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Abstract

This thesis presents a search for vector boson fusion production of Higgs bosons

in the H → WW ∗ → lνlν channel using the 20 fb−1 2012 ATLAS data set.

The analysis uses support vector machines in order to distinguish signal and

background events. First, an analysis is performed using a 2-class support

vector machine, designed to separate signal events from all backgrounds. In

addition, a 3-class support vector machine analysis is performed in which back-

ground events are separated into two classes. The results of both the 2 and

3-class analyses are consistent with the findings of other ATLAS analyses and

with Standard Model predictions to within 1σ.
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Chapter 1

Introduction

In 2012, both the ATLAS and CMS experiments at the Large Hadron Collider

in Geneva, Switzerland, announced the discovery of a new boson with a mass

of 125GeV [1][2]. This new boson is believed to be the Higgs boson, predicted

by Peter Higgs and his collaborators 50 years ago. The Higgs boson is crucially

important to our understanding of the universe as it gives mass to all particles

within the Standard Model of particle physics. The joint discovery of this new

boson both validates the Standard Model and provides new opportunities to

test its predictions.

Since its discovery, both the CMS and ATLAS experiments have been

working to measure the spin, couplings and mass of the Higgs boson. These

measurements are important in order to verify that the newly discovered boson

is in fact the Higgs boson predicted by the Standard Model. Any differences

between the Standard Model predictions and the observed properties of the

2



newly discovered boson might give insight into new physics or possible flaws

in the Standard Model.

The mass of the Higgs boson is not predicted by the Standard Model and

therefore the properties of most interest are the spin and couplings of the

newly discovered boson. The Standard Model predicts that the Higgs boson

will have zero spin and will couple to particles in proportion to the particles’

mass. Studies of the spin of the newly discovered boson favor the spin-zero

hypothesis [3]. Determining the coupling of the Higgs boson to fundamental

particles is a much larger task, as the Higgs’ coupling to each particle must be

determined independently.

The ability to measure the coupling of the Higgs boson to various particles

is highly dependent on the particle of interest, the final state of the system,

the mass of the Higgs boson, and the limits of the LHC luminosity. All of

these factors combine to make certain measurements significantly easier than

others. Due to these factors, the discovery of the Higgs boson in 2012 was

based primarily on studies of H → ZZ and H → γγ decays.

The H → ZZ → llll channel is ideal for Higgs boson studies as the fi-

nal state contains four leptons, zero jets and no missing energy. The ATLAS

detector is well-equipped to detect this final state, having multiple lepton de-

tection systems. In addition, many background processes contain high-pT jets,

facilitating the removal of background events. Finally, at a mass of 125 GeV ,

the Higgs boson has a large branching ratio into two Z bosons, allowing for the

3



creation of large numbers of H → ZZ events with relatively limited luminosity.

Like the H → ZZ measurement, there are several factors which facilitate

the study of H → γγ events within the ATLAS detector. H → γγ events are

characterized by two photons in the final state with zero jets and no missing

energy. This relatively simple final state eliminates a large number of back-

ground processes, allowing for high signal-to-background ratios with limited

luminosity. As with leptons, the ATLAS detector is well-equipped to detect

high energy photons, allowing for proper identification of final state particles.

Studies conducted in the H → ZZ and H → γγ channels indicate that the

Higgs boson branching ratios in these channels agree with Standard Model

predictions [4].

The final prominent Higgs boson decay channel studied at the LHC is

H → WW ∗. At a mass of 125 GeV , the H → WW ∗ channel has the second

highest predicted branching ratio after H → bb. Despite this relatively large

cross section, large backgrounds and final state neutrinos make H → WW ∗

studies difficult at the LHC. In order to reduce hadronic backgrounds, most

H → WW ∗ searches are performed in the H → WW ∗ → lνlν channel. Due

to the relatively large cross section, the primary H → WW ∗ searches look for

Higgs bosons produced via gluon-gluon fusion. The gluon-gluon fusion process

is advantageous due to its relatively large cross section and because it has no

initial-state particles in the final state. The choice of a fully leptonic final

state greatly reduces potential backgrounds, but it also reduces the number of

4



potential Higgs events due to the relatively small W → lν branching ratio. In

addition, since τ leptons have a distinct signature within the ATLAS detector,

only W → eν and W → µν decays are considered, further reducing the number

of potential signal events. In total, only 4% of all H → WW ∗ decays result

in an H → WW ∗ → lνlν final state, resulting in a relatively small number of

expected signal events.

In addition to the limited number signal events, H → WW ∗ → lνlν anal-

yses also struggle with missing energy due to the presence of two neutrinos

in the final state. The presence of neutrinos in the final state has several

detrimental effects: First, missing energy in the final state forbids an accurate

reconstruction of the Higgs boson mass. Second, elimination of background

events is significantly more difficult due to inaccuracy in the reconstruction of

missing energy. Despite these difficulties, studies of gluon-gluon fusion Higgs

production in the H → WW ∗ channel have found evidence for the Higgs boson

consistent with Standard Model predictions [4].

Beyond the well-studied decay channels, there are several decay channels in

which the search for definitive evidence of the Higgs is ongoing. These channels

include the H → WW ∗ decays in which the Higgs boson is created through

vector boson fusion (VBF). The process of vector boson fusion involves the

emission of two vector bosons by colliding quarks. In VBF H → WW ∗ decays,

the vector bosons fuse to form a Higgs boson, which then decays via two W

bosons. Studies of VBF Higgs production are important in that they provide

5



independent measurements of Higgs boson couplings to vector bosons. Any

variation in VBF Higgs production from Standard Model predictions could

indicate new physics beyond the Standard Model.

The production cross section of Higgs bosons via vector boson fusion is

more than 10 times smaller than the cross section for the dominant gluon-gluon

fusion process. At the current LHC luminosity, this small cross section results

in a very small number of expected VBF H → WW ∗ events. In addition, the

large cross sections of many background processes, including tt̄ events, makes

the VBF H → WW channel very difficult to study using current LHC data.

This thesis will present a search for the Higgs boson produced via vector

boson fusion decaying through two W bosons using the 2012 ATLAS data set.

The final state of this decay includes two high-pT leptons, missing energy and

two high energy forward jets. Due to the complicated nature of this final state,

it is beneficial to use multivariate learning algorithms in order to separate

signal and background events. These algorithms are commonly referred to

as multivariate analysis techniques (MVA), and are capable of distinguishing

between different types of events by learning event properties. In this thesis we

use a type of multivariate analysis technique known as support vector machines

(SVM). SVMs use topological event information in order to separate events

in n-dimensional parameter space. Support vector machines can be trained

to distinguish between different types of events (i.e. signal and background

events) by using training samples in which the true type of each event is

6



known. Once trained, the SVM is capable of distinguishing events of unknown

type. We are therefore able to train support vector machines using Monte

Carlo events of known type, and then used these trained machines to search

for H → WW ∗ events in the 2012 ATLAS data set.

The analysis presented in this thesis is performed within the context of an

ongoing ATLAS search for evidence of VBF H → WW ∗ decays. The primary

ATLAS subgroup devoted to VBF H → WW ∗ searches uses a multivariate

analysis technique known as boosted decision trees (BDT). The goal of our

analysis is to validate the findings of the ATLAS VBF H → WW ∗ subgroup

group as well as to investigate the possible benefits of using a system of sup-

port vector machines to enhance signal-background resolution. We begin by

conducting an analysis parallel to the BDT analysis using a single support

vector machine to separate signal and background events. The goal of this

analysis is to validate the SVM methodology and establish a baseline result.

We then conduct an analysis using a system of three support vector machines

with the goal of improving on this baseline result. This analysis is referred

to as a 3-class SVM analysis and involves splitting background samples into

heavy and light classes in order to increase signal-to-background separation.
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Chapter 2

The Standard Model of Particle

Physics

The Standard Model of particle physics is a field theory describing three

fundamental forces: electromagnetism, weak interactions and strong interac-

tions. Within the Standard Model particles are separated into two categories:

fermions, which are spin 1
2

particles, constitute the fundamental particles of

the Standard Model, and integer-spin bosons, which mediate interactions be-

tween fermions and other bosons. The electromagnetic force describes the

interactions of electrically charged particles such as electrons through mediat-

ing photons. The photon is a massless boson, giving the electromagnetic force

infinite range. In contrast, the weak force interacts with particles with weak

isospin and is mediated by three heavy gauge bosons, W+, W− and Z, giving

the weak force a very short range. Due to its short range, we do not notice the

8



weak force within our daily lives. However, the weak force is responsible for

sustaining life on earth by mediating nuclear fusion within the sun. Within

the Standard Model, the electomagnetic and weak interactions are combined

into one force known as the electroweak force. The strong force, as its name

implies, is the strongest fundamental force and is responsible for holding to-

gether atomic nuclei. The strong force is mediated by eight massless bosons

known as gluons. Only quarks and gluons are able to interact via the strong

force, which requires that the quarks are bound in pairs or triplets to make up

more complex particles known as hadrons.

2.1 Standard Model Particles

The Standard Model separates fermions into two separate groups: leptons

and quarks. These groups are further subdivided into three generations. The

majority of visible matter in the universe is made up of first generation parti-

cles. Particularly, up and down quarks bond into protons and neutrons, which

form stable nuclei and together with electrons create atoms. Higher-generation

fermions tend to be more massive and less stable, decaying too quickly to form

stable atoms.

Lepton and quark generations are described as SU(2) doublets of weak

isospin (I3), with each generation containing one particle with I3 = +1
2

and

one particle with I3 = −1
2
. For leptons, each generation contains a massive

charged particle with negative isospin and a neutral particle with positive

9



isospin known as a neutrino. The electron and electron neutrino make up the

first generation of leptons, with the muon and muon neutrino composing the

second generation and the tauon and tau neutrino in the third generation. For

quarks, each generation contains an up-type quark with positive electric charge

of Q = +2
3

and positive weak isospin of I3 = +1
2

and a down-type quark with

negative charge, Q = −1
3

and negative weak isospin, I3 = −1
2
. Additionally,

quarks come in three colors (red, green, blue) and are only found as a part of

color-neutral bound particles. The first generation of quarks is composed of

up and down quarks, the second generation contains the charm and strange

quarks and the third generation is made up of the top and bottom quarks.

The Standard Model includes 12 gauge bosons: 8 gluons mediating the

strong force and 4 gauge bosons responsible for mediating electroweak inter-

actions. In addition, the Higgs boson, which allows for massive particles, is

introduced to the Standard Model through spontaneous symmetry breaking

as discussed in section 2.5. Figure 2.1 lists the properties of all fundamental

particles within the Standard Model. In addition to the particles described

in Figure 2.1, each fermion in the Standard Model has an associated anti-

particle. Anti-particles have identical mass to their associated particle, but

opposite quantum numbers such as charge and electroweak isospin. Inter-

actions are symmetric with respect to particles and anti-particles within the

Standard Model, and the matter/anti-matter discrepancy in our universe is

an ongoing field of research.
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Figure 2.1: Properties of Standard Model particles [6].

2.2 Lagrangian Formulation of the Standard

Model

The Standard Model describes fundamental particles as spin 1
2

fields within

the context of Lagrangian dynamics. The Lagrangian is defined to be

L = T − V, (2.1)

where T is the kinetic energy of the system and V is the potential energy. In

place of a Lagrangian, the Standard Model uses the Lagrangian density, L,

defined as

L =

∫
Ld3x. (2.2)

For the remainder of this thesis we will follow common practice and refer to
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L as the Lagrangian, though this is technically inaccurate. The equations of

motion of a system can be derived by requiring the Lagrangian of that system

satisfy the Euler-Lagrange equation,

∂µ

( ∂L
∂(∂µφ)

)
− ∂L
∂φ

= 0. (2.3)

In this equation φ is the field and ∂µ is a common shorthand for ∂
∂xµ

.

Within field theories, such as the Standard Model, each term in a La-

grangian represents a particle interaction or energy. For example, a term

within a Lagrangian of the form λφ4, represents the interaction of four φ

scalar fields. Of particular importance to this thesis are mass terms of the

form µ2φ2, where the coefficient µ2 is related to the mass of the particle φ by

m =
√
µ2/2.

We will begin our discussion of the Standard Model by writing down a La-

grangian which includes only fermions. We will then add mediating gauge

bosons into our Lagrangian through the requirement of gauge invariance.

Gauge invariance simply means that a given Lagrangian is invariant with re-

spect to gauge transformations of a given type. The simple example of local

U(1) gauge invariance is discussed in the following section.
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2.3 Local Gauge Invariance

In order to illustrate the technique of generating gauge bosons through the

requirement of local gauge invariance, we will look at the example of the

Lagrangian of a massive scalar field,

L = ∂µφ∗∂µφ− µ2φ∗φ− λ(φ∗φ)2. (2.4)

As discussed in section 2.2, our Lagrangian (2.4) contains only a massive scalar

field with no mediating gauge bosons. The ∂µφ∗∂µφ term in (2.4) represents

the kinetic energy of the scalar particle, while the µ2φ∗φ term indicates that

φ is a massive particle. Finally, λ(φ∗φ)2 represents the four-particle vertex of

φ with coupling constant λ.

We now require that L be invariant under a local gauge transformation of

the form

φ→ φ′ = eiα(x)φ. (2.5)

Phase transformations of the form U(α) = eiα, (α ∈ <) make up the unitary

Abelian group U(1), where the Abelian label indicates that the group multi-

plication is commutative. Equation (2.5) is defined as a local gauge transfor-

mation because the phase, α, is dependent on the position, x. Substituting

equation (2.5) into the first term of equation (2.4) we find that ∂µφ transforms

as
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∂µφ→ eiα(x)∂µφ+ ieiα(x)φ∂µα. (2.6)

The presence of the term ieiα(x)φ∂µα indicates that ∂µφ is not invariant under

local U(1) transformations. In order to account for this additional term in the

transformed derivative, we introduce a covariant derivative of the form

∂µ → Dµ = ∂µ − ieAµ, (2.7)

where Aµ transforms as

Aµ → Aµ +
1

e
∂µα. (2.8)

We note that the covariant derivative is invariant under U(1) gauge transfor-

mations up to a phase,

Dµφ→ Dµφ′ = eiα(x)∂µφ+ ieiα(x)φ∂µα−

ieAµe
iα(x)φ− ieiα(x)φ∂µα = eiα(x)Dµφ.

(2.9)

We can easily see that the second term in our Lagrangian is invariant under

U(1) transformations by noting that

µ2φ∗φ→ µ2e−iα(x)φ∗eiα(x)φ = µ2φ∗φ. (2.10)

The third term in (2.4) can be shown to be invariant in the same way. We can

therefore write the U(1) invariant Lagrangian of a massive scalar field as
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L = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2. (2.11)

The Lagrangian, (2.11), contains a new vector gauge field, Aµ, introduced due

to the requirement of U(1) invariance. This new field is massless, since there

is no corresponding mass term of the form 1
2
m2AµA

µ. In fact, such terms

are forbidden as they are not gauge invariant. Adding an additional gauge

invariant term to account for the kinetic energy of the gauge boson associated

with the field Aµ, we write our final Lagrangian as

L = (Dµφ)∗Dµφ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν , (2.12)

where Fµν is constructed from derivatives of Aµ,

Fµν = ∂µAν − ∂νAµ. (2.13)

We have now shown that by starting with a Lagrangian describing massive

scalar particles (e.g. electrons), we are able to generate massless vector bosons

through the requirement of U(1) gauge invariance.

This simple formulation is sufficient for describing electromagnetism when

the scalar field φ is replaced by a Dirac spinor, ψ. In this case we can associate

Aµ with the photon and Fµν with the electromagnetic field strength tensor. We

are able to describe electromagnetism using this simple Lagrangian because

photons are massless. However, in order to create a theory which encompasses

the electromagnetic, weak and strong forces, we will need to introduce massive
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gauge bosons in a gauge invariant manner. To do this, we utilize spontaneous

symmetry breaking and the Higgs mechanism.

2.4 Spontaneous Symmetry Breaking in U(1)

In section 2.3 we generated a massless gauge boson through the requirement

of local U(1) gauge invariance. The requirement of gauge invariance precludes

the addition of a massive gauge boson of the form 1
2
m2AµA

µ to the electromag-

netic Lagrangian (2.11). However, the Standard Model, particularly the weak

interactions, require massive gauge bosons. We must therefore find a means

of introducing massive particles to our theory while maintaining the gauge

invariance of the initial Lagrangian. In order to accomplish this we introduce

the Higgs mechanism. For simplicity, we shall introduce the Higgs mechanism

within the confines of the U(1) Lagrangian developed in 2.3 and then expand

on this formalism to create a more complete theory including the weak and

strong interactions.

Remembering that the Lagrangian is defined as L = T − V , we can write

the potential energy of (2.11) as

V (φ) = µ2φ∗φ+ λ(φ∗φ)2. (2.14)

If we assume that both µ2 and λ are positive then V (φ) has a single mini-

mum at φ = 0 as shown in Figure 2.2. However, if we assume that µ2 < 0 and

λ > 0 then the potential has a maximum at φ = 0 and minima satisfying the
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Figure 2.2: The potential energy, (2.12), assuming that both µ2 and λ are

positive.

requirement

∂V

∂φ
= φ(2µ2 + 4λφ2) = 0. (2.15)

This requirement is satisfied by two degenerate minima at

φ = ±v, v =
√
µ2/2λ (2.16)

as shown in Figure 2.3.

We now have two possible stable minima for our potential at φ = ±v.

For small perturbations, we can describe φ as the constant v, representing the

value of φ which minimizes the potential, plus a small perturbative term η(x),

φ =

√
1

2
(v + η(x)). (2.17)

Here we have chosen to expand around the positive value of v, however, this

is an arbitrary choice and does not result in a loss of generality since φ = −v

can be reached through reflection symmetry. Inserting equation (2.17) into
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Figure 2.3: Two degenerate minima of the potential energy (2.12) satisfying

(2.16).

our invariant Lagrangian (2.12) we find

L =
1

2
(∂µη)2 − v2λη2 − 1

2
e2v2AµA

µ − λvη3 − 1

4
λη4

−1

2
e2AµA

µη2 + ve2AµA
µη − 1

4
FµνF

µν .

(2.18)

The term 1
2
e2v2AµA

µ in equation (2.18) indicates that Aµ is the field of a

massive gauge boson. As discussed in section 2.3, the Aµ field is associated

with the photon and the presence of the photon mass term makes this theory

unphysical. However, the procedure used to generate this Lagrangian is anal-

ogous to the method used to generate massive gauge bosons in electroweak

interactions within the Standard Model. This method of generating massive

particles is known as spontaneous symmetry breaking. The term spontaneous

symmetry breaking refers to the fact that the field φ spontaneously breaks the

symmetry of the system when it chooses one of the two possible minima shown

in Figure 2.3. By utilizing a simple U(1) invariant Lagrangian we were able to

explore the formalism of spontaneous symmetry breaking within the confines
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of scalar fields while avoiding the complexities of more physical systems.

In addition to the massive photon, Aµ, a new massive boson, η, with mass

term, v2λη2, has been added to the Lagrangian. Though this Lagrangian is

unphysical, η is analogous to the Higgs Boson found in the Standard Model

Lagrangian. η is an unavoidable result of the spontaneous symmetry breaking

of the field φ and the generation of the massive field Aµ. Along with the two

boson mass terms, the Lagrangian (2.18) contains kinetic energy terms for

both Aµ and η as well as interaction terms such as 1
2
e2AµA

µη2.

As we have seen in section 2.3, electromagnetic interactions are associ-

ated with the U(1) symmetry group. Likewise, weak interactions are as-

sociated with the SU(2) symmetry group and strong interactions with the

SU(3) symmetry group. In order to incorporate the electromagnetic, weak

and strong interactions into one theory, the Standard Model is required to be

SU(3)× SU(2)⊗ U(1) invariant. In the following sections we will discuss the

creation of a Lagrangian containing this three-fold symmetry along with the

use of spontaneous symmetry breaking to generate massive particles.

2.5 ElectroWeak Interactions and the Higgs

Mechanism

We have so far discussed the U(1) structure of electromagnetism. We will now

combine our understanding of electromagnetism with the SU(2) structure of
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Figure 2.4: Feynman diagrams depicting the primary decay modes of the π+

and π− particles via the weak interaction.

weak interactions to form a combined electroweak theory. Before beginning

with the formalism of electroweak interactions, it is useful to discuss the prop-

erties of weak interactions.

Unlike electromagnetic interactions, which have infinite range, weak inter-

actions occur over very small distances. This short range indicates that the

mediating bosons of weak interactions are massive and unstable. Experimen-

tal results, such as pion decay shown in Figure 2.4, reveal the need for at least

two weak gauge bosons, one with positive and one with negative charge. In

addition, electron-neutrino scattering, as shown in Figure 2.5, indicates the

need for a neutral weak boson. Combined, these results indicate that any the-

ory describing electroweak interactions must contain four gauge bosons: three

massive bosons mediating weak interactions, one neutral (Z) and two with op-

posite charge (W+,W−), and one massless photon meditating electromagnetic

interactions.

Experimental results indicate that only chiral left handed particles interact
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Figure 2.5: Feynman diagram of electron-neutrino scattering via the weak

interaction

weakly, while chiral right handed particles are excluded from weak interactions.

