, the Coulomb field of the electron as it passes through the slits. See
Fig. 6.1. If the electron passes through the upper slit it produces a stronger field than if it passes
through lower slit. Thus if one can measure the field sufficiently accurately one gains “which-path”
information, posing the possibility of seeing interference while at the same time knowing the path
the electron takes, a fundamental violation of the principles of quantum mechanics.

In an experiment with ordinary electrons of charge e the uncertainty principle prevents measure-
ment of the Coulomb field to the required accuracy, as we shall see below, following the prescription
of Bohr and Rosenfeld for measuring electromagnetic fields [116, 117]. However, as Bohr pointed
out, one can imagine carrying out the same experiment with (super) electrons of arbitrarily large
charge, Ze, and indeed, for sufficiently large Z, one can determine which slit each electron went

through. However, elementary quantum mechanics requires that once one has the capability of ob-
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Figure 6.1: Two slit diffraction with single electrons, in which one measures the Coulomb field

produced by the electrons at the far-away detector.

taining “which-path” information, even in principle, the interference pattern must be suppressed,
independent of whether one actually performs the measurement.

Underlying the loss of the pattern is that the electron not only carries a Coulomb field, produces
a radiation field as it “turns the corner” when passing through the slits, The larger the charge the
stronger is the radiation produced. This radiation must introduce a random phase to the electron
in order to destroy the pattern, and so itself must carry phase information; thus the electromagnetic
field must have independent quantum degrees of freedom. Were the quantum mechanical electrons
to emit classical radiation, the emission would produce a well-defined phase shift of the electron
amplitudes along the path, which while possibly shifting the pattern, as in the Aharonov-Bohm
effect [118], would not destroy it. In a sense the suppression of the pattern is an extension of
the Aharonov-Bohm effect to fluctuating electromagnetic potentials (discussed by Aharonov and
Popescul).

Our object in this chapter is to carry out a detailed analysis of the physics implicit in Bohr’s
suggested experiment. After describing the experiment more fully, we determine the strength of

charge needed to measure the Coulomb field at large distances sufficiently accurately. We then

! Aharonov Y and Popescu S, unpublished; P. Kwiat, private communication.
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analyze how coupling of the particle to the quantized electromagnetic field in diffraction suppresses
the interference pattern, with increasing charge, before Coulomb measurements can yield “which-
path” information.

The first experiment that revealed effects of quantization of the electromagnetic field in inter-
ference is that of Grangier et al. [119], which showed how interference of single photons differs
from classical interference. The loss of particle coherence in interferometry due to photon emission
was first demonstrated by Pfau et al. [120], and due to photon scattering by Chapman et al [121].
Various works, both theoretical and experimental, have discussed determining the path of charged
particles in the double-slit problem, but none, it seems, in connection with Bohr’s proposed ex-
periment. The theoretical possibility of distinguishing paths by measurement of photon field is
discussed in Ref. [122], while Refs. [123] and [124] discuss determining the path through detection
of the electric field inside the loop of the paths. See also Stern et al. [125] on decoherence due to the
interaction of charged particles with the gauge field. Experimental attempts to measure “which-
path” information using interferometers fabricated in high-mobility two-dimensional electron gases
include Refs. [126, 127, 128].

A natural question to ask is whether by measuring the Newtonian gravitational field produced
by the mass of a particle as it diffracts, one can similarly gain “which-path” information; as we
show, the answer is that one can, for sufficiently large mass. However, one cannot conclude in
this case that the gravitational field must also be quantized, since for masses for which one can
measure the path, the fringe separation in the diffraction pattern would shrink to below the Planck
length, ¢, = (Gh/c®)Y/?, where G is Newton’s gravitational constant and ¢ is the speed of light. In
this chapter, we explicitly write h. However, position measurements are fundamentally limited in
accuracy to scales R 51 [129], and therefore distinguishing so a fine pattern cannot be carried out.
Unlike in the electromagnetic case, where the interference pattern is suppressed due to decoherence
caused by the radiated photons, the pattern in the gravitational case becomes immeasurably fine,

not because the particles radiate quantized gravitons.

6.2 Measurement of the Coulomb field

In the experiment sketched in Fig. 6.1 a charged particle enters the apparatus from the left side,

goes through a double slit, and hits the screen (b). The spacing of the slits is d, and L is the
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distance from the particle emitter (a) to the screen. The Coulomb field of the electron is measured
at distance ~ R in the plane of the slits, sufficiently far away from the apparatus that there can be
no back-reaction from the distant measurement of the electromagnetic field. Thus R 2 ¢T', where
T is the time of the flight of the particle, ~ L/v, with v the particle velocity. We consider only
non-relativistic particles, in which case the longitudinal Coulomb field of the electron at distance
R ~ T is larger than the transverse radiation field by a factor ~ ¢/v. We assume that the Coulomb

field is determined by the charge in the usual manner.

To distinguish whether the particle goes through the upper or lower slit one needs to measure
the electric field to at least an accuracy Ze(1/R%* —1/(R + d)?) ~ Zed/R?® (with d < R). The
quantum limit on the measurability of a weak electric field F was obtained by Bohr and Rosenfeld
[116, 117]. In an early discussion of such a quantum measurement, Landau and Peierls [130] noted
that if one attempts to measure the field by its effect on a point charge, radiation recoil introduces
uncertainties in the measurement that diverge for short measuring times, and concluded that “in the
quantum range ... the field strengths are not measurable quantities.” To avoid this problem, Bohr
and Rosenfeld envisioned measuring the average of the electric field over a region of space-time,
using an extended apparatus consisting of an object A of mass M and volume V4 with extended
charge @, tethered by Coulomb forces to a similar object B with background charge —(Q). See
Fig. 6.2. The background charge is fixed in space, but A is displaced by an electric field from its

Figure 6.2: Bohr-Rosenfeld apparatus for measuring the electric field. The positively charged
object A slides on the negatively charged fixed object B.



6.2. MEASUREMENT OF THE COULOMB FIELD 91

equilibrium position. The apparatus measures the field by detecting the deflection of A from its
equilibrium position. The net equilibrium charge density of the apparatus is zero in the absence of
an external field that displaces the object from the background. In their analysis they first assume
quantization of the electromagnetic field, and show how vacuum fluctuations of the field in the
region limit the accuracy of field measurements. They then go on to show that the accuracy of
the measurement of a single field is limited by the uncertainty principle applied to the apparatus,
without the need to invoke field quantization. We give a schematic derivation of this result (see
also the recent discussions in Refs. [131, 132, 133].)

The relative motion of A and B is a harmonic oscillator whose frequency w is readily derived
from the familiar expression for the plasma frequency (w? = 4wne?/m), namely w? = 47Q?/M V4.

p

When A is displaced relative to B by a distance x, the restoring force acting between them is
F = —Muw?*r = —41Q%x/Va. (6.1)

Thus, an external field E, acting on A for time 7" changes the momentum of A by p, = (E,Q —

47Q%*x/V4)T', from which one would deduce an electric field,
E, = 47Qx/Va + p:/QT'. (6.2)

Since p, and x obey the uncertainty relation, dxdp, < h, we see from minimizing the right side
of Eq. (6.2) with respect to dx that the uncertainty in the measurement of F, is independent of
@, and given by the Bohr-Rosenfeld relation, dF, ~ \/W . For simplicity we assume cubic
geometry of A and B, with V4 = &3, The measurement time 77 is at most the time of flight, T,
since further increasing the measurement time does not help to distinguish the paths; thus we take
T’ = T. In addition the length £ of interest is at most the Coulomb pulse width, ¢T', since neither
does a longer size help to distinguish the paths. With & = ¢T', we obtain the limit of accuracy of
the measurement of the Coulomb field:

h

(6.3)

To estimate the critical scale of charge of particles above which one begins to be able to distin-
guish the path, we take the measuring apparatus to be located from R to R 4+ £ above the upper
slit. Then, when a particle with charge Ze passes through the upper slit, the average Coulomb
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field in the apparatus is

1 [ Ze Ze

- dr = . 6.4
e) T w g o4
Similarly, the average electric field when the particle passes through the lower slit is Ze/(R+d)(R+
d+¢), where d is the slit interval. Hence to distinguish the paths the apparatus needs to distinguish

an electric field difference

_ Ze(2R+¢)

A= RRTo?"

(6.5)

a decreasing function of £. Since to measure the path, one needs AE > §FE (the measurement

R} R+&? | h
Ze 2 iR d) 1/§3T. (6.6)

With £€ ~ R ~ T we find that the scale of critical charge Z; above which one can begin to

uncertainty), or

distinguish the path is

NlcT
1—\/ad7

where o = €2 /hc is the fine structure constant. Note that Z; > 1, so that one could never detect

Z (6.7)

the path with ordinary electrons or other particles of charge ~ |e|. For illustration, from the
parameters corresponding to the experiment of Ref. [23]: d ~ 1 um, and ¢TI ~ 6 cm, we estimate
Zy ~ 7 x 10°.

One can in fact, for general Z, determine partial information on the paths, the amount of
information increasing with Z. Writing p(D,,,[) as the probability of the particle having taken the
lower path and the detector detecting it to have taken the upper path, p(D,,u) as the probability
of the particle having taken the upper path and the detector detecting it to have taken the upper
path, etc., one can quantify the information in terms of the distinguishability D [134, 135, 136, 137]

D = |p(Dy,u) — p(Dy,u)| + [p(Dy; 1) — p(Du, )] . (6.8)

Since p(Du, u) + p(Di,u) + p(Dy,1) + p(Dy,l) =1, D < 1.
To calculate D we note that the detector determines the electric field through simultaneous

measurement of the position and momentum, which leads to a Gaussian uncertainty of width 0 F
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in the measured value of the electric field from the expected value. For the particle taking the
upper path, producing an expected (averaged) electric field E, at the detector, the probability

distribution of the measured electric field is

1 2 2
P,(B) = ~(B—Eu)?/20E2 6.9
E) = Jomse” (6.9)

with a similar expression for the field distribution P;(E) for the lower path in terms of the expected

E;. Since FE,, > Ej, we can for simplicity regard the detector as having detected the particle taking
the upper path if the measured value of the electric field is greater than (E, + E;)/2, and as having
taken the lower path otherwise.

With the assumption that the amplitudes for the particle taking the upper and the lower paths

are equal in magnitude, which is true if the two slits are located symmetrically, then

1 [ 1
p(Dy,u) = / P,(E)dE = = — p(Dy,u), (6.10)
2 J(Bu+E)/2 2
with similar equations for p(Dy, 1) and p(D,,[). With AE = E,,— E;, the distinguishability becomes
1 AE/2V/20E )
D= / e % dx = erf(Z/2V22y), (6.11)
VT —AE/2\/25E

where erf(z) is the error function. We plot D in Fig. 3 below for the parameters of Ref. [23].

6.3 Loss of interference

We turn now to the question of how for sufficiently large charge (which should be < Zp) the
interference pattern must disappear. The basic physics is that the particle radiates when being
accelerated by the slits, and undergoes a random change in its phase because it is coupled to
a dynamical degree of freedom, the quantized radiation field. We do not take into account any
quantum degrees of freedom associated with the slits, i.e., we assume that they act effectively as a
potential on the electron. The pattern on the screen is proportional to Zf (|ﬁu(b, )+ Bi(b, f)|2)
where (3, (b, f) is the amplitude for the particle to go through the upper slit to point b on the screen,
with the electromagnetic field going from its initial state |0) (the vacuum) to final multi-photon
state |f), and §;(b, f) is the amplitude for the particle to take the lower trajectory.

The interference pattern thus has the relative intensity,

_ 2Re X4 (Bi(d, £)*Bulb, f))
1= >0 (1Bu(b, )2 + 150, H)3) (6.12)
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While it is possible to carry out a full quantum calculation of the radiation emitted in diffraction, its
essential features are brought out if we make the simplifying assumption that the charged particle
follows a single straight trajectory along either the upper or lower path from the emission point a
to a given point b on the screen (see Fig. 6.1). and thus the emitted radiation has only the effect

of changing the phase of the electron amplitude. Then

Bulb, ) = (f|U4|0) By, (6.13)
where 3Y is the simple quantum amplitude in the absence of the electromagnetic field, and

_ ((iZe/ne) [ d-A(7t)
U= (e ). (6.14)

where A(7,t) is the electromagnetic field operator, and the the integral is time ordered (denoted

by the subscript “+7”) along the path. From Eq. (6.13),

Zf} 18u(b, )P = (UIU)BL = 180, (6.15)
> 1B, NP = 1871, (6.16)

and f
> Bi(b, ) Bulb, £) = (U] UL B (6)" BD), (6.17)

f

where the brackets denote the electromagnetic vacuum expectation value. Thus

where the subscript ¢ denotes the time ordering of the contour integral from emission to the screen
along the upper path and then negatively time-ordered from the screen back to the emission point
along the lower path. This expression is the expectation value of the Wilson loop around the path

u — [ [138]. Since the free quantum electromagnetic field is Gaussianly distributed in the vacuum,
<U1TUu> — e—(220¢/27?6)<1>u—l7 (6.19)

where

Byt = ( < 71{ . fT(F,t))Q ) (6.20)

[
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Writing
UU,) =ve ™, (6.21)

where the visibility V = |(UZTUU>] is <1, and the phase shift ¢ is real, we have

~ 2Re (B0(b)* B (b))
I(b) = (189(b)2 + |82 () [?)

The coupling to the radiation field reduces the intensity of the interference pattern by V), as

(6.22)

well shifting it via (. By symmetry, the shift vanishes at the center point on the screen (and is
otherwise not relevant to the present discussion.) Since the Coulomb field does not enter the states
of the radiation field in V, Eq. (6.22) gives a valid description of the interference pattern whether
or not an attempt is made to distinguish paths by detecting the Coulomb field at large distances.

