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Abstract

This thesis reports a constraint of the neutrino oscillation parameters ∆m2
32,

sin2 θ23, and δCP using the NuMI Off-Axis ν Appearance (NOvA) experiment’s Near

Detector (ND) data and Far Detector (FD) fake data set simultaneously. This thesis

also reports a constraint on NOvA’s systematic uncertainty model solely with its

Near Detector data. The Hamiltonian Monte Carlo algorithm is used to estimate

Bayesian Credible Intervals for the oscillation and interaction parameters. The 1σ

Credible Intervals for sin2 θ23 are (0.44, 0.512) ∪ (0.536, 0.56), for ∆m2
32 (2.41×10−3

eV2, 2.52× 10−3 eV2), and for δCP (0.74π, 1.1π) ∪ (1.38π, 1.58π). The statistical

power of the ND data constrains NOvA’s interaction parameters, while the FD fake

data constrains the oscillation parameters. This is the first analysis within NOvA

to constrain the ND and FD prediction simultaneously, and to investigate the neu-

trino interaction modeling in the context of constraining the oscillation parameters.

To constrain the ND data requires a sophisticated understanding of the neutrino

interaction modeling and its uncertainties. The interested reader is advised to focus

on Chapters 4 and 6, which discuss the ND selection, uncertainties, and ND-only

fits to data. The reader interested in oscillation parameter constraints will find this

in Chapter 7.
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Chapter 1

Neutrino Oscillations

The neutrino is perhaps one of the least understood particles in our universe. Its

story originated with the Italian physicist Wolfgang Pauli in 1930, while studying

beta decay from light nuclei (N → N ′ + e− + p), posited a particle to explain the

source of the missing energy, momentum, and angular momentum in the beta decay.

He famously stated, “I have hit upon a desperate remedy. . .there could exist in the

nuclei electrically neutral particles”, naming the particle the “neutron” [1]. It was

theorized this decay of a light nucleus would produce a proton and electron with

equal and opposite momentum, conserving momentum, and the sum of the pair’s

energy would obey energy conservation.

Figure 1.1: β decay spectrum. It was expected the energy of an electron in beta
decay would be unique (red “Expected”). However, the electron was never observed
at the “Expected” energy and instead exhibited a distribution of energies, “Ob-
served”. These observations led Pauli to hypothesize the neutrally charge particle
the neutrino. From [2].
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However, an electron energy spectrum was observed – rather than a uniquely

defined value – that observes no electrons at the expected electron energy (Fig.

1.1). Therefore, the electron never possesses the equal and opposite amount of

energy from the proton, and the this missing energy must be present in the form of

the “neutron” Pauli hypothesized; this neutrally charged particle – that cannot be

directly detected – would carry away the remaining energy that was not observed in

the electron energy spectrum. In 1932, the neutron as we know now was discovered,

prompting Pauli’s “neutron” to be renamed by Italian physicist Enrico Fermi into

“neutrino”, Italian for “little neutral one”, for its light mass and zero charge.

1.1 Neutrinos and the Standard Model

The Standard Model of particle physics is a theory of particle interactions en-

capsulating three of the four fundamental forces: electromagnetic, weak, and strong

forces. Table 1.1 shows the relative strength of these forces and the associated (or

theorized, in the case of gravity) boson, or force carrier.

Force Strength Boson Spin Mass/GeV
Strong 1 Gluon(g) 1 0

Electromagnetism 10−3 Photon(γ) 1 0
Weak 10−8 W boson(W±) 1 80.4
Weak 10−8 Z boson(Z) 1 91.2
Gravity 10−37 Graviton(?)(G) 2 0

Table 1.1: The four known forces of nature. The relative strengths are approximate
indicative values for two fundamental particles at a distance of 1 fm = 10−15 m
(roughly the radius of a proton). Adapted from Ref. [3]

The other component of the standard model are the Fermions, Table 1.2. Fermions

can be divided into two sectors: the quark sector and lepton sector. The quark sector

(right side of the table) shows the three generations of quarks. The strong interac-

tion force is mediated by gluons. The theory is an SU(3) gauge theory described by

a color triplet and the six quark flavors. Color singlets are referred to as hadrons

and have two subcategories: mesons and baryons. Mesons are pairs of a quark and

anti-quark (such as a pion). Baryons are made of three quarks (such as a proton).
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Gen. Leptons Quarks
Particle Q Mass/GeV Particle Q Mass/GeV

1st electron (e−) -1 0.0005 down(d) -1/3 0.003
electron neutrino (νe) 0 < 2−9 up(u) +2/3 0.005

2nd muon (µ−) -1 0.0105 strange(s) -1/3 0.1
muon neutrino (νµ) 0 < 0.17−3 charm(c) +2/3 1.3

3rd tau (τ−) -1 1.7768 bottom(b) -1/3 4.5
tau neutrino (ντ ) 0 < 18.2−3 top(t) +2/3 174

Table 1.2: The twelve fundamental fermions divided into quarks and leptons. The
masses represent the current best experimental measurements. Adapted from [3]
and [4].

The lepton sector is also divided into three generations. The charged leptons

(e, µ, τ) have identical charge, −1, and increase in mass with generation. Each

charged lepton possesses a corresponding neutrino with the same lepton quantum

number. This thesis focuses on the interactions of νµ and νe and the parameters

that govern their oscillation.

Within the Standard Model, neutrinos only interact via the weak force. The

weak force is mediated through one of two bosons, the W± and Z0. In a Charged

Current (CC) neutrino interaction, the weak force is mediated by the massive W±

boson, which exchanges a ±1 charge. The Neutral Current (NC) interaction is

predicted by the unification of the weak force with quantum electrodynamics. This

interaction is mediated by a massive, neutral Z0 boson. The tree-level Feynman

diagrams can be seen in Fig. 1.2.

(a) NC interaction vertex (b) CC interaction vertex

Figure 1.2: The neutral-current and charged-current weak interaction vertices (for
the 1st generation fermions).

The theory of leptogenesis is closely tied to the neutrino. In the theory, the Stan-
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dard Model contains both Dirac and Majorana neutrinos, and both are required to

explain the matter-antimatter asymmetry in the early universe. Neutrino oscillation

experiments seek to probe the theory by observing how matter particles differ from

their antimatter partners. Neutrinos are the ideal tool because experiments such

as NOvA can create and observe neutrinos as well as antineutrinos. By studying

the different characteristics of these two particles provides insight into this question.

In the context of NOvA, the objective is to constrain the parameter δCP , which

describes the charge and parity violation between matter and antimatter in the neu-

trino sector, and will be discussed further in Sec. 1.6. However, NOvA’s efforts will

only clarify part of the theory; the remaining part requires observing heavy neu-

trinos at energies consistent with the early universe (or the Grand Unified Theory,

GUT, scale). Nonetheless, NOvA will constrain CP-violation in right-handed light

neutrinos. Understanding the characteristics of neutrinos will provide insight as to

why there is matter at all in our universe.

1.2 Neutrino Mixing

The neutrino flavor eigenstates corresponding to the weak interaction – e, µ, τ

– are composed of neutrino mass eigenstates via the propagation of the free particle

Hamiltonian. Crucially, one state can be written as a linear combination of the

other set of neutrino eigenstates, in matrix notation in Eq. 1.1, or with the bra-

ket notation in Eq. 1.2. In Eq. 1.2 να is the flavor eigenstate and νi is the mass

eigenstate with mass mi, where i = 1, 2, 3.




νe

νµ

ντ




= UPMNS




ν1

ν2

ν3




, (1.1)
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|να⟩ =
∑

i

U∗
αi|νi⟩. (1.2)

Moreover, neutrinos are observed to oscillate, meaning there is a probability a

neutrino of one flavor can be observed as a neutrino of another flavor after some

time or long distances (typically in km). There are two fundamental concepts that

govern neutrino oscillation: non-zero off-diagonal elements in the PMNS matrix U

(commonly referred to as θij), and non-degenerate mass eigenstates, m1 ̸= m2 ̸= m3.

We will see that neutrino oscillations depend on the mass-squared difference, e.g.

∆m2
ij ≡ m2

i − m2
j , and because m1 ̸= m2 ̸= m3 there is some sinusoidal frequency

to the oscillation probability. This is discussed further in Sections 1.3 and 1.4. This

Section will focus on the off-diagonal elements of the PMNS matrix, or “mixing”.

The U is the unitary mixing matrix (i.e. U−1 = U †) known as the PMNS

matrix, named after Pontecorvo-Maki-Nakagawa-Sakata who introduced the matrix

and Pontecorvo who predicted the concept of oscillations [5] [6]. In the current

understanding of the Standard Model, the PMNS matrix is a 3×3 matrix – relating

to the three neutrino flavors – containing four parameters: three real, θij, and one

imaginary phase δCP ,

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13 e−iδCP

0 1 0

−s13 e−iδCP 0 c13







c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 e
iα21
2 0

0 0 e
iα31
2




.

(1.3)

where cij (sij) is cos θij (sin θij) of the mixing angle. In Equation 1.3, the PMNS

matrix is written as the product of multiple matrices. In this expression, each

individual matrix corresponds to a neutrino mixing “sector”.

The first matrix (from the left) is referred to as the “atmospheric” sector, de-

noting the original source of detection: cosmic muon decays originating from the

atmosphere. This sector – or matrix – contains the mixing angle parameter θ23.

Moreover, this sector can be accessed via accelerator experiments. Experiments
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such as IceCube, Super-Kamiokande, and T2K all have produced measurements of

the mixing angle and its partnering ∆m2
32 (the mass-squared difference term is ex-

plained in Sec. 1.5) [7]. Constraining θ23 is one of the primary physics goals of

the NOvA experiment, and this thesis. Comparisons of previous accelerator-based

oscillation experiments can be found in Fig. 1.8.

The second matrix refers to the “reactor” sector and the mixing angle θ13, where

nuclear reactors are used as the source of neutrinos. These types of experiments place

detectors within proximity to the reactor, and observe oscillations – νe disappearance

– over short baselines of O(100 m). For example the RENO, Double-Chooz and

Daya Bay collaborations have produced leading constraints of this parameter [8].

In fact, the NOvA experiment was originally designed to constrain and measure

this parameter. However, the profound success of the reactor experiments were able

to produce an accurate measurement of θ13 that it is no longer a physics goal for

NOvA; it is now a well-defined value used to determine θ23. The reactor sector also

contains the CP-violating phase δCP .

The third matrix is the “solar” sector, which is sensitive to θ12. It can be ob-

served from ν̄e disappearance – through inverse beta decay – over short (≈ 200 km)

distances. Experiments such as KamLAND have made strong measurements of this

parameter proving it is non-zero [9].

Thee final matrix corresponds to the fate of the neutrino as a Majorana or Dirac

particle. Neutrino oscillations are not sensitive to the Majorana phases, as it does

not appear in the oscillations model.

In summary, there is a probability an initial neutrino, να, will interact with

matter as a different flavor, νβ, which depends on the PMNS mixing angle values

and the corresponding mass-squared differences. Many experiments exist to measure

specific parameters of the matrix, and some have found great success. A summary of

the parameters from a global fit (from 2019) can be found in Table 1.3. Furthermore,

this fundamental concept of neutrino “mixing” is one of the two concepts that

permits neutrino oscillations. The second is the non-degenerate mass eigenstates.

7 M. Dolce
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Parameter value (◦)
θ12 33.82+0.78

−0.76

θ23 49.6+1.0
−1.2

θ13 8.61+0.13
−0.13

δCP 215+40
−29

Table 1.3: Global results of oscillation parameter measurements from 2019. From
[10].

To understand the impact of the mixing angle and the different mass eigenstate

values, we will work through an example of neutrino mixing via a 2 × 2 PMNS

matrix and calculate the subsequent probabilities for oscillation in this two-flavor

neutrino paradigm. Then we will expand the mathematics of oscillations to the full

three-flavor description using the complete 3× 3 PMNS matrix. This is outlined in

the following two Sections.

1.3 Two-Flavor Oscillations

In the two-flavor neutrino model, the “mixing” matrix, or PMNS matrix, is a

2 × 2 matrix with a single parameter θ that governs the mixing of flavors, and

contains no phase factor

UPMNS =




cos θ sin θ

− sin θ cos θ


 . (1.4)

In this two-flavor paradigm, we will use two arbitrary flavors, α and β, and only

have two mass eigenstates, ν1 and ν2, where, again, m1 ̸= m2. In addition, this

derivation utilizes the plane wave approximation. The να and νβ flavors can be

written as a linear combination of ν1 and ν2 given the 2× 2 mixing matrix,



να

νβ


 =




cos θ sin θ

− sin θ cos θ






ν1

ν2


 . (1.5)

A neutrino of arbitrary flavor να, at some time t0, can be written in the bra-ket

8 M. Dolce
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notation as

|να, t0⟩ =
∑

i

U∗
αi|νi⟩, (1.6)

where U∗
αi is the PMNS matrix and νi is the propagating neutrino mass eigenstate.

Next is to evolve |να, t0⟩ in time. Starting at initial time t0, the state will evolve

in time via the operator U(t, t0),

U(t, t0) ≡ e−i
Ĥ(t−t0)

ℏ . (1.7)

For time evolution, we require the free Hamiltonian

Ĥ|νi⟩ = Ei|νi⟩, (1.8)

where Ei is the total energy of the particle. We utilize the near-massless approxi-

mation (mν << 1eV) of neutrinos and Taylor expand about it,

H = E ≈ pc

(
1 +

m2c4

2p2

)
. (1.9)

Finally, with the time evolution operator, a neutrino of initial state |να, t0⟩ evolves

in time t0 → t,

|να, t⟩ = U(t, t0) |να, t0⟩ (1.10)

= e−
iĤ(t−t0)

ℏ |να, t0⟩

= e−
iĤ(t−t0)

ℏ
∑

i

U∗
αi|νi⟩.

We seek to observe a νβ after some time, which is written as

|νβ⟩ = cos θ|ν2⟩ − sin θ|ν1⟩. (1.11)

The probability at time t the neutrino is observed as flavor β, we square and calculate

9 M. Dolce
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to get the amplitude,

P (να → νβ) = |⟨νβ|να, t⟩|2 (1.12)

=
∣∣∑

i

UβiU
∗
αie

−iEi(t−t0)
∣∣2.

We obtain the probability of νβ as the observed neutrino – and by the conservation

of probability – the probability of no oscillation (να in the final state)

P (να → νβ) = sin2 2θ sin2

(
1.27

∆m2L

E

)
, (1.13)

P (να → να) = 1− P (να → νβ), (1.14)

and rewrite t with L/c for the Hamiltonian in Eq. 1.9, if assuming natural units

ℏ = c = 1. It is important to note the mass difference ∆m2, as this plays a key role.

If ∆m2 = 0 then there would be no oscillations at all; the probability would be 0.

This is why the unique values of the mass eigenstates are so crucial to oscillations.

The P (να → νβ) is known as the “appearance” probability – νβ “appears” from

να. The P (να → να) is the “disappearance” or “survival” probability. Note how this

probability is a sinusoidal function, and crucially, is dependent on two quantities:

the neutrino energy, E, and the length of the neutrino travel, L. Fig. 1.3 shows the

oscillation of probability as a function of these two quantities. As an experiment

seeking to observe neutrino oscillation and measure the mixing parameters, max-

imizing the probability is critical to consider. The left plot shows the probability

with a fixed energy and indicates the length where the probability for oscillation is

largest, Losc. This coincides with the sin2 2θ = 1, i.e. θ = π/4,

Losc = π
Eν(GeV )

1.27∆m2(eV 2)
. (1.15)

The right plot shows the oscillation as a function of energy. In this case, Emax

10 M. Dolce
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Figure 1.3: Oscillation probability as a function of energy (left) and length (right).
To maximize the probability for a neutrino oscillation, there are ideal neutrino en-
ergies and lengths to observe the phenomenon.

indicates the ideal energy to maximize oscillations,

Emax = 1.27
∆m2(eV 2)L(km)

π/2
. (1.16)

Emax indicates the first oscillation maximum – the peaks are counted from right to

left.

As neutrinos travel through matter, and not in a pure vacuum, it is important

to consider how this matter impacts neutrino oscillations. When traveling through

matter, the oscillation probabilities are altered through the MSW effect [11]. This

occurs when a neutrino coherently scatters off an electron or nucleus within the

Earth’s crust. The equation of motion for the two flavor oscillation paradigm is

written as

i
d

dt



νe

νµ


 =

1

2



−(∆m2

2E
cos 2θ −

√
2GFNe)

∆m2

2E
sin 2θ

∆m2

2E
cos 2θ (∆m2

2E
cos 2θ −

√
2GFNe)






νe

νµ




(1.17)

where GF is the Fermi constant and Ne is the electron number density of the matter.

This
√
2GFNe term is considered a potential. The effect is enhanced for neutrinos

and is suppressed for antineutrinos, from Eq. 1.17. This is an important factor in

long baseline oscillation experiments, such as NOvA or T2K. This effect is strongest

when neutrinos travel through matter of variable density. However, because the
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crust of the Earth is approximately constant, we will assume the MSW effect is

negligible.

1.4 Three Flavor Oscillations

Next, we move to the complete picture of three flavor neutrino oscillation. This

can be written simply as Eq. 1.18 with the full PMNS matrix (after omitting the

Majorana/Dirac matrix).




νe

νµ

ντ




=




c12c13 s12c13 s13 e−1δCP

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ c12s23 − s12c23s13e

iδ c23c13







ν1

ν2

ν3




.

(1.18)

Carrying out the calculation, we obtain a single equation for the probability of

oscillation from one flavor to another, α → β.

P (να → νβ) = |⟨νβ|να, t⟩|2 (1.19)

=
∣∣∑

i

UβiU
∗
αie

−iEi(t−t0)
∣∣2

=
∑

i,j

U∗
αiUβiUαjU

∗
βje

−i
∆m2

ijL

2p ,

where we write the mass squared difference as

∆m2
ij = m2

i −m2
j . (1.20)

This mass difference quantity defines the oscillation frequency as a function of the

two dependent variables L/E. Moreover, this ∆m2
ij, specifically ∆m2

32, is another

parameter NOvA seeks to constrain and measure. In Eq. 1.21 and Eq. 1.22, we

see the oscillations are driven by both ∆m2
32 and ∆m2

31 and the mixing matrix

12 M. Dolce
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parameters. To first order in α, the survival probabilities take a similar form of the

two-flavor oscillation probability,

P (νµ → νµ) ≈ 1− cos2 θ13 sin
2 2θ23 sin

2

(
∆m2

32L

4Eν

)
+O(α, sin2 θ13) (1.21)

where α ≡ ∆m2 = ∆m2
21/∆m2

32.

Next, the P (νµ → νe) oscillations in the three flavor paradigm can be written to

first order in α,

P (νµ → νe) = sin2 θ23 sin 2θ13
sin2 ∆(1− A)

(1− A)2
+ αJ cos(∆± δCP )

sin∆A

A

sin∆(1− A)

(1− A)

(1.22)

where

J = cos θ13 sin 2θ13 sin 2θ12 sin 2θ23, (1.23)

A ≡ ±2
√
2GFNeEν/∆m2

31, (1.24)

and

∆ ≡ ∆m2
13L/4Eν . (1.25)

It is important to note the second term of the P (νµ → νe) probability is sensitive to

CP violation, δCP. Here A describes the size of the matter effects as the neutrinos

travel through the Earth, and alters the mixing angle θ13. It becomes

sin2 2θ13 =
sin2 2θ13

sin2 2θ13 + (A− cos 2θ213)
. (1.26)

Two parameters, ∆m2
32 and sin2 2θ23, appear in both the appearance and dis-

appearance probabilities. In the context of NOvA, these are the two oscillation

parameters NOvA seeks to constrain. To further contextualize the significance of

these two parameters within neutrino oscillations, Figure 1.4 shows the prediction

of the νµ distribution before and after oscillations in reconstructed neutrino energy.

13 M. Dolce
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Figure 1.4: Reconstructed neutrino energy spectrum for oscillated νµ and unoscil-
lated νµ neutrinos. The impact of sin2 2θ23 and ∆m2

32 sculpt the shape and normal-
ization of the oscillated spectrum. Constraining these two parameters are NOvA’s
top scientific objectives. To demonstrate this effect, the two parameters are set to
some arbitrary non-zero values. From [12].
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Figure 1.5: Diagram of the two possible neutrino mass orderings: normal (left) and
inverted (right). In normal ordering m3 is the heaviest mass state, while inverted
ordering it is the lightest of the three. From [13].

In this figure, the blue, oscillated distribution represents the “survival” spectrum

of νµ, where the missing neutrinos have predominately oscillated into νe (as well

as a small fraction into ντ ). This provides useful context into how the neutrino

oscillation parameters – ∆m2
32 and sin2 2θ23 – are relevant to the neutrino prediction

in NOvA. The value of ∆m2
32 determines the location of the “dip” in the neutrino

energy – the point of maximal neutrino oscillation, while sin2 2θ23 determines the

“amplitude” of the dip. Understanding these values as precisely as possible are

crucial to understanding the phenomenology of neutrino oscillations.

1.5 Neutrino Mass Ordering

In addition to measuring the mixing parameter θ23, the other main objective

of the NOvA experiment is to determine the neutrino mass ordering. As we have

discussed, there are three unique mass eigenstates (m1 ̸= m2 ̸= m3). The masses are

very small mi ≤ 1eV , but exact values are unknown. Again, it is the mass squared

difference that appears in neutrino oscillations and can be constrained (Eq. 1.20).

However, measurements of ∆m2
ij indicate the mass squared difference between the

eigenstates, and therefore we can learn the relative sizes of the masses eigenstates.

This concept is illustrated in Fig. 1.5. There are two possible orientations. On the

15 M. Dolce
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left side of the figure, m3 > m2 which leads to ∆m2
32 > 0. This is Normal Ordering

(also referred to as Normal Hierarchy). Conversely, if m3 < m2 then ∆m2
32 < 0.

This is Inverted Ordering (Inverted Hierarchy). As a consequence, for neutrino

oscillation experiments, there are only two independent mass measurements that

can be made: ∆m2
32 and ∆m2

21. As NOvA seeks to constrain the parameters of the

atmospheric sector of the PMNS matrix, it cannot meaningfully constrain ∆m2
21.

NOvA’s goal is to constrain the ordering for ∆m2
32.

1.6 Constraint on δCP

One of NOvA’s physics goals is to constrain the parameter δCP. This param-

eter quantifies the Charge-Parity (CP) symmetry violation present in neutrino os-

cillations. Maximal CP violation occurs at δCP= π/2 and 3π/2. To probe this

parameter’s value, NOvA divides its neutrino production between neutrinos and

antineutrinos. Observing oscillations in neutrinos and antineutrinos helps to probe

this matter-antimatter asymmetry more carefully. In recent NOvA results, maximal

CP violation of δCP= 3/2π in the IO is excluded at 3.4σ and δCP= π/2 in the NO

is excluded at 2.4σ (see Figure 1.9a).

1.7 Recent NOvA Results

To summarize, the current, primary objectives of the NOvA experiment are to

constrain/measure:

• θ23 (via νµ disappearance & νe appearance)

• ∆m2
32 (via νµ disappearance)

• δCP (via νe appearance).

These three items are the physics objectives of NOvA. These objectives are met

from different physics; the octant (and value) of θ23 can be found from P (νµ →

16 M. Dolce
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Figure 1.6: FD νµ spectra for neutrinos (left) and antineutrinos (right) in NOvA.
From 2020 NEUTRINO conference presentation [14].
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Figure 1.7: FD νe spectra for neutrinos (left) and antineutrinos (right) in NOvA.
From 2020 NEUTRINO conference presentation [14].

νµ) disappearance; θ23 > 45◦ is referred to as the “upper octant”, and θ23 < 45◦

the “lower octant”. The mass ordering and δCP are determined from P (νµ → νe)

appearance. NOvA’s most recent analysis from 2020 shows the νµ spectra (Fig. 1.6)

and νe spectra (Fig. 1.7) [14].

These plots summarize NOvA’s observations of neutrino interactions for νµ dis-

appearance and νe appearance in both neutrinos and antineutrinos. These spectra

will appear again in the ND+FD joint fit in Sec. 7.4 within this thesis. With these

distributions of neutrino events, constraints on the oscillation parameters are made.

Figure 1.8 shows NOvA’s contours for ∆m2
32 and sin2 θ23. This “NOvA and friends”

plot (i.e. other oscillation experiments) contains 2σ contours for other neutrino oscil-
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lation experiments in the Normal Ordering. NOvA’s best fit point is the red circle at

∆m2
32 = 2.41× 10−3 eV2 and sin2 θ23 = 0.57 and its 2σ contour in red. NOvA is one

the leading oscillation experiments that produces some of the strongest constraints

on these parameters.

The current landscape of neutrino oscillations is clear from this plot too. The

T2K experiment observes neutrino oscillations over a short-baseline experiment of

295 km (compared to NOvA’s 810 km). However, T2K produces and observes neu-

trinos with the same L/E ratio from Eq. 1.14, and therefore observes neutrinos at

a smaller energy. Thus, the separate measurements of the NOvA and T2K experi-

ments strengthen the constraining power of the oscillation parameters.
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Figure 1.8: 2σ 2D contours of ∆m2
32-sin

2 θ23 in the Normal Ordering. Contours are
from NOvA and other oscillation experiments. NOvA (in red) continues to produce
one of the strongest constraints on ∆m2

32 and sin2 θ23.

Looking at NOvA’s constraints further, Figure 1.9a shows the 2D contour of

sin2 θ23 vs. δCP in both the Normal Ordering and Inverted Ordering. Again, NOvA’s

best fit to its data is in the Normal Ordering denoted by the black cross. Figure 1.9b

shows the 1D exclusion significance for δCP in combinations of Normal and Inverted

Ordering and upper and lower octant for θ23. Fig. 1.9a & Fig. 1.9b together

illustrate NOvA’s constraining power of δCP especially in Inverted Ordering (IH).
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Figure 1.9: NOvA 2020 results of oscillation parameters presented at NEUTRINO
2020 [14].

The “bi-probability” plot, Fig. 1.10, summarizes NOvA’s expected neutrino

events to observe given different combinations of the oscillation parameters; there

are four ovals to describe the possible permutations. For a single oval, the four

different shaped points denote the different values of δCP. The blue and red ovals

represent the mass ordering, while the the Upper Octant (UO) for θ23 is represented

by the upper-most blue and red oval and Lower Octant (LO) is the lower-most red

and blue oval. NOvA’s 2020 best fit analysis is the purple star and rests along the

Normal Ordering, Upper Octant oval and is nearest to the δCP = π point. From this

we learn that NOvA currently prefers Normal Ordering over Inverted Ordering, the

Upper Octant, and also prefers a non-zero value of δCP. This is the current state

of NOvA’s constraint on the oscillation parameters of the atmospheric sector of the

PMNS matrix.

In the future, the next generation of oscillation experiments – DUNE and Hyper-

Kamiokande – will collect more data and observe neutrino interactions with far more
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sensitivity than the current generation of NOvA and T2K [15]. Improvements in

detector technology, interaction reconstruction, neutrino interaction modeling, and

increased production of neutrinos will make this possible. The expectation is these

experiments will make contributions to make 5σ conclusions about the values of the

oscillation parameters.

1.8 Significance of Thesis Measurement

This thesis reports the constraint of NOvA systematic and oscillation parameters

(δCP, ∆m2
32, and θ23) from a simultaneous fit of the NOvA Near and Far Detector

simulation to Near Detector real data and Far Detector fake data. The strong sta-
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tistical power of the Near Detector data constrains the NOvA uncertainties, while

the Far Detector fake data constrains the neutrino oscillation parameters. This

measurement is the first of its kind; the NOvA Near and Far Detector simulation

will be constrained simultaneously, as opposed to sequentially in the conventional

“extrapolation” analysis, providing a novel means of interrogating the NOvA data.

Furthermore, NOvA’s conventional “extrapolation” procedure of measuring the os-

cillation parameters uses Frequentist statistics, while this thesis performs the fit

using Bayesian inference; having an alternative statistical methodology to measure

the oscillation parameters will further reinforce both Frequentist and Bayesian anal-

yses.

For the reader interested in solely neutrino oscillations, it is advised to skip to

Section 7.4. However, the success of an oscillation parameter constrain requires a

robust fit of the NOvA Near Detector simulation to the ND data, demanding a

solid understanding of the underlying neutrino interaction models. To this end,

the interested reader is advised to focus on Chapter 4 and Chapter 6 where the

details of the ND data/MC selection are made, discussion of the deficiencies in the

nominal NOvA MC, and the conclusions with respect to the interaction models and

uncertainties are made from the MCMC sampling.
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Neutrino Interactions

The NOvA experiment is unique in that it observes nontrivial amounts of dif-

ferent scattering processes in the 2-3 GeV energy range. This chapter breaks down

the underlying physics models present within the NOvA simulation, necessary to

extract the oscillation parameters. First Section 2.1 describes commonly used kine-

matic variables. Section 2.2 discusses the underlying nuclear physics model, Sections

2.3 (Quasi-Elastic), 2.4 (2p2h scattering/Meson-Exchange Current), 2.5 (Resonant),

and 2.6 (Deep Inelastic Scattering) discuss the four dominant neutrino interactions

observed in NOvA. Section 2.7 discusses a physics process relevant to measuring

neutrino oscillation parameter, Final State Interactions. Section 2.8 describes other

models used in the NOvA simulation. Section 2.9 describes the simulation and neu-

trino interaction generator used for this analysis. A summary of the models used in

the NOvA simulation is listed in Table 2.1.

Physics Content Model Used
Nuclear Ground State Local Fermi Gas (LFG) [16]
Quasi-Elastic Scattering Valenćıa 1p1h, Z-Exp. Axial Form Factor [17]

2p2h Scattering Valenćıa 2p2h [18]
Resonant Scattering Berger-Seghal [19]

Deep Inelastic Scattering Bodek-Yang [20]
Intranuclear Final State Interactions hN, Semi-Classical Cascade [21]

Table 2.1: Important physical processes and the corresponding models that comprise
NOvA’s PRod5.1 MC simulation.

The cross section ([σ] = cm2) of a high energy particle describes the probability
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of an interaction with matter. To successfully reconstruct neutrino interactions in

the NOvA detector, it is crucial to accurately simulate the various types of neutrino

interactions. There are four fundamental charged-current (CC) neutrino interaction

processes that occur within NOvA: Quasi-Elastic Scattering (QE), 2p2h Scattering,

Resonant (RES), and Deep Inelastic Scattering (DIS). The neutrino cross section

on free isoscalar targets for neutrinos (left) and antineutrinos (right) are plotted

as a function of the true neutrino energy in Figure 2.1. These plots only shows

Figure 2.1: Neutrino charged-current (CC) cross section, σ / GeV, on free isoscalar
targets for QE (red), RES (blue), and DIS (green) in neutrinos (left) and antineu-
trinos (right). The total cross section is represented in black. NOvA receives a
narrow-energy band of neutrinos centered at approximately 2 GeV. From [22].

the cross section on free nucleons, so the 2p2h contribution is not shown. The

black line and dots (prediction and data, respectively) represent the total neutrino

cross section. Note the factor of ≈ 3 in relative size of neutrino cross section when

compared to antineutrino. The red shows the predicted and observed cross sections

for Quasi-Elastic (QE) interactions which grows until approximately 1 GeV and

then plateaus. The blue shows the Resonant (RES) interactions centered at roughly

2 GeV; note how these two interactions are probable within this energy range. The

Deep Inelastic Scattering (DIS), green, interactions occur at higher neutrino energies

> 2 GeV. NOvA receives a beam of neutrinos centered tightly around 2 GeV, and

receives most of its neutrinos within the energy range of 1.5 − 2.5 GeV. NOvA

is sensitive to all three of these neutrino interaction types – and because NOvA

detector is primarily made of carbon, the 2p2h cross section is significant too –

therefore, NOvA observes large populations of events from all four of these CC
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interaction types, illustrating the need for NOvA’s underlying physics simulation to

be as accurate as possible in all of these models. The following sections will discuss

these models in more detail.

