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Abstract It was found that in a RS-like brane model the
effective action for the massive vector KK modes of a U (1)

gauge field was gauge invariant Fu et al., JHEP 2019(1)
(2019). https://doi.org/10.1007/jhep01(2019)021. It is inter-
esting to investigate the factors this gauge invariance maybe
depend on, such as the geometry of the space-time, the num-
ber of the extra dimensions, and the dimension of the brane.
We demonstrate that the three factors do not affect the gauge
invariant formulation of the effective action, but influence the
localization of the gauge invariant massive vector KK modes.

1 Introduction

At the beginning of last century the idea of extra dimen-
sion was proposed in Kaluza–Klein theory [1]. It was so
fascinating that more and more physicists paid attention on
it. In the string/M theory, the space-time was required to
be ten/eleven dimensions. At the time, the extra dimensions
were assumed to be compact into Planck length until the con-
cept of “brane” was built up. Two famous brane models are
the Arkani-Hamed–Dimopoulos–Dvali (ADD) brane model
[2,3] and the Randall–Sundrum (RS) brane [4,5], which open
a window to solve the hierarchy problem. The major differ-
ence between the two brane models is the geometry of the
space-time: for the former the bulk space-time is flat, whereas
for the latter it is warped through a non-factorizable factor,
which releases the constrain on the length of the extra dimen-
sions.

The number of the extra dimensions and the dimension of
the brane are two basic parameters to describe a braneworld.
As our observable universe is four dimensional, the most
realistic brane is supposed to be four dimensional [6–11].
However, theoretically the brane can be any dimension. The
brane with p(p > 3) spatial dimensions is called p − brane
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[12]. Recently, in Ref. [13] the author gave a 1-dimensional
braneworld solution based on a 2-dimensional gravity theory.
Further, the brane model with more than one extra dimension
is also interesting [14–19]. For example, in the brane with two
extra dimensions, the problem of localization for bulk U (1)

gauge field can be solved [20].
In braneworld theories, the observation is happened in

the brane. The higher dimensional fields act as a series of
Kaluza–Klein (KK) modes in the brane. The investigation of
these KK modes is very important to explore the secret of the
extra dimensions [21–41]. And it also provides a new way
to study some problems, such as the origin of mass and the
gauge invariance of the massive U (1) gauge field [42–48].

Gauge theories hold a prominent place in physics. The the-
ories usually display some gauge symmetry, which can help
to identify the corresponding conserved quantities [49,50].
Maxwell’s theory is the first example realized to be a gauge
theory with the U(1)gauge symmetry, which is the key to
formulate quantum electrodynamics (QED). An extension to
other gauge groups lays the foundation in particle physics.
The quantum chromodynamics (QCD) is one of the most
studied gauge theories. Gauge theories are also applied in
condensed matter [51] and in the relativistic gravity and cos-
mology [52]. In this article we only focus on the U(1) gauge
field in braneworld background, and try to talk about the
gauge invariance of the massive vector KK modes.

In Refs. [42,43,53,54] the authors introduced a cou-
pling between a U (1) gauge field and a higher-spin (Kalb–
Ramond) field to get a gauge invariant effective action for
the massive vector field. However, in our works [44,47,48],
we discovered that without any additional coupling for the
massless bulk U (1) field, a gauge invariant effective action
for the massive vector KK modes still can be got. The key
was to make a general KK decomposition for the bulk U (1)

gauge field. For example, in a RS-like brane with one extra
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dimension y the KK decomposition was chosen as

Aμ

(
xμ, y

) =
∑

n

Â(n)
μ (xμ)W (n)

1 (y), (1)

Ay
(
xμ, y

) =
∑

n

φ(n)(xμ)W (n)
2 (y), (2)

where Â(n)
μ , φ(n) denoting the vector and scalar KK modes

are only the functions of the brane coordinates xμ, and
W (n)

1 (y), W (n)
2 (y) are only the functions of extra dimen-

sion. When substituting the KK decomposition into the
bulk action for the massless U (1) field, the term Fμy Fμy

in the bulk action was just decomposed into three terms
C1∂μφ(n)∂μφ(n),C2Â(n)

μ Âμ(n) and C3∂μφ(n)Âμ(n) in the
effective action, where C1 ∼ C3 were different coupling
constants related to different integrals of the extra dimen-
sion y. Due to some relationships between C1, C2, C3, the
effective action was found to be gauge invariant.

