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Abstract: We developed the projection method to derive an analog of the quantum master equation

for propagators rather than density matrices themselves. As these propagators are superoperators,

we call them superoperator master equations. Furthermore, as the projector maps superoperators to

superoperators, we call it a hyperprojector. We gave general perturbative expansions for generators

of the weak coupling superoperator master equation and the stroboscopic limit superoperator master

equation. After that, we considered a particular example of a hyperprojector that is the infinite time

average of unitary dynamics. We call it the averaging hyperprojector. We discussed the properties

of this hyperprojector and its physical meaning. Then, we illustrated our general second order

superoperator master equations arising in the weak coupling limit and the stroboscopic limit, taking

the averaging hyperprojector as an example, which we call effective dynamics. We discussed some

properties of these superoperator master equations, in particular, the entropy increase.

Keywords: projection method; quantum master equation; effective generator

1. Introduction

The Nakajima–Zwanzig projection approach [1,2] is wide-spread for the derivation of
master equations in statistical physics. It can be used both to derive Nakajima–Zwanzig
integro-differential master equations or time-convolutionless master equations [3]. In this
work, we are mostly interested in time-convolutionless master equations, as they are widely
used in open quantum systems theory [4–7]. Usually, the projectors are applied to density
matrix dynamics to obtain the master equation for such projected density matrices. The
difference in our approach is that we apply projectors to dynamical maps and derive master
equations for the projected dynamical maps. Therefore, we refer to these equations as
superoperator master equations (because these dynamical maps are superoperators) and
to the projectors as hyperprojectors (because they map superoperators to superoperators).
We apply this technique to the hyperprojector of averaging with respect to free dynamics
to obtain an effective dynamical map. Thus, such a map can be considered a dynamical
analog of the effective Gibbs state introduced in [8].

We have already used a special case of the hyperprojector technique before to derive
effective Heisenberg equations for a specific model with a quadratic fermionic Hamilto-
nian [9]. However, we have neither discussed a general approach nor given a systematic
perturbative expansion for the time-convolutionless weak coupling master equations.
Therefore, in Section 2, we describe a general setup of the hyperprojector technique for
general dynamical maps for some linear equations. For this purpose, we first briefly
summarize the usual projection approach for deriving the time-convolutionless master
equations. Then, we introduce our approach in the same notation to emphasize the sim-
ilarities and differences. In particular, by choosing identity preserving hyperprojectors,
the superoperator master equation becomes homogeneous for arbitrary dynamical maps.
In the case of the usual projectors, it is not possible for arbitrary density matrices, which
leads to non-homogeneous terms in the usual master equations [10], and there are some
approaches [11] that are trying to avoid presence of these terms to obtain better conver-
gence. After that, we gave a systematic perturbative expansion for the generators of
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time-convolutionless weak coupling master equations. In Section 2.1, we focus on the
second order superoperator master equation and consider in more detail the case when the
time-dependent equation before projection arises in the interaction picture for some initial
time-independent Liouvillian. In Section 2.2, we briefly discuss a superoperator analog of
the Nakajima–Zwanzig equation as it is also used in open quantum systems [12].

In Section 3, we discuss a superoperator analog of a master equation that occurs
in the stroboscopic limit of repeated non-selective measurements [13]. In particular, we
discuss that actually there are several such analogs with different operational meanings. In
Section 3.1, we focus on the second order master equation for the stroboscopic limit.

In Section 4, we introduce the averaging hyperprojector and summarize its properties.
In Section 4.1, we discuss that its physical meaning is the transformation of dynamical
maps as a result of the non-selective measurement of increments of the energy between
two time moments. In particular, we show that the averaging hyperprojector is a map from
quantum channels to quantum channels, i.e., a supermap or superchannel [14,15], which
was discussed in the literature from different perspectives [16–19]. We also show that the
averaging hyperprojector maps the unitary channel to the entropy non-decreasing channel.
In Section 4.2, we show that the averaging hyperprojector can define the effective dynamics
of fast observables, which were introduced in [8].

In Section 5, we consider the second order superoperator weak coupling master
equation in the special case of the averaging hyperprojector. Using the expansion of the
interaction Hamiltonian as a linear combination of eigenoperators of the commutator with
the free Hamiltonian, we give more explicit representation of the second order generator. It
is not necessarily of the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form [20,21],
but it is represented in the GKSL-like form. As usual, derivations of the Markovian master
equations [22,23] and their corrections [24–27] are based not only on the weak coupling
limit but on the Bogolubov–van Hove scaling [28,29]; as well, in Section 5.1 we discuss it for
superoperator master equations. We also discuss its connection with algebraic perturbation
theory [30–34].

In Section 6, we discuss the second order superoperator stroboscopic limit master
equation for the averaging hyperprojector. In particular, we show that the entropy is
non-decreasing in such a case.

In Conclusions, we summarize our results and discuss the directions of the further
study.

2. Superoperator Weak Coupling Master Equation and Hyperprojector Technique

Let us briefly summarize a standard approach to the projection-based derivation of
the quantum master equation. Let us consider a linear equation for a density matrix of the
general form

d

dt
ρ(t) = λL(t)ρ(t). (1)

For the typical open quantum systems setup, for example, it is usually only the Liouville–
von Neumann equation in the interaction picture for a system and a reservoir, but one can
consider a more general setup of composite open quantum systems as well [35–40].

Furthermore, it is assumed that we are not interested in the full dynamics of ρ(t) but
take an interest only in the projected dynamics Pρ(t), where P is a projector (idempotent),
i.e., P2 = P .

There are several reasons why we are interested only in the projected dynamics.
The first reason is the experimental accessibility. For example, in the open quantum
systems setup, it is usually assumed that we have experimental access to open quantum
systems only, but we have no experimental access to the heat bath degrees of freedom.
We mostly follow this reason in our work. The second reason lies in simplifications of the
projected dynamics compared to the full dynamics. For open quantum systems, typically
the dynamics of the system only are simpler than the whole dynamics of the system and
heat bath (at least after Markovian timescale separation). The third reason is that the given
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projector absorbs the physical assumptions in its structure. For the standard open quantum
systems setup, it is an assumption of the approximately factorized state of the system and
heat bath [41], (Paragraph 3.3.1). The fourth reason is that the projected dynamics are
interesting for particular quantum technological applications [38,39]. Sometimes, even if
we are experimentally interested in some degrees in addition to the projected ones, the
projected dynamics can be an auxiliary computational tool [42].

Under weak coupling assumptions, we can write a master equation of the form [41],
(Subsection 9.2.1)

d

dt
Pρ(t) = K(t)Pρ(t) + I(t)Qρ(t0), (2)

where Q = I −P . We deal with time-convolutionless master equations, but in statistical
physics, Nakajima–Zwanzig integro-differential equations could be usually derived. The
inhomogeneous term I(t)Qρ(t0) equals zero for the initial condition consistent with the
projector, i.e., Pρ(t0) = ρ(t0). For open quantum system theory, the Argyres–Kelley [43]
projector P = TrS( · )⊗ ρB is typically used, and the consistency of the initial condition
with the projector means that the initial state is factorized in this case. However, in
general, Equation (2) has inhomogeneous terms [10]. Nevertheless, the adapted projection
technique [11] can be used to obtain the homogeneous master equations. This technique
assumes that the initial state can be approximated as a finite linear combination of the
factorized matrices, and a separate homogeneous master equation is obtained for each
factorized matrix.

Let us remark that the solution of (1) can always be written in the form

ρ(t) = Φt
t0

ρ(t0),

where Φt
t0

is a linear map, which is simply a Cauchy matrix in terms of linear ordinary
differential equations theory, or a propagator, satisfying the propagator equation

Φt
t0
= Φt

sΦs
t0

.