2.1 Kinematic Variables

In this discussion, it is important to consider the kinematics most commonly

used when attempting to estimate the neutrino energy in NOvA. Moreover, these

quantities are often useful to help characterize interactions from the four common

interaction models. To start, the neutrino energy os estimated by

Eν = Eµ + Ehad, (2.1)

where Eµ is the energy of the muon and Ehad is the hadronic energy, which is all

the energy observed in the NOvA detector not associated with the lepton. Each of

these models will predict varying amounts of Ehad that can more directly impact

the accuracy of estimating the neutrino energy.

One common kinematic quantity is

Q2 = −q2 = |q⃗2| − q20, (2.2)

where Q2 is the negative of the dot product of the four-vector q,

q = (q0, q⃗). (2.3)

The four-momentum transfer, q, is an extremely important quantity in neutrino

interactions, which contains the energy transferred to the hadronic system, q0, and

the momentum q⃗3 transferred to the hadronic system.

This Q2 can be calculated from NOvA observables,

Q2 = 2Eν(Eµ − pµ cos θµ)−m2
µ, (2.4)
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where pµ is the momentum of the muon, cos θµ is the angle the muon makes with

the neutrino direction, and m2
µ is the mass of the muon. This quantity is commonly

used when discussing nuclear and neutrino interaction models.

The quantity W is also useful; it is the invariant hadronic mass from the by-

products of the interaction. This quantity is often helpful to separate QE interac-

tions from RES or DIS interactions, as higher W is typically associated with RES

and DIS interactions.

The Bjorken inelasticity,

y = Ehad/Eν , (2.5)

is the fraction of the hadronic energy with respect to the total (neutrino) energy.

Values of y ≈ 1 indicate the interaction is highly inelastic, where nearly all of the

neutrino energy went into the hadronic system. A high y is frequently a DIS event.

In NOvA, this quantity is often referred to as the hadronic “energy fraction”. These

are all quantities that will be referenced later in the analysis.

2.2 Nuclear Model

The nuclear model describes the ground state density and momentum distribu-

tions of the nucleons. This is a highly nontrivial problem to model; the nucleons

within a nucleus are not stationary and bound together from the strong force. When

a nucleon is ejected, it is not simply a nucleon at rest. One must account for the

exiting nucleon’s initial energy and momentum.

In NOvA’s prior simulation production campaigns, the Relativistic Fermi Gas

(RFG) model has been used. This treats the nucleons within the nucleus as a

potential well; if a nucleon were to be ejected, it would contain some initial momen-

tum. This model has been useful for describing 2-particle 2-hole (2p2h) interactions

(of which Meson Exchange Current interactions are a large contribution), given its

high-momentum tail above 220 MeV of momentum (red, Figure 2.2). The high mo-

mentum tail was an ad-hoc correction to account for short range correlations (SRC)
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of nucleons in the nucleus.
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Figure 2.2: Two of the commonly used initial nucleon momentum distributions: the
Nuclear Local Fermi Gas (LFG model, blue), and the Relativistic Fermi Gas (RFG,
red). This analysis uses the LFG model to describe the nucleon momentum within
the nucleus.

For this analysis, NOvA has moved to the Local Fermi Gas. As it is still a Fermi

Gas model, many of the features remain unchanged. However, a significant change

is the difference in the high-momentum tail (blue Fig. 2.2), which is predicted in

the model and not an ad-hoc correction. In the LFG model, Random Phase Ap-

proximations (RPA) are added into the model to account for long-range correlations

of nucleons within the medium. In addition, the LFG includes Pauli blocking and

removal energy. It has become the preferred nuclear model of choice among neutrino

oscillation experiments.

The removal energy is an important uncertainty in reconstructing the hadronic

energy [23]. As stated, the nuclear medium is considered a potential well for a

nucleon to escape. Therefore, the struck nucleon must have a minimum energy

threshold to be knocked free. This energy is not accounted for within any kinematic

variables and therefore will impact the accuracy the neutrino energy estimate. The

impact of this uncertainty has been studied in NOvA [24].
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2.3 Quasi-Elastic Scattering

Quasi-elastic (QE) scattering is a near-elastic interaction where an incoming neu-

trino (antineutrino), exchanges a virtual W± boson with a bound neutron (proton)

within the nucleus. This neutron (proton) is converted into a proton (neutron). Fig.

2.3 shows the Feynman diagram for this process. The struck nucleon contains some

initial momentum (via the initial nucleon momentum distribution, Fig. 2.2) and

exits the nucleus. Because this bound nucleon contains some initial momentum, the

nuclear model is closely connected to QE interactions, thus the outgoing nucleon

in this process will typically reflect the initial nucleon momentum distribution. A

QE interaction is characterized by little energy/momentum being transferred into

the hadronic system. This highlights why the nuclear medium effects are relevant

for these types of interactions as nuclear medium effects non-trivially contribute to

the small amount of observed hadronic energy. This hadronic component of the

interaction in the detector is a small proton track for neutrinos. For antineutrinos,

the neutron does not leave a track due to its neutral charge and only charged sec-

ondary particles from neutron activity are observed in the detector (generally some

distance from the interaction vertex). Meanwhile, the outgoing muon (µ+, or µ−

W

n

νl

p

l−

Figure 2.3: Quasi-Elastic neutrino scattering. An incoming neutrino exchanges a
virtual W+ with a bound nucleon, where an outgoing lepton (l−) and p are observed.

for antineutrino) tends to deposit a long, clean track approximately 5 m long and

generally in line with the neutrino beam direction.

The Valenćıa 1-particle, 1-hole model is employed in NOvA, which accounts for

several nuclear effects: long range RPA correlations between nucleons, Final State

Interaction (FSI) effects, and Coulomb potential corrections [23].
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The free nucleon cross section depends primarily on two nucleon form factors

which are a function of Q2. The vector form factor is fully determined in elec-

tromagnetic processes such electron scattering, but the axial form factor must be

measured in weak processes and therefore contains some uncertainty. A common

parametrization is the dipole form

FA(Q
2) = FA(0)

(
1 +

Q2

MA

)−2

, (2.6)

where FA(0) is the axial form function at Q2 = 0, Q2 is the kinematic variable Eq.

2.4, and MA is the axial mass. Within QE interactions the value – and uncertain-

ties – of the axial mass, MA, plays a large role in shaping the prediction of these

interactions. For this analysis, the axial current propagator’s mass is modeled as a

Taylor expansion of the axial form factor in Q2 and some auxiliary parameter t, t0,

parametrized as z(Q2, t, t0) [25]. This Z-expansion parametrization diverges from

the historical dipole expansion uncertainty that has been used. The motivation for

doing so provides a more conservative uncertainty on the axial mass as well as an

increased flexibility in describing the shape of the axial form factor Q2 dependence.

2.3.1 Quasi-Elastic Uncertainties

From Table 2.1, the neutrino physics model used is the Valenćıa 1p1h model

with the axial form factor expressed as a Z-expansion. The uncertainties associated

with the Z-expansion are, ZExp AxialFFSyst2020 EV[1-4]. These uncertainties are

approximately 10−20% from the nominal prediction at ±1σ in the region of Q2 ≈ 1

GeV [26]. This can be seen for the first eigenvector in Figure 2.4. In addition to

these uncertainties, there is also a total QE normalization systematic that controls

the total QE events by +20%/− 15%, ZNormCCQE.

There are two uncertainties associated with the Random Phase Approximations

within the nuclear model. These uncertainties impact QE interactions and are in-

cluded here: RPA shape suppression and RPA shape enhancement. Again, the
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Figure 2.4: Effect of ZExp AxialFFSyst2020 EV1 in Q2 for neutrinos (left) and
antineutrinos (right) in NOvA simulation. The majority of NOvA neutrino interac-
tions occur at Q2 < 2 GeV2.

Random Phase Approximation (RPA) in quasi-elastic interactions describes the

random motion of the struck nucleon within the nucleus. This effect is evident

in low Q2 interactions, where nuclear effects – such as this one – are present. There

are two systematics that account for this phenomenon: RPACCQESuppSyst2020 and

RPACCQEEnhSyst2020 that suppress and enhance this effect. The enhancement and

suppression for these systematics at ±1σ is approximately 10% in true q0 and Q2.

2.4 2p2h/Meson Exchange Current

The 2-particle 2-hole scattering is another form of neutrino interaction. In terms

of the physics modeling, Meson Exchange Current (MEC) interactions are subset of

2p2h scattering mechanisms. However, a crucial distinction must be made: within

NOvA’s neutrino interaction generator GENIE, the 2p2h model is referred to as

Meson Exchange Current interactions. Therefore, henceforth 2p2h and MEC

will be used synonymously, and will utilize the name MEC as investigations into the

GENIE simulation will be performed in later chapters.

The Valenćıa 2p2h is the model used for this interaction type. MEC interactions

describe an interaction where, aside from the outgoing lepton, sees two nucleons

ejected – thus the “2 hole” left in the nucleus– from the nucleus via the virtual

exchange of a pi meson among the two nucleons, Fig. 2.5.
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Figure 2.5: MEC interaction. A virtual pion is exchange among the two nucleons
and are emitted from the nucleus.

Figure 2.6: Valenćıa model 2p2h cross section in true (|q⃗|, q0) space for neutrinos
(left) and antineutrinos (right) at 3 GeV. This plot is the cross section for all 2p2h
processes, and not exclusively MEC.

The Valenćıa model is a semi-relativistic theory [18]. The model predicts two

peaks in the true (q0, |q⃗|) space, as seen in Figure 2.6 of the plot of the differential

cross section. The largest peak is occurs at approximately 0.4 GeV of energy transfer,

while the second peak occurs at 0.1 GeV of energy transfer. As this figure shows, the

cross section is largest at lesser values of q0 and q⃗3, therefore, this type of interaction

is most commonly overlaps with QE interactions. Such an example would be a MEC

neutrino interaction that produces a neutron and proton, because we do not observe

the neutron, this interaction could be interpreted as a QE interaction. Thus, it is

crucial to understand the QE and MEC simulation as precisely possible.

2.4.1 MEC model tuning in NOvA

NOvA’s base prediction produces poor agreement with the ND data; NOvA tun-

ing of the MEC model is performed to improve agreement with the data. Figure 2.7

shows the prediction for hadronic visible energy for neutrinos (left) and antineutrinos
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(right). The poor agreement of the base prediction to the data is seen in the dotted

line in, the “Default” GENIE prediction, while the black dots represent the data.

The discrepancy is maximal at the lowest hadronic energies, in particular at the

lowest bin of hadronic energy, where the disagreement between the data and MC is

nearly a factor of 2. This discrepancy motivates the need for a tune of NOvA’s MEC

model. The NOvA simulation is tuned to the NOvA inclusive ND data. The tune is
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Figure 2.7: Hadronic visible energy in the NOvA ND for the data (black dots) and
the MC prediction, broken down by true neutrino interaction. Before the MEC
tuning, the MC predicts a small amount of MEC interactions – up to the dashed
line (“Default GENIE”). After tuning in true (|q⃗|, q0), (“NOvA Tune”, solid), the
MEC tuned prediction produces a stronger agreement with the data. Note low Evis

had

is the most discrepant region that motivates the MEC tune.

performed in the same two variables as the 2p2h Valenćıa model: true (|q⃗|, q0). This

model, from Figure 2.6, resembles two peaks in the cross section – one at 0.1 GeV

and the other at 0.4 GeV of q0. The MEC tuning is done in a manner that reflects

the original model; a weighting function is made in true (q⃗3, q0) space for true MEC

events, where events are scaled up or down based on the disagreement

weightMEC = baseline + gauss1(|q⃗|, q0) + gauss2(|q⃗|, q0). (2.7)

The weighted parameters are two ellipsoid shapes containing 13 parameters: 6 pa-

rameters for a 2-dimensional Gaussian distribution at ≈ 50 MeV of true q0 (“Gaus-
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sian 2”) and the other 2D Gaussian distribution of 6 parameters at ≈ 350 MeV of

true q0 (“Gaussian 1”), and 1 parameter to control the total normalization. These

parameters are adjusted to agree with the data in Evis
had and Reco |q⃗| using a MI-

NUIT χ2 minimization technique [27]. Figure 2.8 shows the values of the weights

produced from adjusting the 13 parameters in the MINUIT minimization. Note

the weights are significantly larger for low values of true energy transfer, weighting

up and improving the disagreement observed in the base prediction at low Evis
had in

Fig. 2.7. The plots of the tune in the other variable, Reco |q⃗|, can be seen in the

Appendix A.1. The resulting MEC prediction (in yellow) is improved significantly
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Figure 2.8: The tuning of the 2p2h/MEC contribution in NOvA. The χ2 minimiza-
tion produces large weights for low true q0 events. The smaller-weighted Gaussian
1 is centered at (0.8 GeV, 0.3 GeV) in the true (q⃗, q0) space. The larger weighted
Gaussian 2 is centered at (0.4 GeV, 0.05 GeV). The enhancement of MEC events is
clearly dominated at very low true energy transfer.

– from the dashed line to the solid black line – to the data in Fig. 2.7. The exact

values of the thirteen parameters from the tuned MEC model can be found in Table

2.2.
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Component Parameter Fitted value Systematic Name
Gaussian 1 Normalization 15.03 ... Norm 1

Mean q0 0.34 ... MeanQ0 1

Mean |q⃗| 0.88 ... MeanQ3 1

Sigma q0 0.10 ... SigmaQ0 1

Sigma |q⃗| 0.39 ... SigmaQ3 1

Correlation 0.90 ... Corr 2

Gaussian 2 Normalization 140 ... Norm 2

Mean q0 0.03 ... MeanQ0 2

Mean |q⃗| 0.45 ... MeanQ3 2

Sigma q0 0.04 ... SigmaQ0 2

Sigma |q⃗| 0.26 ... SigmaQ3 2

Correlation 0.81 ... Corr 2

Base model Normalization -1.02 ... Baseline

Table 2.2: MEC weights parameterized as two, 2D Gaussian distributions. Note the
large normalization value of the Gaussian 2 parameter associated with low hadronic
energy. All systematics have MECDoubleGaussEnhSystGSFProd5p1 prepended to the
Systematic Name.

2.4.2 Meson Exchange Current Uncertainties

The uncertainty model for MEC interactions is complex. The 13 degrees of

freedom from the MEC tune (Table 2.2) are also systematic uncertainties for the

MEC model in NOvA’s simulation. Therefore, these parameters will be utilized in

the Markov Chain Monte Carlo sampling as well to constrain the ND simulation to

the data.

In addition, there are MEC uncertainties correspond to the neutrino energy de-

pendence of the MEC cross section. These are referred to as MECEnuShapeSyst2020Nu

and MECEnuShapeSyst2020AntiNu. This uncertainty uses a Landau distribution for

the upper bound uncertainty with a most-probable value = 0.4 and σ = 1. The

lower bound is determined by the function

f(Eν) =
0.5

1 + 2(Eν − 0.25)
. (2.8)

The largest spread occurs at low Eν < 1 GeV and diminishes with increasing energy

[26].

Another set of uncertainties controls the neutron-proton nucleon pair fraction.
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These uncertainties are MECInitStateNPFrac2020Nu and MECInitStateNPFrac2020AntiNu.

These systematics modulate the probability the neutrino (antineutrino) interacts

with a neutron-neutron (proton-proton) or neutron-proton pairs within the nucleus.

For neutrinos this fraction is

np

np+ nn
= 0.69





+0.15σ

−0.05σ

, (2.9)

and for antineutrinos

np

np+ pp
= 0.66





+0.15σ

−0.05σ.

(2.10)

Note the uncertainty is asymmetric in +1σ and 1σ and for neutrinos and antineu-

trinos. More details can be found in the NOvA cross-section tuning 9technical note

[26].

2.5 Resonant Scattering

The Resonant (RES) neutrino model is the Berger-Seghal model [19]. In a RES

interaction, the W boson exchanged has enough energy to create a nuclear resonance,

which decays into a π and a nucleon. This model includes the production of many

resonances, however, the most common resonance seen at NOvA’s relevant neutrino

energies is the ∆ resonance, Figure 2.9.

W
∆++

νl l−

p p

π+

Figure 2.9: RES neutrino interaction. A ∆++ resonance is produced, and decays
into a π+ and proton.

Again, as seen in Figure 2.1, the RES model is a large component of the neutrino
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interactions observed in NOvA’s neutrino energy range.

2.5.1 Resonant Uncertainties

There are several RES uncertainties present within NOvA’s uncertainty set. We

have the two systematics MaCCRES and MvCCRES. These two modulate the value of

axial and vector mass in the RES cross section. A ±1σ shift corresponds to as large

as 20% shift at true q0 ≥ 0.8 GeV. These two systematics are some of the leading

sources of uncertainty for measuring the neutrino oscillation parameters.

There is an uncertainty LowQ2RESSupp that suppress RES neutrino interactions

at low-Q2. This originates from results on the MINOS and MINERvA experiments

which observed fewer RES events due to nuclear effects, where the initial momentum

of the nucleon and the binding energy reduces the events that were observed in these

experiments [28]. This systematic is a function of the form

1− Ae−bQ2

, (2.11)

where A = 0.391 and b = 12.9 for neutrinos and A = 0.429 and b = 20.9 for

antineutrinos. This uncertainty is valid for [0σ,+1σ] only, where +1σ suppresses

RES interactions by a factor of 10% at Q2 = 0.1 GeV2.

The systematic Theta Delta2Npi is also a one-sided systematic that describes

the decay of resonances; it controls the direction of the Adler angle, which is the

angle between the decaying ∆ and p. This systematic produces more forward decays

(i.e. in the momentum transfer direction) at +1σ and at 0σ the angle between the

two particles is fully azimuthal [29].

2.6 Deep Inelastic Scattering

Neutrino Deep Inelastic Scattering (DIS) processes are modeled via the Bodek-

Yang formulation, Fig. 2.10 [20]. This model exchanges a W boson and has enough

energy to interact with a single quark in a nucleon. The remaining quarks undergo
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hadronization, where they interact via the strong force and form hadrons, such as

pions.

W

u

u

d

νl

u

u

u

l−

Figure 2.10: DIS Feynman diagram of neutrino interaction. The W boson has
enough energy to strike a single quark within a nucleon. The remaining quarks
undergo hadronization via the strong force and are observed as hadrons.

2.6.1 Deep Inelastic Scattering Uncertainties

There are several uncertainties associated with Deep Inelastic Scattering (DIS).

There is an uncertainty associated with each final state pion channel, for neutral

and charged current interactions and for struck nucleon of proton or neutron; these

uncertainties have the name: DIS[v,vbar][p,n][N,C]C[0,1,2,3]pi for neutrinos

and antineutrinos, totaling 32 uncertainties. These adjust the normalization by 50%

for DIS events above and below W = 1.7 GeV.

There is an additional systematic, FormZone2020, that controls the distance of

the formation zone – the distance hadronization occurs within the nucleus. The

uncertainty is 50% of its nominal value.

2.7 Final State Interactions

As the aforementioned models suggest (in particular the QE model), the nuclear

medium plays an important role in reconstructing neutrino interactions, and there-

fore, measuring the neutrino oscillation parameters. Thus, modeling how hadrons

interact with the nuclear medium as they exit the nucleus from a neutrino scatter is

equally critical as the neutrino interaction model. This process of hadrons interact-

ing within the nucleus as they exit is known as Final State Interactions (FSI). An
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Figure 2.11: Illustration depicting the process of Final State Interactions. A struck
nucleon produces a ∆++ resonance and quickly decays into a pion. The pion must
first exit the nucleus before it is observed. As it traverses the nuclear medium, the
pion undergoes scatters before it exits. These scatters alter the original pion’s energy
impacting the accuracy of neutrino energy estimate, and thereby the oscillation
parameters. From [30].

illustration representing FSI is shown in Fig. 2.11. The π+ scatters several times off

of other nucleons, either gaining or losing kinetic energy before it exits the nucleus

and is observed in a detector. Therefore the energy of the π+ that is observed is

not explicitly from the neutrino interaction, but now convolved with the multiple

scatters, thus impacting the accuracy of the neutrino energy estimate [21].

The FSI model used in NOvA, is the hN intranuclear cascade Oset et. al model,

which utilizes pion scattering quantum mechanical amplitudes and applies them to

intranuclear pion scattering [31]. Therefore this hN model of FSI only applies to

pions re-interacting within the nucleus.

There are three dominant channels of pion intranuclear interactions distinguished

by the topological final state (assuming an initial state of a single pion produced in

the nucleus):

Absorption (ABS) No pions are observed in the final state.

Charge exchange (CX) A single π exchanges charge by 1, and no other pions,

are observed in the final state.

Quasi-elastic scattering (QE) A single pion is observed in the final state, with
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Process Parameter Adjustment
Absorption fABS +40%

Charge Exchange fCX -30%
Quasi-Elastic fQE -10%

Mean-Free Path fMFP -40%

Table 2.3: Adjustment of the parameters for NOvA’s hN FSI central-value tune.

same sign as the incoming pion.

The predictions of the hN model in these three categories – in addition to the

cumulative total cross section – produce poor agreement to external pion scattering

data. NOvA tuned the model in these three channels to improve agreement and

construct uncertainties for the pion scattering processes [32]. It is important to note

that NOvA’s hN FSI tune does not include any tuning of nucleons that re-interact

within the nucleus; this model is a prescription for FSI with pions only.

2.7.1 FSI Tuning

The default hN FSI model poorly agrees with the external pion scattering data.

The NOvA tune of the hN FSI model involves adjusting the three FSI physics

processes: absorption (fABS), charge exchange (fCX), and quasi-elastic scatter (fQE)

– and the pion mean free path (MFP) – to obtain the desired agreement. The result

of the tuning can be seen in Figure 2.12 and the summary of the adjustments of

these parameters is in Table 2.3. We see from this figure the need for tuning,

especially in the absorption channel of pion scattering, where the default model

(green) is under-predicted by nearly a factor of 2 near 200 MeV of πKE. Moreover,

we see the final, tuned prediction (red) produces stronger agreement in the the three

channels ABS, CX, and QE, and the REAC channel, which is the sum of all pion

scattering channels. With this new tune, we must construct uncertainties for the

four parameters.
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Figure 2.12: Comparison of π+ − 12C scattering data to predictions from nominal
simulation (green), varying only the mean free path (blue), and the final central-
value tune with parameters given in tab (red). 2.3. Each plot considers one scatter-
ing channel. From [32].

39 M. Dolce



Chapter 2

0 0.5 1 1.5 2
Incoming pion KE (GeV)

0

20

40

60

80

 (m
b)

 
s

Data:

Phys. Rev. C95, 045203

Phys. Rev. C23, 2173

NOvA 2020 hN Tune

 Syst1lFate fraction 

 Syst2lFate fraction 

 Syst3lFate fraction 

0p 1fi C +p

NOvA Preliminary

(a) Fate Fraction

0 0.5 1 1.5 2
Incoming pion KE (GeV)

0

20

40

60

80

 (m
b)

 
s

Phys. Rev. C95, 045203

Phys. Rev. C23, 2173

NOvA 2020 hN Tune

MFP Syst

0p 1fi C +p

NOvA Preliminary

(b) MFP

Figure 2.13: Error band of the fate fraction uncertainties (left) and MFP uncertainty
(right) on the CX pion scattering channel. From [32].

2.7.2 Final State Interaction Uncertainties

There are four FSI uncertainties associated with NOvA’s tuned hN model. The

three uncertainties associated with the pion scattering processes are linear combi-

nations of the three FSI process parameters: absorption (fABS), charge exchange

(fCX), and quasi-elastic scatter (fQE). A correlation matrix of these three param-

eters is diagonalized to obtain its eigenvalues and eigenvectors. The uncertainty

is computed by adding (subtracting) the product of the eigenvalue and the fate

fraction linear combination to the central value tune for a +1 (−1) σ shift [32].

The last systematic uncertainty controls the mean-free path (MFP) of pions,

seen in Figure 2.13. A ±1σ shift alters the mean-free path by ±33.3̄% and scales

linearly up to ±3σ. The error band can be shown for the CX pion scattering process

in the blue band.

2.8 Other Interactions

There are coherent (COH) and neutral current (NC) scattering processes that are

possible in NOvA. However, this analysis focuses only on CC neutrino interactions

and therefore these interactions are not considered. These interactions also comprise

a small fraction of the total number of neutrino events in NOvA, as the dominant

interactions are CC.
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2.8.1 Other Uncertainties

There are several uncertainties that are related to νe interactions, the signal in

the Far Detector. One uncertainty is 2ndclasscurr. This systematic is associated

with secondary interactions of electron neutrinos in the detector; changes in this

parameter, therefore, will impact the normalization of the appeared νe in the NOvA

Far Detector.

Two other uncertainties are radcorrnue and radcorrnuebar. 2nd class currents

are additional terms in the QE hadronic current which would affect electron and

muon neutrino CC cross sections slightly differently. All three of these uncertainties

will be relevant for the joint ND+FD fitting only, where the νe sample is included.

There are uncertainties associated with coherent scattering and NC scattering,

however, they are not considered as this analysis does not attempt to constrain NC

nor coherent interactions.

2.9 Neutrino Simulation

The NOvA result at the Neutrino 2020 conference in Chicago refers to the Monte

Carlo simulation known as Production 5 [14]. This analysis is performed with next

iteration of NOvA’s production campaign of data and Monte Carlo simulation: “Pro-

duction 5.1” or “Prod5.1”. Production 5.1 is a second iteration of the Production 5

campaign, with minor changes to modeling and reduction of systematic uncertain-

ties. The NOvA simulation was produced with the neutrino interaction generator

GENIE v3.02.06 [33]. This analysis uses the simulation produced from GENIE

“Comprehensive Model Configuration” (CMC) or “tune” N18 10j 00 000, which

describes the combination of physics models listed in this Chapter (Table 2.1).
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The NOvA Experiment

The NuMI Off-axis νe Appearance (NOvA) experiment is a long baseline neutrino

oscillation experiment that consists of two detectors – one located in Fermi National

Accelerator Laboratory (Fermilab), and the second detector located 810 km away

near Ash River, Minnesota – to observe neutrino interactions (Figure 3.1). The

primary physics goal of NOvA is to observe νe (νµ) appearance (disappearance) and

measure sin2 θ23 of the PMNS matrix, improve the limits of the CP-violating phase,

δCP, and constrain the mass ordering of the neutrino mass eigenstates ∆m2
32.

To accomplish this goal NOvA utilizes Fermilab’s Neutrinos at the Main Injector

(NuMI) beamline to produce a concentrated νµ beam. This beam of neutrinos passes

through NOvA’s Near Detector (ND) underground at Fermilab, 1 km from the beam

source. The beam continues to travel through the Earth where 810 km downstream

the neutrinos pass through the Far Detector (FD) in Minnesota, on the border of

Canada. The neutrinos travel through the Earth and when they arrive at the FD,

there is a probability the beam of νµ will oscillate and interact with the FD material

as a νe, where NOvA, as its name suggests, focuses on observing νe appearance in

the FD.

The following sections describe the details of the NOvA experiment starting with

the NuMI Beam, Section 3.1. Section 3.2 describes the construction of the Near and

Far Detectors. Section 3.3 describes additional uncertainties in NOvA related to the

detector response.
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Figure 3.1: A layout of the NOvA experiment. Starting at Fermi National Acceler-
ator Laboratory, a νµ beam is created and interacts with the NOvA Near Detector,
also located at Fermilab. The beam propagates 810 km through the Earth where
there is a probability νµ particles will interact and oscillate into νe and ντ with the
NOvA Far Detector material in Minnesota. The energies from these interactions
are reconstructed to approximate the energy of the interacting neutrinos in order to
measure the neutrino oscillation parameters [34].
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3.1 The NuMI Neutrino Beam

This section outlines the process for creating a high-energy neutrino beam for

the NOvA experiment, starting from Fermilab’s Accelerator Complex and ending

with a description of the NuMI beamline.

3.1.1 Accelerator Complex

NOvA’s source of neutrinos originates at Fermilab’s Accelerator Complex, Fig-

ure 3.2. Beginning at the Ion Source, or Pre-Accelerator, as H− ions, they are

accelerated to 750 keV through a series of radio frequency (RF) cavities, whereby

an electric field is generated in the direction of the H− beam. Following the Pre-

Accelerator, the H− ions travel to the linear accelerator, or Linac, where they are

accelerated further to 400 MeV by additional RF cavities [35].

Next, the H− ions reach the Booster Neutrino Beam (BNB). The BNB syn-

chrotron accelerates the beam further to 8 GeV by way of additional RF cavities.

At this stage, the H− beam is stripped of its electrons by passing through a “strip-

ping” carbon foil, becoming a proton beam. The BNB also “bunches” the protons,

where alternating RF cavities are placed out of phase with each other, accelerating

and decelerating parts of the beam to cluster the protons together – a “bunch”. The

Booster collects 84 bunches, producing a “batch”; each batch is then delivered to

the Recycler Ring in 1.6 µs intervals with each batch containing 4.3 × 1012 protons

[35]. The Recycler Ring sits directly atop the Main Injector and merges 6 pairs of

batches from the BNB – known as “slip stacking”. Once the 6 pairs of batches are

merged, the beam is extracted into the Main Injector, where it is accelerated to 120

GeV. The result is 13.6 × 1013 protons on target (POT) at 400 kW in 10 µs spills

at an average of 1.33 s are extracted to the Neutrinos at the Main Injector (NuMI)

beamline.
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Figure 3.2: Fermilab’s Accelerator Complex. The proton beam starts at the Ion
Source, is accelerated to increasing energies at each subsequent stage, and ultimately
120 GeV protons are delivered to the NuMI beamline.
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3.1.2 NuMI Beamline

After the proton beam is extracted from the Main Injector, the beam reaches

the NuMI Beamline. It is here where the proton beam becomes a neutrino beam.

The NuMI Beamline is a series of devices and equipment devoted to maximizing the

production of neutrinos from the proton beam; a full diagram can be seen in Figure

3.3. From the left, protons strike a graphite target, interact with the internal nuclei,

and produce secondary particles such as charged pions and kaons. The charged

secondary particles are redirected with two toroidal shaped magnetic focusing horns.

The magnetic field from these horns focus the secondary particles into the direction

of the beam axis. Any undecayed secondary particles are stopped by the Hadron

Absorber, while the muon and muon neutrinos pass through. Following the hadron

absorber there are several Muon Monitors placed in the Earth to monitor the amount

of muons to categorize the neutrino flux more accurately. The neutrinos, given their

neutral charge and weak coupling to matter, travel through the absorber and the

Earth towards the Near Detector. Arriving at the ND, some neutrinos will interact

with the ND material and be observed, while the remaining neutrinos will travel

through the Earth and propagate as mass states. For the few neutrinos that interact

within Far Detector volume in Minnesota, νµ and νe will appear, dictated by the

oscillation probability from Eqs. 1.21 and 1.22. NOvA attempts to reconstruct the

particles from as many neutrinos interactions as possible to maximize sensitivity to

the oscillation parameters.

