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Abstract

In this thesis, we present theoretical studies on three topics related to multi-component ultracold

gases and gauge fields.

The first topic that we discuss is artificial gauge fields in ultracold gases. Recently, methods

to create artificial gauge fields coupled to neutral ultracold systems using a light-induced Berry’s

connection have been rapidly developing. These methods are not only capable of creating Abelian

gauge fields, such as a conventional magnetic field, but also non-Abelian gauge fields, which opens

a way to explore and simulate a wide variety of physical models. In this thesis, we discuss vari-

ous properties of bosons with Rashba-Dresselhaus spin-orbit coupling, which is a special type of

non-Abelian gauge field. We investigate the stability of Bose-Einstein condensates with Rashba-

Dresselhaus spin-orbit coupling, and show that the condensates are stable against quantum and

thermal fluctuations. We also consider the renormalization of the bare interaction by calculating

the t-matrix and its consequence on the ground state phase diagrams.

The second topic discussed here is three-component ultracold fermionic systems. It is known

that ferromagnetism and superfluidity can coexist at low enough temperature in three-component

ultracold fermions. In this thesis, we elucidate how fermionic pairing and population imbal-

ance enhance each other. We also describe a crossover from Bardeen-Cooper-Schrieffer state of

fermionic pairing state to the limit of Bose-Einstein condensate of three weakly interacting species

of molecules, as the interaction increases. Furthermore, we find an interesting similarity in the free

energies between three-component ultracold fermions and quantum chromodynamics.

The last topic discussed here is Niels Bohr’s double-slit interference gedankenexperiment with

charged particles, which argues that the consistency of elementary quantum mechanics requires

that the electromagnetic field must be quantized. In the experiment a particle’s path through the

slits is determined by measuring the Coulomb field that it produces at large distances. Under

these conditions the interference pattern must be suppressed; otherwise quantum mechanics is not

consistent. The mechanism for the suppression of the interference pattern is that, as the particle’s
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trajectory is bent in diffraction by the slits, it must radiate and the radiation must carry away

phase information. Thus, the radiation field must be a quantized dynamical degree of freedom.

We also consider the related setup in which one attempts to determine the path of a massive

particle through an interferometer by measuring the Newtonian gravitational potential the particle

produces. In this case, we show that the interference pattern would have to be finer than the Planck

length and thus indiscernible. Therefore, unlike for the electromagnetic field, Bohr’s argument does

not imply that the gravitational field must be quantized.
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Chapter 1

Introduction

We discuss three topics in this thesis. The first topic is artificial gauge fields in ultracold gases,

especially ultracold bosons with Rashba-Dresselhaus spin-orbit coupling. The second topic is the

Bardeen-Cooper-Shrieffer (BCS) to Bose-Einstein condensate (BEC) crossover of three-component

ultracold fermions. The last topic is a double-slit interference problem, which discusses why elec-

tromagnetic field must be quantized.

In the following sections, we give brief introductory accounts on the three topics covered in this

thesis. Parts of this thesis are based on the author’s publications [1, 2, 3, 4, 5].

1.1 Gauge fields and ultracold gases

Ultracold gases are versatile playgrounds to realize, explore, and discover various physical models

and phenomena. Indeed, one major reason that ultracold gases are currently attracting so much

attention is that it is possible to simulate various physical models using ultracold gases, which are

otherwise difficult to solve or realize.

One crucial ingredient which is not present in neutral ultracold gases in their natural forms, but

important in many areas in physics, is the coupling with electromagnetic fields, or more generally,

gauge fields. A free non-relativistic particle with charge q coupled to a magnetic field B is described

by the Hamiltonian

H =
1

2m

(
p − q

c
A
)2
, (1.1)

where c is the speed of light and the vector potential A satisfies B = ∇×A. Many of the interesting

phenomena in conventional condensed matter physics, such as superconductivity and quantum Hall

effects, are the consequence of electrons coupling to electromagnetic fields. On the other hand, since

1



2 Chapter 1: Introduction

q = 0 for neutral ultracold atoms, these atoms do not naturally couple to electromagnetic fields

as in (1.1). Thus, if we wish to simulate the coupling of electrons, or other charged particles, to

electromagnetic fields using ultracold gases, we need a method for creating artificial gauge potentials

to “trick” neutral particles into behaving as if they are charged particles in electromagnetic fields.

There are two major schemes for achieving artificial gauge fields in neutral ultracold gases; the first

is to rotate the gas, and the second is to use position-dependent atom-light interaction to create

Berry’s connection. Our main focus in this thesis is on the latter scheme, but let us first briefly

discuss the former method of rotation.

If an ultracold atomic system in a harmonic trap is rotating with an angular velocity Ω, the

Hamiltonian in the rotating frame is

H− Ω · L, (1.2)

where H is the Hamiltonian in the non-rotating frame and L is the angular momentum operator

[6]. The single-particle Hamiltonian in the rotating frame is then

H− Ω · L =
p2

2m
+

1
2
mω2r2 − Ω · (r × p)

=
1

2m
(p −mΩ × r)2 − 1

2
m(Ω × r)2 +

1
2
mω2r2, (1.3)

where ω is the trap frequency. If the axis of rotation is in the z direction, such that Ω = (0, 0,Ω),

the Hamiltonian in the rotating frame becomes

H− Ω · L =
1

2m
(p −mΩ(−y, x, 0))2 +

1
2
m(ω2 − Ω2)(x2 + y2) +

1
2
mω2z2. (1.4)

This Hamiltonian formally has the form of a particle in a trap coupled to a vector potential

q

c
A = mΩ(−y, x, 0). (1.5)

The magnetic field produced by this vector potential is

∇× A =
(

0, 0,
2mc
q

Ω
)

=
2mc
q

Ω. (1.6)

Thus, the Hamiltonian in the rotating frame takes the same form as that of a charged particle

coupled to an external magnetic field, whose magnitude and direction are proportional to the

angular velocity of rotation. In other words, ultracold gases under rotation “think” as if they are
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charged particles coupled to a magnetic field, even though the particles are neutral. Experiments

have shown that the rotation creates quantized vortices in BECs [7, 8]. For fast enough rotation,

these vortices form a triangular lattice, as in Fig. 1.1. This formation of a triangular lattice,

which was known as an Abrikosov lattice, is originally predicted for magnetic flux lines in type-II

superconductors where condensed Cooper pairs are coupled to an external magnetic field.

Figure 1.1: Quantized vortices created in a rotating BEC of sodium. c© Martin Zwierlein.

Studies in rotating ultracold systems have been successful, both theoretically and experimen-

tally, yielding various novel phenomena such as a prediction of the emergence of highly correlated

quantum-Hall like states [9, 10]. However, there are also drawbacks to this method. It is experi-

mentally difficult to achieve very rapid rotation as it requires a fine tuning of the ratio Ω/ω close to

1. Also, the artificial magnetic field produced through rotation is necessarily constant. The second

means of creating artificial gauge fields, using a laser-assisted Berry’s connection has the prospect

of circumventing these shortcomings. Moreover, laser-assisted Berry’s connections are capable of

simulating more than a simple external magnetic field, and can also model non-Abelian gauge fields

in the following way. The Hamiltonian of n-component ultracold gases in the spinor basis is an

n × n matrix. Therefore, generally speaking, each component of the gauge field A = (Ax, Ay, Az)
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is an n× n matrix, which couples to the momentum as:

1
2m

(pIn×n − A)2 , (1.7)

where In×n is the n × n identity matrix. (We include the coefficients of A, such as q/c in the

case of Abelian vector potential, into A.) When some components of A do not commute (e.g.

[Ax, Ay] 6= 0), the gauge field A is called non-Abelian. (On the other hand, if all the components of

A commute with each other, the gauge field is Abelian. For instance, the conventional magnetic field

is produced by 1×1 Abelian gauge fields.) As we will discuss in detail, Berry’s connection can also

create non-Abelian gauge fields, which significantly broadens the range of physical models which

ultracold gases can explore. In this thesis, special attention is given to the Rashba-Dresselahsu

spin-orbit coupling, which is a special type of non-Abelian gauge fields of the form A ∝ (σx, σy, 0),

where σx and σy are the Pauli matrices. When a particle is coupled to the Rashba-Dresselhaus

spin-orbit coupling, the single-particle ground state is doubly (or more) degenerate, which leads

to a non-trivial BEC structure. In addition, the renormalization of the interaction needs a careful

treatment because of the modified single-particle spectrum, as we will discuss.

1.2 Multi-component ultracold fermions

Another topic of interest in this thesis is three-component ultracold fermionic systems. Here, we

briefly review the physics of two-component ultracold fermions to familiarize ourselves with concepts

that are common in multi-component ultracold fermions.

Two-component ultracold fermions can be, to a large extent, understood from an analogy with

spinfull electrons in metals. Electrons in a metal with a weak attractive interaction are known

to exhibit superconductivity at low temperature. If the attractive interaction is independent of

angle, the superconductivity is described by BCS theory [11, 12]. In the BCS theory, particles with

opposite spins and momenta pair, and the pairs condense into the same state. In other words, a

BEC of paired fermions is the origin of BCS superconductivity 1. The same mechanism applies for

two-component ultracold fermions, where the two components are regarded as two pseudospins. In
1Strictly speaking, the paired fermions are not bosons in the sense that they do not obey Bose commutation

relations. On the other hand, the pairs all have the same wavefunction, so, in this sense, the pairs are condensed into

the same state [13]. More precisely, the BCS state is a coherent state of fermion pairs.
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the case of two-component ultracold fermions, the fermions with opposite pseudospins and momenta

pair, and the pairs condense to form a superfluid. The original BCS theory is applicable only for

a weak interaction; however, in ultracold systems the interaction can be tuned and need not be

weak. Leggett argued that the physics of weak and strong attraction are continuously connected,

and can be described by a variational approach using a single BCS-like ansatz wavefunction at

zero temperature [14]. When the attraction is weak, the BCS-like state is composed of pairs whose

size is greater than the inter-particle spacing. As the interaction is increased, the size of the pairs

becomes smaller and eventually becomes much smaller than the inter-particle spacing, in which case

the pairs can be regarded as molecules consisting of two fermions. Thus, in the strong interaction

limit, the system at low enough temperature is a BEC of paired fermions. This continuous crossover

from the BCS state of weakly interacting fermions to the BEC of paired (molecular) fermions is

called the BCS-BEC crossover. The fermions remain a superfluid during the BCS-BEC crossover.

The BCS-BEC crossover theory can be extended to a finite temperature. At finite temperature, we

must include the effects of fluctuations of pairs. Nozières and Schmitt-Rink found that the finite

temperature BCS-BEC crossover can be qualitatively described by considering ladder diagrams for

the free energy, taking into account the effects of pairing fluctuations [15]. Figure 1.2 is a schematic

phase diagram of the BCS-BEC crossover. The horizontal axis is −1/kFa, where kF is the Fermi

momentum and a is the scattering length, which is positive in the BCS region and negative in the

BEC region.

−1/kF a

T

superfluid 

normal 

0 BEC region BCS region 

Figure 1.2: A schematic phase diagram of the BCS-BEC crossover in two-component ultracold

fermions.
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The continuous transition in the BCS-BEC crossover has been experimentally observed [16, 17,

18]. Rotating the two-component fermions below the superfluid transition temperature, quantized

vortices have been observed, as shown in the Figure 1.3, and no phase transition has been observed

between the BCS region and the BEC region [19].

Figure 1.3: The BCS-BEC crossover of quantized vortices in a rotating two-component Fermi gas

of 6Li. The right figure is in the BCS region of weak interaction, and the left figure

is in the BEC region of strong interaction. The middle figure is in the intermediate

region called the unitarity regime. c© Martin Zwierlein.

In this thesis, we discuss the BCS-BEC crossover of three-component ultracold fermionic sys-

tems. As we will see, both superfluidity and magnetism can coexist in three-component ultracold

fermions. Fortunately, basic methods for describing the BCS-BEC crossover in two-component

fermions, such as the Leggett’s BCS-like ansatz state at zero temperature, and Nozières and

Schmitt-Rink’s approach at the finite temperature, remain valid for three-component systems.

As two-component ultracold fermions can be used to simulate spinfull electrons in metals, three-

component systems are expected to be able to simulate an even wider variety of physical models.

In particular, there is the prospect of simulating analogs of quantum chromodynamics (QCD) using

three-component ultracold fermions, where the three components correspond to the three colors of

QCD. We will see that the Ginzburg-Landau free energies of three-components ultracold fermions

and QCD have similar structures.
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1.3 Should gauge fields be quantized?

In section 1.1, we discussed static gauge fields, in which the gauge fields were not an independent

quantum degrees of freedom. In reality, gauge fields are quantized; for example, electromagnetic

fields should be quantized and photons must have an independent quantum degree of freedom.

There are numerous pieces of experimental evidence to think that the the electromagnetic field

should be quantized, such as the spontaneous emission of light, the Lamb shift, etc2. In another vein,

Niels Bohr conceived an ingenious gedankenexperiment that demonstrated that the electromagnetic

field must be quantized by requiring the consistency of quantum mechanics. An outline of his

argument is as follows. Consider a double-slit interference experiment with charged particles.

When the charge is small, such as with electrons, we know that an interference pattern will emerge.

If the Coulomb field created by the particles is large enough, it should be possible to detect the path

(which slit the particle went through) by measuring the particle’s Coulomb field. If the measuring

device for the Coulomb field is located far enough from the slit, the measurement process cannot

affect the interference pattern, and the interference pattern should remain. However, it would be

a contradiction of quantum mechanics if we were able to detect the path of the particles and still

observe the interference pattern at the same time. This contradiction arises because we have not

treated the electromagnetic field as an independent degree of freedom. If the electromagnetic field

is quantized and has an independent quantum degree of freedom, the bremsstrahlung produced by

the charged particle as they turn the corner at the slits are entangled to the state of the particle.

As a result of this entanglement, the particle obtains a random phase information and thus the

interference pattern is destroyed. Therefore, if we assume that the electromagnetic field is quantized,

quantum mechanics is safe and consistent. In this thesis, we give a detailed analysis of Niels Bohr’s

gedankenexperiment 3 and also consider an extension to discuss if gravity should be quantized.

2 It is worth noting that while often cited in this regard, the photoelectric effect does not, in fact, require the

quantization of the electromagnetic field [20, 21].
3 This gedankenexperiment was told by Aage Petersen to Gordon Baym at Copenhagen ca. 1961. Petersen was

Niels Bohr’s scientific secretary (amanuensis) from 1952 until Bohr’s death in 1962. To the author’s knowledge, this

experiment is not mentioned in Bohr’s published papers, unpublished manuscripts, or letters. Aage Bohr, the son of

Niels Bohr, when queried about the experiment, wrote that, “Many ways of observing effects distinguishing between

the “paths” of the electron were certainly discussed ... I do not remember any specific scheme exploiting the Coulomb

field far away from the electron.” (Letter to G. Baym, 6 June 2001.) References to N. Bohr’s ideas in this thesis
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Let us now briefly review an ordinary double-slit interference experiment, in which electrons

go through a double-slit one by one and are detected at the screen. As the number of detected

electrons increases, an interference pattern emerges on the screen. Figure 1.4 shows the interference

pattern produced from an actual experiment by a Hitachi group (e.g. [23]).

Figure 1.4: Double-slit interference pattern of electrons. As the number of detected electrons

increases from (a) to (d), the interference pattern is built up. c© Hitachi, Ltd.

We can construct a simple model to explain this experiment. Consider the double-slit setup of

Figure 1.5. Let p1(r) and p2(r) be the momenta of particles which went through the upper and

lower slits, respectively, and reached the position r on the screen. The state of the particle at the

screen is

|state〉 =
∫

screen
d2r (u1(r)|p1(r)〉 + u2(r)|p2(r)〉) , (1.8)

where u1(r) and u2(r) are appropriate weights for the states from the upper and the lower slits,

respectively, and |p〉 represents the state with momentum p. The probability of measuring a particle

at position r is

〈state|ψ†(r)ψ(r)|state〉 = ‖ψ(r)|state〉‖2, (1.9)

follow Petersen’s description of the experiment told by Gordon Baym to the author. A similar gedankenexperiment

was described in the chapter 15 of [22] as well.
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slit screen

r

p1(r)

p2(r)

Figure 1.5: A setup of a double-slit experiment.

where

ψ(r) = eip1(r)·rψp1(r) + eip2(r)·rψp2(r) (1.10)

is the particle annihilation operator at r, and ψp is the particle annihilation operator of momentum

p. Throughout this thesis, we set ~ = 1 unless otherwise stated. When the lower slit is closed, the

state is, up to an overall normalization factor,

|state〉upper =
∫

screen
d2r u1(r)|p1(r)〉. (1.11)

Then, when the lower slit is closed, the probability of finding a particle at position r is

‖ψ(r)|state〉upper‖2 =
∥∥∥eip1(r)·ru1(r)|0〉

∥∥∥2
= |u1(r)|2, (1.12)

where |0〉 is the vacuum state. This probability is proportional to the intensity of the particle beam

at the screen when the lower slit is closed. Thus let us define the intensity by

Iu(r) ≡ |u1(r)|2. (1.13)

Similarly, the intensity of the particle beam when the upper slit is closed is

Il(r) ≡ |u2(r)|2. (1.14)
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When both slits are open, probability of finding a particle at position r is

‖ψ(r)〉‖2 =
∣∣∣eip1(r)·ru1(r) + eip2(r)·ru2(r)

∣∣∣2
= |u1(r)|2 + |u2(r)|2 + u1(r)u∗2(r)e

i(p1(r)−p2(r))·r + c.c.

= Iu(r) + Il(r) + 2
√
Iu(r)Il(r) cos((p1(r) − p2(r)) · r + φ), (1.15)

where u1(r)u∗2(r) ≡ |u1(r)u∗2(r)|eiφ. Thus, at least for a short interval, the intensity sinusoidally

oscillates and produces the familiar interference pattern. Upon deriving this expression, we assumed

in (1.8) that the state at the screen is a superposition of states produced by a particle going through

the upper slit and the lower slit. Thus, if there is a way to find which path the particle took, the

interference will not occur, and the interference pattern should not be observed.

In this thesis, we discuss how this argument may be extended for charged particles with quantum

electromagnetic degrees of freedom in the context of Niels Bohr’s gedankenexperiment. We also

discuss a similar gedankenexperiment with massive particles to see if we can conclude that the

gravitational field should be quantized as well. We find that the result is negative; the analogous

argument does not require the quantization of the gravitational field.

1.4 Outline of this thesis

The organization of this thesis is as follows:

In chapter 2, we discuss how gauge fields are artificially produced in neutral ultracold systems.

We discuss a general theory of Berry’s connection and how this tool can be used to create artifi-

cial gauge fields in ultracold systems. We then move on to discuss Rashba-Dresselhaus spin-orbit

coupling. We explain single-particle properties of a particle with Rashba-Dresselhaus spin-orbit

coupling, such as the single-particle spectrum and the possibility of BEC in the absence of interac-

tion.

In chapter 3, we discuss the stability of BEC’s in the presence of Rashba-Dresselhaus spin-orbit

coupling with an s-wave contact interaction. We show, by first calculating the Green’s function,

that the BEC’s are stable against quantum and thermal fluctuations. Also, comparing free energies

of the normal phase and the condensed phase, we infer that generally the system is condensed at

zero temperature, and undergoes a transition to normal at non-zero temperature. The content in

this chapter is based on [1].
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In chapter 4, we discuss how the bare interaction is renormalized in the presence of Rashba-

Dresselhaus spin-orbit coupling, and how the renormalized interaction affects the phase diagram.

In particular, we derive the exact two-body t-matrix of two bosons or two fermions scattering in an

arbitrary mixture of Rashba and Dresselhaus spin-orbit coupling. We describe the phase diagram

for bosons within the mean-field approximation using the t-matrix as an effective interaction. The

content in this chapter is based on [2, 3].

In chapter 5, we discuss three-component ultracold fermions. We investigate the phase diagram

and the BCS-BEC crossover of a homogeneous three-component ultracold Fermi gas with a U(3)-

invariant attractive interaction. We show that the system at sufficiently low temperatures exhibits

population imbalance as well as fermionic pairing. We describe the crossover in this system, con-

necting the weakly interacting BCS regime of the partially population-imbalanced fermion pairing

state and the BEC limit with three weakly interacting species of molecules, including pairing fluc-

tuations within a t-matrix calculation of the particle self-energies. The content in this chapter is

based on [4].

In chapter 6, we discuss our final topic of Niels Bohr’s double-slit gedankenexperiment. We show

how the measurement limit of the path is related to the charge of the particle by first reconstructing

the argument of the measurability of small electric fields by Bohr and Rosenfeld. Next, we discuss

how the visibility of the interference pattern varies as a function of the charge of the particle,

assuming that the electromagnetic radiation has an independent quantum degree of freedom. We

then conclude that we cannot efficiently measure the path of the particle without destroying the

interference pattern, showing the consistency of the quantum mechanics. We also discuss that a

similar argument does not lead to the requirement that the gravitational field be quantized. The

content in this chapter is based on [5].

In appendix A, we develop a theory of scattering in both two and three dimensions, emphasizing

differences between different dimensions. We explain how the effective interaction and the t-matrix

are related, and how the bare interaction can be renormalized in terms of the scattering length.

Appendices from B to G are devoted to lengthy calculations omitted in the main text.



Chapter 2

Artificial gauge fields in ultracold atoms

2.1 Introduction

In most experimental systems, trapped ultracold atoms are neutral and do not naturally couple

to gauge fields, such as electromagnetic fields, in a way charged particles are coupled these fields1.

On the other hand, many interesting phenomena in condensed matter systems are the result of the

coupling between charged particles, which are often electrons, and gauge fields, usually electromag-

netic fields. Examples of such phenomena include Aharonov-Bohm effects, quantum Hall effects,

and the formation of quantum vortices in type-II superconductors.

Roughly speaking, there are two different methods for obtaining a gauge-field like potential in

ultracold atomic systems. One method is to rotate the gas. By rotating the gas, the Hamiltonian

acquires an effective static Abelian gauge field in the rotating frame, which amounts to coupling

the neutral atoms to effective magnetic fields as we saw in the section 1.1.

Another method for creating artificial gauge fields involves using finely tuned and aligned lasers.

There have been many proposals for obtaining external (static) gauge fields, both Abelian and non-

Abelian, and some are already realized [24, 25, 26, 27, 28, 29, 30, 31]. Such a system is of great

interest not only because of the prospect of simulating various models in condensed matter physics

in which electrons are coupled to magnetic fields, but also because of the possibility of exploring

physical systems which have never been conceived before. For example, in conventional condensed

matter physics, the charge carriers are electrons, which are fermions, but using ultracold atoms one

1 Ultracold atoms do couple to electric and magnetic fields, and it is this coupling which makes magnetic and

optical traps possible. However, the coupling structure between ultracold atoms and electromagnetic fields is quite

different than that between charged particles and these fields.

12
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can create artificial gauge fields coupled to bosons, which has no analog in conventional condensed

matter physics.

In this chapter, we begin by explaining Berry’s connection and how this tool is used to create

artificial gauge fields in ultracold gases. We then discuss single-particle properties of a particle with

Rashba-Dresselhaus spin-orbit coupling, which is a special class of non-Abelian gauge field.

2.2 Berry’s connection

Berry’s connection is the effective gauge field that arises when the state of the system contains

both fast and slowly varying components [32]. While the quickly varying component of the state

adiabatically follows the slowly varying component obeying the quantum adiabatic theorem, the

slowly varying component acquires Berry’s connection.

We first develop a general theory of Berry’s connection, and then apply the theory to ultracold

gases. In the case of ultracold atoms, the slow component is the translational motion of the atom,

and the fast component is the internal state of the atom. An atom moves in the field created by

finely aligned lasers, and the translational motion of the atom acquires Berry’s connection, which

serves as an artificially created gauge field to the atom.

Let r denote the position involved in the state which is changing slowly2. Then, the state whose

parameters vary quickly is described by a Hamiltonian with given r. (Now we are treating r as

a classical variable to describe the fast component, although in principle it is not. This is the

Born-Oppenheimer approximation.) Let us call the Hamiltonian with fast variables HF (r). Note

that HF (r) may contain a spatial derivative term, but if so, it will not be with respect to r, which

is the position of the slowly varying component. When we write HF (r), r is an external parameter

which is fixed. Let {|χl(r)〉} denote a complete set of orthonormal eigenstates for HF (r) with the

respective eigenvalues El. Applying the adiabatic theorem we conclude that when the slow variable

is changed, the fast variable follows the change of the slow variable adiabatically. This means

that we only need to consider a certain subspace spanned by {|χl(r)〉} which have the same (or

2 In this chapter, we need to distinguish between vectors and matrices. We let a capital letter in bold font denote

a matrix, and a lower-case letter in bold font denote a vector. A capital letter in bold font with an arrow on its top

denote a vector of matrices. For example, ~A = (Ax,Ay,Az), where Ai are matrices. On the other hand, r = (x, y, z)

is a vector in three dimensional space.
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similar) energy eigenvalue. Let g be the set of indices in the subspace with the same energy. When

the subspace is non-degenerate, g contains only one element. When the subspace is degenerate, g

contains several elements.

Let us now begin by writing the overall state of the system as

|Φ(r)〉 =
∑
l∈g

ψl(r)|χl(r)〉, (2.1)

where |Φ(r), 〉 denotes the partial projection of the whole state |Φ〉 onto the subspace of slowly

varying components with position r. We may now write the total one-particle Hamiltonian as

H =
(
−∇2

2m
+ U(r)

)
I + HF (r), (2.2)

where I is the identity operator in the Hilbert space of the quickly varying components. Then, the

Schrödinger equation is

i
∂

∂t
|Φ(r); t〉 = i

∂

∂t

∑
l∈g

ψl(r, t)|χl(r)〉

= H|Φ(r); t〉 =
(
−∇2

2m
+ U(r) + HF (r)

)∑
l∈g

ψl(r)|χl(r)〉

=
∑
l∈g

(
−∇2

2m
+ U(r) + El

)
ψl(r)|χl(r)〉. (2.3)

Applying 〈χm(r)| where m ∈ g from the left, we obtain

i
∂

∂t
ψm(r, t) =

(
−∇2

2m
+ U(r) + Em

)
ψm(r) − 1

m

∑
l∈g

∇ψl(r) · 〈χm(r)|∇|χl(r)〉

− 1
2m

∑
l∈g

ψl(r)〈χm(r)|∇2|χl(r)〉

=
∑
n,l∈g

1
2m

(
∇
i
δmn − i〈χm(r)|∇|χn(r)〉

)(
∇
i
δnl − i〈χn(r)|∇|χl(r)〉

)
ψl(r)

+ (U(r) + Em)ψm(r) +
∑
l∈g

1
2m

(∇ · 〈χm(r)|∇|χl(r)〉)ψl(r)

+
∑
n,l∈g

1
2m

〈χm(r)|∇|χn(r)〉〈χn(r)|∇|χl(r)〉ψl(r) −
1

2m

∑
l∈g

〈χm(r)|∇2|χl(r)〉ψl(r).

(2.4)

Defining

~Aml(r) ≡ i〈χm(r)|∇|χl(r)〉, (2.5)
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the above equation can be written as

i
∂

∂t
ψm(r, t) =

∑
n,l∈g

1
2m

(
∇
i
δmn − ~Amn(r)

)(
∇
i
δnl − ~Anl(r)

)
ψl(r) + (U(r) + Em)ψm(r)

+
∑
l∈g

1
2m

(∇〈χm(r)|) · (∇|χl(r)〉)ψl(r) −
∑
n,l∈g

1
2m

~Amn(r) · ~Anl(r)ψl(r). (2.6)

This equation can be written in terms of ~ψ(r), which is the vector whose components are ψm(r)

with m ∈ g, and ~A(r), which is a matrix whose (m, l) element is ~Aml(r). Then,

i
∂

∂t
~ψ(r, t) =

(
1

2m

(
∇
i
I − ~A(r)

)2

+ (U(r) + Em)I + V(r)

)
~ψ(r, t), (2.7)

where (m, l) component of a matrix V(r) is

Vml(r) ≡
1

2m
(∇〈χm(r)|) · (∇|χl(r)〉) −

∑
n∈g

1
2m

~Amn(r) · ~Anl(r). (2.8)

Now the effective Schrödinger equation (2.7) for the wavefunction of the slow component looks

as if the particle is traveling in the vector potential given by ~A(r) and the scalar potential V(r)

in addition to the original potential U(r). The emergent effective vector potential A(r) is called

the Berry’s connection. If there is only one component in g, the wavefunction ψ(r) has only one

component, and so does the Berry’s connection. In this case, the vector potential is called Abelian.

On the other hand, if there are more than one element in g, the wavefunction is a vector with more

than one component, and the Berry’s connection becomes a matrix with more than one dimension.

When the Berry’s connection is noncommutative, the vector potential is non-Abelian.

We can rewrite the scalar potential in a more compact way, by using a relation derived by

taking the derivative of 〈χl(r)|χm(r)〉 = δl,m, which is

(∇〈χl(r)|)|χm(r)〉 = −〈χl(r)|∇|χm(r)〉. (2.9)

Then,

Vml(r) =
∑

n

1
2m

(∇〈χm(r)|) · |χn(r)〉〈χn(r)|∇|χl(r)〉 −
∑
n∈g

1
2m

~Amn(r) · ~Anl(r)

= −
∑

n

1
2m

〈χm(r)|∇|χn(r)〉 · 〈χn(r)|∇|χl(r)〉 −
∑
n∈g

1
2m

~Amn(r) · ~Anl(r)

=
∑

n

1
2m

~Amn(r) · ~Anl(r) −
∑
n∈g

1
2m

~Amn(r) · ~Anl(r)

=
∑
n 6∈g

1
2m

~Amn(r) · ~Anl(r), (2.10)
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which is an expression found in [33].

Finally, we note that the matrix ~A(r) is a vector of Hermitian matrices:

~Aml(r) = i〈χm(r)|∇|χl(r)〉 = −i (∇〈χm(r)|) |χl(r)〉 = (i〈χl(r)|∇|χm(r)〉)∗ = ~Alm(r)∗. (2.11)

So far we have developed a general theory of the Berry’s connection. Now, let us look at some

specific examples of the use of Berry’s connections to realize artificial gauge fields in ultracold gases.

2.3 Creating artificial gauge fields

There are many proposals to create artificial gauge fields using Berry’s connection. Here we describe

a scheme which was used in the first experimental realization of an artificial gauge field in [24, 25]3.

Consider a system of ultracold 87Rb atoms, focusing on the three hyperfine levels with F = 1.

Two of the states |g1〉 and |g2〉, are coupled to the third state |e〉, with space dependent complex

Rabi frequencies κ1 and κ2. The Hamiltonian of the three internal states in {|g1〉, |e〉, |g2〉} basis is

H =
1
2


−2δ κ∗1 0

κ1 0 κ2

0 κ∗2 2δ

 , (2.12)

where 2δ is the detuning of Raman excitation between the states |g1〉 and |g2〉. Choosing the laser

configuration so that the difference of the wave vectors of two coupling lasers is directed in the x

direction and κ1 = κ∗2 = κe−ikdx, the Hamiltonian becomes

H = δ


−1

κ

2δ
eikdx 0

κ

2δ
e−ikdx 0

κ

2δ
eikdx

0
κ

2δ
e−ikdx 1

 ≡ δ


−1

tan θ√
2
eikdx 0

tan θ√
2
e−ikdx 0

tan θ√
2
eikdx

0
tan θ√

2
e−ikdx 1

 , (2.13)

where tan θ ≡ κ/
√

2δ. The eigenstates of this Hamiltonian are 0 and ±δ/ cos θ = ±
√
δ2 + κ2/2.

The normalized eigenvectors corresponding to the eigenvectors −
√
δ2 + κ2/2, 0, and

√
δ2 + κ2/2

3 The analysis of the scheme we describe here is based on [33], which makes explicit use of the Berry’s connection.

On the other hand, the original analysis of the setup, which is given in [34], does not directly use the Berry’s

connection. The two analyses yield the same result in the parameter regime where they are both valid. However, the

analysis given in [34] applies to a wider parameter regime.
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are

|−〉 ≡


eikdx cos2(θ/2)

− 1√
2

sin θ

e−ikdx sin2(θ/2)

 , |0〉 ≡


eikdx sin θ√

2

cos θ

−e−ikdx sin θ√
2

 , |+〉 ≡


eikdx sin2(θ/2)

1√
2

sin θ

e−ikdx cos2(θ/2)

 , (2.14)

respectively. Assuming the energy −
√
δ2 + κ2/2 is lower than the other two states, we can use an

adiabatic approximation in which the system follows the lowest energy eigenstate throughout the

system’s evolution. In this approximation, the artificial gauge field created is an Abelian gauge

field, which is:

~A = i〈−|∇|−〉 = − cos θ∇(kdx) = (−kd cos θ, 0, 0), (2.15)

and the artificial magnetic field is

~B = ∇× ~A = (0,−kd∂z cos θ, kd∂y cos θ), (2.16)

where cos θ depends on position through the position dependence of δ. The first experimental

realization of the artificial gauge field was with a constant δ, which leads to non-zero vector field,

but zero artificial magnetic field [24]. Later the same group realized a non-zero artificial magnetic

field utilizing a δ with spatial variation in the y direction [25]. The artificial magnetic field was

thus in the z direction and they observed quantized vortices in the BEC as shown in the Figure

2.1.

In a similar manner, a non-Abelian gauge field can be artificially created in ultracold gases. In

the next section, we turn our attention to the Rashba-Dresselhaus spin-orbit coupling, which is a

special kind of non-Abelian gauge fields.

2.4 Rashba-Dresselhaus spin-orbit coupling

2.4.1 Hamiltonian

Among the many possible configurations of non-Abelian gauge fields in ultracold atoms, special

interest has been given to a certain type of non-Abelian gauge field which is known as Rashba-

Dresselhaus spin-orbit coupling.
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vortices did not form a lattice and the positions of the vortices were
irreproducible between different experimental realizations, consist-
ent with our GPE simulations. We measured Nv as a function of
detuning gradient d0 at two couplings, BVR 5 5.85EL and 8.20EL

(Fig. 2). For each VR, vortices appeared above a minimum gradient
when the corresponding field B!h i~d’ LA!x

!
Ld

" #
exceeded the crit-

ical field B!c . (For our coupling, B* is only approximately uniform
over the system and ÆB*æ is the field averaged over the area of the
BEC.) The inset shows Nv for both values of VR plotted versus
WB!=W0~Aq! B!h i=h, the vortex number for a system of area
A~pRxRy with the asymptotic vortex density, where Rx (or Ry) is
the Thomas–Fermi radius along x̂x or ŷyð Þ. The system size, and thus
B!c , are approximately independent of VR, so we expected this plot to
be nearly independent of Raman coupling. Indeed, the data for
BVR 5 5.85EL and 8.20EL only deviated for Nv , 5, probably owing
to the intricate dynamics of vortex nucleation27.

Figure 3 illustrates a progression of images showing that vortices
nucleate at the system’s edge, fully enter to an equilibrium density
and then decay along with the atom number. The timescale for vortex
nucleation depends weakly on B*, and is more rapid for larger B* with
more vortices. It is about 0.3 s for vortex number Nv $ 8, and
increases to about 0.5 s for Nv 5 3. For Nv 5 1 (B* near B!c ), the single
vortex always remains near the edge of the BEC. In the dressed state,
spontaneous emission from the Raman beams removes atoms from
the trap, causing the population to decay with a 1.4(2)-s lifetime, and
the equilibrium vortex number decreases along with the area of the
BEC.