It is a unitary map for all t and t0 if (1) is the Liouville–von Neumann equation and a
completely positive map if (1) is the GKSL equation. The propagator Φt

t0
satisfies the

equation
d

dt
Φt

t0
= λL(t)Φt

t0
, (3)

which has the same form as Equation (1), but now it is an equation for superoperator Φt
t0

rather than operator ρ(t), and it has the fixed initial condition

Φ
t0
t0
= I, (4)

while the initial condition ρ(t0) for ρ(t) can be an arbitrary density matrix. Thus, it is
natural to make the same procedure for Φt

t0
, deriving some analog of a master equation for

the projected dynamics P(Φt
t0
). Here, P is now a projector that maps superoperators to

superoperators, so we will call it the “hyperprojector”. Due to the initial condition (4), in
contrast with master Equation (2), we can avoid inhomogeneity in the equation for P(Φt

t0
)

for all allowed Φt
t0

, if one assumes
P(I) = I. (5)

In such a case, we obtain the following superoperator analog of master Equation (2)

d

dt
P(Φt

t0
) = K(t)P(Φt

t0
). (6)

In this section, we discuss the general setup, trying to emphasize the formal similari-
ties and differences between operator and superoperator master equations. The general
physical reasons to consider the projected dynamics are similar to the case of the usual



Entropy 2024, 26, 14 4 of 24

projection superoperators mentioned above. In Section 4, we consider the specific hyper-
projector and discuss concrete physical setups that lead to these hyperprojectors arising.
Namely, in Section 4.2, we show that they naturally arise when one measures the correlation
functions of the fast observables (fast oscillating time-dependent observables in resonance
with a free Hamiltonian [8]), which are widely used in spectroscopy [44], (Section 4), [45],
(Section 4), making only the projected dynamics experimentally accessible. As we will see
in Section 4.1, it also arises as a non-selective measurement of energy (correspondent to
free Hamiltonian).

The next proposition gives the perturbative expansion of K(t).

Proposition 1. Asymptotic expansion at fixed t and for K(t) as λ → 0 has the form

K(t) =
∞

∑
n=1

λnKn(t), (7)

where Kn(t) are defined as

Kn(t) ≡
n−1

∑
q=0

(−1)q ∑
∑

q
j=0 kj=n,kj⩾1

Ṁk0
(t)Mk1

(t) . . .Mkq
(t), (8)

where the condition ∑
q
j=0 k j = n, k j ⩾ 1 means the sum runs over all compositions of the number n,

and

Mk(t) ≡
∫ t

t0

dtk . . .
∫ t2

t0

dt1P(L(tk) . . .L(t1)), Ṁk(t) ≡
d

dt
Mk(t). (9)

The proof follows the proof of Theorem 1 in [40] for a usual time-convolutionless
master equation for the case when the initial condition is consistent with the projector.

For clarity, let us give explicit expressions of Kn(t) for several first n.

K1(t) =Ṁ1(t), (10)

K2(t) =Ṁ2(t)− Ṁ1(t)M1(t), (11)

K3(t) =Ṁ3(t)− Ṁ2(t)M1(t)− Ṁ1(t)M2(t) + Ṁ1(t)M1(t)M1(t), (12)

K4(t) =Ṁ4(t)− Ṁ3(t)M1(t)− Ṁ2(t)M2(t)− Ṁ1(t)M3(t)+

+ Ṁ2(t)M1(t)M1(t) + Ṁ1(t)M2(t)M1(t) + Ṁ1(t)M1(t)M2(t)− (M1(t))
4. (13)

Let us remark that we can also rewrite (8) using partially ordered cumulants similar to
the Kubo–van Kampen partially ordered cumulants [46–49]. They can be derived similarly
to the ones for the standard (Argyres–Kelley) projector with the only change of P · P in
notation of [41], (Subsection 9.2.3) to P, i.e.,

Kn(t) ≡
∫ t

t0

dtk . . .
∫ t2

t0

dt1κPp.o.(L(t)L(tk) . . .L(t1)), (14)

where

κPp.o.(L(t)L(tk) . . .L(t1))

= ∑
σ

n−1

∑
q=0

(−1)qP

(

L(t)L(tσ(k)) . . .L(tσ(jq))

)

×P

(

L(tσ(jq−1)) . . .L(tσ(jq−1)
)

)

. . .P

(

L(tσ(j1−1)) . . .L(tσ(j1)
)

)

.
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Here, the sum runs over all the permutations σ but with the restriction that inside any P, the
terms are time-ordered, i.e., tσ(k) ≥ tσ(k−1) ≥ . . . ≥ tσ(jq), tσ(jq−1) ≥ tσ(jq−2) ≥ . . . ≥ tσ(jq−1)

,

and so on.
Many other approaches that are used to calculate the perturbation theory terms of

generators in usual master equations can be applied in our superoperator master setup as
well. For example, the terms Kn(t) can be calculated based on recurrence relations, similarly
to [50]. Furthermore, the purely algebraic formulae for Mk(t) can be obtained in the case
when L(t) arises in the iteration picture for dynamics with a time-independent generator
in the Schrödinger picture by taking all the integrals with respect to time, similarly to [40].
Their generalization to the superoperator master equation case is straightforward, so we
will not dwell further on them.

2.1. Second Order Superoperator Master Equation

Second order master equations usually play the most important role in the theory of
open quantum systems [41], (Sections 3.3–3.4), because the first order one is usually zero in
the iteration picture or gives only the terms leading to unitary dynamics [51] and, therefore,
has the same form as for closed systems. Therefore, for the superoperator master equation,
we concentrate specifically on second order equations.

Taking into account (7), (10), (11) and (9), we obtain the following form of the generator
in the second order of perturbation theory in λ.

K(t) = λP(L(t)) + λ2
∫ t

t0

ds(P(L(t)L(s))−PL(t)PL(s)) + O(λ3). (15)

Let us consider the widespread case, where L(t) is Liouvillian in the interaction
picture. Namely, we assume L(t) = e−L0(t−t0)LeL0(t−t0), where

L0 = −i[H0, · ], L = −i[HI , · ], (16)

with H0 = H†
0 as a free Hamiltonian and HI = H†

I as an interaction Hamiltonian. Then,
taking the integral with respect to s in (15), similarly to [40], (Corollary 1), we have

K(t) =λP(L(t))
+ λ2

(

P(L(t)[L0, · ](−1)(L(t0)−L(t)))−P(L(t))P[L0, · ](−1)(L(t0)−L(t)))
)

(17)

+ O(λ3).

Here, [L0, · ](−1) is a pseudoinverse such that

[L0, · ][L0, · ](−1) = [L0, · ](−1)[L0, · ] = I −Pker[L0, · ], (18)

[L0, · ](−1)Pker[L0, · ] = Pker[L0, · ][L0, · ](−1) = 0, (19)

where Pker[L0, · ] is a hyperprojector to the kernel of the map [L0, · ], i.e., it is zero on the
kernel and the inverse in the usual sense on the orthogonal complement to the kernel. Such
a pseudoinverse can be defined by the explicit formula [52], (Equation (2))

[L0, · ](−1) ≡ lim
ε→+0

∫ ∞

0
ds e−εs(e−L0s · eL0s)(I −Pker[L0, · ]).

