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Abstract

This thesis presents a search for vector boson fusion production of Higgs bosons
in the H — WW* — lvlv channel using the 20 fb=! 2012 ATLAS data set.
The analysis uses support vector machines in order to distinguish signal and
background events. First, an analysis is performed using a 2-class support
vector machine, designed to separate signal events from all backgrounds. In
addition, a 3-class support vector machine analysis is performed in which back-
ground events are separated into two classes. The results of both the 2 and
3-class analyses are consistent with the findings of other ATLAS analyses and

with Standard Model predictions to within 1o.
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Chapter 1

Introduction

In 2012, both the ATLAS and CMS experiments at the Large Hadron Collider
in Geneva, Switzerland, announced the discovery of a new boson with a mass
of 125GeV [1][2]. This new boson is believed to be the Higgs boson, predicted
by Peter Higgs and his collaborators 50 years ago. The Higgs boson is crucially
important to our understanding of the universe as it gives mass to all particles
within the Standard Model of particle physics. The joint discovery of this new
boson both validates the Standard Model and provides new opportunities to
test its predictions.

Since its discovery, both the CMS and ATLAS experiments have been
working to measure the spin, couplings and mass of the Higgs boson. These
measurements are important in order to verify that the newly discovered boson
is in fact the Higgs boson predicted by the Standard Model. Any differences

between the Standard Model predictions and the observed properties of the



newly discovered boson might give insight into new physics or possible flaws
in the Standard Model.

The mass of the Higgs boson is not predicted by the Standard Model and
therefore the properties of most interest are the spin and couplings of the
newly discovered boson. The Standard Model predicts that the Higgs boson
will have zero spin and will couple to particles in proportion to the particles’
mass. Studies of the spin of the newly discovered boson favor the spin-zero
hypothesis [3]. Determining the coupling of the Higgs boson to fundamental
particles is a much larger task, as the Higgs’ coupling to each particle must be
determined independently.

The ability to measure the coupling of the Higgs boson to various particles
is highly dependent on the particle of interest, the final state of the system,
the mass of the Higgs boson, and the limits of the LHC luminosity. All of
these factors combine to make certain measurements significantly easier than
others. Due to these factors, the discovery of the Higgs boson in 2012 was
based primarily on studies of H — ZZ and H — vy decays.

The H — ZZ — llll channel is ideal for Higgs boson studies as the fi-
nal state contains four leptons, zero jets and no missing energy. The ATLAS
detector is well-equipped to detect this final state, having multiple lepton de-
tection systems. In addition, many background processes contain high-pr jets,
facilitating the removal of background events. Finally, at a mass of 125 GeV/,

the Higgs boson has a large branching ratio into two Z bosons, allowing for the



creation of large numbers of H — ZZ events with relatively limited luminosity.

Like the H — ZZ measurement, there are several factors which facilitate
the study of H — 77 events within the ATLAS detector. H — 77 events are
characterized by two photons in the final state with zero jets and no missing
energy. This relatively simple final state eliminates a large number of back-
ground processes, allowing for high signal-to-background ratios with limited
luminosity. As with leptons, the ATLAS detector is well-equipped to detect
high energy photons, allowing for proper identification of final state particles.
Studies conducted in the H — ZZ and H — 77y channels indicate that the
Higgs boson branching ratios in these channels agree with Standard Model
predictions [4].

The final prominent Higgs boson decay channel studied at the LHC is
H — WW*. At a mass of 125 GeV, the H — WW™ channel has the second
highest predicted branching ratio after H — bb. Despite this relatively large
cross section, large backgrounds and final state neutrinos make H — WW*
studies difficult at the LHC. In order to reduce hadronic backgrounds, most
H — WW* searches are performed in the H — WW?* — [vlv channel. Due
to the relatively large cross section, the primary H — W W™ searches look for
Higgs bosons produced via gluon-gluon fusion. The gluon-gluon fusion process
is advantageous due to its relatively large cross section and because it has no
initial-state particles in the final state. The choice of a fully leptonic final

state greatly reduces potential backgrounds, but it also reduces the number of



potential Higgs events due to the relatively small W — [v branching ratio. In
addition, since 7 leptons have a distinct signature within the ATLAS detector,
only W — ev and W — pv decays are considered, further reducing the number
of potential signal events. In total, only 4% of all H — WW™* decays result
in an H - WW* — [viv final state, resulting in a relatively small number of
expected signal events.

In addition to the limited number signal events, H — WW?* — [vlv anal-
yses also struggle with missing energy due to the presence of two neutrinos
in the final state. The presence of neutrinos in the final state has several
detrimental effects: First, missing energy in the final state forbids an accurate
reconstruction of the Higgs boson mass. Second, elimination of background
events is significantly more difficult due to inaccuracy in the reconstruction of
missing energy. Despite these difficulties, studies of gluon-gluon fusion Higgs
production in the H — W W™ channel have found evidence for the Higgs boson
consistent with Standard Model predictions [4].

Beyond the well-studied decay channels, there are several decay channels in
which the search for definitive evidence of the Higgs is ongoing. These channels
include the H — WW™ decays in which the Higgs boson is created through
vector boson fusion (VBF). The process of vector boson fusion involves the
emission of two vector bosons by colliding quarks. In VBF H — WW* decays,
the vector bosons fuse to form a Higgs boson, which then decays via two W

bosons. Studies of VBF Higgs production are important in that they provide



independent measurements of Higgs boson couplings to vector bosons. Any
variation in VBF Higgs production from Standard Model predictions could
indicate new physics beyond the Standard Model.

The production cross section of Higgs bosons via vector boson fusion is
more than 10 times smaller than the cross section for the dominant gluon-gluon
fusion process. At the current LHC luminosity, this small cross section results
in a very small number of expected VBF H — WW* events. In addition, the
large cross sections of many background processes, including ¢t events, makes
the VBF H — WW channel very difficult to study using current LHC data.

This thesis will present a search for the Higgs boson produced via vector
boson fusion decaying through two W bosons using the 2012 ATLAS data set.
The final state of this decay includes two high-py leptons, missing energy and
two high energy forward jets. Due to the complicated nature of this final state,
it is beneficial to use multivariate learning algorithms in order to separate
signal and background events. These algorithms are commonly referred to
as multivariate analysis techniques (MVA), and are capable of distinguishing
between different types of events by learning event properties. In this thesis we
use a type of multivariate analysis technique known as support vector machines
(SVM). SVMs use topological event information in order to separate events
in n-dimensional parameter space. Support vector machines can be trained
to distinguish between different types of events (i.e. signal and background

events) by using training samples in which the true type of each event is



known. Once trained, the SVM is capable of distinguishing events of unknown
type. We are therefore able to train support vector machines using Monte
Carlo events of known type, and then used these trained machines to search
for H — WW™ events in the 2012 ATLAS data set.

The analysis presented in this thesis is performed within the context of an
ongoing ATLAS search for evidence of VBF H — WW* decays. The primary
ATLAS subgroup devoted to VBF H — WW* searches uses a multivariate
analysis technique known as boosted decision trees (BDT). The goal of our
analysis is to validate the findings of the ATLAS VBF H — WW™* subgroup
group as well as to investigate the possible benefits of using a system of sup-
port vector machines to enhance signal-background resolution. We begin by
conducting an analysis parallel to the BDT analysis using a single support
vector machine to separate signal and background events. The goal of this
analysis is to validate the SVM methodology and establish a baseline result.
We then conduct an analysis using a system of three support vector machines
with the goal of improving on this baseline result. This analysis is referred
to as a 3-class SVM analysis and involves splitting background samples into

heavy and light classes in order to increase signal-to-background separation.



Chapter 2

The Standard Model of Particle

Physics

The Standard Model of particle physics is a field theory describing three
fundamental forces: electromagnetism, weak interactions and strong interac-
tions. Within the Standard Model particles are separated into two categories:
fermions, which are spin % particles, constitute the fundamental particles of
the Standard Model, and integer-spin bosons, which mediate interactions be-
tween fermions and other bosons. The electromagnetic force describes the
interactions of electrically charged particles such as electrons through mediat-
ing photons. The photon is a massless boson, giving the electromagnetic force
infinite range. In contrast, the weak force interacts with particles with weak
isospin and is mediated by three heavy gauge bosons, W+, W~ and Z, giving

the weak force a very short range. Due to its short range, we do not notice the



weak force within our daily lives. However, the weak force is responsible for
sustaining life on earth by mediating nuclear fusion within the sun. Within
the Standard Model, the electomagnetic and weak interactions are combined
into one force known as the electroweak force. The strong force, as its name
implies, is the strongest fundamental force and is responsible for holding to-
gether atomic nuclei. The strong force is mediated by eight massless bosons
known as gluons. Only quarks and gluons are able to interact via the strong
force, which requires that the quarks are bound in pairs or triplets to make up

more complex particles known as hadrons.

2.1 Standard Model Particles

The Standard Model separates fermions into two separate groups: leptons
and quarks. These groups are further subdivided into three generations. The
majority of visible matter in the universe is made up of first generation parti-
cles. Particularly, up and down quarks bond into protons and neutrons, which
form stable nuclei and together with electrons create atoms. Higher-generation
fermions tend to be more massive and less stable, decaying too quickly to form
stable atoms.

Lepton and quark generations are described as SU(2) doublets of weak
isospin (/3), with each generation containing one particle with I3 = +% and
one particle with I3 = —%. For leptons, each generation contains a massive

charged particle with negative isospin and a neutral particle with positive



isospin known as a neutrino. The electron and electron neutrino make up the
first generation of leptons, with the muon and muon neutrino composing the
second generation and the tauon and tau neutrino in the third generation. For
quarks, each generation contains an up-type quark with positive electric charge
of ) = —i—% and positive weak isospin of I3 = —i—% and a down-type quark with
negative charge, () = —% and negative weak isospin, I3 = —%. Additionally,
quarks come in three colors (red, green, blue) and are only found as a part of
color-neutral bound particles. The first generation of quarks is composed of
up and down quarks, the second generation contains the charm and strange
quarks and the third generation is made up of the top and bottom quarks.
The Standard Model includes 12 gauge bosons: 8 gluons mediating the
strong force and 4 gauge bosons responsible for mediating electroweak inter-
actions. In addition, the Higgs boson, which allows for massive particles, is
introduced to the Standard Model through spontaneous symmetry breaking
as discussed in section 2.5. Figure 2.1 lists the properties of all fundamental
particles within the Standard Model. In addition to the particles described
in Figure 2.1, each fermion in the Standard Model has an associated anti-
particle. Anti-particles have identical mass to their associated particle, but
opposite quantum numbers such as charge and electroweak isospin. Inter-
actions are symmetric with respect to particles and anti-particles within the
Standard Model, and the matter/anti-matter discrepancy in our universe is

an ongoing field of research.
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2.2 Lagrangian Formulation of the Standard

Model

The Standard Model describes fundamental particles as spin % fields within

the context of Lagrangian dynamics. The Lagrangian is defined to be
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L as the Lagrangian, though this is technically inaccurate. The equations of
motion of a system can be derived by requiring the Lagrangian of that system

satisfy the Euler-Lagrange equation,

oL oL
o\l =—=——=) ——=—=0. 2.3
H <8(8H¢)> 0¢ (2:3)
In this equation ¢ is the field and J,, is a common shorthand for %.

Within field theories, such as the Standard Model, each term in a La-
grangian represents a particle interaction or energy. For example, a term
within a Lagrangian of the form A\¢*, represents the interaction of four ¢
scalar fields. Of particular importance to this thesis are mass terms of the
form p2¢?, where the coefficient 12 is related to the mass of the particle ¢ by
m = +/p?/2.

We will begin our discussion of the Standard Model by writing down a La-
grangian which includes only fermions. We will then add mediating gauge
bosons into our Lagrangian through the requirement of gauge invariance.
Gauge invariance simply means that a given Lagrangian is invariant with re-
spect to gauge transformations of a given type. The simple example of local

U(1) gauge invariance is discussed in the following section.
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2.3 Local Gauge Invariance

In order to illustrate the technique of generating gauge bosons through the
requirement of local gauge invariance, we will look at the example of the

Lagrangian of a massive scalar field,

L=0"9"0,0 — 1*¢"¢ — \(¢"0)”. (2.4)

As discussed in section 2.2, our Lagrangian (2.4) contains only a massive scalar

field with no mediating gauge bosons. The 0*¢*0,¢ term in (2.4) represents

the kinetic energy of the scalar particle, while the ;2¢*¢ term indicates that

¢ is a massive particle. Finally, A\(¢*¢)? represents the four-particle vertex of
¢ with coupling constant A.

We now require that £ be invariant under a local gauge transformation of

the form

¢ = ¢ =W (2.5)

Phase transformations of the form U(a) = €', (o € R) make up the unitary
Abelian group U(1), where the Abelian label indicates that the group multi-
plication is commutative. Equation (2.5) is defined as a local gauge transfor-
mation because the phase, «, is dependent on the position, x. Substituting
equation (2.5) into the first term of equation (2.4) we find that 0,¢ transforms

as

13



0,0 — €@ 9,6 + i pd,a. (2.6)

The presence of the term ieio‘(’”)qﬁ@“a indicates that 0,¢ is not invariant under
local U(1) transformations. In order to account for this additional term in the

transformed derivative, we introduce a covariant derivative of the form

0, — D, = 0, —ieA,, (2.7)

where A, transforms as

1
A= At —0,0 (2.8)

We note that the covariant derivative is invariant under U(1) gauge transfor-

mations up to a phase,

D¢ — D¢’ = @9, + i@ pd,a—
(2.9)
ieAHem(x)qﬁ — iem("”)gbaﬂa = eia(m)Dygb.

We can easily see that the second term in our Lagrangian is invariant under

U(1) transformations by noting that

M2¢*¢ N Iu2€fia(x)¢*eia(x)¢ — u2¢*¢ (210)
The third term in (2.4) can be shown to be invariant in the same way. We can

therefore write the U(1) invariant Lagrangian of a massive scalar field as
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L= (0 +icAM)6H (0, — icA)o — i20°0 — A&'0)>. (211)
The Lagrangian, (2.11), contains a new vector gauge field, A4, introduced due
to the requirement of U(1) invariance. This new field is massless, since there
is no corresponding mass term of the form %m2AMA“. In fact, such terms
are forbidden as they are not gauge invariant. Adding an additional gauge
invariant term to account for the kinetic energy of the gauge boson associated

with the field A,, we write our final Lagrangian as

1
L = (Du¢) Dt — 170" — N¢"9)* — 7D F (2.12)

where F},, is constructed from derivatives of A,

F,, =0,A, — 0,A,. (2.13)

We have now shown that by starting with a Lagrangian describing massive
scalar particles (e.g. electrons), we are able to generate massless vector bosons
through the requirement of U(1) gauge invariance.

This simple formulation is sufficient for describing electromagnetism when
the scalar field ¢ is replaced by a Dirac spinor, ¢. In this case we can associate
A, with the photon and F),, with the electromagnetic field strength tensor. We
are able to describe electromagnetism using this simple Lagrangian because
photons are massless. However, in order to create a theory which encompasses
the electromagnetic, weak and strong forces, we will need to introduce massive
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gauge bosons in a gauge invariant manner. To do this, we utilize spontaneous

symmetry breaking and the Higgs mechanism.

2.4 Spontaneous Symmetry Breaking in U(1)

In section 2.3 we generated a massless gauge boson through the requirement
of local U(1) gauge invariance. The requirement of gauge invariance precludes
the addition of a massive gauge boson of the form %mQA#A“ to the electromag-
netic Lagrangian (2.11). However, the Standard Model, particularly the weak
interactions, require massive gauge bosons. We must therefore find a means
of introducing massive particles to our theory while maintaining the gauge
invariance of the initial Lagrangian. In order to accomplish this we introduce
the Higgs mechanism. For simplicity, we shall introduce the Higgs mechanism
within the confines of the U(1) Lagrangian developed in 2.3 and then expand
on this formalism to create a more complete theory including the weak and
strong interactions.

Remembering that the Lagrangian is defined as £ =T — V', we can write

the potential energy of (2.11) as

V(¢) = 129" ¢ + \¢"0)*. (2.14)

If we assume that both p? and A are positive then V(¢) has a single mini-
mum at ¢ = 0 as shown in Figure 2.2. However, if we assume that x> < 0 and

A > 0 then the potential has a maximum at ¢ = 0 and minima satisfying the
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Figure 2.2: The potential energy, (2.12), assuming that both pu? and X are
positive.

requirement

ov. 9 N

(2.15)
This requirement is satisfied by two degenerate minima at

¢ =tv, v=1/p?/2\
as shown in Figure 2.3.

(2.16)
We now have two possible stable minima for our potential at ¢ = +wv.
For small perturbations, we can describe ¢ as the constant v, representing the

value of ¢ which minimizes the potential, plus a small perturbative term n(x),

= @mw.

(2.17)
Here we have chosen to expand around the positive value of v, however, this
is an arbitrary choice and does not result in a loss of generality since ¢ = —v

can be reached through reflection symmetry. Inserting equation (2.17) into
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Figure 2.3: Two degenerate minima of the potential energy (2.12) satisfying

(2.16).

our invariant Lagrangian (2.12) we find

L= %(3,m)2 — 2\ — %G2U2AMA” —\on? — i)\n‘l o)
—%6214“/4“7]2 +ve* A, Al — iFWF‘“’.

The term je?v?A, A" in equation (2.18) indicates that A, is the field of a
massive gauge boson. As discussed in section 2.3, the A, field is associated
with the photon and the presence of the photon mass term makes this theory
unphysical. However, the procedure used to generate this Lagrangian is anal-
ogous to the method used to generate massive gauge bosons in electroweak
interactions within the Standard Model. This method of generating massive
particles is known as spontaneous symmetry breaking. The term spontaneous
symmetry breaking refers to the fact that the field ¢ spontaneously breaks the
symmetry of the system when it chooses one of the two possible minima shown
in Figure 2.3. By utilizing a simple U(1) invariant Lagrangian we were able to

explore the formalism of spontaneous symmetry breaking within the confines
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of scalar fields while avoiding the complexities of more physical systems.

In addition to the massive photon, A,, a new massive boson, 1, with mass
term, v?\n?, has been added to the Lagrangian. Though this Lagrangian is
unphysical, 1 is analogous to the Higgs Boson found in the Standard Model
Lagrangian. n is an unavoidable result of the spontaneous symmetry breaking
of the field ¢ and the generation of the massive field A,. Along with the two
boson mass terms, the Lagrangian (2.18) contains kinetic energy terms for
both A, and 7 as well as interaction terms such as 3e?A4,A"n>.

As we have seen in section 2.3, electromagnetic interactions are associ-
ated with the U(1) symmetry group. Likewise, weak interactions are as-
sociated with the SU(2) symmetry group and strong interactions with the
SU(3) symmetry group. In order to incorporate the electromagnetic, weak
and strong interactions into one theory, the Standard Model is required to be
SU(3) x SU(2) ® U(1) invariant. In the following sections we will discuss the
creation of a Lagrangian containing this three-fold symmetry along with the

use of spontaneous symmetry breaking to generate massive particles.

2.5 ElectroWeak Interactions and the Higgs

Mechanism

We have so far discussed the U(1) structure of electromagnetism. We will now

combine our understanding of electromagnetism with the SU(2) structure of
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Figure 2.4: Feynman diagrams depicting the primary decay modes of the 7"

and 7~ particles via the weak interaction.

weak interactions to form a combined electroweak theory. Before beginning
with the formalism of electroweak interactions, it is useful to discuss the prop-
erties of weak interactions.

Unlike electromagnetic interactions, which have infinite range, weak inter-
actions occur over very small distances. This short range indicates that the
mediating bosons of weak interactions are massive and unstable. Experimen-
tal results, such as pion decay shown in Figure 2.4, reveal the need for at least
two weak gauge bosons, one with positive and one with negative charge. In
addition, electron-neutrino scattering, as shown in Figure 2.5, indicates the
need for a neutral weak boson. Combined, these results indicate that any the-
ory describing electroweak interactions must contain four gauge bosons: three
massive bosons mediating weak interactions, one neutral (Z) and two with op-
posite charge (W 7 7), and one massless photon meditating electromagnetic
interactions.

Experimental results indicate that only chiral left handed particles interact
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Figure 2.5: Feynman diagram of electron-neutrino scattering via the weak

interaction

weakly, while chiral right handed particles are excluded from weak interactions.
This property of weak interactions is known as V-A as a result of the vector
minus axial-vector couplings found within the electroweak Lagrangian. The
chirality of a particle is determined by it’s transformation under a Poincare
group of transformations. However, chirality is more intuitively understood in
relation to helicity. Helicity is the relative orientation of a particle’s spin with
respect to its direction of motion as shown in Figure 2.6. Particles with spin
oriented in the same direction as the particle’s momentum are referred to as
right handed, while particles with spin and momentum anti-aligned are referred
to as left handed. Since the direction of a particle’s momentum depends on
the frame of the observer for massive particles, it is always possible to Lorentz
boost into a frame where a particle’s helicity is flipped. For massless particles,

such a Lorentz boost is impossible and chirality and helicity are equivalent.