The real part of ®,_;, entering the visibility, is given by the same integrals as in Eq. (6.20)

without time ordering along the contour, since j(7,t) - A(7,t) is Hermitian [139]:

Re®, ; = { (i{l di- A(F, t)>2 ). (6.23)

To estimate the visibility we write the free electromagnetic field operator in terms of photon anni-
hilation and creation operators: A(r, t) ~ >k Z)\k(27rhc/kQ)1/2(akxkei(E'F*Wt) + h.c.), where the X
are the photon polarization vectors, w = ck, and € is the quantization volume. For non-relativistic
motion (v < ¢) along a classical trajectory,

hed3k
Re (I)u—l _/(271')2]{3 .
k

2 2
:2—716 kdk

3T

(6.24)

7{ dte ™t Xy, - v(t)
u—I

j{ dte”™ (1)
u—I

With the simplifying assumption that on the upper path the velocity undergoes a sudden change
at the slits, from U to ¥’ (see Fig. 1), and from ¥, to " through the lower slit, then in the limit

of large time of passage, w1 > 1,
% dteiia)tﬁ(t) = 1(171 — 171, — Uy + Uy /), (6.25)
u—l w

For w < 1/T, the integral is proportional to T. Near the center of the pattern, ¥’ ~ ¥; and

=/

U1 ~ Uy, so that

4
~ — (0 - )2, (6.26)

f dte™ ™' 4(t)
u—l
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and

4Z%a wmax ]
] ~ — 0 — U2)> dw=. 2
ogV 302 (V) — ) /l/T w— (6.27)

The integral over w, nominally logarithmically divergent at large w, is physically cut off by wpyax, the
maximum frequency of emitted photons, which from energy conservation cannot exceed mv?/2h =
v/, where X is the de Broglie wavelength of the interfering particle. The lower cutoff is effectively
1/T'; hence

472
3mc?

logV ~ — (T, — ¥)? log(mL/\). (6.28)

Equation (6.28) is essentially the non-relativistic limit of the result of Ref. [140]. For L > d,
(Ty — ¥2)? ~ (2d/T)?, and finally,?

2
Y ~ exp {—227r () 1og(7rL/A)} : (6.29)

Since the path length must be many de Broglie wavelengths, the charge above which the visibility

becomes less than 1/e? obeys,

cT 1 cT
dv/a flog(=L/ N2~ dy/a

The visibility and distinguishability are closely related; as Z increases the interference pattern

Zy S

< 7. (6.30)

fades away on the scale Zs, while the distinguishability of the paths by measurement of the Coulomb

field grows on the scale Z;. Quantitatively,

32 [ Z\? Z \?
V24yD?P=¢ —<) +ef< >
Xp( 3 \ 22 ' 2\&21

f(2). (6.31)

Since f(0) = f(co0) =1, and for Zy < 8Z1/v/3 and 0 < Z < o0, f(Z) < 1

V24 D2 <, (6.32)

?Note that emission of photons with wavelengths A larger than the slit width d contributes to the decrease in
visibility, even though such photons give little or no information about the path. The reason is that photon emission
leads to fragmentation of the total amplitude, >° >= (C¥ |u, fn) + C%, |L, fn)), among photon states f, with various
numbers of photons, n. Here 33 >, IcE 1P =3, > |C% | = 1. Only states |u, fn) and |l f») with the same

photon state can interfere; the total weight of the interfering terms [>>, >, C}: CY, | must be < 1.
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in agreement with the inequality derived by Jaeger et al. [135] and Englert [136]. Figure 6.3 shows
the visibility and distinguishability as functions of Z, as well as V2 4+ D?, for the parameters of the

experiment of Ref. [23], given above. With these parameters, log(mL/\) ~ 20.

15 w ‘ ‘
0.8 | 1
06 | dlstanU|shab|1|Ey,,' ]
| visibility
0.4 |} ]
: il V24P2
2l T |
O -, o\ L 5 . 6 6
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Z

Figure 6.3: Visibility (solid line) and distingishability (dashed line) vs charge for the parameters of
Ref. [23], for which the characteristic charge Z; for distinguishing paths by measuring
the Coulomb field is ~ 7 x 10°, and the characteristic charge Zy for loss of interference

is ~ 1.5 x 105. Also shown is V? 4+ D? (dotted line).

A simple interpretation of the decrease in visibility, in terms of the Aharonov-Bohm effect [118],
is that the closed electron loop, u — [, encircles a fluctuating electromagnetic field which shifts the
interference pattern randomly, thus tending to wash it out. The interpretation of the reduction of
the pattern in terms of a random flux requires photon emission processes, and is equivalent to the
present discussion. Indeed for the subset of processes in which there is no photon emission, the

modification of the interference pattern is given by (UZT>(UU) [cf. (6.17)], where the brackets denote

fi 0

the reduction reflects the loss of forward-scattering amplitude owing to photon emission processes.

states with zero photons. Now

2
7%

Relog(U,) = 3
™

1
kdk >~ log V; (6.33)

Thus the zero-photon emission pattern is multiplied by a factor V1/2. the suppression of the zero-

photon pattern at charge v/2Z equals the suppression of the total visibility at charge Z. The phase
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of <UlT><Uu> is essentially proportional to the difference of real parts of the electron self-energy
corrections on the upper and lower paths, corrections that do not contribute to the diminution of

the interference pattern.

6.4 Measuring the path by gravity

Finally, we ask if it is possible to detect the path by measuring the fluctuations in the (Newtonian)
gravitational potential at large distance as a particle of sufficiently large mass passes through the
slits. In this scenario, the Newtonian gravitational field plays the role of the Coulomb field for
charged particles. We consider detecting the change of the Newtonian gravitational field by using
a modern gravity wave detector, e.g., a highly sensitive laser interferometer [141] (a measurement
not equivalent to detecting possible gravitational radiation produced by the mass going through
the slits.) Figure 6.4 sketches such a detector. As before, the x-axis lies in the plane of the slits. We
assume that the mirrors in the detector are tied down in the lab frame; to a first approximation,
the distance between the mirrors (or equivalently the ends of a Weber bar) is a harmonic degree
of freedom, with oscillator frequency, w (which includes the gravitational attraction of the two

mirrors).

Figure 6.4: Gravitational field detector

We derive schematically the response of the detector to a Newtonian gravitational potential
¢(z,t). In the presence of ¢, the positions of the mirrors, x4, obey the Newtonian equations of

motion,

Pxy 1, ’
O = e (t) — (1) - 8] - ¢ (a) (6.34)

with S the equilibrium distance between the mirrors, and the prime denoting differentiation with
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respect to z. We write x4 = x9 £ (S + 1)/2, where z¢ is the midpoint between the mirrors in
equilibrium, and 7 is the relative displacement of the mirrors caused by the gravitational pulse.
Then linearizing in 7 and ¢” we have

*n(t)

T = —on(t) - ¢ (z0)S. (6.35)

For simplicity we assume that ¢ is zero before the gravitational pulse reaches the detector, and is

constant in time during the detection. With initial conditions 7(0) = 1’(0) = 0, we obtain

1 — coswt
() = 0" ()52 (6.36)
The accuracy required for the measurement of ¢ (z¢) is
1 1 Gmd
A" =2G — = ~ 6.37
o ($0) m<R3 (R+d)3> RA ( )

where m is the mass of the particle, and the measuring apparatus, as before, is at a distance R

from the slits. Thus, since 1 — coswt < (wt)?/2, one needs to measure 7 to an accuracy,

< GmdST? Gmd

An S . 6.38
which implies that the mass scale for which one can begin to distinguish the path obeys,
2 A 2 2
em” (”) (R> . (6.39)
he fpl d
Physically the uncertainty An must exceed the Planck length,? and thus
Gm? R\?
(=) ; 6.40
he < d > (6.40)

the mass scale must be a factor R/d larger than the Planck mass, \/hc/G ~ 2 x 107® g. For
R/d ~ 6 x 10* [23], the scale would have to be of order 1 g.

3When the displacement is measured by the difference of measured relative positions of the mirrors at times 0
and T, a first estimate of the accuracy of the measurement of 7 is the standard quantum limit én 2 \/W , where
M is the mass of each mirror, The mirrors cannot be arbitrarily massive, since the apparatus cannot form a black
hole [142], so that M < Sc®/4G, and consequently the standard quantum limit implies, 6n 2 £ \/m . Various
ways to improve on this simple limit using techniques such as contractive states measurements [143, 144], or quantum

nondemolition measurements [145, 146] have been proposed. However, our result is independent of these details.
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The interference pattern caused by a particle whose mass obeys the condition (6.40) has a fringe

separation,

L h cT
dp~=—2X Kplf S Uyl (6.41)

d mv

which implies that when the mass is large enough to allow “which-path” detection via gravity,
the pattern becomes immeasurably fine, of order the Planck length or shorter. This result assures
the consistency of quantum mechanics; however, unlike in the electromagnetic case, consistency
does not require that the gravitational field be quantized.* (While a decrease of the visibility
of the pattern would arise were gravity quantized, as in the electromagnetic situation, detailed
calculations of the diminution would depend on the detailed theory of quantized gravity assumed,
an issue we do not address here.)

In summary, when one can distinguish the path of a particle by measuring the electromagnetic
or gravitational field at large distance, interference disappears. For large enough charge on the
interfering particle, emission of quantized electromagnetic radiation destroys the interference, while

for large enough mass, the pattern becomes too fine to be discerned.

4As in the electromagnetic case, one expects a crossover with increasing mass from indistinguishable to distin-
guishable paths. However, a better understanding of the nature of space-time on the Planck scale is required to

determine a quantitivative visibility.



Appendix A

Scattering theory

A.1 Introduction

In this chapter, we consider scattering of two particles in a vacuum, with an interaction which
depends on the particles’ relative coordinate. We elucidate the role of the dimensionality, discussing
both three dimensions and two dimensions in a parallel manner!. We start by discussing the general
structure of dimension-independent scattering theory, and then go on to define scattering amplitude,
phase shift, and scattering length, depending on the dimensionality. We also consider a square well
potential as an example and calculate various scattering properties in three dimensions and two
dimensions. In two dimensions, we prove that, at least in a square well potential, the low-energy

scattering t-matrix vanishes.

A.2 Scattering t-matrix

A.2.1 General theory

The Hamiltonian for a two-particle system with an interaction V(r —r) is

1
H(ry,12) = Ho(ry,re) + V(ry —12) = By (—V% — V%) +V(r; —ry), (A.1)

! The argument given here is influenced by an unpublished note on two dimensional scattering by Baharian [147].

101
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It is conventional to rewrite the Hamiltonian by separating the center of mass coordinate and the
relative coordinate?. Defining

r| +ro

R-— ,
2

r=ry—ro, (A.2)

the Hamiltonian now becomes

1

2
o, Vi +V(r), (A.3)

1
HR,r) = —mvﬁ -

where M = 2m is the total mass and m, = m/2 is the reduced mass. Thus the Hamiltonian is
divided into two parts and the wavefunction can be written as a product of an R-dependent part
and an r-dependent part. The relations of the center of mass and relative momenta to the original
momenta are

P =pi +p2, p= L;m. (A.4)

Since the R-dependent portion of the Hamiltonian is simply that of a free particle, whose eigenstates
are plane waves, we now can focus on the r-dependent part. We begin by writing the Hamiltonian

for the relative motion

H(r) = —2;% V2 4 V(r). (A.5)

The Schrodinger equation for the relative motion is therefore

<—2;r v+ V(r)) U(r) = EU(r), (A.6)

where the energy F is nonnegative throughout this chapter. Let ¢y(r) denote the wavefunction of

the free part of the Hamiltonian with the energy F, i.e.,

1
2m,

Vio(r) = Eyolr). (A7)

A representative solution to this free Schrodinger equation is a plane wave state

o(r) o etk (A.8)

2 We note here that Rashba-Dresselhaus potential, which we discuss in the following chapters, is not separable

into the center of mass and relative coordinates.
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with £ = k?/2m,., but there are other states, such as a spherical wave states, that satisfy this
equation as well.

Defining the Green’s function by

2m,

1
(E + Vf) Gr—1')=6r-1), (A.9)
a general solution to the Schrodinger equation obeys the following integral equation:
U(r) = 1o(r) + /ddr’G(r -V, (A.10)

where d is the dimensionality of the space. This equation is the position-space representation of the
Lippmann-Schwinger equation, although the latter is more commonly written in terms of operators.
This integral equation can be solved iteratively as a perturbation series in the interaction, starting
from the non-interacting wavefunction o (r).

We remark here that this Lippmann-Schwinger equation cannot be used for a hard-core poten-
tial, since the second term is always identically zero. In order to deal with a hard-core potential,
we need a separate treatment, which we do not address further in this thesis.

In many applications, the range of interaction where V(r) is non-negligible is restricted to a
certain region of space, and we observe the wavefunction far away from that region where the
interaction is negligible.

The wavefunction itself is not the quantity that is readily measurable. In a typical scattering
experiment, particles enter the region of the potential and are scattered in many different directions.
One then measures the number of particles scattered into the various directions. Let us imagine that
a detector, located at a distance r from the center of the potential, detects the number of scattered
particles in a unit solid angle for three dimensions and a unit planar angle for two dimensions. The
ratio of the number of detected scattered particles per unit time to the number of incident particles
that crosses a unit area per unit time in front of the target is called the differential cross section.
The total cross section is defined by the integral of the differential cross section over all angles. In
other words, the total cross section is the number of scattered particles divided by the number of
incident particles per unit area per unit time.

To see how the wavefunction behaves far away from the scattering potential, we need to know
the asymptotic behavior of the Green’s function, which depends on the dimensionality. Before

working in a specific dimensionality and solving for the Green’s function in the next section, we
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introduce the scattering t-matrix and discuss its relation to the effective interaction in the next
subsection.
A.2.2 t-matrix and the effective interaction

In many instances, the momentum representation of the Lippmann-Schwinger equation is useful.