Thus, within the accuracy of the second order of perturbation theory, the projected propa-
gator Φ̃t

t0
≡ P(Φt

t0
) can be defined as a solution of the Cauchy problem
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d

dt
Φ̃t

t0
= λP(L(t))Φ̃t

t0

+ λ2
(

P(L(t)[L0, · ](−1)(L(t0)−L(t)))−P(L(t))P[L0, · ](−1)(L(t0)−L(t)))
)

Φ̃t
t0

, (20)

Φ̃
t0
t0
= I. (21)

2.2. Superoperator Nakajima-Zwanzig Equation

We are mostly interested in time-convolutionless superoperator master equations, but
it is possible to obtain a superoperator analog of the Nakajima–Zwanzig equations as well.
Due to condition (5), this analog also has the homogeneous form

d

dt
P(Φt

t0
) = λP(L(t)P(Φt

t0
)) + λ2

∫ t

t0

ds P(L(t)Gt
s((I −P)(L(s)P(Φs

t0
)))), (22)

where Gt
s is a map from superoperators to superoperators, which is defined as a solution of

the Cauchy problem

d

dt
Gt

s = λ(I −P)(L(t) · )Gt
s, Gs

s = I. (23)

Here, (L(t) · ) is a map from superoperators to superoperators that acts as a left multiplica-
tion on superoperator L(t).The derivation is similar to the one from the usual Nakajima–
Zwanzig equation [41], (Subsection 9.1.2). By expanding (23) in the Dyson series, we
can obtain perturbative expansion of the integral operator in the right-hand side of (22).
Similarly to (14), we can represent the terms of this expansion as time-ordered integrals
of (analogs of) Waldenfels cumulants [49]. Let us restrict ourselves to the second order
Nakajima–Zwanzig superoperator equation. To obtain the second order terms in (22), we
can simply use zero order terms in (23), i.e., only Gt

s ≡ I + O(λ). This leads to the follow-
ing Cauchy problem for the second order Nakajima–Zwanzig equation for the projected
propagator Φ̃t

t0
≡ P(Φt

t0
)

d

dt
Φ̃t

t0
= λP(L(t)Φ̃t

t0
) + λ2

∫ t

t0

ds P(L(t)(I −P)(L(s)Φ̃s
t0
)), (24)

Φ̃
t0
t0
= I. (25)

Sometimes [41], (Section 3.3.1), the usual second order time-convolutionless master equa-
tions are derived from the usual second order Nakajima–Zwanzig equation by assuming
that the kernel of the analog of the integral operator in the right-hand side of (24) decays so
fast when t − s differs from zero that one can take the density matrix at time t rather than
s in this integral operator. However, if we assume a similar approximation here, i.e., that
Φ̃s

t0
≈ Φ̃t

t0
at the right-hand side of (24), we nevertheless do not obtain the superoperator

master equation with generator (15). The difference is in the fact that Φ̃t
t0

in (24) is inside

of the action of the hyperprojector P, and this holds after the approximation Φ̃s
t0
≈ Φ̃t

t0
,

but in (20), it is outside of the action of the hyperprojector P. If we take, for example,
P = P · P , where P is a usual projection superoperator, then this difference vanishes.
However, let us emphasize that, in general, the second order superoperator Nakajima–
Zwanzig Equation (24) with “Markovian approximation” Φ̃s

t0
≈ Φ̃t

t0
is different from the

second order time-convolutionless superoperator master equation (20). Therefore, in this
aspect, our hyperprojector method and usual projection methods differ.

3. Stroboscopic Limit Superoperator Master Equation for Hyperprojectors

There are other master equations fully defined by projectors in addition to the weak
coupling limit ones. Namely, the master equations that occur in the stroboscopic limit
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of repeated non-selective measurements [13]. Therefore, it is also natural to derive a
superoperator analog from the master equations. In a usual setup, it is assumed that
non-selective measurement is performed on an ancillary system (probe) at regular short
time intervals. Furthermore, the system of interest and the ancillary system interact with
each other and unitarily evolve between successive non-selective measurements.

In our setup, we do not need interaction with an ancillary system, but we assume
that the measurement procedure can be modeled by a hyperprojector P (we see that it is
the case in Section 4.1), and the evolution between measurements can be modeled by the
quantum dynamical semigroup Φt;λ

d

dt
Φt;λ = λLΦt;λ, Φ0;λ = I. (26)

Following [13], we consider only the case of a time-independent generator. Then, evolution
during small-time N−1t, N → ∞, but with strong coupling

√
Nλ (such a scaling is standard

for the stroboscopic limit) is described by the map ΦN−1t;
√

Nλ
. If we perform a measurement

P, starting before such an evolution and ending after it, then the resulting dynamical map
has the form

P(ΦN−1t;
√

Nλ
).

Now, if we perform such a procedure N times, then the total dynamical map has the form

P(ΦN−1t;
√

Nλ
) . . .P(ΦN−1t;

√
Nλ

)
︸ ︷︷ ︸

N times

=
(

P(ΦN−1t;
√

Nλ
)
)N

. (27)

In the limit of an infinite number of such repetitions, it is a superoperator analog of the
stroboscopic limit of repeated non-selective measurements [13], and it is described by the
following proposition.

Proposition 2. Let Φt;λ be defined by (26). Then, for sufficiently large N

(P(ΦN−1t;
√

Nλ
))N = eLeff,str(N)t, (28)

where Leff,str(N) is the effective stroboscopic generator defined by asymptotic expansion

Leff,str(N) =
∞

∑
n=1

λntn−1N1− n
2 ∑

k0+···+km=n

(−1)m

m + 1

1

k0! . . . km!
P(Lk0) · · ·P(Lkm) (29)

as N → ∞.

See Appendix A for the proof. Despite the fact that usually the stroboscopic limit
assumes only second order expansion in λ, Proposition 2 allows one to calculate further
perturbative correction up to arbitrary order.

Let us remark that there are other analogs of stroboscopic limit setups with a different
order of measurements. As we discuss in Section 4.1, a particular hyperprojector P can
model the non-selective measurement of increments of “usual” observables between two
time moments. For such a hyperprojector, Formula (27) assumes that we measure the
differences between each small time-interval of length N−1t. However, similarly, one can
measure the increments between the initial time and successive time moments nN−1t,
where n = 1, . . . , N. Then, instead of (28), for sufficiently large N, we have

P(ΦN−1t;
√

Nλ
P(ΦN−1t;

√
Nλ

· · · ))
︸ ︷︷ ︸

N times

= eL
L
eff,str(N)t. (30)
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Similarly, it is possible to consider a setup such that the final time moment for all two-time
measurements is fixed, but initial moments are nN−1t, where n = 0, . . . , N − 1. Then,
instead of (28), for sufficiently large N, we have

P(· · ·P(P(ΦN−1t;
√

Nλ
)ΦN−1t;

√
Nλ

) · · · )
︸ ︷︷ ︸

N times

= eL
R
eff,str(N)t. (31)

One can obtain perturbative expansions for LR,L
eff,str(N) similar to the one given by (29), but

they are more complicated so we do not provide general expressions for them, giving only
the first and second terms of the expansions in the next subsection.

3.1. Second Order Superoperator Master Equation

Despite the fact that our perturbative expansion is in N− 1
2 , to emphasize the similarity

to the weak coupling expansion of superoperator master equations in Section 2.1 we will
call the order of perturbation of these equations in terms of order coupling constant λ. In
particular, we call expansion (29), which holds the second order terms in λ the second order
superoperator master equation. It has the form

Leff,str(N) =
√

NλP(L) + λ2t

2
(P(L2)− (P(L))2) + O(N− 1

2 ) (32)

as N → ∞.
Usually, the stroboscopic limit is formulated in terms of [13]

γ =
√

Nλ, τ =
t

N
, γ2τ = λ2t = fix .

In such a parametrization, the second order generator (32) is time-independent, and it takes
the form

Leff,str(N) = γP(L) + γ2τ

2
(P(L2)− (P(L))2) + O(N− 1

2 ). (33)

Thus, for Φstr = etLeff,str(N) we obtain, the following second order superoperator master
equation

d

dt
Φstr,t =

(

γP(L) + γ2τ

2
(P(L2)− (P(L))2)

)

Φstr,t, Φstr,0 = I.

For the setups defined by Formulae (30)–(31), similarly to (32), we have

LL
eff,str(N) =

√
NλP(L) + λ2t

2

(

P(LP(L))− (P(L))2
)

+ O(N− 1
2 ) (34)

and

LR
eff,str(N) =

√
NλP(L) + λ2t

2

(

P(P(L)L)− (P(L))2
)

+ O(N− 1
2 ) (35)

as N → ∞.
The difference between (32), (32) and (35) is similar to the difference between (15)

and the time-convolutionless approximation of (24) discussed at the end of Section 2.2.
Furthermore, it vanishes for P = P · P .