Magnetic horns

To produce a neutrino beam or an antineutrino beam, the role of the magnetic

focusing horns is crucial. Depending on the direction of the electric current running

through them, the horns will focus either positive or negative charged particles

yielding a neutrino or antineutrino beam, respectively. If the current running is

in the forward direction, or downstream, towards the ND, the resulting magnetic

will focus positively charged particles into the beam and push negatively charged
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Figure 3.3: Side view of the NuMI Beamline. Protons from the Main Injector arrive
from the left, impinge on a graphite target, and produce K± and π±. These particles
are focused with the magnetic horns. The focused particles enter the decay pipe and
decay to νµ and µ, with a small contamination of νe and e. At the end of the decay
pipe a Hadron Absorber absorbs undecayed secondary particles. The muons pass
through the Hadron Absorber and are absorbed by the Earth after passing several
Muon Monitors to approximate the neutrino flux. Meanwhile, the neutrinos continue
to the Near Detector and onto the Far Detector.

particles away from the beam. The result is a concentrated beam of predominately

K+ and π+ particles, which will decay into

K+ → µ+ + νµ, (3.1)

π+ → µ+ + νµ, (3.2)

creating a beam of neutrinos. Thus, current running forward is synonymous with

a neutrino beam; we frequently refer to a neutrino beam as the Forward Horn

Current (FHC) configuration. Conversely, for electric current running backwards,

or upstream – toward the Main Injector – the magnetic field will expel positive

particles and focus negative particles, namely K− and π−, which predominately

decay via the channel

K− → µ− + ν̄µ, (3.3)

π− → µ− + ν̄µ. (3.4)

The is referred to as Reverse Horn Current (RHC), and produces an antineutrino
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Figure 3.4: Diagram of the behavior of Forward Horn Current (FHC, top) and
Reverse Horn Current (RHC, bottom) magnetic horn configurations. In the FHC
(RHC) configuration, the positive (negative) particles are focused while the negative
(positive) particles are pushed out of the magnetic horn; the result is a beam of
neutrinos (antineutrinos).
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beam. Both the terminology FHC and RHC to describe the beam of neutrinos will

be used commonly in the subsequent chapters.

A diagram of the neutrino and antineutrino beam running can be seen in Figure

3.4. NOvA runs in both of these configurations for extended periods of time (typi-

cally months). An overview of the POT and neutrino/antineutrino beam produced

can be seen in Fig. 3.5 [36]. Note the current NOvA measurements has yet to

incorporate data from beyond 2020.

3.1.3 Off-axis Design

When designing a long baseline neutrino oscillation experiment, there are several

characteristics the experiment should possess. One is a long baseline, to ensure the

probability for oscillation. The second is to maximize the size of the two detectors.

Because neutrinos interact weakly and rarely, it is crucial to increase the target

mass as much as possible to maximize the number of neutrino interactions within

the detector volume. With these two key design choices, the ability to move the

detectors becomes intractable; the distance between the two NOvA detectors is

fixed at 810 km. Therefore, the neutrino energy is the only degree of freedom

available to NOvA, and it is important to select an energy that maximizes neutrino

oscillations (akin to Emax from the two-flavor example, Equation 1.16). However

the secondary particles from the collisions of the 120 GeV protons to the graphite

target are produced at well-defined energies. Therefore, NOvA prefers neutrinos

with energies associated with higher oscillation probability. To do this, NOvA’s

detector utilizes an off-axis design.

The Near and Far Detectors are aligned off-axis to the neutrino beam. Equiva-

lently, the beam axis and the Detectors subtend an angle, rather than sitting directly

along the axis of the NuMI Beamline. This angle is 14 mrad. The consequence is

NOvA receives neutrinos from the NuMI beamline that coincide with the first os-

cillation maximum for P(νµ → νe). Figure 3.6 illustrates the utility of an off-axis

design. The top plot is the νµ event rate without oscillations at 810 km – the lo-
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Figure 3.6: Top: νµ event rate at 810 km with no oscillations, as a function of Eν .
Bottom: P(νµ→ νe) as a function of Eν at the same fixed distance 810 km. The grey
band represents the energy range in which NOvA receives the NuMI beam. NOvA
utilizes an off-axis design of 14 mrad indicating an ideal choice that coincides with
the first oscillation amplitude of P(νµ→ νe) thereby maximizing the νe appearance
in the FD.

cation of the NOvA FD – as a function of the neutrino energy. Each distribution

represents increasing angles of the NOvA Near and Far Detectors with respect to

the beam axis. The bottom plot is the P(νµ→ νe) distribution for oscillation at

the same 810 km distance. When the NOvA detectors are on axis with the beam

axis the event rate at the FD shifts towards higher energies with a peak at Eν ≈ 7

GeV (black dots), while increasing off-axis angles shifts the νµ event rate to smaller

energies at the cost of fewer νµ events. Analyzing this scan of angles, a 14 mrad

option is ideal for NOvA’s physics goals; the peak of the νµ event rate coincides

with the first oscillation amplitude of P(νµ→ νe) (the grey band), making it a useful

design choice to maximize νe appearance for NOvA’s FD. Furthermore, this narrow

band of neutrino energies provides an added advantage of an increased background

rejection capability. Any particles appearing in the detectors beyond this energy

range of the grey band can be disregarded as background and not a neutrino from

the NuMI beam.
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3.2 NOvA Detectors

The NOvA Near and Far Detectors are designed to observe CC νe and νµ interac-

tions and to possess identical signal and background efficiencies and are functionally

identical. The two detectors are composed of polyvinyl chloride (PVC) pipes filled

with mineral oil – a liquid scintillator. The volume of the Near Detector is 290

tonnes, while the Far Detector contains 14 kton. Figure 3.7 illustrates the relative

size.

Within each detector, groups of 32 PVC pipes are arranged together to form

a plane and are aligned in alternating fashion – vertically and horizontally, in the

xz plane, perpendicular to the beam direction – to allow for 3D reconstruction.

Particles from interactions travels through the pipes and a flash of light is produced.

The light is collected along a wavelength-shifting fiber in each pipe, where the ends

of the fiber contain a pixel of an avalanche photo diode (APD) that converts the

light into a digital signal (Fig. 3.8); the detectors consist of 63% active scintillating

material [37]. Meanwhile, the energy of muon is reconstructed by range while the

energy of all other particles are reconstructed from calorimetry.

Figure 3.7: Graphic illustrating the relative size of the NOvA Near and Far Detec-
tors. The Near Detector consists of 290 tons and the Far Detector is 14 kton of total
mass.

3.2.1 The Near Detector

The Near Detector (Fig. 3.9) is comprised of 130 tons of scintillating material,

for a total mass of 290 tons. The cells within the detector are 3.9 cm × 6.6 cm ×
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Figure 3.8: An illustration of the function of the NOvA Near and Far Detectors
and an individual cell. Light is collected on the Fiber Loop and recorded onto the
APD readout at the end of the cell, where it is then digitized into a single pixel.
These cells are aligned in a cross-hatched fashion to allow for 3D reconstruction of
a particle’s trajectory; both detectors are arranged in this manner. From [38].

3.9 m creating a total of 214 total planes in the ND. Before the start of the detector,

11 pairs of identically alternating vertical and horizontal PVC planes are separated

by ten steel slabs of 10 cm, all perpendicular to the beam direction. This ”muon

catcher” is designed to prevent muons from ranging out of the detector. These steel

slabs allow muons to terminate and deposit all of their remaining energy within the

detector to be observed.

Recall the ND is located 1 km downstream from the NuMI Beamline at Fermilab

and receives the neutrino beam off-axis at 14 mrad. In addition, the ND is located

100 m underground, where cosmic ray background is not a concern in data collection.

3.2.2 The Far Detector

The NOvA Far Detector (3.10) is far larger than the ND; it is composed of 896

planes of PVC cells consisting of 344,064 channels and a total mass of 14 kton, Fig.

3.10. Just like the ND, the FD is oriented 14 mrad off-axis from the neutrino beam,

and is 810 km away from the NuMI beamline in Minnesota. It sits on the surface

of the Earth and stored in a housing unit that provides overhead protection from
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Figure 3.9: The NOvA Near Detector located at Fermilab. The ND is housed
underground and 1 km away from the NuMI beamline. From [38].

cosmic ray background via 1.2 m of concrete and 15 cm of barite. Despite this,

cosmic rays provide a significant source of background when searching for neutrino

oscillations in the NOvA data.

3.2.3 Simulating the Detectors

To reconstruct the energy of the particles, the calorimetric response must be

well understood, specifically the detector’s ability to collect and record Cherenkov,

scintillation light, and neutron response. To this end, the detector performance is

simulated from the particle and material tracking software GEANT [39]. Because

the hits of activity in the detector translate into energy that is used to estimate the

neutrino, the accuracy of recording this information is crucial. For example, in the

larger FD, the PVC cell pipes are very long, and any signal must travel the length

of the cell to the APD. However, because of the length of the cells, attenuation is

common where the light observed at the end of the APD is not the true response

and why the light recorded is calibrated as a function of the distance it travels in

the pipe.

In addition, NOvA’s neutron response is estimated from GEANT. As neutrons
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Figure 3.10: The NOvA Far Detector in Ash River, Minnesota. The mass of the
detector is 14 ktons and sits on the surface of the Earth where it is exposed to cosmic
rays. From [38].

are not observed in the NOvA detectors, GEANT is used to simulate how much en-

ergy is expected from the secondary particles, or daughters, of an energetic neutron.

3.3 Additional Systematic Uncertainties

In addition to the cross section uncertainties discussed in the previous chapter,

there are uncertainties related to the accuracy of the neutrino flux that the NOvA

detectors receive and the efficacy of the reconstruction from the detectors.

Thus far the the mathematics of neutrino oscillation, neutrino interactions, and

design of the NOvA experiment have been outlined. Recall the objective of this

thesis is to use Markov Chain Monte Carlo to constrain the neutrino interaction

model uncertainties and the oscillation parameters. We have discussed neutrino

oscillations, neutrino interactions, and the uncertainties associated with relevant

neutrino interactions.

Following the discussion of the previous sections, this section introduces new

uncertainties that are most closely associated with the functionality of the NuMI

beamline and NOvA detectors: the neutron response uncertainty (Subsection 3.3.1),
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detector efficiency (Subsection 3.3.2), and neutrino flux (Subsection 3.3.3).

3.3.1 Neutron Uncertainty

The NeutronVisEPrimaries2018 uncertainty addresses the neutron response in

the detectors. This is one of NOvA’s largest sources of uncertainties, as neutrons

are invisible in the NOvA detectors, carry a significant amount of energy from the

incident neutrino, and can significantly impact the shape of the muon disappear-

ance spectrum and therefore the accuracy of the measurement of the oscillation

parameters. This uncertainty focuses on the neutron propagation from GEANT

[39]. Neutrons that are expected in the NOvA detector are on the order of hundreds

of MeV, thus they are predicted via GEANT’s “Bertini Cascade” model [40]; this

model predicts inelastic neutron activity from 20 MeV up to 10 GeV. In particu-

lar for NOvA, the simulation over-predicts neutrons in NOvA’s smallest observable

calorimetric energy by approximately 30%, motivating the need for a conservative

uncertainty [40].

3.3.2 Detector Uncertainties

There are five detector related uncertainties present in this analysis: Calibration,

CalibShape, Light Level ND, Light Level FD, and Cherenkov.

NOvA reconstructs particle interactions with scintillation light, and therefore the

ability to fully observe all of the light produced in the pipes is essential. This the-

sis uses uncertainties of the light collection, Light Level ND and Light Level FD,

as uncorrelated between the two detectors, and moreover is the more conservative

option. These uncertainties are ±1% shifts in the absolute calibration constants in

GEANT.

The Cherenkov systematics adjusts the light-level response so that the muon

response is kept constant. This systematic is identical in the ND and FD [41].

The Calibration energy scale systematic is 5% obtained from the data-MC

discrepancy of candidate protons in the ND [42].
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The CalibShape systematic addresses the different response rate at the edges of

the detector. The discrepancy is observed in the data-MC difference between true

and reconstructed energies of calorimetric particles and is taken as the uncertainty.

3.3.3 Flux Uncertainties

There are numerous uncertainties associated with a high-intensity neutrino beam.

The uncertainties fall into two categories: beam transport and hadron production.

Beam transport systematics are associated with the engineering of the beam – un-

certainties such as the beam spot size, focusing horn positions in the target hall, and

precise value of the magnetic field within the NuMI beamline. These uncertainties

are small on the order of 5% and do not have a substantial impact on predicting the

correct flux of neutrinos in the NOvA detectors [43].

The hadron transport systematics relate to the production of secondary particles

– pions and kaons – from proton collisions at the target. NOvA uses the Package

to Predict the FluX (PPFX), a package created to estimate the flux from hadron

production models [44]. The uncertainties of hadron production are approximately

20%.

For past NOvA analyses and this thesis, a principal component analysis (PCA)

is used to diagonalize the beam transport and flux uncertainties. This re-orientation

of basis attempts to maximize the effect of all of the uncertainties while reducing the

number of uncertainties, however, at the cost of redefining the physical interpretation

of the new diagonalized uncertainties.

This analysis simultaneously constrains the NOvA Near and Far Detector MC,

therefore, these PCA systematics must also account for shifts in the flux at the Near

and Far Detector simultaneously (this is different from the conventional extrapola-

tion NOvA flux PCA systematics [45]). This is done with the same software tools

as the conventional PCA. The first 5 components, ppfx beam nd pc0[0-4], cover

97.5% of the variation in bins of true Eν from 100 random universes [46]. Figure

3.11 shows the first of the five principal components, component 00. The figure

56 M. Dolce



Chapter 3

0 200 400 6000.7

0.8

0.9

1

1.1

1.2

1.3
Proportion of Variance : 0.792976

 ND RHCmn  ND RHCen  ND RHCmn  ND RHCen  ND FHCmn  ND FHCen  ND FHCmn  ND FHCen  FD RHCmn  FD RHCen  FD RHCmn  FD RHCen  FD FHCmn  FD FHCen  FD FHCmn  FD FHCen

Figure 3.11: Principal Component 00. The ratio of the ±1σ shift relative to the
nominal prediction for all ND and FD true Eν distributions.

shows the ratio of the shift between ±1σ and the nominal prediction in all of the

ND and FD neutrino samples. We see the average shift is approximately 10%. Note

the first component accounts for 79% of all flux (beam and hadron) uncertainties.

These systematics alter the prediction significantly and predominately impact the

NOvA MC via normalization of total neutrino events.
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Selection and Topological Samples

This chapter describes the event reconstruction algorithm in Section 4.1. The

energy reconstruction algorithm is discussed in Section 4.2. Section 4.3 describes

the selection process for the ND neutrino interactions. Section 4.4 describes the

selection criteria for the FD νµ and νe samples.

4.1 Event Reconstruction

The event reconstruction starts with raw hits. This contains information of

which pixels within the PVC pipes and plane (i.e. the location) the ADC charges

deposited triggered, and is collected during 50 µs windows [47]. This information is

recorded for both the data and MC.

Next the hits are grouped together via a slicer clustering algorithm, TDSlicer,

that uses the spatial and temporal information of the hits. After “slicing”, NOvA

obtains a neutrino event.

The next step utilizes the Kalman-filter algorithm to reconstruct particles with

tracks that deposit their energy approximately uniformly such as muons (rather than

via an electromagnetic shower) [48]. The reconstruction is performed in the 2D (yz,

xz) views of the detector and then are later matched in 3D. A track can also be

passed through the Reconstructed Muon Identification (ReMId) classifier and the

track with the highest muon score is labeled the muon; this will be used for selecting
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Figure 4.1: Reconstructed FD νµ CC event at Eν = 2.75 GeV. From the NOvA 2020
analysis [52].

FD candidate events.

The penultimate step is to identify the vertex from a slice – where the neutrino

interaction took place. The vertexing occurs in two phases: first with a Multi-

Hough transform algorithm [49] then an Elastic Arms algorithm. The Multi-Hough

algorithm reads in pairs of pixels and determines if they are candidates for a particle

track. The output of this algorithm is then fed into the Elastic Arms algorithm,

which are then retraced to a single vertex to estimate the interaction site [50].

The last step is to identify prongs. A prong is a collection of hits associated with

a single particle from a neutrino vertex, however the identity of the particle is not

made. The construction of prongs is done in each 2D view via a possibilistic fuzzy

means algorithm – hits can be assigned to noise and not a true track and there can

be hits that are associated with multiple prongs [51]. At the end, these 2D prongs

are joined together into 3D from the two 2D views. As we will see, we will utilize

prong information to identify particles and divide the ND data and simulation into

distinct topologies.

In the case of a νµ CC interaction, Figure 4.1 shows a candidate interaction

reconstructed at 2.75 GeV in the NOvA FD data. Note the longer track would

be identified as a µ and is easily recognized by its low energy deposition and long

track. The proton can be identified by its shorter track, which deposits energy faster
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per unit length. This is a common interaction in the NOvA detectors, in fact, this

interaction will be one of the selection categories in the ND data and MC.

4.1.1 Particle Identification

At this stage the 3D prongs are identified into particles. We use a Convolutional

Visual Network referred to as “prong-CVN” to identify all particles within a single

neutrino interaction [53]. There are three primary particles this thesis must identify

accurately: µ, p, and π. Table 4.1 summarizes the prong-CVN scores used in this

analysis.

Particle CVN cut
µ 0.5
p 0.5
π± 0.7

Table 4.1: Table of the prong-CVN scores for the particles used in this analysis. For
example, a prong is identified as a p if the p-CVN score is at least 0.5. Note a prong
remains a prong (an unidentified particle) if no particle scores are met.

4.2 Energy Reconstruction

4.2.1 Muon Energy

Muon energy is calculated from the range of the muon in the NOvA detector. The

constant and well-defined 2 MeV/cm of dE/dx energy deposition provides a method

to estimate the total muon energy as it deposits all its energy in the detector. The

muon energy resolution is 4% [54].

Muon Energy Scale Systematic

The muon energy is determined by range. NOvA’s uncertainty on the muon en-

ergy scale is the kCorrMuEScaleSyst2020 systematic. This systematic is calculated

in two parts: one element from GEANT & Bethe-Bloche equation parameters and

60 M. Dolce



Chapter 4

a second from the relative differences between the two detectors. These two parts

sum in quadrature to approximately 1% [55].

4.2.2 Hadronic Energy

The hadronic energy is estimated from the calorimetric response of the detectors.

The hadronic energy resolution is 0.23 GeV [54].

4.3 ND Topological Samples

To produce this fit, we must next identify the selection of NOvA ND νµ CC

events. For the ND portion of this analysis, no νe events are analyzed. Consideration

is made to determine samples of neutrino interactions via characteristics such as

particle multiplicity and identity. Upon selecting samples, we then must determine

variables to view the samples in. This section will discuss this process.

To determine an ideal neutrino interaction within the NOvA ND, one important

criterion is to have a sufficient number of statistics; too few events will not capture

a model’s phase space sufficiently, nor produce meaningful results from MCMC

sampling. Given the vast statistics of neutrino interactions at the ND, this is not

a primary issue. Therefore it is likely any reasonable neutrino event selection will

have sufficient stats.

Another consideration of determining candidate events is to have unique samples

that are distinct and isolate as much of a physics model as possible; the ideal selection

would consist of neutrino events that correspond to a single physics model. This is

desired but in practice unachievable, as the interaction models overlap significantly

(Fig. 2.1) and due to NOvA’s detector reconstruction and resolution limitations.

We first apply the standard NOvA 2020 ND pre-selection cuts before we partition

the ND data & MC. The first is a quality cut, kNumuQuality; the cut requires

Eν < 5 GeV and a basic quality cut that there are sufficient hits in the slice. The

second cut, kNumu2020PID, requires a muon ReMId score > 0.3 and NOvA’s νµ
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event pre-selection score > 0.8. The kNumuContainND2020 cut requires the particles

are contained within the fiducial volume of the ND. All of these pre-selection cuts

are contained within a single NOvA cut: kNumu2020ND.

We select 10 Near Detector topological categories we will use for the ND fit; there

are 5 FHC topologies and 5 RHC topologies. These categories, along with the most

common interaction type, can be seen in Table 4.2. Note the “Muon + (Proton)

Horn Current Topology Dominant Interaction Type
FHC + RHC Muon QE + MEC
FHC + RHC Muon + Proton MEC + RES
FHC + RHC Muon + Pion + Prong RES + DIS
(FHC) RHC Muon + (Proton) + Prong RES + DIS
FHC + RHC Remaining RES + DIS

Table 4.2: The ten ND topological categories and the most common interaction
types associated with each one. The fourth category contains a proton for FHC
(µ+p+X) while the RHC category has no proton: µ+X. There is modest separation
of the interaction types by using these selected topological categories. The QE and
MEC truth interactions are predominately observed in the Muon topology. The
Muon + Proton topology consists mostly of MEC and RES events. The other three
topologies are dominated by RES and DIS interactions, illustrating the difficulty to
create a topology that is dominated by a single interaction type. The composition of
interaction types for each topology is shown in the 1D projections of these topologies,
Figs. 4.8 & 4.9.

+ Prong” topology contains the proton for the FHC topology and does not for the

RHC topology. In addition, “Muon + Pion + Prong” and “Muon + (Proton) +

Prong” categories require a prong – an unidentified particle track or shower.

To select these topologies from the NOvA ND data and simulation, additional

prong-CVN cuts are applied and outlined below.

Muon

The Muon topology for both FHC and RHC, known as the shorthand µ:

• contains one 3D prong,

• the prong has CVNµ score > 0.5,

• µ track length must be > 5 m.
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In this topology, it is uncommon to observe events with energetic hadronic particles.

This topology is predominately QE and MEC.

Muon + Proton

This topology also applies to both FHC and RHC beam running. Also known

as the µ+ P topology:

• contains two 3D prongs,

• one prong must have CVNµ score > 0.5,

• the µ track length must be > 5 m,

• the other prong must have CVNp score ≥ 0.5.

This topology mostly contains MEC and RES interactions, as well as some QE.

Muon + Pion + Prong

The pion-producing sample, µ+ π± +X, also applies to FHC and RHC:

• contains two or more 3D prongs,

• one prong must have CVNµ score > 0.5,

• the µ track length must be > 5 m,

• one prong must be identified as a charged pion with CVNπ score > 0.7,

• there may be additional unidentified prongs, known as “X”; these must have

CVNπ score < 0.5 to be considered X (a prong).

This topology is dominated by RES and DIS events.

Muon + (Proton +) Prong

The µ+(P+)X topology. For FHC, the topology requires a proton: µ+P +X.

The RHC topology does not: µ + X. The µ + P + X topology has one added

prong-CVN cut for protons, listed in parentheses:
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• contains two or more 3D prongs,

• one prong must have CVNµ score > 0.5,

• the µ track length must be > 5 m,

• (the other prong must have CVNp score ≥ 0.5.)

• there may be additional unidentified prongs, known as “X”; these must have

CVNπ score < 0.5 to be considered X (a prong).

This topology is dominated by DIS events, as they are generally characterized by

high particle multiplicity.

Remaining

This “Remaining” or EvElse category applies to both FHC and RHC:

• Any events that do not fall under the previous four topological samples.

It is a catch-all for neutrino events that do not fall into the other four categories,

and it too is dominated by DIS events.

Going forward, the “Abbreviation” names in Table 4.3 will be used as a short-

hand to refer to the topologies. Figure 4.2 also displays a summary of the selection

requirements, including the prong-CVN cuts, for each of the topological samples.

Topology Abbreviation
Muon µ

Muon + Proton µ+ P
Muon + Pion + Prong µ+ π± +X

Muon + (Proton) + Prong µ+ (P+)X
Remaining EvElse

Table 4.3: Table of the names of the particles and the commonly used shorthand
name for each topology. Note the “Muon + (Proton +) X” category includes the
proton for FHC mode and does RHC mode.

After creating the topological samples, we report the number of data and MC

events in each topology in Table 4.4. We see the is an order of magnitude more events

in the FHC and RHC µ topology than the other topologies, while the µ + P + X

topology has the least events, given its more stringent cuts.
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Figure 4.2: Cuts applied to interactions to separate the ND MC/data into the
topological samples.

Topology Data Events MC Events
FHC µ 1,109,418 1,090,078

FHC µ+ P 486,409 515,242
FHC µ+ π± +X 368,890 370,185
FHC µ+ P +X 102,958 139,022
FHC EvElse 676,479 752,449

RHC µ 714,840 725,667
RHC µ+ P 245,772 291,960

RHC µ+ π± +X 114,078 123,575
RHC µ+X 145,691 214,434
RHC EvElse 277,887 296,207

Table 4.4: Table of the data and MC events for each topology.

4.3.1 CVNπ Performance for FHC µ+ π± +X Topology

The efficiency of the prong-CVN in identifying particles is illustrated here in

Figure 4.3. This Figure shows the CVNπ score distribution for all particles (top

left), final state γ (top right), final state π± (bottom left), and final state p (bottom

right). The histograms in these figures are stacked histograms of the different true

final state particle combination. Note how the dominant histogram colors are the

orange: µ+ nP +X, and the purple: µ+ 1π± +X. Also recall the CVNπ score cut

to identify a π± for this analysis is 0.7.

Looking at the “all particles” distribution (Fig. 4.3, top left), we see the data
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(a) CVNπ score for all final state particles. (b) CVNπ distribution for final state γ.

(c) CVNπ distribution for final state pions. (d) CVNπ for final state protons.

Figure 4.3: CVNπ score distributions for all particles (top left), γ (top right), π±

(bottom left), and p (bottom right) broken down by the truth final state multiplic-
ity. CVNπ successfully distinguishes γ from π±. However, not all protons can be
distinguished from π±. The orange histogram represents µ+nP +X which contain
protons. Note how the bottom right plot contains a significant region of orange at
CVNπ > 0.7 indicating protons are identified as pions. This highlights the difficulty
in successfully identifying all particles in an interaction and will be revisited when
using MCMC with the ND data. Note for the γ, π±, and p distributions there is no
data/MC ratio calculated.
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and MC have a strong agreement at all values of CVNπ scores. This demonstrates

CVNπ is successfully identifying π± from the data. Moreover, the truth category for

CVNπ > 0.7 is nearly entirely purple, µ+ 1π± +X. This can be better seen in the

π distribution (bottom left of Fig. 4.3). The distribution is nearly entirely purple,

µ+ 1π± +X, illustrating the CVNπ distribution is very effective at identifying π±.

For the γ distribution (Fig. 4.3, top right) we see a small normalization (rel-

ative to the all particles normalization) and very little of any final state particle

combination at CVNπ > 0.7, indicating γ are typically not misidentified as a π±.

Lastly the p distribution (Fig. 4.3, bottom right), shows that there is a large

portion of orange in the distribution, which contains protons: µ+nP+X and purple:

µ+1π±+X at CVNπ > 0.7. This means that CVNπ > is identifying protons as pions

from the orange region. This demonstrates the difficulty in perfectly identifying all

particles in an interaction. Therefore, these topological selections do not perfectly

isolate neutrino interactions by particle identity and multiplicity, especially in the

case of protons and pions.

4.3.2 Variables for ND Selection: Evis
had & Reco |q⃗|

With these ten ND topological samples selected, we proceed to select the vari-

ables to observe them in. We opt for a two dimensional phase space: hadronic

visible energy (Evis
had) and reconstructed three-momentum transfer (Reco |q⃗|). The

characteristics of these variables are outlined below.

Reco |q⃗|:

The reconstructed three-momentum transfer is calculated by

|q⃗| =
√

Q2 + (Eν − Eµ)2, (4.1)

where Q2 = 2Eν(Eµ−pµ cos θµ)−m2
µ. Recalling Feynman diagram Fig 1.2, Reco |q⃗|

should contain necessary information of the muon kinematics from the interaction.
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The resolution of this variable is 0.14 GeV, with a fractional resolution of 21%.

Evis
had:

The Evis
had variable is necessary to describe the hadronic system from an interac-

tion, and is independent from the muon kinematics. We use Evis
had as it is the sum

of the non-leptonic energy deposited in the detector. This energy includes:

• kinetic energy of protons and charges pions.

• total energy of electrons, photons, neutral pions, and kaons.

• total energy minus nucleon mass of hyperons.

• total energy for anti-nucleons.

Notably, this does not include energy from neutrons. Again, the energy resolution

of this variable is 0.23 GeV [54].

An important motivation for selecting these two variables is because of their

strong connection to the neutrino interaction model; (Reco |q⃗|, Evis
had) serve as a proxy

for true (q⃗, q0). We have already seen, especially with the MEC model in Section

2.4, true (q⃗, q0) are closely tied to the interaction model as it describes how much

energy and momentum are divided into the leptonic and hadronic systems. The

reconstructed variables will be provided into Markov Chain Monte Carlo sampling

to learn as much about the true energy and momentum transfer as possible in an

interaction. This will allow a more direct understanding of which interaction models

are insufficient given what uncertainties are being stressed.

These 2-dimensional distributions – in each of the ten topological samples – can

be seen in Figure 4.4 (FHC) and Figure 4.5 (RHC). These are the distributions that

will be input to MCMC for sampling. The FHC Muon topology is peaked at low

hadronic visible energy and reconstructed three-momentum transfer – approximately

(0.25 GeV, 0.05 GeV). In the µ+P topology, we see the peak of the 2D distribution

is centered slightly higher at (0.6 GeV, 0.15 GeV). The µ + π± + X and µ + P +

X topologies contain a broader distribution and populate mostly along the Evis
had
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Figure 4.4: The 2-D distributions for the ND topologies in neutrino mode. The
majority of events in all topologies are located at low Evis

had and/or along the diagonal
of Evis

had and Reco |q⃗|. Note the different z-axis scales for the five plots.
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Figure 4.5: The 2-D distributions for the ND topologies in antineutrino mode. The
majority of events in all topologies are located at low Evis

had and along the diagonal
of Evis

had and Reco |q⃗|. Note the different z-axis scales for the five plots.
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= Reco |q⃗| diagonal, indicating there is likely more than one dominant neutrino

interaction model in these samples. This observation holds for the EvElse topology

as well, however these events are mostly centered at low Evis
had and Reco |q⃗|.

The observations made for the FHC plots hold in the antineutrino (RHC) plots.

However, the primary difference in the RHC plots (Fig. 4.5) is the Muon, µ+P , and

EvElse topologies are centered at lower Evis
had than in FHC; this should be expected

as the primary outgoing particle – particularly in a QE interaction – is a neutron,

which has no observable scintillation in the NOvA detectors and neutron energy is

not incorporated into the estimation of Evis
had.

An appeal for using these two variables is the connection to the kinematic variable

Q2, Eq. 2.4. With these 2D distributions, the y = x diagonal in Figure 4.4 and

Figure 4.5 represents the line of Q2 = 0; events above this line are not permitted,

while events of increasing Q2 are located down and to the right of the distribution.