To verify that the dressed BEC has reached equilibrium, we pre-
pared nominally identical systems in two different ways. First, we
varied the initial atom number and measured Nv as a function of
atom number N at a fixed hold time of th 5 0.57 s. Second, starting
with a large atom number, we measured both Nv and N, as they
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Figure 2 | Appearance of vortices at different detuning gradients. Data was
taken for N 5 1.4 3 105 atoms at hold time th 5 0.57 s. a–f, Images of the
| mF 5 0æ component of the dressed state after a 25.1-ms TOF with detuning
gradient d0/2p from 0 to 0.43 kHzmm21 at Raman coupling BVR 5 8.20EL.
g, Vortex number Nv versus d0 at BVR 5 5.85EL (blue circles) and 8.20EL (red
circles). Each data point is averaged over at least 20 experimental

realizations, and the uncertainties represent one standard deviation s. The
inset displays Nv versus the synthetic magnetic flux WB!=W0~Aq! B!h i=h in
the BEC. The dashed lines indicate d0, below which vortices become
energetically unfavourable according to our GPE computation, and the
shaded regions show the 1s uncertainty from experimental parameters.
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Figure 3 | Vortex formation. a–f, Images of the | mF 5 0æ component of the
dressed state after a 30.1-ms TOF for hold times th between 20.019 s and
2.2 s. The detuning gradient d0/2p is ramped to 0.31 kHzmm21 at the
coupling BVR 5 5.85EL. g, Top panel shows time sequence of d0. (a.u.,

arbitrary units.) Bottom panel shows vortex number Nv (solid symbols) and
atom number N (open symbols) versus th with a population lifetime of
1.4(2) s. The number in parentheses is the uncorrelated combination of
statistical and systematic 1s uncertainties.
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Figure 2.1: Vortices created in a BEC of 87Rb coupled to an artificial magnetic field. δ′ is the

gradient of the detuning δ. As δ′ increases, the number of vortices increases because

the artificial magnetic field becomes larger. The asymmetry in the shape of the cloud

is from a shear force due to the Raman lasers. Adapted by permission from Macmillan

Publishers Ltd: Nature 462, 628-632, copyright 2009 [25].

The theory of Rashba-Dresselhaus spin-orbit coupling was originally developed in the context

of two-dimensional semiconductors [35, 36]. The Rashba spin-orbit coupling and the Dresselhaus

spin-orbit coupling both couple the momentum p and the spin σ, but their origins are different. The

Rashba spin-orbit coupling is the result of the inversion asymmetry of the confining potential (or

the structure), whereas the Dresselhaus spin-orbit coupling is the result of the inversion asymmetry

of the bulk [37, 38]. The overall spin-orbit coupling is the result of an interplay between the Rashba

and the Dresselhaus spin-orbit couplings.

The Rashba spin-orbit coupling is given by the Hamiltonian

HR = cR (pxσy − pyσx) , (2.17)

and the Dresselhaus spin-orbit coupling is

HD = cD (pxσx − pyσy) , (2.18)

where cR and cD are respective coupling strengths. In order to facilitate our analysis let us first
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transform the Hamiltonians by performing a pseudospin rotation given by a unitary matrixe−iπ/8 0

0 eiπ/8

 . (2.19)

Under this transformation, the Pauli matrices transform to

σx →

eiπ/8 0

0 e−iπ/8

σx

e−iπ/8 0

0 eiπ/8

 =
σx − σy√

2
,

σy →

eiπ/8 0

0 e−iπ/8

σy

e−iπ/8 0

0 eiπ/8

 =
σx + σy√

2
. (2.20)

Then, the Rashba and Dresselhaus Hamiltonians transform as

HR → cR

(
px
σx + σy√

2
− py

σx − σy√
2

)
= cR

(
px − py√

2
σx +

px + py√
2

σy

)
(2.21)

HD → cD

(
px
σx − σy√

2
− py

σx + σy√
2

)
= cD

(
px − py√

2
σx − px + py√

2
σy

)
. (2.22)

Finally, let us rename the axes in the momentum space so that

px − py√
2

→ px,
px + py√

2
→ py. (2.23)

Thus, we obtain

HR → cR (pxσx + pyσy) , (2.24)

HD → cD (pxσx − pyσy) . (2.25)

The sum of the two spin-orbit coupling Hamiltonians give

HR + HD → (cR + cD)pxσx + (cR − cD)pyσy ≡ κ

m
pxσx +

ηκ

m
pyσy, (2.26)

where κ ≡ m(cR +cD) and η ≡ (cR−cD)/(cR +cD). The parameter κ measures the overall strength

of the Rashba-Dresselhaus spin-orbit coupling, while η is a measure of the relative strength of the

Rashba-Dresselhaus spin-orbit couplings. Without a loss of generality, we can assume κ > 0 and

0 ≤ η ≤ 1 4. In the case of pure Rashba spin-orbit coupling, we have η = 1, and in the case of an
4 When κ < 0 or η < 0 or 1 < η, we can always flip the signs of px or py and redefine the axis of momenta to

satisfy κ > 0 and 0 ≤ η ≤ 1.
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equal mixture of the Rasbha and the Dresselhaus spin-orbit coupling (cR = cD), we have η = 0.

Since η also sets the anisotropy of the spin-orbit coupling in x and y directions in the rotated

basis, we will call η the anisotropy of the spin-orbit coupling. In what follows, we consider the

Rashba-Dresselhaus spin-orbit coupling in the rotated basis and use

HRD ≡ κ

m
pxσx +

ηκ

m
pyσy, (2.27)

as the Rashba-Dresselhaus spin-orbit interaction.

2.4.2 Proposed scheme

There have been a several proposals to realize Rashba-Dresselhaus spin-orbit coupling in ultracold

gases [39, 40, 41, 42, 43]. Here we describe one scheme utilizing “dark states” following the argument

in [33]. This scheme utilizes a multipod configuration, where N (almost) degenerate levels |gj〉,

where j = 1, · · · , N are coupled to one excited state |e〉 with position dependent complex Rabi

frequencies κj(r), described by an internal Hamiltonian

H =
N∑

j=1

(
κj(r)

2
|e〉〈gj | + h.c.

)
. (2.28)

Eventually we take N = 3, but for the moment, we proceed with the general case of N states. We

choose the coupling lasers so that

κj(r) =
κ√
N
eikj ·r, (2.29)

where kj ≡ k(− cosαj , sinαj , 0) and α ≡ 2πj/N . Then,

H =
κ

2
|e〉

 N∑
j=1

〈gj |
eikj ·r
√
N

+ h.c. ≡ κ

2
|e〉〈B| + h.c. (2.30)

Thus, among the N degenerate states, only |B〉, which is called the bright state, is coupled to the

excited state. The N − 1 states which are not coupled to the excited state are called dark states.

We consider the situation where the atoms stay adiabatically in the dark states. We can take the

basis of the dark states to be

|Dn〉 ≡
N∑

j=1

|gj〉
eiαjn−ikj ·r

√
N

, (2.31)
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where n = 1, · · · , N−1. One can prove that |e〉, |B〉, and |Dn〉 form an orthonormal basis. We note

here that eigenstates of the Hamiltonian (2.30) with non-zero energies are |±〉 ≡ (|e〉 ± |B〉)/
√

2

with energies ±κ/2. Thus, although the dark states do not couple to the excited states, there is a

lower energy state than the dark states. The artificial gauge field created in the dark states is

~Anm = i〈Dn|∇|Dm〉 = i
1
N

N∑
j,l=1

〈gj |e−iαjn+ikj ·r∇eiαlm−ikl·r|gl〉

= i
1
N

N∑
j=1

(−ikj)e−iαj(n−m)

= − k

N

N∑
j=1

(cosαj ,− sinαj , 0)e−iαj(n−m)

= − k

N

N∑
j=1

1
2
(eiαj + e−iαj , ieiαj − ie−iαj , 0)e−iαj(n−m)

= −k
2
(δn,m+1 + δn,m−1, iδn,m+1 − iδn,m−1, 0), (2.32)

where n,m = 1, · · · , N − 1, and the artificial scalar potential is

Vnm = − 1
2m

(〈Dn|∇|−〉〈−|∇|Dm〉 + 〈Dn|∇|+〉〈+|∇|Dm〉)

= − 1
2m

〈Dn|∇|B〉〈B|∇|Dm〉

= − 1
2m

1
N

N∑
j=1

(−ikj)e−iαjn · 1
N

N∑
l=1

(−ikl)eiαlm

=
k2

2m
1
N

N∑
j=1

(cosαj ,− sinαj , 0)e−iαjn · 1
N

N∑
l=1

(cosαl,− sinαl, 0)eiαlm

=
k2

8m
(δn,1 + δn,N−1, iδn,1 − iδn,N−1, 0) · (δm,N−1 + δm,1, iδm,N−1 − iδm,1, 0)

=
k2

4m
(δn,1δm,1 + δn,N−1δm,N−1) . (2.33)

Choosing N = 3, the the artificial gauge field is a vector of 2 × 2 matrices,

~A = −k
2

(σx, σy, 0) , (2.34)

which is exactly the pure Rashba spin-orbit coupling, and the artificial scalar potential is

V =
k2

4m
I2×2, (2.35)



22 Chapter 2: Artificial gauge fields in ultracold atoms

which is proportional to the identity matrix and simply moves the zero of the energy.

Experimentally, the pure Rashba spin-orbit coupling has not been realized yet. The scheme

described above utilizing dark states is, although in principle possible, technically difficult due to

the short lifetime of particles which is the result of collisions which initiate transitions from dark

states to the lower energy state. A scheme to overcome this problem has been proposed [43].

The equal mixture of the Rashba and the Dresselhaus spin-orbit couplings is experimentally

realized in [27]. There, the experimenters use a setup similar to the one used to create an artificial

Abelian gauge field described in the section 2.3, but they decouple one state by means of a large

detuning and create an effective 2× 2 Hamiltonian, which after a proper rotation of a basis has the

form of an equal mixture of Rashba-Dresselhaus spin-orbit coupling (i.e. zero anisotropy η = 0).

The vector potential itself is then Abelian since only one component is non-zero, but the scalar

potential is also a 2 × 2 matrix, and the artificial gauge field is non-Abelian in the sense that the

vector potential and the scalar potential do not commute. A theoretical analysis of this system is

given by Ho and Zhang in [44].

2.4.3 Single particle motion

It is well known that a charged particle moving in a constant magnetic field, which is a U(1) Abelian

field, makes a circular trajectory in the plane perpendicular to the magnetic field. Now that we

have an access to non-Abelian gauge fields, it is natural to ask a question: “what is the motion

of a particle moving in an external non-Abelian gauge field?” In this subsection, we start with

the motion of a particle in a general non-Abelian gauge field, and then choose Rashba-Dresselhaus

spin-orbit coupling as a specific example to investigate the details5.

The Hamiltonian of the system is

H =
1

2m
(pxI − Ax)2 +

1
2m

(pyI − Ay)
2 +

1
2m

(pzI − Az)
2 (2.36)

where I is the 2 by 2 identity matrix, and (Ax,Ay,Az) is the vector of SU(2) non-Abelian vector

fields. In the following, we may omit writing I when there is no ambiguity. The magnetic field B

is defined through the field strength tensor Fij , which is defined as

Fij = ∂iAj − ∂jAi − i[Ai,Aj ]. (2.37)

5 A similar analysis is given in [45].
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The magnetic field is then defined by

Bi =
εijkFjk

2
, (2.38)

where εijk is a completely anti-symmetric unit tensor with εxyz = 1. For example, since Fij is

anti-symmetric,

Bz = Fxy = (∇× ~A)z +
1
i
[Ax,Ay]. (2.39)

Note that this magnetic field is still a 2 by 2 matrix. From this expression, we can see that we can

have non-zero magnetic field even when the vector potential is constant due to the non-Abelian

nature of the vector potential.

To obtain a constant SU(2) magnetic field in z-direction, we can assume a vector potential of

the form

~A = (Ax,Ay, 0), (2.40)

where Ax and Ay do not depend on position. Then, the magnetic field is

~B =
(

0, 0,
1
i
[Ax,Ay]

)
. (2.41)

Next, we solve the Heisenberg equations of motion for the Hamiltonian.

Heisenberg equations of motion

In the presence of the magnetic field (2.40), the Hamiltonian of our system is

H =
1

2m
(pxI − Ax)2 +

1
2m

(pyI − Ay)
2 +

1
2m

p2
zI. (2.42)

Let us define the time evolution operator U by

U = exp (−iHt) . (2.43)

Then, operator O in the Heisenberg representation is

O(t) = U †OU, (2.44)

whose time evolution is determined by

i
d

dt
O(t) = U †[O,H]U (2.45)
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Since there is no explicit position dependence in the Hamiltonian, we have

i
d

dt
px(t)I = i

d

dt
py(t)I = i

d

dt
py(t)I = 0. (2.46)

Therefore, the momentum is a constant of motion and we may write

px(t) = px, py(t) = py, pz(t) = pz. (2.47)

The time dependence of position is more complicated. The z-component is the simplest, and we

have

i
d

dt
z(t)I = U †[z,H]U = U † ipz

m
U = i

pz(t)
m

I = i
pz

m
I. (2.48)

Therefore, integrating yields

z(t) =
pz

m
t+ z(0). (2.49)

Omitting the obvious I, the time dependence of x is given by

i
d

dt
x(t) = U †[x,H]U =

1
2m

U †[x, (px − Ax)2]U =
i

m
U † (px − Ax)U = i

px(t) − Ax(t)
m

. (2.50)

Note that the vector potential Ax also evolves with time in the Heisenberg representation according

to Ax(t) = U †AxU , due to the non-Abelian nature of the potential. A similar equation of motion

holds for y(t), and we obtain

d

dt
x(t) =

px(t) − Ax(t)
m

,
d

dt
y(t) =

py(t) − Ay(t)
m

. (2.51)

Next, we need to look at the time evolution of the vector potential in the Heisenberg representation.

From the Heisenberg equations of motion, we obtain

i
d

dt
Ax(t) = U †[Ax,H]U =

1
2m

U †[Ax, (py − Ay)
2]U

= − 1
2m

U † ([Ax,Ay] (py − Ay) + (py − Ay) [Ax,Ay])U

= − i

2m
U † (Bz (py − Ay) + (py − Ay)Bz)U. (2.52)

Therefore, we have

d

dt
Ax(t) = − 1

2m
(2pyBz(t) − Bz(t)Ay(t) − Ay(t)Bz(t)) . (2.53)
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Similarly, for Ay(t), we have

d

dt
Ay(t) =

1
2m

(2pxBz(t) − Bz(t)Ax(t) − Ax(t)Bz(t)) . (2.54)

Finally, we need an equation of motion for Bz(t), which is

d

dt
Bz(t) =

1
i

d

dt
[Ax(t),Ay(t)] = −U †[[Ax,Ay],H]U

= − 1
2m

U †[[Ax,Ay], (px − Ax)2 + (py − Ay)
2]U. (2.55)

Before choosing a particular vector potential, let us see how the change in species, which cor-

responds to the change in hyperfine species in ultracold gases, occur in this setup. For example,

suppose the system is originally prepared in the first species, whose state can be written as (1, 0)t,

apart from the center-of-mass wavefunction. Then, at a later time t, the probability of finding the

particle in the first species is given by

(
1 0

)
U †

1 0

0 0

U

1

0

 . (2.56)

Then, defining

P1 =

1 0

0 0

 , (2.57)

the probability of finding the particle in the first species can be calculated through the Heisenberg

representation of P1, whose time evolution is

i
d

dt
P1(t) = U †[P1,H]U

=
1

2m
U †[P1, (px − Ax)2 + (py − Ay)

2]U. (2.58)

To simplify further, we need a specific choice of the vector potential, which we will do in the next

section.

Rashba-Dresselhaus

Now, for the sake of concreteness, we consider a Rashba-Dresselhaus-type of non-Abelian gauge

field: Ax = −κσx, Ay = −κσy, and Az = 0 with κ being a constant. For this vector potential, the
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magnetic field is Bz = [Ax,Ay]/i = 2κ2σz. Then, the equation of motion for Bz(t) is

d

dt
Bz(t) = − 1

2m
U †[[Ax,Ay], (px − Ax)2 + (py − Ay)

2]U

=
2κ2

i

1
2m

U †[σz, (px − Ax)2 + (py − Ay)
2]U

=
κ2

im
U †[σz,−2pxAx − 2pyAy]]U

=
κ3

im
U †(4ipxσy − 4ipyσx)U

=
4κ2

m
(pyAx(t) − pxAy(t)) . (2.59)

Meanwhile, the equations of motion for Ax and Ay are

d

dt
Ax(t) = − 1

2m
U † (2pyBz − BzAy − AyBz)U

= − 1
2m

U † (4κ2pyσz + 2κ3σzσy + 2κ3σyσz

)
U

= − 1
2m

U †4κ2pyσzU

= −py

m
Bz(t) (2.60)

d

dt
Ay(t) =

1
2m

(2pxBz(t) − Bz(t)Ax(t) − Ax(t)Bz(t))

=
px

m
Bz(t). (2.61)

Therefore, we can write

d2

dt2
(pyAx(t) − pxAy(t)) = −

p2
y

m

d

dt
Bz(t) −

p2
x

m

d

dt
Bz(t)

= −
p2

x + p2
y

m

4κ2

m
(pyAx(t) − pxAy(t)) . (2.62)

For convenience, define p⊥ =
√
p2

x + p2
y. Then, the solution to the above differential equation is

pyAx(t) − pxAy(t) = C sin
(

2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

)
, (2.63)

where, setting t = 0, we see

D = pyAx − pxAy. (2.64)

C is determined by taking the derivative of (2.63):

d

dt
(pyAx(t) − pxAy(t)) = −

p2
y

m
Bz(t) −

p2
x

m
Bz(t) = −

p2
⊥
m

Bz(t)

=
2κp⊥
m

C cos
(

2κp⊥
m

t

)
− 2κp⊥

m
D sin

(
2κp⊥
m

t

)
, (2.65)
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from which we see

Bz(t) = −2κ
p⊥

C cos
(

2κp⊥
m

t

)
+

2κ
p⊥

D sin
(

2κp⊥
m

t

)
. (2.66)

Taking t = 0, we may conclude that

C = −p⊥
2κ

Bz = −p⊥κσz. (2.67)

Now, we can find Ax(t) and Ay(t).

d

dt
Ax(t) = −py

m
Bz(t) =

2κpy

mp⊥
C cos

(
2κp⊥
m

t

)
− 2κpy

mp⊥
D sin

(
2κp⊥
m

t

)
(2.68)

d

dt
Ay(t) =

px

m
Bz(t) = −2κpx

mp⊥
C cos

(
2κp⊥
m

t

)
+

2κpx

mp⊥
D sin

(
2κp⊥
m

t

)
. (2.69)

These equations can be integrated to give

Ax(t) =
py

p2
⊥

(
C sin

(
2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

)
− D

)
+ Ax (2.70)

Ay(t) = − px

p2
⊥

(
C sin

(
2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

)
− D

)
+ Ay. (2.71)

Note that they give the correct values at t = 0.

We can now finally write down x(t) and y(t). The equations of motion were

d

dt
x(t) =

px(t) − Ax(t)
m

=
px − Ax

m
− py

mp2
⊥

(
C sin

(
2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

)
− D

)
(2.72)

d

dt
y(t) =

py(t) − Ay(t)
m

=
py − Ay

m
+

px

mp2
⊥

(
C sin

(
2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

)
− D

)
. (2.73)

Integrating yields

x(t) =
px − Ax

m
t− py

2κp3
⊥

(
C − C cos

(
2κp⊥
m

t

)
+ D sin

(
2κp⊥
m

t

)
− 2κp⊥

m
Dt

)
+ x(0) (2.74)

y(t) =
py − Ay

m
t+

px

2κp3
⊥

(
C − C cos

(
2κp⊥
m

t

)
+ D sin

(
2κp⊥
m

t

)
− 2κp⊥

m
Dt

)
+ y(0), (2.75)

with

C = −p⊥
2κ

Bz = −p⊥κσz (2.76)

D = pyAx − pxAy. (2.77)
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At this point, x(t) and y(t) are 2× 2 matrices. To obtain the motion of a particle, we need to take

the expectation values with respect to the initial state we want to consider. We can also calculate

the probability of being in the first (hyperfine) species P1(t).

i
d

dt
P1(t) =

1
2m

U †[P1, (px − Ax)2 + (py − Ay)
2]U

= − 1
m
U †[P1, pxAx + pyAy]U

=
κ

m
U †(px[P1, σx] + py[P1, σy])U

=
κ

m
U †(pxiσy − pyiσx)U

= i
1
m

(pyAx(t) − pxAy(t)),

= i
1
m

(
C sin

(
2κp⊥
m

t

)
+ D cos

(
2κp⊥
m

t

))
. (2.78)

Therefore,

P1(t) =
1

2κp⊥

(
C − C cos

(
2κp⊥
m

t

)
+ D sin

(
2κp⊥
m

t

))
+ P1

= −σz

2

(
1 − cos

(
2κp⊥
m

t

))
− pyσx − pxσy

2p⊥
sin
(

2κp⊥
m

t

)
+ P1. (2.79)

Thus, we solved the Heisenberg equations of motion for the particle moving in a non-Abelian field

with ~A = −κ(σx, σy, 0). After taking the expectation values with respect to the initial state of

interest, we see that if the particle does not have a momentum in z direction, the particle will

move in the xy plane forming circular orbit with the center of the circular motion moving linearly.

Additionally, we find that the probability of being in the first species oscillates with time.

In the next subsection, we discuss the unique dispersion of Rashba-Dresselhaus spin-orbit cou-

pling.

2.4.4 Single particle spectrum

The single particle Hamiltonian of Rashba-Dresselhaus spin-orbit coupling can be exactly diago-

nalized. Here, we consider anisotropic Rashba-Dresselhaus spin-orbit coupling described by the

following Hamiltonian in 2 × 2 spinor basis

H =
(pI − ~A)2

2m
− η2κ2

2m
I (2.80)
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with

~A = (Ax,Ay,Az) = −κ(σx, ησy, 0), (2.81)

where 0 ≤ η ≤ 1 sets the anisotropy. When η = 1, the spin-orbit interaction is isotropic. The last

term −η2κ2I/2m in the Hamiltonian is added so that the system’s ground state has zero energy.

Then, diagonalizing

H =
p2 + κ2

2m
I +

κ

m
(pxσx + ηpyσy) =

1
2m

 p2 + κ2 2κ(px − iηpy)

2κ(px + iηpy) p2 + κ2

 , (2.82)

we obtain the single particle energy spectrum

ε±(p) =
(p⊥ ± κ)2 + (1 − η2)p2

y + p2
z

2m
. (2.83)

where we defined p2 ≡ p2
x +p2

y +p2
z and p⊥eiφ ≡ px + iηpy. There are two branches ε−(p) and ε+(p)

in the dispersion. The corresponding eigenvectors are

v±(p) =
1√
2

 1

±eiφ

 , (2.84)

which implies that the eigenstates of the Hamiltonian are

Ψ±,p(r) =
eip·r√

2

 1

±eiφ

 (2.85)

in the position-space basis.

In the second quantized basis, the original Hamiltonian is

H =
∑
p

(
a†p b†p

) (pI − ~A)2 − η2κ2I

2m

ap
bp

 , (2.86)

where ap and bp are the annihilation operators of particles with momentum p in pseudospin species

a and b, respectively. Defining the new operators αp and βp byαp

βp

 ≡ 1√
2

1 −e−iφ

1 e−iφ

ap
bp

 , (2.87)

the Hamiltonian is diagonalized as

H =
∑
p

(
ε−(p)α†

pαp + ε+(p)β†pβp

)
. (2.88)
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It is worth noting that the transformation from (a-b) basis to (α-β) basis depends on the momentum,

as one can see from (2.87). It is this momentum dependence of the transformation that causes the

momentum dependence of the interaction, as we will see in the following chapters.

The single particle energy spectrum (2.83) is drastically modified from the free case, which is

just p2/2m. The energy spectrum with spin-orbit coupling is plotted in Figure 2.2.

px

py

E

�

(a)

px

py

E

�

(b)

Figure 2.2: Dispersion of a particle with Rashba-Dresselahsu spin-orbit coupling (2.83). The dis-

persion in z-direction, which is just p2
z/2m, is not drawn. (a) Pure Rashba spin-orbit

coupling (η = 1) with degeneracy along (p⊥, pz) = (κ, 0). (b) Rashba-Dresselhaus

mixture (η = 0.7) with two-fold degeneracy at p = (±κ, 0, 0).

When 0 ≤ η < 1, the energy spectrum has doubly degenerate minima at p = (±κ, 0, 0). On

the other hand, when η = 1, the energy spectrum is circularly degenerate along p⊥ = κ. These

degenerate single-particle ground states have nontrivial consequences in many-body Bose systems

and many researchers have analyzed the properties of ultracold bosonic systems with Rashba-

Dresselhaus spin-orbit coupling [46, 47, 48, 49, 50, 51, 52, 53, 54].

Before introducing the interaction, let us consider the possibility of BEC in the ideal Bose gas

with Rashba-Dresselhaus spin-orbit coupling.
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2.4.5 Bose-Einstein Condensation without interaction

Introducing the chemical potential µ, the number density of excited particles at temperature T =

1/β is given by

nex =
1
V

∑
p

(
1

eβ(ε−(p)−µ) − 1
+

1
eβ(ε+(p)−µ) − 1

)
. (2.89)

Since the minimum value of ε±(p) is zero, the chemical potential must be negative, as usual. The

right hand side of (2.89) is an increasing function of the chemical potential, and the BEC is formed

at a temperature where the right hand side equals the total number of particles when µ = 0. Then,

at the critical temperature Tc,

n =
∫

d3p

(2π)3

(
1

eβcε−(p) − 1
+

1
eβcε+(p) − 1

)
= (2mTc)3/2

∫
d3p

(2π)3

(
1

e(
√

p2
x+η2p2

y−κ/
√

2mTc)2+(1−η2)p2
y+p2

z − 1

+
1

e(
√

p2
x+η2p2

y+κ/
√

2mTc)2+(1−η2)p2
y+p2

z − 1

)
, (2.90)

where we have rescaled the variable of integration in the second line. For 0 ≤ η < 1, for a given κ

there always exists Tc > 0 which satisfies the above equation. However, for η = 1, the right hand

side diverges and there is no Tc > 0 which can satisfy the equation. This means that for η = 1

there is no BEC transition at a finite temperature for an ideal Bose gas with Rashba-Dresselhaus

spin-orbit coupling. Physically, this absence of BEC for η = 1 is due to the fact that because

of the infinitely degenerate single-particle ground states the low-energy density of states becomes

two-dimensional; focusing on the low-energy, the density of states is

D(E) =
∫

d3p

(2π)3
δ(E − ε−(p)) =

∫
d3p

(2π)3
δ

(
E − (p⊥ − κ)2 + p2

z

2m

)
= 2m

∫
p⊥dp⊥dpz

(2π)2
δ
(
2mE − (p⊥ − κ)2 − p2

z

)
≈ 2mκ

∫
dp⊥dpz

(2π)2
δ
(
2mE − p2

⊥ − p2
z

)
=
mκ

2π
, (2.91)

which is constant as in two dimensional free Bose gas. Thus just as the ideal Bose gas in two

dimensions does not form a BEC at finite temperatures (although superfluidity can appear through
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a Kosterlitz-Thouless mechanism in the presence of interactions), the same mechanism leads to the

absence of BEC at finite temperature in Bose gases with Rashba-Dresselhaus spin-orbit coupling

in the absence of interactions.



Chapter 3

Stability of spin-orbit coupled BEC’s

against fluctuations

3.1 Introduction

Condensates of ultracold bosons in three dimensions with Rashba spin-orbit coupling differ from

usual Bose-Einstein condensates (BEC’s) in several important ways. In the absence of interpar-

ticle interactions, the low-lying density of states is two-dimensional [47], and thus condensation

is destroyed by thermal fluctuations at any non-zero temperature. With interparticle interactions

present, fluctuations around mean-field states lead at finite temperature to an instability of the

plane-wave state in two dimensions [50]. In this chapter, we consider three-dimensional ultracold

bosons with Rashba-Dresselhaus coupling, to investigate the effects of quantum and thermal fluc-

tuations on a plane-wave Bose-Einstein condensation, and show that interactions in fact stabilize

the condensate in 3D. This interaction-induced BEC is a unique feature of bosons with Rashba-

Dresselhaus spin-orbit coupling, with no analogous system yet found. However, unlike in usual

BEC’s, a non-condensed state is not, as we show, kinematically forbidden at any non-zero temper-

ature. Condensation, while favored at very low temperature, should disappear at high temperature.

As in a BCS superconductor, where both a normal and condensed state are allowed at low tempera-

ture, the system should undergo a similar phase transition at a critical temperature. The materials

in this chapter is based on [1].

We consider bosons with Rashba-Dresselhaus spin-orbit coupling in three dimensions with s-

33
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wave contact interactions, described by the Hamiltonian

H =
∑
p

(
a†p b†p

)(p2 + κ2

2m
I +

κ

m
(pxσx + ηpyσy)

)ap
bp


+

1
2V

∑
p1+p2=p3+p4

(
gaa a

†
p4
a†p3

ap2ap1 + gbb b
†
p4
b†p3

bp2bp1 + 2gab a
†
p4
b†p3

bp2ap1

)
≡ Hkin + Hint. (3.1)

In this chapter, we use the (constant) mean-field couplings gij ; effects of higher order corrections

and the renormalization of the effective interaction are considered in the next chapter.

We first discuss the ground state phase diagram within mean-field theory for both anisotropic

and isotropic spin-orbit couplings. Then, focusing on an isotropic spin-orbit coupling, we consider

the quantum and thermal fluctuations upon the mean-field ground state and investigate the stability

of BECs against these fluctuations.

3.2 Mean-field ground state

3.2.1 Anisotropic case

We begin by considering the ground state of the anisotropic case (0 ≤ η < 1). When the spin-

orbit coupling is anisotropic, the single-particle spectrum has two-fold degenerate minima at p =

(±κ, 0, 0) ≡ ±κ. Apart from quantum depletion of condensates, we expect that the condensate is

formed on these two minima. We begin, therefore, by positing the ansatz state1

|Ψ〉 =
1√
N !

(
cκα

†
κ + c−κα

†
−κ

)N
|0〉, (3.2)

where |0〉 is a vacuum state with no particle, the operator α is defined by (2.87), and the normal-

ization requires |cκ|2 + |c−κ|2 = 1.

We wish to determine the coefficients cκ and c−κ which minimize the energy of the system. By

an explicit calculation, we obtain

〈Ψ|H|Ψ〉 = 〈Ψ|Hint|Ψ〉 =
N(N − 1)

8V
(
gaa + gbb + 2gab + 2|cκ|2|c−κ|2 (gaa + gbb − 2gab)

)
. (3.3)

1Note that we can also consider fragmented condensate states as a possible ground state. However, as described

in [55], the fragmented condensate states are quite fragile against external perturbations, so considering realistic

situations we do not worry about the possibility of fragmented condensates
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Thus, if gaa+gbb > 2gab, (cκ, c−κ) = (1, 0) or (0, 1) is preferred, and if gaa+gbb < 2gab, (|cκ|, |c−κ|) =

(1/
√

2, 1/
√

2) is preferred.

The former case, (cκ, c−κ) = (1, 0) or (0, 1), is a BEC made of particles with a single momentum,

and is called a plane wave state. The latter case (|cκ|, |c−κ|) = (1/
√

2, 1/
√

2) is a BEC made of two

different momenta, forming a standing wave, and is called a striped state.

3.2.2 Isotropic case

When the spin-orbit coupling is isotropic (η = 1), the single-particle ground state is highly degen-

erate. Defining αθ ≡ α(κ cos θ,κ sin θ,0), a BEC ansatz generally takes the following form:

|Ψ〉 =
1√
N

 ∑
0≤θ<2π

cθα
†
θ

N

|0〉 =
1√
N

 ∑
0≤θ<2π

cθ
a†θ − e−iθb†θ√

2

N

|0〉 (3.4)

with the normalization
∑

θ |cθ|2 = 1. One can prove

〈Ψ|H|Ψ〉 =
N(N − 1)

8V

∑
p1+p2=p3+p4

(
gaa + gbbe

i(θ4+θ3−θ2−θ1) + 2gabe
i(θ3−θ2)

)
c∗p4

c∗p3
cp2cp1 . (3.5)

The combinations of (p1,p2,p3,p4) which are on the single-particle ground states and conserve

the momentum are

(p,p,p,p) (3.6)

(p,−p,p′,−p′) (3.7)

(p,p′,p,p′) and (p,p′,p′,p) with p 6= ±p′, (3.8)

where p and p′ satisfy p⊥ = p′⊥ = κ. Then,

〈Ψ|H|Ψ〉 =
N(N − 1)

8V

2(gaa + gbb + gab) − (gaa + gbb + 2gab)
∑

θ

|cθ|4 + 2gab

(∑
θ

e−iθ|cθ|2
)2

−2(gaa + gbb)
∑

θ

|cθ+π|2|cθ|2 + gaa

∣∣∣∣∣∑
θ

cθ+πcθ

∣∣∣∣∣
2

+ gbb

∣∣∣∣∣∑
θ

e−2iθcθ+πcθ

∣∣∣∣∣
2
 . (3.9)

We wish to find values of cθ which minimize the energy of the system. However, finding a general

condition for cθ is difficult, so here we estimate the energy for several configurations of cθ and

discuss which state plausibly has the lowest energy.
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Case I : c0 = 1 (plane wave state)

〈Ψ|H|Ψ〉 =
N(N − 1)

8V
[2(gaa + gbb + gab) − (gaa + gbb)] (3.10)

Case II : c0 = cπ = 1/
√

2 (striped state)

〈Ψ|H|Ψ〉 =
N(N − 1)

8V

[
2(gaa + gbb + gab) −

gaa + gbb + 2gab

2

]
(3.11)

Case III : c2πn/M = 1/
√
M with n = 0, 1, · · ·M − 1, and M ≥ 3 is an odd integer

〈Ψ|H|Ψ〉 =
N(N − 1)

8V

[
2(gaa + gbb + gab) −

gaa + gbb + 2gab

M

]
(3.12)

Case IV : c2πn/M = 1/
√
M with n = 0, 1, · · ·M − 1, and M ≥ 4 is an even integer

〈Ψ|H|Ψ〉 =
N(N − 1)

8V

[
2(gaa + gbb + gab) −

gaa + gbb + 2gab

M
− 2(gaa + gbb)

M
+ gaa

]
(3.13)

Comparing these four cases, we see that if gaa + gbb > 2gab, case I (plane wave state) wins, and

if gaa + gbb < 2gab, case II (striped state) wins. In fact, a numerical calculation also gives the

same result [49], which is exactly the same as the anisotropic case. Thus we find that, in Rashba-

Dresselhaus coupled Bose systems, the plane wave state and the striped state are the two states

which are preferred as the ground state within mean-field theory with the bare couplings. Figure

3.1 is the mean-field phase diagram which is valid for both anisotropic and isotropic cases.

In the following section, we consider the effects of fluctuations upon the mean-field ground state

and discuss the stability of the condensates.

3.3 Effects of fluctuations

In this section, we focus on the isotropic spin-orbit coupling η = 1 with isotropic interaction

g ≡ gaa = gbb = gab. The plane wave state and the striped state are degenerate ground states

within mean-field theory with the bare couplings, but a study including quantum and thermal

fluctuations within the bare couplings shows that the plane wave state is favored [54]. Therefore

here we consider a plane wave ground state with wave vector κ ≡ (κ, 0, 0), with macroscopic

occupation, above which quantum and thermal fluctuation will be applied.
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gab

plane wave

striped

(gaa + gbb)/2

Figure 3.1: The mean-field phase diagram of bosons with Rashba-Dresselhaus spin-orbit coupling

with mean-field (bare) interparticle interactions.

Since the operator (a†κ − b†κ)/
√

2 creates a particle in the single-particle ground state with

momentum κ, it is easier to work in the following (−,+) basis:ψ−,p

ψ+,p

 =
1√
2

1 −1

1 1

ap
bp

 . (3.14)

The state created by ψ†
−,κ is macroscopically occupied. In terms of this (−,+) basis, the original

Hamiltonian becomes

H′ =
∑
p

(
ψ†
−,p ψ†

+,p

)[(p2 + κ2

2m
− µ

)
I +

κ

m
(−pxσz + pyσy)

]ψ−,p

ψ+,p


+

g

2V

∑
p1+p2=p3+p4

(
ψ†
−,p4

ψ†
−,p3

ψ−,p2ψ−,p1 + ψ†
+,p4

ψ†
+,p3

ψ+,p2ψ+,p1 + 2ψ†
−,p4

ψ†
+,p3

ψ+,p2ψ−,p1

)
.