4. Averaging Hyperprojector

One of the first projections used to derive quantum master equations is the Zwanzig
projection operator [53], which is nothing else but a particular case of the averaging
projector [8] if the energy spectrum is non-degenerate. Therefore, it is natural to consider a
hyperprojector analog of such a projector and the superoperator master equations for this
specific hyperprojector.
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The averaging (with respect to free dynamics eL0t) hyperprojector is defined by the
formulae [9], (Definition 2.1)

P(Φ) = lim
T→∞

1

T

∫ T

0
dt eL0tΦe−L0t, (36)

where L0 is the free Liouvillian defined by Formula (16), where H0 is a free Hamiltonian,
i.e., a Hermitian operator. Let us use the spectral decomposition of H0:

H0 = ∑
ε

εΠε, (37)

where ε are (distinct) eigenvalues of H0, Πε are orthogonal projections to the eigenspaces
correspondent to these eigenvalues

ΠεΠε′ = δεε′Πε, Πε = Π†
ε . (38)

The hyperprojector P can be represented as [9], (Proposition 2.1)

P(Φ) = ∑
ε1−ε2=ε4−ε3

Πε1
Φ(Πε2 · Πε3)Πε4

. (39)

Let us summarize some other properties of P as the following proposition.

Proposition 3. The averaging hyperprojector P has the following properties:

1. Commuting of averaging with free dynamics

P(eL0tΦ) = eL0tP(Φ). (40)

2. Commuting of averaging result with free dynamics

eL0tP(Φ) = P(Φ)eL0t. (41)

3. Identity preserving property
P(I) = I, (42)

where I is the identity superoperator.
4. Idempotent (projector) property

P2 = P. (43)

5. Unitality preservation
P(Φ)I = I (44)

for any superoperator Φ such that Φ(I) = I, where I is the identity operator.
6. Coincidence with the hyperprojector to the kernel of the map [L0, · ]

P = Pker[L0, · ]. (45)

See Appendix B for the proof. Properties 1 and 2 simplify the transformation from the
interaction picture for projected dynamics. Property 3 is important as we assumed (4) to
obtain homogeneous superoperator master equations. Property 4 means that P is indeed
a hyperprojector. From property 5, it follows that, in particular, for unitary Φ (which is
natural to start with), we have unital P(Φ). The last property 6 gives an additional reason
to consider such a hyperprojector due to the fact that it occurs anyway in the second order
weak coupling superoperator master Equation (20) for an arbitrary hyperprojector, but
through the definition (18)–(19) of the pseudoinverse [L0, · ](−1). Therefore, it is natural to
consider the particular case when hyperprojectors P and Pker[L0, · ] coincide.
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4.1. Selective and Non-Selective Measurement of Increments

The averaging projector can be interpreted as a quantum operation correspondent to
non-selective measurement (see, e.g., [54,55]) of energy (in the sense of the free Hamilto-
nian). In this subsection, we discuss that it is possible to interpret the averaging hyperpro-
jector as non-selective measurement of increments of energy between two time moments
without measuring the final and initial energies themselves.

Usually, multi-time measurements are discussed in terms of linear combinations of
multi-time correlation functions (see discussion in [56], (Section 3.5.2)). Therefore, let us
interpret the averaging hyperprojector in terms of them. For Markovian dynamics, in
particular for the unitary dynamics of a closed system, a multi-time correlation function is
defined by the generalized regression formula [41], (Section 3.2.4)

⟨Y(0)(t0) · · · · · Y(N)(tN)X(N)(tN) · . . . · X(0)(t0)⟩ =
= Tr X(N)Φ

tN
tN−1

(. . . X(1)Φ
t1
t0
(X(0)ρ(t0)Y

(0))Y(1) . . .)Y(N)
(46)

for observables Y(k) and X(k), k = 0, · · · , N, and the time moments tN ⩾ · · · ⩾ t1 ⩾ t0.
Here Φt

s is defined by one-time dynamics ρ(t) = Φt
sρ(s), t ⩾ s. In general, the multi-time

correlations can be non-Markovian and can be defined by process tensors [57,58], but
here, we focus mostly on the Markovian case, for which all the multi-time correlations are
fully defined by the propagator Φt

s and the initial density matrix. Thus, it is natural to
consider the superoperator master equations for the projected propagator only. However, in
principle, one can generalize the hyperprojector methods used here as multi-time hyperpro-
jectors to derive multi-time master equations similar to Equations (27)–(28) in [59], where
averaging with respect to a classical random variable played the role of such a multi-time
hyperprojector.

For simplicity, let us consider the special case of Formula (46) for two-time measure-
ments, which takes the form

⟨Y(t)X(s)⟩ = Tr YΦt
s(Xρ(s)), t ⩾ s. (47)

Similarly to Formula (47), let us define

⟨Y(t)X(s)⟩P = Tr YP(Φt
s)(Xρ(s)), t ⩾ s. (48)

Since we interpret hyperprojector P as a result of the non-selective measurement of incre-
ments of energy H0 between times s and t, then it is natural to consider the hyperprojector
defining the result of selective measurement as well. Therefore, we define

Pω(Φ) = ∑
ε1−ε2=ε4−ε3=ω

Πε1
Φ(Πε2 · Πε3)Πε4

and the correspondent correlation function

⟨Y(t)X(s)⟩Pω = Tr YPω(Φ
t
s)(Xρ(s)), t ⩾ s.

The hyperprojectors Pω sum up to P

P = ∑
ω

Pω. (49)

To verify that correlation functions ⟨Y(t)X(s)⟩P and ⟨Y(t)X(s)⟩Pω have operational
meaning, let us show that they can be represented as linear combinations of the usual
correlation functions (46).
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Proposition 4. For arbitrary operators X and Y and t ⩾ s, one has

⟨Y(t)X(s)⟩Pω = ∑
ε1−ε2=ε4−ε3=ω

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩, (50)

⟨Y(t)X(s)⟩P = ∑
ε1−ε2=ε4−ε3

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩. (51)

See Appendix C for the proof. Moreover, analogously to Equations (50) and (51), we
can define multi-time correlations, assuming that the generalized regression Formula (46)
changes in a similar way, but only for the two times between which we perform the
measurements. Such modified regression formulae fully define the process tensor [57–59].

Now, let us show that the hyperprojector Pω can be interpreted as a hyperprojector
of the (ideal) selective measurement of energy increment (only the increment without
measurement of energies themselves). First of all, let us show that it can be used to define a
probability of a certain value of the energy increment ω and the posterior state after such
a measurement.

Proposition 5. If Φ is a completely positive trace non-increasing map, then Pω(Φ) is also a
completely positive trace non-increasing map. (Pω is a probabilistic supermap in terms of [14]). In
particular, if ρ is a density matrix and Φ is a completely positive trace-preserving map, then

1. Tr(Pω(Φ)ρ) as a function of ω is a probability mass function, i.e.,

0 ⩽ Tr(Pω(Φ)ρ) ⩽ 1, ∑
ω

Tr(Pω(Φ)ρ) = 1. (52)

2. If, in addition, Tr(Pω(Φ)ρ) ̸= 0, then

Pω(Φ)ρ

Tr(Pω(Φ)ρ)
(53)

is a density matrix.

See the proof in Appendix D. Thus, we can interpret Tr(Pω(Φ)ρ) as a probability that
some physical quantity equals ω, and the posterior state after such a measurement, if the
result of the measurement is ω, is defined by (53).

Finally, the next proposition shows that Pω satisfies several “natural” equalities that
could be expected from the energy difference measurement hyperoperator.