21



Right-handed: Left-handed:

>
p p

—> ==

S S

>

Figure 2.6: The relative orientation of particle spin and momentum in left and

right handed particles [7].

Just as electromagnetic interactions can occur only between particles with
electric charge, weak interactions can only occur between particles with weak
isospin. Left handed particles are described as doublets containing particles
with the same weak isospin, T', but different projections of weak isospin onto
an arbitrary axis, T3 = +1. Equation (2.19) is an example of one such doublet
involving up and down quarks. This doublet formation allows left handed
particles to interact weakly within the electroweak model. In contrast, right
handed particles have zero weak isospin and are described as singlets, able to

interact through the electromagnetic force, but not through the weak force.

U +
= (2.19)

d _

N[ —=

N[

In addition to weak isospin, electroweak particles are describe by the weak
hypercharge quantum number Y. Weak hypercharge, electric charge and weak
isospin are all conserved within weak interactions and are related by the equa-
tion
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Q="Ts+ % (2.20)

Table 2.1 lists the values of weak isospin and weak hypercharge for left and
right handed particles. Right handed neutrinos have never been observed and

are omitted from Table 2.1.

Particle Handedness | Q| Y | T3
e, u, 7 | Left R [ g
Ve, Vy, Vr | Left 0] -1[+1
u,c,t Left 4_% +% —i—%
d,s,b Left _% _f_% _%
e ,u, 7 | Right 11 21 o
u,c,t Right +§ _,_%1 0
d,s,b Right _% _§ 0

Table 2.1: Table of electroweak quantum numbers for chiral left and right

handed particles.

Weak hypercharge is associated with the U(1) symmetry group while weak
isospin is associated with the SU(2) symmetry group, making the symmetry
group of electroweak interactions SU(2) ® U(1). SU(2) transformations take

the form
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¢ = ¢ =g, (2.21)

where a = 1, 2, 3, a, are coupling constants and o, are the Pauli matrices,

0 —+1
o) = (2.22)
+1 0
0 —1
09 —
+i 0
+1 0
O3 =
0 -1

Using the same technique as we used in the U(1) case, we introduce a
covariant derivative in order to maintain the SU(2) ® U(1) symmetry of the

Lagrangian. The appropriate covariant derivative is of the form

D, =0, — z’g%vv; - %ig’YBﬂ. (2.23)
Y is simply the identity matrix while ¢ and ¢’ are coupling constants. W;L
represents a set of three gauge vector fields associated with the SU(2) symme-
try and B, is the vector gauge field generated by the U(1) symmetry. Using

(2.23) we can write down a simple SU(2) ® U(1) invariant Lagrangian of the

form

1

L=-3

. 1 , 1. 1 2
W, Wit — ZBWB“ + ‘ (0, — 5190 W, — izg’YB“)ng‘ —V(¢) (2.24)
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Our goal is to introduce mass terms for the three W,, gauge fields. These
mass terms will be generated by the degrees of freedom in the ¢ field after
spontaneous symmetry breaking. As such, we must choose a representation
for ¢ which provides at least three degrees of freedom and which is able to
interact with W,,. The simplest representation of ¢ that meets these criteria

is an SU(2) doublet containing four real scalar fields of the form

1| ¢1+ip2
6= \@ . (2.25)
¢3 + i@y

The first two terms in equation (2.24) represent the kinetic energies of the W,
and B, fields. The third term is the most interesting to our discussion as it
holds interactions between the field ¢ and the gauge bosons, and the fourth

term represents the potential energy of the field ¢ and takes the familiar form

V(g) = 1?¢" 0+ A(¢*0). (2.26)

Following the same procedure as we used in the U(1) case, we will use
spontaneous symmetry breaking to generate massive gauge bosons. In this
case, by forcing u? < 0 we will generate an infinitely degenerate vacuum. The
shape of V(¢) is described as a Mexican hat, as can be seen in Figure 2.7, with
the possible vacuum states lying in the circular valley within the potential.
After generating our infinitely degenerate potential we then force the field, ¢,

to chose a specific vacuum state, v, and then introduce small perturbations to
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Figure 2.7: Potential energy of the field ¢ under spontaneous symmetry break-

ing in the electroweak theory [8].

the vacuum state, h(x). The constant vacuum state will generate mass terms
for our gauge bosons and the additional perturbation term will introduce a
new scalar boson referred to as the Higgs boson.

Reducing our scalar field to a single real scalar we can write the vacuum

expectation of ¢ as

do =1/ = . (2.27)

Perturbing this field around the vacuum expectation value we write

0
¢ = \g : (2.28)

v+ h(z)

where h(z) is the Higgs field. For the moment we will only consider the
vacuum expectation of ¢ in order to generate gauge boson mass terms in our
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Lagrangian. By inserting the vacuum value of ¢ into the third term in our

Lagrangian, (2.24), we find

1. .1, 0
(3# — §zgaiWH - 529 YB#)

(2.29)

Removing the 0, term we are left with only terms relating to W; and B,

0 2
(- tigm, - bigY )
v
1,2 2 1.2 92 _ggl Wsu
= W)W+ 4 (we B, ,
—99' g° B!

where W fields are superpositions of the W' and W? fields,

1
W* = \/;(Wl FiW?). (2.31)
We can see that the first term in (2.30) is a mass term for the W¥ bosons with

My = jvg. The Second term in (2.30) can be simplified to

1 2
gUZ (9W3 —g¢'B.)", (2.32)

which is the mass term of the Z boson, defined to be a superposition of the

W2 and B, fields,
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W) — 4B,
B /92 + g/2 '

The mass of the Z boson is found to be My, = %v\/gQ + ¢g?. The photon, A,

Z, (2.33)

can be shown to have zero mass and is also represented by a superposition of

the Wg and B, fields as

_gWi+9'B,
N /92 T g2 :

We have now created a theory describing electroweak interactions contain-

A (2.34)

ing three massive gauge bosons and one massless gauge boson, fitting our
initial predictions. To accomplish this we introduced an SU(2) ® U(1) invari-
ant Lagrangian and then used spontaneous symmetry breaking to generate
mass terms for our gauge boson fields. The masses of the weak gauge bosons
are not predicted by the Standard Model, however experimental results give
the W and Z masses as: My ~ 80GeV, My ~ 91GeV. The boson mass
terms in our electroweak Lagrangian did not come for free, as we have still to
investigate the perturbation term h(z) in our Lagrangian.

The field h(x) represents a neutral, massive scalar boson, known as the
Higgs boson, generated by the spontaneous symmetry breaking of the poten-
tial, V(¢). The mass term of the Higgs boson within our electroweak La-
grangian is found by inserting our perturbed field (2.28) into the first term in

our Lagrangian potential (2.26). Taking only the term of interest we find
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w2h?* = =2 v%h?, (2.35)

where we have used the fact that v = —p?/2X\ as found in equation (2.16).
The value of A is unknown, meaning that the Standard Model does not predict
the mass of the Higgs boson. However, recent discoveries at the Large Hadron
Collider have shown the mass of the Higgs to be My = 125.36GeV [9].

Since this thesis specifically deals with the Higgs boson decaying via two
W bosons as shown in Figure 2.8, let us look at the Higgs coupling to the W
bosons. The term of interest in our Lagrangian contains h(x) multiplied by
W, W* and is found by inserting the perturbed ¢ field, (2.28), into the third
term in our electroweak Lagrangian, (2.24). Doing so yields the Higgs-W

interaction term of the form

1, _
7% hW W=k (2.36)

Remembering that the mass of the W boson is given by My, = %Ug, we note
that the coupling of the Higgs boson to the W is given by M2, /v. This means
that the strength of the Higgs coupling to the W boson is directly dependent
on the mass of the W boson. This relation is not unique to the W boson. In
fact, the coupling of the Higgs to all particles is dependent on the particle’s
mass. Using this knowledge, along with the experimentally-determined masses
of Standard Model particles, it is possible to predict the branching ratios of

the Higgs Boson. This property of the Higgs boson, along with the relative
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Figure 2.8: Feynman diagram showing the decay of a Higgs boson into a pair

of W bosons

coupling of the Higgs to various Standard Model particles will be discussed

further in section 2.7.

2.6 Quantum Chromodynamics

The strong interaction is described by a theory known as Quantum Chro-
modynamics (QCD). Only quarks are affected by the strong force, which is
mediated by eight massless gauge bosons known as gluons. Similar to charge
in electrodynamics and weak isospin in weak interactions, only particles with
color charge interact with the strong force. There are three possible color
charges, (red, green, blue), with anti-quarks having anti-color (anti-red, anti-
green, anti-blue). Individual quarks are described in terms of a single color
and quarks are only observed in color-neutral two or three quark combinations,
known as mesons and barions. For barions, this means that they contain one

quark of each color (RG B), while for mesons, color neutrality is only achievable
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by combining a color and it’s anti-color (RR).
In order to generate eight massless gauge bosons, the Lagrangian of QCD is
required to be invariant under SU(3) gauge transformations. The generators

of SU(3) transformations are given by

T, = =\, (2.37)

where )\, are the eight Gell-Mann matrices. The gauge-invariant QCD La-

grangian can be written as

. — a 1 a
L = q(iv"9, —m)q — g(a"Taq) G}, — ZGHU Ghu. (2.38)

G, is the field strength tensor of QCD given by

GZV = aHGIC/L - aVGZ - gfachZG,cj (239)

and fup is determined by the commutation relations of the Gell-Mann matri-

ces,

[Taa Tb] = Z.fabc,-z—‘c- (240)

The constant g in equation (2.38) is related to the strong coupling constant

as by

Q

a, = . (2.41)
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The strong coupling constant is in fact not constant. Rather, the strong cou-
pling depends inversely on the energy of the interaction. This means that at
short distances the strong force is relatively weak, while at large distances the
strong force becomes stronger. At large enough distances, it becomes ener-
getically favorable for quarks to form bound states with quarks spontaneously

generated from the vacuum in a process called hadronization.

2.7 Higgs Boson Creation at the LHC

One of the primary goals in the design of the Large Hadron Collider was the
discovery of the Higgs boson. Since the LHC is a proton-proton collider, the
primary mode of Higgs creation is through gluon-gluon fusion (ggf). Gluons,
the mediating gauge bosons of the strong force, are found within protons and
often interact within pp collisions. Since gluons do not interact weakly, they
interact with the Higgs boson through a top quark loop as shown in Figure 5.3.
Along with being the primary mode of Higgs creation at the LHC, the gluon-
gluon fusion process is a convenient creation mode for experimental study as
there are no tree-level particles from the initial state found in the final state.

The second most prevalent Higgs production mode at the LHC is vector
boson fusion (VBF), which is the focus of this thesis. Vector boson fusion
involves the emission of a pair of vector bosons, either W+ W™~ or two Z bosons,
by initial state quarks. The two vector bosons then fuse to form a Higgs boson
as shown in Figure 2.10. This production mechanism results in the two initial
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Figure 2.9: Feynman diagram of Higgs production via gluon-gluon fusion.

state quarks being present in the final state, creating a unique Higgs via VBF
signature.

In addition to ggf and VBF, co-creation of the Higgs boson with a vector
boson or with two top quarks is also possible as shown in Figures 2.11 and
2.12. The cross sections for these Higgs production mechanisms are smaller
than the cross sections for ggf and VBF, making them difficult (though not
impossible) to study using the current LHC luminosity. Figure 2.13 shows
the cross sections for various Higgs production mechanisms as a function of
Higgs mass at the LHC. As one can see, ggf is by far the most dominant Higgs

production mode.

2.8 Higgs Decay Modes

As discussed in section 2.5 the coupling of the Higgs boson to Standard Model
particles is dependent on the mass of the particle. We can use this informa-

tion, along with the experimentally discovered masses of particles in order to
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Figure 2.10: Feynman diagram of Higgs production via vector boson fusion.

OO0 :

g

Figure 2.11: Feynman diagram of Higgs production in association with two

top quarks.
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Figure 2.12: Feynman diagram of Higgs production in association with a vector

boson.
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Figure 2.13: Cross sections for various Higgs boson production modes in pp

collisions with center of mass energy /s = 8 TeV at the LHC.
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Figure 2.14: Branching ratios of the Higgs boson into Standard Model particles

13].

determine the relative branching ratios of the Higgs boson for various My
values. A plot of the Higgs branching ratios based on the Higgs boson mass
is shown in Figure 2.14. Noting the experimentally discovered Higgs mass of
My = 125.36GeV, we can see that the Higgs decays primarily into b quarks
and W bosons, with significant contributions from Z boson, gluon and 7 lepton
decays.

In terms of experimental searches, not all Higgs channels are equally viable.
From Figure 2.14, one would assume that it would be most fruitful to search
for the Higgs boson in the H — bb channel. However, the high branching ratio
of H — bb events is overshadowed by the very large hadronic backgrounds

associated with this channel. The most significant measurements of the Higgs
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boson have actually come from channles with much smaller branching ratios.

The discovery of the Higgs boson was based primarily on findings in the
H — ZZ and H — 77y decay modes. Though these channels have lower
branching ratios, they have very distinct signals with no tree level hadronic
activity. The H — ZZ — [lll channel in particular has a final state containing
four high energy leptons and no hadrons. This signature allows for the removal
of most backgrounds, allowing for a high signal-to-background ratio with a
limited number of signal events. Likewise, the H — ~v decay mode results
in only two high energy photons in the final state, allowing for the removal
of most backgrounds. In addition, both channels allow for a measurement of
the Higgs boson mass, which is not possible in the H — WW* and H — 77
channels due to the presence of final state neutrinos.

In this thesis, we focus on the H — WW™* decay mode in which both
W bosons decay leptonically. Specifically, we are interested in Higgs bosons
created through the vector boson fusion process decaying into two W bosons,
which then decay into two first or second generation leptons plus neutrinos
as shown in Figure 2.15. This process is characterized in the final state by
2 quarks from the initial state, two leptons and missing energy. The 2 final
state quarks originate within the two colliding high energy protons, meaning
that their initial momenta are oriented along the beam line. These quarks are
deflected by the emission of a vector boson. However, they maintain much of

their forward momentum and are therefore typically found in opposite forward
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Figure 2.15: Feynman Diagram of VBF Higgs production with the Higgs de-

caying via two W bosons.

regions of the detector.

The unique jet topology of the VBF H — WW* — [viv final state is
further distinguished by the topology of the final state leptons and neutrinos.
First, the two leptons tend to be clumped together due to the spin zero nature
of the Higgs boson. The two W bosons produced by the Higgs decay each
have spin 1. Therefore, in order to conserve angular momentum, the spins
of the two W bosons must be anti-aligned. Since the Higgs boson has zero
electric charge, one W boson must be a W, which decays leptonically into
a neutrino and an e or p* and the other W boson must be a W™, which

decays leptonically into an anti-neutrino and an e~ or p~. W decays into
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7 leptons are considered background within this analysis due to their short
lifetimes and distinct signature. Due to the V-A nature of weak interactions,

* or ut along the direction of its spin.

the W boson preferentially emits an e
In order to conserve momentum, the corresponding neutrino is emitted in the
opposite direction. Likewise, the W™ boson preferentially emits an e~ or pu~
in the direction opposite to its spin and an anti-neutrino along the direction
of its spin. The result of these two W boson decays is that the two leptons
are emitted preferentially in the same direction, as are the neutrinos. This
leptonic decay process is depicted in Figure 2.16. The combination of two

clumped leptons, missing energy and two high energy jets close to the beam

line create a very distinct signature for VBF H — WW™* — [vilv events.
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Figure 2.16: The decay of two W bosons with opposite spin. The spin of
particles is represented by the solid arrows while the outlined arrows represent

momentum.
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Chapter 3

Experimental Apparatus

The analysis described in this thesis is based on data collected using the AT-
LAS detector, which is one of four major detectors located around the ring
of the Large Hadron Collider (LHC). The LHC is the worlds largest parti-
cle collider, located in Geneva, Switzerland and operated by the European
Organization for Nuclear Research (CERN). The Large Hadron Collider is
primarily a proton-proton collider, designed to work at center of mass energies
up to /s = 14 TeV. The collider lies in a ring, 27 km in circumference and
approximately 100 m underground. The ring is located primarily in France,
but a section of the ring does cross the border into Switzerland.

The Large Hadron Collider provides particle collisions to seven different ex-
periments, with each experiment having its own detector. The two largest are
the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solen-

doid) experiments. Both the ATLAS and CMS experiments use multi-purpose
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detectors to investigate a variety of physical processes. In addition to the two
multi-purpose experiments, there are two other major experiments at the LHC:
LHCb (Large Hadron Collider Beauty), which explores specifically b-physics
and ALICE (A Large Ion Collider Experiment), which investigates quark-gluon
plasma using heavy Ion collisions.

Along with the four major experiments, the LHC also houses three smaller
experiments. LHCf (Large Hadron Collider Forward) investigates particles
specifically in the forward region along the beam line in order to study cosmic
rays. TOTEM (TOTal Elastic and diffractive cross-section Measurement) also
studies particles close to the beam line as a supplement to ATLAS and CMS,
which can not detect particles in this region. MoEDAL (Monopole and Exotics
Detector At the LHC) searches for highly ionizing stable massive particles

(SMP) and magnetic monopoles.

3.1 Creation and Acceleration of the Proton

Beams

The majority of experiments at the LHC rely on two colliding beams of pro-
tons. This requires the creation and acceleration of a beam of pure protons,
which can then be split into two separate beams. The two beams move in
opposite directions around the LHC ring while they are accelerated to their

final collision energy. Once this energy has been reached, the two beams are
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collided approximately head-on within the experiment detectors.

In order to create a proton beam, hydrogen gas is passed through an electric
field to remove the electrons. Once the electrons have been removed, the pro-
tons are injected into a linear accelerator known as Linac2, which is designed
to accelerate the protons to an energy of 50 MeV. Linac2 uses a series of radio
frequency cavities to charge cylindrical conductors which accelerate protons in
a straight line. The conductors ahead of the protons are negatively charged
such that they attract the approaching protons. The conductors behind the
protons are positively charged such that they push the protons down the beam
pipe. This procedure requires that the conductors along the beam pipe are
constantly oscillating between positive and negative charge and is ineffective
for a continuous stream of protons. Thus the protons are broken into bunches
of up to 10! protons.

Once the protons have been accelerated to 50 MeV, they are inserted into
a series of increasingly large synchrotrons. Synchrotrons use magnetic fields
to bend particles into a circular ring and electromagnetic fields to accelerate
particles within the ring. The fields are time-dependent such that the rate
at which the fields oscillate increases as the speed of the particles increases.
The fields also vary in strength as the protons increase in energy such that
the radius of curvature of the protons remains constant. Using three con-
secutive synchrotrons known as the Proton Synchrotron Booster, the Proton

Synchrotron and Super Proton Synchrotron, the protons are accelerated to an
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energy of 450 GeV.

After reaching the final output energy of the Super Proton Synchrotron,
the protons are injected into the Large Hadron Collider through two beam
lines. One beam line circulates the the protons counter-clockwise, while the
other circulates clockwise. The two beams travel in completely independent
lines except for inside of the four major LHC detectors, ATLAS, CMS, LHCb
and ALICE, where the beams intersect. Before colliding, the two beams are
accelerated inside the LHC to an energy of 4 TeV. In order to accelerate the
proton beams to their final energies, the LHC uses a synchrotron design.

In order to bend the highly energetic protons into a circular path, 1232
superconducting dipole magnets are used. Each dipole magnet is 15m long
and generates a magnetic field of 8.47". Since the LHC houses two separate
beams of protons moving in opposite directions, the dipole magnets have a
two-in-one design. This design allows for the magnetic field in the two beam
pipes to be oriented in opposite directions, causing both beams to bend in the
same direction.

In addition to the bending dipole magnets, quadrupole magnets are used
to tighten the beam and sextuple and higher order magnets are used to correct
for imperfections in the dipole magnetic fields. Near the 4 LHC detectors, the
proton beam is narrowed from a width of 2mm to 16um in order to increase the
proton-proton interaction probability and the instantaneous luminosity. This

narrowing of the beam is accomplished with a set of three quadrupole magnets
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known as the triplet. In total there are eight triplets within the LHC, one on
either side of the four detectors (ATLAS, LHCb, ALICE, CMS). The use of
superconducting electromagnets is required to achieve the strong magnetic
fields necessary to bend the relativistic protons along the circular beam path.
The superconducting magnets require extremely cold temperatures to operate
and liquid helium is used to keep the magnets at a temperature of —271.3C".
Throughout most of the LHC the two proton beams are kept in separate
beam pipes in order to prevent unwanted pp collisions. For 70m on either
side of each LHC detector, the two beams travel in parallel within the same

pipe. The beams are then allowed to cross at the center of each detector.