This property of weak interactions is known as V-A as a result of the vector

minus axial-vector couplings found within the electroweak Lagrangian. The

chirality of a particle is determined by it’s transformation under a Poincare

group of transformations. However, chirality is more intuitively understood in

relation to helicity. Helicity is the relative orientation of a particle’s spin with

respect to its direction of motion as shown in Figure 2.6. Particles with spin

oriented in the same direction as the particle’s momentum are referred to as

right handed, while particles with spin and momentum anti-aligned are referred

to as left handed. Since the direction of a particle’s momentum depends on

the frame of the observer for massive particles, it is always possible to Lorentz

boost into a frame where a particle’s helicity is flipped. For massless particles,

such a Lorentz boost is impossible and chirality and helicity are equivalent.
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Figure 2.6: The relative orientation of particle spin and momentum in left and

right handed particles [7].

Just as electromagnetic interactions can occur only between particles with

electric charge, weak interactions can only occur between particles with weak

isospin. Left handed particles are described as doublets containing particles

with the same weak isospin, T , but different projections of weak isospin onto

an arbitrary axis, T3 = ±1
2
. Equation (2.19) is an example of one such doublet

involving up and down quarks. This doublet formation allows left handed

particles to interact weakly within the electroweak model. In contrast, right

handed particles have zero weak isospin and are described as singlets, able to

interact through the electromagnetic force, but not through the weak force.

 u

d

 =

 +1
2

−1
2

 (2.19)

In addition to weak isospin, electroweak particles are describe by the weak

hypercharge quantum number Y. Weak hypercharge, electric charge and weak

isospin are all conserved within weak interactions and are related by the equa-

tion
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Q = T3 +
Y

2
. (2.20)

Table 2.1 lists the values of weak isospin and weak hypercharge for left and

right handed particles. Right handed neutrinos have never been observed and

are omitted from Table 2.1.

Particle Handedness Q Y T3

e−, µ−, τ− Left -1 -1 −1
2

νe, νµ, ντ Left 0 -1 +1
2

u, c, t Left +2
3

+1
3

+1
2

d, s, b Left −1
3

+1
3
−1

2

e−, µ−, τ− Right -1 -2 0

u, c, t Right +2
3

+4
3

0

d, s, b Right −1
3
−2

3
0

Table 2.1: Table of electroweak quantum numbers for chiral left and right

handed particles.

Weak hypercharge is associated with the U(1) symmetry group while weak

isospin is associated with the SU(2) symmetry group, making the symmetry

group of electroweak interactions SU(2) ⊗ U(1). SU(2) transformations take

the form
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φ→ φ′ = eiαaσa/2φ, (2.21)

where a = 1, 2, 3, αa are coupling constants and σa are the Pauli matrices,

σ1 =

 0 +1

+1 0

 (2.22)

σ2 =

 0 −i

+i 0



σ3 =

 +1 0

0 −1

 .

Using the same technique as we used in the U(1) case, we introduce a

covariant derivative in order to maintain the SU(2) ⊗ U(1) symmetry of the

Lagrangian. The appropriate covariant derivative is of the form

Dµ = ∂µ − ig
σi
2
W i
µ −

1

2
ig′Y Bµ. (2.23)

Y is simply the identity matrix while g and g′ are coupling constants. W i
µ

represents a set of three gauge vector fields associated with the SU(2) symme-

try and Bµ is the vector gauge field generated by the U(1) symmetry. Using

(2.23) we can write down a simple SU(2)⊗ U(1) invariant Lagrangian of the

form

L = −1

4
W i
µνW

µµ
i −

1

4
BµνB

µν +
∣∣∣(∂µ− 1

2
igσiW

i
µ−

1

2
ig′Y Bµ

)
φ
∣∣∣2−V (φ) (2.24)
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Our goal is to introduce mass terms for the three Wµν gauge fields. These

mass terms will be generated by the degrees of freedom in the φ field after

spontaneous symmetry breaking. As such, we must choose a representation

for φ which provides at least three degrees of freedom and which is able to

interact with Wµν . The simplest representation of φ that meets these criteria

is an SU(2) doublet containing four real scalar fields of the form

φ =

√
1

2

 φ1 + iφ2

φ3 + iφ4

 . (2.25)

The first two terms in equation (2.24) represent the kinetic energies of the Wµν

and Bµν fields. The third term is the most interesting to our discussion as it

holds interactions between the field φ and the gauge bosons, and the fourth

term represents the potential energy of the field φ and takes the familiar form

V (φ) = µ2φ∗φ+ λ(φ∗φ)2. (2.26)

Following the same procedure as we used in the U(1) case, we will use

spontaneous symmetry breaking to generate massive gauge bosons. In this

case, by forcing µ2 < 0 we will generate an infinitely degenerate vacuum. The

shape of V (φ) is described as a Mexican hat, as can be seen in Figure 2.7, with

the possible vacuum states lying in the circular valley within the potential.

After generating our infinitely degenerate potential we then force the field, φ,

to chose a specific vacuum state, v, and then introduce small perturbations to
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Figure 2.7: Potential energy of the field φ under spontaneous symmetry break-

ing in the electroweak theory [8].

the vacuum state, h(x). The constant vacuum state will generate mass terms

for our gauge bosons and the additional perturbation term will introduce a

new scalar boson referred to as the Higgs boson.

Reducing our scalar field to a single real scalar we can write the vacuum

expectation of φ as

φ0 =

√
1

2

 0

v

 . (2.27)

Perturbing this field around the vacuum expectation value we write

φ =

√
1

2

 0

v + h(x)

 , (2.28)

where h(x) is the Higgs field. For the moment we will only consider the

vacuum expectation of φ in order to generate gauge boson mass terms in our
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Lagrangian. By inserting the vacuum value of φ into the third term in our

Lagrangian, (2.24), we find

∣∣∣∣(∂µ − 1

2
igσiW

i
µ −

1

2
ig′Y Bµ

) 0

v

∣∣∣∣2. (2.29)

Removing the ∂µ term we are left with only terms relating to W i
µ and Bµ,

∣∣∣∣(− 1
2
igσiW

i
µ − 1

2
ig′Y Bµ

) 0

v

∣∣∣∣2

= 1
8
v2g2(Wµ)+(W µ)− + 1

8
v2
(
W 3
µ Bµ

) g2 −gg′

−gg′ g2


 W 3µ

Bµ

 ,

(2.30)

where W± fields are superpositions of the W 1 and W 2 fields,

W± =

√
1

2

(
W 1 ∓ iW 2

)
. (2.31)

We can see that the first term in (2.30) is a mass term for the W± bosons with

MW = 1
2
vg. The Second term in (2.30) can be simplified to

1

8
v2
(
gW 3

µ − g′Bµ

)2
, (2.32)

which is the mass term of the Z boson, defined to be a superposition of the

W 3
µ and Bµ fields,
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Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

. (2.33)

The mass of the Z boson is found to be MZ = 1
2
v
√
g2 + g′2. The photon, Aµ,

can be shown to have zero mass and is also represented by a superposition of

the W 3
µ and Bµ fields as

Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

. (2.34)

We have now created a theory describing electroweak interactions contain-

ing three massive gauge bosons and one massless gauge boson, fitting our

initial predictions. To accomplish this we introduced an SU(2)⊗ U(1) invari-

ant Lagrangian and then used spontaneous symmetry breaking to generate

mass terms for our gauge boson fields. The masses of the weak gauge bosons

are not predicted by the Standard Model, however experimental results give

the W and Z masses as: MW ≈ 80GeV , MZ ≈ 91GeV . The boson mass

terms in our electroweak Lagrangian did not come for free, as we have still to

investigate the perturbation term h(x) in our Lagrangian.

The field h(x) represents a neutral, massive scalar boson, known as the

Higgs boson, generated by the spontaneous symmetry breaking of the poten-

tial, V (φ). The mass term of the Higgs boson within our electroweak La-

grangian is found by inserting our perturbed field (2.28) into the first term in

our Lagrangian potential (2.26). Taking only the term of interest we find
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µ2h2 = −2λv2h2, (2.35)

where we have used the fact that v2 = −µ2/2λ as found in equation (2.16).

The value of λ is unknown, meaning that the Standard Model does not predict

the mass of the Higgs boson. However, recent discoveries at the Large Hadron

Collider have shown the mass of the Higgs to be MH = 125.36GeV [9].

Since this thesis specifically deals with the Higgs boson decaying via two

W bosons as shown in Figure 2.8, let us look at the Higgs coupling to the W

bosons. The term of interest in our Lagrangian contains h(x) multiplied by

WµW
µ and is found by inserting the perturbed φ field, (2.28), into the third

term in our electroweak Lagrangian, (2.24). Doing so yields the Higgs-W

interaction term of the form

1

4
vg2hW+

µ W
−µ (2.36)

Remembering that the mass of the W boson is given by MW = 1
2
vg, we note

that the coupling of the Higgs boson to the W is given by M2
W/v. This means

that the strength of the Higgs coupling to the W boson is directly dependent

on the mass of the W boson. This relation is not unique to the W boson. In

fact, the coupling of the Higgs to all particles is dependent on the particle’s

mass. Using this knowledge, along with the experimentally-determined masses

of Standard Model particles, it is possible to predict the branching ratios of

the Higgs Boson. This property of the Higgs boson, along with the relative
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Figure 2.8: Feynman diagram showing the decay of a Higgs boson into a pair

of W bosons

coupling of the Higgs to various Standard Model particles will be discussed

further in section 2.7.

2.6 Quantum Chromodynamics

The strong interaction is described by a theory known as Quantum Chro-

modynamics (QCD). Only quarks are affected by the strong force, which is

mediated by eight massless gauge bosons known as gluons. Similar to charge

in electrodynamics and weak isospin in weak interactions, only particles with

color charge interact with the strong force. There are three possible color

charges, (red, green, blue), with anti-quarks having anti-color (anti-red, anti-

green, anti-blue). Individual quarks are described in terms of a single color

and quarks are only observed in color-neutral two or three quark combinations,

known as mesons and barions. For barions, this means that they contain one

quark of each color (RGB), while for mesons, color neutrality is only achievable
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by combining a color and it’s anti-color (RR̄).

In order to generate eight massless gauge bosons, the Lagrangian of QCD is

required to be invariant under SU(3) gauge transformations. The generators

of SU(3) transformations are given by

Ta =
1

2
λa (2.37)

where λa are the eight Gell-Mann matrices. The gauge-invariant QCD La-

grangian can be written as

L = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ −

1

4
Gµν

aGµ
aν. (2.38)

Gµν is the field strength tensor of QCD given by

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gfabcGb
µG

c
ν (2.39)

and fabc is determined by the commutation relations of the Gell-Mann matri-

ces,

[Ta, Tb] = ifabcTc. (2.40)

The constant g in equation (2.38) is related to the strong coupling constant

αs by

αs =
g2

4π
. (2.41)
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The strong coupling constant is in fact not constant. Rather, the strong cou-

pling depends inversely on the energy of the interaction. This means that at

short distances the strong force is relatively weak, while at large distances the

strong force becomes stronger. At large enough distances, it becomes ener-

getically favorable for quarks to form bound states with quarks spontaneously

generated from the vacuum in a process called hadronization.

2.7 Higgs Boson Creation at the LHC

One of the primary goals in the design of the Large Hadron Collider was the

discovery of the Higgs boson. Since the LHC is a proton-proton collider, the

primary mode of Higgs creation is through gluon-gluon fusion (ggf). Gluons,

the mediating gauge bosons of the strong force, are found within protons and

often interact within pp collisions. Since gluons do not interact weakly, they

interact with the Higgs boson through a top quark loop as shown in Figure 5.3.

Along with being the primary mode of Higgs creation at the LHC, the gluon-

gluon fusion process is a convenient creation mode for experimental study as

there are no tree-level particles from the initial state found in the final state.

The second most prevalent Higgs production mode at the LHC is vector

boson fusion (VBF), which is the focus of this thesis. Vector boson fusion

involves the emission of a pair of vector bosons, either W+W− or two Z bosons,

by initial state quarks. The two vector bosons then fuse to form a Higgs boson

as shown in Figure 2.10. This production mechanism results in the two initial
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Figure 2.9: Feynman diagram of Higgs production via gluon-gluon fusion.

state quarks being present in the final state, creating a unique Higgs via VBF

signature.

In addition to ggf and VBF, co-creation of the Higgs boson with a vector

boson or with two top quarks is also possible as shown in Figures 2.11 and

2.12. The cross sections for these Higgs production mechanisms are smaller

than the cross sections for ggf and VBF, making them difficult (though not

impossible) to study using the current LHC luminosity. Figure 2.13 shows

the cross sections for various Higgs production mechanisms as a function of

Higgs mass at the LHC. As one can see, ggf is by far the most dominant Higgs

production mode.

2.8 Higgs Decay Modes

As discussed in section 2.5 the coupling of the Higgs boson to Standard Model

particles is dependent on the mass of the particle. We can use this informa-

tion, along with the experimentally discovered masses of particles in order to
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Figure 2.10: Feynman diagram of Higgs production via vector boson fusion.

Figure 2.11: Feynman diagram of Higgs production in association with two

top quarks.
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Figure 2.12: Feynman diagram of Higgs production in association with a vector

boson.

Figure 2.13: Cross sections for various Higgs boson production modes in pp

collisions with center of mass energy
√
s = 8TeV at the LHC.
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Figure 2.14: Branching ratios of the Higgs boson into Standard Model particles

[13].

determine the relative branching ratios of the Higgs boson for various MH

values. A plot of the Higgs branching ratios based on the Higgs boson mass

is shown in Figure 2.14. Noting the experimentally discovered Higgs mass of

MH = 125.36GeV , we can see that the Higgs decays primarily into b quarks

and W bosons, with significant contributions from Z boson, gluon and τ lepton

decays.

In terms of experimental searches, not all Higgs channels are equally viable.

From Figure 2.14, one would assume that it would be most fruitful to search

for the Higgs boson in the H → bb channel. However, the high branching ratio

of H → bb events is overshadowed by the very large hadronic backgrounds

associated with this channel. The most significant measurements of the Higgs
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boson have actually come from channles with much smaller branching ratios.

The discovery of the Higgs boson was based primarily on findings in the

H → ZZ and H → γγ decay modes. Though these channels have lower

branching ratios, they have very distinct signals with no tree level hadronic

activity. The H → ZZ → llll channel in particular has a final state containing

four high energy leptons and no hadrons. This signature allows for the removal

of most backgrounds, allowing for a high signal-to-background ratio with a

limited number of signal events. Likewise, the H → γγ decay mode results

in only two high energy photons in the final state, allowing for the removal

of most backgrounds. In addition, both channels allow for a measurement of

the Higgs boson mass, which is not possible in the H → WW ∗ and H → ττ

channels due to the presence of final state neutrinos.

In this thesis, we focus on the H → WW ∗ decay mode in which both

W bosons decay leptonically. Specifically, we are interested in Higgs bosons

created through the vector boson fusion process decaying into two W bosons,

which then decay into two first or second generation leptons plus neutrinos

as shown in Figure 2.15. This process is characterized in the final state by

2 quarks from the initial state, two leptons and missing energy. The 2 final

state quarks originate within the two colliding high energy protons, meaning

that their initial momenta are oriented along the beam line. These quarks are

deflected by the emission of a vector boson. However, they maintain much of

their forward momentum and are therefore typically found in opposite forward
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Figure 2.15: Feynman Diagram of VBF Higgs production with the Higgs de-

caying via two W bosons.

regions of the detector.

The unique jet topology of the VBF H → WW ∗ → lνlν final state is

further distinguished by the topology of the final state leptons and neutrinos.

First, the two leptons tend to be clumped together due to the spin zero nature

of the Higgs boson. The two W bosons produced by the Higgs decay each

have spin 1. Therefore, in order to conserve angular momentum, the spins

of the two W bosons must be anti-aligned. Since the Higgs boson has zero

electric charge, one W boson must be a W+, which decays leptonically into

a neutrino and an e+ or µ+ and the other W boson must be a W−, which

decays leptonically into an anti-neutrino and an e− or µ−. W decays into
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τ leptons are considered background within this analysis due to their short

lifetimes and distinct signature. Due to the V-A nature of weak interactions,

the W+ boson preferentially emits an e+ or µ+ along the direction of its spin.

In order to conserve momentum, the corresponding neutrino is emitted in the

opposite direction. Likewise, the W− boson preferentially emits an e− or µ−

in the direction opposite to its spin and an anti-neutrino along the direction

of its spin. The result of these two W boson decays is that the two leptons

are emitted preferentially in the same direction, as are the neutrinos. This

leptonic decay process is depicted in Figure 2.16. The combination of two

clumped leptons, missing energy and two high energy jets close to the beam

line create a very distinct signature for VBF H → WW ∗ → lνlν events.
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Figure 2.16: The decay of two W bosons with opposite spin. The spin of

particles is represented by the solid arrows while the outlined arrows represent

momentum.
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Chapter 3

Experimental Apparatus

The analysis described in this thesis is based on data collected using the AT-

LAS detector, which is one of four major detectors located around the ring

of the Large Hadron Collider (LHC). The LHC is the worlds largest parti-

cle collider, located in Geneva, Switzerland and operated by the European

Organization for Nuclear Research (CERN). The Large Hadron Collider is

primarily a proton-proton collider, designed to work at center of mass energies

up to
√
s = 14 TeV. The collider lies in a ring, 27 km in circumference and

approximately 100 m underground. The ring is located primarily in France,

but a section of the ring does cross the border into Switzerland.

The Large Hadron Collider provides particle collisions to seven different ex-

periments, with each experiment having its own detector. The two largest are

the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solen-

doid) experiments. Both the ATLAS and CMS experiments use multi-purpose
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detectors to investigate a variety of physical processes. In addition to the two

multi-purpose experiments, there are two other major experiments at the LHC:

LHCb (Large Hadron Collider Beauty), which explores specifically b-physics

and ALICE (A Large Ion Collider Experiment), which investigates quark-gluon

plasma using heavy Ion collisions.

Along with the four major experiments, the LHC also houses three smaller

experiments. LHCf (Large Hadron Collider Forward) investigates particles

specifically in the forward region along the beam line in order to study cosmic

rays. TOTEM (TOTal Elastic and diffractive cross-section Measurement) also

studies particles close to the beam line as a supplement to ATLAS and CMS,

which can not detect particles in this region. MoEDAL (Monopole and Exotics

Detector At the LHC) searches for highly ionizing stable massive particles

(SMP) and magnetic monopoles.

3.1 Creation and Acceleration of the Proton

Beams

The majority of experiments at the LHC rely on two colliding beams of pro-

tons. This requires the creation and acceleration of a beam of pure protons,

which can then be split into two separate beams. The two beams move in

opposite directions around the LHC ring while they are accelerated to their

final collision energy. Once this energy has been reached, the two beams are
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collided approximately head-on within the experiment detectors.

In order to create a proton beam, hydrogen gas is passed through an electric

field to remove the electrons. Once the electrons have been removed, the pro-

tons are injected into a linear accelerator known as Linac2, which is designed

to accelerate the protons to an energy of 50 MeV. Linac2 uses a series of radio

frequency cavities to charge cylindrical conductors which accelerate protons in

a straight line. The conductors ahead of the protons are negatively charged

such that they attract the approaching protons. The conductors behind the

protons are positively charged such that they push the protons down the beam

pipe. This procedure requires that the conductors along the beam pipe are

constantly oscillating between positive and negative charge and is ineffective

for a continuous stream of protons. Thus the protons are broken into bunches

of up to 1011 protons.

Once the protons have been accelerated to 50 MeV, they are inserted into

a series of increasingly large synchrotrons. Synchrotrons use magnetic fields

to bend particles into a circular ring and electromagnetic fields to accelerate

particles within the ring. The fields are time-dependent such that the rate

at which the fields oscillate increases as the speed of the particles increases.

The fields also vary in strength as the protons increase in energy such that

the radius of curvature of the protons remains constant. Using three con-

secutive synchrotrons known as the Proton Synchrotron Booster, the Proton

Synchrotron and Super Proton Synchrotron, the protons are accelerated to an
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energy of 450 GeV.

After reaching the final output energy of the Super Proton Synchrotron,

the protons are injected into the Large Hadron Collider through two beam

lines. One beam line circulates the the protons counter-clockwise, while the

other circulates clockwise. The two beams travel in completely independent

lines except for inside of the four major LHC detectors, ATLAS, CMS, LHCb

and ALICE, where the beams intersect. Before colliding, the two beams are

accelerated inside the LHC to an energy of 4 TeV. In order to accelerate the

proton beams to their final energies, the LHC uses a synchrotron design.

In order to bend the highly energetic protons into a circular path, 1232

superconducting dipole magnets are used. Each dipole magnet is 15m long

and generates a magnetic field of 8.4T . Since the LHC houses two separate

beams of protons moving in opposite directions, the dipole magnets have a

two-in-one design. This design allows for the magnetic field in the two beam

pipes to be oriented in opposite directions, causing both beams to bend in the

same direction.

In addition to the bending dipole magnets, quadrupole magnets are used

to tighten the beam and sextuple and higher order magnets are used to correct

for imperfections in the dipole magnetic fields. Near the 4 LHC detectors, the

proton beam is narrowed from a width of 2mm to 16µm in order to increase the

proton-proton interaction probability and the instantaneous luminosity. This

narrowing of the beam is accomplished with a set of three quadrupole magnets
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known as the triplet. In total there are eight triplets within the LHC, one on

either side of the four detectors (ATLAS, LHCb, ALICE, CMS). The use of

superconducting electromagnets is required to achieve the strong magnetic

fields necessary to bend the relativistic protons along the circular beam path.