Proposition 6. For arbitrary superoperator Φ, one has

Pε2−ε1
(Φ(Πε1

· Πε1
)) = Pε2−ε1

(Φ)(Πε1
· Πε1

) = Pε2−ε1
((Πε2 · Πε2)Φ)

= (Πε2 · Πε2)Pε2−ε1
(Φ) = (Πε2 · Πε2)Φ(Πε1

· Πε1
).

(54)

See the proof in Appendix E. Let us discuss the operational meaning of these equali-
ties. It reflects the fact that measuring the energy and energy increment is equivalent to
measuring both the initial and final energy. Pε2−ε1

(Φ(Πε1
· Πε1

)) means that we started
our experiment of measuring energy difference, then just after the start, we measured the
energy; after that, the system evolved according to the propagator Φ, and we finished our
experiment measuring the energy increment. Pε2−ε1

(Φ)(Πε1
· Πε1

) means that we initially
measured the energy and then ran the experiment on measuring the energy increment, and
so on. (Πε2 · Πε2)Φ(Πε1

· Πε1
) means that we just measured the energy at the initial and

the final moment.
Now, let us consider non-selective measurement, i.e., we measure the energy incre-

ment but do not look at the result of the measurement. As we obtain state (53) with
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the probability Tr(Pω(Φ)ρ), then, after such a non-selective measurement, we have the
following posterior state

∑
ω

Tr(Pω(Φ)ρ)
Pω(Φ)ρ

Tr(Pω(Φ)ρ)
= ∑

ω

Pω(Φ)ρ = P(Φ)ρ.

Thus, the hyperprojector P can be interpreted as a transformation of the dynamical map Φ

between two time moments, which describes the action of non-selective energy increment
measurement between these two time moments.

Proposition 5 also leads to some additional properties of hyperprojector P.

Proposition 7.

1. If Φ is a completely positive trace-preserving map (quantum channel), then P(Φ) is a
completely positive trace-preserving map (quantum channel). (P is a deterministic supermap
in terms of [14].)

2. If Φ is a unital (bistochastic) channel, i.e., Φ is a completely positive trace-preserving map
and Φ(I) = I, then P(Φ) is a unital (bistochastic) channel as well.

The usual averaging superoperator [8]

P = ∑
ε

Πε · Πε (55)

can be interpreted as the action of the usual non-selective measurement on a state, and
in particular, it transforms density matrices before the measurement to density matrices
after the measurement. Similarly, Proposition 7 says that Φ maps channels to channels and
unital channels to unital channels. In particular, from [60], (Corollary 7.10), we obtain the
following corollary.

Corollary 1. If Φ = U · U†, where U is a unitary matrix, then P(Φ) is entropy non-decreasing,
i.e., for any density matrix ρ

S(P(Φ)ρ) ⩾ S(ρ), (56)

where S(ρ) = −Tr ρ log ρ is the von Neumann entropy.

Let us remark that S(Φρ) = S(ρ) for Φ = U · U†. Thus, we have also a higher order
analog of the H-theorem that can be interpreted as a higher order analog of the second
law of thermodynamics from the physical point of view. The usual H-theorem says that
entropy of a state increases (or does not change) after transformation by a bistochastic
channel. However, here, we see that entropy increment increases (or does not change) if we
transform the channel itself via the hyperprojector. It can be interpreted as a second order
analog of the second law of thermodynamics if we change channels rather than states.

4.2. Correlation Functions of Fast Observables

In work [8], the usual averaging superoperator (55) was used to define the effective
Gibbs state for fast observables. Let us show that, similarly, the averaging hyperprojector
can be used to define the effective equilibrium correlation functions for these observ-
ables. By a fast observable, we mean an observable that explicitly depends on time in the
Schrödinger picture in such a way that it becomes time-independent in the interaction pic-
ture. Namely, a fast observable X(t) has the following form in the Schrödinger picture [8],
(Equation (3))

X(t) = e−L0t(X), (57)

where X is a constant matrix, where L0 is defined by (16). Now, let us consider the
equilibrium correlation function of two fast observables X(t) and Y(t). By applying the
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generalized regression Formula (46), assuming that the initial state is a Gibbs state ρβ and
taking into account the explicit time-dependence of fast observables, we have

⟨Y(t)X(s)⟩eq = Tr e−L0t(Y)Φt
s(e

−L0s(X)ρβ) = Tr YeL0tΦt
s(e

−L0s(X)ρβ)

= Tr YeL0tΦt
se−L0teL0(t−s)(XeL0sρβ)).

Similarly to [8], we consider a long timescale such that ωs ≫ 1 for all non-zero Bohr
frequencies ω and ∆ωt ≫ 1 for all non-zero differences ∆ω in Bohr frequencies. However,
we do not assume that t − s is large with respect to ∆ω−1 or ω−1. Then, on such a long
timescale, we have

⟨Y(t)X(s)⟩eq ≈ Tr YP(Φt
s)e

L0(t−s)(XP(ρβ))

= Tr e−L0(t−s)(Y)P(Φt
s)(XP(ρβ)) ≡ ⟨Y(t − s)X(0)⟩eff.

Thus, on such a long timescale, the correlation functions become approximately stationary,
and instead of exact Gibbs state ρβ and dynamical map Φt

s, we can use the effective Gibbs

state P(ρβ) and P(Φt
s) in regression Formula (47). Such an effective correlation function

can be also considered as a multi-time analog of quasi-stationary states [61].
Similarly to [8], we can interpret the entropy increase in (56), in contrast to unitary

dynamics, as the information being lost due to our restricted experimental capabilities,
which assume that we can measure only “slow” averages of fast observables.

Let us also remark that in (57), X can be time-dependent but “slow” on the long
timescale. We can think of X as a “slow envelope”.

5. Weak Coupling Superoperator Master Equation for Averaging Projector

Now, let us consider a second order weak coupling superoperator master equation in
the special case of the averaging hyperprojector. Namely, let us consider unitary dynamics
Ψt;λ defined by equation

d

dt
Ψt;λ = (L0 + λLI)Ψt;λ, Ψt0;λ = I. (58)

The properties of the averaging hyperprojector simplify the transformation into and from
the interaction picture.

Proposition 8. For projected propagator P(Ψt;λ), the following Cauchy problem for the superoper-
ator master equation holds

d

dt
P(Ψt;λ) = Leff(t, t0; λ)P(Ψt;λ), P(Ψt0;λ) = I, (59)

where

Leff(t, t0; λ) = L0 + λP(LI) + λ2P
(

LI [L0, · ](−1)(e(t−t0)[L0, · ] − I)LI

)

+ O(λ3) (60)

as λ → 0 and fixed t ⩾ t0.

See the proof in Appendix F.
Let us expand HI as a sum of eigenoperators of the superoperator [H0, · ] in the

same way as it is usually performed for the Markov master equation derivation [41],
(Subsection 3.3.1), and use it to obtain more explicit representation of (60), as we have
carried out for the effective (equilibrium) Hamiltonian in [8]. We have

HI = ∑
ω

Dω, (61)
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where the sum runs over all the eigenvalues of [H0, · ], which are sometimes called the
Bohr frequencies [23], p. 122 and

[H0, Dω ] = −ωDω, D−ω = D†
ω. (62)

The possibility to choose Dω such that D−ω = D†
ω follows from the fact that H0 is Hermitian.

Then, Equation (60) takes the form (see Appendix G for detailed calculation)

Leff(t, t0; λ) = −i

[

H0 + λD0 + λ2 ∑
ω ̸=0

1−cos ω(t−t0)
ω D†

ωDω, ·
]

+2λ2 ∑
ω ̸=0

sin ω(t−t0)
ω

(

Dω · D†
ω − 1

2{D†
ωDω, · }

)

+ O(λ3).