Here the scalar KK modes play a very important role in
producing the gauge invariance of the massive vector KK
modes. But the expressions of C1, C2, C3 will be changed
in different cases. Thus it is not sure whether the relationships
between them are also changed and whether the gauge invari-
ance can be kept. In this work, we will study the factors this
gauge invariance maybe depend on, such as the geometry of
the background, the number of the extra dimensions and the
dimension of the brane. It has been discussed that whether
the number of the extra dimensions affects the gauge invari-
ance in the warped space-time (RS-like brane models) [48].
In the warped space-time we then turn to the effect of the
dimension of the brane in Sect. 2. Moreover we discuss the
case in flat space-time in Sect. 3. Finally, a brief conclusion
will be given in Sect. 4.

2 Gauge invariance of the massive vector KK mode in
(n+ 1)-dimensional RS-like braneworld

If the RS-like brane has n spatial dimensions, the line element
is

ds2 = e2B(y)(−dt2+dx2
1 +dx2

2 +· · · dx2
n )+dy2, n = 0, 1, 2 . . .

(3)

where xn denotes the spatial dimension of the brane. There
is no constrain on the value of n in theory. In Ref. [13] the
author gave a 1-dimensional braneworld solution based on a
2-dimensional gravity theory.

In order to investigate the KK modes of a massless bulk
U (1) gauge field, we usually choose a KK decomposition as

Aμ =
∑

n

Â(n)
μ W (n)

1 (y) eb1B , Ay =
∑

n

φ(n) W (n)
2 (y) eb2B , (4)

where eb1B, eb2B are introduced for convenience with b1, b2

two constants. Then substituted this KK decomposition into
the bulk action of the field S = − 1

4

∫
dn+2x

√−gFMNFMN

with FMN = 1
2 (∂MAN − ∂NAM ) it can be got that

S1 = −1

4

∫
dn+1x

√
−ĝ

∑

n

[
I1F̂μνF̂μν + 1

2
I2Â(n)

μ Âμ(n)

+1

2
I3∂μφ(n)∂μφ(n) − 1

2
I4

(
∂μφ(n)Âμ(n) + Â(n)

μ ∂μφ(n)
)
]

(5)

with

I1 ≡
∫

dy e(2b1+n−3)BW (n)
1 W (n)

1 , (6)

I2 ≡
∫

dy e(n−1)B∂y
(
W (n)

1 eb1B
)2

, (7)

I3 ≡
∫

dy e(2b2+n−1)BW (n)
2 W (n)

2 , (8)

I4 ≡
∫

dy e(b2+n−1)BW (n)
2 ∂y

(
W (n)

1 eb1B
)
. (9)

Here all the coupling constants are supposed to be finite.
From this effective action, the equations of motion (EOM)
are derived as

I1
1

√−ĝ
∂ν

(√
−ĝF̂νμ

)
+ 1

2
I4∂μφ(n) − 1

2
I2Â(n)μ = 0, (10)

I3∂μ

(√−ĝ∂μφ(n)
) − I4∂μ(

√
−ĝÂ(n)μ) = 0. (11)

At the same time, substituting the KK decomposition (4) into
the EOM of the bulk field, we obtain that

1
√−ĝ

∂ν

(√
−ĝF̂νμ

)
− 1

2
η1∂μφ(n) + 1

2
η2 Â(n)μ = 0, (12)

∂μ

(√−ĝ∂μφ(n)
) − η3∂μ(

√
−ĝÂ(n)μ) = 0, (13)

where

η1 = ∂y
(
e(b2+n−1)BW (n)

2

)

e−(3−n−b1)BW (n)
1

, η2 = ∂y
(
e(n−1)B∂y(W

(n)
1 eb1B)

)

e−(3−n−b1)BW (n)
1

,

η3 = e−b2B∂y
(
W (n)

1 eb1B
)

W (n)
2

.