3.2 Luminosity

In any particle physics study using the ATLAS detector, it is important to
know the rate at which a process of interest, Higgs boson production for ex-
ample, occurs in relation to energy and frequency of pp collisions. To put
this more simply, we need to be able to estimate the expected number of
Higgs bosons in the 2012 ATLAS data using information about the number of
recorded collisions. In order to accomplish this, we use the concept of lumi-
nosity. Luminosity describes the number of pp events per unit time per unit
area and is generally written in units of [cm™ s7']. We can use information
about the number of particles in a bunch, the bunch size and the interaction
frequency to calculate the instantaneous luminosity of the LHC. The instan-
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taneous luminosity of head-on particle bunches, assuming the bunches are

Gaussian-distributed in the transverse direction, is given by

£ . nbNbe

 dro,o, (3-1)
Ny is the number of particles per bunch, n; is the number of bunches per beam,
f is the revolution frequency and o, and o, are the root mean square width
of the beam in the transverse directions. The LHC does not collide bunches
exactly head-on and therefore a scale factor is used to compensate for the
beams’ crossing angle. The total luminosity of an LHC run is determined by

integrating the instantaneous luminosity over the duration of the run. Using

the total luminosity, the expected number of events for a given process is:

N=o / Lt. (3.2)

N is the expected number of events for a given process, ¢ is the process
cross section in units of [em?] and [ Ldt is the integrated luminosity in units
of [em™2]. At the LHC, luminosity is measured in terms of inverse femtobarns,
1 fb™1 = 10 ecm™2, with one inverse femtobarn equaling approximately one
trillion proton-proton collisions. Figure 3.1 shows the integrated luminosity
for 2010, 2011 and 2012 run periods. This thesis includes analysis of data

taken during the 2012 run period.
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Figure 3.1: Delivered luminosity for 2010, 2011 and 2012 LHC run periods

13].
3.3 The ATLAS Experiment

The ATLAS experiment is a collaboration of over 3000 scientists from 38
countries analyzing data gathered from proton-proton collisions in the AT-
LAS detector. The ATLAS detector is a general purpose detector, designed
to gather information on a wide variety of physics objects at many different
energies. The ATLAS detector is made up of a series of smaller detectors,
each designed to detect specific types of particles. The detector is laid out as
a cylinder with two end caps as shown in Figure 3.3. Each of the subdetectors
serves a unique purpose and is designed specifically to detect a certain class
of particles.

The inner most set of detectors, known as the inner detector, is designed for
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high precision measurements of charged particles. Since the inner detector is
closest to the interaction point, it is able to provide crucial information about
the location of the interaction as well as detailed measurements of particle
momenta. In addition, the inner detector is designed to interact minimally
with all particles in order to preserve information about particle momentum.

Outside of the inner detector lie two calorimeters. Calorimeters are de-
signed to serve two purposes: first, they measure the energy and location
of incident particles; and second, they absorb the energy of particles to pre-
vent high energy particles besides muons from reaching the muon spectrom-
eter. The final layer of the ATLAS detector is the muon spectrometer, de-
signed specifically to detect high energy muons. Neutrinos, which interact
only through the weak interaction, are not detected by the ATLAS detector.
The interactions of various particles with the different components of the AT-
LAS detector are shown in Figure 3.2. Note that various types of particles
interact with the detector in distinct ways, making it easier to identify indi-
vidual particles such as jets, electrons and muons. In the following sections

the design and purpose of each of the ATLAS subdetectors will be discussed.

3.3.1 Detector Coordinates

The ATLAS experiment uses a right-handed Cartesian coordinate system in
which the z-axis points towards the center of the LHC ring, the y-axis points

straight up and the z-axis points along the beam line. The point of interac-
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Figure 3.2: A diagram of the interactions of various particles with each of the

ATLAS subdetector systems [12].
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Figure 3.3: Computer generated schematic of the ATLAS Detector [13].
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tion at the center of the detector is chosen as the origin for this coordinate
system. To describe the location and direction of particles within an event,
spherical coordinates are generally used. The transverse direction of a particle
is described by the variable ¢, which can take values from [—m, 7| with ¢ =0
corresponding to the x-axis. ¢ increases by moving counter-clockwise around
the positive z-axis. The forward-backward direction of the particle is described
by the polar angle 6, which can take on values from [0, 7] and is zero along

the positive z-axis.

3.3.2 Detector Variables

When describing objects in high-energy particle collisions, the use of Lorentz-
invariant variables is essential since the longitudinal momentum of the inter-
acting partons is unknown. Due to this requirement, final state particles are
generally described in terms of transverse momentum, pr, or transverse energy,

Er and pseudo-rapidity 7. The transverse momentum is defined as

pr = |p|sint (3.3)

and transverse energy is defined as

Er = Esind. (3.4)

Both variables are Lorentz invariant with respect to boosts along the beam
line and are therefore good variables for physics analysis.

50



In order to preserve Lorentz invariance, the angle of a particle with respect
to the beam line is measured using pseudo-rapidity rather than the angular

variable . Pseudo-rapidity, defined as

1 |p|+pL) < 0)
=-In|—F—— | =—In(tan= |, 3.5
1= (o 2 39

where py, is defined as momentum along the beam line, is not in itself Lorentz
invariant. However, for particles with high energy and low mass such that
E =~ |p|, pseudo-rapidity is a very close approximation to rapidity. Rapidity

is defined as

_lnE+pL

y (3.6)

In the limit of massless particles, pseudo-rapidity is equivalent to rapidity. The
difference in rapidity between two objects , Ay, is invariant under Lorentz
transformations and therefore, for high energy particles with low mass, An
is also Lorentz invariant. The value of n varies from 0 to co with n = 0
corresponding to objects with momentum perpendicular to the beam line and
1n = oo corresponding to particles moving along the beam line. Due to the
Lorentz invariant properties of the pseudo-rapidity, 1 is used in place of 8 do
describe angular distance from the beam line. The direction of a particle within
the ATLAS detector can therefore be written in an approximately Lorentz
invariant form using 1 and ¢ and the angular distance between two particles

can be written as
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AR = \/[An7 + (Ag). (3.7)

3.3.3 Magnets

A charged particle moving within a magnetic field follows a curved path. The
radius of curvature of this path can be used, along with the particle’s mass, to
calculate the particle’s momentum. ATLAS tracking subdetectors are situated
within magnetic fields in order to exploit this property. A 27T superconducting
solenoid located between the inner detector and the electromagnetic calorime-
ter provides a constant magnetic field in the +z-direction to the inner detector.
In addition, three superconducting toroid magnets are used to provide mag-
netic fields within the muon spectrometer. The barrel toroid is constructed
using eight separate coils arranged symmetrically in ¢. The end-cap toroids are
also made of eight coils arranged symmetrically in ¢, but rotated 7/8 radians
with respect to the barrel toroids. The magnetic field of the muon spectrome-
ter is designed to be perpendicular to the direction of motion for most muons
within the muon spectrometer. The layout of the toroid and solenoid magnet

systems is shown in Figure 3.4.

3.3.4 Inner Detector

The inner detector is located at the center of the ATLAS detector and is

closest to the proton-proton interaction point with an inner radius of 50mm.
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Figure 3.4: Schematic of the toroid and solenoid magnets in the ATLAS de-
tector. Orange areas represent the magnets while the mulit-colored concentric

cylinders represent the hadronic and electromagnetic calorimeters.

The inner detector lies within a 27" magnetic field and consists of three separate
subdetectors: the pixel detector, semiconductor tracker (SCT) and transition
radiation tracker (TRT). The three systems are laid out in concentric cylinders
along the barrel and as discs perpendicular to the beam pipe on the end caps.
The inner detector covers the region |n| < 2.5.

The goal of the inner detector is to provide precision measurements of the
position and momentum of charged particles as they are bent by the magnetic
field. In addition, the inner detector is capable of reconstructing the position
of interaction vertices. The proper reconstruction of vertices is essential since
there are an average of 20 particle collisions per bunch crossing. In order to

study an event of interest, such as a Higgs boson decay, the ATLAS detector
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needs to be able to filter out all particles not associated with the primary in-
teraction vertex. In addition, the high-precision vertex reconstruction of the
ATLAS inner detector helps to identify longer-lived particles such as b-hardons
and 7 leptons, which can travel a significant distance before decaying. Compo-
nents of the inner detector must also be robust against radiation damage due
to the high rate of incident particles. Finally, the inner detector is designed
to absorb as little energy as possible from incident particles in order to allow

for precision energy measurements within the calorimeter.

3.3.4.1 Pixel Detector

The pixel detector is the inner most layer of the inner detector and consists of
three concentric cylindrical detectors in the barrel region and three consecutive
disc layers in the end caps as shown in Figure 3.5. The pixel detector is specif-
ically designed to have very high resolution in order to accurately measure the
position, momentum and impact parameter of incident charged particles. For
most particle tracks the pixel detector provides 3 high precision measurements
of n and ¢, one for each pixel layer.

The inner-most layer of the pixel detector is positioned as close as possible
to the interaction point at a radius of 50.5 mm with the outer two layers at a
radius of 90 mm and 120 mm respectively. When high energy particles interact
with the silicon chips, electrons are freed from the silicon. These electrons

generate an electric current which is then processed by readout chips. The
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Figure 3.5: Schematic diagram of the ATLAS pixel detector [13].

pixel chips are arranged into 1456 modules in the barrel region and 288 in the
end cap with each module holding 46080 pixels. The output from the pixel
sensors is interpreted by 16 read-out chips. The pixel detector has a resolution
of 10um in ¢ and 115um in the z direction along the barrel and in the R

direction in the end caps.

3.3.4.2 Semiconductor Tracker

Once particles have traversed the pixel detector, they enter the Semiconductor
Tracker (SCT). The semiconductor tracker uses silicon technology similar to
the pixel detector in order to provide additional high-precision tracking of
charged particles. The SCT consists of 4088 modules, 2112 in the barrel and
1976 in the end caps. Each module contains silicon microstrips, 12 cm in length

and 80 pm pitch. There are four layers of microstrips in the barrel region and
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nine layers in each endcap, providing an average of 8 hits per track. In the end
cap the microstrips are mounted back-to-back in order to increase resolution.
The SCT has a resolution of 7Tum in ¢ and 580um in the z direction along the

barrel and in the R direction in the end cap.

3.3.4.3 Transistion Radiation Tracker

The Transition Radiation Tracker (TRT) is the final piece of the inner detector
and is positioned outside of the SCT. The TRT detector is composed of ap-
proximately 350,000 straw tubes aligned parallel to the beam along the barrel
and radially in the end caps and provides approximately 36 additional hits for
each track. The drift tubes are 4 mm in diameter with a 31 gm diameter wire
at the center. The tubes are filled with a gas mixture of 70% Xe, 27% CO, and
3% Os. This gas is ionized by charged particles passing through the detector
causing electrons and ions to drift toward the anode wire. These electrons and
ions result in a current which is read out by the detector.

The TRT detector has lower granularity than the SCT and pixel detec-
tors, but is able to measure more points per particle and therefore contributes
significantly to the measurement of track momentum. In addition, the TRT
detector is capable of electron identification by detecting transition radiation
created when relativistic charged particles pass between different materials.
In order to induce transition radiation in electrons passing through the de-

tector, the space between the straws is filled with an array of polymer fibers.
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Electrons generate more intense transition radiation than other particles since
the intensity of transition radiation is proportional to the Lorentz factor of a
particle, ¥ = E/m. In order to help distinguish between electrons and heav-
ier hadronic particles the TRT operates at two different thresholds: a lower
threshold used to detect radiation from hadrons and minimum ionizing par-
ticles, and a higher setting used to detect intense transition radiation from
electrons. Due to the long length of the tubes, the TRT has highly limited
resolution in the z direction along the barrel and in the radial direction in the

end caps. In the ¢ plane the TRT has a resolution of 130um.

3.3.5 Calorimeters

The inner detector is designed specifically to detect charged particles which
ionize as they move through the detector, while neutral particles are able to
pass through the inner detector without being measured. In order to measure
the momentum of neutral particles, such as photons and neutral 7° mesons,
as well as to assist in the measurement of charged particles, the ATLAS ex-
periment employs a calorimeter system.

The ATLAS detector contains two concentric calorimeters: the EM calorime-
ter designed to detect electrons and photons; and the hadronic calorimeter
designed to measure hadronic showers escaping the EM calorimeter. Both
systems employ a series of alternating layers of dense absorbers and active

material. The absorbing layers are designed to interact with particles passing
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Figure 3.6: Diagram of the ATLAS calorimeter system [13]

through the calorimeter, creating a shower of particles. These showered parti-
cles are then measured by the active layer. The number of particles created in
the shower is proportional to the energy of the incident particle, allowing for
a measurement of the incident particle’s energy. It is important that all par-
ticles except muons and neutrinos are completely absorbed by the calorimeter
systems. In order to accomplish this goal, very dense absorbing materials are
used in order to shorten the interaction lengths and many layers of material

are used to ensure total absorption.

3.3.5.1 Electromagnetic Calorimeter

The EM calorimeter is designed to measure electrons and photons using an
accordion design. To ensure complete absorption of electrons and photons, the

EM calorimeter contains 24 radiation lengths, Xy, in the barrel region and 26
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in the end cap. A radiation length is the distance a charged particle must travel
in order to have 1/e of its initial energy. The radiation length of a charged
particle varies based on the material through which the particle is traveling,
with more dense materials resulting in shorter radiation lengths. In order to
reduce the radiation length and minimize the size of the EM calorimeter, the
absorbing layers are made of lead. Placed between the lead absorbing layers
are active layers containing liquid argon.

The EM calorimeter is composed of two separate sections, a barrel-region
covering the range of |n| < 1.475 and an end cap with two coaxial wheels cov-
ering 1.375 < |n| < 2.5 and 2.5 < || < 3.2 respectively. The EM calorimeter
contains three layers in the region |n| < 2.5, which are used for precision mea-
surements and only contains two layers in the region 2.5 < |n| < 3.2, resulting
in coarser granularity. To account for energy loss of particles in the inner de-
tector, a pre-sampling liquid argon layer is employed in the region |n| < 1.8.

The EM calorimeter provides an energy resolution of og/FE = 10%/vVE & 7%.

3.3.5.2 Hadronic Calorimeter

Hadronic showers escaping the EM calorimeter are detected and absorbed
by the hadronic calorimeter. The hadronic calorimeter is composed of four
separate components: the tile barrel, tile extended barrel, the hadronic end
cap calorimeter (HEC) and the forward calorimeter (FCal).

The tile barrel covers the central interaction region of |n| < 1.0 with the
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two extended tile barrels covering the regions 0.8 < |n| < 1.7 on either side
of the central barrel. These calorimeters use steel absorbers and active layers
composed of polystyrene scintillator tiles. Showers within the active layers
produce photons, which are amplified and converted to an electric current via
photo-multiplier tubes.

The hadronic end-caps cover the region of 1.5 < |n| < 3.2 and are com-
posed of copper absorbing layers and liquid argon active material. The HEC
surrounds the forward calorimeter, which covers the region 3.1 < |n| < 4.9
and is made up of three separate layers. The inner most layer of the FCal uses
copper as the absorber, with the goal of measuring electromagnetic showers.
The outer two layers of the FCal use tungsten absorbers in order to measure
hadronic showers. All three layers use liquid argon as the active material.

Hadronic showers produce fewer particles than EM showers, leading to
smaller statistics, larger statistical fluctuations and lower energy resolution in
the hadronic calorimeter. The HEC and tile calorimeters have a combined
resolution of og/E = 50%/vE @ 3% while the forward calorimeter has a

resolution of og/F = 100%/\/@ P 10%.

3.3.6 Muon Spectrometer

The outermost system of the ATLAS detector is the muon spectrometer, which
is designed to provide standalone triggering on high-p; muons while also mea-

suring the properties of incident muons with high efficiency and resolution.
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To accomplish this goal, the muon spectrometer is made up of four separate
components: monitored drift tubes (MDT), cathode strip chambers (CSC),
resistive plate chambers (RPC) and thin gap chambers (TGC). The thin gap
chambers and resistive plate chambers provide triggering signals in the region
In| < 2.4. High resolution tracking is performed by the monitored drift tubes
with the exception of regions of high |n|. For regions of 2.0 < |n| < 2.7 cath-
ode strip chambers are used as they provide higher granularity and are better
suited to the high interaction rate in these areas. The two high resolution
systems cover the region |n| < 2.7.

A magnetic field is generated throughout the muon spectrometer using
three superconducting toroid magnets. The barrel toroid consists of eight coils
spaced symmetrically within the muon spectrometer and provides a magnetic
field in the region |n| < 1.0. Two end cap toroid magnets provide magnetic
fields in the region 1.4 < |n| < 2.7. The magnetic field in the transition
region, 1.0 < |n| < 1.4, is provided by a combination of the barrel and end-cap
magnets. The layout of the various systems within the muon spectrometer can

be seen in Figure 3.7.

3.3.6.1 Monitored Drift Tubes

The monitored drift tubes, designed for high-resolution tracking of incident
muons, are made of extruded aluminum tubes, 30 mm in diameter, containing

a mixture of 93% Ar and 7% CO, gasses. At the center of each tube is a
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Figure 3.7: Diagram of the ATLAS Muon Spectrometer [13].

tungsten-rhenium anode wire with a diameter of 50um. The gas is ionized by
passing charged particles, causing electrons to drift toward the anode, creating
a current as shown in Figure 3.8. As a muon transverses an MDT many
electrons are freed. By measuring the time of arrival of these electrons, the
distance of closest approach of the incident muon to the anode wire can be
estimated. The monitored drift tubes are split into a barrel region covering
In| < 1.1 and an end-cap covering the range 1.1 < |n| < 2.7. Each MDT has

an resolution of 80um.

3.3.6.2 Cathode Strip Chambers

Cathode strip chambers have a higher granularity than monitored drift tubes

and are therefore better suited to the high rates of incident particles found
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Figure 3.8: Schematic diagram of a muon ionizing gas within a monitored

drift tube in the muon spectrometer. The resulting electron drifts towards the
anode, resulting in a current [15].
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Figure 3.9: Schematic diagram of a cathode strip chamber [15].

in the inner-most layer of the end-cap covering the range 2.0 < |n| < 2.7.
Cathode strip chambers are multiwire proportional chambers with cathode
strip readout. The spacing of the anode wires is equal to the radial distance
between the anode wires and cathode strips as shown in Figure 3.9. A preci-
sion measurement of the muon coordinates is made by measuring the charge
induced on the cathode due to the avalanche formed on the anode wire. Cath-

ode strip chambers have a resolution of H5mm in ¢ and 60pum in z.
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3.3.6.3 Resistive Plate Chambers

Resistive plate chambers are capable of fast and coarse tracking of muons
within the muon spectrometer and are used in the ATLAS trigger systems as
well as for azimuthal coordinate measurements. Resistive plate chambers con-
sist of two insulating plates separated by a gas layer and held within an electric
field. Resistive plate chambers are used within the barrel of the muon spec-
trometer in the range || < 1.05. Resistive plate chambers have a resolution

of 10mm in ¢ and no appreciable resolution in z.

3.3.6.4 Thin Gap Chambers

Thin gap chambers are used for triggering and to assist particle tracking in the
range 1.05 < |n| < 2.4. Thin gap chambers are very similar to cathode strip
chambers except that the anode-to-anode spacing is larger than the anode-to-
cathode spacing. This spacing allows for faster signals with good resolution,
making thin gap chambers useful for triggering. In addition, thin gap cham-
bers have high granularity and rate-tolerance, making them ideal for the high
particle flux found at large values of n. Thin gap chambers have a resolution

of 3mm in ¢ and 2mm in z.

3.3.7 Trigger System

Within the ATLAS detector, proton-proton collisions occur at a rate of ap-

proximately 8GH z. In contrast, the ATLAS computing systems can only store
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events at a rate of approximately 200H z. This discrepancy requires that only a
small percentage of pp collisions are stored for analysis, while the vast majority
of pp collisions are discarded. In order to preferentially store events containing
interesting physics, a 3-tier trigger system is implemented. The trigger system
looks for characteristics typical of events containing interesting phyiscs, such
as large missing transverse energy and high pr jets or leptons.

The first step in the trigger system is the hardware-based level 1 trigger
(L1), which is used to pre-select events for further investigation by the level
2 trigger (L2). The goal of the L1 trigger is to eliminate events which do not
contain well-defined physics objects and to determine regions of interest for
further study by the L2 trigger. The L1 trigger is composed of two separate
pieces: the L1 muon trigger and the L1 calo trigger. The L1 muon trigger uses
information from the RPC and TGC components of the muon spectrometer
to test for low and high pr muons. By comparing hit patterns in the RPC and
TGC to pre-defined look-up tables, the L1 muon trigger is able find events with
likely muon candidates. The L1 calo trigger uses coarse granularity calorimeter
information to select events containing objects such as leptons, photons, jets
and missing transverse energy. Together the two L1 trigger systems reduce
the rate of events moving on to the L2 trigger system to 75kHz. In order to
keep pace with this high rate, the L1 trigger system is able to analyze events
within 2.5us.