Let us begin by defining the Fourier transform of the wavefunction and the Green’s function by

d ) d ' ,
W) = [ v, Gr—x) = [ Fhaqene ) (A1)

The Fourier transforms of the free wavefunction 1o(r) and the potential V(r) are defined similarly.

Using the definition of the Green’s function (A.9), we can see

1
Gk) = 21379, 2 (A.12)
and the Green’s function is
dk 1 . )
e — ik-(r—r ) A1l
Glr—r) / 2r)d E — k2/2m, (A-13)

The Lippmann-Schwinger equation is then

dk ) dk ) Ak Ak JOk" eik (r—r') ik r’ Sik'r!
U(k tkr _ k ik-r /dd / KU (K
/ amya ¥ (ke / mya O G S G e B ijam, VYK

_/ ddk ddk/ ez'k-r
) @2md(2n)d E —k2/2m,

V(k — K)U(K). (A.14)

Taking the Fourier component with momentum k, we obtain the momentum representation of the

Lippmann-Schwinger equation

dp./
V(1) = (k) + 5z | (g K~ KOV, (A15)

We are now almost ready to define the scattering t-matrix. The total wavefunction ¥(x) depends
on the choice of our incoming state ¥y(k). For concreteness, although not entirely necessary, let us
choose the incoming state to be the plane wave state with momentum p, which satisfies £ = p?/2m,..
Then, (k) = (27)%5(k — p). Let ¥p(k) be the total wavefunction corresponding to this incoming

plane wave. Then, the Lippmann-Schwinger equation in the momentum representation is

d ./
Up(k) = (27)%(k — p) + o k12 Tam, / (Cé:; SV(k = K) Uy (K). (A.16)
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We now define the scattering t-matriz by

d ./ )
T(k,p) = / %V(k—k’)\llp(k’) _ / & e TV ()W, (1), (A.17)

Note that a commonly used definition of the t-matrix is in terms of operator equations. For
the relation between the common approach and our approach, see the end of this section. The

Lippmann-Schwinger equation is now concisely expressed as
Wy (k) = (2m)%3(k - p) + GK)T (K, ). (A.18)

This equation does not look particularly inspiring, but by multiplying both sides by V(p’ — k) and

integrating over k, we obtain an integral equation for the t-matrix;

d
T(p',p) = V(D' — p) + / (;jdw ~ K)G(K)T(k,p)

d?k 1
=V(p' - — V(P -k)——-—T(k,p). A.19
(P p)+/(2ﬂ)d (p )E_kg/zmr (k,p) (A.19)
Let us now make a connection between our definition of the t-matrix and a more commonly
used definition in terms of operators (for example in Sakurai [148]). Some useful operator identities

that are consistent with the notation in this thesis are

. dk
() = W), ) = W), (k) = 1= [atepote = [ GO (a20)
The t-matrix is often defined by an operator equation
Tlio) = V). (A.21)

Choosing the initial state to be the plane wave state with momentum p, we have

(K[ Tp) = (K|V|Tp) = / @ (K[x) (x| V[ W) = / 0 XY () T ()

ddk’/ ddki” ; 1./ 111
_ d ik-x+ik’-x+ik’ - x " /
_/d $(2 )d (2 )de V(k )\I/p(k)

di.
= / (Cérrk)dV(k—k’)\pr(k’), (A.22)

which is exactly how we defined T'(p, k). Thus, the definition in terms of an operator equation and

our definition are equivalent and their relation is

(k|T[p) = T(p,k). (A.23)
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This equation also implies that the scattering t-matrix is Hermitian satisfying
T(p',p)" =T(p,p). (A.24)

As we show now, the scattering t-matrix turns out to be equal to the vertex function within
a ladder approximation in diagrammatic perturbation theory. This relation is crucially exploited
in ultracold atomic physics, where the effective interaction and the t-matrix are often used inter-
changeably.

Suppose two particles are in a vacuum. Consider the vertex function with incoming four mo-
menta (q/2+ p,wq/2+wp) and (q/2 — p,wy/2 — wp), and outgoing momenta (q/2+ p’,wq/2 + wy)
and (q/2 — p’,wy/2 — wy). The diagrams for the Bethe-Salpeter equation of the vertex function,

approximated by ladder diagrams, are shown in Figure A.1, and the equation is

q a_ q q )
——p p — -k ——p
2 - 2# #2

q q > >

. q o+ a

5 TP e 2P Tep 2P 3 +k S+P

Figure A.1: Bethe-Salpeter equation for the vertex function within ladder approximation

dw dk 1
(v o _ I , | ———T'(k. p:
(P pigwg) = V(P p)+z/27r (2m)d ( ’p’q’wq)w—eo(q/Q—i-k)—i-m
1

8 wg —w —€o(q/2 — k) + mV(p' — k), (8.25)

where €g(x) = 22/2m with m = 2m,. being the original mass of a particle, not to be confused with

a reduced mass, and 7 is a positive infinitesimal. After decomposing the partial fraction, we have

do A% p ) L
or (2myd P (@2 1K) — a2 — k) + in

L(p',p;q,wy) =V(p' —p) + Z/

1 1 /
% (w—e()(q/2+k)+i17 +wq_W—60(q/2—k)—|—i77> V(p'—k). (A.26)

There are two poles in the w plane, one above the real axis and one below. Thus, whichever way

we choose to close the contour in the integral over w in the complex plane, by introducing a factor
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of € or e~™"_ the result will be the same, and we have

d'k 1
— V(P -k -
C A P CTo R e YR

L(p',p;q,wg) =V(P —p) + / I'(k, p;q, wy).

(A.27)
If we consider the on-shell element of the vertex function by setting wy, = E = €(q/2 + p) +

€0(q/2 — p), we can see that the denominator in the right hand side does not depend on q and we

have

d’k 1
I'(v.p:q. E) — o @R 'k
(P, p;q, E) =V(p' — p) +/ (27r)dV(p )pz/er —k2/2m, + in

I'k,p;q, E). (A.28)

Iterating this equation, we can see that I'(p/,p;q, ) does not depend on the center of mass

momentum . Moreover, this integral equation is exactly the same as the equation (A.19) with

I'(p',p;q, E) = T(p',p). (A.29)

Thus we have proven that the t-matrix is equal to the on-shell vertex function within the ladder
approximation. Since the vertex function serves as an effective interaction, whenever the ladder
approximation is appropriate and the on-shell vertex function is the relevant quantity, the t-matrix
can be used as an effective interaction.

Since the on-shell vertex function within the ladder approximation is exactly the same as the
scattering t-matrix, the t-matrix is often defined as the ladder approximation of the vertex function.

It is important to take care and note that only the on-shell vertex function is equal to the
scattering t-matrix. Beliaev and Galitskii found a more general relation between the off-shell
vertex function within the ladder approximation and the scattering t-matrix, which we will now

discuss.

A.2.3 Beliaev-Galitskii relation

A general relation between the vertex function and the t-matrix was found by Beliaev [149] for the
case of bosons and Galitskii [99] for the case of fermions. A derivation here is from Chang and
Friedberg [150].

An important property of the wavefunctions Wy (r) is that they form a complete orthonormal

set. The orthogonality condition is

dr
/ o)V (x) = 3(p = p). (A.30)
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or equivalently

ﬂ * _ ddk d d,r,l zkr * —ikr’ 7Td !
/( Uy (K) 0% (K) / /d /d U, W (r)e ™ = (2m)%5(p — p). (A.31)

2m)d " P

Recall from (A.27) that the Bethe-Salpeter equation is

d?k 1
(P’ pi ;) (P —p) (2m)d (P )wq—eo(q/2+k)—60(q/2—k)+i77 (k, ps ;)
(A.32)
Let us now decompose the vertex function in terms of the full wavefunction-basis as
F(ka p;q, Wq) / ddkl
= /(p;q, wq) Vi (k A.33
@2k - ol + iy ) P teld (A5
Then, we have
dk’
(wg — €o(a/2 +p') —eo(a/2 — p') +in) /(%) K (P; 4, we) Y (P)
dk deK
= - —— | —— o (p; Uy (k '~k
V' =00+ [ oia [ Ty (P T V(E ~19
ddk'/ k/2 /
=V(p' - e (P (2% 2m)%(p’ — K
V(p' - p) +/ 2m)a (P;q,wq) (er er> 1k ( )% (p’ ))
ddk/ k/2 p/
= r_ — Ck/ ] Wy A34
V(p p) +/ (27T)dck (p7(17 Wq) <2mr 2mr> k ( )7 ( )

where we have used (A.16). Writing as

V( - B Cldk, B ) . . . k/2 p/2 . ' v ,

P —p) = 2mi (@ €0(a/2+p) —eo(a/2=P) = 5=+ o +in | aw(P; g, we) Vi (P')
dk’ ¢ K%

:/(271')d <u)q — % — 2mr +Z77> Ck’(p;q7 wq)glk’(p/)ﬂ (A35)

the complex conjugate of the t-matrix is

d / d,/
7000 = [ GEV (- 0¥ = [ GV - o))

Cde/ dek! q2 k"2 . *
_/ / M(wq— - +m> i (P @, wq) Vic (P') Vic(P)

(2m)d 27) 8m,  2m,
deK ¢ k%
-/ - (wq . m) 10 (B 1 0g) (27) 15 (K — )

2 2
q k
= (Wq T Sm. om, T ”7) ck(P; g, wy). (A.36)
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Then, going back to (A.33), we have

2 k.2 . ddk,l
Lk, p;q,w,) = <wq— a +m>/ 7¢k (P 4, wq) Vi (k)

8m, 2m, (2m)
2 2 dp.r * /
q k ) d%k T*(p, k)
o, 4 U (k
<wq Sm, 2m, +”]> / (2m)d q> k2 ) w (k)
q - +

B 8m,  2m,
q2 k2 L / dek’ T*(p,k/)
= — — i
YT 8my 2my ) ) (@n) Z K2
- —— — —

B &m,  2m, o
T(k,k')
d N )
X <(27T) d(k—k')+ 2 2my — k2/2mr>
2 2 di./ * ! !
_ q ko d’k T*(p, k') T(k, k')
=T(p. k) + (wq 8m,  2m, "‘”7) / (2m)d q? K2 K?/2m, — k%/2m,
Wy o T

B 8m, B 2my,

Ak 1 1
=Tk — Tk, kK\T(X,p).
( ’p)+/(27r)d <wq—q2/8mr—k:’2/2mr+i77 k2/2mr—k’2/2mr> (k. k)T, )

(A.37)

This last result is the Beliaev-Galitskii relation which relates the vertex function within the ladder
approximation and the scattering t-matrix.
Now, let us try to understand the low energy behavior of the vertex function. Writing w, as a

frequency away from the on-shell energy as w, = E + dw, we obtain
I'(k, p; q,wq)

i/ 1 1
_ . T(k, k)T (K
T(k.p) +/ (2r)d <6w+k2/2mr —K2/2m, +in  K2/2m, — k’2/2mr> (k, k)T (I, p)
oK’ Sw
- - T(k, k)T (K
T(k.p) / ) (0w 1 K22 — W2 2, £ i) (52 2y — W2 amy L e k)T, p)
2m, / dK 2m,.6w/k?
k2| @r)d (2myow/k2 + 1 — K2/k2 + in) (1 — k2/k2)

= T(ka p) -

T(k,K)T(K,p). (A.38)

In three dimensions, as we shall see later in this chapter, the t-matrix approaches a constant value
in the low energy limit. Then, the integral in the right hand side is of order ~ mkT'(0,0)2. If the
energy of the particle we are interested in is low enough that mkT(0,0) < 1, we can ignore this

term and also the deviation of the first term from 7°(0,0). Then we can approximate

I (k, p: @, wy) ~ 70, 0) (A.39)
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in the low energy limit. This assumption of mkT'(0,0) < 1 corresponds to the dilute gas limit in
the many-body system with the condition na® < 1 where n is the density and a is the scattering
length, which is to be defined later in this chapter. Thus we have analyzed only the two-body
problem. For the many-body case, it turns out that the many-body correction is of higher order,
and to the lowest order, the approximation (A.39) is still valid in the dilute gas limit. Chapter 25
of Abrikosov, Gorkov, and Dzyaloshinski [151] has a detailed treatment of the many-body case.
In two dimensions, the t-matrix approaches zero in the low energy limit, and we should be more
careful about the treatment of the low energy effective interaction. To correctly describe the low
energy effective interaction in the two dimensional system, we must take the many-body effects

into account.

A.3 Green’s functions and scattering amplitudes

Let us now come back to our original problem of describing the scattering in three and two dimen-
sional space. In the discussions that follow, the analysis begins to depend on the dimensionality of
the system. We will first discuss well-known results from three dimensions and then discuss two

dimensions using analogies from three dimensions.

A.3.1 Three dimensions

Referring to (A.13), we see that the Green’s function in three spatial dimensions is

3k 1 : ,
) tk-(r—r’)
Glr—r) / 2r)3 E — k2/2m,

! *° dk k? - /
_ d 0 ik|r—r'| cos 6
/1 (cos )/0 22 E —k2/2m, <

ok k2 eikz\r—r’\ _ e—ik|r—r’|
N /0 (27)2 E — k2/2m, ik|r — /|
©  Jk k etklr—r'|
= . . A4
/OO (2m)2 E — k%2/2m, ilr — 1| (A.40)

The integral is singular at k = ++1/2m,.F, and we need to decide how to deal with these singularities.
However we choose to deal with the singularities, we will obtain a function which satisfies the original
definition of the Green’s function. Therefore, we need to choose a function that physically best

describes the problem that we are trying to solve. Particularly useful ways of dealing with the
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singularities are to define

0 Jk k etklr—r'|
Gi(r—1') = li :
sle=r)=lm | o e E - Wam, e

> dk —2m, k etkr—r|

o+ ) (2m)2 K2 — (2m,E £ie) i|r — 1|

m, e:l:i\/2mrE\r—r’|

(A1)

27 |r — 1|
Plugging this into the integral equation (A.10), we can see that choosing G (r — r’) corresponds
to the outgoing wave (we can see this by inserting a factor of e~*#*, which is the time-dependence
of the wavefunction), and choosing G_(r — r’) corresponds to the incoming wave. To describe a
situation in which the incoming wave is a plane wave and the outgoing wave is a scattered wave,
we should choose G4 (r — ') as the Green’s function to use in the equation (A.10).