The superconducting magnets require extremely cold temperatures to operate

and liquid helium is used to keep the magnets at a temperature of −271.3C.

Throughout most of the LHC the two proton beams are kept in separate

beam pipes in order to prevent unwanted pp collisions. For 70m on either

side of each LHC detector, the two beams travel in parallel within the same

pipe. The beams are then allowed to cross at the center of each detector.

3.2 Luminosity

In any particle physics study using the ATLAS detector, it is important to

know the rate at which a process of interest, Higgs boson production for ex-

ample, occurs in relation to energy and frequency of pp collisions. To put

this more simply, we need to be able to estimate the expected number of

Higgs bosons in the 2012 ATLAS data using information about the number of

recorded collisions. In order to accomplish this, we use the concept of lumi-

nosity. Luminosity describes the number of pp events per unit time per unit

area and is generally written in units of [cm−2 s−1]. We can use information

about the number of particles in a bunch, the bunch size and the interaction

frequency to calculate the instantaneous luminosity of the LHC. The instan-
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taneous luminosity of head-on particle bunches, assuming the bunches are

Gaussian-distributed in the transverse direction, is given by

L =
nbN

2
b f

4πσxσy
. (3.1)

Nb is the number of particles per bunch, nb is the number of bunches per beam,

f is the revolution frequency and σx and σy are the root mean square width

of the beam in the transverse directions. The LHC does not collide bunches

exactly head-on and therefore a scale factor is used to compensate for the

beams’ crossing angle. The total luminosity of an LHC run is determined by

integrating the instantaneous luminosity over the duration of the run. Using

the total luminosity, the expected number of events for a given process is:

N = σ

∫
Ldt. (3.2)

N is the expected number of events for a given process, σ is the process

cross section in units of [cm2] and
∫
Ldt is the integrated luminosity in units

of [cm−2]. At the LHC, luminosity is measured in terms of inverse femtobarns,

1 fb−1 = 1039 cm−2, with one inverse femtobarn equaling approximately one

trillion proton-proton collisions. Figure 3.1 shows the integrated luminosity

for 2010, 2011 and 2012 run periods. This thesis includes analysis of data

taken during the 2012 run period.
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Figure 3.1: Delivered luminosity for 2010, 2011 and 2012 LHC run periods

[13].

3.3 The ATLAS Experiment

The ATLAS experiment is a collaboration of over 3000 scientists from 38

countries analyzing data gathered from proton-proton collisions in the AT-

LAS detector. The ATLAS detector is a general purpose detector, designed

to gather information on a wide variety of physics objects at many different

energies. The ATLAS detector is made up of a series of smaller detectors,

each designed to detect specific types of particles. The detector is laid out as

a cylinder with two end caps as shown in Figure 3.3. Each of the subdetectors

serves a unique purpose and is designed specifically to detect a certain class

of particles.

The inner most set of detectors, known as the inner detector, is designed for
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high precision measurements of charged particles. Since the inner detector is

closest to the interaction point, it is able to provide crucial information about

the location of the interaction as well as detailed measurements of particle

momenta. In addition, the inner detector is designed to interact minimally

with all particles in order to preserve information about particle momentum.

Outside of the inner detector lie two calorimeters. Calorimeters are de-

signed to serve two purposes: first, they measure the energy and location

of incident particles; and second, they absorb the energy of particles to pre-

vent high energy particles besides muons from reaching the muon spectrom-

eter. The final layer of the ATLAS detector is the muon spectrometer, de-

signed specifically to detect high energy muons. Neutrinos, which interact

only through the weak interaction, are not detected by the ATLAS detector.

The interactions of various particles with the different components of the AT-

LAS detector are shown in Figure 3.2. Note that various types of particles

interact with the detector in distinct ways, making it easier to identify indi-

vidual particles such as jets, electrons and muons. In the following sections

the design and purpose of each of the ATLAS subdetectors will be discussed.

3.3.1 Detector Coordinates

The ATLAS experiment uses a right-handed Cartesian coordinate system in

which the x-axis points towards the center of the LHC ring, the y-axis points

straight up and the z-axis points along the beam line. The point of interac-
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Figure 3.2: A diagram of the interactions of various particles with each of the

ATLAS subdetector systems [12].

Figure 3.3: Computer generated schematic of the ATLAS Detector [13].
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tion at the center of the detector is chosen as the origin for this coordinate

system. To describe the location and direction of particles within an event,

spherical coordinates are generally used. The transverse direction of a particle

is described by the variable φ, which can take values from [−π, π] with φ = 0

corresponding to the x-axis. φ increases by moving counter-clockwise around

the positive z-axis. The forward-backward direction of the particle is described

by the polar angle θ, which can take on values from [0, π] and is zero along

the positive z-axis.

3.3.2 Detector Variables

When describing objects in high-energy particle collisions, the use of Lorentz-

invariant variables is essential since the longitudinal momentum of the inter-

acting partons is unknown. Due to this requirement, final state particles are

generally described in terms of transverse momentum, pT , or transverse energy,

ET and pseudo-rapidity η. The transverse momentum is defined as

pT = |p|sinθ (3.3)

and transverse energy is defined as

ET = Esinθ. (3.4)

Both variables are Lorentz invariant with respect to boosts along the beam

line and are therefore good variables for physics analysis.
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In order to preserve Lorentz invariance, the angle of a particle with respect

to the beam line is measured using pseudo-rapidity rather than the angular

variable θ. Pseudo-rapidity, defined as

η =
1

2
ln

(
|p|+ pL
|p| − pL

)
= −ln

(
tan

θ

2

)
, (3.5)

where pL is defined as momentum along the beam line, is not in itself Lorentz

invariant. However, for particles with high energy and low mass such that

E ≈ |p|, pseudo-rapidity is a very close approximation to rapidity. Rapidity

is defined as

y =
1

2
ln
E + pL
E − pL

. (3.6)

In the limit of massless particles, pseudo-rapidity is equivalent to rapidity. The

difference in rapidity between two objects , ∆y, is invariant under Lorentz

transformations and therefore, for high energy particles with low mass, ∆η

is also Lorentz invariant. The value of η varies from 0 to ∞ with η = 0

corresponding to objects with momentum perpendicular to the beam line and

η = ∞ corresponding to particles moving along the beam line. Due to the

Lorentz invariant properties of the pseudo-rapidity, η is used in place of θ do

describe angular distance from the beam line. The direction of a particle within

the ATLAS detector can therefore be written in an approximately Lorentz

invariant form using η and φ and the angular distance between two particles

can be written as
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∆R =
√

(∆η)2 + (∆φ)2. (3.7)

3.3.3 Magnets

A charged particle moving within a magnetic field follows a curved path. The

radius of curvature of this path can be used, along with the particle’s mass, to

calculate the particle’s momentum. ATLAS tracking subdetectors are situated

within magnetic fields in order to exploit this property. A 2T superconducting

solenoid located between the inner detector and the electromagnetic calorime-

ter provides a constant magnetic field in the +z-direction to the inner detector.

In addition, three superconducting toroid magnets are used to provide mag-

netic fields within the muon spectrometer. The barrel toroid is constructed

using eight separate coils arranged symmetrically in φ. The end-cap toroids are

also made of eight coils arranged symmetrically in φ, but rotated π/8 radians

with respect to the barrel toroids. The magnetic field of the muon spectrome-

ter is designed to be perpendicular to the direction of motion for most muons

within the muon spectrometer. The layout of the toroid and solenoid magnet

systems is shown in Figure 3.4.

3.3.4 Inner Detector

The inner detector is located at the center of the ATLAS detector and is

closest to the proton-proton interaction point with an inner radius of 50mm.
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Figure 3.4: Schematic of the toroid and solenoid magnets in the ATLAS de-

tector. Orange areas represent the magnets while the mulit-colored concentric

cylinders represent the hadronic and electromagnetic calorimeters.

The inner detector lies within a 2T magnetic field and consists of three separate

subdetectors: the pixel detector, semiconductor tracker (SCT) and transition

radiation tracker (TRT). The three systems are laid out in concentric cylinders

along the barrel and as discs perpendicular to the beam pipe on the end caps.

The inner detector covers the region |η| < 2.5.

The goal of the inner detector is to provide precision measurements of the

position and momentum of charged particles as they are bent by the magnetic

field. In addition, the inner detector is capable of reconstructing the position

of interaction vertices. The proper reconstruction of vertices is essential since

there are an average of 20 particle collisions per bunch crossing. In order to

study an event of interest, such as a Higgs boson decay, the ATLAS detector
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needs to be able to filter out all particles not associated with the primary in-

teraction vertex. In addition, the high-precision vertex reconstruction of the

ATLAS inner detector helps to identify longer-lived particles such as b-hardons

and τ leptons, which can travel a significant distance before decaying. Compo-

nents of the inner detector must also be robust against radiation damage due

to the high rate of incident particles. Finally, the inner detector is designed

to absorb as little energy as possible from incident particles in order to allow

for precision energy measurements within the calorimeter.

3.3.4.1 Pixel Detector

The pixel detector is the inner most layer of the inner detector and consists of

three concentric cylindrical detectors in the barrel region and three consecutive

disc layers in the end caps as shown in Figure 3.5. The pixel detector is specif-

ically designed to have very high resolution in order to accurately measure the

position, momentum and impact parameter of incident charged particles. For

most particle tracks the pixel detector provides 3 high precision measurements

of η and φ, one for each pixel layer.

The inner-most layer of the pixel detector is positioned as close as possible

to the interaction point at a radius of 50.5 mm with the outer two layers at a

radius of 90 mm and 120 mm respectively. When high energy particles interact

with the silicon chips, electrons are freed from the silicon. These electrons

generate an electric current which is then processed by readout chips. The
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Figure 3.5: Schematic diagram of the ATLAS pixel detector [13].

pixel chips are arranged into 1456 modules in the barrel region and 288 in the

end cap with each module holding 46080 pixels. The output from the pixel

sensors is interpreted by 16 read-out chips. The pixel detector has a resolution

of 10µm in φ and 115µm in the z direction along the barrel and in the R

direction in the end caps.

3.3.4.2 Semiconductor Tracker

Once particles have traversed the pixel detector, they enter the Semiconductor

Tracker (SCT). The semiconductor tracker uses silicon technology similar to

the pixel detector in order to provide additional high-precision tracking of

charged particles. The SCT consists of 4088 modules, 2112 in the barrel and

1976 in the end caps. Each module contains silicon microstrips, 12 cm in length

and 80 µm pitch. There are four layers of microstrips in the barrel region and
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nine layers in each endcap, providing an average of 8 hits per track. In the end

cap the microstrips are mounted back-to-back in order to increase resolution.

The SCT has a resolution of 7µm in φ and 580µm in the z direction along the

barrel and in the R direction in the end cap.

3.3.4.3 Transistion Radiation Tracker

The Transition Radiation Tracker (TRT) is the final piece of the inner detector

and is positioned outside of the SCT. The TRT detector is composed of ap-

proximately 350,000 straw tubes aligned parallel to the beam along the barrel

and radially in the end caps and provides approximately 36 additional hits for

each track. The drift tubes are 4 mm in diameter with a 31 µm diameter wire

at the center. The tubes are filled with a gas mixture of 70% Xe, 27% CO2 and

3% O2. This gas is ionized by charged particles passing through the detector

causing electrons and ions to drift toward the anode wire. These electrons and

ions result in a current which is read out by the detector.

The TRT detector has lower granularity than the SCT and pixel detec-

tors, but is able to measure more points per particle and therefore contributes

significantly to the measurement of track momentum. In addition, the TRT

detector is capable of electron identification by detecting transition radiation

created when relativistic charged particles pass between different materials.

In order to induce transition radiation in electrons passing through the de-

tector, the space between the straws is filled with an array of polymer fibers.

56



Electrons generate more intense transition radiation than other particles since

the intensity of transition radiation is proportional to the Lorentz factor of a

particle, γ = E/m. In order to help distinguish between electrons and heav-

ier hadronic particles the TRT operates at two different thresholds: a lower

threshold used to detect radiation from hadrons and minimum ionizing par-

ticles, and a higher setting used to detect intense transition radiation from

electrons. Due to the long length of the tubes, the TRT has highly limited

resolution in the z direction along the barrel and in the radial direction in the

end caps. In the φ plane the TRT has a resolution of 130µm.

3.3.5 Calorimeters

The inner detector is designed specifically to detect charged particles which

ionize as they move through the detector, while neutral particles are able to

pass through the inner detector without being measured. In order to measure

the momentum of neutral particles, such as photons and neutral π0 mesons,

as well as to assist in the measurement of charged particles, the ATLAS ex-

periment employs a calorimeter system.

The ATLAS detector contains two concentric calorimeters: the EM calorime-

ter designed to detect electrons and photons; and the hadronic calorimeter

designed to measure hadronic showers escaping the EM calorimeter. Both

systems employ a series of alternating layers of dense absorbers and active

material. The absorbing layers are designed to interact with particles passing
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Figure 3.6: Diagram of the ATLAS calorimeter system [13]

through the calorimeter, creating a shower of particles. These showered parti-

cles are then measured by the active layer. The number of particles created in

the shower is proportional to the energy of the incident particle, allowing for

a measurement of the incident particle’s energy. It is important that all par-

ticles except muons and neutrinos are completely absorbed by the calorimeter

systems. In order to accomplish this goal, very dense absorbing materials are

used in order to shorten the interaction lengths and many layers of material

are used to ensure total absorption.

3.3.5.1 Electromagnetic Calorimeter

The EM calorimeter is designed to measure electrons and photons using an

accordion design. To ensure complete absorption of electrons and photons, the

EM calorimeter contains 24 radiation lengths, X0, in the barrel region and 26
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in the end cap. A radiation length is the distance a charged particle must travel

in order to have 1/e of its initial energy. The radiation length of a charged

particle varies based on the material through which the particle is traveling,

with more dense materials resulting in shorter radiation lengths. In order to

reduce the radiation length and minimize the size of the EM calorimeter, the

absorbing layers are made of lead. Placed between the lead absorbing layers

are active layers containing liquid argon.

The EM calorimeter is composed of two separate sections, a barrel-region

covering the range of |η| < 1.475 and an end cap with two coaxial wheels cov-

ering 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2 respectively. The EM calorimeter

contains three layers in the region |η| < 2.5, which are used for precision mea-

surements and only contains two layers in the region 2.5 < |η| < 3.2, resulting

in coarser granularity. To account for energy loss of particles in the inner de-

tector, a pre-sampling liquid argon layer is employed in the region |η| < 1.8.

The EM calorimeter provides an energy resolution of σE/E = 10%/
√
E⊕ 7%.

3.3.5.2 Hadronic Calorimeter

Hadronic showers escaping the EM calorimeter are detected and absorbed

by the hadronic calorimeter. The hadronic calorimeter is composed of four

separate components: the tile barrel, tile extended barrel, the hadronic end

cap calorimeter (HEC) and the forward calorimeter (FCal).

The tile barrel covers the central interaction region of |η| < 1.0 with the
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two extended tile barrels covering the regions 0.8 < |η| < 1.7 on either side

of the central barrel. These calorimeters use steel absorbers and active layers

composed of polystyrene scintillator tiles. Showers within the active layers

produce photons, which are amplified and converted to an electric current via

photo-multiplier tubes.

The hadronic end-caps cover the region of 1.5 < |η| < 3.2 and are com-

posed of copper absorbing layers and liquid argon active material. The HEC

surrounds the forward calorimeter, which covers the region 3.1 < |η| < 4.9

and is made up of three separate layers. The inner most layer of the FCal uses

copper as the absorber, with the goal of measuring electromagnetic showers.

The outer two layers of the FCal use tungsten absorbers in order to measure

hadronic showers. All three layers use liquid argon as the active material.

Hadronic showers produce fewer particles than EM showers, leading to

smaller statistics, larger statistical fluctuations and lower energy resolution in

the hadronic calorimeter. The HEC and tile calorimeters have a combined

resolution of σE/E = 50%/
√
E ⊕ 3% while the forward calorimeter has a

resolution of σE/E = 100%/
√
E ⊕ 10%.

3.3.6 Muon Spectrometer

The outermost system of the ATLAS detector is the muon spectrometer, which

is designed to provide standalone triggering on high-pT muons while also mea-

suring the properties of incident muons with high efficiency and resolution.
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To accomplish this goal, the muon spectrometer is made up of four separate

components: monitored drift tubes (MDT), cathode strip chambers (CSC),

resistive plate chambers (RPC) and thin gap chambers (TGC). The thin gap

chambers and resistive plate chambers provide triggering signals in the region

|η| < 2.4. High resolution tracking is performed by the monitored drift tubes

with the exception of regions of high |η|. For regions of 2.0 < |η| < 2.7 cath-

ode strip chambers are used as they provide higher granularity and are better

suited to the high interaction rate in these areas. The two high resolution

systems cover the region |η| < 2.7.

A magnetic field is generated throughout the muon spectrometer using

three superconducting toroid magnets. The barrel toroid consists of eight coils

spaced symmetrically within the muon spectrometer and provides a magnetic

field in the region |η| < 1.0. Two end cap toroid magnets provide magnetic

fields in the region 1.4 < |η| < 2.7. The magnetic field in the transition

region, 1.0 < |η| < 1.4, is provided by a combination of the barrel and end-cap

magnets. The layout of the various systems within the muon spectrometer can

be seen in Figure 3.7.

3.3.6.1 Monitored Drift Tubes

The monitored drift tubes, designed for high-resolution tracking of incident

muons, are made of extruded aluminum tubes, 30 mm in diameter, containing

a mixture of 93% Ar and 7% CO2 gasses. At the center of each tube is a
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Figure 3.7: Diagram of the ATLAS Muon Spectrometer [13].

tungsten-rhenium anode wire with a diameter of 50µm. The gas is ionized by

passing charged particles, causing electrons to drift toward the anode, creating

a current as shown in Figure 3.8. As a muon transverses an MDT many

electrons are freed. By measuring the time of arrival of these electrons, the

distance of closest approach of the incident muon to the anode wire can be

estimated. The monitored drift tubes are split into a barrel region covering

|η| < 1.1 and an end-cap covering the range 1.1 < |η| < 2.7. Each MDT has

an resolution of 80µm.

3.3.6.2 Cathode Strip Chambers

Cathode strip chambers have a higher granularity than monitored drift tubes

and are therefore better suited to the high rates of incident particles found
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Figure 3.8: Schematic diagram of a muon ionizing gas within a monitored

drift tube in the muon spectrometer. The resulting electron drifts towards the

anode, resulting in a current [15].

Figure 3.9: Schematic diagram of a cathode strip chamber [15].

in the inner-most layer of the end-cap covering the range 2.0 < |η| < 2.7.

Cathode strip chambers are multiwire proportional chambers with cathode

strip readout. The spacing of the anode wires is equal to the radial distance

between the anode wires and cathode strips as shown in Figure 3.9. A preci-

sion measurement of the muon coordinates is made by measuring the charge

induced on the cathode due to the avalanche formed on the anode wire. Cath-

ode strip chambers have a resolution of 5mm in φ and 60µm in z.
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3.3.6.3 Resistive Plate Chambers

Resistive plate chambers are capable of fast and coarse tracking of muons

within the muon spectrometer and are used in the ATLAS trigger systems as

well as for azimuthal coordinate measurements. Resistive plate chambers con-

sist of two insulating plates separated by a gas layer and held within an electric

field. Resistive plate chambers are used within the barrel of the muon spec-

trometer in the range |η| < 1.05. Resistive plate chambers have a resolution

of 10mm in φ and no appreciable resolution in z.

3.3.6.4 Thin Gap Chambers

Thin gap chambers are used for triggering and to assist particle tracking in the

range 1.05 < |η| < 2.4. Thin gap chambers are very similar to cathode strip

chambers except that the anode-to-anode spacing is larger than the anode-to-

cathode spacing. This spacing allows for faster signals with good resolution,

making thin gap chambers useful for triggering. In addition, thin gap cham-

bers have high granularity and rate-tolerance, making them ideal for the high

particle flux found at large values of η. Thin gap chambers have a resolution

of 3mm in φ and 2mm in z.

3.3.7 Trigger System

Within the ATLAS detector, proton-proton collisions occur at a rate of ap-

proximately 8GHz. In contrast, the ATLAS computing systems can only store
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events at a rate of approximately 200Hz. This discrepancy requires that only a

small percentage of pp collisions are stored for analysis, while the vast majority

of pp collisions are discarded. In order to preferentially store events containing

interesting physics, a 3-tier trigger system is implemented. The trigger system

looks for characteristics typical of events containing interesting phyiscs, such

as large missing transverse energy and high pT jets or leptons.