(3.15)

In the following, we derive the fluctuations of the system in terms of the single particle matrix

Green ’s functions. We estimate the quantum depletion of the number of particles in the excited

state, and also the lowest order correction to the energy due to quantum fluctuations. We then

look at the infrared structure of the Green’s functions to discuss the stability of condensate at finite

temperature. We also obtain the free energy of a normal state and compare the states with and

without condensates to discuss the phase transition at finite temperature.
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3.3.1 Green’s functions

We use the Bogoliubov approximation, where the operators ψ†
−,κ and ψ−,κ in the Hamiltonian are

replaced by
√
N0, where N0 is the number of condensate particles. Then the Hamiltonian becomes

H′ ∼ −µN0 +
g

2V
N2

0 +
∑
p6=κ

(
ψ†
−,p ψ†

+,p

)[(p2 + κ2

2m
− µ

)
I +

κ

m
(−pxσz + pyσy)

]ψ−,p

ψ+,p


+

g

2V

√
N0

∑
κ+p2=p3+p4

pi 6=κ

(
2ψ†

−,p4
ψ†
−,p3

ψ−,p2 + 2ψ†
−,p4

ψ†
+,p3

ψ+,p2

)

+
g

2V

√
N0

∑
p1+p2=p3+κ

pi 6=κ

(
2ψ†

−,p3
ψ−,p2ψ−,p1 + 2ψ†

+,p3
ψ+,p2ψ−,p1

)

+
g

2V
N0

∑
p 6=κ

(
4ψ†

−,pψ−,p + ψ†
−,2κ−pψ

†
−,p + ψ−,2κ−pψ−,p + 2ψ†

+,pψ+,p

)
+

g

2V

∑
p1+p2=p3+p4

pi 6=κ

(
ψ†
−,p4

ψ†
−,p3

ψ−,p2ψ−,p1 + ψ†
+,p4

ψ†
+,p3

ψ+,p2ψ+,p1 + 2ψ†
−,p4

ψ†
+,p3

ψ+,p2ψ−,p1

)
.

(3.16)

The chemical potential with the Hartree-Fock energy, which we call µ0, is

µ0 =
∂

∂N0
〈H〉 =

〈
g

V
N0 +

g

2V

∑
p 6=κ

(
4ψ†

−,pψ−,p + ψ†
−,2κ−pψ

†
−,p + ψ−,2κ−pψ−,p + 2ψ†

+,pψ+,p

)〉

= gn0 + 2gn− + gn+. (3.17)

From the approximated Hamiltonian (3.16), we would like to construct an equation of motion

for Green’s functions with Hartree-Fock energy included. In the Hartree-Fock approximation, the

terms proportional to
√
N0 in (3.16) do not contribute, thus, we can ignore these terms.

In terms of the following vector in Nambu-Gorkov representation

Ψp(t) ≡
(
ψ−,p(t) ψ†

−,2κ−p(t) ψ+,p(t) ψ†
+,2κ−p(t)

)t

≡
(
ψ−,p(t) ψ†

−,p′(t) ψ+,p(t) ψ†
+,p′(t)

)t
, (3.18)
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where t is the tranposition and p′ ≡ 2κ − p, we define the matrix Greens’s function by

G(p; t1, t2) ≡ −i〈TΨp(t1)Ψp(t2)†〉

= −i

〈
T


ψ−,p(t1)ψ

†
−,p(t2) ψ−,p(t1)ψ−,p′(t2) ψ−,p(t1)ψ

†
+,p(t2) ψ−,p(t1)ψ+,p′(t2)

ψ†
−,p′(t1)ψ

†
−,p(t2) ψ†

−,p′(t1)ψ−,p′(t2) ψ†
−,p′(t1)ψ

†
+,p(t2) ψ†

−,p′(t1)ψ+,p′(t2)

ψ+,p(t1)ψ
†
−,p(t2) ψ+,p(t1)ψ−,p′(t2) ψ+,p(t1)ψ

†
+,p(t2) ψ+,p(t1)ψ+,p′(t2)

ψ†
+,p′(t1)ψ

†
−,p(t2) ψ†

+,p′(t1)ψ−,p′(t2) ψ†
+,p′(t1)ψ

†
+,p(t2) ψ†

+,p′(t1)ψ+,p′(t2)


〉
.

(3.19)

Writing down the Heisenberg equations of motion for ψ−,p and ψ+,p, we can derive the equations

of motion for the Green’s function. The detailed derivation is given in the Appendix B, and the

Green’s function is

G(p, z) =


z −A −gn0 i κ

mpy 0

−gn0 −z − C 0 −i κ
mp

′
y

−i κ
mpy 0 z −B 0

0 i κ
mp

′
y 0 −z −D



−1

, (3.20)

where G(p, z) is the Fourier transform of G(p; t1, t2) defined in (B.15), and

A =
p2 − 2κpx + κ2

2m
− µ+ g(2n0 + 2n− + n+) =

(p − κ)2

2m
− µ+ g(2n0 + 2n− + n+) (3.21)

B =
p2 + 2κpx + κ2

2m
− µ+ g(n0 + n− + 2n+) =

(p + κ)2

2m
− µ+ g(n0 + n− + 2n+) (3.22)

C =
p′2 − 2κp′x + κ2

2m
− µ+ g(2n0 + 2n− + n+) =

(p′ − κ)2

2m
− µ+ g(2n0 + 2n− + n+) (3.23)

D =
p′2 + 2κp′x + κ2

2m
− µ+ g(n0 + n− + 2n+) =

(p′ + κ)2

2m
− µ+ g(n0 + n− + 2n+). (3.24)

Explicitly calculating the inverse, we obtain

G(p, z) =
1

detG−1(p, z)
(z −B)

(
(z + C)(z +D) − κ2

m2 p
′2
y

)
−gn0(z −B)(z +D) · · ·

−gn0(z −B)(z +D) −(z +D)
(
(z −A)(z −B) − κ2

m2 p
2
y

)
· · ·

...
...

. . .

 , (3.25)
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where

detG−1(p, z) =

(
(z −A)(z −B) −

κ2p2
y

m2

)(
(z + C)(z +D) −

κ2p′2y
m2

)
+ (gn0)2(z −B)(z +D).

(3.26)

We have thus obtained an expression for the Green’s function. In the following, we investigate the

stability of the system using the Green’s function.

3.3.2 Low momentum excitations

Let us now look at the low momentum excitations of our system. The excitations are determined

by the poles of the Green’s function in frequency space, which are the solutions to the equation

detG−1(p, z) = 0. Since detG−1(p, z) = detG−1(2κ−p,−z), the roots of detG−1(p, z) = 0 come

in pairs: two positive and two negative, corresponding to two excitations, for each p. One of the

two excitations is gapless in the limit p → κ, and the other is gapless in the limit p → −κ. In the

following, we investigate them one by one.

Excitation gapless in the limit p → κ

Since our condensate is sitting at a momentum κ = (κ, 0, 0), it is convenient to introduce a shifted

momentum q by writing p = κ + q and look at small q. Then, p′ = 2κ − p = κ − q. Also, for

notational convenience, we write n = n0 + n− + n+. Then,

A =
q2

2m
− µ+ ng + g(n0 + n−) = C (3.27)

B =
(q + 2κ)2

2m
− µ+ ng + gn+ (3.28)

D =
(q − 2κ)2

2m
− µ+ ng + gn+. (3.29)

At this point, we would like to use µ0 as a chemical potential. Defining ∆n ≡ n+ − n−, we obtain

A = C =
q2

2m
+ gn0, B =

(q + 2κ)2

2m
+ g∆n, D =

(q − 2κ)2

2m
+ g∆n. (3.30)

Focusing on the low momentum excitations, we assume |q| � 2κ, so that Thus,

A = C =
q2

2m
+ gn0 B ≈ D ≈ 2κ2

m
+ g∆n. (3.31)
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Then, the low-momentum excitations are determined by

detG−1(κ + q, z) ≈ z4 −

(
A2 +B2 − (gn0)2 + 2

κ2q2y
m2

)
z2 +

(
AB −

κ2q2y
m2

)2

− (gn0)2B2 = 0.

(3.32)

Solving for z, we obtain

z2 =
A2 +B2 − (gn0)2

2
+
κ2q2y
m2

±

√(
A2 +B2 − (gn0)2

2
+
κ2q2y
m2

)2

−
(
AB −

κ2q2y
m2

)2

+ (gn0)2B2.

(3.33)

Thus, among two positive roots of detG−1(κ+q, z) = 0, the one given by the positive sign in (3.33)

is gapped, and the one with negative sign in (3.33) is gapless in the limit q → 0. The spectrum

gapped at q = 0 is, as we see below, gapless in the limit p → −κ (namely q → −2κ). Thus, the

low-energy excitation spectrum gapless in the limit q → 0 is

ε1(q) ≈

√
2gn0

(
q2x + q2z

2m
+

q2y
2m

m

2κ2

(
g∆n+

q2y
2m

))
. (3.34)

The dispersion relation for qy = 0 is linear at low momenta, as in the usual Bogoliubov spec-

trum. Since q2y/2m is generally larger than g|∆n| in typical experimental setups, the dispersion is

essentially quadratic for qx = qz = 02, and thus

ε1(q) ≈

√
2gn0

(
q2x + q2z

2m
+

1
4κ2

q4y
2m

)
. (3.35)

Excitation gapless in the limit p → −κ

To consider a gapless excitation in the limit p → −κ, we define q′ ≡ p + κ. The excitation

corresponds to the positive root of detG−1(p, z) = 0 for a given p which becomes gapless in the

limit q′ → 0. Ignoring n− and n+ as small, as we discuss below, one finds that the excitation is

ε2(q′) =
q′2x + q′2y

2m
+

gn0

κ2/m+ gn0

q′2y
4m

. (3.36)

This excitation is quadratic and free particle-like in all directions, unlike the other excitation. The

spectra of the two excitations agree with the result of [54].
2 As discussed below, ∆n is of order n0

p

(mg)3n0, and n0 ∼ N/L3, where N is the total number of particles, and

L is the linear size of the system, and the smallest qy is ∼ π/L. Then naively writing g ∼ 4πa/m where a is the

scattering length, we obtain |g∆n|/q2
y/2m ∼ 102N3/2(a/L)5/2. Taking typical experimental parameters from [27],

N ∼ 105, L ∼ 10−2cm, and a ∼5nm we estimate |g∆n| < 0.1q2
y/2m.
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3.3.3 Condensate depletion

We now consider the condensate depletion of the system due to quantum fluctuations. The number

of particles in (−) state is given by

n− =
i

(2π)4

∫
d3qdz

(z −B)
(
(z + C)(z +D) − κ2

m2 q
2
y

)
(
(z −A)(z −B) − κ2

m2 q2y

)(
(z + C)(z +D) − κ2

m2 q2y

)
+ (gn0)2(z −B)(z +D)

,

(3.37)

where only the negative poles in the z integral are taken upon integration. Similarly, the number

of particles in (+) state is

n+ =
i

(2π)4

∫
d3qdz

(z −A)
(
(z + C)(z +D) − κ2

m2 q
2
y

)
+ (gn0)2(z +D)(

(z −A)(z −B) − κ2

m2 q2y

)(
(z + C)(z +D) − κ2

m2 q2y

)
+ (gn0)2(z −B)(z +D)

.

(3.38)

The poles in z at large q behave as −q2/2m, and since at large q, A ∼ B ∼ C ∼ D ∼ q2/2m, naive

power counting would indicate that the integrand after the z integration behaves as q−1, which

combined with three q-integrals yields a quadratic ultraviolet divergence. In fact, cancellations in

the integrand lead to convergence, which we now show. Since the Green’s function has two negative

and two positive poles, let us factor the denominator in the form

detG−1(p, z) =
(

(z −A)(z −B) − κ2

m2
q2y

)(
(z + C)(z +D) − κ2

m2
q2y

)
+ (gn0)2(z −B)(z +D)

= (z −E1)(z − E2)(z − E3)(z −E4), (3.39)

where E1 < E2 < 0 < E3 < E4. Asymptotically at large q, E1 ∼ E2 ∼ −q2 and E3 ∼ E4 ∼ q2.

Then,

n− =
i

(2π)4

∫
d3qdz

(z −B)
(
(z + C)(z +D) − κ2

m2 q
2
y

)
(z − E1)(z −E2)(z − E3)(z − E4)

=
i

(2π)4
(2πi)

∫
d3q

(E1 −B)
(
(E1 + C)(E1 +D) − κ2

m2 q
2
y

)
(E1 − E2)(E1 − E3)(E1 − E4)

+
(E2 −B)

(
(E2 + C)(E2 +D) − κ2

m2 q
2
y

)
(E2 − E1)(E2 − E3)(E2 − E4)

 . (3.40)
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On the other hand, since(
(E1 −A)(E1 −B) − κ2

m2
q2y

)(
(E1 + C)(E1 +D) − κ2

m2
q2y

)
+ (gn0)2(E1 −B)(E1 +D) = 0,

(3.41)

we can write

(E1 + C)(E1 +D) − κ2

m2
q2y = − (gn0)2(E1 −B)(E1 +D)

(E1 −A)(E1 −B) − κ2

m2 q2y
(3.42)

and similarly for E1 → E2. Thus, we can rewrite (3.40) as

n− =
i

(2π)4
(2πi)

∫
d3q

(
−(E1 −B)

(E1 − E2)(E1 − E3)(E1 −E4)
(gn0)2(E1 −B)(E1 +D)
(E1 −A)(E1 −B) − κ2

m2 q2y
+ (E1 ↔ E2)

)
.

(3.43)

As E1 −E2 ∼ q and E1 −E3 ∼ E1 −E4 ∼ E1 −A ∼ E1 −B ∼ q2, the denominator of the integral

goes as ∼ q9. On the other hand, as E1 +D ∼ q, the numerator goes as q5. Therefore, the overall

integrand goes as q−4, which combined with the integral over d3q does not result in an ultraviolet

divergence. We can also rewrite the integral as

n− =
i

(2π)4

∫
d3qdz

−(gn0)2(z −B)2(z +D)

detG−1(p, z)
(
(z −A)(z −B) − κ2

m2 q2y

) , (3.44)

which is easier to evaluate numerically.

We can similarly see that n+ is not ultraviolet divergent:

n+ =
i

(2π)4

∫
d3qdz

−(gn0)2(z +D) κ2

m2 q
2
y

detG−1(p, z)
(
(z −A)(z −B) − κ2

m2 q2y

) . (3.45)

Since the integrand itself contains n− and n+ through ∆n, these equations should be solved

self-consistently. To a first approximation (which is equivalent to Bogoliubov approximation), we

can ignore ∆n in the integrand and evaluate n− and n+ directly. Having done so, we must then

check the consistency of our calculation by computing ∆n/n0 and observing whether it is small

enough so that the approximation is justified.

Equations (3.44) and (3.45) can be evaluated numerically as a function of κ/
√

2mgn0. The

number of excited particles nex = n− + n+ is plotted in Fig. 3.23. Generally, n− � n+, and

the contribution of n+ to the number of excited particles is negligible. As the figure shows, the

condensate depletion increases with κ/
√

2mgn0, and is of order n0

√
(2mg)3n0 � n, thus justifying

our use of the Bogoliubov approximation.
3 Thanks to numerical assistance from Philip Powell.
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Figure 3.2: The number of excited particles, in units of (2mgn0)3/2 as a function of the spin-orbit

coupling strength κ in units of
√

2mgn0. Generally n− � n+ and nex ≈ n−.

3.3.4 Ground state energy corrections

We can similarly evaluate the correction to the ground state energy from the quantum fluctuation.

The ground state energy density in terms of Green’s functions is

E

V
=
µn

2
− g

(
n2
− + n2

+ + n−n+

)
+

1
2

i

(2π)3

∫
d3pdzTr

((z +
p2 + κ2

2m

)
I +

κ

m
(−pxσz + pyσy)

)G11(p, z) G13(p, z)

G31(p, z) G33(p, z)

 ,
(3.46)

where the second term takes care of the double-counting issue of Hartree-Fock approximation, and

the term in braces is z plus the single-particle Hamiltonian in the (−,+) basis. As before, assuming

n− and n+ to be much smaller than n0, which is appropriate at the dilute limit, we ignore the

contribution from Hartree-Fock terms. The integral equals gn0(2mgn0)3/2 times a dimensionless

function X of µ/gn0 and κ/
√

2mgn0. Since the chemical potential in mean-field is µ = gn0 and

nex is O((2mgn0)3/2), the energy density is

E

V
=
µn

2
+Xgn(2mgn)3/2, (3.47)
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where X is, explicitly,

Xgn0(2mgn0)3/2 =
1
2

i

(2π)4

∫
d3pdz

1
detG−1(p, z)

[(
z +

p2 + 2κpx + κ2

2m

)
(z +D)(gn0)2

+
(

(z +A)(z +D) − κ2

m2
p2

y

)((
z +

p2 + κ2

2m

)
(2z −A−B) − κ

m
px(A−B) − 2

κ2

m2
p2

y

)]
. (3.48)

Then, we write the chemical potential similarly as (c.f. [56]),

µ = gn
(
1 + Y

√
(2mg)3n

)
. (3.49)

Since

µ =
∂E

∂N
≈ ∂

∂n

(
E

V

)
=

1
2
µ+

n

2
∂µ

∂n
+

∂

∂n

(
Xgn(2mgn)3/2

)
=

1
2
µ+

1
2
gn

(
1 +

3
2
Y
√

(2mg)3n
)

+
5
2
Xgn(2mgn)3/2, (3.50)

we find

µ = gn
(
1 + Y

√
(2mg)3n

)
= gn

(
1 +

3
2
Y
√

(2mg)3n
)

+ 5Xgn(2mgn)3/2, (3.51)

which implies

Y = −10X. (3.52)

Thus the ground state energy is

E

V
≈ gn2

2

(
1 − 8X

√
(2mg)3n

)
, (3.53)

In calculating X, we take µ = gn0; deviations of µ from gn0 result in higher order corrections.

For κ→ 0, one finds X = −1/15
√

2π2, which leads to

E

V
(κ = 0) =

gn2

2

(
1 +

8
15

√
2π2

√
(2mg)3n

)
, (3.54)

which is the ground state energy derived by Lee and Yang [57, 58]. As we tune κ away from 0, we

need to evaluate the integral numerically. Figure 3.3 shows the shift in the ground state energy,

∆E ≡ E/V − gn2/2, in units of (
√

(2mg)3n)gn2/2, as a function of κ/
√

2mgn0. The energy

decreases with increasing κ, and ∆E changes from positive to negative at κ ∼ 0.6
√

2mgn0, an

effect too small to see in the figure.
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Figure 3.3: The shift in the ground state energy density, ∆E, in units of (
√

(2mg)3n)gn2/2, as a

function of the spin-orbit coupling strength κ in units of
√

2mgn0.

3.3.5 Finite temperature BEC

In the absence of interactions, bosons with Rashba spin-orbit coupling do not have a finite tem-

perature transition to a BEC because the density of states becomes two-dimensional at low energy.

However, in the presence of interactions, the density of states is modified and, as we will see soon,

it is possible to have a BEC at finite temperature.

The number of excited particles at temperature T is

n− + n+ = − T

(2π)3
∑

ν

∫
d3p (G11(p, zν) +G22(p, zν)) , (3.55)

where the ν sum is over bosonic Matsubara frequencies.

The system forms a BEC at a given temperature when nex converges in the infrared, and the

total particle density exceeds nex. The infrared structure is captured by the zν = 0 component

of the Matsubara sum. Since there are two gapless excitations ε1(q) and ε2(q′), we need to add

infrared contributions from two limits q → 0 and q′ → 0. In the limit of small q and q′ and using

µ = µ0, one finds from inverting

G11(κ + q, 0) +G33(κ + q, 0) = − gn0

ε1(q)2
,

G11(−κ + q′, 0) +G33(−κ + q′, 0) = − 1
ε2(q′)

, (3.56)
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respectively, and thus,

n− + n+ ∼ − T

(2π)3

∫
d3p (G11(p, 0) +G33(q, 0))

∼ T

∫
d3q

(2π)3

(
gn0

ε1(q)2
+

1
ε2(q)

+ C

)

∼ T

∫
d3q

(2π)3

 m

q2x + q2z + q4y/4κ2
+

2m

q2x + q2z + q2y
gn0

2κ2/m+ 2gn0

+ C

 , (3.57)

where C is a constant as q → 0. The integral converges in the infrared, and thus a BEC can form

at finite temperature.

Equivalently, the number of excited particles is given in terms of the fluctuations of the con-

densate by nex = 〈δψ†
−(r)δψ−(r)〉. To illustrate the connection we evaluate the fluctuations in

terms of the deviation of the free energy with respect to small variations of 〈ψ−〉 neglecting the free

particle-like excitations ε2. The mean-field condensate wavefunction is 〈ψ(r)〉0 =
√
n0e

iκ·r. Then,

defining 〈Ψ−(r)〉 ≡ (e−iκ·r〈ψ−(r)〉, eiκ·r〈ψ−(r)〉∗), the following relation holds (cf. Eq. (18) of [59])

δF = −1
2

∫
d3q

(2π)3
δ〈Ψ−(q)〉†G−1

−−(κ + q, 0)δ〈Ψ−(q)〉, (3.58)

where G−−(p; , t1, t2) ≡ −i〈T (Ψ−(p, t1)Ψ
†
−(p, t2)〉 is the upper left 4 components of G(p; t1, t2),

and δ〈Ψ−(q)〉 is the small variation of the Fourier transform of 〈Ψ−(r)〉. Explicitly, from (3.20)

one finds,

G−1
−−(κ + q, 0) = −

A(κ + q) − (κqy/m)2

B(κ+q) gn0

gn0 A(κ + q) − (κqy/m)2

D(κ+q)

 . (3.59)

Since phase fluctuations are important in low energy, let us define the phase θ(r) by 〈Ψ−(r)〉 =

(
√
n0e

iθ(r),
√
n0e

−iθ(r)), and then in terms of its Fourier transform θ(q) we have

δF =
n0

2

∫
d3q

(2π)3
|θ(q)|2

(
q2 − 2κ2q2y

(
1

(2κ − q)2
+

1
(2κ + q)2

))
. (3.60)

Thus

|δ〈ψ−(q)〉|2 =
n0

∫
d{θ(q)}|θ(q)|2e−βδF∫
d{θ(q)〉}e−βδF

= mT

(
q2 − 2κ2q2y

(
1

(2κ − q)2
+

1
(2κ + q)2

))−1

.

(3.61)
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Approximating the final term by its small q limit, we find

|δ〈ψ−(q)〉|2 ≈ mT

q2x + q2z + q4y/4κ2
, (3.62)

from which we find

nex =
∫

d3q

(2π)3
|δ〈ψ−(q)〉|2 ∼ T

∫
d3q

(2π)3
m

q2x + q2z + q4y/4κ2
, (3.63)

in agreement with the first term, the leading term, of (3.57). This result is consistent with Jian

and Zhai’s effective field theory approach to calculate phase fluctuations [50], applied in three

dimensions.

3.4 Normal state

So far, we have assumed the existence of condensate, and proved that the condensate is not de-

stroyed by thermal fluctuations. We should also ask whether a non-condensed state is favorable

at finite temperature. Here we obtain the free energy of the normal state within the Hartree-Fock

approximation and compare the free energies with and without a condensate.

The Green’s functions of a normal state within the Hartree-Fock approximation can be obtained

by setting n0 = 0 in (3.20), which yieldsG11(p, z) G13(p, z)

G31(p, z) G33(p, z)

−1

=

 z −A i κ
mpy

−i κ
mpy z −B

 , (3.64)

where

A =
(p − κ)2

2m
− µ+ g(2n− + n+), B =

(p + κ)2

2m
− µ+ g(n− + 2n+). (3.65)

Then, the reduced Hamiltonian within the Hartree-Fock approximation is

HHF = −V g
(
n2
− + n2

+ + n−n+

)
+
∑
p6=κ

(
ψ†
−,p ψ†

+,p

) A −i κ
mpy

i κ
mpy B

ψ−,p

ψ+,p

 . (3.66)

In fact, n− = n+ = n/2, where n is the total number density of particles; namely there is no

spontaneous imbalance of population in each pseudospin species. One one can prove this by in-

troducing independent chemical potentials for each species, and seeing that the second derivative
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of the Ginzburg-Landau free energy with respect to the population imbalance is positive. The

derivation is outlined in Appendix C.

Setting n− = n+ = n/2, the Helmholtz free energy density is

F = µn− 3
4
gn2 +

1
βV

∑
p

ln
(
1 − e−βξα(p)

)
+

1
βV

∑
p

ln
(
1 − e−βξβ(p)

)
, (3.67)

where

ξα(p) =
(p⊥ − κ)2 + p2

z

2m
− µ+

3
2
gn, ξβ(p) =

(p⊥ + κ)2 + p2
z

2m
− µ+

3
2
gn. (3.68)

The number equation, which determines the chemical potential for a given temperature, is

n

2
=

1
V

∑
p

(
fB(ξα(p))

2
+
fB(ξβ(p))

2

)
. (3.69)

An important feature of this number equation is that there is always a value of µ which satisfies this

equation for a given temperature, thus the state without condensate is not kinematically forbidden

at any non-zero temperature.

As T → 0 in the absence of a condensate, µ→ 3gn/2, and

F → 3
4
gn2. (3.70)

This energy is larger than the ground state energy with condensate

1
2
gn2

(
1 + O(

√
(2mg)3n)

)
. (3.71)

Therefore, at sufficiently low temperature, a condensate is energetically preferred. At low temper-

ature F (µ, n0) < F (µ, 0), so n0 > 0. The condensate density decreases with temperature, and the

transition to the normal state, if second order, occurs when ∂F (µ, n0)/∂n0 = 0 at n0 = 0. Deter-

mination of the order of the transition, the transition temperature, and possible critical exponents

at the transition is left to the future4.

4 At the mean field level, the transition is (spuriously) first order, as in the Bogoliubov approximation to the finite

temperature Bose gas [60].



Chapter 4

Renormalized interaction in spin-orbit

coupled BEC’s

4.1 Introduction

In this chapter we consider the effects of the renormalized interaction in ultracold atoms with

Rashba-Dresselhaus spin-orbit coupling. Although our main concern is bosons, we also derive the

renormalized interaction for fermions. The material in this chapter is based on papers [2, 3].

When the inter-particle potential is described by an s-wave contact interaction, the relation

between the bare interaction and the effective interaction is non-trivial, because the scattering

t-matrix, which serves as an effective interaction, depends on the large momentum cutoff, as ex-

plained in Appendix A.6, and the proper renormalization of the momentum cutoff is required. For

Bose gases in the absence of Rashba-Dresselhaus spin-orbit coupling, the low energy t-matrix is

proportional to the scattering length, in terms of which the momentum cutoff is renormalized, and

thus the effective interaction is proportional to the scattering length. However, for Bose gases with

Rashba-Dresselhaus interaction, as we see below, this simple relation between the bare interaction

and the scattering length does not hold.

For a contact interaction with strength g, in the absence of Rashba-Dresselhaus spin-orbit

coupling, the integral equation for the zero-energy T-matrix is, from (A.151),

1
T0(0, 0)

=
m

4πa
=

1
g

+
∫ Λ d3k

(2π)3
1

2ε0(k)
, (4.1)

where ε0(k) ≡ k2/2m is the free particle dispersion and a is the scattering length in free space. We

have written the free t-matrix T0 to distinguish from the t-matrix with spin-orbit coupling. After

50
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introducing the Rashba-Dresselhaus spin-orbit coupling, the dispersion is altered, and the relation

(4.1) is no longer valid [53]. To obtain the effective interaction in terms of the physical observables,

we must first obtain the correct t-matrix.

Naively replacing ε0(k) by the dispersion of the lower branch, ε−(k) = {(k⊥ − κ)2 + k2
z}/(2m),

demonstrates the apparent difficulty in obtaining the relation between bare coupling and the t-

matrix. For the zero-energy t-matrix, one may write

1
T

∼ 1
g

+
∫ Λ d3k

(2π)3
m

(k⊥ − κ)2 + k2
z

∼ 1
g

+
m

2π2

(
Λ +

πκ

2
lnΛ + · · ·

)
. (4.2)

The integral is ultraviolet divergent. Even after renormalizing the linear divergence using (4.1), we

are still left with the logarithmic divergence.

As we will see in the following section, the logarithmic divergences do indeed vanish if we include

the contributions from the both lower and upper energy branches when calculating the t-matrix.

Thus, in the end, the t-matrix can be written solely in terms of low energy parameters which do

not depend on either the ultraviolet cutoff or the short distance behavior of the interaction.

4.2 T-matrix

4.2.1 Bethe-Salpeter equations

The starting Hamiltonian for both isotropic and anisotropic spin-orbit coupling is the same as the

previous chapter, Eq. (3.1), which is

H =
∑
p

(
a†p b†p

)(p2 + κ2

2m
I +

κ

m
(pxσx + ηpyσy)

)ap
bp


+

1
2V

∑
p1+p2=p3+p4

(
gaa a

†
p4
a†p3

ap2ap1 + gbb b
†
p4
b†p3

bp2bp1 + 2gab a
†
p4
b†p3

bp2ap1

)
≡ Hkin + Hint, (4.3)

with 0 ≤ η ≤ 1. We consider both bosons and fermions. For fermions, gaa = gbb = 0. We

are interested in the low-energy scattering, especially the zero-energy scattering of particles in the

single-particle ground states. In this case, it is convenient to move to the (α, β) basis introduced
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in (2.87), in terms of which the Hamiltonian becomes

H =
∑
p

[
ε−(p)α†

pαp + ε+(p)β†pβp

]
+ Hint, (4.4)

where the interaction part of the Hamiltonian is of the form

Hint =
1
V

∑
p1+p2=p3+p4

[
1
2
V(1)

φ1,φ2;φ3,φ4

(
α†

p4
α†

p3
αp2αp1 + β†p4

β†p3
βp2βp1

)
+

1
2
V(2)

φ1,φ2;φ3,φ4

(
β†p4

β†p3
αp2αp1 + α†

p4
α†

p3
βp2βp1

)
+

1√
2
V(3)

φ1,φ2;φ3,φ4

(
α†

p4
β†p3

βp2βp1 + β†p4
α†

p3
αp2αp1

)
+

1√
2
V(4)

φ1,φ2;φ3,φ4

(
α†

p4
α†

p3
βp2αp1 + β†p4

β†p3
αp2βp1

)
+ V(5)

φ1,φ2;φ3,φ4
α†

p4
β†p3

βp2αp1

]
. (4.5)

The coefficients V (i) are defined by

V(1)
φ1,φ2;φ3,φ4

=
gaa

4
+
gbb

4
ei(φ1+φ2−φ3−φ4) ± gab

8

(
eiφ1 ± eiφ2

)(
e−iφ3 ± e−iφ4

)
,

V(2)
φ1,φ2;φ3,φ4

=
gaa

4
+
gbb

4
ei(φ1+φ2−φ3−φ4) ∓ gab

8

(
eiφ1 ± eiφ2

)(
e−iφ3 ± e−iφ4

)
,

1√
2
V(3)

φ1,φ2;φ3,φ4
=
gaa

4
− gbb

4
ei(φ1+φ2−φ3−φ4) ± gab

8

(
eiφ1 ± eiφ2

)(
e−iφ3 ∓ e−iφ4

)
,

1√
2
V(4)

φ1,φ2;φ3,φ4
=
gaa

4
− gbb

4
ei(φ1+φ2−φ3−φ4) ± gab

8

(
eiφ1 ∓ eiφ2

)(
e−iφ3 ± e−iφ4

)
,

1
2
V(5)

φ1,φ2;φ3,φ4
=
gaa

4
+
gbb

4
ei(φ1+φ2−φ3−φ4) ∓ gab

8

(
eiφ1 ∓ eiφ2

)(
e−iφ3 ∓ e−iφ4

)
, (4.6)

where the upper signs are for bosons and the lower signs are for fermions. The angles φi are defined

by pi,x + iηpi,y ≡ eiφi

√
p2

i,x + η2p2
i,y. As we can see, the interaction mixes different species in the

(α, β) basis. The coefficients of each term are chosen so that the Feynman rules for vertices in the

(α, β) basis are just V(i)s.

We now calculate the t-matrix describing the collision of two atoms in the α-branch with

incoming momenta q/2 + p and q/2 − p and outgoing momenta q/2 + p′ and q/2 − p′. The

momentum of each particle is on the degenerate ground-state circle for η = 1 and either p0 or

−p0 for 0 ≤ η < 1. The single particle propagators are 1/(ω − ε±(p)), and characteristically, the

interactions in the (α, β) basis are dependent on angle. The t-matrix is the sum of ladder diagrams

(Fig. 4.1). We denote the momenta of particles in the intermediate off-shell states by q/2 + k and

q/2−k and label angles of the momenta φi as in the Fig. 4.1. The Bethe-Salpeter equation for the



4.2. T-matrix 53

Γq

2
+ p

q

2
− p

q

2
− p

′

q

2
+ p

′ =

+ q

2
+ k

q

2
− k

+

+ + · · ·

φ1

φ2 φ3

φ4

φ5

φ6

Figure 4.1: The scattering t-matrix for two particles in the α-branch. The solid lines denote

particles in α-branch, and the dashed lines are particles in the β-branch. The φi are

the angles of the corresponding momenta in the x-y plane.

zero-energy vertex function Γαα
αα with incoming and outgoing α-α particles is

Γαα
αα(p,p′;q) = V(1)

φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

V(1)
φ1,φ2;φ5,φ6

Γαα
αα(k,p′;q)

ε−(q
2 − k) + ε−(q

2 + k)
+

V(2)
φ1,φ2;φ5,φ6

Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)
±

V(3)
φ1,φ2;φ6,φ5

Γαα
αβ(k,p′;q)

ε+(q
2 − k) + ε−(q

2 + k)

 ,
Γαα

ββ (p,p′;q) = V(2)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

V(2)
φ1,φ2;φ5,φ6

Γαα
αα(k,p′;q)

ε−(q
2 − k) + ε−(q

2 + k)
+

V(1)
φ1,φ2;φ5,φ6

Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)
+

V(3)
φ1,φ2;φ5,φ6

Γαα
αβ(k,p′;q)

ε+(q
2 − k) + ε−(q

2 + k)

 ,
Γαα

αβ(p,p′;q) = V(4)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

V(4)
φ1,φ2;φ5,φ6

Γαα
αα(k,p′;q)

ε−(q
2 − k) + ε−(q

2 + k)
±

V(4)
φ2,φ1;φ5,φ6

Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)
+

V(5)
φ1,φ2;φ6,φ5

Γαα
αβ(k,p′;q)

ε+(q
2 − k) + ε−(q

2 + k)

 ,
(4.7)

where Γρτ
µν(p,p′;q) is the t-matrix for scattering of particles in the branches µ, ν with momenta

q/2 ± p to branches ρ, τ with final momenta q/2 ± p′. The angles φ5 and φ6 are the angles of

q/2−k and q/2+k in the x-y plane with y components multiplied by η. As before, the upper signs
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are for bosons and the lower signs are for fermions. We obtain the t-matrices by solving this set of

Bethe-Salpeter equations. We consider fermions and bosons separately in the following subsections.

4.2.2 Fermions

Solving for the t-matrices for fermions is easier than bosons, because for fermions gaa = gbb = 0.

Looking at (4.7), we can observe

Γαα
αα(p,p′;q) = −Γββ

αα(p,p′;q),
Γαα

αα(p,p′;q)
eiφ1 − eiφ2

=
1√
2

Γαβ
αα(p,p′;q)
eiφ1 + eiφ2

. (4.8)

Then, the set of Bethe-Salpeter equations reduces to

Γαα
αα(p,p′;q)
eiφ1 − eiφ2

= −gab

8

(
e−iφ3 − e−iφ4

)
+
gab

8

∫
d3k

(2π)3

[ (
e−iφ5 − e−iφ6

)
ε−(q

2 − k) + ε−(q
2 + k)

+

(
e−iφ5 − e−iφ6

)
ε+(q

2 − k) + ε+(q
2 + k)

−
2
(
e−iφ5 + e−iφ6

)
ε+(q

2 − k) + ε−(q
2 + k)

eiφ5 + eiφ6

eiφ6 − eiφ5

]
Γαα

αα(k,p′;q). (4.9)

Rearranging terms, we have

Γαα
αα(p,p′;q)

(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)
= −gab

8
− gab

8

∫
d3k

(2π)3

[
|eiφ5 − eiφ6 |2

ε−(q
2 − k) + ε−(q

2 + k)

+
|eiφ5 − eiφ6 |2

ε+(q
2 − k) + ε+(q

2 + k)
+

2|eiφ5 + eiφ6 |2

ε+(q
2 − k) + ε−(q

2 + k)

]
Γαα

αα(k,p′;q)
(eiφ6 − eiφ5)(e−iφ3 − e−iφ4)

. (4.10)

Defining

Γ̃αα
αα(p,p′;q) ≡ Γαα

αα(p,p′;q)
(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)

, (4.11)

equation (4.10) can be regarded as a self-consistent equation for Γ̃:

Γ̃αα
αα(p,p′;q) = −gab

8
− gab

8

∫
d3k

(2π)3

[
|eiφ5 − eiφ6 |2

ε−(q
2 − k) + ε−(q

2 + k)

+
|eiφ5 − eiφ6 |2

ε+(q
2 − k) + ε+(q

2 + k)
+

2|eiφ5 + eiφ6 |2

ε+(q
2 − k) + ε−(q

2 + k)

]
Γ̃αα

αα(k,p′;q). (4.12)

Since the right hand side does not depend on p, Γ̃αα
αα(p,p′;q) does not depend on p. Then,(

1 +
gab

8

∫
d3k

(2π)3

[
|eiφ5 − eiφ6 |2

ε−(q
2 − k) + ε−(q

2 + k)
+

|eiφ5 − eiφ6 |2

ε+(q
2 − k) + ε+(q

2 + k)
+

2|eiφ5 + eiφ6 |2

ε+(q
2 − k) + ε−(q

2 + k)

])
× Γ̃αα

αα(p,p′;q) = −gab

8
, (4.13)
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which implies

Γαα
αα(p,p′;q) = −(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)×(

8
gab

+
∫

d3k

(2π)3

[
|eiφ5 − eiφ6 |2

ε−(q
2 − k) + ε−(q

2 + k)
+

|eiφ5 − eiφ6 |2

ε+(q
2 − k) + ε+(q

2 + k)
+

2|eiφ5 + eiφ6 |2

ε+(q
2 − k) + ε−(q

2 + k)

])−1

.