After passing the L1 trigger, events are processed by the software-based

65



level 2 trigger (L2). The L2 trigger uses reconstruction algorithms in order to
analyze information from the subdetectors in regions of interest of the detector
defined by the L1 trigger. The L2 trigger is able to analyze an event within
40ms and reduces the event rate to approximately 3 kHz. Events passing the
L2 trigger are passed on to the final event filter trigger.

The event filter (EF) trigger is the most thorough and sophisticated of the
three triggers. The EF trigger performs a full reconstruction of the event, a
process which takes approximately 4 seconds. Due to the large amount of time
required to process events in the EF trigger, parallel processors are employed
to analyze multiple events simultaneously. The EF trigger selects events based
on object pr and object quality requirements in order to reduce the event rate

to approximately 200H z.
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Chapter 4

Object and Event Selection

In order to eliminate the majority of background events, a cut-based approach
is used. The full set of cuts are known as preselection. These cuts are op-
timized using Monte Carlo samples in order to retain the maximum number
of signal events while removing as many background events as possible. Once
all relevant cuts have been applied, a support vector machine analysis is con-
ducted using relevant event parameters as input.

In order to properly distinguish signal and background events, the iden-
tification and selection of objects such as leptons and jets is crucial. In this
section, the identification criteria for event objects will be discussed. In addi-
tion, this section will discuss the parameters used for preselection cuts and as

SVM inputs.
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4.1 Objects

4.1.1 Jets

Hadronic particles, such as pions, protons and b-quarks, are detected as show-
ers of particles within the ATLAS calorimeter systems and are referred to as
jets. As discussed in Chapter 3, particles incident on the ATLAS calorime-
ter systems interact with the calorimeter’s absorbing layers, resulting in the
decay of the incident particle into many lower-energy particles. These lower
energy particles then also decay and are further absorbed and measured by
the calorimeter. This process is repeated until all of the original energy of the
incident particle has been measured and absorbed.

The result of this decay process is a cascade of particles emitted from the
initial point of interaction. Because of the showering aspect of these hadronic
decays, the energy of the incident particle is not measured by a single cell in the
calorimeter, rather it is measured by combining measurements of topologically
connected calorimeter cells in order to determine the energy of the initial
particle. Figure 4.1 shows a plot of the energy measured by cells within the
hadronic calorimeter. As you can see, there are several cells which contain a
large amount of energy over the background. In order to determine the energy
of the incident jet, the energy deposited in each of these cells must be summed.

In order to determine the energy of the incident particle, jets are re-

constructed using the anti-k7 algorithm [25] with a distance parameter of
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Figure 4.1: Plot showing the energy distribution of cells within the ATLAS
calorimeter systems. The set of clusters containing large amounts of Ep rep-

resent a jet [13].
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R = 0.4. The algorithm uses topological energy clusters created from con-
nected calorimeter cells with a significant signal-to-noise ratio. The jet en-
ergies are initially reconstructed at the EM scale by measuring the energy
of electromagnetic shower particles deposited in the calorimeter. In order to
increase resolution, the topological clusters are then scaled using the Local
Cluster Weight (LCW) method. Finally, after the LCW method has been ap-
plied, the jets are calibrated using the jet energy scale (JES) to compensate
for pile-up, Monte Carlo and other in-situ effects [24]. The jet collection used
for this analysis is therefore referred to as Anti-kr4 LCW+JES.

After reconstruction, jets are required to pass LOOSER cleaning criteria,
designed to remove jets due to cosmic rays, beam induced background and
calorimeter noise [26]. Finally, jets are required to pass the following series of

cuts on 7, pr and jet vertex fraction (JV F):

o |n| <45

e pr > 25(30)GeV for |n| < (>)24

o |JVF|> 0.5 for pr <50GeV and |n| < 2.4.

The jet vertex fraction (JVF) measures how well the jet points back to the
primary vertex and a cut on JVF is effective at eliminating pileup jets. The
other cuts are optimized through MC studies to create the highest possible

statistical significance for H* analyses and to reduce pileup effects [27].
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Due to the major top quark background in the HWW VBF channel, proper
tagging of b-jets is essential. Jets within the range |n| < 2.4 are tagged using
the MV1 tagging algorithm with an efficiency threshold of 85% [28]. Events

containing a b-tagged jet with pr > 25GeV are vetoed.

4.1.2 Electrons

Electrons are reconstructed using a combination of information from the EM
calorimeter and the inner detector. Both multivariate and cut-based methods
are used to select electrons depending on the electron’s transverse momentum.
Low energy electrons, with Fr < 25GeV, are selected using the multivariate
electron likelihood method [29] and are required to meet the requirements
of the ”Very Tight Likelihood” criteria. For electrons with Epr > 25GeV
the cut-based "Medium++" criteria is applied, in addition to two additional
cuts imposed in order to improve conversion rejection. In addition to the
normal " Medium-++" requirements, electrons must have at least one hit in the
innermost pixel layer if a hit is expected and their conversion flag is required
to be false.

In addition to the above selection criteria, electrons must also pass isolation
requirements to remove jets misidentified as electrons. For the calorimeter, the
total Ep deposited in topological clusters surrounding the electron candidate
is summed, with corrections applied to account for the energy of the electron,

underlying event and pile-up effects. For this analysis, the topological clusters

71



in a cone of AR = 0.3 around the electron are considered and the resulting
variable is labeled topoEtConeCor(0.3). Electrons with too much energy in
the surrounding calorimeter clusters are vetoed.

Isolation criteria are also applied to electron tracks in the inner detector
in a similar manner. For the inner detector a cone of AR = 0.3 or AR =04
is used depending on the pr of the electron and the resulting variables are
labeled Ptcone(0.3) and Ptcone(0.4).

Finally, to eliminate electrons which do not originate from the primary
vertex, cuts on the longitudinal impact parameter (zy) and transverse impact
parameter (dp) are applied. A cut is made on zysinf to account for the fact that
forward leptons tend to have a larger projection onto the z-axis and therefore a

larger uncertainty. The full electron selection criteria is described in Table 4.1.

4.1.3 Muons

Muons are unique within the ATLAS experiment in that they are long-lived
and do not decay within the ATLAS detector. In addition, muons lose only
a small fraction of their energy within the ATLAS calorimeter systems. As
a result, Muons are reconstructed using all of the ATLAS subdetectors. Pri-

marily, muons are reconstructed by combining a track from the inner detector
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Calorimeter Track Impact

ErGeV | Electron ID Isolation Isolation Paramters
topoEtConeCorr Ptcone

10-15 is0(0.3)/Er < 0.20 | is0(0.4)/Er < 0.06

15-20 Very Tight LH | iso(0.3)/Er < 0.24 | iso(0.3)/Er < 0.08 dy/og, < 3.0,

20-25 zosinf < 0.4mm
is0(0.3)/Er < 0.28 | is0(0.3)/Er < 0.10

> 25 Medium++

Table 4.1: Electron Selection by Er Bin

with a matching track in the muon spectrometer. Muons reconstructed in this
manner are described as ”combined” muons [30]. Muon candidates must pass
a series of cuts to ensure the track is well-reconstructed. These cuts require
that the muon track have hits in the pixel, SCT and TRT subdetectors as well
as having a track in all three layers of the muon spectrometer.

Similar to the electron selection requirements, muons must pass isolation
cuts in both the calorimeter and inner detector in addition to cuts on the

impact parameter. The impact parameter and isolation cuts are described in

table 4.2.

4.1.4 Missing Transverse Energy

The ATLAS detector is not designed to measure neutrinos due to the ex-

tremely small cross section of neutrino interactions. However, it is possible to
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Er Calo. Isolation Track Isolation Impact

(GeV) | topoEtConeCor Ptcone Parameters

10-15 | is0(0.3)/Er < 0.06 | iso(0.4)/Er < 0.06

15-20 | is0(0.3)/Er < 0.12 | is0(0.3)/Er < 0.08 | do/oq, < 3.0,

20-25 | iso(0.3)/Er < 0.18 zpstnd < 1.0mm
iso(0.3)/Er < 0.12

>25 | is0(0.3)/Er < 0.30

Table 4.2: Table of muon isolation cuts by pr.

estimate the energy of neutrinos using the concept of momentum conservation.
For example, consider a W~ boson at rest decaying into an electron and an
electron anti-neutrino. Using the ATLAS detector, it is possible to measure
the transverse momentum of the electron. We can then use two pieces of in-
formation to determine the transverse momentum of the neutrino. First, we
know that the initial transverse momentum of the W boson is zero, and second
we know that momentum conservation dictates that the transverse momentum
of the final electron-neutrino system must equal the transverse momentum of
the initial W boson. We can therefore calculate the transverse momentum of
the neutrino as having the same magnitude as the electron’s momentum, but
in the opposite direction such that the final electron-neutrino system has zero
total transverse momentum.

In the simple W boson system, we know that the final energy of the system

should be zero. We call the difference between our measured transverse energy

74



expected
E T

(Empeasured) and our expected transverse energy ( = 0) the missing

transverse energy (E7**). We can calculate the missing transverse energy as
E;neasured + E;niss — E;JUPECtEd —0. (41)

We can easily extend this concept to more complicated events involving
multiple particles. We know that the p—p collisions within the ATLAS detector
occur approximately head-on, resulting in zero transverse momentum in the
initial system. Therefore, the total transverse momentum of the final state
objects should also be zero and we can calculate the E*** using equation
(4.1).

For this analysis, the EX** is reconstructed from calorimeter and inner
detector track information with jet objects replaced with information from the

calorimeter [27]. This missing energy definition is denoted by Ej***/~THK,

4.1.5 Overlap Removal

In the case that two objects overlap within the n — ¢ plane, the following

overlap removal has been applied.

e If an electron and muon overlap within AR < 0.1, the muon is kept and

the electron is rejected.
e [f an electron is within AR < 0.05 of any muon, the event is rejected.

e If two electrons overlap within AR < 0.1, the higher py lepton is kept.
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e If a jet and electron overlap within AR < 0.3, the electron is kept and

the jet is rejected.

e If a jet and muon overlap within AR < 0.3, the jet is kept and the muon

is rejected.

AR is defined as AR = /(An?) + (A¢?).

4.2 Observables and Event Selection

4.2.0.1 Observables

The analysis described in this thesis relies on support vector machines to
separate signal and background events. In order to properly distinguish events,
the support vector machines rely on well-defined input parameters designed
to exploit differences in signal and background events. In addition, before
events are processed by the SVM analysis, it is important to remove as many
background events as possible using a cut-based approach. This section will
describe the observables used in both the cut-based and SVM portions of our
analysis as well as detailing the cuts used to create the SVM input samples.
As described in chapter 2, the topology of VBF H — WW™* — [vilv events
is quite unique. VBF HWW events are characterized by two high-energy jets
in forward regions of the detector along with two central leptons and missing

energy. The parameters chosen for pre-selection cuts and SVM inputs are
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designed to exploit this unique topology. The parameters used for preselection

and SVM input are as follows:

e m,.: In order to reduce background events due to Z — 77 decays, a cut
on the invariant mass of the two 7 system is imposed. By assuming that
each measured lepton is the product of a 7 — [vv decay and by using
the missing energy to estimate the energy of the neutrinos, m., can be
calculated. Any event in which the calculated value of m., is within

25 GeV of the Z mass is vetoed.

o Ny_jer = 0: VBF HWW events involve two initial state quarks interact-
ing to form a Higgs Boson. These initial state quarks are provided by
the interacting protons and are therefore unlikely to be b-quarks. Back-
ground top quark and ¢t events, on the other hand, are extremely likely
to contain at least one b jet. Therefore, eliminating events containing a
b-tagged jet is effective at removing background events while preserving
most signal events. b-tagged jets are defined as any jet passing the MV1

b-tagging criteria at an 85% operating point and having pr > 25GeV .

e Central Jet Veto (CJV): VBF Higgs events ideally contain two forward
jets and no extra hadronic activity. The presence of additional high-pt
jets indicates background interactions within the event. Therefore, any
event containing a third jet with pr > 20GeV and with 1 between those

of the two tagged-jets is vetoed.

7



e my, A¢y: Due to the spin-zero nature of the Higgs boson, the final state
leptons in H — WW?* — [viv decays are preferentially emitted in the
same direction. Due to this effect, leptons resulting from H — WW*
decays tend to have low invariant mass, my, and be close together in ¢

space (low Agy).

e Outside Lepton Veto (OLV): HWW VBF events are expected to have
two forward jets and two central leptons. As such, any event in which one
of the good leptons has pseudo-rapidity not between the pseudo-rapidity

of the two tagged-jets is vetoed.

e AY}; and mj;: The two tagged jets in VBF HWW events tend to be
found in opposite forward regions of the detector. This results in signal
events having higher difference in rapidity, AYj; and invariant di-jet

mass, m;;, than background events.

e mp: myp is an expansion of the variable initially developed to measure
the mass of the W boson, m!Y. By assuming that the measured lepton
and missing energy are due to the decay of a W boson, the transverse

mass of the W can be determined as

(my)* =mi +m, + 2(E,E, —p, p,) (4.2)

where [ and v subscripts refer to the final state lepton and neutrino and

E and p are energy and momentum in the transverse direction. This
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expression can be expanded to the H — WW™* — [vlv system as

mi = /(4 B = o + e (4.3

Note that we have assumed that the neutrino mass is zero such that
piiss = s For signal events, myp should peak below the mass of the
Higgs boson with no events having ms > myg. Due to imperfections in

the reconstruction of leptons and missing energy, this upper bound does

not hold for all signal events.

pietal: pletal i the magnitude of the vector sum of the py of all objects in

the event and is defined as:

jets jets

ptjgtal — \/(le _|_p21 + E;niss + pr)2 + (ply +p2y + E;niss —+ Zpy)27

(4.4)

where p; and p, refer to the momentum of the two final state leptons.

VBF signal events tend to have a lower p‘ than background events.

pietal is particularly useful in removing background events with soft gluon

radiation but no additional high-pr jets.

Y my;: Y my; is the sum of the invariant mass of all four possible pairs
l7j l?]

of leptons and tagged-jets. The VBF topology results in jets in the
forward region and leptons in the central region of the detector. This

causes large opening angles between leptons and jets in the VBF signal
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events and therefore signal events tend to have higher > my; on average
l7j

than background events.

Mep Centrality: 7, Centrality is yet another way of using the fact VBF
signal events tend to have leptons in the central region of the detector,
with tagged jets in the forward region to separate signal from background

events. 7, centrality is defined as:

cent My — 77
. My — Mo
cent nl? _ T_]
et = 2 |21 (4.6)
& Nir — Ny
nlcee]?trality — nlclent i nlc;nt (47)

Where 7 is the average pseudo-rapidity of the two tagged jets, n =
% For each individual lepton, a value of 7, centrality greater than
1 indicates that the lepton is not in the region between the two tagged
jets. While a 7, centrality value near zero indicates that the lepton is

close to the center of the region between the two jets. VBF signal events

tend to have a smaller 7, centrality than background events.

4.2.1 Event Selection and Input Parameters

Before applying the SVM analysis, events are screened in order to eliminate

as many background events as possible. In order to accomplish this, a set of

preselection cuts are applied as outlined in Table 4.3.
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Object Cut Value

lepton Exactly 1 electron and 1 muon
lepton charge opposite charged leptons
lepton pr pr, > 22GeV, pp, > 15GeV
my my > 10GeV

Z/DY— > 77— Veto | m., < 66GeV

Njets Njets Z 2

MV185% _

b — veto Njets

CJV nPr>20

central jets

OLV OLV=10

Table 4.3: Event Preselection

OLV= 0 indicates that there are no leptons with pseudo-rapidity outside
of the tagged jets. After preselection, the following SVM input parameters are

stored for each event:

total 1
o P, Miep centrality, AY}j, msi, My, A¢lla mr, Zl,j my;

These parameters are specifically chosen to exploit the topological character-

istics of H— > WW VBF events as described in the previous section.
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4.3 Signal-Background Comparison Plots

The section presents a comparison between the signal and background distri-
butions of SVM input variables. Background samples are separated into light
and heavy classes as described in Chapter 8. The processes and associated

MC samples contained in each class are listed in Tables 5.1 - 5.5.
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Figure 4.2: Signal-background comparison plots for SVM input parameters.
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Figure 4.3: Signal-background comparison plots for SVM input parameters.

4.4 Expected Yields

Table 4.4 indicates the expected number of events for VBF signal and all
background processes in the 2012 ATLAS data set after preselection. These
numbers are taken from Monte Carlo studies using the MC samples listed in

Tables 5.1 - 5.5.
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Process Yield

VBF HWW | 12.7
Z+jets 103.7
Wgamma 11.5

geft HWW 11.8

tthar 331.2
WWwW 95.9
WZ 15.2
WH-Jets 18.1

Single Top 41.9

QCD 12.8

Table 4.4: Expected yields after preselection for signal and background pro-

cesses.
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Chapter 5

Signal and Background

Estimation

The analysis presented in this thesis uses 20fb~! of data collected in pp col-
lisions at the ATLAS detector with a center of mass energy of /s = 8 TeV.
Monte Carlo (MC) simulated events representing signal and background were
used to test analysis techniques, create SVM templates and analyze systematic
uncertainties. In the case of W + jets and QCD hadronic events, data-driven
techniques were used to estimate backgrounds due to possible improper fake
lepton predictions in Monte Carlo samples.

In order to better replicate real data, scale factors are applied to the Monte
Carlo events. These scale factors include MC generator scaling, which com-
pensates for discrepancies between MC generator and real data distributions

in variables such as lepton multiplicity and py. In addition, scale factors cor-

85



recting for object energy, such as Jet Energy Scale (JES) and object detection
efficiency, are applied on an event-by-event basis.

Finally, in order to generate conditions inside the actual detector in which
dozens of interactions can occur per bunch crossing, MC events are generated
with multiple pp events superimposed over the event of interest. These over-
lapping events are referred to as pileup and generally consist of soft (i.e. low
energy) hadrons and leptons. An additional scale factor is applied globally
to all Monte Carlo events in order to compensate for the difference in pileup

conditions between the real detector and Monte Carlo simulations.

5.1 HWW VBF Signal

The VBF H — WW* — [vlv Monte Carlo used in this analysis was generated
using Powheg and showered using Pythia with the next-to-leading order parton

distribution function (PDF) set CT10 [16].

5.2 Backgrounds

5.2.1 W+jets

W +jets events constitute a minor background to H — WIW?* — [vilv signal
events. W +jets events in which the W boson decays leptonically have one

true high-pr lepton in the final state, along with a number of jets. Though
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normally W+jets events are rejected by the requirement that Ny, > 2, it is
possible for W+jets events to pass our analysis cutflow when one of the jets
is incorrectly reconstructed as a lepton.

Since the rate of jet misidentification may not be accurately described by
the Monte Carlo, a data-driven technique is employed to estimate the W -+jets
background [17]. This technique involves the creation of two W-jets control
samples. The first control sample requires two fully identified leptons, where
one of the leptons is actually a jet misidentified as a lepton. The second control
sample requires one fully identified lepton and one jet which passes a separate
loosened lepton cutflow designed to enrich the sample in jets misidentified as
leptons. Events in the second control sample are referred to as anti-id events.
To estimate the number of W+jets events passing the full two-lepton cutflow,
a fake factor defined as

N;

fi= (5.1)

Nantifid
where NV;; represents the rate at which jets pass the full lepton cutflow and
Nanti—iq represents the rate at which jets pass the modified anti-id cutflow.

The number of W-+jets events in the signal sample is therefore given as

WHjets W+jets
Nid+id - fl ’ Nid+anti4d- (5-2)

Ngﬁém represents events with two fully identified leptons where one of the

W4jets

leptons is actually a misidentified jet. N,/ - ., represents the number of
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events with one fully identified lepton and one jet passing the anti-id lepton

NW+jets

cutflow. We are able to calculate N;;/'~"" .

by creating an anti-id control
sample using real data events and we are then able to estimate the W+jets

contribution to the signal sample using equation (5.2).

5.2.2 QCD

QCD events involve hadronic decays with no real leptons. Similar to W+jets
events, QCD events are normally rejected by the requirement that N, > 2.
However, it is possible for two jets to be misidentified as leptons. Although
the probability of two jets being misidentified is very small, the cross section
of QCD events is very large, resulting in a non-negligible QCD background
to H — WW?* — lviv events. Jets and misidentified leptons within QCD
events have no preferred orientation, making the topological variables used in
the SVM analysis ideal for distinguishing QCD and signal events. The QCD
background was estimated using a data-driven technique similar to the one
used for the W4jets events, except that 2 jets were assumed to be misidentified

as leptons.