The first step in the trigger system is the hardware-based level 1 trigger

(L1), which is used to pre-select events for further investigation by the level

2 trigger (L2). The goal of the L1 trigger is to eliminate events which do not

contain well-defined physics objects and to determine regions of interest for

further study by the L2 trigger. The L1 trigger is composed of two separate

pieces: the L1 muon trigger and the L1 calo trigger. The L1 muon trigger uses

information from the RPC and TGC components of the muon spectrometer

to test for low and high pT muons. By comparing hit patterns in the RPC and

TGC to pre-defined look-up tables, the L1 muon trigger is able find events with

likely muon candidates. The L1 calo trigger uses coarse granularity calorimeter

information to select events containing objects such as leptons, photons, jets

and missing transverse energy. Together the two L1 trigger systems reduce

the rate of events moving on to the L2 trigger system to 75kHz. In order to

keep pace with this high rate, the L1 trigger system is able to analyze events

within 2.5µs.

After passing the L1 trigger, events are processed by the software-based
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level 2 trigger (L2). The L2 trigger uses reconstruction algorithms in order to

analyze information from the subdetectors in regions of interest of the detector

defined by the L1 trigger. The L2 trigger is able to analyze an event within

40ms and reduces the event rate to approximately 3 kHz. Events passing the

L2 trigger are passed on to the final event filter trigger.

The event filter (EF) trigger is the most thorough and sophisticated of the

three triggers. The EF trigger performs a full reconstruction of the event, a

process which takes approximately 4 seconds. Due to the large amount of time

required to process events in the EF trigger, parallel processors are employed

to analyze multiple events simultaneously. The EF trigger selects events based

on object pT and object quality requirements in order to reduce the event rate

to approximately 200Hz.
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Chapter 4

Object and Event Selection

In order to eliminate the majority of background events, a cut-based approach

is used. The full set of cuts are known as preselection. These cuts are op-

timized using Monte Carlo samples in order to retain the maximum number

of signal events while removing as many background events as possible. Once

all relevant cuts have been applied, a support vector machine analysis is con-

ducted using relevant event parameters as input.

In order to properly distinguish signal and background events, the iden-

tification and selection of objects such as leptons and jets is crucial. In this

section, the identification criteria for event objects will be discussed. In addi-

tion, this section will discuss the parameters used for preselection cuts and as

SVM inputs.
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4.1 Objects

4.1.1 Jets

Hadronic particles, such as pions, protons and b-quarks, are detected as show-

ers of particles within the ATLAS calorimeter systems and are referred to as

jets. As discussed in Chapter 3, particles incident on the ATLAS calorime-

ter systems interact with the calorimeter’s absorbing layers, resulting in the

decay of the incident particle into many lower-energy particles. These lower

energy particles then also decay and are further absorbed and measured by

the calorimeter. This process is repeated until all of the original energy of the

incident particle has been measured and absorbed.

The result of this decay process is a cascade of particles emitted from the

initial point of interaction. Because of the showering aspect of these hadronic

decays, the energy of the incident particle is not measured by a single cell in the

calorimeter, rather it is measured by combining measurements of topologically

connected calorimeter cells in order to determine the energy of the initial

particle. Figure 4.1 shows a plot of the energy measured by cells within the

hadronic calorimeter. As you can see, there are several cells which contain a

large amount of energy over the background. In order to determine the energy

of the incident jet, the energy deposited in each of these cells must be summed.

In order to determine the energy of the incident particle, jets are re-

constructed using the anti-kT algorithm [25] with a distance parameter of
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Figure 4.1: Plot showing the energy distribution of cells within the ATLAS

calorimeter systems. The set of clusters containing large amounts of ET rep-

resent a jet [13].
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R = 0.4. The algorithm uses topological energy clusters created from con-

nected calorimeter cells with a significant signal-to-noise ratio. The jet en-

ergies are initially reconstructed at the EM scale by measuring the energy

of electromagnetic shower particles deposited in the calorimeter. In order to

increase resolution, the topological clusters are then scaled using the Local

Cluster Weight (LCW) method. Finally, after the LCW method has been ap-

plied, the jets are calibrated using the jet energy scale (JES) to compensate

for pile-up, Monte Carlo and other in-situ effects [24]. The jet collection used

for this analysis is therefore referred to as Anti-kT4 LCW+JES.

After reconstruction, jets are required to pass LOOSER cleaning criteria,

designed to remove jets due to cosmic rays, beam induced background and

calorimeter noise [26]. Finally, jets are required to pass the following series of

cuts on η, pT and jet vertex fraction (JV F ):

• |η| < 4.5

• pT > 25(30)GeV for |η| < (≥)2.4

• |JV F | > 0.5 for pT < 50GeV and |η| < 2.4.

The jet vertex fraction (JVF) measures how well the jet points back to the

primary vertex and a cut on JVF is effective at eliminating pileup jets. The

other cuts are optimized through MC studies to create the highest possible

statistical significance for H∗ analyses and to reduce pileup effects [27].
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Due to the major top quark background in the HWW VBF channel, proper

tagging of b-jets is essential. Jets within the range |η| < 2.4 are tagged using

the MV1 tagging algorithm with an efficiency threshold of 85% [28]. Events

containing a b-tagged jet with pT > 25GeV are vetoed.

4.1.2 Electrons

Electrons are reconstructed using a combination of information from the EM

calorimeter and the inner detector. Both multivariate and cut-based methods

are used to select electrons depending on the electron’s transverse momentum.

Low energy electrons, with ET < 25GeV , are selected using the multivariate

electron likelihood method [29] and are required to meet the requirements

of the ”Very Tight Likelihood” criteria. For electrons with ET > 25GeV

the cut-based ”Medium++” criteria is applied, in addition to two additional

cuts imposed in order to improve conversion rejection. In addition to the

normal ”Medium++” requirements, electrons must have at least one hit in the

innermost pixel layer if a hit is expected and their conversion flag is required

to be false.

In addition to the above selection criteria, electrons must also pass isolation

requirements to remove jets misidentified as electrons. For the calorimeter, the

total ET deposited in topological clusters surrounding the electron candidate

is summed, with corrections applied to account for the energy of the electron,

underlying event and pile-up effects. For this analysis, the topological clusters
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in a cone of ∆R = 0.3 around the electron are considered and the resulting

variable is labeled topoEtConeCor(0.3). Electrons with too much energy in

the surrounding calorimeter clusters are vetoed.

Isolation criteria are also applied to electron tracks in the inner detector

in a similar manner. For the inner detector a cone of ∆R = 0.3 or ∆R = 0.4

is used depending on the pT of the electron and the resulting variables are

labeled Ptcone(0.3) and Ptcone(0.4).

Finally, to eliminate electrons which do not originate from the primary

vertex, cuts on the longitudinal impact parameter (z0) and transverse impact

parameter (d0) are applied. A cut is made on z0sinθ to account for the fact that

forward leptons tend to have a larger projection onto the z-axis and therefore a

larger uncertainty. The full electron selection criteria is described in Table 4.1.

4.1.3 Muons

Muons are unique within the ATLAS experiment in that they are long-lived

and do not decay within the ATLAS detector. In addition, muons lose only

a small fraction of their energy within the ATLAS calorimeter systems. As

a result, Muons are reconstructed using all of the ATLAS subdetectors. Pri-

marily, muons are reconstructed by combining a track from the inner detector
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Calorimeter Track Impact

ETGeV Electron ID Isolation Isolation Paramters

topoEtConeCorr Ptcone

10-15

Very Tight LH

iso(0.3)/ET < 0.20 iso(0.4)/ET < 0.06

d0/σd0 < 3.0,

z0sinθ < 0.4mm

15-20 iso(0.3)/ET < 0.24 iso(0.3)/ET < 0.08

20-25
iso(0.3)/ET < 0.28 iso(0.3)/ET < 0.10

> 25 Medium++

Table 4.1: Electron Selection by ET Bin

with a matching track in the muon spectrometer. Muons reconstructed in this

manner are described as ”combined” muons [30]. Muon candidates must pass

a series of cuts to ensure the track is well-reconstructed. These cuts require

that the muon track have hits in the pixel, SCT and TRT subdetectors as well

as having a track in all three layers of the muon spectrometer.

Similar to the electron selection requirements, muons must pass isolation

cuts in both the calorimeter and inner detector in addition to cuts on the

impact parameter. The impact parameter and isolation cuts are described in

table 4.2.

4.1.4 Missing Transverse Energy

The ATLAS detector is not designed to measure neutrinos due to the ex-

tremely small cross section of neutrino interactions. However, it is possible to
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ET Calo. Isolation Track Isolation Impact

(GeV ) topoEtConeCor Ptcone Parameters

10-15 iso(0.3)/ET < 0.06 iso(0.4)/ET < 0.06

d0/σd0 < 3.0,

z0sinθ < 1.0mm

15-20 iso(0.3)/ET < 0.12 iso(0.3)/ET < 0.08

20-25 iso(0.3)/ET < 0.18
iso(0.3)/ET < 0.12

> 25 iso(0.3)/ET < 0.30

Table 4.2: Table of muon isolation cuts by pT .

estimate the energy of neutrinos using the concept of momentum conservation.

For example, consider a W− boson at rest decaying into an electron and an

electron anti-neutrino. Using the ATLAS detector, it is possible to measure

the transverse momentum of the electron. We can then use two pieces of in-

formation to determine the transverse momentum of the neutrino. First, we

know that the initial transverse momentum of the W boson is zero, and second

we know that momentum conservation dictates that the transverse momentum

of the final electron-neutrino system must equal the transverse momentum of

the initial W boson. We can therefore calculate the transverse momentum of

the neutrino as having the same magnitude as the electron’s momentum, but

in the opposite direction such that the final electron-neutrino system has zero

total transverse momentum.

In the simple W boson system, we know that the final energy of the system

should be zero. We call the difference between our measured transverse energy
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(Emeasured
T ) and our expected transverse energy (Eexpected

T = 0) the missing

transverse energy (Emiss
T ). We can calculate the missing transverse energy as

Emeasured
T + Emiss

T = Eexpected
T = 0. (4.1)

We can easily extend this concept to more complicated events involving

multiple particles. We know that the p−p collisions within the ATLAS detector

occur approximately head-on, resulting in zero transverse momentum in the

initial system. Therefore, the total transverse momentum of the final state

objects should also be zero and we can calculate the Emiss
T using equation

(4.1).

For this analysis, the Emiss
T is reconstructed from calorimeter and inner

detector track information with jet objects replaced with information from the

calorimeter [27]. This missing energy definition is denoted by Emiss,J−TRK
T .

4.1.5 Overlap Removal

In the case that two objects overlap within the η − φ plane, the following

overlap removal has been applied.

• If an electron and muon overlap within ∆R < 0.1, the muon is kept and

the electron is rejected.

• If an electron is within ∆R < 0.05 of any muon, the event is rejected.

• If two electrons overlap within ∆R < 0.1, the higher pT lepton is kept.
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• If a jet and electron overlap within ∆R < 0.3, the electron is kept and

the jet is rejected.

• If a jet and muon overlap within ∆R < 0.3, the jet is kept and the muon

is rejected.

∆R is defined as ∆R =
√

(∆η2) + (∆φ2).

4.2 Observables and Event Selection

4.2.0.1 Observables

The analysis described in this thesis relies on support vector machines to

separate signal and background events. In order to properly distinguish events,

the support vector machines rely on well-defined input parameters designed

to exploit differences in signal and background events. In addition, before

events are processed by the SVM analysis, it is important to remove as many

background events as possible using a cut-based approach. This section will

describe the observables used in both the cut-based and SVM portions of our

analysis as well as detailing the cuts used to create the SVM input samples.

As described in chapter 2, the topology of VBF H → WW ∗ → lνlν events

is quite unique. VBF HWW events are characterized by two high-energy jets

in forward regions of the detector along with two central leptons and missing

energy. The parameters chosen for pre-selection cuts and SVM inputs are
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designed to exploit this unique topology. The parameters used for preselection

and SVM input are as follows:

• mττ : In order to reduce background events due to Z → ττ decays, a cut

on the invariant mass of the two τ system is imposed. By assuming that

each measured lepton is the product of a τ → lνν decay and by using

the missing energy to estimate the energy of the neutrinos, mττ can be

calculated. Any event in which the calculated value of mττ is within

25 GeV of the Z mass is vetoed.

• Nb−jet = 0: VBF HWW events involve two initial state quarks interact-

ing to form a Higgs Boson. These initial state quarks are provided by

the interacting protons and are therefore unlikely to be b-quarks. Back-

ground top quark and tt̄ events, on the other hand, are extremely likely

to contain at least one b jet. Therefore, eliminating events containing a

b-tagged jet is effective at removing background events while preserving

most signal events. b-tagged jets are defined as any jet passing the MV1

b-tagging criteria at an 85% operating point and having pT > 25GeV .

• Central Jet Veto (CJV): VBF Higgs events ideally contain two forward

jets and no extra hadronic activity. The presence of additional high-pt

jets indicates background interactions within the event. Therefore, any

event containing a third jet with pT > 20GeV and with η between those

of the two tagged-jets is vetoed.
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• mll, ∆φll: Due to the spin-zero nature of the Higgs boson, the final state

leptons in H → WW ∗ → lνlν decays are preferentially emitted in the

same direction. Due to this effect, leptons resulting from H → WW ∗

decays tend to have low invariant mass, mll, and be close together in φ

space (low ∆φll).

• Outside Lepton Veto (OLV): HWW VBF events are expected to have

two forward jets and two central leptons. As such, any event in which one

of the good leptons has pseudo-rapidity not between the pseudo-rapidity

of the two tagged-jets is vetoed.

• ∆Yjj and mjj: The two tagged jets in VBF HWW events tend to be

found in opposite forward regions of the detector. This results in signal

events having higher difference in rapidity, ∆Yjj and invariant di-jet

mass, mjj, than background events.

• mT : mT is an expansion of the variable initially developed to measure

the mass of the W boson, mW
T . By assuming that the measured lepton

and missing energy are due to the decay of a W boson, the transverse

mass of the W can be determined as

(mW
T )2 = m2

l +m2
ν + 2(ElEν − pl · pν) (4.2)

where l and ν subscripts refer to the final state lepton and neutrino and

E and p are energy and momentum in the transverse direction. This
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expression can be expanded to the H → WW ∗ → lνlν system as

mT =
√

(Ell
T + Emiss

T )2 − |pllT + Emiss
T |2 (4.3)

Note that we have assumed that the neutrino mass is zero such that

pmissT = Emiss
T . For signal events, mT should peak below the mass of the

Higgs boson with no events having mT > mH . Due to imperfections in

the reconstruction of leptons and missing energy, this upper bound does

not hold for all signal events.

• ptotalT : ptotalT is the magnitude of the vector sum of the pT of all objects in

the event and is defined as:

ptotalT =

√
(p1x + p2x + Emiss

x +
∑
jets

px)2 + (p1y + p2y + Emiss
y +

∑
jets

py)2,

(4.4)

where p1 and p2 refer to the momentum of the two final state leptons.

VBF signal events tend to have a lower ptotalT than background events.

ptotalT is particularly useful in removing background events with soft gluon

radiation but no additional high-pT jets.

•
∑
l,j

mlj:
∑
l,j

mlj is the sum of the invariant mass of all four possible pairs

of leptons and tagged-jets. The VBF topology results in jets in the

forward region and leptons in the central region of the detector. This

causes large opening angles between leptons and jets in the VBF signal
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events and therefore signal events tend to have higher
∑
l,j

mlj on average

than background events.

• ηlep Centrality: ηlep Centrality is yet another way of using the fact VBF

signal events tend to have leptons in the central region of the detector,

with tagged jets in the forward region to separate signal from background

events. ηlep centrality is defined as:

ηcentl1
= 2 · | ηl1 − η̄

ηj1 − ηj2
| (4.5)

ηcentl2
= 2 · | ηl2 − η̄

ηj1 − ηj2
| (4.6)

ηcentralitylep = ηcentl1
+ ηcentl2

(4.7)

Where η̄ is the average pseudo-rapidity of the two tagged jets, η̄ =

ηj1+ηj2
2

. For each individual lepton, a value of ηlep centrality greater than

1 indicates that the lepton is not in the region between the two tagged

jets. While a ηlep centrality value near zero indicates that the lepton is

close to the center of the region between the two jets. VBF signal events

tend to have a smaller ηlep centrality than background events.

4.2.1 Event Selection and Input Parameters

Before applying the SVM analysis, events are screened in order to eliminate

as many background events as possible. In order to accomplish this, a set of

preselection cuts are applied as outlined in Table 4.3.
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Object Cut Value

lepton Exactly 1 electron and 1 muon

lepton charge opposite charged leptons

lepton pT pT1 > 22GeV , pT2 > 15GeV

mll mll > 10GeV

Z/DY− > ττ− Veto mττ < 66GeV

njets njets ≥ 2

b− veto nMV 1,85%
jets = 0

CJV npT>20
central jets = 0

OLV OLV= 0

Table 4.3: Event Preselection

OLV= 0 indicates that there are no leptons with pseudo-rapidity outside

of the tagged jets. After preselection, the following SVM input parameters are

stored for each event:

• ptotalT , ηlep centrality, ∆Yjj, mjj, mll, ∆φll, mT ,
∑

l,jmlj

These parameters are specifically chosen to exploit the topological character-

istics of H− > WW VBF events as described in the previous section.
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4.3 Signal-Background Comparison Plots

The section presents a comparison between the signal and background distri-

butions of SVM input variables. Background samples are separated into light

and heavy classes as described in Chapter 8. The processes and associated

MC samples contained in each class are listed in Tables 5.1 - 5.5.

Figure 4.2: Signal-background comparison plots for SVM input parameters.
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Figure 4.3: Signal-background comparison plots for SVM input parameters.

4.4 Expected Yields

Table 4.4 indicates the expected number of events for VBF signal and all

background processes in the 2012 ATLAS data set after preselection. These

numbers are taken from Monte Carlo studies using the MC samples listed in

Tables 5.1 - 5.5.
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Process Yield

VBF HWW 12.7

Z+jets 103.7

Wgamma 11.5

ggf HWW 11.8

ttbar 331.2

WW 95.9

WZ 15.2

W+Jets 18.1

Single Top 41.9

QCD 12.8

Table 4.4: Expected yields after preselection for signal and background pro-

cesses.
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Chapter 5

Signal and Background

Estimation

The analysis presented in this thesis uses 20fb−1 of data collected in pp col-

lisions at the ATLAS detector with a center of mass energy of
√
s = 8 TeV .

Monte Carlo (MC) simulated events representing signal and background were

used to test analysis techniques, create SVM templates and analyze systematic

uncertainties. In the case of W + jets and QCD hadronic events, data-driven

techniques were used to estimate backgrounds due to possible improper fake

lepton predictions in Monte Carlo samples.

In order to better replicate real data, scale factors are applied to the Monte

Carlo events. These scale factors include MC generator scaling, which com-

pensates for discrepancies between MC generator and real data distributions

in variables such as lepton multiplicity and pT . In addition, scale factors cor-
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recting for object energy, such as Jet Energy Scale (JES) and object detection

efficiency, are applied on an event-by-event basis.

Finally, in order to generate conditions inside the actual detector in which

dozens of interactions can occur per bunch crossing, MC events are generated

with multiple pp events superimposed over the event of interest. These over-

lapping events are referred to as pileup and generally consist of soft (i.e. low

energy) hadrons and leptons. An additional scale factor is applied globally

to all Monte Carlo events in order to compensate for the difference in pileup

conditions between the real detector and Monte Carlo simulations.

5.1 HWW VBF Signal

The VBF H → WW ∗ → lνlν Monte Carlo used in this analysis was generated

using Powheg and showered using Pythia with the next-to-leading order parton

distribution function (PDF) set CT10 [16].

5.2 Backgrounds

5.2.1 W+jets

W+jets events constitute a minor background to H → WW ∗ → lνlν signal

events. W+jets events in which the W boson decays leptonically have one

true high-pT lepton in the final state, along with a number of jets. Though
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normally W+jets events are rejected by the requirement that Nlep ≥ 2, it is

possible for W+jets events to pass our analysis cutflow when one of the jets

is incorrectly reconstructed as a lepton.

Since the rate of jet misidentification may not be accurately described by

the Monte Carlo, a data-driven technique is employed to estimate the W+jets

background [17]. This technique involves the creation of two W+jets control

samples. The first control sample requires two fully identified leptons, where

one of the leptons is actually a jet misidentified as a lepton. The second control

sample requires one fully identified lepton and one jet which passes a separate

loosened lepton cutflow designed to enrich the sample in jets misidentified as

leptons. Events in the second control sample are referred to as anti-id events.

To estimate the number of W+jets events passing the full two-lepton cutflow,

a fake factor defined as

fl =
Nid

Nanti−id
, (5.1)

where Nid represents the rate at which jets pass the full lepton cutflow and

Nanti−id represents the rate at which jets pass the modified anti-id cutflow.

The number of W+jets events in the signal sample is therefore given as

NW+jets
id+id = fl ·NW+jets

id+anti−id. (5.2)

NW+jets
id+id represents events with two fully identified leptons where one of the

leptons is actually a misidentified jet. NW+jets
id+anti−id represents the number of
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events with one fully identified lepton and one jet passing the anti-id lepton

cutflow. We are able to calculate NW+jets
id+anti−id by creating an anti-id control

sample using real data events and we are then able to estimate the W+jets

contribution to the signal sample using equation (5.2).

5.2.2 QCD

QCD events involve hadronic decays with no real leptons. Similar to W+jets

events, QCD events are normally rejected by the requirement that Nlep ≥ 2.