(63)

The first terms of this generator are nothing else but the commutator with the Hamil-
tonian in the rotation wave approximation H0 + λD0 = HRWA. The Hamiltonians obtained
by perturbative corrections are usually called effective Hamiltonians [31,32]. In our case,
we obtain not only Hamiltonian terms, so we call it an effective generator.

Let us remark that despite the fact that any Hermiticity and trace persevering generator
has a GKSL-like form [62], the specific form (63) is such that Lindblad operators defined
by (62) are the so-called weak coupling limit type (WCLT) form [63]. Therefore, our
derivation shows that the averaging hyperprojector is the essential component for obtaining
the weak coupling limit type form of generator. Actually, even in the derivation [22] of
usual weak coupling master equations, we initially obtained a non-GKSL Redfield-like
equation. However, the Redfield equation has a known physical issue in that it can predict
non-positive probabilities in some cases [64]. Furthermore, only after using the averaging
(but without regarding it as application of averaging hyperprojector explicitly), the WCLT
GKSL generator occurs, which has no such issue. This suggests that hyperprojector methods
can be essential for obtaining physically consistent equations.

Equation (63) has the GKSL-like form but not the GKSL form exactly, if

sin ω(t − t0)

ω
< 0.

Hence, despite the fact that P(Ψt;λ) is completely positive and, due to corollary 1, is entropy
non-decreasing from time t0 to t, P(Ψt;λ) is not completely positive divisible and it is not
necessarily entropy non-decreasing for any fixed time t. A more detailed description of the
local entropy increase is given by the following proposition.

Proposition 9. 1. If sin ω(t − t0) ⩾ 0 for all ω ∈ spec[H0, · ], such that ω > 0,

d

dt
S(P(Ψt;λ)ρ) ⩾ 0 (64)

for all density matrices ρ and small enough λ.
2. If sin ω(t − t0) ⩽ 0 for all ω ∈ spec[H0, · ], such that ω > 0,

d

dt
S(P(Ψt;λ)ρ) ⩽ 0 (65)

for all density matrices ρ and small enough λ.

It follows from the fact that in the first case of this proposition generator, (63) has
the GKSL form and P(Ψt;λ) is completely positive divisible and Leff(t, t0; λ)I = 0 so it
is unital, then by [60], (Corollary 7.10), we obtain (64). Similarly, in the second case of
this proposition generator (63) has the opposite GKSL form and (P(Ψt;λ))

−1 is completely
positive divisible and unital, so we have (65).
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This proposition describes some extreme situations, when the entropy increment at
the time moment t has a definite sign for all the initial states. In general, it cannot be the
case that sin ω(t − t0) ⩾ 0 or sin ω(t − t0) ⩽ 0 for all positive Bohr frequencies ω and
the entropy increment at the time moment t can have different signs depending on state.
However, the total entropy increment is non-negative by Corollary 1.

To illustrate (63), let us consider the simplest case of a two-level system

H0 =
1

2
ω0σz, HI = gσx, (66)

then, (63) takes the form

Leff(t, t0; λ) = −i
[

1
2 ω0σz + λ2g2 1−cos ω0(t−t0)

ω0
σz, ·

]

+2λ2g2 sin ω0(t−t0)
ω0

(

σ− · σ+ − 1
2{σ+σ−, · }+ σ+ · σ− − 1

2{σ−σ+, · }
)

+ O(λ3).
(67)

5.1. Bogolubov–Van Hove Limit

The mathematically strict derivation of Markovian master equations is based on the
Bogolubov–van Hove scaling [22,23] and from the physical point of view the Bogolubov-
van Hove limit identifies the timescale consistent with the projector. So let us discuss
the Bogolubov–van Hove scaling analog in our case as well. We obtain the follow-
ing proposition.

Proposition 10. Let Leff,BvH(λ) be defined by

d

dt
P(Ψλ−2t;λ) = Leff,BvH(λ)P(Ψλ−2t;λ), Ψt0;λ = I,

then

Leff,BvH(λ) =
1

λ2
L0 +

1

λ
P(LI)−P

(

LI [L0, · ](−1)LI

)

+ O(λ). (68)

Using expansion (61)–(62), we obtain a more explicit form of the generator in the
Bogolubov–van Hove limit:

Leff,BvH(λ) = −i

[

1

λ2
H0 +

1

λ
D0 − ∑

ω>0

1

ω
[D†

ω, Dω ], ·
]

+ O(λ). (69)

Thus, after the Bogolubov–van Hove scaling in the limit λ → 0, the generator becomes
a generator of fully unitary dynamics without any dissipator-like terms, which is not
obvious from the abstract form (68). Let us also remark that there is a connection of
Formula (69) with the algebraic perturbation theory [30,32,52]. The algebraic perturbation
theory for given L0 and LI finds perturbatively such U (λ) and Leff,sec(λ) that

L0 + λLI = U−1(λ)Leff,sec(λ)U (λ),

where U (λ) = U(λ) · U†(λ) and U(λ) is a unitary transformation and Leff,sec contains
only the “secular” terms, which can be formalized [52] as the condition

Leff,sec = P(Leff,sec).

Comparing with Formula (13) from [52] for the effective Hamiltonian, we obtain

Leff,BvH(λ) =
1

λ2
Leff,sec(λ) + O(λ). (70)
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However, let us remark that after the Bogolubov–van Hove scaling, the unitary transforma-
tion U(λ), which can also be found in [52], (Section IV.B)

U(λ) = exp

(

λ ∑
ω>0

(Dω − D†
ω)

)

+ O(λ2),

seems to play no role. This is because Leff,BvH(λ) in (69) has higher order corrections
O(λ), so with the same accuracy, U(λ) = I + O(λ) and the unitary transformation can be
neglected. It is the result of the Bogolubov–van Hove scaling, but U(λ) plays the role for
the higher order expansions of Leff,BvH(λ).

Therefore, despite the fact that the RWA (or secular approximation) and perturbative
corrections to it are usually not formulated in terms of hyperprojectors and the Bogolubov–
van Hove limit, these widespread physical assumptions can be compactly formulated
via the hyperprojector method. For deriving systematic perturbative corrections, such a
compact formulation can be important.

Let us also remark that from the point of view of interpretation discussed in Section 4.2,
another analog of the Bogolubov–van Hove scaling can be considered, where both initial
and final time are taken at the long timescale. This means that both t and t0 are subjected
to scaling. Although λ−2t and λ−2t0 are large as λ → 0, it is possible to consider such
sufficiently close times that λ−2(t − t0) has a finite limit as λ → 0. Furthermore, no
simplification occurs in (63) in such a case. However, the case when λ−2(t − t0) is also
large reduces to Proposition 10.

Let us also remark that in this work, we have focused on the finite-dimensional case.
However, in the infinite-dimensional case, the sum in the dissipator-like term in (63) be-
comes the integral, which, similarly to [65], can give non-trivial terms in the limit due to the
Fermi golden rule; therefore, it can be a non-trivial dissipator on the timescale identified by
the Bogolubov–van Hove scaling. Owing to the connection with the algebraic perturbation
theory mentioned in Section 5.1, it is also natural to ask if effective generators of unitary
dynamics for the infinite-dimensional case always generate the unitary dynamics. This
discussion allows us to hypothesize that possibly it is not the case. Some works interpret-
ing resonances [66–68] in the infinite-dimensional case as spontaneous time-symmetry
breaking [69] are also indirect evidence in favor of this hypothesis.

6. Stroboscopic Limit Superoperator Master Equation for Averaging Hyperprojector

Now, let us consider the stroboscopic limit superoperator master equation in the special
case of the averaging hyperprojector. In an abstract form (32), it is not overly simplified
in such a special case; therefore, we turn to a more explicit form. Using expansion (61)
and (62), generator (32) takes the form

Leff,str(N) = −i[
√

NλD0, · ]

+ λ2t
2 ∑

ω>0

(

Dω · D†
ω − 1

2{D†
ωDω, · }+ D†

ω · Dω − 1
2{DωD†

ω, · }
)

+O(N− 1
2 ).