5.2.3 Z+jets

Z+jets events involve the decay of a Z boson with additional jets due to
intial state radiation, final state radiation or pileup effects. For this analysis,

Z bosons decaying into a pair of 7 leptons are of primary interest as the 7
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leptons can decay into two different flavor leptons through the process Z —
TT — evev-pv,vy. In the case that there are at least two high energy jets,
Z — 77 events can mimic VBF HWW events.

Though Z — 77 events may have the same final state particles as VBF
HWW events, the topology of the events are quite different. Most impor-
tantly, leptons and neutrinos created by 7 decays are preferentially emitted in
the direction of p,. Since 7 leptons resulting from Z boson decays are highly
relativistic, the final state leptons and neutrinos are clumped together within
the detector. This is in sharp contrast to HWW decays in which leptons and
their associated neutrinos are emitted in opposite directions within the detec-
tor’s rest frame. Knowledge of the 7 lepton decays can be used to reconstruct
the invariant mass of the two 7 system. Events are rejected if m., is within
25 GeV of the mass of the Z boson.

Z+jets backgrounds were modeled using MC samples generated with Alp-
gen [21] and showered with Herwig [19], with the exception of Z/v samples

which were created using Sherpa [22].

5.2.4 Top Quark

Top quark events constitute the largest background to the VBF H — WW* —
Ivlv signal. Specifically, ¢t events, which decay into two W bosons with two
associated jets as shown in Figure 5.1, constitute approximately 50% of the

total background after the full analysis cutflow. The major difference between
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tt events and HWW VBF events is the presence of a b-quark in the tf final
state. The proper tagging of b-jets is therefore imperative for rejection of top

quark backgrounds.

Figure 5.1: Feynman diagram of a ¢t pair decaying leptonically.

Wt events, in which a single top quark and W boson are produced, as shown
in Figure 5.2, also constitute a major background for this analysis. In the case
where the W boson created by the top decay, as well as the independent W
boson, both decay leptonically, the final state will contain two leptons and
one b-jet. If a second jet is found in the final state, either from initial state
radition (ISR), final state radiation (FSR) or pileup effects, the event will have

the same composition as a true VBF HWW* — [viv.
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g(66 t

Figure 5.2: Feynman diagram of W boson and top quark associated production

in the ¢-channel

The majority of top quark events are rejected by the requirement of V; gftta .=
0. In addition, top quark events do not share much of the topology of VBF
HWW events. Specifically, jets produced through top quark decay are not
preferentially emitted in opposite forward regions of the detector and leptons
produced by the decay of the two W bosons are not emitted in the same di-
rection. These differences allow SVM input variables, such as m;; and my;, to
effectively separate HWW and tt events.

The tt and Wt samples were both generated using Powheg [20] and show-

ered using Pythia [18].

5.2.5 ggf Higgs

Higgs bosons created through the gluon-gluon fusion process and decaying lep-
tonicaly through two W bosons are considered as background to VBF events.
Gluon-gluon fusion involves the creation of a Higgs boson through the fusion

of two gluons via a top quark pair as shown in Figure 5.3. Assuming the Higgs
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Figure 5.3: Feynman diagram of Higgs production via gluon-gluon fusion

then decays leptonically in the WV channel, the resulting final state will have
two high pr leptons, missing energy and no jets. Due to the lack of jets in the
tree level final state, ggf events are generally removed by the requirement of
at least two high-pr jets. It is possible, however, for high-p jets to be found
in the final state due to ISR, FSR or pileup. In these cases, ggf events will
pass the analysis cutflow, resulting in a background on the order of the size of
the expected signal.

gef HWW events share the exact same lepton topology as VBF HWW
events, making differentiation based on the properties of the final state jets
of paramount importance. Jets from ISR, FSR and pileup are not oriented in
any specific manner within the detector and will therefore have a lower m;
and ) my; than VBF signal events. These properties are used by the SVM
machinery to distinguish ggf and VBF events.

gef background events were generated using Powheg and showered using

Pythia.
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5.2.6 Wy

W~ events, in which the W boson decays leptonically, make up a very small
background to VBF HW W signal events. In order to pass the analysis cutflow,
at least two extra jets from ISR, FSR or pileup must be present in the final
state and the photon or a jet must be misidentified as a lepton.

Two sets of W~ Monte Carlo samples were used, one of which was generated
and showered using Sherpa and the other was generated using Alpgen and

showered using Herwig.

5.2.7 Diboson Backgrounds

The largest diboson background is due to WW events, with additional jets
due to ISR, FSR or pileup, in which both Ws decay leptonically. These events
share the same final state particles as VBF HWW signal events. However,
they do not have the same topology, which makes the SVM input variables
excellent at differentiating signal and W W background events. In addition,
the small cross section of this background leads to only about 10 WW events
passing preselection.

W Z events make up a very small background to HW W signal events. Since
Z bosons can only decay leptonically into two leptons of the same flavor, W7
events are generally removed by the requirement of exactly two different flavor
leptons.

Electroweak WW and qq — WW samples were generated and showered
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using Sherpa. gg — WW samples were created using gg2WW [23]. WZ
electoweak samples were generated and showered using Sherpa, while non-
electroweak W Z samples were generated using Powheg and showered using

Pythia.

5.3 MC Data Agreement

This section presents a comparison of data and Monte Carlo distributions for
the observables used in the VBF H — WW™ analysis. The MC samples used
in the creation of these plots are listed in Tables 5.1 - 5.5 and include both

VBF HWW signal and data-driven W-+jets and QCD backgrounds. Error

bars include both statistical and systematic errors.
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variables.
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5.4 List of Monte Carlo Samples

This section presents a list of all Monte Carlo samples used in the VBF H —

WW* analysis. The expected yield associated with each MC sample is listed.

This yield corresponds to the number of events of a given process expected

to pass the analysis pre-selection cutflow in the ATLAS 2012 data set. MC

samples are split into signal, light and heavy classes. These class assignments

are used in the 3-class support vector machine analysis as discussed in Chapter

8.
Process Sample # | x-sec(pb) Generator Simulation | Expected Yield
After Preselection
VBF H - WW — leplep | 161055 0.0356152 | PowHeg+Pythia8 | Full 12.7

Table 5.1: Table of MC Signal samples.
Process Sample # | x-sec(pb) | Generator Simulation | Expected Yield
After Preselection
schan—lepton 110119 1.818 Powheg+Pythia6 AFIIL 0.0171
Wtchan—dilepton(DR) | 110141 2.349 Powheg+Pythia6 AFII 40.8
tchan—lepton 110101 28.44 AcerMC+Pythia6 | AFII 1.07
ttbar(dilepton) 181087 252.89 Powheg+Pythia AFII 331

Table 5.2: Table of the MC samples used for the heavy class.

98




Process Sample # | x-sec(pb) Generator Simulation | Expected Yield
After Preselection
g9 = WpWm — euvv 169472 0.0208 gg2WW3.1.2 Full 2.56
g9 — WpWm — eTvv 169473 0.0208 gg2WW3.1.2 Full 0.159
g9 > WpWm — vv 169475 0.0208 gg2WW3.1.2 Full 2.44
99 — WpWm — utvv 169476 0.0208 gg2WW3.1.2 Full 0.0503
g9 =+ WpWm — t1vv 169477 0.0236 gg2WW3.1.2 Full 0.0247
99 > WpWm — vv 169478 0.0208 gg2WW3.1.2 Full 0.0612
99 = WpWm — Tuvv 169479 0.0208 gg2WW3.1.2 Full 0.113
WW — lv(MassiveB/C) 177997 5.679 Sherpa Full 80.2
Wgammax — 1 181452 10.175 Sherpa Full 2.81
Wgammax — lvup 181453 2.535 Sherpa Full 1.84
Wgamma + 4p 146434 2.1224 Alpgen+Herwig Full 0.469
Wgamma + 5p 146435 0.46612 Alpgen+Herwig Full 0.443
Wgamma + Op LepPhoEF 146436 229.88 Alpgen+Herwig Full 0.00256
Wgamma + 1p LepPhoEF 146437 59.518 Alpgen+Herwig Full 0.803
Wgamma + 2p LepPhoEF 146438 21.39 Alpgen+Herwig Full 3.7
Wgamma + 3p LepPhoEF 146439 7.1203 Alpgen+Herwig Full 1.41
WW — v+ jj (EEWcoupling) 161985 0.039 Sherpa Full 10.3
ZZ — llvv + jj (6EWcoupling) | 161986 0.0012314 Sherpa Full 0.00642
WZ — lllv + jj(6EWcoupling) 161987 0.012559 Sherpa Full 0.594
ZZ — Ul 4 jj(6EWcoupling) 161988 0.00073568 | Sherpa Full 0.0129
W+ Z — evup 129478 0.9382 Powheg+PYthia8 | Full 1.66
W+ 2 = evrr 129479 0.1746 Powheg+PYthia8 | Full 0.395
W+ Z — pvee 129480 1.399 Powheg+PYthia8 | Full 4.37
W+ Z — pvrt 129482 0.1746 Powheg+PYthia8 | Full 0.382
W+ Z — tree 129483 1.399 Powheg+PYthia8 | Full 0.265
W+ Z — tvup 129484 0.9382 Powheg+PYthia8 | Full 0.0633
W+27Z — tvrr 129485 0.1719 Powheg+PYthia8 | Full 0.107
W —Z — evuu 129487 0.639 Powheg+PYthia8 | Full 0.796

Table 5.3: Table of the MC samples used for the light class. Part 1.
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Process Sample # | x-sec(pb) | Generator Simulation | Expected Yield
After Preselection
W —Z — evup 129487 0.639 Powheg+PYthia8 | Full 0.796
W —Z — evttr 129488 0.1125 Powheg+PYthia8 | Full 0.202
W —Z — pvee 129489 0.9359 Powheg+PYthia8 | Full 4
W —Z — pvrr 129491 0.1125 Powheg+PYthia8 | Full 0.15
W —Z — tvee 129492 0.9359 Powheg+PYthia8 | Full 0.219
W —Z7Z— rtvrr 129494 0.1107 Powheg+PYthia8 | Full 0.0399
ZZ — 2e2pu(my > 4GeV) 126938 0.1708 Powheg+Pythia8 | Full 1.51
ZZ — 2e21(my > 4GeV) 126939 0.1708 Powheg+Pythia8 | Full 0.157
ZZ — 2p27(my; > 4GeV) 126941 0.1708 Powheg+Pythia8 | Full 0.0974
ZZ — 41 (my; > 4GeV) 126942 0.0735 Powheg+Pythia8 | Full 0.022
ZZ — Uvv(MassiveB/C) 177999 0.494 Sherpa Full 0.0804
99 — 22 — 2e2p 116603 0.00135 | gg227 Full 0.0712
Z — mm2jEW (40 < my;, inc.t-ch) 129925 1.054 Sherpa Full 0.036
Zupy(M > 10GeV) 161998 54.341 Sherpa AFII 1.45
Zup + 1p(60 < M < 2000GeV) 167331 155 Alpgen+Herwig Full 0.0778
Zpup 4+ 2p(60 < M < 2000GeV) 167332 48.945 Alpgen+Herwig Full 0.238
Zup +2p(10 < M < 60GeV)21 181322 52.879 Alpgen+Herwig Full 0.0318
Z — tt2j EW (40 < myy, inc.t-ch) 167724 1.0637 Sherpa Full 1.25
Z — tt2j EW (7 < my; < 40,inc.t-ch) | 181349 0.72663 Sherpa Full 0.111
Z7t7 4+ 0p(60 < M < 2000GeV) 146930 712.1 Alpgen+Herwig Full 8.65
ZTT + 1p(60 < M < 2000GeV) 146931 154.95 Alpgen+Herwig Full 13.2
ZTT + 2p(60 < M < 2000GeV) 146932 48.767 Alpgen+Herwig Full 26.7
ZTT 4+ 3p(60 < M < 2000GeV) 146933 14.184 Alpgen-+Herwig Full 8.15
Z7T + 4p(60 < M < 2000GeV) 146934 3.7959 Alpgen+Herwig Full 0.899
Z7T + 5p(60 < M < 2000GeV) 147094 1.1366 Alpgen+Herwig Full 0.122
Z7T + 4p(10 < M < 60GeV) 146854 2.592 Alpgen+Herwig Full 0.309
ZtT 4+ 1p(10 < M < 60GeV) 146881 108.71 Alpgen+Herwig Full 0.411

Table 5.4: Table of the MC samples used for the light class. Part 2.
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Process Sample # | x-sec(pb) | Generator Simulation | Expected Yield
After Preselection

Z7T +2p(10 < M < 60GeV) 146882 52.827 Alpgen+Herwig | Full 3.84

Z717 4+ 3p(10 < M < 60GeV) 146883 11.311 Alpgen+Herwig | Full 1.18

Z7T 4 0p(60 < M < 2000GeV)2l | 169450 712.14 Alpgen+Herwig | Full 2.18

Z7t7 4+ 1p(60 < M < 2000GeV)2l | 169451 154.97 Alpgen+Herwig | Full 2.67

Z7TT 4+ 2p(60 < M < 2000GeV)20 | 169452 48.805 Alpgen+Herwig | Full 16.5

Z77 4 3p(60 < M < 2000GeV)2l | 169453 14.189 Alpgen+Herwig | Full 9.02

ZTT 4+ 4p(60 < M < 2000GeV)2l | 169454 3.8005 Alpgen+Herwig | Full 2.97

ZTT 4+ 5p(60 < M < 2000GeV)2l | 169455 1.1441 Alpgen+Herwig | Full 0.748

Z7T(M > 10GeV) 126854 32.317 Sherpa Full 2.95

Table 5.5: Table of the MC samples used for the light class. Part 2.
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Chapter 6

Support Vector Machines

The goal of the analysis presented in the thesis is to search for evidence of
vector boson fusion Higgs production in the H — WW=x% — [vlv channel in
the 20 fb=! 2012 ATLAS data set. This data set contains millions of events,
most of which are not Higgs boson events. Our task is to remove as many
non-Higgs boson events as possible from the data set and then estimate the
percentage of VBF HWW events in the remaining data set. The removal of
most background events is accomplished through a cut-based approach and
the support vector machine analysis is then used to estimate the percentage
of Higgs boson events in the remaining data set. The analysis presented in
this thesis is therefore a combination of a cut-based pre-analysis and a final
support vector machine analysis.

A cut-based analysis uses manually-created thresholds on relevant parame-

ters in order to remove events from the data set. For example, in this analysis
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we are specifically looking for events with two leptons. Therefore, any event
which does not contain two leptons is removed from the data set. This process
is continued using cuts on various event parameters until no more cuts can be
made without removing significant amounts of signal events from the data set.
The full set of cuts for a specific analysis is referred to as the cutflow and is
described is Chapter 4. In the case of this analysis, we refer to the cutflow as
the preselection cutflow, or simply preselection. In a fully cut-based analysis,
once all relevant cuts have been made, the number of events in the real data
set is compared to expected results based on Monte Carlo studies.

Cut-based analyses are effective at removing background events, particu-
larly when there are very clear constraints on the events of interest, such as
the number of leptons or the number of high-energy jets. However, cut-based
analyses do not take into account correlations between parameters and need to
be tuned manually. In addition, cut-based analyses do not allow for estimation
of the probability that an individual event is a signal or background event. In
order to properly account for correlations between parameters and to estimate
the signal-event probability on an event-by-event basis, multivariate analyses
are employed. A multivariate analysis is designed to take into account many
input parameters at the same time in order to determine the relative proba-
bility of a given event being a signal or background event. In this thesis we
use a specific type of multivariate analysis known as support vector machines

(SVM).
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6.1 Introduction to Support Vector Machines

A support vector machine is a linear event classifier designed to differentiate
between two classes of events, in our case signal and background. In order to
accomplish this differentiation, support vector machines create a separating
hyperplane between signal and background events in feature space. Feature
space is the n-dimensional space in which events are plotted using n distin-
guishing parameters, such as lepton energy and E7***. As a simple example,
let’s assume that we can parameterize events in our analysis by two variables,
H, and H, in feature space. We first need to train the SVM by supplying events
of known type, either signal or background. The support vector machine plots
these events in a 2-dimensional space and attempts to draw a hyperplane, in
this case a line, between the signal and background events as shown in Figure
6.1. Once the separating line is determined, the SVM is said to be trained
and can be used to distinguish events of unknown type. The position of the
unknown event relative to the separating line determines the best guess as to
whether the event is signal or background. For each unknown event the SVM
returns a number, referred to as the SVM discriminant, which represents the
distance of the event from the separating hyperplane in feature space. The
sign of the SVM discriminant represents the best guess as to the class of the
unknown event.

As can be seen from Figure 6.1, support vector machines are excellent at

taking into account correlations between independent parameters. No indi-
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vidual cut on H; or Hy would effectively remove background while preserving
signal events. Rather, it is only by determining the proper relationship be-
tween H; and H, that effective differentiation of signal and background events
can be accomplished. In this simple example, it would be possible to create
a cut on a linear combination of H; and Hy which would perform the same
function as the SVM. However, support vector machines are capable of solving
much more complicated problems involving many parameters with non-linear
separating hyperplanes. This ability to distinguish classes of events in complex
feature spaces makes support vector machines and other multivariate analysis

techniques crucial for high energy physics analyses.

6.2 Determination of the Separating Hyper-

plane

When given a set of data points of known type (signal or background), referred
to as a training set, there are many possible hyperplanes separating the two
classes, as seen in Figure 6.2. In order to determine the optimal hyperplane,
we introduce the idea of a margin and choose our hyperplane such that the
margin is maximized. The margin is the distance between the hyperplane
and the points closest to the hyperplane, represented as half of the distance
d in Figure 6.1. In order to determine the width of the margin for a given

hyperplane, we first must be able to write down an equation representing the
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o,

Figure 6.1: Red signal and blue background events, parameterized by example
variables H; and Hs,, separated by a hyperplane. d represents twice the width
of the margin, while r shows the distance from the hyperplane to an arbitrary

point.
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Figure 6.2: Red signal and blue background events separated by several possi-
ble hyperplanes. The goal of the SVM is to find the optimal hyperplane that
maximizes the distance between the hyperplane and the points closest to the

hyperplane.

hyperplane.
The general equation of a separating hyperplane in N-dimensional space

is given by

0= & —b, (6.1)

where ¥ is the coordinate vector, w is a vector normal to the plane and b is
the offset of the plane from the origin. It is easy to see that equation (6.1)
represents a line in 2-dimensions with the form y = max + b, while in three
dimensions it represents a plane. Once the hyperplane has been determined

by fixing w and b, we can write the learned function as
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f(@) =7 —b. (6.2)

The sign of the learned function for an arbitrary input vector & represents our
best guess as to which class an unknown event belongs. This can be seen by
noting that all blue points in Figure 6.1 have f(Z) < 0, since they lie below the
hyperplane, while all red points have f(Z) > 0. From equation (6.1), we find
that the distance between the separating hyperplane and a point of interest,

Z, is given by

P= (6.3)

We have a problem however, in that there are an infinite number of normal

vectors w which specify the exact same hyperplane. We therefore choose a

normalization of @ such that the learned function is equal to +1 at the margin.

Inserting this requirement into equation (6.3), we find that the total width of
the margin is given by

M= (6.4)

-

We have therefore specified an equation relating the margin, which we wish
to maximize, to the normal vector defining the hyperplane, . From equation
(6.4) we can see that minimizing «f is equivalent to maximizing M. With
this in mind, we characterize our goal as the minimization of |@| under the

constraint that
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y;(W- & —b) > 1 for every Z; € training set. (6.5)

y; 1s a manually set variable which provides information on the class associated
with a given point: y; = +1 for signal points and y; = —1 for background
points. This minimization can be accomplished using the method of Lagrange

multipliers. The Lagrangian of interest can be written as

N
1 —
L= §|w|2_zai[yi(w'xi_b)_1]v (6.6)
=1

where «; are Lagrange multipliers satisfying the conditions

ailyif(Z) — 1] =0, (6.7)

It is important to note that any point not lying along the margin such that
yif(z;) = 1 will have o; = 0. This means that only points along the margin
contribute to the definition of our hyperplane. These points are referred to as
support vectors.

In order to minimize our Lagrangian, (6.6), we need to find a point that is
a minimum of £ with respect to @ and a maximum with respect to «;. This

point satisfies the conditions

oL al
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oL al
=0 = ; gy = 0. (6.9)

Inserting these conditions into our Lagrangian, (6.6), we find the dual La-

grangian

N N N

/;D == Z a; — %Z Zaiajyiyjfi . fj. (610)

i=1 i=1 j=1

Note that this dual Lagrangian depends only on the ;s and the dot product
of position vectors Z; - ;. This formulation is important for complex systems
in which the training points may not be linearly separable. Once the a;s are
known, w can be recovered through equation (6.8) and b can be recovered

through the requirement on the support vectors of
(@ - T; — b) = (6.11)

6.3 Non-Linear Problems

The support vector machine formalism that we have outlined so far is only
appropriate for linearly separable training sets, such as those shown in Figure
6.1. In our discussions up to this point, we have directly translated parameters
taken from the events of interest into points in feature space. However, in non-
linearly separable systems, this method is ineffective as there are no possible

separating hyperplanes. In these cases, we use Mercer’s theorem in order
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Figure 6.3: Two classes of training events, red and blue, described by a single

parameter, x. These two classes are not linearly separable in feature space.

to map our original training points in feature space into higher-dimensional
decisions space.