However, it is possible for two jets to be misidentified as leptons. Although

the probability of two jets being misidentified is very small, the cross section

of QCD events is very large, resulting in a non-negligible QCD background

to H → WW ∗ → lνlν events. Jets and misidentified leptons within QCD

events have no preferred orientation, making the topological variables used in

the SVM analysis ideal for distinguishing QCD and signal events. The QCD

background was estimated using a data-driven technique similar to the one

used for the W+jets events, except that 2 jets were assumed to be misidentified

as leptons.

5.2.3 Z+jets

Z+jets events involve the decay of a Z boson with additional jets due to

intial state radiation, final state radiation or pileup effects. For this analysis,

Z bosons decaying into a pair of τ leptons are of primary interest as the τ
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leptons can decay into two different flavor leptons through the process Z →

ττ → eνeντµνµντ . In the case that there are at least two high energy jets,

Z → ττ events can mimic VBF HWW events.

Though Z → ττ events may have the same final state particles as VBF

HWW events, the topology of the events are quite different. Most impor-

tantly, leptons and neutrinos created by τ decays are preferentially emitted in

the direction of pτ . Since τ leptons resulting from Z boson decays are highly

relativistic, the final state leptons and neutrinos are clumped together within

the detector. This is in sharp contrast to HWW decays in which leptons and

their associated neutrinos are emitted in opposite directions within the detec-

tor’s rest frame. Knowledge of the τ lepton decays can be used to reconstruct

the invariant mass of the two τ system. Events are rejected if mττ is within

25 GeV of the mass of the Z boson.

Z+jets backgrounds were modeled using MC samples generated with Alp-

gen [21] and showered with Herwig [19], with the exception of Z/γ samples

which were created using Sherpa [22].

5.2.4 Top Quark

Top quark events constitute the largest background to the VBF H → WW ∗ →

lνlν signal. Specifically, tt̄ events, which decay into two W bosons with two

associated jets as shown in Figure 5.1, constitute approximately 50% of the

total background after the full analysis cutflow. The major difference between
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tt̄ events and HWW VBF events is the presence of a b-quark in the tt̄ final

state. The proper tagging of b-jets is therefore imperative for rejection of top

quark backgrounds.

Figure 5.1: Feynman diagram of a tt̄ pair decaying leptonically.

Wt events, in which a single top quark andW boson are produced, as shown

in Figure 5.2, also constitute a major background for this analysis. In the case

where the W boson created by the top decay, as well as the independent W

boson, both decay leptonically, the final state will contain two leptons and

one b-jet. If a second jet is found in the final state, either from initial state

radition (ISR), final state radiation (FSR) or pileup effects, the event will have

the same composition as a true VBF HWW ∗ → lνlν.
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Figure 5.2: Feynman diagram of W boson and top quark associated production

in the t-channel

The majority of top quark events are rejected by the requirement ofN jet
b−tag =

0. In addition, top quark events do not share much of the topology of VBF

HWW events. Specifically, jets produced through top quark decay are not

preferentially emitted in opposite forward regions of the detector and leptons

produced by the decay of the two W bosons are not emitted in the same di-

rection. These differences allow SVM input variables, such as mjj and mll, to

effectively separate HWW and tt̄ events.

The tt̄ and Wt samples were both generated using Powheg [20] and show-

ered using Pythia [18].

5.2.5 ggf Higgs

Higgs bosons created through the gluon-gluon fusion process and decaying lep-

tonicaly through two W bosons are considered as background to VBF events.

Gluon-gluon fusion involves the creation of a Higgs boson through the fusion

of two gluons via a top quark pair as shown in Figure 5.3. Assuming the Higgs
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Figure 5.3: Feynman diagram of Higgs production via gluon-gluon fusion

then decays leptonically in the WW channel, the resulting final state will have

two high pT leptons, missing energy and no jets. Due to the lack of jets in the

tree level final state, ggf events are generally removed by the requirement of

at least two high-pT jets. It is possible, however, for high-pT jets to be found

in the final state due to ISR, FSR or pileup. In these cases, ggf events will

pass the analysis cutflow, resulting in a background on the order of the size of

the expected signal.

ggf HWW events share the exact same lepton topology as VBF HWW

events, making differentiation based on the properties of the final state jets

of paramount importance. Jets from ISR, FSR and pileup are not oriented in

any specific manner within the detector and will therefore have a lower mjj

and
∑
mlj than VBF signal events. These properties are used by the SVM

machinery to distinguish ggf and VBF events.

ggf background events were generated using Powheg and showered using

Pythia.
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5.2.6 Wγ

Wγ events, in which the W boson decays leptonically, make up a very small

background to VBF HWW signal events. In order to pass the analysis cutflow,

at least two extra jets from ISR, FSR or pileup must be present in the final

state and the photon or a jet must be misidentified as a lepton.

Two sets ofWγ Monte Carlo samples were used, one of which was generated

and showered using Sherpa and the other was generated using Alpgen and

showered using Herwig.

5.2.7 Diboson Backgrounds

The largest diboson background is due to WW events, with additional jets

due to ISR, FSR or pileup, in which both W s decay leptonically. These events

share the same final state particles as VBF HWW signal events. However,

they do not have the same topology, which makes the SVM input variables

excellent at differentiating signal and WW background events. In addition,

the small cross section of this background leads to only about 10 WW events

passing preselection.

WZ events make up a very small background to HWW signal events. Since

Z bosons can only decay leptonically into two leptons of the same flavor, WZ

events are generally removed by the requirement of exactly two different flavor

leptons.

Electroweak WW and qq → WW samples were generated and showered
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using Sherpa. gg → WW samples were created using gg2WW [23]. WZ

electoweak samples were generated and showered using Sherpa, while non-

electroweak WZ samples were generated using Powheg and showered using

Pythia.

5.3 MC Data Agreement

This section presents a comparison of data and Monte Carlo distributions for

the observables used in the VBF H → WW ∗ analysis. The MC samples used

in the creation of these plots are listed in Tables 5.1 - 5.5 and include both

VBF HWW signal and data-driven W+jets and QCD backgrounds. Error

bars include both statistical and systematic errors.
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Figure 5.4: Comparison plots of Monte Carlo and data events for SVM input

variables.
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Figure 5.5: Comparison plots of Monte Carlo and data events for SVM input

variables.

96



Figure 5.6: Comparison plots of Monte Carlo and data events for SVM input

variables.
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5.4 List of Monte Carlo Samples

This section presents a list of all Monte Carlo samples used in the VBF H →

WW ∗ analysis. The expected yield associated with each MC sample is listed.

This yield corresponds to the number of events of a given process expected

to pass the analysis pre-selection cutflow in the ATLAS 2012 data set. MC

samples are split into signal, light and heavy classes. These class assignments

are used in the 3-class support vector machine analysis as discussed in Chapter

8.

Process Sample # x-sec(pb) Generator Simulation Expected Yield

After Preselection

VBF H →WW → leplep 161055 0.0356152 PowHeg+Pythia8 Full 12.7

Table 5.1: Table of MC Signal samples.

Process Sample # x-sec(pb) Generator Simulation Expected Yield

After Preselection

schan→lepton 110119 1.818 Powheg+Pythia6 AFII 0.0171

Wtchan→dilepton(DR) 110141 2.349 Powheg+Pythia6 AFII 40.8

tchan→lepton 110101 28.44 AcerMC+Pythia6 AFII 1.07

ttbar(dilepton) 181087 252.89 Powheg+Pythia AFII 331

Table 5.2: Table of the MC samples used for the heavy class.
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Process Sample # x-sec(pb) Generator Simulation Expected Yield

After Preselection

gg →WpWm→ eµνν 169472 0.0208 gg2WW3.1.2 Full 2.56

gg →WpWm→ eτνν 169473 0.0208 gg2WW3.1.2 Full 0.159

gg →WpWm→ νν 169475 0.0208 gg2WW3.1.2 Full 2.44

gg →WpWm→ µτνν 169476 0.0208 gg2WW3.1.2 Full 0.0503

gg →WpWm→ ττνν 169477 0.0236 gg2WW3.1.2 Full 0.0247

gg →WpWm→ νν 169478 0.0208 gg2WW3.1.2 Full 0.0612

gg →WpWm→ τµνν 169479 0.0208 gg2WW3.1.2 Full 0.113

WW → lν(MassiveB/C) 177997 5.679 Sherpa Full 80.2

Wgamma∗ → l 181452 10.175 Sherpa Full 2.81

Wgamma∗ → lνµµ 181453 2.535 Sherpa Full 1.84

Wgamma+ 4p 146434 2.1224 Alpgen+Herwig Full 0.469

Wgamma+ 5p 146435 0.46612 Alpgen+Herwig Full 0.443

Wgamma+ 0p LepPhoEF 146436 229.88 Alpgen+Herwig Full 0.00256

Wgamma+ 1p LepPhoEF 146437 59.518 Alpgen+Herwig Full 0.803

Wgamma+ 2p LepPhoEF 146438 21.39 Alpgen+Herwig Full 3.7

Wgamma+ 3p LepPhoEF 146439 7.1203 Alpgen+Herwig Full 1.41

WW → lν + jj (6EWcoupling) 161985 0.039 Sherpa Full 10.3

ZZ → llνν + jj (6EWcoupling) 161986 0.0012314 Sherpa Full 0.00642

WZ → lllν + jj(6EWcoupling) 161987 0.012559 Sherpa Full 0.594

ZZ → llll+ jj(6EWcoupling) 161988 0.00073568 Sherpa Full 0.0129

W + Z → eνµµ 129478 0.9382 Powheg+PYthia8 Full 1.66

W + Z → eνττ 129479 0.1746 Powheg+PYthia8 Full 0.395

W + Z → µνee 129480 1.399 Powheg+PYthia8 Full 4.37

W + Z → µνττ 129482 0.1746 Powheg+PYthia8 Full 0.382

W + Z → τνee 129483 1.399 Powheg+PYthia8 Full 0.265

W + Z → τνµµ 129484 0.9382 Powheg+PYthia8 Full 0.0633

W + Z → τνττ 129485 0.1719 Powheg+PYthia8 Full 0.107

W − Z → eνµµ 129487 0.639 Powheg+PYthia8 Full 0.796

Table 5.3: Table of the MC samples used for the light class. Part 1.

99



Process Sample # x-sec(pb) Generator Simulation Expected Yield

After Preselection

W − Z → eνµµ 129487 0.639 Powheg+PYthia8 Full 0.796

W − Z → eνττ 129488 0.1125 Powheg+PYthia8 Full 0.202

W − Z → µνee 129489 0.9359 Powheg+PYthia8 Full 4

W − Z → µνττ 129491 0.1125 Powheg+PYthia8 Full 0.15

W − Z → τνee 129492 0.9359 Powheg+PYthia8 Full 0.219

W − Z → τνττ 129494 0.1107 Powheg+PYthia8 Full 0.0399

ZZ → 2e2µ(mll > 4GeV ) 126938 0.1708 Powheg+Pythia8 Full 1.51

ZZ → 2e2τ(mll > 4GeV ) 126939 0.1708 Powheg+Pythia8 Full 0.157

ZZ → 2µ2τ(mll > 4GeV ) 126941 0.1708 Powheg+Pythia8 Full 0.0974

ZZ → 4τ(mll > 4GeV ) 126942 0.0735 Powheg+Pythia8 Full 0.022

ZZ → llνν(MassiveB/C) 177999 0.494 Sherpa Full 0.0804

gg → ZZ → 2e2µ 116603 0.00135 gg2ZZ Full 0.0712

Z → mm2jEW (40 < mll, inc.t-ch) 129925 1.054 Sherpa Full 0.036

Zµµγ(M > 10GeV ) 161998 54.341 Sherpa AFII 1.45

Zµµ+ 1p(60 < M < 2000GeV ) 167331 155 Alpgen+Herwig Full 0.0778

Zµµ+ 2p(60 < M < 2000GeV ) 167332 48.945 Alpgen+Herwig Full 0.238

Zµµ+ 2p(10 < M < 60GeV )2l 181322 52.879 Alpgen+Herwig Full 0.0318

Z → tt2jEW (40 < mll, inc.t-ch) 167724 1.0637 Sherpa Full 1.25

Z → tt2jEW (7 < mll < 40, inc.t-ch) 181349 0.72663 Sherpa Full 0.111

Zττ + 0p(60 < M < 2000GeV ) 146930 712.1 Alpgen+Herwig Full 8.65

Zττ + 1p(60 < M < 2000GeV ) 146931 154.95 Alpgen+Herwig Full 13.2

Zττ + 2p(60 < M < 2000GeV ) 146932 48.767 Alpgen+Herwig Full 26.7

Zττ + 3p(60 < M < 2000GeV ) 146933 14.184 Alpgen+Herwig Full 8.15

Zττ + 4p(60 < M < 2000GeV ) 146934 3.7959 Alpgen+Herwig Full 0.899

Zττ + 5p(60 < M < 2000GeV ) 147094 1.1366 Alpgen+Herwig Full 0.122

Zττ + 4p(10 < M < 60GeV ) 146854 2.592 Alpgen+Herwig Full 0.309

Zττ + 1p(10 < M < 60GeV ) 146881 108.71 Alpgen+Herwig Full 0.411

Table 5.4: Table of the MC samples used for the light class. Part 2.
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Process Sample # x-sec(pb) Generator Simulation Expected Yield

After Preselection

Zττ + 2p(10 < M < 60GeV ) 146882 52.827 Alpgen+Herwig Full 3.84

Zττ + 3p(10 < M < 60GeV ) 146883 11.311 Alpgen+Herwig Full 1.18

Zττ + 0p(60 < M < 2000GeV )2l 169450 712.14 Alpgen+Herwig Full 2.18

Zττ + 1p(60 < M < 2000GeV )2l 169451 154.97 Alpgen+Herwig Full 2.67

Zττ + 2p(60 < M < 2000GeV )2l 169452 48.805 Alpgen+Herwig Full 16.5

Zττ + 3p(60 < M < 2000GeV )2l 169453 14.189 Alpgen+Herwig Full 9.02

Zττ + 4p(60 < M < 2000GeV )2l 169454 3.8005 Alpgen+Herwig Full 2.97

Zττ + 5p(60 < M < 2000GeV )2l 169455 1.1441 Alpgen+Herwig Full 0.748

Zτ(M > 10GeV ) 126854 32.317 Sherpa Full 2.95

Table 5.5: Table of the MC samples used for the light class. Part 2.
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Chapter 6

Support Vector Machines

The goal of the analysis presented in the thesis is to search for evidence of

vector boson fusion Higgs production in the H → WW∗ → lνlν channel in

the 20 fb−1 2012 ATLAS data set. This data set contains millions of events,

most of which are not Higgs boson events. Our task is to remove as many

non-Higgs boson events as possible from the data set and then estimate the

percentage of VBF HWW events in the remaining data set. The removal of

most background events is accomplished through a cut-based approach and

the support vector machine analysis is then used to estimate the percentage

of Higgs boson events in the remaining data set. The analysis presented in

this thesis is therefore a combination of a cut-based pre-analysis and a final

support vector machine analysis.

A cut-based analysis uses manually-created thresholds on relevant parame-

ters in order to remove events from the data set. For example, in this analysis
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we are specifically looking for events with two leptons. Therefore, any event

which does not contain two leptons is removed from the data set. This process

is continued using cuts on various event parameters until no more cuts can be

made without removing significant amounts of signal events from the data set.

The full set of cuts for a specific analysis is referred to as the cutflow and is

described is Chapter 4. In the case of this analysis, we refer to the cutflow as

the preselection cutflow, or simply preselection. In a fully cut-based analysis,

once all relevant cuts have been made, the number of events in the real data

set is compared to expected results based on Monte Carlo studies.

Cut-based analyses are effective at removing background events, particu-

larly when there are very clear constraints on the events of interest, such as

the number of leptons or the number of high-energy jets. However, cut-based

analyses do not take into account correlations between parameters and need to

be tuned manually. In addition, cut-based analyses do not allow for estimation

of the probability that an individual event is a signal or background event. In

order to properly account for correlations between parameters and to estimate

the signal-event probability on an event-by-event basis, multivariate analyses

are employed. A multivariate analysis is designed to take into account many

input parameters at the same time in order to determine the relative proba-

bility of a given event being a signal or background event. In this thesis we

use a specific type of multivariate analysis known as support vector machines

(SVM).
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6.1 Introduction to Support Vector Machines

A support vector machine is a linear event classifier designed to differentiate

between two classes of events, in our case signal and background. In order to

accomplish this differentiation, support vector machines create a separating

hyperplane between signal and background events in feature space. Feature

space is the n-dimensional space in which events are plotted using n distin-

guishing parameters, such as lepton energy and Emiss
T . As a simple example,

let’s assume that we can parameterize events in our analysis by two variables,

H1 andH2 in feature space. We first need to train the SVM by supplying events

of known type, either signal or background. The support vector machine plots

these events in a 2-dimensional space and attempts to draw a hyperplane, in

this case a line, between the signal and background events as shown in Figure

6.1. Once the separating line is determined, the SVM is said to be trained

and can be used to distinguish events of unknown type. The position of the

unknown event relative to the separating line determines the best guess as to

whether the event is signal or background. For each unknown event the SVM

returns a number, referred to as the SVM discriminant, which represents the

distance of the event from the separating hyperplane in feature space. The

sign of the SVM discriminant represents the best guess as to the class of the

unknown event.

As can be seen from Figure 6.1, support vector machines are excellent at

taking into account correlations between independent parameters. No indi-
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vidual cut on H1 or H2 would effectively remove background while preserving

signal events. Rather, it is only by determining the proper relationship be-

tween H1 and H2 that effective differentiation of signal and background events

can be accomplished. In this simple example, it would be possible to create

a cut on a linear combination of H1 and H2 which would perform the same

function as the SVM. However, support vector machines are capable of solving

much more complicated problems involving many parameters with non-linear

separating hyperplanes. This ability to distinguish classes of events in complex

feature spaces makes support vector machines and other multivariate analysis

techniques crucial for high energy physics analyses.

6.2 Determination of the Separating Hyper-

plane

When given a set of data points of known type (signal or background), referred

to as a training set, there are many possible hyperplanes separating the two

classes, as seen in Figure 6.2. In order to determine the optimal hyperplane,

we introduce the idea of a margin and choose our hyperplane such that the

margin is maximized. The margin is the distance between the hyperplane

and the points closest to the hyperplane, represented as half of the distance

d in Figure 6.1. In order to determine the width of the margin for a given

hyperplane, we first must be able to write down an equation representing the
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Figure 6.1: Red signal and blue background events, parameterized by example

variables H1 and H2, separated by a hyperplane. d represents twice the width

of the margin, while r shows the distance from the hyperplane to an arbitrary

point.
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Figure 6.2: Red signal and blue background events separated by several possi-

ble hyperplanes. The goal of the SVM is to find the optimal hyperplane that

maximizes the distance between the hyperplane and the points closest to the

hyperplane.

hyperplane.

The general equation of a separating hyperplane in N -dimensional space

is given by

0 = ~w · ~x− b, (6.1)

where ~x is the coordinate vector, ~w is a vector normal to the plane and b is

the offset of the plane from the origin. It is easy to see that equation (6.1)

represents a line in 2-dimensions with the form y = mx + b, while in three

dimensions it represents a plane. Once the hyperplane has been determined

by fixing ~w and b, we can write the learned function as
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f(~x) = ~w · ~x− b. (6.2)

The sign of the learned function for an arbitrary input vector ~x represents our

best guess as to which class an unknown event belongs. This can be seen by

noting that all blue points in Figure 6.1 have f(~x) < 0, since they lie below the

hyperplane, while all red points have f(~x) > 0. From equation (6.1), we find

that the distance between the separating hyperplane and a point of interest,

~x, is given by

r =
~x · ~w − b
|~w|

. (6.3)

We have a problem however, in that there are an infinite number of normal

vectors ~w which specify the exact same hyperplane. We therefore choose a

normalization of ~w such that the learned function is equal to ±1 at the margin.

Inserting this requirement into equation (6.3), we find that the total width of

the margin is given by

M =
1

|~w|
. (6.4)

We have therefore specified an equation relating the margin, which we wish

to maximize, to the normal vector defining the hyperplane, ~w. From equation

(6.4) we can see that minimizing ~w is equivalent to maximizing M . With

this in mind, we characterize our goal as the minimization of |~w| under the

constraint that
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yi(~w · ~xi − b) ≥ 1 for every ~xi ∈ training set. (6.5)

yi is a manually set variable which provides information on the class associated

with a given point: yi = +1 for signal points and yi = −1 for background

points. This minimization can be accomplished using the method of Lagrange

multipliers. The Lagrangian of interest can be written as

L =
1

2
|w|2 −

N∑
i=1

αi[yi(~w · ~xi − b)− 1], (6.6)

where αi are Lagrange multipliers satisfying the conditions

αi[yif(~xi)− 1] = 0. (6.7)

It is important to note that any point not lying along the margin such that

yif(~xi) = 1 will have αi = 0. This means that only points along the margin

contribute to the definition of our hyperplane. These points are referred to as

support vectors.