(4.14)

This is the t-matrix for fermions in the lower dispersion branch. To determine if this t-matrix

depends on the ultraviolet cutoff, we define the dimensionless functions

f(q̃/2) ≡

π

mκ

∫
d3k

(2π)3

[
1

ε−(q
2 − k) + ε−(q

2 + k)
+

1
ε+(q

2 − k) + ε+(q
2 + k)

+
2

ε+(q
2 − k) + ε−(q

2 + k)
− 4m

k2

]
,

(4.15)

g(q̃/2) ≡

− π

mκ

∫
d3k

(2π)3

[
cos(φ5 − φ6)

ε−(q
2 − k) + ε−(q

2 + k)
+

cos(φ5 − φ6)
ε+(q

2 − k) + ε+(q
2 + k)

− 2 cos(φ5 − φ6)
ε+(q

2 − k) + ε−(q
2 + k)

]
,

(4.16)

where q̃ ≡ |q|/κ. One can prove that f(x) and g(x) do not diverge in the ultraviolet. Then,

Γαα
αα(p,p′;q) = −(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)

(
8
gab

+
∫

d3k

(2π)3
8m
k2

+
2mκ
π

[f(q̃/2) + g(q̃/2)]
)−1

.

(4.17)

The relation between the scattering length aab in the absence of the spin-orbit coupling and the

bare coupling gab is (4.1)

1
gab

=
m

4πaab
−
∫

d3k

(2π)3
m

k2
. (4.18)

Then,

Γαα
αα(p,p′;q) = −(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)

(
2m
πaab

+
2mκ
π

[f(q̃/2) + g(q̃/2)]
)−1

= −πaab

2m
(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)
1 + aabκ[f(q̃/2) + g(q̃/2)]

. (4.19)

This t-matrix is explicitly free of the ultraviolet divergence, and written solely in terms of physi-

cal observables. Similarly, logarithmic ultraviolet divergences do not appear in the gap equation
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for fermions in paired states, and linear divergences can again be renormalized away in favor of

scattering lengths, as discussed in [61, 62, 63, 64, 65, 66].

The functions f(x) and g(x) depend on the anisotropy η. In the isotropic case of η = 1, the

functions behave as in Fig. 4.2. The functions diverges logarithmically at the infrared as x → 0,

0.2 0.4 0.6 0.8 1.0
x

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.2: The center-of-mass momentum dependence of f(x) (solid line) and g(x) (dashed line)

when η = 1 as defined in Eq. (4.15) and (4.16).

which leads to the conclusion

Γαα
αα(p,p′; 0) = 0, (4.20)

namely, there is no interaction if the center of mass momentum of the two colliding particles is

zero. In other words, if the colliding particles have opposite momenta, the particles do not feel the

interaction. This infrared divergence for η = 1 arises from the existence of infinitely many pairs of

zero-energy single-particle states with q = 0. For q 6= 0, there is only one pair of zero-energy states

and, thus, no infrared divergence. A similar mechanism for the infrared divergence occurs in Bose

systems as well, as we discuss next.

4.2.3 Bosons

As for fermions, the t-matrix for bosons does not contain any ultraviolet divergences. However, the

bosonic t-matrix is much more difficult to obtain. The detailed derivation is given in Appendix D.
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The result is

Γαα
αα(p,p′;q) =

π

mκ

(
1 ei(φ1+φ2) eiφ1 + eiφ2

2

)
M−1


1

e−i(φ3+φ4)

e−iφ3 + e−iφ4

2

 , (4.21)

where

M =


f( q̃

2) + 1
κaaa

h1(q̃/2) h2(q̃/2)

h∗1(q̃/2) f( q̃
2) + 1

κabb
h∗2(q̃/2)

h∗2(q̃/2) h2(q̃/2) 1
2

(
f( q̃

2) − g( q̃
2) + 1

κaab

)
 , (4.22)

with q̃ ≡ q/κ and q̃ ≡ q/κ. The dimensionless functions f(q̃/2) and g(q̃/2) are the same as in the

previous subsection:

f(q̃/2) ≡

π

mκ

∫
d3k

(2π)3

[
1

ε−(q
2 + k) + ε−(q

2 − k)
+

1
ε+(q

2 + k) + ε+(q
2 − k)

+
2

ε−(q
2 + k) + ε+(q

2 − k)
− 4m

k2

]
g(q̃/2) ≡

− π

mκ

∫
d3k

(2π)3

[
cos(φ5 − φ6)

ε−(q
2 + k) + ε−(q

2 − k)
+

cos(φ5 − φ6)
ε+(q

2 + k) + ε+(q
2 − k)

− 2 cos(φ5 − φ6)
ε−(q

2 + k) + ε+(q
2 − k)

]
.

(4.23)

The dimensionless functions h1(q̃/2), and h2(q̃/2) are defined by

h1(q̃/2) ≡

π

mκ

∫
d3k

(2π)3

[
ei(φ5+φ6)

ε−(q
2 + k) + ε−(q

2 − k)
+

ei(φ5+φ6)

ε+(q
2 + k) + ε+(q

2 − k)
− 2ei(φ5+φ6)

ε−(q
2 + k) + ε+(q

2 − k)

]
h2(q̃/2) ≡

π

2mκ

∫
d3k

(2π)3

[
eiφ5 + eiφ6

ε−(q
2 + k) + ε−(q

2 − k)
− eiφ5 + eiφ6

ε+(q
2 + k) + ε+(q

2 − k)
− 2(eiφ5 − eiφ6)
ε−(q

2 + k) + ε+(q
2 − k)

]
.

(4.24)

Note that changing the angle of q in the x-y plane only changes the overall phases of h1(q̃/2)

and h2(q̃/2). In addition, these four functions are everywhere finite except for the logarithmic

divergence of f(q̃/2) at q̃ = 0.
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4.3 Ground state phases

We now determine the many-body ground state via mean-field theory using the t-matrix derived

above as the effective interaction, an approximation valid as long as the na3
ij are all � 1, where n

is the particle density. In mean field, we assume that all particles are in the single-particle ground

states (κ, 0, 0) or (−κ, 0, 0), and thus ignore possible occupation of excited states as a consequence

of the interaction. In this case the system is described essentially by the Nozières model [67].

The issues of going beyond mean field, (e.g., via Bogoliubov theory) as well as including possible

effects of the condensate on the effective interaction, are beyond the scope of this thesis and are

left for the future. For 0 ≤ η < 1, we take the particles to be either at p = (κ, 0, 0) or (−κ, 0, 0);

the relevant interactions are those between particles of either the same momentum or opposite

momenta. We denote the interaction with same momentum by Γ0 ≡ Γαα
αα(0, 0;±2κ) and that with

opposite momenta by Γπ ≡ Γαα
αα(±κ,∓κ, 0), where κ ≡ (κ, 0, 0) as in the previous chapter.

The relevant terms in the interaction are then equivalent to the Nozières model [67]

Hint ∼
1

2V
Γ0N(N + 1) +

1
V

(2Γπ − Γ0)NπN0, (4.25)

where N0 ≡ α†
(κ,0,0)α(κ,0,0) and Nπ ≡ α†

(−κ,0,0)α(−κ,0,0). The total number of particles, N = N0+Nπ,

is fixed. For Γ0 < 2Γπ, the ground state is a single BEC with either all the particles in (κ, 0, 0)

or (−κ, 0, 0), while, for Γ0 > 2Γπ, the condensate is nominally fragmented with half of the atoms

forming a BEC in one state and the other half forming a BEC in the other state. However, as shown

in Ref. [55], such a fragmented state is expected to be unstable against formation of a coherent

condensate with a condensate wave function that is a coherent superposition of the two momenta.

Following the conventions of Refs. [49, 50], we call the single BEC phase “plane wave,” and the BEC

phase with two different momenta “striped.” The difference of the present calculation from earlier

studies with mean-field couplings [49, 50], is that here the bare couplings, V(1)
0,0;0,0 and V(1)

0,π;0,π, are

replaced by Γ0 and Γπ, respectively.

While there is no difficulty in deriving the phase diagrams for general scattering lengths, we

assume here for simplicity that the intraspecies scattering lengths are equal, aaa = abb. Then,

Γ0 =
2π
mκ

1/κaaa + 1/κaab + 2f(1) − g(1) + h1(1) − 4h2(1)
(1/κaab + f(1) − g(1))(1/κaaa + f(1) + h1(1)) − 4h2(1)2

,

Γπ =
2π
mκ

1
1/κaaa + f(0) − h1(0)

, (4.26)
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where h1(0) ≡ h1(q̃ = (0, 0, 0)), h1(1) ≡ h1(q̃ = (1, 0, 0)), etc. The quantities f(0), h1(0), f(1),

g(1), h1(1), and h2(1), which depend on η, can be calculated numerically. The interaction between

different momenta Γπ is independent of aab, and is a monotonically increasing nonnegative function

of κaaa, equal to 0 at κaaa = 0 and reaching 2π/ [mκ(f(0) − h1(0))] at κaaa = ∞. The dependence

of Γ0 on κaaa and κaab is more complicated. We plot Γ0 and Γπ, both scaled by 2π/(mκ), for

η = 0.5 in Fig. 4.3. Now we discuss the ground-state phases from η = 0 to 1.

(a)

0.2 0.4 0.6 0.8 1.0
Κ aaa

0.2

0.4

0.6

0.8

GΠ

(b)

Figure 4.3: (a) Γ0 as a function of κaaa and κaab, and (b) Γπ as a function of κaaa, both scaled

by 2π/(mκ), for η = 0.5. The vertical plane in the middle of panel (a) indicates the

resonance where, from left to right, Γ0 diverges to positive infinity and comes back

from negative infinity.

When η = 0, the effective interactions are relatively simple. It can be shown that f(0) = h1(0)

for η = 0; hence Γπ = 2πaaa/m, and the effective interaction in the q = 0 channel does not depend

on the spin-orbit coupling strength κ. In the q/2 = (κ, 0, 0) channel, f(1) = −1, g(1) = 0, h1(1) = 0,

and h2(1) = 1/2, so,

Γ0 =
2π
mκ

κaaa + κaab − 4κaaaκaab

1 − κaaa − κaab
(4.27)

for η = 0. The effective interaction at small κaaa and κaab is positive, and diverges when κaaa+κaab

approaches unity. As one crosses the line κaaa + κaab = 1, Γ0 starts at negative infinity and

remains negative until κaaa + κaab = 4κaaaκaab, after which Γ0 is positive. When Γ0 is negative,

we expect the BEC in bulk to be unstable against collapse, as in ordinary BEC’s with negative
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scattering length in the absence of spin-orbit couplings. We call the phase with an attractive

interaction “unstable.” The three possible ground-state phases, plane wave, striped, and unstable,

are determined by the sign of Γ0 and the interplay between Γ0 and Γπ.

As η increases from 0, the basic structure of Γ0 does not change; Γ0 remains positive at small

κaaa and κaab, and as these variables increase, Γ0 again diverges at a line in the κaaa-κaab plane,

beyond which it is negative up to a second line, after which Γ0 is positive. Since the denominator

of Γ0 is quadratic in 1/(κa) [Eq. (4.26)], it has in fact two zeros, one for positive scattering lengths,

as shown, and a second for negative scattering lengths, which is discussed at the end of this section.

The structure for positive scattering lengths is illustrated in Fig. 4.3, for η = 0.5.

The ground-state phase diagrams for various η are plotted in Fig. 4.4. In the panels, the plane-

wave phase is labeled “P,” the striped phase “S,” and the unstable phase “U.” The plane-wave

phase occurs when 0 < Γ0 < 2Γπ, the striped phase when 2Γπ < Γ0, and the unstable phase

when Γ0 < 0. Note the overall tendency of the phase diagrams as η increases; the upper striped

region detaches from the resonant critical point, where the resonant line (between S and U) and

the line with Γ0 = 0 (between U and P) touch, and the region is pushed upward as η is increased.

Meanwhile, the shapes of the resonant line and the boundaries of plane-wave regions change but,

with the exception of the upper striped region, the overall topology does not change. The dashed

lines aaa = aab in the figures are the phase-separation lines obtained earlier [49] using mean-field

couplings 4πaaa/m and 4πaab/m; there the striped phase is preferred above the dashed lines and

the plane-wave phase is preferred below the dashed lines. Use of mean-field couplings is accurate

for small κaaa and κaab but, as these variables increase, the deviation from the mean-field-coupling

prediction becomes significant and the phase diagrams exhibit qualitatively new and rich structures.

This overall tendency continues to around η ∼ 0.99. With further increase of η toward isotropy,

η = 1, we start to observe qualitatively new behavior of the phase diagrams. The phase diagrams

close to η = 1 are plotted in Fig. 4.5. As one sees, the striped region comes back from above and

touches the resonant critical point, and at the same time the lower plane-wave region detaches from

the critical point. In the limit η = 1, the plane-wave region vanishes.

The behavior around η ' 1 is in fact logarithmic in the deviations of the anisotropy η from

unity. We write δ = 1 − η2; as δ → 0, h1(0), f(1), g(1), h1(1), and h2(1) approach finite values,

but, in leading order for small δ, f(0) ∼ | ln δ|/4. Setting, for small δ, h1(0), f(1), g(1), h1(1), and
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Figure 4.4: Ground state phase diagrams in the κaaa - κaab plane for anisotropies η = 0, 0.25,

0.5, and 0.75. The regions P are the plane-wave phase with a BEC of a single mo-

mentum. The regions S are the striped phase with a BEC of a coherent superposition

of two different momenta. The phase in the regions U are unstable, with the effective

interaction Γ0 negative. Along the line between S and U, Γ0 diverges, and along the

line between U and P, Γ0 vanishes. The intersection of these two lines is a critical

point. The dashed lines indicate the phase diagram derived using mean-field coupling,

in which the plane is separated into an upper striped region and a lower plane wave

region.



62 Chapter 4: Renormalized interaction in spin-orbit coupled BEC’s

P

PS

S

S

U

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Κ aaa

Κ
a a

b

(a) η = 0.999

P

P

P

S

S

U

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Κ aaa

Κ
a a

b

(b) η = 0.9995

P

P

S

S

U

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Κ aaa

Κ
a a

b

(c) η = 0.99999

S

S

U

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Κ aaa

Κ
a a

b

(d) η = 1

Figure 4.5: Ground-state phase diagrams for η close to unity.
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h2(1), to their values at δ = 0 and approximating f(0) by | ln δ|/4, corresponds to fixing Γ0 and

varying the slope of Γπ. In the isotropic limit δ = 0, Γπ = 0 and thus a plane-wave region is not

allowed [cf. Eq. (4.25)]. With small anisotropy, Γπ can be positive, and small plane-wave regions

appear.

We now briefly consider tuning the scattering lengths to negative values. In the absence of

spin-orbit couplings, negative scattering lengths lead to an instability in large systems. On the

other hand, as we see from Eq. (4.26), tuning the inverse scattering lengths to just below 0 does

not immediately lead to an attractive interaction; in the presence of the spin-orbit coupling fields,

Rashba-Dresselhaus couplings can stabilize BEC’s with negative scattering lengths if the inverse

scattering lengths are small. Even when Γ0 is negative, systems with small particle number can be

metastable in the presence of an attractive interaction 1. For illustration, we plot the phase diagram

for η = 0.5, extended to negative scattering lengths in Fig. 4.6. In the regions marked “Stable,”

Γ0 > 0 and the ground state is either a plane-wave or striped phase. As seen in the figure, when

both scattering lengths aaa and aab are negative and large, another stable region appears in the

phase diagram, in which the ground state is in the striped phase. The line between the lower-left

striped phase and the unstable phase is a second resonant line along which Γ0 diverges. A stable

region with negative scattering lengths generally exists for all 0 < η ≤ 1; as η increases, the stable

region in the phase diagram becomes larger.

4.4 Conclusion

Proposed schemes to realize Rashba-Dresselhaus spin-orbit couplings in ultracold atomic experi-

ments [39, 40, 41, 42, 43] use Raman lasers to couple atoms in different hyperfine states. In general

as one transforms the original basis to one in which the coupling has the Rashba-Dresselhaus spin-

orbit structure, the interaction Hamiltonian acquires terms such as a†p4a
†
p3ap2bp1 which do not

conserve the number of particles in each pseudospin state (a-like and b-like). Our analysis, which
1 Assuming bosons trapped in an isotropic harmonic potential, we can roughly estimate the particle number below

which the condensate is stable with Γ0 < 0. In the absence of spin-orbit coupling, the critical number of bosons

is Nc ∼ 0.6aosc/|a|, where aosc is the oscillator length of a trap
p

~/(mω) [68]. For spin-orbit coupled bosons, the

scattering length is replaced by mΓ0/(4π). Introducing a scaled effective coupling Γ̃0 = mκΓ0/(2π) (the scale used

in Fig. 4.3), we estimate a critical number Nc ∼ 0.3κaosc/|Γ̃0|. Using realistic values of κ ∼
√

2π/804 nm [27] and

aosc ∼ 1µm, we obtain Nc ∼ 2/|Γ̃0|, which implies that stabilization occurs only quite close to the line Γ0 = 0.
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Figure 4.6: Ground-state phase diagram for η = 0.5 extended to negative values of scattering

lengths. The regions marked U and S are unstable and striped phases, as before. The

region marked “Stable” is either a plane-wave or striped phase. Note the appearance

of a stable (striped) phase when both scattering lengths are large and negative.

did not take such terms into account, can be directly compared with proposed experiments when

the interaction is independent of species (gaa = gbb = gab), in which case the interaction is indepen-

dent of the choice of basis. This condition is a good approximation for the three hyperfine states of
87Rb in the lowest F = 1 state. The assumption that gaa = gbb = gab corresponds to the (dashed)

diagonal lines in Figs. 4.4 and 4.5. Figure 4.7 shows the phase diagram in the η-κa plane, where a

is the assumed common scattering length.

For 0 ≤ η ≤ 0.99, the system, with increasing κa, experiences transitions from plane-wave to

striped, then to unstable, and finally to the plane-wave phase again, as seen in Fig. 4.7(a). Looking

more closely at the region 0.9 ≤ η ≤ 1, as drawn on a logarithmic scale in Fig. 4.7(b), we find that

the line separating the lower plane-wave and striped regions terminates and another line starts from

positive infinity above which the striped phase is preferred. This new line touches the uppermost

line (below the upper P phase) in the figure in the η → 1 limit, and thus no plane-wave region

exists for isotropic spin-orbit coupling2.
2While one can achieve large scattering lengths experimentally with Feshbach resonances, the general mF , mF ′

dependence of the resonances leads to differences of the scattering lengths near the resonances, a complicating feature

requiring analysis beyond the scope of this thesis.
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Figure 4.7: Ground-state phase diagram when aaa = abb = aab = a in the η-κa plane for (a)

anisotropies less than 0.99 and (b) anisotropies close to unity. The horizontal axis of

panel (b) is a logarithmic scale.



Chapter 5

Three-component ultracold fermions

5.1 Introduction

In this chapter, we turn our attention to the three-component ultracold fermions. The content in

this chapter is based on [4].

Multi-component ultracold atomic systems have recently been the focus of both experiment and

theory, motivated in part by the prospect of simulating a wider range of many-body models, such as

lattice SU(N) models [69, 70, 71, 72, 73] and quantum chromodynamics (QCD) analogs [74, 75, 76,

77], than is possible with single- or two-component systems. The possibility of creating analogs of

color superfluid states and the formation of hadronic states in multicomponent systems [74, 75, 76]

is especially interesting since the regime of cold dense QCD matter is not directly achievable in

current nuclear experiments or in lattice QCD.

When three species of fermions weakly attract each other, two species form Cooper pairs and

the third remains a Fermi liquid [78, 79, 80, 81, 82, 83, 84, 85]. Which two species pair de-

pends on anisotropies in the interactions and mass differences between different species. If there

is no anisotropy, the Hamiltonian of the system possesses global U(3) symmetry with respect to

rotation in species space, and the pairing breaks this symmetry. An important feature of the three-

component fermion system is spontaneous population imbalance, first noted in the continuum in

Ref. [84] at T = 0. In addition, BCS superfluidity and population imbalance (magnetism), with

two independent order parameters, can coexist, an intrinsic feature of a multicomponent Fermi

systems, as shown by Cherng et al. [85] in the weak-coupling BCS regime.

We consider here U(3) invariant three-component ultracold Fermi gases in three-dimensional free

space with varying interaction, with a focus on spontaneous population imbalance and superfluidity

66
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at finite temperature at general interaction strength; we study the phase diagram in general and

the BCS-BEC crossover of the system, fixing only the total number of particles and allowing

spontaneous population imbalance to occur. With a fixed total number of particles, population

imbalance is accompanied by spatial inhomogeneities, such as, domain formation. In this chapter,

we first analyze the system at zero temperature in BCS mean field to show that the fermion pairing

gap and population imbalance both develop with increasing bare attractive interaction between

the fermions. Then we discuss non-zero temperature, starting from the BCS region where the

scattering length is small and negative. We calculate the population imbalance as well as the

BCS transition temperature as a function of interaction strength and temperature, to lowest order

in the interaction. The thermodynamic potential derived here agrees with previous calculations

[79, 80, 81, 82, 83] when the chemical potentials of the three species are equal. We also derive

the Ginzburg-Landau free energy as a function of the two order parameter–the pairing gap and

the population imbalanc–and discuss a possible analogy between dense QCD and three-component

ultracold fermions. We then turn to the BEC limit of three-component ultracold fermions, where

the scattering length is small and positive, a regime described by three different weakly interacting

species of molecules made of different combinations of fermions. We show that Bose condensation of

the molecules is accompanied by population imbalance. Finally, we discuss the BCS-BEC crossover

connecting BCS and BEC limits, following the procedure of Nozières and Schmitt-Rink [15] to

include pairing fluctuations (or non-condensed pairs), here in a summation of ladder diagrams

for the self-energies; this calculation yields a transition temperature to the condensate phase that

reduces to the BCS and BEC limits.

Degenerate three-component gases have been experimentally realized using the three lowest

hyperfine states of 6Li [86, 87]; at high magnetic fields, well beyond unitarity, the scattering lengths

between the three hyperfine states are negative and sufficiently close that the system is approx-

imately U(3) invariant. In addition, ultracold gases of alkaline-earth-metal atoms possess good

SU(N) invariance (with N up to 10) [71, 72, 73], and are good candidates to observe the physics

discussed here. Ytterbium has an SU(6) symmetry due to the nuclear spin; an SU(3) invariant mix-

ture can be obtained by using only three spin components. In 6Li as well as in 171Yb and 173Yb, the

temperatures currently achieved experimentally are around T >∼ 0.3TF [73, 86, 87]. With a factor

of ∼ 3 decrease in temperature, phase separation due to the formation of population-imbalanced
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domains could be observed.

Around the unitarity point, 1/a = 0, in a U(3) invariant system (where a is the s-wave scattering

length), three-body Efimov bound states can exist [88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. Efimov

states have been experimentally observed in a trap through an increase of the particle loss rate,

mediated by these states [86, 87, 98]. In this thesis, we analyze the system on time scales long

enough to see the two-body interaction physics but short enough that Efimov states, or three-

body collisions, can be neglected; such an intermediate thermalized regime can exist in a trap at

sufficiently low densities, since the two-body collision rate is proportional to the particle density

squared whereas the three-body collision rate is proportional to the density cubed 1. As we show, the

homogeneous state is unstable against the formation of inhomogeneous structures with population

imbalance; population imbalance suppresses the formation of Efimov states, tending to stabilize

the inhomogeneous three-component system.

5.2 Three-component U(3) invariant fermions

We consider a three-component fermion system in free space with equal masses and the same

scattering length between different species. We label the three species by “colors” in analogy with

QCD, “red (r),” “green (g),” and “blue (b).” At low temperature, the interaction is dominated by

s-wave scattering, and the Hamiltonian is

H′ ≡ H− µN =
∑
k,α

(
k2

2m
− µ

)
ψ†

α,kψα,k +
U

2V

∑
α,β

∑
k,k′,q

ψ†
β,k′−qψ

†
α,k+qψα,kψβ,k′ , (5.1)

where ψ†
α,k is the creation operator of a particle with color α = r, g, b with momentum k; V is

the volume, and we take ~ = 1 throughout. We assume an attractive bare contact interaction

of strength U < 0. Although we take a common chemical potential µ for all three species, the

numbers of each species in the state of lowest free energy can be different as a consequence of

interactions, an effect that would be observable in an experiment that starts with equal numbers,

as an inhomogeneous state. The Hamiltonian is invariant under global U(3) rotations of the species.

The attractive interaction leads to pairing of fermions at low temperature. The pairing order

1Huckans et al. [87] argue that strong interactions with a long lifetime (> 0.1s) can in fact be achieved in a

low-density gas.
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parameter is antisymmetric in color, and thus has the form

∆α(r) ∝ εαβγ〈ψβ(r)ψγ(r)〉, (5.2)

where εαβγ is a completely anti-symmetric unit tensor. Since under a global U(3) rotation,

ψα,k → Uαβψβ,k, (5.3)

where Uαβ ∈ U(3) (we use the convention that repeated indices are summed over), ∆α transforms

as

∆α(r) ∝
εαβγ

2
〈ψβ(r)ψγ(r)〉 → (detU)U∗

αβ∆β(r), (5.4)

where ψα(r) is the Fourier transform of ψα,k.

To prove Eq. (5.4), we consider the operator ∆̂α = εαβγψβψγ , whose expectation value is

proportional to ∆α. The combination ψα∆̂α transforms as

ψT ∆̂ ≡ ψα∆̂α = εαβγψαψβψγ

→ εαβγUαζUβηUγξψζψηψξ = detUεζηξψζψηψξ = detUεαβγψαψβψγ = detUψT ∆̂. (5.5)

On the other hand, ψT → ψTUT . Therefore, ∆̂ → detU(UT )−1 = detUU∗.

As a consequence of the transformation (5.4), we can – when the order parameter is independent

of position – always choose appropriate axes of colors to transform the pairing order parameter

into the form ~∆ = (0, 0,∆), that is, by taking appropriate linear combinations of the species, we

find that only two colors are paired and one is left unpaired. By applying a Bogoliubov-Valatin

transformation, we can see that there are two gapped fermionic excitations corresponding to the

quasiparticles of the paired fermions, and one ungapped excitation due to the unpaired fermions.

In the following, we assume, without loss of generality, that the red and green particles are paired

and the blue are not paired.

5.3 BCS Mean Field at T = 0

In this section, we consider the ground state of the system within mean-field BCS theory. We

describe the pairing between r and g particles and unpaired b particles with the BCS-like ansatz,

|Ψ〉 =
∏
k

(
uk + vkψ

†
r,kψ

†
g,−k

) ∏
|k|≤kb

F

ψ†
b,k|vac〉, (5.6)
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where |uk|2+|vk|2 = 1 and kb
F is the b Fermi momentum. The parameters uk and vk are determined

by minimizing 〈Ψ|H − µN|Ψ〉 at fixed µ. Following the standard procedure, we obtain

u2
k =

1
2

1 +
ξk√

ξ2k + ∆2

 , v2
k =

1
2

1 − ξk√
ξ2k + ∆2

 , (5.7)

where ξk = k2/2m− µ and the gap ∆ = −(U/V )
∑

k ukvk is determined by

∆ = −U
V

∑
k

1
2

∆√
ξ2k + ∆2

. (5.8)

We use the relation of the bare coupling U and the scattering length a [14, 99],

1
U

=
m

4πa
− 1
V

∑
k

m

k2
, (5.9)

to rewrite the gap equation for ∆ 6= 0 in terms of a as

m

4πa
=

1
V

∑
k

m

k2
− 1

2
1√

ξ2k + ∆2

 . (5.10)

The chemical potential is determined by fixing the total number of particles N :

N = 〈Ψ|
∑
α,k

ψ†
α,kψα,k|Ψ〉 =

∑
k

1 − ξk√
ξ2k + |∆|2

+ V
(kb

F )3

6π2
. (5.11)

The same gap and number equations were derived in Ref. [84] using path-integral techniques. We

solve the gap equation (5.10) and the number equation (5.11) simultaneously to calculate the pairing

gap and the number imbalance in terms of the scattering length.

In Fig. 5.1, we plot the pairing gap ∆, measured in units of εF = k2
F /2m, and the number of r

particlesNr divided by the total number of particlesN , against −1/kFa, where kF = (6π2N/3V )1/3.

The right side of the figure corresponds to the weak-coupling regime (BCS region); the bare coupling

becomes stronger toward the left side (BEC region) of the figure. As we see, |∆| and the fraction

of red particles, Nr/N , increase with stronger interaction. The Nr/N axis ranges from 1/3 to

1/2; when Nr/N = 1/3, all three species are equally populated, but for Nr/N = 1/2, only r

and g particles are present. In general, Nr/N is greater than 1/3 in the interacting system, and

it approaches 1/2 as the interaction becomes stronger. Thus the ground state of the interacting

system always exhibits population imbalance, or magnetization (in analogy with a spin system).
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Figure 5.1: The number of red particles divided by the number of total particles Nr/N and the

pairing gap ∆, in units of εF , at zero temperature, vs. −1/kFa. The solid line shows

Nr/N (left vertical axis) and the dotted line ∆ (right vertical axis).

The magnetization arises physically through the gain of pairing energy when there are more particles

in r and g states, and as remarked earlier, it would reveal itself in experiment as an inhomogeneous

distribution of particle numbers.

With this basic picture in mind, we turn now to non-zero temperature.

5.4 BCS region

In the BCS region, where the scattering length a is negative and small, perturbation theory in

terms of the scattering length describes the system well. We first derive the phase diagram in this

region, and then we derive the corresponding Ginzburg-Landau free energy.
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5.4.1 Mean-field phase diagram

The mean-field Hamiltonian HM is

HM − µN =
∑
k,α

(
ξk +

UH

V
(N −Nα)

)
ψ†

α,kψα,k − ∆∗
∑
k

ψr,kψg,−k − ∆
∑
k

ψ†
g,−kψ

†
r,k

− V

U
|∆|2 − UH

V
(NrNg +NgNb +NbNr) , (5.12)

where

∆ = −U
V

∑
k

〈ψr,kψg,−k〉. (5.13)

As was done earlier, we assume equal numbers of red and green particles, Nr = Ng. Also, we now

include the Hartree energy, UH = 4πa/m. Defining

ξr,k = ξk +
UH

V
(Nr +Nb), (5.14)

ξb,k = ξk +
UH

V
2Nr, (5.15)

we rewrite the mean-field Hamiltonian as

HM − µN =
∑
k

ξr,k

(
ψ†

r,kψr,k + ψ†
g,kψg,k

)
+
∑
k

ξb,kψ
†
b,kψb,k

− ∆∗
∑
k

ψr,kψg,−k − ∆
∑
k

ψ†
g,−kψ

†
r,k − V

U
|∆|2 − UH

V

(
N2

r + 2NrNb

)
, (5.16)

which is essentially the BCS mean-field Hamiltonian for paired red and green particles plus normal

blue particles. Diagonalizing by a Bogoliubov-Valatin transformation, we find the thermodynamic

potential

Ω(T, µ) = − 2
β

∑
k

ln
[
1 + e−βεk

]
− 1
β

∑
k

ln
[
1 + e−βξb,k

]
−
∑
k

(εk − ξr,k) − V

U
|∆|2 − UH

V

(
N2

r + 2NrNb

)
, (5.17)

where εk ≡
√
ξ2r,k + |∆|2. The condition ∂Ω/∂|∆|2 = 0 gives the gap equation

1
V

∑
k

1 − 2f (εk)
2εk

= − 1
U
, (5.18)
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where f(x) = 1/(eβx +1) is the Fermi distribution function. Again, µ is determined by the number

equations

Nr =
∑
k

1
2

(
1 − ξr,k

tanhβεk/2
εk

)
, (5.19)

Nb =
∑
k

f(ξb,k) (5.20)

with

N = 2Nr +Nb. (5.21)

Numerically solving the gap equation (5.18) with the number equation (5.21), we obtain the gap

and number imbalance at given temperature and scattering length, shown in Fig. 5.2. The figure

Figure 5.2: Phase diagram of the BCS region: Nr/N vs. −1/kFa and temperature, in units of εF .

The z-axis ranges from 1/3 to 0.35. The intersection of the surface and the bottom

plane toward higher T is the transition line between the ordered and normal phases.

plots Nr/N as a function of −1/kFa and T . The normal phase is the unshaded region at higher

T ; here ∆ = 0 and Nr/N = 1/3. In the shaded region, ∆ 6= 0 and Nr/N > 1/3, a small number

imbalance. We show in the next subsection using the Ginzburg-Landau free energy that ∆ 6= 0
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implies Nr/N > 1/3 and vice versa. To extend the theory to the unitarity and BEC regimes, we

take pair fluctuations into account 2, in Sec. VI.

In the next subsection, we derive the Ginzburg-Landau free energy of the system in the BCS

regime, and derive the relations between the pairing gap and the number imbalance.

5.4.2 Ginzburg-Landau free energy

The interplay between pairing and number imbalance is most easily seen from the Ginzburg-Landau

free energy, the expansion of the free energy in terms of the corresponding order parameters around

the transition temperature. We define the order parameter for number imbalance, φ, by

φ =
Nr

V
− N

3V
, (5.22)

Fixing the total number of particles N = 2Nr +Nb, we have equivalently

φ = −1
2

(
Nb

V
− N

3V

)
. (5.23)

To derive the Ginzburg-Landau free energy it is convenient (in the derivation only) to let

the chemical potential µb for b be different from the chemical potential µr for r and g. The

thermodynamic potential Ω(T, µr, µb) can be derived as in the previous subsection. The Helmholtz

free energy is then

F (∆, φ) = Ω + 2µrNr + µbNb, (5.24)

in terms of which the Ginzburg-Landau (GL) free-energy density can be obtained by expanding

FGL(∆, φ) ≡ 1
V

(F (∆, φ) − F (0, 0)) . (5.25)

We define

ξ̃r,k =
k2

2m
− µr +

UH

V
(Nr +Nb) (5.26)

ξ̃b,k =
k2

2m
− µb +

UH

V
2Nr, (5.27)

2We have so far assumed that the blue particles do not pair. However, the blue particles feel an effective attractive

interaction with each other mediated by the existence of the red and green particles [100] , which can lead to p-wave

pairing state of the blue particles. However, as shown by Kagan and Chubukov [101], the transition temperature to

such p-wave pairing is too low (Tc ∼ 10−7TF ) to be observed in experiment, and we ignore it here.
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and ε̃k ≡
√
ξ̃2r,k + ∆2, and the chemical potential of the normal phase µ0 implicitly through

N

3
=
∑
k

1

eβξ0
k + 1

, (5.28)

where ξ0k = k2/2m−µ0+2UHN/3V . In terms of these quantities, the Ginzburg-Landau free-energy

density is

FGL(∆, φ) = − 2
βV

∑
k

ln
[
1 + e−βε̃k

]
− 1
βV

∑
k

ln
[
1 + e−βξ̃b,k

]
+

3
βV

∑
k

ln
[
1 + e−βξ̃0

k

]
− 1
V

∑
k

(
ε̃k − ξ̃r,k

)
− ∆2

U
+ 3UHφ

2 + 2(µr − µb)φ+
N

3V
(2µr + µb − 3µ0) ; (5.29)

in the expansion in φ and ∆, we keep in mind that µr and µb are implicit functions of ∆ and φ

through the number equations

φ =
1
V

∑
k

1
2

(
1 − ξr,k

tanhβε̃k/2
ε̃k

)
− N

3V
(5.30)

and

−2φ =
1
V

∑
k

1

eβξ̃b,k + 1
− N

3V
. (5.31)

The Ginzburg-Landau free energy up to fourth order in the order parameters is

FGL(∆, φ) =a∆2 +
(
b+

(c2)2

c1

)
∆4 + 3

(
1
c1

− UH

)
φ2 + c3φ

3 + c4φ
4 − 2

c2
c1

∆2φ+ c5∆2φ2, (5.32)

where c1 ∼ c5 and b are all positive, but the sign of a depends on temperature. The detailed

coefficients are given in Appendix E.