This is seen in Figure 4.6 where CC RES events are shown in slices of Q2 for the

FHC µ+π±+X topology (top Q2 < 0.5 GeV2, bottom 0.5 GeV2 < Q2 < 1.0 GeV2).

The two plots demonstrate this increasing Q2 trend in the Evis
had and Reco |q⃗| phase

space. This is a feature we will utilize later in the ND fit analysis.

Meanwhile, there is also a trend within this phase space for the hadronic invariant

mass, W . Figure 4.7 shows CC RES events in the same FHC topology. As W

increases, the population of events moves up and to the right in (Reco |q⃗|, Evis
had)

phase space. In addition, the RES ∆+(1232) range (W ≈ 1.2 GeV) is very near the

Q2 ≈ 0 diagonal, revealing that NOvA simulates many low-Q2 RES events;

this insight will be returned to again when MCMC constrains the ND MC. The

other important conclusion is the higher regions of phase space can only be accessed

with higher energy neutrinos, and therefore more inelastic scattering processes such

as RES and DIS. These two figures help to illustrate the complex and overlapping

physics processes that comprise the ND topologies.

Recall from Feynman diagram Fig. 1.2, in a CC neutrino interaction, the W bo-

son transfers three momentum and energy to the hadronic system, therefore larger
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(a) RES events with Q2 < 0.5 GeV2.

(b) RES events with 0.5 < Q2 < 1.0 GeV2.

Figure 4.6: µ+ π± +X FHC topology in slices of Q2 for true CC RES events. Note
how low-Q2 events (Q2 < 0.5 GeV2) are populated along the Reco |q⃗|-Evis

had diagonal
line of Q2 ≈ 0. Increasing values of Q2 move the population of events further to the
right, away from the diagonal.
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(a) RES events with 1. < W ≤ 1.4 GeV.

(b) RES events with W > 1.4 GeV.

Figure 4.7: µ + π± + X FHC topology in slices of W . The population of events
move up and to the right in (Reco |q⃗|, Evis

had) phase space. These events can only be
accessed via larger Eν values.
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Figure 4.8: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Evis

had axis,
projecting out Reco |q⃗|. These plots of the FHC topologies break down neutrino
events by true interaction in the simulation, confirming the model breakdown from
Table 4.2. The “Other” category is predominately COH scattering. See ν̄ plots in
Fig. 4.9, and 1D FHC projections onto the Reco |q⃗| variable are available in the
Appendix A.2.
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Figure 4.9: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Evis

had axis,
projecting out Reco |q⃗|. These plots of the the RHC topologies break down neu-
trino events by true interaction in the simulation, confirming the model breakdown
from Table 4.2. The “Other” category is predominately COH scattering. 1D RHC
projections onto the Reco |q⃗| variable are available in the Appendix A.3
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values of Evis
had and Reco |q⃗| are likely to produce an inelastic interaction, as more

momentum is transferred to the hadronic system (and less to the leptonic system).

To further illustrate this point, we look at the 1D projections from these 2D distribu-

tions. Figure 4.8 (FHC) and Figure 4.9 (RHC) show the 2D distributions projected

onto the Evis
had axis (generally more intuitive than Reco |q⃗|) while also displaying the

true interaction type from the NOvA simulation.

First, we recall Fig. 2.1 where we see nontrivial predictions for all four neutrino

interaction processes in NOvA’s 2−5 GeV energy range. Looking at Figs. 4.8 & 4.9

and the QE model, we see these events occur at low values of hadronic visible en-

ergy, across all topologies. Notably, the Muon topology is heavily dominated by QE

and MEC (yellow) events with very little RES (green) and DIS (grey) contributions.

Meanwhile, higher Evis
had values across all topologies coincide with more inelastic neu-

trino interactions – namely RES and DIS interactions. These distributions highlight

the challenge in producing a νµ selection that is pure with a single interaction type,

and, conversely, highlights the overlapping of models in this energy range. However,

the µ+ π± +X and µ+P +X topologies are moderately pure samples of RES and

DIS interactions with little QE and MEC contribution. 1D distributions onto the

Reco |q⃗| variable can be seen in the Appendix A.2 and A.3. The summary of the

dominant interaction types can also be seen in Table 4.2.

In addition, Fig. 4.10 (FHC) and Fig. 4.11 (RHC) shows the same ND topo-

logical samples in projections of Evis
had, but showing the true final state particles (1D

projections onto Reco |q⃗| can be found in the Appendix A.4 and A.5). Understand-

ing the breakdown of final state particle combinations is highly useful; for example,

in the µ + π± + X topology, it is highly pure in µ + π± + X final state particles.

Moreover, the challenge of prong-CVN misidentifying particles is another complex-

ity of this analysis that must be considered when analyzing these topologies, and

furthermore analyzing the results from MCMC sampling. It presents a challenge

to assess NOvA’s neutrino interaction modeling, and, by extension, NOvA’s uncer-

tainties of these models. This is a primary objective of this thesis, as we seek to
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Figure 4.10: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Evis

had axis.
These plots of the FHC topologies break down neutrino events by the final state
particles from the interaction. 1D FHC projections onto the Reco |q⃗| variable are
available in the Appendix A.4.
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Figure 4.11: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Evis

had axis.
These plots of the RHC topologies break down neutrino events by the final state
particles from the interaction. 1D FHC projections onto the Reco |q⃗| variable in the
Appendix A.5.
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understand where the interaction modeling can be improved within NOvA.

4.4 Far Detector Selection

DATA
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Figure 4.12: Flow charts for νµ and νe selection and reconstruction.

We must now select the FD neutrino interactions. A summary of the reconstruc-

tion and selection algorithm for νµ and νe is shown in Figure 4.12. We select νµ

and νe events in the FD. The following sections describe the details of these pro-

cesses. The νµ and νe events are selected from a different set of criteria. Subsection

4.4.1 outlines the selection process used for the FD νµ events, while Subsection 4.4.2

describes the process for the νe sample.

4.4.1 νµ Quantile Selection

One of NOvA’s objectives is to measure νµ disappearance; the selection here is

different from the ND topological selection. First, recall that to observe neutrino

oscillations we must estimate Eν (Eqs. 1.13 and 1.18) as oscillations are a function

of L/E (where L = 810 km in NOvA).
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Figure 4.13: Distribution of the quantile cuts for the FD νµ events. In each bin
of Reco Eν , the FHC (blue) and RHC (magenta) lines divide the total number of
events into equal populations of events. The bottom-most blue & magenta line
demarcates the first quantile, Q1. Quantile 1 contains the best energy resolution of
6%, containing the least amount of hadronic energy. The selection cuts used for this
analysis are used from NOvA’s 2020 oscillation measurement analysis [56].

As stated, the characteristic feature of a νµ CC event is the long muon track in

the detector. There are several preliminary selection cuts made to the FD νµ events

observed in the NOvA detectors to estimate Reco Eν :

Basic Quality: identify a muon track with at least 20 hits.

Containment: ensure the muon track is located entirely within the fiducial volume

(60 cm to the top, 12 cm to the bottom or west, 16 cm to the east, 18 cm to

front or back).

Cosmic Rejection: reject cosmic ray particles.

PID: the output of CVNµ must be greater than 0.5 (and for ReMID).

The next set of cuts are known as “quantile” cuts. The FD νµ events are grouped

into four quantiles (also known as quartiles). These quantiles divide each bin of the

inclusive FD unoscillated CC νµ energy distribution into four groups with an equal

number of events. Specifically, this division of events in each bin is made using the
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the ratio of hadronic energy fraction with respect to the total neutrino energy; this

hadronic energy fraction, Ehad
frac, is defined as

Ehad
frac = Ehad/Eν , (4.2)

but also more generally referred to as the inelasticity variable y, Eq. 2.5. A plot

of the quantile boundaries can be seen in Figure 4.13. The FHC (blue) and RHC

(magenta) lines denote the 25% population of events within each bin of Reco Eν , as

this process is done for both FHC and RHC separately. Quantile 1 contains the 25%

of events in each bin of Reco Eν with the least amount of hadronic energy fraction;

this is the bottom-most line for each FHC (blue) and RHC (magenta) in Figure 4.13.

For example, in the RHC (magenta) case, the boundaries of the first two quantiles

in each of the bins of Eν are made at roughly constant values of Ehad
frac ≈ 0.1 and 0.2

respectively. Meanwhile, Quantile 4 contains the most amount of hadronic energy –

and the worst resolution – to measure the oscillation parameters; the top-most line.

The resolution of the four quantiles from Quantile 1 to Quantile 4 is 6%, 8%, 10%,

and 12%.

The result of these cuts is shown in Figures 4.14 (FHC) and 4.15 (RHC); the FD

oscillated MC CC νµ predictions are plotted in Eν in each of the four quantiles using

the oscillation parameters from the NOvA 2020 measurement. The strength of these

cuts is evident by examining the shape of the “dip” region in the oscillated νµ spec-

trum. Note how the oscillation “dip” at approximately 1.5 GeV is more pronounced

in Quantile 1 for both FHC and RHC than for Quantile 4 demonstrating the supe-

rior resolution; Quantile 1 is most sensitive to νµ disappearance. The non-uniform

binning of the FD νµ spectra is done to emphasize the effects of the oscillation dip

region. The bin widths are small at 1-2 GeV to capture this effect, while the larger

bins at higher energy are larger as NOvA does not observe νµ oscillations at higher

energies. This is the same binning scheme used as in prior NOvA analyses [55].
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Figure 4.14: FD FHC νµ spectra divided into the quantiles for the Prod5.1 NOvA
MC. Note the more pronounced dip region in Quantile 1. This prediction uses the
NOvA 2020 best fit of the oscillation parameters. The grey bands show the 1σ
uncertainty band for the uncertainties to be used in the MCMC sampling.
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Figure 4.15: FD RHC νµ spectra divided into the quantiles for the Prod5.1 NOvA
MC. Note the more pronounced dip region in Quantile 1. This prediction uses the
NOvA 2020 best fit of the oscillation parameters. The grey bands show the 1σ
uncertainty band for the uncertainties to be used in the MCMC sampling.

4.4.2 νe Selection

The νe selection contains its own set of cuts, from Figure 4.12. In order to

maximize the possible number of appeared νe events, NOvA categorizes different

classes of νe events: “Low PID”, “High PID”, and “Peripheral”. The logical flow of

the cuts and how an event is classified is outlined below.

Basic Quality: removes substantial background or reconstruction failures.

Core Preselection: remove events that have hits are close to the edge of the de-

tector (60 cm to the top, 12 cm to the bottom or west, 16 cm to the east, 18
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Figure 4.16: νe event at the NOvA FD with Reco Eν = 2.29 GeV from [57].

cm to front or back) – as they are likely background events. Require Reco Eν

events between 1-5 GeV.

Cosmic Rejection: Remove cosmic events that have tracks which are vertically

aligned.

CVN PID: the output of the CVNe classifier is > 0.75.

The Basic Quality cut removes any clear background or reconstruction failures from

the sample. The Core Preselection cut removes the events that are on the periphery

of the detector, which would potentially impact the Reco Eν estimate. The next cut

is the Cosmic Rejection which removes tracks that are vertically aligned (via pT/p),

which tend to be dominated by cosmogenic particles. The last cut is the CVN PID

cut, where the CVNe, the νe classifier to identify electromagnetic-like prongs, score

must be larger than 0.75. At this stage if the candidate event passes this cut, it will

either be grouped into the “Low PID” or “High PID” category depending on its

score – known as the “Core” sample. Events that fall into the “High PID” region

are the strongest νe candidate events. Events that do pass the Basic Quality cut but

do not pass any of the remaining cuts are candidates to move into the “Peripheral”

sample. The “Peripheral” sample is a single bin where Reco Eν is not considered.

For a νe candidate, the event pass an additional cut, BDT Cosmic Rejection.
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Figure 4.17: FD νe spectra divided for the Prod5.1 NOvA MC. Predictions are made
using the NOvA 2020 oscillation analysis result. The grey band represents the 1σ
error of systematic uncertainties to be used in MCMC sampling.

BDT Cosmic Rejection a Boosted Decision Tree classifier further eliminates cos-

mics background from events.

A Boosted Decision Tree (BDT) is used to further remove cosmic events from these

Peripheral νe candidates. The BDT score is > 0.53 for the majority of events. These

events are then merged together into the single bin, where Reco Eν is not considered.

The result of the selection process is shown in Figure 4.17 where the FD νe

sample is plotted using the NOvA 2020 oscillation measurements in FHC (left) and

RHC (right). In each plot, the left most distribution is the Low PID region, the

middle is the high PID region, and the right most bin is the Peripheral sample.

Note the majority of νe events appear in the High PID region. The grey error band

represents the 1σ error of uncertainties used in this analysis.

With a description of the event reconstruction, ND topological sample selection,

FD νµ quantile samples, and FD νe sample selection, we can proceed to perform

Markov Chain Monte Carlo sampling to constrain the NOvA MC to best agree

with the NOvA data. We will begin with constraining the NOvA ND information

only, first with ND fake data and then ultimately with the ND data. However, first

we will summarize Bayesian inference and the MCMC sampling algorithm in the

next chapter. In the following chapter the results of MCMC sampling on the ND
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information only are analyzed.
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Bayesian Inference and Markov

Chain Monte Carlo

Bayesian inference, proposed by Thomas Bayes (1701-1761) [58], infers the prob-

ability of true parameter values in a model from information – also known as data

– provided by calculating a posterior probability. This is done with assumptions of

the possible parameter values – the prior – and a prediction’s expected distributions

given specific parameter values – the likelihood.

This chapter begins by discussing the details of Bayes Theorem in Section 5.1.

The discussion continues in Section 5.2 with Markov Chain Monte Carlo (MCMC).

Section 5.3 describes the specific algorithm used in this thesis to estimate the pos-

terior probability – Hamiltonian Monte Carlo. The following Section, 5.4, describes

a 2-dimensional example of Hamiltonian Monte Carlo for illustrative purposes. Sec-

tion 5.5 discusses a metric we use to quantify agreement between the NOvA data

and MC. The last Section, 5.6, briefly outlines the software Markov Chain Monte

Carlo package, Stan, and how it is used in this analysis.

5.1 Bayes Theorem

Bayes Theorem is a simple equation written as

87



Chapter 5

P(θ⃗|data) = P(data|θ⃗)× P(θ⃗)

P(data)
. (5.1)

The objective of Bayes Theorem is to produce probabilities for a given hypothesis.

The equation is broken down into its elements below.

Posterior

The posterior probability, or P(θ⃗|data), is the quantity we seek to estimate. It

is the probability for values of the parameters, θ⃗, of the model in consideration

are true given the data provided. Ultimately we seek to identify the values of θ⃗

which maximize the posterior probability. These are the most probable values of

the parameters.

Prior

The P(θ⃗) is referred to as the prior probability, also known as the “prior”. It

represents the knowledge (or lack thereof) of the true values of the parameters,

θ⃗, we want to determine before we have analyzed the data. Before performing

the experiment, there may be factors which can shape the prior. For example,

an extreme value of a parameter that does not produce a physically meaningful

prediction; as we will see, this is true for NOvA systematic uncertainties. Another

example is a previous measurement made that would constrain an oscillation or

interaction parameter(s).

Likelihood

The other term in the numerator is the likelihood, P(data|θ⃗), or LL. The likeli-

hood assesses the data; it evaluates if a given set of model parameters is consistent

with the data. In our case, this metric is calculated via a Poisson statistic χ2 (i.e.

e− χ2

2
) between the data and prediction. The combination of the likelihood and prior

are typically referred to as the “model”.
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Evidence

The evidence, P(data) in the denominator, is the probability for observing the

data. Importantly, because the values of the data are fixed, the probability of ob-

servation is fixed, and, therefore, to include it would yield the absolute posterior

probability. However, because the goal of this thesis is to estimate the parameters

that maximize the posterior (oscillation parameters and NOvA’s uncertainty pa-

rameters), we can disregard this term as it is simply a normalization constant, and

instead calculate the relative probability of the posterior. Therefore Bayes Theorem

can be simplified slightly into

P(θ⃗|data) ∝ P(data|θ⃗)× P(θ⃗), (5.2)

where the evidence term is a constant and omitted.

This equation can also be interpreted as drawing inferences from a hypothesis:

prob(hypothesis | data) = prob(data | hypothesis)× prob(hypothesis)

prob(data)
(5.3)

It can be read as “the probability of a hypothesis” (the prior) multiplied by the

“the probability the data is consistent with the hypothesis” is equal to the “proba-

bility the hypothesis is true.” Understanding the equation in this fashion can make

Bayes Theorem more approachable. In the next Subsections, some of the features

of Bayesian inference are described further.

5.1.1 Credible Intervals

One of the features of Bayesian inference is the interpretations one makes from

its statistics; such as the Credible Interval. MCMC is a sampler of the posterior

probability density, and does not calculate the posterior analytically. Therefore, the

quantity returned from MCMC are samples. These samples must then be converted

into a probability density, and is discussed in more detail Section 5.2. This analysis
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does this by binning the samples into 1D or 2D histograms over one or two of the

parameters, respectively (or implicitly marginalizing out all other parameters, see

5.1.2). With this histogram, the 1σ credible interval, for example, can be formed

by selecting the highest probability bins within the parameter space that give a

cumulative probability of 68%. This process is identical for 2σ and 3σ by selecting

95% and 99.8% of the highest probability bins, respectively.

5.1.2 Marginalization

A second feature of Bayesian inference is that of marginalization (Equation 5.4).

One can integrate out undesired parameters, or “nuisance parameters”. Marginaliz-

ing away these parameters, δ⃗, is not trivial and provides a means of analyzing only

parameters that we are interested in for this analysis, θ⃗. In fact, this is one of the

advantages to using MCMC, given the difficulty in marginalizing or profiling.

P(data|θ⃗) =
∫

P(data|θ⃗, δ⃗) dδ (5.4)

This is something implicitly done when constructing credible intervals from Subsec-

tion 5.1.1; by creating a credible interval for one or two parameters, for example,

one is marginalizing over, or integrating out, the remaining parameters. This is an

incredibly powerful feature of MCMC as it allows one to investigate relationships

between specific parameters at no extra computational cost.

5.2 Markov Chain Monte Carlo

We move onto the discussion of the principles of Markov Chain Monte Carlo

(MCMC). The posterior parameter space, whose dimension corresponds to the num-

ber of parameters of θ⃗, can be considered a coordinate location space. As a result,

we will use the new notation, q⃗. The posterior space becomes a probability density
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function over this coordinate space

P(q⃗) = π(q⃗)× LL(q⃗). (5.5)

To illustrate this further, the expectation value is the posterior probability integrated

over its volume,

Eπ =

∫

Q

π(q⃗) LL(q⃗) dq⃗, (5.6)

where π(q⃗) is the prior, LL(q⃗) is the likelihood, and is integrated over some parame-

ter space, Q. To maximize the expectation, Eπ, we want to maximize the posterior,

P(q⃗), and volume, dq. Identifying the region where the posterior function alone is

Figure 5.1: Representation of the typical set. The typical set is the region over
which the product between the probability density function, P(q⃗), and the volume
element, dq, is maximized. Note in the figure the probability density function or
posterior, P(q⃗), is written as “π(q)”. From [59].

large is insufficient; the product of the posterior and the volume, P(q⃗)dq (equivalent
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to “π(q)dq” in the figure), maximizes the expectation, can be considered in Figure,

5.1. To help illustrate this further, in Figure 5.1, the grey shaded region of the

illustration shows the region where the product between the posterior and volume

element is maximal in the dark red distribution.

This high-probability region in the posterior is called the “typical set” – the

region where the maximum expectation values exist within the posterior. To cal-

culate the posterior within the volume of the typical set analytically can often be

intractable when the number of parameters is large. An effective tool to approximate

the posterior is to directly sample the posterior space proportional to its probabil-

ity, thereby estimating the model’s parameter values. Markov Chain Monte Carlo

(MCMC) performs this sampling to approximate the posterior and to do so more

efficiently via a Markov Chain method.

The next step is to describe how a Markov Chain will explore the typical set.

Within a Markov Chain are Markov Transitions,

P(q⃗) =
∫

Q

T(q⃗|q⃗′) P(q⃗′) dq⃗′, (5.7)

where T(q⃗|q⃗′) is the conditional probability to move to a new location q⃗ and q⃗′ is the

starting location of the density function. We use the posterior (i.e. the probability

density function) to determine the next location within the typical set to inform the

chain how to move through the posterior space. One of the fundamental features of a

Markov Chain is that it is reversible; the probability of moving between neighboring

chain elements is the same from both directions. Running the Markov Chain for

N → ∞ transitions will reproduce exactly the expectation value within the typical

set. However, infinite transitions requires an infinite amount of computing power,

so we must estimate the expectation value with a finite number of transitions. We

seek to reach the typical set as quickly and efficiently as possible. There are two

common sampling algorithms: Metropolis-Hastings, a more common and general

algorithm (which will be discussed briefly) and Hamiltonian Monte Carlo, a more

computationally intensive algorithm that utilizes the geometry of the posterior space
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(will be discussed in more detail) to estimate the typical set.

5.2.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm consists of two parts: a proposal and

an acceptance criterion [60]. The proposal requires information of the current loca-

tion in the posterior space and “proposes” a new location in the space; this proposal

is typically sampled from a Gaussian distribution of N dimensions, Equation 5.8,

where the dimension is equal to the the number of parameters in the posterior space

and a step size matrix, Σ,

N (q⃗′ | q⃗,Σ) = 1√
2πNdet(Σ)

e
1
2
(q⃗−q⃗′)Σ−1(q⃗−q⃗′). (5.8)

The step sizes, Σ, set by the user, determine the distance of the probable jump

distances the Markov chain can make between q⃗′ and q⃗; a smaller step size produces

a more “fine-grained” exploration of the posterior at the cost of increased compu-

tational time. This N-dimensional Gaussian is used in calculating the acceptance

(Equation 5.9),

A(q⃗′, q⃗) = min

(
1,

N (q⃗ | q⃗′,Σ) P(q⃗′)
N (q⃗′ | q⃗,Σ) P(q⃗)

)
, (5.9)

where the Gaussian (5.8) proposes steps and if the acceptance metric A is met, or

exceeded, then the proposal is accepted and the algorithm moves to the new location

in the posterior, q⃗, from q⃗′. If A is not met, a new proposal is sampled from the

Gaussian. This process continues until the desired number of steps is reached.

The Metropolis-Hastings Algorithm is the most common Markov chain used

within MCMC, however, with increasing parameter space MH can quickly become

ineffective due to the number of possible directions (i.e. dimensions) the algorithm

can move in. For this reason, Hamiltonian Monte Carlo presents an attractive alter-

native to MH exploration of the posterior space. Next we discuss the Hamiltonian

Monte Carlo algorithm in more detail.

93 M. Dolce



Chapter 5

5.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (also referred to as HMC or HMCMC) is one partic-

ular algorithm to approximate the posterior and explore the parameter space by

utilizing information of the posterior’s geometry. We begin by treating the poste-

rior space as a topological surface. The objective of MCMC remains the same – to

sample the posterior by sampling from it proportionally to its probability. However,

now considering the topological space and its intrinsic characteristics with its local

minima and maxima – associated with less and more probable values, respectively

– we introduce a potential and kinetic energy. We can then explore the space using

kinematics, namely Hamilton’s equations

dq⃗

dt
=

∂H

∂p⃗
,

dp⃗

dt
=

∂H

∂q⃗
. (5.10)

When applying Hamilton’s equations to the posterior space, q⃗ and p⃗ represent the

position and momentum, respectively, of the Markov chain’s trajectory in the pa-

rameter space, while H is the Hamiltonian of the Markov chain. However, the

momentum and Hamiltonian have not yet been defined. Starting with the momen-

tum, if we introduce a corresponding auxiliary momentum within the posterior to

describe the motion of the trajectory, every probability density can be located by

specifying its location and momentum. Referred to as a joint probability of the

posterior,

P(q⃗, p⃗) = P(p⃗ | q⃗) P(q⃗), (5.11)

P(q⃗, p⃗) can be written as a conditional probability where we can marginalize over

the momentum, P(p⃗ | q⃗), and return to the probability density over only the pa-

rameters, P(q⃗). We must also define the Hamiltonian in the parameter space. The
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Hamiltonian, naturally, should contain information of the posterior space,

H = −log P(q⃗, p⃗) (5.12)

= −log P(p⃗ | q⃗)− log P(q⃗)

H = T (q⃗, p⃗) + V (q⃗) (5.13)

where T (q⃗, p⃗) is the kinetic energy term from the joint probability, and we use the

logarithm to obtain a smoother posterior space. We use the Euclidean-Gaussian

kinetic energy distribution

T (q⃗, p⃗) =
1

2
p⃗TM−1p⃗+ log|M |+ const. (5.14)

where M is referred to as the mass matrix because of the analogous role it plays in

gravitational systems. Sometimes M−1 is a diagonal matrix where no parameter is

correlated with one another. However, the more common use case is a dense mass

matrix that has off-diagonal elements to quantify the correlations between any pair

of parameters. One such choice of the mass matrix is to provide a correlation matrix

to describe the off-diagonal terms of the matrix. The potential energy, V (q⃗), is the

probability density over the parameters. Returning to Hamilton’s equations,

dq⃗

dt
=

∂H

∂p⃗
=

∂T

∂p⃗
, (5.15)

dp⃗

dt
= −∂H

∂q⃗
=

∂V

∂q⃗
(5.16)

and observe the gradient of the potential energy, ∂V
∂q⃗

= ∂p⃗
dt
, can be used to explore the

parameter space more efficiently because the gradient of the joint probability will

always point towards increasing probability. Thus, the Markov chain’s exploration

of the posterior is far more efficient than the MH algorithm; this is the critical

concept in HMC – use of the potential to calculate a gradient to guide sampling.

The second critical element of Hamilton’s equations is the conservation of phase
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space, which allows MCMC to to explore the posterior probability distribution with

conserved probability. In other words, the auxiliary momentum does not experience

dissipative forces – like friction – acting in this system that would prevent the phase

space from being conserved.

To ensure a trajectory does not simply oscillate around a maximum in the pos-

terior, a condition is incorporated into the sampling referred to as the No-U-Turn

Sampler (NUTS) condition [61]. Upon reaching the end of a gradient, a trajectory

may turn back on itself, retracing its own path. When this condition occurs, the

trajectory is terminated via the NUTS criteria.

There are several drawbacks to Hamiltonian Monte Carlo and Bayesian sampling

in general. For example regions of high curvature in the posterior space can lead to

divergences when the calculating the gradients of the potential energy (Eq. 5.16),

making the remaining samples difficult to interpret. In addition, if, for example, a

parameter has two modes but are separated by in parameter space by zero proba-

bility, then it is unlikely an MCMC trajectory can move across this region of zero

probability and sample the two modes sufficiently, resulting in an artificial bias, or

even unable to sample the second mode at all. Another challenge to MCMC sam-

pling is the lack of an effective means to locate the true maximum of the posterior,

like in many probability problems; it is difficult to determine if a maximum is a local

maximum or a global one.

5.4 Hamiltonian Monte Carlo 2-D Example

The full algorithm of HMC can be best understood with a 2-dimensional example

– two parameters X and Y . If we consider the shape of the 2D posterior probability

density in Figure 5.2, the grey contour lines surrounding this 2D “banana-shaped“

posterior represent lines of equipotential from Hamilton’s equations. An object

within this space will be influenced by this 2D potential; it will follow along the

gradient of the potential, ∂V/∂q⃗, and this quantity will direct the object towards

less potential and therefore an increase in kinetic energy, or momentum. Therefore,
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the object is more likely to traverse this region which corresponds to high probability.

This is how the geometry of the space itself is used to explore the posterior more

efficiently.

Figure 5.2: Hamiltonian Monte Carlo 2-dimensional example of a single MCMC
chain exploring the posterior. The grey arrow indicates the initial “momentum”
from Hamilton’s Equations. The final dot which the green arrow points to is the
ending point of the chain, indicating the chain has achieved the No U-Turn Sampling
(NUTS) criteria. From [62].

Looking further at Figure 5.2, the black dots show the trajectory of a MCMC

sample under the influence of the potential (grey contour lines). The starting MCMC

sample is the black dot with the grey arrow pointing from it. This grey arrow in-

dicates the randomly selected initial momentum of the starting sample. In this

case, the trajectory of the next several samples are nearly in-line with the initial

momentum vector. Meanwhile, the black dot the green arrow points to marks the

end of the chain where the NUTS criteria has been met. It is the end of the chain

that marks where the MCMC sample is recorded. As noted, this location in the

parameter space corresponds to specific values of the X and Y parameters, sampled

proportional to their probability. Along the X and Y axes are 1D probability dis-

tributions of the individual parameters, obtained from marginalizing. This sample

fills a bin within each of the 1D marginal distributions along the X and Y axes,

indicated by the grey bars. Also along the axes are the true underlying 1D proba-

bility distributions drawn in light grey. In this Figure, there are only several bins

97 M. Dolce



Chapter 5

filled – samples recorded – in this parameter space. In the limit of infinite samples,

the 1D marginalized histograms would perfectly reproduce the true 1D, light-grey

probability distributions, also illustrating the need for high statistic samples.

5.5 The “Representative Sample” (Max. LL)

It is helpful to understand Bayes Theorem in the context of NOvA. Often in

NOvA, and in the high-energy physics community, the χ2 metric is useful to describe

the goodness of a fit between data and MC. For the ND and ND+FD Bayesian fits

in this analysis, we will report a χ2. We asses the likelihood via a test statistic using

Poisson statistics

P(data|θ⃗) ≡ e−χ2 ≡ −2 LL (5.17)

where LL is the log-likelihood of the data-MC agreement. In this statistic, the χ2

takes the form of a χ2 function in the limit of large event rates,

χ2 =
∑

i

−2

(
−λi + xi + xi log

(
λi

xi

))
, (5.18)

where λi and xi represent the expected (simulated) and observed (data) event rate

in the i-th bin [4]. In the case of the ND-only MCMC sampling, these are bins of

the 2D distribution in (Reco |q⃗|, Evis
had) phase space, while in the FD these are bins

of Reco Eν .

To maintain consistency within the community, we report a χ2 by introducing

the “Representative Sample” in this analysis. The “Representative Sample”, or

maximum LL, is the sample that minimizes the χ2 function. However, it is crucial

to note that Bayesian samples does not produce a “best fit”. Instead, the “best

fit” from Bayesian sampling would be the maximum of the posterior, which is the

Representative Sample (max LL). However, if one were to marginalize the posterior

space, the max LL sample might not be the same as the densest region of MCMC

samples. This statement is true when marginalizing any number of dimensions of
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Figure 5.3: A 2D example of marginalizing vs. profiling. The black dot represents
the maximum LL point at (5, 5). Profiling over the y variable (dashed line) variable
yields x = 5.0 as the most probable value, while marginalizing over the y variable
(blue histogram) produces x = 10.0 as the most probable value. This inconsistency
between the max LL (x = 5.0) and most probable marginalized value (x = 10.0)
shows the “Representative Sample” (max LL) may not always be the same as the
highest probability point after marginalizing over parameters.

the posterior space; the maximum LL over all parameters may not necessarily be

equal to the marginalized maximum, as we see in a 2-dimensional example in Figure

5.3.