In order to minimize our Lagrangian, (6.6), we need to find a point that is

a minimum of L with respect to ~w and a maximum with respect to αi. This

point satisfies the conditions

∂L
∂ ~w

= 0 =⇒ ~w =
N∑
i=1

αiyi~xi, (6.8)
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∂L
∂b

= 0 =⇒
N∑
i=0

αiyi = 0. (6.9)

Inserting these conditions into our Lagrangian, (6.6), we find the dual La-

grangian

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj~xi · ~xj. (6.10)

Note that this dual Lagrangian depends only on the αis and the dot product

of position vectors ~xi · ~xj. This formulation is important for complex systems

in which the training points may not be linearly separable. Once the αis are

known, ~w can be recovered through equation (6.8) and b can be recovered

through the requirement on the support vectors of

yi(~w · ~xi − b) = 1 (6.11)

6.3 Non-Linear Problems

The support vector machine formalism that we have outlined so far is only

appropriate for linearly separable training sets, such as those shown in Figure

6.1. In our discussions up to this point, we have directly translated parameters

taken from the events of interest into points in feature space. However, in non-

linearly separable systems, this method is ineffective as there are no possible

separating hyperplanes. In these cases, we use Mercer’s theorem in order
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Figure 6.3: Two classes of training events, red and blue, described by a single

parameter, x. These two classes are not linearly separable in feature space.

to map our original training points in feature space into higher-dimensional

decisions space.

As an example of this idea, let’s look at a one dimensional feature space

as shown in Figure 6.3. This training set is described in feature space by a

single parameter, x, but is unable to be separated by a single hyperplane (in

this case a point). In order to find a separating hyperplane we need to map

our original feature space into a higher dimensional decision space. We chose

the mapping y = x2 such that each point is now described by two parameters,

(x, x2), as shown in Figure 6.4. In this higher dimensional decision space,

a separating hyperplane does exist which separates the two classes of events.

Therefore, by mapping our initial problem into a higher dimensional space we

have been able to isolate the two classes of events and determine the optimal

separating hyperplane.

In this simple example, we were able to manually chose a mapping function

such that our 1-dimensional problem was easily separable in 2-d space. In

general, however, manually mapping from feature space into decision space is
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Figure 6.4: Two classes of training events, red and blue, described by a single

parameter, x, mapped into a 2-dimensional space by the mapping y = x2.

This mapping allows a separating hyperplane to be created between the two

sets of events. The circled points are the support vectors.

impossible. In order to avoid this problem we employ a ’kernel trick’ based on

Mercer’s theorem. Mercer’s theorem states that a symmetric kernel function

K(xi, xj) can be expressed as an inner product

K(~xi · ~xj) = ϕ(~xi) · ϕ(~xj). (6.12)

if and only if K(xi, xj) is positive semidefinite, that is if

∫
K(xi, xj)g(xi)g(xj)dxdy ≥ 0 (6.13)

for any g. Conversely, Mercer’s theorem allows us to write a dot product of

mapped vectors in terms of a kernel function. To illustrate this, let us define

the particular mapping of a point ~xi in feature space to a point in decisions

space as xi → ϕ(~xi). We can write our dual Lagrangian after this mapping as

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjϕ(~xi) · ϕ(~xj). (6.14)
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As we can see from equation (6.14), ϕ(~xi) only enters into the dual Lagrangian

when dotted with itself (ϕ(~xi) · ϕ(~xj)). We can therefore replace ϕ(~xi) · ϕ(~xj)

in our Lagrangian with a kernel function and write the dual Lagragian as

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(~xi · ~xj). (6.15)

Equation (6.15) represents the exact same Lagrangian as equation (6.14),

except that we have replaced the dot product of the unknown mapping func-

tion, ϕ(~xi) with a kernel function K. We are now in a position to minimize the

Lagrangian (6.15), which is equivalent to minimizing (6.14). This means that

we are able to minimize a Lagrangian in which our training points are mapped

into a higher dimensional space without knowing the details of the mapping.

To reiterate, the use of a kernel function allows us to determine the equation of

an optimal separating hyperplane between two classes in a higher dimensional

decision space without knowing the mapping function ϕ. The minimization

of the Lagrangian, (6.15), determines the values of αi, which can be used to

find ~w and b and thus fix the learned function, (6.2). Figure 6.5 illustrates an

example of a 2-dimensional problem which is not linearly separable in feature

space, but which can be separated using a kernel function.

There are several possible kernels that can be used in SVM analyses. For

the purposes of the analysis discussed in this thesis, a Gaussian kernel function

of the form
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Figure 6.5: Two classes separated by the a non-linear learned function.

K(~xi · ~xj) = e−|~xi−~xj |
2/2σ2

(6.16)

was used. The Gaussian kernel is somewhat of an all purpose kernel function,

in that it provides good results for a wide variety of problems. The Gaussian

kernel has one free parameter, σ, which determines the width of the Gaussian

kernel function. σ affects the rigidity of the learned function in unmapped

feature space. Large values of σ limit the ability of the learned function to

curve, while small values of σ allow for more bends in the learned function.

The value of σ is generally determined through empirical studies conducted

on the problem of interest. However, σ should generally have approximately

the same magnitude as the length of vectors used for training.
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6.4 Soft Margin

In the previous sections we have set a goal of finding an optimal hyperplane

separating two classes of events. We simplified this problem by introducing

the idea of a margin, defined as the distance from the hyperplane to the closest

points of each class. We then determined the optimal separating hyperplane

by maximizing the margin. This system is appropriate for very well separated

data sets; however, most real world problems are not so neat. Most data sets

contain overlapping data points in which the separation between classes is

somewhat murky. In order to find the optimal separating hyperplane in these

situations, we need to slightly modify our formalism.

The use of a so-called hard margin, in which M is defined to be the distance

from the hyperplane to the closest point, allows for a small number of points

to dominate the definition of the hyperplane. In the case where these points

are not characteristic of their respective class, or where the two classes overlap

in a certain region, the hyperplane defined by these points may separate the

two classes very poorly. In order to allow for a more robust hyperplane opti-

mziation, we introduce a soft margin. The idea of a soft margin is that points

are allowed to penetrate the margin, but they are penalized for doing so such

that margins containing large numbers of points are disfavored.

In order to allow for points to penetrate the margin, we must relax the

margin condition, (6.5), and instead require
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yi(~w · ~xi − b) ≥ 1− ξi, ξi ≥ 0. (6.17)

ξi is a free parameter, which allows for points to enter the margin. Terms

outside of the margin have ξi = 0, while for terms inside the margin the value

of ξi is determined by the distance inside of the margin that the point lies.

With our modified margin condition, we can write our Lagrangian in feature

space as

L =
1

2
|w|2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(~w · ~xi − b)− 1 + ξi]. (6.18)

Comparing equation (6.18) with (6.6) we note the addition of the term C
∑N

i=1 ξi.

C is a positive constant, and since ξi is defined to be greater than zero, this

term is positive for all points. Since our goal is to minimize L, this term acts

as a penalty for points that invade the margin, increasing the minimum value

of L for each point inside of the margin. Larger values of C impose higher

penalties on terms penetrating the margin while smaller values of C allow for

many points within the margin. The value of C can be manually adjusted and

is generally set by empirical studies.

In order to simplify our Lagrangian, it is useful to rewrite equation (6.18)

as

L =
1

2
|w|2 −

N∑
i=1

αiyi(~w · ~xi − b) +
N∑
i=1

αi +
N∑
i=1

ξi(C − αi). (6.19)
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Since the last term in the Lagrangian (6.19) is positive, we know that the

minimum of L will be a minimum of ξ. We can therefore use the condition

∂L
∂ξi

= 0 =⇒ C − αi = C, (6.20)

along with conditions (6.8) and (6.9) to write the dual soft margin Lagrangian

as

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj~xi · ~xj, 0 ≤ αi ≤ C. (6.21)

Note that this is exactly the same as dual Lagrangian as (6.10) except that

we have imposed a new condition on αi.

We have now succeeded in finding a form of the dual Lagrangian that when

minimized will yield the optimal separating hyperplane between two classes of

events. This Lagrangian is capable of separating events in a higher dimensional

decision space without requiring that we know the mapping function between

feature space and decision space. In addition, we have been able to allow for

terms to penetrate the margin without modifying the form of our Lagrangian.

In the following chapters we will discuss the use of the SVM technique in the

analysis of VBF HWW events along with expanding this formalism to allow

for multiple support vector machines within a single analysis.
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Chapter 7

2-Class Support Vector Machine

Analysis

As a preliminary test of the support vector machine method for use in H →

WW ∗ → lνlν VBF analyses, a 2-class SVM analysis was performed. Though

we hope to gain increased separating power using 3-class SVM systems, 2-class

analyses offer several advantages. These advantages include having a readily

definable signal region, quick training and classification and easy comparison

with Boosted Decision Tree analyses. Due to these properties, much of the

refinement of the SVM free parameters, input parameters and scale factors

was performed using 2-class SVMs.

2-class SVM analyses are designed to separate between two differing classes

of events, in this case HWW signal events and background events. The math-

ematical formalism of 2-class SVMs is discussed in Chapter 6 and we will
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therefore restrict our discussions to the methodology of this particular analy-

sis. Before beginning the SVM analysis, a set of Monte Carlo events is compiled

that includes VBF HWW signal and all relevant backgrounds. These events

are required to pass all preselection cuts as outlined in Chapter 4.

In order to function properly, support vector machines require two separate

sets of data: a training set on which to define the optimal hyperplane and

determine the learned function; and a test set. The test set must be completely

independent of the training set and is used to test the discriminating power

of the SVM. In order to train an SVM, training events are provided which

include the parameter information and the known class of each event. Using

this information, the SVM is able to create an optimal separating hyperplane

between the two sets of events.

One danger of multivariate analysis techniques is that they will be trained

to separate two specific sets of events, not two distinct classes of events. That

is, the analysis may only be useful for separating the events used for training

and not be able to determine the class of new events. This problem is referred

to as over-tuning. In order to safeguard our analysis against over-tuning, no

events used in SVM training are used for testing. In general, support vector

machines are robust against over-tuning as only a small percentage of training

events are used to define the separating hyperplane.
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7.1 SVM Training Samples

In order to create independent training and testing data sets, Monte Carlo

events passing all preselection cuts are separated into two sets based on event

number. The events are then further subdivided based on their class, resulting

in four independent data sets labeled as signal-even, signal-odd, background-

even and background-odd. The first word in each category refers to the sample

type and the second refers to the event number. Using these four data sets,

two independent SVMs are trained to separate signal from background events.

One SVM is trained using signal-even and background-even events and the

another using signal-odd and background-odd events. The two trained SVMs

are hereafter referred to as even-trained and odd-trained. This procedure

allows for odd-numbered events to be used to test the even-trained SVM and

vice versa, resulting in completely independent training and testing data sets.

In addition, this method allows for all available Monte Carlo events to be

utilized for both training and testing.

In order to properly train an SVM to distinguish between two classes of

events in real data, training samples for the signal and background classes

must accurately represent events found in real data. In order to accomplish

this, SVM training data sets are designed to contain the correct fraction of

Monte Carlo events for each background process. As an example, the creation

of the training data sets for the even-trained SVM will be discussed. The

signal-even training sample is composed of events in the signal-even data set,
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corresponding to approximately 5000 events. The background-even training

sample is designed to accurately represent the composition of background in

the real data and to have approximately 5000 events. The number of events of

each background type contained in the background training sample is propor-

tional to the expected yield of the given background. For example, if tt̄ events

account for 30% of the expected background, then 5000 · 0.3 = 1500 tt̄ events

are taken at random from the tt̄ background-even data set and placed into the

background-even training sample. This procedure is repeated for all relevant

background processes until the full background training sample is created.

After creation of the training data sets, the two SVM’s are trained using a

Gaussian kernel. This training is completed using a C++ implementation of

the SVM formalism developed by Benjamin Whitehouse and Jacob Borgman

and modified by Jeffrey Wetter with help from Noah Kurinsky.

7.2 Determination of the Signal Region

Once the support vector machines are trained, their performance is assessed

using the testing data sets. All odd events make up the testing data set for

the even-trained SVM and are therefore classified using the even-trained SVM.

Likewise, all even events are classified using the odd-trained SVM. This event

classification results in each event being described by a single variable known

as the SVM discriminant, d. The sign of SVM discriminant indicates the

SVM’s best guess as to which class the event belongs. Positive discriminants
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are associated with signal events and negative discriminants with background

events. The separating power of a given trained SVM is determined by measur-

ing the ratio of the number of signal events to the square root of the number

of background events in the signal region. This ratio is referred to as the

significance,

s =
Nsig√
Nbkg

. (7.1)

We have assumed that the number of background events in the signal region is

described by a normal distribution, such that the standard deviation is given

by σ =
√
Nbkg.

The signal region is defined by a single cut, ζ, on the SVM discriminant,

with all events having d ≥ ζ falling into the signal region. In order to determine

the signal region that optimizes the significance, we perform a search over all

possible values of ζ between ζ = 0 and ζ = 3.5, in increments of 0.1. The

significance of the corresponding signal region is calculated for each value of

ζ. The value of ζ that yields the highest significance while maintaining at

least 4 signal events in the signal region is chosen as the signal region cutoff.

The cutoff of at least 4 events in the signal region was used in order to avoid

impractically small numbers of VBF H → WW events in the signal region.

Figure 7.1 shows the SVM discriminant for signal and background Monte

Carlo events along with the optimized signal region. This plot was created

using both even and odd numbered Monte Carlo events with each event scaled
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Figure 7.1: Signal-background discrimination or the 2-class SVM. The ex-

pected significance in the signal region is 2.22σ.

to represent the expected yield in real data. This scaling allows for less than

one total event to be present in a given bin since each event has a very small

weight.
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7.3 Parameter Optimization

7.3.1 SVM Parameters

The SVMs described in this analysis allow for a soft margin and are trained

using a Gaussian kernel. As described in section 6, the soft margin introduces

the free parameter, C, which describes the rigidity of the margin. In addition,

the Gaussian kernel, (6.16), relies on the free parameter σ, which describes

the width of the Gaussian distribution. σ should in general be on the order

of the size of the input parameters, in this case σ ≈ 1. The value of C is

varied logarithmically, as small variations in C do not affect SVM performance.

Optimal values of C and σ were found by performing a grid scan using the

significance of the signal region as a figure of merit.

The grid scan was performed by training a series of SVMs with different

values of C and σ and evaluating the separating power of each SVM. The values

of C and σ were allowed to vary between 0.5 and 100. In order to maintain

stability between SVMs, the training samples were kept constant between

trainings. The optimal values of the two free parameters were determined to

be σ = 1.2, C = 4. Once set, these values were not changed throughout the

remainder of the analysis.
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Figure 7.2: Grid scan over values of C and σ. Red indicates areas of better

SVM performance.
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7.3.2 Input Parameters

The design of a support vector machine analysis requires that the input pa-

rameters be mapped into an n-dimensional parameter space, where n is the

number of input parameters. The input parameters are treated as components

of vectors in this space. As such, it is advisable to scale all input parameters to

be of the same order of magnitude to prevent parameters with naturally larger

values, pT for example, from dominating parameters with naturally smaller

values, ∆φ for instance. For this analysis, each input parameter was initially

given a scale factor to bring its value to between approximately 0 and 1. Mod-

ifying the scale factors on a parameter-by-parameter basis influences the result

by prioritizing certain parameters over others.

In order to explore the effect of the parameter scaling on the SVM training,

a Markov Chain Monte Carlo (MCMC) study was conducted using significance

in the signal region as a figure of merit. The Markov Chain Monte Carlo

technique involves using a random walk to modify the scale factor associated

with each input parameter.

Initially, the value of each scale factor was set manually such that each

input parameter had a maximum value near 1. Once the scale factors are set,

two SVMs (even-trained and odd-trained) are trained and the significance of

the optimal signal region is determined. The MCMC then slightly modifies the

values of individual scale factors and the SVMs are retrained. The significance

of the new SVMs, trained using the modified parameter scaling, are then
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Parameter ptotalT ηlep cent. ∆Yjj mjj mll ∆φll mT Σl,jmlj

Scaling 1/100 1/2 1/12 1/3000 1/200 1/π 1/200 1/3000

Table 7.1: Scale factors applied to SVM input parameters

compared with the significance of the previous SVMs. If the new SVMs result

in a higher significance, then the new scale factors are kept. If the new scale

factors do not result in an increase in significance, then the previous scale

factors are retained. Once the comparison between the new and old SVMs

is completed, the scale factors are again modified slightly and the process is

repeated. To avoid being stuck in a false maximum in the scale factor phase

space, the MCMC has a small probability to accept a new set of scale factors

even if the significance of the new SVM training is lower.

An MCMC study was conducted using 10,000 trials. Figure 7.3 shows the

expected significance values obtained over the 10,000 trials. The final scale

factor values used for the 2-class analysis were chosen to give a significance

of approximately 2.25σ. A set of scale factors were chosen which are stable

under small variations in value and which provided a 10% increase in expected

significance over the baseline scaling. Table 7.1 lists an example of the scale

factors used for each input parameter.
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Figure 7.3: Plot of expected significance in the 2-class SVM analysis over

10,000 MCMC trials.
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Chapter 8

3-Class Support Vector Machine

Analysis

In addition to the 2-class analysis described in chapter 7, a 3-class SVM analy-

sis was performed. 3-class SVM analyses involve splitting background samples

into two separate classes referred to as light and heavy. A separate SVM is

trained to distinguish between each of the three classes, resulting in a total

of 3 SVMs: Signal vs. Light (SvL), Signal vs. Heavy (SvH) and Light vs.

Heavy (LvH). Once these SVMs are trained, each event is classified using all

3 SVMs. The result of this procedure is that all events are described by three

SVM discriminants and can be plotted in 3-space.

The goal the 3-class SVM procedure is to allow better discrimination be-

tween different types of background. We hypothesize that grouping all back-

ground events into the same class effectively removes information from the
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analysis and may lead to non-optimal class separation. Figure 8.1 illustrates a

simple example of a 3 class SVM system in which each event in characterized

by 2 parameters, (H1, H2). The red points indicate signal events while the

green and blue points represent two separate background classes. We can see

that the blue background points are distinct from both red and green points

and that a simple hyperplane can be formed between the blue points and all

other points. By allowing blue events to constitute a separate class, a simple

separation can be made between the red signal events and all blue events,

leaving only the problem of separating the red and green events. This simple

separation might not be possible in the case of a 2-class analysis, as the blue

background events would be grouped with the green background events. One

goal of our analysis is to test for improvements in signal-to-background sepa-

ration by using a 3-class SVM system in comparison with a 2-class analysis.

For this analysis, each background type would ideally have its own class, al-

lowing the SVM to detect differences between individual background processes.

However, the machinery and computing power required to create this many

classes is impractical for our analysis. As such, the choice was made to sepa-

rate the background processes into two classes, with all top quark backgrounds

being placed into the heavy class and all other background being placed into

the light class. Top quark events make up over 50% of all background events

after preselection. As such, placing all top quark events into the heavy class

results in approximately the same number of expected events in the light and
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Figure 8.1: Example of a 3-class analysis with red points representing signal

events and green and blue points representing two separate classes of back-

ground events.
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heavy classes. In addition, top quark events (tt̄ and tW ) are unique from other

backgrounds in that they contain two W bosons and high-pT jets at tree level.

This section will discuss the training and classification procedure of events

in the 3-class SVM analysis. In addition, the analysis of test data sets and

real data sets will be discussed.

8.1 SVM Training and Classification

All events used in this analysis are required to pass the preselection cutflow

as described in Chapter 4. Once selected, Monte Carlo events are split into 6

independent data sets. First, the events are split into two independent data

sets based on event number, with all even-numbered events placed in one set

and all odd-numbered events placed in another. The two data sets are then

further subdivided into 3 independent classes labeled as signal (S), heavy (H)

and light (L). The signal class contains only H → WW → lνlν VBF events,

while top quark events, including tt̄ and single top backgrounds, are placed

into the heavy class. All other backgrounds, including vector-boson, ggf Higgs

and qcd backgrounds are placed into the light class. Vector-Higgs samples are

not included in this analysis as their topological signature differs significantly

from that of the VBF signal events and they constitute less than 1% of the

predicted Standard Model yield after preselection.

The even-numbered and odd-numbered data sets provide completely inde-

pendent samples with which to train two sets of independent SVMs in parallel.
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For a single analysis, only one set of trained SVMs is required, as such, the

even and odd-numbered data sets are used as a cross check. As our support

vector machine formalism does not support negative event weights, any event

with negative weight is ignored in training and classification. Events with neg-

ative weight are, however, included in Standard Model yield predictions used

in the construction of training and pseudo-data sets. The same procedure is

followed to train and classify the even and odd-numbered data sets. However,

for the sake of clarity, we will discuss only the training of the even-numbered

events.

In order to train the three separate SVMs, 3 sets of training samples must

be created. Each training sample is designed to accurately represent the com-

position of real data for a specific class. For the purposes of SVM training, each

event is considered to have a weight of unity. It is therefore essential to create

training data sets which contain the correct number of events of each process.

To accomplish this goal, training sets are created such that the percentage

of events for each background process is equal Standard Model predictions.

To illustrate this process, the creation of the heavy training sample, contain-

ing only top quark events, will be discussed. The total expected yield after

preselection of all samples included in the heavy class is approximately 373

events. Of those expected events, approximately 331 are tt̄ events. Therefore,

331/373 = 89% of the events in the even-numbered heavy training sample are

taken from the even-numbered tt̄ data set.
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The same procedure is followed for all other samples in the heavy and light

classes. The total number of events in the heavy and light training classes is

set to match the number of events in the signal training sample. The signal

training sample is made up of only H → WW ∗ → lνlν VBF events. In order

to utilize the largest possible training sample, all even-numbered VBF events

are included in the signal training sample, corresponding to approximately

5000 events.