The physically realized values of the order parameters minimize the Ginzburg-Landau energy;

to leading order in the order parameters, we then have

∂FGL

∂φ
= 6

(
1
c1

− UH

)
φ− 2

c2
c1

∆2 = 0, (5.33)

∂FGL

∂∆
= 2∆

[
a+ 2

(
b+

(c2)2

c1

)
∆2 − 2

c2
c1
φ

]
= 0. (5.34)

The first condition implies

φ =
c2

3(1 − c1UH)
∆2, (5.35)
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indicating that if the pairing gap is non-zero, the number imbalance is non-zero, and vice versa.

The second condition, combined with Eq. (5.35), implies

∆
[
a+ 2

(
b+ 2

(c2)2

c1
− (c2)2

3c1(1 − c1UH)

)
∆2

]
= 0. (5.36)

In addition to the solution ∆ = 0, when a < 0 this equation has a second solution, with lower free

energy,

∆2 =
|a|

2(b+ c22/c1 − c22/(3c1(1 − c1UH)))
. (5.37)

The transition to fermion pairing is at the temperature at which a = 0.

The Ginzburg-Landau free energy of three-component ultracold fermions has certain similarities

to the Ginzburg-Landau free energy of dense QCD derived in Refs. [102, 103, 104], which makes

multicomponent ultracold atoms a promising analog of dense QCD. The Ginzburg-Landau free

energy of dense QCD has the form

ΩQCD(d, σ) =
α′

2
|d|2 +

β′

4
|d|4 +

a′

2
σ2 − c′

3
σ3 +

b′

4
σ4 − γ′|d|2σ + λ′|d|2σ2, (5.38)

where d is the quark-quark pairing order parameter and σ is the chiral symmetry breaking order

parameter. We attach primes to the coefficients to avoid possible confusion with similarly labeled

quantities used earlier. The signs of α′ and a′ depend on the temperature and the strength of the

couplings. As argued in Refs. [102, 103, 104], β′, c′, γ′, and λ′ are positive.

With the correspondence between the present system and the dense QCD system, ∆ ↔ d and

φ ↔ σ, we see that the two Ginzburg-Landau free energies have a similar structure. Although

the original QCD Lagrangian has a local SU(3) gauge symmetry, the Ginzburg-Landau free en-

ergy (5.38), which does not take the gluonic degrees of freedom explicitly into account, possesses

only global SU(3) symmetry. To this extent, one can construct an analogy with ultracold atomic

fermions. Similarly, Nambu–Jona-Lasinio models of QCD [105, 106, 107, 108] also have only global

SU(3) symmetry. Differences between the QCD free energy and that of ultracold fermions are that

the sign of a′ becomes negative at low temperature whereas the coefficient of φ2 is always positive,

and in addition the coefficients of σ3 and φ3 are opposite in sign. These differences are due to the

fact that the dense QCD system can undergo chiral symmetry breaking without quark-quark pair-

ing, but the three-component ultracold fermion system, beginning with equal populations, cannot



5.5. BEC limit 77

spontaneously develop local number imbalance without fermion pairing; with the symmetric inter-

action we are assuming, number imbalance arises from the gain of pairing energy with an increasing

number of paired particles. It would be interesting to see how the analogy can be sharpened in

multi-component atomic systems where spontaneous number imbalance and fermion pairing oc-

cur independently, for example, with increased numbers of species or with deviations from fully

symmetric interactions.

5.5 BEC limit

We turn now to the BEC limit, where the scattering length between fermions is small and pos-

itive. We can regard the system here as a collection of three types of weakly interacting bound

Bose molecules, each made of two fermions, which can be red-green, green-blue, or blue-red. The

molecules Bose-condense at sufficiently low temperature. The condensate of molecules can be re-

duced to a condensate of one type of molecule by appropriately choosing the color axes, as with

pairing in the BCS regime. The condensate in the BEC limit is composed of the same two colors

that are paired in the BCS limit.

At high temperature, the system is not condensed, but is simply a gas of thermally excited

molecules. Unlike in the condensate, one cannot exclude the existence of three types of thermally

excited molecules. Whether the high-temperature system develops a number imbalance depends

upon the intermolecular interactions. For the same type of molecules, the effective scattering

length is 0.6a [109], where a is the scattering length of the constituent fermions. Between different

molecules, as we show later, the effective scattering length is still 0.6a. Thus, above the condensation

temperature, the system is described by three kinds of thermally excited molecules with the same

interaction between all molecules. As we show in Appendix F, the uncondensed Bose system does

not develop a spontaneous number imbalance as long as the interaction between the same types

of bosons is greater than half of the interaction between the different bosons. Thus the present

system does not exhibit number imbalance above the condensate transition temperature.

We have, therefore, the following picture of the BEC limit. At high temperature the system is

a homogeneous mixture of three types of molecules. The Bose-Einstein condensation temperature
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is that of noninteracting bosons of mass 2m and density N/6V ,

TBEC =
π

m[ζ(3/2)]2/3

(
N

6V

)2/3

≈ 0.137TF . (5.39)

Below TBEC, the system is a mixture of the condensate of one type of molecule and a cloud of

thermal molecules of three types, which vanishes at T = 0.

We now show that the scattering length between different molecules is the same as that, 0.6a, be-

tween like molecules. The derivation of Ref. [109] of the scattering length between similar molecules

depended on the symmetry of the four-particle scattering wave function. Since, as we show, the wave

function for scattering of different molecules has the same symmetry, the arguments of Ref. [109]

lead to the same scattering length. We write the four-particle scattering wave function between

similar molecules, for example, red-green on red-green, as Ψs(r1, r2; r3, r4), where r1 denotes the

position of the red fermion of the first molecule, r2 is the position of the green fermion of the first

molecule, r3 is the red fermion of the second molecule, and r4 is the green fermion of the second

molecule. The symmetries due to Fermi statistics are

Ψs(r1, r2; r3, r4) = −Ψs(r3, r2; r1, r4) = −Ψs(r1, r4; r3, r2). (5.40)

1rr
4rr2rr

3rr
Figure 5.3: Two different molecules colliding.

On the other hand, scattering between different molecules, for example, red-green and red-blue

shown in Fig. 5.3, described by the four-particle scattering wavefunction Ψd(r1, r2; r3, r4) (where r4

now denotes the position of the blue fermion), has only a single symmetry due to Fermi statistics,

Ψd(r1, r2; r3, r4) = −Ψd(r3, r2; r1, r4). (5.41)
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However, for s-wave scattering, the wave function is symmetric with respect to the interchange of

molecules, so that

Ψd(r1, r2; r3, r4) = Ψd(r3, r4; r1, r2). (5.42)

Conditions (5.41) and (5.42) imply that

Ψd(r1, r2; r3, r4) = −Ψd(r1, r4; r3, r2), (5.43)

which is exactly the same symmetry that was present due to the exchange of green fermions in Ψs.

The Schrödinger equation in the two cases has one apparent difference, that is, the delta-function

interaction between the green and blue fermions. However, the antisymmetry (5.43) for exchange of

green and blue fermions implies that the product of the green-blue potential and the wave function

in the Schrödinger equation vanishes, so that the Schrödinger equation is the same as for identical

molecules, and the scattering length is also the same. This argument depends crucially on the two

molecules having one color (here red) in common.

5.6 Crossover theory

The crossover, in a two-component system, from BCS pairing in the weak-coupling region to a BEC

of weakly interacting molecules in the strong-coupling region is continuous, as seen in experiment

[16, 17, 18] and understood theoretically [14, 15, 110, 111, 112, 112, 113, 114, 115]. A common

feature of theories of the BCS-BEC crossover at non-zero temperature is the incorporation of pairing

fluctuations, which allow thermally excited Cooper pairs to exist above the condensate transition

temperature. We now apply this idea to develop a theory of the crossover, at non-zero temperature,

in the three-component system to connect the BCS and BEC regimes discussed earlier, and see

that the crossover is also continuous.3 We incorporate pairing fluctuations through a self-consistent

summation of ladder diagrams, and then numerically solve for the transition temperature between

the condensate and noncondensate phases.

3At sufficiently low temperature Efimov states can lower the energy around unitarity, producing a discontinuous

transition from the BCS to the BEC regimes [92] .
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5.6.1 Self-consistent summation of ladder diagrams

We construct the crossover theory in terms of the finite temperature normal and anomalous Green’s

functions:

Gα(r − r′, t− t′) = −i
〈
T
(
ψα(r, t)ψ†

α(r′, t′)
)〉

F(r − r′, t− t′) = −i
〈
T
(
ψr(r, t)ψg(r′, t′)

)〉
, (5.44)

where T denotes time ordering. We assume still that pairing takes place between r and g particles.

The pairing gap is given in terms of the Fourier transform of F(r − r′, t− t′) by

∆ = −U
∫

d3k

(2π)3
F(k, t = 0) = −U

β

∫
d3k

(2π)3
∑
ωk

F(k), (5.45)

where k denotes (k, ωk); the summation is over the fermionic Matsubara frequencies ωk = iπνk/β

with odd integer νk. The Schwinger-Dyson equations for the Green’s functions, illustrated in Fig.

5.4, are

= + Σrrr r r r
+ Σrgr g r

= + Σbbb b b b
g r = Σgrg r + Σggg g r

Figure 5.4: The Schwinger-Dyson equations for the normal and anomalous Green’s functions.

Gr(k) = G0(k) + G0(k)
(
Σrr(k)Gr(k) + Σrg(k)F†(k)

)
,

F†(k) = G0(−k)
(
−Σgr(k)Gr(k) + Σgg(−k)F†(k)

)
,

Gb(k) = G0(k) + G0(k)Σbb(k)Gb(k), (5.46)
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where G0(k)−1 = ωk − ξk is the free-particle Green’s function, and Σαβ are self-energies with an

incoming α particle and an outgoing β particle. Solving this system of equations, we obtain

Gr(k) =
(
G0(k)−1 − Σrr(k) +

Σrg(k)Σgr(k)
G0(−k)−1 − Σgg(−k)

)−1

,

Gb(k) =
1

G0(k)−1 − Σbb(k)
,

F†(k) = −Σgr(k) ·
{
Σrg(k)Σgr(k) + (G0(k)−1 − Σrr(k))(G0(−k)−1 − Σgg(−k))

}−1
. (5.47)

The main contribution to the off-diagonal self-energies is the gap:

Σrg(k) =
U

β

∫
d3k′

(2π)3
∑
ωk′

F(k′) = Σgr(k) = −∆, (5.48)

where we assume without loss of generality that ∆ is real. Then the r-particle self-energy, for

example, is given by

Σrr(k) = −
∫

d3q

(2π)3
1
β

∑
ωq

[Γrg(k, k; q)Gg(−k + q) + Γrb(k, k; q)Gb(−k + q)] , (5.49)

where Γαβ(k, k′; q), is the two-particle t-matrix for incoming particles of color α with momenta k

and β with −k + q, and outgoing with momenta k′ and −k′ + q, respectively; the ωq are bosonic

Matsubara frequencies. The corresponding diagram is Fig. 5.5. Including the t-matrix in the

Σrrr r
= r rΓrg

g + r rΓrb
b

Figure 5.5: Self-energy written in terms of t matrices.

self-energy takes pairing fluctuations into account, and as shown in Ref. [15], encompasses thermal

fluctuations of paired molecules in the BEC limit and the Hartree approximation in the BCS

limit [15], thus connecting both limits continuously. Note that there is no process of this form

in which the top line is anomalous since such a process would involve scattering between two r

particles, either initially or finally, which is forbidden by the Pauli principle; the internal lines can,

however, be anomalous.
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On the other hand, in the self-energy of b particles, the top line can in principle be anomalous;

however, this process would involve particle-hole scatterings either initially or finally, which is

negligible for short-range interactions [56]; the self-energy involves only a sum of rb and gb particle-

particle scatterings. The Bethe-Salpeter equation for the rb t-matrix becomes

Γrb(k, k′; q) = −U − U

∫
d3p

(2π)3
1
β

∑
ωp

Gr(p)Gb(−p+ q)Γrb(p, k′; q). (5.50)

As one sees by iterating this equation, Γrb(k, k′; q) is independent of k and k′; we write Γ(k, k′; q) =

Γ(q). Solving Eq. (5.50), we obtain

Γrb(q) = −

 1
U

+
∫

d3p

(2π)3
1
β

∑
ωp

Gr(p)Gb(−p+ q)

−1

; (5.51)

Γgb takes the same form mutatis mutandis.

In Γrg we must take the rg anomalous Green’s functions into account, as illustrated in Fig. 5.6.

Solving the Bethe-Salpeter equation in Nambu matrix notation, we have

r
g g r

r g
g
r

r
g

g
r

Figure 5.6: An anomalous contribution to the rg t-matrix.

Γrg(q) =
χ11(−q)

χ11(q)χ11(−q) − χ12(q)2
, (5.52)

where

χ11(q) = − 1
U

−
∫

d3p

(2π)3
1
β

∑
ωp

Gr(p)Gg(q − p), (5.53)

χ12(q) =
∫

d3p

(2π)3
1
β

∑
ωp

F(p)F†(q − p). (5.54)

To determine the gap and the number imbalance as a function of temperature and scattering

length involves self-consistently solving the gap equation (5.47), which can be rewritten as

− 1
U

=
∫

d3k

(2π)3
1
β

∑
ωk

1
(G0(k)−1 − Σrr(k))(G0(−k)−1 − Σgg(−k)) + ∆2

, (5.55)
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together with the number equations

Nr

V
= lim

η→+0

∫
d3k

(2π)3
1
β

∑
ωk

eiωkηGr(k), (5.56)

Nb

V
= lim

η→+0

∫
d3k

(2π)3
1
β

∑
ωk

eiωkηGb(k). (5.57)

However in this thesis we focus only on calculating the transition temperature.

5.6.2 Evaluation of Tc

We now use the formalism of the previous subsection to evaluate the transition temperature, where

the pairing gap ∆ becomes zero. The gap equation at Tc is equivalent to the condition that Γrg(q)

diverges at q = 0. Therefore, at Tc, we can make the approximations,

Σrr(k) = −
∫

d3q

(2π)3
1
βc

∑
ωq

(Γrg(q)Gg(q − k) + Γrb(q)Gb(q − k))

≈ −
∫

d3q

(2π)3
1
βc

∑
ωq

(Γrg(q)Gg(−k) + Γrb(q)Gb(−k)) , (5.58)

and

Σbb(k) = −
∫

d3q

(2π)3
2
βc

∑
ωq

Γbr(q)Gr(q − k) −
∫

d3q

(2π)3
2
βc

∑
ωq

Γbr(q)Gr(−k). (5.59)

For T ≥ Tc, the t-matrices do not depend on the color indices. Then, using the final line of

Eq. (5.58) we see that the Green’s function for r particles becomes

Gr(k) =
(
G−1

0 (k) − Σrr(k)
)−1 ≈

(
G−1

0 (k) + G0(−k)∆2
pg

)−1 = − ωk + ξk
|ωk|2 + ξ2k + ∆2

pg

, (5.60)

where we introduce a “pseudogap” ∆pg at Tc by writing

∆2
pg =

2
βc

∫
d3q

(2π)3
∑
ωq

Γ(q), (5.61)

with Γ = Γrg = Γrb = Γbr. The final line of Eq. (5.60) is just a BCS Green’s function with the gap

replaced by the pseudogap. We write Ek =
√
ξ2k + ∆2

pg for convenience. Similarly Gb(k) has the

same form at T = Tc.

The number equations then reduce to

N

3V
=

1
2

∫
d3k

(2π)3

(
1 − ξk

Ek
tanh

βcEk

2

)
, (5.62)
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while the equation for the pseudogap is

− 1
U

=
∫

d3k

(2π)3
1
βc

∑
ωk

Gr(k)Gg(−k)

=
∫

d3k

(2π)3

{(
1 +

ξ2k
E2

k

)
tanh(βcEk/2)

4Ek
−

∆2
pg

E2
k

f ′(Ek)
2

}
; (5.63)

as before, the bare coupling U is related to the scattering length a through Eq. (5.9).

In the BCS limit, kFa → 0−, ∆2
pg tends to zero, as we can see by considering the BCS gap

equation at Tc (not the mean-field BCS transition temperature, but the same Tc that we are using

here) with a gap ∆

− 1
U

=
∫

d3k

(2π)3

tanh(βc

√
ξ2k + ∆2/2)

2
√
ξ2k + ∆2

 . (5.64)

Expanding the right sides of (5.63) and (5.64) in terms of ∆2
pg and ∆2, we see that the zeroth order

terms are identical. Also, since the final line of Eq. (5.63) decreases monotonically with ∆2
pg, the

limit ∆2 → 0, as in weak-coupling BCS, implies ∆2
pg → 0.

Determining Tc requires estimating ∆2
pg, which we do by expanding Γrg(q)−1 around q = 0,

recalling that Γrg(0)−1 = 0 at Tc:

−Γrg(q, ωq)−1 =
1
U

+
∫

d3p

(2π)3
1
βc

∑
ωp

Gr(p)Gg(q − p)

≈
∫

d3p

(2π)3
1
βc

∑
ωp

Gr(p)

{
∂

∂ω
Gg(k, ω)

∣∣∣∣
k=−p

ωq +
1
6
∇2Gg(k, ω)

∣∣
k=−p

q2

}

≡ Zωq − γq2. (5.65)

Explicit forms for Z and γ are given in Appendix G. The pseudogap then becomes

∆2
pg = −2

∫
d3q

(2π)3
1
βc

∑
ωq

1
Zωq − γq2

= 2
1
Z

∫
d3q

(2π)3
1

eβcγq2/Z − 1
=
ζ(3/2)

4Z

(
Z

πβcγ

)3/2

. (5.66)

Solving the number equation (5.62), the gap equation (5.63), and the expression for the pseudo-

gap (5.66) self-consistently, we obtain the transition temperature, plotted against −1/kFa in Fig.

5.7. The solid line in the figure is the transition temperature calculated with the ladder summation

formalism described here, and the dotted line is the result from mean-field BCS theory. The ladder

summation line approaches the mean-field line in the BCS limit. On the other hand, in the BEC
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Figure 5.7: The phase diagram of three-component ultracold Fermi gas. The temperature is in

units of TF . The solid line is the transition temperature calculated with pairing

fluctuations incorporated through the summation of ladder diagrams. The dotted

line is the transition temperature calculated from mean-field BCS theory. The mean-

field line corresponds roughly to the temperature at which fermions start to form

(noncondensed) pairs. The line calculated from the ladder summation is where the

Cooper pairs start to condense. Toward the left end of the figure, the transition

temperature approaches the BEC limiting value Tc ∼ 0.137TF .
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limit, the ladder summation correctly yields Tc → 0.137TF . The crossover theory presented here

connects both limits continuously.

Throughout, we have kept a common chemical potential for the different species, and found

that below Tc the number of b particles becomes smaller than the number of r or g particles. In

ultracold atomic experiments, the number of the particles in each species is usually fixed at the

start, and thus the simplest scenario that may occur experimentally is that the number imbalance

appears through the formation of population-imbalanced domains. The formation of population-

imbalanced domains leads to a gain of condensation energy of order EcV/2 for the fully imbalanced

state, where Ec is the condensate energy density in a balanced system; the factor 1/2 = 3/2 − 1

is the increase in the relative number of Cooper pairs in the imbalanced state over that in the

balanced state. On the other hand, the formation of a single domain wall costs a net surface energy

Esurf of order EcV ξc/L, where ξc is the coherence length and L is the linear size of the system. The

condition that the formation of the domain is beneficial for the system is EcV/2 > Esurf , or roughly

L/ξc >∼ 1, which typically holds well. Domain formation is expected to decrease the free energy

from that of the homogeneous state at low temperature. Other possible realizations of population

imbalance include the formation of a “color density” wave or the formation of an inhomogeneous

(Fulde-Ferrell-Larkin-Ovchinnikov) superfluid; we leave analysis of these states as future study.

Also to apply the present theory quantitatively under realistic experimental conditions it will be

necessary to investigate the effects of Efimov states.



Chapter 6

Bohr’s gedankenexperiment on double-

slit interference

6.1 Introduction

In this chapter, we discuss Niels Bohr’s double-slit gedankenexperiment. The content in this chapter

is based on [5].

Niels Bohr once suggested a very simple gedankenexperiment to prove that, in order to preserve

the consistency of elementary quantum mechanics, the radiation field must be quantized as photons.

In the experiment one carries out conventional two-slit diffraction with electrons (or other charged

particles), building up the diffraction pattern one electron at a time (as in the experiment of

Ref. [23]). One then tries to determine which slit the electron went through by measuring far

away, in the plane of the slits, the Coulomb field of the electron as it passes through the slits. See

Fig. 6.1. If the electron passes through the upper slit it produces a stronger field than if it passes

through lower slit. Thus if one can measure the field sufficiently accurately one gains “which-path”

information, posing the possibility of seeing interference while at the same time knowing the path

the electron takes, a fundamental violation of the principles of quantum mechanics.

In an experiment with ordinary electrons of charge e the uncertainty principle prevents measure-

ment of the Coulomb field to the required accuracy, as we shall see below, following the prescription

of Bohr and Rosenfeld for measuring electromagnetic fields [116, 117]. However, as Bohr pointed

out, one can imagine carrying out the same experiment with (super) electrons of arbitrarily large

charge, Ze, and indeed, for sufficiently large Z, one can determine which slit each electron went

through. However, elementary quantum mechanics requires that once one has the capability of ob-

87
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Figure 6.1: Two slit diffraction with single electrons, in which one measures the Coulomb field

produced by the electrons at the far-away detector.

taining “which-path” information, even in principle, the interference pattern must be suppressed,

independent of whether one actually performs the measurement.

Underlying the loss of the pattern is that the electron not only carries a Coulomb field, produces

a radiation field as it “turns the corner” when passing through the slits, The larger the charge the

stronger is the radiation produced. This radiation must introduce a random phase to the electron

in order to destroy the pattern, and so itself must carry phase information; thus the electromagnetic

field must have independent quantum degrees of freedom. Were the quantum mechanical electrons

to emit classical radiation, the emission would produce a well-defined phase shift of the electron

amplitudes along the path, which while possibly shifting the pattern, as in the Aharonov-Bohm

effect [118], would not destroy it. In a sense the suppression of the pattern is an extension of

the Aharonov-Bohm effect to fluctuating electromagnetic potentials (discussed by Aharonov and

Popescu1).

Our object in this chapter is to carry out a detailed analysis of the physics implicit in Bohr’s

suggested experiment. After describing the experiment more fully, we determine the strength of

charge needed to measure the Coulomb field at large distances sufficiently accurately. We then

1Aharonov Y and Popescu S, unpublished; P. Kwiat, private communication.
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analyze how coupling of the particle to the quantized electromagnetic field in diffraction suppresses

the interference pattern, with increasing charge, before Coulomb measurements can yield “which-

path” information.

The first experiment that revealed effects of quantization of the electromagnetic field in inter-

ference is that of Grangier et al. [119], which showed how interference of single photons differs

from classical interference. The loss of particle coherence in interferometry due to photon emission

was first demonstrated by Pfau et al. [120], and due to photon scattering by Chapman et al [121].

Various works, both theoretical and experimental, have discussed determining the path of charged

particles in the double-slit problem, but none, it seems, in connection with Bohr’s proposed ex-

periment. The theoretical possibility of distinguishing paths by measurement of photon field is

discussed in Ref. [122], while Refs. [123] and [124] discuss determining the path through detection

of the electric field inside the loop of the paths. See also Stern et al. [125] on decoherence due to the

interaction of charged particles with the gauge field. Experimental attempts to measure “which-

path” information using interferometers fabricated in high-mobility two-dimensional electron gases

include Refs. [126, 127, 128].

A natural question to ask is whether by measuring the Newtonian gravitational field produced

by the mass of a particle as it diffracts, one can similarly gain “which-path” information; as we

show, the answer is that one can, for sufficiently large mass. However, one cannot conclude in

this case that the gravitational field must also be quantized, since for masses for which one can

measure the path, the fringe separation in the diffraction pattern would shrink to below the Planck

length, `pl = (G~/c3)1/2, where G is Newton’s gravitational constant and c is the speed of light. In

this chapter, we explicitly write ~. However, position measurements are fundamentally limited in

accuracy to scales >∼ `pl [129], and therefore distinguishing so a fine pattern cannot be carried out.

Unlike in the electromagnetic case, where the interference pattern is suppressed due to decoherence

caused by the radiated photons, the pattern in the gravitational case becomes immeasurably fine,

not because the particles radiate quantized gravitons.

6.2 Measurement of the Coulomb field

In the experiment sketched in Fig. 6.1 a charged particle enters the apparatus from the left side,

goes through a double slit, and hits the screen (b). The spacing of the slits is d, and L is the
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distance from the particle emitter (a) to the screen. The Coulomb field of the electron is measured

at distance ∼ R in the plane of the slits, sufficiently far away from the apparatus that there can be

no back-reaction from the distant measurement of the electromagnetic field. Thus R >∼ cT , where

T is the time of the flight of the particle, ' L/v, with v the particle velocity. We consider only

non-relativistic particles, in which case the longitudinal Coulomb field of the electron at distance

R ∼ cT is larger than the transverse radiation field by a factor ∼ c/v. We assume that the Coulomb

field is determined by the charge in the usual manner.

To distinguish whether the particle goes through the upper or lower slit one needs to measure

the electric field to at least an accuracy Ze(1/R2 − 1/(R + d)2) ∼ Zed/R3 (with d � R). The

quantum limit on the measurability of a weak electric field E was obtained by Bohr and Rosenfeld

[116, 117]. In an early discussion of such a quantum measurement, Landau and Peierls [130] noted

that if one attempts to measure the field by its effect on a point charge, radiation recoil introduces

uncertainties in the measurement that diverge for short measuring times, and concluded that “in the

quantum range . . . the field strengths are not measurable quantities.” To avoid this problem, Bohr

and Rosenfeld envisioned measuring the average of the electric field over a region of space-time,

using an extended apparatus consisting of an object A of mass M and volume VA with extended

charge Q, tethered by Coulomb forces to a similar object B with background charge −Q. See

Fig. 6.2. The background charge is fixed in space, but A is displaced by an electric field from its

+Q

-Q

A

B

E
x

x

ξ

ξ

Figure 6.2: Bohr-Rosenfeld apparatus for measuring the electric field. The positively charged

object A slides on the negatively charged fixed object B.
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equilibrium position. The apparatus measures the field by detecting the deflection of A from its

equilibrium position. The net equilibrium charge density of the apparatus is zero in the absence of

an external field that displaces the object from the background. In their analysis they first assume

quantization of the electromagnetic field, and show how vacuum fluctuations of the field in the

region limit the accuracy of field measurements. They then go on to show that the accuracy of

the measurement of a single field is limited by the uncertainty principle applied to the apparatus,

without the need to invoke field quantization. We give a schematic derivation of this result (see

also the recent discussions in Refs. [131, 132, 133].)

The relative motion of A and B is a harmonic oscillator whose frequency ω is readily derived

from the familiar expression for the plasma frequency (ω2
p = 4πne2/m), namely ω2 = 4πQ2/MVA.

When A is displaced relative to B by a distance x, the restoring force acting between them is

F = −Mω2x = −4πQ2x/VA. (6.1)

Thus, an external field Ex acting on A for time T ′ changes the momentum of A by px = (ExQ −

4πQ2x/VA)T ′, from which one would deduce an electric field,

Ex = 4πQx/VA + px/QT
′. (6.2)

Since px and x obey the uncertainty relation, δxδpx
>∼ ~, we see from minimizing the right side

of Eq. (6.2) with respect to δx that the uncertainty in the measurement of Ex is independent of

Q, and given by the Bohr-Rosenfeld relation, δEx ∼
√

~/VAT ′. For simplicity we assume cubic

geometry of A and B, with VA = ξ3, The measurement time T ′ is at most the time of flight, T ,

since further increasing the measurement time does not help to distinguish the paths; thus we take

T ′ = T . In addition the length ξ of interest is at most the Coulomb pulse width, cT , since neither

does a longer size help to distinguish the paths. With ξ = cT , we obtain the limit of accuracy of

the measurement of the Coulomb field:

δEx ∼

√
~
ξ3T

. (6.3)

To estimate the critical scale of charge of particles above which one begins to be able to distin-

guish the path, we take the measuring apparatus to be located from R to R + ξ above the upper

slit. Then, when a particle with charge Ze passes through the upper slit, the average Coulomb
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field in the apparatus is

1
ξ

∫ ξ

0

Ze

(R+ x)2
dx =

Ze

R(R+ ξ)
. (6.4)

Similarly, the average electric field when the particle passes through the lower slit is Ze/(R+d)(R+

d+ξ), where d is the slit interval. Hence to distinguish the paths the apparatus needs to distinguish

an electric field difference

∆E =
Ze(2R+ ξ)
R2(R+ ξ)2

d, (6.5)

a decreasing function of ξ. Since to measure the path, one needs ∆E > δE (the measurement

uncertainty), or

Ze >∼
R2(R+ ξ)2

d(2R+ d)

√
~
ξ3T

. (6.6)

With ξ ∼ R ∼ cT we find that the scale of critical charge Z1 above which one can begin to

distinguish the path is

Z1 ' 1√
α

cT

d
, (6.7)

where α = e2/~c is the fine structure constant. Note that Z1 � 1, so that one could never detect

the path with ordinary electrons or other particles of charge ∼ |e|. For illustration, from the

parameters corresponding to the experiment of Ref. [23]: d ∼ 1 µm, and cT ≈ 6 cm, we estimate

Z1 ' 7 × 105.

One can in fact, for general Z, determine partial information on the paths, the amount of

information increasing with Z. Writing p(Du, l) as the probability of the particle having taken the

lower path and the detector detecting it to have taken the upper path, p(Du, u) as the probability

of the particle having taken the upper path and the detector detecting it to have taken the upper

path, etc., one can quantify the information in terms of the distinguishability D [134, 135, 136, 137]

D = |p(Du, u) − p(Dl, u)| + |p(Dl, l) − p(Du, l)| . (6.8)

Since p(Du, u) + p(Dl, u) + p(Dl, l) + p(Du, l) = 1, D ≤ 1.

To calculate D we note that the detector determines the electric field through simultaneous

measurement of the position and momentum, which leads to a Gaussian uncertainty of width δE
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in the measured value of the electric field from the expected value. For the particle taking the

upper path, producing an expected (averaged) electric field Eu at the detector, the probability

distribution of the measured electric field is

Pu(E) =
1√

2πδE
e−(E−Eu)2/2δE2

, (6.9)

with a similar expression for the field distribution Pl(E) for the lower path in terms of the expected

El. Since Eu > El, we can for simplicity regard the detector as having detected the particle taking

the upper path if the measured value of the electric field is greater than (Eu +El)/2, and as having

taken the lower path otherwise.

With the assumption that the amplitudes for the particle taking the upper and the lower paths

are equal in magnitude, which is true if the two slits are located symmetrically, then

p(Du, u) =
1
2

∫ ∞

(Eu+El)/2
Pu(E)dE =

1
2
− p(Dl, u), (6.10)

with similar equations for p(Dl, l) and p(Du, l). With ∆E = Eu−El, the distinguishability becomes

D =
1√
π

∫ ∆E/2
√

2δE

−∆E/2
√

2δE
e−x2

dx = erf(Z/2
√

2Z1), (6.11)

where erf(x) is the error function. We plot D in Fig. 3 below for the parameters of Ref. [23].

6.3 Loss of interference

We turn now to the question of how for sufficiently large charge (which should be <∼ Z1) the

interference pattern must disappear. The basic physics is that the particle radiates when being

accelerated by the slits, and undergoes a random change in its phase because it is coupled to

a dynamical degree of freedom, the quantized radiation field. We do not take into account any

quantum degrees of freedom associated with the slits, i.e., we assume that they act effectively as a

potential on the electron. The pattern on the screen is proportional to
∑

f

(
|βu(b, f) + βl(b, f)|2

)
where βu(b, f) is the amplitude for the particle to go through the upper slit to point b on the screen,

with the electromagnetic field going from its initial state |0〉 (the vacuum) to final multi-photon

state |f〉, and βl(b, f) is the amplitude for the particle to take the lower trajectory.

The interference pattern thus has the relative intensity,

I(b) =
2Re

∑
f (βl(b, f)∗βu(b, f))∑

f (|βu(b, f)|2 + |βl(b, f)|2)
. (6.12)
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While it is possible to carry out a full quantum calculation of the radiation emitted in diffraction, its

essential features are brought out if we make the simplifying assumption that the charged particle

follows a single straight trajectory along either the upper or lower path from the emission point a

to a given point b on the screen (see Fig. 6.1). and thus the emitted radiation has only the effect

of changing the phase of the electron amplitude. Then

βu(b, f) ' 〈f |Uu|0〉β0
u, (6.13)

where β0
u is the simple quantum amplitude in the absence of the electromagnetic field, and

Uu =
(
e(iZe/~c)

R

d~̀· ~A(~r,t)
)

+
, (6.14)

where ~A(~r, t) is the electromagnetic field operator, and the the integral is time ordered (denoted

by the subscript “+”) along the path. From Eq. (6.13),∑
f

|βu(b, f)|2 = 〈U †
uUu〉|β0

u|2 = |β0
u|2, (6.15)

∑
f

|βl(b, f)|2 = |β0
l |2, (6.16)

and ∑
f

βl(b, f)∗βu(b, f) = 〈U †
l Uu〉β0

l (b)∗β0
u(b), (6.17)

where the brackets denote the electromagnetic vacuum expectation value. Thus

〈U †
l Uu〉 =

〈 (
e(iZe/~c)

R

d~̀· ~A(~r,t)
)

c

〉
, (6.18)

where the subscript c denotes the time ordering of the contour integral from emission to the screen

along the upper path and then negatively time-ordered from the screen back to the emission point

along the lower path. This expression is the expectation value of the Wilson loop around the path

u− l [138]. Since the free quantum electromagnetic field is Gaussianly distributed in the vacuum,

〈U †
l Uu〉 = e−(Z2α/2~c)Φu−l , (6.19)

where

Φu−l =
〈(∮

u−l
d~̀ · ~A(~r, t)

)2

c

〉
. (6.20)
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Writing

〈U †
l Uu〉 = Ve−iζ , (6.21)

where the visibility V = |〈U †
l Uu〉| is ≤ 1, and the phase shift ζ is real, we have

I(b) =
2Re

(
β0

l (b)∗β0
u(b)e−iζ

)(
|β0

u(b)|2 + |β0
l (b)|2

) V. (6.22)

The coupling to the radiation field reduces the intensity of the interference pattern by V, as

well shifting it via ζ. By symmetry, the shift vanishes at the center point on the screen (and is

otherwise not relevant to the present discussion.) Since the Coulomb field does not enter the states

of the radiation field in V, Eq. (6.22) gives a valid description of the interference pattern whether

or not an attempt is made to distinguish paths by detecting the Coulomb field at large distances.