As the EOM for the KK modes are unique, through com-
paring the Eqs. (10) and (11) with (12) and (13), we could
find some relationships between the coupling constants. To
make it clearer we suppose that the vector and scalar KK
modes satisfy the orthogonality conditions

I1 = I3 = 1. (14)

Therefore, we have

∂y
(
e(b2+n−1)BW (n)

2

) = −I4(e
−(3−n−b1)BW (n)

1 ), (15)

123



Eur. Phys. J. C          (2022) 82:1013 Page 3 of 7  1013 

∂y
(
e(n−1)B∂y(W

(n)
1 eb1B)

) = −I2(e
−(3−n−b1)BW (n)

1 ), (16)

∂y
(
W (n)

1 eb1B
) = I4(e

−b2BW (n)
2 ). (17)

If substitute the relationship (17) into the definitions of I2
and I4, we see that

I 2
4 = I2, (18)

so that the effective action can be rewritten as

S1 =−1

8

∫
dn+1x

∑

n

[
2F̂μνF̂μν+(

∂μφ(n)−√
I2Â(n)

μ

)2
]
,

(19)

which is just gauge invariant under the gauge transformation
Âμ → Âμ + ∂μγ (n), φ(n) → φ(n) + √

I2γ (n) with γ (n) a
scalar field in the brane.

Because I2 denotes the mass of the vector KK mode, we set
I2 = m(n)2, and then I 2

4 = m(n)2. With the help of Eqs. (15)
and (16), we find two Schroding-like equations by a coordi-
nate transformation dy = eBdz and b1 = − n−2

2 :

(−∂2
z + V1) W

(n)
1 = m(n)2 W (n)

1 , (20)

(−∂2
z + V2) W

(n)
2 = m(n)2 W (n)

2 , (21)

where

V1 = n − 2

2
B ′′ + (n − 2)2

4
B

′2, (22)

V2 = −n − 2

2
B ′′ + (n − 2)2

4
B

′2, (23)

with the prime denoting the derivative of z. If there are solu-
tions for these two Schroding-like equations under the orthor-
nality conditions (14), the gauge invariant vector KK modes
can be localized in the brane. The result is consistent with
one of the cases in Ref. [44] (mainly discussed the Hodge
duality on p-brane). Here we emphasize two points:

– for n = 0, with the KK decomposition (4) there are only
two kinds of scalar KK modes in the brane, one is from
Ay , and another is from A0 = ∑

n ϕ(n) W (n)
1 (y) eb1B .

In the effective action (33), the term F̂μνF̂μν disappears.
With the same derivation, the effective action is found to
be

S1 = −1

8

∑

n

∫
dt

[(
∂0φ

(n)
)2+m(n)2ϕ(n)2−2m(n)ϕ(n)∂0φ

(n)
]
.

(24)

The scalar KK modes φ(n) are all massless, and another
kind of scalar ones ϕ(n) are massive. The masses of the
scalars can be solved from the Schroding-like equation
(20) with the effective potential V1 = −B ′′ + B

′2. For

example, using one of the solutions of the warp fac-
tor B(y) = −κ ln cosh(My) with κ, M constants in
Ref. [13] , we find that the effective potential V1 is a
PT-like potential with κ > 1. So that there are bound
scalar KK modes;

– for n = 2 (the brane has two spatial dimensions) the
effective potential vanishes which can be seen from (22)
and (23). So that we have no bound KK modes. However,
for the flat case, there is no such situation.

In this case, the relationship (18) is the key leading to the
gauge invariant effective action. Nonetheless it seems that the
influence of the warp factor can not be ignored. We wonder
if the space-time is flat, whether the gauge invariance will be
destroyed.