As an example of this idea, let’s look at a one dimensional feature space
as shown in Figure 6.3. This training set is described in feature space by a
single parameter, x, but is unable to be separated by a single hyperplane (in
this case a point). In order to find a separating hyperplane we need to map
our original feature space into a higher dimensional decision space. We chose
the mapping y = 22 such that each point is now described by two parameters,
(z, 2%), as shown in Figure 6.4. In this higher dimensional decision space,
a separating hyperplane does exist which separates the two classes of events.
Therefore, by mapping our initial problem into a higher dimensional space we
have been able to isolate the two classes of events and determine the optimal
separating hyperplane.

In this simple example, we were able to manually chose a mapping function
such that our 1-dimensional problem was easily separable in 2-d space. In

general, however, manually mapping from feature space into decision space is
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Figure 6.4: Two classes of training events, red and blue, described by a single
parameter, z, mapped into a 2-dimensional space by the mapping vy = 2.

This mapping allows a separating hyperplane to be created between the two

sets of events. The circled points are the support vectors.

impossible. In order to avoid this problem we employ a "kernel trick’ based on
Mercer’s theorem. Mercer’s theorem states that a symmetric kernel function

K (z;,x;) can be expressed as an inner product

K(7; - Z;) = o(7;) - p(T). (6.12)

if and only if K (z;,z;) is positive semidefinite, that is if

/K(xi,xj)g(:ci)g(xj)dxdy >0 (6.13)
for any g. Conversely, Mercer’s theorem allows us to write a dot product of
mapped vectors in terms of a kernel function. To illustrate this, let us define
the particular mapping of a point Z; in feature space to a point in decisions

space as x; — ¢(Z;). We can write our dual Lagrangian after this mapping as

N N

N
1 — —
Lp=7 ai- 5 DO aiasyiye(E) (). (6.14)
=1

i=1 j=1
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As we can see from equation (6.14), ¢(Z;) only enters into the dual Lagrangian
when dotted with itself (¢(7;) - ¢(Z;)). We can therefore replace p(Z;) - p(Z;)

in our Lagrangian with a kernel function and write the dual Lagragian as

N

N N
ﬁD = ZO@' — %Z Zaz(x]yzyjf((fz . fj) (615)

i=1 i=1 j=1

Equation (6.15) represents the exact same Lagrangian as equation (6.14),
except that we have replaced the dot product of the unknown mapping func-
tion, ¢(Z;) with a kernel function K. We are now in a position to minimize the
Lagrangian (6.15), which is equivalent to minimizing (6.14). This means that
we are able to minimize a Lagrangian in which our training points are mapped
into a higher dimensional space without knowing the details of the mapping.
To reiterate, the use of a kernel function allows us to determine the equation of
an optimal separating hyperplane between two classes in a higher dimensional
decision space without knowing the mapping function . The minimization
of the Lagrangian, (6.15), determines the values of «;, which can be used to
find @ and b and thus fix the learned function, (6.2). Figure 6.5 illustrates an
example of a 2-dimensional problem which is not linearly separable in feature
space, but which can be separated using a kernel function.

There are several possible kernels that can be used in SVM analyses. For
the purposes of the analysis discussed in this thesis, a Gaussian kernel function

of the form

113



Figure 6.5: Two classes separated by the a non-linear learned function.

K(&; - ;) = e Tl (6.16)

was used. The Gaussian kernel is somewhat of an all purpose kernel function,
in that it provides good results for a wide variety of problems. The Gaussian
kernel has one free parameter, o, which determines the width of the Gaussian
kernel function. o affects the rigidity of the learned function in unmapped
feature space. Large values of ¢ limit the ability of the learned function to
curve, while small values of ¢ allow for more bends in the learned function.
The value of ¢ is generally determined through empirical studies conducted
on the problem of interest. However, o should generally have approximately

the same magnitude as the length of vectors used for training.
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6.4 Soft Margin

In the previous sections we have set a goal of finding an optimal hyperplane
separating two classes of events. We simplified this problem by introducing
the idea of a margin, defined as the distance from the hyperplane to the closest
points of each class. We then determined the optimal separating hyperplane
by maximizing the margin. This system is appropriate for very well separated
data sets; however, most real world problems are not so neat. Most data sets
contain overlapping data points in which the separation between classes is
somewhat murky. In order to find the optimal separating hyperplane in these
situations, we need to slightly modify our formalism.

The use of a so-called hard margin, in which M is defined to be the distance
from the hyperplane to the closest point, allows for a small number of points
to dominate the definition of the hyperplane. In the case where these points
are not characteristic of their respective class, or where the two classes overlap
in a certain region, the hyperplane defined by these points may separate the
two classes very poorly. In order to allow for a more robust hyperplane opti-
mziation, we introduce a soft margin. The idea of a soft margin is that points
are allowed to penetrate the margin, but they are penalized for doing so such
that margins containing large numbers of points are disfavored.

In order to allow for points to penetrate the margin, we must relax the

margin condition, (6.5), and instead require
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yi(W-7; —b) > 1—¢&, & >0. (6.17)

& is a free parameter, which allows for points to enter the margin. Terms
outside of the margin have & = 0, while for terms inside the margin the value
of & is determined by the distance inside of the margin that the point lies.
With our modified margin condition, we can write our Lagrangian in feature

Space as

N

N
Lo P+ O &Y alu@ 70 ~1+&.  (618)
i=1 i=1

Comparing equation (6.18) with (6.6) we note the addition of the term C Zfil &.
C is a positive constant, and since §; is defined to be greater than zero, this
term is positive for all points. Since our goal is to minimize £, this term acts
as a penalty for points that invade the margin, increasing the minimum value
of L for each point inside of the margin. Larger values of C' impose higher
penalties on terms penetrating the margin while smaller values of C' allow for
many points within the margin. The value of C' can be manually adjusted and
is generally set by empirical studies.

In order to simplify our Lagrangian, it is useful to rewrite equation (6.18)

as

N N N
1
L=lwf =) (@3 —b) + ) oi+ ) &(C - o). (6.19)
i=1 i=1 =1
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Since the last term in the Lagrangian (6.19) is positive, we know that the

minimum of £ will be a minimum of £&. We can therefore use the condition

oL
oG

=0 = C—a;=C, (6.20)

along with conditions (6.8) and (6.9) to write the dual soft margin Lagrangian

as

N N

N
[»D = ZO[Z' — %Z Zaiozjyiyjfi . fj, 0 S Q; S C (621)
=1

i=1 j=1

Note that this is exactly the same as dual Lagrangian as (6.10) except that
we have imposed a new condition on «;.

We have now succeeded in finding a form of the dual Lagrangian that when
minimized will yield the optimal separating hyperplane between two classes of
events. This Lagrangian is capable of separating events in a higher dimensional
decision space without requiring that we know the mapping function between
feature space and decision space. In addition, we have been able to allow for
terms to penetrate the margin without modifying the form of our Lagrangian.
In the following chapters we will discuss the use of the SVM technique in the
analysis of VBF HWW events along with expanding this formalism to allow

for multiple support vector machines within a single analysis.
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Chapter 7

2-Class Support Vector Machine

Analysis

As a preliminary test of the support vector machine method for use in H —
WW* — [vlv VBF analyses, a 2-class SVM analysis was performed. Though
we hope to gain increased separating power using 3-class SVM systems, 2-class
analyses offer several advantages. These advantages include having a readily
definable signal region, quick training and classification and easy comparison
with Boosted Decision Tree analyses. Due to these properties, much of the
refinement of the SVM free parameters, input parameters and scale factors
was performed using 2-class SVMs.

2-class SVM analyses are designed to separate between two differing classes
of events, in this case HW W signal events and background events. The math-

ematical formalism of 2-class SVMs is discussed in Chapter 6 and we will
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therefore restrict our discussions to the methodology of this particular analy-
sis. Before beginning the SVM analysis, a set of Monte Carlo events is compiled
that includes VBF HWW signal and all relevant backgrounds. These events
are required to pass all preselection cuts as outlined in Chapter 4.

In order to function properly, support vector machines require two separate
sets of data: a training set on which to define the optimal hyperplane and
determine the learned function; and a test set. The test set must be completely
independent of the training set and is used to test the discriminating power
of the SVM. In order to train an SVM, training events are provided which
include the parameter information and the known class of each event. Using
this information, the SVM is able to create an optimal separating hyperplane
between the two sets of events.

One danger of multivariate analysis techniques is that they will be trained
to separate two specific sets of events, not two distinct classes of events. That
is, the analysis may only be useful for separating the events used for training
and not be able to determine the class of new events. This problem is referred
to as over-tuning. In order to safeguard our analysis against over-tuning, no
events used in SVM training are used for testing. In general, support vector
machines are robust against over-tuning as only a small percentage of training

events are used to define the separating hyperplane.
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7.1 SVM Training Samples

In order to create independent training and testing data sets, Monte Carlo
events passing all preselection cuts are separated into two sets based on event
number. The events are then further subdivided based on their class, resulting
in four independent data sets labeled as signal-even, signal-odd, background-
even and background-odd. The first word in each category refers to the sample
type and the second refers to the event number. Using these four data sets,
two independent SVMs are trained to separate signal from background events.
One SVM is trained using signal-even and background-even events and the
another using signal-odd and background-odd events. The two trained SVMs
are hereafter referred to as even-trained and odd-trained. This procedure
allows for odd-numbered events to be used to test the even-trained SVM and
vice versa, resulting in completely independent training and testing data sets.
In addition, this method allows for all available Monte Carlo events to be
utilized for both training and testing.

In order to properly train an SVM to distinguish between two classes of
events in real data, training samples for the signal and background classes
must accurately represent events found in real data. In order to accomplish
this, SVM training data sets are designed to contain the correct fraction of
Monte Carlo events for each background process. As an example, the creation
of the training data sets for the even-trained SVM will be discussed. The

signal-even training sample is composed of events in the signal-even data set,
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corresponding to approximately 5000 events. The background-even training
sample is designed to accurately represent the composition of background in
the real data and to have approximately 5000 events. The number of events of
each background type contained in the background training sample is propor-
tional to the expected yield of the given background. For example, if t¢ events
account for 30% of the expected background, then 5000 - 0.3 = 1500 ¢ events
are taken at random from the ¢t background-even data set and placed into the
background-even training sample. This procedure is repeated for all relevant
background processes until the full background training sample is created.
After creation of the training data sets, the two SVM’s are trained using a
Gaussian kernel. This training is completed using a C++ implementation of
the SVM formalism developed by Benjamin Whitehouse and Jacob Borgman

and modified by Jeffrey Wetter with help from Noah Kurinsky.

7.2 Determination of the Signal Region

Once the support vector machines are trained, their performance is assessed
using the testing data sets. All odd events make up the testing data set for
the even-trained SVM and are therefore classified using the even-trained SVM.
Likewise, all even events are classified using the odd-trained SVM. This event
classification results in each event being described by a single variable known
as the SVM discriminant, d. The sign of SVM discriminant indicates the
SVM’s best guess as to which class the event belongs. Positive discriminants
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are associated with signal events and negative discriminants with background
events. The separating power of a given trained SVM is determined by measur-
ing the ratio of the number of signal events to the square root of the number
of background events in the signal region. This ratio is referred to as the

significance,

Nsig
/Norg

We have assumed that the number of background events in the signal region is

(7.1)

S =

described by a normal distribution, such that the standard deviation is given

The signal region is defined by a single cut, ¢, on the SVM discriminant,
with all events having d > ( falling into the signal region. In order to determine
the signal region that optimizes the significance, we perform a search over all
possible values of ¢ between ( = 0 and ¢ = 3.5, in increments of 0.1. The
significance of the corresponding signal region is calculated for each value of
(. The value of ( that yields the highest significance while maintaining at
least 4 signal events in the signal region is chosen as the signal region cutoff.
The cutoff of at least 4 events in the signal region was used in order to avoid
impractically small numbers of VBF H — WW events in the signal region.

Figure 7.1 shows the SVM discriminant for signal and background Monte
Carlo events along with the optimized signal region. This plot was created

using both even and odd numbered Monte Carlo events with each event scaled
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Figure 7.1: Signal-background discrimination or the 2-class SVM. The ex-

pected significance in the signal region is 2.220.

to represent the expected yield in real data. This scaling allows for less than

one total event to be present in a given bin since each event has a very small

weight.

123



7.3 Parameter Optimization

7.3.1 SVM Parameters

The SVMs described in this analysis allow for a soft margin and are trained
using a Gaussian kernel. As described in section 6, the soft margin introduces
the free parameter, C'; which describes the rigidity of the margin. In addition,
the Gaussian kernel, (6.16), relies on the free parameter o, which describes
the width of the Gaussian distribution. o should in general be on the order
of the size of the input parameters, in this case o ~ 1. The value of C' is
varied logarithmically, as small variations in C' do not affect SVM performance.
Optimal values of C' and o were found by performing a grid scan using the
significance of the signal region as a figure of merit.

The grid scan was performed by training a series of SVMs with different
values of C' and ¢ and evaluating the separating power of each SVM. The values
of C' and o were allowed to vary between 0.5 and 100. In order to maintain
stability between SVMs, the training samples were kept constant between
trainings. The optimal values of the two free parameters were determined to
be 0 = 1.2, C = 4. Once set, these values were not changed throughout the

remainder of the analysis.
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Figure 7.2: Grid scan over values of C' and . Red indicates areas of better

SVM performance.

125



7.3.2 Input Parameters

The design of a support vector machine analysis requires that the input pa-
rameters be mapped into an n-dimensional parameter space, where n is the
number of input parameters. The input parameters are treated as components
of vectors in this space. As such, it is advisable to scale all input parameters to
be of the same order of magnitude to prevent parameters with naturally larger
values, pr for example, from dominating parameters with naturally smaller
values, A¢ for instance. For this analysis, each input parameter was initially
given a scale factor to bring its value to between approximately 0 and 1. Mod-
ifying the scale factors on a parameter-by-parameter basis influences the result
by prioritizing certain parameters over others.

In order to explore the effect of the parameter scaling on the SVM training,
a Markov Chain Monte Carlo (MCMC) study was conducted using significance
in the signal region as a figure of merit. The Markov Chain Monte Carlo
technique involves using a random walk to modify the scale factor associated
with each input parameter.

Initially, the value of each scale factor was set manually such that each
input parameter had a maximum value near 1. Once the scale factors are set,
two SVMs (even-trained and odd-trained) are trained and the significance of
the optimal signal region is determined. The MCMC then slightly modifies the
values of individual scale factors and the SVMs are retrained. The significance

of the new SVMs, trained using the modified parameter scaling, are then
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total
Parameter | p7® | miep cent. | AYj; | my; mu | D¢y | mp | X my,

Scaling | 1100 | 1/2 | 1/12 | 1/3000 | 1/200 | 1/x | 1/200 | 1/3000

Table 7.1: Scale factors applied to SVM input parameters

compared with the significance of the previous SVMs. If the new SVMs result
in a higher significance, then the new scale factors are kept. If the new scale
factors do not result in an increase in significance, then the previous scale
factors are retained. Once the comparison between the new and old SVMs
is completed, the scale factors are again modified slightly and the process is
repeated. To avoid being stuck in a false maximum in the scale factor phase
space, the MCMC has a small probability to accept a new set of scale factors
even if the significance of the new SVM training is lower.

An MCMC study was conducted using 10,000 trials. Figure 7.3 shows the
expected significance values obtained over the 10,000 trials. The final scale
factor values used for the 2-class analysis were chosen to give a significance
of approximately 2.250. A set of scale factors were chosen which are stable
under small variations in value and which provided a 10% increase in expected
significance over the baseline scaling. Table 7.1 lists an example of the scale

factors used for each input parameter.
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Figure 7.3: Plot of expected significance in the 2-class SVM analysis over

10,000 MCMC trials.
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Chapter 8

3-Class Support Vector Machine

Analysis

In addition to the 2-class analysis described in chapter 7, a 3-class SVM analy-
sis was performed. 3-class SVM analyses involve splitting background samples
into two separate classes referred to as light and heavy. A separate SVM is
trained to distinguish between each of the three classes, resulting in a total
of 3 SVMs: Signal vs. Light (SvL), Signal vs. Heavy (SvH) and Light vs.
Heavy (LvH). Once these SVMs are trained, each event is classified using all
3 SVMs. The result of this procedure is that all events are described by three
SVM discriminants and can be plotted in 3-space.

The goal the 3-class SVM procedure is to allow better discrimination be-
tween different types of background. We hypothesize that grouping all back-

ground events into the same class effectively removes information from the
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analysis and may lead to non-optimal class separation. Figure 8.1 illustrates a
simple example of a 3 class SVM system in which each event in characterized
by 2 parameters, (Hi, Hy). The red points indicate signal events while the
green and blue points represent two separate background classes. We can see
that the blue background points are distinct from both red and green points
and that a simple hyperplane can be formed between the blue points and all
other points. By allowing blue events to constitute a separate class, a simple
separation can be made between the red signal events and all blue events,
leaving only the problem of separating the red and green events. This simple
separation might not be possible in the case of a 2-class analysis, as the blue
background events would be grouped with the green background events. One
goal of our analysis is to test for improvements in signal-to-background sepa-
ration by using a 3-class SVM system in comparison with a 2-class analysis.
For this analysis, each background type would ideally have its own class, al-
lowing the SVM to detect differences between individual background processes.
However, the machinery and computing power required to create this many
classes is impractical for our analysis. As such, the choice was made to sepa-
rate the background processes into two classes, with all top quark backgrounds
being placed into the heavy class and all other background being placed into
the light class. Top quark events make up over 50% of all background events
after preselection. As such, placing all top quark events into the heavy class

results in approximately the same number of expected events in the light and
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H,

Figure 8.1: Example of a 3-class analysis with red points representing signal

events and green and blue points representing two separate classes of back-

ground events.
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heavy classes. In addition, top quark events (¢f and ¢W) are unique from other
backgrounds in that they contain two W bosons and high-pr jets at tree level.

This section will discuss the training and classification procedure of events
in the 3-class SVM analysis. In addition, the analysis of test data sets and

real data sets will be discussed.

8.1 SVM Training and Classification

All events used in this analysis are required to pass the preselection cutflow
as described in Chapter 4. Once selected, Monte Carlo events are split into 6
independent data sets. First, the events are split into two independent data
sets based on event number, with all even-numbered events placed in one set
and all odd-numbered events placed in another. The two data sets are then
further subdivided into 3 independent classes labeled as signal (S), heavy (H)
and light (L). The signal class contains only H — WW — [viv VBF events,
while top quark events, including ¢f and single top backgrounds, are placed
into the heavy class. All other backgrounds, including vector-boson, ggf Higgs
and qcd backgrounds are placed into the light class. Vector-Higgs samples are
not included in this analysis as their topological signature differs significantly
from that of the VBF signal events and they constitute less than 1% of the
predicted Standard Model yield after preselection.

The even-numbered and odd-numbered data sets provide completely inde-
pendent samples with which to train two sets of independent SVMs in parallel.
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For a single analysis, only one set of trained SVMs is required, as such, the
even and odd-numbered data sets are used as a cross check. As our support
vector machine formalism does not support negative event weights, any event
with negative weight is ignored in training and classification. Events with neg-
ative weight are, however, included in Standard Model yield predictions used
in the construction of training and pseudo-data sets. The same procedure is
followed to train and classify the even and odd-numbered data sets. However,
for the sake of clarity, we will discuss only the training of the even-numbered
events.

In order to train the three separate SVMs, 3 sets of training samples must
be created. Each training sample is designed to accurately represent the com-
position of real data for a specific class. For the purposes of SVM training, each
event is considered to have a weight of unity. It is therefore essential to create
training data sets which contain the correct number of events of each process.
To accomplish this goal, training sets are created such that the percentage
of events for each background process is equal Standard Model predictions.
To illustrate this process, the creation of the heavy training sample, contain-
ing only top quark events, will be discussed. The total expected yield after
preselection of all samples included in the heavy class is approximately 373
events. Of those expected events, approximately 331 are ¢t events. Therefore,
331/373 = 89% of the events in the even-numbered heavy training sample are

taken from the even-numbered ¢t data set.
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The same procedure is followed for all other samples in the heavy and light
classes. The total number of events in the heavy and light training classes is
set to match the number of events in the signal training sample. The signal
training sample is made up of only H — WW* — [viv VBF events. In order
to utilize the largest possible training sample, all even-numbered VBF events
are included in the signal training sample, corresponding to approximately
5000 events.