Now that we have an expression for the Green’s function, the integral equation (A.10) becomes

my

5 /ei\/2mrE|r7r’\
\II(I'):¢0(I')—27T/CZ r—

v — /|

V() T(r). (A.42)

Let us consider the asymptotic behavior of U(r). When r is much larger than the range of interac-

tion, we can write
r—rv/|~7r—7-1, (A.43)

where 7 is the unit vector in the direction of r, and therefore

\p(r) w (r) _ m’"/d3 /wv(r/)\p(r/)
0 2w " r—7-r
i 2myEr ) .
= ofr) = Gr T [ eI ()
ei\/2mrE7"

=o(r) + f(E, f’)f’ (A.44)
where

f(E7) =1 / @BV B oS0 (1) (r), (A.45)

is called the scattering amplitude. This implies that when the position of observation is far away
from the potential, the scattered wavefunction behaves as e /r with a coefficient which only

depends on the angle (#) and the energy (E = p?/2m,). The angular dependence of f(E, ) enters
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since the incident wave 1o (r) usually has a certain angular dependence. For instance, if the incident
wave is a plane wave, the scattering amplitude depends only on the angle between the incident wave
and r, as well as the energy of the incident wave. Notice that it makes sense to talk about the
scattering amplitude only at places far enough away from the potential so that the wavefunction
can be written as a product of the radial part and the angular part. In other words, the notion of
scattering amplitude is only defined asymptotically. The scattering amplitude can be conveniently
written in terms of a quantity called phase shift, which is the topic of the next section.

By taking the incoming wave to be a plane wave with momentum p and writing p = pr, we
can see the relation between the scattering amplitude and the t-matrix:
m

27: T(p,p). (A.46)

m 1
f(E?f) __r /d37,/€lp T V(I'/)\I/p(r/) = —
27
The differential cross section is the number of scattered particles per unit time in a unit solid angle
divided by the number of particles in the incident beam per unit time per unit area. The number

of scattered particles per unit time in a solid angle df2 in the direction of 7 is given by

P ei\/QmTEr 2 P
(B, ?)———| r2dQ = — |f(E,#)|]* dQ. (A.47)
my r my

On the other hand, the number of particles in the incident beam per unit time per unit area is

p/m,.. Therefore, the differential cross section is simply
do

1q = [f(B.Q)F, (A.48)

and the total cross section is
o= /dQ|f(E, Q)2 (A.49)

The differential cross section is a measurable quantity, and therefore the absolute value of the

scattering amplitude is also a measurable quantity.

A.3.2 Two dimensions

We now turn to the problem of two dimensional scattering. From (A.13) we see that the Green’s

function in two spatial dimensions is

2
@),y d°k 1 ik-(r—r’)
Gilr—r)= / 2m)2 E — k2/2m, £ic.

© Jk 27 do k " )
= — — ik|r—r |cos€~ A50
/0 27r/0 o E — k2/2m, + ic. (A.50)
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In terms of the Bessel function of the first kind, which has an integral representation

2m
do
J. _ ir cos97 A5l
o(r) /0 2 € (A.51)
we can rewrite the Green’s function in the following way:

@Ay [ i K — v
Gi r)_/o on B — K2jam, £ic oklr =)

< gk k
S P B . S— —r)). A.52
m/o 2 = (B Lie 0kl =T (A.52)

Using the following relation between the Bessel function and the Hankel function of the first kind
H(()l):
—HO (fb) if Im(a) >0
R
/ Jo(bx) = : (A.53)
0

2 —a
Z—HO ( Vvab) if Im(a) <0
which is true for b > 0, we can write the two dimensional Green’s function in the following form:
GP@r-v) = “"7" Y(x\/2m, Elr —1')). (A.54)
Using the far-field asymptotic behavior of the Hankel function of the first kind

2 .
Hy (@) ~ (| e, (A.55)

the Green’s function has the asymptotic behavior

+7v/2m, Elr — 1’|

+i e:l:ip\r—r’\

2 \/plr =]’

As in three dimensional scattering, the plus and minus signs correspond to outgoing and incoming

G(2) (I‘ _ I_/) ~ _imT\/ 2 e:I:i\/m|r—r’|—iﬂ'/4

(A.56)

waves, respectively. Taking the outgoing Green’s function, the wavefunction has the asymptotic

e o e

/ dQT’le_ip{;“r/V(r/)\IJ(I‘/)

form:

= tho(r) —

27Tp W
= 1o(r) + f(E, f)\/ZeipT, (A.57)
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where the scattering amplitude in two dimensions is defined by

F(E,7) = —myy/ 2;_}) /dQT’e_ipf'r,V(r')\Ii(r'). (A.58)

Note that while some authors include the factor of v/7 in the definition of the scattering amplitude,
here we follow the notation of the Landau and Lifshitz [152]. In deriving this expression, we used
the asymptotic form of the Hankel function, which is only valid when pr is large. We can, of course,
always define the scattering amplitude by (A.58), but the expression (A.57) is not valid in the low
energy limit p — 0. Thus, the physical meaning of the scattering amplitude as the asymptotic
amplitude of the wavefunction is not valid in the low energy limit, which is a characteristic feature
of scattering in two dimensions.

Setting p’ = p# and assuming that the incoming wave is a plane wave with momentum p, a
comparison of (A.17) and (A.58) shows that the scattering amplitude and the t-matrix are related
by

. 1
F(E,7) = —mn [ =—T(p,p). (A.59)
™
The differential cross section is
do A2
— = |f(F,0 A.
= rEan), (A.60)
where 6, is a unit vector in the direction of the planer angle dfl. The total cross section is
.12
o= /dejf(E, 0,) (A.61)

The expressions for the differential and total cross sections are analogous to the expressions for

three dimensions; solid angles are replaced by planar angles and everything else stays the same.

A.3.3 One dimension

Although this chapter is mainly concerned with on three and two dimensional scattering, we briefly
mention the scattering amplitude in one dimension.

The Green’s function in one spatial dimension is

© Jk 1 ) , e:l:i\/2mTE\'r—r’| 6:|:ip\r—r’|
Gy :/ dk =) oS i (A2
=)= | S E R i B Frovi—— - (A62)
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As before, the different signs in +ie correspond to the outgoing and the incoming waves. Taking

the outgoing wave, the wavefunction satisfies

. !
) ezp|'r—'r |

B(r) = o (r) — myi / v’

. p V(r')we(r'), (A.63)

and asymptotically

0 iprr’ [|r
U(r) ~ aho(r) — myie®” /oo dr’%)}(r’)\ﬂ(r’)
= 4o(r) + f(E,r/|r|)e™, (A.64)

where the scattering amplitude in one dimension is defined by

00 iprr! /|r
e il

FEr/|r]) = —mri/_ V). (A.65)

Notice that the scattering wavefunction in one dimension does not fall off far away from the target,

which is a crucial difference compared to the two or three dimensional case.

A.4 Phase shift and scattering lengths

We have seen the integral equations that determine the scattering wavefunction in three-, two-, and
one-dimensions through the Green’s functions. Far away from the target, the wavefunctions may
be written as the product of a distance -dependent part and an angle-dependent part. The angle
dependent part is called the scattering amplitude. In this section, we focus on the properties of the
scattering amplitude and introduce the concept of the phase shift which is useful in understanding
the physical meaning of the scattering amplitude.

The phase shift is essentially the shift of the phase of the outgoing wave relative to the incoming
wave when the scattering wavefunction is expanded in terms of its angular components. In three
dimensions, the angular decomposition corresponds to an expansion in terms of the spherical har-
monic functions, while in two dimensions, it is in terms of the factors ¢’*?. In one dimension, the
expansion is in the left and right moving waves.

We begin by noting that an incident plane wave may be decomposed into its spherical compo-

nents as
ePT — ipreost — Z il(2l + 1)Pi(cos0)ji(pr) =
=0 l

hi(pr) + hj (pr)
2 b)

i (20 + 1) Py(cos §)

M2

(A.66)

Il
=)
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where 6 is the angle between p and r, and P;(x) is the Legendre polynomial. j;(x) is the spherical
Bessel function, and h;(x) is the spherical Hankel function. Since this incoming wave does not
have an angular momentum in the direction of p, the outgoing scattered wavefunction also does
not have an angular momentum in the p direction, thus we can also expand the outgoing scattered
wavefunction in terms of Legendre polynomials. Although this expansion is correct in both three

dimensions and two dimensions, it is more relevant to use the following expansion in two dimensions:

eip~r _ zprcosG Z ZlezZGJ p?" i ilez‘le Hl(pT) + Hl*(pT) (A 67)
2 ’ '

l=—o0 I=—c0
where Jj(pr) is the Bessel function of the first kind, and H;(pr) is the Hankel function of the first
kind?.
When we are far away from the potential, the Schrédinger equation is that of a free particle.

In spherical coordinates, the Schrodinger equation reads

1 [1 02 1 0 ) 1 0?2
- 2050 v@(r) = Bv® A.
2m, [7«872 T 25000 (Smeae> T 9&;52} (r) = BE¥(x) (4.68)
in three dimensions and
1 10 ) 1 02
_ Lo (.9 L @) (p) — w2
r [T or <r87"> T 802} WE(r) = EV(r) (A.69)

in two dimensions.

A.4.1 Three dimensions

In three dimensions, we can expand the wavefunction with zero angular momentum in the direction

of the incident wave as

e}

o) (r il(21 4 1) Py(cos ) Ry (r), (A.70)
=0

where 0 is the direction between r and the direction of the incident wave. The Schrodinger equation

then becomes

2
_;m <jr2 B l(l:; 1)> rRi(r) = ErRy(r). (A.71)

3 Note that in section A.3.2, the Hankel function of the first kind was denoted Hl(l). Henceforth, since there will

be no ambiguity, we will omit the superscript.
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In terms of p = v/2m,. F/, this equation is

(;Z_i_pQ_ l(l:; 1)>TR1(7“)—0. (A'72)

Solutions to this equation are spherical Bessel functions j;(pr)and spherical Neumann functions
ny(pr). Equivalently, through the relation h;(x) = j;(x) + in;(z), the solutions may be written in

terms of spherical Hankel functions h;(x) and their complex conjugates hj (). Thus, we can write
Ry(r) = Ahy(pr) + Bhj (pr). (A.73)

Since the spherical Hankel function has the following asymptotic form as r — oo

ei(pr—lw/2)
hi(pr) ~ Er— (A.74)

4. Since the potential is

we see that hy(pr) is an outgoing wave and hj(pr) is an incoming wave
neither a source nor a sink of particles, the radial component of the probability current should

vanish, namely

0

5#0) = o (B0 SR~ R) 2R 1)) = . (A75)

Using (A.73), this vanishing condition leads to the constraint

Jr(r) = (|A\2 - \B|2) (h;“(pr)aarhl(pr) — c.c.) =0. (A.76)

For this to be true for any r, we need
Al = |BJ%, (A.77)

which is a reasonable result if we want the incoming and the outgoing wave to carry the same
number of particles.

Since we are considering a situation in which the incoming wave is a plane wave and the outgoing
wave is a scattered wave, the coefficient B of the incoming wave should match that of a plane wave.
Looking back at the equation (A.66), we can see that B = 1/2. Now, we can write the whole

scattering wavefunction as

hi(pr) + Si(p)hy(pr)
5 :

@) (r) = i i'(21 4+ 1) Py(cos ) (A.78)

=0

* For I =0, ho(pr) = €'" /ipr.
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with a coefficient S;(p) which depends on the angular momentum and the energy. From (A.77),
we know that the coefficients of h;(pr) and hj(pr) should have the same magnitude, which implies

that |S;(p)| = 1. Thus, we can parametrize S;(p) by a real function §;(p) via
Sy(p) = e¥0®) (A.79)

The quantity 0;(p) is known as the phase shift and it is the difference in the phase of the outgoing
wave and the incoming plane wave. Notice that if there is no scattering then S;(p) = 1, which is
equivalent to &;(p) = 0 (no phase shift). Explicitly pulling the plane wave out of the wavefunction,

we can write

A s 2i6(P) — 1) h
UO(r) = T 43720 + 1) Py (cos 6) . ) Putpr) (A.80)
1=0
Asymptotically this becomes
) 00 2i6;(p) _ 1 i(pr—Iim/2)
U () ~ T+ "il(20 + 1) P(cos 0) (e e : (A.81)

p 2 ipr

Comparing with (A.44) the scattering amplitude can be expressed in terms of the phase shift by
writing
(e2i§z(P) _ 1) o—ilm/2

2 p

il (20 + 1) Py(cos 0)

M8

f(p,0) =

N
Il
o

e2i0i(p) _ 1

M

(20 + 1)P;(cos9) 5

T
=

"1(P) sin §;(p)
p

e

(20 + 1)P;(cos0)

N
Il
=)

1 1
20+ 1)P, s s —
(20+1) l(cos@)p ot o) —

(A.82)

N
i
=)

Obtaining the scattering wavefunction has been reduced to calculating the phase shifts of the partial
waves. One major reason that we have decomposed the wavefunction into its angular components
is that, in the low energy limit (which is usually the region of interest in ultracold atomic physics),
we can ignore the contributions from the partial waves with [ > 1 and concentrate on [ = 0, i.e.,
s-wave scattering. For a proof that s-wave scattering is dominant at low energy, see Baym [153].