The real part of Φu−l, entering the visibility, is given by the same integrals as in Eq. (6.20)

without time ordering along the contour, since ~j(~r, t) · ~A(~r, t) is Hermitian [139]:

ReΦu−l =
〈(∮

u−l
d~̀ · ~A(~r, t)

)2 〉
. (6.23)

To estimate the visibility we write the free electromagnetic field operator in terms of photon anni-

hilation and creation operators: ~A(r, t) '
∑

k

∑
λk

(2π~c/kΩ)1/2(ak
~λke

i(~k·~r−ωt) + h.c.), where the ~λ

are the photon polarization vectors, ω = ck, and Ω is the quantization volume. For non-relativistic

motion (v � c) along a classical trajectory,

Re Φu−l =
∫

~cd3k

(2π)2k

∑
λk

∣∣∣∣∮
u−l

dte−iωt~λk · v(t)
∣∣∣∣2 =

2~c
3π

∫
kdk

∣∣∣∣∮
u−l

dte−iωt~v(t)
∣∣∣∣2 . (6.24)

With the simplifying assumption that on the upper path the velocity undergoes a sudden change

at the slits, from ~v1 to ~v1 ′ (see Fig. 1), and from ~v2 to ~v2 ′ through the lower slit, then in the limit

of large time of passage, ωT � 1,∮
u−l

dte−iωt~v(t) =
i

ω
(~v1 − ~v1

′ − ~v2 + ~v2
′), (6.25)

For ω <∼ 1/T , the integral is proportional to T . Near the center of the pattern, ~v2 ′ ' ~v1 and

~v1
′ ' ~v2, so that ∣∣∣∣∮

u−l
dte−iωt~v(t)

∣∣∣∣2 ' 4
ω2

(~v1 − ~v2)2, (6.26)
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and

logV ' −4Z2α

3πc2
(~v1 − ~v2)2

∫ ωmax

1/T
dω

1
ω
. (6.27)

The integral over ω, nominally logarithmically divergent at large ω, is physically cut off by ωmax, the

maximum frequency of emitted photons, which from energy conservation cannot exceed mv2/2~ =

πv/λ, where λ is the de Broglie wavelength of the interfering particle. The lower cutoff is effectively

1/T ; hence

logV ' −4Z2α

3πc2
(~v1 − ~v2)2 log(πL/λ). (6.28)

Equation (6.28) is essentially the non-relativistic limit of the result of Ref. [140]. For L � d,

(~v1 − ~v2)2 ' (2d/T )2, and finally,2

V ' exp
{
−Z2 16α

3π
d2

(cT )2
log(πL/λ)

}
, (6.29)

Since the path length must be many de Broglie wavelengths, the charge above which the visibility

becomes less than 1/e2 obeys,

Z2
<∼

cT

d
√
α

1
[log(πL/λ)]1/2

<
cT

d
√
α
<∼ Z1. (6.30)

The visibility and distinguishability are closely related; as Z increases the interference pattern

fades away on the scale Z2, while the distinguishability of the paths by measurement of the Coulomb

field grows on the scale Z1. Quantitatively,

V2 + D2 = exp

(
− 32

3π

(
Z

Z2

)2
)

+ erf
(

Z

2
√

2Z1

)2

≡ f(Z). (6.31)

Since f(0) = f(∞) = 1, and for Z2 < 8Z1/
√

3 and 0 < Z <∞, f(Z) < 1

V2 + D2 ≤ 1, (6.32)

2Note that emission of photons with wavelengths λ larger than the slit width d contributes to the decrease in

visibility, even though such photons give little or no information about the path. The reason is that photon emission

leads to fragmentation of the total amplitude,
P

n

P

fn

`

Cu
fn

|u, fn〉 + Cl
fn

|l, fn〉
´

, among photon states fn with various

numbers of photons, n. Here
P

n

P

fn
|Cu

fn
|2 =

P

n

P

fn
|Cl

fn
|2 = 1. Only states |u, fn〉 and |l, fn〉 with the same

photon state can interfere; the total weight of the interfering terms |
P

n

P

fn
Cl∗

fn
Cu

fn
| must be ≤ 1.
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in agreement with the inequality derived by Jaeger et al. [135] and Englert [136]. Figure 6.3 shows

the visibility and distinguishability as functions of Z, as well as V2 +D2, for the parameters of the

experiment of Ref. [23], given above. With these parameters, log(πL/λ) ∼ 20.
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Figure 6.3: Visibility (solid line) and distingishability (dashed line) vs charge for the parameters of

Ref. [23], for which the characteristic charge Z1 for distinguishing paths by measuring

the Coulomb field is ∼ 7×105, and the characteristic charge Z2 for loss of interference

is ∼ 1.5 × 105. Also shown is V2 + D2 (dotted line).

A simple interpretation of the decrease in visibility, in terms of the Aharonov-Bohm effect [118],

is that the closed electron loop, u− l, encircles a fluctuating electromagnetic field which shifts the

interference pattern randomly, thus tending to wash it out. The interpretation of the reduction of

the pattern in terms of a random flux requires photon emission processes, and is equivalent to the

present discussion. Indeed for the subset of processes in which there is no photon emission, the

modification of the interference pattern is given by 〈U †
l 〉〈Uu〉 [cf. (6.17)], where the brackets denote

states with zero photons. Now

Re log〈Uu〉 = −Z
2α

3π

∫
kdk

∣∣∣∣∮
u
e−iωt~v(t)

∣∣∣∣2 ' 1
4

logV; (6.33)

the reduction reflects the loss of forward-scattering amplitude owing to photon emission processes.

Thus the zero-photon emission pattern is multiplied by a factor V1/2; the suppression of the zero-

photon pattern at charge
√

2Z equals the suppression of the total visibility at charge Z. The phase
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of 〈U †
l 〉〈Uu〉 is essentially proportional to the difference of real parts of the electron self-energy

corrections on the upper and lower paths, corrections that do not contribute to the diminution of

the interference pattern.

6.4 Measuring the path by gravity

Finally, we ask if it is possible to detect the path by measuring the fluctuations in the (Newtonian)

gravitational potential at large distance as a particle of sufficiently large mass passes through the

slits. In this scenario, the Newtonian gravitational field plays the role of the Coulomb field for

charged particles. We consider detecting the change of the Newtonian gravitational field by using

a modern gravity wave detector, e.g., a highly sensitive laser interferometer [141] (a measurement

not equivalent to detecting possible gravitational radiation produced by the mass going through

the slits.) Figure 6.4 sketches such a detector. As before, the x-axis lies in the plane of the slits. We

assume that the mirrors in the detector are tied down in the lab frame; to a first approximation,

the distance between the mirrors (or equivalently the ends of a Weber bar) is a harmonic degree

of freedom, with oscillator frequency, ω (which includes the gravitational attraction of the two

mirrors).

S+η(t)

x

x x- +

Figure 6.4: Gravitational field detector

We derive schematically the response of the detector to a Newtonian gravitational potential

φ(x, t). In the presence of φ, the positions of the mirrors, x±, obey the Newtonian equations of

motion,

∂2x±
∂t2

= ∓1
2
ω2[x+(t) − x−(t) − S] − φ′(x±) (6.34)

with S the equilibrium distance between the mirrors, and the prime denoting differentiation with



6.4. Measuring the path by gravity 99

respect to x. We write x± = x0 ± (S + η)/2, where x0 is the midpoint between the mirrors in

equilibrium, and η is the relative displacement of the mirrors caused by the gravitational pulse.

Then linearizing in η and φ′′ we have

∂2η(t)
∂t2

= −ωη(t) − φ′′(x0)S. (6.35)

For simplicity we assume that φ is zero before the gravitational pulse reaches the detector, and is

constant in time during the detection. With initial conditions η(0) = η′(0) = 0, we obtain

η(t) = −φ′′(x0)S
1 − cosωt

ω2
. (6.36)

The accuracy required for the measurement of φ′′(x0) is

∆φ′′(x0) = 2Gm
(

1
R3

− 1
(R+ d)3

)
∼ Gmd

R4
, (6.37)

where m is the mass of the particle, and the measuring apparatus, as before, is at a distance R

from the slits. Thus, since 1 − cosωt ≤ (ωt)2/2, one needs to measure η to an accuracy,

∆η <∼
GmdST 2

R4
<
Gmd

Rc2
. (6.38)

which implies that the mass scale for which one can begin to distinguish the path obeys,

Gm2

~c
>∼
(

∆η
`pl

)2(R
d

)2

. (6.39)

Physically the uncertainty ∆η must exceed the Planck length,3 and thus

Gm2

~c
>∼
(
R

d

)2

; (6.40)

the mass scale must be a factor R/d larger than the Planck mass,
√

~c/G ∼ 2 × 10−5 g. For

R/d ∼ 6 × 104 [23], the scale would have to be of order 1 g.
3When the displacement is measured by the difference of measured relative positions of the mirrors at times 0

and T , a first estimate of the accuracy of the measurement of η is the standard quantum limit δη >∼
p

~T/M , where

M is the mass of each mirror, The mirrors cannot be arbitrarily massive, since the apparatus cannot form a black

hole [142], so that M < Sc2/4G, and consequently the standard quantum limit implies, δη >∼ `pl

p

cT/S. Various

ways to improve on this simple limit using techniques such as contractive states measurements [143, 144], or quantum

nondemolition measurements [145, 146] have been proposed. However, our result is independent of these details.
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The interference pattern caused by a particle whose mass obeys the condition (6.40) has a fringe

separation,

δf ∼ L

d

~
mv

<∼ `pl
cT

R
<∼ `pl, (6.41)

which implies that when the mass is large enough to allow “which-path” detection via gravity,

the pattern becomes immeasurably fine, of order the Planck length or shorter. This result assures

the consistency of quantum mechanics; however, unlike in the electromagnetic case, consistency

does not require that the gravitational field be quantized.4 (While a decrease of the visibility

of the pattern would arise were gravity quantized, as in the electromagnetic situation, detailed

calculations of the diminution would depend on the detailed theory of quantized gravity assumed,

an issue we do not address here.)

In summary, when one can distinguish the path of a particle by measuring the electromagnetic

or gravitational field at large distance, interference disappears. For large enough charge on the

interfering particle, emission of quantized electromagnetic radiation destroys the interference, while

for large enough mass, the pattern becomes too fine to be discerned.

4As in the electromagnetic case, one expects a crossover with increasing mass from indistinguishable to distin-

guishable paths. However, a better understanding of the nature of space-time on the Planck scale is required to

determine a quantitivative visibility.



Appendix A

Scattering theory

A.1 Introduction

In this chapter, we consider scattering of two particles in a vacuum, with an interaction which

depends on the particles’ relative coordinate. We elucidate the role of the dimensionality, discussing

both three dimensions and two dimensions in a parallel manner1. We start by discussing the general

structure of dimension-independent scattering theory, and then go on to define scattering amplitude,

phase shift, and scattering length, depending on the dimensionality. We also consider a square well

potential as an example and calculate various scattering properties in three dimensions and two

dimensions. In two dimensions, we prove that, at least in a square well potential, the low-energy

scattering t-matrix vanishes.

A.2 Scattering t-matrix

A.2.1 General theory

The Hamiltonian for a two-particle system with an interaction V(r − r) is

H(r1, r2) = H0(r1, r2) + V(r1 − r2) =
1

2m
(
−∇2

1 −∇2
2

)
+ V(r1 − r2), (A.1)

1 The argument given here is influenced by an unpublished note on two dimensional scattering by Baharian [147].
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It is conventional to rewrite the Hamiltonian by separating the center of mass coordinate and the

relative coordinate2. Defining

R =
r1 + r2

2
, r = r1 − r2, (A.2)

the Hamiltonian now becomes

H(R, r) = − 1
2M

∇2
R − 1

2mr
∇2

r + V(r), (A.3)

where M = 2m is the total mass and mr = m/2 is the reduced mass. Thus the Hamiltonian is

divided into two parts and the wavefunction can be written as a product of an R-dependent part

and an r-dependent part. The relations of the center of mass and relative momenta to the original

momenta are

P = p1 + p2, p =
p1 − p2

2
. (A.4)

Since the R-dependent portion of the Hamiltonian is simply that of a free particle, whose eigenstates

are plane waves, we now can focus on the r-dependent part. We begin by writing the Hamiltonian

for the relative motion

H(r) = − 1
2mr

∇2
r + V(r). (A.5)

The Schrödinger equation for the relative motion is therefore(
− 1

2mr
∇2

r + V(r)
)

Ψ(r) = EΨ(r), (A.6)

where the energy E is nonnegative throughout this chapter. Let ψ0(r) denote the wavefunction of

the free part of the Hamiltonian with the energy E, i.e.,

− 1
2mr

∇2
rψ0(r) = Eψ0(r). (A.7)

A representative solution to this free Schrödinger equation is a plane wave state

ψ0(r) ∝ eik·r, (A.8)

2 We note here that Rashba-Dresselhaus potential, which we discuss in the following chapters, is not separable

into the center of mass and relative coordinates.
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with E = k2/2mr, but there are other states, such as a spherical wave states, that satisfy this

equation as well.

Defining the Green’s function by(
E +

1
2mr

∇2
r

)
G(r − r′) = δ(r − r′), (A.9)

a general solution to the Schrödinger equation obeys the following integral equation:

Ψ(r) = ψ0(r) +
∫
ddr′G(r − r′)V(r′)Ψ(r′), (A.10)

where d is the dimensionality of the space. This equation is the position-space representation of the

Lippmann-Schwinger equation, although the latter is more commonly written in terms of operators.

This integral equation can be solved iteratively as a perturbation series in the interaction, starting

from the non-interacting wavefunction ψ0(r).

We remark here that this Lippmann-Schwinger equation cannot be used for a hard-core poten-

tial, since the second term is always identically zero. In order to deal with a hard-core potential,

we need a separate treatment, which we do not address further in this thesis.

In many applications, the range of interaction where V(r) is non-negligible is restricted to a

certain region of space, and we observe the wavefunction far away from that region where the

interaction is negligible.

The wavefunction itself is not the quantity that is readily measurable. In a typical scattering

experiment, particles enter the region of the potential and are scattered in many different directions.

One then measures the number of particles scattered into the various directions. Let us imagine that

a detector, located at a distance r from the center of the potential, detects the number of scattered

particles in a unit solid angle for three dimensions and a unit planar angle for two dimensions. The

ratio of the number of detected scattered particles per unit time to the number of incident particles

that crosses a unit area per unit time in front of the target is called the differential cross section.

The total cross section is defined by the integral of the differential cross section over all angles. In

other words, the total cross section is the number of scattered particles divided by the number of

incident particles per unit area per unit time.

To see how the wavefunction behaves far away from the scattering potential, we need to know

the asymptotic behavior of the Green’s function, which depends on the dimensionality. Before

working in a specific dimensionality and solving for the Green’s function in the next section, we
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introduce the scattering t-matrix and discuss its relation to the effective interaction in the next

subsection.

A.2.2 t-matrix and the effective interaction

In many instances, the momentum representation of the Lippmann-Schwinger equation is useful.

Let us begin by defining the Fourier transform of the wavefunction and the Green’s function by

Ψ(r) =
∫

ddk

(2π)d
Ψ(k)eik·r, G(r − r′) =

∫
ddk

(2π)d
G(k)eik·(r−r′). (A.11)

The Fourier transforms of the free wavefunction ψ0(r) and the potential V(r) are defined similarly.

Using the definition of the Green’s function (A.9), we can see

G(k) =
1

E − k2/2mr
, (A.12)

and the Green’s function is

G(r − r′) =
∫

ddk

(2π)d

1
E − k2/2mr

eik·(r−r′). (A.13)

The Lippmann-Schwinger equation is then∫
ddk

(2π)d
Ψ(k)eik·r =

∫
ddk

(2π)d
ψ0(k)eik·r +

∫
ddr′

ddk

(2π)d

ddk′

(2π)d

ddk′′

(2π)d

eik·(r−r′)eik
′′·r′eik

′·r′

E − k2/2mr
V(k′′)Ψ(k′)

=
∫

ddk

(2π)d

ddk′

(2π)d

eik·r

E − k2/2mr
V(k − k′)Ψ(k′). (A.14)

Taking the Fourier component with momentum k, we obtain the momentum representation of the

Lippmann-Schwinger equation

Ψ(k) = ψ0(k) +
1

E − k2/2mr

∫
ddk′

(2π)d
V(k − k′)Ψ(k′). (A.15)

We are now almost ready to define the scattering t-matrix. The total wavefunction Ψ(x) depends

on the choice of our incoming state ψ0(k). For concreteness, although not entirely necessary, let us

choose the incoming state to be the plane wave state with momentum p, which satisfies E = p2/2mr.

Then, ψ0(k) = (2π)dδ(k−p). Let Ψp(k) be the total wavefunction corresponding to this incoming

plane wave. Then, the Lippmann-Schwinger equation in the momentum representation is

Ψp(k) = (2π)dδ(k − p) +
1

E − k2/2mr

∫
ddk′

(2π)d
V(k − k′)Ψp(k′). (A.16)
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We now define the scattering t-matrix by

T (k,p) ≡
∫

ddk′

(2π)d
V(k − k′)Ψp(k′) =

∫
ddr e−ik·rV(r)Ψp(r). (A.17)

Note that a commonly used definition of the t-matrix is in terms of operator equations. For

the relation between the common approach and our approach, see the end of this section. The

Lippmann-Schwinger equation is now concisely expressed as

Ψp(k) = (2π)dδ(k − p) +G(k)T (k,p). (A.18)

This equation does not look particularly inspiring, but by multiplying both sides by V(p′ − k) and

integrating over k, we obtain an integral equation for the t-matrix;

T (p′,p) = V(p′ − p) +
∫

ddk

(2π)d
V(p′ − k)G(k)T (k,p)

= V(p′ − p) +
∫

ddk

(2π)d
V(p′ − k)

1
E − k2/2mr

T (k,p). (A.19)

Let us now make a connection between our definition of the t-matrix and a more commonly

used definition in terms of operators (for example in Sakurai [148]). Some useful operator identities

that are consistent with the notation in this thesis are

〈x|Ψ〉 = Ψ(x), 〈k|Ψ〉 = Ψ(k), 〈x|k〉 = eik·x, 1 =
∫
ddx|x〉〈x| =

∫
ddk

(2π)d
|k〉〈k|. (A.20)

The t-matrix is often defined by an operator equation

T̂ |ψ0〉 = V |Ψ〉. (A.21)

Choosing the initial state to be the plane wave state with momentum p, we have

〈k|T̂ |p〉 = 〈k|V |Ψp〉 =
∫
ddx〈k|x〉〈x|V |Ψp〉 =

∫
ddx e−ik·xV (x)Ψp(x)

=
∫
ddx

ddk′

(2π)d

ddk′′

(2π)d
e−ik·x+ik′·x+ik′′·xV (k′′)Ψp(k′)

=
∫

ddk′

(2π)d
V (k − k′)Ψp(k′), (A.22)

which is exactly how we defined T (p,k). Thus, the definition in terms of an operator equation and

our definition are equivalent and their relation is

〈k|T̂ |p〉 = T (p,k). (A.23)
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This equation also implies that the scattering t-matrix is Hermitian satisfying

T (p′,p)∗ = T (p,p′). (A.24)

As we show now, the scattering t-matrix turns out to be equal to the vertex function within

a ladder approximation in diagrammatic perturbation theory. This relation is crucially exploited

in ultracold atomic physics, where the effective interaction and the t-matrix are often used inter-

changeably.

Suppose two particles are in a vacuum. Consider the vertex function with incoming four mo-

menta (q/2+p, ωq/2+ωp) and (q/2−p, ωq/2−ωp), and outgoing momenta (q/2+p′, ωq/2+ωp′)

and (q/2 − p′, ωq/2 − ωp′). The diagrams for the Bethe-Salpeter equation of the vertex function,

approximated by ladder diagrams, are shown in Figure A.1, and the equation is

Γ
q
2

+ p

q
2
− p

q
2
− p�

q
2

+ p�

=
q
2

+ p

q
2
− p

q
2
− p�

q
2

+ p�

+ Γ
q
2

+ p

q
2
− p

q
2
− p�

q
2

+ p�q
2

+ k

q
2
− k

Figure A.1: Bethe-Salpeter equation for the vertex function within ladder approximation

Γ(p′,p;q, ωq) = V(p′ − p) + i

∫
dω

2π
ddk

(2π)d
Γ(k,p;q, ωq)

1
ω − ε0(q/2 + k) + iη

× 1
ωq − ω − ε0(q/2 − k) + iη

V(p′ − k), (A.25)

where ε0(x) = x2/2m with m = 2mr being the original mass of a particle, not to be confused with

a reduced mass, and η is a positive infinitesimal. After decomposing the partial fraction, we have

Γ(p′,p;q, ωq) = V(p′ − p) + i

∫
dω

2π
ddk

(2π)d
Γ(k,p;q, ωq)

1
ωq − ε0(q/2 + k) − ε0(q/2 − k) + iη

×
(

1
ω − ε0(q/2 + k) + iη

+
1

ωq − ω − ε0(q/2 − k) + iη

)
V(p′ − k). (A.26)

There are two poles in the ω plane, one above the real axis and one below. Thus, whichever way

we choose to close the contour in the integral over ω in the complex plane, by introducing a factor
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of eiωη or e−iωη, the result will be the same, and we have

Γ(p′,p;q, ωq) = V(p′ − p) +
∫

ddk

(2π)d
V(p′ − k)

1
ωq − ε0(q/2 + k) − ε0(q/2 − k) + iη

Γ(k,p;q, ωq).

(A.27)

If we consider the on-shell element of the vertex function by setting ωq = E = ε0(q/2 + p) +

ε0(q/2− p), we can see that the denominator in the right hand side does not depend on q and we

have

Γ(p′,p;q, E) = V(p′ − p) +
∫

ddk

(2π)d
V(p′ − k)

1
p2/2mr − k2/2mr + iη

Γ(k,p;q, E). (A.28)

Iterating this equation, we can see that Γ(p′,p;q, E) does not depend on the center of mass

momentum q. Moreover, this integral equation is exactly the same as the equation (A.19) with

Γ(p′,p;q, E) = T (p′,p). (A.29)

Thus we have proven that the t-matrix is equal to the on-shell vertex function within the ladder

approximation. Since the vertex function serves as an effective interaction, whenever the ladder

approximation is appropriate and the on-shell vertex function is the relevant quantity, the t-matrix

can be used as an effective interaction.

Since the on-shell vertex function within the ladder approximation is exactly the same as the

scattering t-matrix, the t-matrix is often defined as the ladder approximation of the vertex function.

It is important to take care and note that only the on-shell vertex function is equal to the

scattering t-matrix. Beliaev and Galitskii found a more general relation between the off-shell

vertex function within the ladder approximation and the scattering t-matrix, which we will now

discuss.

A.2.3 Beliaev-Galitskii relation

A general relation between the vertex function and the t-matrix was found by Beliaev [149] for the

case of bosons and Galitskii [99] for the case of fermions. A derivation here is from Chang and

Friedberg [150].

An important property of the wavefunctions Ψp(r) is that they form a complete orthonormal

set. The orthogonality condition is∫
ddr

(2π)d
Ψp(r)Ψ∗

p′(r) = δ(p − p′), (A.30)



108 Appendix A: Scattering theory

or equivalently∫
ddk

(2π)d
Ψp(k)Ψ∗

p′(k) =
∫

ddk

(2π)d

∫
ddr

∫
ddr′Ψp(r)eik·rΨ∗

p′(r′)e−ik·r′ = (2π)dδ(p − p′). (A.31)

Recall from (A.27) that the Bethe-Salpeter equation is

Γ(p′,p;q, ωq) = V(p′ − p) +
∫

ddk

(2π)d
V(p′ − k)

1
ωq − ε0(q/2 + k) − ε0(q/2 − k) + iη

Γ(k,p;q, ωq).

(A.32)

Let us now decompose the vertex function in terms of the full wavefunction-basis as

Γ(k,p;q, ωq)
ωq − ε0(q/2 + k) − ε0(q/2 − k) + iη

=
∫

ddk′

(2π)d
ck′(p;q, ωq)Ψk′(k). (A.33)

Then, we have

(
ωq − ε0(q/2 + p′) − ε0(q/2 − p′) + iη

) ∫ ddk′

(2π)d
ck′(p;q, ωq)Ψk′(p′)

= V(p′ − p) +
∫

ddk

(2π)d

∫
ddk′

(2π)d
ck′(p;q, ωq)Ψk′(k)V(p′ − k)

= V(p′ − p) +
∫

ddk′

(2π)d
ck′(p;q, ωq)

(
k′2

2mr
− p′2

2mr

)(
Ψk′(p′) − (2π)dδ(p′ − k′)

)
= V(p′ − p) +

∫
ddk′

(2π)d
ck′(p;q, ωq)

(
k′2

2mr
− p′2

2mr

)
Ψk′(p′), (A.34)

where we have used (A.16). Writing as

V(p′ − p) =
∫

ddk′

(2π)d

(
ωq − ε0(q/2 + p′) − ε0(q/2 − p′) − k′2

2mr
+

p′2

2mr
+ iη

)
ck′(p;q, ωq)Ψk′(p′)

=
∫

ddk′

(2π)d

(
ωq −

q2

8mr
− k′2

2mr
+ iη

)
ck′(p;q, ωq)Ψk′(p′), (A.35)

the complex conjugate of the t-matrix is

T ∗(p,k) =
∫

ddp′

(2π)d
V∗(p − p′)Ψ∗

k(p′) =
∫

ddp′

(2π)d
V(p′ − p)Ψ∗

k(p′)

=
∫

ddp′

(2π)d

∫
ddk′

(2π)d

(
ωq −

q2

8mr
− k′2

2mr
+ iη

)
ck′(p;q, ωq)Ψk′(p′)Ψ∗

k(p′)

=
∫

ddk′

(2π)d

(
ωq −

q2

8mr
− k′2

2mr
+ iη

)
ck′(p;q, ωq)(2π)dδ(k′ − k)

=
(
ωq −

q2

8mr
− k2

2mr
+ iη

)
ck(p;q, ωq). (A.36)
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Then, going back to (A.33), we have

Γ(k,p;q, ωq) =
(
ωq −

q2

8mr
− k2

2mr
+ iη

)∫
ddk′

(2π)d
ck′(p;q, ωq)Ψk′(k)

=
(
ωq −

q2

8mr
− k2

2mr
+ iη

)∫
ddk′

(2π)d

T ∗(p,k′)

ωq −
q2

8mr
− k′2

2mr
+ iη

Ψk′(k)

=
(
ωq −

q2

8mr
− k2

2mr
+ iη

)∫
ddk′

(2π)d

T ∗(p,k′)

ωq −
q2

8mr
− k′2

2mr
+ iη

×
(

(2π)dδ(k − k′) +
T (k,k′)

k′2/2mr − k2/2mr

)
= T ∗(p,k) +

(
ωq −

q2

8mr
− k2

2mr
+ iη

)∫
ddk′

(2π)d

T ∗(p,k′)

ωq −
q2

8mr
− k′2

2mr
+ iη

T (k,k′)
k′2/2mr − k2/2mr

= T (k,p) +
∫

ddk′

(2π)d

(
1

ωq − q2/8mr − k′2/2mr + iη
− 1
k2/2mr − k′2/2mr

)
T (k,k′)T (k′,p).

(A.37)

This last result is the Beliaev-Galitskii relation which relates the vertex function within the ladder

approximation and the scattering t-matrix.

Now, let us try to understand the low energy behavior of the vertex function. Writing ωq as a

frequency away from the on-shell energy as ωq = E + δω, we obtain

Γ(k,p;q, ωq)

= T (k,p) +
∫

ddk′

(2π)d

(
1

δω + k2/2mr − k′2/2mr + iη
− 1
k2/2mr − k′2/2mr

)
T (k,k′)T (k′,p)

= T (k,p) −
∫

ddk′

(2π)d

δω

(δω + k2/2mr − k′2/2mr + iη)(k2/2mr − k′2/2mr)
T (k,k′)T (k′,p)

= T (k,p) − 2mr

k2

∫
ddk′

(2π)d

2mrδω/k
2

(2mrδω/k2 + 1 − k′2/k2 + iη)(1 − k′2/k2)
T (k,k′)T (k′,p). (A.38)

In three dimensions, as we shall see later in this chapter, the t-matrix approaches a constant value

in the low energy limit. Then, the integral in the right hand side is of order ∼ mkT (0, 0)2. If the

energy of the particle we are interested in is low enough that mkT (0, 0) � 1, we can ignore this

term and also the deviation of the first term from T (0, 0). Then we can approximate

Γ(k,p;q, ωq) ∼ T (0, 0) (A.39)
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in the low energy limit. This assumption of mkT (0, 0) � 1 corresponds to the dilute gas limit in

the many-body system with the condition na3 � 1 where n is the density and a is the scattering

length, which is to be defined later in this chapter. Thus we have analyzed only the two-body

problem. For the many-body case, it turns out that the many-body correction is of higher order,

and to the lowest order, the approximation (A.39) is still valid in the dilute gas limit. Chapter 25

of Abrikosov, Gorkov, and Dzyaloshinski [151] has a detailed treatment of the many-body case.

In two dimensions, the t-matrix approaches zero in the low energy limit, and we should be more

careful about the treatment of the low energy effective interaction. To correctly describe the low

energy effective interaction in the two dimensional system, we must take the many-body effects

into account.

A.3 Green’s functions and scattering amplitudes

Let us now come back to our original problem of describing the scattering in three and two dimen-

sional space. In the discussions that follow, the analysis begins to depend on the dimensionality of

the system. We will first discuss well-known results from three dimensions and then discuss two

dimensions using analogies from three dimensions.

A.3.1 Three dimensions

Referring to (A.13), we see that the Green’s function in three spatial dimensions is

G(r − r′) =
∫

d3k

(2π)3
1

E − k2/2mr
eik·(r−r′)

=
∫ 1

−1
d(cos θ)

∫ ∞

0

dk

(2π)2
k2

E − k2/2mr
eik|r−r′| cos θ

=
∫ ∞

0

dk

(2π)2
k2

E − k2/2mr

eik|r−r′| − e−ik|r−r′|

ik|r − r′|

=
∫ ∞

−∞

dk

(2π)2
k

E − k2/2mr
· e

ik|r−r′|

i|r − r′|
. (A.40)

The integral is singular at k = ±
√

2mrE, and we need to decide how to deal with these singularities.

However we choose to deal with the singularities, we will obtain a function which satisfies the original

definition of the Green’s function. Therefore, we need to choose a function that physically best

describes the problem that we are trying to solve. Particularly useful ways of dealing with the
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singularities are to define

G±(r − r′) = lim
ε→0+

∫ ∞

−∞

dk

(2π)2
k

E ± iε− k2/2mr
· e

ik|r−r′|

i|r − r′|

= lim
ε→0+

∫ ∞

−∞

dk

(2π)2
−2mrk

k2 − (2mrE ± iε)
· e

ik|r−r′|

i|r − r′|

= ∓mr

2π
e±i

√
2mrE|r−r′|

|r − r′|
. (A.41)

Plugging this into the integral equation (A.10), we can see that choosing G+(r − r′) corresponds

to the outgoing wave (we can see this by inserting a factor of e−iEt, which is the time-dependence

of the wavefunction), and choosing G−(r − r′) corresponds to the incoming wave. To describe a

situation in which the incoming wave is a plane wave and the outgoing wave is a scattered wave,

we should choose G+(r − r′) as the Green’s function to use in the equation (A.10).

Now that we have an expression for the Green’s function, the integral equation (A.10) becomes

Ψ(r) = ψ0(r) −
mr

2π

∫
d3r′

ei
√

2mrE|r−r′|

|r − r′|
V(r′)Ψ(r′). (A.42)

Let us consider the asymptotic behavior of Ψ(r). When r is much larger than the range of interac-

tion, we can write

|r − r′| ∼ r − r̂ · r′, (A.43)

where r̂ is the unit vector in the direction of r, and therefore

Ψ(r) ∼ ψ0(r) −
mr

2π

∫
d3r′

ei
√

2mrE(r−r̂·r′)

r − r̂ · r′
V(r′)Ψ(r′)

= ψ0(r) −
mr

2π
ei
√

2mrEr

r

∫
d3r′e−i

√
2mrEr̂·r′V(r′)Ψ(r′)

= ψ0(r) + f(E, r̂)
ei
√

2mrEr

r
, (A.44)

where

f(E, r̂) = −mr

2π

∫
d3r′e−i

√
2mrEr′ cos θV(r′)Ψ(r′), (A.45)

is called the scattering amplitude. This implies that when the position of observation is far away

from the potential, the scattered wavefunction behaves as eipr/r with a coefficient which only

depends on the angle (r̂) and the energy (E = p2/2mr). The angular dependence of f(E, r̂) enters
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since the incident wave ψ0(r) usually has a certain angular dependence. For instance, if the incident

wave is a plane wave, the scattering amplitude depends only on the angle between the incident wave

and r, as well as the energy of the incident wave. Notice that it makes sense to talk about the

scattering amplitude only at places far enough away from the potential so that the wavefunction

can be written as a product of the radial part and the angular part. In other words, the notion of

scattering amplitude is only defined asymptotically. The scattering amplitude can be conveniently

written in terms of a quantity called phase shift, which is the topic of the next section.

By taking the incoming wave to be a plane wave with momentum p and writing p = pr̂, we

can see the relation between the scattering amplitude and the t-matrix:

f(E, r̂) = −mr

2π

∫
d3r′e−ip′·r′V(r′)Ψp(r′) = −mr

2π
T (p′,p). (A.46)

The differential cross section is the number of scattered particles per unit time in a unit solid angle

divided by the number of particles in the incident beam per unit time per unit area. The number

of scattered particles per unit time in a solid angle dΩ in the direction of r̂ is given by

p

mr
·

∣∣∣∣∣f(E, r̂)
ei
√

2mrEr

r

∣∣∣∣∣
2

r2dΩ =
p

mr
|f(E, r̂)|2 dΩ. (A.47)

On the other hand, the number of particles in the incident beam per unit time per unit area is

p/mr. Therefore, the differential cross section is simply

dσ

dΩ
= |f(E,Ωr)|2 , (A.48)

and the total cross section is

σ =
∫
dΩ |f(E,Ωr)|2 . (A.49)

The differential cross section is a measurable quantity, and therefore the absolute value of the

scattering amplitude is also a measurable quantity.

A.3.2 Two dimensions

We now turn to the problem of two dimensional scattering. From (A.13) we see that the Green’s

function in two spatial dimensions is

G
(2)
± (r − r′) =

∫
d2k

(2π)2
1

E − k2/2mr ± iε
eik·(r−r′)

=
∫ ∞

0

dk

2π

∫ 2π

0

dθ

2π
k

E − k2/2mr ± iε
eik|r−r′| cos θ. (A.50)
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In terms of the Bessel function of the first kind, which has an integral representation

J0(r) =
∫ 2π

0

dθ

2π
eir cos θ, (A.51)

we can rewrite the Green’s function in the following way:

G
(2)
± (r − r′) =

∫ ∞

0

dk

2π
k

E − k2/2mr ± iε
J0(k|r − r′|)

= −2mr

∫ ∞

0

dk

2π
k

k2 − (E ± iε)
J0(k|r − r′|). (A.52)

Using the following relation between the Bessel function and the Hankel function of the first kind

H
(1)
0 :

∫ ∞

0

x

x2 − a
J0(bx) =


i
π

2
H

(1)
0 (

√
ab) if Im(a) > 0

i
π

2
H

(1)
0 (−

√
ab) if Im(a) < 0

, (A.53)

which is true for b > 0, we can write the two dimensional Green’s function in the following form:

G
(2)
± (r − r′) = − imr

2
H

(1)
0 (±

√
2mrE|r − r′|). (A.54)

Using the far-field asymptotic behavior of the Hankel function of the first kind

H
(1)
0 (x) ∼

√
2
πx
eix−iπ/4, (A.55)

the Green’s function has the asymptotic behavior

G(2)(r − r′) ∼ − imr

2

√
2

±π
√

2mrE|r − r′|
e±i

√
2mrE|r−r′|−iπ/4

= −m
√

±i
2π

e±ip|r−r′|√
p|r − r′|

. (A.56)

As in three dimensional scattering, the plus and minus signs correspond to outgoing and incoming

waves, respectively. Taking the outgoing Green’s function, the wavefunction has the asymptotic

form:

Ψ(r) ∼ ψ0(r) −mr

∫
d2r′

√
i

2π
eip|r−r′|√
p|r − r′|

V(r′)Ψ(r′)

= ψ0(r) −mr

√
i

2πp
eipr

√
r

∫
d2r′e−ipr̂·r′V(r′)Ψ(r′)

= ψ0(r) + f(E, r̂)

√
i

r
eipr, (A.57)
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where the scattering amplitude in two dimensions is defined by

f(E, r̂) = −mr

√
1

2πp

∫
d2r′e−ipr̂·r′V(r′)Ψ(r′). (A.58)

Note that while some authors include the factor of
√
i in the definition of the scattering amplitude,

here we follow the notation of the Landau and Lifshitz [152]. In deriving this expression, we used

the asymptotic form of the Hankel function, which is only valid when pr is large. We can, of course,

always define the scattering amplitude by (A.58), but the expression (A.57) is not valid in the low

energy limit p → 0. Thus, the physical meaning of the scattering amplitude as the asymptotic

amplitude of the wavefunction is not valid in the low energy limit, which is a characteristic feature

of scattering in two dimensions.