3 Gauge invariance of the massive vector KK mode in
brane within flat space-time

3.1 KK modes in brane with one extra dimension in flat
space-time

First we consider a brane model with one compact extra
dimension in flat space-time. For a massless bulkU (1) gauge
field, with the KK decomposition as (1) and (2), its bulk
action can be reduced as

S1 = −1

4

∫
d4x

∑

n

[
I1 F̂μνF̂μν + 1

2
C2 Â(n)

μ Â(n)μ

+1

2
C1 ∂μφ(n)∂μφ(n) − 1

2
C3 (∂μφ(n)Â(n)μ + Â(n)

μ ∂μφ(n))

]

(25)

with I1 = ∫
dy W (n)2

1 , C1 = ∫
dy W (n)2

2 ,C2 =
∫
dy (∂yW

(n)
1 )2, C3 = ∫

dy W (n)
2 ∂yW

(n)
1 . Motivated by

the discussion in RS-like brane, we think that the key to get
the gauge invariant effective action is to find the relationship
between the coupling constants.

To show the details, we derive the EOM for KK modes
from two ways. One is from substituting the KK decompo-
sition into the EOM for the bulk field:

∂ν

(F̂νμ
)
W (n)

1 − 1

2
∂μφ(n)∂y(W

(n)
2 ) + 1

2
Â(n)μ∂y(∂yW

(n)
1 ) = 0,

(26)
∂μ

(
∂μφ(n)W (n)

2 − Â(n)μ∂yW
(n)
1

) = 0, (27)

and another is from the effective action (25):

I1 ∂ν

(F̂νμ
) + 1

2
C3 ∂μφ(n) − 1

2
C2 Â(n)μ = 0, (28)

∂μ

(
C1 ∂μφ(n) − C3 Â(n)μ

) = 0. (29)

123
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Through comparing the two group of EOM, we find that

− ∂2
yW

(n)
1 = C2

I1
W (n)

1 , − C3

I1
W (n)

1 = ∂yW
(n)
2 ,

C3

C1
W (n)

2

= ∂yW
(n)
1 . (30)

With the hypothesis of the orthornality conditions

I1 = 1, C1 = 1, (31)

there is just the relationship

C2
3 = C1 C2. (32)

Due to this relationship the effective action is derived to be
a gauge invariant formulation:

S1 = −1

4

∫
d4x

∑

n

[
I1F̂μνF̂μν + 1

2

(√
C1∂μφ(n) − √

C2Â(n)
μ

)2
]
,

(33)

which is gauge invariant under the gauge transformation
Âμ → Âμ + √

C1∂μγ (n), φ(n) → φ(n) + √
C2γ

(n) with
γ (n) a scalar field in the brane. And two equations satisfied
by the KK modes also can be derived from (30):

− ∂2
yW

(n)
1 = m(n)2 W (n)

1 , (34)

−∂2
yW

(n)
2 = m(n)2 W (n)

2 . (35)

For these two equations, there must be some bound massive
vector KK modes because of the compact extra dimensions.

If the brane has one more extra dimension, one more type
of scalar KK modes will appear. All types of scalar KK modes
will couple with the vector ones, respectively. Arbitrary two
types of scalars will interact with each other. More coupling
constants will be presented in the effective action. Although
we have proved that the gauge invariance of the massive vec-
tor KK modes is not changed in the RS-like brane model [48]
with different number of the extra dimension, it is desirable
that whether in the flat space-time the same result can be got.

3.2 KK modes in brane with d (d > 1) extra dimensions in
flat space-time

For a braneworld in flat space-time with d (d > 1) extra
dimensions y1, y2 · · · yi ( i = 1, 2, · · · , d), there are d
types of scalar KK modes. For the component Aμ, we also
use the KK decomposition (1), and for the component Ai ,
we choose the KK decomposition as

Ai =
∑

n

φ
(n)
i (xμ)U (n)

i (y1, y2 · · · yi ), (36)

where φ
(n)
i (xμ) is the scalar KK mode and U (n)

i is the func-
tion of all the extra dimensions.