(71)

Let us remark that we hold the same notation H0, H and for expansion (61) and (62) to
emphasize the similarity between the calculations. However, we do not have to understand
H0 as some Hamiltonian, but we could consider it as any other quantity. For the quantum
thermodynamics applications, it can be volume or voltage or some other quantity, the
increment of which we repeatedly measure.

Moreover, we can think about it not as a repeated measurement but as a constraint on
dynamics, which indirectly describes the influence of the environment on an actually open
system. For example, in non-quantum physics, we can just assume the ideal mechanical
constraints or fixed voltage in a socket without describing a microscopic model of a surface
or a rope that sets the ideal mechanical constraints and without a detailed model of a
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power plant that supplies the fixed voltage to the socket. In a certain sense, we also simply
“project” unitary dynamics to constrained dynamics. Moreover, in our quantum case, the
consistency with P for evolution between arbitrary close time moments can be considered
as a constraints-based description of the environment’s influence on the system.

Generator (71) has the GKSL form. If we apply our projected dynamics to an initial
density matrix, we can say that we have derived a quantum master equation without an
explicit description of the reservoir, but only in terms of constraints on dynamics, which
can be useful in the case where we do not have a detailed model of the reservoir and have
access only to the system. To some extent, our approach is close to the discussion of the
decoherence without a reservoir in [65].

As (71) is a generator of a unital semigroup [60], (Corollary 7.10), then we have the
following proposition.

Proposition 11. For large enough N and arbitrary density matrix ρ, we have

d

dt
S
(

eLeff,str(N)tρ
)

⩾ 0.

To illustrate (71), let us also consider example (66), then (71) takes the form

Leff,str(N) =
λ2t

2
g2

(

σ− · σ+ − 1

2
{σ+σ−, · }+ σ+ · σ− − 1

2
{σ−σ+, · }

)

+ O(N− 1
2 ).

7. Conclusions

We have introduced superoperator master equations for the cases of the weak coupling
limit and the stroboscopic limit in Sections 2 and 3, respectively. We think that these
equations can be interesting in a broad context, but in this work, we have focused on the
particular case of the averaging hyperprojector. In Section 4.1, we have shown that it has
physical meaning as a non-selective measurement of energy increments between two times
without measuring the initial and final energies themselves. In Section 4.2, we have shown
that it arises naturally if we measure the correlation functions of fast observables. It is
important because in widely used spectroscopy setups [44], (Section 4), [45], (Section 4), we
have no direct access to the density matrix but only to correlation functions. In particular,
the multi-time correlations have now attracted great attention in open quantum systems
theory [57,58,70]. Under the conditions of Corollary 1, we have also shown that such
a hyperprojector leads to an increase in entropy increments, which can be regarded as
the second order analog of the second law of thermodynamics. In Sections 5 and 6, we
apply the general approaches developed in Sections 2 and 3 to the specific averaging
hyperprojector. In Section 5, we have obtained the generator that has the WCLT GKSL-like
form, which suggests that the averaging hyperprojector is essential for obtaining such a
form. In Section 5.1, we have shown that in the Bogolubov–van Hove limit, this generator
coincides with the second order effective generator from the algebraic perturbation theory,
which suggests that RWA (or secular approximation) and its perturbative corrections can
be absorbed by hyperprojector methods. In Section 6, we have derived the superoperator
master equation arising due to the repeated measurement of increments of the observable
that defines the averaging hyperprojector. It has the GKSL form and leads to dynamics
with monotone entropy.

As a possible direction for further development, we should mention the consideration
of analogs of other limits leading to Markovian master equations for open quantum sys-
tems, e.g., singular coupling limit [41], (Section 3.3.3), a singular and weak coupling limit
combination leading to a unified master equation [71], low density limit [72–74] and so on.
It can be interesting to find hyperprojectors that lead to the generators satisfying quantum
detailed balance [75] rather than simply the unital, as in our work.
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Appendix A. Stroboscopic Limit Expansion

The solution of (26) has the form Φt;λ = eλLt, then the following asymptotic expansion
holds

P(ΦN−1t;
√

Nλ
) = P(e

1√
N

λLt
) = I +

∞

∑
k=1

λktk

k!
N− k

2 P(Lk)

as N → ∞, where we have used (5). Then, using Formulae (A8) and (A12) from [8], we have

logP(ΦN−1t;
√

Nλ
) =

∞

∑
n=0

λntnN− n
2 ∑

k0+···+km=n

(−1)m

m + 1

1

k0! . . . km!
P(Lk0) · · ·P(Lkm) (A1)

Representing the left-hand side of Equation (28) in the form

(P(ΦN−1t;
√

Nλ
))N =

(

e
logP(Φ

N−1t;
√

Nλ
)
)N

= e
t N

t logP(Φ
N−1t;

√
Nλ

)
,

we have Leff,str(N) = N
t logP(ΦN−1t;

√
Nλ

) in the right-hand side of Equation (28). Taking
into account (A1), we obtain (29).

Appendix B. Proof for Properties of Averaging Projector

1. Taking into account (36), we have

P(eL0tΦ) = lim
T→∞

1
T

∫ T
0 dτ eL0τeL0tΦe−L0τ = eL0t lim

T→∞

1
T

∫ T
0 dτ eL0τΦe−L0τ

= eL0tP(Φ).
(A2)

Thus, we obtain property 1.
2. Using (16), (39) and decomposition (37), we have

eL0tP(Φ) = ∑
ε1−ε2=ε4−ε3

e−iH0tΠε1
Φ(Πε2 · Πε3)Πε4

eiH0t

= ∑
ε1−ε4=ε2−ε3

e−iε1tΠε1
Φ(Πε2 · Πε3)Πε4

eiε4t

= ∑
ε1−ε4=ε2−ε3

Πε1
Φ(Πε2 e−iε2t · eiε3tΠε3)Πε4

= ∑
ε1−ε4=ε2−ε3

Πε1
Φ(Πε2 e−iH0t · eiH0tΠε3)Πε4

= P(Φ)eL0t.

(A3)

Thus, we obtain property 2.
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3. Taking into account (36), we have

P(I) = lim
T→∞

1

T

∫ T

0
dτ eL0τ Ie−L0τ = lim

T→∞

1

T

∫ T

0
dτ I = I. (A4)

Thus, we obtain property 3.
4. Using property 2, we have

eL0tP(Φ)e−L0t = P(Φ), (A5)

then

P2(Φ) = lim
T→∞

1

T

∫ T

0
dτ eL0τP(Φ)e−L0τ = lim

T→∞

1

T

∫ T

0
dτ P(Φ) = P(Φ). (A6)

Thus, we obtain property 4.
5. Using (39) and (38), we have

P(Φ)(I) = ∑
ε1−ε2=ε4−ε3

Πε1
Φ(Πε2 Πε3)Πε4

= ∑
ε1,ε2

Πε1
Φ(Πε2)Πε1

= ∑
ε1

Πε1
Φ(I)Πε1

.

If Φ(I) = I, then we have

P(Φ)(I) = ∑
ε1

Π2
ε1
= ∑

ε1

Πε1
= I.

Thus, we obtain property 5.
6. Let us assume Φ ∈ ker[L0, · ], i.e., [L0, · ]Φ = 0. Then, e[L0, · ]tΦ = Φ and using

definition (36), we have

P(Φ) = lim
T→∞

1

T

∫ T

0
dt e[L0, · ]tΦ = lim

T→∞

1

T

∫ T

0
dt Φ = Φ,

Now, conversely, let us assume P(Φ) = Φ, then due to (A5) we have

e[L0, · ]tΦ = e[L0, · ]tP(Φ) = P(Φ) = Φ.

Differentiating both sides at t = 0, we have

[L0, · ]Φ =
d

dt
e[L0, · ]tΦ

∣
∣
∣
∣
t=0

= 0.