Once training samples have been created representing the light, heavy and
signal classes, two sets of three SVMs are created. A set of SVMs is trained
using a Gaussian kernel to separate between each of the three classes using only
even numbered training samples, resulting in three separate SVMs: SvL, SvH,
LvH. The same procedure is followed for the odd number training samples,
resulting in a total of 6 trained SVMs. After each SVM has been trained, all
events are classified using the opposite numbered SVMs (i.e. all even numbered
events are classified using all three odd-trained SVMs and all odd numbered
events are classified using all three even-trained SVMs). This training and
classification method allows all Monte Carlo events passing preselection to be
parameterized by three numbers corresponding to the discriminants of each of

the three SVMs.
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8.2 Gram-Schmidt Orthogonalization

After event classification, each event can be described in vector notation using
the SVM discriminants from the 3 SVMs, (SvL, SvH, LvH). These discrimi-
nants tell us about the distance from each SVM’s separating hyperplane to the
point of interest in feature space. However, we can not simply plot these three
SVM discriminants as points in 3-space, as the separating hyperplanes are
not necessarily orthogonal in feature space. As an example, Figure 8.2 shows
three classes of points plotted in feature space with hyperplanes separating
each of the three classes. For the purposes of this illustration, we have chosen
a simple example in which the separating hyperplanes are straight lines. We
can see in Figure 8.2 that moving perpendicularly away from one hyperplane
necessitates moving toward or away from another hyperplane. The distance of
a point of interest from any of the three separating hyperplanes is dependent
on the distance of that point from the other two hyperplanes. This is clearly a
problem if we would like to plot our events in standard 3-space, since moving
in the y direction should not affect our x position. Therefore, plotting our
3 SVM discriminants of classified events, (SvL, SvH, LvH), in 3-space would
misrepresent the actual relationship between classified events and the three
separating hyperplanes. To avoid this problem we utilize the Gram-Schmidt
orthogonalization procedure to determine an orthogonal basis in which to plot
our events.

The Gram-Schmidt procedure is based on the projection of one vector onto
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H,

Figure 8.2: 3 classes of events represented by red, green and blue points. Each
event is parameterized by two values (Hy, Hy). The three hyperplanes, each
separating two classes of events, are non-orthogonal. This prevents the svm

disrciminants from being plotted independently in 3-space.
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another. For example, given two vectors u; and us, we say that the projection
of uy onto u; is given by
<u;,u >

roj,, g = — Uy, 8.1
PIrOjy, Uy = — (8.1)

where < uj,us > indicates the inner product of vectors u; and uy. Given
three vectors u;, us and ug, the Gram-Schmidt procedure allows us to write

three orthogonal bases as

u) = Uy — proj,, s, (8.3)
Uj = U — Projy, Uz — Proj,, us. (8.4)

In the case of this analysis, we are interested in finding an orthogonal basis
for the separating hyperplanes of three distinct SVMs (SvL, SvH, LvH). From
Chapter 6 we recall that each separating hyperplane is parameterized in terms

of a normal vector w. We can parameterize w for each trained SVM as

SVsuL

WsyL = Z Yicip(X;). (8.5)

SVS’UH

WsvH = Z Yicip(X;). (8.6)
SViwr

WivH = Z yz'OéiSO(Xi). (8-7)
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The sum is taken over all support vectors for the given trained SVM. y; rep-
resents the known class of the event x;, and «; is the corresponding Lagrange
multiplier. ¢ is the mapping function from feature space to decision space. Ap-
plying the Gram-Schmidt procedure to the normal vectors, w, we can define
the (z, y, z) coordinates of classified events in an orthogonal basis as

<X, W, >

X = 8.8
(X) < WiS'vL’ WZS'UL >7 ( )

<X, Wy >
Y(x) = - ; ,
< Wourm Weoul =

(8.9)

/
<X, Wp.g >

Z(x) =

S W Wy > (510
We have therefore found a means of translating events and their SVM discrim-
inants into points in an orthogonal 3-space. Using this procedure, it is possible
to directly compare the SVM discriminant vectors of events, allowing for the

creation of class templates and probability distribution functions as discussed

in the next section.

8.3 Template and PDF Creation

After event classification, each event can be described in vector notation using
the SVM discriminants from the 3 SVMs (SvL, SvH, LvH). A scatter plot of
the Gram-Schmidt orthogonalized SVM discriminants for all even-numbered
events is shown in Figure 8.3. As can be seen from this scatter plot, each class

inhabits its own phase space, with distinct regions of overlap.
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Our goal is to establish the probability that an event of unknown type
belongs to each of the three classes. Logically, we would expect that events
falling into the top-right corner of Figure 8.3 would most likely be signal,
while events in the bottom left corner would be light or heavy. In order to
quantify this probability, we convert the scatter plot of events associated with
each class into a binned 3-dimensional histogram known as a template. Each
bin in the template is characterized by the total weight of events falling into
that bin. The entire histogram is normalized such that the total weight of
each template is unity. For the creation of templates, all available MC events
are used. Each event is weighted by Monte Carlo scale factors as described
in Chapter 5 and normalized such that the total weight of each background
process is proportional to Standard Model predictions.

In order to more accurately represent the true weight associated with in-
dividual points, the binned templates are interpolated into smooth functions.
In order to find the interpolated weight associated with a specific point, a
weighted average is taken of the bins closest to the point of interest. Fig-
ure 8.4 shows a contour plot of the signal, light and heavy class interpolated
templates. The three contour plots are superimposed in order to show class
separations. We interpret an individual interpolated template as a probability
distribution function (pdf) relating points described by three SVM discrimi-
nants (SvL, SvH, LvH) to the probability that an event described by this point

belongs to a specific class.
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At this point in our analysis we have trained two separate sets of SVMs,
one on all even events and one on all odd events. We then classified all events
using SVMs trained on opposite-numbered events. Finally we have created
interpolated templates which we can use to estimate the probability that a
given event is a member of any of the three classes. We are now prepared
to analyze a set of data in which each event comes from an unknown class.
Our goal is to determine the number of events from each of the three classes
contained in the sample data set. In order to accomplish this goal, we use a

likelihood technique.

8.4 Likelihoods

We have now developed a method for determining the relative probability that
an unknown event belongs to each of the three classes. Using this information

we can write down the likelihood function,

N
L=[](0S:+ ¢L; + nH,). (8.11)

The index ¢ runs over all events in the sample and S;, L; and H; are the PDF
values of the signal, light and heavy classes for a given event. 6, ¢ and n are
the percentage of signal, light and heavy events in the unknown sample. 7
is a dependent parameter, defined to be n = (1 — 6 — ¢) such that the total

percentage of signal, light and heavy events sums to unity. This likelihood
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Figure 8.3: 3-dimensional plot showing the (SvL, SvH, LvH) SVM discrimi-
nants for each event. Events are color-coded by class as Signal, Heavy and

Light.
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Figure 8.4: A contour plot of PDF templates created from Figure 8.3. Events

are color-coded by class as Signal, Heavy and Light.
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function will have a maximum at values of 8, ¢ and n that correspond to
our best guess as to the actual signal, light and heavy event fractions in the
unknown sample.

Though this likelihood formulation has simplified our problem, maximizing
a product over hundreds or thousands of events is computationally expensive.

In order to further simplify our problem, we replace the likelihood function,

(8.11), with a log-likelihood,

A =1In(L) = In(0S; + ¢L; +nH,). (8.12)

The log-likelihood function will have a maximum at the same values of 0, ¢
and 7n as the likelihood function, but has the advantage of using a sum over ¢
instead of a product.

In order to maximize the log-likelihood function, a C++ version of the
MINUIT package was used. However, MINUIT is not designed for problems
involving mutual restrictions as is the case in (8.12). Specifically, the value of

0 and ¢ must satisfy the requirement,

<1, o<1, O+¢<1. (8.13)

In order to avoid the problem of mutual restrictions within MINUIT, the

variable transform

0=1x1, ¢=(1—x1)10, n=(1—121)(1—19) (8.14)
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was used. The variables x; and x5 were restricted to lie in the range (0 < 27 <
1,0 < zg < 1). In this manner, MINUIT was only responsible for maximizing
the log-likelihood, (8.12), with respect to two free parameters, while preserving

the mutual restrictions imposed on the likelihood.

8.5 Pseudo-Experiments

We have now created a methodology for determining the fraction of events of
each class in a test sample. To accomplish this, we first classified all Monte
Carlo events passing preselection cuts using three trained SVMs. We then
used these classified events to create templates, allowing us to estimate the
probability that a given event belongs to each of the three classes. Finally, we
developed a likelihood function designed to determine the fraction of events of
each class in a sample containing events of unknown type. The ultimate goal
is to use this likelihood procedure to estimate the number of HWW signal
events in a real data sample. However, first we need to test the accuracy of
our method by conducting pseudo-experiments using Monte Carlo events.
Pseudo-experiments involve the use of pseudo-data sets containing Monte
Carlo events designed to recreate real data samples. In order to create a
pseudo-data set, Monte Carlo events are taken from all relevant background
samples in proportion to their expected yields. The number of events from each
background type is allowed to fluctuate according to a Poisson distribution in
order to simulate uncertainty in the number of background events in the real
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data. The mean number of events in each pseudo-data set must match the
number of real data events from the 20 fb=! ATLAS data set which pass all
preselection cuts. The number of VBF HWW signal events in each pseudo-
data set was varied in order to test the robustness of the SVM methodology
against various signal strengths.

Each pseudo-data set is analyzed using the likelihood method described
in section 8.4. The maximized likelihood provides our best estimate of the
fraction of signal, light and heavy events in a given pseudo-data set. Since the
exact fraction of each class in each pseudo-data set is known, we can compare
the likelihood estimate of the fraction of signal events in the pseudo-data set
with the true number of signal events. The true number of signal events in
a given data set is labeled p and the likelihood estimated fraction of signal

events is labeled as R. We can compare these two numbers to find the bias,

defined as

g =R-—np. (8.15)

Assuming a perfect analysis, the bias should be zero for every pseudo-data
set. However, for a real analysis this is generally unattainable. If the bias is
stable across pseudo-data sets with various signal fractions, we can compensate
for this bias when analyzing the real data. We correct our best guess as to the

fraction of signal events in the real data set using the equation
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Htrue = efit - ﬁ (816)

0 Tepresents the bias-corrected best guess as to the fraction of signal events
in the real data sample and 0y, is the fraction of signal events returned by the

SVM analysis procedure.
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Chapter 9

Systematics

Unfortunately, it is not possible for us to open up the detector and peer in
upon the Higgs boson as it is created. We must instead rely on the ATLAS
detector to observe the decay products of the Higgs boson and on reconstruc-
tion algorithms to turn information from the detector into physics objects.
Throughout this process, we rely of many assumptions about the detector,
including the rate at which various objects are correctly identified, the rate
at which objects are not detected and the way in which an object’s measured
energy relates to the object’s true energy. In addition, we rely on assump-
tions about our knowledge of object interactions, decay rates and momenta
in order to create accurate Monte Carlo simulations of the Higgs boson decay
as well as background processes. Each of these assumptions brings with it an
associated uncertainty referred to as a systematic error. In order to properly

assess the error on our measurement of the Higgs boson, we must identify and
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asses as many sources of systematic uncertainty as possible. This section will
describe the most important sources of systematic uncertainty for the VBF

HWW analysis as well as the methods used to analyze systematic errors.

9.1 Systematics Errors within the 3-class Anal-
ysis

We are interested in determining the effect of each source of systematic uncer-
tainty on our estimate of the number of signal events in the 2012 ATLAS data
set. To this end, we use dedicated Monte Carlo data sets specifically designed
to vary parameters associated with specific systematic uncertainties. For ex-
ample, it is possible that the MC samples used in this analysis overestimate
the electron identification efficiency. In order to estimate the effect that this
would have on the real data analysis, a specific systematic Monte Carlo sample
is created in which the electron identification rate is decreased. By analyzing
the difference in results between the nominal and systematic SVM analyses, it
is possible to estimate the uncertainty due to each source of systematic error.

In order to accurately estimate the effect of each type systematic uncer-
tainty on the real data analysis, it is important that systematic samples are
treated in the same manner as real data samples. This means that systematic
samples are classified using SVMs trained with nominal MC samples and sys-

tematic pseudo-experiments must be performed using nominal pdf templates.
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A set of pseudo-experiments is performed for each systematic MC sample.
The difference in the estimated number of signal events in the nominal and
systematic pseudo-data sets is taken to be the uncertainty for each systematic

source.

9.2 Detector Modeling Systematics

After Monte Carlo samples are generated, showered and reconstructed, scale
factors are applied in order to match the distributions of important variables
between Monte Carlo and real data samples. These scale factors can be applied
in two different ways, the first being to apply an individual weight to each
event. Event weights are taken to be the value of a given event when plotting
histograms or determining yields. By applying event weights, it is possible to
adjust the shape of various distributions to better match data. For example,
if the Monte Carlo simulated data is not producing enough events with 4 jets,
a scale factor could be applied to events with Nj.s = 4 in order to boost the
number of expected 4-jet events in Monte Carlo samples.

The second method of modifying the distribution of Monte Carlo samples
is to apply scale factors directly to the parameter of interest. This technique
is primarily used for modifying the expected energy of objects such as leptons
and jets. By applying scale factors to specific parameters, it is possible to
influence a single distribution without affecting the distributions of other event
parameters.
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Each method of scaling Monte Carlo events comes with an associated un-
certainty. In order to asses this uncertainty, specific Monte Carlo data sets are
created in which a single scale factor is modified up or down by one standard
deviation. All other scale factors are left at their nominal values, except in the
case of correlations. In this way, each source of systematic uncertainty can be
evaluated independently. In the following sections, the event and parameter
scalings associated with various objects and their systematic assessments will

be discussed.

9.2.0.1 Lepton Uncertainties

In order to match the trigger, reconstruction and identification [31][32][33][34]
rates of leptons between Monte Carlo and data samples, scale factors are ap-
plied to the weight of each Monte Carlo event. These scale factors are deter-
mined by comparison of lepton trigger, identification and reconstruction rates
between data and Monte Carlo samples in Z/DY events. Z/DY events are
unique in that their final state contains two high-energy leptons with invariant
mass close to the Z mass and no tree-level jets or missing energy. This simple
final state allows for the creation of a very pure set of real data Z/DY events,
allowing for the direct comparison of MC and real data events.

Once a set of data and Monte Carlo Z/DY events have been created, the
tag and probe technique is used to identify the rate at which leptons are

triggered, reconstructed and identified. The tag and probe technique involves
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the use of a well-identified tag lepton and a less-well identified probe lepton.
The rate at which the probe lepton is able to be identified and reconstructed
is compared between the MC and data samples. The associated lepton scale
factor is taken to be the ratio of the data and MC rates. For example, the
electron identification scale factor is taken to be the rate at which the probe
electron is identified in real data divided by the rate at which the probe electron
is identified in Monte Carlo samples.

In addition to scale factors applied to the overall event weight, lepton
energies and resolution are also corrected in order to better match Monte
Carlo samples to real data [35][36]. These scale factors are determined by
comparing the width and mean of di-lepton invariant mass distributions in
Z /DY events. In order to evaluate systematic uncertainties based on all lepton
scale factors, each scale factor is independently varied up and down by one

standard deviation.

9.2.1 Jet Energy Uncertainties

In order to account for differences in jet energy and resolution between MC and
data events, scale factors are applied directly to jet objects. The systematic
uncertainties due to the jet energy scale (JES) corrections are divided into 12
separate systematics as per the recommendation of the Higgs working group.

These 12 systematic uncertainties are:

e in-situ: detector
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e in-situ: modeling

e 7} inter-calibration: modeling

e 7 inter-calibration: stat+method

e high pr jets

e pileup: u

e pileup: number of primary vertices (NPV)

e pileup: pr

e pileup: p topology

e flavor composition

e flavor response

e b-JES

These 12 uncertainties include four systematics dedicated to the modeling
of pileup. The pileup conditions within the detector are important for the
correct modeling of jet energies. This is due to the fact that jets are recon-
structed by adding up all of the energy deposited within a cone surrounding
the jet within the calorimeter. Pileup objects such as soft gluon radiation may
be present within the jet’s cone and therefore contribute to the total recon-

structed jet energy. The reconstructed jet energy is therefore scaled to account
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for the pileup conditions. To asses the uncertainty associated with this scaling,
four separate JES systematics are analyzed. Pileup: p accounts for possible
differences in the pileup conditions between MC and data events. The pileup
pr and pileup p systematics estimate the uncertainty in the pr and total event
energy due to pileup events. Finally, pileup NPV accounts for the number of
additional primary vertices due to additional collisions within the detector.

There are 2 systematics dedicated to the in-situ jet calibration: in-situ: de-
tector, which estimates uncertainties in how jets are reconstructed within the
detector, and in-situ: modeling, which accounts for uncertainties in jet mod-
eling. In addition, there are 2 n inter-calibration systematics which estimate
the uncertainty in parton showering models. In particular, these systematics
account for potential mismodeling of additional radiation within the hadronic
calorimeter.

The flavor composition systematic accounts for uncertainties in the fraction
of light quarks and gluons within jets, while the flavor response systematic
estimates uncertainties specifically due to gluon jets. The jet energy scale of
b jets is accounted for independently using the b-JES systematic.

In addition to the JES systematics, a jet energy resolution (JER) system-

atic is also evaluated by smearing the energy of reconstructed jets.
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9.2.2 Missing Transverse Momentum Systematics

Missing transverse momentum (E7¢) is calculated by summing the pz of all
hard objects emitted from the primary vertex as well as soft (i.e. low en-
ergy) objects. As such, the calculation of the EI'** relies on proper scaling
of hard jets and leptons as well as the scale and resolution of soft objects.
In order to estimate the systematic uncertainty of the missing transverse mo-
mentum due to hard objects, the jet and lepton uncertainties discussed above
are propagated into the EI**. In addition, separate systematic uncertainties
are estimated by modifying the scale and resolution of soft objects used in the

calculation of EIss.

9.2.3 b-tagging Systematics

Within this analysis, b-jets are identified using the MV1 tagging algorithm
with an 85% working efficiency. In order to estimate the systematic uncer-
tainty associated with b-tagging, a set of 6 uncorrelated systematic variations
are used, corresponding to the number of pr bins used for b-tag calibration.
These systematics vary the efficiency of b-tagging in Monte Carlo samples by
modifying the event weight on an event-by-event basis. In addition, separate
systematics are used in order to estimate the uncertainty in the mistagging of

light and c¢ jets as b jets.
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9.3 Theory Uncertainties

Monte Carlo simulations represent our best estimate of the real particle in-
teractions within the ATLAS detector. However, these simulations are in no
way perfect representations of actual physical interactions and different Monte
Carlo simulations may vary in important ways. In order to estimate the uncer-
tainty due to possible differences between Monte Carlo and real data events,
multiple Monte Carlo simulations are compared. As with detector systematics,
dedicated pseudo-experiments are preformed using alternative Monte Carlo
simulations and the difference in estimated signal fraction between nominal

and systematic pseudo-experiments is taken to be the systematic error.

9.3.1 {t Systematics

tt events make up the largest single background to VBF HWW events. As
such, proper generator modeling of ¢ events is of particular importance. In
order to estimate the uncertainty due to the choice of tf generator, analysis
results were compared using the nominal Powheg+Phythia generator and par-
ton shower and the MC@QNLO+Herwig generator and parton shower. For this
systematic analysis, all Monte Carlo samples except tt were unchanged and
the nominal Powheg ¢t sample was replaced with an MC@NLO sample. The
difference in the final result between pseudo-experiments using Powheg and
MC@NLO tt samples was then taken to be the ¢t generator uncertainty.

In addition to the generators, the systematic uncertainty due to the choice
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of parton distribution function (PDF) within the generators was also ana-
lyzed. Using the MC@QNLO generator, pseudo-experiments were conducted
using various PDF sets. It was determined that the systematic variation due
to the choice of PDF set was negligible in comparison with the generator
systematic. Therefore, systematic variations due to the choice of ¢t parton

distribution functions were neglected.
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Chapter 10

Results

The goals of the analyses outlined in this thesis are to validate the support
vector machine analysis method in high energy physics searches as well as to
search for evidence of vector boson Higgs production in the H — WIW* — lviv
channel. In order to accomplish these goals, several analyses were performed.
First, in order to offer direct comparisons with a parallel VBF H — WW*
analysis using boosted decision trees, a 2-class support vector machine analy-
sis was performed. The 2-class analysis was designed to validate the support
vector machine methodology as well as to allow for tuning of analysis param-
eters. After tuning, SVM analysis results using Monte Carlo data sets were
compared with results from the boosted decision tree analysis. In addition, a
VBF H — WW* search was conducted on the 20 fb~! 2012 ATLAS data set.

After completion of the 2-class SVM analysis, a 3-class SVM analysis was

conducted. For this analysis, background events were split into two separate
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classes and a set of 3 support vector machines was trained to distinguish
between each of the three classes. The goal of this analysis was to investigate
improvements in expected significance in multi-SVM systems as well as to
conduct a VBF Higgs search in the 2012 ATLAS data.