Once training samples have been created representing the light, heavy and

signal classes, two sets of three SVMs are created. A set of SVMs is trained

using a Gaussian kernel to separate between each of the three classes using only

even numbered training samples, resulting in three separate SVMs: SvL, SvH,

LvH. The same procedure is followed for the odd number training samples,

resulting in a total of 6 trained SVMs. After each SVM has been trained, all

events are classified using the opposite numbered SVMs (i.e. all even numbered

events are classified using all three odd-trained SVMs and all odd numbered

events are classified using all three even-trained SVMs). This training and

classification method allows all Monte Carlo events passing preselection to be

parameterized by three numbers corresponding to the discriminants of each of

the three SVMs.
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8.2 Gram-Schmidt Orthogonalization

After event classification, each event can be described in vector notation using

the SVM discriminants from the 3 SVMs, (SvL, SvH, LvH). These discrimi-

nants tell us about the distance from each SVM’s separating hyperplane to the

point of interest in feature space. However, we can not simply plot these three

SVM discriminants as points in 3-space, as the separating hyperplanes are

not necessarily orthogonal in feature space. As an example, Figure 8.2 shows

three classes of points plotted in feature space with hyperplanes separating

each of the three classes. For the purposes of this illustration, we have chosen

a simple example in which the separating hyperplanes are straight lines. We

can see in Figure 8.2 that moving perpendicularly away from one hyperplane

necessitates moving toward or away from another hyperplane. The distance of

a point of interest from any of the three separating hyperplanes is dependent

on the distance of that point from the other two hyperplanes. This is clearly a

problem if we would like to plot our events in standard 3-space, since moving

in the y direction should not affect our x position. Therefore, plotting our

3 SVM discriminants of classified events, (SvL, SvH, LvH), in 3-space would

misrepresent the actual relationship between classified events and the three

separating hyperplanes. To avoid this problem we utilize the Gram-Schmidt

orthogonalization procedure to determine an orthogonal basis in which to plot

our events.

The Gram-Schmidt procedure is based on the projection of one vector onto
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Figure 8.2: 3 classes of events represented by red, green and blue points. Each

event is parameterized by two values (H1, H2). The three hyperplanes, each

separating two classes of events, are non-orthogonal. This prevents the svm

disrciminants from being plotted independently in 3-space.
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another. For example, given two vectors u1 and u2, we say that the projection

of u2 onto u1 is given by

proju1
u2 =

< u1,u2 >

< u1,u1 >
u1, (8.1)

where < u1,u2 > indicates the inner product of vectors u1 and u2. Given

three vectors u1, u2 and u3, the Gram-Schmidt procedure allows us to write

three orthogonal bases as

u′1 = u1, (8.2)

u′2 = u2 − proju1
u2, (8.3)

u′3 = u3 − proju1
u2 − proju′

2
u3. (8.4)

In the case of this analysis, we are interested in finding an orthogonal basis

for the separating hyperplanes of three distinct SVMs (SvL, SvH, LvH). From

Chapter 6 we recall that each separating hyperplane is parameterized in terms

of a normal vector w. We can parameterize w for each trained SVM as

wSvL =

SVSvL∑
i

yiαiϕ(xi). (8.5)

wSvH =

SVSvH∑
i

yiαiϕ(xi). (8.6)

wLvH =

SVLvH∑
i

yiαiϕ(xi). (8.7)
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The sum is taken over all support vectors for the given trained SVM. yi rep-

resents the known class of the event xi, and αi is the corresponding Lagrange

multiplier. ϕ is the mapping function from feature space to decision space. Ap-

plying the Gram-Schmidt procedure to the normal vectors, w, we can define

the (x, y, z) coordinates of classified events in an orthogonal basis as

X(x) =
< x,w′SvL >

< w′SvL,w
′
SvL >

, (8.8)

Y (x) =
< x,w′SvH >

< w′SvH ,w
′
SvH >

, (8.9)

Z(x) =
< x,w′LvH >

< w′LvH ,w
′
LvH >

. (8.10)

We have therefore found a means of translating events and their SVM discrim-

inants into points in an orthogonal 3-space. Using this procedure, it is possible

to directly compare the SVM discriminant vectors of events, allowing for the

creation of class templates and probability distribution functions as discussed

in the next section.

8.3 Template and PDF Creation

After event classification, each event can be described in vector notation using

the SVM discriminants from the 3 SVMs (SvL, SvH, LvH). A scatter plot of

the Gram-Schmidt orthogonalized SVM discriminants for all even-numbered

events is shown in Figure 8.3. As can be seen from this scatter plot, each class

inhabits its own phase space, with distinct regions of overlap.
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Our goal is to establish the probability that an event of unknown type

belongs to each of the three classes. Logically, we would expect that events

falling into the top-right corner of Figure 8.3 would most likely be signal,

while events in the bottom left corner would be light or heavy. In order to

quantify this probability, we convert the scatter plot of events associated with

each class into a binned 3-dimensional histogram known as a template. Each

bin in the template is characterized by the total weight of events falling into

that bin. The entire histogram is normalized such that the total weight of

each template is unity. For the creation of templates, all available MC events

are used. Each event is weighted by Monte Carlo scale factors as described

in Chapter 5 and normalized such that the total weight of each background

process is proportional to Standard Model predictions.

In order to more accurately represent the true weight associated with in-

dividual points, the binned templates are interpolated into smooth functions.

In order to find the interpolated weight associated with a specific point, a

weighted average is taken of the bins closest to the point of interest. Fig-

ure 8.4 shows a contour plot of the signal, light and heavy class interpolated

templates. The three contour plots are superimposed in order to show class

separations. We interpret an individual interpolated template as a probability

distribution function (pdf) relating points described by three SVM discrimi-

nants (SvL, SvH, LvH) to the probability that an event described by this point

belongs to a specific class.
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At this point in our analysis we have trained two separate sets of SVMs,

one on all even events and one on all odd events. We then classified all events

using SVMs trained on opposite-numbered events. Finally we have created

interpolated templates which we can use to estimate the probability that a

given event is a member of any of the three classes. We are now prepared

to analyze a set of data in which each event comes from an unknown class.

Our goal is to determine the number of events from each of the three classes

contained in the sample data set. In order to accomplish this goal, we use a

likelihood technique.

8.4 Likelihoods

We have now developed a method for determining the relative probability that

an unknown event belongs to each of the three classes. Using this information

we can write down the likelihood function,

L =
N∏
i

(θSi + φLi + ηHi). (8.11)

The index i runs over all events in the sample and Si, Li and Hi are the PDF

values of the signal, light and heavy classes for a given event. θ, φ and η are

the percentage of signal, light and heavy events in the unknown sample. η

is a dependent parameter, defined to be η = (1 − θ − φ) such that the total

percentage of signal, light and heavy events sums to unity. This likelihood
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Figure 8.3: 3-dimensional plot showing the (SvL, SvH, LvH) SVM discrimi-

nants for each event. Events are color-coded by class as Signal, Heavy and

Light.
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Figure 8.4: A contour plot of PDF templates created from Figure 8.3. Events

are color-coded by class as Signal, Heavy and Light.
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function will have a maximum at values of θ, φ and η that correspond to

our best guess as to the actual signal, light and heavy event fractions in the

unknown sample.

Though this likelihood formulation has simplified our problem, maximizing

a product over hundreds or thousands of events is computationally expensive.

In order to further simplify our problem, we replace the likelihood function,

(8.11), with a log-likelihood,

Λ = ln(L) =
∑
i

ln(θSi + φLi + ηHi). (8.12)

The log-likelihood function will have a maximum at the same values of θ, φ

and η as the likelihood function, but has the advantage of using a sum over i

instead of a product.

In order to maximize the log-likelihood function, a C++ version of the

MINUIT package was used. However, MINUIT is not designed for problems

involving mutual restrictions as is the case in (8.12). Specifically, the value of

θ and φ must satisfy the requirement,

θ < 1, φ < 1, θ + φ ≤ 1. (8.13)

In order to avoid the problem of mutual restrictions within MINUIT, the

variable transform

θ = x1, φ = (1− x1)x2, η = (1− x1)(1− x2) (8.14)
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was used. The variables x1 and x2 were restricted to lie in the range (0 < x1 <

1, 0 < x2 < 1). In this manner, MINUIT was only responsible for maximizing

the log-likelihood, (8.12), with respect to two free parameters, while preserving

the mutual restrictions imposed on the likelihood.

8.5 Pseudo-Experiments

We have now created a methodology for determining the fraction of events of

each class in a test sample. To accomplish this, we first classified all Monte

Carlo events passing preselection cuts using three trained SVMs. We then

used these classified events to create templates, allowing us to estimate the

probability that a given event belongs to each of the three classes. Finally, we

developed a likelihood function designed to determine the fraction of events of

each class in a sample containing events of unknown type. The ultimate goal

is to use this likelihood procedure to estimate the number of HWW signal

events in a real data sample. However, first we need to test the accuracy of

our method by conducting pseudo-experiments using Monte Carlo events.

Pseudo-experiments involve the use of pseudo-data sets containing Monte

Carlo events designed to recreate real data samples. In order to create a

pseudo-data set, Monte Carlo events are taken from all relevant background

samples in proportion to their expected yields. The number of events from each

background type is allowed to fluctuate according to a Poisson distribution in

order to simulate uncertainty in the number of background events in the real
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data. The mean number of events in each pseudo-data set must match the

number of real data events from the 20 fb−1 ATLAS data set which pass all

preselection cuts. The number of VBF HWW signal events in each pseudo-

data set was varied in order to test the robustness of the SVM methodology

against various signal strengths.

Each pseudo-data set is analyzed using the likelihood method described

in section 8.4. The maximized likelihood provides our best estimate of the

fraction of signal, light and heavy events in a given pseudo-data set. Since the

exact fraction of each class in each pseudo-data set is known, we can compare

the likelihood estimate of the fraction of signal events in the pseudo-data set

with the true number of signal events. The true number of signal events in

a given data set is labeled ρ and the likelihood estimated fraction of signal

events is labeled as R. We can compare these two numbers to find the bias,

defined as

β = R− ρ. (8.15)

Assuming a perfect analysis, the bias should be zero for every pseudo-data

set. However, for a real analysis this is generally unattainable. If the bias is

stable across pseudo-data sets with various signal fractions, we can compensate

for this bias when analyzing the real data. We correct our best guess as to the

fraction of signal events in the real data set using the equation
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θtrue = θfit − β. (8.16)

θtrue represents the bias-corrected best guess as to the fraction of signal events

in the real data sample and θfit is the fraction of signal events returned by the

SVM analysis procedure.
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Chapter 9

Systematics

Unfortunately, it is not possible for us to open up the detector and peer in

upon the Higgs boson as it is created. We must instead rely on the ATLAS

detector to observe the decay products of the Higgs boson and on reconstruc-

tion algorithms to turn information from the detector into physics objects.

Throughout this process, we rely of many assumptions about the detector,

including the rate at which various objects are correctly identified, the rate

at which objects are not detected and the way in which an object’s measured

energy relates to the object’s true energy. In addition, we rely on assump-

tions about our knowledge of object interactions, decay rates and momenta

in order to create accurate Monte Carlo simulations of the Higgs boson decay

as well as background processes. Each of these assumptions brings with it an

associated uncertainty referred to as a systematic error. In order to properly

assess the error on our measurement of the Higgs boson, we must identify and
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asses as many sources of systematic uncertainty as possible. This section will

describe the most important sources of systematic uncertainty for the VBF

HWW analysis as well as the methods used to analyze systematic errors.

9.1 Systematics Errors within the 3-class Anal-

ysis

We are interested in determining the effect of each source of systematic uncer-

tainty on our estimate of the number of signal events in the 2012 ATLAS data

set. To this end, we use dedicated Monte Carlo data sets specifically designed

to vary parameters associated with specific systematic uncertainties. For ex-

ample, it is possible that the MC samples used in this analysis overestimate

the electron identification efficiency. In order to estimate the effect that this

would have on the real data analysis, a specific systematic Monte Carlo sample

is created in which the electron identification rate is decreased. By analyzing

the difference in results between the nominal and systematic SVM analyses, it

is possible to estimate the uncertainty due to each source of systematic error.

In order to accurately estimate the effect of each type systematic uncer-

tainty on the real data analysis, it is important that systematic samples are

treated in the same manner as real data samples. This means that systematic

samples are classified using SVMs trained with nominal MC samples and sys-

tematic pseudo-experiments must be performed using nominal pdf templates.
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A set of pseudo-experiments is performed for each systematic MC sample.

The difference in the estimated number of signal events in the nominal and

systematic pseudo-data sets is taken to be the uncertainty for each systematic

source.

9.2 Detector Modeling Systematics

After Monte Carlo samples are generated, showered and reconstructed, scale

factors are applied in order to match the distributions of important variables

between Monte Carlo and real data samples. These scale factors can be applied

in two different ways, the first being to apply an individual weight to each

event. Event weights are taken to be the value of a given event when plotting

histograms or determining yields. By applying event weights, it is possible to

adjust the shape of various distributions to better match data. For example,

if the Monte Carlo simulated data is not producing enough events with 4 jets,

a scale factor could be applied to events with Njets = 4 in order to boost the

number of expected 4-jet events in Monte Carlo samples.

The second method of modifying the distribution of Monte Carlo samples

is to apply scale factors directly to the parameter of interest. This technique

is primarily used for modifying the expected energy of objects such as leptons

and jets. By applying scale factors to specific parameters, it is possible to

influence a single distribution without affecting the distributions of other event

parameters.
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Each method of scaling Monte Carlo events comes with an associated un-

certainty. In order to asses this uncertainty, specific Monte Carlo data sets are

created in which a single scale factor is modified up or down by one standard

deviation. All other scale factors are left at their nominal values, except in the

case of correlations. In this way, each source of systematic uncertainty can be

evaluated independently. In the following sections, the event and parameter

scalings associated with various objects and their systematic assessments will

be discussed.

9.2.0.1 Lepton Uncertainties

In order to match the trigger, reconstruction and identification [31][32][33][34]

rates of leptons between Monte Carlo and data samples, scale factors are ap-

plied to the weight of each Monte Carlo event. These scale factors are deter-

mined by comparison of lepton trigger, identification and reconstruction rates

between data and Monte Carlo samples in Z/DY events. Z/DY events are

unique in that their final state contains two high-energy leptons with invariant

mass close to the Z mass and no tree-level jets or missing energy. This simple

final state allows for the creation of a very pure set of real data Z/DY events,

allowing for the direct comparison of MC and real data events.

Once a set of data and Monte Carlo Z/DY events have been created, the

tag and probe technique is used to identify the rate at which leptons are

triggered, reconstructed and identified. The tag and probe technique involves
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the use of a well-identified tag lepton and a less-well identified probe lepton.

The rate at which the probe lepton is able to be identified and reconstructed

is compared between the MC and data samples. The associated lepton scale

factor is taken to be the ratio of the data and MC rates. For example, the

electron identification scale factor is taken to be the rate at which the probe

electron is identified in real data divided by the rate at which the probe electron

is identified in Monte Carlo samples.

In addition to scale factors applied to the overall event weight, lepton

energies and resolution are also corrected in order to better match Monte

Carlo samples to real data [35][36]. These scale factors are determined by

comparing the width and mean of di-lepton invariant mass distributions in

Z/DY events. In order to evaluate systematic uncertainties based on all lepton

scale factors, each scale factor is independently varied up and down by one

standard deviation.

9.2.1 Jet Energy Uncertainties

In order to account for differences in jet energy and resolution between MC and

data events, scale factors are applied directly to jet objects. The systematic

uncertainties due to the jet energy scale (JES) corrections are divided into 12

separate systematics as per the recommendation of the Higgs working group.

These 12 systematic uncertainties are:

• in-situ: detector
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• in-situ: modeling

• η inter-calibration: modeling

• η inter-calibration: stat+method

• high pT jets

• pileup: µ

• pileup: number of primary vertices (NPV)

• pileup: pT

• pileup: ρ topology

• flavor composition

• flavor response

• b-JES

These 12 uncertainties include four systematics dedicated to the modeling

of pileup. The pileup conditions within the detector are important for the

correct modeling of jet energies. This is due to the fact that jets are recon-

structed by adding up all of the energy deposited within a cone surrounding

the jet within the calorimeter. Pileup objects such as soft gluon radiation may

be present within the jet’s cone and therefore contribute to the total recon-

structed jet energy. The reconstructed jet energy is therefore scaled to account
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for the pileup conditions. To asses the uncertainty associated with this scaling,

four separate JES systematics are analyzed. Pileup: µ accounts for possible

differences in the pileup conditions between MC and data events. The pileup

pT and pileup ρ systematics estimate the uncertainty in the pT and total event

energy due to pileup events. Finally, pileup NPV accounts for the number of

additional primary vertices due to additional collisions within the detector.

There are 2 systematics dedicated to the in-situ jet calibration: in-situ: de-

tector, which estimates uncertainties in how jets are reconstructed within the

detector, and in-situ: modeling, which accounts for uncertainties in jet mod-

eling. In addition, there are 2 η inter-calibration systematics which estimate

the uncertainty in parton showering models. In particular, these systematics

account for potential mismodeling of additional radiation within the hadronic

calorimeter.

The flavor composition systematic accounts for uncertainties in the fraction

of light quarks and gluons within jets, while the flavor response systematic

estimates uncertainties specifically due to gluon jets. The jet energy scale of

b jets is accounted for independently using the b-JES systematic.

In addition to the JES systematics, a jet energy resolution (JER) system-

atic is also evaluated by smearing the energy of reconstructed jets.
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9.2.2 Missing Transverse Momentum Systematics

Missing transverse momentum (Emiss
T ) is calculated by summing the pT of all

hard objects emitted from the primary vertex as well as soft (i.e. low en-

ergy) objects. As such, the calculation of the Emiss
T relies on proper scaling

of hard jets and leptons as well as the scale and resolution of soft objects.

In order to estimate the systematic uncertainty of the missing transverse mo-

mentum due to hard objects, the jet and lepton uncertainties discussed above

are propagated into the Emiss
T . In addition, separate systematic uncertainties

are estimated by modifying the scale and resolution of soft objects used in the

calculation of Emiss
T .

9.2.3 b-tagging Systematics

Within this analysis, b-jets are identified using the MV1 tagging algorithm

with an 85% working efficiency. In order to estimate the systematic uncer-

tainty associated with b-tagging, a set of 6 uncorrelated systematic variations

are used, corresponding to the number of pT bins used for b-tag calibration.

These systematics vary the efficiency of b-tagging in Monte Carlo samples by

modifying the event weight on an event-by-event basis. In addition, separate

systematics are used in order to estimate the uncertainty in the mistagging of

light and c jets as b jets.
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9.3 Theory Uncertainties

Monte Carlo simulations represent our best estimate of the real particle in-

teractions within the ATLAS detector. However, these simulations are in no

way perfect representations of actual physical interactions and different Monte

Carlo simulations may vary in important ways. In order to estimate the uncer-

tainty due to possible differences between Monte Carlo and real data events,

multiple Monte Carlo simulations are compared. As with detector systematics,

dedicated pseudo-experiments are preformed using alternative Monte Carlo

simulations and the difference in estimated signal fraction between nominal

and systematic pseudo-experiments is taken to be the systematic error.

9.3.1 tt̄ Systematics

tt̄ events make up the largest single background to VBF HWW events. As

such, proper generator modeling of tt̄ events is of particular importance. In

order to estimate the uncertainty due to the choice of tt̄ generator, analysis

results were compared using the nominal Powheg+Phythia generator and par-

ton shower and the MC@NLO+Herwig generator and parton shower. For this

systematic analysis, all Monte Carlo samples except tt̄ were unchanged and

the nominal Powheg tt̄ sample was replaced with an MC@NLO sample. The

difference in the final result between pseudo-experiments using Powheg and

MC@NLO tt̄ samples was then taken to be the tt̄ generator uncertainty.

In addition to the generators, the systematic uncertainty due to the choice
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of parton distribution function (PDF) within the generators was also ana-

lyzed. Using the MC@NLO generator, pseudo-experiments were conducted

using various PDF sets. It was determined that the systematic variation due

to the choice of PDF set was negligible in comparison with the generator

systematic. Therefore, systematic variations due to the choice of tt̄ parton

distribution functions were neglected.
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Chapter 10

Results

The goals of the analyses outlined in this thesis are to validate the support

vector machine analysis method in high energy physics searches as well as to

search for evidence of vector boson Higgs production in the H → WW ∗ → lνlν

channel. In order to accomplish these goals, several analyses were performed.

First, in order to offer direct comparisons with a parallel VBF H → WW ∗

analysis using boosted decision trees, a 2-class support vector machine analy-

sis was performed. The 2-class analysis was designed to validate the support

vector machine methodology as well as to allow for tuning of analysis param-

eters. After tuning, SVM analysis results using Monte Carlo data sets were

compared with results from the boosted decision tree analysis. In addition, a

VBF H → WW ∗ search was conducted on the 20 fb−1 2012 ATLAS data set.