Then we substitute the KK decomposition into the bulk
action. The difference with the case for one extra dimension
is that in the bulk action there is the term Fi j Fi j , which leads

to the masses of the scalar KK modes φ
(n)
i and φ

(n)
j and the

coupling between them. Thus the effective action becomes

S1 = −1

4

∫
d4x

∑

n

i �= j∑

i, j

[
I1 F̂ (n)μνF̂ (n)

μν + 1

2
C1i Âμ(n)Âμ(n)

+1

2
C2i ∂μφ

(n)
i ∂μφ

(n)
i − 1

2
C3i

(
∂μφ

(n)
i Â(n)

μ + Âμ(n)∂μφ
(n)
i

)

+1

2
C4i j φ

(n)
i φ

(n)
i + 1

2
C5i j φ

(n)
j φ

(n)
j

−1

2
C6i j (φ

(n)
i φ

(n)
j + φ

(n′)
i φ

(n)
j )

]
. (37)

Here I1=
∫
dy1 . . .

∫
dyd W (n)2

1 , C1i=
∫
dy1 . . .

∫
dyd

(∂iW
(n)
1 )2, C2i = ∫

dy1 . . .
∫
dyd U (n)2

i , C3i = ∫
dy1 . . .

∫

dyd U (n)
i ∂iW

(n)
1 , C4i j = ∫

dy1 . . .
∫
dyd(∂iU

(n)
j )2, C5i j =

∫
dy1 . . .

∫
dyd(∂ jUi )

2, and C6i j =
∫
dy1 . . .

∫
dyd(∂iU j )

(∂ jUi ). For d = 1, C11,C21 ,C31 are just equal to C1,C2,C3

for the case with one extra dimension. We should sum all the
terms for i, j = 1, 2, . . . , d in the effective action.

We also can check the the relationships between the cou-
pling constants through the EOM of the KK modes. Firstly,
from (37) we can get the EOM for the vector KK modes and
scalar ones φ

(n)
i , φ

(n)
j :

I1∂ν

(F̂νμ
) +

∑

i

[1

2
C3i ∂

μφ
(n)
i (xμ) − 1

2
C1i Âμ

] = 0,

(38)
(
C2i ∂μ∂μφ

(n)
i − C3i ∂μÂμ

) − (
C4i j φ

(n)
i − C6i j φ

(n)
j

) = 0,

(39)
(
C2 j ∂

μ∂μφ
(n)
j − C3 j ∂μÂμ

) − (
C5i j φ

(n)
j − C6i j φ

(n)
i

) = 0.

(40)

On the other hand, substituted the KK decomposition into
the EOM for the bulk field, there are

∂νF̂νμW (n)
1 +

∑

i

[
−1

2
∂μφ

(n)
i ∂iU

(n)
i + 1

2
Âμ∂i (∂iW

(n)
1 )

]
= 0,

(41)
∂μ∂μφ

(n)
i U (n)

i − ∂μÂμ∂iW
(n)
1

+∂ j

(
φ

(n)
i ∂ jU

(n)
i − φ

(n)
j ∂iU

(n)
j

)
= 0, (42)

∂μ∂μφ
(n)
j U (n)

j − ∂μÂμ∂ jW
(n)
1

+∂i

(
−φ

(n)
i ∂ jU

(n)
i + φ

(n)
j ∂iU

(n)
j

)
= 0. (43)

The EOM for the KK modes are unique, which indicates the
relationships between the coupling constants.