At this point, we can prove the optical theorem which relates the imaginary part of the scattering
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amplitude and the total cross section. The total cross section is

1
o= n / d(cos 0)|f(p. 0)[?

-1

p / 11 d(cos ) i (2 + 1)(20 + 1)Pi(cos8) P (cos ) o Sip“ﬁ@) sinou(p) (4 s3)
- 1LI'=0
Using the identity
/11 d(cos @) Pi(cos )Py (cos ) = %5”/ (A.84)
and noticing that P;(1) =1 for any [, we have
o= 4wi(2z + 1)81“1(?@ - 4;1mf<p, 6—0), (A.85)

1=0
where the second equality follows from (A.82). This relation is called the optical theorem.

For later use, we derive here the asymptotic form of a wavefunction in the low energy. When

the energy is low enough so that we can ignore the components with [ > 1, the wavefunction is

\I,l(i)o(r) _ hg(pr) + e*®@ho(pr) _ 1 <Z'efip7“ _ ie2i50(p)eipr> — ewmw_ (A.86)
2 2pr pr
Note that the wavefunction only depends on the distance r, and independent of the angle. It is not
hard to confirm that when there is no potential the wavefunction is sin(pr)/pr. Thus the phase
shift dg(p) is indeed the phase shift from the wavefunction in the absence of a potential.
Now we are ready to define the scattering length. The scattering length is defined as the distance

at which the wavefunction ¥(r) becomes zero when E = 0. In other words, the scattering length a

satisfies
U(a) =0 (A.87)

for E — 0. As mentioned earlier, at low energy, only s-wave contributes and can neglect direction in
defining the scattering length. Taking only the s-wave component, the wavefunction at low energy

outside the range of the potential is

i 1 e
T®) () — sin(pr) A
(r) pr + cot dg(p) — i pr’ (A.88)
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where the first term is the s-wave component of a plane wave, and the second term is an outgoing

scattered wave. As p — 0, the wavefunction becomes

lim U@ (7) = 1+ lim ——————. A.89
plg(l) (r) + plg(l) pr cot do(p) ( )
From the definition of the scattering length a,
lim ¥ (a) = 1 + Do — L 0, (A.90)
p—0 a p—0 pcot o (p)
so that we obtain
. 1
lim pcot §p(p) = ——. (A.91)
p—0 a
This equation is often used as the definition of the scattering length.
In terms of the scattering length, the scattering amplitude in the low energy limit is
1 1
N~ —— ~ —a. A.92
f(p,0) p cotaem) =i~ ¢ (A.92)

A useful relation to keep in mind which follows from this relation is, in the low energy limit, the

wavefunction becomes

IO () ~1— % (A.93)

also we find that at low energy, the differential cross section is

do L 9 9
= T |, 0) = a2 (A.94)

and the total cross section is
o = 4ma®, (A.95)

Finally, from the relation (A.46), we can see that in the low energy limit the t-matrix becomes

2 4
7(0,0) = =% = ¢, (A.96)

my m
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A.4.2 Two dimensions

In two dimensions, the wavefunction outside the range of potential can be written as
V() = Y i Ry(r)e, (A.97)

and the radial wavefunction R;(r) obeys
1 [1d ([ d 1
—— === r==)-= =F A.
s [ 4 ( dr) ] Ri(r) = BRi(r), (A.98)
which is equivalent to

? 1d 5 2
: _ 2 \YRi(r)=0. A.
<dr2 rdr P 7“2> ((r)=0 (A.99)

The solutions are the Bessel functions of the first J;(pr) and the second kind N;(pr), or equivalently

the Hankel function of the first kind H;(pr) = Ji(pr) + iN;(pr) and its complex conjugate. The

solution is generally
Ry(r) = AH(pr) + BH] (pr). (A.100)

The Hankel function of the first kind has the following asymptotic behavior at large r:

2 .
Hy(pr) ~ ,/rwe%m—ﬂlﬂﬁ/‘*), (A.101)

thus H;(pr) is an outgoing wave and H(pr) is an incoming wave. Since we want the incoming
wave to be a plane wave, comparing with (A.67), we can see that B = 1/2. The discussion of the
vanishing of probability current in three dimensions holds exactly the same for two dimensions,
and the condition implies |A| = |B| = 1/2. Now we can define the phase shift in two dimensions
analogously to three dimensions by A = ¢%11(?) /2.

With this definition of 9;, the overall wavefunction becomes

0 HF 2i61(p) [T
l=—00
Pulling out the incoming plane wave yields
. e L e2i0(p) _
VO (r) = P 37 ilelw%Hl (pr). (A.103)

l=—
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Using the asymptotic form of the Hankel function, the asymptotic form of the wavefunction is

‘11( ) ~ ePT + Z i 6110 — 1 —i(2l+1)7/4 leipr’ (A104)

l=—0c0
and the scattering amplitude is

o 26, 00 26
-3 Zezw@“ — 1 ity oilo 2 el
™ 21

l=—00 l—foo

A 2 1
ilf . ¢i01(p) — i j < - Al
Z e \/> sin §;(p) = _E:Ooe ”7’(}) cotai(p) = (A.105)

l=—00 l=—

Just as in three dimensions, in the low energy limit, one can show that the scattering with [ = 0 is
dominant.

Analogously to the three dimensional case, we can prove the optical theorem which relates the
total cross section and the imaginary part of the scattering amplitude. The total cross section and

the scattering amplitude are related by

2T
o= [ wirmor
2 FUR)) . )
:/ do Z W=e = -e“sl(p)*“sl’(p) sin &;(p) sin oy (p)

Ll/=—o0

=2 — .sin?§,
wlz_joo S0 ap)

= 27r\/zlmf(p, 60=0). (A.106)

Thus, the two dimensional version of the optical theorem can be stated as

p
1 0=0)=,/—0. A.107
mf(p, ) 50 ( )
The wavefunction with | = 0, without any assumptions on pr is
e2ido(p) _ 1 . . etdo(p) _ o—ido(p)
w2 (r) = Jo(pr) + —y—Ho(pr) = e00P) ( e=1%®) 1y (pr) + 5 Ho(pr)

= ¢i00(p) ((cos do(p) — isindp(p)Jo(pr) + isindo(p)(Jo(pr) + iNo(pr)))

= ) (cos do(p) Jo(pr) — sin G (p) No(pr)) - (A.108)
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Now, assuming pr > 1 we obtain

i [ 2 7r . . 7r
\Ill(i)o(r) ~ ¢i00(p) p— (cos do(p) cos (pr — Z) — sin dp(p) sin (pr — Z))
, 2 s
— ,i00(p) _ . Al
e \/ — cos <p7" 2t ) (p)) (A.109)

The physical meaning of dy(p) is apparent now; the phase shift is clearly a phase shift.
Let us now define the scattering length in two dimensions as the distance at which the asymptotic

wavefunction becomes zero in the zero energy limit, i.e.,
@ (a) =0 (A.110)

with ¥ = 0. We remarked earlier that the scattering amplitude is not well defined in two dimensions,
but we can still talk about the wavefunction itself in the low energy limit; thus, the definition of

the scattering length has no ambiguity. Evaluating (A.108) at r = a, we obtain,

;2 (@) = € (cos do(p) Jo(pa) — sin do(p) No(pa))
= ") cos 6o(p) (Jo(pa) — tan 6o(p)No(pa))

— 0. (A.111)

Therefore,

(A.112)

In the low energy limit this becomes

lir% tando(p) = L+0p) _r 1t Olp) (A.113)
p—>

2 (ln% +7> + o) 2 In(pa/2) +~’

™

where 7 is the Euler-Mascheroni constant. Comparing with the three dimensional result tan o (p) =
—ap + O(p?), we see a different low energy behavior of the phase shift.
From (A.105), the scattering amplitude for I = 0 is

2 1
f(p,0) = \/; W, (A.114)

the differential cross section at low energy is

do _
g

2
=

1

2
F00F = |

(A.115)
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Since we have used the asymptotic form of Hy(pr) to derive this result, the relation is only valid
when pr > 1, but the energy is small enough so that the scattering with [ > 1 can be neglected.
Using (A.113), the low energy limit of the differential cross section, while keeping pr > 1, is

do 2 1

2

us 1
— = lim — | ————— i = 00. A1l
a9~ oo mp |cot do(p) — 1 > ( 6)

= 2 pn(pe/)?

Thus, the differential cross section and hence the total cross section tend to diverge in the low

energy limit in two dimensions.

When only s-wave scattering is significant, the t-matrix is, from (A.59),

1 2 1
T N=—-—"4/2 fHh=———>——. A117
(P, P .V mf (p, 6) A p ( )
In the low energy limit, it is tempting to conclude that
2w 1
lim T(p,p))=—-lm —~ ———— =0, A.118
p,p'—0 (p P ) pl—>0 my 2 ln(pa/?) + vy ( )

thus the t-matrix vanishes in the low energy limit in two dimensions. However, this argument is
spurious, since the expression (A.59) is not correct in the low energy limit. Although the scattering
amplitude is not well defined in two dimensions in the low energy limit unless we keep pr > 1, the
scattering t-matrix is defined for any energy. Thus, deriving any general conclusions regarding the
low energy behavior of the two dimensional t-matrix is difficult. In the next section, we consider a
specific type of potential (a square well), and we compute the t-matrix explicitly to determine the

correct low energy behavior.

A.5 Example: a square well potential

So far, the arguments presented have been quite general and valid for any potential which falls off
sufficiently quickly in the far-field®. The differential cross section, which is measurable, has been
written in terms of the scattering amplitude, which in turn has been written in terms of the phase
shifts. To calculate the phase shifts, we need to consider a specific potential. In this section, we

consider a spherically symmetric square well potential,

Vo forr < g
V(r) = , (A.119)

0 for r > rg

and explicitly calculate the low energy scattering properties.

5 Note that the Coulomb potential is one prominent example of a potential which does not satisfy this condition.
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A.5.1 Three dimensions

In three dimensions, the radial Schrodinger equation is

1 (@ i+
2m,.

ar2 2 ) rRy(r) + V(r)rRi(r) = ErRy(r). (A.120)

Since the | = 0 (s-wave) component dominates at low energy, we take [ = 0, and thereby obtain

(45 +0 — 20 Vo)) ) =0 (A121)

where p = /2m, E. At r < rg, the general solution to this differential equation is

A B
R = Zsin (VP24 2m Vo 1) + VP2 + 2m, V- A.
0(r)r<ro o sin < p* +2m, Vg 7") o COS ( p* +2m,Vp r) , (A.122)

and at r > ro,

C . D
Ro(T)r>ry = o sin (pr) + o cos (pr) , (A.123)

where constants A, B, C, and D are to be determined via boundary conditions. Since the wavefunc-
tion should be analytic at the origin, we can immediately conclude B = 0. Remembering (A.86),

the wavefunction at r > rg can be rewritten as

!

Ro(T)r>ry = ;sin (pr + do(p)) . (A.124)

If we follow our previous notation, ¢’ = €% ®) but since the overall phase of the wavefunction is

irrelevant, we can set ¢’ = 1. Thus the radial wavefunction is

A
~—sin <\/192 +2m,Vp - 7“) for r < g
pr

Ry(r) = (A.125)

/

1
o sin (pr + do(p)) for r > ro.

The wavefunction should connect smoothly at r = ry. Matching the logarithmic derivative at

r = 19, we obtain the condition

sin(/p? + 2m, Vp - 9) psin(pro +do(p))

It is useful to transform the right hand side into the form

2 .
o 2mr%COS(\/p +2m, Vo -ro)  cos(pro + do(p)) (A.126)

\/Imcos(, /D + 2m,.Vp - 1) _ pc.os(pro) cos 0g(p) — sin(pro) s%n 50(;0)' (A.127)
sin(/p? + 2m,.Vy - o) sin(pro) cos dp(p) + cos(pro) sin dp(p)
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Solving for tan do(p), we obtain

cos 2 4+ 2m,V, _
p? + 2m, Vy— ( p2 5 TVO 0) sin(prg) — pcos(pro)
tan d(p) = — Em(\/%' ro) : (A.128)
Vp?+ 2er0Cf)S( P” + 2me Vo - 7o) cos(pro) + psin(pro)
sin(y/p? + 2m, Vo - ro)

1
T p cotdo(p)—i  p  1—itando(p) (A.129)

In the low energy limit, the phase shift becomes

2 7" 2 T ! - 2 r .
lim tan 6o(p) = _V2m, Vo cot(v2m, Vo - 1o)(pro) —p _ o (1 _ tan(v2m, Vo 7“0)) . (A130)
p—0 V2m, Vg cot(v2m- Vg - o) 2m, Vo - 10

and the scattering length is

—_

(A.131)

- B tan(y/2m, Vo - o)
- 2m, Vo - ro .

The t-matrix is
T(k,p) = / Bre” TY(r) W, (r)
70 1 ) A
= —27rV0/ der/ d(cos 9)67#” s 2" gin (x/p2 +2m, Vg - r)
0 -1

pr
o —ikr _ _ikr A

= —27TVO/ drr?S—— % Zgin (x/p2 +2m, V) - r)
0 —ikr  pr

A [0 i
_ 47rV0/ drsm(/m“) sin < /2 1 2m, Vs - r)
k
vy A /p? + 2m, Vy cos(/p? + 2m, Vi - ro) sin(kro) — k cos(kro) sin(+/p? + 2m, Vo - 1)
—47
pk

k - p2 - 2mr‘/0 '
(A.132)

where

sin(pro + do(p))

sin(y/p? + 2m,.Vj - ro)'

A=

(A.133)

Simplifying further, we obtain

T(k, p) = —drVy S2Pro +00(p)) Vp* + 2m Vo cot(y/p" + 2my Vo - 1) sin(kro) = k cos(kro)

pk k2 —p2 —2m,V,

(A.134)
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The zero energy limit is

limOT(k, p) = 2m sin(pro + %0(p)) (x/QmTVO - ro cot(v/2m,Vy - ro) — 1)

k,p— my p
2 < tan(v/2m,. Vjp - r0)>
~ —T0 1-—
my 2m, Vo - 1o
2ma
= Al
o (A.135)
which is exactly what we expect from (A.96).
A.5.2 Two dimensions
In two dimensions, the radial Schrodinger equation is
1 [1d [ d 12
() ~ 2] B0+ VOR) = BRG) 4130

Since we are interested in the low energy property, we can take | = 0 component. Then, the

Schrodinger equation reduces to
& 1d
< + e +p? — ZmTV(r)) Ry(r) =0, (A.137)

the solutions of which are the Bessel functions of the first and the second kinds.