Setting p′ = pr̂ and assuming that the incoming wave is a plane wave with momentum p, a

comparison of (A.17) and (A.58) shows that the scattering amplitude and the t-matrix are related

by

f(E, r̂) = −mr

√
1

2πp
T (p,p′). (A.59)

The differential cross section is

dσ

dθ
=
∣∣∣f(E, θ̂r)

∣∣∣2 , (A.60)

where θ̂r is a unit vector in the direction of the planer angle dθ. The total cross section is

σ =
∫
dθ
∣∣∣f(E, θ̂r)

∣∣∣2 . (A.61)

The expressions for the differential and total cross sections are analogous to the expressions for

three dimensions; solid angles are replaced by planar angles and everything else stays the same.

A.3.3 One dimension

Although this chapter is mainly concerned with on three and two dimensional scattering, we briefly

mention the scattering amplitude in one dimension.

The Green’s function in one spatial dimension is

G(1)(r − r′) =
∫ ∞

−∞

dk

2π
1

E − k2/2mr ± iε
eik(r−r′) = ∓mri

e±i
√

2mrE|r−r′|
√

2mrE
= ∓mri

e±ip|r−r′|

p
. (A.62)
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As before, the different signs in ±iε correspond to the outgoing and the incoming waves. Taking

the outgoing wave, the wavefunction satisfies

Ψ(r) = ψ0(r) −mri

∫ ∞

−∞
dr′

eip|r−r′|

p
V(r′)Ψ(r′), (A.63)

and asymptotically

Ψ(r) ∼ ψ0(r) −mrie
ipr

∫ ∞

−∞
dr′

eiprr′/|r|

p
V(r′)Ψ(r′)

= ψ0(r) + f(E, r/|r|)eipr, (A.64)

where the scattering amplitude in one dimension is defined by

f(E, r/|r|) = −mri

∫ ∞

−∞
dr′

eiprr′/|r|

p
V(r′)Ψ(r′). (A.65)

Notice that the scattering wavefunction in one dimension does not fall off far away from the target,

which is a crucial difference compared to the two or three dimensional case.

A.4 Phase shift and scattering lengths

We have seen the integral equations that determine the scattering wavefunction in three-, two-, and

one-dimensions through the Green’s functions. Far away from the target, the wavefunctions may

be written as the product of a distance -dependent part and an angle-dependent part. The angle

dependent part is called the scattering amplitude. In this section, we focus on the properties of the

scattering amplitude and introduce the concept of the phase shift which is useful in understanding

the physical meaning of the scattering amplitude.

The phase shift is essentially the shift of the phase of the outgoing wave relative to the incoming

wave when the scattering wavefunction is expanded in terms of its angular components. In three

dimensions, the angular decomposition corresponds to an expansion in terms of the spherical har-

monic functions, while in two dimensions, it is in terms of the factors eilφ. In one dimension, the

expansion is in the left and right moving waves.

We begin by noting that an incident plane wave may be decomposed into its spherical compo-

nents as

eip·r = eipr cos θ =
∞∑
l=0

il(2l + 1)Pl(cos θ)jl(pr) =
∞∑
l=0

il(2l + 1)Pl(cos θ)
hl(pr) + h∗l (pr)

2
, (A.66)
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where θ is the angle between p and r, and Pl(x) is the Legendre polynomial. jl(x) is the spherical

Bessel function, and hl(x) is the spherical Hankel function. Since this incoming wave does not

have an angular momentum in the direction of p, the outgoing scattered wavefunction also does

not have an angular momentum in the p direction, thus we can also expand the outgoing scattered

wavefunction in terms of Legendre polynomials. Although this expansion is correct in both three

dimensions and two dimensions, it is more relevant to use the following expansion in two dimensions:

eip·r = eipr cos θ =
∞∑

l=−∞
ileilθJl(pr) =

∞∑
l=−∞

ileilθ
Hl(pr) +H∗

l (pr)
2

, (A.67)

where Jl(pr) is the Bessel function of the first kind, and Hl(pr) is the Hankel function of the first

kind3.

When we are far away from the potential, the Schrödinger equation is that of a free particle.

In spherical coordinates, the Schrödinger equation reads

− 1
2mr

[
1
r

∂2

∂r2
r +

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

]
Ψ(3)(r) = EΨ(3)(r) (A.68)

in three dimensions and

− 1
2mr

[
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

]
Ψ(2)(r) = EΨ(2)(r) (A.69)

in two dimensions.

A.4.1 Three dimensions

In three dimensions, we can expand the wavefunction with zero angular momentum in the direction

of the incident wave as

Ψ(3)(r) =
∞∑
l=0

il(2l + 1)Pl(cos θ)Rl(r), (A.70)

where θ is the direction between r and the direction of the incident wave. The Schrödinger equation

then becomes

− 1
2mr

(
d2

dr2
− l(l + 1)

r2

)
rRl(r) = ErRl(r). (A.71)

3 Note that in section A.3.2, the Hankel function of the first kind was denoted H
(1)
l . Henceforth, since there will

be no ambiguity, we will omit the superscript.
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In terms of p =
√

2mrE, this equation is(
d2

dr2
+ p2 − l(l + 1)

r2

)
rRl(r) = 0. (A.72)

Solutions to this equation are spherical Bessel functions jl(pr)and spherical Neumann functions

nl(pr). Equivalently, through the relation hl(x) = jl(x) + inl(x), the solutions may be written in

terms of spherical Hankel functions hl(x) and their complex conjugates h∗l (x). Thus, we can write

Rl(r) = Ahl(pr) +Bh∗l (pr). (A.73)

Since the spherical Hankel function has the following asymptotic form as r → ∞

hl(pr) ∼
ei(pr−lπ/2)

ipr
, (A.74)

we see that hl(pr) is an outgoing wave and h∗l (pr) is an incoming wave4. Since the potential is

neither a source nor a sink of particles, the radial component of the probability current should

vanish, namely

jr(r) =
1

2imr

(
R∗

l (r)
∂

∂r
Rl(r) −Rl(r)

∂

∂r
R∗

l (r)
)

= 0. (A.75)

Using (A.73), this vanishing condition leads to the constraint

jr(r) =
(
|A|2 − |B|2

)(
h∗l (pr)

∂

∂r
hl(pr) − c.c.

)
= 0. (A.76)

For this to be true for any r, we need

|A|2 = |B|2, (A.77)

which is a reasonable result if we want the incoming and the outgoing wave to carry the same

number of particles.

Since we are considering a situation in which the incoming wave is a plane wave and the outgoing

wave is a scattered wave, the coefficient B of the incoming wave should match that of a plane wave.

Looking back at the equation (A.66), we can see that B = 1/2. Now, we can write the whole

scattering wavefunction as

Ψ(3)(r) =
∞∑
l=0

il(2l + 1)Pl(cos θ)
h∗l (pr) + Sl(p)hl(pr)

2
, (A.78)

4 For l = 0, h0(pr) = eipr/ipr.
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with a coefficient Sl(p) which depends on the angular momentum and the energy. From (A.77),

we know that the coefficients of hl(pr) and h∗l (pr) should have the same magnitude, which implies

that |Sl(p)| = 1. Thus, we can parametrize Sl(p) by a real function δl(p) via

Sl(p) = e2iδl(p). (A.79)

The quantity δl(p) is known as the phase shift and it is the difference in the phase of the outgoing

wave and the incoming plane wave. Notice that if there is no scattering then Sl(p) = 1, which is

equivalent to δl(p) = 0 (no phase shift). Explicitly pulling the plane wave out of the wavefunction,

we can write

Ψ(3)(r) = eip·r +
∞∑
l=0

il(2l + 1)Pl(cos θ)

(
e2iδl(p) − 1

)
hl(pr)

2
. (A.80)

Asymptotically this becomes

Ψ(3)(r) ∼ eip·r +
∞∑
l=0

il(2l + 1)Pl(cos θ)

(
e2iδl(p) − 1

)
2

ei(pr−lπ/2)

ipr
. (A.81)

Comparing with (A.44) the scattering amplitude can be expressed in terms of the phase shift by

writing

f(p, θ) =
∞∑
l=0

il(2l + 1)Pl(cos θ)

(
e2iδl(p) − 1

)
2

e−ilπ/2

ip

=
∞∑
l=0

(2l + 1)Pl(cos θ)
e2iδl(p) − 1

2ip

=
∞∑
l=0

(2l + 1)Pl(cos θ)
eiδl(p) sin δl(p)

p

=
∞∑
l=0

(2l + 1)Pl(cos θ)
1
p
· 1
cot δl(p) − i

. (A.82)

Obtaining the scattering wavefunction has been reduced to calculating the phase shifts of the partial

waves. One major reason that we have decomposed the wavefunction into its angular components

is that, in the low energy limit (which is usually the region of interest in ultracold atomic physics),

we can ignore the contributions from the partial waves with l ≥ 1 and concentrate on l = 0, i.e.,

s-wave scattering. For a proof that s-wave scattering is dominant at low energy, see Baym [153].

At this point, we can prove the optical theorem which relates the imaginary part of the scattering
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amplitude and the total cross section. The total cross section is

σ = 2π
∫ 1

−1
d(cos θ)|f(p, θ)|2

= 2π
∫ 1

−1
d(cos θ)

∞∑
l,l′=0

(2l + 1)(2l′ + 1)Pl(cos θ)Pl′(cos θ)
eiδl(p)−iδl′ (p) sin δl(p) sin δl′(p)

p2
. (A.83)

Using the identity ∫ 1

−1
d(cos θ)Pl(cos θ)Pl′(cos θ) =

2
2l + 1

δll′ (A.84)

and noticing that Pl(1) = 1 for any l, we have

σ = 4π
∞∑
l=0

(2l + 1)
sin2 δl(p)

p2
=

4π
p

Imf(p, θ = 0), (A.85)

where the second equality follows from (A.82). This relation is called the optical theorem.

For later use, we derive here the asymptotic form of a wavefunction in the low energy. When

the energy is low enough so that we can ignore the components with l ≥ 1, the wavefunction is

Ψ(3)
l=0(r) =

h∗0(pr) + e2iδ0(p)h0(pr)
2

=
1

2pr

(
ie−ipr − ie2iδ0(p)eipr

)
= eiδ0(p) sin(pr + δ0(p))

pr
. (A.86)

Note that the wavefunction only depends on the distance r, and independent of the angle. It is not

hard to confirm that when there is no potential the wavefunction is sin(pr)/pr. Thus the phase

shift δ0(p) is indeed the phase shift from the wavefunction in the absence of a potential.

Now we are ready to define the scattering length. The scattering length is defined as the distance

at which the wavefunction Ψ(r) becomes zero when E = 0. In other words, the scattering length a

satisfies

Ψ(a) = 0 (A.87)

for E → 0. As mentioned earlier, at low energy, only s-wave contributes and can neglect direction in

defining the scattering length. Taking only the s-wave component, the wavefunction at low energy

outside the range of the potential is

Ψ(3)(r) =
sin(pr)
pr

+
1

cot δ0(p) − i

eipr

pr
, (A.88)
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where the first term is the s-wave component of a plane wave, and the second term is an outgoing

scattered wave. As p→ 0, the wavefunction becomes

lim
p→0

Ψ(3)(r) = 1 + lim
p→0

1
pr cot δ0(p)

. (A.89)

From the definition of the scattering length a,

lim
p→0

Ψ(3)(a) = 1 +
1
a

lim
p→0

1
p cot δ0(p)

= 0, (A.90)

so that we obtain

lim
p→0

p cot δ0(p) = −1
a
. (A.91)

This equation is often used as the definition of the scattering length.

In terms of the scattering length, the scattering amplitude in the low energy limit is

f(p, θ) ∼ 1
p
· 1
cot δ0(p) − i

∼ −a. (A.92)

A useful relation to keep in mind which follows from this relation is, in the low energy limit, the

wavefunction becomes

Ψ(3)(r) ∼ 1 − a

r
. (A.93)

also we find that at low energy, the differential cross section is

dσ

dΩ
= lim

p→0
|f(p, θ)|2 = a2, (A.94)

and the total cross section is

σ = 4πa2. (A.95)

Finally, from the relation (A.46), we can see that in the low energy limit the t-matrix becomes

T (0, 0) =
2πa
mr

=
4πa
m

. (A.96)
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A.4.2 Two dimensions

In two dimensions, the wavefunction outside the range of potential can be written as

Ψ(2)(r) =
∞∑

l=−∞
ilRl(r)eilθ, (A.97)

and the radial wavefunction Rl(r) obeys

− 1
2m

[
1
r

d

dr

(
r
d

dr

)
− l2

r2

]
Rl(r) = ERl(r), (A.98)

which is equivalent to (
d2

dr2
+

1
r

d

dr
+ p2 − l2

r2

)
Rl(r) = 0. (A.99)

The solutions are the Bessel functions of the first Jl(pr) and the second kind Nl(pr), or equivalently

the Hankel function of the first kind Hl(pr) = Jl(pr) + iNl(pr) and its complex conjugate. The

solution is generally

Rl(r) = AHl(pr) +BH∗
l (pr). (A.100)

The Hankel function of the first kind has the following asymptotic behavior at large r:

Hl(pr) ∼
√

2
πpr

ei(pr−(2l+1)π/4), (A.101)

thus Hl(pr) is an outgoing wave and Hl(pr) is an incoming wave. Since we want the incoming

wave to be a plane wave, comparing with (A.67), we can see that B = 1/2. The discussion of the

vanishing of probability current in three dimensions holds exactly the same for two dimensions,

and the condition implies |A| = |B| = 1/2. Now we can define the phase shift in two dimensions

analogously to three dimensions by A = e2iδl(p)/2.

With this definition of δl, the overall wavefunction becomes

Ψ(2)(r) =
∞∑

l=−∞
ileilθ

H∗
l (pr) + e2iδl(p)Hl(pr)

2
. (A.102)

Pulling out the incoming plane wave yields

Ψ(2)(r) = eip·r +
∞∑

l=−∞
ileilθ

e2iδl(p) − 1
2

Hl(pr). (A.103)
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Using the asymptotic form of the Hankel function, the asymptotic form of the wavefunction is

Ψ(2)(r) ∼ eip·r +
∞∑

l=−∞
ileilθ

e2iδl(p) − 1
2

e−i(2l+1)π/4

√
2
πpr

eipr, (A.104)

and the scattering amplitude is

f(p, θ) =
∞∑

l=−∞
ileilθ

e2iδl(p) − 1
2

e−i(2l+1)π/4

√
2
iπp

=
∞∑

l=−∞
eilθ
√

2
πp

· e
2iδl(p) − 1

2i

=
∞∑

l=−∞
eilθ
√

2
πp

· eiδl(p) sin δl(p) =
∞∑

l=−∞
eilθ
√

2
πp

· 1
cot δl(p) − i

. (A.105)

Just as in three dimensions, in the low energy limit, one can show that the scattering with l = 0 is

dominant.

Analogously to the three dimensional case, we can prove the optical theorem which relates the

total cross section and the imaginary part of the scattering amplitude. The total cross section and

the scattering amplitude are related by

σ =
∫ 2π

0
dθ|f(p, θ)|2

=
∫ 2π

0
dθ

∞∑
l,l′=−∞

ei(l−l′)θ 2
πp

· eiδl(p)−iδl′ (p) sin δl(p) sin δl′(p)

= 2π
∞∑

l=−∞

2
πp

· sin2 δl(p)

= 2π
√

2
πp

Imf(p, θ = 0). (A.106)

Thus, the two dimensional version of the optical theorem can be stated as

Imf(p, θ = 0) =
√

p

8π
σ. (A.107)

The wavefunction with l = 0, without any assumptions on pr is

Ψ(2)
l=0(r) = J0(pr) +

e2iδ0(p) − 1
2

H0(pr) = eiδ0(p)

(
e−iδ0(p)J0(pr) +

eiδ0(p) − e−iδ0(p)

2
H0(pr)

)
= eiδ0(p) ((cos δ0(p) − i sin δ0(p)J0(pr) + i sin δ0(p)(J0(pr) + iN0(pr)))

= eiδ0(p) (cos δ0(p)J0(pr) − sin δ0(p)N0(pr)) . (A.108)
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Now, assuming pr � 1 we obtain

Ψ(2)
l=0(r) ∼ eiδ0(p)

√
2
πpr

(
cos δ0(p) cos

(
pr − π

4

)
− sin δ0(p) sin

(
pr − π

4

))
= eiδ0(p)

√
2
πpr

cos
(
pr − π

4
+ δ0(p)

)
. (A.109)

The physical meaning of δ0(p) is apparent now; the phase shift is clearly a phase shift.

Let us now define the scattering length in two dimensions as the distance at which the asymptotic

wavefunction becomes zero in the zero energy limit, i.e.,

Ψ(2)(a) = 0 (A.110)

with E = 0. We remarked earlier that the scattering amplitude is not well defined in two dimensions,

but we can still talk about the wavefunction itself in the low energy limit; thus, the definition of

the scattering length has no ambiguity. Evaluating (A.108) at r = a, we obtain,

Ψ(2)
l=0(a) = eiδ0(p) (cos δ0(p)J0(pa) − sin δ0(p)N0(pa))

= eiδ0(p) cos δ0(p) (J0(pa) − tan δ0(p)N0(pa))

= 0. (A.111)

Therefore,

tan δ0(p) =
J0(pa)
N0(pa)

. (A.112)

In the low energy limit this becomes

lim
p→0

tan δ0(p) =
1 + O(p)

2
π

(
ln
pa

2
+ γ
)

+ O(p)
=
π

2
· 1 + O(p)
ln(pa/2) + γ

, (A.113)

where γ is the Euler-Mascheroni constant. Comparing with the three dimensional result tan δ0(p) =

−ap+ O(p2), we see a different low energy behavior of the phase shift.

From (A.105), the scattering amplitude for l = 0 is

f(p, θ) =
√

2
πp

· 1
cot δ0(p) − i

, (A.114)

the differential cross section at low energy is

dσ

dθ
= |f(p, θ)|2 =

2
πp

∣∣∣∣ 1
cot δ0(p) − i

∣∣∣∣2 (A.115)
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Since we have used the asymptotic form of H0(pr) to derive this result, the relation is only valid

when pr � 1, but the energy is small enough so that the scattering with l ≥ 1 can be neglected.

Using (A.113), the low energy limit of the differential cross section, while keeping pr � 1, is

dσ

dθ
= lim

p→0

2
πp

∣∣∣∣ 1
cot δ0(p) − i

∣∣∣∣2 = lim
p→0

π

2
1

p(ln(pa/2))2
= ∞. (A.116)

Thus, the differential cross section and hence the total cross section tend to diverge in the low

energy limit in two dimensions.

When only s-wave scattering is significant, the t-matrix is, from (A.59),

T (p,p′) = − 1
mr

√
2πpf(p, θ) = − 2

mr

1
cot δ0(p) − i

. (A.117)

In the low energy limit, it is tempting to conclude that

lim
p,p′→0

T (p,p′) = − lim
p→0

2
mr

π

2
· 1
ln(pa/2) + γ

= 0, (A.118)

thus the t-matrix vanishes in the low energy limit in two dimensions. However, this argument is

spurious, since the expression (A.59) is not correct in the low energy limit. Although the scattering

amplitude is not well defined in two dimensions in the low energy limit unless we keep pr � 1, the

scattering t-matrix is defined for any energy. Thus, deriving any general conclusions regarding the

low energy behavior of the two dimensional t-matrix is difficult. In the next section, we consider a

specific type of potential (a square well), and we compute the t-matrix explicitly to determine the

correct low energy behavior.

A.5 Example: a square well potential

So far, the arguments presented have been quite general and valid for any potential which falls off

sufficiently quickly in the far-field5. The differential cross section, which is measurable, has been

written in terms of the scattering amplitude, which in turn has been written in terms of the phase

shifts. To calculate the phase shifts, we need to consider a specific potential. In this section, we

consider a spherically symmetric square well potential,

V(r) =


−V0 for r < r0

0 for r > r0

, (A.119)

and explicitly calculate the low energy scattering properties.
5 Note that the Coulomb potential is one prominent example of a potential which does not satisfy this condition.
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A.5.1 Three dimensions

In three dimensions, the radial Schrödinger equation is

− 1
2mr

(
d2

dr2
− l(l + 1)

r2

)
rRl(r) + V(r)rRl(r) = ErRl(r). (A.120)

Since the l = 0 (s-wave) component dominates at low energy, we take l = 0, and thereby obtain(
d2

dr2
+ p2 − 2mrV(r)

)
rR0(r) = 0, (A.121)

where p =
√

2mrE. At r < r0, the general solution to this differential equation is

R0(r)r<r0 =
A

pr
sin
(√

p2 + 2mrV0 · r
)

+
B

pr
cos
(√

p2 + 2mrV0 · r
)
, (A.122)

and at r > r0,

R0(r)r>r0 =
C

pr
sin (pr) +

D

pr
cos (pr) , (A.123)

where constants A,B,C, and D are to be determined via boundary conditions. Since the wavefunc-

tion should be analytic at the origin, we can immediately conclude B = 0. Remembering (A.86),

the wavefunction at r > r0 can be rewritten as

R0(r)r>r0 =
C ′

pr
sin (pr + δ0(p)) . (A.124)

If we follow our previous notation, C ′ = eiδ0(p), but since the overall phase of the wavefunction is

irrelevant, we can set C ′ = 1. Thus the radial wavefunction is

R0(r) =



A

pr
sin
(√

p2 + 2mrV0 · r
)

for r < r0

1
pr

sin (pr + δ0(p)) for r > r0.

(A.125)

The wavefunction should connect smoothly at r = r0. Matching the logarithmic derivative at

r = r0, we obtain the condition√
p2 + 2mrV0

cos(
√
p2 + 2mrV0 · r0)

sin(
√
p2 + 2mrV0 · r0)

= p
cos(pr0 + δ0(p))
sin(pr0 + δ0(p))

. (A.126)

It is useful to transform the right hand side into the form√
p2 + 2mrV0

cos(
√
p2 + 2mrV0 · r0)

sin(
√
p2 + 2mrV0 · r0)

= p
cos(pr0) cos δ0(p) − sin(pr0) sin δ0(p)
sin(pr0) cos δ0(p) + cos(pr0) sin δ0(p)

. (A.127)
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Solving for tan δ0(p), we obtain

tan δ0(p) = −

√
p2 + 2mrV0

cos(
√
p2 + 2mrV0 · r0)

sin(
√
p2 + 2mrV0 · r0)

sin(pr0) − p cos(pr0)

√
p2 + 2mrV0

cos(
√
p2 + 2mrV0 · r0)

sin(
√
p2 + 2mrV0 · r0)

cos(pr0) + p sin(pr0)

. (A.128)

The scattering amplitude is then

f(p, θ) =
1
p
· 1
cot δ0(p) − i

=
tan δ0(p)

p
· 1
1 − i tan δ0(p)

. (A.129)

In the low energy limit, the phase shift becomes

lim
p→0

tan δ0(p) = −
√

2mrV0 cot(
√

2mrV0 · r0)(pr0) − p√
2mrV0 cot(

√
2mrV0 · r0)

= −pr0
(

1 − tan(
√

2mrV0 · r0)√
2mrV0 · r0

)
, (A.130)

and the scattering length is

a = r0

(
1 − tan(

√
2mrV0 · r0)√

2mrV0 · r0

)
. (A.131)

The t-matrix is

T (k,p) =
∫
d3re−ik·rV(r)Ψp(r)

= −2πV0

∫ r0

0
drr2

∫ 1

−1
d(cos θ)e−ikr cos θ A

pr
sin
(√

p2 + 2mrV0 · r
)

= −2πV0

∫ r0

0
drr2

e−ikr − eikr

−ikr
A

pr
sin
(√

p2 + 2mrV0 · r
)

= −4πV0
A

p

∫ r0

0
dr

sin(kr)
k

sin
(√

p2 + 2mrV0 · r
)

= −4πV0
A

pk

√
p2 + 2mrV0 cos(

√
p2 + 2mrV0 · r0) sin(kr0) − k cos(kr0) sin(

√
p2 + 2mrV0 · r0)

k2 − p2 − 2mrV0
,

(A.132)

where

A =
sin(pr0 + δ0(p))

sin(
√
p2 + 2mrV0 · r0)

. (A.133)

Simplifying further, we obtain

T (k,p) = −4πV0
sin(pr0 + δ0(p))

pk

√
p2 + 2mrV0 cot(

√
p2 + 2mrV0 · r0) sin(kr0) − k cos(kr0)
k2 − p2 − 2mrV0

.

(A.134)
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The zero energy limit is

lim
k,p→0

T (k,p) =
2π
mr

sin(pr0 + δ0(p))
p

(√
2mrV0 · r0 cot(

√
2mrV0 · r0) − 1

)
∼ 2π
mr

r0

(
1 − tan(

√
2mrV0 · r0)√

2mrV0 · r0

)
=

2πa
mr

, (A.135)

which is exactly what we expect from (A.96).

A.5.2 Two dimensions

In two dimensions, the radial Schrödinger equation is

− 1
2mr

[
1
r

d

dr

(
r
d

dr

)
− l2

r2

]
Rl(r) + V(r)Rl(r) = ERl(r). (A.136)

Since we are interested in the low energy property, we can take l = 0 component. Then, the

Schrödinger equation reduces to(
d2

dr2
+

1
r

d

dr
+ p2 − 2mrV(r)

)
R0(r) = 0, (A.137)

the solutions of which are the Bessel functions of the first and the second kinds.

At r < r0, the general solution to this radial equation is

R0(r) = AJ0(
√
p2 + 2mrV0 · r) +BN0(

√
p2 + 2mrV0 · r), (A.138)

while at r > r0, we have

R0(r) = CJ0(pr) +DN0(pr). (A.139)

Since the wavefunction should be analytic at the origin, B = 0. Also, from (A.108), we can write

the wavefunction at r > r0 as

R0(r) = cos δ0(p)J0(pr) − sin δ0(p)N0(pr). (A.140)

Thus, R0 is given by

R0(r) =


AJ0(

√
p2 + 2mrV0 · r) for r < r0

cos δ0(p)J0(pr) − sin δ0(p)N0(pr) for r > r0.

(A.141)
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Requiring that the two pieces of R0(r) be smoothly connected, we match the logarithmic derivative

at r = r0, which yields the condition

√
p2 + 2mrV0

J ′
0(
√
p2 + 2mrV0 · r0)

J0(
√
p2 + 2mrV0 · r0)

= p
cos δ0(p)J ′

0(pr0) − sin δ0(p)N ′
0(pr0)

cos δ0(p)J0(pr0) − sin δ0(p)N0(pr0)
. (A.142)

Solving for tan δ0(p), we obtain

tan δ0(p) =

√
p2 + 2mrV0

J ′
0(
√
p2 + 2mrV0 · r0)

J0(
√
p2 + 2mrV0 · r0)

J0(pr0) − pJ ′
0(pr0)

√
p2 + 2mrV0

J ′
0(
√
p2 + 2mrV0 · r0)

J0(
√
p2 + 2mrV0 · r0)

N0(pr0) − pN ′
0(pr0)

. (A.143)

Using J ′
0(x) = −J1(x) and N ′

0(x) = −N1(x), this expression becomes

tan δ0(p) =

√
p2 + 2mrV0J1(

√
p2 + 2mrV0 · r0)J0(pr0) − pJ0(

√
p2 + 2mrV0 · r0)J1(pr0)√

p2 + 2mrV0J1(
√
p2 + 2mrV0 · r0)N0(pr0) − pJ0(

√
p2 + 2mrV0 · r0)N1(pr0)

.

(A.144)

Taking the low energy limit p→ 0, we have

lim
p→0

tan δ0(p) =
√

2mrV0J1(
√

2mrV0 · r0) − pJ0(
√

2mrV0 · r0)pr0/2√
2mrV0J1(

√
2mrV0 · r0)2/π · (ln(pr0/2) + γ) + pJ0(

√
2mrV0 · r0)2/πpr0

=
1 + O(p)

2/π · (ln(pr0/2) + γ) + J0(
√

2mrV0 · r0)2/πr0
√

2mrV0J1(
√

2mrV0 · r0)

=
1 + O(p)

2/π · (ln(pa/2) + γ)
, (A.145)

where

a = r0 exp
(

J0(
√

2mrV0 · r0)√
2mrV0 · r0J1(

√
2mrV0 · r0)

)
. (A.146)

If mrV0r
2
0 is small, the scattering length reduces to

a ∼ r0e
1/mrV0r2

0 . (A.147)
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The t-matrix is

T (k,p) =
∫
d2re−ik·rV(r)Ψp(r)

= AV0

∫ 2π

0
dθ

∫ r0

0
drre−ikr cos θJ0(

√
p2 + 2mrV0 · r)

=
cos δ0(p)J0(pr0) − sin δ0(p)N0(pr0)

J0(
√
p2 + 2mrV0 · r0)

2πV0

∫ r0

0
drrJ0(kr)J0(

√
p2 + 2mrV0 · r)

=
cos δ0(p)J0(pr0) − sin δ0(p)N0(pr0)

J0(
√
p2 + 2mrV0 · r0)

2πV0
r0

k2 − p2 − 2mrV0

·
(
kJ0(

√
p2 + 2mrV0 · r0)J1(kr0) −

√
p2 + 2mrV0J0(kr0)J1(

√
p2 + 2mrV0 · r0)

)
=

(cos δ0(p)J0(pr0) − sin δ0(p)N0(pr0)) 2πV0r0
k2 − p2 − 2mrV0

·

(
kJ1(kr0) −

√
p2 + 2mrV0J0(kr0)

J1(
√
p2 + 2mrV0 · r0)

J0(
√
p2 + 2mrV0 · r0)

)
. (A.148)

The zero energy limit of the t-matrix is then

lim
k,p→0

T (k,p) = lim
p→0

(1 − tan δ0(p)N0(pr0))
πr0
mr

√
2mrV0

J1(
√

2mrV0 · r0)
J0(

√
2mrV0 · r0)

= lim
p→0

(
1 − ln(pr0/2) + γ

ln(pa/2) + γ

)
πr0
mr

√
2mrV0

J1(
√

2mrV0 · r0)
J0(

√
2mrV0 · r0)

= − lim
p→0

ln(a/r0)
ln(pr0/2)

πr0
mr

√
2mrV0

J1(
√

2mrV0 · r0)
J0(

√
2mrV0 · r0)

= 0. (A.149)

Thus, for a square well potential in two dimensions, the t-matrix approaches zero in the low energy

limit, in contrast to the three dimensional result where the low energy t-matrix generally approaches

a nonzero value.

When mrV0r
2
0 is small, the low energy t-matrix is

lim
k,p→0

T (k,p) ∼ − 1
mrV0r20 ln(pr0/2)

πr0
mr

√
2mrV0

√
2mrV0 · r0

2
= − π

mr ln(pr0/2)
, (A.150)

which clearly shows that the t-matrix logarithmically approaches zero in the low energy limit.

Since the t-matrix is equivalent to the ladder approximation in the effective interaction, the

effective interaction in the ladder approximation in two dimensions also approaches zero in the low

energy limit.
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A.6 Example: contact interaction

In ultracold atomic physics, one often approximates the two-body potential by a delta-function

contact interaction V(r) = gδ(r), neglecting the large momentum behavior and only focusing on

the low energy physics. A useful feature of the contact interaction is that the Fourier transform

does not depend on the momentum V(p) = g.

To correctly deal with a contact interaction, we must be careful with our treatment of the large

momentum. In this section, we derive properties of the scattering t-matrix in a contact interaction.

The t-matrix satisfies the equation (A.19), which is

T (p′,p) = g + g

∫
ddk

(2π)d

1
(p2 − k2)/2mr

T (k,p)

= g + g

∫
ddk

(2π)d

1
(p2 − k2)/2mr

g

+ g

∫
ddk

(2π)d

1
(p2 − k2)/2mr

g

∫
ddk′

(2π)d

1
(p2 − k′2)/2mr

g + · · ·

= g
∞∑

n=0

(∫
ddk

(2π)d

1
(p2 − k2)/2mr

g

)n

=
(

1
g
−
∫

ddk

(2π)d

1
(p2 − k2)/2mr

)−1

. (A.151)

Introducing a high momentum cutoff Λ for three and two dimensions, and a low momentum cutoff

λ for two dimensions, the inverse of the zero-energy t-matrix is

1
T (0, 0)

=
1
g

+
∫

ddk

(2π)d

2mr

k2
=


1/g +mrΛ/π2 for three dimensions

1/g +mr ln(Λ/λ)/π for two dimensions.
(A.152)

The large momentum (ultraviolet) divergences due to Λ in the right hand sides are not a significant

concern, since this will simply act as a renormalization of the bare coupling g. The low momentum

(infrared) divergence in two dimensions due to λ is a result of a generic feature in two dimensions

that the t-matrix vanishes in the low energy limit.
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Derivation of Green’s functions

We derive the Green’s function (3.20) for the bosons with the isotropic Rashba-Dresselhaus spin-

orbit coupling. The equations of motion for ψ−,p and ψ+,p in Heisenberg representation are

i
∂

∂t
ψ−,p(t) =

(
p2 + κ2

2m
− µ

)
ψ−,p(t) − κ

m
(pxψ−,p(t) + ipyψ+,p(t))

+
g

2V
N0

(
4ψ−,p(t) + 2ψ†

−,2p0−p(t)
)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

−,p3
(t)ψ−,p2(t)ψ−,p1(t) + 2ψ†

+,p3
(t)ψ+,p2(t)ψ−,p1(t)

)

=
(
p2 + κ2

2m
− µ− κ

m
px + 2gn0

)
ψ−,p(t) − i

κ

m
pyψ+,p(t) + gn0ψ

†
−,2p0−p(t)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

−,p3
(t)ψ−,p2(t)ψ−,p1(t) + 2ψ†

+,p3
(t)ψ+,p2(t)ψ−,p1(t)

)
(B.1)

−i ∂
∂t
ψ†
−,p(t) =

(
p2 + κ2

2m
− µ− κ

m
px + 2gn0

)
ψ†
−,p(t) + i

κ

m
pyψ

†
+,p(t) + gn0ψ−,2p0−p(t)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

−,p1
(t)ψ†

−,p2
(t)ψ−,p3(t) + 2ψ†

−,p1
(t)ψ†

+,p2
(t)ψ+,p3(t)

)
(B.2)
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and

i
∂

∂t
ψ+,p(t) =

(
p2 + κ2

2m
− µ

)
ψ+,p(t) +

κ

m
(pxψ+,p(t) + ipyψ−,p(t)) +

g

2V
N02ψ+,p(t)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

+,p3
(t)ψ+,p2(t)ψ+,p1(t) + 2ψ†

−,p3
(t)ψ+,p2(t)ψ−,p1(t)

)

=
(
p2 + κ2

2m
− µ+

κ

m
px + gn0

)
ψ+,p(t) + i

κ

m
pyψ−,p(t)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

+,p3
(t)ψ+,p2(t)ψ+,p1(t) + 2ψ†

−,p3
(t)ψ+,p2(t)ψ−,p1(t)

)
(B.3)

−i ∂
∂t
ψ†

+,p(t) =
(
p2 + κ2

2m
− µ+

κ

m
px + gn0

)
ψ†

+,p(t) − i
κ

m
pyψ

†
−,p(t)

+
g

2V

∑
p1+p2=p3+p

pi 6=p0

(
2ψ†

+,p1
(t)ψ†

+,p2
(t)ψ+,p3(t) + 2ψ†

−,p1
(t)ψ†

+,p2
(t)ψ−,p3(t)

)
(B.4)

Then,

i
∂

∂t1
G11(p; t1, t2) = δ(t1 − t2) + 〈T ∂ψ−,p(t1)

∂t1
ψ†
−,p(t2)〉

= δ(t1 − t2) +
(
p2 + κ2

2m
− µ− κ

m
px + 2gn0

)
G11(p; t1, t2)

− i
κ

m
pyG31(p; t1, t2) + n0gG21(p; t1, t2) − i

g

2V

∑
p1+p2=p3+p

pi 6=p0

〈T
(
2ψ†

−,p3
(t1)ψ−,p2(t1)ψ−,p1(t1)ψ

†
−,p(t2) + 2ψ†

+,p3
(t1)ψ+,p2(t1)ψ−,p1(t1)ψ

†
−,p(t2)

)
〉. (B.5)

Including the Hartree-Fock energy, this becomes

i
∂

∂t1
G11(p; t1, t2) = δ(t1 − t2) +

(
p2 + κ2

2m
− µ− κ

m
px + g(2n0 + 2n− + n+)

)
G11(p; t1, t2)

− i
κ

m
pyG31(p; t1, t2) + gn0G21(p; t1, t2). (B.6)
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Similarly,

i
∂

∂t1
G33(p; t1, t2) = δ(t1 − t2) +

(
p2 + κ2

2m
− µ+

κ

m
px + gn0

)
G33(p; t1, t2)

+ i
κ

m
pyG31(p; t1, t2) − i

g

2V

∑
p1+p2=p3+p

pi 6=p0

〈T
(
2ψ†

+,p3
(t1)ψ+,p2(t1)ψ+,p1(t1)ψ

†
+,p(t2) + 2ψ†

−,p3
(t1)ψ+,p2(t1)ψ−,p1(t1)ψ

†
+,p(t2)

)
〉

∼ δ(t1 − t2) +
(
p2 + κ2

2m
− µ+

κ

m
px + g(n0 + n− + 2n+)

)
G33(p; t1, t2) + i

κ

m
pyG31(p; t1, t2).