In Figure 5.3 there are four modes in the parameter space. The densest and

most probable region is the bottom left quadrant, the two right-most dense regions

are of equal probability. The black dot represents the maximum LL. If one were

to marginalize over the y variable, we see the Representative Sample is at x = 5.0,

but the highest probability x value is at x = 10.0. This difference in the max

LL and the maximum marginalized probability concisely illustrate the subtlety in

interpreting these two quantities; after marginalizing over any number of parameters,

the highest probability point(s) from the marginal distribution may not be identical

to the Representative Sample value, which is the maximum over the whole posterior
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space. This will be important throughout this analysis.

Moreover, the Representative Sample resembles a type of “best fit”, but is not

equivalent to a Frequentist “best fit”. This is also shown in Figure 5.3. This is

because a Frequentist “best fit” is obtained via profiling, shown as a dashed line in

the Figure. In this method, if we want to profile out the y variable, we select the y

value with the maximum LL, rather than average over the variable. In this way, we

obtain a different probability distribution for the x variable; one where the profiled

distribution, or “best fit”, in the x variable is consistent with the max LL black

dot. Despite the incongruent meanings of “best fit” and “Rep. Sample”, we still

seek to report a χ2 metric. The “Rep. Sample” is still a useful – but approximate

– means of quantifying the strength of the agreement between (fake) data and MC

from MCMC sampling; thus we will continue to report its value.

5.6 Stan Software Package

This analysis uses a third party software tool Stan, a Markov Chain Monte Carlo

sampler [63]. Stan contains an interface for multiple different high-level program-

ming languages, such as python, R, and C++. This analysis utilizes the C++

interface where it is adjoined to the NOvASoft software framework, CAFAna [64].

From there, an analysis with MCMC, like this one, can be done with built-in anal-

ysis, physics-specific NOvASoft code, while eliminating the need for the user to

directly interface with the source code of Stan.

With an overhead view of Bayesian statistics and Markov Chain Monte Carlo we

are ready to progress onto applying MCMC to the NOvA Near Detector simulation

to estimate the values of the uncertainties within NOvA’s uncertainty model. An

important note regarding terminology as we progress next to MCMC sampling of

the NOvA ND MC and data; an “uncertainty” within NOvA’s uncertainty model

will henceforth be used synonymously with “parameter” or “systematic”. The next

chapter will focus on the ND-only component to constrain the uncertainties, and

then move onto constraining the oscillation parameters in the following chapter using
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both the NOvA ND and FD information.
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Near Detector Fit

The first step to constraining the neutrino oscillation parameters requires fitting

NOvA’s ND predictions to data in order to constrain NOvA’s systematic uncer-

tainties. This chapter will discuss this process and describe the details of a fit to

the NOvA Near Detector data. Section 6.1 describes and discusses the motivations

for selecting the prior function. The following section, Section 6.2, walks through a

NOvA Near Detector “fake data” fit of a small subset of NOvA’s uncertainties to

demonstrate the proof of principle of fitting physics model parameters with MCMC

to NOvA fake data. Section 6.3 shows the data and MC comparisons in the ND

topological samples to provide context as to how we anticipate MCMC will improve

the agreement. Section 6.4 describes initial attempts and challenges at fitting the

NOvA ND data. Section 6.5 describes the work to introduce new model uncertain-

ties for the RES and DIS systematics to achieve better agreement with the NOvA

data. Next, Section 6.6 introduces the “Residual Difference” present following the

ND fit to data. The last Section 6.7 summarizes the important conclusions made

from fitting the ND data with MCMC.

6.1 Prior Choice for Uncertainties

In quantification of uncertainties we often discuss uncertainties in units of σ, or

“pull”; each model parameter we are constraining has a default value with some
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uncertainty. In a fit, a given parameter may produce better agreement to the data

(or fake data) at a value different from its default, thus the parameter is “pulled”.

In this analysis, we will discuss fit results of parameters in terms of “pulls” in units

of σ that the fit takes the parameter value away from the default value.

In the Near Detector fit, a decision must be made to determine the functional

form of the Bayesian prior for NOvA’s systematic uncertainties. A simple Gaussian

(µ = 0, σ = 1) is a practical choice of prior for the pull; the most probable outcome

is a pull of 0.0σ and its probability quickly drops off for large negative and positive

values of σ, indicating that NOvA has high confidence of its systematic uncertainties

at the default value 0σ and more extreme predictions at larger pulls are less likely.

Figure 6.1: A Gaussian distribution in red. Prior function for NOvA’s uncertainties

in green: p(σ) = ee
−0.3025σ2

. This custom prior is differentiable for all σ values. Note
the similarity in shape between the custom prior and the Gaussian except at the
±2σ region, where the custom prior approaches zero at a smaller σ value than a
standard Gaussian to restrict large pull values.

Many of the underlying models begin to exhibit nonphysical behavior if param-

eters are pushed beyond ±3σ, so limiting MCMC’s prior to this range ensures that

our results are physically reasonable. This will allow us to better understand which

model – and their uncertainties – may have fundamental problems if a parameter is

pulled to an extreme value. For example, this could indicate the parameter’s uncer-

tainty range may be too small, or the underlying physics model associated with the
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given parameter may need attention.

With these two points in mind, we select a prior function that is Gaussian-like,

p(σ) = ee
−0.3025σ2

, (6.1)

where σ is the pull value of a given systematic uncertainty. The function main-

tains the characteristic of having the largest probability at the default value, 0σ,

and restricts extreme pull values. This “custom prior” seen in Figure 6.1 (green)

falls to zero probability for an even smaller pull value than a standard Gaussian

– approximately ±2.5σ rather than ±3σ of the Gaussian. This further prevents a

systematic from being pulled to an extreme (beyond ±3σ) value. Furthermore, our

“custom” prior is also continuous and differentiable satisfying a necessary criterion

for Hamiltonian Monte Carlo.

6.2 ND Fake Data Fits

Now we can perform a “fake data” fit to a subset of NOvA’s uncertainties. There

are several motivations for performing a fake data fit. First, it allows us to test our

fitting machinery by demonstrating MCMC can reproduce the exact, or known, pull

values from the parameters in the fake data. Secondly, it will help us understand

which parameters our ND data has the most sensitivity too, and which are poorly

constrained in NOvA’s simulation. Lastly, we can investigate correlations between

parameters by marginalizing over parameters and analyze the MCMC samples over

pairs of parameters from the fit. This section will walk through a fake data fit with

a subset of NOvA cross section uncertainties.

6.2.1 Fake data fit to QE, RES, and FSI Parameters

We produce a fake data MCMC fit to a subset of NOvA uncertainty parameters

to validate the MCMC fitting machinery. To this end, the CCQE, CCRES, and FSI

uncertainties are selected; random values are selected by drawing from a uniform
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distribution ranging from [-2σ, +2σ]. From there, these shifts are applied to the

nominal NOvA MC simulation in the (Reco |q⃗|, Evis
had) 2D ND topological distribu-

tions to produce a fake data set, also known as an Asimov data set. No statistical

fluctuations are applied; the random pulls, or true pull values can be seen in Fig.

6.2a. With these random pull values applied to the nominal NOvA MC simulation,

we obtain a fake data set, or Asimov data set. The fake data, nominal simulation

and uncertainties we seek to fit are input into MCMC to find the combination of

pull values that successfully reproduce the fake data.

This fake data fit is performed using Fermilab’s computing center, where MCMC

optimizes over approximately 250k degrees of freedom (1600 bins × 10 topologies ×

16 uncertainties) to produce 100k samples in approximately 48 hours.

Pulls Summary

In an ideal fit, the pull values from the MCMC samples should match with

the true values in Fig. 6.2a. One means of analyzing the agreement to the fake

data is to plot the pull values for each parameter from all MCMC samples. We

see these results in Fig. 6.2b where each true value uncertainty is a bin in the

histogram and the MCMC samples are overlaid on top; in the lower figure plot, the

darker red region indicates a larger density of samples and thus a more probable

pull value. The CCRES and FSI parameters have MCMC samples that are very

densely aligned at or near the true pull value, demonstrating these uncertainties are

well constrained by the NOvA fake data. However, the CCQE parameters have a

very broad distribution of MCMC samples indicated by the broad pink region that

MCMC sampled many pull values from the posterior that are probable for these

uncertainties, revealing these particular CCQE uncertainties (center bins of the plot)

are not as well constrained by the fake data in the ND topological samples. Moreover,

we see the CCQE systematic, ZExpAxialFFSyst2020 EV1, is best constrained by the

fake data, while the last eigenvector, 4, is the least because of it broadest pink region

indicating many pull values are probable.
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Rep. Sample: 1D Projection onto Evis
had

Next we can examine the 1D projections of Evis
had following the fake data fit. The

plots in Figures 6.3 and 6.4 show the nominal prediction in grey with the a priori

±1σ error band from the 16 uncertainties used in the MCMC sampling. The black

points are the fake data, and the blue distribution is the prediction using the pull

values that correspond to the maximum LL, the Rep. Sample. Recall the Rep-

resentative Sample is simply a coordinate in the posterior parameter space, where

each dimension in the space corresponds to the pull value for a parameter. There-

fore, the Rep. Sample prediction is a prediction with the pulls on the systematics

applied corresponding to the maximum LL coordinate. Again, recall in Section 5.5

we acknowledge the Rep. Sample is not the ideal metric when using MCMC, as

it does not account for where the densest, or highest probability, regions might be

located within the posterior space. Regardless, it is useful here to quantitatively

demonstrate the goodness-of-fit from MCMC sampling to the fake data set.

We see from these plots of Evis
had that the Representative Sample successfully re-

produces the fake data in every topology; another very convincing example that

MCMC can constrain NOvA systematic uncertainties. One strong example to

demonstrate the success of this fake data fit is the µ + π± +X topologies for FHC

and RHC. We see the fake data has distorted these two predictions significantly

from the nominal prediction. In both plots the fake data is significantly less than

the nominal prediction at the peak of Evis
had = 0.15 GeV. Despite this significant

difference between the nominal prediction and the fake data, MCMC is still able to

perfectly reproduce the fake data when using the Rep. Sample prediction. Plots of

the 1D projections onto the Reco |q⃗| axis can be found in the Appendix (Figs. A.6

& A.7).

χ2 metric

We can examine the accuracy of the fit quantitatively, again using the Repre-

sentative Sample. Figure 6.5 shows the fake data-nominal MC χ2 metric (grey)
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Figure 6.3: Representative Sample prediction, in blue, on Evis
had projection of FHC

topologies. The grey histogram represents the nominal prediction and the grey
error band represents the a priori ±1σ range for the 16 selected uncertainties. Note
the Rep. Sample prediction (largest LLMCMC sample) produces perfect agreement
with the fake data, confirming MCMC can constrain NOvA uncertainties effectively.
Plots of the 1D projections in the Reco |q⃗| variable can be seen in the Appendix
A.6.
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Figure 6.4: Representative Sample prediction, in blue, on Evis
had projection of RHC

topologies. The grey histogram represents the nominal prediction and the grey
error band represents the a priori ±1σ range for the 16 selected uncertainties. Note
the Rep. Sample prediction (largest LLMCMC sample) produces perfect agreement
with the fake data, confirming MCMC can constrain NOvA uncertainties effectively.
Plots of the 1D projections in the Reco |q⃗| variable can be seen in the Appendix
A.7.
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and fake data-Rep. Sample MC χ2 metric (blue) in each topological sample. Note

the grey, “Pre-fit” χ2 is large – intentionally so, this is before MCMC has sampled

the posterior space. However, when applying the maximum LL pull values to the

nominal prediction, the blue distribution χ2 drops dramatically. Moreover, when we

consider the large number of events in the ND topological samples, a cumulative χ2

≈ 2 quantitatively demonstrates strong agreement between the fake data and Rep.

Sample predictions.

1D marginals

Another informative means of understanding the quality of the fit is to marginal-

ize, or integrate out the probability of undesired, or nuisance, parameters as de-

scribed in Subsec. 5.1.2. We implement this procedure here to produce a 1-

dimensional distribution for each of the NOvA uncertainties provided in the fit.

In other words, we project out the red MCMC samples distribution in Fig. 6.2b

onto each uncertainty; Fig. 6.6 shows marginal distributions for four of the 16 pa-

rameters used in the fit. Focusing on Subfigs. 6.6a, 6.6c, and 6.6b, we see these are

strongly constrained – the width of these marginal distributions is narrow indicating

only a small range of values are the most probable pulls for these systematic un-

certainties. We also observe the MCMC samples are accurate to the true pull; the

most probable pulls, or modes, of these three distributions are centered along the

green vertical line, which represents the true pull value that was applied to create

the fake data (i.e. the black histogram in Fig. 6.2). These plots confirm the most

probable pull value from MCMC matches exactly the true pull value. This is strong

evidence the MCMC machinery is functioning properly.

However, the CCQE Z-expansion systematic is not as well constrained, Subfig.

6.6d. Although the green vertical line representing the true pull value is near the

most probable MCMC pull value, the width of the distribution is fairly wide ranging

from negative to positive pull values. This wide range of probable pull values reveal

this fake data set provided into the fit cannot constrain this uncertainty as effectively
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(a) 1D marginal distribution of the NOvA
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(b) 1D marginal distribution of the NOvA
uncertainty of the first eigenvector of the FSI
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(c) 1D marginal distribution of the NOvA
uncertainty on the Random Phase Approx-
imation (RPA) shape enhancement for QE
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(d) 1D marginal distribution of the NOvA
uncertainty of the third eigenvector for the
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Figure 6.6: Four 1D marginal distributions of NOvA uncertainties in this fake data
fit. These distributions are probability densities for a given pull value. Note the
vertical green line represents the true pull value from the random uniform distri-
bution and applied to the fake data. This green line is centered on the peak, or
mode, of each marginal distribution confirming MCMC has successfully reproduced
the random pull values by sampling the posterior. These marginals are normalized
to unit area and can be interpreted as the posterior probability distribution.
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as the other three parameters in Fig. 6.6. This provides useful information: not

every NOvA uncertainty can be constrained from the fake data set we provide. We

will return to this concept and build on this further when fitting NOvA data with

the complete set of NOvA uncertainties.

2D marginals

Another means of dissecting MCMC samples is to learn of the correlations of

any pair of systematic uncertainties by again marginalizing over the remaining un-

certainties. Looking at 2D marginal distributions is most helpful for exactly this

use case – to learn of correlations (or anti-correlations) between pairs of systematic

uncertainties. From the same fake data fit, we show this in Fig. 6.7.

In the first Subfig. 6.7a, the correlation between the two parameters, the CCQE

Z-Expansion model’s normalization and FSI model’s mean free path is fairly weak;

the distribution of samples is equally dense in all directions from the true pull value

represented by the green star. Given these two uncertainties, this relationship is to

be expected, changes to the CCQE model normalization have little bearing on the

effect of the mean free path of pions as they traverse the nucleus.

In the next Subfig. 6.7b of the CCQE model’s Z-Expansion first and second

eigenvectors, we find the two uncertainties are highly anti-correlated; as one these

two uncertainty values changes, the other will change in the opposite direction. This

is expected, as the these two uncertainties eigenvectors are attempting to adjust the

MC in the same region of phase space of (Reco |q⃗|, Evis
had).

The last two Subfigs. 6.7c and 6.7d show only moderate anti-correlation and cor-

relation, respectively. The general shape appears sloped downwards and upwards,

respectively, indicating there is some correlation between these parameters. Consid-

ering the physics corresponding to these two pairs of uncertainties, we should expect

some level of correlation; Subfig. 6.7c both address the CCQE model and therefore

should influence one another, while Subfig. 6.7d both address the hN FSI model.
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(c) 2D marginal distribution of the CCQE
RPA shape enhancement and the second Z-
Expansion eigenvector uncertainty.
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(d) 2D marginal distribution of the hN FSI
model’s second eigenvector and the mean-
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Figure 6.7: 2D marginalizations of a subset of the parameters utilized in the fake
data fit. These distributions indicate correlations between uncertainties. From these
plots, we see a breadth of the strength of correlations between uncertainties. The
green star is the true pull value for the given pair of uncertainties. The green line
represents the Bayesian 1σ credible interval. Marginalizations like these are one of
the powerful advantages of MCMC sampling.

6.2.2 Degeneracies in MEC Double Gaussian Parameters

Now that an example of a ND fake data fit has been analyzed, there is a particular

fake data fit result of interest. The fake data fit we will focus on is one that includes

the MEC Double Gaussian parameters. When looking into the 1D marginalizations

of the parameters used in this fake data fit, we observe several degeneracies – or

multiple, high-probability modes – in several of the marginals of the MEC Double

Gaussian parameters. In Figure 6.8, we highlight the degeneracies present within one

of NOvA’s MEC Double Gaussian parameters. Figure 6.8a shows the 1D marginal of
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(a) The multi-modal 1D
marginal distribution of the
MECDoubleGaussEnhSystMeanQ0 2 un-
certainty. The green line at +1.2σ denotes
the true pull value.

(b) 1D projection of µ + P FHC topology
onto Reco |q⃗| with all three modes applied.

(c) 1D projection of EvElse FHC topology
onto Reco |q⃗| with all three modes applied.

(d) 1D projection of µ RHC topology onto
Reco |q⃗| with all three modes applied.

Figure 6.8: Top Left: Plot of the three probable pull values for the MEC Double
Gaussian parameter MECDoubleGaussEnhSystMeanQ0 2. There are three unique,
probable modes, at −1σ (blue), +0.2σ (red), and +1.2σ (green, the true pull value)
indicating a degeneracy. Remaining Figures: Plots of the 1D projections onto
Reco |q⃗| with the predictions from all three pull values applied. All three pull values
of this parameter produce perfect agreement to the fake data.
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the lower MEC Gaussian’s Mean q0 systematic, MECDoubleGaussEnhSystMeanQ0 2.

The marginal of this systematic shows three distinct, clear high-probably modes

centered at: −1σ, +0.2σ, and +1.2σ; the next question raised is: do the each of

these three unique pull values produce the same quality of agreement? To this end,

the remaining three plots, Figs. 6.8b, 6.8c, and 6.8d answer this question. These

three plots contain predictions, in Reco |q⃗|, of all three of these modes −1σ (blue),

+0.2σ (red), and +1.2σ (green). Regardless of any of the three pull values applied to

the MC, we obtain the same prediction, indicating a degeneracy in this systematic,

because all three unique pull values produce a strong agreement with the fake data

(black dots). We note we observe this behavior in additional MEC Double Gaussian

systematics: MECDoubleGaussEnhSystMeanQ3 2, MECDoubleGaussEnhSystCorr 2,

MECDoubleGaussEnhSystNorm 2, and MECDoubleGaussEnhSystSigmaQ0 2. This be-

havior of degeneracies from the MEC Double Gaussian parameters is an important

discovery in the context of the ND fitting, and will be important as we move onto

NOvA data. What’s more, it presents an opportunity to improve the MEC model

by eliminating these degeneracies.

6.3 Data & MC Comparisons

Before we transition from MCMC sampling with fake data to sampling with real

NOvA data, it is important to first understand where the NOvA data is positioned

with respect to the NOvA Prod5.1 MC. This question is crucial as it helps to more

meaningfully understand where MCMC is attempting to correct the prediction when

sampling the posterior space of NOvA uncertainties.

Figures 6.9 and 6.10 show the 1D Evis
had projections of the NOvA ND topologies

in FHC and RHC for both Prod5 data and MC and Prod5.1 data and MC (Reco |q⃗|

projections in Appendix A.8 & A.9). First, we must highlight the improvement

in the agreement between data-MC from NOvA’s recent production, Prod5, to its

current one, Prod5.1. This is most noticeable in the lowest bin of the µ topologies.

This improvement in agreement is even more significant as the number of events
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Figure 6.9: Comparisons of Prod5 data (black dots) and Prod5 MC (grey) and
Prod5.1 data (black triangles) and Prod5.1 MC (green) predictions projected onto
Evis

had in the FHC topological samples. This plot highlights the changes in the un-
derlying physics models from Prod5 to Prod5.1 The focus here is to show the dis-
agreement between the Prod5.1 data and Prod5.1 MC, as this is what is used in
the analysis. Plots of the 1D projections in the Reco |q⃗| variable can be seen in the
Appendix A.8.
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Figure 6.10: Comparisons of Prod5 data (black dots) and Prod5 MC (grey) and
Prod5.1 data (black triangles) and Prod5.1 MC (green) predictions projected onto
Evis

had in the RHC topological samples. This plot highlights the changes in the un-
derlying physics models from Prod5 to Prod5.1 The focus here is to show the dis-
agreement between the Prod5.1 data and Prod5.1 MC, as this is what is used in
the analysis. Plots of the 1D projections in the Reco |q⃗| variable can be seen in the
Appendix A.9.
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in this topology is larger than all other topologies, therefore this will drive the χ2

metric significantly. Moreover, despite an improvement of the data-MC agreement,

because these low Evis
had bins in the µ topologies have so many events, the statistical

uncertainty is sub-percent level. This means even if the overall agreement is at the

few-percent level bin-by-bin, the statistics will drive the χ2 contribution significantly.

This region of phase space is dominated by QE and MEC, an important reminder

when we consider the pulls on the systematics from these models when fitting the

ND data.

We observe a noticeable improvement to the µ + π± +X topology from Prod5.

The nominal Prod5.1 MC predicts this µ+π±+X topology well. This means there

is little for the ND fit to correct directly in this topology.

We also plot the data-MC ratios of the ten topologies in Figure 6.11 & 6.12.

This provides us more insight into where the disagreement lies, especially because

it is in the 2D distributions that the MCMC sampling is performed in. We observe

an over-prediction, in blue, in the µ + P +X, µ +X, and EvElse in Prod5.1 MC.

The disagreement we see in the µ + P + X topology is one that we believe we

have sufficient systematic freedom to bring the prediction into agreement with the

Prod5.1 data. Regardless, these are large regions of phase space where MCMC will

need to improve the agreement.

Lastly, we see the over-prediction also lives along the low-Q2 diagonal kinematic

boundary. This is very informative and helpful to understand what type interactions

may be causing this over-prediction; we must be observant of systematics that are

associated low-Q2 events when fitting the ND data.

To summarize, there are several qualitative features we want to focus on:

• Moderate agreement, but very high statistics in the low (Reco |q⃗|, Evis
had) region

of phase space, especially in the two µ topologies (see Figure 6.9 & 6.10) that

will drive the χ2.

• A general over-prediction of events in several topologies: FHC µ + P + X,

RHC µ+X, RHC µ+ P , and EvElse (see Figure 6.9 & 6.10).
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Figure 6.11: FHC 2D topological samples plotted as the data-MC ratio. Note the
over-predicted (blue) region along the kinematic boundary. This boundary is along
the Q2 ≈ 0 GeV2 diagonal.
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Figure 6.12: RHC 2D topological samples plotted as the data-MC ratio. Note the
over-predicted (blue) region along the kinematic boundary. This boundary is along
the Q2 ≈ 0 GeV2 diagonal.
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• An over-prediction of events in the low-Q2 region of phase space (see Figures

6.11 & 6.12).

Understanding where the disagreement between data and MC is within the

topologies and the physical reasoning behind it is extremely critical when draw-

ing meaningful conclusions from MCMC sampling results, as we must have a sense

of what and where in the phase space needs improvement in these ND topologies.

With this understanding, we can advance to fitting the NOvA data.

6.4 Initial Fitting Attempts to ND Data

In a preliminary fit to NOvA data, the results were unsuccessful. In fact, the

Representative Sample produced worse agreement with the χ2 metric in certain

topologies, seen in Figure 6.13. Figure 6.14 shows that many systematics have very

broad 1D marginal distributions, indicating they were not constrained by the data.

This motivated the need to adjust the information we provide into MCMC.
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Figure 6.14: There are many uncertainties (columns) that have many probable
pull values, or broad pink distributions. Effectively, MCMC is recreating our prior
function. This means the NOvA ND data does not constrain these uncertainties.
This motivates the need to change how we perform MCMC sampling.

This poor level of agreement prompts the need to further improve the fit. The

approach to achieve the goal of improving the MCMC fit is divided into two cat-

egories: quality and quantity. We seek to improve the quality of the fit by

improving the χ2 between the data and the prediction. To improve the quantity

we aim to increase the number of MCMC samples that are produced, or, in other

words, reduce the run-time of the MCMC sampling.

To achieve these goals, we must first understand the primary limitations pre-

venting and an improvement of quality and quantity of an MCMC fit:

• The computation demand of Hamiltonian Monte Carlo algorithm is large –

approximately 8 GB of CPU memory is required to run on the FermiGrid.

There were too few MCMC samples obtained from the exploration to obtain

meaningful conclusions.

• Not every NOvA systematic is constrained by the ND νµ data.
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The computational demand of MCMC to explore a 93 dimensional parameter

posterior space is immense. Given the constraints of the FermiGrid, this task is

impractical and we must reduce the demand to increase the quantity of MCMC

samples.

The ND νµ topologies are complex and each one is sensitive to different models in

different ways. Therefore further scrutiny of the underlying models is necessary: are

there additional degrees of freedom in the underlying models that can be exposed and

utilized in the fit? Are there important physics elements that have been overlooked?

Have some model uncertainties been underestimated (which would lead to too-tight

priors)? These are important considerations to improve the quality of the fit.

6.4.1 Adjustments to MCMC Input

This section outlines the changes made to the predictions and parameters that

are input into Markov Chain Monte Carlo. The objective in performing these ad-

justments is to improve the quality and quantity of the fit.

Ranking uncertainties

From Fig. 6.14, it is clear there are numerous uncertainties that are not con-

strained by the NOvA ND νµ data, evidenced by broad, pink regions in columns of

the Pulls Summary plot. This motivates the question if it is necessary to include

every NOvA systematic uncertainty into the MCMC fit. To address this question,

we shift each systematic uncertainty by ±1σ with respect to the nominal prediction

in each topology, one systematic at a time. To quantify the change in the shifted

distribution from the nominal distribution, we calculate a χ2 using Eq. 5.18. With

these χ2 values for each systematic, we can rank which value is the largest, and there-

fore which systematic shifts the NOvA ND topological distributions the most. The

systematics that have the largest values will be uncertainties that are constrained

by the NOvA data, while those that have small values are not well constrained by

the data. The plots of these χ2 values for each systematic in each ND topological
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sample can be seen in Figures 6.15-6.19 (RHC figures can be found in the Appendix

A.2.3). We plot the χ2 values on a log scale and note there are approximately 15-20

uncertainties that alter the nominal the prediction substantially. This means these

systematics are likely the most important during MCMC sampling. Conversely,

there are about 10-15 systematics that alter the ND topologies very little, by their

small χ2 values on the right side of the x-axis on these plots. To summarize which

systematics are significant in changing the prediction, a summary is provided below:

• Flux systematics.

• MEC Double Gaussian systematics.

• QE systematics.

• Neutron Response systematic.

• Resonant systematics.

• DIS 1,2π systematics.

• FSI systematics.

• Detector systematics.

The NC DIS and COH scattering systematics are examples that have low χ2 values

on these plots and are not as relevant in changing the NOvA prediction, which is

expected as our selection captures νµ CC interactions.
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Figure 6.15: ND FHC µ topology χ2 systematic ranking between the nominal pre-
diction and the +1σ shifted prediction. Note the log-scale y-axis, which illustrates
the range of χ2 values for NOvA’s systematic uncertainties. There are 10-15 sys-
tematics that alter the ND prediction substantially, and 15-20 systematics that alter
the ND predictions very little.

These five plots (and the five RHC plots) contain much information. To distill

this information down, we average the χ2 together from each systematic over all

ten (FHC and RHC) topologies. The result is a single plot of the χ2 for each

systematic, Fig. 6.20. Our objective is to reduce the dimensionality of the posterior

space by eliminating parameters that do not change the prediction significantly.

These parameters with smaller χ2 values are likely to also change the posterior

probability very little from one pull value to another. Thus, due to the fact the

predictions don’t change meaningfully, from a topological perspective, the posterior

space in these dimensions are likely very flat. This means the HMC NUTS criteria is

likely not met and a MCMC chain can run on almost indefinitely, drastically slowing

the down the speed of the MCMC sampling, and producing fewer samples. If we

remove these parameters from MCMC sampling, the posterior space is less likely to
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Figure 6.16: ND FHC µ + P topology χ2 systematic ranking between the nominal
prediction and the +1σ shifted prediction. Note the log-scale y-axis, which illus-
trates the range of χ2 values for NOvA’s systematic uncertainties. There are 10-15
systematics that alter the ND prediction substantially, and 15-20 systematics that
alter the ND predictions very little.
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Figure 6.17: ND FHC µ + π± + X topology χ2 systematic ranking between the
nominal prediction and the +1σ shifted prediction. Note the log-scale y-axis, which
illustrates the range of χ2 values for NOvA’s systematic uncertainties. There are
10-15 systematics that alter the ND prediction substantially, and 15-20 systematics
that alter the ND predictions very little.