At r < rg, the general solution to this radial equation is
Ro(r) = AJo(\/p? + 2m, Vi - ) + BNo(V/ P2 + 2m, Vg - 1), (A.138)
while at r > rg, we have
Ro(r) = CJy(pr) + DNy (pr). (A.139)

Since the wavefunction should be analytic at the origin, B = 0. Also, from (A.108), we can write

the wavefunction at r > rg as
Ry(r) = cos do(p)Jo(pr) — sin do(p) No(pr). (A.140)

Thus, Ry is given by

Ado(\/p? 4+ 2m, Vy - 1) for r < rg

Ry(r) = (A.141)
cos do(p)Jo(pr) — sindo(p)No(pr) for r > ry.
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Requiring that the two pieces of Ry(r) be smoothly connected, we match the logarithmic derivative

at r = rg, which yields the condition

! 2 . ! o /
ST e oW+ 2m Vo o) cos do(p) Jy(pro) — sindo(p) N (pro) (A.142)
Jo(v/P? + 2m,.Vp - 1g) cos do(p)Jo(pro) — sin do(p) No(pro)

Solving for tan do(p), we obtain

T T2V,
VI o B g ) o
OV P~ T £Mr Vo " 70 : (A.143)

Jo(\/p? 4+ 2m,. Vg - o)

2 0 r 4

Vp?+2m, Vo No(pro) — pNy(pro)
Jo(v/p? +2m, V- 1) °

tan do(p) =

Using J))(z) = —Ji(z) and Nj(z) = —N;(x), this expression becomes

P2+ 2m Vo i (VP2 A+ 2me Ve - o) Jo(pro) — pdo(v/ P2 4 2m, Vo - o) J1 (pro)

P+ 2me Vo i (VP2 + 2mi Vg - o) No(pro) — pJo(\/P? + 2m, Vo - 7o) N1 (pro)

(A.144)

tan do(p)

Taking the low energy limit p — 0, we have

_ V2m, Vo1 (V2m, Vi - o) — pJdo(vV/2m, Vi - 10)pro /2
V2m Vo 1 (V2m, Vo - 10)2/m - (In(pro/2) + ) + pJo(v/2m, Vo - r0)2/mpro
B 1+ 0O(p)
—2/m - (In(pro/2) +7) + Jo(V2m Vo - 70)2/wro/2me Vo 1 (v/2me Vo - 7o)
1+ 0O(p)

= o ((pa/2) 1) (A.145)

lim tan do(p)
p—0

where

Jo(v2m, Vo - 1) ) . (A.146)

@b <\/2er0 -roJ1(v2m, Vo - 1rp)

If mr%r% is small, the scattering length reduces to

a ~ roel/ VTS, (A.147)
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The t-matrix is

T(k,p) = /dQTeik'rV(r)\Ilp(r)
2T o )
= AVO/ d&/ drre*’krcosejo(\/pQ +2m,Vy-r)
0 0

g 70
_ o8 0o(p)Jo(pro) — sin 5O(p)N0(pr0)27rV0/ drrJo(kr)Jo(\/m - r)
Jo(v/p? 4 2m, Vg - 7o) 0

_ cos 0o(p)Jo(pro) — sin do(p) No(pro) 7o

J()(\/p2 +2m, Vg - ro) k2 —p? —2m, Vo
- (Ko (V7 %2y Vi - 10) I (o) = /o7 + 2m, Voo (ko) Jy (Vi + 2mi Ve - 7o) )

_ (cos do(p)Jo(pro) — sindo(p) No(pro)) 2mVoro
k% —p%2 —2m,.V,

By (ko) — /9 & 3my Vi Jo erg) LY P & 2 Vo - o) (A.148)
J (VP2 +2m, Vp - o)

27Vy

The zero energy limit of the t-matrix is then

J1(vV2m, Vo - 1)
lim T'(k,p) =1 1 — tan dp(p) No( 2m,. V;
i )= fn (0=t Nopr) VT

 lim (1 _In(pro/2) —}—7) o /5 J1(vV2m, Vi - 1)
In(pa/2) 4+~ (v2m, Vo - o)

Jo
In(a/ro) mro 1( 2m, Vo - o)
= —lim ————%~ \/2

2 Tn(pros2) my ¥ 2"V S (Vame Vo

m, Vo

= 0. (A.149)

Thus, for a square well potential in two dimensions, the t-matrix approaches zero in the low energy
limit, in contrast to the three dimensional result where the low energy t-matrix generally approaches
a nonzero value.

When mr‘/oT% is small, the low energy t-matrix is

1 Tro *To ™

= — Al
et oz A

lim T'(k,p) ~
k,;luri»lo (k.p) mr%roln(pro/Q)

which clearly shows that the t-matrix logarithmically approaches zero in the low energy limit.
Since the t-matrix is equivalent to the ladder approximation in the effective interaction, the
effective interaction in the ladder approximation in two dimensions also approaches zero in the low

energy limit.
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A.6 Example: contact interaction

In ultracold atomic physics, one often approximates the two-body potential by a delta-function
contact interaction V(r) = gd(r), neglecting the large momentum behavior and only focusing on
the low energy physics. A useful feature of the contact interaction is that the Fourier transform
does not depend on the momentum V(p) = g.

To correctly deal with a contact interaction, we must be careful with our treatment of the large
momentum. In this section, we derive properties of the scattering t-matrix in a contact interaction.

The t-matrix satisfies the equation (A.19), which is

d
T8 =49 [ ooy ey TP

B d’k 1
-0 9/ 2m) (v = k2)/2m,”
dk 1 Ak 1
+ g/ (27T)d (p2 _ kz)/erg/ (27T)d (pg — k’z)/Qng +
- Ak 1 "
= gnz:o (/ (Qﬂ)d (p? — k2)/2mrg>

-(;-/ @ljjd P —k12>/2mr>1' (A-151)

Introducing a high momentum cutoff A for three and two dimensions, and a low momentum cutoff

A for two dimensions, the inverse of the zero-energy t-matrix is

1 1 dk 2m, 1/g+m.A/m? for three dimensions

T 1/g +m,In(A/X)/m  for two dimensions.
The large momentum (ultraviolet) divergences due to A in the right hand sides are not a significant
concern, since this will simply act as a renormalization of the bare coupling g. The low momentum

(infrared) divergence in two dimensions due to A is a result of a generic feature in two dimensions

that the t-matrix vanishes in the low energy limit.



Appendix B

Derivation of Green’s functions

We derive the Green’s function (3.20) for the bosons with the isotropic Rashba-Dresselhaus spin-

orbit coupling. The equations of motion for 1_ , and v , in Heisenberg representation are

0 2 2
igyplt) = (Tt = 1) 6o p(0) = i (0)+ iy p(0)

50 No (4 p(®) + 207, p(0))

tor (20 O (O () 20 (04 (DY ()
e

2 2

- (p 2;;@ — - %px + 29710) Y p(t) — Z’%pyw+7p(t) + gnowT_’on_p(t)

+ % > (21/}1;)3 ()% s (DY py (8) + 2000 o (D04 p, (D0, (t))

e

(B.1)

! - r f AT
_Zawf,p(t) - ( om — K= pr + 2gn0> w—7p(t) + Zapyw+7p(t) + gn0¢—,2p0—13(t)

top o O (200 0w (0 (1) + 20T 4, (0] g, (e, (1))

P1+P2=P3+P
Pi#Po

(B.2)
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and

2 2
im0 = (ToE = ) i plt) 4 = (pathplt) im0 pl0) + 550620 500

ot 2m
Y (20 (00 e O () + 26T (00 (O, (1)
P1+P2=P3+P
Pi#Po
— <p22;/.;2 At %px + gno> Yy p(t)+ i%pylb_p(t)
ton 2 (20 ks (0 () + 200 (O (- (1)
P1+tP2=pP3+P
Pi#Po
(B.3)

0 4 p? + K2 K ¥ K +

tor 2 (20 0L o (e () + 20T, (DL, (s 1))

2V
P1+P2=P3+P
Pi#Po
(B.4)
Then,

. O p(t1) 4
v . —_ _ T P
Zathn(PJl,tz) O(ty —t2) + o, YL 5(t2))

2, .2
pT+ K K

=0(t1 —t2) + ( 5 — = —pg+ 29"0) Gr1(p;ti,to)
m m

K -
— i pyGai(pity, t2) + nogGar(pity, t2) — z% 3
P1+P2=P3+P
Pi#Po

(T (200, (400 pa (B (E)81 o (82) + 201, ()04 o (t1) 00—y (1)UL (1)) (B.5)

Including the Hartree-Fock energy, this becomes

e, p? + K2 K
ZaTlGll(P;tlatz) =0(t1 —t2) + < 5 M Dot g(2no +2n_ +ny) ) Gri(p;t1, t2)

R
- ZEPyGBl(p; t1,t2) + gnoGai(p; t1,t2). (B.6)
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Similarly,

P2+ K2
2m

.0
i=—G33(p;t,ta) = 6(t1 —ta) + (

K
— — G i1, T
a1, [ mpx+gn0) 33(p;t1,t2)

K , g
+ipyGai(pity tz) —ig >
P1+tP2=P3+P
Pi#Po

(T (2#)1,;)3 (1) 4po (1) py (E1)W] 5 (t2) + 201 L (8104 o (t1) ¥ p, (tl)wi,p(tz))

p? + K2 K K
~6(t1 —t2) + 5 —p+ —pz +g(no +n_ +2ny) | Gs3(p;ti, t2) +i—pyGa1(pP;t1, t2).
m m m
(B.7)
And
T
) oyl i(th)
— i b, te) = 0(t — to) — (T——B ") (¢t
ZathQQ(p’ 1,t2) = 0(t1 —t2) — ( ot Vo pr(t2))
12 2
+ K K
=0(t1 —t2) + <p 5 —p——p,+ 29”0) G (p;t1,t2)
m m
LKy . . g
+ ZEPme(P, t1,t2) + gnoGia(p;t1, t2) + Y Z
p1+pP2=pP3+p’
Pi#Po
(T (200 5, ()] oy (00— pa ()6 (t2) + 20, (1)UL L, (1) (1) (12)))
/2 2
+ K K
~ 5(t1 — t2) + (p 5 —u— *p;: + g(2n0 +2n_ + n+)) GQQ(p;tl,tQ)
m m
KR
+ zap;G@(p; t1,t2) + gnoGia(p; t1, t2). (B.8)
Similarly,
0 p/2 4 H2 K
—i—Gu(piti,t2) = 6(t; — t — —p/ _+2 Gu(p;ti,t
o a(pst1,t2) = 8(t1 — t2) + ( o M+mpx+g(no+n +2n4) ) Gu(p; ta, ta)
KR
- ZEP;GM(P; t1,t2). (B.9)

Similar relations hold for the time-dependence of the off-diagonal Green’s functions, and in the end,

we obtain the following equation of motion for the matrix Green’s function.

i% - A —gng i Dy 0
- 0 c K oo
—gng  —iz- —C 0 —ip
bt —t)I=| o . " Gt ta), (B.10)
—iy: Py 0 iy, — B 0

0 i), 0 —ig-— D
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where
2 — 2kp, + K2 —po)?
A= TSP ik g(mo + 20 +ny) = (132771;0) — 4 g(2no+2n_+ny) (B
2 2 2
+ 2Kp; + K 4
B:pQ:f—/L+g(no+n_+2n+):(p2nl;0)—u+g(n0+n_—|—2n+) (B.12)
2 / 2 / 2
—2kp, + K —
c=" 27? —p+9(2no+2n_ +ny) = (p%f")) —pu+9(2no+2n_+ny) (B.13)
2 / 2 / 2
+ 2kp, + K +
p=" 27%” —u+g(no+n_+2n+)_(p2ﬂf’°)—u+g(no+n_+2n+). (B.14)
In terms of frequencies
dz —iz(t1—t2)
G(piti,t2) = [ 5-G(p,z)e 7T, (B.15)
m
the equations of motion become
z—A  —gng ipy 0
—gng —z—C 0 —itp,
I'= .i ’ | G(p, 2). (B.16)
—iy-Dy 0 z—B 0
0 i), 0 —z—D

Inverting this equation gives the equation (3.20).



Appendix C

Absence of population imbalance in a

normal state

In this appendix, we prove that there is no population imbalance in a normal state of bosons with
Rashba-Dresselhaus spin-orbit coupling considered in the section 3.4.

In this section we introduce separate chemical potentials p— and u4 for the bases (—) and (+),
respectively, to determine if there is a spontaneous population imbalance. We prove that there is
no spontaneous population imbalance by seeing that the second derivative of the Ginzburg-Landau
free energy with respect to the population imbalance is positive.