(B.7)

And

− i
∂

∂t1
G22(p; t1, t2) = δ(t1 − t2) − 〈T

∂ψ†
−,p′(t1)

∂t1
ψ−,p′(t2)〉

= δ(t1 − t2) +
(
p′2 + κ2

2m
− µ− κ

m
p′x + 2gn0

)
G22(p; t1, t2)

+ i
κ

m
p′yG42(p; t1, t2) + gn0G12(p; t1, t2) +

g

2V

∑
p1+p2=p3+p′

pi 6=p0

〈T
(
2ψ†

−,p1
(t1)ψ

†
−,p2

(t1)ψ−,p3(t1)ψ−,p′(t2) + 2ψ†
−,p1

(t1)ψ
†
+,p2

(t1)ψ+,p3(t1)ψ−,p′(t2)
)
〉

∼ δ(t1 − t2) +
(
p′2 + κ2

2m
− µ− κ

m
p′x + g(2n0 + 2n− + n+)

)
G22(p; t1, t2)

+ i
κ

m
p′yG42(p; t1, t2) + gn0G12(p; t1, t2). (B.8)

Similarly,

− i
∂

∂t1
G44(p; t1, t2) = δ(t1 − t2) +

(
p′2 + κ2

2m
− µ+

κ

m
p′x + g(n0 + n− + 2n+)

)
G44(p; t1, t2)

− i
κ

m
p′yG24(p; t1, t2). (B.9)

Similar relations hold for the time-dependence of the off-diagonal Green’s functions, and in the end,

we obtain the following equation of motion for the matrix Green’s function.

δ(t1 − t2)I =


i ∂
∂t1

−A −gn0 i κ
mpy 0

−gn0 −i ∂
∂t1

− C 0 −i κ
mp

′
y

−i κ
mpy 0 i ∂

∂t1
−B 0

0 i κ
mp

′
y 0 −i ∂

∂t1
−D

G(p; t1, t2), (B.10)
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where

A =
p2 − 2κpx + κ2

2m
− µ+ g(2n0 + 2n− + n+) =

(p − p0)2

2m
− µ+ g(2n0 + 2n− + n+) (B.11)

B =
p2 + 2κpx + κ2

2m
− µ+ g(n0 + n− + 2n+) =

(p + p0)2

2m
− µ+ g(n0 + n− + 2n+) (B.12)

C =
p′2 − 2κp′x + κ2

2m
− µ+ g(2n0 + 2n− + n+) =

(p′ − p0)2

2m
− µ+ g(2n0 + 2n− + n+) (B.13)

D =
p′2 + 2κp′x + κ2

2m
− µ+ g(n0 + n− + 2n+) =

(p′ + p0)2

2m
− µ+ g(n0 + n− + 2n+). (B.14)

In terms of frequencies

G(p; t1, t2) =
∫

dz

2π
G(p, z)e−iz(t1−t2), (B.15)

the equations of motion become

I =


z −A −gn0 i κ

mpy 0

−gn0 −z − C 0 −i κ
mp

′
y

−i κ
mpy 0 z −B 0

0 i κ
mp

′
y 0 −z −D

G(p, z). (B.16)

Inverting this equation gives the equation (3.20).



Appendix C

Absence of population imbalance in a

normal state

In this appendix, we prove that there is no population imbalance in a normal state of bosons with

Rashba-Dresselhaus spin-orbit coupling considered in the section 3.4.

In this section we introduce separate chemical potentials µ− and µ+ for the bases (−) and (+),

respectively, to determine if there is a spontaneous population imbalance. We prove that there is

no spontaneous population imbalance by seeing that the second derivative of the Ginzburg-Landau

free energy with respect to the population imbalance is positive.

The reduced Hamiltonian within the Hartree-Fock approximation is, as in (3.66),

HHF = −V g
(
n2
− + n2

+ + n−n+

)
+
∑
p 6=κ

(
ψ†
−,p ψ†

+,p

) A −i κ
mpy

i κ
mpy B

ψ−,p

ψ+,p

 . (C.1)

where

A =
(p − κ)2

2m
− µ− + g(2n− + n+), B =

(p + κ)2

2m
− µ+ + g(n− + 2n+). (C.2)

To diagonalize the Hamiltonian, we writeψ−,p

ψ+,p

 =

vα,1 vβ,1

vα,2 vβ,2

ψα,p

ψβ,p

 , (C.3)

where vα ≡

vα,1

vα,2

 and vβ ≡

vβ,1

vβ,2

 are the normalized eigenvectors of

 A −i κ
mpy

i κ
mpy B

, whose
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eigenvalues are

ξα =
p2 + κ2

2m
− µ− + µ+

2
+

3
2
g(n− + n+) −

√(
− κ

m
px − µ− − µ+

2
+
g

2
(n− − n+)

)2

+
( κ
m
py

)2

(C.4)

ξβ =
p2 + κ2

2m
− µ− + µ+

2
+

3
2
g(n− + n+) +

√(
− κ

m
px − µ− − µ+

2
+
g

2
(n− − n+)

)2

+
( κ
m
py

)2
.

(C.5)

By an explicit calculation, one can derive

vα,1

vα,2

 = Cα


−κpx

m
− µ− − µ+

2
− g

2
∆n−

√(
−κpx

m
− µ− − µ+

2
− g

2
∆n
)2

+
κ2p2

y

m2

i
κ

m
py


≡ Cα

γ1 −
√
γ2

1 + γ2
2

−iγ2

 (C.6)

vβ,1

vβ,2

 = Cβ


−κpx

m
− µ− − µ+

2
− g

2
∆n+

√(
−κpx

m
− µ− − µ+

2
− g

2
∆n
)2

+
κ2p2

y

m2

i
κ

m
py


≡ Cβ

γ1 +
√
γ2

1 + γ2
2

−iγ2

 , (C.7)

where ∆n ≡ n+ − n− as before, and Cα and Cβ are normalization constants which satisfy

C2
α =

√
γ2

1 + γ2
2 + γ1

2γ2
2

√
γ2

1 + γ2
2

, C2
β =

√
γ2

1 + γ2
2 − γ1

2γ2
2

√
γ2
1 + γ2

2

. (C.8)

Since the Hamiltonian is diagonalized in the basis (ψα,p, ψβ,p), the number of particles in the states

ψα and ψβ, with momentum p, are fB(ξα(p)) and fB(ξβ(p)) respectively, where fB(x) = 1/(eβx−1)

is the Bose distribution function. Then, the number of particles in the states (−) and (+) with

momentum p is

〈ψ†
−,pψ−,p〉 = |vα,1|2fB(ξα(p)) + |vβ,1|2fB(ξβ(p)) (C.9)

〈ψ†
+,pψ+,p〉 = |vα,2|2fB(ξα(p)) + |vβ,2|2fB(ξβ(p)). (C.10)
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Therefore,

n− =
1
V

∑
p

〈ψ†
−,pψ−,p〉 =

1
V

∑
p

(
|vα,1|2fB(ξα(p)) + |vβ,1|2fB(ξβ(p))

)
=

1
V

∑
p

(
C2

α

(
γ1 −

√
γ2

1 + γ2
2

)2

fB(ξα(p)) + C2
β

(
γ1 +

√
γ2

1 + γ2
2

)2

fB(ξβ(p))

)

=
1
V

∑
p

(√
γ2

1 + γ2
2 − γ1

2
√
γ2

1 + γ2
2

fB(ξα(p)) +

√
γ2

1 + γ2
2 + γ1

2
√
γ2
1 + γ2

2

fB(ξβ(p))

)
, (C.11)

and similarly,

n+ =
1
V

∑
p

(√
γ2

1 + γ2
2 + γ1

2
√
γ2

1 + γ2
2

fB(ξα(p)) +

√
γ2

1 + γ2
2 − γ1

2
√
γ2
1 + γ2

2

fB(ξβ(p))

)
. (C.12)

These equations determine n− and n+ self-consistently.

In order to investigate the possibility of spontaneous population imbalance, we consider the

Ginzburg-Landau free energy as a function of population imbalance, and ask whether µ− = µ+

with n− = n+ is a minimum or a local maximum.

The Helmholtz free energy density is

F =µ−n− + µ+n+ − g
(
n2
− + n2

+ + n−n+

)
+

1
βV

∑
p

ln
(
1 − e−βξα(p)

)
+

1
βV

∑
p

ln
(
1 − e−βξβ(p)

)
. (C.13)

In order to regard this free energy as a function of a population imbalance, we define the population

imbalance φ by

n− =
n

2
+ φ, n+ =

n

2
− φ, (C.14)

and regard µ− and µ+ as functions of φ. Then, taking derivatives of (C.11) and (C.12) with respect

to φ, one can derive

∂µ−
∂φ

∣∣∣∣
φ=0

= − ∂µ+

∂φ

∣∣∣∣
φ=0

. (C.15)

Using this relation, one obtains

∂2F
∂φ2

∣∣∣∣
φ=0

= −2
∂µ−
∂φ

∣∣∣∣
φ=0

, (C.16)
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where

∂µ−
∂φ

∣∣∣∣
φ=0

=

− g + 2

[
1
V

∑
p

p2
y

p3
⊥

(−fB(ξα(p)) + fB(ξβ(p))) +
1
V

∑
p

p2
x

p2
⊥

(
f ′B(ξα(p)) + f ′B(ξβ(p))

)]−1

< 0.

(C.17)

Therefore

∂2F
∂φ2

∣∣∣∣
φ=0

> 0, (C.18)

which implies that µ− = µ+ with n− = n+ = n/2 is a minimum and there is no spontaneous

population imbalance.
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T-matrix for bosons

We derive the t-matrix for bosons (4.21). Our starting point is the set of Bethe-Salpeter equations

(4.7). Explicitly writing out V(i)s, the Bethe-Salpeter equations are

Γαα
αα(p,p′;q) =

gaa

4
+
gbb

4
ei(φ1+φ2−φ3−φ4) +

gab

4
(eiφ1 + eiφ2)(e−iφ3 + e−iφ3)

2

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 + eiφ2)(e−iφ5 + e−iφ6)

2

]
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 + eiφ2)(e−iφ5 + e−iφ6)

2

] Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 + eiφ2)(e−iφ5 − e−iφ6)

2

] √
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

,

Γαα
ββ (p,p′;q) =

gaa

4
+
gbb

4
ei(φ1+φ2−φ3−φ4) − gab

4
(eiφ1 + eiφ2)(e−iφ3 + e−iφ3)

2

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 + eiφ2)(e−iφ5 + e−iφ6)

2

]
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 + eiφ2)(e−iφ5 + e−iφ6)

2

] Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 + eiφ2)(e−iφ5 − e−iφ6)

2

] √
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

,

(D.1)
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and

1√
2
Γαα

αβ(p,p′;q) =
gaa

4
− gbb

4
ei(φ1+φ2−φ3−φ4) +

gab

4
(eiφ1 − eiφ2)(e−iφ3 + e−iφ3)

2

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 − eiφ2)(e−iφ5 + e−iφ6)

2

]
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 − eiφ2)(e−iφ5 + e−iφ6)

2

] Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 − eiφ2)(e−iφ5 − e−iφ6)

2

] √
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

.

(D.2)

Changing p to −p in (D.2) corresponds to interchanging φ1 and φ2 in the right hand side. Thus,

1√
2
Γαα

αβ(−p,p′;q) =
gaa

4
− gbb

4
ei(φ1+φ2−φ3−φ4) − gab

4
(eiφ1 − eiφ2)(e−iφ3 + e−iφ3)

2

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) − gab

4
(eiφ1 − eiφ2)(e−iφ5 + e−iφ6)

2

]
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

−
∫

d3k

(2π)3

[
gaa

4
− gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 − eiφ2)(e−iφ5 + e−iφ6)

2

] Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)

−
∫

d3k

(2π)3

[
gaa

4
+
gbb

4
ei(φ1+φ2−φ5−φ6) +

gab

4
(eiφ1 − eiφ2)(e−iφ5 − e−iφ6)

2

] √
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

,

(D.3)

which turns out to be useful in solving the set of Bethe-Salpeter equations.

The key to solving this set of equations is to construct the quantities

X(p,p′;q) ≡ 1
4

(
Γαα

αα(p,p′;q) + Γαα
ββ (p,p′;q) + Γαα

αβ(p,p′;q)/
√

2 + Γαα
αβ(−p,p′;q)/

√
2
)
,

Y (p,p′;q)ei(φ1+φ2−φ3−φ4)

≡ 1
4

(
Γαα

αα(p,p′;q) + Γαα
ββ (p,p′;q) − Γαα

αβ(p,p′;q)/
√

2 − Γαα
αβ(−p,p′;q)/

√
2
)
,

Z(p,p′;q) ≡ 1
2

Γαα
αα(p,p′;q) − Γββ

αα(p,p′;q)
(eiφ1 + eiφ2)(e−iφ3 + e−iφ4)

=
1
2

Γαα
αβ(p,p′;q)/

√
2 − Γαα

αβ(−p,p′;q)/
√

2
(eiφ1 − eiφ2)(e−iφ3 + e−iφ4)

. (D.4)

The last equation can be verified by looking at the Bethe-Salpeter equations. Constructing X, Y ,

and Z from the Bethe-Salpeter equations (D.1)-(D.3), we obtain

X(p,p′;q) =
gaa

4

[
1 −

∫
d3k

(2π)3

×

(
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

+
Γαα

ββ (k,p′;q)
ε+(q

2 − k) + ε+(q
2 + k)

+

√
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

)]
, (D.5)
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Y (p,p′;q) =
gbb

4

[
1 −

∫
d3k

(2π)3
1

ei(φ5+φ6−φ3−φ4)

×

(
Γαα

αα(k,p′;q)
ε−(q

2 − k) + ε−(q
2 + k)

+
Γαα

ββ (k,p′;q)
ε+(q

2 − k) + ε+(q
2 + k)

−
√

2Γαα
αβ(k,p′;q)

ε+(q
2 − k) + ε−(q

2 + k)

)]
, (D.6)

and

Z(p,p′;q) =
gab

8

[
1 −

∫
d3k

(2π)3

(
e−iφ5 + e−iφ6

e−iφ3 + e−iφ4

Γαα
αα(k,p′;q)

ε−(q
2 − k) + ε−(q

2 + k)

−e
−iφ5 + e−iφ6

e−iφ3 + e−iφ4

Γαα
ββ (k,p′;q)

ε+(q
2 − k) + ε+(q

2 + k)
− e−iφ5 − e−iφ6

e−iφ3 + e−iφ4

√
2Γαα

αβ(k,p′;q)
ε+(q

2 − k) + ε−(q
2 + k)

)]
. (D.7)

We can see that the right hand sides of (D.5), (D.6), and (D.7) do not depend on p. Thus, X,

Y , and Z do not depend on their first argument and we can write X(k,p′;q) = X(p′;q), etc.

Inverting (D.4), the t-matrices can be written in terms of X, Y , and Z as

Γαα
αα(k,p′;q) = X(p′;q) + Y (p′;q)ei(φ5+φ6−φ3−φ4) + Z(p′;q)(eiφ6 + eiφ5)(e−iφ3 + e−iφ4)

Γαα
ββ (k,p′;q) = X(p′;q) + Y (p′;q)ei(φ5+φ6−φ3−φ4) − Z(p′;q)(eiφ6 + eiφ5)(e−iφ3 + e−iφ4)

1√
2
Γαα

αβ(k,p′;q) = X(p′;q) − Y (p′;q)ei(φ5+φ6−φ3−φ4) + Z(p′;q)(eiφ6 − eiφ5)(e−iφ3 + e−iφ4).

(D.8)

Using (D.8), all the t-matrices in the equations (D.5), (D.6), and (D.7) can be written in terms of

X, Y , and Z. After arranging terms, from (D.5) we obtain

X(p′;q)[
4
gaa

+
∫

d3k

(2π)3

(
1

ε−(q
2 − k) + ε−(q

2 + k)
+

1
ε+(q

2 − k) + ε+(q
2 + k)

+
2

ε+(q
2 − k) + ε−(q

2 + k)

)]
+ Y (p′;q)e−i(φ3+φ4)∫

d3k

(2π)3

(
ei(φ5+φ6)

ε−(q
2 − k) + ε−(q

2 + k)
+

ei(φ5+φ6)

ε+(q
2 − k) + ε+(q

2 + k)
− 2ei(φ5+φ6)

ε+(q
2 − k) + ε−(q

2 + k)

)
+ Z(p′;q)(e−iφ3 + e−iφ4)∫

d3k

(2π)3

(
eiφ5 + eiφ6

ε−(q
2 − k) + ε−(q

2 + k)
− eiφ5 + eiφ6

ε+(q
2 − k) + ε+(q

2 + k)
− 2(eiφ5 − eiφ6)
ε+(q

2 − k) + ε−(q
2 + k)

)
= 1. (D.9)
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Defining

f(q̃/2) ≡

π

mκ

∫
d3k

(2π)3

[
1

ε−(q
2 + k) + ε−(q

2 − k)
+

1
ε+(q

2 + k) + ε+(q
2 − k)

+
2

ε−(q
2 + k) + ε+(q

2 − k)
− 4m

k2

]
g(q̃/2) ≡

− π

mκ

∫
d3k

(2π)3

[
cos(φ5 − φ6)

ε−(q
2 + k) + ε−(q

2 − k)
+

cos(φ5 − φ6)
ε+(q

2 + k) + ε+(q
2 − k)

− 2 cos(φ5 − φ6)
ε−(q

2 + k) + ε+(q
2 − k)

]
h1(q̃/2) ≡

π

mκ

∫
d3k

(2π)3

[
ei(φ5+φ6)

ε−(q
2 + k) + ε−(q

2 − k)
+

ei(φ5+φ6)

ε+(q
2 + k) + ε+(q

2 − k)
− 2ei(φ5+φ6)

ε−(q
2 + k) + ε+(q

2 − k)

]
h2(q̃/2) ≡

π

2mκ

∫
d3k

(2π)3

[
eiφ5 + eiφ6

ε−(q
2 + k) + ε−(q

2 − k)
− eiφ5 + eiφ6

ε+(q
2 + k) + ε+(q

2 − k)
− 2(eiφ5 − eiφ6)
ε−(q

2 + k) + ε+(q
2 − k)

]
,

(D.10)

the equation (D.9) becomes

1 = X(p′;q)
(

4
gaa

+
∫

d3k

(2π)3
4m
k2

+
mκ

π
f(q̃/2)

)
+ Y (p′;q)e−i(φ3+φ4)mκ

π
h1(q̃/2)

+ Z(p′;q)(e−iφ3 + e−iφ4)
2mκ
π

h2(q̃/2). (D.11)

Introducing the free field scattering lengths by

1
gij

=
m

4πaij
−
∫

d3k

(2π)3
m

k2
, (D.12)

we obtain

π

mκ
= X(p′;q)

(
1

κaaa
+ f(q̃/2)

)
+ Y (p′;q)e−i(φ3+φ4)h1(q̃/2) + 4Z(p′;q)

e−iφ3 + e−iφ4

2
h2(q̃/2).

(D.13)

Similarly, from (D.6) and (D.7), we obtain

π

mκ
e−i(φ3+φ4) = X(p′;q)h∗1(q̃/2) + Y (p′;q)e−i(φ3+φ4)

(
1

κabb
+ f(q̃/2)

)
+ 4Z(p′;q)

e−iφ3 + e−iφ4

2
h∗2(q̃/2), (D.14)

π

mκ

e−iφ3 + e−iφ4

2
= X(p′;q)h∗2(q̃/2) + Y (p′;q)e−i(φ3+φ4)h2(q̃/2)

+ 4Z(p′;q)
e−iφ3 + e−iφ4

2

(
1

2κaab
+
f(q̃/2) − g(q̃/2)

2

)
. (D.15)
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From (D.13), (D.14), and (D.15), we obtain the following matrix equation:

π

mκ


1

e−i(φ3+φ4)

e−iφ3+e−iφ4

2



=


f( q̃

2) + 1
κaaa

h1(q̃/2) h2(q̃/2)

h∗1(q̃/2) f( q̃
2) + 1

κabb
h∗2(q̃/2)

h∗2(q̃/2) h2(q̃/2) 1
2

(
f( q̃

2) − g( q̃
2) + 1

κaab

)



X(p′;q)

Y (p′;q)e−i(φ3+φ4)

4Z(p′;q) e−iφ3+e−iφ4

2



≡M


X(p′;q)

Y (p′;q)e−i(φ3+φ4)

4Z(p′;q) e−iφ3+e−iφ4

2

 . (D.16)

Then, from (D.8), we finally obtain the expression for the t-matrix

Γαα
αα(p,p′;q) =

(
1 ei(φ1+φ2) eiφ1+iφ2

2

)
X(p′;q)

Y (p′;q)e−i(φ3+φ4)

4Z(p′;q)
e−iφ3 + e−iφ4

2



=
π

mκ

(
1 ei(φ1+φ2) eiφ1+iφ2

2

)
M−1


1

e−i(φ3+φ4)

e−iφ3 + e−iφ4

2

 , (D.17)

which is (4.21).



Appendix E

The coefficients of the Ginzburg-Landau

free energy

We outline here the derivation of the Ginzburg-Landau free energy (5.32) from the free energy

FGL(∆, φ), Eq. (5.29). Since ∆ always appears squared in the equations, odd powers of ∆ do not

occur in the free energy. To find the coefficients of ∆2 and ∆4, we set φ = 0, and expand FGL(∆, 0)

in powers of ∆2. Taking the derivative of the number equation for blue particles (5.31) with respect

to ∆2, we see that µb (here allowed to differ from µr) does not depend on ∆2. Differentiating the

number equation for red particles (5.30), we obtain

∂µr

∂∆2

∣∣∣∣
0

= −c2
c1
, (E.1)

where the subscript 0 denotes the derivative at ∆ = φ = 0, and

c1 = − 1
V

∑
k

f ′(ξ0k), (E.2)

c2 =
1
V

∑
k

(
tanhβξ0k/2

4(ξ0k)2
+
f ′(ξ0k)
2ξ0k

)
. (E.3)

Note that both c1 and c2 are positive. Then

∂FGL(∆, 0)
∂∆2

∣∣∣∣
0

= − 1
U

− 1
V

∑
k

tanhβξ0k/2
2ξ0k

, (E.4)

1
2
∂2FGL(∆, 0)
∂(∆2)2

∣∣∣∣
0

= b+
(c2)2

c1
, (E.5)

where

b =
1
V

∑
k

(
tanhβξ0k/2

8(ξ0k)3
+
f ′(ξ0k)
4(ξ0k)2

)
> 0. (E.6)
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We similarly derive the coefficients of φ, φ2, φ3, and φ4:

∂FGL(0, φ)
∂φ

∣∣∣∣
0

= 0, (E.7)

1
2
∂2FGL(0, φ)

∂φ2

∣∣∣∣
0

= 3
(

1
c1

− UH

)
, (E.8)

1
6
∂3FGL(0, φ)

∂φ3

∣∣∣∣
0

=
κ1

(c1)3
, (E.9)

1
24

∂4FGL(0, φ)
∂φ4

∣∣∣∣
0

=
3

4(c1)4

(
3
(κ1)2

c1
− κ2

)
, (E.10)

where

κ1 =
1
V

∑
k

f ′′(ξ0k), κ2 = − 1
V

∑
k

f ′′′(ξ0k). (E.11)

Finally, the coefficients of φ∆2 and φ2∆2 are

∂2FGL(∆, φ)
∂φ∂∆2

∣∣∣∣
∆=φ=0

= −2
c2
c1
, (E.12)

1
2
∂3FGL(∆, φ)
(∂φ)2∂∆2

∣∣∣∣
∆=φ=0

=
c2κ1

(c1)3
+

1
(c1)2

(
1
V

∑
k

f ′′(ξ0k)
2ξ0k

− 4b

)
≡ c5. (E.13)

Therefore, the Ginzburg-Landau free energy up to fourth order in the order parameters is

FGL(∆, φ) =

(
− 1
U

− 1
V

∑
k

tanhβξ0k/2
2ξ0k

)
∆2 +

(
b+

(c2)2

c1

)
∆4

+ 3
(

1
c1

− UH

)
φ2 +

κ1

(c1)3
φ3 +

3
4(c1)4

(
3
(κ1)2

c1
− κ2

)
φ4 − 2

c2
c1
φ∆2 + c5φ

2∆2

≡ a∆2 +
(
b+

(c2)2

c1

)
∆4 + 3

(
1
c1

− UH

)
φ2 + c3φ

3 + c4φ
4 − 2

c2
c1

∆2φ+ c5∆2φ2.

(E.14)

Note that the ci and b are all positive. Also, since UH is negative, the coefficient of φ2 is positive.



Appendix F

Population imbalance above the Bose

condensation temperature

We derive the condition for the homogeneous state with population balance to be stable in a Bose

mixture, which is used in the section 5.5. Although the three-component ultracold Fermi gas can

form three types of molecules, the basic physics of the instability toward inhomogeneous states can

be captured by considering a two-component Bose system.

We derive the Ginzburg-Landau free energy of a system of two species of bosons, a and b, as a

function of their population imbalance at fixed total number N = Na + Nb. With ak and bk the

annihilation operators of bosons a and b of momentum k, the Hamiltonian is

H − µaNa−µbNb =
∑
k

(
k2

2m
− µa

)
a†kak +

∑
k

(
k2

2m
− µb

)
b†kbk

+
U0

2V

∑
k,k′,q

(
a†k+qa

†
k′−qak′ak + b†k+qb

†
k′−qbk′bk

)
+
U1

V

∑
k,k′,q

a†k+qb
†
k′−qbk′ak, (F.1)

where U0 = 4πa0/m and U1 = 4πa1/m are the s-wave interaction strength between the same type

and between different types of bosons, and a0 and a1 are the corresponding scattering lengths.

We assume a sufficiently high temperature that neither system is condensed. In the Hartree-

Fock approximation, we obtain

H − µaNa − µbNb ≈
∑
k

(
ξa,k + 2U0

Na

V
+ U1

Nb

V

)
a†kak

+
∑
k

(
ξb,k + 2U0

Nb

V
+ U1

Na

V

)
b†kbk − U0

V

(
N2

a +N2
b

)
− U1

V
NaNb, (F.2)

where ξa,k ≡ k2/2m− µa and ξb,k ≡ k2/2m− µb. The number of particles Na and Nb satisfies the
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self-consistent equations,

Na =
∑
k

g (ξa,k + 2U0na + U1nb) (F.3)

Nb =
∑
k

g (ξb,k + 2U0nb + U1na) , (F.4)

where g(x) = 1/(eβx − 1) is the Bose distribution function, and na = Na/V and nb = Nb/V . Then

the thermodynamic potential is

Ω
V

= −U0

(
n2

a + n2
b

)
− U1nanb +

1
βV

∑
k

ln {1 − exp (−β (ξa,k + 2U0na + U1nb))}

+
1
βV

∑
k

ln {1 − exp (−β (ξb,k + 2U0nb + U1na))} , (F.5)

and the Helmholtz free energy is

F

V
=

Ω
V

+ µana + µbnb. (F.6)

The condition for the stability of the homogeneous state is found by expanding the Helmholtz

free energy in terms of the deviation of the number of particles from the homogeneous state. We

write the deviation of the numbers of particles from the balanced case as

ϕ = na −
n

2
= −

(
nb −

n

2

)
; (F.7)

then

∂

∂ϕ

F

V

∣∣∣∣
ϕ=0

= 0 (F.8)

∂2

∂ϕ2

F

V

∣∣∣∣
ϕ=0

= 2
(

2U0 − U1 −
1
G

)
, (F.9)

where

G =
1
V

∑
k

g′
(
k2

2m
− µ0 + 2U0

n

2
+ U1

n

2

)
< 0, (F.10)

and the homogeneous chemical potential µ0 is determined by

n

2
=

1
V

∑
k

g

(
k2

2m
− µ0 + 2U0

n

2
+ U1

n

2

)
. (F.11)

The homogeneous state is stable if and only if ∂2(F/V )/∂ϕ2 > 0. Since G < 0, we immediately

conclude that when 2U0 > U1, as in the present system, the homogeneous state is always stable
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at T > TBEC. [For 2U0 < U1, one finds G → 0− as T → ∞, and G → −∞ as T approaches

TBEC from above, implying a phase transition from the homogeneous to an inhomogeneous state

at T > TBEC. The transition temperature increases with increasing U1 − 2U0. As U1 → 2U0 from

above, the transition temperature approaches TBEC from above.]

Since the interaction is the same as that between identical and different molecules in the BEC

limit of three-component ultracold fermions, the result derived here implies that the system is

homogeneous above the condensation temperature.



Appendix G

Expansion of Γrg(q, ωq)
−1 in (5.65)

The expansion of Γrg(q, ωq)−1 in (5.65) can be explicitly carried out using Eq. (5.60), with the

result of Eq. (5.65), −Γrg(q, ωq)−1 ≈ Zωq − γq2, where

Z =
∫

d3k

(2π)3

(
tanh(βcEk/2)

2Ek
+ f ′(Ek)

)
ξk

2E2
k

(G.1)

and

γ =
∫

d3k

(2π)3
1

2mE7
k

[{
ξ2k∆2

pg

k2

3m
+

1
8
ξkE

2
k

(
2ξ2k − ∆2

pg

)
+

k2

24m
(
∆2

pg − ξ2k
) (
E2

k + ξ2k
)}(

tanh
βcEk

2
+ 2Ekf

′(Ek)
)

+

{
ξk∆2

pgE
2
k

4
+

k2

12m
(
2ξ4k − ξ2k∆2

pg + ∆4
pg

)}
E2

kf
′′(Ek) +

k2

18m
ξ2k∆2

pgE
3
kf

′′′(Ek)

]
. (G.2)

In this appendix, we derive the relations (G.1) and (G.2). We first obtain some useful formulae on

the summation of Matsubara frequencies. We then use the formula to derive the desired relations.

G.1 Matsubara sum

Fermionic Matsubara frequencies are defined by ωn = iπ(2n + 1)/β. The residue of a complex

function g(z) at a pole c of order n is

Res(g, c) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
((z − c)ng(z)). (G.3)

We consider the integral in the complex z-plane along the contour C in Figure G.1, which is

deformed as in the figure. The most basic formula is
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Fermionic

Matsubara frequencies

x

C C

C

Figure G.1: Deformation of the contour C in the complex z plane.

1
β

∑
n

1
ωn − x

= lim
η→+0

1
β

∑
n

eωnη

ωn − x
= − 1

2πi
lim

η→+0

∫
C
dz

ezη

z − x

1
eβz + 1

= lim
η→+0

Res

(
ezη

z − x

1
eβz + 1

, x

)
= f(x), (G.4)

where f(x) = 1/(eβx + 1) is the Fermi distribution function. The formula is true for both positive

and negative x. More complicated formulae are derived similarly:

1
β

∑
n

1
(ωn − x)2

= − 1
2πi

lim
η→+0

∫
C
dz

ezη

(z − x)2
1

eβz + 1
= −β eβx

(eβx + 1)2
= f ′(x) (G.5)

1
β

∑
n

1
(ωn − x)3

= − 1
2πi

lim
η→+0

∫
C
dz

ezη

(z − x)3
1

eβz + 1
=

1
2
f ′′(x) (G.6)

1
β

∑
n

1
(ωn − x)4

= − 1
2πi

lim
η→+0

∫
C
dz

ezη

(z − x)4
1

eβz + 1
=

1
6
f ′′′(x), (G.7)

and some combinations:

1
β

∑
n

1
ωn − x

· 1
ωn + x

=
1
β

∑
n

(
1

ωn − x
− 1
ωn + x

)
1
2x

=
1
2x

(f(x) − f(−x)) = − 1
2x

tanh
βx

2

(G.8)

1
β

∑
n

1
ωn − x

· 1
(ωn + x)2

=
1
β

∑
n

(
1

ωn − x
− 1
ωn + x

)
1

ωn + x
· 1
2x

= −
(

1
2x

)2

tanh
βx

2
− 1

2x
· f ′(−x) (G.9)

1
β

∑
n

1
ωn − x

· 1
(ωn + x)3

=
1
β

∑
n

(
1

ωn − x
− 1
ωn + x

)
1

(ωn + x)2
· 1
2x

= −
(

1
2x

)3

tanh
βx

2
−
(

1
2x

)2

f ′(−x) − 1
2x

· 1
2
f ′′(−x). (G.10)
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G.2 Derivation of coefficients

Now we derive the coefficients of the expansion of −Γrg(q, ωq)−1. Taking the lowest order in the

frequency and momenta, we expand as

−Γrg(q, ωq)−1 =
1
U

+
∫

d3p

(2π)3
1
βc

∑
ωp

Gr(p)Gg(q − p)

≈
∫

d3p

(2π)3
1
βc

∑
ωp

Gr(p)

{
∂

∂z
Gg(k, z)

∣∣∣∣
k=−p

ωq + ∇kGg(k, z)|k=−p · q

+
1
2

∑
ij

∂2

∂ki∂kj
Gg(k, z)

∣∣∣∣∣∣
k=−p

qiqj

 . (G.11)

Since

Gg(k, z) =
1
2
· 1 + ξk/Ek

z − Ek
+

1
2
· 1 − ξk/Ek

z + Ek
, (G.12)

the derivatives are

∂

∂z
Gg(k, z) = −1

2
· 1 + ξk/Ek

(z − Ek)2
− 1

2
· 1 − ξk/Ek

(z + Ek)2
(G.13)

∂

∂ki
Gg(k, z) =

(
1 + ξk/Ek

(z − Ek)2
− 1 − ξk/Ek

(z + Ek)2

)
ξk
Ek

ki

2m
+
(

1
z − Ek

− 1
z + Ek

)
∆2

pg

E3
k

ki

2m
. (G.14)

Since the derivative of Gg(k, z) with respect to ki is odd in ki, the linear term in q in (G.11) is zero

after integrating over p. Similarly, quadratic terms with i 6= j are zero. Thus we have

−Γrg(q, ωq)−1 ≈
∫

d3p

(2π)3
1
βc

∑
ωp

Gr(p)

 ∂

∂z
Gg(k, z)

∣∣∣∣
k=−p

ωq +
1
2

∑
i

∂2

∂k2
i

Gg(k, z)

∣∣∣∣∣
k=−p

q2i

 .

(G.15)

The second derivative of Gg(k, z) with respect to ki is

∂2

∂k2
i

Gg(k, z) =
(

1
z − Ek

− 1
z + Ek

)(
∆2

pg

2E3
k

1
m

−
3∆2

pgξk

2E5
k

(
ki

m

)2
)

+
1

(z − Ek)2

(
ξk

2Ek
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Therefore, we have∫
d3p

(2π)3
Gr(p)

∂2

∂k2
x

Gg(k, z)
∣∣∣∣
k=−p

=
∫

d3p

(2π)3
Gr(p)

∂2

∂k2
y

Gg(k, z)
∣∣∣∣
k=−p

=
∫

d3p

(2π)3
Gr(p)

∂2

∂k2
z

Gg(k, z)
∣∣∣∣
k=−p

, (G.17)

and thus
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and the expansion coefficients are
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Using Matsubara formulae derived in the previous section, we obtain
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Since f ′(−x) = f ′(x) and f ′′(−x) = −f ′′(x), we finally obtain
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which is exactly (G.1).
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The expression for γ can be obtained similarly:
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After arranging terms, we obtain (G.2).
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