All Monte Carlo samples used for the analyses described in this thesis are
listed in Chapter 5. All Monte Carlo events were normalized to match expected
yields in the 2012 ATLAS data set. Events with negative event weights were
ignored, as negative event weights are not supported by our SVM machinery.
For the nominal analysis, only the W+jets and qcd samples are allowed to
have negative event weights and only a small fraction of events are negatively
weighted. In addition, the ¢ generator systematic samples include events
with negative weights due to the weighting scheme employed by MCQNLO.
Studies were conducted both ignoring events with negative weight and using
the absolute values of events weights. In all cases, the effect on final fit results
was negligible.

After pre-selection, the 2012 ATLAS data set used in this analysis con-
tained 667 events with an expected 12.7 VBF H — WW* signal events based
on Monte Carlo studies. In order to facilitate comparison with other analyses,
all ntuples used by the 2 and 3-class SVM analysis were created using the

ATLAS HWW group’s centrally-produced ntuple creation code.

158



10.1 2-Class SVM Analysis Results

10.1.1 Expected Results and Comparison with BDT

The 2-class support vector machine analysis was performed using two separate
SVMs, each trained to distinguish between VBF H — WW* and background
events. This procedure is designed to replicate the procedure for the ATLAS
HWW subgroup’s boosted decision tree analysis. One support vector ma-
chine was trained using only events with even event numbers and the other
using only odd-numbered events. In order to train the machines, four separate
training data sets were created as described in Chapter 7. The four data sets
are labeled as signal-even, signal-odd, background-even and background-odd.
Each training set consisted of approximately 5,000 events. After training, all
events were classified such that all even-numbered events were classified by the
SVM trained with odd-numbered events and vice versa. After classification,
all Monte Carlo events were joined into a single data set for analysis.

In order to measure the ability of support vector machines to separate
signal and background events, the significance, defined as S/ VB in the signal
region, was used as a figure of merit. The full signal region selection procedure
is described in Chapter 7. Using Monte Carlo samples described in Chapter
5, the expected significance of the 2-class SVM analysis was found to be 2.23¢0
with 4.9 signal and 4.9 background events expected in the signal region. This

result was compared to the expected significance using the HWW group’s
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BDT analysis. Running on the same data set, the expected significance for the
BDT analysis was 2.37¢ with 5.1 signal and 4.7 background events expected
in the signal region. These findings indicate that the SVM analysis performed
slightly worse than BDT analysis. With further tuning, it is likely that the
SVM analysis technique would yield equivalent expected significance to the
BDT analysis. Figures 10.1 and 10.2 show the signal-background separation

for SVM and BDT analysis.

. EI LI '.rllblalr T T | TTTT .I TT TT .é T | TT | T TTT LI T TT I:
g 16 :_ .wwew .wzzz .wzzzew wg _:
E, 14 __ wgs .zleplep .ztautau zleplepew T
é E ztautauew qcd wjets e data E
1 2 :_ .ggf1 25 .be1 25 wh125 zh125 _:
10 -
= Firstbin /100 ]
8 -
6 =

4

2

L1 11 | L1 1 | | 1 1 | | | 1 1 1 | | 1 1 L1 1 |

OO 0.1 0.2 0.3 04 05 06 0.7 08 09 1

SVM Discriminant

Figure 10.1: Plot of the SVM discriminant for all signal and background Monte
Carlo events. The SVM discriminant has been scaled such that 98% of all
background are in the first bin. The first bin has been scaled by 1/100 in

order to maintain continuity.
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Figure 10.2: Plot of the BDT discriminant for all signal and background Monte
Carlo events. The BDT discriminant has been scaled such that 98% of all
background are in the first bin. The first bin has been scaled by 1/100 in

order to maintain continuity.

10.1.2 Data Results

After completing Monte Carlo studies, a 2-class SVM analysis was performed
on the 20fb~! 2012 ATLAS data set. The same trained SVMs used in the
2-class Monte Carlo analysis were used to classify all data events. From the
667 events in the final data set, the 2-class SVM analysis yielded 9 data events
in the signal region, leading to an observed significance of 1.850. As described

in the preceding section, SVM Monte Carlo studies yielded an expected 9.8
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total events in the signal region, with 4.9 signal events and 4.9 background
events. The real data result is therefore consistent with Standard Model Higgs
boson predictions. However, the small statistical significance of the result is
insufficient to claim evidence for VBF H — WW* — [vlv decays. Figure 10.3
shows the distribution of real data events plotted by SVM discriminant such
that the distribution of background MC events can be seen. Figure 10.4 shows

the same data plotted such that the signal region is clearly distinguishable.
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Figure 10.3: Plot of MC and data events for the 200~ 2012 ATLAS data set.
The SVM discriminant has been scaled such that 98% of all background are
in the first bin. The first bin has been scaled by 1/100 in order to maintain

continuity.
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Figure 10.4: SVM discriminant for MC and 2012 ATLAS data events. The

red shaded area indicates the signal region.

10.2 3-Class SVM Analysis Results

In addition to the 2-class analysis, a 3-class analysis was performed in which

The two background

the background samples were split into two classes.

classes consisted of a "heavy’ class containing all top quark backgrounds and a

'light” class containing all other backgrounds. Using training samples created

from each of the three classes, two sets of three support vector machines were

trained. One set of three SVMs was trained using only even-numbered Monte

Carlo events and another set of three was trained using only odd-numbered
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Monte Carlo events. The training, classification and analysis procedure for the
3-class SVM analysis is detailed in Chapter 8. All MC results shown in this
section are from SVMs trained on even-numbered events, however, the results
are equivalent for SVMs trained using odd-numbered events. Data results are
taken to be the average of the even-trained and odd-trained SVM analysis

results for the 2012 ATLAS data set.

10.2.1 Signal-Background Separation

Figures 10.5-10.7 show the separation of signal, light and heavy events using
the signal vs. light (SvL), signal vs. heavy (SvH), and light vs. heavy (LvH)
support vector machines. Figures 10.5 and 10.6 show good discrimination of
signal events from both heavy and light background events. Figure 10.7 dis-
plays some discriminating power, with red signal events having more positive
values on average than the light and heavy backgrounds. The lack of separa-
tion between event classes in the LvH support vector machine discriminant is
most likely due to topological similarities between light and heavy events. The
SVM input variables used in this analysis were specifically chosen to exploit
differences between VBF H — WW™* events and background events. Topo-
logical signatures such as two forward jets and two leptons close together in ¢
are unique to VBF H — WW™ events and are generally not shared by light
or heavy background processes. Thus the distributions of many of the SVM

input parameters are very similar for heavy and light background events as
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Figure 10.5: Distribution of SvL. support vector machine discriminants for
signal, light and heavy events. The total integral of each class has been nor-

malized to unity.

can be seen by the plots in Chapter 4. This similarity makes it extremely
difficult for a support vector machine to distinguish between light and heavy

events based on the input parameters provided.

10.2.2 Statistical Uncertainty and Bias

In order to determine the expected statistical significance of the 3-class support
vector machine search for VBF H — W W™ events, a set of pseudo-experiments
was performed using Monte Carlo samples. Each pseudo-experiment consisted
of the creation and analysis of a pseudo-data set, designed to replicate the

ATLAS 2012 data set. Each pseudo-data set was created with a known number
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of signal events. The SVM analysis was then performed on the pseudo-data set
and the analysis best-fit result for the number of signal events was compared
to the known number of signal events. The difference between the best-fit
result and the known number of signal events is referred to as the bias (see
equation 8.15).

In order to analyze the bias, a set of 2000 pseudo-experiments was per-
formed for each of 16 input signal fractions ranging from 1.5% signal to 3%
signal. The average bias and standard deviation of the bias was recorded for
each of the 16 signal fractions. The results are shown in Figures 10.8 and 10.9.
It is important to note that the bias is small in comparison to the true signal
fraction and that the bias is stable across a wide range of input signal fractions.
This result indicates that the SVM analysis technique is robust with respect
to varying signal strengths. Due to these factors, it is possible to correct the
real data best-fit result with respect to the average bias using equation 8.16.

The statistical error of the best-fit 3-class analysis result is taken to be the
standard deviation of the pseudo-experiment results over all pseudo-experiments.
Since the pseudo-experiments are designed to replicate the real data analysis
in event composition and total number of events, the statistical error can be

carried over from Monte Carlo studies to the real data result.
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10.2.3 Systematic Uncertainties

Systematic uncertainties, as described in Chapter 9, were analyzed for the
3-class analysis. All systematic uncertainties are added in quadrature to de-
termine the total systematic error. Table 10.1 lists the largest systematic un-
certainties. The most important systematic uncertainties are the tf generator
modeling along with the jet and MET energy scales. A full list of systematic

uncertainties analyzed is given in appendix A.

10.2.4 Results

Monte Carlo studies indicate an expected significance using Standard Model
predictions for the 3-class SVM analysis of 2.260 including only statistical
uncertainties and 2.020 when statistical and systematic uncertainties are in-
cluded. This result is consistent with the expected significance in the 2-class
SVM analysis and with the BDT analysis [38].

Analysis of the 20 /b~ 2012 ATLAS data set found 15.6 + 5.6(stat) 4 2.9(syst)
VBF HWW events in the 2012 data set. This result is consistent with the
Standard Model prediction of 12.7 VBF HWW events and represents a sta-
tistical significance of 2.470 over the background-only hypothesis. The signal

strength (Nyps/Ngar) associated with this result is p = 1.22 £.44 (stat) 4 .23 (syst).
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Systematic Type Percent Var.
TTBar MCNLO 13
ATLAS JES Eta Modelling 9
ATLAS JER 8
ATLAS TRACKMET SCALESOFT 5
ATLAS TRACKMET RESOPARASOFT 5
ATLAS JES 2012 Modelling1 4
ATLAS JES NPV 3
ATLAS EL ESCALE 3
ATLAS JES 2012 Detectorl 3
ATLAS BTag B6EFF 3
ATLAS JES NonClosure AFII 3
ATLAS JES 2012 Eta StatMethod 3
ATLAS JES BJET 2
FakeRateOther QCD HWW 2

Table 10.1: Table of the largest systematic variations for the 3-class SVM
analysis. The percent variation in the expected number of signal events is

listed for each systematic.
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10.3 2-Class vs. 3-Class SVM Analysis Com-

parison

The 2 and 3-class SVM analyses resulted in similar findings, both of which
agreed with the Standard Model predictions and with the findings of the AT-
LAS HWW group’s boosted decision tree analysis. As hoped, the 3-class
analysis performed slightly better in several ways. Of primary importance,
the expected significance using only statistical error was marginally larger for
the 3-class analysis. Since no dedicated optimization studies were performed
on SVM input parameters, it is likely that the 3-class SVM result could be im-
proved considerably. In addition, it may be possible to increase the statistical
significance of the 3-class analysis by providing additional input variables in
order to better distinguish the signal, light and heavy classes. At the moment,
studies show that the addition of more SVM input parameters decreases the
statistical significance of both the 2-class and 3-class analysis. However, we
believe that this is a product of insufficient MC events and not an inherent
feature of the analysis. Hopefully we will be able to test this hypothesis in the
upcoming LHC run.

In addition to the comparison of expected significance, a signal region
analysis similar to that described in Chapter 7 was performed on the 3-class
SVM discriminants using Monte Carlo samples. For this analysis, a signal

region was created in the SVM discriminant space parameterized by the three
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SVM discriminants (SvL, SvH, LvH). Just as the 2-class SVM signal region is
characterized by a single cut on the 2-class SVM discriminant, the 3-class signal
region is characterized by a cut on each of the three SVM discriminants. The
3-class SVM signal region was optimized in order to maximize the significance
(S/v/B) of events within the signal region.

The 3-class signal region analysis was performed prior to much of the SVM
input optimization, resulting in an expected significance of only 2.03¢. Using
the same unoptimized MC input data set, the 2-class analysis also found a
statistical significance of 2.030 in the signal region. Though the 3-class and
2-class signal regions yielded the same significance, the 3-class analysis had an
expected 5.54 signal events in the signal region compared to only 4.66 events in
the 2-class signal region. The 3-class analysis therefore offered a 20% increase

in the expected number of signal events.

10.4 Analysis Limitations Due to Data and

MC Statistics

Both the 2 and 3-class analyses were heavily limited by statistics. The most
obvious statistical issue was a lack of expected signal events in the real data
set. MC studies predict that our final data set, containing only events passing
pre-selection, should contain only 12.7 real signal events with approximately

650 background events. This limitation can be seen clearly in comparing the
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statistical and systematic errors in the 3-class analysis, where the statistical
error dominates the systematic error 2-to-1. This statistical error is due to two
primary factors in the 3-class analysis: first, small numbers of signal events
and inherently limited event separation necessarily lead to small signal-to-
background ratios; and second, with such a limited number of data events,
the VBF HWW analysis is susceptible to significant statistical fluctuations
within both the pseudo-data sets and the real data set. The issue of real data
statistics will be mitigated during the LHC run 2, which is expected to yield
much higher luminosity.

In addition to the limited number of real data events, the size of Monte
Carlo simulated event samples were also insufficient. The training of SVMs
in our analysis requires the correct proportion of each background type as de-
scribed in Chapter 8. For several MC samples, there were an insufficient num-
ber of background events to properly train the support vector machines. The
limited MC statistics also became a problem when creating pseudo-data sets,
causing certain backgrounds to be under represented in pseudo-experiments.
In order to mitigate the problem of limited MC statistics, we have requested

much larger MC data sets for the next LHC run.

10.5 Template Binning

It was discovered in the course of the 3-class analysis that the binning used
in the creation of the 3-d templates had a large affect on the statistical errors
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as well as on the real data result. The bin size used for the 3-class SVM
templates resulted in approximately 50 bins in the z, y and z dimensions of
each template. As expected, increasing the bin size reduced the resolution
of the templates and lead to higher statistical errors. The estimated number
of signal events in the real 20 fb~! data set was not significantly changed by
increasing the template bin size.

In contrast, decreasing the bin size of the 3-d templates led to unexpected
behavior. Specifically, decreasing the bin size beyond approximately 0.02 (in
units of SVM discriminant) led to a significant increase in the best fit estimate
of the fraction of signal events in the real 2012 ATLAS data set. This increase
can be seen in the first three data points in Figure 10.10. As can be seen
in Figure 10.11, the increase in estimated signal fraction corresponds to an
increase in the statistical error of the fit.

It is believed that this increase in the real data signal fit result is due to
insufficient data statistics in comparison with bin size. For small bin sizes,
most bins contain very few data events, allowing for small fluctuations in
the distribution of data events to drastically alter the fit result. In order to
prevent these statistical fluctuations from influencing the final result, a bin
size greater than 0.02 was chosen. As can be seen in Figure 10.10, both the
fit result and fit error are stable over a wide range of binning between 0.02
and 0.05. This stability provides confidence that the fit results are robust with

respect to changes in binning and statistical fluctuations in the distribution of
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Figure 10.10: Best fit estimate of the fraction of VBF HWW events in the
2012 ATLAS data set after pre-selection for multiple template binnings. Error

bars include only statistical error.
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Figure 10.11: Statistical error associated with the best fit estimate of the
fraction of VBF HWW events in the 2012 ATLAS data set after pre-selection

for multiple template binnings.
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data events.

10.6 Conclusion

The analysis presented in this thesis was successful in accomplishing two main
objectives. First, to search for evidence of vector boson production of the
Higgs, and second to study the effectiveness of support vector machines in
high energy physics analyses.

The search for definitive evidence for VBF H — WIWW* decays is severely
hindered by the small cross section of VBF Higgs production along with the
small branching ratio of W — [v decays. Despite the unique topology of VBF
H — WW?* decays, the limited number of signal events coupled with the large
cross sections of many background processes necessarily lead limited signal-
background ratios. Despite these challenges, the analysis presented in this
thesis found evidence at the 20 level of VBF Higgs production. This result
is consistent within 1 standard deviation of the Standard Model prediction
and matches the results of other ATLAS analyses. The forthcoming LHC run
at 13TeV center of mass energy should provide much larger statistics and
therefore allow for definitive evidence of VBF H — WW* decays.

In addition to lending support to the observational evidence of the 125 GeV
Higgs boson, our analysis verified the effectiveness of the support vector ma-
chine analysis technique. Using a 2-class SVM analysis we were able to com-
pare directly with the ATLAS HWW group’s boosted decision tree analysis.
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We found that with limited tuning our the 2-class SVM analysis was com-
petitive with BDT results. It is likely that with additional tuning, the SVM
analysis could give equivalent discrimination power to the BDT analysis. It is
possible, that given the large statistics expected in the next LHC run that the
SVM technique could yield advantages with respect to BDT analyses due to
the resistance of SVMs to over-tuning.

Finally, the analysis presented in this thesis found marginal improvements
in expected significance using a multi-SVM analysis. The effectiveness of the
3-class SVM analysis was most likely hindered by the similar topology of events
in the light and heavy classes. This similarity prevented good discrimination of
events in the LvH support vector machine. It is possible that in the next LHC
run, additional MC and data statistics will allow for larger gains using the 3-
class SVM analysis through larger training sets. In addition, it may be possible
to add new input variables to help distinguish light and heavy events. Finally,
this thesis did not contain an optimization study on the backgrounds contained
in each class. It may be possible to more optimally chose the backgrounds
included in each class in order to aid in SVM training. In the opinion of the
author, the 3-class SVM method has shown promise as an improvement over
2-class SVM analyses and should be investigated further in order to determine

its potential.
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Appendix A

Systematic Uncertainties for the

3-Class SVM Analysis
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Systematic Type Percent Var.
TTBar MCNLO 13
ATLAS JES Eta Modelling 9
ATLAS JER 8
ATLAS TRACKMET SCALESOFT 5
ATLAS TRACKMET RESOPARASOFT 5
ATLAS JES 2012 Modellingl 4
ATLAS JES NPV 3
ATLAS EL ESCALE 3
ATLAS JES 2012 Detectorl 3
ATLAS BTag B6EFF 3
ATLAS JES NonClosure AFII 3
ATLAS JES 2012 Eta StatMethod 3
ATLAS JES BJET 2
FakeRateOther QCD HWW 2
ATLAS JES MU 2
ATLAS JES 2012 PileRho HWW 2
ATLAS JES FlavComp HWW other 2
ATLAS BTag LEFF 2
ATLAS BTag Pythia6 LEFF 2
ATLAS BTag B5EFF 2
ATLAS TRACKMET RESOPERPSOFT 1

Table A.1: Table of systematic uncertainties for the 3-class SVM analysis.
Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 1.
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Systematic Type Percent Var.
FakeRateCorr QCD HWW 1
FakeRateStat QCD HWW 1
FakeRate MU Stat GT25 HWW 1
FakeRate MU Stat 10 15 HWW 1
ATLAS EL RES 1
ATLAS JES 2012 PilePt 1
ATLAS EL EFF ID HIGHPT 1
ATLAS JES HighPt 1
ATLAS TRIGGER HWW 1
ATLAS MU EFF 1
ATLAS JES FlavResp 1
FakeRate EL Stat GT25 HWW <1
ATLAS BTag CEFF <1
ATLAS BTag B2EFF <1

Table A.2: Table of systematic uncertainties for the 3-class SVM analysis.
Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 2.
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Systematic Type Percent Var.
FakeRate MU Other HWW <1
ATLAS EL EFF <1
ATLAS JES FlavComp HWW WW <1
ATLAS MU ISO <1
ATLAS BTag B3EFF <1
FakeRate EL Uncorrl OS HWW <1
ATLAS MET RESOSOFT <1
ATLAS EL EFF ID CORRLOW <1
ATLAS MU RESCALE lvlv 2012 <1
ATLAS BTag B4EFF <1
ATLAS EL TRIGGER HWW <1
FakeRate EL Stat 20 25 HWW <1
ATLAS BTag B1EFF <1
FakeRate MU Stat 15 20 HWW <1
FakeRate MU Uncorrl OS HWW <1
FakeRate EL Other HWW <1
ATLAS EL EFF RECOID80010 <1
FakeRate MU Stat 20 25 HWW <1
ATLAS EL EFF RECO CORRLOW <1

Table A.3: Table of systematic uncertainties for the 3-class SVM analysis.
Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 3. 182



Systematic Type Percent Var.
FakeRate EL Stat 15 20 HWW <1
ATLAS EL EFF RECOID80015 <1
FakeRate EL Corrl OS HWW <1
ATLAS DIL TRIGGER HWW <1
FakeRate EL Stat 10 15 HWW <1
ATLAS MU ESCALE <1
ATLAS MET SCALESOFT <1
ATLAS MU ID RES <1
ATLAS MU TRIGGER HWW <1
ATLAS ISO <1
ATLAS EL EFF RECO CORR <1
ATLAS EL ISO <1
FakeRate MU Corrl OS HWW <1
ATLAS MU MS RES <1

Table A.4: Table of systematic uncertainties for the 3-class SVM analysis.
Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 4.
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