The reduced Hamiltonian within the Hartree-Fock approximation is, as in (3.66),

2 2
Hyp = —Vg (n> +nj +n_ny) + Z <¢T_’p z/;i’p) . (C.1)
P#£K tmPy B Yip
where
(p—r)? (p+ k)
A=——" —pu_ 2n_ B=—+"— _+2ny). C.2
5 p—+g(2n— +ny), 5 p+ +g(n— +2ny) (C.2)
To diagonalize the Hamiltonian, we write
w_v v ’1 v 1/) )
Pl _ (" 8,1 a,p 7 (C.3)
Y+p Va2 Vg2) \¥sp
Va,1 vg,1 . : A =gy
where v, = and vg = are the normalized eigenvectors of , whose
Va2 V3,2 i Dy B
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eigenvalues are

2 2 2
+ K -+ 3 K - = K \2
e, =L _ AT +29(n_+n+)—\/(—mpx—w+g(n_—n+)> +(Zny)

2m 2 2 m
(C.4)
¢ 7p2+m2_u_+u++§ (e 4 ny) 4 (= = B2 L 9 ) 2+<“ )2
7 Tom 2 pI\= T mb 2 g\ T mtv)
(C.5)
By an explicit calculation, one can derive
KDe J—— s g Kpe  p-—pe g\, KD
R SN =T
Vo1 m 2 2 m 2 2
b — Ca
Va,2
K
i
m?Y
22
— ViR +
—C, 71 T2 (C.6)
—i2
KDx M- —py g Kpe e —ps g\ | KDy
A o B s S Ay VA M P T PR I ) 4 Y
m 2 2 m 2 2 2
Uﬁ7]‘
Uﬂ72
K
i
m?
= ¢y 1TV T72 7 (C.7)
—i2
where An =n, —n_ as before, and C, and Cj are normalization constants which satisfy
o2 Viitin+m c2_ Vit -—m (©8)

) B .
TV 273v/7 + 3
Since the Hamiltonian is diagonalized in the basis (1q.p, ¥3p), the number of particles in the states

1o and 1Pg, with momentum p, are fp(&.(p)) and fp(£s(p)) respectively, where fp(x) = 1/(ef*—1)
is the Bose distribution function. Then, the number of particles in the states (—) and (+) with

momentum p is

W ¥ p) = [va1*fB(Ea(P)) + [vs1* f5(E5(P)) (C.9)
(Wl Wi p) = 022 fB(Ea(D)) + [vs 2 fB(E5(P)). (C.10)
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Therefore,

neo= o S ) = 5 (bt PAs(€a()) + lusa 7o €5(p))

p
2
— %Z <C§ (’Yl_m> fB(éa(p)) + C3 (’yﬁ—@) fB(fB(P)))
P
_ Iy (Vi em VEF R+ ) .
V?( W EY fB(&a(p)) + N == fp(§s(P)) | ; (C.11)
and similarly,
Vijjg+71 "Nt —m
. : Nl : C.
ny = VXp:( 2/t 12 fB(&a(pP)) + N E fB(&s(P)) (C.12)

These equations determine n_ and n4 self-consistently.

In order to investigate the possibility of spontaneous population imbalance, we consider the
Ginzburg-Landau free energy as a function of population imbalance, and ask whether yu_ = py
with n_ = ny is a minimum or a local maximum.

The Helmholtz free energy density is

F=p-n_+pyng —g (2 +nf +n_ny)
3 (1-ePe®) 511/ Son (1 e o). (C.13)
p p

In order to regard this free energy as a function of a population imbalance, we define the population

imbalance ¢ by

n_=3+¢ ne=o—¢, (C.14)

2

and regard p— and p4 as functions of ¢. Then, taking derivatives of (C.11) and (C.12) with respect

to ¢, one can derive

Op— Opi
—-— =— — . C.15
50" B0 s (C.15)
Using this relation, one obtains
2
OF|  _ g% (C.16)

96 | 4—g 99 |4=0



138 APPENDIX C: ABSENCE OF POPULATION IMBALANCE IN A NORMAL STATE

where
op— B
9% |40
P2 2 -1
—g+2 VZ—;:’ —/5(éa(p)) + fB(¢s(P Z% f5E(P) + f5EP) | <0
p VL p V1
(C.17)
Therefore
0*F
— > 0, C.18
which implies that y— = py with n- = ny = n/2 is a minimum and there is no spontaneous
population imbalance.
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T-matrix for bosons

We derive the t-matrix for bosons (4.21). Our starting point is the set of Bethe-Salpeter equations

(4.7). Explicitly writing out V(g the Bethe-Salpeter equations are

_ Yaa gbbei(¢1+¢2_¢3_¢4) n Jab (eidn + ei¢>2)(e*i¢>3 + e*i¢3)

Faa(p,pia) = == + =7 i 5
- / @k [Gaa I itor+oa-s—05) , Jab (€9 + €)' + 7)) Taa(k,psq)
(27)3 | 4 4 4 9 ] 6_(% —k)+6_(%+k)
— / d’k _@ + @6i(¢1+¢2*¢5*¢6) _ Yab (e + 6i¢2)(6_i¢5 +e7'%0)] Fgg(kv p'’;q)
(2m)3 | 4 4 4 2 J e+ (8 -k) +er(3+k)
N / Pk [Gaa b iontoa—vs—ss)  Gab (€0 +€¥2) (e —emid0)]  VAGH(K,p'sq)
(27)3 | 4 4 € 1 5 | a@ -0+ (@11’
I3 (p,p'iq) = gjf“ %eiww@—m—m) _ % (e + 6”’2)(2”’3 +e ')
- / @k [gaa b itor+oa-ds—0s) _ Jab (€9 +€P)(e7 + 7)) Taa(k,psq)
(27)3 | 4 4 4 2 ] 6_(% —k)+6_(%+k)
_ / &k [ gaa 4 I i(p1+¢2-d5—g6) | Jab (€91 + e'9?)(e7%5 4 ¢71%0) ] g5k, p'sq)
(2m)3 | 4 4 4 2 (@K +e @ +K)
[ Bk [Gaa G iortdn—s—os) , Gab (€91 +€i¥2) (eI —emi%a)] VAIGE(k, p'iq)
f s 5 T 2 @ 0re@in

(D.1)
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and
1 g geb s Gap (€591 — €192)(e7193 4 193
ﬂfaﬁ(p,p vq) = Tt TRt anmon) Z( )(2 )
- / @k [gaa _ b itor+oa——0s) , Jab (€90 = €P)(e7 + 7)) Taa(k,psq)
(2m)3 | 4 4 4 2 | 6_(% _k)+€_(%+k)
_ / Ak [Gaa 90 o1+ 0a—dn—sn) _ Ja (€0 =€) (e 4 )] TGk, pha)
(2m)3 | 4 4 4 2 lex(3—k)+er(3+k)
- / 7d3k Jaa 1 9 i(@r+da—s—ge) _ Jab (€91 — e'?2) (7" — e%)] \fraa(k p’;q) ‘
@m)? 4 4 4 2 Jer (@ -k +e (2 +k)
(D.2)

Changing p to —p in (D.2) corresponds to interchanging ¢; and ¢ in the right hand side. Thus,

L as(—p p; q) = Jaa _ %ei(¢1+¢2—¢3—¢4) _ Yab (61@51 — ei@)(eimg + e*i¢3)
N 4 4 4 2
_/ dsk* -@ _ %ei(¢1+¢2—¢5—¢6) _ Yab (ei¢1 _ eisz)(e—i(ﬁs - e_i%)- ek, p'q)
(2m)3 | 4 4 4 2 le(§-k)+e_(3+k)
_ / Lk _@ _ @ei(¢1+¢2*¢5*¢6) + Jab (ei¢1 - 6“152)(6—%(755 + e_i%)_ Fgg(k’ p'; q)
(2m)3 | 4 4 4 2 e (3 —k)+er (3 +Kk)
_/ dsk* -@ + @ei(¢1+¢2—¢5—¢6) + Jab (ei¢1 — ei@)(e_i% - e_i%)- \fraa(k p’;q)
(2m)3 | 4 4 4 2 ler(§—k)+e_(3+k)’
(D.3)
which turns out to be useful in solving the set of Bethe-Salpeter equations.
The key to solving this set of equations is to construct the quantities
1
X(p.p'sq) = i (F‘m(p p’;q) +T55(p,p’sq) + To3(p, p'; q)/\/§+FZ%(—p,p’;q)/\@)7
Y (p, p’; q)ei(¢1+¢2*¢3*¢>4)
=7 (Faa(p pq) + I35 (p.psa) —Tad(p.psq)/V2 — FZ%(—p,p’;q)/\@),
Z( ) = 7F°‘°‘(p,p q) — I‘[w(p piq) Fgg(Pvpl;Q)/\[—Fgg(—P,P/;Q)/\@ (D.4)
p, p q 2 (el¢>1 —+ €Z¢2)( —1i¢3 + e_l¢4) - 2 (ei(z)l — 6i¢2)(6_i¢3 + e_i¢4) ’ '

The last equation can be verified by looking at the Bethe-Salpeter equations. Constructing X, Y,

and Z from the Bethe-Salpeter equations (D.1)-(D.3), we obtain

Gaa d3k
X(p,p'iq) = Ve [1_/(27r)3

Toa(k,p';q) I'es(k,p';q) V2rog(k,p';q)
X @ , (D.5)
€_

F-k)+e (§+k) e (3 -k +e(§+k) er(3 -k +e(§+k)
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Gob &’k 1
Y (p, p q) = 4 [1_/(271-)3 iP5 +o6—p3—0¢a)

5 ree(k, p'; q) I'45(k,p;q) ~ Vargikp'iaq) (D.6)
G-k +e(G+k) G -K+e(@+k) e@G-ktre(G+k)/]7
and
Yab Pk (e e roa(k,p'sq
Z(p,p';q) 1 _/ 3 —ig —id q ( (2
8 (2m)3 \e7s f e @ie (5 —k)+e (3 +k)
e~ 195 + e~ i%6 Faa(k p/.q) e—iP5 _ o—ids fraa(k p Q) D7
Tt e (TR T (31K e e e (3-K) e (34K (D7)

We can see that the right hand sides of (D.5), (D.6), and (D.7) do not depend on p. Thus, X,
Y, and Z do not depend on their first argument and we can write X (k,p’;q) = X(p’;q), etc.

Inverting (D.4), the t-matrices can be written in terms of X, Y, and Z as

ree(k, P’ q) = X(p/; q) + Y(p/; q)ei(¢5+¢6*¢3*¢4) + Z(p/; q)(ei% 4 ei¢>5>(e*i¢3 + efi¢4)
gg(k,p’; q) = X(p'; q) + Y(pl; q)ei(¢5+¢6*¢3*¢4) . Z(p/; q)(ei¢>6 + ei¢>5)(67i¢3 + e*i¢>4)
—=Tag(k,p'sa) = X (p'sq) = Y(p/;q)e P 70700) 4 Z(p'; q) (/% — /%) (e 4 e7H1).

V2
(D.8)

Using (D.8), all the t-matrices in the equations (D.5), (D.6), and (D.7) can be written in terms of

X, Y, and Z. After arranging terms, from (D.5) we obtain

X(p’;q)

8 gty eyt ey
Jaa 2m)3 \e—(F—k)+e(§+k) er(3-k)+er(§+k) e (3 -k +e(F+k)

+Y(p/q)e % r0)

/ 3k ei(bs+¢s) et (@s+d6) 2t (@5+06)
+ _
P \e (3 -k +e(3+k) (k) +e(F+k) e (F -k +e(2+k)

+Z(pa) (e e

d3k b5 1 oide b5 1 pide 2( is Z(bs)
/ (2m)3 <e(‘21 ~k)+te(T+k) e (T-K+e(T+k) e(T-k) +e (g +k)>
=1 (D.9)
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Defining

fa/2) =

7T/ d3k [ 1 N 1 N 2 4m]
mk ) 2m)3 e (§+k)+e (§-k) e (§+k +e(3-k) e (§+k +e(9-k) K2

9(q/2) =

B 71/ d3k [ cos(¢s — Ps) n cos(¢ps — ¢6) B 2cos(¢5 — ds) }
mi ) 20 le ($+Kk)+e (3-k e (§+K+e($-k e (T+Kk+ei(§-K)

hi(a/2) =

- B3k RICERD) RICEE )] 9¢i(¢5+d6)
m/ @ | T+ Rt e (3K (3R Fea(3 k) (310 +er(d-K)
ha(a/2) =

- / A3k [ iP5 | ei%6 B iP5 | id6 B 2(e'?5 — ¢i%6) ]
2mr ) (2m)3 e (§+k)+e (3 -k) e (3+k)+e(§-k) e (§+k+e(3-k)]’

(D.10)

the equation (D.9) becomes

4 Bk d4m  mk . mk
1= X(p; — Bl D) V(o' qlei@ston) My &0
(P a) (gaa +/(27r)3 2t fd/ )) +Y(p;q)e —hi(a/2)
. 9
2P @) (e e ) T b (@/2) (D.11)

Introducing the free field scattering lengths by
3
1 m_ d’k m (D.12)
(

gT-j - 47mij 271’)3?’
we obtain
T 1 N ~ ) e—its 4 o—ita
— = X(p’;q) < + f(Q/2)) +Y(p';@)e TN (§/2) + 42(p'; @) ————ha(@/2).
mk KQgq 2
(D.13)
Similarly, from (D.6) and (D.7), we obtain
T [ —i 1 ~
O X @)@/ + Y@ O (a2
e i3 | o—ida Y
+42(p'sq) ———F——"h3(a/2), (D.14)

T e W3 + !

e = X5k (@/2) + V(P a)e s (q/2)

e~ 13 4 o—i¢a q —9¢
;r (%zab L fa?) . g(Q/2>>_ (D.15)

+4Z(p’;q)
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From (D.13), (D.14), and (D.15), we obtain the following matrix equation:

1
T emitoston)
mkr
e~ 193 414
2
F) +mm Mm(@/2) ha(G/2) X(p';q)
=| m@2 rd+L 13(a/2)

Y (p'; q)e (P3t04)

@2 hea2)  5(Fd)-ed) + k) ) \azeha e se

2
X(p';aq)
=M | Y(p/;q)ePston) (D.16)
. _i¢3+ —igy
4Z(p' a)—=3—
Then, from (D.8), we finally obtain the expression for the t-matrix
X(p';a)
i |
Tea(p,pa) = (1 gilorren) & mg) Y (p'; q)ei(9stea)
7i¢3 *i¢4
4Z(p'; q)i
2
1
T (1 gilé1+2) M) M| emitostan) (D.17)
meK 2

e %3 | o—ida

2
which is (4.21).