After completion of the 2-class SVM analysis, a 3-class SVM analysis was

conducted. For this analysis, background events were split into two separate
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classes and a set of 3 support vector machines was trained to distinguish

between each of the three classes. The goal of this analysis was to investigate

improvements in expected significance in multi-SVM systems as well as to

conduct a VBF Higgs search in the 2012 ATLAS data.

All Monte Carlo samples used for the analyses described in this thesis are

listed in Chapter 5. All Monte Carlo events were normalized to match expected

yields in the 2012 ATLAS data set. Events with negative event weights were

ignored, as negative event weights are not supported by our SVM machinery.

For the nominal analysis, only the W+jets and qcd samples are allowed to

have negative event weights and only a small fraction of events are negatively

weighted. In addition, the tt̄ generator systematic samples include events

with negative weights due to the weighting scheme employed by MC@NLO.

Studies were conducted both ignoring events with negative weight and using

the absolute values of events weights. In all cases, the effect on final fit results

was negligible.

After pre-selection, the 2012 ATLAS data set used in this analysis con-

tained 667 events with an expected 12.7 VBF H → WW ∗ signal events based

on Monte Carlo studies. In order to facilitate comparison with other analyses,

all ntuples used by the 2 and 3-class SVM analysis were created using the

ATLAS HWW group’s centrally-produced ntuple creation code.
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10.1 2-Class SVM Analysis Results

10.1.1 Expected Results and Comparison with BDT

The 2-class support vector machine analysis was performed using two separate

SVMs, each trained to distinguish between VBF H → WW ∗ and background

events. This procedure is designed to replicate the procedure for the ATLAS

HWW subgroup’s boosted decision tree analysis. One support vector ma-

chine was trained using only events with even event numbers and the other

using only odd-numbered events. In order to train the machines, four separate

training data sets were created as described in Chapter 7. The four data sets

are labeled as signal-even, signal-odd, background-even and background-odd.

Each training set consisted of approximately 5,000 events. After training, all

events were classified such that all even-numbered events were classified by the

SVM trained with odd-numbered events and vice versa. After classification,

all Monte Carlo events were joined into a single data set for analysis.

In order to measure the ability of support vector machines to separate

signal and background events, the significance, defined as S/
√
B in the signal

region, was used as a figure of merit. The full signal region selection procedure

is described in Chapter 7. Using Monte Carlo samples described in Chapter

5, the expected significance of the 2-class SVM analysis was found to be 2.23σ

with 4.9 signal and 4.9 background events expected in the signal region. This

result was compared to the expected significance using the HWW group’s
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BDT analysis. Running on the same data set, the expected significance for the

BDT analysis was 2.37σ with 5.1 signal and 4.7 background events expected

in the signal region. These findings indicate that the SVM analysis performed

slightly worse than BDT analysis. With further tuning, it is likely that the

SVM analysis technique would yield equivalent expected significance to the

BDT analysis. Figures 10.1 and 10.2 show the signal-background separation

for SVM and BDT analysis.

Figure 10.1: Plot of the SVM discriminant for all signal and background Monte

Carlo events. The SVM discriminant has been scaled such that 98% of all

background are in the first bin. The first bin has been scaled by 1/100 in

order to maintain continuity.
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Figure 10.2: Plot of the BDT discriminant for all signal and background Monte

Carlo events. The BDT discriminant has been scaled such that 98% of all

background are in the first bin. The first bin has been scaled by 1/100 in

order to maintain continuity.

10.1.2 Data Results

After completing Monte Carlo studies, a 2-class SVM analysis was performed

on the 20fb−1 2012 ATLAS data set. The same trained SVMs used in the

2-class Monte Carlo analysis were used to classify all data events. From the

667 events in the final data set, the 2-class SVM analysis yielded 9 data events

in the signal region, leading to an observed significance of 1.85σ. As described

in the preceding section, SVM Monte Carlo studies yielded an expected 9.8
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total events in the signal region, with 4.9 signal events and 4.9 background

events. The real data result is therefore consistent with Standard Model Higgs

boson predictions. However, the small statistical significance of the result is

insufficient to claim evidence for VBF H → WW ∗ → lνlν decays. Figure 10.3

shows the distribution of real data events plotted by SVM discriminant such

that the distribution of background MC events can be seen. Figure 10.4 shows

the same data plotted such that the signal region is clearly distinguishable.

Figure 10.3: Plot of MC and data events for the 20fb−1 2012 ATLAS data set.

The SVM discriminant has been scaled such that 98% of all background are

in the first bin. The first bin has been scaled by 1/100 in order to maintain

continuity.
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Figure 10.4: SVM discriminant for MC and 2012 ATLAS data events. The

red shaded area indicates the signal region.

10.2 3-Class SVM Analysis Results

In addition to the 2-class analysis, a 3-class analysis was performed in which

the background samples were split into two classes. The two background

classes consisted of a ’heavy’ class containing all top quark backgrounds and a

’light’ class containing all other backgrounds. Using training samples created

from each of the three classes, two sets of three support vector machines were

trained. One set of three SVMs was trained using only even-numbered Monte

Carlo events and another set of three was trained using only odd-numbered
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Monte Carlo events. The training, classification and analysis procedure for the

3-class SVM analysis is detailed in Chapter 8. All MC results shown in this

section are from SVMs trained on even-numbered events, however, the results

are equivalent for SVMs trained using odd-numbered events. Data results are

taken to be the average of the even-trained and odd-trained SVM analysis

results for the 2012 ATLAS data set.

10.2.1 Signal-Background Separation

Figures 10.5-10.7 show the separation of signal, light and heavy events using

the signal vs. light (SvL), signal vs. heavy (SvH), and light vs. heavy (LvH)

support vector machines. Figures 10.5 and 10.6 show good discrimination of

signal events from both heavy and light background events. Figure 10.7 dis-

plays some discriminating power, with red signal events having more positive

values on average than the light and heavy backgrounds. The lack of separa-

tion between event classes in the LvH support vector machine discriminant is

most likely due to topological similarities between light and heavy events. The

SVM input variables used in this analysis were specifically chosen to exploit

differences between VBF H → WW ∗ events and background events. Topo-

logical signatures such as two forward jets and two leptons close together in φ

are unique to VBF H → WW ∗ events and are generally not shared by light

or heavy background processes. Thus the distributions of many of the SVM

input parameters are very similar for heavy and light background events as
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Figure 10.5: Distribution of SvL support vector machine discriminants for

signal, light and heavy events. The total integral of each class has been nor-

malized to unity.

can be seen by the plots in Chapter 4. This similarity makes it extremely

difficult for a support vector machine to distinguish between light and heavy

events based on the input parameters provided.

10.2.2 Statistical Uncertainty and Bias

In order to determine the expected statistical significance of the 3-class support

vector machine search for VBF H → WW ∗ events, a set of pseudo-experiments

was performed using Monte Carlo samples. Each pseudo-experiment consisted

of the creation and analysis of a pseudo-data set, designed to replicate the

ATLAS 2012 data set. Each pseudo-data set was created with a known number
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Figure 10.6: Distribution of SvH support vector machine discriminants for

signal, light and heavy events. The total integral of each class has been nor-

malized to unity.
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Figure 10.7: Distribution of LvH support vector machine discriminants for

signal, light and heavy events. The total integral of each class has been nor-

malized to unity.
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of signal events. The SVM analysis was then performed on the pseudo-data set

and the analysis best-fit result for the number of signal events was compared

to the known number of signal events. The difference between the best-fit

result and the known number of signal events is referred to as the bias (see

equation 8.15).

In order to analyze the bias, a set of 2000 pseudo-experiments was per-

formed for each of 16 input signal fractions ranging from 1.5% signal to 3%

signal. The average bias and standard deviation of the bias was recorded for

each of the 16 signal fractions. The results are shown in Figures 10.8 and 10.9.

It is important to note that the bias is small in comparison to the true signal

fraction and that the bias is stable across a wide range of input signal fractions.

This result indicates that the SVM analysis technique is robust with respect

to varying signal strengths. Due to these factors, it is possible to correct the

real data best-fit result with respect to the average bias using equation 8.16.

The statistical error of the best-fit 3-class analysis result is taken to be the

standard deviation of the pseudo-experiment results over all pseudo-experiments.

Since the pseudo-experiments are designed to replicate the real data analysis

in event composition and total number of events, the statistical error can be

carried over from Monte Carlo studies to the real data result.
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Figure 10.8: Average bias of the likelihood fit over 2000 pseudo-experiments

with each of 16 different input signal percentages

Figure 10.9: Error of the likelihood fit for 2000 pseudo-experiments with each

of 16 different input signal percentages
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10.2.3 Systematic Uncertainties

Systematic uncertainties, as described in Chapter 9, were analyzed for the

3-class analysis. All systematic uncertainties are added in quadrature to de-

termine the total systematic error. Table 10.1 lists the largest systematic un-

certainties. The most important systematic uncertainties are the tt̄ generator

modeling along with the jet and MET energy scales. A full list of systematic

uncertainties analyzed is given in appendix A.

10.2.4 Results

Monte Carlo studies indicate an expected significance using Standard Model

predictions for the 3-class SVM analysis of 2.26σ including only statistical

uncertainties and 2.02σ when statistical and systematic uncertainties are in-

cluded. This result is consistent with the expected significance in the 2-class

SVM analysis and with the BDT analysis [38].

Analysis of the 20fb−1 2012 ATLAS data set found 15.6± 5.6(stat)± 2.9(syst)

VBF HWW events in the 2012 data set. This result is consistent with the

Standard Model prediction of 12.7 VBF HWW events and represents a sta-

tistical significance of 2.47σ over the background-only hypothesis. The signal

strength (Nobs/NSM) associated with this result is µ = 1.22±.44 (stat)± .23 (syst).
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Systematic Type Percent Var.

TTBar MCNLO 13

ATLAS JES Eta Modelling 9

ATLAS JER 8

ATLAS TRACKMET SCALESOFT 5

ATLAS TRACKMET RESOPARASOFT 5

ATLAS JES 2012 Modelling1 4

ATLAS JES NPV 3

ATLAS EL ESCALE 3

ATLAS JES 2012 Detector1 3

ATLAS BTag B6EFF 3

ATLAS JES NonClosure AFII 3

ATLAS JES 2012 Eta StatMethod 3

ATLAS JES BJET 2

FakeRateOther QCD HWW 2

Table 10.1: Table of the largest systematic variations for the 3-class SVM

analysis. The percent variation in the expected number of signal events is

listed for each systematic.
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10.3 2-Class vs. 3-Class SVM Analysis Com-

parison

The 2 and 3-class SVM analyses resulted in similar findings, both of which

agreed with the Standard Model predictions and with the findings of the AT-

LAS HWW group’s boosted decision tree analysis. As hoped, the 3-class

analysis performed slightly better in several ways. Of primary importance,

the expected significance using only statistical error was marginally larger for

the 3-class analysis. Since no dedicated optimization studies were performed

on SVM input parameters, it is likely that the 3-class SVM result could be im-

proved considerably. In addition, it may be possible to increase the statistical

significance of the 3-class analysis by providing additional input variables in

order to better distinguish the signal, light and heavy classes. At the moment,

studies show that the addition of more SVM input parameters decreases the

statistical significance of both the 2-class and 3-class analysis. However, we

believe that this is a product of insufficient MC events and not an inherent

feature of the analysis. Hopefully we will be able to test this hypothesis in the

upcoming LHC run.

In addition to the comparison of expected significance, a signal region

analysis similar to that described in Chapter 7 was performed on the 3-class

SVM discriminants using Monte Carlo samples. For this analysis, a signal

region was created in the SVM discriminant space parameterized by the three
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SVM discriminants (SvL, SvH, LvH). Just as the 2-class SVM signal region is

characterized by a single cut on the 2-class SVM discriminant, the 3-class signal

region is characterized by a cut on each of the three SVM discriminants. The

3-class SVM signal region was optimized in order to maximize the significance

(S/
√
B) of events within the signal region.

The 3-class signal region analysis was performed prior to much of the SVM

input optimization, resulting in an expected significance of only 2.03σ. Using

the same unoptimized MC input data set, the 2-class analysis also found a

statistical significance of 2.03σ in the signal region. Though the 3-class and

2-class signal regions yielded the same significance, the 3-class analysis had an

expected 5.54 signal events in the signal region compared to only 4.66 events in

the 2-class signal region. The 3-class analysis therefore offered a 20% increase

in the expected number of signal events.

10.4 Analysis Limitations Due to Data and

MC Statistics

Both the 2 and 3-class analyses were heavily limited by statistics. The most

obvious statistical issue was a lack of expected signal events in the real data

set. MC studies predict that our final data set, containing only events passing

pre-selection, should contain only 12.7 real signal events with approximately

650 background events. This limitation can be seen clearly in comparing the
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statistical and systematic errors in the 3-class analysis, where the statistical

error dominates the systematic error 2-to-1. This statistical error is due to two

primary factors in the 3-class analysis: first, small numbers of signal events

and inherently limited event separation necessarily lead to small signal-to-

background ratios; and second, with such a limited number of data events,

the VBF HWW analysis is susceptible to significant statistical fluctuations

within both the pseudo-data sets and the real data set. The issue of real data

statistics will be mitigated during the LHC run 2, which is expected to yield

much higher luminosity.

In addition to the limited number of real data events, the size of Monte

Carlo simulated event samples were also insufficient. The training of SVMs

in our analysis requires the correct proportion of each background type as de-

scribed in Chapter 8. For several MC samples, there were an insufficient num-

ber of background events to properly train the support vector machines. The

limited MC statistics also became a problem when creating pseudo-data sets,

causing certain backgrounds to be under represented in pseudo-experiments.

In order to mitigate the problem of limited MC statistics, we have requested

much larger MC data sets for the next LHC run.

10.5 Template Binning

It was discovered in the course of the 3-class analysis that the binning used

in the creation of the 3-d templates had a large affect on the statistical errors
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as well as on the real data result. The bin size used for the 3-class SVM

templates resulted in approximately 50 bins in the x, y and z dimensions of

each template. As expected, increasing the bin size reduced the resolution

of the templates and lead to higher statistical errors. The estimated number

of signal events in the real 20 fb−1 data set was not significantly changed by

increasing the template bin size.

In contrast, decreasing the bin size of the 3-d templates led to unexpected

behavior. Specifically, decreasing the bin size beyond approximately 0.02 (in

units of SVM discriminant) led to a significant increase in the best fit estimate

of the fraction of signal events in the real 2012 ATLAS data set. This increase

can be seen in the first three data points in Figure 10.10. As can be seen

in Figure 10.11, the increase in estimated signal fraction corresponds to an

increase in the statistical error of the fit.

It is believed that this increase in the real data signal fit result is due to

insufficient data statistics in comparison with bin size. For small bin sizes,

most bins contain very few data events, allowing for small fluctuations in

the distribution of data events to drastically alter the fit result. In order to

prevent these statistical fluctuations from influencing the final result, a bin

size greater than 0.02 was chosen. As can be seen in Figure 10.10, both the

fit result and fit error are stable over a wide range of binning between 0.02

and 0.05. This stability provides confidence that the fit results are robust with

respect to changes in binning and statistical fluctuations in the distribution of
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Figure 10.10: Best fit estimate of the fraction of VBF HWW events in the

2012 ATLAS data set after pre-selection for multiple template binnings. Error

bars include only statistical error.

Figure 10.11: Statistical error associated with the best fit estimate of the

fraction of VBF HWW events in the 2012 ATLAS data set after pre-selection

for multiple template binnings.
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data events.

10.6 Conclusion

The analysis presented in this thesis was successful in accomplishing two main

objectives. First, to search for evidence of vector boson production of the

Higgs, and second to study the effectiveness of support vector machines in

high energy physics analyses.

The search for definitive evidence for VBF H → WW ∗ decays is severely

hindered by the small cross section of VBF Higgs production along with the

small branching ratio of W → lν decays. Despite the unique topology of VBF

H → WW ∗ decays, the limited number of signal events coupled with the large

cross sections of many background processes necessarily lead limited signal-

background ratios. Despite these challenges, the analysis presented in this

thesis found evidence at the 2σ level of VBF Higgs production. This result

is consistent within 1 standard deviation of the Standard Model prediction

and matches the results of other ATLAS analyses. The forthcoming LHC run

at 13TeV center of mass energy should provide much larger statistics and

therefore allow for definitive evidence of VBF H → WW ∗ decays.

In addition to lending support to the observational evidence of the 125GeV

Higgs boson, our analysis verified the effectiveness of the support vector ma-

chine analysis technique. Using a 2-class SVM analysis we were able to com-

pare directly with the ATLAS HWW group’s boosted decision tree analysis.
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We found that with limited tuning our the 2-class SVM analysis was com-

petitive with BDT results. It is likely that with additional tuning, the SVM

analysis could give equivalent discrimination power to the BDT analysis. It is

possible, that given the large statistics expected in the next LHC run that the

SVM technique could yield advantages with respect to BDT analyses due to

the resistance of SVMs to over-tuning.

Finally, the analysis presented in this thesis found marginal improvements

in expected significance using a multi-SVM analysis. The effectiveness of the

3-class SVM analysis was most likely hindered by the similar topology of events

in the light and heavy classes. This similarity prevented good discrimination of

events in the LvH support vector machine. It is possible that in the next LHC

run, additional MC and data statistics will allow for larger gains using the 3-

class SVM analysis through larger training sets. In addition, it may be possible

to add new input variables to help distinguish light and heavy events. Finally,

this thesis did not contain an optimization study on the backgrounds contained

in each class. It may be possible to more optimally chose the backgrounds

included in each class in order to aid in SVM training. In the opinion of the

author, the 3-class SVM method has shown promise as an improvement over

2-class SVM analyses and should be investigated further in order to determine

its potential.
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Appendix A

Systematic Uncertainties for the

3-Class SVM Analysis
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Systematic Type Percent Var.

TTBar MCNLO 13

ATLAS JES Eta Modelling 9

ATLAS JER 8

ATLAS TRACKMET SCALESOFT 5

ATLAS TRACKMET RESOPARASOFT 5

ATLAS JES 2012 Modelling1 4

ATLAS JES NPV 3

ATLAS EL ESCALE 3

ATLAS JES 2012 Detector1 3

ATLAS BTag B6EFF 3

ATLAS JES NonClosure AFII 3

ATLAS JES 2012 Eta StatMethod 3

ATLAS JES BJET 2

FakeRateOther QCD HWW 2

ATLAS JES MU 2

ATLAS JES 2012 PileRho HWW 2

ATLAS JES FlavComp HWW other 2

ATLAS BTag LEFF 2

ATLAS BTag Pythia6 LEFF 2

ATLAS BTag B5EFF 2

ATLAS TRACKMET RESOPERPSOFT 1

Table A.1: Table of systematic uncertainties for the 3-class SVM analysis.

Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 1.
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Systematic Type Percent Var.

FakeRateCorr QCD HWW 1

FakeRateStat QCD HWW 1

FakeRate MU Stat GT25 HWW 1

FakeRate MU Stat 10 15 HWW 1

ATLAS EL RES 1

ATLAS JES 2012 PilePt 1

ATLAS EL EFF ID HIGHPT 1

ATLAS JES HighPt 1

ATLAS TRIGGER HWW 1

ATLAS MU EFF 1

ATLAS JES FlavResp 1

FakeRate EL Stat GT25 HWW ≤1

ATLAS BTag CEFF ≤1

ATLAS BTag B2EFF ≤1

Table A.2: Table of systematic uncertainties for the 3-class SVM analysis.

Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 2.
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Systematic Type Percent Var.

FakeRate MU Other HWW ≤1

ATLAS EL EFF ≤1

ATLAS JES FlavComp HWW WW ≤1

ATLAS MU ISO ≤1

ATLAS BTag B3EFF ≤1

FakeRate EL Uncorrl OS HWW ≤1

ATLAS MET RESOSOFT ≤1

ATLAS EL EFF ID CORRLOW ≤1

ATLAS MU RESCALE lvlv 2012 ≤1

ATLAS BTag B4EFF ≤1

ATLAS EL TRIGGER HWW ≤1

FakeRate EL Stat 20 25 HWW ≤1

ATLAS BTag B1EFF ≤1

FakeRate MU Stat 15 20 HWW ≤1

FakeRate MU Uncorrl OS HWW ≤1

FakeRate EL Other HWW ≤1

ATLAS EL EFF RECOID80010 ≤1

FakeRate MU Stat 20 25 HWW ≤1

ATLAS EL EFF RECO CORRLOW ≤1

Table A.3: Table of systematic uncertainties for the 3-class SVM analysis.

Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 3. 182



Systematic Type Percent Var.

FakeRate EL Stat 15 20 HWW ≤1

ATLAS EL EFF RECOID80015 ≤1

FakeRate EL Corrl OS HWW ≤1

ATLAS DIL TRIGGER HWW ≤1

FakeRate EL Stat 10 15 HWW ≤1

ATLAS MU ESCALE ≤1

ATLAS MET SCALESOFT ≤1

ATLAS MU ID RES ≤1

ATLAS MU TRIGGER HWW ≤1

ATLAS ISO ≤1

ATLAS EL EFF RECO CORR ≤1

ATLAS EL ISO ≤1

FakeRate MU Corrl OS HWW ≤1

ATLAS MU MS RES ≤1

Table A.4: Table of systematic uncertainties for the 3-class SVM analysis.

Percent var. indicates the percent variation in the expected signal result due

to the listed systematic. Part 4.
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