128 M. Dolce



Chapter 6

N
eu

tro
nF

ile
Sy

st
M

aC
C

R
ES

C
al

ib
ra

tio
n

M
vC

C
R

ES
R

ES
Sc

al
eS

ys
tD

el
ta

Li
gh

tL
ev

el
N

D
C

he
re

nk
ov

D
et

ec
to

rA
ge

in
g

R
ES

Sc
al

eS
ys

tO
th

er
C

al
ib

Sh
ap

e
pp

fx
ha

dp
be

am
nd

pc
00

Lo
w

Q
2R

ES
Su

pp
20

20
D

IS
vp

C
C

3p
i2

02
0

D
IS

nu
ha

dr
oQ

1s
ys

t
D

IS
vn

C
C

1p
i2

02
0

pp
fx

ha
dp

be
am

nd
pc

05
D

IS
vn

C
C

3p
i2

02
0

hN
FS

IM
FP

20
20

pp
fx

ha
dp

be
am

nd
pc

02
D

IS
vn

C
C

2p
i2

02
0

R
ES

vp
vn

N
uB

ar
ra

tio
xs

ec
sy

st
D

IS
nu

ba
rh

ad
ro

Q
0s

ys
t

pp
fx

ha
dp

be
am

nd
pc

04
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tM
ea

nQ
02

G
SF

Pr
od

5p
1

R
ES

vp
vn

N
ur

at
io

xs
ec

sy
st

D
IS

vp
C

C
2p

i2
02

0
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tM
ea

nQ
01

G
SF

Pr
od

5p
1

ZN
or

m
C

C
Q

E
pp

fx
ha

dp
be

am
nd

pc
03

M
EC

D
ou

bl
eG

au
ss

En
hS

ys
tM

ea
nQ

31
G

SF
Pr

od
5p

1
Th

et
aD

el
ta

2N
pi

M
EC

D
ou

bl
eG

au
ss

En
hS

ys
tS

ig
m

aQ
02

G
SF

Pr
od

5p
1

pp
fx

ha
dp

be
am

nd
pc

07
hN

FS
IF

at
eF

ra
cE

V2
20

20
R

D
ec

BR
1e

ta
D

IS
vp

C
C

0p
i2

02
0

M
EC

In
itS

ta
te

N
PF

ra
c2

02
0N

u
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tC
or

r1
G

SF
Pr

od
5p

1
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tN
or

m
1G

SF
Pr

od
5p

1
hN

FS
IF

at
eF

ra
cE

V1
20

20
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tC
or

r2
G

SF
Pr

od
5p

1
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tS
ig

m
aQ

01
G

SF
Pr

od
5p

1
Fo

rm
Zo

ne
20

20
M

EC
En

uS
ha

pe
20

20
N

u
pp

fx
ha

dp
be

am
nd

pc
01

R
PA

Sh
ap

ee
nh

20
20

ZE
xp

Ax
ia

lF
FS

ys
t2

02
0E

V3
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tS
ig

m
aQ

31
G

SF
Pr

od
5p

1
D

IS
vp

C
C

1p
i2

02
0

hN
FS

IF
at

eF
ra

cE
V3

20
20

ZE
xp

Ax
ia

lF
FS

ys
t2

02
0E

V1
ZE

xp
Ax

ia
lF

FS
ys

t2
02

0E
V2

M
EC

D
ou

bl
eG

au
ss

En
hS

ys
tB

as
el

in
eG

SF
Pr

od
5p

1
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tM
ea

nQ
32

G
SF

Pr
od

5p
1

R
PA

Sh
ap

es
up

p2
02

0
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tS
ig

m
aQ

32
G

SF
Pr

od
5p

1
D

IS
vn

C
C

0p
i2

02
0

M
aN

C
R

ES
M

EC
In

itS
ta

te
N

PF
ra

c2
02

0A
nt

iN
u

M
EC

En
uS

ha
pe

20
20

An
tiN

u
Bh

tB
Y

ZE
xp

Ax
ia

lF
FS

ys
t2

02
0E

V4
C

O
H

C
C

Sc
al

e2
01

8
D

IS
vp

N
C

3p
i2

02
0

D
IS

vn
N

C
3p

i2
02

0
Ah

tB
Y

pp
fx

ha
dp

be
am

nd
pc

06
D

IS
vb

ar
nC

C
3p

i2
02

0
D

IS
vb

ar
pC

C
3p

i2
02

0
R

D
ec

BR
1g

am
m

a
D

IS
vb

ar
pC

C
1p

i2
02

0
C

V1
uB

Y
C

V2
uB

Y
M

EC
D

ou
bl

eG
au

ss
En

hS
ys

tN
or

m
2G

SF
Pr

od
5p

1
D

IS
vn

N
C

1p
i2

02
0

D
IS

vn
N

C
2p

i2
02

0
M

vN
C

R
ES

D
IS

vp
N

C
0p

i2
02

0
D

IS
vp

N
C

2p
i2

02
0

D
IS

vb
ar

pC
C

2p
i2

02
0

D
IS

vb
ar

nC
C

2p
i2

02
0

D
IS

vb
ar

pC
C

0p
i2

02
0

M
aN

C
EL

AG
KY

pT
1p

i
D

IS
vp

N
C

1p
i2

02
0

D
IS

vb
ar

nC
C

1p
i2

02
0

D
IS

vb
ar

nN
C

2p
i2

02
0

AG
KY

xF
1p

i
D

IS
vn

N
C

0p
i2

02
0

D
IS

vb
ar

nN
C

3p
i2

02
0

D
IS

vb
ar

pN
C

0p
i2

02
0

D
IS

vb
ar

pN
C

1p
i2

02
0

D
IS

vb
ar

pN
C

3p
i2

02
0

D
IS

vb
ar

nN
C

1p
i2

02
0

D
IS

vb
ar

nC
C

0p
i2

02
0

D
IS

vb
ar

pN
C

2p
i2

02
0

D
IS

vb
ar

nN
C

0p
i2

02
0

C
O

H
N

C
Sc

al
e2

01
8

Et
aN

C
EL

2n
dc

la
ss

cu
rr

ra
dc

or
rn

ue
ra

dc
or

rn
ue

ba
r

6-10

5-10

4-10

3-10

2-10

1-10
1

10

210

310

 s
hi

fts
s1±

 fo
r 

2 c
Av

er
ag

e 

) Topologyp+p+X (0mFHC ND 

Figure 6.18: ND FHC µ + P + X topology χ2 systematic ranking between the
nominal prediction and the +1σ shifted prediction. Note the log-scale y-axis, which
illustrates the range of χ2 values for NOvA’s systematic uncertainties. There are
10-15 systematics that alter the ND prediction substantially, and 15-20 systematics
that alter the ND predictions very little.
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Figure 6.19: ND FHC EvElse topology χ2 systematic ranking between the nominal
prediction and the +1σ shifted prediction. Note the log-scale y-axis, which illus-
trates the range of χ2 values for NOvA’s systematic uncertainties. There are 10-15
systematics that alter the ND prediction substantially, 15-20 systematics that alter
the ND predictions very little.
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Figure 6.20: FHC and RHC combined χ2 average for ±1σ shifts. Any uncertainty
with a χ2 < 100.0 is omitted from the fit, given its weak ability to alter the NOvA
prediction. This cut should also increase the quantity of MCMC samples by re-
ducing the dimensionality of the posterior space.
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be flat and should allow MCMC chains to explore the posterior more effectively and

trigger the NUTS criteria. With this χ2 information, we estimate the systematics

that meaningfully alter the ND predictions possess a χ2 > 100.0; we select a cut

of χ2 = 100.0 to use for ND fits; any systematic uncertainty with a χ2 < 100.0

in this plot is removed from the ND MCMC sampling. The result of this cut is

notable: a reduction of approximately 30 systematic parameters that are not well

constrained by the NOvA ND νµ data, reducing the dimensionality of the posterior

space, and thereby reducing the CPU demand, thus increasing the quantity of

MCMC samples.

Variable binning & phase space cut

Introducing a cut on the (Evis
had, Reco |q⃗|) phase space and altering the binning

scheme are two developments that significantly reduce the computational demand

of these MCMC fits, and thereby increase the number of statistics returned from a

fit, with an approximately 30% reduction in the CPU wall time.

The 2D distributions are binned in 40×40 uniformly sized bins. Observing

that events are kinematically prohibited beyond the Q2 = 0 diagonal motivates

the change to variable binning, where we can use larger bins widths for bins with

few or no events. As has been shown, the majority of the neutrino interactions occur

at low Evis
had within the NOvA detectors, for both FHC and RHC beam. Therefore,

when reducing the number of bins, we must be careful to maintain this resolution

at low Evis
had as this is where we would like to achieve optimal data-MC agreement.

This means we also we aggregate events into a few larger bins in the regions of high

(Evis
had, Reco |q⃗|) phase space, which are statistically limited.

To further reduce the sampling time, we introduce a cut on the (Evis
had, Reco |q⃗|)

phase space. This cut is applied to all ten topologies and intended to remove events

in the statistically limited region of phase space at low-Evis
had and high-Reco |q⃗|. These

cuts are diagonal lines, parallel to the Q2 = 0 diagonal. Figure 6.21 and Figure

6.22 show the result of these two developments on the ten topological samples.

132 M. Dolce



Chapter 6

0

10000

20000

30000

40000

50000

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Neutrino Beam
m

NOvA Simulation

0

2000

4000

6000

8000

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Neutrino Beam
 + pm

NOvA Simulation

0

2000

4000

6000

8000

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

1

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Neutrino Beam
 + Xp + m

NOvA Simulation

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

1

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Neutrino Beam
)p + p + X (0m

NOvA Simulation

0

5000

10000

15000

20000

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

1

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Neutrino Beam
remaining

NOvA Simulation

Figure 6.21: The five FHC ND topologies after applying the variable binning scheme
and the phase space cut to remove events at low-Evis

had, high-Reco |q⃗|. The fine
binning at low-Evis

had is preserved and allows MCMC to continue to fit this complex
region of phase space.
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Figure 6.22: The five RHC ND topologies after applying the variable binning scheme
and the phase space cut to remove events at low-Evis

had, high-Reco |q⃗|. The fine
binning at low-Evis

had is preserved and allows MCMC to continue to fit this complex
region of phase space.

134 M. Dolce



Chapter 6

It is particularly useful to remove the events in these low-Evis
had and high-Reco |q⃗|

bins because systematically shifted predictions produce large statistical fluctuations

when compared to the nominal prediction; this would cause MCMC to attempt

to correct the prediction in these individual bins rather than where the regions of

phase space where most events live (along the Q2 = 0 diagonal). The result from

these two developments will both improve the quality and the quantity of the

MCMC sampling by reducing bins with statistical fluctuations and reducing the

number of bins to calculate the target distribution in, respectively. These are the

final adjustments to the ND predictions we will use for both the ND fit and the joint

ND + FD fit.

Covariance matrix input

To further reduce the MCMC sampling time, a covariance matrix of the un-

certainties can be input into a MCMC to replace the warmup phase of MCMC

exploration of the posterior thereby saving a significant amount of CPU time. This

covariance matrix would replace the mass term from Eq. 5.14 with a dense matrix

that quantifies the correlations between each parameter. We calculate a covariance

matrix of the parameters from a previous fit to data and use this matrix as input

into a new MCMC sampling to the NOvA data. However, this option did not yield

the desired results as the sampling phase of MCMC posterior exploration was slowed

drastically. There are several reasons this could have occurred, for example when

providing MCMC with a covariance (and replacing the warmup phase) the user must

provide parameters to determine the “step size” the chain will take in the posterior

space. This is done automatically in the warmup phase, and therefore further tuning

may be needed. However, the source of the problem was not identified, and so was

abandoned to maintain the warmup phase of MCMC.
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6.5 Newly Created Cross-Section Uncertainties

In the work of the ND fit, we have identified the need for additional degrees of

freedom – specifically in RES interactions – to improve the agreement between the

data and the MC. For example, we already know GENIE predicts many RES events

at low-Q2 from Figure 4.6. If we look at the RES prediction for the µ + π± + X

topologies (Fig. 6.23, top two plots), we see much of the prediction in this topology

are RES events, especially at low-Q2. In the middle plots of Fig. 6.23, we see the

DIS contribution for the same topology; here the peak of the distribution is higher

up, also associated with higher W , along the kinematic boundary. The RES and

DIS interactions are the two most dominant interactions in this topology. Next,

the bottom two plots in Fig. 6.23 display the motivation to create new systematic

degrees of freedom. The bottom two plots show the data-MC χ2 contribution per

bin; bins that are dark red indicate where the disagreement between the data and

MC is strongest. Note how the largest dark red region in the two bottom plots are

along the kinematic boundary at Q2 ≈ 0 GeV2, confirming this region is poorly

modeled with NOvA’s model configuration of GENIE.

To address this region of disagreement, we have created three new sets of new

parameters that will be incorporated into our fits:

• RES relative cross section scaling (RES vpvn Nu{Bar}XSecRatio).

• RES ∆ and Other Resonance scaling (kRESScaleSyst{Delta,Other}).

• SIS/DIS π production scaling (kDISNuHadroQ1Syst & kDISNuBarHadroQ0Syst).

6.5.1 RES Relative Cross Section Scaling Systematics

In a RES neutrino interaction, a νµ can strike a proton or a neutron and create

a ∆ particle via a resonance. The significance is the resulting secondary particles

decaying from the ∆ will differ; in the case of νµ + n → µ− + ∆+, the ∆+ will

decay into different secondary particles than a neutrino striking a proton: νµ +

p → µ− + ∆++. The difference between decay particles from the ∆ is crucial
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Figure 6.23: Plots of the µ+ π +X topology in FHC and RHC. Top: 2D distribu-
tions of true RES interactions. Middle: 2D distributions of true DIS interactions.
Bottom: 2D distributions of the data-MC χ2 per bin. For the RES and DIS truth
plots, the majority of events live in the middle of the distributions, at approximately
300 MeV of Evis

had and 750 MeV of Reco |q⃗|, where the χ2 contribution is largest.
This region of phase space is notably along the Q2 ≈ 0 GeV2 diagonal (see to Fig.
4.6). Systematic uncertainties are motivated to attempt to address this discrepancy.
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because they are observed in the ND, and therefore determine which ND topology

the interaction would appear. For example, if a neutrino strikes a proton and creates

a ∆++ resonance, the final decay products will be p + π+ and likely be observed

in the µ + π± + X topology. Meanwhile, if a neutrino strikes a neutron, the ∆+

resonance will decay into π0 + p or π+ + n which would be observed in the µ+ P/

µ+P +X and µ+π±+X topologies, respectively, illustrating the struck nucleon is

significant in RES interactions. The complete table of the ∆ decays and the likely

ND topologies the interaction would appear in can be found in Table 6.1.

ν Interaction ∆ Decay Relevant ND Topologies
ν + p → µ− +∆++ ∆++ → p+ π+ µ+ π± +X

ν + n → µ− +∆+ ∆+ → π+ + n µ+ π± +X & EvElse

∆+ → π0 + p µ+ P & µ+ P +X
ν̄ + p → µ+ +∆0 ∆0 → π0 + n µ+X

∆0 → π− + p µ+ π± +X

ν̄ + n → µ+ +∆− ∆− → n+ π− µ+ π± +X

Table 6.1: Breakdown of the common ∆ RES neutrino interactions for FHC and
RHC. The type of ∆ resonance will determine which ND topology the neutrino
interaction will be placed into. It is important to note that not every π, for example,
will be successfully identified, thereby impacting the classification of events in the
ND topologies.

We discuss how determining the resonance decay in a neutrino interaction can

dictate which ND topology the neutrino interaction corresponds to. This is the

motivation for our first pair of systematics: RES vpvn Nu{Bar}XSecRatio. With

these, we can modulate how events migrate from one ND topology into another by

controlling the ratio of the total RES ν+p
ν+n

cross section. The systematic predicts

+Nσ shifts by increasing the numerator N × 5%, and decreasing the denominator

N × 5%. Meanwhile, negative sigma shifts decrease the numerator and increase the

denominator, making the weight smaller and reducing the total RES cross section.

We see a summary of how extreme shifts of these systematics impact the topologies

in Table 6.2.

For completeness, we show the ±1σ shifts of these two systematics on the µ+π±+

X topology projected onto Evis
had for FHC and RHC in Fig. 6.24. At the maximum
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Systematic Shift Impact on ND Topologies
RES vpvn NuXSecRatioSyst +3σ ↑ µ+ π± +X, ↓ µ+ P , µ+ P +X

−3σ ↓ µ+ π± +X, ↑ µ+ P , µ+ P +X
RES vpvn NuBarXSecRatioSyst +3σ ↓ µ+X, ↑ and ↓ µ+ π± +X

−3σ ↑ µ+X, ↓ and ↑ µ+ π± +X

Table 6.2: Summary of the impact for each of the two systematics at the extreme
(±3σ) pulls and their impact on the ND topologies. It is crucial to note that applying
these systematics will not directly map RES events from one topology into another
due to imperfect reconstruction and particle identification.
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Figure 6.24: The RES vpvn Nu{Bar}XSecRatio pair of systematics. The impact
of this pair of systematics shifts events around in the phase space, indicating it
produces the desired effect.

+3σ shift of RES vpvn NuXSecRatio in the FHC µ + π± + X topology (left), we

observe more events in this topology. Meanwhile a −3σ shift predicts less events.

For the RHC µ + π± + X topology (right) the opposite effect is true with the ν̄

systematic. These added degrees of freedom should improve the quality of the ND

fit, in particular for RES events.

6.5.2 ∆ and Other Resonant Scaling Systematics

Two systematics are created to address the normalization of RES interactions:

kRESScaleSystDelta and kRESScaleSystOther. As their names suggest, the first

systematic scales the number of events from the ∆ resonance, while the second

systematic scales all higher order resonances, W > 1.4 GeV, referred to here as
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“Other”. The scaling of each systematic is ±20% for a ±1σ shift, scaled linearly

(±60% for a ±3σ shift). Thus, these systematics only provide a normalization

change and no shape change to the RES model, other than the explicit change to

the W distribution of RES events. This change in W distribution can be seen in Fig.

6.25, where the effect of the systematics are shown. The physics motivation to create
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Figure 6.25: Validation of the RESScaleSystDelta (left) and RESScaleSystOther

(right) on the NOvA simulation. The systematics are working as intended, scaling
the W distribution from RES events by ±20% at ±1σ.

these systematics, originates from the over-prediction of RES interactions within

GENIE, particularly at the low-Q2 region of phase space. This over-prediction,

as we have seen, is a leading contributor to the data-MC χ2 disagreement in our

ND topological samples. Therefore, we think it necessary to introduce this pair

of systematics with sufficient freedom (20% at 1σ) to successfully “fit-out” this

disagreement.

To further verify the intended effect, we show the effect of these systematics on

the 2D µ + π + X topology. In Figure 6.26, we see the ratio of the ±1σ
Nominal

MC

prediction for the kRESScaleSystDelta systematic in the 2D phase space. The top

(bottom) row shows the FHC (RHC) µ + π± + X prediction for the −1σ
Nominal

MC

prediction on the left and the +1σ
Nominal

prediction on the right. We see that even ±1σ

shifts of these systematics alter the prediction by the expected 20%. This added

degree of freedom will help to improve the agreement between the data and MC in

the ND fit.
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Figure 6.26: Top: Plots of the −1σ, left, (+1σ, right) divided by the nominal
prediction ratio of the FHC µ + π± + X topology for the kRESScaleSystDelta

systematic. Bottom: Same as above, but for RHC µ + π± + X topology. We see
these systematics significantly alter the prediction from the nominal MC, given by
the large ratio in many of the bins.
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6.5.3 DIS Hadronization Systematics

Two new systematic uncertainties were created related to DIS hadronization:

kDISNuHadroQ1Syst and kDISNuBarHadroQ0Syst. This pair of uncertainties aim

to modulate final state hadron production in the Shallow Inelastic Scattering (SIS)

and DIS regimes of neutrino interactions. Specifically, they address neutrino (an-

tineutrino) DIS interactions that strike a neutron (proton) and contains final state

multiplicity 2 – before FSI, with final state charge Q=+1 (Q=0 for antineutrinos).

This means for neutrino interactions there are two final state hadron pair options

with multiplicity 2 and charge Q=+1: 1 proton + 1π0 or 1 neutron + 1π+, while

for antineutrinos the final state hadron pairs with Q=0 are: 1 neutron + 1π0 or 1

proton + 1π−. In relation to our ND fit topological samples, a νµ DIS interaction

will change which topology the event is placed into depending on the final state

particles produced. For example, a νµ CC DIS interaction that produces a hadron

pair of 1 proton + 1π0 (rather than the 1 neutron + 1π+) will be placed into the

µ + P or µ + P + X topology, rather than the µ + π± + X topology if the final

state hadron pair produced was 1 neutron + 1π+. In summary, identical CC DIS

neutrino interactions will result in different ND topological categories depending on

the final state hadron pairs produced.

Furthermore, the probability for a CC DIS interaction to produce one pair of

final state hadrons over the other is equal, however, in GENE the probability is

not equal; in GENIE, for a CC DIS neutrino interaction, the probability for pro-

ducing a final state hadron pair – of multiplicity 2 and charge Q=+1 – is 1/3 for

the proton pair and 2/3 for the neutron pair, while for antineutrinos the probabil-

ity is reversed: probability 2/3 for the proton pair and 1/3 for the neutron pair.

Seeing that the final state particles are predetermined and do not have sufficient

flexibility illustrates a natural motivation to create uncertainties that can adjust the

probabilities of the final state hadron pair. This is what the kDISNuHadroQ1Syst

and kDISNuBarHadroQ0Syst systematics do for neutrinos and antineutrinos, respec-

tively. We create weights that can modulate the production of one type of final state
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Feature kDISNuHadroQ1Syst kDISNuBarHadroQ0Syst

incoming lepton νµ ν̄µ
interaction type DIS DIS
struck nucleon n p

final state hadron multiplicity 2 2
final state charge, Q +1 0
hadron combinations (1p + 1π0), (1n + 1π+) (1n + 1π0), (1p + 1π−)
GENIE baryon prob. p=1/3, n=2/3 p=2/3, n=1/3
uncertainty limits 2σ, -1σ 1σ, -2σ

Table 6.3: The characteristics of the two new DIS hadronization uncertainties cre-
ated. One systematic (kDISNuHadroQ1Syst) only impacts neutrino interactions with
final state multiplicity 2, charge Q=+1, and final state hadrons, while the the other
(kDISNuBarHadroQ0Syst) impacts antineutrino interactions with charge Q=0. Note
the unique uncertainty limits for the two systematics; for example, a +2σ (maxi-
mum) pull on the kDISNuHadroQ1Syst systematic will produce only 1 proton +
1π0 final state hadrons, while a -1σ will produce only 1 neutron + 1π+ final state
hadrons, maximally impacting which topological sample these CC DIS events fall
into.

hadron pair over the other. This provides the desired flexibility to allow events to

migrate from one topological sample to another.

The details of each systematic and the conditions relevant to these systematics

can be seen further in Table 6.3. It is important to note the uncertainty limits

for these two systematics. Setting an uncertainty to its limit only creates a single

hadron final state pair and results in the other final state hadron pair having a

probability of 0; this is the maximal effect.

Validations of this systematic can be seen in the plots of the ND topological

samples, where we apply the kDISNuHadroQ1Syst systematic to the FHC topologies

and kDISNuBarHadroQ0Syst to the RHC topologies. In Fig. 6.27 we show the sys-

tematics applied to the µ+π±+X topology where this systematic is known to be the

most effective. Note how the −1σ
Nominal

MC distribution of the kDISNuHadroQ1Syst

systematic (top left plot) produces more events at −1σ than the nominal predic-

tion, indicating that more 1n + 1π final states are predicted and appearing in this

topology.

At this stage we have introduced three new sets of uncertainties that aim to

address the disagreement in the low-Q2 region for predicted RES and DIS events.
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Figure 6.27: Plots of the new DIS hadronization systematics applied to the µ +
π± + X topologies of the ND fit. Top: the 2D ±1σ shift

nominal
MC predictions of the

kDISNuHadroQ1Syst systematic for the FHC topology. Bottom: the 2D ±1σ shift
nominal

MC predictions of the kDISNuBarHadroQ0Syst for the RHC topology. For the FHC
topology, increasing the kDISNuHadroQ1Syst knob to +1σ reduces events in the
µ+π±+X topology to other topologies (at low Evis

had). Conversely, pulling the knob
to the other limit, -1σ, we see more events move into the µ+π±+X topology. This
same effect is reversed for the RHC µ+ π± +X topology.
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With these six new added degrees of freedom, we believe we have introduced suf-

ficient freedom into the uncertainty model for MC prediction to better agree with

the NOvA ND data. Now we will attempt to fit the NOvA ND data again following

these improvements made.

6.6 The ND Residual Difference

We are now ready to perform MCMC sampling again following the developments

made to improve the quality and quantity of MCMC samples. We perform the

final ND data fit and produce 500,000 MCMC samples. The final list of parameters

used in the fit and their Representative Sample pulls from the final fit are listed in

Table 6.4.

Table 6.4: MCMC Rep. Sample systematic Pull Summary from fit to ND data.

Systematic Parameter Rep. Sample Pull (σ)

2ndclasscurr 0.513288

CalibShape -0.0897525

Calibration -0.290817

Cherenkov -0.0581166

CorrMuEScaleSyst2020 3.01674

DISnuhadroQ1syst 1.02169

DISnubarhadroQ0syst -1.77225

DISvbarnCC3pi2020 -1.77496

DISvbarpCC1pi2020 -2.35622

DISvbarpCC3pi2020 1.92755

DISvnCC1pi2020 -1.80565

DISvnCC2pi2020 1.36776

DISvnCC3pi2020 -2.24427

DISvpCC0pi2020 -2.07471

Continued on next page
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Table 6.4 – Continued from previous page – ND Fit Pull Summary.

Systematic Parameter Rep. Sample Pull (σ)

DISvpCC2pi2020 -0.924631

DISvpCC3pi2020 2.88617

FormZone2020 0.301691

LightLevelND -0.330827

LowQ2RESSupp2020 0.95112

MECDoubleGaussEnhSystBaselineGSFProd5p1 2.85603

MECDoubleGaussEnhSystCorr1GSFProd5p1 1.89323

MECDoubleGaussEnhSystMeanQ01GSFProd5p1 -1.79964

MECDoubleGaussEnhSystMeanQ31GSFProd5p1 -3.28713

MECDoubleGaussEnhSystMeanQ32GSFProd5p1 3.33947

MECDoubleGaussEnhSystNorm1GSFProd5p1 0.0117823

MECDoubleGaussEnhSystSigmaQ01GSFProd5p1 -0.15476

MECDoubleGaussEnhSystSigmaQ02GSFProd5p1 0.81818

MECDoubleGaussEnhSystSigmaQ31GSFProd5p1 2.73205

MECDoubleGaussEnhSystSigmaQ32GSFProd5p1 2.5085

MECEnuShape2020AntiNu 1.61644

MECEnuShape2020Nu 0.104514

MECInitStateNPFrac2020AntiNu 1.10004

MECInitStateNPFrac2020Nu 0.0922145

MaCCRES -0.643859

MvCCRES 0.836781

NeutronEvisPrimariesSyst2018 1.56971

RESDeltaScaleSyst -1.07982

RESOtherScaleSyst -2.68684

RESvpvnNuBarratioxsecsyst -1.66419

RESvpvnNuratioxsecsyst 3.50826

Continued on next page
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Table 6.4 – Continued from previous page – ND Fit Pull Summary.

Systematic Parameter Rep. Sample Pull (σ)

RPAShapeenh2020 0.872877

RPAShapesupp2020 -2.4357

ThetaDelta2Npi 0.243223

ZExpAxialFFSyst2020EV1 2.08382

ZExpAxialFFSyst2020EV2 1.62305

ZExpAxialFFSyst2020EV3 -2.41613

ZNormCCQE -0.766718

hNFSIFateFracEV12020 -1.8979

hNFSIMFP2020 3.37089

ppfxhadppc00 0.610238

ppfxhadppc01 -1.6092

ppfxhadppc02 0.332254

ppfxhadppc03 -2.72307

ppfxhadppc04 2.8194

radcorrnue -0.75643

radcorrnuebar -0.110261
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Figure 6.28: Pulls Summary plot from the ND fit to data. Note how nearly all
systematics are well constrained by the data. There are also several parameters
that are pulled to extreme values at or near ±3σ.

From examining the Pulls Summary plot (Fig. 6.28), we see now that nearly

every parameter is well constrained from the ND data. Moreover, there are sev-

eral systematic parameters that are pulled to extreme values. For example, the

LowQ2RESSupp systematic is pulled to nearly exactly +1σ, indicating the most prob-

able outcome for this parameter is to maximally suppress the low-Q2 RES predic-

tion. In addition the ppfx hadp pc00 flux systematic is pulled to beyond +3σ. This

suggests the systematic is providing an increase in the normalization to our ND

predictions.

Looking deeper into the physics modeling, the hNFSI MFP 2020 parameter is

pulled beyond +3σ, indicating the central value prediction from NOvA’s hN FSI

tune is insufficient to describe the data. In fact, the NOvA hN tune had reduced

the mean free path by 40%, but the pull here reverses the tune and increases the

mean free path further. This is strong evidence the hN FSI tune needs further

attention. Moreover, we believe this increased MFP of the pion is related to the
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neutron model and its uncertainty. For example, in a FSI charge-exchange scatter

(π−p → π0n) a neutron can be produced, increasing the number of neutrons we

expect; FSI processes are likely to produce neutrons and are intricately tied to the

neutron response in NOvA. We must state how neutrons present themselves in the

ND topologies. The neutron-dominant topologies are µ+P +X and µ+X (Figures

6.9 & 6.10) and generally appear as prongs (X). In these two topologies there is

approximately a 40% over-prediction in the most populated bins of Evis
had. Therefore,

reducing the neutron activity is one means of improving the agreement. Returning

to FSI, we now understand one possible explanation for such a large pull of the

mean free path: reducing the number of neutrons. This is exactly what we see

in the ND fit to data. It is worth noting that this is one of two possible ways to

indirectly adjust the neutron model. The second is to adjust the detector response

(via light level and detector calibration). This of overlapping FSI-neutron models is

the strongest example of overlapping models we see in the ND fit.

We can examine the improvement in the data-MC agreement in the ND topolo-

gies by plotting the data-MC χ2 in the 2D distributions before, Figure 6.29 & 6.31,

and after, Fig. 6.30 & 6.32, the MCMC sampling. We must first note the different

z-axis scale in the plots. Looking at the χ2 distributions before the fitting – for

both FHC and RHC topologies – we see that the largest contribution to the χ2 is

the low-Q2 region along the kinematic boundary. However, when we examine the

2D χ2 distributions after the fitting we see the this red region is improved signifi-

cantly, by an order of magnitude in the µ and µ+P topologies. This is very strong

evidence the developments made to the MCMC machinery improved the quality of

the fit. Additional plots of the 2D data-Rep. Sample MC ratios can be found in the

Appendix A.15 & A.16.

To better visualize the data-MC agreement after MCMC sampling, the χ2 per

topology is plotted again using the pulls associated from the Representative Sample

(seen in Table 6.4) in Figure 6.33. We see the agreement improves relative to before

the MCMC sampling, however, the χ2 = 20, 388 for the Rep. Sample, and is still
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Figure 6.29: ND FHC 2D topological data-nominal MC χ2 contribution per bin.
This is showing the data-MC disagreement before the MCMC sampling. This
demonstrates the regions where the disagreement is strongest (in red). Note the
different z-axis scale in each plot.
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Figure 6.30: ND FHC 2D topological data-Rep. Sample MC χ2 contribution per
bin. This is showing the data-MC disagreement after the MCMC sampling when
using the pull values associated with the Rep. Sample (Table 6.4). Many of the dark
red regions in Figure 6.29 have been improved significantly, such as the region along
the diagonal kinematic boundary. Note the different z-axis scale in each plot. The
complimentary 2D data-Rep. Sample MC ratio plots can be found in the Appendix
A.15.
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Figure 6.31: ND RHC 2D topological data-nominal MC χ2 contribution per bin.
This is showing the data-MC disagreement before the MCMC sampling. This
demonstrates the regions where the disagreement is strongest (in red). Note the
different z-axis scale in each plot.
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Figure 6.32: ND RHC 2D topological data-Rep. Sample MC χ2 contribution per
bin. This is showing the data-MC disagreement after the MCMC sampling when
using the pull values associated with the Rep. Sample (Table 6.4). Many of the dark
red regions in Figure 6.29 have been improved significantly, such as the region along
the diagonal kinematic boundary. Note the different z-axis scale in each plot. The
complimentary 2D data-Rep. Sample MC ratio plots can be found in the Appendix
A.16.
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small enough to state we can fit the NOvA ND data exactly. Therefore, we have a

residual difference in the ND fit. To effectively constrain the neutrino oscillation

parameters, we must fit the data as best as possible, otherwise the Rep. Sample

prediction could predict incorrect values of the oscillation parameters when we in-

corporate the FD predictions and data into an MCMC fit. This means we must

address this residual difference. The next chapter will discuss this in more detail.

6.7 Conclusions from ND Fits

This chapter summarizes how NOvA can constrain systematic uncertainties with

Markov Chain Monte Carlo. We describe the process of a NOvA ND fake data fit

with a subset of parameters, illustrate how we analyze the MCMC samples, and

demonstrate MCMC can successfully constrain the parameters. After, we move to

fitting the NOvA ND data. Initially we find there are too many parameters to effec-

tively sample the posterior and not every parameter in NOvA’s uncertainty model

can be constrained from the ND data. To this end, numerous adjustments were

made to the ND topological predictions to attempt to improve both the quantity of

MCMC samples and the quality (i.e. produce better agreement to the data), such as

creating new model-focused degrees of freedom. In summary, there are several im-

portant things learned from the NOvA ND fake data and real data fits, in particular

relative to the physics modeling. The primary items learned can be highlighted:

Degeneracies in MEC model We have seen the MEC Double Gaussian parame-

ters are highly degenerate and strong; we see multiple MCMC modes produce

the same prediction of the ND topologies from a fake data fit. The adjustment

of these predictions have the ability to significantly change the normalization

in the topologies.