Appendix E

The coefficients of the Ginzburg-Landau

free energy

We outline here the derivation of the Ginzburg-Landau free energy (5.32) from the free energy
FaoL(A, ¢), Eq. (5.29). Since A always appears squared in the equations, odd powers of A do not
occur in the free energy. To find the coefficients of A? and A*, we set ¢ = 0, and expand Fqr,(A, 0)
in powers of A2, Taking the derivative of the number equation for blue particles (5.31) with respect
to A2 we see that y; (here allowed to differ from s,.) does not depend on A2, Differentiating the

number equation for red particles (5.30), we obtain

oy
OA2

C2
=, E.1
. o (E.1)

where the subscript 0 denotes the derivative at A = ¢ = 0, and

er= =5 Y SE, (E2)
k

L (tanhig2 ()

Q—V%:( @y e ) (E.3)

Note that both ¢y and ¢y are positive. Then

OFaL(A,0)[ 1 1 ~tanhBg)/2
OA2 ’ U Ve a2 (E4)
1 82.7:GL(A,0) (02)2
3 oA ’ b+ o (E.5)
where
1 tanh B¢R/2 | f'(&)
"= v?( o) (0
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We similarly derive the coefficients of ¢, ¢?, ¢3, and ¢*:

MGg;O’ ?) = 0. (E.7)
e () =
3
Ot =
i 84f31(2)510,¢) - 4(51)4 <3('111)2 _ @) , (F.10)
where
o= > e = > e (1)
Finally, the coefficients of A% and ¢2A? are

W T 22, (E.12)

2 n(eo
R N REr N R E O

Therefore, the Ginzburg-Landau free energy up to fourth order in the order parameters is

0 2
P, = (3 ) s (o )
k

1 2 K1 3 3 (’431)2 4 €2, A2 2 A2
+3<01—UH>¢ + (01)3(25 +4(Cl)4 <3 1 —/€2>¢ —QE(bA +C5¢) A
(c2)?

= aA? + <b + C) A* 43 (Cl - UH) %+ 30 + ca0t — 22—2A2¢> + s A2p2.
1 1 1
(E.14)

Note that the ¢; and b are all positive. Also, since Up is negative, the coefficient of ¢? is positive.



Appendix F

Population imbalance above the Bose

condensation temperature

We derive the condition for the homogeneous state with population balance to be stable in a Bose
mixture, which is used in the section 5.5. Although the three-component ultracold Fermi gas can
form three types of molecules, the basic physics of the instability toward inhomogeneous states can
be captured by considering a two-component Bose system.

We derive the Ginzburg-Landau free energy of a system of two species of bosons, a and b, as a
function of their population imbalance at fixed total number N = N, + Np. With ax and bx the

annihilation operators of bosons a and b of momentum k, the Hamiltonian is

k2 k2
H — poNg—ppNy = Z <2m - Ma> aTkak + Z <2m - Nb) bLbk
k k
Uy Uy
+ — (aLJrank,_qak/ak + ka+qu,_qbk/bk> + V Z aqubL,_qbk/ak, (Fl)
kﬂkl7q k7k,7q

where Uy = 4mwap/m and Uy = 4mwa;/m are the s-wave interaction strength between the same type
and between different types of bosons, and ag and a; are the corresponding scattering lengths.
We assume a sufficiently high temperature that neither system is condensed. In the Hartree-

Fock approximation, we obtain

N, N,
H — pugNyg — pp Ny = Z <§a,k + QUOJ + Uy b> aLCLk

- Vv Vv
N, N\t Voo v U
2Uy— +Uy1— | b by — — (N Ny ) — — N Ny, F.2
+Ek (fb,k+ 0V+ 1V>kk V(a+ b) v b (F.2)

where £, x = k%/2m — i, and bk = k?/2m — . The number of particles N, and N, satisfies the
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self-consistent equations,

No = ZQ (§ax + 2Uong + Urny) (F.3)
K

Ny =g (& +2Uom + Urna) , (F.4)
K

where g(z) = 1/(e®* — 1) is the Bose distribution function, and n, = N,/V and ny = N,/V. Then

the thermodynamic potential is

Q 1
v —Uy (ng + nz) — Uingny + v zk: In{1 —exp (=0 ({ax + 2Uonq + Ur1np)) }
1
+ Wzln{l —exp (=B (& + 2Uonpy + Urna))}, (F.5)
Kk
and the Helmholtz free energy is
F Q
V = V + UaNg + HpMp. (Fﬁ)

The condition for the stability of the homogeneous state is found by expanding the Helmholtz
free energy in terms of the deviation of the number of particles from the homogeneous state. We

write the deviation of the numbers of particles from the balanced case as

n n
@—na_g—_(nb—§>, (F7)
then
0 F
—_—— =0 (F.8)
&pV@:O
0? F 1
—_— = =220y —-U; — = F.9
e (200-ta- ). (F.9)
where
1 as n n
- - o 20— - F.1
G Vzk:g <2m o + U02+U12)<0, (F.10)

and the homogeneous chemical potential pg is determined by

n 1 k2 n n
k

The homogeneous state is stable if and only if 9?(F/V)/0p? > 0. Since G < 0, we immediately

conclude that when 2Uy > Uy, as in the present system, the homogeneous state is always stable
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at T > Tpgpc. [For 2Uy < Uy, one finds G — 0~ as T — oo, and G — —oo as T approaches
Trc from above, implying a phase transition from the homogeneous to an inhomogeneous state
at T > Tgc. The transition temperature increases with increasing Uy — 2Uy. As Uy — 2Uj from
above, the transition temperature approaches Tpgc from above.]

Since the interaction is the same as that between identical and different molecules in the BEC
limit of three-component ultracold fermions, the result derived here implies that the system is

homogeneous above the condensation temperature.



Appendix G
Expansion of [';4(q,w;)"! in (5.65)

The expansion of I';4(q,wy) ™! in (5.65) can be explicitly carried out using Eq. (5.60), with the
result of Eq. (5.65), —I'y4(q,w,) ! & Zw, — ¢, where

d3k anh(3.F ,
2= [ o (a0 .

and

dk 1 gro K21 o, )
=) Grpamey [ Aman T 0k (2 )

i Bk
EkA;%gEﬁ k2 4 2 A2 4 9 12 Yy s
T g (26— AL, AL ¢ BRI (k) + g AL B (B |- (G2)

In this appendix, we derive the relations (G.1) and (G.2). We first obtain some useful formulae on

the summation of Matsubara frequencies. We then use the formula to derive the desired relations.

G.1 Matsubara sum

Fermionic Matsubara frequencies are defined by w, = im(2n + 1)/8. The residue of a complex

function g(z) at a pole ¢ of order n is

n—1

Res(g.¢) = g5y I = (2 = "0(2). (@3

We consider the integral in the complex z-plane along the contour C' in Figure G.1, which is

deformed as in the figure. The most basic formula is
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A
Fermionic
Matsubara frequencies
C
% = x = ()
% T "/
C \ 4 C

Figure G.1: Deformation of the contour C in the complex z plane.

1 1 1 wni] =1 1
—Z = lim — € = ——— lim /dze
I5] — Wy — T n—-+0 3 — Wy — & 21 n—+0 Jo z—xebr 41
lim Res [ ! G.4
= lim eS(z_xeﬂzH’x>—f<x>’ (G-4)

where f(x) = 1/(e%* 4 1) is the Fermi distribution function. The formula is true for both positive

and negative x. More complicated formulae are derived similarly:

1 1 I e 1 el ,
6 Zn: (wn — )2 2mi nlilﬂo/cdz(z —z)2efr 41 _B(eﬁx +1)2 /@) (G.5)
1 1 1 e*n 1 1
- — = ——1i d =_f" .
6] zn: (wp —x)3 21 Nt C Z(z —z)3efr 41 2f (z) (G6)
1 1 1 e*N 1
= - — G.7
g En: (wp — x)* 271 7 10 c dz(z —z)tefr 41 6f (z), (G7)
and some combinations:
1 1 1 1 1 1 1 I}
= . = — — — = — f(=2)) = —— tanh —
an:wn—a: Wp +x an: (wn—m wn—i—x) 2x Qx(f(x) f(=2)) 2x 2
(G.8)
1 1 1 1 1 1 1 1
ﬁzn:wn—az ‘ (wn +2)2 ﬁzn: (wn—m _wn—i—w) wn+x 21
1\? Bz 1

1 1 1 _12 1 1 1 1
Bstwn —u (wn+2)3 wn—¢ wptx) (W +2x)? 22

_ <1 " tanh 2% _ <1> Plew)— = 1w, (G.10)

N~

2r 2
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G.2 Derivation of coefficients

Now we derive the coefficients of the expansion of —I'y4(q, wy)"t. Taking the lowest order in the
frequency and momenta, we expand as

d 1
—Trglqwg) ! = 5 p Zgr )Gy(a — p)

/ 3@;% { gng)k:

1 52
taX Wakjgg(h ?) %q; ¢ - (G.11)

wq + ViGy(k, Z)|k3:—p -q
=—p

2 £
17 k=—p
Since
1 1+&/EBx 1 1—&/FEx
Go(k,2) = 5 - —— B T3 i (G.12)

the derivatives are

0 I 1+&/Bx 1 1—&/Fx

—Z Gk, 2) = —— . S TX — o SKITX 1

azgg( %) 2 (z—FE)? 2 (24 Ey)? (G.13)

) 1+ &/Be 1-&/Ex\ & ki 1 1 A2k

Ok; Ggk,2) = < (z— Ex)*> (2+Ex)?) Ex2m z—Ex z+Ex) E}2m’ (G.14)

Since the derivative of G4(k, z) with respect to k; is odd in k;, the linear term in q in (G.11) is zero

after integrating over p. Similarly, quadratic terms with ¢ # j are zero. Thus we have

@

&p 1
_Frg(q7wq) ' / 2ﬂ_p3ﬁ Zgr gg k Z) .

(G.15)

The second derivative of G,4(k, z) with respect to k; is

O a1 L) (B L 3Bk (ki)
8]{2 z— By z+ By QEI‘Z m 2E5 m

1 (&1 A (k) 3ALE (K
2 Eﬁ m
2 k

k 2
+(szk)2 <2Ekm 2E] (m )
1 G 1 Ay (ki\® 380 (K’

(z+ Ex)? \ 2Exm  2E} \m 2 Bl \m

2

k

1+&/Fx  1—¢&/FEx i & 2
" <(Z—Ek)3 + (z+Ek)3> B2 (m) : (G.16)

7
7
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Therefore, we have

d3p 92 d3p 0?
| (e gt k_p:/<zm§’< Vo)
~ [ B 6p) ) (G17)
) @r)3TTY ok2 P '
and thus
L [ A 0 L &7
Ty(a wy) 1 /Wﬁczgr(p) { &Qg(k, 2) k:_pwq + iaikggg(k, ) s q2}

q2} . (G.ag)
k=—p

d’p 1 0
dp 1 1
1= | oy 00 gValutios)| (G.20)

Using Matsubara formulae derived in the previous section, we obtain

Z:_/ &p 12(1 1+&/Bp +1_1—§p/Ep) <1. 1+ &/ Ep

1 1+&/Ep 1.1_5P/EP)
wp—Ep 2 wptEp 2 (—wp—Ep)? 2 (~wp+Ep)?
Bp 1 1 1 A2 1 1 ¢
/ (27T)3 E wz { ((wp - Ep)3 * (Wp + Ep)3> E%g " wp — Ep (Wp + Ep)2 (1 " EI;)
1 1 5\
+Wp+Ep (wp — Ep)? (1 Ep) }
1 [ " " A2 tanh(G.Ep /2 '
—-1 ) s {0 ) g - (G LB (14
tanh(B.Ep/2) | f'(Ep
+< 4Egp + 25, )(—E" } (G.21)
Since f'(—z) = f'(z) and f"(—x) = —f"(x), we finally obtain

S e

which is exactly (G.1).




G.2. DERIVATION OF COEFFICIENTS 153

The expression for v can be obtained similarly:

1 dp 1 Z<1+§p/Ep+1—§p/Ep>

7712 @R B\ wp—Ep | wp+EBp

1 . 1 A?Dg 3 _ 3Ar2iggpﬁ _ 1 €p 3 1+ ﬁ pg P’
wp+Ep  wp—Ep) \2E3m 2E; m? (wp+ Ep)? \ 2Epm Ey ) 2E3 m2

+ 1 < 3§p> pg »? n <1+fp/Ep n ép/E ipi
(wp — Ep)? 2E m 2E3 m2 (wp+ Ep)?  (wp EZm?
1 ®p 1 B.Ep AZ 3 3A2 gpp
- 12/ (271')3 ) {( Ep 2 ot (Ep)> <2Epgm a 255 )
tanh(GeFp/2) | '(Eo)\ (& 3, (|, 3 p
N eme T 2Ep ) (25 m+( Ep> 2Ep§ m2>

(
G >(§;i+< ) s
(%

tanh ﬂc p/2 f(Ep)  ["(Ep) ¢p 512) P Lo f £p p?
- R A I 5 DR N (S
* (2Ep)?  4Ep * Ey) E%Zm? 5! (Ep) Ep) EZm?
+ (terms obtained by taking Ep — —FEp) . (G.23)

After arranging terms, we obtain (G.2).
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