123
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– Firstly, comparing the Eqs. (38) and (39) with (41)
and(42), we have

∂2
i W (n)

1 = −C1i

I1
W (n)

1 , (44)

and

− C3i

I1
W (n)

1 = ∂iU
(n)
i ,

C3i

C2i
U (n)
i = ∂iW

(n)
1 , (45)

from which it is easy to deduce that

C2
3i = C1i C2i . (46)

For d = 1, we have seen this relationship in Sect. 3.1. For
more extra dimensions, all through there are more scalar
KK modes, each scalar interacts with vector by the same
way. This means that for the scalar KK mode φ

(n)
j there

is the relationship as C2
3 j

= C1 j C2 j .
– Secondly, with the Eqs. (39) , (40) and (42) ,(43), we

obtain the following equations:

∂2
j U

(n)
i = −C4i j

C2i
U (n)
i , (47)

∂2
i U (n)

j = −C5i j

C2 j

U (n)
j , (48)

and

∂ j∂iU
(n)
j = C6i j

C2i
U (n)
i , (49)

∂i∂ jU
(n)
i = C6i j

C2 j

U (n)
j . (50)

These equations will tell us more relationships between
the coupling constants. For simplicity, we assume the
orthornality conditions

I1 = 1, C2i = C2 j = 1. (51)

The Eqs. (47) and (48) show the constrains on the
masses of the scalar KK modes. As the scalar and vec-
tor are not independent, the masses of them must be
related. To find this, we consider the term ∂ j∂i∂ jW

(n)
1 .

Because ∂ j∂i∂ jW
(n)
1 = ∂i∂ j∂ jW

(n)
1 = −C1 j ∂iW

(n)
1 =

−C1 j C3i U
(n)
i and ∂ j∂i∂ jW

(n)
1 = C3i ∂ j∂ jU

(n)
i = −C3i

C4i j U
(n)
i , there is

C1 j = C4i j . (52)

Similarly, through the term ∂i∂ j∂iW
(n)
1 we have

C1i = C5i j . (53)

Then we would like to find the relationships betweenC6i j
and C5i ,C6 j . As

C6i j U
(n)
i = ∂ j∂i

(
1

C3 j

∂ jW
(n)
1

)

= 1

C3 j

∂i∂ j∂ jW
(n)
1

= C1 j

C3 j

∂iW
(n)
1 = C1 j

C3 j

C3i U
(n)
i

it is clear that

C6i j = C1 j

C3 j

C3i =
√
C1i C1 j . (54)

Ultimately the effective action can be rewritten as

S1 = −1

8

∫
d4x

∑

n

i �= j∑

i, j

[
2I1F̂μνF̂μν

+
(√

C1i Â(n)
μ − ∂μφ

(n)
i

)2 +
(√

C1 j φ
(n)
i − √

C1i φ
(n)
j

)2
]
,

which is just gauge invariant under the gauge transformation
Â → Â + ∂μγ (n), φ

(n)
i → φ

(n)
i + √

C1i γ
(n).

If all the extra dimensions are compact, there are massive
bound vector KK modes. All of the extra dimensions con-
tribute on the masses of the vector KK modes. However, for
the scalar ones, they only obtain masses from (d − 1) extra
dimensions.

4 Conclusion

In this work, we discussed the gauge invariance of massive
vector KK modes for a massless bulk U (1) gauge field in
different brane models. First we investigated whether the
dimension of the brane affects the gauge invariance, and
it was got that the dimension of the brane determines the
effective potentials constraining the KK modes, but does not
change the gauge invariance of the effective action. Second
we considered the case in braneworld within flat space-time.
Although the space-time is flat, there is also a gauge invari-
ant effective action for a massless bulk U (1) gauge field,
whatever the number of the extra dimensions is.

Throughout the paper, we found that no matter in the
warped space-time or the flat case, the gauge invariance of the
effective action is independent on the number of the dimen-
sion and the dimension of the brane. Nevertheless this is
based on the orthornality conditions for the KK modes. Only
the KK modes satisfying these orthornality conditions are
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stable. For the warped case, through solving the Schroding-
like equation (20) or (21) under the orthornality conditions
we can find the stable gauge invariant massive vector KK
modes. Although whether there are solutions depends on the
warp factor of a brane model; for the flat case, as the extra
dimensions are compact, there are always stable KK modes.
In a sense the gauge invariance is caused by the geometry of
the space-time, i.e., the braneworld background. However,
whether there is fundamental physics should be given more
investigation.
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