Over-prediction of RES events We have learned that NOvA’s simulation pro-

duces a non-trivial amount of RES events, especially at low-Q2. This moti-

vated us to produce new systematic uncertainties to help combat this over-
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prediction for RES events.

Inefficacy of hN FSI model Despite the tuning done to the hN model (summa-

rized in Sec. 2.7), the consistently large pull values of the hN uncertainties –

notable the mean free path systematic – in both fake and real data fits demon-

strate the hN model is insufficient. Moreover, we believe this large pull of the

MFP, which reduces the probability for FSI processes, is closely linked with

the neutron response.

However, despite these important physics modeling conclusions, we still are un-

able to achieve perfect agreement with the NOvA ND data using the topological

samples. In the next chapter we discuss how we plan to address the ND Residual

Difference with respect to the NOvA Far Detector predictions and constraining the

oscillation parameters.
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Near + Far Detector Joint Fit

Despite the analysis and improvements made to the MCMC sampling for the ND

fit, the MCMC Representative Sample ND prediction still does not agree exactly

with the ND data. This presents a unique question at this juncture: does the ND

post-fit discrepancy impact the accuracy/efficacy of a constraint to the oscillation

parameters ∆m2
32, sin

2 θ23, δCP? This chapter attempts to answer this question by

creating a FD fake data set from the FD nominal MC that contains the ND-only

Rep. Sample pull values and the ND Residual Difference.

Section 7.1 first briefly discusses several possibilities for assessing the impact of

the Residual Difference on the constraint of the oscillation parameters, and identifies

which option this thesis performs. Section 7.2 describes the priors used for the

oscillation parameters. Section 7.3 describes how the Residual Difference is applied

to the FD νµ and νe predictions, and discusses an important conclusion learned

about Eµ in this process. Section 7.4 analyzes the result of the ND+FD joint fit,

with ND data and FD fake data, to constrain the oscillation parameters. Section

7.5 highlights several important improvements that can be made to improve the

constraint on the oscillation parameters. Section 7.6 summarizes the work of the

ND-only fit, and the ND+FD joint fitting.
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7.1 Evaluating the Residual Difference

To assess the impact of the ND Residual Difference on a measurement of the

neutrino oscillation parameters is a challenge. What’s more, there are multiple

means of asking this question. We list three possible options:

Fit the NOvA ND data perfectly, eliminating any Residual Difference. This

option is conceptually the simplest – improve the quality of the ND fit where

the χ2 per degree of freedom is unity in each ND topology. This could be done

from, but not limited to, improving interaction modeling or incorporating ad-

ditional model-driven uncertainties to MCMC. At which point a measurement

of the oscillation parameters is maximally constrained from the ND data. The

ideal case.

Introduce a systematic parameter to absorb the Residual Difference. This

parameter would likely adjust the corresponding truth quantities of (Reco |q⃗|,

Evis
had) to match the ND Rep. Sample prediction. Thus, the truth level infor-

mation is required. Moreover, this would also require information of Eν , the

FD fit variable. Such a parameter would allow perfect agreement of the ND

data, and any Residual Difference would take the form of a pull describing the

difference between the (Reco |q⃗|, Evis
had) and its truth quantities. This would

likely require a systematic for each ND topological sample, further increasing

the dimensionality of the posterior space.

Assess impact on oscillation parameters with fake data studies. This would

require applying the Residual Difference to a FD fake data set. From there,

complete the ND+FD joint fit and determine if the oscillation parameters can

still be constrained, despite the Residual Difference from the ND fit.

This thesis selects the third option – via a fake data study – to assess the impact

of the ND Residual Difference on the oscillation parameters. There are multiple

methodologies to perform such a fake data study. We mention two possibilities.

One option is produce a fake data set with known inputs to the fake data, thereby
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replicating the Residual Difference. The advantage here is the results of a study are

easy to interpret as a clear comparison can be made between the inputs and the

MCMC result. However, the challenge is to produce a fake data set that resembles

the Residual Difference with known inputs. Crucially, if there was a known set of

inputs that would produce the ND Residual Difference, we can correct the Residual

Difference at the source; the expectation is to correct the models producing the

differences rather than simply produce a fake data study. This is the crux to the

using a fake data set with known inputs.

The second option for a fake data set is to apply the Residual Difference directly

to create a FD fake data set. The advantage to this strategy is the Residual Dif-

ference from the ND is captured exactly to the FD fake data. This assumes the

Residual Difference from the ND would be identical in the FD. The disadvantage

here is the results can be difficult to interpret, as the inputs into the fake data are

not clearly known. This is counter to the previous option. This final chapter elects

to perform a fake data study via this option: directly applying the Residual

Difference to a FD fake data set. The following sections outline this procedure

in more detail.

7.2 Priors of Oscillation Parameters

The oscillation parameters ∆m2
32, sin

2 θ23, and δCP are constrained by external

data, therefore we possess prior knowledge of what we anticipate the values of these

parameters to be. This section discusses the prior choice for each parameter.

7.2.1 Prior sin2 θ23

We use a uniform prior for the measured variable sin2 θ23. NOvA is sensitive to

sin2 θ23 (rather than θ23 of the PMNS matrix), so the prior used is in the measured

variable. We use a uniform prior in this variable because the octant of θ23 is not

known (θ23 < 45◦ or θ23 > 45◦). With this prior, MCMC will sample both octants
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uniformly from the posterior.

7.2.2 Prior ∆m2
32

The parameter ∆m2
32 refers to the energy at which the oscillation “dip” region

occurs. The value has been measured within NOvA to be 2.41×10−3 eV2 for Normal

Ordering (NO) [13]. A “Top Hat” prior is selected for this parameter [65]. This

function creates a uniform probability density within the “Physical Region” where

we expect the true value and quickly falls away to zero probability in the “Smoothing

Region”, all while still being differentiable. This allows MCMC to sample only this

region and restricts MCMC from sampling beyond the edges of the “Top Hat.”

As discussed in Sec. 1.5, the value of ∆m2
32 can be positive for Normal Ordering

(NO) or negative for Inverted Ordering (IH). This presents a degeneracy in the

parameter value; because the mass eigen states m2 and m3 are squared, we do not

know the individual values, only the squared difference. Therefore, ∆m2
32 can be

either negative or positive, ∆m2
32 ≈ ±2.4 × 10−3 eV2, and thus, we must consider

both mass orderings in our MCMC sampling. Moreover, the value of ∆m2
32 is unlikely

to be between these two values. We implement a switching within our sampling that

will force the MCMC chain to “jump” between the two mass orderings with a 50%

probability; this ensure that we sample both mass orderings efficiently.

7.2.3 Prior δCP

The prior choice for δCP is unique because this parameter is periodic from 0−2π.

Therefore we require only this parameter range and must ensure that the end points

of this parameter space (0 and 2π) are continuous and differentiable. We use a

‘Bounded Step” Prior, Figure 7.1. This prior restricts MCMC samples to within

the single phase, 0 ≤ δCP/π ≤ 2, while values beyond this phase are permitted,

but quickly diminish to zero in the regions [-1π, 0π] and [2π, 3π] (grey regions). To

account for the values beyond the single phase, the areas of the grey regions and

the central region sum to unity, conserving probability, making the prior effectively

160 M. Dolce



Chapter 7

1 0 1 2 3

CP/π

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
rio

r 
pr

ob
ab

ili
ty

Figure 7.1: Prior function for δCP oscillation parameter. We use this specific function
because this parameter is periodic. The integral of the shaded regions is equal to
the difference between unity and the function within 0 ≤ δCP/π ≤ 2, therefore the
probability within [0π, 2π] is uniform.

uniform within the single phase. This prior is also differentiable making it accessible

for HMC.

7.3 Creating the FD Fake Data with the ND Resid-

ual Difference

This section outlines the process for creating the FD fake data from the residual,

post-fit discrepancy that remains from fitting the NOvA ND prediction to its data

in the topological samples. It is important to note the “Residual Difference fit”

does not ascribe any source to the residual difference in the FD, but assumes this

difference appears equally in the FD as it does in the ND. Therefore we anticipate

the Residual Difference to appear in the same way in reconstructed quantities in

both detectors.

The FD fake data we are constructing contains three pieces:

• NOvA 2020 Best Fit Point for oscillation parameters (Table 7.1).
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• Rep. Sample pull values for systematic parameters from ND-only fit to NOvA

data (Table 6.4).

• ND Residual Difference from ND-only fit to NOvA data (Figure 6.33).

This is the FD fake data we will use to perform the ND+FD joint fit of the Residual

Difference.

The following two Subsections 7.3.1 & 7.3.2 describe the process of applying the

ND Residual Difference to the FD νµ and νe samples, respectively. Applying the

Residual Difference is unique for the νµ and νe samples. This process is outlined

below for the two neutrino flavors.

7.3.1 Application to νµ

The ND topological samples are all of νµ events; applying the Residual Differ-

ence to the FD νµ sample is straightforward. However, this is an imperfect process.

We note this does not capture exactly the residual differences due to the different

volumes and acceptances between the ND and FD, but this process should approxi-

mately capture the effect. We seek to extrapolate the ND Residual Difference to the

FD νµ quantile distributions. First we must divide the ND νµ interactions into the

same quantile cuts as the FD selection, where we divide the events into four quan-

tiles of hadronic energy fraction. From there, the ND-fit Rep. Sample prediction

(blue) is plotted in each of the four quantiles for FHC and RHC alongside the data

(black points) in Figure 7.2 and Figure 7.3. By observing the Residual Difference

in Reco Eν , we learn more about the quality of the ND fit agreement. These figures

show the agreement between the data and the Representative sample (blue) is most

discrepant in Quantile 1, in particular at higher energies of Eν > 2 GeV. This can

be seen in the event counts (top plot) and in the ratio (bottom plot) where the

disagreement is as much as 20% in certain bins.

To observe a 20% disagreement in the νµ energy spectrum in the ND after

MCMC sampling is an unexpected result. In other words, the Rep. Sample ND
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Figure 7.2: ND FHC Rep. Sample Prediction (blue) in the 2020 FD quantile cuts.
Note the agreement improves with increasing quantile. This is because Quantile
1 contains the most Eµ, which is not directly constrained in the ND fitting. The
green prediction is the Rep. Sample, but without the muon energy scale systematic,
kCorrMuEScaleSyst2020. Note how the prediction improves when removing this
systematic, especially in Quantile 1. We will use the green prediction to apply the
Residual Difference to the FD MC.
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(b) ND RHC Quantile 2
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(c) ND RHC Quantile 3
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(d) ND RHC Quantile 4

Figure 7.3: ND RHC Rep. Sample Prediction in the 2020 FD quantile cuts. Note
the agreement improves with increasing quantile. This is because Quantile 1 con-
tains the most Eµ, which is not directly constrained in the ND fitting. The green
prediction is the Rep. Sample, but without the muon energy scale systematic,
kCorrMuEScaleSyst2020. Note how the prediction improves when removing this
systematic, especially in Quantile 1. We will use the green prediction to apply the
Residual Difference to the FD MC.
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Figure 7.4: ND Reconstructed muon energy for FHC (left) and RHC (right). The
disagreement – seen in the data-MC ratio – of the Rep. Sample (blue) distribution
at higher Eµ shows the same disagreement as the ND quantiles Rep. Sample (blue)
distributions in Figs. 7.2 & 7.3. The muon energy at Eµ < 2 GeV is under-predicted,
and at Eµ > 2 GeV is over-predicted relative to the data. Meanwhile, when the
kCorrMuEScaleSyst2020 systematic is removed from the ND fit result (prediction
in green), the data-MC ratio is improved by as much as 20%. The large pull value
of kCorrMuEScaleSyst2020 is the cause of the 20% discrepancy in the ND Reco Eν

Rep. Sample predictions.

prediction – when plotted in the FD quantile cuts – produces worse agreement to

the data than the nominal MC (grey). To understood why this is, we consider

the variables used in the ND fit: Evis
had & Reco |q⃗|. Trivially, Evis

had includes no

information of the leptonic component of the interaction and therefore does not

constrain the muon component in any meaningful way. However, Reco |q⃗| does

contain a component of the muon energy, from Eq. 4.1:

|q⃗| =
√
Q2 + (Eν − Eµ)2 (7.1)

=
√
2Eν(Eµ − pµ cos θµ)−m2

µ − (Eν − Eµ)2.

It was anticipated that this Eµ dependence in Reco |q⃗| would sufficiently constrain

the muon energy. However, Eµ is only a second-order dependence in Reco |q⃗| – after

Eν – in this variable. Figure 7.4 of the reconstructed muon energy shows the same

disagreement in Eµ as we see in the ND quantile distributions in Fig. 7.2 & Fig. 7.3.

The Rep. Sample prediction is under-predicted at Eν < 2 GeV and over-predicted
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Figure 7.5: 1D marginal of the kCorrMuEScaleSyst2020 systematic from the ND fit
to data. The pull is strongly constrained to 3σ. The result is prediction of the muon
energy that is shifted to higher Eµ respect to the data, seen in the blue prediction
in Figure 7.2, Figure 7.3 of Eν and Figure 7.4 of Eµ.

at Eν > 2 GeV. To understand which parameter from the ND fit would cause this

disagreement, we note there is only one single systematic uncertainty that affects

the muon energy and nothing else: kCorrMuEScaleSyst2020. This systematic was

included in the ND fit and contains a mode in the 1D marginal distribution of +3.1σ,

Figure 7.5. Therefore, the large, positive pull of this parameter predicts larger muon

energies, shifting the predictions from Figs. 7.2 & 7.3 to the right (and down in the

ratio plots), which is exactly the same effect we observe in Eµ (Fig. 7.4).

Again, the pull on the muon energy scale uncertainty is large from the ND fit

because the muon energy is not constrained at all in Evis
had and only has a second-

order dependence in Reco |q⃗|. Therefore, a large pull value is highly probable to

improve the quality of the agreement at the few %-level in the Reco |q⃗| variable.

In other words, MCMC slightly improves the χ2 at the cost of a very large pull on

the parameter. This is an important conclusion from the ND fit: a third variable,

likely Reco Eµ, is necessary to improve the accuracy of the prediction in Reco Eν .

This is an important conclusion for future work to better constrain the oscillation

parameters using a simultaneous fit.
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Eliminating kCorrMuEScaleSyst2020 from the ND Rep. Sample

We have learned the muon energy scale systematic adversely impacts the predic-

tion of the neutrino energy compared to the ND data. It was expected that Reco |q⃗|

would be sufficiently sensitive to the muon energy, but we have learned it is not.

Further, we see evidence that setting the systematic to a pull of 0σ is the correct

choice as the data-MC agreement in Reco Eµ is improved significantly. We see the

result of this choice in the Rep. Sample predictions in Fig. 7.2 and Fig. 7.3 in the

green histograms. When we remove this uncertainty we see the improvement in the

agreement in the ND quantiles is identical to the Reco Eµ distributions in Figure

7.4. Removing the uncertainty reduces the disagreement between the data and Rep.

Sample prediction to approximately 10%, especially Quantile 1, which is dominated

by the muon component and contains very little hadronic energy. As we apply the

Residual Difference to the FD νµ prediction, we will now refer to the Representative

Sample as the green prediction in the previous plots – the predictions without the

muon energy scale systematic.

We have removed the uncertainty from the constraining ND predictions, however,

we do not want to remove it from constraining the FD predictions; as we know from

the quantile cuts, the muon energy is important to the νµ quantile distributions,

especially Quantile 1. Therefore, when performing the joint ND+FD fit, we will

allow kCorrMuESscaleSyst2020 to be constrained by the FD fake data only. This

is another advantage of being able to constrain the predictions from the ND and FD

simultaneously.

We take the ratios from Figures 7.2 and 7.3 of the ND data and the green Rep.

Sample prediction (without the muon scale systematic) and apply the ratio in each

ND quantile bin to the corresponding FD prediction bin’s event count. This is how

we apply the ND Residual Difference. Figures 7.6 and 7.7 show the νµ distributions

after applying the ND Rep. Sample pull values and the ND Residual Difference in

the orange dashed line. (The other colored histograms are the different predictions

at the intermediate stages of creating the FD fake data, e.g. ND Rep. Sample
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Figure 7.6: FHC FD MC predictions with different combinations of ND-only Rep.
Sample pulls and/or ND Residual Difference applied in the four quantiles. The
orange dotted histogram is the FD fake data for this fit.
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Figure 7.7: RHC FD MC predictions with different combinations of ND-only Rep.
Sample pulls and/or ND Residual Difference applied in the four quantiles. The
orange dotted histogram is the FD fake data for this fit.
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Figure 7.8: ND FHC (left) & RHC (right) Inclusive νµ Sample in Eν . The blue
prediction is the Representative Sample with the kCorrMuEScaleSyst2020 included
and the green is the prediction without the systematic, which will be used for the
Residual Difference. To apply the Residual Difference to the Core νe sample, we
interpolate the data-Rep. Sample MC ratio from these νµ inclusive samples in
Eν . For the Peripheral νe sample, we use the ratio of the data-Rep. Sample MC
integrated events.

pulls only with and without the muon energy scale systematic, and the Residual

difference only. These other histograms are for reference only and help to illustrate

how the predictions change.) In these figures, it is notable the Rep. Sample pulls

from the ND fit change the prediction the most (the grey to orange histogram).

After applying these pulls, as you move from Quantile 1 to Quantile 4, the impact

of the Residual Difference changes the prediction the least (solid orange to dotted).

The orange dotted predictions of the ND Rep. Sample pulls and the ND Residual

Difference will be the fake data for the FD νµ sample in our joint fit.

7.3.2 Application to νe

The νe sample is not explicitly constrained in the ND fits as all ten ND topological

samples are νµ events. However, we can apply a constraint on the oscillated νe events

in the NOvA Far Detector, which originated as νµ. Thus, we will apply the Residual

Difference from the ND solely to the appeared νe in the NOvA FD simulation.

We apply this constraint on the FD νe samples by utilizing the inclusive ND
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Figure 7.9: FD FHC (left) & RHC (right) νe distributions with the ND-only fit
Rep. Sample pulls (blue solid) and distributions combined with the ND Residual
Difference (blue dashed). The blue dashed prediction is the FD νe fake data.

νµ distribution in Reco Eν , rather than using a specific quantile prediction, since

we do not discriminate νe events by hadronic energy fraction. For the two Core

samples of the νe distribution, we interpolate the data-Rep. Sample MC ratio of

the ND νµ inclusive sample to apply to the corresponding Core νe bins [66]. For the

Peripheral sample, we use the integrated data-MC events ratio from the inclusive νµ

sample to apply to the single Peripheral bin. The νe Residual Difference prediction

is shown for FHC and RHC in Figure 7.9. We see the ND-fit’s Rep. Sample pulls

applied to the nominal simulation (blue solid) and the ND-fit Rep. Sample pulls

with the ND Residual Difference applied (blue dashed) does not significantly change

the prediction for νe events.

Similar to the muon energy scale treatment for the FD νµ sample, we allow the

radiative corrections systematics to only constrain the FD νe sample when perform-

ing the joint fit; they have no constraining power in the ND event selection, but we

anticipate they will impact the FD νe event sample.
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7.4 ND + FD Residual Difference Fit Result

This section outlines the results of the ND+FD joint Residual Difference fit.

This joint fit contains 60 parameters: 57 systematic uncertainties and 3 oscillation

parameters. Again, recall this Residual Difference fit is a hybrid of real NOvA data

and fake data; for the ND we use real, Prod5.1 NOvA data – the same data from

the ND-only fit in the previous chapter. For the FD, we use fake data constructed

in the following way (outlined in the previous Section):

• NOvA 2020 Best Fit Point for oscillation parameters (Table 7.1).

• Rep. Sample pull values for systematic parameters from ND-only fit to NOvA

data (Table 6.4).

• ND Residual Difference from ND-only fit to NOvA data (Figure 6.33).

This hybrid of NOvA ND data and FD fake data is used for the joint fit. As we

saw from the ND data fit, there are still non-trivial residual differences between

the fitted MC (i.e. the Rep. Sample) and the NOvA ND data, despite the adjust-

ments/improvements made to the ND machinery. This leads to the question of how

significant is this Residual Difference in measuring the oscillation parameters. The

analysis of this ND+FD joint fit is reported in this Section.

Parameter Value
L 810 km
ρ 2.84 g/cm3

θ12 0.587
θ13 0.184

∆m2
21 7.53× 10−5 eV2

∆m2
32 2.41× 10−3 eV2

sin2 θ23 0.57
δCP 0.82π

Table 7.1: The top section of the table represents the fixed parameters input into
this joint ND+FD fit. The bottom half represents the true values of the parameters
we are attempting to constrain.

This fake data fit is conducted using the NOvA 2020 Frequentist analysis best fit

oscillation parameters as the Asimov – or true – point for our fake data. The input
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Figure 7.10: Pull Summary plot of the 57 systematic uncertainties from the ND+FD
Residual Difference fake data joint fit. Many uncertainties are now well constrained,
and we are able to produce many more samples as compared to our initial attempts
to fit the ND data. This plot is useful to reference an uncertainty’s probable pull
values.

parameters into this fake data are listed in Table 7.1. From this study, a joint ND

+ FD MCMC fit should reproduce the Asimov point, indicating a robust analysis

by successfully reproducing the 2020 NOvA Best Fit.

Pulls Summary

We analyze 1.93 million MCMC samples from 2,500 MCMC chains of the ND+FD

joint fit. Figure 7.10 shows the pull summary of the 57 systematic uncertainty pa-

rameters constrained in this simultaneous fit. We see most uncertainties are well

constrained, but there others that have second, smaller modes. We also see there are

several parameters that are still not strongly constrained, such as the radiative cor-

rections systematics, indicated by the lighter pink region. This is a useful reference

to identify the modes of a specific uncertainty.
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Correlations between uncertainties

As we have seen already from the ND-only fits, we can investigate correlations

between pairs of systematics. We investigate a couple pairs briefly here in Figure

7.11. The figure shows the 2D marginal distribution for the hN FSI model’s mean

free path systematic and the DIS ν − n 1π systematic (left) and the MEC Double

Gaussian parameter (Mean q3) and the MEC neutrino energy dependence systematic

(right).
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(a) 2D marginal distribution of the hN FSI
model’s mean free path systematic and the
DIS ν − n 1π systematic.
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Figure 7.11: 2D marginals of systematic pairs from ND+FD Residual Difference
MCMC samples. These pairs of systematics suggest they are correlated. The mul-
tiple regions of MCMC samples also illustrate the complexity of the posterior. The
green triangle shows the ND-only Rep. Sample pull values. The blue circle is
the Rep. Sample value from the joint ND+FD fit. The green line represents the
Bayesian 1σ credible interval.

These marginals show correlations between the two pairs of systematics; both

plots appear to positively correlated with each other. The right plot is a marginal

of two systematics that modulate the same model: MEC. We observe, perhaps un-

surprisingly, a positive correlation between these two parameters given they control

the same model. However, for the left plot, we see two systematics from two differ-

ent models: FSI and DIS. This correlation is more revealing about the underlying

physics. Large pull values of the MFP systematic translates to a longer mean free

path, which means pions within the nucleus are less likely to re-interact (via an FSI

process) and are less likely to be observed. As this systematic increases, the pull on
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the DIS ν−n 1π systematic appears to increase too, predicting more CC DIS events

from neutrino interactions that produce 1π. We learn MCMC has found high prob-

ability samples that seek to produce more neutrino events with 1π. Furthermore, if

we recall the discussion from Sec. 6.6, we are already aware of the inter-connection

between the FSI MFP parameter and the neutron model. This marginal illustrates

how closely the physics models overlap in this analysis.

These marginals also reveal the complexity of the posterior space. Note the green

triangle and blue circle in the plots. The green triangle shows the ND-only Rep.

Sample pull values from the previous chapter. These pull values are applied to the

FD fake data for the Residual Difference ND+FD fit. The blue circle is the Rep.

Sample value from the joint ND+FD fit. The pull values from the Rep. Sample be-

tween the two fits are similar but they are not identical, further demonstrating how

complex the posterior space is. What’s more, the densest regions of these distribu-

tions (the dark red) is different than the ND and ND+FD Rep. Sample values – well

beyond the 1σ credible interval, suggesting the effects of marginalizing over the 60-

dimensional posterior space are at play. In addition note the 3-4 regions of MCMC

samples in these two plots. For the DIS and MEC neutrino energy systematics nega-

tive and positive pull values are probable, which can produce meaningfully different

predictions of the ND topologies. The features in these two marginal distributions

demonstrate the complexity of the posterior space.

However, we will focus primarily on the oscillation parameters throughout the

rest of the chapter, as the previous chapter analyzes the constraints on the uncer-

tainties from the ND data. We will examine the 1D marginal distributions of the

oscillation parameters next.

1D marginals of oscillation parameters

We can again marginalize over all other parameters, and samples from both

Mass Orderings, to obtain a 1D probability distribution of an oscillation parameter

in Figures 7.12, 7.13, and 7.14. The 1D marginal for δCP (Fig. 7.12) shows the true
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Figure 7.12: 1D marginal distribution for δCP in units of π, marginalized over both
mass orderings. The true value is the green vertical line at δCP= 0.82π. The blue
line is the Rep. Sample at δCP= 0.864π. This parameter’s mode is also in line with
the true and Rep. Sample values. The Normal Ordering and Inverted Ordering
marginals are available in the Appendix A.20b & A.20d.

176 M. Dolce



Chapter 7

2.2 2.3 2.4 2.5 2.6 2.7 2.8
)2 eV-3| (1032

2mD|
0

0.02

0.04

0.06

0.08
U

ni
t N

or
m

al
iz

ed

Marginal Posterior Distribution
True Value (NO)
Rep. Sample (NO)

Normal Ordering

Inverted Ordering

NOvA Fake Data
32
2mD

Figure 7.13: 1D marginal of ∆m2
32 for each mass ordering. The green line represents

the true value at ∆m2
32 = 2.41 × 10−3 eV2 (in NO). The blue line is the Rep.

Sample value at ∆m2
32 = 2.37 × 10−3 eV2 (in IO). The mode of the NO marginal

distribution is in better agreement with the true value than the IO marginal, and
the Rep. Sample pull is further from the mode. This suggests marginalizing over
the other parameters can influence the shape of the 1D marginal.

value (green vertical line) is approximately the same as the Rep. Sample (max LL,

in blue). Moreover, the most probable value – indicated by the peak in the marginal

distribution – also is in agreement with the true and Rep. Sample values. There

are no indications the ND Residual Difference biases δCP. Moreover, this parameter

is constrained by νe appearance, and NOvA is statistically limited, evident in the

many probable values of δCP.

Figure 7.13 shows the 1D marginal for ∆m2
32 in each mass ordering. Again, we

see the Rep. Sample and the true values are similar, while the true value is nearly

centered on the mode of the Normal Ordering distribution at ∆m2
32 = 2.42 × 10−3

eV2. Meanwhile, the Inverted Ordering MCMC samples show the mode is located

at ∆m2
32 = −2.48 × 10−3 eV2. This discrepancy between the most probable value

and the Rep. Sample (max LL) value suggests the influence of marginalization is
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Figure 7.14: 1D marginal of sin2 θ23 parameter from joint fit over both mass order-
ings. The green vertical line is the true value (sin2 θ23 = 0.57) and the blue vertical
line is the Rep. Sample value (sin2 θ23 = 0.564). The Rep. Sample value is very
close to the true value, but the mode of the marginalized distribution is in the lower
octant at sin2 θ23 = 0.46. This represents a bias in this oscillation parameter when
using the FD Residual Difference fake data. The Normal Ordering and Inverted
Ordering marginals are available in the Appendix A.20a & A.20c.

in effect, as discussed from Figure 5.3.

The last 1D marginal is the parameter sin2 θ23 over both mass orderings. The

the true value (green) and the Rep. Sample (blue) value are very similar and prefer

the upper octant. However, the mode of the marginal is located in the lower octant.

From Figure 1.8 and NOvA’s 2020 result, we know NOvA has a slight preference for

the upper octant. This presents tension as the true value and the max LL sample

both are in the upper octant. This may indicate the effects of marginalization from

Section 5.5. Conversely, this may suggest the max likelihood point simply lies in a

different region from the high density region of the posterior space.

For reference, the posterior probability distributions for each 1D marginal dis-

tribution split by Normal and Inverted Orderings can be found in the Appendix

A.20.
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Figure 7.15: δCP and |∆m2
32| 2D marginal distribution over both mass orderings.

The green star is the true value from the fake data. The blue is the Rep. Sample
value. The densest region of MCMC samples (dark red) better agrees with the true
value (also known as the mode in the 1D marginals). This Rep. Sample (max LL
sample) is further from this dense region, suggesting an effect of marginalization.
The Normal Ordering and Inverted Ordering marginals are available in the Appendix
A.21e & A.21f.

2D marginals of oscillation parameters

We can look at the marginalized oscillation parameters in pairs, as NOvA gen-

erally presents these results. Figure 7.15 shows the 2D marginalization of δCP (in π

units) and |∆m2
32| over both mass orderings. This 2D distribution further highlights

the observations made from the two 1D marginals; the Rep. Sample value is near

the true value, however, the densest region of MCMC samples (dark red) is much

closer to the true value. This 2D marginal further illustrates the notion that the

densest region of MCMC samples (i.e. the high probability region) may lie in a

different region of the parameter space. Again, this may also suggest the impacts of

marginalizing over the N−2 parameters in the posterior space. We can conclusively

say, however, the 60-dimensional posterior space is highly complex.
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Figure 7.16: δCP and sin2 θ23 2D marginal over both Mas Orderings. The green star
is the true value from the fake data. The blue is the Rep. Sample. The true value
and the Rep. Sample value are very near each other in this space, but the densest
region is in the lower octant at approximately sin2 θ23 = 0.46. This is evidence of
a bias in the lower octant for this parameter. The Normal Ordering and Inverted
Ordering marginals are available in the Appendix A.21b & A.21d.
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Figure 7.17: |∆m2
32| and sin2 θ23 2D marginal over both the Mass Orderings. The

bias of the lower octant is most evident here as the darker, denser region of MCMC
samples is clustered around sin2 θ23 = 0.46, while the true value is closer to the Rep.
Sample in the higher octant. The 2D marginal of the two parameters in the Normal
and Inverted Ordering is shown in Fig. A.21a & A.21c.
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Figures 7.16 and 7.17 show the 2D marginals for δCP vs. sin2 θ23 and |∆m2
32|

vs. sin2 θ23 over both mass orderings, respectively. These two 2D marginals show

the Rep. Sample value is very similar to the true value, which from our ND-only

metric, is classified as a robust fit. However, when we look at the distribution of the

MCMC samples in these two plots we see the densest region is in the lower octant

of sin2 θ23. In Fig. 7.17 we see the densest region of MCMC samples are located in

the lower octant, while the Rep. Sample value is within the upper octant. These

two plots further illustrate the complexity of the posterior suggesting: the effects of

marginalization are present and the max likelihood sample does not neighbor the

high density region in the posterior.