Therefore, we have Φ ∈ ker[L0, · ]. Thus, we obtain property 6.

Appendix C. Correlation Functions for Projected Propagators

The generalized regression Formula (46) gives

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩ = Tr(YΠε1
Φt

s(Πε2 Xρ(s)Πε3)Πε4
).

Therefore, we have

∑
ε1−ε2=ε4−ε3=ω

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩

= ∑
ε1−ε2=ε4−ε3=ω

Tr(YΠε1
Φt

s(Πε2 Xρ(s)Πε3)Πε4
) = Tr(YPω(Φ

t
s)(Xρ(s)))
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and we obtain (50). Then, using (49), we have

Tr(YP(Φt
s)(Xρ(s))) = ∑

ω

Tr(YPω(Φ
t
s)(Xρ(s)))

= ∑
ω

∑
ε1−ε2=ε4−ε3=ω

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩

= ∑
ε1−ε2=ε4−ε3

⟨Πε3(s)Πε4
(t)Y(t)Πε1

(t)Πε2(s)X(s)⟩.

Thus, we obtain (51).

Appendix D. Properties of Increment Hyperprojector

If Φ is completely positive, then it has Kraus representation [60], (Corollary 6.13)

Φ = ∑
j

Wj · W†
j ,

where Wj are Kraus operators. Using this allows us to calculate

Pε(Φ)ρ = ∑
ε1−ε2=ε4−ε3=ε

∑
j

Πε1
WjΠε2 ρΠε3W†

j Πε4

= ∑
j

∑
ε1−ε2=ε

Πε1
WjΠε2 ρ ∑

ε4−ε3=ε

Πε3W†
j Πε4

.

As
(

∑
ε1−ε2=ε

Πε1
WjΠε2

)†

= ∑
ε1−ε2=ε

Πε2W†
j Πε1

= ∑
ε4−ε3=ε

Πε3W†
j Πε4

,

then we obtain Kraus representation for Pε

Pε(Φ) = ∑
j

Wε,j · W†
ε,j,

where
Wε,j = ∑

ε1−ε2=ε

Πε1
WjΠε2 . (A7)

Therefore, Pε(Φ) is a completely positive map. In particular, Pε(Φ)ρ ⩾ 0 if ρ is a density
matrix. Therefore, if TrPε(Φ)ρ ̸= 0, then (53) is a density matrix.

If Φ is a completely positive trace non-increasing map, then Kraus operators Wj

satisfy [76], (Theorem 8.1)

∑
j

W†
j Wj ⩽ I.

Then, taking into account (A7), we have

∑
j

W†
ε,jWε,j = ∑

j
∑

ε4−ε3=ε

Πε3W†
j Πε4 ∑

ε1−ε2=ε

Πε1
WjΠε2

= ∑
j

∑
ε4−ε3=ε

∑
ε1−ε2=ε

Πε3W†
j Πε4

Πε1
WjΠε2

= ∑
j

∑
ε1−ε2=ε

Πε2W†
j Πε1

WjΠε2 ⩽ ∑
j

∑
ε1,ε2

Πε2W†
j Πε1

WjΠε2

= ∑
j

∑
ε2

Πε2W†
j WjΠε2 ⩽ ∑

ε2

Πε2 Πε2 = ∑
ε2

Πε2 = I

Thus, Pε(Φ) is trace non-increasing if Φ is. In particular, Tr(Pε(Φ)ρ) ⩽ 1. Therefore, we
obtain (52).
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Appendix E. Increment Hyperprojector and Energy Measurement

Using (38) and (39), we have

Pε2−ε1
(Φ(Πε1

· Πε1
)) = ∑

ε′1−ε′2=ε′4−ε′3=ε2−ε1

Πε′1
Φ(Πε1

Πε′2
· Πε′3

Πε1
)Πε′4

= ∑
ε′1−ε′2=ε′4−ε′3=ε2−ε1

Πε′1
Φ(δε1,ε′2

Πε1
· δε1,ε′3

Πε1
)Πε′4

= ∑
ε′1−ε1=ε′4−ε1=ε2−ε1

Πε′1
Φ(Πε1

· Πε1
)Πε′4

= ∑
ε′1=ε′4=ε2

Πε′1
Φ(Πε1

· Πε1
)Πε′4

= Πε2 Φ(Πε1
· Πε1

)Πε2 .

Thus, we obtain the equality between the first and last expressions in (54). The equality
between the other expressions in (54) and the last one can be proven in a similar way.

Appendix F. Second Order Weak Coupling Generator

Let us move to the interaction picture. Namely, if we define Φt
t0
= e−L0(t−t0)Ψt;λ, then

we obtain the equation of form (3) and initial condition (4), whereL(t) = e−L0(t−t0)LIe
L0(t−t0).

Taking into account properties 1 and 2 from Proposition 3, we have

P(L(t)) = P
(

e−L0(t−t0)LIe
L0(t−t0)

)

= P(LI) (A8)

and
P(L(t)L(s)) = P(e−L0(t−t0)LIe

L0(t−t0)e−L0(s−t0)LIe
L0(s−t0))

= P(LIe
L0(t−s)LIe

−L0(t−s)) = P(LIe
[L0, · ](t−s)(LI)).

(A9)

Therefore,

P
(

L(t)[L0, · ](−1)(L(t0)−L(t))
)

=
∫ t

t0
ds(P(L(t)L(s))

= P
(

LI
e(t−t0)[L0, · ]−1

[L0, · ] (LI)
)

= P
(

LI [L0, · ](−1)(e(t−t0)[L0, · ] − I)LI

)

.

(A10)

Due to property 6 from Proposition 3 and definition (19) of the pseudoinverse, we have

P[L0, · ](−1)(L(t0)−L(t)) = 0. (A11)

Substituting (A8), (A10) and (A11) to (17) and using property 1 from Proposition 3 to return
from the interaction picture of projected dynamics P(Φt

t0
) to the Schrödinger one P(Ψt;λ),

we obtain (60).

Appendix G. Explicit Form of Second Order Weak Coupling Generator

From (16) and (62), we have

L0(Dω) = iωDω.

Then, by the Leibniz rule for a commutator, we obtain

L0(DωX) = L0(Dω)X + DωL0(X) = iωDωX + DωL0(X)

for arbitrary operator X. It can be written as

[L0, Dω · ] = iωDω · ,
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or, equivalently, as
[L0, · ](Dω · ) = iω(Dω · ). (A12)

Similarly, we have
[L0, · ]( · Dω) = iω( · Dω). (A13)

By combining Formulae (A12) and (A13), we obtain

[L0, · ][Dω, · ] = iω[Dω, · ],

from which we have
e[L0, · ]t[Dω, · ] = eiωt[Dω, · ].

Using expansion (61), we have

e[L0, · ]tLI = −ie[L0, · ]t[HI , · ] = −i ∑
ω

eiωt[Dω, · ]. (A14)

Then

P
(

LI [L0, · ](−1)(e(t−t0)[L0, · ] − I)LI

)

= −iP

(

LI ∑
ω ̸=0

eiω(t−t0) − 1

ω
[Dω, · ]

)

= −P

(

∑
ω′

∑
ω ̸=0

eiω(t−t0) − 1

ω
[Dω′ , [Dω, · ]]

)

= − ∑
ω ̸=0

eiω(t−t0) − 1

ω
[D†

ω, [Dω, · ]]

= −i

[

∑
ω ̸=0

1 − cos ω(t − t0)

ω
D†

ωDω, ·
]

+ 2 ∑
ω ̸=0

sin ω(t − t0)

ω

(

Dω · D†
ω − 1

2
{D†

ωDω, · }
)

and

P(LI) = P

(

−i ∑
ω

[Dω, · ]
)

= −i ∑
ω

[D0, · ].

Thus, (60) takes form (63).
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