Rep. Sample Prediction

Now that we have seen increasing evidence of the discrepancy between the Rep.

sample (max LL sample) and the densest region of the parameter space, we will

examine the quality of the agreement between the fake data and the Rep. Sample

in the FD νµ and νe samples. Figure 7.18 and 7.19 show the FD FHC and RHC νµ

distributions in the four quantiles plotted with the 1σ error band before the fit.

We see the Rep. Sample prediction does not produce strong agreement, especially

in Quantile 1, which has the most amount of muon energy – the parameter we

discovered is poorly constrained from the ND data. The agreement, however, does

improve with increasing hadronic energy fraction, which we would expect given

the predictions are constrained primarily from the ND (Reco |q⃗|, Evis
had) topological

samples, where the hadronic energy is well constrained. Despite this, we conclude

that the Rep. Sample νµ prediction does not agree well with the FD fake data.

Figure 7.20 shows the FD νe samples for FHC and RHC. We see, perhaps unsur-

prisingly, the Rep. Sample prediction is not significantly different from the fake data

nor the nominal prediction. This coincides with the broad 1D marginal distribution

for δCP, indicating NOvA does not constrain this parameter strongly due to reduced

statistics.
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Figure 7.18: FHC FD νµ Representative Sample predictions (blue) with a priori 1σ
error of the 57 systematic uncertainties in the grey band. The Rep. Sample does
not produce strong agreement with the FD FHC νµ fake data (black points). It is
noticeably worse in Quantile 1, especially at the peak of the distribution.
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Figure 7.19: RHC FD νµ Representative Sample predictions (blue) with a priori 1σ
error of the 57 systematic uncertainties in the grey band. The Rep. Sample does
not produce strong agreement with the FD RHC νµ fake data, especially in the most
populated bins of Quantile 1.
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Figure 7.20: FD νe Representative Sample predictions for FHC and RHC (blue)
with a priori 1σ error of the 57 systematic uncertainties in the grey band. The Rep.
Sample prediction is not qualitatively different from the nominal prediction (grey)
nor fake data (black points), indicating this parameter is not strongly constrained
due to low νe statistics.

Predictions of Random MCMC Samples

Thus far we have seen the values of the oscillation parameters in the highest prob-

ability (i.e modes for 1D marginals and the high density regions for 2D marginals)

are not the same as the values from the Rep. Sample, especially for sin2 θ23. We

have also seen in the previous section the FD νµ and νe Rep. Sample prediction

does not produce strong agreement to the fake data, in particular for the Quantile

1 distributions. This motivates us to examine predictions for the densest region of

MCMC samples from the 1D and 2D marginals. In this Subsection we plot 200

random samples from the 1.9 million samples collected. Because we are selecting

samples randomly to plot, we select samples proportional to the probability and

therefore will plot predictions from the denser regions of the 1D and 2D marginal

space.

Figures 7.21 and 7.22 show the FD νµ FHC and RHC distributions in the quan-

tiles of predictions from 200 randomly drawn samples. Again, we draw these samples

randomly and therefore are more likely to select samples from the denser regions of

the marginal distributions. We see these 200 random predictions produce a narrow

band of predictions that encapsulate the fake data. This narrow band produces
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Figure 7.21: FD FHC νµ predictions from 200 random MCMC samples drawn in
red. We see the red predictions encapsulate the fake data. Many of the predictions
from the random samples appear in better agreement with the fake data than the
Rep. Sample prediction.

186 M. Dolce



Chapter 7

0 1 2 3 4 5
 (GeV)nReco. E

0.6
0.8

1
1.2
1.4

N
O

vA
 C

V
Fa

ke
 D

at
a N

O
vA C

V
M

C
M

C
 R

andom
 Sam

ple

0

10

20

30

Ev
en

ts
 / 

G
eV

Fake Data

NOvA 2020 CV

MCMC 'Rep. Sample'

Random MCMC Sample

Antineutrino Beam
Quantile 1

NOvA Fake DataFDFD

0 1 2 3 4 5
 (GeV)nReco. E

0.6
0.8

1
1.2
1.4

N
O

vA
 C

V
Fa

ke
 D

at
a N

O
vA C

V
M

C
M

C
 R

andom
 Sam

ple

0

5

10

15

20

25

Ev
en

ts
 / 

G
eV

Fake Data

NOvA 2020 CV

MCMC 'Rep. Sample'

Random MCMC Sample

Antineutrino Beam
Quantile 2

NOvA Fake DataFDFD

0 1 2 3 4 5
 (GeV)nReco. E

0.6
0.8

1
1.2
1.4

N
O

vA
 C

V
Fa

ke
 D

at
a N

O
vA C

V
M

C
M

C
 R

andom
 Sam

ple

0

5

10

15

20

25

Ev
en

ts
 / 

G
eV

Fake Data

NOvA 2020 CV

MCMC 'Rep. Sample'

Random MCMC Sample

Antineutrino Beam
Quantile 3

NOvA Fake DataFDFD

0 1 2 3 4 5
 (GeV)nReco. E

0.6
0.8

1
1.2
1.4

N
O

vA
 C

V
Fa

ke
 D

at
a N

O
vA C

V
M

C
M

C
 R

andom
 Sam

ple

0

10

20

30

Ev
en

ts
 / 

G
eV

Fake Data

NOvA 2020 CV

MCMC 'Rep. Sample'

Random MCMC Sample

Antineutrino Beam
Quantile 4

NOvA Fake DataFDFD

Figure 7.22: FD RHC νµ predictions from 200 random MCMC samples drawn in
red. We see the red predictions encapsulate the fake data. Many of the predictions
from the random samples appear in better agreement with the fake data than the
Rep. Sample prediction.
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Figure 7.23: FD νe predictions from 200 random MCMC samples drawn in red in
the NOvA analysis binning (low PID, high PID, and Peripheral). We see the narrow
band of predictions agree with the fake data and the Rep. Sample prediction.

a much stronger agreement to the Quantile 1 fake data as well, where the Rep.

Sample prediction did not agree. This is evidence the highest probability regions

of the parameter space may be more effective in describing a “best fit” to the true

oscillation parameter values, better than the Rep. Sample prediction.

This observation is true for the FD νe samples as well, Figure 7.23. The narrow

band from 200 random samples agrees with the fake data. However, in the Low PID

bins of the Core sample, we see that there are two sets of red bands (visible in the

ratio plot). This is likely because the δCP parameter is not well constrained (seen

in the 1D marginal), so 200 random values of this parameter likely produces a wide

range of values of δCP.

The primary conclusion from examining the Rep. Sample prediction and the 200

random sample predictions is the posterior space is very complex. As we have seen in

the νµ and νe samples, the Rep. Sample and 200 random sample predictions provide

two different metrics to assess MCMC samples; they both constrain the oscillation

parameters and may have different implications for how to interpret MCMC samples.
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Figure 7.24: Left: The χ2 is consistent between the ND-only and ND+FD joint fit,
showing stability in the result. The ND+FD χ2 is improved slightly in the ND µ
topologies because the muon energy scale systematic is constrained only by the FD
νµ samples; it was pulled to positive value thereby indirectly improving these two
topologies. Right: The Rep. Sample, in this metric, produces the “best fit” when
compared to the 200 random MCMC samples. However, in Quantile 1 the Rep.
Sample χ2 is still worse than the nominal prediction.

χ2 metric

At this stage we have looked at the results of the joint fit from a qualitative per-

spective. Figure 7.24 plots the χ2 for the ND topologies (left) and the FD samples

(right). In the left plot, the χ2 values of the ND topologies from the ND+FD joint fit

(blue) are shown, and the ND-only fit χ2s from Chapter 6 (red) are shown for refer-

ence. We see the results are consistent between the fits, suggesting the Rep. Sample

is likely the same point in the posterior space from these two fits, indicating stabil-

ity in the result. However, the two µ topologies are most discrepant between these

two MCMC fits. This is largely due to the impact of the kCorrMuEScaleSyst2020

systematic. In the ND-only fit we removed the parameter from the results, as we

saw it adversely affected the Reco Eν prediction in the ND quantiles because Eµ is

not well constrained from our ND fit variable Reco |q⃗|. However, in the ND+FD

joint fit, the kCorrMuEScaleSyst2020 parameter can be constrained by the FD νµ

samples. It was constrained by the FD fake data; the Rep. Sample pull value for

kCorrMuEScaleSyst2020 = +1.2σ. This means when we apply the Rep. Sample

pull values to all ND and FD predictions, we see the χ2 for the ND µ topologies have

improved. This effect can be seen further in the 1D projections onto the Reco |q⃗|
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variable in the Appendix A.18 & A.19.

The right plot shows the χ2 for the FD samples for the data-Rep. Sample (blue)

and the 200 random MCMC samples (red). In this χ2 metric we observe that

the Rep. Sample produces the best χ2 agreement over the 200 random samples,

of which some are from the densest region in the parameter space. This appears

contradictory to what we see in the FD νµ and νe Rep. Sample predictions, however,

this is may be due to the effects of marginalization. Again, we see different results in

the agreement to the fake data when analyzing the max LL sample and the highest

marginal probability samples.

Correlations between oscillation parameter & uncertainty

With marginalization we can look into any correlations that may exist between

oscillation parameter and systematic uncertainty. A few are selected here in Figure

7.25. In the left two plots are 2D marginals of the muon energy scale systematic

and CCQE normalization systematic paired with ∆m2
32. In the top left plot we

see a slight anti-correlation between these two parameters. This is an interesting

conclusion as many of the pairs of parameters we investigated do not have an ob-

vious relationship. The bottom left plot shows a high density region of the CCQE

normalization parameter at −1.8σ, but the Rep. Sample values from the ND and

ND+FD MCMC fits are near −0.5σ, far from this dense region. This very likely

an illustration of the effects of marginalizing a multi-dimensional parameter space

down to two parameters. In the top right plot of the RES ∆ scale systematic created

in Subsection 6.5.2 and sin2 θ23, a similar conclusion is true. The dense region and

Rep. Sample values are in two separate, distinct regions of the parameter space. In

the bottom right plot of the MEC Double Gaussian SigmaQ3 1 systematic, similar

to the top right plot, we see densest regions are for from the ND+FD and ND-only

Rep. Sample, however, these values are extremely similar suggesting stability in the

two fits.

The ability to marginalize over any pair of parameters allows us to learn about
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Figure 7.25: 2D marginal distributions of various uncertainties and oscillation pa-
rameters. The blue point is the ND+FD Rep. Sample value. The green triangle
represents the ND-only Rep. Sample pull value for the uncertainty, while for the
oscillation parameters it is the true value from the FD fake data in the ND+FD
joint fit. In these pairs of parameters there are no obvious correlations between
uncertainty and oscillation parameter. However, there is a slight anti-correlation
between the muon energy scale systematic and ∆m2

32.
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correlations between them. Again, there are countless numbers of pairs of 2D dis-

tributions that can be made from this analysis, however, we report most oscillation-

systematic parameter pairs do not have any significant correlations. This is a new

level of analysis that can be gained from MCMC sampling brought forward in this

thesis.

7.5 Future Improvements

The work to produce a ND-only fit to the NOvA data and a ND+FD joint fit

of the ND data & FD fake data has taken a large amount of effort. Throughout

this effort, we have learned many things about NOvA’s interaction modeling, oscil-

lation parameter constraints, and MCMC sampling. From what we have learned,

we have identified some future developments that would improve the robustness of

the analysis. Some possible improvements to the fitting are listed here grouped

together.

7.5.1 ND Improvements

• Incorporate Eµ as a third variable in the ND fit. We have learned that

we do not constrain the muon systematic uncertainties well with Reco |q⃗|.

This – or some other muon kinematic variable – should be included in future

analysis iterations. Moreover, muon kinematics are what NOvA measures

best, and any muon kinematic variable would ideally be well constrained from

NOvA ND data. With respect to the MCMC sampling quantity, introducing

a third variable for the ND fit would slow the rate of MCMC sampling, and

likely require further adjustments to the input into MCMC, such as additional

phase space cuts on Reco |q⃗| and Evis
had.

• An improved FSI systematic uncertainty set. There is strong evidence

in NOvA the current tune of the hN FSI model is insufficient. We see the

mean free path uncertainty pulled to values larger than +3.5σ for the ND
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data and ND+FD joint fits. This pull effectively removes NOvA tune to

external pion scattering data. This indicates a problem with the model. One

option is to assess other FSI models accessible in GENIE, or to update the hN

tune to incorporate nucleon intranuclear interactions, though this is a second

order effect to pion re-interactions. We believe this may also be associated

with an insufficient neutron model/uncertainty in NOvA; the large MFP pull

reduces pion activity, and by extension, fewer neutrons are produced. NOvA’s

simulation over-predicts neutrons and could help to explain the large pull.

Investigating neutron-specific variables with these large FSI pull values applied

to the NOvA prediction could reveal more about the connection between these

two physics effects.

• Introduce a ND νe constraint. The ND fit does not explicitly constrain

νe events. To create additional topologies of νe events would likely improve

the constraint of several uncertainties and δCP. This would also drastically

slow the MCMC sampling and reduce the quantity of samples due to the

added bins. Moreover, a choice of variable(s) to use for constraining the ND

νe sample(s) would be necessary. An improved constraint on the νe sample

may also resolve the octant bias in sin2 θ23.

7.5.2 ND+FD Improvements

Following the analysis of the joint fit in the previous Section, there are several

direct items this analysis could followup on:

• Construct an “out-of-model” ND and FD fake data set with known

inputs. This would allow a more focused constraint on the sensitivity/bias

of the oscillation parameters. The challenge here is to create a fake data set

that resembles the ND Residual Difference as best as possible with known

distortions to the uncertainty model. This would allow the analyzer to repli-

cate a type of Residual Difference fit, while understanding what models are

being stressed in the fit. (We acknowledge that to create a fake data set with
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known inputs that exactly matches the Residual Difference is a nontrivial task,

discussed in Sec. 7.1.)

• Compare joint probability distributions between the ND-only and

ND+FD fit for the systematics. Due to the overwhelming statistical

power of the ND data, we believe the incorporation of the FD data would only

modestly changes these distributions. This would be useful to confirm or deny.

• Investigate another high probability point from the posterior space.

For example, how does selecting the next-highest max LL sample change the

result on the bias of sin2 θ23? How would data-MC agreement change if using

the highest probability point from a marginalized distribution instead? These

are simply two possibilities that can be explored.

One of the primary items to followup on is the bias in the octant of sin2 θ23. In the

marginalized space of this parameter, the densest region of MCMC samples show a

bias towards the lower octant of sin2 θ23, despite the true value in the upper octant.

We are aware this sensitivity to octant is driven by νe events. Some additional

followup items include a robust check of the construction of the FD νe fake data,

including the oscillated and unoscillated components. A second followup would be

to perform a FD νµ-only Residual fit. A νµ-only fit is insufficient to break the

octant degeneracy, and therefore we should find the marginalized distribution to

be symmetric in sin2 θ23. Investigating this bias is beyond the scope of this thesis,

however such an investigation is not limited to these suggestions.

7.5.3 MCMC Improvements

From the MCMC perspective, there are a number of ways that MCMC sampling

can be improved. We understand the objective is to maximize the number of MCMC

samples and explore the posterior as efficiently as possible. We list some suggestions

here:

• Introduce different priors for different systematics. For our uncertainty
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model we used the same Gaussian-like “Custom” prior. However, there are pa-

rameters that could be limited further and other parameters that have special

cases.

• Introduce a correlation matrix of the systematic parameters. This

could originate from a prior MCMC fit or from MCMC warmup alone. This

information would likely drastically improve the number of samples produced

from a fit as MCMC would step through the posterior more efficiently, rather

than using CPU time to complete MCMC warmup.

This is by no means exhaustive of how MCMC sampling can be improved, but these

are ideas that arose during this analysis.

7.6 Conclusions

This analysis has two distinct components: the ND-only fit focusing on inter-

action modeling and the ND+FD joint fit to constrain the oscillation parameters.

Each of these components are required to tell the full story of constraining the oscil-

lation and interaction parameters within NOvA. This work uses Bayesian inference

to estimate these parameters via the Hamiltonian Monte Carlo algorithm within

Markov Chain Monte Carlo to explore the posterior parameter space. This thesis

required a significant amount of development to achieve these results, and establishes

how to best maximize NOvA’s information from its two detectors simultaneously.

ND conclusions

Much development has been made in the goal of fitting the ND data. Numer-

ous fake data fits were performed to demonstrate MCMC can effectively constrain

NOvA’s uncertainty model. Moreover, we have learned there are systematics within

NOvA’s uncertainty model that cannot be constrained and have removed many of

these from MCMC sampling. Much work has been made to improve the quality and

quantity of MCMC samples, such as: adjusting the ND topological binning, phase
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space cuts, and omitting systematics that cannot be constrained from NOvA’s ND

data. In the efforts of the ND fitting, much was learned about the quality of neu-

trino interaction modeling in NOvA’s simulation. To this end, additional degrees

of freedom relating to the RES and DIS cross section models were introduced to

help improve the data-MC agreement. These efforts were successful, but a lingering

discrepancy still remains in the form of the ND Residual Difference. Outlined below

are three important findings relative to interaction modeling and the ND fitting:

• low-Q2 events are over-predicted. These are predominately RES and DIS

events that appear in the ND topologies along the Reco |q⃗| = Evis
had kinematic

boundary and prominently in the µ+ π± +X and µ+ (P+)X topologies.

• The MEC Double Gaussian uncertainty model is degenerate in de-

scribing a NOvA fake data or data set. This was made clear from NOvA

ND fake data fits that show different pull values in a number of the Double

Gaussian parameters produce the same prediction. This is likely due to the

13 parameters that weight MEC interactions in a region of phase space that

largely overlaps with the QE model.

• NOvA’s hN FSI tune is insufficient. The large pull value of the mean

free path systematic (from both the ND and ND+FD fits) effectively removes

the MFP tune we applied to obtain agreement between the hN model and

external pion scattering data. This particular systematic significantly changes

the ND topological predictions, therefore improving this tune should improve

the agreement to the ND data. In addition, we believe this large pull is

associated with the neutron systematic as well, where the large MFP pull

reduces neutron activity to improve the ND agreement.

Taking a step back, the ND fitting is an attempt to take seriously the NOvA ND

data and interaction models in the context of constraining oscillation parameters in

NOvA.
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ND + FD conclusions

From the perspective of fitting the FD predictions, a full ND+FD joint fit has

been developed that constrains 57 NOvA systematic uncertainties and 3 oscillation

parameters with 1.9 million MCMC samples. What’s more, a procedure for testing

and investigating the ND Residual Difference with MCMC has been developed,

which provides consideration of the ND and FD distributions all at once; an entirely

new means of interrogating the NOvA data.

For this analysis, we opted to assess the impact of the Residual Difference on the

oscillation parameters by use of a fake data set. Specifically, we selected to use a

FD fake data set with no known inputs, in the form of the ND Residual Difference.

The advantage to this choice is to capture the ND Residual Difference exactly in

our FD fake data set. This is simply one choice of assessment.

From this analysis we have learned the 60-dimensional posterior space is highly

complex. This has implications for how one should interpret the results. We report

an apparent inconsistency in the marginal distributions of Rep. Sample (max LL)

values and the high probability region values for the oscillation parameters. This

inconsistency, however, simply requires careful consideration to analyze the MCMC

samples. We outline two important conclusions from this joint MCMC sampling:

• The Rep. Sample (max LL) value may not be identical to the highest

probability region in the posterior. The posterior is a complex space.

There is no mathematical guarantee the Rep. Sample point lies near the

region of high probability samples in the posterior (if the Rep. Sample point

was a Dirac delta function, for example). To this end, we plot 200 random

MCMC samples in Fig. 7.21 – which are selected proportional to the high

probability region in the posterior – and find the band of these predictions are

qualitatively different than the Rep. Sample prediction, suggesting the Rep.

Sample point may not be identical to the highest density region in our posterior

space. A useful tool to learn more about the shape of the posterior would

be the use of a clustering algorithm. Another useful development would be
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tools for visualizing these high-dimensionality spaces. While we are unaware

of any such tools at present, we note the MCMC samples contain all the

information necessary for such a visualization, as they capture the entire joint

probability distribution. Both of these tools would allow us to draw more

concrete conclusions and shed light on the shape of the posterior, for example,

to determine if the Rep. Sample point is in fact near the highest probability

regions in the posterior.

• The Rep. Sample (max LL) value may not be identical to the highest

probability region in a marginalized distribution. We first see this effect

from Figure 5.3, where marginalizing over arbitrary parameters may move

the region of high probability in the lower dimension space. In our analysis,

Figures 7.17, 7.11, and 7.25 represent the start of this “deep dive”. They

clearly show there are distinct high-probability regions, at least in many of

these 2-D comparisons, with the max likelihood value lying in the region with

overall lower probability. We note here one of the weaknesses of the Residual

fake data fit – there are no “true values” for the systematics, just the max

likelihood values from the ND fit. In principle the FD data (although small)

is adding additional information and could refine/improve the determination

of these parameters.

To place this work in the larger context, this analysis sets the ground work for

the next iteration of joint fit analyses in NOvA. There are numerous opportunities

to strengthen and improve the fit outlined in this thesis. NOvA is well positioned

to produce a more robust joint analysis in the next round of joint fitting. Looking

further into the future, we hope the Deep Underground Neutrino Experiment can

maximize the utility of this analysis for a joint fit analysis within the next generation

of oscillation experiments.
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Appendix

A.1 MEC Tune in NOvA
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antineutrinos in variable Reco |q⃗|.

Figure A.1: Reco |q⃗| in the NOvA ND for the data (black dots) and the MC pre-
diction, broken down by true neutrino interaction. Before the MEC tuning, the
MC predicts a small amount of MEC interactions – up to the dashed line (“Default
GENIE”). After tuning in true (|q⃗|, q0), (“NOvA Tune”, solid), the MEC tuned pre-
diction produces a stronger agreement with the data.
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A.2.2 ND Representative Sample 1D Projections onto Reco |q⃗|

from Fake Data Fit

A.2.3 ND Systematics Ranked by χ2 in ND RHC Topologies
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Figure A.2: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Reco |q⃗| axis,

projecting out Evis
had. These plots of the FHC topologies break down neutrino events

by true interaction type in the simulation. Complementary plots to Figure 4.8.
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Figure A.3: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Reco |q⃗| axis,

projecting out Evis
had. These plots of the the RHC topologies break down neutrino

events by true interaction type in the simulation. Complementary plots to Figure
4.9
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Figure A.4: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Reco |q⃗|

axis. These plots of the FHC topologies break down neutrino events by the final
state particles from the interaction. Complementary plots to Figure 4.10.
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Figure A.5: Projection of the 2D (Evis
had, Reco |q⃗|) phase space onto the Reco |q⃗| axis.

These plots of the RHC topologies break down neutrino events by the final state
particles from the interaction. Complementary plots to Figure 4.11.
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Figure A.6: Representative Sample predictions, in blue, on Reco |q⃗| projection on
FHC topologies. The grey histogram represents the nominal prediction and the grey
error band represents the ±1σ range for the 16 selected uncertainties. The fake data
are the black dots. Note the Rep. Sample prediction (largest LL MCMC sample)
produces perfect agreement with the fake data, confirming MCMC can constrain
NOvA uncertainties effectively. Complimentary to 6.3.
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Figure A.7: Representative Sample predictions, in blue, projected onto Reco |q⃗| for
the RHC topologies. The grey histogram represents the nominal prediction and the
grey error band represents the 1 priori ±1σ range for the 16 selected uncertainties.
The fake data are the black dots. Note the Rep. Sample prediction (largest LL
MCMC sample) produces perfect agreement with the fake data, confirming MCMC
can constrain NOvA uncertainties effectively. Complimentary to 6.4.
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Figure A.8: Comparisons of Prod5 data (black dots) and Prod5 MC (grey) and
Prod5.1 data (black triangles) and Prod5.1 MC (green) predictions projected onto
Reco |q⃗| in the FHC topological samples. This plot highlights the changes in the
underlying physics models from Prod5 to Prod5.1 Note the disagreement between
the Prod5.1 data and Prod5.1 MC, as this is what is used in this analysis. Comple-
mentary 1D projections in Evis

had variable can be seen in the Fig. 6.9.
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Figure A.9: Comparisons of Prod5 data (black dots) and Prod5 MC (grey) and
Prod5.1 data (black triangles) and Prod5.1 MC (green) predictions projected onto
Reco |q⃗| in the RHC topological samples. This plot highlights the changes in the
underlying physics models from Prod5 to Prod5.1 Note the disagreement between
the Prod5.1 data and Prod5.1 MC, as this is what is used in this analysis. Comple-
mentary 1D projections in Evis

had variable can be seen in the Fig. 6.10.
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Figure A.10: ND RHC µ χ2 systematic ranking between the nominal prediction and
the +1σ shifted prediction. Note the log-scale Y-axis, which illustrates the range of
χ2 values for NOvA’s systematic uncertainties. The primary conclusion is there are
10-15 systematics that alter the ND prediction substantially, and there are 15-20
systematics that alter the ND predictions very little.
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Figure A.11: ND RHC µ+P χ2 systematic ranking between the nominal prediction
and the +1σ shifted prediction. Note the log-scale Y-axis, which illustrates the
range of χ2 values for NOvA’s systematic uncertainties. The primary conclusion is
there are 10-15 systematics that alter the ND prediction substantially, and there are
15-20 systematics that alter the ND predictions very little.

A.3 ND Fit to Data
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Figure A.12: ND RHC µ+π±+X χ2 systematic ranking between the nominal pre-
diction and the +1σ shifted prediction. Note the log-scale Y-axis, which illustrates
the range of χ2 values for NOvA’s systematic uncertainties. The primary conclusion
is there are 10-15 systematics that alter the ND prediction substantially, and there
are 15-20 systematics that alter the ND predictions very little.
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Figure A.13: ND RHC µ+X χ2 systematic ranking between the nominal prediction
and the +1σ shifted prediction. Note the log-scale Y-axis, which illustrates the
range of χ2 values for NOvA’s systematic uncertainties. The primary conclusion is
there are 10-15 systematics that alter the ND prediction substantially, and there are
15-20 systematics that alter the ND predictions very little.
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Figure A.14: ND RHC EvElse χ2 systematic ranking between the nominal predic-
tion and the +1σ shifted prediction. Note the log-scale Y-axis, which illustrates the
range of χ2 values for NOvA’s systematic uncertainties. The primary conclusion is
there are 10-15 systematics that alter the ND prediction substantially, and there are
15-20 systematics that alter the ND predictions very little.
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Figure A.15: 2D Data-Rep. Sample MC ratio distributions in ND FHC Topologies.
Complimentary to the 2D data-MC ratio distributions from Fig. 6.11 and the 2D
χ2 distributions from Fig. 6.30.

214 M. Dolce



Chapter A

A.4 ND+FD Joint Fit

215 M. Dolce



Chapter A

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Antineutrino Beam
m

Data/Rep. Sample MC

NOvA Preliminary

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Antineutrino Beam
 + pm

Data/Rep. Sample MC

NOvA Preliminary

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

1

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Antineutrino Beam
 + Xp + m

Data/Rep. Sample MC

NOvA Preliminary

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

1

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Antineutrino Beam
)p + X (0m

Data/Rep. Sample MC

NOvA Preliminary

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
| (GeV)qReco. |

0

0.2

0.4

0.6

0.8

 (G
ev

)
vi

s
ha

d
R

ec
o.

 E

Antineutrino Beam
remaining

Data/Rep. Sample MC

NOvA Preliminary

Figure A.16: 2D Data-Rep. Sample MC ratio distributions in ND RHC Topologies.
Complimentary to the 2D data-MC ratio distributions from Fig. 6.12 and the 2D
χ2 distributions from Fig. 6.32.
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Figure A.17: Plot of the autocorrelations for a single, random MCMC chain from
the ND+FD joint fit. There are 750 samples within a single MCMC chain. The au-
tocorrelations are approximately the 10% suggesting the MCMC chain is efficiently
moving through the posterior.
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Figure A.18: 1D Projections onto Reco |q⃗| of the Rep. Sample from the ND-only fit
and ND+FD joint fit in ND FHC topologies. Note how removing the muon energy
scale systematic in the ND-only fit (red) worsens the agreement in this variable.
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Figure A.19: 1D Projections onto Reco |q⃗| of the Rep. Sample from the ND-only fit
and ND+FD joint fit in ND RHC topologies. Note how removing the muon energy
scale systematic in the ND-only fit (red) worsens the agreement in this variable.
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Figure A.20: 1D posterior probability distributions marginalized over the Normal
and Inverted Ordering samples separately.

220 M. Dolce



Chapter A

0.3 0.4 0.5 0.6 0.7
)23q(2sin

2.2

2.4

2.6

2.8)2
 e

V
-3

 (1
0

322
 mD

0

500

1000

1500

2000

2500

M
C

M
C

 Sam
ples

0

500

1000

1500

2000

2500True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Normal Ordering

NOvA Fake Data

(a) Posterior probability distribution of
sin2 θ23 and ∆m2

32 marginalized over the
Normal Ordering samples only.

0 0.5 1 1.5 2
)p (CPd

0.3

0.4

0.5

0.6

0.7)
23q(2

si
n

0

200

400

600

800

M
C

M
C

 Sam
ples

0

200

400

600

800
True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Normal Ordering

NOvA Fake Data

(b) Posterior probability distribution of δCP

and sin2 θ23 marginalized over the Normal
Ordering samples.

0.3 0.4 0.5 0.6 0.7
)23q(2sin

2.8-

2.6-

2.4-

2.2-)2
 e

V
-3

 (1
0

322
 mD

0

500

1000

1500

M
C

M
C

 Sam
ples

0

500

1000

1500True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Inverted Ordering

NOvA Fake Data

(c) Posterior probability distribution of
sin2 θ23 and ∆m2

32 marginalized over the In-
verted Ordering samples only.

0 0.5 1 1.5 2
)p (CPd

0.3

0.4

0.5

0.6

0.7)
23q(2

si
n

0

200

400

600

800

M
C

M
C

 Sam
ples

0

200

400

600

800

True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Inverted Ordering

NOvA Fake Data

(d) Posterior probability distribution of δCP

and sin2 θ23 marginalized over the Inverted
Ordering samples only.

2.2 2.4 2.6 2.8
)2 eV-3 (1032

2 mD
0

0.5

1

1.5

2)p (
C

P
d

0

500

1000

1500

M
C

M
C

 Sam
ples

0

500

1000

1500
True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Normal Ordering

NOvA Fake Data

(e) Posterior probability distribution of
∆m2

32 and δCP marginalized over the Nor-
mal Ordering samples only.

2.8- 2.6- 2.4- 2.2-
)2 eV-3 (1032

2 mD
0

0.5

1

1.5

2)p (
C

P
d

0

200

400

600

800

1000

1200

1400

M
C

M
C

 Sam
ples

0

200

400

600

800

1000

1200

1400

True Value Rep. Sample

 C.I.s1  C.I.s2  C.I.s3

Inverted Ordering

NOvA Fake Data

(f) Posterior probability distribution of
∆m2

32 and δCP marginalized over the In-
verted Ordering samples only.

Figure A.21: 2D posterior probability distributions marginalized over the Normal
and Inverted Ordering samples separately. The green lines represents the Bayesian
1σ, 2σ, and 3σ credible intervals.
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